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Abstract

Semantic Analyses for Storage Management Optimizations
in Functional Language Implementations
Young Gil Park
Ph.D., Department of Computer Science, New York University, September 1991.
(Research advisor: Benjamin Goldberg)

One of the major overheads in implementing functional languages is the storage manage-
ment overhead due to dynamic allocation and automatic reclamation of indefinite-extent
storage. This dissertation investigates the problems of statically inferring lifetime informa-
tion about dynamically-allocated objects in higher-order polymorphic functional languages,
both strict and non-strict, and of applying that information to reduce the storage manage-
ment overhead.

We have developed a set of compile-time semantic analyses for a higher-order, monomor-
phic, strict functional language based on denotational semantics and abstract interpreta-
tion. They are 1) escape analysis, which provides information about the relative lifetimes
of objects such as arguments and local objects defined within a function with respect to an
activation of the function call, 2) refined escape analysis which, as a refinement of escape
analysis, provides information about the lifetimes of components of aggregate structures,
and 3) reference escape analysis which provides information about the relative lifetimes of
references created within a function with respect to an activation of the function.

We also have developed a compile-time semantic analysis called order-of-demand anal-
ysis for higher-order, monomorphic, non-strict functional languages, which provides infor-
mation about the order in which the values of bound variables are demanded and thus
allows one to compute a range of information including strictness, evaluation-order, and
evaluation-status information.

Using the notion of polymorphic invariance, we describe a method for analyzing a poly-
morphic language by using the analyses for a monomorphic language. We then extend those
analyses for a strict language to a non-strict language using non-strict program transfor-

mation and evaluation-status information.
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Based on statically inferred escape information, we propose a combination of storage
management optimization techniques including stack allocation, explicit reclamation, in-
place reuse, reference counting elimination, block allocation/reclamation, and improving

generational garbage collection.
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Chapter 1

Introduction

Functional programming languages provide a variety of useful features such as referential
transparency, higher-order functions, non-strict semantics and implicit storage manage-
ment. Functional languages, however, have gained popularity much slower than imperative
ones because their implementations on conventional sequential and parallel computers have
tended to show relatively poor performance. Optimization to improve the performance of
functional languages is thus an essential component in any viable implementation. One of
the major overheads incurred by functional language implementations is the storage man-
agement overhead due to dynamic allocation and automatic reclamation of indefinite-extent
storage. This thesis explores the optimization problem of reducing the storage manage-
ment overhead by obtaining lifetime information about dynamically-allocated objects in
higher-order polymorphic functional languages, which is inferred at compile-time through

semantics-based analyses of high-level source programs.

1.1 Functional Languages

The class of modern functional programming languages exhibits several useful features as

follows ([7], [31], [40], [66]):

o Referential Transparency (FEquational Reasoning) : In pure functional programming,
a program has no modifiable state, because of the lack of an assignment operator, and
thus is made up entirely of expressions. The evaluation of an expression is guaranteed
to have no other effects on the program, that is, no side-effects. The absence of side-
effects guarantees the mathematical property of referential transparency which means

that any syntactically identical pair of expressions are semantically the same, scope



rules allowing, and this makes functional programs easier to reason about. Programs
can be treated as a system of equations and equational reasoning can be applied.
Functional languages also have a completeness property which states that the reduction
of an expression using a general normal-order strategy is guaranteed to yield a result

if a result is mathematically deducible.

Higher-Order Functions : The notion of a function is the primary abstraction mecha-
nism in any programming language and thus facilitating the use of functions increases
the utility of that kind of abstraction. Much of the power of a programming lan-
guage can come from the advanced use of functions. Imperative languages such as
Algol68, Pascal and C allow procedures or functions to be passed as parameters to
other procedures and functions, but does not permit function-valued or procedure-
valued functions. In functional languages, functions are treated as first-class objects
like any other data object in the language. Functions that are allowed to be put in
data structures, passed as an argument in function calls, and returned as values from
expressions including function calls are called first-class functions. Those languages
supporting higher-order functions generally allow functions to be curried or partially
applicable. If a function is defined to take several arguments, it can be considered as

a function that takes only one argument and returns a curried function.

Non-strict Semantics : The reduction of a function application in a language can
generally be performed in two ways: strict (applicative-order) evaluation order and
non-strict (normal-order) evaluation. In strict semantics, the application of a function
to its arguments results in the arguments being evaluated before they are passed to
the function and before the body of the function begins execution. This corresponds
to applicative-order reduction in the lambda calculus. The advantage of this scheme,
known as call-by-value, is that it is easy to implement efficiently; first we evaluate the
arguments, then we call the function. However, it may result in unnecessary evaluation
if an argument’s value is not ultimately required by the called function. In non-
strict semantics, an argument is not evaluated unless and until its value is demanded
inside the body of the called function; all arguments are passed to the function in
an unevaluated form and are only evaluated when needed inside the function body.
This corresponds to normal-order reduction in the lambda calculus. The advantage
of this evaluation method, also known as call-by-name, is that no effort will have
been wasted if the argument value is not ultimately required. A non-strict semantics

also has the advantage of resulting in program termination more often than a strict



semantics since the evaluation of a non-terminating expression may be avoided. If a
program terminates using both call-by-value and call-by name, then the same result
will be returned in both cases, which is guaranteed by the Church-Rosser Property.
Thus, the non-strict language avoids redundant evaluations and is more expressive
than the strict language. That is, it increases the power of functional abstraction and

allows the definition of infinite structures.

Implicit Storage Management : Another major feature of functional languages is that
there is no notion of explicit storage management. The programmer is relieved from
having to think about how or where the data objects in a program are stored within
the computer memory and from writing code to recover inaccessible memory and
reuse it. This is an important abstraction from the housekeeping needed with com-
mon imperative languages. Data types can be defined at an abstract level with no
concern as to how they are represented internally, this being handled automatically
by implementation. Furthermore, the lifetime of the object is also unimportant as
far as the programmer is concerned and so we do not have to worry about when
an object ceases to be required by the program. Built-in operations on data auto-
matically allocate storage as needed and storage that becomes inaccessible is then
implicitly deallocated by triggering garbage collection. The absence of explicit code

for managing storage effectively for data objects makes programs simpler and shorter.

Static (Implicit) Polymorphic Typing : A type system for a language is a set of rules
for associating a type with expressions in the language to avoid embarrassing questions
about representations, and to forbid situations in which these questions might come
up. Most modern functional languages adopt a rich static strong polymorphic type
system ([19], [27], [60], [69]) in which polymorphism is allowed in both primitive and
user-defined functions, and a type inference system can be used to infer the types
of expressions when little or no type information is given explicitly. Static strong
typing, which means that expressions are type consistent and thus type errors can not
occur at run-time, and that the type of every expression can be determined by static
program analysis rather than during program execution, helps in debugging since
one is guaranteed that if a program compiles successfully then no error can occur
at run-time due to type violations. It also leads to more efficient implementations,
since it allows one to eliminate most run-time tags and type testing, but it may lead
to a loss of flexibility and expressive power. While a monomorphic type system in

which every value can be interpreted to be of one and only one type is too restrictive



in its expressive power, a function that is assigned a type expression with one or
several type variables is said to be polymorphic, which means that it can have several
different types. Overloading can likewise assume different types. However, it is just
the use of one function symbol for many different but usually related functions. For
an overloaded function, a definition must be given for each possible argument type
while a polymorphic function is defined in a single definition. Polymorphic functions
are extremely useful. In one function definition, we define a number of functions that
are computationally similar. Without polymorphism we have to give one definition for
each case. Polymorphism makes programming simpler since we can define functions
that are useful in a variety of applications. Polymorphism is not confined to functional
languages, but it reflect the importance of higher-order functions to the expressive
power of functional languages. It is generally desirable for a language to be statically

checked using a powerful and strong type system.

1.2 Storage Management Overhead

A high implementation overhead is required to support a variety of features that are provided
by a functional language. Despite a number of approaches to implementing functional
languages, all implementations deal with the same basic underlying issues, i.e. dynamic
allocation of heap objects and garbage-collected reclamation of them. The overhead due to
storage management is one of the major overheads of functional language implementations.
The principal sources of the storage management overhead are dynamic allocation and

automatic reclamation of indefinite extent storage.

Dynamic Heap Allocation

Heap is a storage which is allocated and reclaimed dynamically in any order at any time
during a program’s execution. There are two kinds of run-time objects to be dynamically

allocated in indefinite-extent heap storage during the execution of a functional program

([31]):

e Objects built explicitly by the program such as records, lists and trees whose size can

vary during the running of a program and thus cannot be statically determined.

e Objects built by the implementation such as closures for representing function values

and delayed expressions.



In the implementation of a language with implicit storage management, data structures
which are defined explicitly in a program but whose size cannot be statically determined,
such as lists, trees, records and so on, are generally allocated in the heap. Heap is also needed
to support higher-order functions and non-strict/lazy semantics of functional languages.
The need for heap allocation arises when parameters and locally defined objects within a
function outlive a call to that function. In programming languages which do not support
higher-order functions, lifetime of storage for local variables are confined to a function’s
activation record. Thus, storage for the locals is allocated when activation begins and is
deallocated when the activation ends.

A closure is a means of representing function values, which consists of code together
with its free variables. The use of closures guarantees that variables are statically scoped.
In languages with higher-order functions and lexical scoping rules, it is possible to write
a function, say f, which returns a lexically enclosed function, say g. Allocating the envi-
ronment for the function value on the heap, however, adds a large cost to each function
call.

To implement non-strict semantics and lazy evaluation, any implementation strategy
uses a notion of delayed expression in some way, but in the abstract they all do the same
thing: delay the evaluation of an expression until its value is demanded, then evaluate it
whenever needed (in normal-order implementation), and save the value so that it may be
used on future demands without recomputation (in lazy implementation). Delayed repre-
sentation of an expression must contain enough information to enable the expression to be
evaluated later. Moreover, in order to implement lazy evaluation in which the expression
is guaranteed to be evaluated at most once, there must additionally be some mechanism
to cache the value of the expression and return it later rather re-evaluating it. Creating a
delayed expression requires the allocation of some storage. Because the value of the delayed
expression might be needed at some unknown time in future, it must be allocated in a heap

which has an indefinite extent.

Automatic Storage Reclamation

An implementation of a programming language with dynamic heap allocation requires some
kind of storage reclamation mechanism, either explicit or implicit(automatic), because the
heap storage occupied by objects which are inaccessible and are no longer required in the
execution of the program have to be automatically reclaimed so that the physically finite

storage is not rapidly exhausted by the program. Automatic storage reclamation is espe-



cially important in implementations of declarative languages, such as functional languages,
that have no notion of explicit storage control and tend to use storage extensively. There
are three basic approaches, with a number of variants, to automatically reuse the portions
of heap storage, called garbage, that have previously been allocated but are no longer used
by the program: ([24], [70]) reference counting, mark-and-sweep garbage collection, and
copying garbage collection.

On most current computer systems, heap allocation and automatic storage reclamation
is relatively expensive. A significant amount of overhead both in time and in space, are
incurred in the process of automatic storage reclamation. A substantial portion of the
execution time is spent in automatic storage reclamation. Due to this storage management
overhead, in conventional computer architectures, typical implementations of functional
programs are inefficient and waste memory, and thus functional programs tend to be much

slower than their imperative equivalents.

1.3 The Role of Lifetime Information

Like many other programming language implementations, efficient storage management is
a central concern in functional language implementations. The approaches to reduce the
storage management overhead due to dynamic heap allocation and garbage collection in

functional language implementations can generally be classified into three ways as follows:

1. Avoid heap allocation and garbage collection by using a storage structure (for example,
a stack) whose allocation and reclamation is more efficient than for a heap. A heap
provides a very general storage allocation mechanism, but it is also very expensive. In
contrast, a stack is much less flexible allocation mechanism, but the store it allocates
is recovered immediately when it becomes unused, and this recovery simply involves

decrementing the stack pointer.

2. Even though heap allocation and garbage collection is used, reduce the frequency
of invoking the garbage collection by reducing the frequency of running out of free

storage.

3. Even though the garbage collection is invoked, improve the garbage collection scheme

itself rather than fully relying on the original garbage collection scheme.

We describe a variety of storage management optimization techniques as follows:



o Stack Allocation : Objects that would otherwise be allocated in the heap and then
reclaimed using garbage collection are allocated in the stack and cheaply reclaimed

without invoking garbage collection. ([16], [20], [34], [42], [55], [76])

o Fuplicil Reclamation and In-place Reuse : When heap-allocated objects are no longer
needed, they can be reclaimed into a free storage list explicitly by the program without
invoking a garbage collection process. When heap-allocated objects are no longer
needed, their storage can be reused directly in the allocation of new objects without

invoking garbage collection. ([11], [35], [41], [49], [50], [51])

e Reference Counting Elimination : In reference counting, each object contains a count,
called the reference count, of the number of references (pointers) pointing to it. Each
time a reference is created or destroyed its reference count needs to be incremented
or decremented. It is desirable for unnecessary updatings on reference counts at each

reference’s creation/ deletion to be avoided. ([9], [32])

o Block Allocation/Reclamation : A number of objects are allocated together in a con-
tiguous block of a heap storage and the whole block is put on the free list, rather
than the individual objects. This allows reclamation of larger segments of storage,
and reduces run-time overhead by avoiding the traversal of the individual objects (in

mark-sweep collection, for instance). ([76])

The main reason that objects are allocated on a heap is that their lifetime is gener-
ally unknown at compile-time and thus is assumed to have indefinite extent. In principle,
garbage collection can be avoided by compile-time scheduling of storage use. Information
about the lifetimes of objects can have an important role in storage management optimiza-
tions. Objects allocated on the heap could be allocated and reclaimed more efficiently if
compilers sought to extract information about their lifetimes from the program text instead
of making worst-case assumptions. Stack allocation can be safely applied when the lifetimes
of objects are contained in the lifetime of a storage which can be reclaimed in the reverse
order of that in which it is allocated. Explicit reclamation and in-place reuse can be applied
when the lifetimes of heap-allocated objects are known. Reference counting elimination can
be applied when the lifetimes of references to a heap-allocated object are known. Block
allocation/reclamation can be applied when a set of objects whose lifetimes are same are

to be allocated on a heap.



1.4 Lazy Evaluation Overhead and the Role of Order-of-

Demand Information

Many modern functional languages adopt a non-strict semantics and use the lazy evaluation
model. In a non-strict functional language, arguments in a function application are not
evaluated unless and until their values are demanded. An optimized version of normal-
order evaluation is lazy evaluation in which each argument is evaluated only when its value
is first demanded, and the value is saved for later demands. The implementation of lazy

evaluation, however, involves substantial overhead due to
1. The need for delaying the evaluation of arguments.

2. The need for checking their evaluation status (that is, whether they have already been

evaluated) every time their values are demanded.

In a non-strict functional language that is implemented using lazy evaluation, exact
information about which arguments to a function will be demanded, what the order of
evaluation among the arguments of a function is, and what the evaluation status of an
argument is when its value is demanded, cannot generally be decided at compile-time.
If such information could be safely approximated at compile-time, however, a number of
important optimizations could be performed. Devising such analyses and optimizations has
been a major focus of functional language research over the past decade.

Information about which arguments to a function will definitely be demanded, called
strictness information, is used to optimize lazy evaluation by converting lazy evaluation
into applicative-order evaluation and thus reducing the overhead of lazy evaluation ([36],
[31], [63], [66]). Information about the order of evaluation of the arguments to a function
can be useful for a number of optimizations, including copy elimination ([11], [30], [35])
and process scheduling in a parallel system [13]. Information on the status of evaluation of
arguments when they are demanded is useful for eliminating unnecessary checking [14] and
for efficient storage management of delayed expressions (closures).

These information can be reformulated in terms of information about the order in which

the values of bound variables are demanded, called order-of-demand information, as follows:

o Status of Fvaluation: Given an occurrence z; of a variable z in the body of a function
f, if for each possible execution of the body of f there exists another occurrence z; of

x such that z; is demanded before z;, then we know that z must have been evaluated



by the time z; is encountered. Thus no run-time test of z’s status is required to obtain

the value of z;.

o Order of Fvaluation: Given two parameters z and y of a function f, if for every
occurrence y; of y in the body of f there exists an occurrence z; of z that is demanded

before y;, then we can conclude that z will always be evaluated before y.

o Sirictness: Given a parameter z of a function f, if we can determine that for each pos-
sible (terminating) execution of the body of f some occurrence z; of  was demanded,

then we can determine that f is strict with respect to x

1.5 Semantics-based Analysis

Compiler optimizations should not affect the standard semantics of programs, but may af-
fect the pragmatics of programs. Any compile-time program analysis for optimization is
required to be semantically correct or safe with respect to the standard semantics. For
functional programming languages that have precise, straightforward semantics, denota-
tional semantics ([4], [74], [79]) and abstract interpretation ([2], [17], [25], [26], [46], [44],
[63]) are particularly powerful tools for general and effective program analyses to infer

certain properties of programs that may be needed for semantics-preserving optimizations.

Denotational Semantics

To perform meaning-preserving optimizations, a precise semantics is needed for any pro-
gramming language. Because of their sound theoretical foundation, functional languages are
particularly well suited for semantics-based analysis of programs. Denotational semantics is
a formal way of describing the (standard or non-standard) meaning of a program in terms
of mathematical semantic domains that properly capture our intuition about program be-
haviors and semantic functions, and is the most widely used tool for describing the formal
semantics of functional programming languages.

Domain theory and denotational semantics were introduced to give meaning to syntac-
tic expressions. Formally, we consider the meaning of an expression to be a value taken
from some domain with well understood mathematical properties. To properly represent
the results of all computations, a suitable domain must include elements representing in-
completely evaluated objects, and thus represent approximations to completely evaluated
objects. Therefore, we need an ordering establishing a partial order based on the definedness

of elements and a least element on the domain D representing the completely undefined



object (e.g. non-termination). We also require that domains include the limits of infinite
chains of approximating partial elements, i.e. for each increasing sequence in D, the least
upper bound exists, making D a complete partial order(cpo). A domain D is called flat
when all elements apart from the bottom element are incomparable with each other. For
functions defined only on values which do not include compound data types such as lists,
this type of domain is sufficient for defining a consistent semantics. In a domain which is
not flat, called a non-flat domain, there may exist an ordering among all elements. Com-
putable functions between domains should preserve the information ordering structure and
the limits, i.e. they are monotonic and continuous. Given domains with these requirements,
we can construct domains such as the Cartesian product, the function space, the separate
sum, the coalesced sum, the reflexive domain, the functional domain and the powerdomain.
We can now interpret recursively defined functions as least fixed points and also compute
them by iteration from the fized point theorem [74]. If the domain D is finite or it has the
property that all chains are of finite length, then the least fixpoint can be computed in a
finite steps by iteration. The fixpoint theorem also forms the basis for a number of practical
algorithms in abstract interpretation.

In denotational semantics, the semantics of a language is defined by semantic functions
mapping syntax of the language to a suitable domain that captures certain computational
behavior. Such semantic functions are defined so that the meaning of any composite syn-
tactic structure is expressed in terms of the meanings of its immediate constituents. The
standard or non-standard semantics of any functional programming language can be ex-

pressed in terms of a domain of objects and continuous functions defined on it.

Abstract Interpretation

Abstract interpretation is a computation over some abstraction or approximation of a se-
mantic domain. It is a formal methodology that mathematically approximates uncom-
putable semantic properties and can be related directly back to the original denotational
semantics. The correctness can be proved at an abstract level, independently of operational
concerns. From a practical perspective, abstract interpretation also provides a convenient
methodology for expressing compile-time analyses in a relatively language-independent man-
ner. Abstract interpretation can be used as a general technique for deducing information
about a program from its text, by executing an abstract version of the program with ab-
stract data and then extracting desired information from the abstract results, instead of

actually executing the original program and then extracting some information via a given
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standard or non-standard semantics. Abstract interpretation has the advantages of han-
dling inter-functional dependency, recursion, higher-order functions, and aggregate data
structures. Most information the we want to know about the program is essentially unde-
cidable. Therefore the issues of effective computability and semantic correctness or safety
become crucial for program analysis through abstract interpretation.

Abstract interpretation in the functionalidiom analyzes certain properties of an expres-
sion’s evaluation by first defining an appropriate abstract domain which is usually much
simpler than the exact standard or non-standard semantic domain, having the minimum
structure required to encapsulate these properties, and defining an abstract version of each
function occurring in the expression on the abstract domain. Then the abstract version
of each function is applied to the abstractions of its arguments to give a result, also in
the abstract domain, from which the required properties of the function’s real application
can be deduced. The safety criteria of an abstract interpretation is that the real result of
the application of a function is in the set represented by the result of the corresponding
application of the abstracted function. To be certain of being correct, we must consider
every possible outcome of the computations represented by a given abstract value, only one
of which will occur in any particular instance. Of course, by enriching the abstract domain
sufficiently, we could represent any property completely and make precise predictions pos-
sible, but ultimately we would arrive back at the given original standard or non-standard
domain itself and have to do the whole computation anyway. Normally, the applications
in the abstract domain are sufficiently simple that they can be effectively performed at
compile-time. Thus, optimizations relying on information from abstract interpretation can

be performed at compile-time.

