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ABSTRACT

Semantic analysis is important for compilers. In the APTS program

transformation system, semantics is specified by rules in the language RSL. The

semantic rules are interpreted by APTS to generate the semantic information of

the program, which is then used by the rewriting engine for program translation.

This approach has proved to be convenient and powerful in our construction of a

SETL-to-C compiler. In this paper, we discuss the features, applications, imple-

mentation strategy, and performance of RSL.

1. Introduction

RSL is the specification language of the APTS system, an experimental program transforma-

tion system on which Robert Paige and the author have been working for several years. Recently,

a SETL-to-C translator, written in RSL, has been built in the APTS environment with some suc-

cess [4]. SETL is a very-high-level language and is convenient to use, but usually much slower

than C. With the SETL-to-C translator, we combine the convenience of SETL with the efficiency

of C.

Fig. 1 illustrates how the SETL-to-C translator (also called the SETL Accelerator) is built

on the top of APTS. Considering the importance of semantic information to the high level

language translation and optimization, we designed an inference engine in APTS to perform the

semantic analysis. Semantics are specified by RSL rules. By applying the semantic rules on the

parse tree of the input program, the inference engine computes the semantic information and

stores it as database relations, which are then used by the rewriting engine to transform the input

program. The actions of different modules are coordinated by a control file through the command

* The research of this author was partially supported by National Science Foundation Grant No. CCR-9002428, MIP-
9300210, and by Air Force Office of Scientific Research Grant No. AFOSR-91-0308.



-

- 2 -

parser/
unparser

engine
inference

engine
rewriting

processor
command

grammars

rules

file
control

rules
rewriting

semantic 

tree
parse

program
outputinput

program

relations
semantic

SETL
Accelerator

APTS

Fig. 1. Configuration of APTS and SETL Accelerator

processor.

RSL was first designed for specifying semantic rules, and then extended to become the

specification language of the APTS. In this paper, we will only discuss the subset of RSL which

is used for semantic specifications. We argue that RSL is more convenient and powerful than the

attribute grammar in specifying semantics.

2. The language

2.1. Rules and Transcripts

In APTS, semantics are specified in rules, and rules are organized into transcripts, as shown

in Example 1.

A transcript consists three parts: a header, a declaration list, and a transcript body. In this

example, the header is the first line, giving the name of the transcript sg; the declaration list con-

tains one rel declaration, which declares three relations: a unary relation person of strings and two

binary relations parent and same_generation of pairs of strings; and the body contains four rules,

each having the form left-hand-side → right-hand-side. The first rule says that p 1, p 2, p 3, p 4

and p 5 are all persons. The second rule says that p 1 is the parent of p 2, and so on. The last two
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Example 1. A transcript

begin

     true

         person(p2) and

         person(p3) and

         person(p4) and

         person(p5);

     true

     ->  parent(p1, p2) and

         parent(p1, p3) and

     ->  person(p1) and

         parent(p2, p4) and

         parent(p3, p5);

     ->  same_generation(.x, .x);

     person(.x)

     parent(.x, .y) and

     parent(.z, .w) and

     same_generation(.x, .z)

     ->  same_generation(.y, .w);

end;

transcript sg;

rel person: [string];

    parent, same_generation: [string, string];

rules defines the relation same_generation: two persons are of the same generation if they are the

same person (rule 3) or their parents are of the same generation (rule 4). In RSL, variables are

prefixed by ".".

The syntax and semantics of the rules are more or less conventional. Each left-hand-side is

either a boolean constant true, a left-term, or several left-terms connected by logical connectors

and, or, or not.

Each left-term has the form R (p 1, ...,pk), where R is either a system defined predicate or a

user declared relation, p 1, ...,pk are parameters, and k is the arity of R. A left-term can be

evaluated only when each of the free variables contained in the parameter list is bound to some

constant. In case R is a user declared relation, the left-term R (p 1, ...,  pk) is true if and only if the

tuple [p 1, ...,  pk ] (after variable substitution) is in R.

