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system can then be recognized by studying the group actions of transla-
tional group (R*) and the rotational group (S') and the system dynamics
can be appropriately reduced to get a final description for the simulation
purposes. This approach is essentially what has been proposed by Sreenath
and Krishnaprasad[50,51]. For more informations also consult[1,2,34].

Again, as earlier, much more remains to be done in order to under-
stand the complexity of the simulation algorithms as well as their efficient
implementations.

4 Conclusion

We have described a rich set of computational problems in differential alge-
bra with concrete applications in dynamics and motion-planning problems
in robotics, automatic synthesis of control schemes for nonlinear systems
and simulation of physical systems with fixed degrees of freedom. There
are several related techniques and algorithms for these problems. However,
a complete and unifying algorithmic theory is still absent. We highlight
many different techniques based on the following approaches: ideal theo-
retic approach of Ritt, Galois theoretic approach of Kolchin and Singer and
group theoretic technique of Lie.
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3.3 Simulation

Another interesting application comes from the simulation of complex dy-
namical systems. Omne hopes to understand the structure of the system
and its evolution by studying the paths of evolution of a dynamical system
under dynamically changing environments. A large class of systems of inter-
est are provided by the so-called “multi-body” systems encompassing such
systems as astronomical systems (galactic and planetary systems), the hu-
man body, spacecrafts, molecular systems (proteins, inorganic molecules),
vehicular systems and robots. The dynamics of these systems cannot be
easily approximated by linear differential systems, since large motions are
characteristic of all these systems. The inherent nonlinearity leads to the
study of the differential algebraic systems that can be arbitrarily complex.

The main steps in the process of simulating these objects are essentially
of two kinds: (1) derivation of a dynamic model of the system (for instance,
Lagrangian or Newtonian mechanics) and (2) reduction of the model that
takes into account the inherent symmetry in the system. The final model
can then be presented in a suitably simplified form whose step-wise evolu-
tion can then be studied by numerical means.

For instance, if our interest is in a planar multi-body system then its
configuration space is given by

C=(SHY x R?,
where N is the number of rigid bodies involved in the system. The system
can then be coordinatized on the tangent bundle 74 by
(92', Ce ,9]\7,(4)1, Ce ,wN),

the relative angles and the angular velocities. The Lagrangian in these
coordinates is then given by
1 1P|
L==-07J0)Q+ —
2 (©)+ 2m
where  is the vector of angular velocities, P is the linear momentum (of
the center of mass of the system) and J(©) is the pseudo-inertia matrix
of the system and depends on the relative angles. The symmetries of the
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tion:

(209%y* — 49'% — 40y°y° + 409"y — 209°y° + 4y°)§
+ (dug®y — 49°y — 209%y* + 40ug’y? + 209%y° + 20uyy® + 4y*)j
— 9%y + 5yty* — 10y°y° + 20ug’y? + 109°y* + y* — 8y°y + 10uy’y
—u?y + 2uyy — y*y — 59'% + ¥ + 89y’ + 2uyy’ = 0. O

However, one problem with our formulation is that I = I N K{z, y}
may not have a finite basis even if [ is given by a finite set of generators.
This creates a problem that, unlike the purely algebraic case, cannot be
solved using the standard bases approach. On the other hand, the approach
suggested by Ritt using the characteristic sets comes to our rescue. Here,
the problem has to be reformulated in order that we agree to accept a
relation between input-output as opposed to a description of the entire
contracted ideal.

Another approach is via extended Lie-derivative operators. Let us define
u; and x; for all : € N to mean

d’ d d
u; = —u, and x; = —u.
dtt dt?
Given fi, ..., f, as in the state-space equations, we define the eztended

Lie-derivative operator as

n

0 > 0
Ly= Zﬁa—m + ;uz-l—la—uz

=1

Then the input-output relation can be determined by considering the purely
algebraic ideals of the form

(y —h,y—Lsh,... ,y™ — Lih) N Klu,u,... Ty g ,y(”)].

In this special case, one can use the classical approaches of purely algebraic
elimination theory (e.g., Grobner bases) to obtain the solution.

There is a need to systematically study the input-output relations and
the related problems of isomorphism, controllability, observability and min-
imality of description, etc. Also, of interest is the study of the complexity
of the problem both in the abstract sense as well as practical sense with
specific application areas in mind.
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Figure 3: The coupled tank example.

where u is the input flow and z; and z; are the height of the fluid in the
conical and cylindrical tanks, respectively.

We can convert the system to a polynomial system by introducing two
new variables x; and x5, where

2 2
r; =2z and x5 = 2.

We next consider the differential ideal generated by the following systems
of differential equations:

2$i§$1‘|‘$1—u:0 2$2$2+$2—$1:0 :Cg_y:()

After eliminating z; and x,, we obtain the following input-output rela-
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from a redundant state-space description of the system. From an algebraic
point of view, this is exactly the problem of variable elimination and comes
under the subject of elimination theory. Thus all the theories related to
standard bases, characteristic sets and differential-algebraic resultants play
important roles.

This problem is also directly related to and the starting point for several
other problems: determining whether two systems are isomorphic (i.e., if
the two systems have the same input-output behavior), minimality of a
state-space description, controllability and observability of a system. For
additional discussions of these topics, consult [11,14,23,24,52].

The general approaches are as follows: Assume that the system (SISO)
is described as given below. The general MIMO systems are handled in an
identical manner.

il = fl(X,u7LL,,LL(m))

iy = fo(X u, . u(™)
y = h(X,u)

Counsider the following differential ideal I in the differential ring K{z, wu,
y}:

I=[&1— fi,..., %0 — fn,y — R
The input-output relation is then obtained by finding the contraction I° of
the ideal I to the ring K{u, y}. The generators of I° = I N K{u, y} give
the differential polynomials involving only u and y.

