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B Experiment 1. Modeling of a D.C. Torque Motor.
Students are asked to obtain a model of the D.C. torque motor which drives the last joint of
the ED I arm, simulate the transient response of the model and finally, compare the results
with the experimental results. Finally, they evaluate the accuracy of the model.

B Experiment 2. Controller Design.
Students are asked to design a proportional (P), proportional-and-derivative (PD) and lead-
lag compensator for the D.C. torque motor model. Next, they evaluate the performance of
the compensator using a step response.

B Experiment 3. Modeling and Control of Inverted Pendulum.
Students are asked to connect an inverted pendulum to the tip of the ED I arm, obtain a
nonlinear system description of the system and then, identify the equilibrium states. Using a
nonlinear control law, they stabilize the system in the up-right position.

B Experiment 4. Adaptive Control of the ED I Robot with Unknown Load.
Students are asked to derive the nonlinear dynamic model of the ED I robot arm assuming that
the load at the distal point is unknown. Model-based linearization and parameter estimation
techniques are to be applied to compute the inertial load. Adaptive techniques are to be used
to achieve high-fidelity control[1].

B.8. Undergraduate Thesis Projects

This course is intended to provide senior students the opportunities of pursuing advanced studies
in Robotics, AI, CAM and Vision. Under the direct supervision of a faculty member, the students
first conduct a literature survey in the area of their interest. Then, they choose a more focused
problem, propose a feasible approach and implement the approach on a testbed consisting of ED
I robot, a vision sysytem and several manufacturing tools. A number of possible topics for thesis
projects include, but are not limited to, the term projects outlined in the set of courses listed in the
earlier subsections.
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B.6. Artificial Intelligence and Learning in the Robotic Setting

This is a junior/senior level course concerning a variety of topics in artificial intelligence, which
bridges the theory, artificial intelligence and robotics areas. The topics to be covered include machine
learning from examples, neural networks, and applications to vision, robotics and manufacturing.
The course aims to allow students who have a solid mathematical and theoretical foundations with
ways of applying such theoretical principles to robotics-related problems in artificial intelligence.
This course includes the following machine learning experiments to be undertaken in the robotics
educational laboratory.

B Experiment 1. Learning on Disc Throw, I.
A round disc is put in a holder fixed on the end of the robot arm, which is initially positioned
at a fixed place. The students are asked to design a series of continuous movements of the
robot arm with adjustable parameters so that the arm will throw the disc to a position as
close as possible to a bar, but without touching that bar. Then the student should adjust the
parameters to accomplish the job through experiments.

The student should also design a learning procedure for the machine so that the machine can
determine these parameters automatically through experiments. The result of an experiment,
which is input to the learning algorithm, can be a real number representing the error.

B Experiment 2. Learning on Disc Throw, II.
The students are asked to develop an automatic learning procedure for the case that the initial
position is an arbitrary one. The initial position is input to the computer. They are also asked
to design an automatic learning procedure to play a match with a human player so that the
winning probability of the robot arm is maximized in the asymptotic limit.

B Experiment 3. Monitoring a Moving Object.
A stick is fixed upwards on the end of the robot arm. A bright sign is fixed on the top of
the stick and monitored by a camera. A person holds another sign which is also monitored
by the camera. The students are asked to develop a fast algorithm to determine the positions
of these two signs and to control the motion of the robot arm so that the sign on the stick
always follows the other sign which is randomly moved by the person.

B Experiment 4. Stick Balancing.
A stick is connected to the end of the ED I robot arm by a linkage which allows it to fall down
along two opposite directions. A bright sign is fixed to the top of the stick and monitored by
a camera. The students are asked to design a neural network program to control the robot
arm so that the stick will not fall. The student should also design a program to balance the
stick so that the stick always follows a bright sign which is randomly moved by a person.

B.7. Linear and Nonlinear Systems

This course is offered to junior/senior undergraduate and/or first year graduate students from
the mathematics and the computer science departments, and makes extensive use of the robotics
educational laboratory to teach basic principles and related design techniques in linear and nonlinear
systems.

The syllabus includes: modeling of linear time-invariant(LTI) systems, linear differential equa-
tions, Laplace transform techniques, transfer function description of input-output system, feedback
control and compensator design; transient response analysis; modeling and description of nonlin-
ear dynamic systems, differential equations, critical points and Lyapunov stability analysis; control
techniques for nonlinear systems.
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B.5. Computer Vision

The proposed course is for juniors or seniors, and covers the fundamentals of computer vision and
image processing. The course covers standard topics in image sensing, processing, and analysis,
stressing algorithmic methods, as is typically covered in an introductory image processing and
computer vision class. Recent texts (e.g. Schalkoff’s book [33]) make it possible to cover topics in
an accessible and rapid fashion, affording the students the option of implementing basic techniques
in a suitably equipped laboratory. The course covers image formation and color theory, feature
extraction, image enhancement, some signal processing theory, image segmentation, multiresolution
image analysis, motion, stereo, pattern recognition and labeling, and model-based vision. Lectures
and readings are used as guides to the projects and experiments that students will conduct on
hardware and software tools integrated with the usual computing facilities available.

There will be four assigned experiments to supplement the first eight weeks of the course, and
then an assigned term project chosen from a list of proposed projects, envisioned to encompass the
last six weeks of the course. The proposed projects are as follows:

B Experiment 1. Software Introduction.
The students are asked to demonstrate capability of acquiring digital imagery, running edge
detectors and feature detectors, running convolutions and simple nonlinear enhancement pro-
cesses, and programming in high-level vision application software. Supplied software enables
interactive execution of individual image operations, so that only embodying scripts must be
supplied by the students. These scripts, written in C, are used to build up a library of routines.

B Experiment 2. Image Restoration and Reconstruction
Students are supplied with several images that have been subjected to degradation through
manipulation and noise. The task is to undo the degradations, recording the steps. Examples
of degradations that the students will have to contend with is blurring, grayscale changes,
image rotation, line drop-outs, additive noise, and scanline variations.

B Experiment 3. Multiresolution image analysis.
In this experiment, students are asked to perform an image analysis task, such as edge or
feature extraction, or simple model matching, using a multiresolution image representation.
The students develop scripts to perform these functions and they have to contend with issues
related to reasoning about the choice of scale and combination of information from multiple
scales.

B Experiment 4. Stereo matching.
Stereo pairs are provided, and students are asked to implement any of a number of stereo
matching algorithms in order to obtain depth estimates to object points visible in both images.
Candidate algorithms include iterative disparity analysis, the iterative Marr/Poggio algorithm,
zero-crossing feature matching, branch-and-bound search for feature matching, and Cepstral
filter matching. Ground truth of actual object depths are provided.

B Term project. Each student is expected to implement a substantial image analysis system in
the software environment provided, using a research paper or other published description as a
guide. Example projects include image segmentation methods based on color and/or texture,
motion extraction from image sequences, texture analysis or depth-from-texture studies, gener-
alized Hough transformation studies, geometric hashing for object recognition, or comparative
feature analysis.
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B Experiments 5 & 6. Sensor Based Manufacturing.

As a final development of experiments 5 and 6, a rudimentary two-dimensional vision system
is used to inspect and measure the components that the students have manufactured and
ground smooth. Students can acquire appreciation of different lighting methods for computer
vision and manufacturing, the available technologies in terms of CCD cameras and lenses, and
they, thus, gain experience in the general set-up of industrial sensors. As the laboratory is
developed, it may be possible to use the vision information as a feedback to the system and
to make corrections in the grinding part and in the routing trajectories. The overall goal of
this last experiment is to make the students aware of quality control methods in industry.

B.4. Real Time Systems

This is a junior/senior level introductory course, covering the principles, implementation and appli-
cations of a real-time system. The topics covered in the course include: hard-real time constraints;
periodic and aperiodic tasks; operating system issues: scheduling, communication, critical sections,
priority inversion problems; real time system modeling: petri-nets, temporal logic, discrete event
systems; real-time operating systems and languages; applications to robotics (with examples such
as controlling a pin-ball machine or a juggling robot). The text by Levi and Agrawala covers most
of these topics [21]. Prerequisites are basic robotics, introductory operating systems and moderate
programming experience.

The following set of four experiments are to be conducted, with each experiment taking roughly
three weeks. Additional term projects may be assigned, and will usually involve building real time
controllers for an integrated robot system (e.g. a pin-ball machine, four-finger manipulator, the
Utah/MIT hand or the NYU manufacturing system).

B Experiment 1. Cyclic Executive.
The students are asked to implement a simple cyclic executive system in C programming lan-
guage, capable of handling the proportional (P) and proportional-and-derivative (PD) control
schemes for the ED I robot.

B Experiment 2. Periodic Tasks.
In this experiment the objective is to model the sensor, actuator and data-logger servo tasks
for the ED I robot controller as simple periodic tasks with different periods. The students
are asked to implement the controller, by using a simple rate monotonic scheduler and then
evaluate the performance as the periods of the tasks are uniformly scaled.

B Experiment 3. Sporadic Tasks.
The students are asked to model the sensor, actuator and data-logger tasks for the ED I robot
controller as aperiodic tasks with given minimum separation times and hard and soft real-time
constraints. Additionally, each task may be given priorities, based on certain value-functions
associated with the tasks. Next, they are asked to implement the controller, by using a variety
of scheduling schemes, e.g. earliest-deadline-first, least-laxity-first, etc. and then evaluate the
performance under different scheduling schemes and as the system is made overloaded [3].

B Experiment 4. Hierarchical Controller.
In this experiment, first the system of two robots working cooperatively is decomposed into
several levels of a hierarchical system. The students are asked to implement the lowest servo-
level as a system of periodic tasks, and the higher levels as systems of aperiodic tasks. The
communications between the successive levels are to be implemented via double-buffers. Fi-
nally, the students evaluate the performance of the system.
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algorithms for a two-fingered robotic hand, (2) motion planning for a two-fingered robotic
hand, (3) hand-eye coordination, and (4) simulation studies of legged locomotion robots or
space robots.

B.3. Computer-Aided Manufacturing, CAM

This is a junior/senior level course aimed at familiarizing computer science students with future
manufacturing technologies. The topics covered in the laboratory are: computer-aided design,
simulation, control, sensors, and quality control. The course is designed to emphasize the computer
science skills of the undergraduate students with the engineering components being taken care of
by the laboratory technicians.

B Experiment 1. Computer-Aided Design Methodologies.
Students are asked to design a component of their choice on a computer-aided design system
(e.g. the Anvil 5000 software package). Using this system, students can create their compo-
nents in wire frame images, with boundary representations, and, to a limited extent, using
constructive solid geometry. This experiment will familiarize the students with basic design
methods, the operation of computer-aided design systems, and, simultaneously, with standard
graphics interface languages (e.g. IGES and PDES).

B Experiment 2. Manufacturing Simulations and Tool Path Generations.

In the second experiment, the students are asked to generate a software simulation of a simple
manufacturing process, building on their computer-aided design work. In the process, they
become familiar with technology that creates tool path simulations on their design. They are
then introduced to a simple expert system, running in the local CAD/CAM environment that
advises on the usable set-up procedures and operating instructions. Via simulation, they can
then see how their particular part can be made on a full scale CNC machining center and turn
into the component ready for use in steel or aluminum.

B Experiment 3. Simple Manufacturing Technologies.

Using the ED I robot arm, the students are asked to create plastic hard copies of the compo-
nents that they have designed and simulated in Experiments 1 and 2. In the laboratory, the
students use prototyping wax as the component and limit their operations to two-dimensional
routing on the wax. They are then able to program the ED I robot arm to carry out the two-
dimensional cutting operations and create the outer profile of their desired part. In addition,
other small cutting tools are supplied as an ancillary to the robot and the students can drill
holes and carve lettering onto their components. In this way, they become experienced in the
complete CAD/CAM loop even though these experiments are only carried out in simplified
shapes and with the prototype wax.

B Experiment 4. Force Position Control.

In this experiment students are made familiar with a simple grinding operation as an example
of carrying out manufacturing operations that require both force and position control. For
this experiment, the ED I robot is equipped with small finish grinding tools and the students
are asked to smooth an arbitrarily rough contour. They are required to program the robot to
the coarse profile of the object and then grind the surface smooth. Thus, they demonstrate
position control along the direction of the profile and force control normal to the profile in
order that the grinding tool presses against the surface with uniform load. This experiment
overlaps with the Experiment 5 of Basic Robotics, but extends the students’ understanding of
the importance of such force control in manufacturing processes.
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force terms for three ranges of joint velocity (0 to % of maximum joint velocity, % to %
of maximum joint velocity and % to 1 of maximum joint velocity). (2) Next, they design,
implement and compare position control algorithms, using following two approaches: joint-

space control and task space control.

Experiment 5. Interfacing with the External World: Force Control.
The main objectives are to study (1) force control with fixed contact and (2) hybrid posi-
tion/force control. First, the students design and implement a simple feedback control algo-
rithm that tracks a desired force trajectory in the normal direction, while stabilizing a fixed
point of contact between the tip of the robot and a fixed surface. Next, they design and
implement position/force control algorithms, where the tip may be allowed to move on some
surface of constraint.

Term Project. After consulting with the instructor, the students may choose a topic for their
term project. They are asked to read one or two research papers in the area of their choice.
Possible topics include (1) contact motion and force control, (2) coordinated manipulation
by two robot arms, (3) dynamics and simulation of a one legged hopping robot using simu-
lation and graphics tools, (4) motion-planning with obstacle avoidance and (5) planning and
execution of a simple task.

B.2. Intermediate Robotics

This is a senior/first year graduate level course covering concepts and methods underlying current

research in robotics: geometric approaches to manipulator kinematics, contact kinematics and grasp

kinematics of a robotic hand system; dynamic models of, and linear and nonlinear control techniques

for, robotic hands, space robots and legged locomotion robots; algorithmic approaches to motion

planning for robotic manipulators and mobile robots, subject to holonomic and nonholonomic con-

straints. ([15,24,26,27,28]). Accompanying the lectures are four laboratory experiments designed to
aid the students in mastering the principles and techniques.

Experiment 1. Kinematic and Dynamic Modeling of a Two-Robot Manipulation
System.
Two robots (in our case, ED I and an IBM SCARA robot) are integrated to form a two-
fingered robotic hand system which performs a coordinated manipulation task, such as moving
a box on a circular trajectory. Using position, velocity and force sensors, students are asked
to determine the kinematics of the two-fingered robotic hand, including the contact models,
hand Jacobian, grasp map ([9,15,24,35]) and the kinematics of contact ([28]).

Experiment 2. Coordinated Manipulation.
Using the hand kinematics of the previous experiment, students are asked to implement and
evaluate the dynamic coordinated control algorithms ([30]), the master-slave control ([23,34]
) and the PD type control algorithms ([2,17]).

Experiment 3. Path Planning with Obstacle Avoidance.
Students are asked to implement the Schwartz-Sharir motion planning algorithm on the 3-DOF
planar arm amidst obstacles. Also see [22].

Term Project. The term project consists of a well defined research problem. After consulting
with the instructor, the students are asked to choose a topic, analyze the problem and then
propose a possible solution. Finally, they proceed to experimentally test their solution and
give a presentation of their results. The list of topics include: (1) robust coordinated control
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Appendix: B

A Proposed Course Sequence

B.1. Basic Robotics

This is a junior/senior level introductory course, covering the fundamental concepts of robotics and
aimed at students from computer science, engineering and mathematics departments. The course
develops analytic models of robot mechanisms, actuators and the robot’s operating environment.
It emphasizes foundational concepts, involving the geometry and algebra of rigid motions, forward
and inverse kinematics of mechanical linkage systems, dynamics of actuators and linkages, task and
trajectory planning as well as the algorithms for robot command and control. ([2,4,5,7,22,24,31]).
Prerequisites are introductory calculus, basic linear algebra and moderate experience with high level
programming languages.

The following is a suggested list of experiments for this course; each takes about two weeks.
(Also see §4).

B Experiment 1: System Familiarization and Robot Kinematics.
Students are introduced to the system, consisting of the robot, its actuators, its control units,
the interface and the computer system. A description of the functionality of the system (via
flow-charts) is presented, followed by a discussion of the safety rules (see the box on page 34)
and the conduct in the laboratory. A demonstration of the subroutines to read feedback signals
and to command joint movement of the robot.

(1) Students are asked to define the coordinate frames for the joints of ED I, to identify
the Denavit-Hartenberg parameters, and using these D-H parameters, to compute forward
kinematics and manipulator Jacobian. (2) Next they are asked to conduct an experiment to
identify kinematic singularities by moving the robot few times, each time coming close to the
singularities. Finally they are asked to experimentally verify the non-commutativity of rigid
motions.

B Experiment 2. Inverse Kinematics and Trajectory Generation.
(1) Students are asked to develop a software package capable of moving the object in the task-
space. This involves combining inverse kinematics with some simple interpolation techniques
(e.g. cubic polynominals method or straight line with parabolic blends method). Each student
program is tested by writing the figure eight (co) with a marker. (2) This is followed by several
other simple path planning experiments.

B Experiment 3. Control of Simple Mechanical Systems.
(1) Students are asked to derive an ezact model of the actuator (a D.C. torque motor), located
at the last joint and loaded by the last link. Simplification of the model by appropriate
approximations is allowed. Students then compare the approximate model with the exact
model. (2) Next, they experiment with and compare proportional (P) and proportional-and-
derivative (PD) feedback controllers, designed for the position control of the last joint (e.g.
the robot’s response to a step input signal).