1.6 Overview of the Thesis

The main reason that objects are allocated on a heap is that their lifetime are generally
unknown at compile-time. This property of object is called indefinite extent. Information
about the lifetimes of objects can have an important role in storage management optimiza-
tions. Objects allocated on the heap could be allocated and reclaimed more efficiently if
compilers sought to extract information about their lifetimes from the program text instead
of making worst-case assumptions. In functional languages among many other languages,
exact information about lifetimes of objects is generally not known at compile-time, but can
be known only at run-time. Such information, if inferred at compile-time, allows a variety

of optimizations that reduce the storage management overhead.
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In this thesis, using formal denotational semantics and the abstract interpretation tech-
nique, we develop a set of compile-time semantic analyses for higher-order, polymorphic
functional languages with non-flat domains, which provide safe information about the life-
time of dynamically-allocated objects during a program’s execution. Based on the infor-
mation that is inferred statically through compile-time analyses, we investigate a vari-
ety of storage management optimization techniques that reduce the storage management
overhead in functional language implementations including bounded-extent storage alloca-
tion, explicit reclamation, in-place reuse, reference counting elimination, and block alloca-

tion /reclamation.

1.6.1 The Functional Language

We introduce a simple higher-order functional language which is representative of a class
of modern functional programming languages and will be used throughout the thesis. It
is a common observation that the syntax of modern high level functional programming
languages are sugared versions of the lambda calculus ([8], [67]). We view our analysis as
being performed at the high-level expression-oriented source code, not at low-level target
code. This view is more portable, though the other view has the possible advantage being
able to use more traditional compiler optimization techniques. Because the information is
derived at the source level it is available during code generation regardless of the target
language of a given virtual machine.

As a model language, we define a simple higher-order functional language whose syntax
is based on the typed lambda calculus augmented with constants that include primitive
functions. The language syntax is defined in Figure 1.1. To support first-class functions, all
functions including primitive ones are curried and explicit lambda abstractions are allowed.
Nested groups of equations are also allowed. We assume that all identifiers have unique
names, i.e. that the program has been alpha-converted to ensure that all bound variables
have been given unique names. Data structures more general than lists, such as trees, are
not dealt with here, however, the methods for lists could be extended to handle general free
data types as well. The model language is defined this way because any functional language
is essentially a sugared version of the lambda calculus, and a number of semantic analysis
which we will discuss in this thesis are applied to high-level source programs. We assume

that the functional language adopts a strong static type system.
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c € Con Set of Constants(including primitive functions)

={...,—1,0,1,...,true,false,nil, cons, car, cdr,null}
x € Id Set of Identifiers
e € FEaxp Set of Expressions, defined by
enx=cla|e+ey|eg —ex| e =ey|if e then ey else e
| e1e2 | lambda(z).e | letrec z1 = e1; ...; &, = €,; in e

pr € Program Set of Programs, defined by

pr = letrec z1 =e€1; ...; T, =€,; in e

Figure 1.1: The Syntax of Functional Language

Notational Conventions

Throughout this thesis, the following conventional notations are adopted;
1. Double bracket, [ ], is used to surround syntactic objects,
2. Square bracket and map arrow, [ — ], are used for environment updates,
3. Angle bracket, ( ), is used for tupling,

4. Subscripts of (1), (2) and (3) are used to denote the first, second and third element of
a tuple, respectively and a subscript of (1,2) is used to denote a pair consisting of the

first and second elements of a tuple.

1.6.2 Strict and Non-strict Standard Semantics

In strict languages, the reduction of a function application is performed in applicative-
order and thus the application of a function to its arguments results in the arguments
being evaluated before they are passed to the function. This section describes the standard

denotational semantics for the model higher-order functional language.

Standard Semantic Domains

The meaning of an expression under the standard semantics is the value of the expression
that we usually think of, such as a number, boolean value, function or list. The standard
semantic domain D, and the domain of standard environments FE, that is a domain of

functions mapping identifiers on to their standard meaning are defined as follows:
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D, = ED; /* Standard semantic domain */
T

Es; = Id— Ds /* Domain of standard environments */

The standard semantic domain D; is a separated sum domain consisting of a subdomain

for each type. The standard subdomain D] for expressions of type 7 is defined as follows:

Dint = {Lliyu}t+{...,—-1,0,1,...} subdomain for integers

Dboet = {Llpoot} + {true, false} subdomain for booleans

D= = DI DT subdomain for functions of type m — 7
Drlst = L1 oY} + {nil” ) subdomain for lists of type 7 list

‘|‘(D;— X D;’ list)
Standard Semantic Functions

We introduce the standard strict semantic functions as follows:

S. + Con— Dy /* Standard semantic function for constants */
Se : FEap— Es— Ds; [* Standard semantic function for expressions */
Spr + Program — D,  [* Standard semantic function for programs */

The standard semantic function S. gives standard meaning to constants. The standard
semantic function S, gives standard meaning to expressions in a given standard environment
for identifiers. The standard semantic function S,, gives standard meaning to programs.
The semantic equations for the standard semantic functions are expressed in Figure 1.2.
Here, the symbol of A, is used to denote a strict function abstraction compared with an

ordinary notation of A.

1 =1

(A5$71'€7'2) ,y — y T1
(Az.e)y y# Ln

env, denotes any standard environment in F, and nullenv, is a standard environment that
maps every identifier on to the least element of its standard semantic domain. Note that
Se and env! is recursively defined.

The standard semantic functions for non-strict semantics are defined as the standard

semantic functions for strict semantics in which A is replaced by A.

1.6.3 Organizations

The rest of the thesis is organized as follows:
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Se[e] = ceced{...,—1,0,1,...}

Sec[true] = true
Sc[false] = false
S [nil7hst] = pil” lst
Sc[cons] = Asz.Agy. pair(z, y)where pair(z, y) = (z,y)
Sclcar] = Asz. first(z)where first(z) = 2y
Seledr] = Asz. second(z)where second(z) = z(y)
Se[null] = Asz. if (z = nil) then true else false
Sele]envs = 5[]
Se[z]envs = envs[z]
Secler + ex]envs = Sc[er]envs + Se[ezx]envs
Scler — ex]envs = Sc[er]envs — Se[ex]envs
Scler = ex]envs, = if (S.[e1]envs = Sc[ez]envs) then true else false
Sc[if e; then e; else es]envs = if (S.[e1]envs = true)
then S.[es]env, else S.[es]envs

Seclerezx]envs = (Sc[er]envs)(Sc[ez]envs)
Se[lambda(z).e]envs = Asy.Sc[e]envs[z — y]
Sc[letrec zy = e1;...;2, = €,;inefenv, = S.[e]env]

where env) = envy[zy — Sc[ei]envl,...,z, — Sc[e,]envl]
Sprlpr] = Selpr]nullenv,

Figure 1.2: Standard Semantic Functions
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¢ Chapter 2. Escape Analysis : In a higher-order functional language, exact in-
formation about the lifetime of objects, such as bound variables, within a function
compared to the lifetime of the activation of the function call is generally unknown at
compile-time, and can only be completely determined at run time. This chapter de-
scribes a method for computing, at compile-time, safe information about the relative
lifetime of arguments and local objects within a function with respect to the lifetime
of an activation of the function call. This analysis is described for a monomorphic,
strict, higher-order functional language. The method is based on a compile-time se-
mantic analysis called escape analysis which provides information about the lifetimes
of objects within a function with respect to the lifetime of the activation of a function

call. This information is called the escapement of objects.

e Chapter 3. Refinements of Escape Analysis : For structured objects such as
lists and trees, the escape information that is obtainable through the escape analysis
is rather coarse. This chapter describes a method for computing more refined escape
information for a monomorphic, strict, higher-order functional language. This method
is based on a compile-time semantic analysis called refined escape analysis which is an
extension of escape analysis and determines at compile-time how much of an object

outlives the activation of the function call in which it is created.

e Chapter 4. Reference Escape Analysis : In a higher-order functional language,
exact information about the lifetime of a dynamically created reference (pointer) to a
heap-allocated object is generally unknown at compile-time. This chapter describes a
method for computing, at compile-time, safe information about the relative lifetime
of dynamically created references. This method is based on a compile-time semantic

analysis called reference escape analysis.

e Chapter 5. Order-of-Demand Analysis : In a non-strict functional language
with lazy evaluation, exact information about the strictness of arguments, the order of
evaluation among arguments, and the evaluation status of arguments when demanded
is generally unknown at compile-time. This chapter describes a method for statically
inferring a range of information including strictness, evaluation-order, and evaluation-
status information. This method is based on a compile-time analysis called order-of-
demand analysis which provides safe information about the order in which the values

of bound variables are demanded.
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e Chapter 6. Polymorphic Invariance : All the semantic analyses presented in
the preceding chapters have dealt with a higher-order functional language with a
monomorphic type system. Using the notion of polymorphic invariance, this chapter
describes a method for applying escape analysis, reference escape analysis, and order-
of-demand analysis to a polymorphic language using the analysis techniques for a

monomorphic language.

¢ Chapter 7. Extensions to Non-strict Languages : Many modern functional
languages adopt a non-strict semantics using the lazy evaluation model, which is more
powerful than strict languages in its expressiveness. Using program transformation,
this chapter describes the extensions of escape analysis and reference escape analysis

to a non-strict language.

e Chapter 8. Storage Management Optimizations : The escape information that
is inferred at compile-time from the semantic analyses which have been described
in previous chapters, allows a variety of storage management optimizations in func-
tional language implementations. Using the statically inferred escape information,
this chapter describes a variety of optimization techniques to reduce the storage man-
agement overheads in functional language implementations, including stack(bounded-
extent storage) allocation, explicit reclamation, in-place reuse of garbage cells, refer-
ence counting elimination, block allocation/reclamation, and improving generational

garbage collection.

e Chapter 9. Related Work, Conclusions, and Future Work : This chapter
surveys some previous work related to the work presented in this thesis, summarizes

the contributions of this thesis, and suggest some further research in this area.
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Chapter 2

Escape Analysis

In higher-order functional languages, exact information about the relative lifetime of an
object with respect to the lifetime of the activation of the function call that creates the
object is generally unknown at compile-time. When storage is allocated for such an object,
it is generally allocated from a heap. The object is then reclaimed using some kind of
automatic reclamation method. Lifetime information, if inferred at compile-time, can be
useful for efficient management of storage for these objects at run-time.

In this chapter, we present a method for computing at compile-time safe information
about the relative lifetime of arguments and local objects defined within a function with
respect to the lifetime of an activation of the function call for a higher-order, monomorphic,
strict functional language. This method is based on a compile-time semantic analysis called
escape analysis which provides information about the lifetimes of such objects with respect
to the activation of the function call that creates them. This property is called escapement of
objects. First, using denotational semantics and abstract interpretation, we introduce a non-
standard denotational semantics called escape semantics that describes the actual escape
behavior, but is incomputable at compile time. An abstraction method for approximating
the exact escape semantics which is both safe with respect to the exact escape semantics and
computable at compile-time is then presented. Based on this abstract escape semantics, we
describe the escape testing algorithms which determine escape information for functions that
holds true for every possible application of the function, and also escapement information
that holds for a particular call to the function. Another safe and computable abstraction
of the exact escape semantics, called improved abstract escape semantics, that improves the
precision of escape information that is obtainable through the abstract escape semantics

is also presented using the position information of objects in a list structure. Finally, the
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Figure 2.1: Escapement of Objects

complexity of the escape analysis is discussed.

2.1 Escapement of Objects

The lifetime of an object defined in a program is the period from the time it is created to
the time it will be no longer used. The notion of relative lifetime is, given a pair of objects
07 and Oz being built during a program’s execution, whether the object 01 has a greater
lifetime with respect to the lifetime of the other object O3 or not. The notion of relative
lifetime can be applied to any pair of objects that exist during a program’s execution. We
are particularly interested in the case when one object is either an argument to a function
or a locally defined object, and the other object is an activation (record) of the function
call, as is shown in Figure 2.1. That is, given a function, we are interested in whether
an argument or a locally defined object escapes the activation of the function call or not.
Note that the escaping argument or locally defined object needs to be retained after the
activation to the function call ends. We formally define the notion of escapement of objects

with respect to a function.

Definition 2.1 (Global/Local Escapement) Given a function f with n formal param-
eters and m locally defined objects, the i** formal parameter or locally defined object is

said to

e cescape the function call to f globally if, in some possible application of f to n ar-

guments, some or all of the corresponding actual parameter or local object outlives
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the activation of the function call (by being contained in the result of the function

application).
o escape the function call to f locally in (f e; ...ey,) if, in the particular function
application of (f e; ...e,), some or all of the corresponding actual parameter or local

object outlives the activation of the particular function call to f (by being contained

in the result of the function application of (f ey ...e,)).

The global escape information about a function can be safe in any context in which the
function is called. In this sense, it is the property of function regardless of its application
context. Thus, the global escape information is safe for a function in a particular context,
but it may be weaker, in terms of its usefulness, than the escape information of a function
in a particular context. The local escape information about a function is the property of
the function in a particular context rather than the property of the function alone.

From the escape information about a parameter or local object with respect to a func-
tion, we can deduce information about its lifetime: If a parameter or local object does not
escape the function call to f globally then we can conclude that the lifetime of the corre-
sponding argument or local object that is created inside the function is confined within the
lifetime of the function call in any possible application of f unless it is shared elsewhere.
Similarly, if it does not escape the function call to f locally in a particular context of
(f e1 ...e,) then we can conclude that the lifetime of the corresponding argument or local
object that is created inside the function is confined within the lifetime of that particular
function call unless it is shared elsewhere.

Such escape information is generally unknown at compile-time in higher-order functional
languages. We will develop a method for monomorphic, higher-order, strict functional

languages to answer the following questions at compile-time:

e Given a function, which parameter or local object that is defined inside the function

escapes the function call globally ?

e Given a function in a particular application context, which parameter or local object

that is defined inside the function escapes that particular function call locally ?

A naive approach would be through syntactic analysis. However, such syntax-based ap-
proach is not sufficient for specifying higher-order escapements of objects. We formalize the
escape model through denotational semantics and then derive a safe, computable analysis
using the abstract interpretation. First, we define a non-standard denotational semantics

that captures the exact operational notion of escapements. Since the functional language
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we are dealing with allows higher-order functions, the result of an expression may be a
function. Such a function, represented by a closure, has two important characteristics with

respect to the escape semantics:

1. The closure is an object itself. We may be interested in whether the closure escapes
or not, or we may be interested in another object that is captured(bound) within the
closure. Thus, the value of an expression returning a function must indicate whether

an interesting object has escaped.

2. A function value may be applied to arguments (which may themselves escape from
the application). Therefore, in the non-standard escape semantics, the escape value

of a function must include its behavior as a function.

Thus, the value of an expression in the escape semantics is an element of a non-standard
semantic domain and must have two components. First, it must contain information about
what is contained within the value of the expression. Second, it must capture the functional
behavior of the expression over the values in the escape semantic domain. We then define a
suitable, i.e. safe and computable, abstraction of the exact non-standard semantics that can
be computed at compile time but provide less precise information. Then we describe how
the abstract escape semantics can be used to gain global and local escape information. We
also describe another abstraction of the exact escape semantics that provides more precise

escape information but at a higher cost.

2.2 Exact Non-standard Escape Semantics

We introduce an exact, but incomputable, non-standard denotational semantics called es-
cape semantics, which exactly describes the actual operational notion of escapement for
functions in a program. Since the exact escapement during a program’s execution depends
on the standard values themselves, for example, the standard value of the predicate part of
the conditional will determine which alternative will be taken, any exact escape semantics
needs to contain the information about the standard meaning as well as escape information.

Each parameter or local object of a function will be analyzed separately to determine
its escape behavior. We say that a parameter is interesling if it is the one whose escape
behavior we are trying to determine. Thus, our escape semantics is defined in terms of a

single interesting object.
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Figure 2.2: The Basic Escape Domain

Representing Escape Information

The first step in describing a non-standard escape semantics is to define a suitable non-
standard escape semantic domain. A domain is used, rather than a setl, to guarantee that
a recursive function always has a solution. The meaning we will attach to the syntax is the
information about containment of interesting objects. For each expression, its corresponding
value in the escape semantic domain should be able to tell whether no part of an interesting
object is contained in the value of the expression (“non-escape”), or whether some part of
or all of an interesting object is contained in the value of the expression (“escape”). Thus,
under our non-standard escape semantics, we represent the meaning of an expression as a

pair, called an escape pair (in the style of [43]),

1. whose first element denotes the containment of an interesting object in the value of

the expression, and

2. whose second element denotes the functional behavior of the expression defined over

the escape pairs when the expression itself is applied to another expression.

For a non-list type expression, the corresponding value in the non-standard escape semantic
domain D, has two components; The first component is an element of a domain called a
basic escape domain, B, which is a two-element domain of 0 and 1 ordered by 0 C 1 as

shown in Figure 2.2. The interpretation of elements of B, is defined as follows:

e 1 : Some part of or all of an interesting object ¢s contained in the value of the

expression.
e 0 : No part of any interesting object is contained in the value of the expression.

The second component is a function over D,, whose meaning is the functional behavior of

the expression defined over the escape values when the expression e is applied to another
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expression. For expressions which have no higher-order behavior, such as non-function
type expressions, err, denoting a function that can never be applied, is used. For a list
type expression, the corresponding value in the escape semantic domain is a list of the

corresponding values of its components in the escape semantic domain.

Escape Semantic Domains

D,, the escape semantic domain, and F,, the domain of environments mapping identifiers

to their escape meanings, are completely defined as follows:
D, = ZDg /* Escape semantic domain */
T
E, = Id— D, /[*Domain of escape environments */

The escape semantic domain D, is a separated sum domain made up of the subdomains for
each type defined by D). The escape subdomain D] for expressions of type 7 is defined as
follows (in the style of [18]):

Dint = B, x {err} subdomain for integers

Dbol = B, x {err} subdomain for booleans

D= = B, x (D' — D2) subdomain for functions of type 71 — 7
Drlst = (B, x {err})+ (DI x D7 "*) subdomain for lists of type 7 list

The escape subdomains for integers and boolean values is the cartesian product of B, and

err, which is ordered as follows:
Yu,v € Dirtorbool oy iff (u1) E v()) and (u(g) E v(y))

The escape subdomain for function of type 7 — 75 is the cartesian product of B, and the

function space D7' — D]2. The function space of D! — D72 is ordered as follows:
Viige D — D32, fEgillVd € D3, fio) dE gz d

The escape subdomain for lists of type 7 list is the sum domain of the cartesian product
of B, and err, and the cartesian product of D] and D7 '**  whose ordering is defined as
follows:
Yu,v € DIt w C v iff ( |_| p) C( |_| q)
pinu ginv
where p in u denotes that p is an escape pair in u.
The bottom elements L;,; and Ly, in the escape subdomains for integers and booleans

are (0, err), respectively. The bottom element 1. _,., in the escape subdomain for functions
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of type 71 — 12 is (0, Az.L.,). The bottom element L, ;5 in the escape subdomain for lists
of type 7 list is (0, err).

The top elements T;,; and Tpye in the escape subdomains for integers and booleans
are (1,err), respectively. The top element T, _.,, in the escape subdomain for functions
of type 71 — 72 is (1, Az.T,). The top element T, in the escape subdomain for lists of

type 7 list, however, does not exist.

Escape Semantic Functions

We now introduce the non-standard escape semantic functions to give the syntax the escape

meaning as follows:

O. : Con— D, /* Escape semantic function for constants */
O. : Fzp— E,— D, /* Escape semantic function for expressions */
Opr @ Program — D, [* Escape semantic function for programs */

The escape semantic function O, gives the non-standard escape meaning to constants. The
escape semantic function O, gives the non-standard escape meaning to expressions in a given
escape environment for identifiers. The escape semantic function O, gives the non-standard
escape meaning to programs The semantic equations for the escape semantic functions are
expressed in Figure 2.3.

Since an interesting object is definitely not contained in constants such as integers,
booleans and nil, and also such constants can never be applied, their values in escape
semantics are given by (0, err). The value of cons under escape semantics, when applied
to two arguments, simply returns a pair consisting of the values of the two arguments.
Since cons is curried, the result of applying cons to a single argument returns a closure
containing that argument. The values of car and cdr under escape semantics, when applied
to a list whose value is a pair in D7 !, returns the first and second components of the pair,
respectively. The value of null under the escape semantics, when applied to a list, returns
the escape values of constant boolean values, namely (0, err).

env, is any exact escape environment in F,. In order to return the actual escape value
of each expression, we must be able to determine which branch of the conditional primitive
if would be evaluated at run-time. Here, for convenience, we instead resort to an oracle
called Oracle to choose the appropriate branch of the if. Under the escape semantics,
the value of a lambda expression which denotes a function reflects whether an interesting
object is contained in the resulting closure it as a free identifier, as well as its functional

behavior when it is applied. Note that free identifiers are treated separately according to
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whether they are of a list type or a non-list type. nullenv, is an escape environment that

maps every identifier to the least element of its escape semantic domain.

Uncomputable at compile-time

Oracle, which is of type Fap — {true, false}, is used to resolve the exact escape behavior
of the conditional expression if. Since the branch of the if that is actually taken depends
on the standard value of its predicate expression, this oracle must rely on the standard
semantics somehow. Omne way of achieving this is by having the exact escape semantics
directly compute the standard meanings as well as the escape meanings of expressions, i.e.
operate on elements in the domain D X D,. Thus, any exact escape semantics should
contain all the standard meanings and all the escape meanings. Since the interpretation
of programs under the standard semantics is uncomputable, interpretation under the exact
non-standard escape semantics is not computable at compile time. In fact, from the point
of view of information contents, the standard semantics can be considered as an abstraction

of the exact escape semantics.

2.3 Abstract Escape Semantics

The escape semantics presented in the last section specifies exact escape information about
functions in a program. But it is not suitable as a basis for compile-time analysis for two

reasons:

1. Since conditionals cannot be evaluated at compile-time and there is no such thing as
an oracle at compile-time, there is no way to know which branch of a conditional if

will be executed.

2. We cannot know at compile time exactly which and how many elements each list will
contain. When some part of a list is taken by either car or cdr, there is no way to

know exactly which value is removed from the list and which values remain in the list.

