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ABSTRACT

Pattern matching in trees is fundamental to a variety of programming

language systems. However, progress has been slow in satisfying a pressing need

for general purpose pattern matching algorithms that are efficient in both time and

space. We offer asymptotic improvements in both time and space to Chase’s

bottom-up algorithm for pattern preprocessing. A preliminary implementation of

our algorithm runs ten times faster than Chase’s implementation on the hardest

problem instances. Our preprocessing algorithm has the advantage of being on-

line with respect to pattern additions and deletions. It also adapts to favorable

input instances, and on Hoffmann and O’Donnell’s class of Simple Patterns, it per-

forms better than their special purpose algorithm tailored to this class. We show

how to modify our algorithm using a new decomposition method to obtain a

space/time tradeoff. Finally, we trade a log factor in time for a linear space

bottom-up pattern matching algorithm that handles a wide subclass of Hoffmann

and O’Donnell’s Simple Patterns.

1. Introduction

Pattern Matching in trees is fundamental to term rewriting systems [21], transformational

programming systems [4, 15, 18, 26, 30, 35], program editing and development systems [10, 23, 32],

code generator generators [14, 17, 19, 29], theorem provers [24], logic programming optimizers that

attempt to replace unification with matching [27], and compilers for functional languages such as

ML [34], and Haskell [22] that have equational function definitions.
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This paper describes new solutions to a simple, basic kind of pattern matching problem of

wide application. The problem is specified formally in terms of a partially ordered pattern

language. Given an alphabet Σ=F ∪ {v} with one distinguished variable v and a finite set F of

function symbols, where each such symbol f∈F has arity A(f), then the linear pattern language for

Σ is the smallest set of terms that include (i) v, (ii) constant c if c is a function symbol with arity 0,

and (iii) f (p 1 , ..., pk), which we call an f-pattern, if f is a function symbol of arity k>0 and its

arguments p 1 , ..., pk are patterns in the language.

The set of subpatterns sub (p) of a pattern p is the smallest set that contains p, and, if p is an

f-pattern with A(f) > 0, then it also contains the subpatterns of the arguments of p. If q and p are

two different patterns and q is a subpattern of p, then p is said to properly enclose q. The size of a

pattern p is the number of occurrences of alphabet symbols in p.

Linear pattern matching is defined as follows. Pattern p 1 is said to be more general than pat-

tern p 2 , denoted by p 1 ≥ p 2 , iff either (i) p 1 is v, or (ii) p 1 is f(x 1 , ..., xk ), p 2 is f (y 1 , ..., yk) and

xi ≥ yi for i = 1, ..., k. If p 1 ≥ p 2 , we also say that p 1 matches p 2 or that [p 1 , p 2] is a match. A

subsumption dag for a set of patterns P is a directed acyclic graph that represents the reflexive tran-

sitive reduction of the partial ordering (P,≥). See the example illustrated in Fig. 1, where a is a

constant and f is a binary function symbol.

v

a f(v, v)

f(a, v) f(v, a)

f(a, a)

Fig. 1 Subsumption Dag

By the preceding definition variable v serves as a place holder during matching. Thus, testing

whether pattern p matches pattern q is equivalent to testing whether q can be formed from p by

replacing occurrences of v in p by patterns, each of which may be different.

In order to gauge performance of different pattern matching algorithms, it is useful to con-

sider the following basic problem:

Multi-Pattern Matching Problem: Given a finite set P of patterns and a pattern t called the
subject, find the set MPTM (P,t) = {[p, q ]: p ∈ P, q ∈ sub (t) | p ≥ q} of all patterns in P match-

ing subpatterns of t.
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This paper is concerned with linear pattern matching and with solutions to the Multi-Pattern

Matching Problem on a uniform cost sequential RAM [1, 28]. More complex kinds of pattern

matching can be solved by extensions to our algorithms.

However, even for linear pattern matching, solving MPTM (P,t) efficiently seems to be

extremely difficult. The current best space-efficient top-down algorithm to solve MPTM (P,t),

where P contains a single pattern of size l and subject t is of size n, takes O(n √
�
l polylog(l)) time, a

recent result due to Dubiner, Galil, and Magen[12], which improves Kosaraju’s earlier

O(n l .75polylog(l)) time bound [25].

Bottom-up pattern matching seems to be even more difficult than top-down matching and is

of special practical importance. In a seminal paper [20] Hoffmann and O’Donnell presented

bottom-up linear pattern matching algorithms to solve MPTMP(t) for fixed P and subjects t without

variable occurrences. They broke up the problem into two parts - (1) preprocessing P, and (2) solv-

ing MPTMP(t). Their bottom-up solution to MPTMP(t) was further broken up into repeated solu-

tions to the following subproblem:

Bottom-Up Subproblem: Given solutions to MPTMP(ti) i = 1, ..., k, solve MPTMP(f(t 1 , ...,

tk)).

Of course, an efficient solution to the Bottom-Up Subproblem is important to bottom-up tree

rewriting, an application that concerned Hoffmann and O’Donnell. They sacrificed time and space

in preprocessing P in return for an O(k) time solution to the Bottom-Up Subproblem (not counting

the time to produce output). Consequently, they obtained a O (n+o) time solution to MPTMP(t),

where o is the number of pairs in MPTMP(t), and n is the size of t. However, auxiliary space dur-

ing computation of MPTMP(t) was excessive [20] both in theory and in practice (see Chase’s

empirical data [7]).

Hoffmann and O’Donnell’s work has stimulated a number of papers offering heuristic space

improvements [2, 3, 7, 31], and Chase’s method has aroused considerable attention [7]. However,

none of these papers gave proofs of theoretical improvements or promising space/time tradeoffs.

In this paper we present three new theoretical results in bottom-up linear pattern matching.

1. At the end of his CAAP ’88 paper [3] Burghardt called for an efficient algorithm for

preprocessing patterns P on-line with respect to additions and deletions of patterns. Such an algo-

rithm is needed in the RAPTS transformational programming system [4], because incrementally

modifying systems of rewrite rules is a frequent activity, and preprocessing full sets of patterns is

highly expensive.

In this paper we present an efficient pattern preprocessing algorithm that builds the data struc-

tures used in Chase’s pattern matching algorithm in a new way. Our algorithm implements these

data structures on-line with respect to additions and deletions of patterns. When our algorithm is
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applied repeatedly to solve batch preprocessing by adding one pattern at a time starting from the

empty set, it runs asymptotically better in time and space than Chase’s batch algorithm.

Hoffmann and O’Donnell obtained a worst case time bound of O(l 22l (k max+1)) for preprocess-

ing P and a worst case auxiliary space bound of O(l2l k max ) both for preprocessing P and for com-

puting MPTMP(t), where k max is the greatest arity of any function symbol appearing in P. Based on

our coarse analysis, Chase’s algorithm improved these bounds to O(l k max 2l k max ) time for prepro-

cessing P, O((k max + 2k max ) 2l k max ) space for preprocessing P, and O(k max 2l k max ) space for com-

puting MPTMP(t). Based on the same parameterization, our algorithm has the same space bounds

as Chase but an improved O(l 2l k max ) time bound for preprocessing P. Based on a more accurate

parameterization and deeper analysis of the problem, our algorithm can be observed to have a more

striking theoretical advantage over Chase’s algorithm.

Hoffmann and O’Donnell presented a special purpose algorithm tailored to the class of Sim-

ple patterns with polynomial worst case preprocessing time and space. Our algorithm adapts to

input instances in this class and performs better in both worst case asymptotic time and space than

their special purpose batch algorithm.

A prototype implementation of our algorithm is currently being used in the RAPTS transfor-

mational programming system [6] as the basis for searching, conditional rewriting, and static

semantic analysis. A preliminary C implementation of our algorithm outperforms Chase’s imple-

mentation of his algorithm on same data, machine, and compiler [7]; on the hardest problem

instances we obtain a ten-fold speedup. We believe that a more careful implementation of our

algorithm would show a more dramatic improvement.

2. Our first result is modified to obtain a general space/time tradeoff. Roughly speaking, for

parameter q≥1, we trade O(q 2) in time to solve the Bottom-Up Subproblem in return for auxiliary

space O(l k max q 2 2l/q + q2l k max /q).

3. In bottom-up pattern matching, the main difficulty that sorely needs to be overcome is

space utilization. We present an algorithm for a subclass of Hoffmann and O’Donnell’s Simple

Patterns that runs in O(l) space and O(log l) time to solve the Bottom-Up Subproblem. A theoreti-

cal improvement to O(loglog l) time for the Bottom-Up Subproblem is obtained using Dietz’s per-

sistent form[8] of the Van Emde Boas priority queue[37]. Previous bounds due to Hoffmann and

O’Donnell are O(l 2) time and space for an algorithm tailored to binary Simple Patterns (which our

subclass properly includes) and O(l k max+1) space with O(k) Subproblem time for an algorithm han-

dling all Simple Patterns. Thus, we offer a quadratic space improvement over the latter algorithm

for binary patterns and even more dramatic improvement for patterns of greater arity. Our space

compression is obtained by applying persistent data structures in a new way.
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This paper is organized as follows. In the next section we discuss Hoffmann and O’Donnell’s

and Chase’s solutions to multi-pattern matching. After that we present our on-line preprocessing

algorithm, its adaptation to Simple Patterns, handling deletions, and a general space/time tradeoff.

In the final section we present our third result, which deviates significantly from the earlier stra-

tegies of either Hoffmann and O’Donnell or Chase.

2. Algorithms for Bottom-up pattern matching

2.1. Notation

In addition to standard mathematical notation it will sometimes be convenient to use certain

unconventional terminology. We let expression A with x abbreviate set element addition A ∪ {x}

(where in this context A is interpreted as the empty set if it is undefined). Likewise, A less x

represents set element deletion A - {x}. If f is a binary relation, then domain f = {x: [x,y] ∈ f},

range f = {y: [x,y] ∈ f}, and f −1 denotes the inverse map {[y,x]: [x,y] ∈ f}. Also, f(x) denotes

function application (undefined if f is multi-valued at x or if x ∈/ domain f), f{x} denotes multi-

valued map application with value {y: [x,y] ∈ f}, and f[S] denotes the image of set S under f with

value {y: [x,y] ∈ f | x ∈ S}. The number of elements in a finite set S is denoted by |S|. If f is a

binary relation (perhaps a function), then the number of pairs in its graph representation is denoted

by | f|. If op is any binary, associative, and commutative operator, and S= {x 1 , ..., xk) is a set, then

the APL-like reduction notation op/S denotes expansion x 1 op ... op xk with an arbitrary ordering of

arguments. For example, ∪/S =
T∈S
∪ T. If S is a set, we use the for-loop notation for x∈S loop

block (x) end to execute block (x) repeatedly for each value x∈S without repetition. Finally,

assignment A op := x is used to abbreviate A := A op x.

2.2. Hoffmann and O’Donnell’s Bottom-Up Algorithm

Bottom-up solutions presented by Hoffmann and O’Donnell and Chase treat the set P of pat-

terns as fixed and the subject t (which for them has no variables) as the only parameter that can

vary. In a bottom-up strategy to solve the Multi-Pattern Matching Problem, a complete set

MPTMP(q) of matches is found for each subpattern q of t without reference to any subpattern of t

that properly encloses q.

Hoffmann and O’Donnell explain their multi-pattern matching algorithm in terms of the fol-

lowing two notions. If P is a set of patterns, then the pattern forest PF of P is the set of subpat-

terns of all the patterns in P. If PF is the pattern forest for a set P of patterns and t is the subject,

then the match set MS (t) for t is defined by the rule MS (t) = {q ∈ PF | q ≥ t}.
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Hoffmann and O’Donnell use an equivalent recursive definition of match sets (but restricted

to subjects without variable occurrences) to obtain an efficient bottom-up algorithm. The recursive

rules shown below add a new rule for MS(v) to Hoffmann and O’Donnell’s rules so that match sets

can be defined for arbitrary patterns.

MS(v) = {v}

MS(c) = {v}, when constant c ∈/ PF

{v,c}, when constant c ∈ PF

(1) MS (f (t 1 , ..., tk)) = {f (q 1 , ..., qk) ∈ PF | qi ∈ MS (ti),i = 1, ..., k} ∪ {v}

Surprisingly, this new rule is merely a formalism, since it gives rise to the exact same collection of

match sets as derived by Hoffmann and O’Donnell. This is true, because the match set MS(p) for

an arbitrary pattern p is identical to the match set MS(t) for any pattern t formed from p by replac-

ing occurrences of v in p by occurrences of arbitrary constants that do not belong to PF.

