M or e Efficient Bottom-Up Multi-Pattern Matchingin Trees?!

J.Cai?andR. Paige® and R Tarjan*
Dept. of Computer Science Dept. of Computer Science and NEC Research Institute

NY U/Courant Institute Princeton University 4 Independence Way
New York, NY 10012 Princeton, NJ 08540 Princeton, NJ 08544
ABSTRACT

Pattern matching in trees is fundamental to a variety of programming
language systems. However, progress has been slow in satisfying a pressing need
for general purpose pattern matching algorithms that are efficient in both time and
space. We offer asymptotic improvements in both time and space to Chase's
bottom-up algorithm for pattern preprocessing. A preliminary implementation of
our algorithm runs ten times faster than Chase's implementation on the hardest
problem instances. Our preprocessing algorithm has the advantage of being on-
line with respect to pattern additions and deletions. It also adapts to favorable
input instances, and on Hoffmann and O’ Donnell’ s class of Simple Patterns, it per-
forms better than their special purpose algorithm tailored to this class. We show
how to modify our algorithm using a new decomposition method to obtain a
space/time tradeoff. Finally, we trade a log factor in time for a linear space
bottom-up pattern matching algorithm that handles a wide subclass of Hoffmann
and O’ Donnell’ s Simple Patterns.

1. Introduction

Pattern Matching in trees is fundamental to term rewriting systems [21], transformational
programming systems [4, 15, 18, 26, 30, 35], program editing and development systems[10, 23, 32],
code generator generators [14, 17, 19, 29], theorem provers [24], logic programming optimizers that
attempt to replace unification with matching [27], and compilers for functional languages such as
ML [34], and Haskell [22] that have equational function definitions.

1. Anearilier version of this paper appeared in[5].

2. Theresearch of this author was partially supported by National Science Foundation grant CCR-9002428.

3. Part of this work was done while this author was a summer faculty member at IBM T. J. Watson Research Center. The
research of this author was partially supported by Office of Naval Research grant N00014-90-J-1890.

4. The research of this author at Princeton University was partially supported by DIMACS (Center for Discrete Mathemat-
ics and Theoretical Computer Science), a National Science Foundation Science and Technology Center, grant NSF-
STC88-09648 and by the Office of Naval Research contract NO0014-87-K-0467.

-2-

This paper describes new solutions to a simple, basic kind of pattern matching problem of
wide application. The problem is specified formaly in terms of a partially ordered pattern
language. Given an alphabet >=F [1 {v} with one distinguished variable v and a finite set F of
function symbols, where each such symbol fOIF has arity A(f), then the linear pattern language for
> isthe smallest set of terms that include (i) v, (ii) constant c if ¢ is afunction symbol with arity O,
and (iii) f (pq, ..., px), which we call an f-pattern, if f is a function symbol of arity k>0 and its
argumentspq, ..., Pk are patternsin the language.

The set of subpatterns sub (p) of a pattern p is the smallest set that contains p, and, if pisan
f-pattern with A(f) > 0, then it also contains the subpatterns of the arguments of p. If g and p are
two different patterns and q is a subpattern of p, then p is said to properly enclose q. Thesizeof a
pattern p is the number of occurrences of alphabet symbolsin p.

Linear pattern matching is defined as follows. Pattern p4 is said to be more general than pat-
tern p,, denoted by p; = p,, iff either (i) pqisv, or (ii) py is f(X1, ..., X), P2 isf (Y1, ---, Vi) and
x 2y fori=1, .., k If pp =p,, weaso say that p; matches p, or that [p4, po] is a match. A
subsumption dag for a set of patterns P is adirected acyclic graph that represents the reflexive tran-
sitive reduction of the partial ordering (P,>). See the example illustrated in Fig. 1, where ais a
constant and f is a binary function symbol.

V.
/ \
a f(v, v)
f@v) (v, a)

f(a, a)
Fig. 1 Subsumption Dag

By the preceding definition variable v serves as a place holder during matching. Thus, testing
whether pattern p matches pattern g is equivalent to testing whether g can be formed from p by
replacing occurrences of vin p by patterns, each of which may be different.

In order to gauge performance of different pattern matching algorithms, it is useful to con-
sider the following basic problem:

M ulti-Pattern Matching Problem: Given afinite set P of patterns and a pattern t called the
subject, find the set MPTM (P,t) ={[p, ql: p O P, g Osub(t) | p=q} of al patternsin P match-

ing subpatterns of t.

-3-

This paper is concerned with linear pattern matching and with solutions to the Multi-Pattern
Matching Problem on a uniform cost sequential RAM [1,28]. More complex kinds of pattern
matching can be solved by extensions to our algorithms.

However, even for linear pattern matching, solving MPTM (P,t) efficiently seems to be
extremely difficult. The current best space-efficient top-down algorithm to solve MPTM (P,t),
where P contains asingle pattern of size| and subject t is of size n, takes O(n Vi polylog(l)) time, a
recent result due to Dubiner, Galil, and Magen[12], which improves Kosargu's earlier
O(n | ™ polylog(l)) time bound [25].

Bottom-up pattern matching seems to be even more difficult than top-down matching and is
of specia practical importance. In a seminal paper [20] Hoffmann and O’ Donnell presented
bottom-up linear pattern matching algorithms to solve MPTMp(t) for fixed P and subjects t without
variable occurrences. They broke up the problem into two parts - (1) preprocessing P, and (2) solv-
ing MPTMp(t). Their bottom-up solution to MPTMp(t) was further broken up into repeated solu-
tions to the following subproblem:

Bottom-Up Subpraoblem: Given solutionsto MPTMp(t) i =1, ..., k, solve MPTMp(f(t4, ...,
t))-

Of course, an efficient solution to the Bottom-Up Subproblem is important to bottom-up tree
rewriting, an application that concerned Hoffmann and O’ Donnell. They sacrificed time and space
in preprocessing P in return for an O(K) time solution to the Bottom-Up Subproblem (not counting
the time to produce output). Consequently, they obtained a O (n+0) time solution to MPTMp(t),
where 0 is the number of pairsin MPTMp(t), and n is the size of t. However, auxiliary space dur-
ing computation of MPTMp(t) was excessive [20] both in theory and in practice (see Chase's
empirical data[7]).

Hoffmann and O' Donnell’s work has stimulated a number of papers offering heuristic space
improvements [2, 3, 7, 31], and Chase’'s method has aroused considerable attention [7]. However,
none of these papers gave proofs of theoretical improvements or promising space/time tradeoffs.

In this paper we present three new theoretical results in bottom-up linear pattern matching.

1. At the end of his CAAP '88 paper [3] Burghardt called for an efficient algorithm for
preprocessing patterns P on-line with respect to additions and deletions of patterns. Such an algo-
rithm is needed in the RAPTS transformational programming system [4], because incrementally
modifying systems of rewrite rules is a frequent activity, and preprocessing full sets of patternsis
highly expensive.

In this paper we present an efficient pattern preprocessing algorithm that builds the data struc-
tures used in Chase's pattern matching algorithm in a new way. Our algorithm implements these
data structures on-line with respect to additions and deletions of patterns. When our algorithm is

-4-

applied repeatedly to solve batch preprocessing by adding one pattern at a time starting from the
empty set, it runs asymptotically better in time and space than Chase’ s batch algorithm.

Hoffmann and O’ Donnell obtained aworst case time bound of O(l 27 (kmaX+1)) for preprocess-
ing P and aworst case auxiliary space bound of O(l 2 I‘”‘ax) both for preprocessing P and for com-
puting MPTMp(t), where ko iS the greatest arity of any function symbol appearing in P. Based on
our coarse analysis, Chase's algorithm improved these bounds to O(l Ky 2 I('“ax) time for prepro-
cessing P, O((Kyax + kaa") 2 I(”“'1‘*) space for preprocessing P, and O(K 2 I‘max) space for com-
puting MPTMp(t). Based on the same parameterization, our algorithm has the same space bounds
as Chase but an improved O(l 2 I("‘ax) time bound for preprocessing P. Based on a more accurate
parameterization and deeper analysis of the problem, our agorithm can be observed to have amore
striking theoretical advantage over Chase' s algorithm.

Hoffmann and O’ Donnell presented a specia purpose algorithm tailored to the class of Sim-
ple patterns with polynomial worst case preprocessing time and space. Our algorithm adapts to
input instances in this class and performs better in both worst case asymptotic time and space than
their special purpose batch algorithm.

A prototype implementation of our algorithm is currently being used in the RAPTS transfor-
mational programming system [6] as the basis for searching, conditional rewriting, and static
semantic analysis. A preliminary C implementation of our algorithm outperforms Chase’s imple-
mentation of his algorithm on same data, machine, and compiler [7]; on the hardest problem
instances we obtain a ten-fold speedup. We believe that a more careful implementation of our
algorithm would show a more dramatic improvement.

2. Our first result is modified to obtain a general space/time tradeoff. Roughly speaking, for
parameter =1, we trade O(q?) in time to solve the Bottom-Up Subproblem in return for auxiliary
space O(l Ky q2 279 + 2! Kmax/d),

3. In bottom-up pattern matching, the main difficulty that sorely needs to be overcome is
space utilization. We present an algorithm for a subclass of Hoffmann and O’ Donnell’s Simple
Patterns that runsin O(l) space and O(log) time to solve the Bottom-Up Subproblem. A theoreti-
cal improvement to O(loglog 1) time for the Bottom-Up Subproblem is obtained using Dietz' s per-
sistent form[8] of the Van Emde Boas priority queue[37]. Previous bounds due to Hoffmann and
O’ Donnell are O(I %) time and space for an algorithm tailored to binary Simple Patterns (which our

Kmax+1

subclass properly includes) and O(l) space with O(k) Subproblem time for an algorithm han-
dling all Simple Patterns. Thus, we offer a quadratic space improvement over the latter algorithm
for binary patterns and even more dramatic improvement for patterns of greater arity. Our space

compression is obtained by applying persistent data structuresin anew way.

-5-

This paper isorganized asfollows. 1n the next section we discuss Hoffmann and O’ Donnell’s
and Chase's solutions to multi-pattern matching. After that we present our on-line preprocessing
algorithm, its adaptation to Simple Patterns, handling deletions, and a general space/time tradeoff.
In the final section we present our third result, which deviates significantly from the earlier stra-
tegies of either Hoffmann and O’ Donnell or Chase.

2. Algorithmsfor Bottom-up pattern matching

2.1. Notation

In addition to standard mathematical notation it will sometimes be convenient to use certain
unconventional terminology. We let expression A with x abbreviate set element addition A O {x}
(where in this context A is interpreted as the empty set if it is undefined). Likewise, A less x
represents set element deletion A - {x}. If fis abinary relation, then domain f = {x: [x,y] O f},
range f = {y: [x,y] O f}, and f denotes the inverse map {[y,x]: [x,y] O f}. Also, f(x) denotes
function application (undefined if f is multi-valued at x or if x [domain f), f{x} denotes multi-
valued map application with value {y: [x,y] O f}, and f[§ denotes the image of set Sunder f with
value {y: [x,y] O f | x O S. The number of elements in afinite set Sis denoted by |§. If fisa
binary relation (perhaps a function), then the number of pairsin its graph representation is denoted
by |f|. If opisany binary, associative, and commutative operator, and S={ X4, ..., X) iS a set, then
the APL-like reduction notation op/S denotes expansion x4 op ... op X, with an arbitrary ordering of
arguments. For example, /S = T%s T. If Sis a set, we use the for-loop notation for xS loop

block (x) end to execute block (x) repeatedly for each value xS without repetition. Finally,
assignment A op:= X is used to abbreviate A := A op x.

2.2. Hoffmann and O’ Donnell’s Bottom-Up Algorithm

Bottom-up solutions presented by Hoffmann and O’ Donnell and Chase treat the set P of pat-
terns as fixed and the subject t (which for them has no variables) as the only parameter that can
vary. In a bottom-up strategy to solve the Multi-Pattern Matching Problem, a complete set
MPTMp(q) of matches is found for each subpattern g of t without reference to any subpattern of t
that properly encloses g.

Hoffmann and O’ Donnell explain their multi-pattern matching algorithm in terms of the fol-
lowing two notions. If P is a set of patterns, then the pattern forest PF of P is the set of subpat-
terns of al the patternsin P. If PF is the pattern forest for a set P of patterns and t is the subject,
then the match set MS(t) for t isdefined by therule MS(t) ={q O PF | q > 1t}.

-6-

Hoffmann and O’ Donnell use an equivalent recursive definition of match sets (but restricted
to subjects without variable occurrences) to obtain an efficient bottom-up algorithm. The recursive
rules shown below add a new rule for M§v) to Hoffmann and O’ Donnell’ s rules so that match sets
can be defined for arbitrary patterns.