Each right-hand-side can be one right-term or several right-terms connected by and. Each

right-term specifies an action and also has the form R(p 1, ..., pk), where R can be either a system
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defined procedure or a user defined relation name. In case R is a user defined relation, the action

R(p 1, ..., pk) will insert the tuple [p 1, ..., pk] into R, if it is not there already.

A term R(p 1, ..., pk) is called a relational term if R is a user declared relation name. Notice

that a relational term in the left-hand-side of a rule is interpreted differently than it is in the right-

hand-side.

During the execution of a transcript, a rule becomes active if its left-hand-side evaluates to

true with respect to some variable binding. A variable binding that makes the rule’s left-hand-

side true is called an activating binding of this rule. If r is an active rule, and B is its activating

binding, then we call the pair (r, B) an active instance of r. In general, there may be more than

one active instance at a time. The inference engine will choose one active instance (r, B) at a

time nondeterministicly and perform the right-hand-side actions of r with respect to B. An active

instance may become non-active and vice versa because of the actions. Each active instance will

be selected by the inference engine only once before it becomes non-active. The execution of a

transcript terminates when all the right-hand-side actions of the active instances are performed,

and none of them can change the current values of user defined relations.

When the transcript sg in Example 1 is executed, the resulting relation same_generation will

be { [p1, p1], [p2, p2], [p3, p3], [p4, p4], [p5, p5], [p2, p3], [p4, p5], [p3, p2], [p5, p4]}.

2.2. External relations

In a transcript T, relations declared in the rel declaration are called the local relations of T,

or the relations defined in T. One transcript can make reference to relations defined in other tran-

scripts by declaring them to be external. For example, the transcript in Example 1 can be broken

into three transcripts using the external declaration, as shown in Fig. 2.

Relations used in a transcript must be declared as either local or external. A transcript can

only modify its local relations.

Each transcript can be parsed separately. Parsed transcripts can be unloaded to a file and

loaded back to the system later. When a transcript is executed, the system will first compute its

external relations recursively before all the local relations are computed.

Let R 1 and R 2 be two relations declared in a transcript T, and let r be a rule in T. If R 1(...)

is a left-term of r, and R 2(...) is a right-term of r, then we say R 2 depends on R 1 . We define the

dependency graph of a set of transcripts V to be G = (V, E), where E = { [x, y]: x, y ∈ V, an

external relation of transcript x is defined in the transcript y}. The current implementation

requires that G be acyclic. This means that if two relations recursively depend on each other, then

they must be defined in the same transcript.
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    parent(.x, .y) and

    parent(.z, .w) and

    same_generation(.x, .z)

    -> same_generation(.y, .w);

end;

rel same_generation: [string, string];

external person: [string];

begin

    person(.x)

    -> same_generation(.x, .x);

         parent: [string, string];

rel parent: [string, string];

       parent(p1, p3) and

       parent(p2, p4) and

       parent(p3, p5);

    true

    -> parent(p1, p2) and

begin

end;

transcript sg;

rel person: [string];

begin 

    true

    -> person(p1) and

       person(p5);

       person(p4) and

       person(p3) and

       person(p2) and

end;

transcript person; transcript parent;

Fig. 2. External relations

2.3. Tree patterns

To specify semantic properties of a language, we need some way to make reference to syn-

tactic objects. In principle, a parse tree is just a set of relations, and so syntactic objects can be

referred to using relational terms. But this approach is both inconvenient to use and inefficient to

implement. In RSL, the syntactic objects are referred to as tree patterns and accessed through the

built-in predicate match. For example, we can use match (%expr, .x +.y %) to find a node in the

parse tree that represents an expression with an operator "+". We use a pair of "%" to delimit the

tree pattern and use a "|" to connect the match-term with the rest of the left-hand-side.