For use by a compiler, we need a suitable escape semantics that will guarantee termination
and yet still provide useful and safe information with respect to the exact escape semantics.
To get some computable escape semantics, we need to somehow abstract or approximate
the exact escape semantics. In general, abstraction or approximation of an exact standard
or non-standard semantics can be done by abstracting either its domains or its primitive
functions or both. Generally, there can be a range of possible computable abstractions, all

of which are safe but which may vary in their information content and their complexities.
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O[] = (0,err), c€{...,—1,0,1,...,true, falsenil” "'}
Ocfcons] = (0, z.(z(1), \y. paur(m y)))

Ocfcar] = (0, Az. ﬁrst( )

Ocfcdr] = (0, Az.second(z))

O¢[null] = (0,Az.(0,err))

O.[c]enwv, = O]

O [z]env, = env,[z]

O.le1 + ez]env, = (0,err) /* same for e; — e and e; = e3 */

O [if e; then e; else es]env, = if Oracle(e;) then O [ez]env,

else O[es]env,
Oc[erez]env, = (Oclei]env,)(ay (Oclea]env,)
O.[1ambda(z).e]env, (V, Ay.O [e]env,[z — y])

where

v=ou( || (enwlDapu( ] ¢ L pay)
z€Fmon—list z€Flst pin (envo[z])
pin (env,[z]) denotes that p is an escape pair in enwv,[z],

Fron=list — Get of non-list type free identifiers in (lambda(z).e), and
Fst = Set of list type free identifiers in (1lambda(z).e).

Oc[letrec z1 = ey;...;2, = ey;inelenv, = O.[e]env!,
where env = env,[z1 — O.[er]env), ..., z, — O e, ]env!]
Oprlpr] = Ocpr]nullenv,

Figure 2.3: Escape Semantic Functions
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Figure 2.4: The Abstract Basic Escape Domain

Abstracting Escape Semantic Domains

We present a suitable, i.e. safe and computable but less complete, abstraction of the exact
escape semantics defined in the last section that allows an approximation of the exact escape
behavior to be found at compile-time.

We safely approximate the exact escape semantics by abstracting escape semantic sub-
domains for list type expressions and by approximating escape semantic functions. For
each expression, its corresponding value in the abstract escape semantic domain tells that
no part of an interesting object is contained in the value of the expression (“non-escape”),
or that some part of an interesting object may be contained in the value of the expression
(“possible escape”). The abstract basic escape domain B, is a two-element domain of 0 and
1 ordered by 0 C 1, and is similar to the basic escape domain B, as shown in Figure 2.4.
But, the interpretation of elements of B, is defined differently from the interpretation of

elements in B, as follows:

e 1 : Some part of or all of an interesting object may be contained in the value of the

expression.
e 0 : No part of any interesting object is contained in the value of the expression.

Note that the most precise information appears at the bottom of the domain and the least
precise at top of the domain. The 0 and 1 may be thought of as defining sets of possible
values of the expressions, and the domain is ordered by the subset ordering. Abstraction
of the escape semantic subdomains for list type expressions is done by representing lists as
finite objects, i.e. by combining the escape pairs of all its elements into a single escape pair.

The abstract escape semantic domain DO is an abstraction of D,, and the domain EO is

abstract escape environments E,. They are defined as follows:
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D, = Zbg /* Abstract escape semantic domain */

T

E, = Id— D, /*Domain of abstract escape environments */

The abstract escape subdomain, bg for expressions of type 7 is defined as follows:

Dt = B, x {err} abstract subdomain for integers

Dbt = B, x {err} abstract subdomain for booleans

bgl_”? = B, x (1521 — f)?) abstract subdomain for functions of type 7 — 7
Dg st = 152 abstract subdomain for lists of type 7 lust

Note that the abstract escape subdomain D7 !* is the same as the subdomain D7,

Abstracting Escape Semantic Functions

We now introduce an abstract escape semantic functions to give the syntax the escape

meaning as follows:

O. : Con— D, /* Abstract escape semantic function for constants */
O. : Eazp— E,— D, /* Abstract escape semantic function for expressions */
Opr . Program — D, /* Abstract escape semantic function for programs */

As an abstraction of the exact escape semantic functions, the abstract escape semantic
functions are given in Figure 2.5.

The abstract value of cons returns a single escape pair that is approximating a list of
escape pairs. The abstract values of car and cdr just returns their arguments, respectively.
The abstraction for the conditional expression if no longer makes an appeal to the Oracle,
but rather takes the least upper bound of the escape values of both branches. Notice that
the definition of the abstract escape semantic function O, on the expression of lambda(z).e
is considerably simpler than the exact escape semantic function O.. enwv, is any abstract
escape environment in EO, and the nullenv, is an abstract escape environment that maps

every identifier on to the least element of its abstract escape semantic domain.

Safety

The actual escape property of the program that is being approximated must imply the
escape information gathered from the abstract escape semantics. The safety of the abstract
escape semantics means that the interpretation under this abstract semantics will never
produce wrong escape information with respect to what is obtained by the interpretation

under the exact escape semantics.
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Oc[[c]] = (0,err), c€4{...,—-1,0,1,...,true,false}

O.[ni1"#*] = 1, ( The bottom element in D7 )
Oc[[cons]] = (0, z(z 1), Ay.z Uy))
O.[car] = (0,\z.z)
O.[cdr] = (0,\z.z)
O.[null] = (0,Az.(0,err))
O.[c]env, = O]
O [z]env, = env,[z]
Oe[[el + ex]lenv, = (0,err) /* same for e — ep and e; = e3 */
Oe[[if e1 then e, else esenv, = (Oe[[eg]]efwo) L (Oeﬂeg]]eﬁvo)
Oe[[eleg]]efwo = (Oe[[el]]eﬁvo)(2) (Oeﬂegﬂeﬁvo)
O.[lambda(z).e]lenv, = (V, y.0[e]env,[z — y])
where
V=0u( |_| (envo[2])(1)) and

z€EF
F = Set of all free identifiers in (lambda(z).e).

Oc[letrec zy = €1;...;2, = €,; in€efefiv, = O.[e]env’,
where eniv! = env [z — Oe[[elﬂeﬁv;, RO Oe[[en]]eﬁv;]
Oppr] = Ocfpr]nulienv,

Figure 2.5: Abstract Escape Semantic Functions
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Definition 2.2 (Non-standard Application) Let NAP, be an apply operator for ele-
ments in the non-standard semantic domains D, and 150, defined as follows: For ep,epq,...,ep,

€ D, and ﬁo,

NAP, (ep,ep1,...,epn) def J P n=0

NAP,_i(ep)ep1,€p2, .- €pn) n >0
We introduce the notion of safety with respect to escape information which relates the
exact escape semantics to the abstract escape semantics. Let w and v be values of an
expression e of type 7 or 7 [ist in the abstract escape domain D, and the exact escape
domain D,, respectively. Let n be the number of arguments that type 7 can take before
returning a value of a non-function type. We say that the abstract escape semantic value
u is a safe approximation (with respect to exact escape information) of the exact escape

semantic value v iff

( L] Py) E NAP(u, s1,...,8K)(1)

P in NAPk(U,tl,...,tk)

for all £ < n where s; is a safe approximation of ¢; for all + < k.

Theorem 2.1 (Safety) For any expression e, and environments env, and env, such that
for all y, ewv,[y] is a safe approzimation of env,[y], Oc[e]env, is a safe approzimation
of Oc[e]env,. Thus, the escape information obtained by the exact escape semantics implies

the escape information obtained by the abstract escape semantics.

Proof : We can prove by structural induction on expression e.
1. Base Case:

1. e = ¢: O [c]env, = O.[c] and O.[c]env, = O.[c]. For c € {...,-1,0,1,..., true,
false, nil, null }, O.[c] = O.[c] = (0,err). For ¢ = cons, it holds because z; Ll z is
safe for a list consisting of y; and yo if 1 and x5 are safe for y; and y,, respectively. For
¢ € {car, cdr }, it holds because, if = is safe for y, x is clearly safe for both first(y) and
second(y).

2. e = a: Ofa]env, = enw,[x] and O [z]env, = env,[x]. Since, for all y, eiwv,[y] is
safe for env,[y], it clearly holds.

II. Structural Induction Step: Assume that O [e]env, is safe for O.[e]env, for expressions
such as eg, €1, €3, €3 and e, (structural induction hypothesis). Then, we show that Oe[[e]]eﬁvo
is safe for O.[e]env, for e = e; + ey, if e; then e; else ez, ejey, lambda(z).eq, and

letrec 1 = €1;...; &, = €,; in eg as follows:
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1. e = €1 +eq: Oe[[el +ez]env,= O[e1+ ez]env, =(0, err). Similarly, it holds for e; —e;
and e; = es.

2. € = if e; then ey else e3: Oe[[if €1 then e, else eslenv, = Oe[[eg]eﬁvo LJ
Oe[[eg]]e'ﬁvo. O.[if e; then ey else es]env, is either O.[ez]env, or O.[es]env, depending
on the standard semantic value of e;. In either case, by the structural induction hypothesis,
O.[e]eiv,= O.[e]env,.

3. e =ejey: Oe[[eleg]]eﬁvo: (Oe[[el]]eﬁvo)(Q) (Oeﬂeg]]eﬁvo). Oc[erez]env,= (Oe[[el]]em)o)(g)
(Oclez]env,). By the structural induction hypothesis, (Oe[[elﬂe'ﬁvo) and (Oe[[eg]]efwo) are
safe for (O.[e1]env,) and (O.[ez]env,), respectively. Then, by the definition of safe, it
holds.

4. e = lambda(z).e;: O [lambda(z).elenv,= (V, A\y.O.[e]env [z — y]). O.[Llambda(z).€]
env,= (V, Ay.O [e]env,[z — y]). Since, for all y, env,[y] is safe for env,[y], we have that V'
C V. By the structural induction hypothesis, O [e]env,[z — y] is safe for O [eJenv,[z — y].

5. e=1letrec &y = e€y;...;&, = €y;ineg: OcJletrec zy = e;...; &, = ey,; in egleiv,=
Oe[[eoﬂeﬁv; where env! = env,[z; — Oe[[ei]]eﬁvg]. Oc[letrec z1 = e1;...; &, = €,;1in eg]
env,= O.[eo]env!, where envi= env,[z; — O.[e;Jenv!]. Here, env’ and env’ are recur-
sively defined. We prove that env! is safe for env! for all y by fixpoint induction on the

environments efiv) and env! as follows:

(0)

1. Base Case: The first approximation env; of env! is env,[z; — L]. The first approxi-

(0)

mation env,") of env! is envy[z; — L]. Thus, for all y, eav (Oy] is safe for env;(o)[[y]].

Then, by the structural induction hypothesis, Oe[[eo]]eﬁvg. is safe for O [eg]env’.

2. Fixpoint Induction Step: Assume that, for some fixed & > 0, the k" approxima-

tion efw/o(k) [y] is safe for emj;(k) [y] for all y. (fixpoint induction hypothesis) Then,

(k1) ((h+1)

The (k + 1) approximation env, is env,[z; — Ofei]env.®], and env,

(k)]

S
envy[x; — Oe[[ei]]em); . By the structural induction hypothesis, O [e;]env,(¥) is safe
for Oe[[ei]]env;(k). Thus, for all y, eﬁv;(k"'l)[[y]] is safe for env;(k+1)[[y]]. Then, by the

structural induction hypothesis, O.[eo]en’, is safe for O.[eq]env’.

Termination

A compiler should terminate on every valid program. In order for any compiler which uses an
analysis based on the abstract escape semantics to be effective, the interpretation under the

abstract escape semantics must also be effective. The effectiveness of interpretation under
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the abstract escape semantics means that it terminates on every valid program. When the
abstract version of a function derived by the abstract escape semantics is non-recursive, ter-
mination is guaranteed. Recursive functions, however, derive recursively defined functions
as their abstract versions. From the fixed point theorem of domain theory, the recursive
function is given by the least fixed point of the corresponding higher-order functional. That

is, for the function

f=F())

where fis of type 7 and F is a functional corresponding to the body of f, the meaning of
[ is defined to be the least function satisfying the above equation and the least fixpoint f
can be found as follows:

=1 Fs)
where F°(z) = ¢ and F'(z) = F(F*"!(z)) and L, is the bottom element of the domain of
type T, i.e. D7

Theorem 2.2 (Termination) For any (finite) program pr € Program, Opr[[pr] is com-
putable, i.e. always terminates in finite number of steps. Thus, interpretation of pr under

the abstract escape semantics terminates.

Proof : We can prove that the interpretation of a program under the abstract escape
semantics will terminate by showing that the least fixed point of any functional in the
abstract escape semantic domain can be computed in a finite number of steps. That is, for

all functions defined according to the above equation, there must exist some j such that
FH(L,) = Fi(L,)

for all £ > 7. A way of showing that there exists such a j is to show that every functional ¥
must be monotonic and that the fixpoint iteration is performed over a finite domain. First,
every functional over escape pairs defined in the abstract escape semantics is composed of
monotonic operators and the least upper bound operator U, which is monotonic. Thus,
every functional in the abstract escape semantics is monotonic. Second, ﬁg is finite for
each base type b. D717 is also finite whenever D7 and D72 are finite, each domain D7
for each type 7 is finite. By induction, then, in a strongly typed system where all types are
finite, all D7 are finite. When finding the least fixpoint of a function of type 7, we need

only search over the subdomain D7 of D, and D7 is finite. Thus the least fixpoint can
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be computed in a finite number of steps. Hence any analysis based on the abstract escape
semantics is guaranteed to terminate at compile-time. O

For example, consider the following function £ of type int — tnt — int defined by
f x y = if (x=0) then y else f (x-1) (x+y)

The corresponding function f under the abstract escape semantics is described by

f = <0,Ax.<$(1),Ay.Oe[[if (x=0) then y else f (x-1) (x+y)][x — z,y — y]))
= <0,/\£C.<l‘(1),/\y.y|_|(f(2)<O,€T7‘>)(2)<O,€TT>>>.

Since f is recursive, f is the least fixpoint of the functional F' of type (int — int — int)

— int — tnl — int defined by

F= /\f<07 /\$<$(1), Ay.yU (f(2)<07 67’7’>)(2)<0, 67‘7’>>>.
Then, the least fixpoint is found by the following fixpoint iteration:

f(o) = F(Lint—int—int)
(0, Az (2 (1), AY-y U (Linsmint—int(2){0, €77)) (2)(0, €77)))
(0, Az (2 (1), AY-y U Lins_sing(2)(0, er7)))
(0, Az. <x(1), Ay.y U Ling))
(0, \z(2 (1), \y.y))
0, Az(2 (1), Ay.y U ((0, Az (2 (1), Ay.y))) (2)(0, €77)) (2)(0, er7)))

{21y, Ay-y L (({0, Ay.y)) (2)(0, er7)))

{z@), Ay.yU (0, err)

(

Since f(© = f() 4 fixpoint has been found. Thus, f = (0, Az (2 (1), Ay.y))-

2.4 Escapement Testing

Since interpretation under the abstract escape semantics is guaranteed to terminate, the
abstract escape semantics can be used as a basis to infer the escape information for functions
in a program at compile-time. We describe escape testing algorithms including a global
escape test and a local escape test, in which the abstract functions are used to detect static

information about the escape properties of the corresponding functions in a program.
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We perform the escape test on each argument of a function call separately. Thus, at
any time we are only interested in whether or not a particular single object escapes. Other
objects may escape in the result of a function call, but are ignored by our analysis. If a
function has n parameters, then escape test will be performed n times, each time treating

a different parameter as interesting.

Global Escape Test

We describe a global escape test which provides the global escape information about each
function in a program that holds true for every possible application of the function. The
global escape test is performed only on a function definition, and thus gives general infor-
mation about the escape property of that function. To do so, we have to apply the escape

semantic value of a function to arguments that cause the greatest escapement possible.

Definition 2.3 (Worst-case Escape Function) For each non-list type 7, we define the

abstract function W7 that corresponds to a function from which every argument escapes.

et AT1(T1(1) AT2AT1(1) U To(1)s - - oy AT |_| Tiay, €rr)..)) m>1
W7 = =1
err m =0

where m is the number of arguments that a function of type 7 can take before returning a

primitive value. For each list type of 7 list, W™ !¢ is defined to be W7.

Given a function f xy 2 ... z, = bodyys of arity n, the position 7 of an interesting
parameter, and an abstract escape semantic environment env, mapping f to an element of
150, the global escape test function G_escape? determines whether the i** parameter of f

could possibly escape f or not. It is defined as follows:

G_escape?( f,1,env,) = ((je[[f Ty . @] envolTi = yil) )
where

y; = (1, W), /* The i** parameter is an interesting object */
for all 7 < n and j # ¢,

y; = (0, W), /* Other parameters are not interesting objects */

and 7; is the type of the i** parameter of f. Only the ¥ argument to f is an interesting

object and other arguments are not interesting objects. The functional part of each argu-
ment causes maximal escapement. Thus, from the result of the global escape test function,

we can conclude the following;:
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o If G escape?(f,i,env,) = 0 then we conclude that in any possible application of f to

n arguments, the i*" argument does not escape f.

o If G escape?(f,i,env,) = 1 then it means that in some possible application of f to n

arguments, the 7** argument could escape f.

Local Escape Test

Generally, we would like to know if an argument escapes from a particular call to a function.
This depends on the values of the arguments of that call. We describe a local escape analysis
which provides escape information of a function in a particular context. The local escape
test determines the escape behavior of a particular function call, and thus yields more
specific results than the global escape test. Given a function f z; z3 ... z, = body;s of
arity » in an application f ey ... e,, the position ¢ of an interesting parameter, and an
abstract escape semantic environment env, mapping [ and the free identifiers within e;

through e, to elements of D,, the local escape test function L_escape? determines whether

the it parameter of f could escape f during the evaluation of fe; ... e,. It is defined as
follows:

L—escape?(fv 1,€1,. .., €n, eﬁvo) = (Oe[[f T1 ... 2] efivgla; = yz])(l)
where

yi = (1,(O.[e] efiv,)(2)), /* The it" parameter is an interesting object */
and for all j < n and j # ¢,
y; = (0, (Oe[[ej]] efiv,)(2)). /* Other parameters are not interesting objects */

Only the ¥ parameter is an interesting object and other parameters are not interesting
objects. The functional part of each argument is the functional behavior of each expression

€;. Then, from the result of the local escape test function, we can conclude the following;:

o If L_escape?(f,¢,e1,...,€e,,env,) = 0 then we conclude that the it" argument does not

escape f in the particular application of f to e; through e,.

o If L escape?(f,i,e1,...,en,env,) = 1 then the ¥ argument could escape f in the

particular application of f to e; through e,.
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Examples

As an example, consider a program defined as follows:

letrec g a b = if (a < b) then O else a;

hcd

if (c < d) then d else 0;

map £ 1 = if (null 1) then nil
else cons (f (car 1)) (map f (cdr 1));

in ... (map (g 3) [1,3,5]) ... (map (h 3) [1,3,5]) ...
We assume that the type of each function is given by

g :int — it — ind
h:int — int — int

map : (int — int) — int list — int list.

Then, the abstractions ¢, h, and map of g, h, and map under the abstract escape semantics

are defined as follows:

g = (0, a.{ag), Ab.((0,err)Ua)))
= (0, Aa{a(), Ab.a))
h = (0, Ae{eqry, Ad.({0,err) LI d)))
= (0, Ac.{cqry, Ad.d))
map = (0, Af.{f1), Al
(0,err) U (f DU ((mapez) [z) 1)

Since map is defined recursively, the meaning of map is found by fixpoint iteration as follows:

mapl® f1 = (0,err)
map® f1 = (0,erryU(fiy DU ((maply) iz 1)
(0,err) U (fi2 2) 1)L {0, err)
= fol
map® f1 = (0,err)U(fz) 1)U ((mapgg Nyl

= (0,ern)U(fz) DU (fz) 1)
= fol

Since map™) = map(?, we have that map = (0, A {fay Al f(2) 1)) Let env, be an abstract

escape environment defined as env, = [g+— ¢,h — h,map — map).
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Global Escape Information

To find the global (i.e. worst-case) escape property of map, we apply the global escape test

function G_escape?.
G_escape? (map, 1, eiv,) = (O.[map £ 1]]67”2?)/0)(1) =0
where

GTZ’U,O — e'fwo[f s <17 Wint—>int>7 1 <O7 Wint li.st>]7

Wirt=nt — Ag (x 4y, err), Wintlist — epp,
(1)» ’

Thus, we can conclude that the first parameter £ of the function map can never escape map

globally. And,
G_escape?(map, 2, eiiv,) = (O [map £ 1]]67”2’0/0)(1) =1
where

€’I7j’0’o — eﬁvo[f — <O, Wint—>int>’ 1 — <17 Wint list>]’

W=t = Ap (z(y, err), W list — err.

This means that the second parameter 1 of the function map could escape in some situation.

Thus, we cannot say that 1 never escape map globally.

Local Escape Information

To determine the local escape property of map in a particular context, we apply the local

escape test function L_escape?.

L_escape?(map, 2, (g 3),[1,3,5],env,) = (Oeﬂmap f 1]]67”21)/0)(1) =0
where

env!, = eiw,[f — (0, (9(2)(0,€er7))(2)), L = (1, err)].

Thus, we can conclude that the second parameter 1 of the function map does not escape

locally in (map (g 3) [1,3,5]).
L_escape?(map, 2, (h 3),[1,3,5],efv,) = (Oc[map £ 1]env’, )y = 1
where
ent'y = eivg[f = (0, (hz)(0, err))), 1= (1 err)]

So, we can conclude that the second parameter 1 of the function map does escape locally in

(map (h 3) [1,3,5]).
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2.5 Improving Precision of Escapement

In the abstract escape semantics described in the previous section, a list is treated as a
single object. Once an interesting object is put in a list, we have assume that the object
remains in the list. Thus, no matter how many times cdr is applied to the list, we assume
that the interesting object remains. Furthermore, any time car is applied to the list, we
assume that the interesting object might be contained in the result.