M) = {v}

MS(c) = {v}, when constant c] PF

{v,c}, when constant ¢ [J PF

Q) MS(f (tq, ... &) ={f (@1, ..) OPF | g OMS(t;),i =1, ..., k} O{v}
Surprisingly, this new rule is merely aformalism, since it gives rise to the exact same collection of
match sets as derived by Hoffmann and O’ Donnell. This is true, because the match set MSp) for
an arbitrary pattern p isidentical to the match set MS(t) for any pattern t formed from p by replac-
ing occurrences of vin p by occurrences of arbitrary constants that do not belong to PF.

After determining match sets for constants and variable occurrences in subject t, Hoffmann
and O'Donnell’s algorithm solves the Bottom-Up Subproblem by identifying the match set for
each subpattern f(tq, ..., t) of t based on the match setsfor t;, i =1, ..., k. Thistask, which we call
the Bottom-Up Sep, computes expression (1) by an O(K) time lookup in ak-dimensional array stor-
ing transition map 15, where 14(MS(t4), ..., MS(ty)) = MS(f(t 4, ..., t)).

For consistency, throughout this paper we consider an instance of the Multi-Pattern Matching
Problem with pattern set P, pattern forest PF, and subject t. We aso use the following parameters:

n=szeof t

I" = the set of match setsfor P

| =|PF |

0= |[MPTMp(t)|

Kmax = maximum arity of any function symbol appearing in PF

In order to compute Step (1) and print the set MS(f (t4, ..., t)) n P of patterns that match
f(ty, ... t) intime Ok + [MS(f (t4, ..., t)) n P [), Hoffmann and O’ Donnell preprocess the pat-
ternsin P to

i encode each pattern in PF as a distinct integer from 1 to |, and represent patterns as
trees in the obvious way (implemented in compressed form as dags);

ii. compute all match sets, and encode each such set asa distinct integer from 1to | |;

iii. compute the subset of patternsin P belonging to thei™ match set fori =1, ..., | |;

iv. compute a transition map 1 for every k-ary function symbol f occurring in P so that
T#(MS(ty), ..., MS(t))) = MS(f (t4, ..., t)); Ty ={Vv}, and 1. ={v, ¢} if cisany constant
appearing in PF; transition maps t; are implemented as k-dimensional arrays accessed
using integer encodings of match sets.

After preprocessing the patterns in P, Hoffmann and O’'Donnell’s algorithm solves the
Multi-Pattern Matching Problem by repeatedly solving Step (1) from innermost to outermost sub-

pattern of t. Their worst case time is O (n + 0) after preprocessing P. The array storing the transi-
tion map T for each k-ary function symbol f appearing in PF uses Q(|I|*) space, where the

-7-

number || of match sets can be Q(2'), which is expensive in practice. Their rough bound on

preprocessing time is O (12 | T | “m*1),

2.3. Chase'sI mprovement

Chase was able to improve Hoffmann and O'Donnell’s method by exploiting the deeper
structure of the pattern set P to reduce the size of transition maps [7]. Chase' s heuristic is Slower by
a constant factor but preservesthe O (k) asymptotic time for solving the Bottom-Up Subproblem.

Let PF be the pattern forest for P, and assume that PF contains variable v. For each k-ary
function f appearing in PF and eachi = 1, ..., k, Chase introduced projection Mt = {q;: f (q1, .., k)
0 PF} containing the set of patterns appearing as the i " argument of some f-pattern in PF. Chase
made the crucial observation that identity (1) could be replaced by

2 MS(f (t1, ... t)) ={f (A1, ... q) OPF | g O MS(t) n M}, i =1, ...,k O{v}
which gives rise to amodified Bottom-Up Step with improved auxiliary space.

Chase’ s Bottom-Up Step to compute (2) involves two substeps. First a conversion map uif is
used to turn each Hoffmann and O’'Donnell match set MS(tj) into a Chase match set
HE(MS(t)) = MS(t) n M} for i =1, ..., k. If any of these Chase match sets are empty, then
MS(f (tq, ..., t)) = {v}. Otherwise, Chase's transition map 6; is used to obtain the Hoffmann and
O’ Donnell match set 6;(uf (MS(t1)), ..., u']f(MS(tk))) = MS(f (tq, ..., t)). Chase’s implementation
uses integer encodings for both kinds of match sets, one-dimensional arrays to implement each
conversion map uif, and a k-dimensional array for 6.

A straightforward set theoretic argument can be used to explain why Chase's transition map
utilizes space better than Hoffmann and O’ Donnell’s. Whenever every Chase match set p(MS(t;))
is nonempty i=1,..,k we know that identity O;uF(MS(ty)), ..., H¥(MS(t)) =
1¢(MS(t1), ..., MS(t)) holds. Consequently, if pt} is not one-to-one for some i, we know that 8| <
[t¢]. The essential idea may be simply put: for any two finite functions h and g where g is not one-
to-one and domain h O range g, then |h| < |h°g|.

Chase aso provided extensive empirical evidence to show that 8¢ is much smaller than 15 in
practice. Consider the example in Fig. 2. The Chase match sets associated with the first com-
ponent of f are ¢, = {1} and c, = {1,2}; the Chase match sets associated with the second com-
ponent of f ared, = {1} and d, ={1,2}. The Chase conversion and transition maps store 16 entries
compared with 36 entries in Hoffmann and O’ Donnell’ s transition map 1.

PF: v a f(av) f(v,a f(vv)
Encoding: 1 2 3 4 5

ro{n {12 {135 {1,345 {145 {15

Encoding: my ms ms my Mg Mg
1 2

Ut Mt B¢ ‘ dy ds
my C1 my dq C1 Mg Mg
mo Co mo d, Co ms mgy
mg C1 mg dq
My Cq My d;
Mg C1 Mg d;
Mg C1 Mg d;

Fig. 2 Chase' s Data Organization

3. Incremental preprocessing

We will present a preprocessing agorithm that incrementally constructs maps L and 6 and is
on-line with respect to modifications to P by adding or deleting patterns. When used to solve the
batch preprocessing problem for fixed P, our algorithm performs asymptotically better in time and
space than Chase's. It is convenient to specify our algorithm in terms of two abstract datatypes.

3.1. Abstract Sets

Thefirst abstract datatype is called a Set Encoding Structure (abbr. SE_Structure), whichisa
4-tuple (U, D, Q, 1) with finite universe U, primary set D [0 2", secondary set Q 0 U, and top ele-
ment t0U, where{t} O D, and every set within D contains t. For simplicity we will assume for
now that U and Q are fixed in order to focus on the more difficult problem of updating D. Later
when we show how SE_structures are used by our preprocessing algorithm, details on how they are
initialized and how to update U and Q will be supplied. Five operations on SE_structures are
described below. A sixth operation deletion will be described later in a separate section.

1. create: Initialize D. This operation is performed only once for an SE_structure before
any of the other operations below.

D:={{1}}

-9-

2. replace(d,2): Replaced 0 D by new set d with z, wherez O U, for which we write,
dwith:=z

3. add(d,2): Addnew set dwith zto D, whered [0 D and z 00 U; that is,
D with:=d with z

4. query(d): Retrievesetd n Q, whered [0 D.

5. index(c): Retrieveset{d 0D |c Od}, wherec O U.

We will implement SE_structures using a data structure called an SE_tree (see Fig. 3), whose
nodes correspond to distinct subsets of the universe U. Each set d, belonging to primary set D is
associated with anode x in the SE_tree; that is, X "encodes’ dy. The root encodes set {t}. However,
the set dy associated with a node x in the tree may not necessarily belong to D. If dy does not
belong to D, it is called agap. If dy and dy are sets associated with tree nodes x and y, then x is a
descendant of y in the tree only if d, [dy.

SE trees are implemented with two kinds of records - anode_record for each node in the tree
and a U_record for each symbol in U. We will sometimes avoid distinguishing a node from its
node record implementation. The node record for node x contains five fields: 1. a D field con-
taining 1 if thenodeisnot agap and O if itis, 2. asibling field with a pointer to the right sibling of
X, 3. asucc field with a pointer to the leftmost child of x, 4. a Q_query field storing a possibly
empty subset of Q, and 5. aQ_ancestor field with a pointer to the nearest ancestor in the tree with a
nonempty Q_query.

For each node x the value of the subset of Q stored in the Q_query field is denoted by
Q_query(x). The set isimplemented by a pointer to alist of pointersto U_records for each symbol
in Q_query(x). If dy represents the set associated with node x, then the value of the collection of
sets Q_query (y) for nodesy aong the path from x to the root are mutualy digoint, and their union
has the value query (x) =dy n Q.

The U_record for symbol ¢ has three fields: 1. a U field containing symbol ¢, 2. a Q field
with abit indicating whether ¢ belongsto Q, and 3. aD_index field storing the subset of tree nodes
x closest to the root such that the associated set dy, contains c.

We denote the subset of nodes associated with the D_index field in the U_record for symbol ¢
by D_index(c). It isimplemented by a pointer to alist of pointers to node records for each node
in D_index(c). Thus, the set of tree descendents of nodes belonging to D_index(c) has the value
computed by operation index(c) ={d O D |c O d}.

Fig. 4 illustrates how SE_trees compress the space needed to store match sets. Chase’s algo-
rithm stores fifteen pattern entries to represent the collection of match setsI™ in the example shown
in Fig. 2; our algorithm stores these same match setsin an SE_tree using only nine pattern entries.

-10-

- - - numeric
node D sibling succ ar(l%estor Q U -i
query code Q D-index
C—
o —
n 01 / c |01

Q-query(n)

D-index(c)

Fig.3 SE-Treeimplementing SE-structure(U, D, Q)

1 m;

Mg

Fig. 4 SE-treefor (PF, T, ., V)

The create operation D := {{1}} is implemented by adding a new tree root with empty
sibling, succ, and Q_ancestor fields, D bit on, and Q_query containing T if TJQ and empty if not.
Within the U_record for T we initialize D_index to a singleton set containing the newly created
root.

Implementing the replace operation d with:= z has two cases. In the first case, called a
nondestructive replace, the tree node x associated with d is not a leaf (i.e. succ is nonempty). In
this case (i) unset the D bit in x (which makes x a gap), and create a new tree node y as a child of x,
(i) if Q_query(x) is nonempty, then make the Q ancestor iny point to x; otherwise, make it point
to the same record that the Q_ancestor in x points to, and (iii) set the D bit iny. In the second case,
where x is a leaf, we reuse x to represent the new set d with z In this case, called a
destructive replace, we assume that nodes x and y are the same. In either case, if z belongs to Q,
add zto Q _query(y). Finally, add y tothe D_index(z2).

-11-

To implement the add operation D with:= d with z we let x be the tree node associated with
set d. Create a new tree node y associated with set d with z and make y the child of x. If
Q_query(x) is nonempty, then make the Q_ancestor iny point to x; otherwise, make it point to the
same record that the Q_ancestor in x points to, and set the D bit iny. If zbelongsto Q, add z to
Q_query(y). Finadly, addyto D_index(z).

The query operation d n Q isimplemented asfollows. If x isthe tree node associated with d,
then retrieve the elements in each Q _query set along the path starting from x following
Q_ancestors. Recall that the Q_query sets along this path are digjoint.

Finaly, SE trees support a straightforward implementation of the index operation
{dOD | cOd}. Formalist of records x (where set dy, belongs to D) occurring in subtrees rooted
in nodes belonging to D_index(c).

In order to analyze the complexity of SE_trees, we give the following definitions. For each
node x in an SE_tree, define path (x) to be the set of nodes in the tree path from the root to x.
Define weight (x) to be the number of elements u O U such that D_index (u) contains x. Define
wn(D) = > weight (X) to be the total weight of all the nodes in the tree that implements set

X is a tree node

D. Letting des(x) denote the number of tree descendants of x, we can define
wp(D) = > des(x)xweight (x) to be the sum of the weights of every tree path. Clearly,

X is a tree node

|D | swn(D) swp(D)< 2 3 |d|. Usualy, wn(D) is much smaller than wp(D).
d0D

LEMMA 1.

1. If D_index(c) is nonempty for every ¢ [U, then the total space required by an SE_treeto
implement an SE_structure (U,D,Q,1) is O(wn(D)). (Note that a naive representation of D can
reguire O(wp(D)) space.)

2. Operations create, replace, and add each take unit time and space. A sequence of | of
these operations requires O(j) space in the worst case.

3. Operation queryd n QtakesO(|d n Q]) time.

4. Operationindex{d O D | c Od} takesO(|{d O D |c O d}|) time.

Pr oof

1. The total space required by an SE tree is dominated by the space O(wn(D)) needed to
store all of the D_index sets.

2.-3. Trivial.