Example 2 is a small portion of the transcript type for type analysis, which shows the usage

of tree patterns and the match predicate. In this example, the relation type is declared to be a

binary relation between trees and strings. A tree is just a subtree of the parse tree.

The first rule says that if .x is any expression in the parse tree, and its lexical type is int,

then the type of .x is int. Here, eq is a system predicate that tests the equality of its two
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Example 2: Tree patterns and the match predicate

begin

    -> type(.x, int);

    -> type(%expr, .x + .y%, .t);

-- inference rule for other cyntectic constructs

-- ...

end;

    match(%expr, .x + .y%)

    match(%expr, .x%)

    |  eq(lextyp(.x), int)

    |  type(.x, .t) or type(.y, .t)

    -> type(.x, .t) and type(.y, .t);

    |  type(%expr, .x + .y%, .t)

    match(%expr, .x + .y%)

rel type: [tree, string];

transcript type;

arguments, and lextyp is a system function that returns the lexical type of its argument. The infor-

mation about lexical type is computed by the lexical scanner and stored with the parse tree. The

other rules are self-explanatory.

The lines introduced by the "--" signs are comments and are ignored by the system.

When applied to the parse tree x +y +1, the transcript will yield the following information:

type = {[1, int], [x+y, int], [x, int], [y, int], [x+y+1, int]}

2.4. Type declaration

We require that the types of the parameters of each user defined relations be declared. Right

now, the system only supports a limited number of types. Some most frequently used types are:

string, list, tree and node. We have seen the types string and tree in the previous examples. The

type node is also used to represent subtrees in the parse tree. A node represents an occurrence, but

a tree represents a common subtree. In other words, different occurrences of the same subtree are

represented as different nodes, but the same tree. Internally, trees are represented as value

numbers, but nodes are represented as pointers to the root of the subtree.

A list can be either an empty list [], a string, or a list of one or more lists. List can be used

to encode structured information. For example, we can use [set, t] to encode the type of sets
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whose members have the type t, where t is a string encoding a type variable, and use [set, [tuple,

[t 1, t 2]]] to encode the type of sets of tuples whose first component is of type t 1 and second

component t 2. A string is a special case of a list. Thus, it would be more convenient to declare

the type of the relation type to be [tree, list] in Example 2.

2.5. Type conversion

The system supports limited run-time conversion between types. Consider the following

example:

Example 3. Type conversion

begin

    match(%expr, .x+.y%) -> tree_rel(%expr, .x+.y%);

    tree_rel(.x) -> node_rel(.x);

    tree_rel(.x) -> string_rel(.x);

    string_rel(.x) -> tree_rel(.x);  -- run time error

    string_rel(.x) -> list_rel([.x, [.x]]);

end;

   

       

rel node_rel: [node];

    string_rel: [string];

    list_rel: [list];

       
transcript type_convert;

    tree_rel: [tree];

In the first rule, the pattern .x +.y is first instantiated with a node and then converted into a

tree when stored into tree_rel. In the second rule, the conversion goes the other way around. In

general, tree-to-node conversion is not unique and should be used with caution. In the third rule,

a tree is converted to a string by unparsing. But string to tree conversion, as used in the fourth

rule, is not allowed. There is no conversion in the last rule.

2.6. Incremental operations

Consider the transcript in Example 4. When executed, it will give the following results:

addition_rel: { [a, [b, _v 1]], [a, [_v 2, c]] }

replace_rel: { [a, [b, _v 1]] } or { [a, [_v 2, c]] }

unification_rel: { [a, [b, c]] }

The two tuples in addition_rel are added by the first rule. By default, the incremental operation of

the relation addition_rel is insert, i.  e., when a new tuple is added to addition_rel, the old tuples

in it will remain unchanged. Although the same two tuples are also added to replace_rel, only

one remains, since the incremental operation of replace_rel is declared to be replace, and the first
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Example 4. Incremental operations

rel addition_rel, replace_rel, unification_rel:

        [string, list];

key replace_rel, unification_rel: [1];

incremental replace_rel: replace;

            unification_rel: unify;

begin

    true

    -> replace_rel(.x, .y) and

end;

       unification_rel(.x, .y);

    -> addition_rel(a, [b, _v1]) and

       addition_rel(a, [_v2, c]);

    addition_rel(.x, .y)

transcript incremental_ops;

components of its tuples are declared to be keys. Thus, when a new tuple is added to replace_rel,

the system will remove from replace-rel the old tuple with the same first component. Similarly,

since the incremental operation of unification_rel is declared to be unify, and the first components

of its tuples are declared to be the keys, the system will unify the the new tuple with the old one

in unification_rel that has the same first component as the new one. The identifiers with a prefix

"_" are considered unification variables.

3. Questions and answers

Following are the RSL solutions to some of the frequently asked questions about rule-based

systems.

3.1. Safe Rules

The set of activating bindings of a rule is called the conflict set of the rule. A conflict set

can be infinite, as in the rule

not person (.x) -> non_person (.x);

We call such rules unsafe. A rule is safe if its conflict set is always finite. We want to avoid deal-

ing with unsafe rules and give a simple sufficient condition for safe rules.

A left-term is positive if it is in the scope of even number of negations, and negative other-

wise. A variable occurrence in some parameter of the match predicate or a positive relational

left-term is called binding occurrence if it is not also contained in any function applications.
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Let r be a rule. Let binding_var (r) be the set of variables that have binding occurrences in

r. Let all_var (r) be the set of all variables in r. Obviously, if binding_var (r) = all_var (r), then r

is safe. Rules satisfying such condition are acceptable. Our system only accepts acceptable rules.

For example, the following rule is acceptable

living_being (.x) and not person (.x) → non_person (.x);

where living_being is a user defined relation.

3.2. Termination

It is easy to write a transcript that does not stop even if all the rules are acceptable:

rel list_rel: [list];

begin

     true -> list_rel(1);

     list_rel(.x) -> list_rel([.x]);

end;

transcript non_stop;

which defines the infinite unary relation { [1], [[1]], [[[1]]], ...}

However, if all the rules are acceptable, and the incremental operations replace is not

used, and if all the parameters to the relational right-terms are either constants or vari-

ables, then the termination is guaranteed.

The system is not responsible for the termination.

3.3. Fixed point

Even if a transcript terminates, its result may not be unique:

begin

end;

rel R1, R2: [string];

     not R1(1) -> R2(1);

     not R2(1) -> R1(1);

             transcript non_unique;

If the first rule is fired first, the result would be r1 = {}, r2 = {[1]}; otherwise, the result

would be r1 = { [1] }, r2 = {}.

Consider the execution of a transcript T, which defines the local relations R 1, ..., Rk. Let R

= { [i, x]: i = 1...k, x in Ri}. Let next (R) be the new value of R resulting from a right-hand-side

action of some active rule. Then next (R) is a nondeterministic function of R. Let NEXT (R) be

the union of all possible values of next (R). From fixed point theory [2], if next (R) is inflationary,

i.e, R ⊆ next (R), and if NEXT (R) is monotone in R, then next (R) has a unique least fixed point if
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it has any finite fixed point at all. In this case, the values of R 1, ..., Rk will be unique when T

terminates.

The nondeterministic function next (R) is inflationary if the incremental operations of R 1 , ...,

Rk are all insert. This claim is still true even when we allow some or all of the incremental

operations to be unify, if we generalize the relation ⊆ in such a way that X ⊆ Y iff for each x in X,

there is a y in Y that is more specific* than or equal to x.

Testing monotonicity is difficult in general. But it is easy to to see that if all the relational

left-terms with local relation names are positive, then NEXT (R) is monotone if next (R) is

inflationary. There is no constraint on external relations, since external relations are not

modified.