B Experiment 4. Robot Arm Dynamics and Control.
(1) Students are asked to derive the dynamics of the ED I robot using a given mass distribution
of the links and evaluate and compare the inertia force terms with the centrifugal and Coriolis
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>> time2edges: t = 1.209, msec = 1209

SEND: 1 O 2 31 13 3 FCFC 4 6A 64 B9 4

>> MCC Tracking Handling: message received [13]
REC: 1 0 2 49 19 3 -4 -4 4 106 100 -71 4

>> MCC track message setup

>> MCC setup track command: X<-3.59, 1.27>, ¥<14.12, 1.20>
>> incr2edges: i = -3.590, e = -1021

>> time2edges: t = 1.276, msec = 1276

>> incr2edges: i = 14.120, e = 25706

>> time2edges: t = 1.209, msec = 1209

SEND: 1 O 2 31 13 3 FCFC 4 6A 64 B9 4

>> MCC Tracking Handling: message received [13]
REC: 1 0 2 49 19 3 -4 -4 4 106 100 -71 4

>> MCC track message setup

>> MCC setup track command: X<-0.07, 0.05>, ¥<1.36, .23>
>> incr2edges: i = -0.079, e = -22

>> time2edges: t = 0.056, msec = 56

>> incr2edges: i = 1.362, e = 2480

>> time2edges: t = .233, msec = 233

SEND: 1 O 2 31 13 EAFF 38 0 BO 9 E9 O

>> MCC Tracking Handling: message received [13]
REC: 1 0 2 49 19 -22 -1 56 0 -80 9 -23 0

>> MCC send track commands: all commands queued

>> MCC send track commands: sending closing message.
>> MCC Tracking Handling: message received [3]

REC: 1 0 105

>>> Track Done!

-> off ’a’

off ’a’

value = 0 = 0x0
-> logout

logo

Connection closed.
edl@robocop 12>



Section APPENDIX: A

>> time2edges: t = .112, msec = 112

SEND: 1 0 231 131E 0 B 0 C 370 O

>> MCC Tracking Handling: message received [13]

REC: 1 0 2 49 19 30 0 11 0 12 3 1120

>> MCC track message setup

>> MCC setup track command: X<8.23, .87>, Y<5.30, .80>
>> incr2edges: i = 8.230, e = 2341

>> time2edges: t = .875, msec = 875

>> incr2edges: i = 5.307, e = 9661

>> time2edges: t = .801, msec = 801

SEND: 1 O 2 311325 96B 3 BD 25 21 3

>> MCC Tracking Handling: message received [13]

REC: 1 0 2 49 19 37 9 107 3 -67 37 33 3

>> MCC track message setup

>> MCC setup track command: X<.56, 0.07>, Y<.36, 0.04>
>> incr2edges: i = .567, e = 161

>> time2edges: t = 0.075, msec = 75

>> incr2edges: i = .368, e = 671

>> time2edges: t = 0.047, msec = 47

SEND: 1 O 2 31 13 A1 04B O9F 2 2F O

>> MCC Tracking Handling: message received [13]

REC: 1 0 2 49 19 -95 0 75 0 -97 2 47 0

>> MCC track message setup

>> MCC setup track command: X<.28, 0.07>, Y<.48, 0.04>
>> incr2edges: i = .282, e = 80

>> time2edges: t = 0.075, msec = 75

>> incr2edges: i = .480, e = 875

>> time2edges: t = 0.047, msec = 47

SEND: 1 O 2311350 04B O06B 3 2F O

>> MCC Tracking Handling: message received [13]

REC: 1 0 2 49 19 80 0 75 0 107 3 47 O

>> MCC track message setup

>> MCC setup track command: X<1.33, .71>, ¥<8.92, .78>
>> incr2edges: i = 1.332, e = 378

>> time2edges: t = .714, msec = 714

>> incr2edges: i = 8.920, e = 16238

>> time2edges: t = .785, msec = 785

SEND: 1 O 2311374 1 CA 2 6E 3F 11 3

>> MCC Tracking Handling: message received [13]

REC: 1 0 2 49 19 122 1 -54 2 110 63 17 3

>> MCC track message setup

>> MCC setup track command: X<0.03, 0.04>, Y<0.03, 0.00>
>> incr2edges: i = 0.032, e = 9

>> time2edges: t = 0.046, msec = 46

>> incr2edges: i = 0.036, e = 67

>> time2edges: t = 0.003, msec = 3

SEND: 1 0 23113 9 022E 043 0 3 O

>> MCC Tracking Handling: message received [13]

REC: 1 0 2 49 19 9 046 0 67 0 3 0

>> MCC track message setup

>> MCC setup track command: X<-0.07, 0.04>, Y<0.03, 0.00>
>> incr2edges: i = -0.076, e = -21

>> time2edges: t = 0.046, msec = 46

>> incr2edges: i = 0.037, e = 68

>> time2edges: t = 0.003, msec = 3

SEND: 1 O 2 31 13 EBFF2E 044 0 3 O

>> MCC Tracking Handling: message received [13]

REC: 1 0 2 49 19 -21 -1 46 0 68 0 3 0

>> MCC track message setup

>> MCC setup track command: X<-3.59, 1.27>, ¥<14.12, 1.20>
>> incr2edges: i = -3.590, e = -1021

>> time2edges: t = 1.276, msec = 1276

>> incr2edges: i = 14.120, e = 25706
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>> time2edges: t = 0.020, msec = 20

SEND: 1 O 2311327 014 091 FE 14 O

>> MCC Tracking Handling: message received [13]

REC: 1 0 2 49 19 39 0 20 0 -111 -2 20 0

>> MCC track message setup

>> MCC setup track command: X<.16, 0.02>, Y<-.18, 0.02>
>> incr2edges: i = .160, e = 45

>> time2edges: t = 0.020, msec = 20

>> incr2edges: i = -.180, e = -327

>> time2edges: t = 0.020, msec = 20

SEND: 1 O 23113 2D 014 O B9 FE 14 O

>> MCC Tracking Handling: message received [13]

REC: 1 0 2 49 19 450 200 -71 -2 20 0

>> MCC track message setup

>> MCC setup track command: X<9.19, 1.12>, Y<-9.04, 1.11>
>> incr2edges: i = 9.190, e = 2614

>> time2edges: t = 1.126, msec = 1126

>> incr2edges: i = -9.044, e = -16465

>> time2edges: t = 1.115, msec = 1115

SEND: 1 O 2 31 13 36 A 66 4 AF BF 5B 4

>> MCC Tracking Handling: message received [13]

REC: 1 0 2 49 19 54 10 102 4 -81 -65 91 4

>> MCC track message setup

>> MCC setup track command: X<.20, 0.02>, Y<-.24, 0.03>
>> incr2edges: i = .206, e = 58

>> time2edges: t = 0.023, msec = 23

>> incr2edges: i = -.249, e = -454

>> time2edges: t = 0.034, msec = 34

SEND: 1 O 2 31 13 34 017 O 3AFE 22 O

>> MCC Tracking Handling: message received [13]

REC: 1 0 2 49 19 58 0 23 0 58 -2 34 0

>> MCC track message setup

>> MCC setup track command: X<.23, 0.02>, Y<-.19, 0.03>
>> incr2edges: i = .233, e = 66

>> time2edges: t = 0.023, msec = 23

>> incr2edges: i = -.190, e = -346

>> time2edges: t = 0.034, msec = 34

SEND: 1 O 2 311342 017 O A6 FE 22 0

>> MCC Tracking Handling: message received [13]

REC: 1 0 2 49 19 66 0 23 0 -90 -2 34 0

>> MCC track message setup

>> MCC setup track command: X<13.99, 1.33>, ¥<-5.68, 1.21>
>> incr2edges: i = 13.993, e = 3980

>> time2edges: t = 1.330, msec = 1330

>> incr2edges: i = -5.680, e = -10341

>> time2edges: t = 1.218, msec = 1218

SEND: 1 O 23113 8C F 32 5 9B D7 C2 4

>> MCC Tracking Handling: message received [13]

REC: 1 0 2 49 19 -116 15 50 5 -101 -41 -62 4

>> MCC track message setup

>> MCC setup track command: X<.11, 0.01>, ¥<-.20, .11>
>> incr2edges: i = .113, e = 32

>> time2edges: t = 0.011, msec = 11

>> incr2edges: i = -.207, e = -378

>> time2edges: t = .112, msec = 112

SEND: 1 O 2311320 0 B 086 FE 70 O

>> MCC Tracking Handling: message received [13]

REC: 1 0 2 49 19 32 0 11 0 -122 -2 112 0

>> MCC track message setup

>> MCC setup track command: X<.10, 0.01>, Y<.42, .11>
>> incr2edges: i = .107, e = 30

>> time2edges: t = 0.011, msec = 11

>> incr2edges: i = .428, e = 780
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>> incr2edges: i = -0.076, e = -21

= 0.046, msec = 46

= 0.037, e = 68

>> time2edges: t = 0.003, msec = 3

>> MCC prepare data: 16 17 X<45.07, 9.94> Y<-1.36, 9.76>

>> incr2edges: i = -3.590, e = -1021

>> time2edges:
>> incr2edges:

& Bt R

>> time2edges: t = 1.276, msec = 1276
>> incr2edges: i = 14.120, e = 25706
>> time2edges: t = 1.209, msec = 1209
>> incr2edges: i = -3.590, e = -1021
>> time2edges: t = 1.276, msec = 1276
>> incr2edges: i = 14.120, e = 25706
>> time2edges: t = 1.209, msec = 1209

>> MCC prepare data: 17 19 X<44.99, 10.00> Y<-0.00, 9.99>
>> incr2edges: i = -0.079, e = -22

>> time2edges: t = 0.056, msec = 56

>> incr2edges: i = 1.362, e = 2480

>> time2edges: t = .233, msec = 233

>> Track: sending....

>> MCC send track commands: TM_Box = 4

>> MCC Axis Driver: TRACK_MOVE received

>> axis number = O

>> MCC Axis Driver: sending to mcc_driver

>> MCC Axis Driver: sent to mcc_driver

>> MCC Driver: TRACK Request received

>> MCC Tracking Handling (TM_Box = 4; #msg 0)

>> MCC send track commands: given up semaphore

>> MCC send track commands: retaken semaphore for AXES_FIRST
>> MCC send track commands: blocking all other axes

>> MCC send track commands: blocking axis 1

>> MCC send track commands: about to send commands

>> MCC track message setup

>> MCC setup track command: X<.36, .12>, ¥<-1.03, .20>
>> incr2edges: i = .367, e = 104

>> time2edges: t = .121, msec = 121

>> incr2edges: i = -1.039, e = -1892

>> time2edges: t = .203, msec = 203

SEND: 1 O 2311368 079 09CF8CB O

>> MCC Tracking Handling: message received [13]

REC: 1 0 2 49 19 104 0 121 0 -100 -8 -53 0

>> MCC track message setup

>> MCC setup track command: X<8.69, 1.43>, Y<-14.19, 1.39>
>> incr2edges: i = 8.690, e = 2471

>> time2edges: t = 1.433, msec = 1433

>> incr2edges: i = -14.194, e = -25841

>> time2edges: t = 1.392, msec = 1392

SEND: 1 O 2 31 13 A7 999 5 F9B 70 5

>> MCC Tracking Handling: message received [13]

REC: 1 0 2 49 19 -89 9 -103 5 15 -101 112 §

>> MCC track message setup

>> MCC setup track command: X<8.69, 1.43>, Y<-14.19, 1.39>
>> incr2edges: i = 8.690, e = 2471

>> time2edges: t = 1.433, msec = 1433

>> incr2edges: i = -14.194, e = -25841

>> time2edges: t = 1.392, msec = 1392

SEND: 1 O 2 31 13 A7 999 5 F9B 70 5

>> MCC Tracking Handling: message received [13]

REC: 1 0 2 49 19 -89 9 -103 5 15 -101 112 §

>> MCC track message setup

>> MCC setup track command: X<.13, 0.02>, Y<-.20, 0.02>
>> incr2edges: i = .138, e = 39

>> time2edges: t = 0.020, msec = 20

>> incr2edges: i = -.201, e = -367
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>> incr2edges: i = -.201, e = -367

>> time2edges: t = 0.020, msec = 20

>> MCC prepare data: 3 4 X<18.04, 3.03> ¥<-29.81, 3.03>
>> incr2edges: i = .160, e = 45

>> time2edges: t = 0.020, msec = 20

>> incr2edges: i = -.180, e = -327

>> time2edges: t = 0.020, msec = 20

>> MCC prepare data: 4 5 X<27.23, 4.15> ¥Y<-38.85, 4.14>
>> incr2edges: i = 9.190, e = 2614

>> time2edges: t = 1.126, msec = 1126

>> incr2edges: i = -9.044, e = -16465

>> time2edges: t = 1.115, msec = 1115

>> MCC prepare data: 5 6 X<27.44, 4.18> Y<-39.10, 4.18>
>> incr2edges: i = .206, e = 58

>> time2edges: t = 0.023, msec = 23

>> incr2edges: i = -.249, e = -454

>> time2edges: t = 0.034, msec = 34

>> MCC prepare data: 6 7 X<27.67, 4.20> Y<-39.29, 4.21>
>> incr2edges: i = .233, e = 66

>> time2edges: t = 0.023, msec = 23

>> incr2edges: i = -.190, e = -346

>> time2edges: t = 0.034, msec = 34

>> MCC prepare data: 7 8 X<41.67, 5.53> Y<-44.97, 5.43>
>> incr2edges: i = 13.993, e = 3980

>> time2edges: t = 1.330, msec = 1330

>> incr2edges: i = -5.680, e = -10341

>> time2edges: t = 1.218, msec = 1218

>> MCC prepare data: 8 9 X<41.78, 5.54> Y<-45.18, 5.54>
>> incr2edges: i = .113, e = 32

>> time2edges: t = 0.011, msec = 11

>> incr2edges: i = -.207, e = -378

>> time2edges: t = .112, msec = 112

>> MCC prepare data: 9 10 X<41.89, 5.55> ¥Y<-44.75, 5.65>
>> incr2edges: i = .107, e = 30

>> time2edges: t = 0.011, msec = 11

>> incr2edges: i = .428, e = 780

>> time2edges: t = .112, msec = 112

>> MCC prepare data: 10 11 X<50.12, 6.43> Y<-39.44, 6.46>
>> incr2edges: i = 8.230, e = 2341

>> time2edges: t = .875, msec = 875

>> incr2edges: i = 5.307, e = 9661

>> time2edges: t = .801, msec = 801

>> MCC prepare data: 11 12 X<50.68, 6.50> ¥Y<-39.07, 6.50>
>> incr2edges: i = .567, e = 161

>> time2edges: t = 0.075, msec = 75

>> incr2edges: i = .368, e = 671

>> time2edges: t = 0.047, msec = 47

>> MCC prepare data: 12 13 X<50.97, 6.58> ¥Y<-38.59, 6.55>
>> incr2edges: i = .282, e = 80

>> time2edges: t = 0.075, msec = 75

>> incr2edges: i = .480, e = 875

>> time2edges: t = 0.047, msec = 47

>> MCC prepare data: 13 14 X<52.30, 7.29> Y<-29.67, 7.34>
>> incr2edges: i = 1.332, e = 378

>> time2edges: t = .714, msec = 714

>> incr2edges: i = 8.920, e = 16238

>> time2edges: t = .785, msec = 785

>> MCC prepare data: 14 15 X<52.33, 7.34> ¥<-29.64, 7.34>
>> incr2edges: i = 0.032, e = 9

>> time2edges: t = 0.046, msec = 46

>> incr2edges: i = 0.036, e = 67

>> time2edges: t = 0.003, msec = 3

>> MCC prepare data: 15 16 X<52.25, 7.39> ¥<-29.60, 7.34>
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# mcc_axis_init("zeta_axis") # still missing
# mcc_axis_init("spindle_axis") # still missing

=>
>>
>>
>>
>>

>> Starting mcc_axis_driver

pos_conv_factor = 1820.444444

vel_conv_factor 119304.647111

acc_conv_factor = 119.304647

Axis 1: theta_2 driver:Alive and well

Axis 1: Is a ROTARY axis

=>

=>
on

on ’a’
JaJ

value = 0 = 0x0

=>

home ’a’

home ’a’
>>> Target pos = .000 (axis x)

>>> Target pos

.000 (axis y)

value = 0 = 0x0

=>

zero

zero

Last_Pos_In_Joint[0]: -60.263000
Last_Pos_In_Joint[1]: -107.263000
Move mode: O

value = 0 = 0x0

=>

=>

coord

coord
value = 0 = 0x0

=>

->
sp

sp stroke, 45.0, 0.0, 10.0, O
stroke, 45.0, 0.0, 10.0, O

task spawned: id = 0x387b88, name = t40
value = 3701640 = 0x387b88

=>
>>

Track: velocities and acceleratiomns

TIME = 10.000

DEFAULTACCELERATION = 50.000

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

Track: preparing data to send

MCC prepare data: 18 points

MCC prepare data: O O X< .36, .12> ¥Y<-1.03, .20>
incr2edges: i = .367, e = 104

time2edges: t = .121, msec = 121

incr2edges: i = -1.039, e = -1892

time2edges: t = .203, msec = 203

MCC prepare data: 1 1 X<17.74, 2.98> ¥Y<-29.42, 2.98>

incr2edges: i = 8.690, e = 2471

time2edges: t = 1.433, msec = 1433

incr2edges: i = -14.194, e = -25841

time2edges: t = 1.392, msec = 1392

incr2edges: i = 8.690, e = 2471

time2edges: t = 1.433, msec = 1433

incr2edges: i = -14.194, e = -25841

time2edges: t = 1.392, msec = 1392

MCC prepare data: 2 3 X<17.88, 3.00> Y<-29.63, 3.00>

incr2edges: i
time2edges: t

.138, e = 39
0.020, msec = 20
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P_CHMD: kinematics added to system

P_CMD: queuer added to system

0_CHMD: on added to system; parse string:%A;#Aa:
0_CHMD: off added to system; parse string:%A;#Aa:
0_CHMD: pos added to system; parse string:%A;#Aa:
0_CHMD: axis_status added to system; parse string:%A;#Ax:
0_CHMD: coord added to system; parse string::

0_CHMD: abort added to system; parse string:%A;#Aa:
0_CHMD: tune added to system; parse string:%A%c:
0_CHMD: joint_move added to system; parse string:4f%f%f%i:
0_CHMD: joint22_move added to system; parse string:%f%f%f:
0_CHMD: cartesian_move added to system; parse string:%f%fif:
0_CHMD: home added to system; parse string:%A;#Aa:
0_CMD: joint_trajectory added to system; parse string::

0_CHMD: stroke added to system; parse string:4f4f%f%i:
0_CHMD: zero added to system; parse string::

I_CMD: at added to system

Commands installed.