Example 3.3 In the following example from Forsman[14], we consider two
coupled tanks: one conical and the other cylindrical, where we wish to
control the height of the fluid in the cylindrical container, z;. See Figure 3.3.
The state-space equations for this system is:
u— /71
zf

o= Va-va

2"1 -

Yy = 22
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fn(i:T“X? u, ’l'l, s 7u(m)) =
h(y7X7 u) =

However, a large number of practical systems can be described easily
by the ezplicit form and any specific algorithmic improvement one may be
able to obtain for these cases are extremely valuable.

For instance, we saw that given a linear differential constraint equation

of the following kind:

Wi(Q)g + W2(Q)gz + -+ - + Win(Q)gm = 0,
by considering the local bases for the distribution A(Q), i.e.,
A(Q) = Span (X1(Q), ..., Xn(Q)),
we can write an associated control equation as follows:
q:1
P = K@+ X Qa4+ Xk ( Qs
G
Since all the states in this case may be assumed to be observable (or
measurable) by a set of sensors, we may further assume

Y q1
Y2 _ q2
Ym dm

Thus we may consider the nonholonomic motion planning problem sim-
ply a rather special case of the general control-theoretic problem. Thus, the
ideas developed here (e.g., controllability, observability, choice of controls,
etc.) are directly applicable to the situations described in the preceding
section.

One of the major problems in control theory is to determine an input-
output relation between the control inputs and the output variables starting
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3. There are several numerical approaches that generate approximate
paths and are based on regularization techniques, highly oscillating
control or averaging techniques. See[19,53].

We plan to understand and unify the underlying algebraic structures
and devise solutions for more general cases involving drift, inequalities and
algebraic constraints imposed by the obstacles or limiting constraints on
the control.

3.2 Control Theory

In control theory, a state space description of a plant is usually given by
a system of differential equations. For instance, in the simplest possible
(but widely used) formalism, a linear continuous time time-invariant single-
input-single-output (SISO) system is described by a state equation and an
output equation as follows:

#(t) = ax(t)+ bu(t)
y(t) = ca(t) +du(t),

where the first equation describes the evolution of the state in the state-
space and the last equation describes how the output depends on the current
state and the control. Here, x is a state variable, u is a control variable
and y is the output variable. One assumes that the input/control v and
the output y are observable, but the state variable x is hidden or latent.

In general, one needs to consider more general description of either of
the following two forms, the later being more general and preferable. The
system in the explicit form is:

o= f(Xu,. . ul™)
& = Fu( X uy ..., u™)
y = h(X,u)

The system in the implicit form is:

fildy, X uyt, .. u™) = 0
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A, = A+ [Ag, Ary]
where [Ag, A;_1] = Span ([X,Y]: X € Ao, Y € A,4])

Assuming a regularity condition on the filtration (i.e., for all Q@ €

Nbhd(Qo), we have rank(A;(Q)) = rank(A;(Qo))) we see that
AgCA C---CA, C---
and that rank(A;;1) > rank(A;) and if rank(A,41) = rank(A,) then
rank(A,) = rank(A, 1) = rank(A, o) = - -

The smallest such p is called degree of nonholonomy of the distribution
A. If p = 0 then the system is involutive and by Forbenius integrability
theorem it is actually holonomic. Thus, once we compute a filtration, we
have solved the characterization problem. Furthermore, if p > 0 then the
system is nonholonomic, and if additionally rank(A,) = m is the dimension
of the configuration space C then the system is mazimally nonholonomic
and by Chow’s theorem[8] the system is locally controllable (i.e., for any
two configurations (); and )y in an open set of the configuration space
C there is a path connecting ); and )y which obeys the nonholonomic
constraints imposed by the distribution.) Thus, we also have a solution to
the controllability problem.

This brings us to the final problem of Path Planning. Much less is known
for this problem and it is currently an area of active research. Below, we
summarize some of the main results involving the path planning problem.

1. Sussman and his colleagues have shown that if the system is nilpo-
tent or nilpotentizable then assuming a regular filtration, the path
planning problem can be solved using only piecewise constant control
involving only finitely many discontinuities the number of which is a
function of the degree of nilpotency. See [31,53].

2. If the underlying system is triangular, then Sastry and his students
have presented several path planning solutions for these special cases.

36,37].
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g1 9gm 1

dq1 9gm m
9q1 Igm Y
IXm . IXm ;
9q1 9qm Ym

Example 3.2 Going back to our old example of the front-wheel drive car,
we see that the distribution is given by the following two vectors: X =
drive and Y = steer.

cos
¥ _ sin 6 4 v
| tané at N

0

— o O O

By Lie bracket operations, we can obtain additional directions: [X,Y] =

wriggle and [ X, [X, Y]] = slide.

0 —sin f sec? ¢

0 cos B sec? ¢
[XaY] —sec2q§ and [X7 [va]] - 0

0 0

Note that (X, Y, [X,Y], [X,[X,Y]]) span the entire space and thus with
drive, steer, wriggle and slide we can move a front-wheel drive car from any
configuration to any other. [

In general given a distribution
A= Span (Xl,XQ, e 7Xm) = Ao,
we can construct its filtration as follows:

AO - A
Ar = Ag+ [Ag, Ag)
where [Ag, Ag] = Span ([X,Y]: X € Ap, Y € Ag))



24 COMPUTATIONAL DIFFERENTIAL ALGEBRA

-Y dt
’ @)

-X dt

X dt

Y dt

Figure 2: Lie derivative

We call N an integral manifold of A. Now, we have a solution to the char-
acterization problem. If the system is holonomic then the integral manifold
N of the distribution A is given by a level surface:

(Q) =0, hn (@) =0, VQEeC.