4. Within every subtree of an SE_tree the number of gapsis less than the number of nodes
that are not gaps. This follows from the fact that only a nondestructive replace can create a gap,
and this gap aways has at least two children. Thus, no leaf can be a gap, and there are more leaves

-12 -

than internal nodes with at least two children. m

We will consider useful variants of SE_structures that require minor ateration to the preced-
ing implementation and do not affect the stated complexities. A Smple SE_structure is one with
no secondary set. A numeric SE_structure is one in which the set elements in the primary set D are
identified by natural numbers 1, ..., |D| (cf Fig. 5). Numeric SE_structures have special importance
in connection with our second abstract datatype described next.

3.2. Abstract Maps

The second abstract datatype used in our pattern matching algorithm is the SE_map, which is
apartia function f: D - Rfrom adomain set D to arange set R, where D and R are the primary sets
of two SE_structures. Let T be the top element of R's SE_structure, so that {1} O R. It is con-
venient to postpone saying how f is initialized until later, and focus on the following two map
operations:

1. modify range(l,2): Given aset A and an element z, where A 0 D, and z does not belong
to any set in R, add z to f (x) for each x belonging to A. This operation can modify
SE set Raswell asmap f. It isdenoted by,

for x 0 A loop

if x [domain fthen
f(x) :={1}

end

f(x) with:=z

end

2. modify domain(x,2): Given aset x in the domain of f, where (x with z) belongs to D but
not to the domain of f, map the new set x with z under f to the old image f (x). This
operation modifies f but not SE_sets D or R. It is denoted by,

f(x with 2) := f(x)
Our basic implementation of SE_maps f: D - R uses SE_tree implementations for D and R as
described above. In addition, whenever f(d) = r, if x and y are the node_records associated with

sets d and r, then in addition to the node _record fields previously described, x also stores a pointer
toy, and y also stores the size of the preimage set f™1{r}.

To implement modify range(4, z), we assume that the sets belonging to A are represented by a
linked list of nodesin the SE_tree. In asingle scan through A, we compute the subset A; of nodes
that do not belong to the domain of f. For each node x [0 A4, we store a pointer in x to the node y
associated with {1} O R, and increment the preimage count in'y. Next, in a second scan through A,
we form buckets A n f™1{y} and bucket-counts for each y 0 f[A]. This alows us to process the

-13-

elements of A efficiently, and to modify SE_set R according to two different cases. (1) For each
range element y [f[A] whose preimage is entirely contained in A (which occurs when the bucket-
count for y equals the preimage count for y), we execute areplace operation y with:= zon SE_set
R. (2) For each element y [f[A] not handled in case (1), we execute an add operation R with:=y
with z relink each element in A n f71{y} to the new set y with z, and modify preimage counts.

The modify domain(x,2) operation is only executed immediately after a set x in the domain of
f is modified by either operation add(x,2) or replace(x,z). The implementation is different in each
of these two cases. If x is maodified by replace(x,2), then deleting x from D implicitly removes x
from the domain of f. Hence, in this case, which we call an implicit modify domain, the implemen-
tation is vacuous. However, if x is modified by add(x,2), then we need to explicitly modify f by
linking the new domain element x with zto the old range element f(x) and increment the preimage
reference count.

Anaysis of the preceding implementation of SE_maps is straightforward and follows
immediately from Lemma 1

LEMMA 2.
1. Thetime to execute modify rangeis O(|A]).

2. Implicit modify domain operations cost nothing. A modify domain operation that is not
implicit takes O(1) time.

If D is the primary set of a numeric SE_structure, it is sometimes useful to implement
domain f as an array, accessed using the numeric code of aD element as shown in Fig. 5. Thisidea
is extended to multi-dimensiona arrays used to implement the domain of a multi-dimensional
SE map f /?gl)Di - R, where, for i=1,..,A(f), D; is the primary set of an SE_structure. In this
case, where f has arity k>1, we include a dimension parameter i in operation modify
domain; ([X1,...,%], 2 to map f under [X4,..,% with z,..,x] to the old image f (X4,...,Xc). We aso
assume a precondition that [X1,...,%] O domain f, [X4,..,% with z,..,x] @ domain f, and x;, with z
0D;.

The preceding algorithms adapt readily to these array implementations. However, since the
domains of SE_maps can be augmented, we must account for overhead costs in maintaining these
arrays dynamically. We implement dynamic multi-dimensional arrays by generalizing the method
of unit-time array initialization found in the solution to exercise 2.12 of Aho, Hopcroft, and
Ullman’s book[1]. Their method permits a one-dimensional array of size sto double its size in unit
time if growth space exists. If there is no growth space, we can initialize a new array of size 2sin
unit time and then copy the old array into the new array in s steps. A multi-dimensional array that
needs to double the size of one of its dimensions can be reduced to the one-dimensiona case.
However, if the dimension that doubles can vary, then we cannot assume that growth space is ever

-14 -

available.

Consider ak-dimensional array Q, whereindex valuesin dimensioni fori=1,...,k range from
1ltor;, and Qisfilled with entries (i.e. from the SE_map domain) only for index values from 1 to
e<r;. Thus, Qhassizerx---xr, andisfilled with e;x - - - xg, entries. Consider a single opera-
tion extend;, which isimplemented by the following two steps:

1. If ¢ =r, then realocate Q with double the range of the i ™ dimension; i.e., assign 2r; to r;.
2. Addonetoe.

Consider an arbitrary sequence of extend operations starting from an initial array with
e=ri =1,i=1,..,k. The overhead in executing this sequence is the total reallocation cost in Step
1. The amortized overhead per array element is the maximum over all such sequences s of the over-
head for s divided by the number of elementsin the array after sis executed.

LEMMA 3. The amortized overhead per array element in a k-dimensional array due to exe-
cuting an arbitrary sequence of extend operations starting from the unit array is ©(K).

Proof Whenever the range of a dimension is doubled in Step 1 of an extend operation, we
need to allocate twice the space of the current array (a unit-time operation by the method of Aho,
Hopcroft, and Ullman) and to copy every entry in the old array into the new array (which can be
done in time proportional to the number of entries copied by using strength reduction to access and
copy an array element in unit time).

Let a segment be a maximal contiguous subsequence of a sequence of extend operations in
which the last extend in the subsequence doubles the range of some dimension, but no other extend
involves any such doubling. Since the last extend operation in a worst case sequence must double
the range of some dimension, we limit our analysis to sequences of segments instead of sequences
of extend operations. Let f; be the number of entries in an array just after the i segment is exe-
cuted; let ¢; be the overhead cost due exclusively to the i segment. Clearly, ¢; < f;. Since dou-
bling the range of one dimension doubles the size of the array, the array size after execution of the

. . I
i'" segment is 2. Hence, we also know that ¢; <2 ~*. Since g > EJ i =1,...,k, holds after every

extend operation, we know that f;>2'* holds after every segment is executed i =1,2,.... Thus, the
overhead from executing the first i segmentsis,
i-k .

2 l=kfi+2K-1
. S

[
cj <k fi +
=1

and an upper bound on the overhead per array element is,
kfi+2%-1 ok _q 2k _q

= <k+ . <k+1
fi fi 2'_k

Next, we show that this bound is realizable. Starting from an initial array Q of unit size, we
perform (i + 1)k segments as follows. First, for each dimension j =1,...,k perform i segments, each
doubling dimension j. Begin a new segment by performing successive extend operations until the

-15-

entire array is filled, so that it contains 2K entries. The total overhead to this point is 2K — 1.
Next, perform one extend operation in each dimension, causing additional overhead costing at least
k 2% for a cumulative total overhead of at least (k+1)2%. Thus, we obtain alower bound Q(k) on

the overhead per array element. m

Hoffmann and O’ Donnell did not consider dynamic arrays, and their pessimistic analysis sug-
gests that they simply preallocated enough space to accomodate worst case instances. Although
Chase used algorithms that required dynamic multi-dimensional arrays, he did not analyze this
cost, nor did he make use of unit-time initialization. In the next section we will use Lemma 3 to
show that the overhead due to array doubling accounts for only a fraction of the total time for full
pattern preprocessing. However, we do pay a price in space. Based on the proof of Lemma 3, the
final space allocation of a dynamic k-dimensional array can be 2¥ times the number of entriesin the
array. Of course, any overallocation during preprocessing is not needed for matching and can be
shed.

preimage node-record

domain f rangef count for R

L fw=y
i y [yl

array
i isnumeric codefor x 0 D

Fig.5. Implementation of SE map f: D - R

3.3. Abstract Algorithm

Let F be the set of function symbols appearing in PF. For each function f O F, let A(f) beits
arity. Let I' be the set of Hoffmann and O’'Donnell match sets. From the above discussion, we
know that the following equations hold:

3) T={{v, s}:sUPF | sisaleaf} OO /{range6;: f OF | A(f)> 0}
nt={c: f(cy, ..., &) O PF}
pi={[m mnan{:m0Ory
0; ={[[my, ..., m], m]: m; Orangep?, ..., m Orange uky
wherem={f (Cq, ..., ¢) OPF |cgUm,i =1, .., k} O{v}

Because the preceding equations contain a cyclic dependency in which I' depends on both PF and
0, 1 depends on I, and 6 depends on L and PF, it would seem that a costly fixed point iteration is
needed to maintain these equations when PF is modified. Fortunately, this can be avoided with
careful scheduling.

-16 -

The algorithm aso depends on a careful logical organization of the data into SE_structures
and SE_maps. Recall that sets range p} represent Chase match sets for f OF and i =1, ..., A(f).
We will use numeric SE_structure (PF, T, P, v), Simple numeric SE_structure (PF, range p}, ., V)
and SE_map pif: I - range pif for fOF and i =1, ..., A(f), and multi-dimensional SE_map 6s:
A(f) .
x range ut — I for each fOF. Fig. 6 describes the data structures used to access the main

i=
SE structures and SE_maps shown in Fig. 7 (with array implementations indicated). Note that all
of the SE_maps s are defined on a shared SE_set ' and are accessed through an array shown in
Fig. 7. Note also that the PF_records for the SE_structure(PF, I, P, v) (see Fig. 6) spread the
standard PF field into two fields - an F field for the function symbol and a succ field for the argu-
ments of the function. For example, apattern f (t4,...,ty) O PF would have a pointer to symbol f in
the F field and pointers to argumentst,...,t, accessible from the succ field.

PF
F arity mn u 0 My | |j
L —
L — B;
L. domain ¢
(see Fig.7) n

array of bit vectors
(j isnumeric code for q O PF)

A~

numeric
code succ P

P\ F

I-index (q)
r range p
(see Fig.7) (seeFig.7)

array of range [s-index sets

Fig.6. Core data structure

It is useful to explain our incremental algorithm in terms of three cases. Our analysis of indi-
vidual operations will ignore overhead costs involving dynamic arrays. Overhead will be con-
Sidered afterwards.

(case 1) Assume, first of all, that the set of patterns P isinitially empty. It isalso convenient
to assume that pattern forest PF (but not P) always containsv. Then in O(1) time and space we can
initialize variables ", I, |, and B asfollows:

PF :={v}
r={{v}

<©/ /p range pi range p
range p}-index (q)

i
f

-17-

n:={}

ne={}

0, :={v}

Next, suppose that P is augmented by a new pattern p. In order to re-establish PF, we add to

PF those subpatterns of p not already in PF in an innermost-to-outermost order. Because of the
order in which updates are scheduled, we know that immediately before a subpattern q of p is
added to PF, either g is aleaf or all the subpatterns of q except for q itself already belong to PF.
More importantly we know that q is not the subpattern of any other pattern belonging to PF.

(case 2) Suppose PF is augmented with a constant symbol c. In this case, we can maintain
the system of equations (3) by executing the following code just before the modification PF with:=
(o

0. :=6,

I with:= 6, with ¢

0, with:=c

forg OF, j=1,..,A(g) loop
if 8, 0 domain pj then

(8, with ¢) := j(®,)

end

end

In effect the preceding code can be implemented by performing a modify domain(6,, ¢) operation
on H{; foreachgF andi = 1, ..., A(g) such that vDI‘Ig. (Recall that 6, =6, if c [l PF.) Inorder to
implement the for-loop efficiently, we can use an index p_thread = {[x[j,q]]:
gUOF, j=1,..,A(9), x O domain u{,}, which maps Hoffmann and O’ Donnell match sets m O I
(where in this case m = 8,) to conversion maps Hé; whose domain contains m. In order to update
the conversion maps efficiently, we implement p_thread by maintaining a single doubly linked list
for every m T threading each occurrence of m within every set domain uig over dl [j,q]
O p_thread{8,}. For example, in Fig. 7 the thread for match set m O ' passes through entries in
column t of arrays implementing domain uig for each g OF and i=1,..,A(g) such that m [
domain u‘g. Since this operation augments I, the arrays implementing the domains of the conver-
sion maps can double their size. Double links alow the thread to be adjusted in unit time when-
ever an element in the thread is added, deleted, or moved (which occurs during array doubling).
By Lemma 2 the time to perform the preceding modify domain operation (not including the cost of
array doubling) is O(|p_thread{8,}|).