**x¥* Error handling task: alive and well...
***x*x* Dispatch task: alive and well...
**x%*% Scheduler task: alive and well...

MOSAIC OPEN-ARCHITECTURE CONTROLLER 3.0 INSTALLED

Controller configured for: EDUCATION_ROBOT
. machine tool initialization begins

value = 0 = 0x0

creonics_init(1, Oxffffff00)

value = 0 = 0x0

# creonics_init(2, Oxfffffe00) # still missing
mcc_axis_init("thetal_axis")

>> Creonics board slot: 1, base address: OxFFFFFFOO
>> mcc_driver.o: Driver initialization OK

value = 10 = Oxa

mcc_axis_init("theta2_axis")

>> Starting mcc_axis_driver

>> pos_conv_factor = 284.444444

>> vel_conv_factor = 18641.351111

>> acc_conv_factor = 18.641351

>> Axis O: theta_1 driver:Alive and well
Axis O: Is a ROTARY axis

value = 10 = Oxa
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VMEbus table created.
Slot O: Null_Driver at OX 3cf694:status

Slot 1: mcc_driver.o at OX 3b1014:status

VMEbus table Filled.

Address Book created.
Mail for Error at: O
Ordered mail at: 1
Immediate mail at: 2
Scheduled mail at: 3
Address Book initialized.

Machine Tool Structure Created.
>> add_axis: status = 0O

Axis number O (x): theta_1
Status: 0x80
Control Type: 0

Negative Limit: -180.000

Positive Limit: 180.000

Home Offset: .0000000
>> add_axis: status = 0

Axis number 1 (y): theta_2
Status: 0x80
Control Type: 0

Negative Limit: -180.000
Positive Limit: 180.000
Home Offset: .0000000

Sensor table created.
Sensor table filled.

MACHINE: EDUCATION_ROBOT
2 Axis

0 Sensors

Mode: Ox O

Feed: .000 ipm

Speed: .000 rpm

Force: .000 (if in force mode)
Clearance Plane: .000

Tolerance: .000 inch

Dwell Time: .000 sec

Rapid_Feed: .000 ipm

Machine: EDUCATION_ROBOT Mode:

Move Type: ABSOLUTE

Force Mode: OFF

0_Cmd table created.
I_Cmd table created.

P_CMD: creonics_init added to system
P_CHMD: mcc_axis_driver added to system
P_CMD: mcc_axis_init added to system

P_CMD: queuer_util added to system

0x80

0x80
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result[i] = ks[i].x;
break;
case tbd_y:
result[i] = ks[i].y;
break;
default:
printf('">> ERROR: unreconized knot structure component %d\n", comp);
}
}
}
/* extract_knot_component -- */

#endif /* #define straight_line_i */

/* end of file -- straight_line.c */

A.2. Sample Execution

ed1@robocop 11> rlogin grope

-> cd "mosaic:/cadman.a/robots/edl/src"
cd "mosaic:/cadman.a/robots/edl/src"
value = 0 = 0x0

-> < MOSAIC.EDI

< MOSAIC.EDI

shellLock 1

value = 0 = 0x0

# cd "mosaic:/robust.b/robots/ed1l/ed1"
1d < vme_util.o

value = 0 = 0x0

1d < mail_util.o

value = 0 = 0x0

1d < machine_util.o

value = 0 = 0x0

1d < command_util.o

value = 0 = 0x0

1d < mosaic_init.o

value = 0 = 0x0

1d < vel-acc.o

value = 0 = 0x0

1d < track-move.o

value = 0 = 0x0

Version 3.0 0f MOSAIC use caution
-for-
EDUCATION ROBOT

HOoH N OH H N N
HoH N OH N N N

mosaic_init("edl.cfg")

MOSAIC OPEN-ARCHITECTURE CONTROLLER INITIALIZATION:
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int i;

for (i = 0; i < MAX_KNOTS_NUMBER; i++) {
ks->x = ks->y = 0.0;
ks->filled = 0;
ks++;
}
}

/* compact_knots_sequence -- Compacts the sequence of knots ’ks’, by
* removing the ’unfilled’ slots.

*/

int compact_knots_sequence(ks1)
knot_struct ksi[];
{
int i;
int k1, k2;
knot_struct ks2[MAX_KNOTS_NUMBER];

init_knots_sequence(ks2);

for (k1 = 0, k2 = 0; k1 < MAX_KNOTS_NUMBER; ki++) {
if (ksi1[k1].filled) {
ks2[k2] = ks1[ki];
k2++;
}
}

/* Now copy back ks2 into ksl */

for (1 = 0; i < k2; i++)
ks1[i] = ks2[il;

return k2;

}
/* compact_knots_sequence —- */
/* extract_knot_component -- */

void extract_knot_component(ks, comp, kcount, result)
knot_struct ks[];
tbd_components comp;
int kcount;
double resultl[];

int i;
for (i = 0; i < kcount; i++) {

switch (comp) {
case tbd_x:
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mid_index, index2);

if (ret_code == ERROR) return ERROR;

} else
return 0K;

}
/* taylor_bdev —-- */

/* compute_deviation --

* It computes how much the point M = <mid_x, mid_y> is distant from

* the line between A =

*/

<init_x, init_y> and B = <final_x, final_y>.

double compute_deviation(init_x, init_y,

mid_x, mid_y,
final_x, final_y)

double init_x, init_y, mid_x, mid_y, final_x, final_y;

/* To visualize the computation, just call

(mid_x, mid_y) = M

* K K K ¥ ¥ ¥

*/

double AB_x = init_x
double AB_y = init_y
double AM_x = init_x
double AM_y = init_y

(final_x, final_y) =
(M_proj_x, M_proj_y)

(init_x, init_y) = A

I o
(@]

Where A, C, B are on the same line and M is the point of which we
want to know how much it deviates.

final_x;
final_y;
mid_x;
mid_y;

/* Take some inner products */

double AB_sqr
double AM_sqr
double AM_AB

SQR(AB_x) + SQR(AB_y);
SQR(AM_x) + SQR(AM_y);
(AM_x * AB_x) + (AM_y #* AB_y);

double AC_len = AM_AB / sqrt(AB_sqr);

return sqrt(AM_sqr - SQR(AC_len));

}

/* compute_deviation —- */

/

* knots manipulation routines.

*/

void init_knots_sequence(ks)

knot_struct *ks;
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ret_code = arm_forward_kinematics(final_thetal, final_theta2, &final_x, &final_y);
if (ret_code == ERROR) {

printf('">> ERROR: taylor_bdev: error from forward kinematics.\n");

return ERROR;
}

dev = compute_deviation(init_x, init_y,
mid_x, mid_y,
final_x, final_y);

if (dev >= TOLERATED_DEVIATION) {
/* The followings need to be done: */
/* a - compute the Cartesian Space ’intermediate’ point between */
/* ’init’ and ’final’. */
/* b - compute the inverse kinematic for its position in Joint Space. */
/* ¢ - set the point in Joint space found in the previous step as */
/* the real knot. */

3

2.0
2.0;

double intermediate_x = (init_x + final_x) /
double intermediate_y = (init_y + final_y) /

mid_index = (indexl + index2) / 2;

if ((mid_index == index1) || (mid_index == index2)) {
printf('>> ERROR: insufficient knot_sequence array space\n');
return ERROR;

}

ret_code = arm_inverse_kinematics(&mid_thetal, &mid_theta2, intermediate_x,
intermediate_y) ;

/* Attention! I changed the values of the mid_theta’s. */

if (ret_code == ERROR) {
printf('">> ERROR: taylor_bdev: error from inverse kinematics.\n'");
return ERROR;

}

knots_seq[mid_index] .filled = 1;
knots_seq[mid_index].x = mid_thetal;
knots_seq[mid_index].y = mid_theta2;

ret_code = taylor_bdev(init_thetal, init_theta2,
mid_thetal, mid_theta2,
knots_seq,
index1, mid_index);

if (ret_code == ERROR) return ERROR;
ret_code = taylor_bdev(mid_thetal, mid_theta2,

final_thetal, final_theta2,
knots_seq,
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}
/*

* ¥ ¥ ¥

*

/* Massage the data. */
extract_knot_component(knot_sequence, tbd_x, knot_count, thils);
extract_knot_component(knot_sequence, tbd_y, knot_count, th2s) ;

if (track_move(thls, th2s, knot_count, time, acc) == ERROR) {
printf(">> ERROR: stroke: tracking motion failed\n");
return ERROR;

}

/* Unsafe! If an error occurs during the move, then there is no */
/* guarantee that the position obtained is the desired one. */
Axis[0] .Last_Pos_In_Joint = Axis[0].Target_Pos_In_Joint;

Axis[1] .Last_Pos_In_Joint = Axis[1].Target_Pos_In_Joint;

return 0K;

stroke —— */

taylor_bdev --

Function that computes the sequence of ’knots’ to be followed in
order to approximate a straight line in cartesian space.
References: P. J. McKerrow, Robotics, pages 523--532, Addison
Wesley, 1991.

/

int taylor_bdev(init_thetal, iniit_theta2,

/*

final_thetal, final_theta2,
knots_seq,
index1, index2)

double init_thetal, init_theta2, final_thetal, final_theta2;
knot_struct *knots_seq;
int index1, index2;

double mid_thetal = (final_thetal + init_thetal) / 2.0;
double mid_theta2 = (final_theta2 + init_theta2) / 2.0;
double mid_x, mid_y, init_x, init_y, final_x, final_y;

int mid_index; /* Index where the knot will be stored. */
double dev = 0.0; /% The deviation from the desired */
trajectory. */

int ret_code = 0OK;

ret_code = arm_forward_kinematics(mid_thetal, mid_theta2, &mid_x, &mid_y);

if (ret_code == ERROR) {
printf('">> ERROR: taylor_bdev: error from forward kinematics.\n");
return ERROR;

}

ret_code = arm_forward_kinematics(init_thetal, init_theta2, &init_x, &init_y);

if (ret_code == ERROR) {
printf('">> ERROR: taylor_bdev: error from forward kinematics.\n");
return ERROR;
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double compute_deviation();
void init_knots_sequence();
int compact_knots_sequence();
void extract_knot_component();

/* Compute joint space configuration of final point, assuming that #*/
/* the original point is already contained in the ’Last_Pos’ fields #*/
/* of the Axes. Given this assumption there is no need to compute the */
/* joint space configuration for the starting point. */

if (mode == CARTESIAN_SPACE) {
inv_ret_code = arm_inverse_kinematics(&final_thetal, &final_theta2, x, y);
if (inv_ret_code == ERROR) {
printf('>> ERROR: stroke: pos. <X Y> = <%4.2f %4.2f> is unreachable\n", x, y);
return ERROR;
}
} else {
final_thetal = x;
final_theta2 v;

}

Axis[0] .Target _Pos_In_Joint = final_thetal;
Axis[1] .Target_Pos_In_Joint = final_theta2;

/* Now compute the sequence of knots needed to */
/* approximate the straight line in cartesian space. */

init_knots_sequence(knot_sequence);

knot_sequence[0].x = init_thetal;
knot_sequence[0] .y = init_theta2;
knot_sequence[0].filled = 1;

knot_sequence[MAX_KNOTS_NUMBER - 1].x = final_thetal;
knot_sequence[MAX_KNOTS_NUMBER - 1].y final_theta2;
knot_sequence[MAX_KNOTS_NUMBER - 1].filled = 1;

inv_ret_code = taylor_bdev(init_thetal,
init_theta2,
final_thetal,
final_theta2,
knot_sequence,
0,
MAX_KNOTS_NUMBER - 1);

if (inv_ret_code == ERROR) {
printf ("ERROR: stroke: unrechable intermediate point\n");
return ERROR;

}

knot_count = compact_knots_sequence(knot_sequence);

/* Trying the tracking move. */
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*/
/* knot_struct -- A structure for computing the knots of the Taylor
* Bounded Deviation Algorithm in a bidimensional joint space.
*
* Note:
* Actually the ’x’ and ’y’ should be renamed to something like ’thil’
* and ’th2’.
*/
typedef struct _tbd_struct {
double x, y;
int filled;

} knot_struct;

typedef enum {tbd_x, tbd_y} tbd_components;

/

* Functions

*/

/* stroke --
* Moves the manipulator from the current position (x-start, y-start)
to the position x, y in the specified amount of time.

*
*
*# This function is actually the driver for Taylor’s bounded deviation
* algorithm (pg. 527 of McKerrow).

*/

int stroke(x, y, time, acc, mode)
double x;
double y;
double time;
double acc;
int mode; /* joint space or cartesian space */

int 1i;
int axis;
double init_thetal = Axis[0].Last_Pos_In_Joint;

double init_theta2 = Axis[1].Last_Pos_In_Joint;
/* Hardcoded axis numbers! */

double final_thetal
double final_theta2

0.0; /* Dummy final values */
0.0; /* Dummy final values */

int inv_ret_code = 0K;

double deltal, delta2;

int knot_count;

knot_struct knot_sequence[MAX_KNOTS_NUMBER];
double this[MAX_KNOTS_NUMBER] ;

double th2s[MAX_KNOTS_NUMBER] ;
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Appendix: A

An Example Program: the stroke Routine

A.1. Program Listing

/% —x- Mode: C —-%- x/

~
*

FOR K K K K K K K K K K ¥ ¥

*/

straight_line --
External routines for the first try of the straight line

Authors: Louie Pavlakos, Marco Antoniotti, Ajay Rajkumar
Address: Robotics Laboratory

Courant Institute of Mathematical Science
New York University
New York, NY, 10012

Copyright (c) 1992 Elias Pavlakos
1993 Marco Antoniotti, Ajay Rajkumar.

All rights reserved.

Version (RCS format):
$Id: straight_line.c,v 3.9 1993/05/28 15:51:21 edl Exp edl $

#ifndef straight_line_i
#define straight_line_i

#include
#include
#include
#include
#include
#include

#include

<math.h>
<semLib.h>
"machine.h"
"mail.h"
"creonics.h"
"VMEbus.h"

"straight_line.h"

/* GLOBAL ROUTINES */

/* EXTERNAL ROUTINES */

extern int joint_move();
extern int track_move();

/* EXTERNAL DATA */

extern AXIS_STRUCT Axis[];

/

* Data structures
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Side View Front View

Figure 15: Principle of direct drive: The motor stator holds a coil C and a rotor bearing
R. The rotor consists of a permanent magnet P and a shaft S. Current / in the coil
results in motion around the axis R in a direction given by the sign of /. An optional
second stator magnet M provides a reference field from which the rotor may be de-
flected or pointed.

fingers or miniature arms, grippers and multi-fingered hands from simple parts), they are safe and
they are easy to program. Several student projects based on these robots have been carried out
under the guidance of Richard Wallace.

The key components are very low cost direct drive DC motor actuators. The motors are based
on Nd-Fe-B rare earth permanent magnets and controlled by low cost microcontrollers. The motors
have low friction, small size, high speed, low construction cost, no gear backlash, operate safely
without limit switches, have limited self-braking, and generate moderate torque. Significantly, one
motor can generate enough torque to lift a second motor of about the same size against the force
of gravity, at a distance approximately equal to the size of the motor, without resorting to the use
of a counterweight.

We developed a prototype three link finger direct drive which can exert a force of up to 1.0
Nt at the finger tip (see Figure 14). The finger joints are primitive permanent magnet DC motors
consisting of a single stator coil and a single rotor magnet, which provide a means of direct joint
torque control by varying current through the coil. The joints of the DD finger contain no gears or
transmission mechanism (see Figure 15), which results in very low friction and eliminates gearbox
control problems, and facilitates force control strategies such as compliance.

The very low cost (about $10) of miniature DD motors makes them attractive for education
as well. Students in our robotics lab, including secondary school interns; build mini DD motors
as a lab assignment. This gives the students practical first-hand experience with the principles of
electromagnetic actuation and control theory. In particular, some students built a small two link
direct drive manipulator. They then related its kinematics, statics and dynamics to the simple two
link planar manipulator theory (see e.g. [7,25]) they learn in class.