After determining match sets for constants and variable occurrences in subject t, Hoffmann

and O’Donnell’s algorithm solves the Bottom-Up Subproblem by identifying the match set for

each subpattern f(t 1 , ..., tk) of t based on the match sets for ti , i = 1, ..., k. This task, which we call

the Bottom-Up Step, computes expression (1) by an O(k) time lookup in a k-dimensional array stor-

ing transition map τ f , where τ f(MS (t 1), ..., MS (tk)) = MS(f(t 1 , ..., tk )).

For consistency, throughout this paper we consider an instance of the Multi-Pattern Matching

Problem with pattern set P, pattern forest PF, and subject t. We also use the following parameters:

n = size of t
Γ = the set of match sets for P
l = | PF |
o = | MPTMP(t) |
k max = maximum arity of any function symbol appearing in PF

In order to compute Step (1) and print the set MS (f (t 1 , ..., tk)) ∩ P of patterns that match

f (t 1 , ..., tk) in time O (k + | MS (f (t 1 , ..., tk)) ∩ P | ), Hoffmann and O’Donnell preprocess the pat-

terns in P to

i. encode each pattern in PF as a distinct integer from 1 to l, and represent patterns as
trees in the obvious way (implemented in compressed form as dags);

ii. compute all match sets, and encode each such set as a distinct integer from 1 to | Γ | ;
iii. compute the subset of patterns in P belonging to the i th match set for i = 1, ..., | Γ | ;
iv. compute a transition map τ f for every k-ary function symbol f occurring in P so that

τ f(MS (t 1), ..., MS (tk)) = MS (f (t 1 , ..., tk)); τv = {v}, and τc = {v, c} if c is any constant
appearing in PF; transition maps τ f are implemented as k-dimensional arrays accessed
using integer encodings of match sets.

After preprocessing the patterns in P, Hoffmann and O’Donnell’s algorithm solves the

Multi-Pattern Matching Problem by repeatedly solving Step (1) from innermost to outermost sub-

pattern of t. Their worst case time is O (n + o) after preprocessing P. The array storing the transi-

tion map τ f for each k-ary function symbol f appearing in PF uses Ω( | Γ | k) space, where the
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number |Γ| of match sets can be Ω(2l), which is expensive in practice. Their rough bound on

preprocessing time is O (l 2 | Γ | k max+1).

2.3. Chase’s Improvement

Chase was able to improve Hoffmann and O’Donnell’s method by exploiting the deeper

structure of the pattern set P to reduce the size of transition maps [7]. Chase’s heuristic is slower by

a constant factor but preserves the O (k) asymptotic time for solving the Bottom-Up Subproblem.

Let PF be the pattern forest for P, and assume that PF contains variable v. For each k-ary

function f appearing in PF and each i = 1, ..., k, Chase introduced projection Π f
i = {qi: f (q 1 , ..., qk)

∈ PF} containing the set of patterns appearing as the i th argument of some f-pattern in PF. Chase

made the crucial observation that identity (1) could be replaced by

(2) MS (f (t 1 , ..., tk)) = {f (q 1 , ..., qk) ∈ PF | qi ∈ MS (ti) ∩ Π f
i , i = 1, ..., k} ∪ {v}

which gives rise to a modified Bottom-Up Step with improved auxiliary space.

Chase’s Bottom-Up Step to compute (2) involves two substeps. First a conversion map µ f
i is

used to turn each Hoffmann and O’Donnell match set MS (ti) into a Chase match set

µ f
i (MS (ti)) = MS (ti) ∩ Π f

i for i = 1, ..., k. If any of these Chase match sets are empty, then

MS (f (t 1 , ..., tk)) = {v}. Otherwise, Chase’s transition map θf is used to obtain the Hoffmann and

O’Donnell match set θf(µ f
1(MS (t 1)), ..., µ f

k(MS (tk))) = MS (f (t 1 , ..., tk)). Chase’s implementation

uses integer encodings for both kinds of match sets, one-dimensional arrays to implement each

conversion map µ f
i , and a k-dimensional array for θf .

A straightforward set theoretic argument can be used to explain why Chase’s transition map

utilizes space better than Hoffmann and O’Donnell’s. Whenever every Chase match set µ f
i (MS (ti))

is nonempty i = 1, ..., k, we know that identity θf(µ f
1(MS (t 1)), ..., µ f

k(MS (tk))) =

τ f(MS (t 1), ..., MS (tk)) holds. Consequently, if µ f
i is not one-to-one for some i, we know that |θf | <

|τ f |. The essential idea may be simply put: for any two finite functions h and g where g is not one-

to-one and domain h ⊆ range g, then |h| < |h°g|.

Chase also provided extensive empirical evidence to show that θf is much smaller than τ f in

practice. Consider the example in Fig. 2. The Chase match sets associated with the first com-

ponent of f are c 1 = {1} and c 2 = {1,2}; the Chase match sets associated with the second com-

ponent of f are d 1 = {1} and d 2 = {1,2}. The Chase conversion and transition maps store 16 entries

compared with 36 entries in Hoffmann and O’Donnell’s transition map τ f .
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PF: v a f (a,v) f (v,a) f (v,v)

Encoding: 1 2 3 4 5

Γ: {1} {1,2} {1,3,5} {1,3,4,5} {1,4,5} {1,5}

Encoding: m1 m2 m3 m4 m5 m6

µ f
1 µ f

2 θf d 1 d 2
��������������������� � ����������������������� � ���������������������������������

m1 c 1 m1 d 1 c 1 m6 m5

m2 c 2 m2 d 2 c 2
�
�
�
�
�
�

m3 m4

m3 c 1 m3 d 1

m4 c 1 m4 d 1

m5 c 1 m5 d 1

m6 c 1 m6 d 1
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Fig. 2 Chase’s Data Organization

3. Incremental preprocessing

We will present a preprocessing algorithm that incrementally constructs maps µ and θ and is

on-line with respect to modifications to P by adding or deleting patterns. When used to solve the

batch preprocessing problem for fixed P, our algorithm performs asymptotically better in time and

space than Chase’s. It is convenient to specify our algorithm in terms of two abstract datatypes.

3.1. Abstract Sets

The first abstract datatype is called a Set Encoding Structure (abbr. SE_Structure), which is a

4-tuple (U, D, Q, τ) with finite universe U, primary set D ⊆ 2U , secondary set Q ⊆ U, and top ele-

ment τ∈U, where {τ} ∈ D, and every set within D contains τ. For simplicity we will assume for

now that U and Q are fixed in order to focus on the more difficult problem of updating D. Later

when we show how SE_structures are used by our preprocessing algorithm, details on how they are

initialized and how to update U and Q will be supplied. Five operations on SE_structures are

described below. A sixth operation deletion will be described later in a separate section.

1. create: Initialize D. This operation is performed only once for an SE_structure before

any of the other operations below.

D := {{τ}}
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2. replace(d,z): Replace d ∈ D by new set d with z, where z ∈ U, for which we write,

d with:= z

3. add(d,z): Add new set d with z to D, where d ∈ D and z ∈ U; that is,

D with:= d with z

4. query(d): Retrieve set d ∩ Q, where d ∈ D.

5. index(c): Retrieve set {d ∈ D | c ∈ d}, where c ∈ U.

We will implement SE_structures using a data structure called an SE_tree (see Fig. 3), whose

nodes correspond to distinct subsets of the universe U. Each set dx belonging to primary set D is

associated with a node x in the SE_tree; that is, x ’encodes’ dx. The root encodes set {τ}. However,

the set dx associated with a node x in the tree may not necessarily belong to D. If dx does not

belong to D, it is called a gap. If dx and dy are sets associated with tree nodes x and y, then x is a

descendant of y in the tree only if dy ⊂ dx.

SE_trees are implemented with two kinds of records - a node_record for each node in the tree

and a U_record for each symbol in U. We will sometimes avoid distinguishing a node from its

node_record implementation. The node_record for node x contains five fields: 1. a D field con-

taining 1 if the node is not a gap and 0 if it is, 2. a sibling field with a pointer to the right sibling of

x, 3. a succ field with a pointer to the leftmost child of x, 4. a Q_query field storing a possibly

empty subset of Q, and 5. a Q_ancestor field with a pointer to the nearest ancestor in the tree with a

nonempty Q_query.

For each node x the value of the subset of Q stored in the Q_query field is denoted by

Q_query (x). The set is implemented by a pointer to a list of pointers to U_records for each symbol

in Q_query (x). If dx represents the set associated with node x, then the value of the collection of

sets Q_query (y) for nodes y along the path from x to the root are mutually disjoint, and their union

has the value query (x) = dx ∩ Q.

The U_record for symbol c has three fields: 1. a U field containing symbol c, 2. a Q field

with a bit indicating whether c belongs to Q, and 3. a D_index field storing the subset of tree nodes

x closest to the root such that the associated set dx contains c.

We denote the subset of nodes associated with the D_index field in the U_record for symbol c

by D_index (c). It is implemented by a pointer to a list of pointers to node_records for each node

in D_index (c). Thus, the set of tree descendents of nodes belonging to D_index (c) has the value

computed by operation index (c) = {d ∈ D | c ∈ d}.

Fig. 4 illustrates how SE_trees compress the space needed to store match sets. Chase’s algo-

rithm stores fifteen pattern entries to represent the collection of match sets Γ in the example shown

in Fig. 2; our algorithm stores these same match sets in an SE_tree using only nine pattern entries.
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Fig.3 SE-Tree implementing SE-structure(U, D, Q)

c

D-indexQU
Q-Q-D

n

Q-query(n)

D-index(c)

queryancestorsuccsibling

0/1 0/1

node code
numeric

m2

m4 m3

gap m5

m6

m1

5

4, 5

54, 5

3

2

1

Fig. 4 SE-tree for (PF, Γ, ., v)

The create operation D := {{τ}} is implemented by adding a new tree root with empty

sibling, succ, and Q_ancestor fields, D bit on , and Q_query containing τ if τ∈Q and empty if not.

Within the U_record for τ we initialize D_index to a singleton set containing the newly created

root.

Implementing the replace operation d with:= z has two cases. In the first case, called a

nondestructive replace, the tree node x associated with d is not a leaf (i.e. succ is nonempty). In

this case (i) unset the D bit in x (which makes x a gap), and create a new tree node y as a child of x,

(ii) if Q_query (x) is nonempty, then make the Q_ancestor in y point to x; otherwise, make it point

to the same record that the Q_ancestor in x points to, and (iii) set the D bit in y. In the second case,

where x is a leaf, we reuse x to represent the new set d with z. In this case, called a

destructive replace, we assume that nodes x and y are the same. In either case, if z belongs to Q,

add z to Q_query (y). Finally, add y to the D_index (z).
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To implement the add operation D with:= d with z we let x be the tree node associated with

set d. Create a new tree node y associated with set d with z, and make y the child of x. If

Q_query (x) is nonempty, then make the Q_ancestor in y point to x; otherwise, make it point to the

same record that the Q_ancestor in x points to, and set the D bit in y. If z belongs to Q, add z to

Q_query (y). Finally, add y to D_index (z).

The query operation d ∩ Q is implemented as follows. If x is the tree node associated with d,

then retrieve the elements in each Q_query set along the path starting from x following

Q_ancestors. Recall that the Q_query sets along this path are disjoint.

Finally, SE_trees support a straightforward implementation of the index operation

{d ∈ D | c ∈ d}. Form a list of records x (where set dx belongs to D) occurring in subtrees rooted

in nodes belonging to D_index (c).

In order to analyze the complexity of SE_trees, we give the following definitions. For each

node x in an SE_tree, define path (x) to be the set of nodes in the tree path from the root to x.

Define weight (x) to be the number of elements u ∈ U such that D_index (u) contains x. Define

wn(D) =
x is a tree node

Σ weight (x) to be the total weight of all the nodes in the tree that implements set

D. Letting des(x) denote the number of tree descendants of x, we can define

wp(D) =
x is a tree node

Σ des (x)×weight (x) to be the sum of the weights of every tree path. Clearly,

| D | ≤wn(D) ≤wp(D) < 2
d ∈D
Σ | d | . Usually, wn(D) is much smaller than wp(D).

LEMMA 1.