(case 3) The third and more difficult case to consider is when PF is augmented with pattern
f(tq, ..., t), where k>0. Below we describe how a two-stage cascade of updates can be used to
propagate modifications to each of the variables I', I, W, and 0 in order to re-establish equations
(3). Recall that set I and each of the setsrange pt, f OF, i =1, ..., A(f), will beimplemented as
SE trees.

-18 -

t is numeric code
formOrr

numeric SE-treg(PF, I, P)

k-dimentional array (ith dimension

accessed using numeric code from range p)

domain ¢ t

Chase Codes

Il
array of SE-maps

numeric simple SE-tree(PF, range pk, .)

Fig.7. Data structure for 6; and pif
1 In O(K) time update IM; before the modification PF with:=f (t,, ..., ty). (Note that the

array implementing N can double when PF is augmented.)

for j =1, ..., kloop

if t; 0 N} then

M with:= 1t
end

end

The preceding code gives rise to Stage-One updates. Each modification M} with:= t; to pro-

jection M} makes the equation for M} hold for the new value of PF, but fasifies the equation for

ut. Inorder to re-establish the equation for i} with respect to the new value of M} (but not the new

value of PF), we perform a modify range operation on pf. However, modification to the range of

ut falsifies the equation for 6;. We re-establish this equation for the new value of M} (but not the
new value of PF) by executing modify domain operations on 6;. The Stage-Two updates establish
all equations for the new value of PF. Details for Stage-One are given just below.

2. Perform a modify range({m O I | t; O m}, t;) operation on p} immediately prior to the

modification M} with:=t; of Step 1.

formOT | t; Omloop

pi(m) with:=t;
end

As discussed in SE_tree operation 5, set '_index(t;), which is obtained from the
PF_record for symbol t; (see Fig. 6), is used to retrieve the subset {m O T | t; O m} of

-19-

node_recordsin the numeric SE_tree(PF, I, P) (see Fig. 7). The numeric codes in these

node_records are used to access the array for domain p} (see Fig. 7). By Lemmas 1 and
2, the cost of executing this step is O({ mOr™ |t;00m}). Although add(pi(my, t;) opera-
tions used to implement modify range can cause the range of the j! dimension of the

array storing 6; to double, we will charge such overhead to construction costs for 6.

3. Perform a modify domain;([my,...,m], t;) operation for each [mj,...,m] O domain 6,

where my =pk(m), prior to each add(ut(m), t;) operation used to implement the
modify range of Step 2, but just after any doubling of multi-dimensional array 6; that
might result from augmenting range p}. Recall that the modify domain is implicit (i.e.,
implemented at no cost) whenever the modify range of Step 2 is implemented using

replace.

for [my, ..., m;, ..., mJ O domain 6; | m; = pi(m) loop
B¢(my, ..., my with tj, ..., m) :=6;(my, ..., m;, ..., M)
end
Here 6¢(my, ..., my with tj, ..., m) =8¢(my, ..., m;, ..., my), because the pattern
f(ty, ..., t) has not yet been added to PF, and so no f-pattern in PF hast; asits j argu-
ment. Since range 6; is unchanged, I' is unchanged also. Hence, the three preceding
steps establish all equations relative to the new value of I'I‘f fori=1,..,A(f).

This operation can be implemented naively by an exhaustive search in which every entry in a
k-dimensional array implementation of 6; with value m; in the j-th dimension is copied to a new
position differing only from the old position by index value m; with t; in the j " dimension. Alter-
natively, if the domain of ©; is sparse, we can speed up the search by using k indexes
{[my,[my, ..., m]]: [Mmq, ..., m] O domain 6¢} i =1, ..., k. However, the indexes do not need to
store k-tuples explictly. Each index can be implemented efficiently as lists threading elements of
;. That is, each Chase match set m(range p} has a pointer to a threaded list of entries
8¢(my, ..., my) such that [my, ..., m] O domain 8; and m; = m. A simple address calculation can
then be used for copying. After each copy we need to update k threads for the k indexes in O(K)
time. Thus, our sparse implementation together with Lemma 2 lets us perform this operation in

time proportional to the number of copy operations times k.

The Stage-Two updates result from modification to PF. First we execute a modify range
operation on B¢ in order to re-establish the equation for 6; relative to the new value of PF. Because
updating the range of 0; falsifies equations (3) for certain of the conversion maps pg, we need to
perform modify domain operations on these maps. Consequently, after Stage-Two al of the equa-
tions (3) hold relative to the new value of PF. Details for Stage-Two are given below.

-20-

k .
Perform a modify range({[m4, ..., m] O .xl range M} |ty Omy, ..., tOme},
1=

f(tq, ..., t)) operation on B; just before the modification PF with:=f (4, ..., ty) and
after the preceding three steps:

for m, Orange pf, ..., m¢Orange pf | t; Omy, ..., t,Om, loop
if [my, ..., m] [domain ©; then
0;(m4, ..., m) =06,
end
0;(my, ..., m) with:=f (t, ..., t)
end
Whenever a new k-tuple is added to the domain of 0;, we also need to update the k
threaded indexes used in the sparse implementation for Step 3. Fortunately, this O(K)
maintenance operation is performed only once for each element in domain 6;. We can
use set range p}_index (t;) to search through the sets {m; J range ul |t; O m;} (which
must be nonempty because t; was previously added to some match set in I', and because

Step 2 added t; to range ui) instead of the potentially much larger sets range
uk, j =1, .., k. However, this step contains a new operation to create a k-tuple
[mq, ..., m] and locate it in the domain of B;. Hashing is a practical solution with good
space utilization and good expected time. This would also make the Bottom-Up Step
O(K) expected time. Our current implementation uses this approach. Another way of
keeping space costs down at the expense of time is to use a balanced search tree; e.g., a
red/black tree [36]. Accessing the domain of the transition map ©; then takes
O(k log(Jdomain 64])) time, and so does the Bottom-Up Step. Like Chase we can also
use a k-dimensional array to store 65, which doubles its size and reorganizes whenever it
overflows. In this case the running time for this operation is proportional to the number
of times B¢ is updated by Lemmas 1 and 2. A constant factor k is avoided in each array

access by using strength reduction.

Add anew code for amatch set to I" prior to each add operation that results from execut-
ing 6;(my, ..., m) with:=f (t4, ..., t) within the modify range of Step 4. The old match
set code is reused when the modify range of Step 4 isimplemented using replace.

I with:=6;(my, ..., m) with f (t, ..., t)
This operation can cause the arrays implementing the domains of conversion maps to
double. Since pattern f (tq, ..., t) is newly added to PF, it is not a subpattern of any
other pattern in PF. Thus no further modification is needed for .

Just before each add(8:(myq, ..., my), f(tq, ..., t)) operation used to implement the
modify range of Step 4, perform a modify domain(8s(my, ..., my), f (t4, ..., t)) operation

-21-

on pg forg O F and j=1,...,A(f) such that Chase match set 8¢(my, ..., my) belongs to the
domain of pjg. An implicit modify domain is performed (at no cost) for each replace used
to implement modify rangein Step 4.
for g OF, j=1,...,A(f) loop
if 8¢(my, ..., m) O domain p then

Hy(0r(my, ..., m with f (ty, ...,) := p(B:(My, ..., M)
end

end
Observe that within the preceding code ph(Bs(my, .., m) with f(tq, .., &) =
uh(0r(my, ..., my)), because f (ty, ..., t) 0 M. Since the range of py is unchanged, the
equation for 8; remains satisfied, and no further updates are necessary. The for-loop is
implemented efficiently using the p_thread index described in case 2. By Lemma 2 the
time to perform this operation is O(J_thread{ 6:(m4, ..., m)}|).

The preceding discussion combines the correctness proof with the design description. How-
ever, we still need to analyze the performance of full batch processing, and compare our results
with Chase's. In both Chase's and our algorithms the time complexity is dominated by the time
needed to construct the maps pt and 8¢, where f D1 F and j =1, ..., A(f). However, since Chase[7]
did not provide complete data structuring for an implementation and analysis, the comparison is
based in part on our own data structures (not included in this paper) and analysis for his algorithm.
In the following theorem we let | represent the total number of distinct g-patterns in PF for

gQdF.

THEOREM 4.

1. For each mOT, fOF, and j =1, ..., A(f) Chase's algorithm computes pi(m) in

Q(min(|m|, |M}])) time, which is improved by our algorithm to O(|ui(m)|) time when

m O domain p} and O (1) time otherwise. By coarser analysis the total preprocessing time contri-

buted by pis O(|I"| Kyyax 1) for both Chase and us.

k .
2. Let function symbol f have arity k > 0. For each [my, ..., m] O _xlrange it Chase'salgo-
1=

rithm computes 6;(myq, ..., my) in Q(min(l¢, |my % -+ xmg|) K) time if [mq, ..., m] belongs to
domain ©6; and O(k) time otherwise, Our algorithm improves this bound to
O(k+]8¢(my4, ..., m)|) time if [mq, ..., m] belongs to domain 6; and O (k) time otherwise. By
coar ser analysis the total preprocessing time contributed by © is
O(MIN(l Kirgx2 ™ 1 Ky [T 15™)) for Chase and
O(MIn((I +Kirg)2 ™, (Ko |F | + 1) [T [™)) for us.

3. We use O(wn(IN)) auxiliary space to represent the set I', whereas Chase uses Q(wp(I))
space. When we include the threaded lists used in the sparse implementation for 8, our total

-22.

auxiliary space to store 6 during preprocessing is roughly O((Kyax + 2"”“”"‘)2I kmax | 2'). Chase's
space is comparable. The factor of 2Kmax s due to overallocati ng dynamic arrays, and can be shed
during matching.

4. To represent pt we use O(|I" |[+wn(range pu})) auxiliary space, whereas Chase uses

Q(|T |+wp(range p})) space. By a coarse analysis for total preprocessing space contributed by p
we get a bound of O(l kg | |) for both Chase and us.

Pr oof

1. For each m O T Chase's algorithm computes pi(m) =mnl} by actualy intersecting m

and M4, which takes Q(min(|m |, |M}])) time. We avoid computing the intersection, and spend

only O(|pt(m)|) time to establish the value of pt(m) for each m O domain p}. The time needed
to construct these conversion maps is charged to modify domain operations, modify range opera-
tions, and overhead for dynamic arrays that store the domains of these maps. By preceding discus-
sion of Case 2 and of Case 3, Step 6 in our algorithm, we know that the cumulative expense of exe-
cuting modify domain operations on each conversion map ujf isO(Jdomain uH), which includes the
cost of maintaining index Wu_thread. By preceding discussion of Case 3, Step 2 in our algorithm, a

coarse upper bound on the total cost of executing modify range operationsisO(3 |ui(m)])
mUOdomain pt
for each conversion map ujf. Since the domains of these conversion maps all use dynamic 1-
dimensional arrays with index values ranging from 1 to ||, the overhead per array is O(|['|) by
Lemma 3. Combining these costs yields the first part. To obtain a coarse upper bound on the time
to construct all of the conversion maps, we use the following inequalities: |ujg(m)| <lg,
||'Ig(m)| <lg, A(9) < Kpax, and |domain ugl < |l forgOF and j=1,...,A(g). Consequently,
we obtain a rough upper bound O (Kmay Ig [T |) on the cumulative charges to construct all conver-

sion maps for each function g O F. The result follows.
k

2. For each [my, .., m(] Di>_<lrangeuif Chase’'s algorithm computes 6:(my, ..., my) by
evauating the set {f(cq, ..,) OPF | [Cq1, ...,] Omy x --- xmJ} naively, which takes
Q(min(l¢, [my x - -+ xmg|) k) time. Roughly speaking, our algorithm assumes that the initial
value of B;(my, ..., my) is{v} by default. Then it gets new values in the modify domain operation
of Case 3, Step 3 by copying. Each copy takes O(k) time in order to maintain k threaded indexes.
The value of 8;(my, ..., M) increases one element at a time in the modify range operation of Case
3, Step 4, where an O(1) time per element is a coarse upper bound. Thus, we spend
O(|6¢(m4, ..., m)|) time from Step 4 and ancother O(k) time from Step 3 (for maintaining sparse
threaded indexes) to establish the value of 8¢(my, ..., m). By Lemma 3 the overhead to maintain

k

the dynamic k-dimensional array storing 65 is bounded by O (k| .xlrange ut]), which also means
J =

that k is charged to every unit of space in the array implementing 6;. This proves the first part.
Our improvement over Chase is revealed by the following calculation:

k k
18¢(Ma, .. MJ| = [{{A1,- G- f (@1, G) D PR} xm | <min(ly, | xm)

-23-

To prove a coarse upper bound on the total time needed to construct all of the transition
maps, we first prove atime bound for a single map 8, where f has arity k. Since |range u’}l <= 2'f,
we can bound the overhead costs at O(k 2k If). Since |[domain 64| < 24! the total cost in construct-
ing 0; is O(ldomain 0| (I +k + 1) +k 2"y = 0 (2" (I; + k)). Alternatively, since we also know
that [range pi| < ||, then another bound on overhead costs is O (k| |¥). Since |domain
8| < [T |¥, another bound on the total cost in constructing 6 is O(| |X (If +k + 1) +k [[]¥) =
O(|T [¥(Is + k). Summing over al function symbols g with arity greater than 0, we obtain the
bound O (Min(| T [*™* (I + Kpex |F), (I + Kirex)2 <™)) on the total cost of constructing al transi-
tion maps. Analysisfor Chase' s algorithm follows similar logic.