In future, we plan to incorporate these robots into the regular class experiments and report our
expetience.
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6. Concluding Remarks
Following materials have been developed under this project:

e A prototype “Educational Robot:” ED I.

e Manuals: Laboratory Manual and Developer’s Manual. Manuals for the VxWorks'™ based
real-time system.

e An undergraduate robotics textbook authored by Li, Murray and Sastry.

The primary benefit to our institution has been through the establishment of a permanent
robotics course sequence that is accessible to undergraduates from both New York University and
Stevens Institute of Technology. Also, the creation of a multifunctional laboratory has helped us
to form a coherent sequence of experiments for many different courses that the student can get
involved in with a minimal overhead. Secondarily, it has also helped our research work in robotics
and manufacturing, by sharing a common software development platform and by acting as a testbed
for some of the miniature actuators developed in an unrelated project.

The primary contribution to the computer science community is through a body of well-trained
computer scientists who have a strong hands-on understanding of robotics. Also, over the period of
the project, we have invited several visitors from other computer science departments to guide and
share our work. This dissemination effort is hoped to influence the way robotics and manufacturing
classes are taught currently.

Figure 14: A direct drive pointing device.

6.1 The Future

In parallel with the ED I project, we have also explored alternate technologies that are suitable for
teaching robotics. One approach has been developing miniature direct drive robots that are ideal
for teaching as they are easy to configure (e.g., we have been able to build mobile robots, robot
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Additional care is taken to ensure that shut down, accidental removal or variation of level in
the power source does not result in a hazardous condition. For instance, the power failure does not
cause release of the load from the gripper as the robot is equipped with a mechanical gripper.

The robot has two readily accessible emergency stop devices that can be used to turn the robot
off as an emergency situation begins to develop.

The robot is physically encased within a lexan enclosure equipped with a “guard mechanism”
such that the guard prevents the robot from computer-controlled operation mode if and when the
guard is open. If the guard is opened during a computer-controlled operation the robot shuts itself
off and does not start until the guard mechanism is closed and certain reinitialization operations
are performed.
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5. Safety Issues

The current design and implementation of ED I robot was examined by Dr. Anshin (a mechanical
engineer and roboticists from Russia) and the design, construction, programming, operation and
maintenance of the ED I robot was found to meet the ISO 10218 safety standard (Document:
Manipulating Industrial Robots—Safety).

Several technical measures are employed in order to prevent accidents that may result in physical
damage to the operator, bystanders, other mechanical and computational hardware or the robot
itself. These measures are based upon two fundamental principles, as follows:

e The absence of humans in the safeguarded space during automatic operation;

e The elimination of hazards during intervention (e.g. repair or maintenance) in the safeguarded
space.

5.1 General Design Requirements

The main strategy in avoiding accidents resulting from electrical connection was to follow the stan-
dard recommended practice (for instance, IEC 204-1) and the manufacturer’s specifications with
substantial margins of safety. The power supply, grounding (protective earth) and cabling are in-
stances where special care was taken. The power source has been isolated in such a way that it
poses no danger to humans and also has a lockout/tagout capability.

5.2 Design and Construction of the ED I Robot
5.2.1 Ergonomic Aspects

The design and installation of the robot was carried out in a manner such that for routine operations
of the robot (as in carrying out an experiment) no direct human intervention is necessary. The robot
in its encased surrounding is operated from a terminal at a distance of few feet. All the commands
can be sent from the terminal and the sensor readings are directly displayed on the terminal. In
case of an unexpected situation, the operator can turn the robot “off” by pressing an emergency
stop “red button.”

In few cases, where human intervention is necessary (i.e. certain direct data collection operations
where the robot cannot be powered off), the design balances the robots strength, size and movements
against a typical user.

5.2.2 Mechanical Aspects

The range of motion of the robot are mechanically limited by placing limit switches and mechanical
stops on the primary axes. Thus, even a careless user is protected against operating the robot in
an unintended manner.

5.2.3 Control Aspects

The robot is controlled in a safe manner: the commands to the robot are routinely checked for their
potentials to create a dangerous situation. For instance, the speed of the primary axes of the robot
is kept limited by both electronic and software means. The static and dynamic forces created by
the load at the end-effector are kept within the load capacity and dynamic response of the robot.
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Summary
1. Draw a diagram of the control law you used in part three.
2. The models used in this experiment are ideal models. How would friction affect the model?
3. In the control parts, what is the effect of the b-compensation?

4. What is the result of positive feedback?
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(d) E; = Kg w. Verify Kg as follows: Measure the voltage using a voltmeter. By turning
the bar, estimate the angular velocity you are applying, and measure the voltage. Plot
the voltage vs. the angular velocity.

2. Familiarization with the power amplifier and the decoder:

(a) Send some signals through the power amplifier, and measure the output.

(b) Rotate the bar at the end of the motor, and measure the output of the decoder
3. Implementation of a simplified PD control:
V =—-Kpe.
The program sets the desired theta to zero, and stays there.

(a) Modify the program to change theta desired.
odify the value of K. at eflect does changing K, have on the robot.
b) Modify th 1 f K,. What effect d hanging K, h he rob

4. Implement the PD control law.
V =—-Kye - Kpe.

First, calculate 0:

0(i+1) = b(i+1) = 66) 2; 66).

(&

S

Figure 13: ED I modeled as a planar arm with two direct drive joints

In other words, it is the current position—the previous position, divided by the amount of
time. In order to know what the value of At is, one can do a number of things: Either rewrite
the program using the timer interrupts, and interrupt the CPU every 1 msec, at which time it
should run the procedure. In this case At = lmsec. Or, since § is multiplied by K, anyway,
just assume At is part of K, and vary K,.
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For the motor used in this experiment, here are the exact specifications:

J = 4.88x107* N.m.sec?,
Ky = 0.346 N.m./amp,
Kg = 0.346 V/rad/sec,

R = 2.08 ohms.

Control Laws:

Model-Based Control:
Model-Based Control is used when the parameters of the system a,b are known. For set point
regulation, a model-based control law might be:

V =a(-K,0 — K,(6 — 0%)) + b0,

where 6 is the actual 8, and 69 is the desired .
For Trajectory tracking, we have:

V =a(0® - K,é — Kpe) + b4,
Wheree:@—@d,andé:é—éd.

PD Control

PD control is used when there is no model of the system, i.e. the parameters of the system are
not known a priori. In this case, a simpler control scheme is adopted by industrial manipulators,
which does not assume any knowledge of the system. For example (for trajectory tracking):

V=-K,¢— Kpe.
e Procedure:
1. In this first part, verify the parameters of the motor: Kg, K7, R, J and a, b.

(a) Measure the terminal resistance, R.
(b) Measure the current, I.

¢) T, = Kp I. Verify Kp in the following manner: Attach a bar to the edge of the motor,
g g g
and rest the other end of the bar on a scale.

==

scale

Figure 12: Experimental setup for the D.C. Motor experiment

By supplying a current to the motor, the bar will exert a force on the scale. Measure
the force. The torque produced is equal to the force multiplied by the length of the bar.
Vary the current from 0 to the maximum, and plot the computed torque vs. the current.
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1% () /I\ E, = Kpw

Figure 11: A lumped-circuit model of a D.C. Motor

Here, R (ohms) is called the terminal resistance, which can be measured by hooking up an
Ohmeter across the motor wires with the motor at stall. £, is the back EMF voltage, and is

. . o . . . .
proportional to the rotor velocity, w = a0 with proportionality constant Kg (known as the back

EMF constant). One way to estimate Kg is by rotating the rotor at a known fixed velocity, and
then measuring the voltage generated at the terminal ends. V is the applied voltage, and I, is the
motor current.

The electrical equations for the above figure is given by:
- . df
V=RI,+ Kgpw=RI1, +AEE'
In the presence of motor current, I, a torque proportional to I is produced:

T, = Kr I,

where K is called the torque constant.
The mechanical equation relating 7, to the rotor motion is given by

d?0
=7 g
where J (N.m.s?) is the rotor inertia. Note that all parameters (J, K1, R, Kg) can be found from
the data sheet for the motor.
Combining the two equations above for T, yields the equation relating applied voltage, V', to
joint motion 6(¢):

d*0 do
V—aﬁ—i—ba,
where
a:J,R and b= Kg.
Krp

In other words, the control input, V affects the joint motion, #(¢), through a second-order lin-
ear differential equation. The coefficients (a,b) of the differential equation depend on the motor
construction only.
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B Experiment 4: D.C. Motors

e Objective: The purpose of this experiment is to familiarize the students with the basic opera-
tion of D.C. motors. For this experiment, the students use simple position control of one joint.

e Principles of Operation:

Direct-Current (D.C.) Motors: The last revolute joint of the NYU ED-1 is driven by a D.C.
motor manufactured by Inland Inc. A rudimentary D.C. motor is comprised of three main parts:

1. A stator with a permanent magnet providing a magnetic field for energy conversion,
2. a rotor (or armature) with current carrying conductors, and
3. carbon brushes and commutator for introducing current to the moving conductors.

In order to have a computer controlling either velocity, joint point position, joint velocity, or
torque of a D.C. motor, a power amplifier and an optical encoder are required. The power amplifier
takes a commanding signal from the computer and outputs a driving signal to the D.C. motor. An
optical encoder and a decoder device together transform joint position information to the computer.
A computer controlled D.C. motor system is shown below:

Oooooboooobo
OoooooopDpoDoo
ooooooopoooono I ]
|

D/A Power
Converter Amplifier

N

Decoder

Optical
Encoder

Figure 10: A computer controlled D.C. Motor

Note that a Digital-to-Analog (D/A) Converter is used because a computer outputs only discrete
signals.

Model of a D.C. Motor: To understand the control of a D.C. motor, we need to derive the
equations describing the motor. A simplified equivalent electrical circuit of the motor is shown
below: (This model is adequate for position control.)
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15 forward(thetal, theta2, &trajx[k], &trajyl[k]l);
16 if (time > length-of-time-for-this-segment)
17 {

18 time = 0;

19 /* increment seg */

20 }

21 }

22 }

Using the above procedures, write a program to compute a trajectory between two points.
The program should accept up to five via-points.

Choice of time step:
(a) Ask the user to input the total time. Let the time for each segment be the total time
divided by the number of segments.
(b) Ask the user to input how much time each segment should take.

(¢) Any other method one may wish to choose.

The program looks basically as follows:

1 main()

2 {

3 /* get the points and the time duration */

4 /* do inverse kinematics on the points to get the values of thetal
5 and theta2 for each point. */

6 /* compute the joint velocities of the via points

7 (at each point you need velocities for thetal and theta2) */
8 /* compute the cubic coefficients

9 (in each segment, 4 coeffs for thetal and 4 for thetal2) */
10 /* compute the path. */

11 b

e Procedure:

1.

2.

Make sure the program works (compiled and debugged). See if the numbers look reasonable.

Run your program on the ED I robot. Run it at least three times. What points were chosen?
What intermediate points were generated by the program? Describe what actually happened
when the robot is commanded to follow the given trajectory.

Run the program using the five points on the grid from the inverse kinematics experiment.
Choose one of the points to be both the initial point and the final point, and the other four
points to be via points. How does the generated trajectory compare with the trajectory from
the inverse kinematics experiment (compare speed, path, etc.)?

e Summary:

1.

Optional: Plot the z, y coordinates generated by the program. How does this plot compare
to the trajectory which the robot followed?
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B Experiment 3: Trajectory Generation

e Objective: The purpose of this experiment is to familiarize the students with the concept of
generating a trajectory. They write a path planning program which uses the cubic spline method
for joint space trajectory generation.

e Principles of Operation: The background required for this experiment can be found in
chapter 7 of J. Craig’s book([7]).

In the two previous experiments, the students performed some trajectory generation tasks, in
that they were required to specify points through which the robot end effector must pass. In
contrast, the students here become acquainted with one of the more standard methods of trajectory
generation.

Preparation Below is a list of procedures that the students need to complete their program.

1. Write a procedure to compute the cubic coefficients of a cubic polynomial. The procedure
should take as parameters: the initial theta, the final theta, the initial velocity (thetadotO)
and the final velocity (thetadotf), and the amount of time. It should return the four coeffi-

clents.

1 cubic_coeff(th0, thf, thdot0, thdotf, tf, coefs)
2 float thO, thf;

3 float thdotO, thdotf;

4 float tf;

5 float *coefs;

2. Write a procedure to calculate the joint velocities at the via points. For each segment (for n
via points, there are n — 1 segments), the velocities are different. The students are encouraged
to use any of the three methods described on pp. 235-236 of Craig[7]. The easiest to implement
is choice 2: the system chooses the average of the slopes as the via velocity. In other words,
for each segment i, the velocity of §; = %((0172' —01,i-1) + (61,541 — 01;)). Similarly for the
velocity of 6.

3. Write a procedure to compute #; and #;. For each segment i, 6; is computed by formula

(7.3)[7]. The basic algorithm is as follows:

1 run_path()

2 {

3 time = 0;

4 seg = 0;

5 number—-of-ticks = totaltime / deltat;

6

7 for (k=0; k<number-of-ticks; k++)

8 {

9 /* increment time by deltat */

10 /* calculate thetal using the coefficients for
11 thetal in seg */

12 /* calculate theta2 using the coefficients for
13 theta2 in seg */

[y
'S
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e Procedure: Followings are the main steps of the experimental task:

1. This first part is to familiarize the students with the system. The lab instructor starts by
demonstrating how to power up the system, how to use the editor, how to compile the pro-
grams, etc. Students run two sample programs: TESTMOVE and SENSR. which reads the
values of the position sensors.

Turn on the system, and run the program read. Move the robot around a bit and write down
the sensor values. (The purpose of this is to give students a chance to operate the system on
their own).

2. Measure the link lengths of each of the two links on the ED I robot. These lengths are needed
in order to compute the forward kinematics.

3. Construct the forward kinematics map for first two links of the ED I robot. Write a procedure
which computes the forward kinematics. Input to the routine should be the values of th1 and
th2. The z and y values should be placed in ztip and ytp.

#define LINK1 <value_measure_for_linkil>
#define LINK2 <value_measure_for_link2>

int

forward_kinematics(thetl, thet2, xtip, ytip)
short thetl, thet2;
float *xtip, *ytip;

~N O o WND e

4. Now, test out the forward_kinematics procedure. Write a program which does the following:

(a) Prompts for values for thet! and thet2.
(b) Commands the robot to move to this desired configuration (i.e. thet! and thet2).
(

)
¢) Reads the sensor values and prints them out.
d)

Calls the procedure forward_kinematics using these values and prints out the cartesian
coordinates of the end-effector.

5. Run the program a few times, and write down the output. Use values in the range of 20°—60°.
Using the grid on the table by the robot determine what the position of the end effector is.
How closely does it compare with the values computed by the procedure?

6. Run your program with the following values and note what happens:

(a) 00

¢ Summary:
1. What happens when the program is given values that are out of range?

2. If the initial configuration is not really 6; = 0,62 = 0, how will that affect the results of
forward kinematics procedure?
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e Principles of Operation: The inverse kinematics map is the inverse of the forward kinematic
map. Given the position in cartesian space, it returns the values of the joint angles required to
achieve that position.

Unlike forward kinematics, which produces only one solution, the inverse kinematics may produce
multiple solutions, depending on the configuration of the robot. If the robot contains more than
two degrees of freedom in the plane or more than three degrees of freedom in the space, multiple
solutions may exist. Since in this experiment, only two joints of the ED I robot are used, the
problem discussed above need not concern us immediately.

e Preparation: Students are asked to compute the inverse kinematics of the simplified ED 1
robot (the two joints) and write code that will take coordinates # and y and return the angles 6,
and 5 that correspond to the configuration where the end effector is at z, y.

e Procedure: Following are the main steps of the programming task:

1. Write a procedure to compute the inverse kinematics of the ED I. Input to the routine should
be the coordinates of the end-effector, and the procedure should return the values of the two
joint angles.

1 int inverse_kinematics(xtip, ytip, thetl, thet2)
2 float xtip, ytip;
3 short *thetl, *thet2;

2. Write a program which does the following:

(a) Prompts for values for # and y coordinates.

(b) Calls the procedure inverse_kinematics using these values and prints out the values ob-
tained for thetl and thet2.

(c¢) Generates the cubic coefficients for each joint.

(d) Moves the robot to this desired configuration using the code in Part C.

B Experiment 2: System Familiarization and Robot Kinematics

e Objective: Introduction to the system, consisting of the robot, its actuators, its control units,
the interface, and the computer system. The students are shown some demonstrations illustrating
how to read feedback signals and to command joint movement of the robot. The students then
perform some simple experiments and familiarize themselves with basic robot operation.

e Principles of Operation: The robot and the system the students use in this experiment is
NYU ED I robot and is explained in §2 and §3. See the previous subsection for an explanation of
how to command the ED I robot to move, and how to read the position sensors of the robot, etc.

e Preparation: No prior preparation is necessary.
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e Summary: Following is a list of questions that were posed to the students in connection with
the preceding experiment:

1. What is the danger of having a large frequency and a large magnitude for the sin function
which controls the angle of the joint? (i.e. why would this translate to large torques on the
joint?)

2. Try to come up with values of M, w, and T to produce a trajectory which progresses smoothly
from 0 to 90 degrees (0 to 7/2 radians).