1. If D_index (c) is nonempty for every c ∈ U, then the total space required by an SE_tree to

implement an SE_structure (U,D,Q,τ) is O(wn(D)). (Note that a naive representation of D can

require O(wp(D)) space.)

2. Operations create, replace, and add each take unit time and space. A sequence of j of

these operations requires Θ(j) space in the worst case.

3. Operation query d ∩ Q takes O(|d ∩ Q|) time.

4. Operation index {d ∈ D | c ∈ d} takes O(|{d ∈ D | c ∈ d}|) time.

Proof

1. The total space required by an SE_tree is dominated by the space O(wn(D)) needed to

store all of the D_index sets.

2.-3. Trivial.

4. Within every subtree of an SE_tree the number of gaps is less than the number of nodes

that are not gaps. This follows from the fact that only a nondestructive replace can create a gap,

and this gap always has at least two children. Thus, no leaf can be a gap, and there are more leaves
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than internal nodes with at least two children. �

We will consider useful variants of SE_structures that require minor alteration to the preced-

ing implementation and do not affect the stated complexities. A Simple SE_structure is one with

no secondary set. A numeric SE_structure is one in which the set elements in the primary set D are

identified by natural numbers 1, ..., |D| (cf Fig. 5). Numeric SE_structures have special importance

in connection with our second abstract datatype described next.

3.2. Abstract Maps

The second abstract datatype used in our pattern matching algorithm is the SE_map, which is

a partial function f: D→R from a domain set D to a range set R, where D and R are the primary sets

of two SE_structures. Let τ be the top element of R’s SE_structure, so that {τ} ∈ R. It is con-

venient to postpone saying how f is initialized until later, and focus on the following two map

operations:

1. modify range(∆,z): Given a set ∆ and an element z, where ∆ ⊆ D, and z does not belong

to any set in R, add z to f (x) for each x belonging to ∆. This operation can modify

SE_set R as well as map f. It is denoted by,

for x ∈ ∆ loop

if x ∈/ domain f then

f(x) := {τ}

end

f(x) with:= z

end

2. modify domain(x,z): Given a set x in the domain of f, where (x with z) belongs to D but

not to the domain of f, map the new set x with z under f to the old image f (x). This

operation modifies f but not SE_sets D or R. It is denoted by,

f(x with z) := f(x)

Our basic implementation of SE_maps f: D→R uses SE_tree implementations for D and R as

described above. In addition, whenever f(d) = r, if x and y are the node_records associated with

sets d and r, then in addition to the node_record fields previously described, x also stores a pointer

to y, and y also stores the size of the preimage set f −1{r}.

To implement modify range(∆,z), we assume that the sets belonging to ∆ are represented by a

linked list of nodes in the SE_tree. In a single scan through ∆, we compute the subset ∆1 of nodes

that do not belong to the domain of f. For each node x ∈ ∆1 , we store a pointer in x to the node y

associated with {τ} ∈ R, and increment the preimage count in y. Next, in a second scan through ∆,

we form buckets ∆ ∩ f −1{y} and bucket-counts for each y ∈ f[∆]. This allows us to process the
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elements of ∆ efficiently, and to modify SE_set R according to two different cases. (1) For each

range element y ∈ f[∆] whose preimage is entirely contained in ∆ (which occurs when the bucket-

count for y equals the preimage count for y), we execute a replace operation y with:= z on SE_set

R. (2) For each element y ∈ f[∆] not handled in case (1), we execute an add operation R with:= y

with z, relink each element in ∆ ∩ f −1{y} to the new set y with z, and modify preimage counts.

The modify domain(x,z) operation is only executed immediately after a set x in the domain of

f is modified by either operation add(x,z) or replace(x,z). The implementation is different in each

of these two cases. If x is modified by replace(x,z), then deleting x from D implicitly removes x

from the domain of f. Hence, in this case, which we call an implicit modify domain, the implemen-

tation is vacuous. However, if x is modified by add(x,z), then we need to explicitly modify f by

linking the new domain element x with z to the old range element f(x) and increment the preimage

reference count.

Analysis of the preceding implementation of SE_maps is straightforward and follows

immediately from Lemma 1

LEMMA 2.

1. The time to execute modify range is O(|∆|).

2. Implicit modify domain operations cost nothing. A modify domain operation that is not

implicit takes O(1) time.

If D is the primary set of a numeric SE_structure, it is sometimes useful to implement

domain f as an array, accessed using the numeric code of a D element as shown in Fig. 5. This idea

is extended to multi-dimensional arrays used to implement the domain of a multi-dimensional

SE_map f:
i =1
×

A (f )
Di → R, where, for i =1,..,A (f ), Di is the primary set of an SE_structure. In this

case, where f has arity k >1, we include a dimension parameter i in operation modify

domaini([x 1 , ...,xk], z) to map f under [x 1 , ..,xi with z, ..,xk] to the old image f (x 1 , ...,xk). We also

assume a precondition that [x 1 , ...,xk] ∈ domain f, [x 1 , ..,xi with z, ..,xk] ∈/ domain f, and xi with z

∈ Di .

The preceding algorithms adapt readily to these array implementations. However, since the

domains of SE_maps can be augmented, we must account for overhead costs in maintaining these

arrays dynamically. We implement dynamic multi-dimensional arrays by generalizing the method

of unit-time array initialization found in the solution to exercise 2.12 of Aho, Hopcroft, and

Ullman’s book[1]. Their method permits a one-dimensional array of size s to double its size in unit

time if growth space exists. If there is no growth space, we can initialize a new array of size 2s in

unit time and then copy the old array into the new array in s steps. A multi-dimensional array that

needs to double the size of one of its dimensions can be reduced to the one-dimensional case.

However, if the dimension that doubles can vary, then we cannot assume that growth space is ever
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available.

Consider a k-dimensional array Q, where index values in dimension i for i =1,...,k range from

1 to ri , and Q is filled with entries (i.e. from the SE_map domain) only for index values from 1 to

ei≤ri . Thus, Q has size r 1× . . . ×rk and is filled with e 1× . . . ×ek entries. Consider a single opera-

tion extendi , which is implemented by the following two steps:

1. If ei = ri , then reallocate Q with double the range of the i th dimension; i.e., assign 2ri to ri .

2. Add one to ei .

Consider an arbitrary sequence of extend operations starting from an initial array with

ei=ri = 1, i =1,...,k. The overhead in executing this sequence is the total reallocation cost in Step

1. The amortized overhead per array element is the maximum over all such sequences s of the over-

head for s divided by the number of elements in the array after s is executed.

LEMMA 3. The amortized overhead per array element in a k-dimensional array due to exe-

cuting an arbitrary sequence of extend operations starting from the unit array is Θ(k).

Proof Whenever the range of a dimension is doubled in Step 1 of an extend operation, we

need to allocate twice the space of the current array (a unit-time operation by the method of Aho,

Hopcroft, and Ullman) and to copy every entry in the old array into the new array (which can be

done in time proportional to the number of entries copied by using strength reduction to access and

copy an array element in unit time).

Let a segment be a maximal contiguous subsequence of a sequence of extend operations in

which the last extend in the subsequence doubles the range of some dimension, but no other extend

involves any such doubling. Since the last extend operation in a worst case sequence must double

the range of some dimension, we limit our analysis to sequences of segments instead of sequences

of extend operations. Let fi be the number of entries in an array just after the i th segment is exe-

cuted; let ci be the overhead cost due exclusively to the i th segment. Clearly, ci < fi . Since dou-

bling the range of one dimension doubles the size of the array, the array size after execution of the

i th segment is 2i . Hence, we also know that ci ≤ 2i −1 . Since ej >
2

rj	 	�	 , j =1,...,k, holds after every

extend operation, we know that fi>2i −k holds after every segment is executed i =1,2,.... Thus, the

overhead from executing the first i segments is,

j =1
Σ
i

cj <k fi +
j =1
Σ
i −k

2j −1 = k fi + 2i −k − 1

and an upper bound on the overhead per array element is,

fi

k fi + 2i −k − 1
�
�
�
�
�
�
�
�
�
�
�
 = k +
fi

2i −k − 1������������� < k +
2i −k

2i −k − 1
�
�
�
�
�
�
 < k + 1

Next, we show that this bound is realizable. Starting from an initial array Q of unit size, we

perform (i + 1)k segments as follows. First, for each dimension j =1,...,k perform i segments, each

doubling dimension j. Begin a new segment by performing successive extend operations until the



-- --

- 15 -

entire array is filled, so that it contains 2ik entries. The total overhead to this point is 2ik − 1.

Next, perform one extend operation in each dimension, causing additional overhead costing at least

k 2ik for a cumulative total overhead of at least (k +1)2ik . Thus, we obtain a lower bound Ω(k) on

the overhead per array element. �

Hoffmann and O’Donnell did not consider dynamic arrays, and their pessimistic analysis sug-

gests that they simply preallocated enough space to accomodate worst case instances. Although

Chase used algorithms that required dynamic multi-dimensional arrays, he did not analyze this

cost, nor did he make use of unit-time initialization. In the next section we will use Lemma 3 to

show that the overhead due to array doubling accounts for only a fraction of the total time for full

pattern preprocessing. However, we do pay a price in space. Based on the proof of Lemma 3, the

final space allocation of a dynamic k-dimensional array can be 2k times the number of entries in the

array. Of course, any overallocation during preprocessing is not needed for matching and can be

shed.

Fig.5. Implementation of SE_map f: D → R

i is numeric code for x ∈ D

node-record
for R

preimage
countrange f

y | f −1{y}|
f (x) = y

domain f

i

array

3.3. Abstract Algorithm

Let F be the set of function symbols appearing in PF. For each function f ∈ F, let A (f ) be its

arity. Let Γ be the set of Hoffmann and O’Donnell match sets. From the above discussion, we

know that the following equations hold:

(3) Γ = {{v, s}: s ∈ PF | s is a leaf} ∪ ∪ /{range θf: f ∈ F | A (f ) > 0}

Π f
i = {ci: f (c 1 , ..., ck) ∈ PF}

µ f
i = {[m, m ∩ Π f

i ]: m ∈ Γ}

θf = {[[m1 , ..., mk], m ]: m1 ∈ range µ f
1 , ..., mk ∈ range µ f

k }

where m = {f (c 1 , ..., ck) ∈ PF | ci∈ mi , i = 1, ..., k} ∪ {v}

Because the preceding equations contain a cyclic dependency in which Γ depends on both PF and

θ, µ depends on Γ, and θ depends on µ and PF, it would seem that a costly fixed point iteration is

needed to maintain these equations when PF is modified. Fortunately, this can be avoided with

careful scheduling.
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The algorithm also depends on a careful logical organization of the data into SE_structures

and SE_maps. Recall that sets range µ f
i represent Chase match sets for f ∈ F and i = 1, ..., A(f).

We will use numeric SE_structure (PF, Γ, P, v), Simple numeric SE_structure (PF, range µ f
i , ., v)

and SE_map µ f
i : Γ → range µ f

i for f ∈ F and i = 1, ..., A(f), and multi-dimensional SE_map θf:

i =1
×

A (f )
range µ f

i → Γ for each f∈F. Fig. 6 describes the data structures used to access the main

SE_structures and SE_maps shown in Fig. 7 (with array implementations indicated). Note that all

of the SE_maps µ f
i are defined on a shared SE_set Γ and are accessed through an array shown in

Fig. 7. Note also that the PF_records for the SE_structure(PF, Γ, P, v) (see Fig. 6) spread the

standard PF field into two fields - an F field for the function symbol and a succ field for the argu-

ments of the function. For example, a pattern f (t 1 , ...,tk) ∈ PF would have a pointer to symbol f in

the F field and pointers to arguments t 1 , ...,tk accessible from the succ field.

domain µf
(see Fig.7)

array of range µf-index sets

Γ-index

range µ f
i -index (q)Γ-index (q)

succ

Fig.6. Core data structure

range µ f
i

(see Fig.7)(see Fig.7)

j

Γ

0/1j

A (f )f

Pcode
numeric

F

q

PF

PF

range µ f
i

range µf

array of bit vectors

j

i

Π f
i

i
A (f )

(j is numeric code for q ∈ PF)

A (f )
θf

|PF|Π fθµΠarityF

It is useful to explain our incremental algorithm in terms of three cases. Our analysis of indi-

vidual operations will ignore overhead costs involving dynamic arrays. Overhead will be con-

sidered afterwards.