Consider, for example, the following functions:

letrec f x y = car(cons x (cons y nil));

g Xy
in ... cons (f 1 2) (g1 2)

cdr(cons x (cons y nil));

where fis of type int — int — tnt and g is of type int — int — wnt list. Under the abstract

escape semantics, the definitions of values f and ¢ of £ and g are the same.

f = (o, Am.(m(l), Ay.z U (y U0, err))))

= (0, z(z(1), Ay.z U y))

= g
From the escape analysis based on the abstract escape semantics, we conclude only that
both x and y could escape f and g. In fact, for the function £, only the first parameter x
escapes £, but the second parameter y never escapes f£. Similarly, only the second parameter
y actually escapes g, but the first parameter x never escapes g.

In this section, we present a method for improving the precision of escape information

that is obtainable through the escape analysis using the position information of interesting

objects in a list structure.

2.5.1 Positions of a List

The information about where an interesting object occurs in a list will provide a more
accurate approximation of escapement. We describe how to include information about
object’s position within a list in the escape semantics, in order to keep track (approximately)
of what position(first element, second element, etc.) in the top spine of the list an object

might occur first. The notion of position in a list is shown in Figure 2.6.

Definition 2.4 (Positions of a List) An object is said to be at the position of © in a list
L if some part of or all of the object only resides in the sublist of L whose root cell is
specified by cdr’ L for some i > 0, i.e. In other word, no part of the object is contained in

the first (¢ — 1) positions of L.
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Figure 2.6: Positions of a List

Since no finite bound on the length of lists can be computed at compile time, we impose
a bound on the positions in the list that we are willing to keep track of. Beyond this bound,

we assume that the object remains in the list.

2.5.2 Improved Abstract Escape Semantics

We present another safe and computable abstraction of the exact escape semantics that
gives escape information with more precision than the abstract escape semantics previously

described.

Improved Abstract Escape Domains

The value of each expression in the improved escape semantic domain indicates either that
no part of an interesting object is contained in the value of the expression (“non-escape”), or
that some part of an interesting object may be contained at some position in the value of the
expression (“possible escape and where”). The improved abstraction of the exact escape
semantics is done by extending the basic abstract escape domain to including position
information. The basic improved abstract escape domain, B,, for some fixed p is a (p+2)-
element domain of pairs as shown in Figure 2.7. The ordering on pairs in B, is defined as

follows:
(0,0)C(l,p)C(l,p—1)C...C(1,1)C(1,0)

The interpretation of elements of B, is defined as follows:
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(1,0)

Figure 2.7: The Improved Abstract Basic Escape Domain

e (1,k) : Some part of or all of an interesting object may be contained in the value of
the expression only at a position greater than or equal to > k. (not at a position less

than k)

e (0,0) : No part of any interesting object is contained in the value of the expression.

The improved abstract escape domain D, is an improved abstraction of D,, and the im-
proved abstract escape environment F, is a domain of functions mapping identifiers to their

abstract escape meanings. They are defined as follows:
D, = Zf)g /* Improved abstract escape semantic domain */
T
E, = Id— D, /*Domain of improved abstract escape environments */

The improved abstract escape subdomain f)g for expression of type 7 is defined as follows:

Dint = B, x {err} improved abstract subdomain for integers
Dbeol = B, x {err} improved abstract subdomain for booleans
D= = B,x (Dgl — bgz) improved abstract subdomain for functions
Drhst = pr improved abstract subdomain for lists

Improved Abstract Escape Semantic Functions

We now introduce improved abstract escape semantic functions as follows:
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i

cle] = ((0,0),err), ce{...,—1,0,1,...,true,false}
O.[nil™ '] = 1. ( The bottom element in D7 )
OC[[COHS]] = <<0,0>,A:c.{x(l),/\y.push(x,y)>>
where

push(z,y) = if (z(1)(1) = 1) then {(1,0), 25y U y(2))
elseif (y1yq) = 1) then ((1,min(yq)2) + 1,p)), 7(2) U y(2))
else ((0,0), z(2) U y(2))
O.[car] = ((0,0), Az. pick(z))
where pick(z) = if (2(1)(2) > 0) then ((0,0), z(3)) else z

O.[cdr] = ((0,0), Az. rest(z))
where rest(z) = ({2(1), max(z(z) — 1,0)), 2(2))
O.[null] = ((0,0), Az.((0,0),err)

Figure 2.8: Improved Abstract Escape Semantic Functions

O. : Con— D, /* Improved semantic function for constants */
O. : Ezp— E,— D, /*Improved semantic function for expressions */
O~p7« . Program — D, /* Improved semantic function for programs */

The improved abstract escape semantic functions are given in Figure 2.8 and Figure 2.9.
The improved abstract value of cons takes two arguments, and returns an improved
escape pair of their least upper bound by updating the position information of an interesting
object in the result list. The improved abstract value of car returns its argument according
to the position of an interesting object. The improved abstract value of cdr also updates
the position information appropriately. Note that the improved abstract escape semantic
function O, for cons, car and cdr provides more precise escape information than the
abstract escape semantic function O.. ehv, is an improved abstract escape environment in
E,, and nullenv, is an improved abstract escape environment that maps every identifier on

to the least element of its improved abstract escape semantic domain.

Safety and Termination

To show that the improved abstract escape semantics will never produce wrong escape
information with respect to the exact escape semantics, we introduce a notion of safety with

respect to exact escape information that relates the improved abstract escape semantics with
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O.[c]env, = 0.[]

O [z]env, = env,[z]
Oe[[el + exllenv, = ((0,0),err) /* same for e; — e3 and e; = ey */
Oe[[if e1 then ey else es]env, = (Oe[[eg]]efwo) L (Oeﬂeg]]eﬁvo)
Oe[[eleg]]eﬁvo = (Oe[[el]]efwo)@) ((je[[eg]]efwo)
O.[lambda(z).eJenv, = (V,Ay.O.[e]env,[z — y])

where

V = (0,0) L ( | | (envo[2])(1y) and

z€F

F = Set of all free identifiers in (lambda(z).e).

Oe[[letrec Ty = €1;...;%, = €,;inefenv, = Oe[[e]]efwg
where eiv!, = eniv,[xy — O fei]env’, ..., z, — O.fen]env’]
O, lpr] = Oc[pr]nullens,

Figure 2.9: Improved Abstract Escape Semantic Functions

the exact escape semantics. Let u and v be values of an expression e of type 7 or 7 list in
the improved abstract escape domain D, and the exact escape domain D,, respectively. Let
n be the number of arguments that the type 7 can take before returning a value of primitive
type. We say that the improved abstract escape semantic value u is a safe approximation
(with respect to exact escape information) for the exact escape semantic value v iff

( |_| py) E (NAPk(u, s1,. -+, 86)) 1))

pin NAP (v,t1,...,tx)

and
(MIN,in NAP (v,t1,...,t5)&p(yy=1 Position of p) > (NAPk(u, s1,...,5))(1)(2)
for all £ < n where s; is a safe approximation for ¢; for all z < k.

Theorem 2.3 (Safety) For any expression e, and environments env, and env, such that
for all y, env,[y] is safe for env,[y], Oce]eniv, is safe (with respect to escape information)

for O [e]enwv,.

Proof : We can prove by structural induction on expression e.

I. Base Case:
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1. e = ¢: Ocfc]env, = O.[c] and O [c]env, = O.[c]. For ¢ € {...,-1,0,1,...true,
false, nil, null } , O.c] = O.[c] and thus it clearly holds. For ¢ = cons, it holds
because, if #; and zy are safe for y; and yz, respectively, push(z,y) is also safe for a list
consisting of y; and y,. It holds for ¢ = car, cdr, because if z is safe for y then pick(z) is
safe for first(y) and rest(z) is safe for second(y).

2. e = z: O [z]enw, = enwv,[z] and O.[z]env, = env,[z]. Since for all y efiv,[y] is safe

for env,[y], it clearly holds.
(II) Structural Induction Step: Assume that O[e]env, is safe for O [e]env, for expressions
such as eg, €1, €3, €3 and e,,. (structural induction hypothesis) Then, we show that Oe[[e]]efwo
is safe for O.[e]env, for € = e; + ez, if e; then e; else e, ejey, lambda(z).e, and
letrec 1 = €1;...;&, = €,; in eg. This can be proved in an exactly similar way to the
proof of safety of the abstract escape semantics. O

The effectiveness of interpretation under the improved abstract escape semantics means

that it terminates on every valid program at compile-time.

Theorem 2.4 (Termination) For any (finite) program pr € Program, O~pr[[p'r]] are com-

putable, i.e. always terminates in finite number of steps.

Proof : Every functional in the improved escape domain that is defined through the
abstract improved escape semantic functions is composed of the operators such as the least
upper bound operator LI, push, pick, and rest. pick and rest are monotonic operators. Since
the composition of monotonic functions is also monotonic, every functional is monotonic.

Furthermore, each subdomain D7 is finite. O

Precision Improvement

The precision improvement of the improved abstract escape semantics over the abstract
escape semantics means that the escape information obtained by the improved abstract
escape semantics always implies that obtained by the abstract escape semantics, but not

always vice-versa.

Theorem 2.5 (Precision Improvement) The abstract escape semantics is equivalent in
its information content to the improved abstract escape semantics with p = 0. Thus, the im-
proved abstract escape semantics with some p > 0 provides more precise escape information

than the abstract escape semantics.

Proof : We introduce the notion of equivalence with respect to escapement information

content which relates the abstract escape semantics to the improved abstract escape seman-
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tics with p = 0. Let w and v be values of an expression e of type 7 in D, and D, with p = 0,
respectively. Let n be the number of arguments that the type 7 can take before returning
a value of primitive type. We say that u is equivalent (with respect to escape information)

to v iff

(NAPy(u, s1,.. .,Sk))(l) = (NAPy(v, 14, .. '7tk))(1)(1)

for all & < n where s; is equivalent to t; for all ¢ < k. Then, for all expression e and
environments env, and eniv, with p = 0 such that for all y, env,[y] is semantically equivalent
(with respect to escape information) to env,[y] with p = 0, we have that Oe[[e]]eﬁvo is
semantically equivalent to O~e[[e]]efwo with p = 0. This can be proved by structural and
fixpoint inductions.

We introduce the notion of improvement with respect to escapement information content
which relates the improved abstract escape semantics with p > 0 to the improved abstract
escape semantics with p = 0. Let u and v be values of an expression e of type 7 in D, with
p > 0 and D, with p = 0, respectively. Let n be the number of arguments that the type 7
can take before returning a value of primitive type. We say that u is improved (with respect

to escape information) over v iff

(NAPy(u, s1,..., Sk))(l)(l) C (NAPk(v,t1,. .., tk))(l)(l)

and

(NAPy(u, s1,.. -78]{!))(1)(2) C (NAPk(v,tq,.. -7tk'))(1)(2) =0

for all £ < n where s; is tmproved over t; for all + < k. Then, for all expression e and
environments env, with p > 0 and env, with p = 0 such that for all y, env,[y] with p > 0
is improved over env,[y] with p = 0, we have that env,[y] with p > 0 is improved over
Oe[[e]]e'ﬁvo with p = 0. This can be proved by structural and fixpoint inductions. O

The relationship among the standard semantics (SS), the non-standard exact escape seman-
tics (ES), the abstract escape semantics (AES) and the improved abstract escape semantics

(IAES) is shown in Figure 2.10.

2.5.3 Improved Escapement Testing

We describe global and local escape testing algorithms based on the improved abstract

escape semantics.
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SS IAES

AES “information content”

Figure 2.10: Relationship among Standard and Escape semantics

Improved Global Escape Test

Given a function f xy 2 ... z, = bodyys of arity n, the position 7 of an interesting
parameter, and an improved abstract escape semantic environment env, mapping f to
an element of D,, the improved global escape test function G_iescape? which determines
whether the " parameter of f could possibly escape f in any application of f or not is

defined as follows:

G_iescape?(f,i,env,) = (O f 1 ... x,] efivy[z; — vi)(1))
where

y; = ((1,0), W™), /* The i** parameter is an interesting object */
and for all j < n and j # ¢,

y; = ((0,0), W73), /* Other parameters are not interesting objects */

th argument to f is an interesting

and 7; is the type of the i** parameter of f. Only the i
object and other arguments are not interesting objects. Since the whole " argument is
interesting, its position value is set 0. The result of the global improved escape test function

is interpreted as follows:

o If G_escape?(f,1,env,) = 0 then we conclude that the it" argument does not escape

Jf in any possible application of f to n arguments.

o If G_iescape?(f,,env,) = 1 then we cannot say that the it" argument does not escape

Jf in any possible application of f to n arguments.
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Improved Local Escape Test

Given a function f #y @3 ... z, = body;s of arity n in an application context f ey ... ey,
the position ¢ of an interesting parameter, and an improved abstract escape semantic envi-
ronment efiv, mapping f and the free identifiers within e; through e,, to elements of D, the
improved local escape test function L_iescape? which determines whether the i** parameter

of f could escape f locally in the evaluation of f ey ... e, is defined as follows:
L_iescape?(f,i,€e1,...,€p,€00,) = (Oe[[f Ty e ] efivga = Y]y
where
v = ((1,0), (O.[e] env,)(2)) /* The it" parameter is an interesting object */
and for all j < n and j # 1,
y; = ((0,0), (O[e;] env,)(2)) /* Other parameters are not interesting objects */
The result of the local improved escape test function is interpreted as follows:

o If L_iescape?(f,i,€1,...,€,,en0,) = 0 then we conclude that the ith argument does

not escape f in the particular application of f to e; through e,.
o If L_iescape?(f,¢,€1,...,€e,,env,) = 1 then we cannot say that the i argument does
not escape f in the particular application of f to e; through e,.
Examples
As an example, consider the functions given before:

letrec

f x y = car(cons x (cons y nil));

g x y = cdr(cons x (cons y nil));

in ...

where f is of type int — int — int and g is of type int — int — int list. Under the improved
abstract escape semantics, the definitions of the values f and g of £ and g are expressed as

follows:

[ = <<O,O>,/\w.<x(1),/\y.pick(push(w,push(y,<<O,O>,6TT>)))>>
g = <<O,O>,/\x.<x(1),/\y.rest(push(x,push(y,<<0,0>,err>)))>>

Let eniv, be defined as env, = [f — f,g+— ¢]
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G_iescape?(f,2, env,) = (Oe[[f X y]]erlv’o)(l)(l) =0

where env', = env,[x — ((0,0),err),y — ((1,0),err)]. Thus, we can conclude that the

second parameter y of £ does not escape £ globally. Similarly,
G_iescape?(g, 1, env,) = (Oe[[g X y]]erlv’o)(l)(l) =0

where env’, = efiv,[x — ((1,0),err),y — ((0,0),err)]. Thus, we can conclude that the first

parameter x of g does not escape g globally.

2.6 Complexity of Escape Analysis

The abstract interpretation framework for the escape analysis that deals with higher-order
functional languages with lists is very similar to the framework for strictness analysis for
higher-order functional languages without non-flat domains (lists). Both analyses use a
two-element domain as their basic abstract domains, respectively. Thus, the order of time
complexity of escape analysis is the same as that of strictness analysis for higher-order
languages with non-flat domains, which is ezponential in the number of arguments to the
function being analyzed in case of non-higher-order functions. In case of a higher-order
function, the complexity is much worse than exponential in the number of arguments to
the function being analyzed, and depends on the types of its arguments. However, the
improved escape analysis uses a (p + 2)-element domain as its basic abstract domain. So,
the order of time complexity of improved escape analysis is higher than, but comparable to,
that of strictness analysis for higher-order languages with non-flat domains. The abstract
interpretation framework for strictness analysis for higher-order functional languages with
flat domains uses a k-element domain as its abstract domain where k is fixed but greater
than 2. Thus, when compared with the complexity of strictness analysis for higher-order
functional languages with non-flat domains, the complexity of escape analysis is less, and
the complexity of improved escape analysis is similar to that.

Fortunately, as is true for many analyses, worst-case situations rarely occur in practice
and the number of iterations required is typically small. Furthermore, the average number
of arguments to functions does not grow with the size of a program, and thus if an arbitrary
bound is placed on the number of arguments, then the analysis based on the abstract escape

semantics can be shown to be linear in program size.
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Chapter 3

Refinements of Escape Analysis

The escape analysis described in the previous chapter is concerned with the escapement
properties of arguments and local objects of a function. These objects are treated as a whole
with respect to the activation of the function call. That is, even when only some part of
such an object escapes, the escape analysis indicates only that the object escapes. Thus, for
structured objects such as lists and trees, the escape information that is obtainable through
the escape analysis is rather coarse because it does not specify the escaping substructure
even when only some part of a structured object escapes. Such refined escape information,
if inferred at compile-time, can be useful for more efficient management of storage for
structured objects.

In this chapter, we present a method for computing more refined escape information
for a higher-order, monomorphic, strict functional language. This method is based on a
compile-time semantic analysis called refined escape analysis which is an extension of the
escape analysis and indicates at compile-time how much of an object such as argument or
local object of a function outlives the activation of the function call. First, we introduce
a non-standard denotational semantics called refined escape semantics that describes the
actual refined escape behavior, but is incomputable at compile-time. A safe and computable
abstraction of the exact refined escape semantics is then presented. Based on the abstract
refined escape semantics, we describe the escape testing algorithms which determine refined
escape information. Another safe and computable abstraction of the exact escape semantics,
called improved abstract refined escape semantics, that improves the precision of refined
escape information is also presented using the position information of objects in a list
structure. Finally, the relationship between escape analysis and refined escape analysis

with respect to their information content is discussed.
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3.1 Refined Escapement of Objects

The escape model described in the previous chapter is concerned with the escapement of
arguments each of which is treated as a whole object. Thus, for structured data objects
such as lists, the escape information that can be obtainable through the escape analysis is

rather weak. Consider, for example, the append function defined as follows:

letrec append x y = if (null x) then y
else cons (car x) (append (cdr x) y);

in ... append [1,2,3] [4,5,6]

We assume that append is typed as int list — int list — int list. From the escape analysis
described in the previous chapter, we can only conclude that both the first and the second
parameters of append could escape as follows: The definition of the escape semantic value

append of append (shown uncurried for convenience) is:
append z y = yU (z Uappend z y)
The meaning of append is found by fixpoint iteration as follows:.
append = (0, A\z.(z(1), Ay.x Ll y)).
Let env, be defined as env, = [append — append] Then,
G_escape?(append, 1,eitv,) = (O.[append x y]]eﬁv’o)(l)
= (({0,err) U ({(1,err)))) =1
where env’, = efiv,[x — (1,err),y — (0,err)]. And,
G_escape?(append, 2, eiw,) = (O.[append x y]]eﬁv’o)(l)
= (0,err)u ((L,err)))qy =1

where env', = eiw,[x — (0,err),y — (1,err)]. Thus, we conclude that append returns its
first and second arguments x and y. In fact, however, only some portion of the second
parameter y of the function append actually escapes, but some portion does not escape.
In this chapter we will describe a method for inferring more precise escape information
for structured objects such as lists. We first define the notion of partial escapement which

specifies more a refined notion of escapement of objects as shown in Figure 3.1.

Definition 3.1 (Global/Local Refined Escapement) Given a function f with n for-
mal parameters and m locally defined objects, the i** formal parameter or local object is

said to
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Figure 3.1: Refined Escapement of Objects

e partially-escape the function call to f globally if, in some possible application of f to
n arguments, some part of the corresponding actual argument or local object outlives
the activation of the function call, but the rest of the corresponding actual argument

or local object does not outlive the activation of the function call.

partially-escape the function call to f locallyin (f e; ...e,) if, in the particular func-
tion application of (f e ...e,), some part of the corresponding actual argument or
local object outlives the activation of the function call, but the rest of the correspond-
ing actual argument or local object does not outlive the activation of the function

call.

When all of an object outlives a function call globally (or locally), we say that the object

totally-escapes the function call globally (or locally).

We will develop a method for higher-order, monomorphic, strict functional languages to

answer the following questions at compile-time:

e Given a function, which parameter or local object defined inside the function escapes

the function call globally and to what extent (i.e. how much of the object escapes)?

e Given a function in a particular application context, which parameter or local object

defined inside the function escapes that particular function call and to what extent?
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Figure 3.2: Spines of a List

3.2 Refined Escape Analysis

3.2.1 Spines of a List

In a refined escape model, we divide objects into their subcomponents and we are concerned
with how much of an object, such as a parameter or local object, escapes the function.
We describe a way of partitioning list objects into subcomponents based on the notion of

spines of a list as is shown in Figure 3.2.

Definition 3.2 (Spines of a List) Given a list L and some ¢ > 1, the top i*" spine of L
is defined as the set of cons cells accessible by a sequence of operations consisting of car
and cdr where the number of occurrences of car is (7 — 1). Similarly, given a list L with d

spines and some j > 1, the bottom j* spine of L is defined as the top (d—j+1) spine of L.

We have chosen to analyze the escape properties of lists in terms of their spines for two

reasons:
e It is an approximation to the run-time behavior that allows a compile-time analysis.

o [t reflects the programming style commonly used for strongly typed languages, such as
ML, in which lists are homogeneous (all elements have the same type) and functions

(such as append, map, etc.) often operate over complete spines of lists.