3 and 4. Follows from previous analysis. m

The fine analysis in parts 1 and 2 of the preceding theorem reveal our asymptotic advantage
over Chase' sagorithm. The following simple calculation illustrates our potential space advantage
hinted at in parts 3 and 4. When the SE_tree implementing I is afull binary tree with weight w at
each node, thenwn = |I"|and wp=|T"| log|T"|.

4. Elimination of gaps

A gap in the SE_tree represents a set of patterns which is not a match set. In the extreme case,
al the internal nodes except the root could be gaps. Thusit is useful to consider how to eliminate
gapsin order to save space.

Consider the SE tree implementing SE_structure (PF, I, ., v). For convenience, we say a
pattern g labels a tree node x if x O M-index(q). Thus, if Z is the set of patterns represented by a
node zin the SE tree, then Z ={q O PF | q labels an ancestor of Z .

We say agap in the SE_tree is maximal if its parent is not a gap. The set of maximal gaps
can be computed efficiently if we add a parent pointer to each node in the SE_tree. We say an
SE_treeis compact if it has no gaps. If M is afinite set of patterns, we use glb (M) to represent the
most general pattern that is more specific than any pattern in M. Lemma 13 in the Appendix gives a
necessary and sufficient condition for the existence of glb (M).

Let T be an SE_tree implementing SE_structure (PF, T, ., v), and let T' be the new SE_tree
that results from T due to the insertion of a new pattern p into PF using the on-line preprocessing
algorithm given in section 3.3. Assuming T is compact, we consider how to make T' compact also.
We prove the following lemma:

LEMMA 5. If xisagapin T, then every descendant of x is either a gap or a leaf labeled by p.

Proof Let X bethe set of patterns represented by x. According to Lemma 15 of the Appen-
dix, X is the match set of glb (X) before p is added to PF. After p is added, x becomes a gap, and X
is no longer the match set of glb (X). Thus X O {p} must be the match set of glb(X), and glb (X) <
p. Thisimplies that any match set containing X must also contain p. Now consider a descendant y

-24-

of xin T that isnot labeled by p. Let Y be the set of patterns represented by y. Then X O Y. Since p
is a new pattern, it only labels leaves. Thus Y does not contain p. Therefore Y is not a match set

with respect to PF [J {p}, andyisagapinT. m

If we label the maximal gaps by p, then p is automatically added to al the sets represented by
the gaps. As aresult, each node whose parent is a gap should be deleted from ' -index (p). If this
node is a new leaf, then it is not in any I'-index after it is deleted from I-index(p) and must be
deleted from T' also. Once thisis done, every nodein T' represents some match set with respect to
PF O {P}, and there are no gaps. Obvioudly, the deletion of leaves can be totally avoided if we do
not add them to T and I' -index(p) in the first place.

In Section 3.2 recall the two cases for implementing the operation modify-range(4, 2). (1)
For each range element y O f[A] whose preimage is entirely contained in A, we execute a replace
operation y with:=zon I". (2) For each element y O f[A] not handled in case (1), we execute an
add operation I with:=y with z.

We call this implementation from Section 3.2 the basic implementation. To avoid introduc-
ing any gap into the SE_tree, we should handle Case (1) differently: for each range element
y O f[A] whose preimage is entirely contained in A, we mark y as a gap; for each maximal gap g,
we execute a destructive replace operation g with:= zon I'. Case (2) is handled as before. This
new implementation of modify rangeis called the compact implementation.

5. Adaptation to Simple Patterns

Hoffmann and O’ Donnell [20] presented an algorithm tailored to the Smple subclass of pat-
terns for which the preprocessing time and space costs for bottom-up multi-pattern matching are
greatly reduced.

Definition: A pattern forest PF is Smpleif for every two distinct patterns p, q O PF, either
MDp<qg @ g<p,or(3) Osubjectt |t<gandt<p. A set P of patternsis Simple if its pattern
forestis Simple.

For Simple Patterns P Hoffmann and O’ Donnell observed that the transitive reduction of the
partial ordering (PF, <) forms adirected tree (which they called the subsumption tree) with v at the
root (assuming that v occurs in PF). Each match set equals the set of patterns along some path in
the subsumption tree from a node to the root. And every path from a node to the root determines a
match set. Thus, there are only | match sets, and each one can be represented by its minimum pat-
tern. For afunction f of arity k, the transition table 8 uses O (1) space, a great improvement over
the general case but still expensive. Hoffmann and O’ Donnell have also argued that most sets of
patterns they have encountered in rewriting systems are Simple or can be turned into equivalent
Simple sets.

-25-

Hoffmann and O’ Donnell’ s special purpose algorithm for Simple Patterns runs in preprocess-
ing time O(Kmux 12+|F | h Ikmax) and space O(12+|F | Ik”‘a"), where h is the height of the sub-
sumption tree. They also presented a test deciding whether a given set of patterns is Simple with
time O(Kmax | 2) and space O(1).

Our algorithm, presented in the preceding section, adapts favorably to problem instances in
the class of Simple Patterns. For Simple Patterns our incremental algorithm has better asymptotic
performance than Hoffmann and O’ Donnell’ s nonincremental special purpose agorithm.

COROLLARY 6. For Smple Patterns the preprocessing costs of our algorithm are
OKimax | 2+H(N +K) 1™ time and O(l Ky (IF| + 1) + (Krrax + 2™) 1™ space. The space
bound can be improved to O(l Kpax ([F| +) + Kpmax Ikm""x) during matching.

Proof Since || =1 for Simple Patterns Theorem 4 (1) says that the time contributed by all
conversion maps W is O(Kx |).

Next we determine the time contribution of the transition maps 6. When PF is Simple, each
match set, and so each Chase match set, is linear ordered in the subsumption tree. Thus, each Chase
match set can be represented by its minimal element, and there can be no more than |M}| < I; such
minimal elements for each f O F, andeach j = 1, ..., A(f). Since PF is Simple, for any match set
m, |m| < h. Then by Theorem 4 (2.), the total time bound contributed by all transition maps 6; over

all function symbols fOF is O 3 (N +Knu)! ™) = O((h +Krren) (3 11)K™) = O((h +K) ™).
fOF f OF

By Theorem 4 (3.), the auxiliary space needed to store I' is O(wn(I")) = O(I h). Since, by
preceding analysis, the size of each dimension of the array storing 6; is bounded by I, then the
space used to store all of the transition maps 0 together with the threaded lists is roughly
O((Kmax + kaax) Ik”‘a"). Space kmax | kmax a000unts for overallocating dynamic arrays, and can be

removed for matching. Since the space needed to store each conversion map pt is O(I+wn(range

ut)) = O(I+l¢ h), then the total space utilization for all conversion maps is roughly O(l Ky (JF| +
h)). m

A dlight modification to our algorithm further reduces the space needed to store I' and each
conversion map to O(I) without sacrificing our time/space bounds for the general problem.

Let T be a compact SE_tree implementing the SE_structure (PF,I",.,v), and let T' be the new
SE tree that results from T due to the insertion of p into PF using the on-line preprocessing algo-
rithm described in section 3.3. Assume that PF is Simple. Then there are | nodesin T and | T'-
index sets.

Wesay anodex in T (therefore also in T') is affected if it represents a set X of patterns such
that X 0 {p} isanew match set w.r.t. PF O {p}. Notethat if x is affected, then either x has a child
labeled by pin T', or x itself islabeled by pin T'. An affected node x is maximum if all affected
nodes of T are descendants of x.

-26 -

We say an compact SE_tree is reduced if each of the tree nodes belongs to exactly one I'-
index. Thus, if T isreduced, then each I'-index contains exactly one node in T, and the total space
needed for the tree nodes and I-index sets is O(l). We assume that T is reduced, and consider how
to make T' reduced in case PF [{p} isalso Simple.

LEMMA 7. If T isreduced, then the following properties hold.

1. 1f ny O r-index(p1) and n, O M-index(p,) are two nodes in T such that node n; is the
parent of node n,, thenp, < p;.

2. T forms the subsumption tree of PF before p is added.
3. There exists a maximum affected nodein T.
4, The maximum affected node is not a gap and not labeled by pin T'.

5. PF O {p} is Smpleiff all the affected nodes in T except the maximum one are either gaps
or leaveslabeled by pin T'.

Pr oof

1. Since nq isthe parent of n,, then there is amatch set containing both p; and p,. Therefore
either p; < p, or p» < p1. Since ny represents a match set containing p, but not p,, then p, <
Pi1-

2. Thisfollowsimmediately from Property 1.

3. Let nq and n, be two different affected nodes representing the two match sets N4 and N
respectively before the insertion of p. Then the nearest common ancestor x of n; and n, represents
the match set X =N; n N,. Since n; and n, are affected, then after the insertion, there is a match
set My = N4 O {p} and another match set M, = N, O {p}. Then M1 n M, =X O {p} isaso a
match set (see Lemma 16, Appendix). Thus x is affected. This means that the nearest common
ancestor of any two affected nodes is also affected, and there must be a unique maximum affected
node.

4. Let xbeanodein T. Then x hasalabd q # p. We need to show that if x isagap or is
labeled by p in T', then x cannot be the maximum affected node. Let X be the set of patternsin PF
represented by x before adding p. Before adding p to PF, X isamatch set of g. After adding p, Xis
no longer a match set. This means that X O {p} is a match set of g. Therefore g < p, and there
must be some match set M that contains p but not g. Let m be the node in T' representing M. Then
either mor its parent is affected. Since neither m nor its parent can be a descendant of x, then x is
not maximum.

5.0 Suppose PF O {p} isSimple. Let x 0 I'-index(q) be an affected node that is not a gap
and not labeled by pin T'. Then x has a child mlabeled by p. According to the proof of property 1,
we have g > p. This means every match set containing p also contains g. Thus X is the maximum
affected node.

[0 Suppose all the affected nodes except the maximum one m are either gaps or labeled by p.
Let x 0 I-index(q) beanodein T' such that g # p. Then xisnot anew leaf. We need to show that

-27-

either (1) g> p, (2) g< p, or (3) p and g cannot be in the same match set. Consider the following
cases. If x isaproper descendant of m, then x is either a gap or aleaf on I'-index (p). The proof of
property 4 showsthat g < p in thiscase. If x is an ancestor of m, then any match set containing p
also contains g, and there is at least one match set (for example, the match set represented by x)
that contains g but not p. Thus g > p. Otherwise, X is neither an ancestor nor a descendant of m. In
this case, neither descendants nor ancestors of x are labeled with p. Therefore p and g cannot be

contained in the same match set.]

The proof of property 5 also tells us the position of p in the subsumption tree of PF O {p} if
it isSimple: p must be a child of the pattern labeling the maximal affected node, and an ancestor of
patters labeling other affected nodes. The preceding discussion justifies the following new imple-
mentation of modify range(4, z), which we call the reduced implementation:

If PF is simple and there is only one element m 00 f[A] whose preimage is not
entirely contained in A, we execute an add operation I' with:= mwith zand make
al the affected children of m the children of the newly created node. Otherwise,
PF O {p} isnot Simple, and we execute the compact implementation.

THEOREM 2. Whenever PF is simple, and the reduced implementation of modify range is
used, then the on-line preprocessing algorithm given in Section 3.3 maintains the invariant that the
SE_treeisreduced, and is consequently the subsumption tree.

Proof Followsimmediately fromLemma7. m

6. Pattern Deletion

Deleting patterns from P can be handled much like pattern addition, except that scheduling
pattern deletion from PF is in an outermost-to-innermost subexpression order. Further, a patternis
deleted from PF only if it is not the argument of any pattern in PF. The deletion algorithm follows
the same logic as the addition algorithm but in a backwards order to undo the effect of addition.