A transcript is called positive if all the relational left-terms with local relation names are

positive, and all their incremental operations are either insert or unify. In the knowledge-base

system theory, it has been proved that the relations defined by a system of DATALOG rules has a

least fixed point if the rules are stratified [13]. It is not difficult to see that a system of DATA-

LOG rules is stratified only if it can be organized into a set of positive RSL transcripts whose

dependency graph is acyclic.

3.4. Expressive Power

In [5], Davis and Weyuker present a small language L which has the expressive power of a

Turing machine. The programs in L use only three kinds of instructions: v := v +1, v := v −1, and

if v ≠ 0 goto A. In Appendix I, we show that any L program can be simulated by an RSL tran-

script. For this reason, the termination of an RSL transcript is undecidable in general.

4. Implementation

The main difficulty in the implementation of rule based systems is the tremendous search

space. For example, to evaluate the RSL rule

parent (.x,  .y) and

same_generation (.x,  .z) and

parent (.z,  .w)

-> same_generation (.y,  .w);

we have to search the relation parent for all the pairs of the tuples [.x, .y] and [.z, .w] such that

[.x, .z] is a tuple in the relation same_generation. This search has to be done again after each

modification of the relations parent and same_generation, and this repeated search has to be done

* We say y is more specific then x if y is a unification variable, or x and y are lists of the same length, and
y is more specific then x componentwise.
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for each rule in the transcript.

Our solution is to maintain a set pool of partially instantiated rules, called instances. An

instance I is a pair (r, B) containing a rule r and a partial variable binding B. The rules can be

implemented as pointers to the locations where the rules are actually stored, and the bindings can

be implemented as sets of pairs. If the domain of B contains all the pattern variables of r, then

we say that the instance I is ready and the binding B is complete. For correctness, we want pool

to be large enough to contain all the active instances ( recall that these are ready instances whose

left-hand-sides evaluate to true ). For the efficiency, however, we want pool to be as small as pos-

sible.

Pool is initialized as follows. First, the rules with a leading match predicate are considered.

A tree pattern matching [3] is done in linear time to determine the subset of the patterns occurring

in the match predicates that match some of the subtrees of the parse tree. For each rule with a

matched pattern, one instance is created for each matching. No instance is created for those rules

with unsatisfied match predicates. The rules with no match predicates are added to pool with an

empty binding set.

If there is any external relation, then they are used to initialize pool also. Let R be an exter-

nal relation, and t be a tuple in R. Let I = (r, B) be an instance in pool. Let R (p) be a positive

left-term of r with the parameter list p. If t matches p with a resulting binding Bp,t , and Bp,t is

consistent with the binding B, then a new instance (r, Bt,p ∪ B) is inserted into pool.

After the initialization, the main loop begins:

new := the set of ready instances;

while new ≠ {} loop

remove an instance (r, B) from new;

evaluate the left-hand-side of r with the binding B;

if the result is true

then perform the right-hand-side actions of r;

if any new term t is added to a relation R then

1 for each instance (rt , Bt) having a positive

2 left-term R (p) such that t matches p with a resulting binding

3 Bt,p that is consistent with Bt loop

if Bt is already complete

then add (rt , Bt) to new;

elseif Bt,p ≠ {} then

add the new instance (r, Bt,p ∪ Bt) to pool;

if Bt,p ∪ Bt is complete
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then add (r, Bt,p ∪ Bt) to new;

end if;

end if;

end loop;

end if;

end if;

end loop;

Indices are created to speed up the search of lines 1, 2, and 3. Since the indexing method

for ready instances is different than that for the non-ready instances, we store the two kinds of

instances separately. For ready instances, the index is established on the instantiated positive

relational left-terms. For non-ready instances, the indices are established in two stages. Let P be

the set of non-ready instances in pool. If I = (r, B) is an instance, t is a term in r, and t′ is

obtained from t by variable substitution using B, then we say t′ is a term of I. A term of I is par-

tial if it still contains variables. Let T be the set of partial positive relational left-terms contained

in instances in P. There is one first stage index INDX_ 1R,i for each component i of each relation

R:

INDX_ 1R,i = { [x, t]: t is a term in T with predicate symbol R,

the ith component of t is x, and x is a constant }

In addition, for each relation R, there is an index INDX_ 1R, 0 that contains the set of terms

in T with no constant components.