The first point reflects our inability to determine precisely, without actually running the

program, which individual cells of a list might escape. To form a terminating compile-time
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escape analysis, one must choose an approximation of program behavior. The second point
reflects our belief that the spines are a good choice of approximation, since the cells of each
spine of a list tend to be treated identically. Many functions, such as append, reduce, map,

length, etc., operate on all cells of a spine. Many other functions have the form:
f 1 = if predicate(car 1) then ... else f (cdr 1)

or
g 1l x = if x=n then ... else g (cdr 1) (arith-op x)

In general, it is impossible to determine at compile time when the recursion will bottom

out. One simply has to assume that all cells in the spine of the list L will be visited.

3.2.2 Exact Refined Escape Semantics

We introduce an exact, but incomputable, non-standard denotational semantics called re-
fined escape semantics, which exactly describes the operational notion of refined escapement
for functions in a program. Our refined escape semantics is also defined in terms of a single
interesting object, because we consider that each parameter or local object will be analyzed

separately to determine its refined escape behavior.

Representing Refined Escape Information

The meaning we will attach to the syntax is the refined information about escaping objects.
For each expression, we want its corresponding value in the extended escape semantic
domain to be able to tell us how much of an interesting object is contained in the value
of the expression (“partial-escape”). Under the non-standard refined escape semantics, we

represent the meaning of an expression as a pair, called a refined escape pair,

1. whose first element denotes the containment and the extent of an interesting object

in the value of the expression, and

2. whose second element denotes the functional behavior of the expression defined over

the escape pairs when the expression itself is applied to another expression.

For a non-list type expression, the corresponding value in the non-standard refined escape

semantic domain D, has two components: The first component is an element of a domain
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(1,d)

Figure 3.3: The Basic Refined Escape Domain

called a basic refined escape domain, B, for some fixed d is a (d + 2)-element domain of

pairs as shown in Figure 3.3. The ordering on pairs in B, is defined as follows:
(0,0)C(1,00)C(1,1)C...C(1,d—1)C (1,d)
The interpretation of elements of B, is defined as follows:

e (1,7): Only the bottom j spines of an interesting object ¢s contained in the value of
the expression, and the rest of an interesting object is not contained. (If an interesting
object is not a list then 7 will always be 0, which means that an indivisible interesting

object s contained in the value of the expression.)

e (0,0) : No part of any interesting object ¢s contained in the value of the expression

whose evaluation is ever terminating.

The second component is a function over D,, whose meaning is the functional behavior of
the expression when the expression itself is applied to another expression. For expressions
which have no higher-order behavior, err, which is a function that can never be applied,
is used. For a list type expression, the value in the escape semantic domain is a list that

consist of the values of its components in the refined escape semantic domains.

Refined Escape Semantic Domains

The refined escape semantic domain D, and the domain of refined escape environments £,

are defined as follows:
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D, = ZD; /* Refined escape semantic domain */

T

E, = I1d— D, /[* Domain of refined escape environments */

The refined escape domain D), is a sum domain of each subdomain of each type. The refined

escape subdomain D for expressions of type 7 is defined as follows:

D;”t = B, x{err} subdomain for integers

D]I;ool = B, x{err} subdomain for booleans

D=7 = B, x (D} — D}?) subdomain for functions of type 7 —
Drlst = (B, x {err})+ (D] x D "s*) subdomain for lists of type T list

Refined Escape Semantic Functions

The non-standard refined escape semantic functions are defined as follows:

P, : Con—1D, /* Refined escape function for constants */
P. : FEzp— E,— D, [*Refined escape function for expressions */
P,, : Program — D, [* Refined escape function for programs */

The semantic equations for the refined escape semantic functions P, that gives non-standard
refined escape meaning to constants, P, that gives non-standard refined escape meaning
to expressions, and P, that gives non-standard refined escape meaning to programs, are
expressed in Figure 3.4. Note that Oracle is also used to resolve the exact escape behavior
of the conditional expression if. enwv, is any exact refined escape environment in £,, and
nullenv, is a refined escape environment that maps every identifier to the least element of

its refined escape semantic domain.

3.2.3 Abstract Refined Escape Semantics

We present a safe and computable abstraction of the exact refined escape semantics defined
in the last section that allows an approximation of the exact escape behavior of functions
to be found at compile-time.

We safely approximate the exact refined escape semantics by abstracting the refined
escape semantic subdomains for list type expressions, and by approximating the refined
escape semantic functions. For each expression, its corresponding value in the abstract ex-
tended escape semantic domain tells us how much of an interesting object may be contained
in the value of the expression (“maybe partial-escape”). The abstract basic refined escape

domain, B’p for some fixed d is a (d + 2)-element domain that is similar to the basic refined
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P.[c] = ({(0,0),err),c=1{...,—1,0,1,..., true,falsenil” st}

PJcons] = {(0,0), Az.(z (1), Ay. pair(z,y)))

P.car] = ((0,0),Az. first(z))

P.cdr] = ((0,0),Az. second(z))

P.[null] = ((0,0),Az.((0,0),err))

P.[c]enwv, = P[]

P.[z]env, = envy[z]

P.ler + ez]env, = ((0,0),err) /* same for e; — e and e = €3 */

P.[if e, then e; else eg]env, = if Oracle(ey) then (Pe[[eg]]envp)@)
else (P.[es]env,)

P.[erez]env, = (Pe[[el]]envp)(z) (Pelez]envy)

P.[lambda(z).eJenwv,

(V, Ay.P.[e]env,[z — y])

where

V=(.0u( [| C(enmlDopyuC ] ¢ [ »pey)
ZEFnon—list ZEFlist P ill (enUp[[Z]])
p in (envy[z]) denotes that p is an refined escape pair in env,[z],

Fron=list — Get of non-list type free identifiers in (lambda(z).e), and

F''st = Set of list type free identifiers in (lambda(z).e).

P.[letrec z; = e15...;2, = €,;in elenv, = Pe[[e]]envz'j
where env, = env,[z) — Pclei]envy, ..., v, — Pcley]env]]
P,.[pr] = PF.lpr]nullenv,

Figure 3.4: Refined Escape Semantic Functions
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(1,d)

Figure 3.5: The Abstract Basic Refined Escape Domain

escape domain B, as is shown in Figure 3.5. The ordering is also defined as follows:
(0,0)C (1,00 C(1,1)C...C(1,d—1)LC (1,d)

But, the interpretation of elements of Bp is defined differently from the interpretation of

B, as follows:

e (1,7) : Only the bottom < ¢ spines of an interesting object may be contained in the
value of the expression. (If an interesting object is not a list then ¢ will always be 0,
which means that an indivisible interesting object may be contained in the value of

the expression.)
e (0,0) : No part of any interesting object is contained in the value of the expression.

The abstraction of the refined escape semantic subdomains for list type expressions is done
by representing lists as finite objects, i.e. by combining the escape pairs of all its elements
into a single escape pair. The abstract refined escape semantic domain ﬁp and the domain
Ep of abstract refined escape environments are defined as follows:

b, = Zf); /* Abstract refined escape semantic domain */

T

E, = Id— D, /* Domain of abstract refined escape environments */

The abstract refined escape subdomain ﬁ; for expressions of type 7 is defined as follows:
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E;”t = B, x {err} abstract subdomain for integers

Egool = B, x {err} abstract subdomain for booleans

Dgl_”? = B, x (15;1 — E;Q) abstract subdomain for functions of type 7y — 7
D; list ﬁ; abstract subdomain for lists of type 7 [ust

The abstract refined escape semantic functions are defined as follows:

P. : Con— D, /* Abstract refined escape function for constants */
P, : Exzp— Ep — bp /* Abstract refined escape function for expressions */
PpT : Program — ﬁp /* Abstract refined escape function for programs */

The abstract refined escape semantic functions are given in Figure 3.6.

The abstract value of cons returns a single refined escape pair that is approximating
a list of refined escape pairs by taking the least upper bound of its two arguments. The
car® denotes a car that is applied to an argument of a list type with s spines. For each
car in a program, s can be determined statically by type checking. It may be arbitrarily
large, but is fixed at compile-time. The abstract value of car is defined as follows: car®
takes a list with s spines as an argument, and returns a list with (s — 1) spines when s > 1
or a non-list object when s = 1. In any case, the result cannot contain an interesting
object with s spines. The abstract value of cdr just returns its argument list. env, is
any abstract refined escape environment in Ep, and nuliemjp is an abstract refined escape
environment that maps every identifier to the least element of its abstract refined escape
semantic domain.

The safety of interpretation under the abstract refined escape semantics with respect
to the exact refined escape semantics can be proved as follows. Let u and v be values of
an expression e of type 7 in the abstract refined escape domain Dp and the exact refined
escape domain D,, respectively. Let n be the number of arguments that the type 7 can
take before returning a value of primitive type. We say that the abstract refined escape
semantic value u is a safe approximation (with respect to refined escape information) of the
exact refined escape semantic value v iff

( |_| pay) E (NAPy(u, s1,...,51))q)
pin NAP (v,t1,...,tx)

for all £ < n where s; is a safe approximation of ¢; for all + < k.

Theorem 3.1 (Safety) For any expression e, and environments env, and e, such that
for all y, envy[y] is safe for envy[y], Pe[[e]]epr is safe (with respect lo refined escape

information) for P.[e]env,.
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Pc[[c]] = ((0,0),err),c={...,—1,0,1,..., true,false}

P.[ni1" '] = 1. (The bottom element in b;)
P.[cons] = {(0,0), Az .(z(1), Ay.xz U y))
P.[car®] = ({0,0), \z.sub¥(z))

where

sub®(z) = if (z(1)(2) = s) then ((z(1)(1), max(z(1)2) — 1,0)), 2(2)) else z
P.[cdr] = ((0,0), Az.z)

P.[nu11] = ((0,0), Az.((0,0), err))
P.[c]enw, = P[]
P.[z]env, = env,[z]
]56[[61 + ezenv, = ((0,0),err) /* same for e; — e; and e; = ey */
Pe[[if e1 then e; else eglenv, = (Pe[[eg]]epr)@) L (]36[[63]]epr)
Pe[[€1€2]]€’ﬁ/0p = (Pe[[el]]eﬁvp)(2) (]36[[62]]67%%)
P.[1ambda(z).elenv, = (V,A\y.P.[e]erv,[z — y])

where

V = (0,0)( L] (envy[2])(1)) and

zEF
F' = Set of free identifiers in (lambda(z).e).

Pe[[letrec Ty =e€1;...;%, = €y;inelenv, = Pe[[e]]eﬁv;
where env;, = envy|z; — Pe[[el]]eﬁv;, ey Ty Pe[[en]]eﬁv;]
P,[pr] = P.pr]nullenv,

Figure 3.6: Abstract Refined Escape Semantic Functions
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Proof : We can prove by structural induction on expression e.
I. Base Case:

1. e = ¢ P.Jcleiv, = P.[c] and P.[c]env, = P.[c]. Forc € {..., -1, 0, 1, ...,
true, false, nil, null }, P.[c] = P.[c] = ((0,0),err). It holds for ¢ = cons, because,
if 21 and x4 are safe for y; and y; respectively, z1 U x5 is also safe for a list consisting of y;
and y,. For ¢ = car®, it holds because if z is safe for y then sub®(z) is safe for first(y). It
holds for ¢ = cdr, because P.[c] = P.[¢] = ((0,0), \z.z).

2. ¢ = a: P.Jz]eirv, = env,y[z] and P.[z]env, = env,[z]. Since, for all y, eqwv,[y] is
safe for env,[y], it clearly holds.

IL. Structural Induction Step: Assume that P,[e]env, is safe for P.[e]enwv, for expressions
such as eg, €1, e3, €3 and e,, (structural induction hypothesis). Then, we show that P [e]env,
is safe for P.[e]env, for e = e; + ey, if e; then e; else e3, ejep, lambda(z).eq, and
letrec 1 = €1;...; &, = €,; in eg. This step can be proved in an exactly same way to the

safety proof of the abstract escape semantics with respect to the exact escape semantics. O

Theorem 3.2 (Termination) For any (finite) program pr € Program, PpT[[pr]] is com-
putable.

Proof: Every functional in the refined escape domain that is defined through the abstract
refined escape semantic functions is composed of the operators such as the least upper bound

operator LI and sub®, which are monotonic. Furthermore, each subdomain D} is finite. O

3.2.4 Refined Escapement Testing

The abstract refined escape semantics can be used as a basis for inferring refined escape
information because interpretation under this semantics is effective. We describe the refined
escape testing algorithms in which the abstract functions are used to detect the refined

escape properties of the corresponding functions in a program.

Global Refined Escape Test

Given a function f xy 2 ... z, = bodys of arity n, the position 7 of an interesting
parameter, and an abstract refined escape semantic environment efiv, mapping f to an
element of ﬁp, the global refined escape test function G_rescape? determines how much of

the i*" parameter of f could possibly escape f globally. It is defined as follows:

G_rescape?(f,i,env,) = (Pe[[f T1 ... zg] efvpla = yil) )
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where
yi = ((1,5;), W™), /* The i** parameter is an interesting object */

s; is the number of spines of the i’" parameter of f (if it is a list type, otherwise s; is 0),

for all 7 < n and j # ¢,
y; = ((0,0), W73), /* Other parameters are not interesting objects */

and 7; is the type of the i*" parameter of f. Note that the whole i** argument with s;
spines is interesting, and any other argument is not interesting. Then, from the result of

the global refined escape test function, we can conclude as follows:

o If G_rescape?(f,i,env,) = (0,0) then we conclude that none of the ith argument

escapes f in any possible application of f to n arguments.

o If G_rescape?(f,1i,env,) = (1,k) then we conclude that, if s; > 1 then, the top (s; — k)
spines of the " argument do notl escape f in any possible application of f to n
arguments, but the bottom k spines of the ** argument could escape f in some
application of f to n arguments. If s; = 0 then the ' argument, which is not a list

type, could escape in some application of f to n arguments.

Local Refined Escape Test

Given a function f zy 2 ... #, = body; of arity n in an application f e; ... ey, the
position ¢ of an interesting parameter, and an abstract escape semantic environment eniv,

mapping f and the free identifiers within e; through e, to elements of ﬁp, the local escape

test function L_rescape? determines how much of the i** parameter of f could escape f in

the evaluation of f ey ... e,. It is defined as follows:
L_rescape?(f,t,€1,...,€p,€00,) = (Pe[[f Ty . @] efivpla = )

where
yi = (1, ), (P.[ei] eiv,)(a)), /* The it" parameter is an interesting object */

th

s; is the number of spines of the ¢*" parameter of f (if it is a list type, otherwise s; is 0),

and for all j < n and j # 1,
y; = ((0,0), (Ec]e;] €fiv,)(g)). /* Other parameters are not interesting objects */

Then, from the result of the local refined escape test function, we can conclude that:
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o If L rescape?(f,i,e1,-..,en, eiv,) = (0,0) then none of the i** argument escapes f in

the particular application of f to e; through e,.

o If L_rescape?(f,i,€e1,...,€,,env,) = (1,k) then we conclude that, if s; > 1 then, the
top (s; — k) spines of the ¥ argument do not escape f in the particular application
of f to e; through e,, but the bottom k spines of the i** argument could escape. If

th

s; = 0 then the ¢*" argument, which is not a list type, could escape in the particular

application of f to e; through e,.

Examples
As an example, consider the following partition sort program:

letrec ps x = if (null x) then nil
else letrec y = split (car x) (cdr x) nil nil;
in append (ps (car y))
(cons (car x) (ps (car (cdr y))));

split p x 1 h = if (null x) then (cons 1 (cons h nil))
elseif (car x)<p then
split p (cdr x) (cons (car x) 1) h
else split p (cdr x) 1 (cons (car x) h);

append x y = if (null x) then y
else cons (car x) (append (cdr x) y);

in ps [5,2,7,1,3,4]
We assume that the type of each function is given by

ps :wnt list — int list
split :int — wnt list — wnt list — wnt list — int lest list

append : int list — int list — int list
From type checking, each car in the program can be annotated as follows:

ps x = if (null x) then nil
else letrec y = split (CAR1 x) (cdr x) nil nil;
in append (ps (CAR2 y))
(cons (CAR1 x) (ps (CAR2 (cdr y))));
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split p x 1 h = if (null x) then (cons 1 (cons h nil))
elseif (CAR1 x)<p then
split p (cdr x) (cons (CAR1 x) 1) h
else split p (cdr x) 1 (cons (CAR1 x) h);

append x y = if (null x) then y
else cons (CAR1 x) (append (cdr x) y);

where CARi denotes a car that takes as its argument a list with i spines. The refined
escape semantic values append, split, and ps of append, split, and ps (shown uncurried

for convenience) are expressed as follows:

append x y = yU (sub(z)U append = y)

splitpalh = lUhU (split pz (subl(2)U1) h) U (split px (subl(z)U h))

psz = append (ps sub®(split sub!(z) z ((0,0)err) ((0,0)err)))
(sub*(z) U (ps sub?(split sub(z) x ((0,0)err) ((0,0)err)))

The meaning of each function in the refined escape semantic domain is found by fixpoint

iteration. The fixpoint iteration for append:

append® zy = Lint1ist

append) zy = yU (sub(z) U append® z y)
= yUsubl(a)

append® zy = yU (subl(z) U append) z )
= yU(subl(z) U (y Usubl(z)))
= yUsubl(a)

Since append? = append®), we have that
append = ((0,0), Az.(x (), Ay.y U sub'(2))).

The fixpoint iteration for split:
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split@ pa lh = Lt tist) list

split™ palh = TURU L risty tist U L (ine tist) tist
= lUh
split® palh = TUhU(split™ pa (sub'(z)U1) k) U (split™ pz (sub'(z)Uh))

= [UhU((subl(z)ul)Uh)U ((subl(z)Uh))
= [UhUsubl(z)
split® palh = TUhU(split® pa (sub'(z)U1) k) U (split™® pz (sub'(z)Uh))
= [UAU((subl(z)ul)Uh)U (IU (subl(z) L h)Usubl(z))
= U hUsubl(z)

Since split(®) = split®), we have that

split = <<O7 O>7 /\p.<p(1), /\$.<p(1) L T(1), /\l.<p(1) LJ T (1) LJ l(l), AhJAUARL Sub1($)>>>>

The fixpoint iteration for ps:
t = Lintlist
psWz = append(ps® sub?(sub'(z))) (sub!(z) U (ps(® sub?(subl(z)))

= append Ling 1ise (sub' (sub’(2)) U Ly 1ist)

= subl(z)
ps® z = append(ps™) sub?(sub'(z))) (sub!(z) U (ps™) sub?(subl(z)))

= append sub!(sub?(sub!(z))) (sub!(z) U sub!(sub?(sub!(z)))

= subl(z)

2) we have that

Since ps() = psl
ps = {(0,0), Az.sub(z)).
Let env, be defined as efnv, = [append — append, split — split,ps — ps|. Then,

G_rescape?(append, 1,env,) = (P.[append x y]]eﬁv’p)(l)

= ({(0,0),erryusub’({(1,1),err)))q)
= (1,0)

where enjv’p = envy[x — ((1,1),err),y — ((0,0), err)].

G_rescape’(append, 2, env,) = (P.[append x y]]eﬁv’p)(l)

= (<<0,O>,e'r'r>|_|sub1(<<1,1>,e'r'r>))(1)
= (1,1)

where env', = eiwv,[x — ((0,0), err),y — ((1,1), err)]. Thus, we can conclude that append

returns all of its second argument y, and all but the top spine of the first argument x.
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G_rescape?(split, 1,env,) = (P.[split p x 1 h]]eﬁv’p)(l)
= (<<07 0>7 67‘7‘> L <<07 0>7 €'T”I'> L Sub1(<<07 0>7 €'T‘T>))(1)
= (0,0)

where GTZT)/p = erf“)p[p = <<17 0>7 €’T"T>,X, 17h = <<07 0>, €‘T"T>].

G_rescape?(split,2,eiiv,) = (P.[split p x 1 h]]eﬁv’p)(l)
= (<<07 0>7 67‘7‘> L <<07 0>7 €'T”I'> L Sub1(<<17 1>7 €'T‘T>))(1)
= (1,0)

where 67”;1)/29 = eﬁvp[x = <<17 1>,€’T"T>,p,1,h = <<0,0>,€TT>].

G_rescape?(split,3,eiv,) = (P.[split p x 1 h]]eﬁv’p)(l)
= (<<17 1>7 67‘7‘> L <<07 0>7 €'T”I'> L Sub1(<<07 0>7 €'T‘T>))(1)
= (1,1)

where 67”;1)/29 = eﬁvp[l = <<17 1>7 €’T"T>,p,X,h = <<O, 0>, €‘T‘T>].

G_rescape?(split,4,eiv,) = (P.[split p x 1 h]]eﬁv’p)(l)
= (<<07 0>7 67‘7‘> L <<17 1>7 €'T”I'> L Sub1(<<07 0>7 €'T‘T>))(1)
= (1,1)

where env', = env,[h — ((1,1),err),p,x,1 — ((0,0),err)]. Thus, we can conclude that
split returns all of its third and fourth arguments 1 and h, none of the first argument p,

and all but the top spine of the second argument x.

G_rescape’(ps, 1,efv,) = (Pe[[PS x] efivy[x — ((1,1), err)]))
= (sub (((1,1),err)))u)
= (1,0)

Thus, we conclude that ps returns all but the top spine of its argument x.