(case 1) Assume, first of all, that the set of patterns P is initially empty. It is also convenient

to assume that pattern forest PF (but not P) always contains v. Then in O(1) time and space we can

initialize variables Γ, Π, µ, and θ as follows:

PF := {v}

Γ := {{v}}
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Π := {}

µ := {}

θv := {v}

Next, suppose that P is augmented by a new pattern p. In order to re-establish PF, we add to

PF those subpatterns of p not already in PF in an innermost-to-outermost order. Because of the

order in which updates are scheduled, we know that immediately before a subpattern q of p is

added to PF, either q is a leaf or all the subpatterns of q except for q itself already belong to PF.

More importantly we know that q is not the subpattern of any other pattern belonging to PF.

(case 2) Suppose PF is augmented with a constant symbol c. In this case, we can maintain

the system of equations (3) by executing the following code just before the modification PF with:=

c:

θc := θv

Γ with:= θc with c

θc with:= c

for g ∈ F, j =1,...,A (g) loop

if θv ∈ domain µg
j then

µg
j (θv with c) := µg

j (θv)

end

end

In effect the preceding code can be implemented by performing a modify domain(θv, c) operation

on µg
j for each g∈F and i = 1, ..., A(g) such that v∈Πg

j . (Recall that θc = θv if c ∈/ PF.) In order to

implement the for-loop efficiently, we can use an index µ_thread = {[x,[j,g]]:

g ∈ F, j =1,...,A (g), x ∈ domain µg
j }, which maps Hoffmann and O’Donnell match sets m ∈ Γ

(where in this case m = θv) to conversion maps µg
j whose domain contains m. In order to update

the conversion maps efficiently, we implement µ_thread by maintaining a single doubly linked list

for every m ∈ Γ threading each occurrence of m within every set domain µg
i over all [j,g]

∈ µ_thread{θv}. For example, in Fig. 7 the thread for match set m ∈ Γ passes through entries in

column t of arrays implementing domain µg
i for each g ∈ F and i =1,..,A (g) such that m ∈

domain µg
i . Since this operation augments Γ, the arrays implementing the domains of the conver-

sion maps can double their size. Double links allow the thread to be adjusted in unit time when-

ever an element in the thread is added, deleted, or moved (which occurs during array doubling).

By Lemma 2 the time to perform the preceding modify domain operation (not including the cost of

array doubling) is O(|µ_thread{θv}|).

(case 3) The third and more difficult case to consider is when PF is augmented with pattern

f (t 1 , ..., tk), where k>0. Below we describe how a two-stage cascade of updates can be used to

propagate modifications to each of the variables Γ, Π, µ, and θ in order to re-establish equations

(3). Recall that set Γ and each of the sets range µ f
i , f ∈ F, i = 1, ..., A (f ), will be implemented as

SE_trees.
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accessed using numeric code from range µ f
i )

k-dimentional array (ith dimension

Fig.7. Data structure for θf and µ f
i

ik

array of SE-maps

|Γ| numeric simple SE-tree(PF, range µ f
i , . )

µ f
i (m)

Chase Codes

tdomain µf

θf

numeric SE-tree(PF, Γ, P)

for m ∈ Γ
t is numeric code

1. In O(k) time update Π f before the modification PF with:= f (t 1 , ..., tk). (Note that the

array implementing Π f can double when PF is augmented.)

for j = 1, ..., k loop

if tj ∈/ Π f
j then

Π f
j with:= tj

end

end

The preceding code gives rise to Stage-One updates. Each modification Π f
j with:= t j to pro-

jection Π f
j makes the equation for Π f

j hold for the new value of PF, but falsifies the equation for

µ f
j . In order to re-establish the equation for µ f

j with respect to the new value of Π f
j (but not the new

value of PF), we perform a modify range operation on µ f
j . However, modification to the range of

µ f
j falsifies the equation for θf . We re-establish this equation for the new value of Π f

j (but not the

new value of PF) by executing modify domain operations on θf . The Stage-Two updates establish

all equations for the new value of PF. Details for Stage-One are given just below.

2. Perform a modify range({m ∈ Γ | t j ∈ m}, t j) operation on µ f
j immediately prior to the

modification Π f
j with:= t j of Step 1:

for m ∈ Γ | tj ∈ m loop

µ f
j(m) with:= tj

end

As discussed in SE_tree operation 5, set Γ_index (t j), which is obtained from the

PF_record for symbol t j (see Fig. 6), is used to retrieve the subset {m ∈ Γ | t j ∈ m} of
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node_records in the numeric SE_tree(PF, Γ, P) (see Fig. 7). The numeric codes in these

node_records are used to access the array for domain µ f
j (see Fig. 7). By Lemmas 1 and

2, the cost of executing this step is O(|{m∈Γ | t j∈m}|). Although add(µ f
j(m), t j) opera-

tions used to implement modify range can cause the range of the j th dimension of the

array storing θf to double, we will charge such overhead to construction costs for θf .

3. Perform a modify domainj([m1 , ...,mk], t j) operation for each [m1 , ...,mk] ∈ domain θf ,

where mj = µ f
j(m), prior to each add(µ f

j(m), t j) operation used to implement the

modify range of Step 2, but just after any doubling of multi-dimensional array θf that

might result from augmenting range µ f
j . Recall that the modify domain is implicit (i.e.,

implemented at no cost) whenever the modify range of Step 2 is implemented using

replace.

for [m 1 , ..., m j , ..., mk] ∈ domain θf | m j = µ f
j(m) loop

θf(m 1 , ..., m j with tj , ..., mk) := θf(m 1 , ..., m j , ..., mk)

end

Here θf(m1 , ..., mj with t j , ..., mk) = θf(m1 , ..., mj , ..., mk), because the pattern

f (t 1 , ..., tk) has not yet been added to PF, and so no f-pattern in PF has t j as its j th argu-

ment. Since range θf is unchanged, Γ is unchanged also. Hence, the three preceding

steps establish all equations relative to the new value of Π f
i for i =1,..,A (f ).

This operation can be implemented naively by an exhaustive search in which every entry in a

k-dimensional array implementation of θf with value mj in the j-th dimension is copied to a new

position differing only from the old position by index value mj with t j in the j th dimension. Alter-

natively, if the domain of θf is sparse, we can speed up the search by using k indexes

{[mi ,[m1 , ..., mk]]: [m1 , ..., mk] ∈ domain θf} i = 1, ..., k. However, the indexes do not need to

store k-tuples explictly. Each index can be implemented efficiently as lists threading elements of

θf . That is, each Chase match set m∈ range µ f
j has a pointer to a threaded list of entries

θf(m1 , ..., mk) such that [m1 , ..., mk] ∈ domain θf and mj = m. A simple address calculation can

then be used for copying. After each copy we need to update k threads for the k indexes in O(k)

time. Thus, our sparse implementation together with Lemma 2 lets us perform this operation in

time proportional to the number of copy operations times k.

The Stage-Two updates result from modification to PF. First we execute a modify range

operation on θf in order to re-establish the equation for θf relative to the new value of PF. Because

updating the range of θf falsifies equations (3) for certain of the conversion maps µg
j , we need to

perform modify domain operations on these maps. Consequently, after Stage-Two all of the equa-

tions (3) hold relative to the new value of PF. Details for Stage-Two are given below.
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4. Perform a modify range({[m1 , ..., mk] ∈
i =1
×
k

range µ f
i | t 1 ∈ m1 , ..., tk∈mk},

f (t 1 , ..., tk)) operation on θf just before the modification PF with:= f (t 1 , ..., tk) and

after the preceding three steps:

for m 1 ∈ range µ f
1 , ..., mk ∈ range µ f

k | t 1 ∈ m 1 , ..., tk∈mk loop

if [m 1 , ..., mk] ∈/ domain θf then

θf(m 1 , ..., mk) := θv

end

θf(m 1 , ..., mk) with:= f (t 1 , ..., tk)

end

Whenever a new k-tuple is added to the domain of θf , we also need to update the k

threaded indexes used in the sparse implementation for Step 3. Fortunately, this O(k)

maintenance operation is performed only once for each element in domain θf . We can

use set range µ f
i _index (t j) to search through the sets {mj ∈ range µ f

j | t j ∈ mj} (which

must be nonempty because t j was previously added to some match set in Γ, and because

Step 2 added t j to range µ f
j) instead of the potentially much larger sets range

µ f
j , j = 1, ..., k. However, this step contains a new operation to create a k-tuple

[m1 , ..., mk] and locate it in the domain of θf . Hashing is a practical solution with good

space utilization and good expected time. This would also make the Bottom-Up Step

O(k) expected time. Our current implementation uses this approach. Another way of

keeping space costs down at the expense of time is to use a balanced search tree; e.g., a

red/black tree [36]. Accessing the domain of the transition map θf then takes

O(k log(|domain θf |)) time, and so does the Bottom-Up Step. Like Chase we can also

use a k-dimensional array to store θf , which doubles its size and reorganizes whenever it

overflows. In this case the running time for this operation is proportional to the number

of times θf is updated by Lemmas 1 and 2. A constant factor k is avoided in each array

access by using strength reduction.

5. Add a new code for a match set to Γ prior to each add operation that results from execut-

ing θf(m1 , ..., mk) with:= f (t 1 , ..., tk) within the modify range of Step 4. The old match

set code is reused when the modify range of Step 4 is implemented using replace.

Γ with:= θf(m 1 , ..., mk) with f (t 1 , ..., tk)

This operation can cause the arrays implementing the domains of conversion maps to

double. Since pattern f (t 1 , ..., tk) is newly added to PF, it is not a subpattern of any

other pattern in PF. Thus no further modification is needed for Π.

6. Just before each add(θf(m1 , ..., mk), f (t 1 , ..., tk)) operation used to implement the

modify range of Step 4, perform a modify domain(θf(m1 , ..., mk), f (t 1 , ..., tk)) operation



-- --

- 21 -

on µg
j for g ∈ F and j =1,...,A (f ) such that Chase match set θf(m1 , ..., mk) belongs to the

domain of µg
j . An implicit modify domain is performed (at no cost) for each replace used

to implement modify range in Step 4.

for g ∈ F, j =1,...,A ( f ) loop

if θf(m 1 , ..., mk) ∈ domain µg
j then

µg
j (θf(m 1 , ..., mk) with f (t 1 , ..., tk)) := µg

j (θf(m 1 , ..., mk))

end

end

Observe that within the preceding code µg
j (θf(m1 , ..., mk) with f (t 1 , ..., tk)) =

µg
j (θf(m1 , ..., mk)), because f (t 1 , ..., tk) ∈/ Πg

j . Since the range of µg
i is unchanged, the

equation for θf remains satisfied, and no further updates are necessary. The for-loop is

implemented efficiently using the µ_thread index described in case 2. By Lemma 2 the

time to perform this operation is O(|µ_thread{θf(m1 , ..., mk)}|).

The preceding discussion combines the correctness proof with the design description. How-

ever, we still need to analyze the performance of full batch processing, and compare our results

with Chase’s. In both Chase’s and our algorithms the time complexity is dominated by the time

needed to construct the maps µ f
j and θf , where f ∈ F and j = 1, ..., A (f ). However, since Chase[7]

did not provide complete data structuring for an implementation and analysis, the comparison is

based in part on our own data structures (not included in this paper) and analysis for his algorithm.

In the following theorem we let lg represent the total number of distinct g-patterns in PF for

g ∈ F.

THEOREM 4.

1. For each m ∈ Γ, f ∈ F, and j = 1, ..., A (f ) Chase’s algorithm computes µ f
j(m) in

Ω(min( | m | , | Π f
j | )) time, which is improved by our algorithm to O ( | µ f

j(m) | ) time when

m ∈ domain µ f
j and O (1) time otherwise. By coarser analysis the total preprocessing time contri-

buted by µ is O(|Γ| k max l) for both Chase and us.

2. Let function symbol f have arity k > 0. For each [m1 , ..., mk] ∈
i =1
×
k

range µ f
i Chase’s algo-

rithm computes θf(m1 , ..., mk) in Ω(min(l f , | m1 × . . . × mk | ) k) time if [m1 , ..., mk] belongs to

domain θf and O (k) time otherwise., Our algorithm improves this bound to

O (k + | θf(m1 , ..., mk) | ) time if [m1 , ..., mk] belongs to domain θf and O (k) time otherwise. By

coarser analysis the total preprocessing time contributed by θ is

O (min(l k max2l k max , l k max | Γ | k max )) for Chase and

O (min( (l + k max)2l k max , (k max | F | + l) | Γ | k max )) for us.