O Part B: Generating Trajectories Using a Cubic Polynomial

e Objective: To generate a cubic polynomial based on an initial angle, an initial velocity, a final
angle; a final velocity, and the amount of time to move from the initial configuration to the final.

e Principles of Operation: Since a cubic polynomial has four coefficients, if given four con-
straints, one can uniquely determine these coefficients. In this part of the lab, the students use the
initial angle, the initial velocity, the angle at time 7', and the velocity at time 7" as constraints to
determine the cubic polynomial.

e Preparation: Students are asked to read a set of notes on cubic polynomials. As in the first
part, they are expected to write the necessary code before they come to the lab.

o Procedure: Students are asked to write a procedure to take as input integers g, 0, and T,
where g is the initial angle of joint 1, ¢; is its final angle, and T is the total number of seconds to
move from angle fy to fy. They may assume initial and final joint velocities are zero. The procedure
should return the coefficients of the cubic polynomial (a function of time) that fits 6y, ¢, and T,
(i.e. the cubic polynomial P such that P(0) =ty P(O) =0, etc.)

Next, students are asked to write a procedure that takes the coefficients and number of seconds
T as parameters, and calls MOVE_ROBOT as in the Experiment 1A. Note that the “do-loop” now
iterates on steps—not seconds. To call MOVE_ROBOT, the students need to calculate the velocity,
as well as the position.

O Part C: Using two Joints
e Objective: To familiarize the students with moving two joints together.

e Preparation: Once the students have figured out the previous experiment, writing the code
for this section should be straightforward. Thus no prior preparation is necessary.

e Procedure: Students are asked to write a procedure to take as input four angles and a time 7.
The first two angles are the initial and final angles for joint 1 and the final two angles are the initial
and final angles for joint 2. Assuming that the initial and final velocities are 0, the procedure fits a
cubic polynomial to each joint. Using these polynomials the program moves both joints (together)
in time T'.

O Part D: Inverse Kinematics

e Objective: In this experiment the students familiarize themselves with inverse kinematics.
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B Experiment 1: Introduction to ED 1

O Part A: Trajectory of sin Function

e Objective: Introduction to the system, consisting of the robot, its actuators, its control units,
the interface, and the computer system. The students are shown some demonstrations illustrating
how to read feedback signals and to command joint movement of the robot. They then perform
some simple experiments to familiarize themselves with basic robot operation.

e Principles of Operation: The robot and the system students use in this experiment is ex-
plained in a supplementary handout. (See sections §2 and §3.) This includes some description of
the ED I robot, how to command the robot to move, and how to read the position sensors of the
robot.

e Preparation: Students are asked to prepare the code described under the Procedure section
ahead of time. In our experience, even if this code is not perfect, it still saves considerable amount
of time in the lab if the students had to start from scratch.

e Procedure: Students are asked to write a procedure to take as input values for M, w, and T,
where M and w are floats and T is an integer and plan a trajectory for the JOINT1 determined by
the equation

6(t) = M sinwt,

where ¢ is the time which increases by units of size STEP and 6(¢) is the value for the angle of
JOINTI at time ¢ (see the sample code in the lab manual).

To generate the sin trajectory, they first convert from 7' seconds to STEPS_PER_SEC %71 steps.
The function to move the joint takes a new angle approximately every 5/1000 seconds to ensure
smooth motion. Next, they calculate the new angle at each step using the formula

#; = M sin w1.

The procedure must carefully check the values of M and w. Before they call any functions to move
the arm, the students were asked to run through their code and just print out the values of ¢ and
f after each iteration of the loop. Consecutive values of # should not differ by too much, and @
should not be too large. This is to avoid putting large torques on the joints of the arm. Typically
the students were asked to try M = 0.8 and w = 0.3 to get an idea of what types of values are safe.
Note that as w is the frequency and M the magnitude, when the value of w is increased, the value
of M must be decreased and vice-versa. Students were told to seek assistance from the instructor
and lab assistants if they were unsure whether the chosen values are in the proper range.

In a “do-loop,” they calculate a new value for 8 at each iteration, using which they then calculate

# = Mw cos wi.

Then, once their code is working correctly, the next version of the procedure calls
MOVE_ROBOT(JOINTI, 6, ) to actually move the arm. Also, the students are asked to store
the actual position at each iteration in an array. The actual position is obtained by calling

GET_POS(JOINT1). This returns the angle in radians.
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7 while (1)

8 {

9 if (READ_SENSORS(&thil_act, &th2_act)

10 printf(‘‘thetal: %hd theta2: %hd\n’’, thi_act, th2_act);
11 else{

12 printf(‘ ‘Error in MOVE_ROBOT routine\n’’);
13 break;

14 }

15 }

16 }

init_sensors()

Initialize the sensors. This sets the current configuration to the home position (i.e. #; = 0,02 =

0).

Editing and Compiling The TURBOC editor is called tc. It is menu driven, and very simple
to use. The students can compile and run most of their programs from within the editor (unless,
of course, their code contains inline assembly language). Or they may choose to compile and run
outside the editor. There are also other editors available in the system: for instance, vi, emacs
(which is microemacs), and epsilon (another emacs).

The command to compile C files is TCC (Turbo C Compiler), and to compile assembler files is
TASM. If it is necessary to compile more than one file, (eg. tcc filel file2), the executable will be
called after the first file, with an exe extension (eg. filel.exe). The students may instead choose
to use Makefiles. Since it is necessary to link together more than one file, it is a good idea to set up
a makefile and take advantage of the incremental compiling features. There is a sample makefile in
the \tc\programs subdirectory:

1 OBJECTS=..\procs\rdsnsr.obj ..\procs\robmove.obj
2

3 .c.obj:

4 tcc —c $<

5

6 .asm.obj:

7 tasm $*

8

9 sensr.exe: ..\procs\rdsnsr.obj readsens.obj

10 tcc -esensr ..\procs\rdsnsr.obj readsens.obj
11

12 testmove.exe: testmove.obj

13 tcc testmove.obj robot.lib

14

15 moveread.exe: moveread.obj $(0BJECTS)

16 tcc moveread.obj $(0BJECTS)

This makefile was constructed to show some of the capabilities of the makefile program. The
library robot.lib contains all of the procedures declared in robot.h, so one only needs to specify
robot.1lib (as was done for testmove.exe).
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1 #include <stdio.h>

2 #include <math.h>

3 #include <robot.h>

4

5 sintraj(w, M, T)

6 float w, M;

7 short T;

8 {

9 int i;

10 float vel, pos;

11 short *th;

12 th = (short *) malloc((T/STEPSIZE) * sizeof(short));
13 for(i=0;i<(T/STEPSIZE) ;i++)

14 {

15 th[il= (short) (M * sin(w * (float)i));

16 vel = (short) (M * w * cos(w * (float)i));
17 if ('MOVE_ROBOT(JOINT1, th[il, vel)){

18 printf (¢ ‘Error in MOVE_ROBOT routine\n’’);
19 break;
20 }
21 }
22 pos = GETPOS(JOINT1);
23 printf(‘‘Final Position: %f \n’’,pos);
24 }

This program computes T/STEPSIZE values for the angle of JOINT1. JOINT1 is following
the following trajectory in space:

6(t) = Msin(wt) te[0,T]sec.

MOVEROBOT requires an angle and a velocity so we also compute vel, the desired velocity of
the joint, which is equal to the derivative of the desired position. We then call MOVEROBOT each
time through the loop. After we complete the loop, we return the current angle of JOINT1. We
store the desired angles in th, although we do not make any use of this array this time.

READ_SENSORS (sensl, sens2)

float *sensl, *sens2;

This procedure reads the position sensors to obtain the actual values of the two joints. It is
located in the file rdsnsr.c. The procedure read_sensors takes two parameters, both of which are
pointers to short, and it returns the actual values of #; and 65 into the variables. Below is an
example of a program which continuously outputs the sensor values:

#include <robot.h>

main()

{
float thi_act, th2_act;

OO WN =
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4.1.5 Commanding the Robot

Most of the C code is used to generate desired positions. Much of the low level VxWorkstm code
has already been written for the students and is fairly stable at this point. The students write their
procedures in C, which calls the low level routines. In order to use the robot procedures already
written, the students simply include the file robot.h along with the standard include files (e.g.
stdio.h, math.h, etc.). Following is a standard header:

#define DEG_TO_RAD (M_PI / 180)
#define RAD_TO_DEG (180 / M_PI)

extern void MOVE_ROBOT();
extern void INIT_SENSORS();
extern void READ_SENSORS();

DO WN -

The first two lines contain constant values needed to convert from degrees to radians and back
again and are needed to compute forward and inverse kinematics (for instance, sin, cos, and other
trigonometric functions expect their values in radians).

The three procedures declared are described below:

MOVE_ROBOT (joint, pos, vel)
short pos, vel,
short joint;

The procedure MOVE_ROBOT is a low level routine which takes three parameters, all three are
of type short. pos is the desired theta for the joint and wel is the desired velocity. This is the
procedure that sends the motion commands to the robot.

The MOVE_ROBOT program can be written using the joint_move routine of §2 as follows:

1 #define JOINT1 1

2 #define JOINT2 2

3 #define JOINT3 3

4 #define JOINT4 4

5

6 int MOVE_ROBOT(joint, pos, vel)

7 short pos, vel;

8 short joint;

9 {

10 double cur_pos, time;

11

12 cur_pos = GETPOS(joint);

13 time = (cur_pos - pos)/vel;

14

15 if(joint == JOINT1)

16 return joint_move(pos, 0, time, 0);
17 else if(joint == JOINT2)

18 return joint_move(0, pos, time, 0);
19 /* ETC. FOR OTHER JOINTS */

20 }

Below is an example of a C program which calls the MOVE_ROBOT procedure.
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The Computer: In generating robot motion, one commands the robot to go to a desired point or
trajectory within the workspace. The desired motion may either be specified directly by the user,
or may be generated by a computer program. The computer program is written in the C high-level
language. The computer then commands the robot to move.

In addition, the computer also monitors the robot motion and adjusts for any deviations from
the desired position. By checking the values of sensors incorporated into the joints of the robot, the
computer “knows” the actual position or the robot. It compares the actual position with the desired
position to determine the error, and then adjusts accordingly. This forms the so-called “feedback
control loop” for the robot.

The Interface: The interface is basically the connection between the computer, which is con-
trolling the robot, and the robot itself. It allows the computer read the sensor values and to send
motion commands to the robot.

The interface is composed of Analog-to-Digital conversion devices (A/D’s) and Digital-to-Analog
conversion devices (D/A’s) which communicate with the computer and robot through a bus. When
the computer wishes to send a motion command to the robot, it must first convert the motion to
an encoder value, and then sends the value to the D/A which converts the digital value to a current
or voltage, since the motor can receive only analog signals. When the computer wishes to read the
sensor values (to determine the actual position), it reads the value from the A/D. The sensor uses
encoder values: it transmits a number of pulses proportional to the angle of the joint. The signal is
then converted to a digital value by the A/D and it can then be read by the computer.

The Servo-pack: The servo-pack is a power amplifier which is needed to amplify the signal
produced by the interface in order to send it to the motor. This is somewhat similar to the way the
accelerator pad in a car sends signals to the engine.

The Sensors: There are two types of sensors used in this system. One type, mentioned above,
is the position sensor which is used to measure the actual position of the joint. Often, it is also
called the feedback sensor since it sends information about the environment back to the computer.
The other type is the safety and home sensors. The safety sensors determine when the robot has
overrun its limit in the workspace. When the robot approaches the edge of its workspace, the sensor
is triggered, and the output signal will automatically cut off the motor power, and the robot will
stop. The home sensor is the device used to measure the motion origination position.

4.1.4 System Software

The students write all their software for ED I using TURBO C. The TURBO C directory is called
\TC. This directory contains the compilers and editors, as well as additional procedures that can be
called from students programs. Within the \TC directory, there are two important subdirectories:
One is called procs, and it contains procedures which the students call from their own programs. The
other is programs, and it contains several example programs. The low level details of maintaining
the real time nature of the control is hidden from the students

The program for controlling the robot is written in a combination of C and calls to VxWorkstm
real time system which controls the creonics motor control boards. The students are expected
to follow a given set of programming guidelines to ensure that their programs do not lead to a
hazardous situation. (See the box on page 36).
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Safe Programming Practices (Contd.)

If a function is returning values via arguments (i.e. by using pointers),
you should set these return values to some meaningful default value
if the function fails (i.e. if anything goes wrong). This is just another
safety feature to incorporate into your code.

Now suppose you need to check several conditions for potential fail-
ure inside a function. Your function should be coded such that all
successes are handled first, and you return after a success. Then all
failures can be handled together at the end of the function. The ra-
tionale behind this is that there may be a bunch of things that you
need to take care of in the event of failure, and the easiest thing to
do is handle all the failures together.

Any non-trivial sequence of operations that is used several times in
your code should be replaced by a function or a macro. In general,
use a macro where you can express the operation in one line. For
example, the function to square a number should be implemented as
a macro. When using macros, keep in mind that your code will be put
in-line as-is. This can cause problems if you haven’t parenthesized
your expression properly.

Use structures and arrays where applicable to avoid having to handle
several related variables separately. For example, if the robot has 3
joints, you may want to pass the associated joint angles around in
a 3 element array. This also helps avoid the pitfall of confusing two
variables such as JOINT1 and JOINT2 by a typo.

Use data abstraction where applicable. Basically, data abstraction
consists of building data structures to hide the underlying structure of
your data, and then manipulating these data structures only through
a limited number of functions.

Try to make your functions as general as possible. It is a little tempt-
ing to go overboard with this, so as a rule of thumb, this should be
something that makes your life easier—not more difficult. In other
words it should allow you to reuse code—it shouldn’t force you to
right more code than you otherwise would.

Either initialize all variables when you define them, or make sure they
have values assigned to them before they are used.

Test your code out before trying it out on the robot.

But, finaly remember that none of these rules are etched in stone
(except where safety issues are involved), so use your judgment when
programming.

Box 4.2. Instructions regarding safe programming style provided to the students.
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Safe Programming Practices

Here are some things to consider when writing code for the ED I robot
(actually, lots of this stuff applies to programming in general):

e Every function should return a value indicating whether or not it has
succeeded. A failure should return 0 and in most cases, success should
return 1. Then, when you call a function (say, a function called foo
with 3 arguments), your call should be of the form

if(foo(varl, var2, var3))
/* do something */
else
/* something went wrong - handle it */
This is to insure that if any function fails, you will be aware of it and
not try to make the robot do something “bad”.

e You shouldn’t have any numeric constants hard-coded into your pro-
gram. All constants should be #defined at the beginning of your
program. Furthermore, anything you #define should be all caps.

e Your code must be well commented. Here are some guidelines:
— There should be a comment associated with each #define.

— Each function should be proceeded by a paragraph of comments
explaining what its arguments are and what the return value is.

— Comments should be embedded within a function where needed
to explain anything that is not obvious from the code. For exam-
ple, suppose somewhere in your code you have y = 2 * x;. A
comment of the form /* y gets twice x */ is not very help-
ful, but some comments about why you are doubling x might be
in order.

— A comment should be associated with each variable declaration
unless the name of the variable itself entirely makes clear its
purpose. For example, a variable called flag is explanatory to
some degree, but you should include a comment to describe what
it is “flagging”.

— Just keep in mind that you may have to look at the code in the
future. Anything that would be helpful in understanding the
code should be included in the comments.

e Choose meaningful names for variables. Not only should the names
be descriptive, but they should also be such that you won’t easily
confuse two variables by making a typo, for example. Confusing two
variables can really be a safety hazard!
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For the purpose of the first experiment, the students operate only the first two joints. In later
experiments, they use the full functionality of all the joints. So for the first lab, the manipulator
can be considered a two-link planar manipulator. A simplified picture of the system controlling one

joint (say ;) is as follows. The origin of the base frame of the robot is at the 6, joint.
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Figure 8: A simplified picture of the system controlling one joint

4.1.3 The controller

The robot is controlled by a digital computer, an interface, a servo-pack and sensors. A simplified

diagram of the system is shown below.
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Figure 9: A simplified picture of the controller

Sensors
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Safety Instructions

Safety precautions should always be observed, since unpredictable failures
can occur during operation. If at any time, you think the system is not
functioning properly, alert the lab instructor at once. Additionally, the
following practices should be observed:

e The first movement commanded by a program should be at no more

than 20% of the full speed.

e Before instructing the robot to move, be sure nobody is in the
workspace of the robot. In general, unless you are positioning some-
thing for the robot to use, you should never stand in the work area
of a robot.

e No program should allow the robot to remain stationary for a long
period of time, say, more than 20 seconds, and then move without
warning. Warning can be given by:

— Requiring an operator to enter a response at the console;

— Moving at very low speed for a few seconds before increasing
speed to normal;

— Sounding a beep for 3 to 5 seconds before motion begins.

e In an emergency, use the STOP button on the control panel to stop
the manipulator.

e Debugging should be done with very careful attention to the mo-
tion of the robot. The robot is very predicatable; it executes the
commands given by the user programs. This, however, is not always
what the user intends. If the robot does even the smallest thing you
don’t understand, it is probably a bug, and you should investigate it.

e Bear in mind that the robot can damage itself relatively easily, so run
programs in their early stages of development slowly and with careful
and constant attention. Avoid any actions which may endanger any
people (including yourself!) in any way while using the robot.

Box 4.1. Safety instructions provided to the students.

4.1.2 The manipulator

The robot used by the students in this course is the NYU Direct Drive ED I robot. The manipulator
is a two-jointed arm structure with four degrees of freedom arranged in the well known SCARA
arrangement. The joints of the arm, #; and #; provide two degrees of freedom. The end-of-arm
rotation, provides two more degrees of freedom: one through rotation, p, and one prismatic along
the z-axis.
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4. Experiments

4.1 Basic Robotics

4.1.1 General Information

This laboratory section for the “Introduction to Robotics” course is designed to assist the students
in learning the fundamental robotics concepts. While an accompanying manual is provided to guide
them in performing the experiments listed here, the students were asked frequently to also try things
not specifically mentioned in the manual.