3.3 Improving Precision of Refined Escapement

We describe an improved abstraction of the exact refined escape semantics achieved by
extending the basic abstract refined escape domain to include additional information about
the positions of objects in a list. For each expression, its corresponding value in the
improved abstract refined escape semantic domain tells us how much of an interesting object
may be contained at some position in the value of the expression (“maybe partial-escape

and where”). The basic improved abstract escape domain, Bp, for some fixed d and p is
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(1,d,0)

Figure 3.7: The Improved Abstract Basic Refined Escape Domain
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a((d+1)(p+1)+ 1)-element domain of triples as shown in Figure 3.7. The ordering on

triples in Bp is defined as follows:
(0,0,0) C (1,0,p)C(1,0,p—1)C...C (1,0,0)...(1,d,p) C(1,d,p—1)C...C (1,d,0)
The interpretation of the elements of Bp is defined as follows:

e (1,%,k) : Only the bottom < ¢ spines of an interesting object may be contained only
at positions > k in the value of the expression, if that value is a list. (If an interesting
object is not a list then ¢ will always be 0, which means that an indivisible interesting

object may be contained in the value of the expression.)
e (0,0,0): No part of any interesting object ¢s contained in the value of the expression.

The improved abstract refined escape semantic domain Dp and the domain Ep of improved

abstract refined escape environments are defined as follows:
D, = ZD; /* Improved abstract refined escape semantic domain */
T

E, = Id— D, /*Domain of improved refined escape environments */

The improved abstract refined escape subdomains f); for expressions of type 7 are defined

as follows:
E;”t = Bp x {err} improved abstract subdomain for integers
bzbjool = Bp x {err} improved abstract subdomain for booleans
D;l_”2 = B,x (D;l — D;f?) improved abstract subdomain for functions
D; st — D; improved abstract subdomain for lists

The improved abstract refined escape semantic functions are as follows:

i

Con — D, /* Improved semantic function for constants */

O

i

Exp — Ep — Dp /* Improved semantic function for expressions */

™

i

» : Program — Ep /* Improved semantic function for programs */

3

The improved abstract refined escape semantic function P, : Con — Dp that gives refined
escape meaning to constants is given in Figure 3.8. The improved abstract value of cons
takes two arguments, and returns an improved refined escape pair of their least upper bound
by updating the position information of an interesting object in the result list. The improved
abstract value of car® returns its argument according to the position of an interesting object.
car® takes a list with s spines and returns the element that was in the 0** position and

has (s — 1) spines. Thus, the result cannot contain an interesting object with s spines or
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PC[[C]]
PC [[IlilT list]]
P.[cons]

P.[car®]

P.[cdr]

P.[null]

((0,0,0),err), ¢{...,—1,0,1,...,true,false}
1, (The bottom element in D;)
({0,0,0), Az .(z (1), Ay.rpush(z, y))))
where
rpush(z,y) = if (z(1)1) = 1)
then ({1, 2(1)(2) U ¥1)(2), 00> €(2) U 2)
elseif (y(1)1) = 1)
then ((1,y(1)(2), min(yy@) + 1,p)), 22y U y(2))
else ((0,0,0),z(2) U y2))
((0,0,0), Az.rsub’(z))
where
rsub®(z) = il (2(1y1) = 0) or (2(1)(3) > 0) then ({0,0,0),z))
else ((dec®(2(1,2)),0), 2(2))
dec*(y) = if (y1) — 1 = s) then (max(y) —1,0), y2))
else y
((0,0,0), Az.rrest(z))
where
rest(2) = ((2(1)(1), 2(1)(2), Max[2(1)3) — 1, 0]), 2(2))
((0,0,0), Az.((0,0,0),err)

Figure 3.8: Improved Abstract Refined Escape Semantic Functions
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that occurred at a position > 1 in the original list. The improved abstract value of cdr also
updates the position information appropriately. Note that the improved abstract refined
escape semantic function P. for cons, car and cdr provides more precise escape information
than the abstract refined escape semantic function P..

The improved abstract refined escape semantic function P. : Exp — Ep — Ep that gives
refined escape meaning to expressions, and the improved abstract refined escape semantic
function Ppr : Program — Dp that gives refined escape meaning to programs are defined
similarly to the abstract refined escape semantic function P, and Ppr respectively.

The safety of interpretation under the improved abstract refined escape semantics with
respect to the exact refined escape semantics can be proved as follows. Let u and v be
values of an expression e of type 7 in Ep and D,, respectively. Let n be the number of
arguments that the type 7 can take before returning a value of primitive type. We say that
the improved abstract refined escape semantic value u is a safe approximation (with respect

to refined escape information) for the exact refined escape semantic value v iff

( | | Pa)) E (NAP(u, s1,.. ., 86))(1)(1,2)

P in NAPk(U,tl,...,tk)

and

(Al[jvp in NAPk(v,tl,...,tk)&p(l)(l)zlPOSitiOH of p) > (NAPk(u7 S1y-0 45 Sk))(l)(S)

for all £ < n where s; is a safe approximation for ¢; for all + < k.

Theorem 3.3 (Safety) For any expression e, and environments env, and env, such that
for all y, env,[y] is safe for env,[y], Pe[[e]]epr is safe (with respect to refined escape

information) for P.[e]env,.

Proof : We can prove by structural induction on expression e.
I. Base Case:

1. e = ¢: P.[c]eirv, = P.[c] and P.[c]env, = P.[c]. Fore € {..., -1,0,1, ..., true,
false, nil, null }, P.[¢] = P.[c] = ((0,0,0),err). It holds for ¢ = car, because if z;
and z are safe for y; and y; respectively then rpush(z,y) is also safe for a list of y; and y,.
For ¢ = car®, it holds because if z is safe for y then then rsub®(z) is also safe for first(y).
It holds for ¢ = cdr, because if z is safe for y then then rrest(z) is also safe for second(y).

2. e = x: P.[z]eiiv, = eiv,[z] and P.[z]env, = env,[z]. Since, for all y, env,[y] is
safe for env,[y], it clearly holds.

II. Structural Induction Step: Assume that P.[e]env, is safe for P.[e]env, for expressions
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RES

SS IARES

ARES “information content”

Figure 3.9: Relationship among Standard and Refined Escape Semantics

such as eg, €1, ez, €3 and e,, (structural induction hypothesis). Then, we show that P, [e]env,
is safe for P.[e]env, for e = e; + ey, if e; then e; else ez, ejey, lambda(z).e;, and
letrec 1 = €1;...; &, = €,; in eg. This can be proved in an exactly the same as the proof

of safety of the abstract refined escape semantics. O

Theorem 3.4 (Termination) For any (finite) program pr € Program, PpT[[pr]] is com-
putable.

Proof : Every functional in the improved escape domain that is defined through the
abstract improved refined escape semantic functions is composed of the operators such as
the least upper bound operator U, rpush, rsub®, and rrest. rpush, rsub® and rrest are all

monotonic operators. Also, each subdomain D7 is finite. O

Theorem 3.5 (Precision Improvement) The abstract refined escape semantics is equiv-
alent (with respect to refined escape information) to the improved abstract refined escape
semantics with p = 0. Thus, the improved abstract refined escape semantics with p > 0

provides more precise escape information than the abstract refined escape semantics.

Proof : This can be proved in a similar way to the proof of Theorem 2.5. O
The relationships among the standard semantics (SS), the exact refined escape semantics
(RES), the abstract refined escape semantics (ARES) and the improved abstract refined

escape semantics (IARES) are shown in Figure 3.9
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Improved Global Refined Escape Test

Given a function f xy 22 ... z, = bodyys of arity n, the position 7 of an interesting
parameter, and an improved abstract refined escape semantic environment env, mapping
f to an element of f)p, the global improved refined escape test function G_irescape? which
determines how much of the i** parameter of f could possibly escape f globally is defined

as follows:

G_irescape?( f, 1, env,) = (Pe[[f Ty e @] efivplE = yi])(1y(1,2)
where

v = ({1,8;,0), W™), /* The i** parameter is an interesting object */

s; is the number of spines of the i** parameter of f (if it is a list type, otherwise s; is 0),

for all 7 < n and j # ¢,
y; = ((0,0,0), W™), /* Other parameters are not interesting objects */

and 7; is the type of the i*" parameter of f. The result of the global improved refined escape

test function is interpreted as follows:

o If G_irescape?(f,1, env,) = (0,0) then we can conclude that in any possible application

of f to n arguments, none of the i** argument escapes f.

o If G.irescape?(f,¢,env,) = (1,k) then we can conclude that if s; > 1 then, in any

possible application of f to n arguments, the top (s; — k) spines of the i‘*

argument
do not escape f, but, in some application of f to n arguments, the bottom k spines
of the " argument could escape f. If s; = 0 then in some application of f to n

arguments, the 7** argument, which is not a list type, could escape.

Improved Local Refined Escape Test

Given a function f 2y zo ... z, = bodys of arity n in a application context f e, ... ey,
the position 7 of an interesting parameter, and an improved abstract escape semantic envi-
ronment env, mapping f and the free identifiers within e; through e, to elements of f)p,
the local escape test function L_irescape? which determines how much of the i parameter

of f could escape f in the evaluation of f ey ... e, is defined as follows:
L_irescape?(f,i,e1,...,€,,€R0,) = (Pe[[f Ty e @] efivpla = yi])1y(1,2)

where
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v = ((1,5:,0), (P[es] envy)2)), /* The ith parameter is an interesting object */

s; is the number of spines of the i*" parameter of f (if it is a list type, otherwise s; is 0),

and for all j < n and j # 1,
y; = ((0,0,0), (Ee[[e]']] efivy)(2))- /* Other parameters are not interesting objects */
The result of the local improved refined escape test function is interpreted as follows:

o If L irescape?(f,,e1,...,€,,env,) = (0,0) then we can conclude that in the particular

application of f to e; through e,, none of the i*" argument escapes f.

o If L irescape?(f,,eq,...,€,,€eRv,) = (1,k) then we can conclude that if s; > 1 then,
in the particular application of f to e; through e,, the top (s; — k) spines of the ith
argument do not escape f, but the bottom k spines could escape f. If s; = 0 then the
it" argument, which is not a list type, could escape in the particular application of f

to ey through e,.

3.4 Comparison to Escape Analysis and Complexity

The refined escape semantics, the abstract refined escape semantics, and the improved ab-
stract refined escape semantics with some d > 0 provide more refined escape information
than the escape semantics, the abstract escape semantics, and the improved abstract escape
semantics, respectively. The relationship among the standard semantics, the escape se-
mantics, the improved abstract escape semantics, the abstract escape semantics, the refined
escape semantics, the improved abstract refined escape semantics, and the abstract refined
escape semantics is shown in Figure 3.10.

The abstract interpretation framework for the refined escape analysis is the same as that
for the escape analysis presented in the previous chapter except for the size of the abstract
basic domain. While the escape analysis uses a two-element domain, the refined escape
analysis uses a (d 4+ 2)-element domain where d is fixed and greater than 2. Thus, the order
of worst-case time complexity of refined escape analysis is higher than but is comparable to

that of escape analysis, which is exponential.
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Figure 3.10: Relationship among Escape and Refined Escape Semantics
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Chapter 4

Reference Escape Analysis

In reference counting schemes for automatic storage reclamation, each time a reference to
an object is created or destroyed, the reference count of the object needs to be updated.
This may involve expensive inter-processor message exchanges in distributed environments.
In higher-order functional languages, exact information about the lifetime of a dynamically
created reference to a heap-allocated object is generally unknown at compile-time. Thus,
updating on the reference count of the object is performed whenever a reference to the
object is created and destroyed. Such information, if inferred at compile-time, could be
useful for improving the reference counting scheme for both uniprocessor and multiprocessor
environments.

In this chapter, we present a method for computing, at compile-time, safe information
about the relative lifetimes of dynamically created references to objects, such as arguments
and local objects defined within a function, with respect to the lifetime of the function call.
As before, the language we consider is a higher-order, monomorphic, and strict functional
language. This method is based on a compile-time semantic analysis called reference escape
analysis. First, we introduce a non-standard denotational semantics called reference escape
semantics that describes the actual reference escape behavior, but is incomputable at com-
pile time. An abstraction method of approximating the exact reference escape semantics
which is safe with respect to the exact reference escape semantics and is computable at
compile-time is then presented. Based on the abstract reference escape semantics and func-
tion transformation, we describe the reference escape testing algorithms which determine
reference escape information. Another safe and computable abstraction of the exact ref-
erence escape semantics called improved abstract reference escape semantics that improves

the precision of reference escape information using the position information of objects in a
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Figure 4.1: Escapement of References

list structure is also presented. Finally, the complexity of the reference escape analysis is

discussed.

4.1 Escapement of References

An object needed in more than one place during a program’s execution is typically handled
in one of two ways: either the object itself is copied or a pointer to the object is copied. We
describe the operational model in which references are created and destroyed. We choose a
model that is commonly implemented in LISP and functional language systems, that of a
call by value language with pointer semantics for heap allocated structures. References are

created in three ways:

1. When a heap allocated object is created, a reference to that object is created and

returned by the allocation procedure (e.g. cons).

2. When a heap allocated object is passed as a parameter in a function call, a reference

to the object is copied into the activation record of the called function.

3. When an assignment occurs (in a letrec, for example), and the value of the right hand
side is a heap-allocated object, a reference to the object is copied into the variable (or

record field) on the left hand side.
Consider the following function definition:

f xy= letrecgab=consab
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in cons x (g x y)

When £ is called, its activation record contains two references to lists, corresponding to the
parameters x and y. Thus, when (g x y) is evaluated, the references corresponding to x
and y are copied into the activation record for g. Likewise, any argument to cons that is
represented by a reference is also copied.

We analyze the lifetimes of a reference by determining its escapement, that is, whether
or not a reference is returned out of the scope in which it was created. When does a
reference escape? Intuitively, a reference can escape when it is placed in a structure, or
closure that escapes. If a reference does not escape the scope of its creation, no reference
counting operations are necessary when the reference is created or destroyed. In the above
example, when the references corresponding to x and y are copied into g’s activation record,
no reference count increment operation is required. Likewise, when g returns, no decrement
operation is required. However, when a cons cell, corresponding to (cons a b), is created,
the reference counts of the objects pointed to by a and b must be incremented. This is
because the lifetime of the cons cell exceeds that of g and £, and it cannot be determined
at compile time, when the references contained in the cons cell will be destroyed.

We formally define the notion of escapement of references, and illustrate it in Figure 4.1.

Definition 4.1 (Global/Local Reference Escapement) Given a function f with n for-
mal parameters and m locally defined objects, the j** occurrence of the i** parameter or

locally defined object is said to

e reference-escape the function call to f globally if, in some possible application of f to
n arguments, the reference associated with z; outlives the the function call (by being

contained in the result of the function application).

o reference-escape the function call to f locally in (f e; ... e,) if, in the particular
function application of (f e1 ... e,), the reference associated with z; outlives the

activation of the function call.

From the escapement of a reference with respect to its defining function, we can deduce
its lifetime: If the reference associated with an occurrence of a parameter or local object
does not escape the function call globally then we can conclude that the lifetime of the
reference is confined to the lifetime of any possible call to the function. Similarly, if it does
not reference-escape the function call locally in a particular function application then we
can conclude that the lifetime of the reference is confined to the lifetime of that particular

function call.
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We will develop a general method for higher-order, monomorphic, strict functional lan-

guages to answer the following questions at compile-time:

e Given a function and an occurrence of a parameter or local object, does the reference

associated with the occurrence reference-escape the function call globally ?

e Given a function in a particular application context and an occurrence of a parameter
or local object that is defined within the function, does the reference associated with

the occurrence reference-escape that function call ?

4.2 Function Transformation

In order to make each occurrence of each parameter of a function distinct, we introduce an
auxiliary function f’ for each function f. Then, we perform reference escape testing on f’
to determine reference escape property of each occurrence of each parameter of f. Given a

function

fz1 ... 2, = €,

the auxiliary function f’is given as follows:

! _ !
J'@i o Ty s Tnl e Tpo(n) = €

where o(¢) is the number of occurrences of z; in e and €’ is derived from e by replacing the
4t occurrence of z; by z;; for all ¢ and j. Note that each parameter of f’ will now have
only one occurrence, and f’ will be never called from anywhere and thus is not recursive.
To determine the escape behavior of references associated with occurrences of parameters
of f, we perform the test on its auxiliary function f’. For example, consider the following

function.

f xy= letrec g ab = cons ab;

in cons x (g x y)
An auxiliary function £’ derived from f is given as follows:

f’ x1 x2 y = letrec g a b = cons a b;

in cons x1 (g x2 y)
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Figure 4.2: The Basic Reference Escape Domain

4.3 Exact Reference Escape Semantics

We introduce an exact but uncomputable non-standard denotational semantics, called ref-
erence escape semantics, which describes the complete escaping behaviors of references for
functions in a program. The reference associated with each occurrence of a parameter or
local object will be analyzed separately to determine its reference-escape behavior. We
say that a reference is inleresting if it is the one whose escape behavior we are trying to
determine. Thus, our reference escape semantics is defined in terms of a single interesting

reference.

Representing Reference Escape Information

The meaning we will attach to the syntax of our language is information about escaping
references. For each expression, we want its corresponding value in the reference escape
semantic domain to be able to tell us if an interesting reference is not contained in the value
of the expression (“non-reference-escape”), or if an interesting reference is contained in
the value of the expression (“reference-escape”). Under the non-standard reference escape
semantics, we represent the meaning of an expression as a pair, called a reference escape

pazir,

1. whose first element denotes the containment of an interesting reference in the value

of the expression, and

2. whose second element denotes the functional behavior of the expression defined over

the reference escape domain when the expression itself is applied to another expression.

For a non-list type expression, the corresponding value in the non-standard reference escape
semantic domain D, has two components; The first component is an element of a domain

called a basic reference escape domain, B, which is a two element domain showned Fig-
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ure 4.2. The ordering is defined as 0 E 1. The interpretation of elements of B, is defined

as follows:
e 1 : An interesting reference is contained in the value of the expression.
e 0 : No interesting reference is contained in the value of the expression.

For expressions which have no higher-order behavior, err which is a function that can never
be applied, is used. For a list type expression, the corresponding value in the reference
escape semantic domain is a list that consist of corresponding reference escape values of its

components.

Reference Escape Semantic Domains

The reference escape semantic domain D, and the domain F, of reference escape environ-

ments are defined as follows:
D, = E D] /* Reference escape semantic domain */
T
E. = Id— D, /* Domain of reference escape environments */

The reference escape domain D, is a sum domain consisting of each subdomain for each

type. The reference escape subdomain D7 for expressions of type 7 is defined as follows:

Dirt = B, x {err} subdomain for integers

Dbl = B, x {err} subdomain for booleans

D= = B, x(D* — DJ?) subdomain for functions of type 7 —
Drlist = (B, x {err}) + (DI x DI "st) subdomain for lists of type 7 list

Reference Escape Semantic Functions

The non-standard reference escape semantic functions are defined as follows:

R. : Con— D, /* Reference escape semantic function for constants */
R. : Fazp— E.,— D, [* Reference escape semantic function for expressions */
R, : Program — D, [* Reference escape semantic function for programs */

The semantic equations for the reference escape semantic functions are expressed in Fig-
ure 4.3. Note that Oracle is used to resolve the exact behavior of the conditional expression
if, which relies on the standard semantics. env, is any exact reference escape environment
in F,, and nullenv, is a reference escape environment that maps every identifier on to the

least element of its reference escape domain.
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R[] = (0,err), c€{...,—1,0,1,...,true, falsenil” ls*}
R.[cons] = (0, z.(z(1), \y. palr(x y)))

R [car] = (0,Az. ﬁrst( )

R[cdr] = (0,Az.second(z))

R [null] = (0,Az.(0,err))

R [c]env, = R[]

Rc[z]env, = env,[z]

R.[e1 + ez]env, = (0,err) /* same for e; — ez and e; = e3 */
R.[if €1 then e; else eg]env, = if Oracle(e;) then (R.[ez]env,)

else (R.[ez]env,)
R [erez]env, = (Rc[ei]env,)q) (Rc[ez]env,)

R.[lambda(z).e]env, = (V,Ay.R.[e]env.[z — y])
where
V =(0,0)LI( |_| (env [2])q)) U ( |_| ( |_| 1))
ZGFnon—list ZEFlist P ill en'Ur[Z]]

p in env,[z]) denotes that p is an reference escape pair in env,[z],

Fron=list — Qet of non-list type free identifiers in (1ambda(z).e), and

F'ist = Set of list type free identifiers in (lambda(z).e).

R.[letrec zy = €y;...;2, = ey;inefenv, = R.[e]env!
where env! = env,.[z1 — R.[ei]envl,..., &, — Rc[e,]env]]
Ry [pr] = Re[pr]nullenv,

Figure 4.3: Reference Escape Semantic Functions
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(1, h)

Figure 4.4: The Abstract Basic Reference Escape Domain

4.4 Abstract Reference Escape Semantics

We present a safe and computable abstraction of the exact reference escape semantics de-
fined in the last section that allows an approximation of the exact reference escape behavior

for functions to be found at compile-time.

Abstracting Reference Escape Domains

We safely approximate the exact reference escape semantics by abstracting the reference
escape semantic subdomains for list type expressions, and by approximating the reference
escape semantic functions. For each expression, its corresponding value in the abstract ref-
erence escape semantic domain tells us if an interesting reference is definitely not contained
in the value of the expression (“non-reference-escape”), or if an interesting reference may be
contained in the value of the expression (“possible reference-escape”). The abstract basic

reference escape domain is shown in Figure 4.4. The ordering is defined as follows:
(0,0)C (1,0) € (1,1)C ... C (1,A)
The interpretation of the elements of B, is defined as follows:

e (1,7) : An interesting reference may be contained in the value of the expression, and
if 7 > 1 then it is a reference to the cons cell at the bottom j** spine of a list. (If

J = 0 then the object pointed to by the interesting reference is not a cons cell.)
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e (0,0) : No interesting reference is contained in the value of the expression.