3. We use O (wn(Γ)) auxiliary space to represent the set Γ, whereas Chase uses Ω(wp(Γ))

space. When we include the threaded lists used in the sparse implementation for θ, our total
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auxiliary space to store θ during preprocessing is roughly O((k max + 2k max )2l k max + l 2l). Chase’s

space is comparable. The factor of 2k max is due to overallocating dynamic arrays, and can be shed

during matching.

4. To represent µ f
j we use O( | Γ | +wn(range µ f

j)) auxiliary space, whereas Chase uses

Ω( | Γ | +wp(range µ f
j)) space. By a coarse analysis for total preprocessing space contributed by µ

we get a bound of O(l k max | Γ | ) for both Chase and us.

Proof

1. For each m ∈ Γ Chase’s algorithm computes µ f
j(m) = m∩Π f

j by actually intersecting m

and Π f
j , which takes Ω(min( | m | , | Π f

j | )) time. We avoid computing the intersection, and spend

only O ( | µ f
j(m) | ) time to establish the value of µ f

j(m) for each m ∈ domain µ f
j . The time needed

to construct these conversion maps is charged to modify domain operations, modify range opera-

tions, and overhead for dynamic arrays that store the domains of these maps. By preceding discus-

sion of Case 2 and of Case 3, Step 6 in our algorithm, we know that the cumulative expense of exe-

cuting modify domain operations on each conversion map µ f
j is O(|domain µ f

j |), which includes the

cost of maintaining index µ_thread. By preceding discussion of Case 3, Step 2 in our algorithm, a

coarse upper bound on the total cost of executing modify range operations is O(
m ∈domain µ f

j
Σ |µ f

j(m)|)

for each conversion map µ f
j . Since the domains of these conversion maps all use dynamic 1-

dimensional arrays with index values ranging from 1 to |Γ|, the overhead per array is O(|Γ|) by

Lemma 3. Combining these costs yields the first part. To obtain a coarse upper bound on the time

to construct all of the conversion maps, we use the following inequalities: | µg
j (m) | ≤ lg ,

| Πg
j (m) | ≤ lg , A (g) ≤ k max, and | domain µg

j | ≤ | Γ | for g ∈ F and j =1,...,A (g). Consequently,

we obtain a rough upper bound O (k max lg | Γ | ) on the cumulative charges to construct all conver-

sion maps for each function g ∈ F. The result follows.

2. For each [m1 , ..., mk] ∈
i =1
×
k

range µ f
i Chase’s algorithm computes θf(m1 , ..., mk) by

evaluating the set {f (c 1 , ..., ck) ∈ PF | [c 1 , ..., ck] ∈ m1 × . . . × mk} naively, which takes

Ω(min(l f , | m1 × . . . × mk | ) k) time. Roughly speaking, our algorithm assumes that the initial

value of θf(m1 , ..., mk) is {v} by default. Then it gets new values in the modify domain operation

of Case 3, Step 3 by copying. Each copy takes O(k) time in order to maintain k threaded indexes.

The value of θf(m1 , ..., mk) increases one element at a time in the modify range operation of Case

3, Step 4, where an O(1) time per element is a coarse upper bound. Thus, we spend

O ( | θf(m1 , ..., mk) | ) time from Step 4 and another O(k) time from Step 3 (for maintaining sparse

threaded indexes) to establish the value of θf(m1 , ..., mk). By Lemma 3 the overhead to maintain

the dynamic k-dimensional array storing θf is bounded by O (k |
j =1
×
k

range µ f
j | ), which also means

that k is charged to every unit of space in the array implementing θf . This proves the first part.

Our improvement over Chase is revealed by the following calculation:

| θf(m1 , ..., mk) | = | {[q 1 , ...,qk]:f (q 1 , ...,qk) ∈ PF}∩
i =1
×
k

mi | ≤ min (l f , |
i =1
×
k

mi | )
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To prove a coarse upper bound on the total time needed to construct all of the transition

maps, we first prove a time bound for a single map θf , where f has arity k. Since |range µ f
j | <= 2lf ,

we can bound the overhead costs at O(k 2k lf ). Since |domain θf | ≤ 2k lf the total cost in construct-

ing θf is O(|domain θf | (l f + k + 1) + k 2k lf ) = O (2k lf (l f + k)). Alternatively, since we also know

that |range µ f
j | < |Γ|, then another bound on overhead costs is O (k | Γ | k). Since |domain

θf | ≤ | Γ | k, another bound on the total cost in constructing θf is O( | Γ | k (l f + k + 1) + k | Γ | k) =

O ( | Γ | k(l f + k)). Summing over all function symbols g with arity greater than 0, we obtain the

bound O (min( | Γ | k max (l + k max | F | ), (l + k max)2l k max )) on the total cost of constructing all transi-

tion maps. Analysis for Chase’s algorithm follows similar logic.

3 and 4. Follows from previous analysis. �

The fine analysis in parts 1 and 2 of the preceding theorem reveal our asymptotic advantage

over Chase’s algorithm. The following simple calculation illustrates our potential space advantage

hinted at in parts 3 and 4. When the SE_tree implementing Γ is a full binary tree with weight w at

each node, then wn = |Γ| and wp= | Γ | log | Γ | .

4. Elimination of gaps

A gap in the SE_tree represents a set of patterns which is not a match set. In the extreme case,

all the internal nodes except the root could be gaps. Thus it is useful to consider how to eliminate

gaps in order to save space.

Consider the SE_tree implementing SE_structure (PF, Γ, ., v). For convenience, we say a

pattern q labels a tree node x if x ∈ Γ-index (q). Thus, if Z is the set of patterns represented by a

node z in the SE_tree, then Z = {q ∈ PF | q labels an ancestor of z}.

We say a gap in the SE_tree is maximal if its parent is not a gap. The set of maximal gaps

can be computed efficiently if we add a parent pointer to each node in the SE_tree. We say an

SE_tree is compact if it has no gaps. If M is a finite set of patterns, we use glb (M) to represent the

most general pattern that is more specific than any pattern in M. Lemma 13 in the Appendix gives a

necessary and sufficient condition for the existence of glb (M).

Let T be an SE_tree implementing SE_structure (PF, Γ, ., v), and let T′ be the new SE_tree

that results from T due to the insertion of a new pattern p into PF using the on-line preprocessing

algorithm given in section 3.3. Assuming T is compact, we consider how to make T′ compact also.

We prove the following lemma:

LEMMA 5. If x is a gap in T′, then every descendant of x is either a gap or a leaf labeled by p.

Proof Let X be the set of patterns represented by x. According to Lemma 15 of the Appen-

dix, X is the match set of glb (X) before p is added to PF. After p is added, x becomes a gap, and X

is no longer the match set of glb (X). Thus X ∪ {p} must be the match set of glb (X), and glb (X) <

p. This implies that any match set containing X must also contain p. Now consider a descendant y
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of x in T′ that is not labeled by p. Let Y be the set of patterns represented by y. Then X ⊆ Y. Since p

is a new pattern, it only labels leaves. Thus Y does not contain p. Therefore Y is not a match set

with respect to PF ∪ {p}, and y is a gap in T′. �

If we label the maximal gaps by p, then p is automatically added to all the sets represented by

the gaps. As a result, each node whose parent is a gap should be deleted from Γ-index (p). If this

node is a new leaf, then it is not in any Γ-index after it is deleted from Γ-index (p) and must be

deleted from T′ also. Once this is done, every node in T′ represents some match set with respect to

PF ∪ {P}, and there are no gaps. Obviously, the deletion of leaves can be totally avoided if we do

not add them to T′ and Γ-index(p) in the first place.

In Section 3.2 recall the two cases for implementing the operation modify-range(∆, z). (1)

For each range element y ∈ f[∆] whose preimage is entirely contained in ∆, we execute a replace

operation y with:= z on Γ. (2) For each element y ∈ f[∆] not handled in case (1), we execute an

add operation Γ with:= y with z.

We call this implementation from Section 3.2 the basic implementation. To avoid introduc-

ing any gap into the SE_tree, we should handle Case (1) differently: for each range element

y ∈ f[∆] whose preimage is entirely contained in ∆, we mark y as a gap; for each maximal gap g,

we execute a destructive replace operation g with:= z on Γ. Case (2) is handled as before. This

new implementation of modify range is called the compact implementation.

5. Adaptation to Simple Patterns

Hoffmann and O’Donnell [20] presented an algorithm tailored to the Simple subclass of pat-

terns for which the preprocessing time and space costs for bottom-up multi-pattern matching are

greatly reduced.

Definition: A pattern forest PF is Simple if for every two distinct patterns p, q ∈ PF, either

(1) p < q, (2) q < p, or (3) ∃/ subject t | t ≤ q and t ≤ p. A set P of patterns is Simple if its pattern

forest is Simple.

For Simple Patterns P Hoffmann and O’Donnell observed that the transitive reduction of the

partial ordering (PF, <) forms a directed tree (which they called the subsumption tree) with v at the

root (assuming that v occurs in PF). Each match set equals the set of patterns along some path in

the subsumption tree from a node to the root. And every path from a node to the root determines a

match set. Thus, there are only l match sets, and each one can be represented by its minimum pat-

tern. For a function f of arity k, the transition table θf uses O (l k) space, a great improvement over

the general case but still expensive. Hoffmann and O’Donnell have also argued that most sets of

patterns they have encountered in rewriting systems are Simple or can be turned into equivalent

Simple sets.
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Hoffmann and O’Donnell’s special purpose algorithm for Simple Patterns runs in preprocess-

ing time O(k max l 2+ | F | h l k max ) and space O(l 2+ | F | l k max ), where h is the height of the sub-

sumption tree. They also presented a test deciding whether a given set of patterns is Simple with

time O(k max l 2) and space O(l 2).

Our algorithm, presented in the preceding section, adapts favorably to problem instances in

the class of Simple Patterns. For Simple Patterns our incremental algorithm has better asymptotic

performance than Hoffmann and O’Donnell’s nonincremental special purpose algorithm.

COROLLARY 6. For Simple Patterns the preprocessing costs of our algorithm are

O(kmax l 2+(h +k max) l k max ) time and O(l k max (|F| + h) + (k max + 2k max ) l k max ) space. The space

bound can be improved to O(l k max (|F| + h) + k max l k max ) during matching.

Proof Since |Γ| = l for Simple Patterns Theorem 4 (1) says that the time contributed by all

conversion maps µ is O(k max l 2).

Next we determine the time contribution of the transition maps θ. When PF is Simple, each

match set, and so each Chase match set, is linear ordered in the subsumption tree. Thus, each Chase

match set can be represented by its minimal element, and there can be no more than |Π f
j | ≤ l f such

minimal elements for each f ∈ F, and each j = 1, ..., A (f ). Since PF is Simple, for any match set

m, |m| < h. Then by Theorem 4 (2.), the total time bound contributed by all transition maps θf over

all function symbols f∈F is O(
f ∈F
Σ (h +k max)l f

k max ) = O((h +k max)(
f ∈F
Σ l f)

k max ) = O((h +k max)l k max ).

By Theorem 4 (3.), the auxiliary space needed to store Γ is O(wn(Γ)) = O(l h). Since, by

preceding analysis, the size of each dimension of the array storing θf is bounded by l f , then the

space used to store all of the transition maps θ together with the threaded lists is roughly

O((k max + 2k max ) l k max ). Space 2k max l k max accounts for overallocating dynamic arrays, and can be

removed for matching. Since the space needed to store each conversion map µ f
j is O(l+wn(range

µ f
j)) = O(l+l f h), then the total space utilization for all conversion maps is roughly O(l k max (|F| +

h)). �

A slight modification to our algorithm further reduces the space needed to store Γ and each

conversion map to O(l) without sacrificing our time/space bounds for the general problem.

Let T be a compact SE_tree implementing the SE_structure (PF,Γ,.,v), and let T′ be the new

SE_tree that results from T due to the insertion of p into PF using the on-line preprocessing algo-

rithm described in section 3.3. Assume that PF is Simple. Then there are l nodes in T and l Γ-

index sets.