In order to understand the controllability problem we need to consider
the following Lie derivative operation. Let (X,Y") be a pair of independent
vector fileds in A(Q). At the configuration @), consider the following cyclic
motion depicted in figure 3.1: A motion in the direction of X followed by
a motion in the direction of ¥, then —X and finally —Y. The resulting
motion is then in the direction [X,Y] (the Lie-bracket of X and Y') given
by

[X,Y]=DY -X —-DX-Y
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In the matrix notation, this is

cos @
B sin 6 e
| tané t

0

Uy. ]

O TS 8-
— o oo

Now assume that the constraints are given by the following (differential)
equality constraint:

Wi(Q)gr + Wa(Q)ga + -+ + Wi (@) = 0,

where W; : C — R* is a map from the m-dimensional configuration space
to a k-dimensional vector space. We write the associated matrix as

W(Q) = ( Wi(Q) Wa(Q) -+ Win(Q) )

and assume that it is of full rank £ < m. Then there is a linear subspace
A(Q) C To(C) such that dim A(Q) = m—k. Thus there is a vector U = (uy,
Uz, « .oy Uy ) € A(Q) such that

W(Q)U = Wi (Q)us + Wa(Q)uz + - -+ + Wi (Q)uy = 0.

That is, there exists an (m—k)-distribution A (given by (m—k) independent
vector fields) with a local basis X1(Q), ..., X;n—x(Q) spanning A(Q) for all

(V@ € ¢) [Span (X4(Q), ..., Xn-i(Q)) = A(Q))].
Thus any admissible path must satisfy the following equation:

m—k

Q= > Xi(Q)u;, where U € R™F.

=1

Thus the W’s define the forbidden motion directions and X’s describe the
free (i.e., feasible) motion directions.

The set of vector fields given by A is called a distribution. Now, consider
a manifold N C C such that

(V@ €C) [A(Q) = To(N)).
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Q

Figure 1: Front Wheel drive Car

That is
zsinf —ycosfd = 0
T tan ¢ — fcosd = 0.
If one introduces the following control variables

uy = driving velocity

uy = steering velocity,
then the above constraints can also be rewritten as follows:
= cosf u;
= sinf uq

= tan¢ u;

RSN - T

= Us.
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ally nonholonomaic, (i.e., nonintegrable)? This is the Characterization

Problem.

e How do the set of constraints (both holonomic and nonholonomic)

restrict the space of configurations reachable from an initial configu-
ration? This is the Controllability Problem.

e Given a robot subject to holonomic and nonholonomic constraints,
how can we plan a path for the robot to go from an initial configura-
tion to a final configuration? This is the Path Planning Problem.

More formally, we are given the following:

e Robot: A—assumed to be in motion.

e Phase Space: P =C x Tp(C) =

= {(ql, s @ms 1y Gm)  ¢;'s are the configuration coordinates and

g;’s the velocity coordinates}.

Here, ) € C is a configuration in the configuration space and Q €
To(C) is a velocity in the tangent space of C at Q.

e Constraints: We assume that the robot A satisfies the following
scalar constraint:

G(QJQvt):G(qla"'vqqu'lv"'vq'mat):0' (2)

If the kinematic constraint given by the equation (2) is non-integrable
(i.e. §¢1, ..., Gn cannot be eliminated from the equation (2)) then the
constraint is a nonholonomic constraint.

Example 3.1 Followingis a classic example involving the front-wheel drive

car. (See Figure 3.1.)

Rolling constraints on the wheel give rise to the following non-holonomic
constraints: ]
Ty 0

cosf  sinf  tang’
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The best way to study this problem is in the so-called configuration
space, C (or C-Space), which is a parameter space corresponding to all
the potential configurations of the robot. Clearly, the set of physical ob-
stacles in the robot’s environment render certain subsets of the C-space
infeasible—this subset is called the forbidden space and its complement the
free space. About a decade ago it was observed by several researchers that
if the obstacles are algebraic (i.e., can be described by piecewise polynomial
surfaces) then the free space (as well as forbidden space) are semialgebraic
and in the absence of any other constraints (specifically, differential), the
motion planning problem reduces to determining if two given points are in
the same connected component of the free space. In such a situation, one
can use some ideas from computational semialgebraic geometry to devise
algorithmic solutions. Since in a semialgebraic set path connectivity implies
semialgebraic path connectivity, one can in fact generate a semialgebraic
(thus, continuous) path connecting the initial configuration to the final one.
This classic situation is usually studied under the title of holonomic motion
planning.

However, the situation gets more complicated if there are additional
constraints on the robot path which are described by certain local condi-
tions that can be described as path constraints (as opposed to point-wise
constraints) and thus by differential equations or inequations. For instance,
at certain configuration the constraints may dictate that motions in only
certain directions are allowed. Another way of describing these constraints
may involve high dimensional phase spaces (e.g., spaces consisting of robot
configuration parameters as well as velocities, accelerations etc.)

Usual examples in robotics where this sort of monholonomic motion
planning problems play a central role include: articulated robots—the joints
impose constraints on the relative motions of the associated links; mobile
robots—where the robot is allowed to move in certain directions (e.g., front-
wheel drive cars that can drive and steer but not move side-wise); space
robotics; motion in contact—fingers manipulating an object without break-
ing the contacts or sliding. See [3,12,19,21,31,32,36,37].

In this context, one addresses the following three questions:

e When are the local constraints local? In other words, given a set
of nonholonomic constraints, how do we know that they are actu-
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Clearly, there are many other interesting problems of this nature, involv-
ing systems of linear and nonlinear differential equations, partial differential
equations, etc. Some negative results and in some special cases, few positive
results are known here. But, it is our impression that much more needs to
be done, before this field is ready to be used by practitioners in a mundane
manners.