The abstraction of the reference escape semantic subdomains for list type expressions is
done by representing lists as finite objects, i.e. by combining the escape pairs of all its
elements into a single escape pair. The abstract reference escape semantic domain D, and

the domain F, of abstract reference escape environments are defined as follows:

D, = ZEZ /* Abstract reference escape semantic domain */

T

E., = Id— D, /*Domain of abstract reference escape environments */

The abstract reference escape subdomain 15; for expressions of type 7 is defined as follows:

D = B, x {err} abstract subdomain for integers

Dbt = B, x {err} abstract subdomain for booleans

Dn=™ = B, x (DI — D) abstract subdomain for functions of type 7 —
EZ st = 15; abstract subdomain for lists of type 7 list

Abstracting Reference Escape Functions

The abstract reference escape semantic functions are defined as follows:

R. : Con— D, /* Abstract reference escape function for constants */
R. : Eap— E.— D, /* Abstract reference escape function for expressions */
f?,pr . Program — D, /* Abstract reference escape function for programs */

The abstract reference escape semantic functions are given in Figure 4.5. The abstract value
of cons returns a single reference escape pair that approximates a list of reference escape
pairs by taking the least upper bound of its two arguments. The car® denotes a car that is
applied to a list with s spines. For each car in a program, s can be determined statically by
type checking. It may be arbitrary large, but is fixed at compile-time. The abstract value
of car is defined as follows: car® takes a list with s spines as an argument, and returns a
list with (s — 1) spines when s > 1 or a non-list object when s = 1. In either case, the result
cannot contain an interesting reference pointing to the cons cells at the bottom s*® spine of
a list. The abstract value of cdr just returns its argument. eniv, is any abstract reference
escape environment in ET, and nulienvr is an abstract reference escape environment that

maps every identifier to the least element of its abstract reference escape semantic domain.

Safety and Termination

The safety of interpretation under the abstract reference escape semantics can be proved as

follows. Let u and v be values of an expression e of type 7 in the abstract reference escape
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R[] ((0,0),err),c={...,—1,0,1,...,true,false}
R [ni1™ %] = 1. ( The bottom element in D7.)
]%C[[cons]] ((0,0), Az.(z( T(1), Ay U y))

(

R [car®] = ((0,0), Az.cut¥(z ))
where cut®(z) = if (z(1)(2) = s) then ({0,0), z(3)) else z

R [cdr] = ((0,0), Az.z)
R.null] = ({0,0), Az.{(0,0),err))
R.[c]eqv, = R.]
R.[z]env, = env,[z]
]%e[[el + ex]env, = ((0,0),err) /* same for e; — ez and e; = e3 */
Re[[if €1 then e, else eszenv, = (}Aie[eg]]eﬁvr) L (Re[[eg]]eﬁvr)
Re[[eleg]]efwr = (Re[[el]]eﬁvr)@) (Re[[ez]]efwr)
R.[lambda(z).eleiv, = (V,\y.R.[e]eiv,[z — y])

where

vV =(0,0)Li( | | (env,[2])(1)) and

zeF
F' = Set of free identifiers in (lambda(z).e).

}AZS[[letrec Ty = €1;...;%, = €,;inefenv, = f%e[[e]]efw;
where efiv!, = env,[z, — Re[er]enrl, ..., a, — Re[e,]env’]
R, [pr] = Re[pr]nulienv,

Figure 4.5: Abstract Reference Escape Semantic Functions
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domain D, and the exact reference escape domain D,, respectively. Let n be the number
of arguments that the type 7 can take before returning a value of primitive type. We say
that the abstract reference escape semantic value  is a safe approximation (with respect

to reference escape information) for the exact reference escape semantic value v iff

( | ] Py) E (NAPk(w, 81, -, 86))1)(1)

v in NAPk(U,tJ,...,tk)

for all £ < n where s; is a safe approximation for ¢; for all ¢ < k.

Theorem 4.1 (Safety) For any expression e, and environments env, and env, such that
for all y, env,[y] is safe for env,[y], R.[e]env, is safe (with respect to reference escape

information) for R.[e]env,.

Proof : We can prove by structural induction on expression e.
I. Base Case:

1. e = ¢: R[c]env, = R.[c] and R.[c]env, = R.[c]. For c € {...,-1,0,1,..., true,
false, nil, null }, R.[c] = R.[c¢] and thus it clearly holds. For ¢ = cons, it holds
because if x1 and x, are safe for y; and ys, respectively, then z1 L x4 is also safe for a list
consisting of y; and yz. It holds for ¢ = car®, because if z is safe for y then cut®(z) is
safe for first(y). It holds for ¢ = cdr, because if z is safe for y then z is clearly safe for
second(y).

2. e = x: R.[e]enw, = env,[¢] and R.[z]env, = env,[x]. Since, for all y, eiv,[y] is
safe for env,[y], it clearly holds.
II. Structural Induction Step: Assume that R.[e]env, is safe for R.[e]env, for expres-
sions such as eg, e, ez, e3 and e,. (structural induction hypothesis) Then, we show that
fZe[[e]]e'fwT is safe for R.[e]env, for €1 + e3, if e; then e; else e3, € = e1e3, lambda(z).€q
and letrec 1 = e1;...;%, = €,;1in eg. This can be proved in the same way as the safety

proof of the abstract escape semantics with respect to the exact escape semantics. O

Theorem 4.2 (Termination) For any (finite) program pr € Program, ]%pr[[pr]] is com-
putable.

Proof : Every functional in the reference escape domain that is defined by the abstract
reference escape semantic functions is composed of the operators such as the least upper
bound operator U and cut®, which are all monotonic. As before, each subdomain ﬁZ is

finite. O
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4.5 Reference Escapement Testing

Reference escape analysis will determine for a function the relative lifetime of the reference
associated with a bound variable with respect to references associated with its occurrences.
We perform reference escape analysis on each occurrence of each argument of a function
call separately. Thus, at any time we are only interested in whether or not a particular
single occurrence of a particular variable escapes. Other objects may escape in the result of
a function call, but are ignored by our analysis model. An occurrence is inleresting if it is
the one whose escape behavior we are trying to determine. If a variable has n occurrences,
then reference escape analysis will be performed n times, each time treating a different
occurrence as interesting.

Consider the example from before:

f xy= letrecgab=consab

in cons x (g x y)

As we discussed previously, each occurrence of x in the body of f denotes the creation of
a new reference. To differentiate between the occurrences of x, we label each occurrence
differently. In fact, the different occurrences can be considered different parameters to the

auxiliary function derived from f£:

f’ x1 x2 y = letrec g ab =cons ab

in cons x1 (g x2 y)

Our abstract reference escape semantics will give the escapement of the parameters to £7,
and thus of the references corresponding to x1 and x2. We describe below how this analysis

proceeds.

Global Reference Escape Test

Given a function f zy 22 ... z, = body; of arity n, the position (7,j) of an interest-
ing reference of a parameter, and an abstract reference escape semantic environment efiv,
mapping [ to an element of D,, the global reference escape test function G_refescape? de-
termines whether the reference associated with the j** occurrence of the i** parameter of f

could escape f globally. It is defined as follows:

G_refescape?( f,1, j, env,) =

(Relf' w1 - @01y - @n - Tol €0, [ = J 2 = vy
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where [’ is the auxiliary function for f,
Jr = Re[[eio,,
yi; = ((1,8;), W7i), /* The j** occurrence of i* parameter is interesting */

s; is the number of spines of the i’" parameter of f (if it is a list type, otherwise s; is 0),

for all k < o(7) and k # 7,
yir = ((0,0), W™), /* Other occurrences of i* parameter are not interesting */
and for all 1 < m < o(l) and [ # 7,

Yim = ((0,0), W), /* Occurrences of other parameters are not interesting */

and 7; is the type of the i** parameter of f. Only the reference associated with the j** occur-

rence of the i** parameter is interesting reference, and the references associated with other
occurrences of the ¥ parameter are not interesting. Similarly, the references associated
with all occurrences of parameters other than the i** parameter are also not interesting. In
order to represent the functional behavior of all possible expressions that could be the it"
argument to f, the worst-case behavior is taken. From the result of the global reference

escape test function, we can conclude the following:

o If G_refescape?(f,t,j,env,) = 0 then we conclude that the reference associated with
the j** occurrence of the i** argument does not escape the function call to f in any

possible application of f to n arguments.

o If G_refescape?(f,¢,7j,env,) = 1 then it means that the reference associated with the
7t occurrence of the it" argument could escape the function call in some possible

application of f to n arguments.

Local Reference Escape Test

Given a function f z1 29 ... ¥, = bodys of arity n in a particular function application
f e1 ... en, the position (7, 7) of an interesting reference of a parameter, and an abstract
reference escape semantic environment env, mapping f and free identifiers within e; through
e, to elements of D,, the global reference escape test function L_refescape? determines
whether the reference associated with the j¥* occurrence of the i** parameter of f could

escape [ globally. It is defined as follows:
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L_refescape?(f,i,7,€1,...,€n,€00,) =
(Re[[f’ Ty oen Tio(1) oo Tnoe e Tpo(n)] €RV[f f’,xij = Y1) (1))

where [’ is the auxiliary function for f,
f’ = }Aze[[f']]e*fwr,

gij = (L, i), (Re[eilenv, ) (2)),

s; is the number of spines of the it"

for all £ < o(7) and k # 7,

parameter of f (if it is a list type, otherwise s; is 0),

yik = ((0,0), (Re[eilerv,)(2),
forall 1 <m < o(l) and [ # 1,
Yim = {(0,0), (Re[e]erv, )(2).
Then, from the result of the local reference escape test function, we can conclude as follows:

o If L_refescape?(f,i,j,€1,...,€,,env,) =0 then we conclude that the reference associ-

ated with the j** occurrence of the i** argument does not escape the function call to

fin (fer...en).

o If L_refescape?(f,i,j,€1,...,€,,€env,) = 1 then it means that the reference associated

with the j'* occurrence of the i argument could escape the function call (fer...en).

Examples
As an example, consider a program defined as follows:

letrec map £ 1 = if (null 1) then nil
else cons (f (car 1)) (map f (cdr 1));

sum 1 = if (null 1) then O

else (car 1) + sum (cdr 1);

addsum x y = cons x (cons y (cons
(map (lambda(z). (sum y) + z) x) nil));

in ...

We assume that the type of each function is given by
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map : (int — int) — int list — int list
sum : int list — int

addsum : int list — int list — (int list)list
From type checking, each car in the program can be annotated as follows:

map £ 1 = if (null 1) then nil
else cons (f (CAR1 1)) (map f (cdr 1));

sum 1 = if (null 1) then O
else (CAR1 1) + sum (cdr 1);

where CARi denotes a car that takes as its argument a list with i spines. The definitions

of the reference escape semantic values of map, sum, and addsum are as follows:
map [ 1 = ((0,0),err) U (f(z) <cut1(l(1)),l(2)>) L ((map(;)) f)(z) 1)
sum | = ((0,0),err) U {(0,0),err)
addsumzy = =z Uy U((map@) (ya), Az-({0,0),err)))z) z)

Since map is defined recursively, the meaning of map is found by a fixpoint iteration:

map(o) fl =

map® [1 = ({0,0),er7) U (fz {ent (ry), dp)) U ((maply) Mz 1)

map® f1 = ((0,0),err) U (f) {cut(In)), k) U ((maply) iz )

Since map") = map'?, we have that
map = ((0,0), /\f<f(1), /\lf(z) <cut1(l(1)), 1(2)>>>

addsum zy = =z Uy U((mapa) (ya), Az-((0,0),err)))z) z)
= z Uy U(Az.((0,0),err)) (cut'(zp1)), z(2))
= zUy U ((0,0),err)
= zlUy

The auxiliary functions map’ and addsum’ for map and addsum are defined as follows:

map’ f1 f2 11 12 13 = if (11=nil) then nil
else cons (f1 (car 12))
(map £2 (cdr 13));
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addsum’ x1 x2 y1 y2 = cons x1 (cons y1
(cons (map (lambda(z).(sum y2)+z) x2) nil));

Note that map’ is not recursively defined. The definitions of the reference escape semantic

values of map’, and addsum’ are given as follows (without a fixpoint iteration):

map’ f1 f2111213 = ({0,0),err) U (fl(y <cut1(12(1)),12(2)>) U ((map(z) [2)2) 13)
= ((0,0),err)Ls (f1(2) <cut1(12(1)),12(2)>)
U(f2(2) (cut!(13(1)),13¢2)))

addsum’ 1 z2 yl y2 = z1Uyl
Let efv, = [map — map, add — add, addsum — addsum]. Then,

G_refescape?(addsum, 1,1, env,) = (fZJ[addsum’ x1 x2 y1 y2]]e7{v’r)(1)(1)
= 1

where env!, = ehv,[addsum’ — addsum’,x1 — ((1,1),err),x2,y1,52 — ((0,0),err)].
Thus, we can conclude that the reference associated with the first occurrence x1 of the

first parameter x of addsum escapes. And,

G_refescape?(addsum, 1,2, env,) = (Ae[[addsum’ x1 x2 y1 y2]]€7”21)/7«)(1)(1)
0

where env/, = ehv,[addsum’ — addsum’,x2 — ((1,1),err),x1,y1,52 — ((0,0),err)].
Thus, we can conclude that the reference associated with the second occurrence x2 of

the first parameter x of addsum does not escape.
G_refescape?(addsum, 2, 1, env,) = (R.[addsum’ x1 x2 yi y2]]€7”21)/7«)(1)(1)
=1
where env', = enw,[addsun’ — addsum’,y1 — ((1,1),err), x1,x2,y2 — ((0,0), err)].
G_refescape?(addsum, 2,2, env,) = (R.[addsum’ x1 x2 yi y2]]e7”zv’r)(1)(1)

=0

where env’, = env,[addsum’ — addsum’,y2 — ((1,1),err),x1,x2,y1, — ((0,0),err)].
Thus, similarly, we can conclude that the reference associated with the first occurrence y1
of the second parameter y of addsum escapes, but the reference associated with the second

occurrence y2 of the second parameter y of addsum does not escape.
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G_refescape?(map, 1,1, env,) = (Eeﬂmap’ f1 £2 11 12 13]]67”2’0/7«)(1)(1)
=0

where

en, = eio,fmap’ — map, 21— ((1,0), Az.{z(0) err)),

£2 1 ((0,0), A2.(21), er7)), 11,12,13 = {(0,0), err)].

and

G_refescape?(map, 1,2, env,) = (Re[[map’ f1 £2 11 12 13]]672’0/7«)(1)(1)
=0

where

env', = efv,[map’ — map, £1 — ((0,0), Az (z(1), err)),

£2 = ((1,0), Az.(2(1), er7)),11,12,13 + ((0,0), err)].

In the same way, we also can conclude that the references associated with the occurrences

f£1, £2 of the first parameter £ of map do not escape.

4.6 Improving Precision of Reference Escapement

We present a method of improving the precision of reference escape information that is
obtainable through the reference escape analysis by using position information about inter-
esting references in a list structure. We describe another safe and computable abstraction
of the exact reference escape semantics that gives more precise information about refer-
ence escapement. The basic improved abstract reference escape domain is constructed by
extending the basic reference escape domain to include additional information about both
spine level and position. We safely approximate the exact reference escape semantics by
abstracting the reference escape semantic subdomains for list type expressions, and by
approximating reference escape semantic functions. Abstraction of the reference escape se-
mantic subdomains for list type expressions is done by representing lists as finite objects,
i.e. by combining the reference escape pairs of all its elements into a single reference escape
pair.

For each expression, its corresponding value in the improved abstract reference escape
domain tells us if an interesting reference is definitely not contained in the value of the
expression (“non-reference-escape”), or if an interesting reference may be contained at some

position in the value of the expression (“possible reference-escape and where”). The basic
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(1,h,0)

Figure 4.6: The Improved Abstract Basic Reference Escape Domain
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improved abstract reference escape domain, B,., for some fixed p is shown in Figure 4.6.

The ordering is defined as follows:
(0,0,0) C (1,0,p) C(1,0,p— 1) C ... C (1,0,0)...(1,h,p) C (1,h,p—1)C...C (1,Ah,0)
The interpretation of the elements of B, is defined as follows:

e (1,7,k) : An interesting reference may be contained in the value of the expression,
and if j > 1 then it is a reference to a cons cell at the bottom j* spine of a list and it
may occur only at > k position. (If j = 0 then the object pointed by the interesting

reference is not a cons cell.)

e (0,0,0) : No interesting reference is contained in the value of the expression.

The improved abstract reference escape semantic domain D, and the domain E, of

improved abstract reference escape environments are defined as follows:

D, = Y..DI  /* Improved abstract reference escape semantic domain */

E. = Id— D, /*Domain of improved reference escape environments */

The improved abstract reference escape subdomain 13; for expressions of type 7 is defined

as follows:
Dint = B, x {err} improved abstract subdomain for integers
Dboot = B, x {err} improved abstract subdomain for booleans
Dn—=m = B, x (D' — D) improved abstract subdomain for functions
Drhst = D1 improved abstract subdomain for lists

The abstract reference escape semantic functions are defined as follows:

R. : Con— D, /* Improved semantic function for constants */
R. : Eaxp— E,— D, /*Improved semantic function for expressions */
prT : Program — D, /* Improved semantic function for programs */

The improved abstract reference escape semantic function R. : Con — D, that gives
reference escape meaning to constants is given in Figure 4.7. The improved abstract value of
cons takes two arguments, and returns an improved reference escape pair of their least upper
bound by updating the position information of any interesting reference in the resulting list.
The improved abstract value of car® returns its argument according to the position of any
interesting object. car® takes a list with s spines and returns the element that was in the

0% position and has (s — 1) spines. Thus, the result cannot contain an interesting reference
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R[] ((0,0,0),err), ce{...,—1,0,1,...,true,false}
R.nil™ '] = 1. ( The bottom element in D7.)

RC[[COHS]] = <<07 0, 0>7 /\$<$(1), /\y'iPUSh('rv y)>>
where
ipush(z,y) = if (z(1)q) = 1) then
(L, 21)2) U (1) (2), 00 2(2) U y(2))
elseif (y(1)1) = 1) then
(1, 1) (2), min(yy@) + 1,2))s 2(2) U Y(2))
else <<07 0, 0>7 T (g) U y(2)>
R.Jcar®] = ((0,0,0), \z.icut’(z))
where
icut®(2) = if (s < z(1)2)) or (z(1)3) > 0) then ((0,0,0), 2(3))
else z
R.cdr] = ({(0,0,0), \z.rrest(z))
where
rrest(2) = {(2(1)(1), 2(1)(2) Max[z(1)(3) — 1,0]), 2(2))
R [null] = ((0,0,0),Az.{(0,0,0),err))

Figure 4.7: Improved Abstract Reference Escape Semantic Function
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pointing to a cons cell at the bottom s** spine of a list or that occurred at a position > 1 in
the original list. The improved abstract value of cdr also updates the position information
appropriately. Note that the improved abstract reference escape semantic function R, for
cons, car and cdr provides more precise escape information than the abstract reference
escape semantic function R..

The improved abstract reference escape semantic functions R. and Rpr are defined
identically to R. and Rpr, respectively - except for their value in the basic domain.

Let w and v be values of an expression e of type 7 in the improved abstract reference
escape domain D, and the exact reference escape domain D,, respectively. Let n be the
number of arguments that the type 7 can take before returning a value of primitive type.
We say that the improved abstract reference escape semantic value w is a safe approximation

of the exact reference escape semantic value v iff

( | ] py) E (NAPk(w, 81, ., 86)) 1))

¥ in NAPk(U,tl ,...,tk)

and

(MINy in NAP (0,11t )&p(y)=1 Position of p) > (NAPy(u, s1,..., 5k))(1)(3)

for all £ < n where s; is a safe approximation for ¢; for all « < k.

Theorem 4.3 (Safety) For any expression e, and environments env, and env, such that
Jor all y, eiv,[y] is safe for env,[y], R.[e]erv, is safe (with respect lo reference escape

information) for R.[e]env,.

Proof : We can prove by structural induction on expression e.
L. Base Case:

1. e = ¢: R.[c]enw, = R.[c] and R.[c]env, = R.[c]. For ¢ € {...,-1,0,1,..., true,
false, nil, null }, R.[c] = R.[¢] and thus it clearly holds. For ¢ = cons, it holds
because if ;1 and x4 are safe for y; and y9, respectively, then ipush(:c(l), x3) is also safe for
a list consisting of y; and yy. It holds for ¢ = car®, because if z is safe for y then icut®(z)
is safe for first(y). It holds for ¢ = cdr®, because if z is safe for y then rrest(z) is safe for
second(y).

2. e = x: R[z]env, = env,[z] and R.[z]env, = env.[z]. Since, for all y, env,[y] is
safe for env,[y], it clearly holds.
II. Structural Induction Step: Assume that R.[eenwv, is safe for R.[e]env, for expres-

sions such as eg, e, ez,e3 and e,. (structural induction hypothesis) Then, we show that
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RS

SS IARS

ARS “information content”

Figure 4.8: Relationship among Reference Escape Semantics

R.[e]env, is safe for R.[e]env, for e; + €3, if e; then e; else e3, € = €162, lambda(z).€q
and letrec 1 = €1;...;&, = €,;1in eg. This can be proved in an exactly same way as the

proof of safety of the abstract reference escape semantics. O

Theorem 4.4 (Termination) For any (finite) program pr € Program, ]?pr[[pr]] is com-

putable, i.e. always terminates in finite number of steps.

Proof : Every functional in the improved reference escape domain that is defined via
the abstract improved extended escape semantic functions is composed of the operators
such as the least upper bound operator U, ipush, icut®, and rrest. ipush®, icut® and rrest
are monotonic operators. Since the composition of monotonic functions is also monotonic,

every functional is monotonic. O

Theorem 4.5 (Precision Improvement) The abstract reference escape semantics is equiv-
alent (with respect to their reference escapement information content) to the improved ab-
stract reference escape semantics with p = 0. Thus, the improved abstracl reference escape
semantics with some p > 0 provides more precise escape information than the abstract

reference escape semantics.