Students were also encouraged to consult with the instructor, the lab assistant and among
themselves, when they were unsure of what is expected in the manual. However, it was expected that
students will satisfy their curiousity and creativity, while adhering to the standard safe laboratory
practices. (See the box on page 34.)

Each student is expected to carry a Laboratory Notebook, for the purpose of writing down
everything that they do in the course of each experiment. They are asked to record all observations
and data in the notebook and to label every observation taken in the laboratory.

The students are divided into several groups with 3 to 4 students per group. Each group is
required to submit a 5-10 pages laboratory report one week after the completion of the experiment.
(Most of the experiments take about two weeks). The report is expected to be either typed or
written up in neat, clear handwriting with every diagram and graph/plot clearly labeled.

The report submitted by the students consists of the following sections:

1. Introduction (1-2 paragraphs).This is a statement of the purpose of the experiment, i.e.
what the student set out to do.

2. Theory of Investigation (1 page).The basic theory underlying the experiment.

3. Method of Investigation and Results.This is the main body of the report. In this section
the students explain in detail what it is that they did, and what the results of each step were.

4. Analysis of Results (1 page).At the end of each experimental description, the students are
provided a Summary section, with questions which they are expected to answer in this section
of the report. They relate to interpreting the results: what the students learned in performing
this experiment, why the experimental results may not be what was expected, etc.

The experimental system differed from the developmental system in one fundamental way: The
student experiments were conducted using an IBM PC and a TURBO C package running on it.
Thus the system used by the students is significantly different from the development system using
a Unix workstations (with M68020 cross-compiler) over the ethernet and described in the preceding
section. The main advantage of the IBM PC and the TURBO C system was that the students were
familiar with these systems and could take advantage of the NYU’s academic computing centers to
develop their programs outside the robotics lab. The hardware architecture of our system is such
that the switch from one configuration to another remains relatively easy.
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The interaction of the queues and of the semaphores is best represented graphicallly. See the
figure above.

The lines in the schema show the flow of commands as they are queued by the listener (queuer
and where they may be stopped by the semaphores.

The synchronization among the various components and commands is done by the three message
queues (each one for the three kinds of commands) and by a set of semaphores. Currently there are
the following semaphores'?.

e A dispatch semaphore used by the dispatcher mainly as a wait primitive until the next

command is in. Also the commands (and the task executing them) will have to wait if this
semaphore is not green.

e A axis semaphore for each axes. The axis driver is not allowed to execute more than one
command at a time.

e A card semaphore for each card on the VME Bus. Since there may be more than one tasks
requesting the services of the card, this semaphore is used to regulate the access. The number
of concurrent users is declarable in the configuration files.

The primary responsibility of the VxWorkstm is thus to dispatch the commands from the generic
command queue (coming from the frontend) to the axes driver while ensuring that the semantics
associated with immediate, ordered and privileged commands are correctly obeyed. The figure 6
graphically describes how this is achieved by semaphores and queues together with a simple sched-
uler.

12Some are binary MUTEX; some are counting semaphores.
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Modular System Software
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Figure 7: The software organization of the MOSAIC/ED I system

e The Internal Queues and Semaphores: The system relies its correct functioning on four
queues and one “general” semaphore, plus a semaphore for each card and each axes. Both queues
and semaphores serve to synchronize access to ‘critical’ resources. Moreover there is one basic
assumption that must be made explicit:

The speed of the cards and of the VxWorkstm real time operating system, coupled with
a careful hand made serialization of the tasks, is sufficient to avoid race conditions and
disastrous events.

Moreover, the actions the robot (or a machine tool) can perform are usually not
constrained by deadlines as in a more “standard” real time scenario.

This is taken for granted in the implementation of the system.
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Each of the following lines is read and queues up in the immediate commands queue for direct
interpretation by the card (via the dispatcher routine). The meaning of the first such line is (as
interpreted from the Creonics manual [8]).

Code ‘ Description ‘

9 | Number of data entries on this line (each to be
read and later interpreted as a single byte)

0x11 | Card axis identifier
0x07 | Creonics code for direct commands
0x00 | Code for setting the servo loops gains

0x2d 0x00 | Proportional Gain
0x00 0x00 | Integral Gain
0x00 0x05 | Velocity Gain

The second line is similar. It is just used to set the initial values of the home position of the axis
(codes 0x07 and 0x01. The format of this entry is

| Direct Command Code | Command Type | Four Bytes (units in edges [8]) |
| 0x07 | 0x01 |  0x27 Oxfa Oxff Oxff |

The remaining commands in the axis initialization file set the following parameters:
e Home and Quertravel mode,

o Mazimum Travel limits (two lines),

o Mazimum Velocity, Acceleration and Deceleration,
e Position Error Tolerance,

e Deadband Compensation,

e Feedforward Gain,

e Fncoder Mode,

e Azis/Drive type Specificalion,

e In-Position Tolerance,

o Velocity Error Tolerance,

e Unwind Constant,

o Servo Quiput limit and PAC Constants.

A line containing only a 0 marks the end of the usable section of the file.
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At this point all the “immediate” and “ordered” commands declared in the configuration file can
be used.

3.2.4 The Internal Organization

The commands in the initialization script cooperate in getting the system up and running. Here is
a brief description of what it is done by them.

e Behavior of mosaic_init: After reading the configuration file, the procedure mosaic_init
starts three tasks that actually take care of the internal workings of the system.

e The scheduler task,
o The dispatcher task, and
e The error task.

The scheduler task is in charge of taking commands from the command message queune, checking
that they fall in the “ordered” category, parsing them and “executing” them?C.

The dispatcher task is in charge of actually communicating with the cards on the VME bus. Its
main loop checks whether there are commands of the different kinds and executes them accordingly,
provided that semaphores conditions do not prevent it to do so.

The error task is presently only a message dumping routine that waits for messages on a
specialized queue.

¢ Behavior of creonics_init: The creonics_init routine is in charge of initializing the Cre-
onics card with some hardware dependent parameters. The whole process is achieved by sending an
‘internal” immediate command to the dispatcher over the appropriate queue. The meaning of the
command is to nitialize the driver.

e Behavior of mcc_axis init: The routine mcc_axis_init does two things. First it reads an
initialization file for the axis it is initializing and then it spawns a task that executes the specialized
driver for the axis itself, accordingly with the declaration contained in the configuration file.

The initialization file for the axis contain data that sets some of the default parameters of the
driver (see [8] for a complete reference). For example, the file thetal axis contains the following:
(Two of these files are loaded; one for each axis.)

1 tthetal_axis 0 1 0x11 102400

2 9 0x11 0x07 0x00 0x2d 0x00 0x00 0x00 0x00 0x05
3 7 0x11 0x07 0x01 0x27 Oxfa Oxff Oxff
4
5

0

The line 1 contains the name to be given to the task in charge of driving the axis'!, followed
by the axis number, the slot/card number, the 0x11 Creonics internal axis selector (...) and a
parameter denoting the initial position of the axis.

The name, the axis identifier and the card identifier will be eventually used by mcc_axis_init
to spawn the correct axis driver (which was declared in the configuration file: that is the routine
mcc_axis driver).

0Fach of the commands actually must be aware of some conventions that are used in the system. E.g. the
commands operating on the axes should always start their actions with the functions calls axis_cmd and axis_open,
etc.

11The double t is a VxWorkstm convention.
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21 ORD coord :

22 ORD abort %A;#Aa:

23 ORD tune %A%c:

24 ORD joint_move %f%f%f:
25 ORD joint22_move %L%LU%L:
26 ORD cartesian_move %EfAfAE:
27 ORD home A;#Aa:

28 ORD joint_trajectory :
29 #

30 # Immediate commands

31 #

32 IMD at taborttune 30
33 END

3.2.3 Starting the System

The whole system must now be started from the VxWorkstm shell® This is done in two steps®. First
a script is loaded into the shell and afterward a specialized command interpreter is started (the
queuer prioritized command of the previous section). The initialization file is listed hereafter.

1d < vme_util.o
1d < mail_util.o
1ld < machine_util.o
1ld < command_util.o

1ld < mosaic_init.o

HARBHA BB B HHRBHBRARB R R B R A HRERHRRGREGHHE
# Version 3.0 Of MOSAIC use caution #
# for EDUCATION ROBOT 1 #
HARBHABBRRHHRRHHRHRB R R B R ARG RR G R GRHE
mosaic_init("edl.cfg")
creonics_init(1,0xffffff00)
mcc_axis_init("thetal_axis")
mcc_axis_init("theta2_axis")

The lines containing with 1d < (object file) tell the VxWorkstm linker/loader to place the exported
symbols in the systemwide symbol table.

The last four lines in the script file launch different tasks that run concurrently in the VxWorkstm
environment (which is composed of different cards on the VME bus; each of the cards potentially
running concurrently a different task).

Each of the routines spawns a task that sets up various pieces of the whole environment, starts
the “interpreter loops” and, most importantly, creates the queues and the semaphores used for
synchronization.

e Starting the Command Interpreter: The commands can be given to the system by starting
a simple command interpreter (as in the configuration file) by hand. The “programs” queuer util
and queuer must be started by typing directly to the VxWorkstm shell:

-> queuer

8The VxWorkstm “shell” act almost as a C language interpreter. Refer to the manuals for its inner working.
9 All the steps are done by the VxWorkstm; no work is required on the part of UNIX.
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e Command Declaration Section: The last section of the configuration file contains a declara-
tion of the commands “acceptable” by the system. The commands are divided into three categories:

o Prioritized commands (or privileged)
e Ordered commands
e Immediate commands

The distinction among the different kinds of commands is made depending on the particular
roles they play within the real time environment.

Prioritized commands: are commands that must be actually executed at the highest priority.
They usually include the initialization routines for the various drivers running on the cards of the
VME bus. Moreover, they also declare “generic” library routines that have to be loaded in the
VxWorkstm kernel in order to run the system?’.

Ordered commands: are those commands whose execution should be terminated (if no error
occurs) before other ordered commands are started. “Move” commands are typically in this category.
The bottom line is that this kind of commands is queued for execution.

Immediate commands: are commands that can be executed immediately by the real time
kernel upon “completion” of the current task. I.e. they can bypass the usual queue. Information
reading commands can usually be run in this way.

The standard format for an entry in this section is:

| command type | command name | arguments |

The command type field can be one of PRI, ORD, IMD or END. The actual form of this section is listed
hereafter.

1 #

2 # Acceptable Commands declaration section
3 #

4 # Truly "prioritized" commands

5 #

6 PRI creonics_init

7 PRI mcc_axis_driver

8 PRI mcc_axis_init

9 #

10 # Actually libraries dynamic loading
11 #

12 PRI kinematics

13 PRI queuer_util

14 PRI queuer

15 #

16 # Ordered commands

17 #

18 ORD on Y%A;#Aa:

19 ORD off UA;#Aa:

20 ORD pos %A;#Aa:

"This is actually a trick in the current state of the implementation. A new category (possibly library commands)
should be introduced.
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e Machine/Axes Declaration Section: The machine and azes section contains a line contain-
ing the “name” of the machine followed by the declaration of the axes. The declaration of the axes
present on the machine is done on lines having the following format:

Field Description

wnitial status A bit-vector integer used to encode various state
informations regarding the card

control

position limat The positive limit reachable by the axis (expressed

in degrees)

negative pos. limit | As above but in the “negative direction”.

velocity Velocity

acceleration Acceleration

deceleration Deceleration

last position Initialized to a “home position” of 0.0

target position As above

azis coordinate A single character denoting the actual axis coor-
dinate

tdentifier The name actually given to the axis (used mainly

for printouts)

The actual entries in our sample configuration file is

#

# Axis declaration/definition section

# EDUCATION_ROBOT

00 0 180.0 -180.0 180.00 150.0 150.0 0.000 0.000 x theta_1
00 0 180.0 -180.0 180.00 150.0 150.0 0.000 0.000 y theta_2
00 0 0.00 0.00 0.00 0.00 0.00 0.000 0.000 - END

0k WN =

Our particular configuration file contains two axes called theta_1 and theta 2 (lines 4 and 5).
The last line (6) with a fictitious axis named END signals the end of the section (unfortunately all
the previous entries must be filled in).

e Sensor Declaration Section: This section describes each sensor in the system. Its entries
are of the following form:

| initial status | sensor tdentifier |

The actual section is

1 #

2 # Sensor Declaration Section
3 #

4 00 END

I.e. no sensors are currently attached to the ED I robot. The dummy sensor identifier END signals
the end of the section. Thus at present the user has access to the joint position informations only.
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3.2.2 The Configuration File

We begin with the description of the initialization process, i.e., how the software starts up and builds
for itself a representation of the diverse components. The initialization routine (and the entry point
for the whole “program”) begins by reading a configuration file that contains a description of various
components of the system and creates their representation. At the end of this process, the software
is ready to operate in its normal mode and in a safe state.

The configuration file, ed1.cfg, for the ED I robot system is divided into the following four
sections:

e Card Declaration-definition Section.
e Machine/azes Declaration-definition Section,
e Sensors Declaration Section.

o Commands Declaration Section.

e Card Declaration Section: The card section has entries (one per line) denoting all the card
that are actually lined up on the VME bus. Each entry has the following format:

| card—number | accesses—number | SW driver name |

The actual content of this section is

#

# Card declaration/definition section
#

0 99 Null_Driver

1 1 mcc_driver.o

-1 99 Null _Driver

DOk wWwN =

The card having card-number equal to 0 denotes the ‘main processor card’ (line 4); in our case a
card containing a MC68020 running the VxWorkstm kernel. The name Null Driver tells us that no
software driver is actually running on the card (since this card actually runs the OS). This particular
card has also an accesses—number equal to 99, telling us that the driver associated (none in this case)
will accept up to 99 concurrent “accesses” by different “tasks” (in the VxWorkstm terminology).

The line 5 denotes the card numbered 1 on the VME rack and it is actually used to run the axes
of the machine. The accesses—number of 1 tells us that only one task will be performed at once by
the card. The “performer” will actually be the routine mcc_driver, which is in charge of the very
low-level details of communicating directly with the hardware.

The last line(6) is just a place holder. Its card-number equal to -1 tells the initialization routine
that the card declaration section is finished. As long as the accesses—number and the driver name
“fields” are filled consistently (i.e. the reader routine does not signal an error) their content is
nevertheless ignored. If the reading of the configuration file fails then the system does not start.
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This function generates a sequence of via points (see [7]) in order to move the end effector of the
manipulator on a straight line in the XY plane. The movement is done in a duration specified by
time. If the mode parameter is equal to CARTESIAN_SPACE (1) then the values of pt1 and pt2 are
intended as a point in the physical space XY plane, otherwise (mode is equal to JOINT_SPACE) they
are intended as a final position in joint space. Kinematics computations are executed accordingly.

The value returned is OK if all the computations terminated correctly, ERROR otherwise. Once
again, if ERROR is returned, most likely the end point (pt1,pt2) or one of the generated via points
is outside the manipulator workspace and the kinematics routines failed to complete. See the error
message printed on the console for more information.

» home routine:

void home(char c)

This function performs the homing sequence specified at a very low level by the motion control
hardware®. The argument c is used to specify for which axis the homing sequence is to be performed.
No value is returned.

3.2 Low Level Software Architecture: MOSAIC/ED I

The ED I system is based on the architecture of the MOSAIC open architecture manufacturing
control system. As explained earlier, its main components are a UNIX workstation and a VxWorkstm
Real-Time subsystem, which are directly in charge of the special Creonics hardware cards that
control the robot axes. The UNIX workstation is used mainly for cross-development, but it could
also be used as a client for a VxWorkstm server.

The VxWorkstm real time system loads and runs (see [37]) a set of concurrent routines, which are
synchronized by means of traditional (i) semaphores and (ii) message passing. The real-time nature
of the system is obtained by means of a prioritization scheme (i.e. privileges) and by supporting a
wide variety of styles of command executions. We will defer the discussion of how the MOSAIC/ED
I system takes advantage of these structures, while keeping the details hidden from the user. We
begin by looking at how the complete MOSAIC/ED 1 system is put together: namely, its main
components, their software representation and how these components interact within the VxWorkstm
kernel.

3.2.1 Main Hardware Components

The ED I system is composed of the following abstractions of hardware components:

A Set of Axes

A Machine — { A Set of Sensors

Axes and sensors must be controlled by special hardware cards®, which run special software
drivers. Therefore we can see a machine from another viewpoint as

A Machine =—> A Set of Cards =—> A Set of Software Drivers

Using the above model, we can now explain the architecture of the ED I system as it is imple-
mented on the VxWorkstm platform. Our exposition also closely follows the actual programming
structure and can be viewed as a code-walk.

5Basically the axis is moved until it hits the hardware limit switches and it is slowly moved off them before
stopping. This functionality and its various settings are provided by the Creonics Motion Control Card.

8The current set up has two Creonics cards capable of controlling two axes; the first controls the z and y axes,
while the second will control the z and the p (rotational) axes.
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» coord routine:

void coord()

This function resets the origin of the coordinate frame to the current position in Joint Space of the
manipulator joints.

» arm forward kinematics routine:

int arm_forward_kinematics(double thetal,
double theta2,
doublex* x,
double* y)

Given the point in Joint Space (thetal, theta2), the function returns in x and y the coordinates of
corresponding point in Cartesian Space.