3 Applications

Clearly, since the formulation of physical laws by Newton using the concepts
of calculus, mathematical physics, applied mathematics and more recently,
mathematical approaches in social sciences (e.g. economics) have all been
based on models that are described by ordinary or partial differential equa-
tions and the evolution of the object modeled is described by the solution
to these equations. More recently, beginning in the last century, the field of
control theory has begun to look at the synthesis of physical systems (via
a feedback control of an autonomous plant) that exhibit certain desired
behavior. While most of the success in this field are in the case when the
underlying plant is finite-dimensional and linear, there is currently much
interest in extending the theory to non-linear situations. One reason for
this interest is the emergence of the field of robotics, where the dynamics of
the system as well as the kinematic and dynamical constraints require one
to study symbolic solutions of much more general systems of differential
equations than what is common in classical control theory.

We begin by discussing the problem of nonholonomic motion planning
which arises in robotics and then proceed to touch on some related problems
in control theory as well as the simulation theory.

3.1 Robotics

In robotics the problem of motion planning is to navigate a robot (in gen-
eral, a collection of robots) from an initial configuration to a final config-
uration while obeying a set of constraints (kinematic as well as dynamic)
imposed externally by a set of obstacles, a set of contact conditions or by
virtue of some conservation laws.
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no new constant is introduced into the differential extension. Kolchin has
shown that under the assumptions of this section, to every linear differen-
tial equation there exists a Picard-Vessiot extension, which is unique up to
differential isomorphism.

Also, given a Picard-Vessiot extension of L(y) = 0, F' = F{y, ...,
yn}, the differential Galois group of L(y) = 0 (Galg(F'/F)) is the group
of all differential automorphisms ® : F' — F’ such that ®f = f for all
f € F. Then it has been shown (see Singer[48]) that £(y) = 0 is solvable
in terms of Liouvillian functions (i.e. its Picard-Vessiot extension lies in
a Liouvillian extension of F) if and only if its Galois group (Galg(F'/F))
contains a solvable (in the algebraic sense) subgroup of finite index.

However, finding the Liouvillian solution is still hard and one attempt
is to find these solutions by effectively searching over a bounded space (see
Singer[47]). From the solvable subgroup H of Gal,(F'/F) and the poles of
the coefficients of L(y) = 0, one can obtain bounds N and P such that if
L(y) = 0 has only Liouvillian solutions then it has a solution y such that
u = y'/y satisfies an algebraic equation of degree bounded by N and P.
There are several effective algebraic algorithms to compute such a u, and
then we have the solution y = ze * where = is found by solving the lower
order equation £*(z) = 0, obtained by the change of variable: y = zel v By
proceeding this way, we can effectively compute all the Liouvillian solutions.
For more details, see Singer[47].

While this is effective, an explicit complexity analysis of this method of
solution remains to be performed. Also, one needs to explore various other
techniques to improve the complexity of this problem.

However, the situation deteriorates as one begins to consider non-linear
differential equations. Except for certain special cases, one still does not
have an adequate answer for the following problem (see Singer[49)]):

Problem 2.4 (Formal Solutions of Nonlinear Differential Equations)
Given a polynomial first order differential equation:

flz,y,y') =0.

Decide if f = 0 has an elementary solution. If it does have one, find it.

O
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We ask when a solution ¢g(z) = [ f(z) dz can be expressed in terms of ele-
mentary functions (functions such as log, exp, sin, arcsin, etc. of elementary
calculus). This is the integration problem and was briefly considered in the
introduction. There is a considerable literature for this problem and is
relatively well-understood ([4,9,43,49]).

Next one considers the problem of higher order but still linear differen-
tial equations:

L(y) = v+ a,y" Y o ay +ag = 0. (1)

While the question is rather simple for the case when a;’s are constants, it
turns into a rather difficult problem when one assumes that a; € F (F = a
differential field containing an algebraically closed subfield of constants of
characteristic zero). More concretely, one asks when the equation L(y) =
0 has Liouvillian solutions, and if it does have such solutions, whether
there are effective algorithms to find the solutions. Kovacic [30] dealt with
the case when the order is two. The general case has been addressed by
Singer[48].

In order to understand the techniques here, one has to rely on the “Dif-
ferential Galois Theory,” a non-trivial generalization of the corresponding
algebraic counterpart. Consider two differential field (Fq,d;) and (F3, ds),
equipped with their corresponding derivation operations d; and ds, respec-
tively. Here, one assumes that the constants of such a differential field is
a subfield of characteristic 0 and algebraically closed. Two such fields are
differentially tsomorphic if there is a field isomorphism ® : F; — F, such
that ® o d; = dy o ®. A differential isomorphism of a field to itself is a
differential automorphism.

A differential field (F’,d’) is a differential (field) extension of (F,d) if
F C F' and d' restricted to F coincides with d. Let uy, ..., u, € F' and F C
F’ is a differential subfield of F’ (both equipped with the same derivation
d). Then the smallest differential field containing F and the elements u;,

.., u, is denoted F{uy, ..., u,}.

Assume that yi, y2, ..., ¥, are solutions of the order n linear differ-
ential equation of Eq. (1) that are linearly independent over the subfield
of constants K¢ of F. (Le., the Wronskian determinant, W(yi, ..., y.),
does not vanish.) Consider the field extension F' = F{yi, ..., y,}—such
an extension is called a Picard-Vessiot extension of L(y) = 0 (Eq. (1)) if
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A related problem is that of determining if every solution of a system
of differential polynomial equations

f1:07f2:07"'7f7°:07

is also a solution of another differential equation ¢ = 0.

Characteristic set based techniques have also found applications in the-
orem proving [7,54,55,56], elimination theory with applications in control
theory [14,11] and other areas where there is no standard bases related
techniques.

However, there are several open problems related to this area and worth
investigating. Not much is known about the efficiency and complexity anal-
ysis of these algorithms. In fact, even for the algebraic case, until very
recently there was no effective algorithm to compute a characteristic set
or to analyze its algebraic and algorithmic complexity [15,16]. Also, it is
worth investigating whether these techniques can be used in providing ef-
fective representation of differential ideals. Following open problem is of
fundamental interest (also, see [49]):

Problem 2.3 (Prime Decomposition Problem) Given a radical dif-
ferential ideal J C K{xy, ..., x,}.
Find the minimal prime components {Py, ..., P,} of J.