The second stage index INDX_ 2 maps each term in T to the instances in P that contains it:

INDX_ 2 = { [t, I]: t ∈ T, I ∈ P, t is a positive relational left_term of I }

Now suppose a new tuple t is added to the relation R whose arity is k. To find the set of

instances in P that can be further instantiated with t, we first use INDX_ 1 to find the R-term in T

whose arguments may match t:

may_match = INDX_ 1R, 0 ∪ INDX 1R, 1(t [1]) ... ∪ INDX_ 1R,k(t [k ])

where t [i ] is the ith component of t. For each R-term tr in may_match, we check whether its

argument list matches t with some nonempty binding Bt . If so, we find the instances in pool that

contain tr as a positive left-term:

affected = INDX_ 2{tr}

For each instance (r, B) in affected we create a new instance (r, B ∪ Bt), and increment

INDX_ 1 and INDX_ 2 accordingly.

The following examples give further details of the indexing method. Consider the rule from

the transcript in Example 1:

r: parent(.x, .y) and
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parent(.z, .w) and

same_generation(.z, .x)

-> same_generation(.y, .w);

Suppose the instance I = (r, {[.x, p 1], [.z, p 1]}) is in the pool already, and a new tuple t =

[p 1, p 2] is added to parent. We expect that the active instance I 0 = (r, {[.x, p 1], [.y, p 2], [.z,

p 1], [.w, p 2]}) will be generated. As described above, we use INDX_ 1 to find the two partial

terms parent (p 1, .y) and parent (p 1, .w), and use INDX_ 2 to find the instance I for further

instantiation. By matching parent(p 1, .y) with parent (p 1, p 2), we create the new instance I 1 =

(r, {[.x, p 1], [.z, p 1], [.y, p 2]}). By matching parent(p 1, .w) with parent (p 1, p 2), we create the

new instance I 2 = (r, {[.x, p 1], [.z, p 1], [.w, p 2]}). Indices are modified accordingly: for I 1, we

add the tuple [parent (p 1, .w), I 1] to INDX_ 2; for I 2, we add the tuple [parent (p 1, .y), I 2] to

INDX_ 2. If we stop here, then the ready instance I 0 is still missing. The actual algorithm con-

tinues as follows. The newly added INDX_ 2 entries mean that if a new tuple [p 1, .w] is added to

parent, than I 1 can be further instantiated; and if a tuple [p 1, .y] is added to parent, than I 2 can

be further instantiated. Since both [p 1, .w] and [p 1, .y] match t, the two instances I 1 and I 2 are

retrieved immediately and the ready instance I 0 is created.

Here is another interesting example. Consider the rule

r: A (.x,  f (.y)) and B (.y,  f (.x)) -> C (.x,  .y);

where A and B are two local relations, and f is a system defined function with f (b) = b and f (a)

= c. Let I = (r, {}) be an instance in pool. Suppose first the tuple t 1 = [a, b] is added to A and

then the tuple t 2 = [b, c] added to B. We show how our algorithm works in this situation. When

t 1 is added to A, the term A (.x,  f (.y)) is retrieved using INDX_ 1A, 0 , since both .x and f (.y) are

not instantiated. By matching [.x, f (.y)] with t 1, we get the binding {[.x,  a]}. No binding is

generated for .y, however, since f (.y) is a function application. As a result, a new instance I 1 =

(r, { [.x,  a] }) is created. Since f (a) = c, the tuple [c, B (.y,  c)] is added to INDX_ 1B, 2 and

[B (.y,  c), I 1] is added to INDX_ 2. When t 2 is added to B, the term B (.y,c) is retrieved through

INDX_ 1B, 2 , and the instance I 1 is retrieved through INDX_ 2 with the term B (.y,  c). By match-

ing t 2 with B (.y,  c), a ready instance I 2 = (r, {[.x,  a], [.y,  b]}) is generated.