» arm_inverse.kinematics routine:

int arm_inverse_kinematics(double* thetal,
double* theta2,
double x,
double y)

Given the point in Cartesian Space (x, y), the function returns in thetal and theta2 the coordinates
of (one of) the corresponding point(s) in Cartesian Space.

ERROR is returned if the computation did not terminated correctly, i.e. the point was not in the
workspace of the manipulator. Otherwise OK is returned.

» joint_move routine:

int joint_move(double thetal,
double theta2,
double time,
int mode)

This functions moves the two main joints (6, and f2) from their current positions to the one specified
by the parameters thetal and theta2 in time time. If the last integer parameter (mode) is equal
to ABSOLUTE MOVE (0), then the two joints will move to the position specified with respect to the
current frame. If the mode parameter is RELATIVE MOVE (1) then the values of thetal and theta2
are used as increments to the current position.

The value returned is a code that specifies whether the operation completed correctly or not. A
value equal to OK indicates correct termination. Otherwise ERROR is returned.

A return value of ERROR usually indicates that the kinematics computations could not be com-
pleted, i.e. the selected point is outside the manipulator workspace.

» stroke routine:

int stroke(double pti,
double pt2,
double time,
int mode)
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| Functions available to the programmer

on Turns on the power for the ED-I motors

off Turns off the power for the motors

pos Returns the position of a specified joint

axis_status Prints out a summary of various values for a specified axis
coord Reset the Coordinate frame to the current position as origin

arm forward kinematics | Computes the forward kinematics for the two main joints

arm_inverse kinematics | Computes the inverse kinematics for the two main joints

joint move Move the two main joints

stroke Moves the joints from the current position to a specified one in-
terpolating a straight line

home Performs the predefined homing sequence

Table 10: Functions available for programming

e Available Functions: In this section we provide a quick reference to all the functions currently
available to a programmer. Table 3.1.3 contains a list of such functions. Each function will be
described in more detail in the following. Argument types will be given in an ANSI C style.

» on routine:

void on(char c)

This function turns on the power for the motor of the axis specified by the mnemonic character
passed to it.

» off routine:

void off(char c)

This function turns off the power for the motor of the axis specified by the mnemonic character
passed to it (as in case of on).

» pos routine:

void pos(char c)

This function works by side effect. It prints on the console the actual position (in encoder edges
with respect to the origin of the current coordinate frame) of the axis specified by the mnemonic
character. Moreover, it makes sure that such value is recorded in the field Target Pos_In_Joint of
the relevant AXIS_STRUCT.

» axis_status routine:

void axis\_status(char c)

This function prints on the console in a human readable format the contents of the AXIS_STRUCT
relative to the mnemonic character passed to it.
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| VxWorks!™ RT OS Features
Manufacturer Wind River System

Version 5.02b
Memory Model | shared space
RT Feature Multitasking

Preemptive Priority Scheduling and Priority Inversion
IPC Features Semaphores, Message Queues
Connectivity TCP/IP

Table 9: VxWorks'™ real time operating system features

Alternatively they can be invoked directly from the VxWorkstm shell (see [37] for details). This
turns out to be very useful for debugging purposes.

e The VxWorks'™ Real Time Operating System: The core of the MOSAIC/ED-I architecture
is the VxWorks'™ real time operating system manufactured and marketed by Wind River System
[37].

Its characteristics as a RT OS are listed in table 3.1.3. An advantage of VxWorkstm is its tight
integration with a UNIX workstation. In our case VxWorkstm runs on a Motorola MVME147s board
and communicates with the UNIX host through a standard Ethernet connection. Programs are
developed and compiled (but not linked) on the UNIX host and linked/loaded into the VxWorkstm
memory through the network.

The VxWorkstm uses a shared memory model. The basic unit of execution is the task. Each
task runs a C function as a separate entity in a shared addressing space. Synchronization primitives
as semaphores and message queues are provided for basic IPC (Inter Process Communication)
programming.

When VxWorkstm is first loaded (i.e. at the end of its boot phase) it starts a special session of
its own shell on the system console or on a remote terminal? (most likely an xterm on the UNIX
host running X-Windows).

The VxWorkstm shell acts almost like a C ‘interpreter.” The object files produced in the cross-
compilation phase must contain the symbol table for them. Once these object files are loaded into
the VxWorkstm workspace, a function can be simply called by typing its name and arguments at
the shell. VxWorkstm spawns a task for the function that executes to completion or until an error
occurs. Of course the function may call the OS primitives to spawn other tasks (e.g. taskSpawn).

As an example, the function stroke defined in the beginning of this section could be invoked as

-> stroke(45.0, 0.0, 5.0, 0)

where -> is the shell prompt.

Built in commands are available for directory inspection and, above all for debugging purposes.
It is in fact possible to inspect the execution stack of the running tasks and to actually block them
via breakpoints. As such the VxWorkstm shell also works as a limited debugging environment.

4There are ways to bypass this step and launch directly an application using the EPROM chips on the CPU board
running VxWorkstm.
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30

31 arm_inverse_kinematics(&final_thetal, &final_theta2, x, y);
32

33

34 /* Now compute the sequence of knots needed to */

35 /% approximate the straight line in cartesian space. */

36

37 /# Initialize the values for the points already obtained. */
38 /% ...omitted... */

39

40 taylor_bdev(init_thetal, init_theta?2,

41 final_thetal, final_theta2,

42 knot_sequence,

43 0,

44 MAX_KNOTS_NUMBER - 1);

45

46  knot_count = count_knots(knot_sequence);

47 new_time = time / knot_count;

48 for (i = 0; i < knot_count; i++) {

49 joint_move(knot_sequence[i] .x, knot_sequence[i].y, new_time,

50 ABSOLUTE_MOVE) ;

51 taskDelay(iround((time / knot_count) * TICKS_SEC * 1.5));

52 /* Delay to be sure that move has ended! The 1.5 factor is just */
53 /* a safety measure. Note, ’taskDelay’ is a VxWorks primitive */
54 }

556 return 0K;

56 }

The stroke routine is straightforward C code?. The only routines that need some explanations
are arm_inverse kinematics and taylor_bdev. The routine count knots is obvious.

The routine arm_inverse kinematics computes the Joint Space position of the manipulator,
given two values in Cartesian Space. The values are returned in the first two arguments, which are
passed ‘by-reference.’

The routine taylor bdev computes the via points in Joint Space (by calling also
arm_inverse kinematics) using the Taylor’s algorithm, mentioned earlier. The resulting via points
are stored in the array knot_sequence and are eventually fed to joint move.

This is just a very simple example which produces a “stop’n’go” movement of the manipulator.
The better version also produces values for velocities and accelerations and needs to set up a special
communication link with the low level hardware.

3.1.3 How Programs Get Executed

Once the programs are written and compiled into an object file3, they can be loaded into the
VxWorkstm address space. A simple machinery (explained in the next section) links them to a
parser that can be used to invoke them.

2The comments of the form /# ...omitted... */ indicate omitted code and is done to avoid clutter. E.g. most
error checking code is left out from what is shown here.
3In reality, the programs are cross-compiled for the 68020 architecture.
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will move the joints to move to the (Joint Space position) (90.0, 15.0).
There is an identical procedure for the other two distal joints, called last_joint move.

» on routine: is used to power on a specified axis.
» off routine: is used to power off a specified axis.

The on and off routines are therefore viable means to operate the robot safely under program
control.

3.1.2 An Example Program: the stroke Routine

In this subsection, we illustrate the natural style of C programming for the ED I robot, written
using the library routines discussed earlier. The example, we have chosen for this purpose, is a
rather simple routine that moves the end effector in a straight line in the physical space. The full
listing appears in the appendix A.

The routine uses the joint _move routine and produces a simple “stop-and-go” movement through
the via points (see [7] for terminology). The via points are generated by a version of Taylor’s bounded
deviation algorithm (see [25] for details).

1 /* stroke —-

2 * Moves the manipulator from the current position (x-start, y-start)
3 * to the position x, y in the specified amount of time.
4 */

5

6 int stroke(x, y, time)

7 double x;

8 double y;

9 double time;

10 {

11 int i = 0;

12

13 double init_thetal = Axis[0].Last_Pos_In_Joint;

14 double init_theta2 = Axis[1].Last_Pos_In_Joint;

15

16  double final thetal = 0.0; /* Dummy final values */

17  double final theta2 = 0.0; /* Dummy final values */

18 /* ...omitted... */

19 int knot_count = 0;

20 knot_struct knot_sequence[MAX_KNOTS_NUMBER]; /#* knot_struct, defined
elsewhere */

21

22  /* Functions used */

23 double compute_deviation();

24  double taylor_bdev();

25 int count_knots();
26  int joint_move();
27 /* ...omitted... */
28

29 /# First compute the Joint Space position of the final point. */
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21 char Note[MAX_MSG_SIZE]; /* Used for communication with driver */
22 } AXIS_STRUCT;

One important field of the data structure above is the Note field, which serves as a buffer where
low level commands are placed before being fed to the Creonics motion control card driver and
where results are read from. How exactly this is accomplished by the VxWorkstm will be explained
further in the next subsection.

Two other functions that manipulate the AXIS_STRUCT are axis_cmd and axis_open. They mask
the operations on the semaphore Busy. The first one does a V operation on the semaphore, allowing
other commands to “jump in”, while the second one does a P operation, eventually blocking out
other commands on the axis.

Since the axes of the robot are stored in a table a third function is useful, find_axis, which
retrieves an “axis identifier” given a character mnemonic for it.

e Other Major Routines: In the current implementation there are a number of routines that
can be used to write ‘higher level’ commands, or that can serve as a minimal protocol for the
functioning of ED I robot arm. Following is a list of a few of the currently available low-level
routines:

| Routine | Classification |
joint move | Movements related
home
on System control
off

» home routine: takes an axis identifier (a single character) and performs the homing sequence
for it. After the homing sequence is completed (i.e. the axis has hit its limit switches), we have a
firm reference point starting from which the axis movements can be accurately computed.

» joint move routine: This routine takes four parameters

1. A (double) float value that specifies the “new location” of the first joint of the robotic arm

(91):

2. Another double that specifies the new location of the second joint (2),

o

. A (double) float that specifies how much “time” must be used by the movements,
4. A flag that specifies whether the movements must be absolute or relative.

As an example, if the robotic arm is in Joint Space position (f;,l2) = (0.0,0.0) then the call

joint_move(45.0, 30.0, 5.0, 0);

will cause the joints to move to the (absolute) position (45.0,30.0) in the current coordinate reference
in Joint Space, in 5 seconds. The subsequent call

joint_move(45.0, -15.0, 5.0, 1);
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We must warn that the above picture of the software organization is occasionally violated inside
the intermediate level of VxWorkstm real time systems, primarily for the sake of occasional efficiency
improvement. However, for the present document, we shall ignore these details in order to avoid
confusion.

3.1.1 The Library Routines

Currently, executing a high-level robotic task on ED I (e.g. pick-and-place, tracking or peg-in-the-
hole) involves simply writing C code sprinkled with library calls. Thus, the user accomplishes
all of the numerical computation, user interface, error handling, data structure organization and
temporal ordering of the actuation and sensing using the primitives provided by the C language,
a set of standardized data structures, and some related libraries (e.g. math.h). The compiled and
linked code then automatically runs the robot in the intended manner.

In this subsection, we describe in substantial details, the library facilities available and illustrate
their usage by a practical example. The example is taken from a student-project written at a
preliminary stage of the software development. (See appendix A, for the full listing.) Complete
details of the library will be provided in a separate Programmer’s manual and will also be available
on-line.

e The AXIS_STRUCT Data Structure and Related Routines: The most important data struc-
ture used is the one defining the characteristics of an azis. Its definition, shown below, is logically
divided into four parts:

1. Identification and general azis information;
2. Limits and hardwired constants for the azis structure (These are read from configuration files);
3. Physical status information (e.g. current position, velocity, etc.);

4. Software status information (e.g. semaphores, flags etc.).

1 typedef struct axis_struct {

2 /* Identification and general info. */

3 char IA[IDENT_LENGTH]; /* The full name of the axis */

4 char Name; /* A single character identifier for */

5 /* the same purpose as Id[]*/

6

7

8 /* Limits and constants */

9 /* ...omitted... */

10

11 /* Physical status */

12 /* ...omitted... */

13 double Current_Origin; /* Origin of the current coordinate */

14 /* system, with respect to the ’original’. */
15 double Current_Pos_Limit;

16 double Current_Neg_Limit;

17

18 /* Software status */

19 SEM_ID Busy; /* True if axis is ready for a command */

20 char Status; /* Byte encoding of various info */
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3. Software

In this section we briefly describe the structure of the software for the ED I robot, and explain
some of the basic principles underlying the MOSAIC/ED I system. The system is composed of
two components: (a) frontend: comprising of a C programming system with access to C library
routines that perform various actuation and sensing operations; and (b) backend: a VxWorks'™
based real-time system that implements the actuation and sensing operations. In the future, we
plan to implement a graphical interface that will operate above the current frontend and make the
man/machine interface substantially friendlier.

Top Layer: The software for the ED |
robot is organized in alayered
C Front End manner. It consists of atop

layer of C environment, visible

to the users, where the programming
of ED | isdone by callsto routines
inaC library. The middie level
tranglates these calls to low-level
commands for the Creonics controllers
and is accomplieshed by the VxWorks
real time systems. The lowest level
executes these commands. All but

the top layer is completely invisible

to everyone except the systems
developers.

Middle Layer:
VxWorks Real Time OS

Bottom Layer:

Creonics Motor Controller

Figure 6: The software organization of the ED I system

3.1 Programming the MOSAIC/ED1 System

The MOSAIC/EDI system is usually programmed in a high level language such as C or Pascal, where
the low-level actuation and sensing operations are accomplished by a set of “library” calls. In this
way, the intermediate level details of real time constraints and the very low-level servo parameters
remain completely hidden from the novice users. The real time operating system VxWorks"™ handles
the synchronization of and mutual exclusion among various low-level operations via internal queues
and semaphores and thus provides the user the illusion of smooth concurrent operations of the axis
actuators and the sensors; additionally, it ensures that these operations are executed in a timely
manner. A detailed discussion of the intermediate level is discussed in details later in this section.
The low level azes driver interpreter (see figure 3.2.4) then translates the commands dispatched by
the VxWorkstm into still lower-level commands that are executed by the Creonics motor controller
card (see the preceding section for more details).
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The Interpolated Track command, like the Track command, allows direct control of the designated
axis by the host processor, where the axis positions are controlled by incremental position
values and the move time. Unlike the previous command, there is no direct control over the
velocity/acceleration profiles; instead, the MCC interpolates intermediate points in order to
accomplish a smooth motion over the given time interval.

A double buffering scheme is used so that the host can generate and update the next incre-
mental position value even before the previous track motion is complete.

e Abort Motion Command

Immediately stops any motion in progress without disabling feedback—useful for safe execution of
basic operations.
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Figure 5: Profiles for Move command

For most of the applications, the Trapezoidal profile is used, as it provides the fastest move
for a given acceleration and deceleration limit. However, often S-curve profile is used, at
the expense of the optimal speed, in order to minimize the stress on the mechanical system.
Parabolic profile has the advantage as it matches the torque-speed characteristics of most
motors and thus optimizes the motor stress.

The Move command can either specify the distance to be moved (relative/incremental) or the
endpoint to move to (absolute) at a designated speed, acceleration and deceleration.

e Home Axis Command

Initializes the designated axis by enabling feedback and performing the predefined homing sequence.

e Track Command

The Track command allows direct control of the designated axis by the host frontend processor.
In this case, the host generates the move profiles by controlling velocity and acceleration

dynamically.

¢ Interpolated Track Command
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Motion Control Card

Manufacturer Creonics
Model VMEbus MCC
Microprocessor Intel 80C186 @@ 12.5 MHz

Pulse Width Modu-
lation Interface

Custom Motion Control 1C

Control

Digital Feedback control with nested Proportional, Inte-
gral, Velocity and Feedforward servo loop

Sample and Update

1KHz for position and velocity loops

Positioning 32 bits £2.147 x 10° encoder edges

Velocity 32 bits, 0.015 to 1 million edges per second
Acceleration 32 bits, 15.259 to 3.28 x 10'Y edges per second square
Encoder Fdge Rate | 1 MHz

Command 2 msec or less

Ezecution

Data Transfer | 460 nsec

Buffer Access Time

Interrupt Acknowl- | 510 nsec

edgement

Power 1.5 amps @@ 5V, 200mA @@ + 12V from VMEBus

Table 8: Creonics Motion Control Cards Characteristic

e Creonics provides an exclusive automatic servo setup which performs a quick and easy servo
tuning, thus making the system ideal for the novice users.

o Its direct tracking capability allows complex motion profiles (for velocity and acceleration) to
be computed and loaded by master CPU program in real time.

e Real time variable gain; four programmable software timers; packet type command and com-
munication structure, etc.

The MCC’s provide memory-mapped I/O by allowing indirect access to the 256 byte Com-
mand/Response Buffer that appear as eight registers to the VMEbus master. Additional access is
also provided to various control and status registers. All commands and requests are transmitted
via these registers.