J:PlﬂPgﬂﬁPp D

2.4 Formal Solutions of Differential Equations

In addition to studying the ideal-theoretic and solvability issues for a sys-
tem of differential (polynomial) equations, one is also commonly interested
in understanding the solutions, their structures or the symmetries involved
in the equations. One area of rather vigorous investigation has been in
obtaining “formal expressions that represent solutions of differential equa-
tions.” ([49]). Such solutions are either explicitly given by formal power
series, Liouvillian functions, error functions etc., or implicitly given by ele-
mentary first integrals and Lie-theoretic techniques.

The easiest problem in this area is that of solving the differential (order
1 and linear) equation:

d

T — f(z)=0.



Section 2 DIFFERENTIAL ALGEBRA AND SOME OPEN PROBLEMS 15

Let f € K{x1, ..., x,} be of class j and of order k in z;. Let u denote
d®z;. The separant of f is the differential polynomial aa—uf The coefficient
of the highest power of d¥)z; in f will be called initial of f. The separant
and initial of f will be denoted by S(f) and I(f) respectively.

For a given set F = {f1, ..., fr} € K{zy, ..., z,} of r differential
polynomials, let us write Hr to denote

Hr = [ I(£)S(5).

=1

where I(f;) and S(f;) are the initial and separant of f;. Now, for the
differential ideal [F], note that the following is also a differential ideal:

711 = o+ (31 20) (5 e 7))

Note that if I is a differential ideal and F is a characteristic set of I
then, it can be shown ([45]) that

FlCIC(F: H.
Furthermore if I is prime then
I=[F]:H>.

Because of these properties, characteristic sets do ameliorate the problem of
not being explicitly construct “nice” bases for differential ideals, in general.

The characteristic sets are ideal tools for and were originally developed
to address the following problems:

Problem 2.2 (Solvability Problem) Given a set of differential polyno-
mials {f1, ..., fr} C K{zy, ..., z,}.

Is the system of differential polynomial equations

f1:07f2:07"'7f7":07

consistent? le., Do the equations have any solution? ]
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1. r =1 and f; is not identically zero;

2. r>1,and 0 < Class(f1) < Class(fz) < --- < Class(f,) < n,

and each f; is reduced with respect to the preceding differential poly-
nomials, f;’s (1 < j <1).

Clearly, every ascending set is finite and has at most n elements. [

Definition 2.10 (Ordering on the Ascending Sets) Given two as-
cending sets

f:<f1,...,f7«> and g:<gl7"'795>7

we say JF is of lower rank than G, F < G, if one of the following two
conditions is satisfied,

1. There exists an index ¢ < min{r, s} such that
(V1<yj<i)[fi~gj] and [f: < gi;
2. r > s and (Vlﬁjﬁs) [fngj].

Note that there are distinct ascending sets F and G that are not
comparable under the preceding order. In this case r = s, and
(V1<j3<s) [fi ~gj], and F and G are said to be of the same rank,
F~¢g O

Note that the family of ascending sets endowed with the ordering “<”
is a well-ordered set.

Definition 2.11 (Characteristic Set) Let [ be a differential ideal in
K{zq, ..., ,}. Consider the family of all ascending sets, each of whose
components is in I,

S; = {fz (fi,..., fry + F is an ascending set
andfiEI,lgiﬁr}.

A minimal element in S; (with respect to the < order on ascending sets) is
said to be a characteristic set of the differential ideal I. [



Section 2 DIFFERENTIAL ALGEBRA AND SOME OPEN PROBLEMS 13

2. Otherwise, if z; 1s effectively present in f, and no x; > x; 1s effectively
present in f (i.e., f € klxy, ..., ;]\ k[z1, ..., j_1]), then Class(f) =
J. O

Given a differential polynomial f and a variable z; effectively present
in f, ord.,(f) (order of f with respect to ;) denotes the greatest 7 such
that dz; is effectively present in f.

Similarly, given a differential polynomial f and the k*® derivative of

k)

a variable z; [i.e., d®)z;] effectively present in f, degd(k)zj(f) (degree of f

with respect to d¥)z;) denotes the greatest i such that (d¥)z;) is effectively
present in f.

Definition 2.8 (Ordering on the Differential Polynomials) Given
two differential polynomials f; and f, € K{zy, ..., z,}, we say f; is of
lower rank than fs,

fi < fay
if
1. Class(fi) < Class(f3), or
2. Class(f1) = Class(f2) = j and ord,,(f1) < ord,(f2), or
3. Class(fi) = Class(f,) = j, ord(f1) = ord.(f:) = k and
deg g, (f1) < degyon,,(f2)-

Note that there are distinct differential polynomials f; and f, that are
not comparable under the preceding order. In this case, f; and f, are said
to be of the same rank, fi ~ f,. 0O

If f1 is of class 7 > 0, then f, is said to be reduced with respect to fy if
f2 1s of lower rank than f; in z;, i.e., if

L. ordg,(f1) > ords,(f2), or

2. ord,,(fi) = ordy,(f2) = k and degyr,, (f1) > degyr,, (f2).

Definition 2.9 (Ascending Set) A sequence of differential polynomials
F={f, f2y .- fr) € K{ay, ..., x,} is said to be an ascending set (or
chain), if one of the following two conditions holds:
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For other similar results also see [5] and [38]. However, we still do not
have a complete algorithm. There are several problems: not all differential
ideals are isobarizable—that is one cannot always choose a weight function
that will make a given differential ideal isobaric; not all recursively gener-
ated isobaric differential ideals may have a finite computable H-bases. We
present a counter-example due to Olivier that exhibits a finitely generated
differential ideal without a finite H-basis.