To delete a pattern p from PF, we also need to modify the SE tree for SE_structure (PF, T, P,
V), the range of the transition map 6, and the domains and ranges of all the conversion maps pi}. If
p has the form f (t4, ..., ty), we have to consider whether each t;, i = 1, ..., k, should also be
deleted. If p isthe only pattern in PF with function symbol f whose ith child ist;, then we have to
delete t; from M}, and then modify the SE_tree for the range of pt and the domain of 8. If t; isnot

in P and is not a child of any pattern in PF, then we should also delete t; from PF recursively.

First we show how to modify SE_trees. Since all the SE_trees can be handled the same way,
we will consider the SE _tree for SE_structure (PF, I, P, v) only. Let x be a node in the SE_tree
representing a match set X that contains p. After p is deleted from PF, x represents the match set X'
= X —{p}. The question is whether there is another nodey in the SE_tree representing the same set
X', and if so, how should we merge x and y.

-28 -

To answer this question, we need two additional fields for each node x in the SE_tree - (1) a
parent pointer parent (x) pointing to the parent of x, and (2) alabel list field label-list (x) storing a
list of patternsin PF that label x. The label lists are initially empty. Each time anode x is added to
I-index (p), pattern p is added to the right end of label-list (x), and each time a node x is deleted
from I'-index (p), p is deleted from label-list (x). The leftmost element of alist is called the head
of thelist.

For convenience, we aso use the following notations. We assigh an integer age(q) to each
pattern g in PF so that if g is added to PF by the ith insertion and has not been deleted, then age(q)
=i. Thus, for any tree node x, the patternsin label-list (x) are in decreasing order of their ages from
left to right. We then define the age of a tree node x to be the age of head (label-list (x)). Thus it
makes sense to say that one node or pattern is younger or older than another. We say anode X is
normal if it is older than all its proper descendants and has a different age than any of its siblings.
It is not difficult to see that if all nodes in the SE tree are normal, then different tree nodes
represent different sets of patterns. Thus, our main concern is how to keep every node in the
SE tree normal after each deletion. The solution depends on the way that patterns are inserted.
We assume that the SE tree is maintained by the basic implementation of modify range. In this
case, the youngest tree nodes are always the new leaves, and each internal node can get at most one
new child (which is a new leaf) for each new pattern added. Therefore the SE_tree resulting from
pure insertions has the following properties:

(2) al the tree nodes are normal;

(2) patterns labeling a parent are older then patterns labeling its children.
These two properties lead to the deletion algorithm described below.

Let p be the pattern just deleted from PF. Then we aso delete p from the label list of each
node x O I-index (p). If p is the head of label-list (x), then x becomes younger and may no longer
be normal. For each such possible non-normal node x with parent y, we store a pair [X, y] into the
set affected and temporarily detach x fromy, leaving an SE_tree with only normal nodes. Then we
add the detached nodes back to the SE_tree one by one, making sure that ho non-normal node
results from this addition:

procedure add_back();

for [x, y] O affected loop
1 if label-list (x) =[] then
for ¢ O children (x) loop
make_child(c, y);
end loop;
ese make child(x,y);

end if;

-29-

end loop;
end add_back;

On line 1, we find that label-list (x) is empty, which implies that x and its parent y represent the
same set of patterns. Consequently, we do not add x back to the SE_tree, but let y adopt al the
children of x. In this case, we say that x is merged into y. The procedure make _child (x, y) adds x
into children (y), and checks whether y has another child ¢ having the same age as x. If there is
such anode ¢, x and c are combined. Care is taken to ensure that Property (1) and (2) are main-
tained for each tree node. Details are given below.

procedur e make_child (X, y);

2 if Oc O children(y) | age(c) = age(x) then
prefix := the longest common prefix of label-list (x) and label-list (c);
3 if label-list (x) = label-list (c) then
for zO children(x) loop
make_child(z, ¢);
end loop;

elseif prefix = label-list (x) then
label-list (c) —:= prefix;
children(y) less=c;
make_child(c, x);

elseif prefix = label-list (c) then
label-list (x) —:= prefix;
make_child(x, ¢);

ese t:=newnode();
label-list (t) := prefix;
make_child(t, y);
label-list (x) —:= prefix;
make_child(x, t);
label-list (c) —:= prefix;
children(y) less=c;
make_child(c, t);

end if;

else children(y) with:=x;
parent (x) :=;
end if;
end;
It should be clear that make _child(x, y) does not change the set of patterns represented by
either x or y, except in line 3, where we find that x and ¢ represent the same set of patterns and

therefore merge x into c. Efficiency can be improved here if we merge the node having fewer chil-
dren into the other.

-30-

Modifying the conversion maps and transition maps with respect to pattern deletion is much
easier than it is with respect to pattern addition. As in pattern addition, the task of modifying a
map consists of modifying the domain and range. To modify the domain of a map M, we simply
delete those merged nodes or tuples containing merged nodes from domain M. The space released
by this deletion can be put in afreelist and reused later (when new nodes are added to the SE_tree
as aresult of pattern insertion). To modify the range of a map M, we simply replace each merged
node x in range M by the node into which x is merged.

Analysis of procedure make child is straightforward. The test on line 2 can be done in O (1)
expected time if children(y) are hashed by the head of their label lists. (Maintaining the hash
tables increases insertion costs by O (1) space per tree node and O (1) time per add operation.) If
this test succeeds, it takes another O(|prefix|) time to find the longest common prefix prefix. For this
cost, we reduce the total size of label lists and, therefore, the total size of M-indices by |prefix|. The
other costs are O(1) per invocation of make child, where the total number of invocations is
bounded by the number of descendants of the nodes in I'-index (p). Thus, we pay O(1) time for
each match set from which p is deleted plus O (1) time for each deletion of nodes from I'-indices.

We have assumed that the basic implementation of modify range is used for pattern insertion.
If we want to use the compact implementation, then it may happen that an ancestor has a label
younger than some of its descendants’ labels. We can modify the procedure make child to accom-
modate this situation, but we do not know how to bound the time complexity. Since in general, it
is not easy to check whether PF is Simple after each deletion, the reduced implementation can only
be used in avery limited way: once PF is no longer Simple, it will not be considered Simple again
until PF contains only one pattern v.

Finally, we want to make some comments on the effect of pattern deletions on the amortized
overhead of maintaining a dynamic array. Successive deletions of elements from the domain of an
array can make the array sparse. To improve the space utilization, we can have the range of a
dimension whenever the load factor of that dimension is below one fourth. Using an argument
similar to the proof of Lemma 3, we can show that the amortized overhead due to an arbitrary
sequence of doublings and halvings of a k-dimensional array is still O(k) for each entry added to
the array starting from the unit array.

7. Space/Time tradeoff

In Chase’s algorithm, for each function symbol f O F of arity k, the space required for map 6«
could be Q(Z'fk). Here we give a method that decomposes 6; into g maps with worst case space
@] (q2'fk/ 9 but leads to time O (q) to solve the Bottom-Up Step.

-31-

For each f [0 PF, let PF; be the set of subpatternsin PF of the form f (Xq,...,%). Let PF; be
partitioned into g disjoint equal size sets PFy 1,...,PF¢ o, and consider equations,
Mt ={c:f(cy, -~ -.a) OPF;}
pe;={[m mn N ;l:m0Or}
6, ={[[my, ... mJ, m]: my Orangept,, -+, m Orangeuf;}
where m={f (Cq, - --,¢) U PF¢; |0 m,i=1,...,.k} O {v}

We modify the Bottom-Up Step as follows. Let t = f (t; ..., ty) be a subject tree. Instead of com-
puting one Chase match set ms(t;) for each child t; of t and one Hoffmann and O’ Donnell match set
(H-O match set) MS(t) for t, we compute g small Chase match set ms(t;), ..., msy(t;) for each
childt; of t and g small H-O match set MS, (t), ..., M§(t) for t asfollows:

ms;(t) = pt ; (MS(t;))
MS(t) = 05 j(msi(t1) ,..., msj(t))

Then we compute the H-O match set MS(t) = MSy(t) O - -+ 0 M§(t). This digoint union
can be computed in O(q) time either by hashing or by table-looking. If table-lookup is used, we
need a union table Ty that maps the tuple [MSy(t), .., M§(t)] to the union
MS,(t) O --- 0 M&(t). Since MS(t) O PFyj, and | PF; j | < I¢/q, then the size of the T; is
02" =0").

Consider the space required by 6 tables. If rt; = |range p} |, thenr}; = o@!Mily =
o ily= 02", and 1811 =O(rF x..xr¥) = 0(2"™9). Thus, the total space storing the g
05 tables isO(qZ'fk/q), which for g > 1 isasymptotically better than Chase' s algorithm in the worst
case.

Space for other data objects are asfollows.

1. SE_tree for the ranges of 6 tables. Since each set x in range 6 ; is a subset of PFy ;, then
Irange 6 j| = o™iy = 02"%). Thus the space of the SE_tree encoding range B is
O(2'f/q l+/q). Since there are g such SE_trees for f, then the space for al these SE_trees is
O(ls A 9. If the partition method is not used, we have one SE_tree encoding range 6; which
takes O (2 1) space.

2. Similarly, the SE_tree for range uif,j takes up O(Z'f/q I+/q) space. There are k g such trees
for f with O (Isk 2) cumulative space bound.

3. The space for uifyj isO(I") = O(2). There are q k such maps for f, occupying O(qk 2')
space altogether..

In summary, the total space for each function symbol f is O(qk 2' + I; k 29 + g2t ¥/,

It k

When g =1 k+1

, we obtain the approximate minimum O(l;k? 2'/). Summing over all

-32-

function symbols, we get the overall space bound O (K2, 2').

This upper bound can be further improved by reducing the size of u maps and the union
tables. Let PFy, PF ;, I'Iif,j, and 6y ; be defined as before. We split each map uim- into smaller
maps u'f‘f‘ with domain u'f‘f =rangea, wherea = 8y, g0 F,s=1, .., d. Thesize of u'f‘f‘ is
O(range af) = O(2'9'%). Summing over dl gOF, s=1,..,, j = 1,...0, i = 1,...k, and f O F, we
get an upper bound O(k ey g2 |F | 279) for the total space needed for the i tables.

Because of this splitting, the Bottom-Up Step should be modified accordingly. Let
f(ty ..., ty) be asubject tree. Assumethat t; = g;(...). Asbefore, we split the H-O match set MS(t)
into g small H-O match sets MS,(t), ..., M§(t), and split each Chase match set ms(t;) into g small
Chase match sets ms (t;), ..., msy(t;). The small H-O match sets are computed as before:

MS(t) = B¢ j(msj(t1), ..., msj(ty))
but the small Chase match sets are computed differently:

msi(t) =ms; 1(t) O - - O ms; 4(t)
where ms; o(t;) = pt P(MSy(t)), B = 84 5. Again, the disioint union ms; 1(t) O - -+ O ms; 4(t;) can
be computed in O (q) time either by hashing or table-lookup. This increases the time per step to 2.
If table-lookup is used for the digjoint union, then we need a union table T'f%' to map the tuple
[ms; 1(ti), ..., msj q(t)] into the union ms; 1(t) O -+ - O msj 4(ti). Let yg s = PFg s n M, and
lety, = PR n M. Since ms o(t) = piB(MSi(t)) O PFg s 0 M = Y s then the size of Ty9
is oMat! x| x olaal - g7 Maal - golely g mming over all the function sym-
bols g;, we obtain the upper bound O(2“_'if'j I) = O(Z'f/ 9) for the total space for the union tables of
the form T'fJ Summing this space further for j = 1,...,q,i = 1,....k, and f O F, we get upper bound

O(Kirex 0 2'/9) for the total space for all the union tables, which is less than the space for the p
tables.

The space for the SE_trees and 0 tables are roughly as before. Thus the overall space is
O (K G2 | 279 + g2' Kmax/%),

Since this approach is meaningful only for step time complexities better than O(l), i.e.,
q =0 (1), the best upper bound we can get in this case is roughly O (VI 2¢¥"1) for some constant
c. Thisresult dso indicates that this approach is useful only when || > oM,

In apractical implementation it is not necessary for PF; to be partitioned into disjoint equal
Size subsets. For example, we can let PF« ; be the set of patterns that are not children of any pat-
tern, PF.; be the set of children of patterns in PF.;_; not contained in PF.;, where
i = 1..maximum height of patterns, j < i. Then the maps pt % can be omitted for a = 8y s, where s
> j+1. Alternatively, we can let PF« ; be the set of al children of patterns in PF«;_;. Now the
size of each subset may grow, but the maps p'fj’ can be omitted for al a = 8y s, wheres # j +1. It

-33-

is an interesting question how to find a partition of PF that minimizes the map size for a fixed per
step time bound.