We say a node x in T (therefore also in T′) is affected if it represents a set X of patterns such

that X ∪ {p} is a new match set w.r.t. PF ∪ {p}. Note that if x is affected, then either x has a child

labeled by p in T′, or x itself is labeled by p in T′. An affected node x is maximum if all affected

nodes of T are descendants of x.
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We say an compact SE_tree is reduced if each of the tree nodes belongs to exactly one Γ-

index. Thus, if T is reduced, then each Γ-index contains exactly one node in T, and the total space

needed for the tree nodes and Γ-index sets is O(l). We assume that T is reduced, and consider how

to make T′ reduced in case PF ∪ {p} is also Simple.

LEMMA 7. If T is reduced, then the following properties hold.

1. If n 1 ∈ Γ-index (p 1) and n 2 ∈ Γ-index (p 2) are two nodes in T such that node n 1 is the

parent of node n 2 , then p 2 < p 1 .

2. T forms the subsumption tree of PF before p is added.

3. There exists a maximum affected node in T.

4. The maximum affected node is not a gap and not labeled by p in T′.

5. PF ∪ {p} is Simple iff all the affected nodes in T except the maximum one are either gaps

or leaves labeled by p in T′.

Proof

1. Since n 1 is the parent of n 2 , then there is a match set containing both p 1 and p 2 . Therefore

either p 1 < p 2 or p 2 < p 1 . Since n 1 represents a match set containing p 1 but not p 2 , then p 2 <

p 1 .

2. This follows immediately from Property 1.

3. Let n 1 and n 2 be two different affected nodes representing the two match sets N 1 and N 2

respectively before the insertion of p. Then the nearest common ancestor x of n 1 and n 2 represents

the match set X = N 1 ∩ N 2 . Since n 1 and n 2 are affected, then after the insertion, there is a match

set M 1 = N 1 ∪ {p} and another match set M 2 = N 2 ∪ {p}. Then M 1 ∩ M 2 = X ∪ {p} is also a

match set (see Lemma 16, Appendix). Thus x is affected. This means that the nearest common

ancestor of any two affected nodes is also affected, and there must be a unique maximum affected

node.

4. Let x be a node in T. Then x has a label q ≠ p. We need to show that if x is a gap or is

labeled by p in T′, then x cannot be the maximum affected node. Let X be the set of patterns in PF

represented by x before adding p. Before adding p to PF, X is a match set of q. After adding p, X is

no longer a match set. This means that X ∪ {p} is a match set of q. Therefore q < p, and there

must be some match set M that contains p but not q. Let m be the node in T′ representing M. Then

either m or its parent is affected. Since neither m nor its parent can be a descendant of x, then x is

not maximum.

5. ⇒ Suppose PF ∪ {p} is Simple. Let x ∈ Γ-index (q) be an affected node that is not a gap

and not labeled by p in T′. Then x has a child m labeled by p. According to the proof of property 1,

we have q > p. This means every match set containing p also contains q. Thus x is the maximum

affected node.

⇐ Suppose all the affected nodes except the maximum one m are either gaps or labeled by p.

Let x ∈ Γ-index (q) be a node in T′ such that q ≠ p. Then x is not a new leaf. We need to show that
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either (1) q > p, (2) q < p, or (3) p and q cannot be in the same match set. Consider the following

cases. If x is a proper descendant of m, then x is either a gap or a leaf on Γ-index (p). The proof of

property 4 shows that q < p in this case. If x is an ancestor of m, then any match set containing p

also contains q, and there is at least one match set (for example, the match set represented by x)

that contains q but not p. Thus q > p. Otherwise, x is neither an ancestor nor a descendant of m. In

this case, neither descendants nor ancestors of x are labeled with p. Therefore p and q cannot be

contained in the same match set. �

The proof of property 5 also tells us the position of p in the subsumption tree of PF ∪ {p} if

it is Simple: p must be a child of the pattern labeling the maximal affected node, and an ancestor of

patters labeling other affected nodes. The preceding discussion justifies the following new imple-

mentation of modify range(∆,z), which we call the reduced implementation:

If PF is simple and there is only one element m ∈ f[∆] whose preimage is not

entirely contained in ∆, we execute an add operation Γ with:= m with z and make

all the affected children of m the children of the newly created node. Otherwise,

PF ∪ {p} is not Simple, and we execute the compact implementation.

THEOREM 2. Whenever PF is simple, and the reduced implementation of modify range is

used, then the on-line preprocessing algorithm given in Section 3.3 maintains the invariant that the

SE_tree is reduced, and is consequently the subsumption tree.

Proof Follows immediately from Lemma 7. �

6. Pattern Deletion

Deleting patterns from P can be handled much like pattern addition, except that scheduling

pattern deletion from PF is in an outermost-to-innermost subexpression order. Further, a pattern is

deleted from PF only if it is not the argument of any pattern in PF. The deletion algorithm follows

the same logic as the addition algorithm but in a backwards order to undo the effect of addition.

To delete a pattern p from PF, we also need to modify the SE_tree for SE_structure (PF, Γ, P,

v), the range of the transition map θf , and the domains and ranges of all the conversion maps µ f
j . If

p has the form f (t 1 , ..., tk), we have to consider whether each ti , i = 1, ..., k, should also be

deleted. If p is the only pattern in PF with function symbol f whose ith child is ti , then we have to

delete ti from Π f
i , and then modify the SE_tree for the range of µ f

i and the domain of θf . If ti is not

in P and is not a child of any pattern in PF, then we should also delete ti from PF recursively.

First we show how to modify SE_trees. Since all the SE_trees can be handled the same way,

we will consider the SE_tree for SE_structure (PF, Γ, P, v) only. Let x be a node in the SE_tree

representing a match set X that contains p. After p is deleted from PF, x represents the match set X′

= X − {p}. The question is whether there is another node y in the SE_tree representing the same set

X′, and if so, how should we merge x and y.
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To answer this question, we need two additional fields for each node x in the SE_tree - (1) a

parent pointer parent (x) pointing to the parent of x, and (2) a label list field label-list (x) storing a

list of patterns in PF that label x. The label lists are initially empty. Each time a node x is added to

Γ-index (p), pattern p is added to the right end of label-list (x), and each time a node x is deleted

from Γ-index (p), p is deleted from label-list (x). The leftmost element of a list is called the head

of the list.

For convenience, we also use the following notations. We assign an integer age (q) to each

pattern q in PF so that if q is added to PF by the ith insertion and has not been deleted, then age (q)

= i. Thus, for any tree node x, the patterns in label-list (x) are in decreasing order of their ages from

left to right. We then define the age of a tree node x to be the age of head (label-list (x)). Thus it

makes sense to say that one node or pattern is younger or older than another. We say a node x is

normal if it is older than all its proper descendants and has a different age than any of its siblings.

It is not difficult to see that if all nodes in the SE_tree are normal, then different tree nodes

represent different sets of patterns. Thus, our main concern is how to keep every node in the

SE_tree normal after each deletion. The solution depends on the way that patterns are inserted.

We assume that the SE_tree is maintained by the basic implementation of modify range. In this

case, the youngest tree nodes are always the new leaves, and each internal node can get at most one

new child (which is a new leaf) for each new pattern added. Therefore the SE_tree resulting from

pure insertions has the following properties:

(1) all the tree nodes are normal;

(2) patterns labeling a parent are older then patterns labeling its children.

These two properties lead to the deletion algorithm described below.

Let p be the pattern just deleted from PF. Then we also delete p from the label list of each

node x ∈ Γ-index (p). If p is the head of label-list (x), then x becomes younger and may no longer

be normal. For each such possible non-normal node x with parent y, we store a pair [x, y] into the

set affected and temporarily detach x from y, leaving an SE_tree with only normal nodes. Then we

add the detached nodes back to the SE_tree one by one, making sure that no non-normal node

results from this addition:

procedure add_back();

for [x, y] ∈ affected loop

1 if label-list (x) = [] then

for c ∈ children (x) loop

make_child(c, y);

end loop;

else make_child(x, y);

end if;
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end loop;

end add_back;

On line 1, we find that label-list (x) is empty, which implies that x and its parent y represent the

same set of patterns. Consequently, we do not add x back to the SE_tree, but let y adopt all the

children of x. In this case, we say that x is merged into y. The procedure make_child (x, y) adds x

into children (y), and checks whether y has another child c having the same age as x. If there is

such a node c, x and c are combined. Care is taken to ensure that Property (1) and (2) are main-

tained for each tree node. Details are given below.

procedure make_child (x, y);

2 if ∃ c ∈ children (y) | age (c) = age (x) then

prefix := the longest common prefix of label-list (x) and label-list (c);

3 if label-list (x) = label-list (c) then

for z ∈ children (x) loop

make_child(z, c);

end loop;

elseif prefix = label-list (x) then

label-list (c) −:= prefix;

children (y) less:= c;

make_child(c, x);

elseif prefix = label-list (c) then

label-list (x) −:= prefix;

make_child(x, c);

else t := newnode ();

label-list (t) := prefix;

make_child(t, y);

label-list (x) −:= prefix;

make_child(x, t);

label-list (c) −:= prefix;

children (y) less:= c;

make_child(c, t);

end if;

else children (y) with:= x;

parent (x) := y;

end if;

end;

It should be clear that make_child(x, y) does not change the set of patterns represented by

either x or y, except in line 3, where we find that x and c represent the same set of patterns and

therefore merge x into c. Efficiency can be improved here if we merge the node having fewer chil-

dren into the other.
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Modifying the conversion maps and transition maps with respect to pattern deletion is much

easier than it is with respect to pattern addition. As in pattern addition, the task of modifying a

map consists of modifying the domain and range. To modify the domain of a map M, we simply

delete those merged nodes or tuples containing merged nodes from domain M. The space released

by this deletion can be put in a free list and reused later (when new nodes are added to the SE_tree

as a result of pattern insertion). To modify the range of a map M, we simply replace each merged

node x in range M by the node into which x is merged.

Analysis of procedure make_child is straightforward. The test on line 2 can be done in O (1)

expected time if children (y) are hashed by the head of their label lists. (Maintaining the hash

tables increases insertion costs by O (1) space per tree node and O (1) time per add operation.) If

this test succeeds, it takes another O(|prefix|) time to find the longest common prefix prefix. For this

cost, we reduce the total size of label lists and, therefore, the total size of Γ-indices by |prefix|. The

other costs are O (1) per invocation of make_child, where the total number of invocations is

bounded by the number of descendants of the nodes in Γ-index (p). Thus, we pay O (1) time for

each match set from which p is deleted plus O (1) time for each deletion of nodes from Γ-indices.

We have assumed that the basic implementation of modify range is used for pattern insertion.

If we want to use the compact implementation, then it may happen that an ancestor has a label

younger than some of its descendants’ labels. We can modify the procedure make_child to accom-

modate this situation, but we do not know how to bound the time complexity. Since in general, it

is not easy to check whether PF is Simple after each deletion, the reduced implementation can only

be used in a very limited way: once PF is no longer Simple, it will not be considered Simple again

until PF contains only one pattern v.

Finally, we want to make some comments on the effect of pattern deletions on the amortized

overhead of maintaining a dynamic array. Successive deletions of elements from the domain of an

array can make the array sparse. To improve the space utilization, we can halve the range of a

dimension whenever the load factor of that dimension is below one fourth. Using an argument

similar to the proof of Lemma 3, we can show that the amortized overhead due to an arbitrary

sequence of doublings and halvings of a k-dimensional array is still O(k) for each entry added to

the array starting from the unit array.

7. Space/Time tradeoff

In Chase’s algorithm, for each function symbol f ∈ F of arity k, the space required for map θf

could be Ω(2lfk). Here we give a method that decomposes θf into q maps with worst case space

O (q2lfk/q) but leads to time O (q) to solve the Bottom-Up Step.