Let F be a differential field of characteristic zero and F{z, y}, a ring of
differential polynomials in the variables x and y. Let M

m = [dx — 1,z dy + y|

be a finitely generated prime ideal in F{z, y}. Now considering the algebraic
ideal H(M ), we see that it is generated by {dz, v dy} U J, where J is an
ideal in F{y} without a finite set of generators. Thus M, although finitely
generated, has no finite H-basis. For more details, consult [15]. Thus, at
present, the differential ideal membership problem remains an intriguing
open problem of utmost fundamental interest.

2.3 Characteristic Sets

Let K{zy, ..., x,} denote, as before, the ring of differential polynomials in
n variables, with coefficients in an algebraic field K of characteristic zero.
Consider a fixed ordering on the set of variables; without loss of generality,
we may assume that the given ordering is the following:

T < Ty < -+ < Ty

Definition 2.7 (Class) Let f € K{x1, ..., x,,} be a multivariate differen-
tial polynomial with coefficients in K. A variable z; is said to be effectively
present in [ if some (differential) monomial in f with nonzero coeflicient
contains a (strictly) positive power of d®z; (i > 0).

The class of a differential polynomial f € K{zq, ..., x,} with respect
to a given ordering is defined as follows:

1. If no variable z; s effectively present in f, (i.e., f € K), then, by
convention, Class(f) = 0.
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Let f be an isobaric differential polynomial. Suppose that fi, ..., f, are
the elements of S, each of weight w(f): Their leading isobaric components
generate a subspace V of the vector space W of all the isobaric polynomials
of weight w(f). Because the field of the coefficients is computable it is
possible to find hq(f) and hy(f) such that h(f) = hi(f)+ h2(f), with hi(f)
in V and hy(f) in the orthogonal complement of V. In particular, it is
possible to compute elements a; in K such that

hi(f) = arh(f1) + -+ a,h(fp)-

The differential polynomial

f:f—a1f1‘|‘““|‘apfp

is said to be a reduct of f modulo S. The “reduction” relation is denoted
by the following notation:

f=*1
The reduction process can be generalized to an arbitrary differential poly-
nomial ¢g, by simply applying it to each one of the isobaric components of
g.
A simple argument shows that no polynomial f can lead to an infinite
chain of reductions.

Proposition 2.2 Let I be a differential ideal; S, an H-basis for I, and f,
a differential polynomaal. Then f 1s in I of and only if any mazimal chain
of reductions with respect to S ends with 0. |:|

It has also been shown in [17] that

Theorem 2.3 Let I be a differential ideal of the ring K{xzq, ..., x,}, with
a recursive set of generators S of isobaric differential polynomials. Then

o S is an H-basis of the ideal I.

o [ is a recursive subset of the ring K{xy, ..., x,}. That is I has an
effective membership algorithm. [
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algorithm and then rely on the standard “ascending chain condition” to
prove termination. Thus we may ask the following questions:

e Do finitely generated differential ideals have finite sized H-bases?
e Do recursively generated differential ideals have recursive H-bases?

The answer to the first question is in the negative and not much is
known about the second question and is a subject of current investigation.

Counsider the ring A = K{xy, ..., z,} together with a weight function w
defined on it. A is isomorphic to the direct sum 52, A;, where A; is, for any
integer ¢, the finite dimensional K-vector space of the isobaric polynomials
of weight z.

Definition 2.6 Let I be a differential ideal in K{xq, ..., z,}. Consider
the algebraic ideal H(I), generated by the set of all the leading isobaric
components of the differential polynomials in 1.

Similarly, given a basis S for the differential ideal I, consider the al-
gebraic ideal H(S) generated by the leading isobaric components of the
polynomials in the set S = {¢g: ¢ = d¥s with s € S, k € N}. Generally,
H(S) is properly contained in H(I).

The basis S of the differential ideal [ is said to be an H-basis if

The property of being an H-basis depends on the weight function considered
over the ring. [J

Note that if K is not a field of constants, derivation and extraction of
the leading isobaric components do not, in general, commute. Then the
algebraic ideals H(I) and H(S) may not be differential ideals.

To get a ‘differential” description of H-bases, in this case, one may adopt
the point of view of [38] and [39]. Namely, one introduces a new derivation
d. on the ring A such that d.(K) = {0}. Otherwise d, is equal to d. See
[17] and [38] for an extensive discussions of these questions.

Let S be a set of differential polynomials such that for any fixed integer
k there are only finitely many elements in S with weight k. Now consider
the following variant of “rewriting procedure” for differential polynomials:
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Definition 2.4 (Weight Function) Let M denote the set of all mono-
mials in the differential ring R{z;, ..., z,}. Consider the map w: M — R
so defined that:

o w(z;)=m; withm; >0fore=1, ..., n;
o w(d®z;) = (k+ m;) for any integer k > 0 and for i = 1, ..., n;

e For any monomial m € M, w(m) = 3> ; w(f;) where f;’s range over
the factors of m containing a single indeterminate or a derivative.

The function w is called a weight of the differential power product; the
weight of a differential polynomial is the maximum weight of its power
products.

A differential polynomial whose monomials have all the same weight,
is called isobaric. The isobaric component of maximum weight is called
leading isobaric component (or head) of f; it is denoted as h(f). Notice
that the isobaric components of a polynomial are not, generally, monomials,
but isobaric polynomials. [

Definition 2.5 A differential ideal I is called isobaric if, whenever a dif-
ferential polynomial f is in I, all of its isobaric components belong to I.

O

In a fashion similar to the case of homogeneous ideals of polynomial
rings, it can be shown that a differential ideal I in a ring of differential
polynomials with constant coefficients is isobaric if and only if it has a
system of isobaric generators. However, the above statement, in general,
is not true if the derivatives of the coefficients of the polynomials are not
zero. In fact in this case the derivative of an isobaric polynomial may not
be isobaric. (See [17] for some examples and discussions.)