8. Match set elimination

Aiming for a bottom-up pattern matching method that utilizes space efficiently by avoiding
conversion and transition maps, Hoffmann and O’ Donnell[20] investigated the subclass of binary
Simple Patterns; i.e., Simple Patterns in which the maximum arity of any function symbol is two.
Although greatly restricted, this classis interesting, because conventional arithmetic and operations
in combinatory logic have arity less than or equal to two. For binary Simple Patterns they gave an
algorithm requiring no transition maps, but uses O (1) space for both preprocessing and computing
MPTMp, O(l h?) preprocessing time (recall that h is the longest path in the subsumption tree), and
0O (h?) time instead of O (1) time for the Bottom-Up Step (1).

Hoffmann and O’ Donnell also considered reducing pattern forests to equivalent binary form.
For each function symbol fOOF where A(f) > 2, introduce a new function symbol twos. Transfor-
mation T1 replaces each f-pattern f (Xq,...,%) in PF where k>2 by f (two(X1,X2),X3,..-;Xk)-
Transformation T 2 applies T 1 repeatedly until it can no longer be applied.

The following lemma states without proof that transformation T1 and, consequently, T2 is
correct.

LEMMA 8. Let patterns p' and g be formed from patterns p,q O PF by transformation T 1.
Then p<qif and only if p'<q.

Although it is correct, transformation T2 may not always be usefully applied. Hoffmann and
O’ Donnell showed that T 2 sometimes, but not always, preserves the Simple Pattern property. For
a counterexample, consider two patterns f (X1,X»,X3) and f (y1,Y2,y3) in a Simple pattern forest
PF. If X1>y1, Xo<Yy», and X3 isincomparable with y3, then the new pattern forest that results from
transformation T 1 would not be Simple, because of twos(X1,X5) and twos(y1,Y>).

However, we can give an interesting class of pattern forests that remains Simple under
transformation T2. A Simple pattern forest PF is Very Smple if for each k-ary function symbol
fOF with k>2 and every two distinct f-patterns f(Xq,....x) and f(yq,....yx), we know that
Oi=1...,k-1((0j=1..,i[x=2y;) and (O] =1,..,i [X;>V})) - Xi+1 € VYi+1)-

LEMMA 9. Pattern forest PF is Very Smple if and only if the pattern forest PF' that results
fromtransformation T1is Very Smple.

LEMMA 10. If a Binary pattern forest is Smple, then it isalso Very Smple.

Proof If f (x4, y1) and f (X, y,) are any two f-patterns in PF and X4 < X,, theny, £ y;.
Otherwise, PF would not be Simple; that is, we would have f (X1, yo) < f (X1, y1) and f (X1, y2) <

f(x2,y2). m

-34-

The preceding lemmas show that

THEOREM 11. The class of Very Smple Patterns is the largest subclass of Smple Patterns
for which transformation T 2 preserves Pattern Forests that are Smple.

We will give a bottom-up algorithm for binary Simple Patterns with O () space to compute
MPTMp and O (log) time to compute the Bottom-Up Step. Our preprocessing time and space are
the same as that of Hoffmann and O’ Donnell. The algorithm makes use of persistant search trees
[33], and we expect it to be fast in practice.

Let PF be the pattern forest for a set P of Simple Patterns, and let T be its subsumption tree.
Recall that for Simple Patterns each match set can be represented by the unique minimum pattern
inthe set. If p; represents the match set for subpattern t; of the subject, i =1 .. k, then the match set
for f (t1, - - -, ty) isrepresented by the pattern determined by the following formula:

(New Bottom-Up Step):

(4 min/({v O{f(q, -, a)OPF |g2p,i=1.Kk)
Wecall pattern f (p1, - -, px) the search argument for Step (4).

Consider any binary function f appearing in PF, and let f (p1, p») be the search argument for
Step (4). (We will not discuss unary patterns and constants, which are ssmpler subcases.) We want
to analyze (i) the worst case cost of performing Step (4); and (ii) the auxiliary space while execut-
ing Step (4).

An important observation is that, unlike patterns p; and p», search argument f (pq, p»)
might not belong to the subsumption tree T!' Consequently, if welet 1 > v denote a new maximum
pattern, and if we define relation R = {[x, y]: f (x, y) O PF} O {[1,1]}, then we can replace Step
(4) for search argument f (p;, p») More conveniently by,

(5) min/{[x, y]OR | x2py andy 2 ps}

If [1,1] is the answer to query (5), then v is the answer to query (4); otherwise, if [w, Z] is the
answer to (5) for w,z# 1, then f(w, 2) isthe answer to query (4).

Expression (5) can be computed by locating the pair belonging to R of nearest ancestors of
nodes p; and p, with respect to subsumption tree T. This characterization is meaningful because
of Lemma 10.

In order to compute (5) efficiently, the difficulties of two dimensional ancestor testing and
searching within partially ordered sets need to be overcome. This is done by reducing the two
dimensional nearest ancestor search in tree T to single dimensional searching through a totally
ordered set. The essential ideais presented just below.

Let R{x} denotetheset{y: [x, y] O R}, and let domain R denote the set M} = {x:[x,y]0 R}.
For each xJ domain R, define set S(x) = Oy»,R{y}; for each z [1S(x) define witness

-35-

w(x, 2) =min{y DRz |y =%}
Then we can compute (5) by performing these three queries:
6 i.g;=min/{x0OdomainR | x=p;}

ii. gz =min/{y 0 S(q1) | y 2p2})
iii. g3 =w(q1, gz

If either q; or g, equals 1, then v isthe answer to query (4); otherwise, the answer is f (qs, 95).

The three queries (6) reduce computation (5) to finding single dimensional nearest ancestors
and computing and storing sets S(x). Nearest ancestors in trees can be computed efficiently based
on the following idea. Let pre(i) and des(i) be the preorder number and descendant count of node i
intree T. Then nodei isan ancestor of node j iff pre(i) < pre(j) < pre(i) + des(i); aso, if i and k
are both ancestors of j, theni isnearer than kto j iff pre(i) > pre(k).

Let Q be any subset of the nodesin T. Then for any node p in T, we can compute

(7 min/{xOQ | x=p}
whenever a solution exists by finding the node i in Q with maximum pre(i) such that
pre(i) < pre(p) < pre(i) +des(i). To facilitate this computation we can preprocess Q as follows.
For all i in Q define function find(pre(i)) =i. Also, for al i0Q, whenever there is no jOQ such
that pre(j) = pre(i)+des(i), then we define find(pre(i) + des(i)) to be the nearest ancestor k of i
belonging to Q; i.e, the node kOQ such that pre(k) is the maximum for which
pre(k) < pre(i) +des(i) < pre(k) + des(k). Hence, (7) can be solved by computing find (z), where
Zisthe greatest element in domain find such that z < pre(p).

We can store domain find as either a red/black tree [16,36] or Willard's variant of the Van
Emde Boas priority queue[37,38] and obtain the following time/space bounds. Both data struc-
tures use space O(|Q|). Computing query (7) costs O(log |Q|) time with red/black trees, and
O(loglog I) time with priority queues (wherel isthe number of nodesin T).

Based on the preceding analysis, we can perform query (6), (i.) with O () cumulative space if
we store all of the domains of find maps for each binary function fOOF either as red/black trees or
Van Emde Boas priority queues. Query time is O(log I¢) using red/black trees, O(loglog 1) with
priority queues.

To facilitate query (6), (ii.) and (iii.) we can combine witnesses and find maps as follows. Let
find, be the find map for S(x). Then define

findw, (z) = [w (x, findy(z)), findy(z)]
We can store all these findw, maps for each xOM$ using a minor variant of the persistent search

tree of Sarnak and Tarjan [33] (see also[11]). Recall that a persistent search tree can store a
r-1

sequence Tg, Ty, - -+, T, of sets, where T is empty in space O(s) in whichs = % |T;AT;4; | and
i=0

A represents symmetric difference. It can also support the nearest neighbor operation

-36-

pred(i, x)=max /{y O T, | y<x} inO(log s) worst casetime.

Consider the sequence [findw,: xOM#] of maps ordered according to a preordering of M}
relative to the subsumption tree (where the empty set is implicitly the first member of the
sequence). Let us store this sequence in a persistent search tree using domain values of the findw
maps as keys. Since the sum of the sizes of the symmetric differences of successive maps in the

sequence is bounded by O(> |R{x}[) = O(l;), then query (6) (ii.) and (iii.) can be solved in time
xont

O(log If). If g isthe answer to query (6) (i.), then the pair [g3, 2] = findwy, (z) solves queries (6)
(ii.) and (iii.), where z is the greatest element in domain findwg, such that zspre(p,). The cumu-
lative space for storing findw maps in persistent search trees for all the binary functions fOIF is just
o).

Preprocessing for solving (6) involves constructing the subsumption tree T and computing
preorder and descendant numbers (pre and des) for each of its nodes. Hoffmann and O’ Donnell’s
Algorithm A[20] decides whether PF is Simple and computes the transitive closure of T in time
O(1 °K;rey) @nd space O(1?). It is straightforward to modify their algorithm to decide whether PF is
Very Simple and to produce T without changing the theoretical complexity. Once T is available,
pre and des can be computed in O(l) steps (since T has | nodes).

Preprocessing for (6) (i.) involves computing find maps over set M for each function symbol
fOF. If N$ is preordered with respect to T, we can compute the find map for f as follows. Pass
through M7 in linear time, defining find (pre(x)) to be x for each x(IM$ encountered. Recall that
we also need to compute the nearest ancestor of x in M$ to be assigned to find (pre(x)+des(x))
whenever pre(x)+des(x) is not the preorder number of some node yIM$. These ancestors can be
computed by stacking the anticipated number pre(x)+des(x) together with the ancestor of x while
searching through M$. It may be helpful to think of the algorithm as processing numbers pre(x)
as left parentheses (which are al distinct) and pre (x)+des(x) as balancing right parentheses (which
need not be distinct for different values of x). Details are given below.

--Initialize ancestor to be the artificial top element of al nodesin T
--whose preorder number islessthan old_num =1 +1; its ancestor
--old_ancestor is undefined

ancestor := 1

--Handle Ieft boundary of T using 0 as an artificia preorder number
find (O) := ancestor

old_ancestor := undefined

old_num:=1+1

stack := [old_ancestor,old_num]|

for xOM$ loop

(while old_num<pre(x))

-37-

--old_numisthe pre(y)+des(y) for some node y whose nearest ancestor
--isold_ancestor
find(old_num) := old_ancestor
pop stack
ancestor := old_ancestor
[old_num,old_ancestor] :=top stack
end
if old_num=pre(x) then
pop stack
ancestor := old_ancestor
[old_num,old_ancestor] :=top stack
end
find (pre(x)):=x
if old_numz#pre (x)+des(x) then
--Thistest guarantees that old_num valuesin successive stack entries must
--be distinct
old_num := pre(x)+des(x)
old_ancestor := ancestor
push [old_num,old_ancestor] onto stack
end
ancestor :=x
end
(while old_ancestor Zundefined)
-- Process remaining right boundaries
find (old_num):=old_ancestor
pop stack
[old_num,old_ancestor] :=top stack
end

Algorithm Compute find

Algorithm Compute find runsin O(l¢) steps. If wefold in the code to store domain find in a
red/black tree, the preprocessing time is O(lslog I¢). In a single preorder traversal of T, we can
preorder the elements of M{ for all functions fOF in O(l) time. The total preprocessing time to
compute red/black trees storing find maps for al of the function symbols together is then
O(l log). Using Willard's data structure instead takes expected time O(l log I) or worst case time
O(I?log 1), because it depends on perfect hashing[13].

Preprocessing for (6) (ii.) and (iii.) involves computing findw, maps over sets S(x) for each
xOM$#. We compute these maps according to a preorder search through M#$. Suppose that y comes
immediately after x in the preordering of M. Suppose also that findw, is computed for set S(x).
Our goal is to compute findw, for set S(y) by performing modifications to findw,. It suffices to

-38 -

consider two cases. (1) wherey is a proper descendant of xin T, and (2) otherwise.

If y is aproper descendant of x, then S(y) = S(x)UR{y}. In this case we can compute findw,
by first computing the find map local_find for R{y} using Algorithm Compute find. By Lemma
10 we know that no element in R{y} is a proper ancestor of any element in S(x). Hence, for each
z O domain local_find, if local_find (z) # 1, we perform the update findw,(z) :=[y, local_find ()],
where y will always be a new witness; otherwise if local_find (z) = 1, we perform a nearest neigh-
bor query a = max/{u O domain findw, | u <z}, and assign findw,(a) to findw,(z). The map that
results from these operations is findw,.