4.1. Rule splitting

Consider the rule

r: A (.x) and

B (.y) and

C (.x,  .y)

-> ABC (.x,  .y);

If our algorithm is implemented naively, at least | A | * | B | instances will be generated from r



-

- 14 -

alone, which is not desirable. If we split r into the following two rules:

r 1: A (.x) and

BC (.x,  .y)

-> ABC (.x,  .y);

r 2: B (.y) and

C (.x,  .y)

-> BC (.x,  .y);

then the number instances generated from r 1 and r 2 will be O ( | A | + | B | + | C | ). Finding a

good splitting is actually a problem of join optimization [13], and has been studied extensively in

the relational database theory.

5. Performance

We did several experiments on the inference engine to see the effectiveness of our imple-

mentation strategy. In these experiments, we applied two typical transcripts, one for control flow

analysis, the other for live code analysis, to different groups of SETL programs to see how the

running time depended on the size of the output relations. Fig. 3 shows the result of applying the

transcript for control flow analysis to ten real SETL programs.

*

*

**

* *

*

*

*

*

5

(sc)

time

output size (kb)10 20 30

10

Fig. 3. Control flow analysis on ten real SETL programs

This result does not give a very clear picture of the performance. To reduce the influence of

the structures of different programs on the result, we constructed two groups of artificial pro-

grams. Each program in the first group contains a sequence of identical for-loops, as shown in
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Fig.4.

...

for z in y loop

    if z not in x then

        x with:= z;

    end if;

print(x);

read(x, y);

for z in y loop

    if z not in x then

        x with:= z;

    end if;

end loop;

end loop;

                 program sequence;

end sequence;

Fig. 4. Artificial programs with sequences of loops

In the programs of the second group, these loops are nested, as shown in Fig. 5. The results

from the experiments with these artificial programs are shown in Fig. 6, Fig. 7, and Fig. 8.

In control flow analysis, the output is linear to the size of the input program. In live code

analysis, the output is quadratic. In both cases, the experiments show that the running time is

linear to the size of the output, which is the best we can expect.

6. Comparison with other rule based systems

There are many other implementations of rule based systems. Among those best known are

RETE algorithm [6-8, 12] and TREAT algorithm [9-11]. The semi-naive algorithm [13], accord-

ing to [10], is a special case of TREAT.

In RETE, the left-hand-sides of rules are compiled into a data flow network, as illustrated in

Fig. 9. There are two kinds of nodes in the network. The one-input nodes match new tuples with

relational left-terms, and the two-input nodes implement the join operations. The output of one-

input nodes is stored in the α memories and the output of two-input nodes is stored in the β

memories. When a new tuple is inserted into some relation, a sequential search is performed to

locate the α memories that need to be modified. For each two-input node, when the memory at

one input is modified, a sequential search is performed on the memory on the other input to

modify the output β memory. In our system, the search of affected α memories and the
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    end if;

end loop;

...

read(x1, y1);

read(x2, y2);

for z1 in y1 loop

    if z1 not in x1 then

...

print(x2);

print(x1);

for z2 in y2 loop

end loop;

    end if;

        x2 with:= z2;

    if z2 not in x2 then

...

program nested;

end nested;

                  

x1 with:= z1;

Fig. 5. Artificial programs with nested loops
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Fig. 6. Live code analysis on sequential loops
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Fig. 7. Control flow analysis on sequential loops
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Fig. 8. Control flow analysis on nested loops

incremental modification of the β memories are effectively achieved by maintaining the set of

instances, and are performed more efficiently with the two-step indexing.