-- --

- 31 -

For each f ∈ PF, let PF f be the set of subpatterns in PF of the form f (x 1 , ...,xk). Let PF f be

partitioned into q disjoint equal size sets PF f , 1 , ...,PF f ,q , and consider equations,

Π f , j
i = {ci: f (c 1 , . . . ,ck) ∈ PF f , j}

µ f , j
i = {[m, m ∩ Π f , j

i ]: m ∈ Γ}

θf , j = {[[m1 , ..., mk], m ]: m1 ∈ range µ f , j
1 , . . . , mk ∈ range µ f , j

k }

where m = {f (c 1 , . . . ,ck) ∈ PF f , j | ci∈ mi ,i =1,...,k} ∪ {v}

We modify the Bottom-Up Step as follows. Let t = f (t 1, ..., tk) be a subject tree. Instead of com-

puting one Chase match set ms(ti) for each child ti of t and one Hoffmann and O’Donnell match set

(H-O match set) MS (t) for t, we compute q small Chase match set ms1(ti), ..., msq(ti) for each

child ti of t and q small H-O match set MS 1(t), ..., MSq(t) for t as follows:

msj(ti) = µ f , j
i (MS (ti))

MSj(t) = θf , j(msj(t 1) , ..., msj(tk))

Then we compute the H-O match set MS (t) = MS 1(t) ∪ . . . ∪ MSq(t). This disjoint union

can be computed in O (q) time either by hashing or by table-looking. If table-lookup is used, we

need a union table Tf that maps the tuple [MS 1(t), ..., MSq(t)] to the union

MS 1(t) ∪ . . . ∪ MSq(t). Since MSj(t) ⊆ PF f , j , and | PF f , j | ≤ l f /q, then the size of the Tf is

O ((2lf /q)q) = O (2lf ).

Consider the space required by θf tables. If r f , j
i = | range µ f , j

i | , then r f , j
i = O (2 | Π f , j

i | ) =

O (2 | PFf , j | ) = O (2lf /q), and | θf , j | = O (r f , j
1 ×...×r f , j

k ) = O (2lfk/q). Thus, the total space storing the q

θf tables is O (q2lfk/q), which for q > 1 is asymptotically better than Chase’s algorithm in the worst

case.

Space for other data objects are as follows.

1. SE_tree for the ranges of θ tables. Since each set x in range θf , j is a subset of PF f , j , then

|range θf , j | = O (2 | PFf , j | ) = O (2lf /q). Thus the space of the SE_tree encoding range θf , j is

O (2lf /q l f /q). Since there are q such SE_trees for f, then the space for all these SE_trees is

O (l f 2lf /q). If the partition method is not used, we have one SE_tree encoding range θf which

takes O (2lf l f) space.

2. Similarly, the SE_tree for range µ f , j
i takes up O (2lf /q l f /q) space. There are k q such trees

for f with O (l fk 2lf /q ) cumulative space bound.

3. The space for µ f , j
i is O (Γ) = O (2l). There are q k such maps for f, occupying O(qk 2l)

space altogether..

In summary, the total space for each function symbol f is O (q k 2l + l f k 2lf /q + q2lf k /q).

When q =
log k + l

l f k� ������������� , we obtain the approximate minimum O (l fk
2 2l / l). Summing over all
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function symbols, we get the overall space bound O (kmax
2 2l).

This upper bound can be further improved by reducing the size of µ maps and the union

tables. Let PF f , PF f ,i , Π f , j
i , and θf , j be defined as before. We split each map µ f , j

i into smaller

maps µ f , j
i, α , with domain µ f , j

i, α = range α, where α = θg,s , g ∈ F, s = 1, ..., q. The size of µ f , j
i, α is

O(|range α|) = O(2lg /q). Summing over all g ∈ F, s = 1,...,q, j = 1,...,q, i = 1,...,k, and f ∈ F, we

get an upper bound O(k max q 2 | F | 2l /q) for the total space needed for the µ tables.

Because of this splitting, the Bottom-Up Step should be modified accordingly. Let

f (t 1, ..., tk) be a subject tree. Assume that ti = gi(...). As before, we split the H-O match set MS (t)

into q small H-O match sets MS 1(t), ..., MSq(t), and split each Chase match set ms (ti) into q small

Chase match sets ms1(ti), ..., msq(ti). The small H-O match sets are computed as before:

MSj(t) = θf , j(msj(t 1), ..., msj(tk))

but the small Chase match sets are computed differently:

msj(ti) = msj, 1(ti) ∪ . . . ∪ msj,q(ti)

where msj,s(ti) = µ f , j
i, β(MSs(ti)), β = θgi ,s . Again, the disjoint union msj, 1(ti) ∪ . . . ∪ msj,q(ti) can

be computed in O (q) time either by hashing or table-lookup. This increases the time per step to q 2 .

If table-lookup is used for the disjoint union, then we need a union table T f , j
i,gi to map the tuple

[msj, 1(ti), ..., msj,q(ti)] into the union msj, 1(ti) ∪ . . . ∪ msj,q(ti). Let γgi ,s = PFgi ,s ∩ Π f , j
i , and

let γgi = PFgi ∩ Π f , j
i . Since msj,s(ti) = µ f , j

i, β(MSs(ti)) ⊆ PFgi ,s ∩ Π f , j
i = γgi ,s , then the size of T f , j

i,gi

is O(2
| γgi ,1 |

× ... × 2
| γgi ,q |

= O(2
| γgi ,1∪ . . . ∪γgi ,q |

= O(2
| γgi |

). Summing over all the function sym-

bols gi , we obtain the upper bound O(2 | Π f , j
i | ) = O(2lf /q) for the total space for the union tables of

the form T f , j
i,* . Summing this space further for j = 1,...,q, i = 1,...,k, and f ∈ F, we get upper bound

O(k max q 2l /q) for the total space for all the union tables, which is less than the space for the µ

tables.

The space for the SE_trees and θ tables are roughly as before. Thus the overall space is

O (k max q 2 l 2l/q + q2l k max /q).

Since this approach is meaningful only for step time complexities better than O (l), i.e.,

q = O (√�l ), the best upper bound we can get in this case is roughly O (√�l 2 c k √� l ) for some constant

c. This result also indicates that this approach is useful only when | Γ | >> 2√� l .

In a practical implementation it is not necessary for PF f to be partitioned into disjoint equal

size subsets. For example, we can let PF*, 1 be the set of patterns that are not children of any pat-

tern, PF*,i be the set of children of patterns in PF*,i −1 not contained in PF*, j , where

i = 1..maximum height of patterns, j < i. Then the maps µ f , j
i, α can be omitted for α = θg,s , where s

> j +1. Alternatively, we can let PF*,i be the set of all children of patterns in PF*,i −1 . Now the

size of each subset may grow, but the maps µ f , j
i, α can be omitted for all α = θg,s , where s ≠ j +1. It
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is an interesting question how to find a partition of PF that minimizes the map size for a fixed per

step time bound.

8. Match set elimination

Aiming for a bottom-up pattern matching method that utilizes space efficiently by avoiding

conversion and transition maps, Hoffmann and O’Donnell[20] investigated the subclass of binary

Simple Patterns; i.e., Simple Patterns in which the maximum arity of any function symbol is two.

Although greatly restricted, this class is interesting, because conventional arithmetic and operations

in combinatory logic have arity less than or equal to two. For binary Simple Patterns they gave an

algorithm requiring no transition maps, but uses O (l 2) space for both preprocessing and computing

MPTMP , O (l h 2) preprocessing time (recall that h is the longest path in the subsumption tree), and

O (h 2) time instead of O (1) time for the Bottom-Up Step (1).

Hoffmann and O’Donnell also considered reducing pattern forests to equivalent binary form.

For each function symbol f∈F where A (f ) > 2, introduce a new function symbol two f . Transfor-

mation T 1 replaces each f-pattern f (x 1 , ...,xk) in PF where k>2 by f (two f(x 1 ,x 2),x 3 , ...,xk).

Transformation T 2 applies T 1 repeatedly until it can no longer be applied.

The following lemma states without proof that transformation T 1 and, consequently, T 2 is

correct.

LEMMA 8. Let patterns p′ and q′ be formed from patterns p,q ∈ PF by transformation T 1.

Then p≤q if and only if p′≤q′.

Although it is correct, transformation T 2 may not always be usefully applied. Hoffmann and

O’Donnell showed that T 2 sometimes, but not always, preserves the Simple Pattern property. For

a counterexample, consider two patterns f (x 1 ,x 2 ,x 3) and f (y 1 ,y 2 ,y 3) in a Simple pattern forest

PF. If x 1>y 1 , x 2<y 2 , and x 3 is incomparable with y 3 , then the new pattern forest that results from

transformation T 1 would not be Simple, because of two f(x 1 ,x 2) and two f(y 1 ,y 2).

However, we can give an interesting class of pattern forests that remains Simple under

transformation T 2. A Simple pattern forest PF is Very Simple if for each k-ary function symbol

f∈F with k>2 and every two distinct f-patterns f(x 1 ,...,xk) and f(y 1 ,...,yk), we know that

∀ i =1,...,k-1 ((∀ j =1,..,i | xj≥yj) and (∃ j =1,..,i | xj>yj) ) → xi +1 </ yi +1).

LEMMA 9. Pattern forest PF is Very Simple if and only if the pattern forest PF′ that results

from transformation T 1 is Very Simple.

LEMMA 10. If a Binary pattern forest is Simple, then it is also Very Simple.

Proof If f (x 1 , y 1) and f (x 2 , y 2) are any two f-patterns in PF and x 1 < x 2 , then y 2 </ y 1 .

Otherwise, PF would not be Simple; that is, we would have f (x 1 , y 2) < f (x 1 , y 1) and f (x 1 , y 2) <

f (x 2 , y 2). �
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The preceding lemmas show that

THEOREM 11. The class of Very Simple Patterns is the largest subclass of Simple Patterns

for which transformation T 2 preserves Pattern Forests that are Simple.

We will give a bottom-up algorithm for binary Simple Patterns with O (l) space to compute

MPTMP and O (log l) time to compute the Bottom-Up Step. Our preprocessing time and space are

the same as that of Hoffmann and O’Donnell. The algorithm makes use of persistant search trees

[33], and we expect it to be fast in practice.

Let PF be the pattern forest for a set P of Simple Patterns, and let T be its subsumption tree.

Recall that for Simple Patterns each match set can be represented by the unique minimum pattern

in the set. If pi represents the match set for subpattern ti of the subject, i = 1 .. k, then the match set

for f (t 1 , . . . , tk) is represented by the pattern determined by the following formula:

(New Bottom-Up Step):

(4) min / ({v} ∪ {f (q 1 , . . . , qk) ∈ PF | qi ≥ pi , i = 1 .. k})

We call pattern f (p 1 , . . . , pk) the search argument for Step (4).

Consider any binary function f appearing in PF, and let f (p 1 , p 2) be the search argument for

Step (4). (We will not discuss unary patterns and constants, which are simpler subcases.) We want

to analyze (i) the worst case cost of performing Step (4); and (ii) the auxiliary space while execut-

ing Step (4).

An important observation is that, unlike patterns p 1 and p 2 , search argument f (p 1 , p 2)

might not belong to the subsumption tree T! Consequently, if we let 1 > v denote a new maximum

pattern, and if we define relation R = {[x, y ]: f (x, y) ∈ PF} ∪ {[1,1]}, then we can replace Step

(4) for search argument f (p 1 , p 2) more conveniently by,

(5) min / {[x, y ] ∈ R | x ≥ p 1 and y ≥ p 2}

If [1,1] is the answer to query (5), then v is the answer to query (4); otherwise, if [w, z] is the

answer to (5) for w,z≠ 1, then f(w, z) is the answer to query (4).

Expression (5) can be computed by locating the pair belonging to R of nearest ancestors of

nodes p 1 and p 2 with respect to subsumption tree T. This characterization is meaningful because

of Lemma 10.

In order to compute (5) efficiently, the difficulties of two dimensional ancestor testing and

searching within partially ordered sets need to be overcome. This is done by reducing the two

dimensional nearest ancestor search in tree T to single dimensional searching through a totally

ordered set. The essential idea is presented just below.

Let R{x} denote the set {y : [x, y ] ∈ R}, and let domain R denote the set Π f
1 = {x :[x,y ]∈ R}.

For each x∈ domain R, define set S(x) = ∪y≥xR{y}; for each z ∈S(x) define witness
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w(x, z) = min/{y ∈ R −1{z} | y ≥ x}

Then we can compute (5) by performing these three queries:

(6) i. q 1 = min /{x ∈ domain R | x ≥ p 1}
ii. q 2 = min /{y ∈ S (q 1) | y ≥ p 2})
iii. q 3 = w (q 1 , q 2)

If either q 1 or q 2 equals 1, then v is the answer to query (4); otherwise, the answer is f (q 3 , q 2).

The three queries (6) reduce computation (5) to finding single dimensional nearest ancestors

and computing and storing sets S (x). Nearest ancestors in trees can be computed efficiently based

on the following idea. Let pre (i) and des (i) be the preorder number and descendant count of node i

in tree T. Then node i is an ancestor of node j iff pre (i) ≤ pre (j) < pre (i) + des (i); also, if i and k

are both ancestors of j, then i is nearer than k to j iff pre (i) > pre (k).