If we assume that dummy value O is the first element in M in which S(0) and findw, are
both empty, then the preceding approach for case (1) can be used to compute the first findw map in
our sequence. To handle case (2) in which y is not a proper descendant of x, we first find the
closest proper ancestor u of y in M$, where dummy value O is regarded as a proper ancestor of
every other node. Next, we update findw, to form a copy of findw,. Finaly, we update the copy
of findw,, to obtain findw, using the method for case (1).

More specifically, let A be the wunion of the sets ({pre(i):i0OR{y}} O
{pre(i)+des(i):iOR{y}}) for al y coming after u among the preordered elements of M+ such that y
is an ancestor of x. Then for each z[IA, if it belongs to the domain of findw,,, assign findw,(z) to
findw, (w); otherwise, remove z from domain findw,. This step turns findw, into a copy of findw,.
Map findw is obtained by further modifying findw, according to the method for case (1).

If we use a persistent red/black tree, the total preprocessing costs to compute and store maps
findw for function f are O(lt) space and O(lslog I¢) time. The cumulative preprocessing costs to
compute these maps for al functions fOF isthus O(l) space and O(l log I) time.

Summing up the preceding discussion, we have

THEOREM 12. BottomUp Sep (4) can be computed for binary Smple Patterns in O(log)
timeand O(|) auxiliary space. Total preprocessing costs are O(l %) time and space.

The reduction of Very Simple pattern forests PF to binary form introduces O(|F|) new func-
tion symbols and O(kax 1) new subpatterns. The cost of the Bottom-Up Step is approximately
doubled, while the theoretical complexity for preprocessing remains unchanged.

The time bound for Theorem 12 can be improved to O ((loglog |)?) by using a persistent form
of the Van Emde Boas queues to answer queries of type (6) (ii.) and (iii.). These queues can be
made persistent by applying the results of Dietz[8]. Dietz's result gives as an immediate corollary
that the Van Emde Boas structure can be made persistent at a time cost of a factor of loglog | per
operation. The time for lookups is worst-case; the preprocessing time (to build the data structure)
is expected, because it depends hashing[9, 13] to keep the space down. The space bound remains
O(l). The expected preprocessing timeis O(l (loglog 1)?).

-39-

9. Conclusion

We believe that a deeper analysis and exploitation of the structure of pattern matching can

lead to further algorithmic improvements. It might also be worthwhile to consider hybrid pattern

matching methods that combine our different algorithms. The main open problem in the method of

match set elimination is to compute the subsumption tree T in better time and space than Hoffmann

and O'Donnell’s Algorithm A. Of course, this method would also benefit from improvements in

construction time for persistent Van Emde Boas priority queues. In a subsequent paper we will

report how to extend our algorithms to a more complex pattern language, which is used to perform

semantic analysis within RAPTS.

Acknowledgements We are grateful for helpful discussions with David Chase, Mike Fredman,
Fritz Henglein, Chris Hoffmann, Ken Perry, and Dan Willard. We aso thank the CAAP referees.

References

1. Aho, A., Hopcroft, J., and Ullman, J., Design and Analysis of Computer Algorithms, Addison-Wesley, 1974.

2. Borstler, J., Moncke, U., and Wilhelm, R., Table Compression for Tree Automata, Lehrstuhl fur Informatik 11,
Universitat des Saarlandes, 1987.

3. Burghardt, J., ‘A Tree Pattern Matching Algorithm with Reasonable Space Requirements,”’ in Proc. CAAP ' 88,
ed. M. Daudet and M. Nivat, Lecture Notes in Computer Science, vol. 299, pp. 1-15, Springer-Verlag, 1988.

4, Cai, J. and Paige, R., ' The RAPTS Transformational System - A Proposal For Demonstration,”” in ESOP *90 Sys-
tems Exhibition, May 1990.

5. Cai, J, Paige, R., and Tarjan, R., ‘‘More Efficient Bottom Up Tree Pattern Matching,”” in Proc. CAAP 90, ed. A.
Arnold, Lecture Notesin Computer Science, vol. 431, pp. 72-86, Springer-Verlag, 1990.

6. Cai, J,, Facon, P., Henglein, F., Paige, R., and Schonberg, E., ‘‘ Type Transformation and Data Structure Choice,”’
in Proc.TC2 Working Conf. on Constructing Programs from Specifications, May, 1991.

7. Chasg, D., ‘** An improvement to bottom-up tree pattern matching,”” in Proc. Fourteenth Annual ACM Symposium
on Principles of Programming Languages, pp. 168-177, January, 1987.

Dietz, P., *‘Fully Persistent Arrays,”’ J. Algorithms, submitted 1990.
Dietzfelbinger, M., et. al., ** Dynamic Perfect Hashing: Upper and Lower Bounds,”’ in Proc. |EEE 29th FOCS, pp.
524-531, Oct., 1988.

10. Donzeau-Gouge, V., Huet, G., Kahn, G., and Lang, B., ‘‘ Programming environments based on structured Editors:
the Mentor Experience,’”’ in Interactive Programming Environments, ed. D. Barstow, H. Shrobe, and E. San-
dewall, McGraw-Hill, 1984.

11. Driscall, J,, Sarnak, N., Sleator, D., and Tarjan, R., ‘*‘Making Data Structures Persistent,”” in Proc. 8th ACM
STOC, pp. 109 - 121, ACM, May, 1986.

12. Dubiner, M., Gdlil, Z., and Magen, E., ‘‘Faster Tree Pattern Matching,”’ in Proc. 31st IEEE FOCS’ 90, Oct., 1990.

13. Fredman, M., Komlos, J., and Szemeredi, E., ‘‘ Storing a Sparse Table with O(1) Worst Case Access Time,”’
JACM, vol. 31, no. 3, pp. 538-544, July, 1984.

14. Giegerich, R. and Schmal, K., ‘*Code Selection Techniques: Pattern Matching, Tree Parsing, and Inversion of
Derivors,”” in Proc. ESOP ’'88, Lecture Notes in Computer Science, vol. 300, pp. 245-268, Springer-Verlag,
1988..

15. Givler, J. and Kieburtz, R., ‘* Schema Recognition for Program Transformations,”” in ACM Symposium on LISP
and Functional Programming, pp. 74-85, Aug, 1984.

16. Guibas, L. and Sedgewick, R., ‘**A dichromatic framework for balanced trees,”” in Proc. 19th IEEE FOCS pp.
157-184, 1978.

17. Hatcher, P. and Christopher, T., ‘‘High-Quality Code Generation Via Bottom-Up Tree Pattern Matching,”’ in

Proceedings 13th ACM Symposium on Principles of Programming Languages, pp. 119-130, Jan, 1986.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.
33.

35.

36.
37.

38.

-40-

Heckmann, R., **A Functional Language for the Specification of Complex Tree Transformations,”’ in Proc. ESOP
'88, Lecture Notes in Computer Science, vol. 300, pp. 175-190, Springer-Verlag, 1988.

Henry, R., Encoding Optimal Pattern Selection in a Table-Driven Bottom-Up Tree-Pattern Matcher, Computer
Science Dept., U. of Washington, 1989. Technical Report

Hoffmann, C. and O’ Donnéll, J., ** Pattern Matching in Trees,”’ JACM, voal. 29, no. 1, pp. 68-95, Jan, 1982.

Hoffmann, C. and O’ Donnell, M., ** Programming with Equations,”” ACM TOPLAS vol. 4, no. 1, pp. 83-112, Jan.,
1982.

Hudak, P., ** Conception, Evolution, and Application of Functional Programming Languages,”” ACM Computing
Survey, vol. 21, no. 3, pp. 359-411, Sep. 1989.

Huet, G. and Lang, B., ‘‘Proving and Applying Program Transformations Expressed with Second-Order Pat-
terns,”’ Acta Informatica, vol. 11, pp. 31-55, 1978.

Knuth, D. and Bendix, P., ‘*‘Simple Word Problems in Universal Algebras,’”’ in Computational Problems in
Abstract Algebra, ed. Leech, J., pp. 263-297, Pergamon Press, 1970.

Kosaraju, S., ** Efficient Tree Pattern Matching,”” in Proc. 30th IEEE FOCS'’ 89, Oct., 1989.

Lipps, P., Moncke, U., and Wilhelm,R., *“OPTRAN - A Language/System for the Specification of Program
Transformations. System Overview and Experiences,”’ in Proc. 2nd CCHSC Workshop, ed. D. Hammer, Lecture
Notes in Computer Science, vol. 371, pp. 52-65, Springer-Verlag, 1988.

Maluszynski, J. and Komorowski, H. J., **Unification-free execution of logic programs,”’ |EEE Proceedings of
symposium on logic programming, Boston, 1985.
Mehlhorn, K., Sorting and Searching, Data Structures and Algorithms, 1, Springer-Verlag, 1984.

Pelegri-Llopart, E. and Graham, S., **Optima Code Generation for Expression Trees: An Application of BURS
Theory,”” in Proceedings 15th ACM Symposium on Principles of Programming Languages, pp. 294-308, Jan,
1988.

Pfenning, F. and Elliott, C., ‘‘Higher-Order Abstract Syntax,”’ in Proceedings SGPLAN ’'88 Conf. on Prog. Lang.
Design and Implementation, pp. 199-208, June, 1988.

Purdom, P. and Brown, C., ‘‘ Fast Many-to-one Matching Algorithm,”” in Proc. RTA 85, ed. J.-P. Jouannaud, L ec-
ture Notes in Computer Science, vol. 202, pp. 407-416, Springer-Verlag, 1985.

Reps, T. and Teitelbaum, T., The Synthesizer Generator, Springer-Verlag, 1988.

Sarnak, N. and Tarjan, R., ‘*Planar Point Location Using Persistent Search Trees,”” CACM, vol. 29, no. 7, pp.
669-679, July, 1986.

Sethi, R., Programming Languages: Concepts and Constructs, Addison-Wesley, 1989.

Standish, T., Kibler, D., and Neighbors, J., ‘‘The Irvine Program Transformation Catalogue,”” Univ. of Cal. at
Irvine, Dept. of Information and Computer Science, Jan, 1976.

Tarjan, R., Data Structures and Network Algorithms, SIAM, 1984.

Van Emde Boas, P., ‘‘Preserving Order in a Forest in Less Than Logarithmic Time and Linear Space,”’ IPL, vol.
6, pp. 80-82, 1977.

Willard, D., ‘‘Log-Logarithmic Worst-Case Range Queries are Possible in Space O(N),”” IPL, vol. 17, pp. 81-89,
1983.

-41-

Appendix: Pattern Algebra

Let U be the set of al possible patterns. Let = be the more general than relation between pat-
terns. The relation = is reflexive, transitive and antisymmetric. Thus (U, =) is a partial order. It is
easy to seethat any subset Sof U hasaleast upper bound lub(S) in U. Thus, U isajoin lattice with
v being the maximum element. But it is not alattice.

Two patternsin U are said to be compatible if they have a lower bound in U. We can show
that

LEMMA 13. A finite set of patterns P has a greatest lower bound glb (P) in U iff these pat-
terns are mutually compatible.

Proof Theonly if partistrivial. We need only to provetheiif part.

Basis: P contains at least one leaf x. If x = v, then glb (P) = glb({x, glb(P — {x})}) = glb(P -
{x}). If xisaconstant, then glb (P) = x.

Induction: Suppose that all patterns in P have the same function symbol f with arity k > 0.
Then glb (P) = f(glb({x1: f(X1, ..., %) O P}), ..., glb({X: f(X1, ..., X&) O P})). m

Let PF be any finite subset of U. A subset M of PF is called a match set (wrt PF) if thereisa
patternt in U such that M = { x 0 PF | x =t }. By the definition of match set and compatibility we
have,

LEMMA 14. If M isa match set, then the patternsin M are mutually compatible. m

LEMMA 15. M isa match set wrt PF iff M = { x O PF | x = glb(M)}, i.e, iff M is a match set
of gib(M) wrt PF.

Proof Theif part istrivial. Consider the only if part. Since M is a match set wrt PF, then
thereissomet 0 U suchthat M ={ x O PF | x=1t}. Sinceglb(M) 2t,thenM={ xO M |x =

glb(M)} O{ xOPF |x=2glb(M)} O{ xUOPF x>t} =M. m

LEMMA 16. If M, and M, are two match setswrt PF, then M n M is also a match set wrt
PF.

Proof Since M; and M, are two match sets wrt PF, then My ={ x O PF | x = glb(M)}
and M, ={ xOPF |x=glb(M5)}. Therefore

MlﬂMz
={x OPF | x=glb(M) and x = glb(M>)}
={x OPF | x=lub({glb(My), glb(M2)})},

which isamatch set. m