Some of the frequently used direct commands that generate motion are discussed below briefly:

e Move Command

The Move command causes a motion of the designated axis using one of the following three profile
types: Trapezoidal Motion Profile, S-Curve Motion Profile and Parabolic Motion Profile.
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2.2 Electronic Hardware

The robot is operated by a digital controller which consists of a CPU (Motorola MVME147S),
and two motion control cards (Creonics 2-axis MCC), one for each pair of motors (i.e. the one
for #; and 63 axis-pair and the other for z and spindle axis-pair). The CPU and the MCC’s
communicate via a high bandwidth (40 Mbit/sec) VME bus. (See figure 2.) The digital controller
receives commands from a workstation running the interface (a real time operating system and a
C/UNIX programming environment) and generates appropriate commands for the actuators (the
joint motors). In addition to the actuators that the motion control cards control, we also have servo
amplifiers for the actuators, digital encoders and encoder and drive power supplies in order to run
a closed-loop servo control scheme on the motion control cards.

Clearly, the heart of the digital control of the robot resides in the Creonics motion control cards.
The VME bus only facilitates transfer of data between the master CPU and the multiple “slaves”
(MCC’s) without contention by means of a central arbiter. The master communicates with the
MCC’s in order either (1) to cause motion, set and modify parameters, etc., using direct commands
or (2) to request status information using request for reply commands. We shall not delve into a
lengthy discussion of the VME bus or the Motorola master CPU here as additional informations
can be found in [36] and [29].

| Bus |
Manufacturer | Motorola

Model VME
Bandwidth 40 Mbit/sec

Table 6: VME Bus Characteristics

| CPU Board
Manufacturer Motorola
Model MVME1478
Microprocessor | Motorola 68020 @ 20 MHz

RAM 4Mb
Connectivity Ethernet and SCSI through a MVMET718 module

Table 7: CPU Board Characteristics

2.2.1 Creonics MCC

The Creonics VMEbus Motion Control Card (MCC) is a microcomputer-based, 2-axis digital motion
controller, designed to work in conjunction with the VMEbus standards. The Creonics MCC is ideal
for ED I control applications as it provides for each axis a closed-loop control for point-to-point
positioning with velocity and acceleration control. The closed-loop control uses a PID (proportional,
integral and derivative) feedback control mechanism, thus providing enormous flexibility in choosing
the dynamic behavior of the controlled system. The MCC interface also allows for incremental
optical encoders that provide both position and velocity informations.
The additional advantages provided by the Creonics MCC for our applications are as follows:
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4. Hall-Effect Sensor: for magnetic measurement purposes.

5. Camera: for computer vision and graphics applications.

e Safety In addition to the safety mechanisms necessary to protect the users, we also had to
provide several mechanisms to protect the unit from self-inflicted damage. First of all, all the
motors have been kinematically constrained via limit switches so that none of the motors (except
the spindle) can make more than a full revolution. Among other things, these constraints protect
the electrical connections. The only self-collision that is possible (assuming that the robot goes past
the limit switches) in ED I is between the spindle motor and the first link. In order to cushion
against such an accidental self-collision, we have installed hydraulic shock absorbers on the first
link. Other safety issues are discussed in detail in Section 5.

Amplifiers and Servo Electronic Rack

—1\ T Robot Arms and Motors

4 axes cables

Motion Control Card
Connections to Amplifiers

VME Rack
L - CPU Board
- TH1 and TH2 Motion Control Card
- Z and S Motion Control Card
=

O

VAR

TTY Console

Ethernet

C] Workstation

[\

Figure 4: Lay out of the ED I Robot System.
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| 2z Axis Motor Specification |

Manufacturer Yasukawa
Model USAREM 01 BE 2 K
Rated Output 100W
Rated Torque 0.318 N-m
Continuous Maz. Torque | 0.367 N-m
Peak Torque 0.955 N-m
Rated Current 1.7 A
Rated Speed 3000 rpm
Maz. Speed 4000 rpm
Torque Constant 0.198 N-m/A
Inertia Jys 0.125 kg-cm?
Power Rate 8.09 kW/s
Related Servo Amplifier Values
Model CACR-SR 01 AB 2 ER
Optical Encoder Feedback | 1500 pulses/rev

Table 4: 2z Axis Motor Characteristics

| p Axis Motor Specification |

Manufacturer Inland Motor Kollmorgen
Corp.

Model QT 3801 E

Rated Output 18T W

Rated Torque 1.75 N-m

Peak Torque 1.75 N-m

Rated Current 9.41 A

Rated Speed ~ 21600 rpm

Maz. Speed ~ 21600 rpm

Torque Constant 0.185 N-m/A

Inertia Jys 0.202 kg-cm?

Table 5: p Axis Motor Characteristics

e The End-Effector The linear ball-spline member of the linear axis is threaded to accept various
end-effectors. Following is a short list of the devices that have been used as end-effectors:

1. 3-Jaw Chucks: for manufacturing purposes.
2. Parallel-Jaw Grippers and Pinch-Type Grippers: for robotics pick-and place tasks.
3. Zebra Force-Sensing Wrists.
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| f, Axis Motor Specification

Manufacturer Yokogawa
Model DR1400A
Rated Output 200W
Rated Torque 400 N-m

Rated Speed 30 rpm (0.5 rpsec)
Inertia Jys 400 x 1073 kg-m?

Related Servo Amplifier Values
Model SR1400A-2SN
Encoder Feedback 102,400 x 8 pulses/rev

Table 2: #; Axis Motor Characteristics

| 0, Axis Motor Specification

Manufacturer Yokogawa

Model DM1060B

Rated Output 60W

Rated Torque 48 N-m

Peak Torque 60 N-m

Rated Speed 90 rpm (1.5 rpsec)

Torque Constant N-m/A

Inertia Jy 23 x 1073 kg-m?
Related Servo Amplifier Values

Model SD1060B

Encoder Feedback 655,360 pulses/rev

Table 3: 65 Axis Motor Characteristics

e z and p Axes The structure of the z and the spindle (p) axes of the ED I is some what unique
in many ways. The z axis is a linear actuator that moves the end-effector vertically by a ball-screw
mechanism connected to a Yasukawa (USAREM 01 BE 2 K) motor housed at the top of the z axis.
There are four members that guide the linear axis. Two of them are precision ground shafts with
linear bearings that provide significant amount of rigidity to the spindle axis, while letting the entire
mechanism to travel up or down with ease and precision. Third member is a precision ball-screw
drive that transforms the rotary motion of the Yasukawa motor to the linear motion of the z axis.
The fourth linear guiding member is the spindle itself and is composed of a precision linear ball-
spline, holds the end-effector device, and is actuated by the spindle motor (Inland Motor—Model
QT 3801 E) using direct-drive technology. The spindle motor rotates the ball-spline freely thus
orienting the end-effector at any desired angle.
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electronics are based on off-the-shelf components.

2.1.1 EDIDD Arm

ED I is 4 degree-of-freedom robot arm with SCARA like architecture. The main links—shoulder, ¢,
axis, and elbow, #; axis—form a planar kinematic chain. At the end of the second link, the z axis
provides a linear actuator to move the end-effector in the vertical direction and the distal joint, p
axis allows the end-effector to be oriented at any angle. The workspace of the ED I robot is shown
below.

Y+

A

Wor kspace Limt
............. Joi nts Reference Franes
_______ Second Joint Limts

Figure 3: Workspace of ED 1.

e 01 and 6, Axes The 6; and 6 joints are actuated by two Yokogawa direct-drive AC servo
motors with very high torque as well as high accuracy capabilities. The motor housing is connected
to one end of the preceding link (or base) and the armature is directly connected to one end of the
succeeding link. There is no additional coupling or transmission mechanism. The motors for the
joints have built-in encoders which provide the positional sensor-values directly. The mechanical
specifications of the #; (Yokogawa DR1400A) and 602 (Yokogawa DM1060B) are given below.
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Last but not least, the robot system was designed to be safe for even novice users. This goal was
to be achieved without sacrificing the system’s ability to be used in heavy industrial applications.
Thus, the safety was achieved not by down-scaling or under-powering the entire system, but by
providing layers of protective mechanisms. This issue is addressed in detail in Section 5.

Figure 2: ED I robot. June 1993..

The ED I arm was constructed with the facilities and technical skills available within the Robotics
and Manufacturing Laboratory of NYU. The construction required only simple standard machine
shop methods. The construction can be speeded up considerably if one uses the CNC machines to
produce a small batch of the components. No special manufacturing practices would be necessary
for either methods of construction.

Most of the components are commercially available. The main-links that required in-house
construction are simple aluminum (3 x 5”) box tubings and are rather easy to construct. Some of
the components of the z axis required some skilled machining. The actuators, the sensors and the
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2. Hardware

2.1 Mechanical Hardware

The main work-horse of the NYU educational project was chosen to be a multi-functional ED I robot
system. This system was designed with several goals in mind: Firstly, the system was required to
be simple and inexpensive in order that it could be reproduced and disseminated easily—with the
cost going down with each reproduction process.

The simplicity of the system was achieved by chosing the arm to be based on the direct-drive
technology. FEach joint (altogether four) itself is a motor without any complicated transmission
or coupling mechanism. Each of the main links (altogether two) is simply an aluminum hollow
rectangular tubing with the ends being motor mounts that provide adaptive connections. Also,
the rectangular tubing can be interchanged with another of a different size, thus providing an easy
way of modifying the robots kinematic (as well as dynamic) parameters, if a particular application
requires it.

The kinematic structure is based on the standard SCARA architecture, which simplifies the
kinematics and dynamics considerably as the main component of the arm is just a two-link planar
kinematic chain. The actuators are also so chosen that the control laws are not too complicated.
The only sensors that are currently available are the position sensors (encoders) already integrated
with the motors and easily accessible via the motion control hardware.

| ED I Mechanical Features |

01 Azis Range 0-300 degrees
02 Azis Range 4105 degrees
z Axis Range 0-200 mm

p Azis Range 00

Work Coordinate System Selection | YES
Absolute/Incremental Programming | YES
Emergency Stop YES (Hardware and Software)

Table 1: ED I Features

The main-link motors (Yokogawa DR 1400A and DM 1060B) are hollow. As the links themselves
are made of hollow tubings the cabling of the system is rather simple. As a result, the entire
robot system can be easily assembled and disassembled with little difficulty and thus, amenable to
experimentations requiring reconfiguration and modifications.

Another important design goal was to make the robot system flexible (i.e., multi-functional) by
allowing for several attachments and integration of other devices. For instance, the system can be
easily modified to act as a manufacturing cell with addition of chucks, fixtures and z-y table (with a
pan-tilt mechanism). Also, cameras can be easily attached to the arm itself for visual servoing, or in
a stationary position just to provide some amount of visual information. Some of the experiments
using the arm include: measurement of magnetic fields of various components of NYU miniature
DD actuators, filming of models to be incorporated with computer generated animation graphics,
controlling a reactive gripper, etc.
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was made in the summer of 1992. A new team was created to redesign the laboratory; the new team
was headed by Bud Mishra and also included Fred Hansen (an experienced engineer) and Louis
Pavlakos (a software engineer).

e Courses: A series of robotics related courses using the laboratory have been successfully taught
at NYU. The courses include: Introduction to Robotics (twice), Advanced Robotics, CAD/CAM
and Computer Vision. The first-level robotics course has been accepted by the university as a
regular course for the computer science major and is now listed as a 4 credit course in the university
handbook. The maturity and the preparation of the students in these courses have varied over a
wide range: high school students (from Dalton School), engineering students (from Stevens Institute
of Technology) and computer and mathematics students (largely from New York University). Some
undergraduate students have also used the lab facilities to carry out independent study programs
and projects.

e Evaluation: The first implementation of the robot was evaluated by a team headed by Bud
Mishra and Israel Greenfeld (currently a research engineer in Israel). The precision provided by the
robot as well as various safety measures were considered severely lacking. The software structure
was deemed not easily portable. A completely new hardware and software design was made. The
implementation of the new system was started in July 1992 and a first implementation was completed
by mid September.

In order to improve the precision (specially for CAD/CAM experiments), the z axis was com-
pletely redesigned and reimplemented. The other two main links were remachined to rectify certain
design errors. The hardware safety was improved by running the motors at lower power levels; incor-
porating shock absorbers, limit switches and by enclosing the entire assembly by a lexan enclosure.
The motor controllers were redesigned using Phoenix and Creonics boards, which are capable of
stopping the robot (and eventually shutting the power off) in case of a serious exceptional situation.
A manual emergency “red” button has been made available for the teaching assistant in order that
a potentially dangerous situation could be averted.

The software was redesigned under the “MOSAIC” system (developed independently by the
NYU manufacturing group[11]) and on top of VxWorkstm real time systems. The MOSAIC system
has been recognized by and gained acceptance in the manufacturing community as a leading control
software system. By founding on a well-tested system, we could improve the system reliability and
the development time considerably. However, if there is a need, the MOSAIC/VxWorkstm system
can be easily interchanged with another real time system.

1.4 The Organization of the Report

The report is organized as follows: In Sections 2 and 3, we describe the hardware and the software
architecture of ED I, respectively. In Section 4, we discuss primarily the undergraduate “Introduc-
tion to Robotics” course (taught by B. Mishra and R. Even), and list the experiments conducted
with ED I, in the context of this undergraduate course. This section by itself may be of interest to
other instructors who may want to adapt these experiments to a different robot system. Section 5
describes the safety measures taken with respect to ED I and finally, Section 6 concludes the report
with some thoughts on our contributions and on the future of robotics education. We have also
provided two appendices: one containing some example programs for and operation of the ED I
robot, and the other containing a description of a sequence of courses, where ED I has already been
used or is planned to be used.
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design can be augmented by machine tools, z-y table with pan/tilt, vision system, various sensory
tools etc. The amount of time required to switch from one configuration appropriate for one course
to another configuration for quite a different course was constrained to be a matter of less than
couple of hours. Thus, in principle, the same system can be used by two different courses running
in parallel.

Figure 1: NYU Undergraduate Teaching Laboratory. ED I, in the background, is being
operated by an experimenter.

1.3 History

The construction of the laboratory was started in 1990 with a team consisting of Z. Li, A. Cen
(an electronic engineer), J. Li (a mechanical engineer), C. Li, N. Silver (graduate students) and L.
Gurvits (a control theory researcher). A first course was taught with existing IBM SCARA robots.
The first educational robot was completed by the end of 1991. The first evaluation of the laboratory
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1. Introduction

1.1 Initial Goal

In the spring of 1990, we initiated an educational project at NYU, whose primary goal was to create
a disseminable, multi-functional' and inexpensive laboratory course sequence, aimed at improving
the practical skills of undergraduate students specializing in robotics, vision, Al and manufacturing
disciplines.

Our motivation to build such a laboratory arose primarily from our desire to provide stu-
dents with the practical experience to complement their understanding of the principles involved in
robotics, automation, Al and manufacturing sciences. In the past, most of the research in robotics
was motivated by simple applications using industrial robot arms suitable for routine welding,
spray-painting and part-assembly operations. At the time we initiated this project, there were few
universities with regular robotics courses aimed at undergraduates; where a standard introductory
course existed, students typically regarded a robot as an open kinematic chain, having a straightfor-
ward kinematic and dynamic structure. The accompanying laboratory training typically involved
only the programming of a commercial industrial robot to perform simple ‘pick-and-place’ tasks.

Thus, we felt that there was an acute need for robots suitable for the more extensive educational
purpose. To achieve this goal, we proposed to build an ‘educational robot’ with a structure, which
is simple and yet easily modifiable for the multiple functions it may have to serve.

We have designed and built a 4-DOF direct-drive arm, ED I, which can be easily augmented
with tactile and force sensors as well as manufacturing tools, and which can be controlled from
a simple computer system. This robotic system has been successfully used in two introductory
robotics courses (one undergraduate, the other graduate), a CAD/CAM course and to some extent,
in a vision course.

In this document, we shall describe the robot and our experience with the undergraduate course
taught by B. Mishra and R. Even (teaching assistant).

1.2 The Role of ED I Robot

The ED I robot plays a key role in the entire project. Thus much thoughts and efforts went into
careful design, periodic evaluation and modification, and augmentation of the functionalities of the
ED I robot system.

The final design was chosen to incorporate direct drive technology in order to keep the system
modeling and control simple. The actuators were chosen to be rather powerful so that if necessary
they can be used at their full power; for the normal experiments they were used at a lower power level
with a smaller gain. As the system was planned to be used for certain manufacturing applications,
the robot was designed to operate with a high level of accuracy. Finally, as the system was to be
used by novice users, it was assumed that the system will be used occasionally in inappropriate
manners and precautions were taken to improve the safety of the system at various levels. As the
ED I robot began to be used by the students, the design-team monitored the students usage and
rectified any flaw—especially, in the system safety—that became apparent.

In order to make the system multifunctional, the design of the system (particularly, workspace,
payload limits, kinematics and dynamics) was kept extremely simple and flexible. The ultimate

1 The proposed laboratory is multi-functional in the sense that the same laboratory may be used for more than
one area: Al, vision, robotics, real-time systems, manufacturing, for instance.
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ABSTRACT

The primary goal of the NYU educational robot project is to create a dissem-
inable, multi-functional and inexpensive laboratory course sequence, aimed at
improving the practical skills of undergraduate students specializing in robotics,
vision, Al and manufacturing disciplines.

The main work-horse of the NYU educational project was chosen to be a multi-
functional ED I robot system, consisting of a 4 DOF DD arm and several aux-
iliary devices. The system was designed to be simple, inexpensive, flexible and
safe.

In this report, we describe the history, design, structure and evaluation of this
robot system. We also describe several robotics and related course sequence
that can use the ED I system effectively. We also provide some example exper-
iments that have been run on ED I successfully.
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