A close look at our implementation and RETE algorithm reveals that the set of instances in

our algorithm corresponds to the union of all the tuples in all the α memories and β memories.

Thus the space usage of our implementation is comparable to that of RETE.

The TREAT algorithm saves space by omitting all the β memories. Portions of the β

memory elements are computed when needed. Some version of TREAT uses index to speed up
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[p1, p2]

[p1, p3]

...

[p2, p3]

[p4, p5]

...

[p1, p2]

[p1, p3]

...

 parent(.x, .y)

join

same_generation(.y, .w)

join

 parent(.w, .z)

Fig. 9. A RETE network

the search of the α memories in computing the joins, but linear search is still used to locate the α

memories that must be modified when new tuples are generated.

Another advantage of our system is that we separate tree patterns and relational patterns.

This allows us not only to write semantic rules more concisely and intuitively, but also to imple-

ment the language more efficiently using the linear-time bottom-up multi-pattern tree matching

algorithm [3].

7. Comparison with attribute grammars

Like RSL, the attribute grammar [1] is also a formal tool of specifying program semantics.

In an attribute grammar, semantics are specified as attributes of syntactic objects. While RSL

associates semantic rules with tree patterns, the attribute grammar associates semantic rules with

grammar productions. Therefore the attribute grammar is more grammar dependent than RSL.

In the attribute grammar, semantic information is strictly propagated along the parse trees.

Considering the efficiency of implementation, most systems using attribute grammars restrict the

order in which the attributes can be evaluated. For example, in order to evaluate the attributes in

one pass through the parse tree, a compiler system usually requires that the computation of an

attribute at one node of the parse tree should not use information from its right siblings and the
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right siblings of its ancestors. With this restriction, it is very difficult to specify the semantic rules

in our Example 2 using the attribute grammar. In RSL, however, the parse tree is traversed once

only to get the variable bindings, and then the semantic information is computed as database rela-

tions. The user do not have to worry about the evaluation order.

Appendix I: Simulation of the Language LL

We show how to use a RSL transcript to simulate a program written in the language L

described in [5], which can express all the partially computable functions.

Language L has three kinds of statements: v := v +1, v := v −1, and if v ≠ 0 goto A.

Consider a program P in L with statements s 1 , ..., sk . To simulate P in RSL, we create a

transcript TP with the following declarations:

transcript TP;

rel next: [string, string];

value: [string, list];

done: [string];

key value: [1];

incremental value: replace;

begin

...

end;

The transcript body contains the following.

1. A rule to simulate the entrance of the program P:

true -> next(s 1 , newatom (s));

where newatom (x) is a system function returning a fresh new string with the prefix x each time it

is called.

2. Rules to initialize the variables, one rule for each variable v in P:

true -> value(v, []);

We use [] to encode 0. By convention, the initial value of each variable is 0.

3. Rules to simulate statements in P. If a statement si has the form v := v +1, then it is simulated

by the rule

next (si , .x) and

not done (.x) and

value (v,  .y)

-> done (.x) and
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next (si +1 ,  newatom (s)) and

value (v,  [.y ]);

Here [x] encodes v+1 if x encodes v. If si has the form v := v −1, then it is simulated by two

rules:

next (si , .x) and

not done (.x) and

value (v,  [.y ])

-> done (.x) and

next (si +1 ,  newatom (s)) and

value (v,  .y);

next (si , .x) and

not done (.x) and

value (v,  [])

-> done (.x) and

next (si +1 ,  newatom (s));

By convention in L, 0 − 1 = 0. If si has the form if v ≠ 0 goto sj , then it is simulated by two

rules:

next (si , .x) and

not done (.x) and

value (v,  [.y ])

-> done (.x) and

next (sj ,  newatom (s));

next (si , .x) and

not done (.x) and

value (v,  [])

-> done (.x) and

next (si +1 ,  newatom (s));

The proof of the correctness should be straight forward.
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