2.2 H-bases of Differential Ideals

Now, we propose the following generalization of the H-bases to differential
ideals in rings of differential polynomials with coefficients in a computable
differential field of characteristic zero. While the structure of the proposed
H-bases is a natural extension of the classical one, it is not clear whether
it 1s effective: for instance, we cannot simply generalize the usual H-bases
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The problem remains open; neither the solvability nor unsolvability of
the problem has been demonstrated in spite of many years of concentrated
effort in several promising directions. Clearly, because of its fundamental
nature, we would like to obtain a better understanding of this problem. We
discuss some of the approaches based on the H-bases ideas.

We start by discussing some differences between commutative and dif-
ferential algebras, that are manifested by such facts as failure of a Hilbert-
basis like theorem (only a weaker version, Ritt- Raudenbusch Basis Theorem,
holds), existence of non-recursive differential ideals, etc. These differences
warn us against the trappings of an effort based on a straightforward gen-
eralization of the existing ideas in the domain of commutative algebra.

Consider the ring of the integers Z. It can be thought of as a differential
ring with the trivial derivation d, i.e., the derivation satisfying: d(m) =0
for any m € Z. Let Z{z} be the ring of differential polynomials in one
indeterminate = over Z.

Assume that the symbol d(®) denotes the identity map over Z{z}. Define
the differential polynomials f; as follows:

fi = (d9)° i > 0.
The following theorem has been shown in [17].

Theorem 2.1 Let S be a subset of NU {0} and Is, the differential ideal
generated by the set {f; 11 € S}. Then

ijIs & g €e s

In particular, iof S is a nonrecursive subset of N U {0} then there 1s no
algorithm to decide if a qiven differential polynomial f 1s in the ideal Is.
]

Thus we need to modify our “differential ideal membership problem”
by restricting the class of ideals under consideration to only the recursive
ones. A special case of such ideals would be finitely generated differential
ideals, as all our ideals may be expected to be presented to a computer by
some finitary means.

One reasonable attempt would be to use such classical tools as H-bases.
We begin with some definitions:
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If S is a subset of R and [ is the minimal differential ideal of R containing
S, then S is said to be a system of generators for I, or equivalently I is

said to be the ideal generated by S. It S = {fy, ..., f.} then I is denoted
by [f17 SR fn]

Since R is a particular algebraic ring one can also consider the algebraic
ideal J generated by S. This ideal is sometimes denoted by (fi, ..., fu)-
Note that, in general, (fi, ..., fu) # [f1, -+, ful-

Differential rings of particular interest are the ones constructed from a
differential ring R by adjoining some differential indeterminates, as follows.

Definition 2.3 (Ring of Differential Polynomials) Let R be a differ-
ential ring. Consider the ring of polynomials A = R[zg, x1, ..., Tn, ...]
with a denumerable number of variables. A is a differential ring once the
derivation d’ on R is extended to a derivation d on A:

e d(r) = d'(r) for all the elements r € R;

o d(x;) =41 for > 0.

After renaming z; as d“)z (the derivation of order 0 is assumed to be
the identity map), A can be denoted by Rz, dz, d?z, ..., d™z, ...] or by
R{x}; it is called the ring of differential polynomaials in x over R.

It is possible to iterate the definition above to adjoin more variables to R,
obtaining the differential ring R{z1, ..., z,} of the differential polynomials
in zy, ..., &, over R. O

2.1 Membership Problem

The most fundamental problem of differential algebra is the following:

Problem 2.1 (Ideal Membership Problem) Let I C R{zy, ..., x,} be
a differential ideal in a ring of differential polynomaials over a differential
ring R and f € R{xy, ..., x,}, a differential polynomial.

Is there an effective procedure to decide if f is a member of the ideal I,

ie. felI? [
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[17], [38], [39], [40] and [41]). The reasons for this interest are both prac-
tical and theoretical. There is, in fact, a growing effort to use differential
algebra in order to solve problems in control theory, dynamical systems and
robotics. From the theoretical point of view, it is equally important that we
understand the precise relation between ‘old’ constructive methods (Ritt-
Seidenberg algorithm [46]) and the recent Grobner bases-like approach.

A constructive study of differential algebra also promises to give new
insight into its quite complicated structures. For example, rings of differen-
tial polynomials are not Noetherian, hence differential ideals can be much
more complex than algebraic ideals. The discussion in [17] shows that one
can construct examples of differential ideals that are not even recursive!

On the other hand the structure of differential ideals is not completely
unruly, and one can hope to characterize classes of differential rings and
of ideals for which suitable algorithmic techniques can be developed. The
concept of H-bases for differential ideals is one such important ideas that
have begun to be studied quite extensively.

The differential algebras considered here are commutative rings' of dif-
ferential polynomials in several differential indeterminates over a field of
constants. (See the classical works of Janet [25], Kaplansky [27], Kolchin
[29], Riquier [42] and Ritt [45].)

Definition 2.1 (Differential Ring) A ring R is said to be a differential
ring if there exists a differential operator from R to R, i.e., amap d: R — R
such that, for all @ and f in R:

e dis linear, ie. dla+ B)=d(a)+d(p);
e d satisfies the product rule, ie. d(af)=d(a)f+ ad(f). O

For instance, the ring of analytic functions over a domain of C is a
differential ring.

Definition 2.2 (Differential Ideal) A subset I of a differential ring R is
a differential 1deal if it 1s an algebraic ideal of R and moreover, it is closed
under the d operator, i.e. if d(I) C 1. O

'With unity.
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has an elementary solution is simply reiterating the classical Diophantine
problem in a different guise.