Let Q be any subset of the nodes in T. Then for any node p in T, we can compute

(7) min /{x ∈ Q | x ≥ p}

whenever a solution exists by finding the node i in Q with maximum pre (i) such that

pre (i) ≤ pre (p) < pre (i) + des (i). To facilitate this computation we can preprocess Q as follows.

For all i in Q define function find (pre (i)) = i. Also, for all i∈Q, whenever there is no j∈Q such

that pre (j) = pre (i)+des (i), then we define find (pre (i) + des (i)) to be the nearest ancestor k of i

belonging to Q; i.e., the node k∈Q such that pre (k) is the maximum for which

pre (k) ≤ pre (i) + des (i) < pre (k) + des (k). Hence, (7) can be solved by computing find (z), where

z is the greatest element in domain find such that z ≤ pre (p).

We can store domain find as either a red/black tree [16, 36] or Willard’s variant of the Van

Emde Boas priority queue[37, 38] and obtain the following time/space bounds. Both data struc-

tures use space O ( | Q | ). Computing query (7) costs O(log |Q|) time with red/black trees, and

O(loglog l) time with priority queues (where l is the number of nodes in T).

Based on the preceding analysis, we can perform query (6), (i.) with O (l) cumulative space if

we store all of the domains of find maps for each binary function f∈F either as red/black trees or

Van Emde Boas priority queues. Query time is O(log l f) using red/black trees, O(loglog l) with

priority queues.

To facilitate query (6), (ii.) and (iii.) we can combine witnesses and find maps as follows. Let

findx be the find map for S (x). Then define

findwx(z) = [w (x, findx(z)), findx(z)]

We can store all these findwx maps for each x∈Π f
1 using a minor variant of the persistent search

tree of Sarnak and Tarjan [33] (see also[11]). Recall that a persistent search tree can store a

sequence T 0 , T 1 , . . . , Tr of sets, where T 0 is empty in space O(s) in which s =
i =0
Σ
r −1

| Ti∆Ti +1 | and

∆ represents symmetric difference. It can also support the nearest neighbor operation
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pred (i, x) = max / {y ∈ Ti | y ≤ x} in O (log s) worst case time.

Consider the sequence [findwx: x∈Π f
1] of maps ordered according to a preordering of Π f

1

relative to the subsumption tree (where the empty set is implicitly the first member of the

sequence). Let us store this sequence in a persistent search tree using domain values of the findw

maps as keys. Since the sum of the sizes of the symmetric differences of successive maps in the

sequence is bounded by O(
x∈Π f

1
Σ |R{x}|) = O(l f), then query (6) (ii.) and (iii.) can be solved in time

O(log l f). If q 1 is the answer to query (6) (i.), then the pair [q 3 , q 2] = findwq 1 (z) solves queries (6)

(ii.) and (iii.), where z is the greatest element in domain findwq 1 such that z≤pre (p 2). The cumu-

lative space for storing findw maps in persistent search trees for all the binary functions f∈F is just

O (l).

Preprocessing for solving (6) involves constructing the subsumption tree T and computing

preorder and descendant numbers (pre and des) for each of its nodes. Hoffmann and O’Donnell’s

Algorithm A[20] decides whether PF is Simple and computes the transitive closure of T in time

O(l 2k max) and space O(l 2). It is straightforward to modify their algorithm to decide whether PF is

Very Simple and to produce T without changing the theoretical complexity. Once T is available,

pre and des can be computed in O(l) steps (since T has l nodes).

Preprocessing for (6) (i.) involves computing find maps over set Π f
1 for each function symbol

f∈F. If Π f
1 is preordered with respect to T, we can compute the find map for f as follows. Pass

through Π f
1 in linear time, defining find (pre (x)) to be x for each x∈Π f

1 encountered. Recall that

we also need to compute the nearest ancestor of x in Π f
1 to be assigned to find (pre (x)+des (x))

whenever pre (x)+des (x) is not the preorder number of some node y∈Π f
1 . These ancestors can be

computed by stacking the anticipated number pre (x)+des (x) together with the ancestor of x while

searching through Π f
1 . It may be helpful to think of the algorithm as processing numbers pre (x)

as left parentheses (which are all distinct) and pre (x)+des (x) as balancing right parentheses (which

need not be distinct for different values of x). Details are given below.

--Initialize ancestor to be the artificial top element of all nodes in T

--whose preorder number is less than old_num = l +1; its ancestor

--old_ancestor is undefined

ancestor := 1

--Handle left boundary of T using 0 as an artificial preorder number

find (0) := ancestor

old_ancestor := undefined

old_num := l +1

stack := [old_ancestor,old_num]

for x∈Π f
1 loop

(while old_num<pre (x))
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--old_num is the pre (y)+des (y) for some node y whose nearest ancestor

--is old_ancestor

find(old_num) := old_ancestor

pop stack

ancestor := old_ancestor

[old_num,old_ancestor] := top stack

end

if old_num=pre (x) then

pop stack

ancestor := old_ancestor

[old_num,old_ancestor] := top stack

end

find (pre (x)):=x

if old_num≠pre (x)+des (x) then

--This test guarantees that old_num values in successive stack entries must

--be distinct

old_num := pre (x)+des (x)

old_ancestor := ancestor

push [old_num,old_ancestor] onto stack

end

ancestor :=x

end

(while old_ancestor≠undefined)

-- Process remaining right boundaries

find (old_num):=old_ancestor

pop stack

[old_num,old_ancestor] := top stack

end

Algorithm Compute_find

Algorithm Compute_find runs in O(l f) steps. If we fold in the code to store domain find in a

red/black tree, the preprocessing time is O(l flog l f). In a single preorder traversal of T, we can

preorder the elements of Π f
1 for all functions f∈F in O(l) time. The total preprocessing time to

compute red/black trees storing find maps for all of the function symbols together is then

O(l log l). Using Willard’s data structure instead takes expected time O(l log l) or worst case time

O(l 2log l), because it depends on perfect hashing[13].

Preprocessing for (6) (ii.) and (iii.) involves computing findwx maps over sets S (x) for each

x∈Π f
1 . We compute these maps according to a preorder search through Π f

1 . Suppose that y comes

immediately after x in the preordering of Π f
1 . Suppose also that findwx is computed for set S (x).

Our goal is to compute findwy for set S (y) by performing modifications to findwx. It suffices to
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consider two cases: (1) where y is a proper descendant of x in T, and (2) otherwise.

If y is a proper descendant of x, then S (y) = S (x)∪R{y}. In this case we can compute findwy

by first computing the find map local_find for R{y} using Algorithm Compute_find. By Lemma

10 we know that no element in R{y} is a proper ancestor of any element in S (x). Hence, for each

z ∈ domain local_find, if local_find (z) ≠ 1, we perform the update findwx(z) := [y, local_find (z)],

where y will always be a new witness; otherwise if local_find (z) = 1, we perform a nearest neigh-

bor query a = max/{u ∈ domain findwx | u ≤ z}, and assign findwx(a) to findwx(z). The map that

results from these operations is findwy.

If we assume that dummy value 0 is the first element in Π f
1 in which S (0) and findw 0 are

both empty, then the preceding approach for case (1) can be used to compute the first findw map in

our sequence. To handle case (2) in which y is not a proper descendant of x, we first find the

closest proper ancestor u of y in Π f
1 , where dummy value 0 is regarded as a proper ancestor of

every other node. Next, we update findwx to form a copy of findwu . Finally, we update the copy

of findwu to obtain findwy using the method for case (1).

More specifically, let ∆ be the union of the sets ({pre (i):i∈R{y}} ∪

{pre (i)+des (i):i∈R{y}}) for all y coming after u among the preordered elements of Π f
1 such that y

is an ancestor of x. Then for each z∈∆, if it belongs to the domain of findwu , assign findwu(z) to

findwx(w); otherwise, remove z from domain findwx. This step turns findwx into a copy of findwu .

Map findwy is obtained by further modifying findwx according to the method for case (1).

If we use a persistent red/black tree, the total preprocessing costs to compute and store maps

findw for function f are O(l f) space and O(l flog l f) time. The cumulative preprocessing costs to

compute these maps for all functions f∈F is thus O(l) space and O(l log l) time.

Summing up the preceding discussion, we have

THEOREM 12. Bottom-Up Step (4) can be computed for binary Simple Patterns in O(log l)

time and O (l) auxiliary space. Total preprocessing costs are O(l 2) time and space.

The reduction of Very Simple pattern forests PF to binary form introduces O(|F|) new func-

tion symbols and O(k max l) new subpatterns. The cost of the Bottom-Up Step is approximately

doubled, while the theoretical complexity for preprocessing remains unchanged.

The time bound for Theorem 12 can be improved to O ((loglog l)2) by using a persistent form

of the Van Emde Boas queues to answer queries of type (6) (ii.) and (iii.). These queues can be

made persistent by applying the results of Dietz[8]. Dietz’s result gives as an immediate corollary

that the Van Emde Boas structure can be made persistent at a time cost of a factor of loglog l per

operation. The time for lookups is worst-case; the preprocessing time (to build the data structure)

is expected, because it depends hashing[9, 13] to keep the space down. The space bound remains

O(l). The expected preprocessing time is O(l (loglog l)2).
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9. Conclusion

We believe that a deeper analysis and exploitation of the structure of pattern matching can

lead to further algorithmic improvements. It might also be worthwhile to consider hybrid pattern

matching methods that combine our different algorithms. The main open problem in the method of

match set elimination is to compute the subsumption tree T in better time and space than Hoffmann

and O’Donnell’s Algorithm A. Of course, this method would also benefit from improvements in

construction time for persistent Van Emde Boas priority queues. In a subsequent paper we will

report how to extend our algorithms to a more complex pattern language, which is used to perform

semantic analysis within RAPTS.
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Appendix: Pattern Algebra

Let U be the set of all possible patterns. Let ≥ be the more general than relation between pat-

terns. The relation ≥ is reflexive, transitive and antisymmetric. Thus (U, ≥) is a partial order. It is

easy to see that any subset S of U has a least upper bound lub(S) in U. Thus, U is a join lattice with

v being the maximum element. But it is not a lattice.

Two patterns in U are said to be compatible if they have a lower bound in U. We can show

that

LEMMA 13. A finite set of patterns P has a greatest lower bound glb (P) in U iff these pat-

terns are mutually compatible.

Proof The only if part is trivial. We need only to prove the if part.

Basis: P contains at least one leaf x. If x = v, then glb (P) = glb({x, glb(P − {x})}) = glb(P -

{x}). If x is a constant, then glb (P) = x.

Induction: Suppose that all patterns in P have the same function symbol f with arity k > 0.

Then glb (P) = f(glb({x 1: f(x 1 , ..., xk) ∈ P}), ..., glb({xk: f(x 1 , ..., xk) ∈ P})). �

Let PF be any finite subset of U. A subset M of PF is called a match set (wrt PF) if there is a

pattern t in U such that M = { x ∈ PF | x ≥ t }. By the definition of match set and compatibility we

have,

LEMMA 14. If M is a match set, then the patterns in M are mutually compatible. �

LEMMA 15. M is a match set wrt PF iff M = { x ∈ PF | x ≥ glb(M)}, i.e, iff M is a match set

of glb(M) wrt PF.

Proof The if part is trivial. Consider the only if part. Since M is a match set wrt PF, then

there is some t ∈ U such that M = { x ∈ PF | x ≥ t }. Since glb(M) ≥ t, then M = { x ∈ M | x ≥

glb(M)} ⊆ { x ∈ PF | x ≥ glb (M)} ⊆ { x ∈ PF | x ≥ t} = M. �

LEMMA 16. If M 1 and M 2 are two match sets wrt PF, then M 1 ∩ M 2 is also a match set wrt

PF.

Proof Since M 1 and M 2 are two match sets wrt PF, then M 1 = { x ∈ PF | x ≥ glb (M 1)}

and M 2 = { x ∈ PF | x ≥ glb (M 2)}. Therefore

M 1∩M 2

={x ∈ PF | x ≥ glb (M 1) and x ≥ glb (M 2)}

={x ∈ PF | x ≥ lub ({glb (M 1), glb (M 2)})},

which is a match set. �
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