Of course, one may reasonably argue that the obstacle to integrating
as presented here has very little to do with the “integration problem;”
rather, it’s the result of the multivalued nature of the underlying elementary
functions. This has been the standpoint of Risch and many others and has
been the starting point for an eminently successful research effort in this
field.

The moral of the story is simple: it is not uncommon to find many
important questions in this field to be undecidable or of unresolved status;
however, this precarious situations should be hardly discouraging. Much
progress can be accomplished by posing the questions in properly useful
settings. In particular, computational complexity theoretic views, accom-
panied by a healthy amount of practical experimentations, could play a
significant role in improving our understanding of this field.

Also, the techniques of computational algebra (e.g. Grobner bases, char-
acteristic sets, resultants) may help the field considerably. It should be
noted that there is already a considerable amount of exchange of ideas:
the techniques of Ritt in differential algebra have been successfully used
in geometric theorem proving; the ideas of H-bases and G-bases have been
generalized to a limited extent for applications in differential algebra; Ko-
vacic’s Galois theoretic techniques for differential equations have found ap-
plications in certain implementations of difference equation solvers.

This document is organized as follows: The starting point for us will be
Ritt-Kolchin-Kaplansky’s differential algebra. Here, we introduce the gen-
eral concepts and some thorny unsolved questions of fundamental interest
to the field. Next, we discuss some of the application areas arising from the
relation with control theory, robotics and dynamical systems.

2 Differential Algebra and Some Open
Problems
Currently, there is much interest in differential rings, originally introduced

by J.F. Ritt, as well as in extending some key ideas of computational al-
gebraic ring theory to their differential analogs. (See for example [5], [6],
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Note that not all elementary functions have elementary indefinite in-
tegrals. For instance, if f(z) = exp(—a?) then [ f(z)dz = Mel‘f(:ﬂ),
which is not elementary. Yet another example is [ dz/logx. However, in
the case when f does have an elementary indefinite integral, its form is
known by a beautiful classical theorem of Liouville and there are several al-
gorithms (due to Davenport, Hermite, Horowitz, Risch, Rothstein, Trager)
that can effectively compute the solution.

Thus, it is reasonable to ask whether it is possible to decide if a given
elementary function has an elementary indefinite integral. However, the
answer is not at all clear-cut. Let’s assume that our underlying field of
constants is the rational numbers adjoined with one algebraic number ¢ =
v/—1 and one transcendental number ; that is, we are working with Q(z, 7).
Now, consider the following integral:

/ logexpz — 2 exp(—z?)dz.

271
If we simplify logexp & = z then the answer is a constant (say 1), which
is elementary. But if we simplify logexpx = = + 272 then the answer is
\/7%61‘{' (z), which is not elementary. We can create more complicated
examples.
Let’s say wq, ws, ..., wg are new symbols and

P(wl,'wg,. .. ,‘wg) € Z['wl,'wg,. .. ,’Ll)g],

is a polynomial in these nine variables. Now let ]3(,1:) be obtained from P
by replacing each w; by the following expression:

logexp z/ —

21

Thus we see that there is a way to simplify ]3(1:) to 0 if and only if P(wy,
w3, ..., wy) has an integral solution in Z. This is the classical Diophantine
problem, and if P is the universal Diophantine equation [10,26](which can
be expressed with no more than 9 variable) then there is no effective general
process to determine if this equation is solvable. Now asking if the following
integration problem

/ 15(1;) exp(—a*)dz
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1 General Introduction

The subject of this survey is the emerging field of computational differential
algebra and geometry. In a manner similar to computational combinatorial
geometry and computational algebraic geometry, this emerging field ad-
dresses the computational, algorithmic and complexity questions that arise
naturally as one studies concrete and applicable versions of constructive
differential algebra and differential geometry. Clearly, it has many his-
torical and technical connections with computational algebra and forms a
significant portion of any practical symbolic computation package. How-
ever, there are so many unanswered and unexplored foundational problems
in this area, that in spite of its clear-cut applicability and unlike its sister
branches, the field appears to be still in its early infancy.

Let us begin by looking at the problem of integration. (See [20,43].)
That is given a univariate elementary function as an integrand, we would
like to compute its indefinite integral. For the present, we may simply think
of the class of elementary functions as the class consisting of algebraic func-
tions, logarithms and exponentials with arbitrary levels of self and mutual
nesting. For instance, this class includes such functions as:

T, log x, loglog z,
exp x, exp exp .,

sinz = (exp(iz) — exp(—iz), sinhz = L(exp(z) — exp(—z)),

1+
+m>, vV2 = exp(v/2log z),

1 -z

arc tanzx = %log <

Thus, our problem is to compute the indefinite integral ¢ of an elementary
function f as follows: if an elementary ¢ exists, output that ¢, or else report
failure.

g(x) = [ fz) da.

In a simpler term, we want to determine if the following differential equation
has an elementary solution

da
dz

assuming that f is elementary.
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ABSTRACT

In this note, we explore the computational aspects of several prob-
lems in differential algebra with concrete applications in dynamics and
motion-planning problems in robotics, automatic synthesis of control
schemes for nonlinear systems and simulation of physical systems with
fixed degrees of freedom.

Our primary aim is to study, compute and structurally describe the
solution of a system of differential equations with coefficients in a field
(say, the field of complex numbers, C). There seem to have been vari-
ous approaches in this direction: e.g. ideal theoretic approach of Ritt,
Galois theoretic approach of Kolchin and Singer and group theoretic
technique of Lie. It is interesting to study their interrelationship and
eflectivity of various problems they suggest.

In general, these problems are known to be uncomputable; thus, we
need to understand under what situations these problems become fea-
sible. As related computer science questions, we also need to study
the complexity of these problems, underlying data-structures, eflects
of the representation (e.g. sparsity).

Of related interest are some closely-related problems such as symbolic
integration problem, solving difference equations, integro-diflerential
equations and diflerential equations with algebraic constraints.
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