Proof : This can be proved in the similar way to the proof of Theorem 2.5. O
The relationship among the standard semantics (SS), the non-standard exact reference
escape semantics (RS), the abstract reference escape semantics (ARS) and the improved

abstract reference escape semantics (IARS) is shown in Figure 4.8.
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Improved Global Reference Escape Test

Given a function f zy z3 ... z, = bodys of arity n, the position (7, j) of an interesting
reference of a parameter, and an improved abstract reference escape semantic environment
efiv, mapping f to an element of D,, the improved global reference escape test function
G_irefescape? which determines whether the reference associated with the 5 occurrence of

the i*" parameter of f could escape f globally is defined as follows:

G_irefescape?(f, i, 7, env, ) =

(Relf' 21 -+ 1o1) -+ Tn o Tpo(m] €80, [ — o2 = vy
where f’ is the auxiliary function for f,
F = Rl feqor,
vi; = ((1,5;,0), W™), /* The j** occurrences of i** parameter is interesting */

s; is the number of spines of the i’* parameter of f (if it is a list type, otherwise s; is 0),

for all k < o(7) and k # 7,

yir = {(0,0,0), W), /* Other occurrences of i*" parameter are not interesting */
forall 1 <m < o(l) and [ # 1,

Yim = ((0,0,0), W) /* Occurrences of other parameters are not interesting */

and 7; is the type of the i*" parameter of f. The result of the global improved reference

escape test function is interpreted as follows:

o If G irefescape?(f,i,7,env,) = 0 then we can conclude that the reference associated
with the j** occurrence of the i** argument does not escape the function call to f in

any possible application of f to n arguments.

o If G_irefescape?( f, i, j,efv,) = 1 then the reference associated with the j** occurrence
of the i*" argument could escape the function call to f in some possible application of

J to n arguments.

Improved Local Reference Escape Test

Given a function f z1 2y ... ¥, = bodys of arity n in a particular function application
fe1 ... ey, the position (7,7) of an interesting reference of a parameter, and an improved

abstract reference escape semantic environment env, mapping f and the free identifiers
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within e; through e, to elements of D,, the improved global reference escape test function
L_irefescape? which determines whether the reference associated with the j** occurrence of

the i*" parameter of f could escape f locally is defined as follows:

L.irefescape?(f,¢,7,€1,...,€,,€00,) =

(Relf' 21 - 1o1) -+ Tn o Tpo(my] €80, [ — o2 = vy

where f’ is the auxiliary function for f,
JZ/ = Re[[f/]]efwra

yij = ((1,i,0), (Re[[ei]]eﬁvr)(Z)>v

s; is the number of spines of the i** parameter of f (if it is a list type, otherwise s; is 0),

for all k < o(7) and k # 7,
yik = ((0,0,0), (Re[es]efiv, ) 2)),

forall 1 <m < o(l) and [ # 1,

Y = ((0,0,0), (Reer]eiv, ) (2))-
The result of the local improved reference escape test function is interpreted as follows:

o If L irefescape?(f,,7,€1,...,€n,env,) = 0 then we can conclude that the reference

associated with the j** occurrence of the i** argument does not escape f locally in

(fer...en).

o If L irefescape?(f,%,j,€1,...,€n,,env,) = 1 then it means that the reference associated

with the j** occurrence of the i*" argument could escape f locally in (fer...en).

4.7 Complexity of Reference Escape Analysis

The abstract interpretation framework for the reference escape analysis that deals with
higher-order functional languages with non-flat domains is very similar to the framework
for strictness analysis for higher-order functional languages with non-flat domains. Both
analyses use a k-element domain where k is fixed and greater than 2 as their basic abstract
domains, respectively. Like any other analysis based on abstract interpretation, the major
complexity of our analysis comes from finding the fixpoints of recursive functions in the

abstract semantic domains. In our analysis, the reference escape testing is performed on
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each reference associated with each occurrence of a parameter of a function separately using
its auxiliary function. However, since the auxiliary function for a function is never recursive
even if the original function is a recursive function, the process of finding a fixpoint is needed
only for an original function, but is never needed for its auxiliary function. Thus, the order
of time complexity of reference escape analysis is the same as that of strictness analysis for

higher-order languages with non-flat domains, which is exponential.
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Chapter 5

Order-of-Demand Analysis

In lazy evaluation, arguments to a function are not evaluated unless and until their values are
demanded, and are evaluated only once upon the first demand. Their values are then saved
to be used for subsequent demands, thus avoiding reevaluation. Exact information about
the strictness of arguments, the order of evaluation among arguments, and the evaluation
status of arguments when demanded is generally unknown at compile-time. If inferred
at compile-time, such information can be useful for a number of optimizations for lazy
evaluation.

In this chapter, we present a method for statically inferring a range of information
including strictness, evaluation-order, and evaluation-status information in a higher-order,
monomorphic, non-strict functional language with lazy evaluation. This method is based
on a compile-time analysis called order-of-demand analysis which provides safe information
about the order in which the values of bound variables are demanded. First, we introduce a
non-standard denotational semantics called before semantics that describes the actual order-
of-demand behavior, but is incomputable at compile-time. A method of approximating the
exact before semantics which is safe with respect to the exact before semantics and is
computable at compile-time is then presented. Based on this abstract before semantics,
we describe algorithms which determine order-of-demand information and the complexity
of the order-of-demand analysis. Finally, extensions of the order-of-demand analysis to
a parallel lazy evaluation model, to an optimized lazy evaluation model using strictness

information, and to non-flat domains are discussed.
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5.1 Order of Demand under Lazy Evaluation

We present a method for detecting at compile-time a range of information including strict-
ness, evaluation-order, and evaluation-status information in a higher-order functional lan-
guage being implemented using lazy evaluation. The range of information can be reformu-

lated in terms of information on order of demand as follows:

o Fuvaluation Status: Given an occurrence z; of a variable z in the body of a function

f, for each possible execution of the body of f

— If there exists another occurrence z; of z such that z; is demanded before z;
(may be several z;’s in different paths), then we know that z must have been

evaluated by the time x; is encountered.

— If there exists no occurrence z; of z such that z; is demanded before z;, then we

know that z must have not been evaluated by the time z; is encountered.

o Parameter Fvaluation Order: Given two parameters z and y of a function f, if for
every occurrence y; of y in the body of f there exists an occurrence z; of z that is

demanded before y;, then we can conclude that z will always be evaluated before y.

o Strictness: Given a parameter z of a function f, and an imaginary variable $ which
is demanded just after the call to f is evaluated, if for each possible (terminating)
execution of the body of f some occurrence z; of z was demanded before $, then f is

strict with respect to x.
Consider, for example, the following function:

f wxyz=1if w=0 then z+x elseif y=0 then z+x

else (z+y) + £ (w-1) x (y-1) =z

We assume that the primitive functions such as +, -, = evaluate their arguments in left-
to-right order. For convenience, we represent each occurrence of a £’s bound variable as a

distinct variable as follows:

= if wi1=0 then z1l+x1l elseif y1=0 then z2+x2
else (z3+y2) + f (w2-1) x3 (y3-1) z4

Our order-of-demand analysis would allow us to determine the following properties of the

function £ at compile time:

99



o Fwaluation Status: When the value of y is demanded via y2 and y3, respectively, y
has already been evaluated. But, when it is demanded via y1, y has not yet been

evaluated at the point.

o Parameler Fvaluation Order: The parameters to £ are evaluated in the order w, z and

X.
o Strictness: f is strict in w, x and =z, but is not strict in y.

The method is based on a compile-time analysis called order-of-demand analysis which
provides safe information about the order in which the values of variables are demanded.
Rather than try to determine the relative order-of-demand between all possible pairs of
occurrences, it turns out to be useful and more efficient to define an order-of-demand rela-
tion between sets of occurrences. We define a relation between two sets of occurrences of

parameters of a function which specifies the order-of-demand property between them.

Definition 5.1 Given two non-empty disjoint sets X and Y of labeled occurrences of vari-
ables of a function and an expression e, we define an order-of-demand relation between X

and Y during evaluation of an expression e (which contain the occurrences) as follows:

e Y < X, pronounced Y before X, if for each occurrence ¢ € X, either there exists
an occurrence y € Y that is demanded before z or x is not demanded during the

evaluation of e.

o If Y < X holds for any possible application of f to n arguments then we say that
Y < X globally. If Y < X holds for a function application of f to some particular n
arguments then we say that Y < X locally.

For example, some properties of < among occurrences of variables in £ given above are:
o {yly3} <{y2},{yt,y2} <{y3},and {y2,y3} A{yl}.
o {wi,w2} <{2z1,2z2,23,z4 } and { z1,22,23,z4 } < { x1,x2,x3 }.

o {wi, w2} < {9}, {x1,x2,x3} <{$},{21,22,23,24} < {95}, and { y1,y2,y3
} £{ 9 } where § denotes an occurrence of an imaginary variable that is demanded

after (f w x y z) is evaluated.

The order-of-demand analysis described here answers the following question: Given a
function and two sets X and Y of occurrences of the function’s bound variables, which

of the following relations holds, if any : ¥ < X or X < Y. We will develop a method
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for a higher-order, monomorphic, non-strict functional language to answer the following

questions at compile-time:

e Given a function, what is the order of demand between the parameters or locally

defined objects within the function, globally?

e Given a function in a particular application, what is the order of demand between the

parameters or locally defined objects locally?

Function Transformation

The first step in the order-of-demand analysis is to differentiate between the (textual)
occurrences of each bound variable in a function definition. Although this seems strange
at first, it quickly becomes apparent that each occurrence of a variable denotes a different
instance in which the value of the variable could be demanded. Roughly speaking, the
order-of-demand analysis that we describe can determine the relative order in which the
values of various occurrences of a variable, or several variables, are demanded. In order to
make each occurrence of a bound variable distinct, we introduce an auxiliary function f’ for
each function f z; ...z, = body; based on the same transformation described in Chapter 4.

For example, the auxiliary function £’ of £ given above is defined as follows:

2 wl w2 x1 x2 x3 y1 y2 y3 z1 z2 z3 z4
= if w1=0 then zl+x1l elseif y1=0 then z2+x2
else (z3+y2) + f (w2-1) x3 (y3-1) z4

5.2 Before Analysis

In this section, we present an order-of-demand analysis called before analysis which provides
safe compile-time information about before demand based on an abstract interpretation
technique. We assume that the underlying evaluation model for the higher-order non-strict
functional language is sequential lazy evaluation. That is, the evaluation of arguments of
strict primitive functions are predefined in a sequential order (either left-to-right or right-
to-left) at compile-time and no optimization using strictness information is applied. The
cases in which the underlying evaluation model is a parallel lazy evaluation model where
arguments of strict primitive functions may be evaluated in parallel, and an optimized
lazy evaluation using strictness information in which all strict arguments of a function are
evaluated at the time of a call to the function either sequentially or in parallel will be

discussed in section 5.5.
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5.2.1 Exact Before Semantics

We introduce an exact, but incomputable, non-standard denotational semantics called be-
fore semantics, which exactly describes the actual < relation between any two occurrences
of a parameter of a function in a program. Since the exact before relation during a pro-
gram’s execution depends on the standard values themselves (e.g. the standard value of the
predicate part of a conditional will determines which alternative will be taken), any exact
before semantics needs to contain the standard meanings of expressions as well as before
information.

Two sets of occurrences of parameters of a function will be analyzed separately to
determine the function’s before behavior. We say that two particular sets of occurrences of
parameters of a function interesting sets if we are trying to determine the before relation
between them. Thus, our before semantics is defined in terms of two interesting sets X
and Y of occurrences of variables inside a function. The exact before semantics determines,
given an expression e and two interesting sets X and Y of occurrences of variables that are

contained in e, whether the relation X < Y holds as a result of the evaluation of e.

Representing Before Information

For each expression, its corresponding value in the before semantic domain should indicate
whether the relation Y before X holds during evaluation or not. Under the non-standard
before semantics, we represent the meaning of an expression e, with respect to interesting
sets X and Y, as a pair in the non-standard before semantic domain Dy, called a before

pair,

1. whose first element denotes the before information during evaluation of the expression,

and

2. whose second element denotes the functional behavior of the expression e when it is

applied to another expression.

The first component of the pair is an element of a domain called a basic before domain, By,
which is a three-element domain of 0, 1 and 2 ordered by 0 C 1 C 2 as shown in Figure 5.1.

The elements in B; are interpreted as follows:

e 2 : For each occurrence z € X, z is demanded and no occurrence y € Y is demanded

before  during the evaluation of e.
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o — =k — N

Figure 5.1: The Basic Before Domain

e 1: For each occurrence z € X, neither  nor y € Y is demanded during the evaluation

of e.

e 0 : For each occurrence ¢ € X, either z is demanded and an occurrence y € Y is
demanded before x or z is not demanded and an occurrence y € Y is demanded during

the evaluation of e.

The second component of the pair is a function over D;, whose meaning is the functional
behavior of the expression e when it is applied to another expression. For expressions which

have no higher-order behavior, err, a function that can never be applied, is used.

Before Semantic Domains

The before semantic domain D; and the before environment F; are defined as follows:
D, = ZD{ /* Before semantic domain */
E, = ITd — D; /* Domain of before environments */

The before domain D; is a sum domain consisting of each subdomain for each type. The

before subdomain D] for expressions of type 7 is defined as follows:

Dirt = By x {err} subdomain for integers
Dbl = By x {err} subdomain for booleans
D™ = By x(D{* — D?) subdomain for functions of type 7, — 75

Before Semantic Functions

We introduce the non-standard before semantic functions, 7, T., and 7T),, which give non-

standard before meaning to constants, expressions and programs, respectively.
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T. : Con— Dy /* Before semantic function for constants */
T. : FExzp— FE;— D; [* Before semantic function for expressions */

T, : Program — D;  [* Before semantic function for programs */
We define a binary operator > which reflects the notion of sequential evaluation of two
expressions as follows:

D:Bt%Bt%Bt
def

UV = if(U=1)then V else U
Consider an expression e which consists of two subexpressions e; and e; such that the
evaluation of ey is followed by the evaluation of ey. If the value of e; in B; with respect
to X and Y is 0 then, during the evaluation of e;, any demand to an occurrence z € X is
preceded by a demand to an occurrence y € Y and, furthermore, at least one occurrence
in Y is demanded. Thus, regardless of the value of e; in By, the before information of e is
always 0.

If the value of e; in B; with respect to X and Y is 2, then, during the evaluation of e;,
any demand to an occurrence y € Y is preceded by a demand to an occurrence z € X and,
furthermore, at least one occurrence in X is demanded. Thus, regardless of the value of e,
in By, the before information of e is always 2.

If the value of e; in B; with respect to X and Y is 1, then no occurrence o € X UY
is demanded during evaluation of e;. Therefore, the value of e in B; depends only on, and
is equal to, the value of e; in B;. Thus the > operator reflects precisely the notion of
sequential evaluation of two expressions.

The semantic equations for the before semantic functions are expressed in Figure 5.2.
Oracle is used to resolve the exact behavior of the conditional primitive function, deter-
mining which branch would be evaluated at run-time. Since this must rely on the standard
value of a predicate, the exact before semantics is not computable at compile-time. enwv; is
any exact before environment in F;, and nullenv; is a before environment that maps every

identifier to the least element of its before semantic domain.

5.2.2 Abstract Before Semantics

Since the information that the before semantics provides is uncomputable at compile time,
it is not suitable as a basis for compile-time analysis. For use in a compiler, we need a
suitable before semantics that will guarantee termination and yet still provide a useful and

safe approximation to the exact before semantics. In this section, we present an abstract
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T.Je] = (1,err),ce{...,—1,0,1,...,true,false}

Telc]envy = T.[c]
Tc[z]enve = envi]z]
Tcler + ex]envy = let 1 =T.[er]envy /* same for e; — €5 and €7 = ey */

r = T.[es]envy
in (lq) > ra),err)
T.[if €1 then e, else ez]env; = let p = T.[er]envy
c = T.[ez]env,
a = T.[es]env;
in if Oracle(e;) then (p) B> ¢(1),¢(2))
else (p) D> aqy, a(2))
T.[eres]envy = let  f = T.[ei]env,
ap = f(2)(Te[[€2]]€mJt)
in (f1) > apay, apz))

T.[lambda(z).eJenvy = (1, y.T.[e]enviz — y])
T.[letrec #1 = e1;...;2, = e,;inelenvy = T.[e]env]

where env; = envzy — T [ei]envy, ..., z, — Tc[e,]env]
Torlpr] = Te[pr]nullenv,

Figure 5.2: Before Semantic Functions
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Figure 5.3: The Abstract Basic Before Domain

interpretation of the exact before semantics that allows a safe approximation of the exact

before behavior to be found at compile-time.

Abstract Before Semantic Domains

For each expression, its corresponding value in the abstract before semantic domain indicates
whether the relation of Y before X holds definitely during the evaluation of the expression
(“before”), and whether the relation of Y before X may hold during the evaluation of the
expression (“maybe before”). As an abstraction of By, we define an abstract basic before
domain Bt as a three-element domain of 0, 1 and 2 ordered by 0 C 1 C 2 that is similar to
the basic before domain B; as shown in Figure 5.3.  But, the interpretation of elements

in Bt is defined differently from that of B; as follows:

e 2 : For each occurrence z € X, either  is demanded and an occurrence y € Y might
(or might not) be demanded before z, or z is not demanded and an occurrence y € Y
might (or might not) be demanded during evaluation of e. (In other words, this value

denotes the absence of knowledge about the relative order of demands.)

e 1 : For each occurrence z € X, either x is demanded and an occurrence y € Y is
demanded before z, or & is not demanded and an occurrence y € Y might (or might

not) be demanded during evaluation of e.

e 0 : For each occurrence z € X, either x is demanded and an occurrence y € Y is
demanded before x, or # is not demanded and an occurrence y € Y is demanded

during the evaluation of e.

Note that the value in B; of an expression e consisting only of the variable z is 2 if z € X,
0if 2 €Y, 1if € (X UY). The abstract before semantic domain D, the domain E; of

abstract before environments are defined as follows:
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D, = Zf)[ /* Abstract before semantic domain */

T

E, = Id— Dy /* Domain of abstract before environments */

The before subdomain ﬁ{ for expressions of type 7 is defined as follows:

Dt = B; x {err} abstract subdomain for integers
Dbt = By x {err} abstract subdomain for booleans
D7 = By x (D]* — D?) abstract subdomain for functions of type 7, — 7

Abstract Before Semantic Functions

The abstract before semantic functions are defined as follows:

T. : Con— Dy /* Abstract before semantic function for constants */
T. : Ezp— E,— D, /* Abstract before semantic function for expressions */
T, : Program — D;  [* Abstract before semantic function for programs */

The abstract before semantic functions are given in Figure 5.4. efiv, is any abstract before
environment in Fy, and nullenwv, is an abstract before environment that maps every identifier

to the least element of its abstract before semantic domain.

Safety and Termination

We introduce the notion of safety which relates the exact before semantics to the abstract
before semantics. Let u and v be values of an expression e of type 7 or 7 list in D; and Dy,
respectively. Let n be the number of arguments that the type 7 can take before returning
a value of primitive type. We say that u is a safe approximation (with respect to before

information) of v iff
(NAPy(v, s1, ..., Sk))(l) C (NAPg(u,tq,..., tk))(l)-
for all £ < n where s; is a safe approximation of ¢; for all + < k.

Theorem 5.1 (Safety) For any expression e, and environments envy and env; such that
for all y, envy] is safe for envi[y], Te[[e]]eﬁvt is safe (with respect to before information)
for Tc[e]env,. Thus, the before information obtained by the exact before semantics implies

the before information obtained by the abstract before semantics.

Proof : We can prove by structural induction on expression e.

I. Base Case:
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T[] = (l,err) c€{...,—1,0,1,...,true,false}

T.[c]envy = T.[c]
T.[z]enve = env,[z]
Te[[el + eg]env; = let [= Teﬂel]]efwt /* same for e; — ey and €7 = ey */

in
Te[[eleg]]eﬁvt = let f: Te[[el]]efwt)
ap = f(2)(Te[[€2]]€’ﬁvt)

in (fa) > dpuy, dp))

T.[lambda(z).e]env, = (1, y.T.[e]erv [z — y])

Teﬂletrec Ty = €1;...;%, = €,;inefenv; = Te[[e]]efw;
where eiv!, = envzy — To[er]enn), ..., zn — To[en]env!]

Tolpr] = T.[pr]nulienv,

Figure 5.4: Abstract Before Semantic Functions
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1. e = ¢: T.[c]envy = T.[c] and T.[c]env; = T.[c]. For ¢ € {...,-1,0,1,..., true,
false, nil, null }, 7.[¢] = T.[c] and then it clearly holds.

2. e = a: T.[z]enrv, = env,[z] and T.[z]env, = envy[z]. Since, for all y, env,[y] is safe
for env[y], it clearly holds.

II. Structural Induction Step: Assume that T,[e]env; is safe for T.[e]enwv; for expressions
such as eg, e1, €2, €3 and e,,. (structural induction hypothesis)

1. e = e;+eq: Te[[el +eg]env,= <i(1) [>f'(1),€TT> where [ = Teﬂel]]efwt and 7 = Te[[eg]]efwt.
T.[e1+ez]envi= <l(1) >7(1), err) where [ = T, [e;]env; and r = 1.[ez]env,. By the structural
induction hypothesis, [ and 7 are safe for [ and r, respectively. Thus, it holds. Similarly, it
holds for e; — €3 and e; = e5.

2. e = if e; then ey else es: Te[[if €1 then ey else es]env; = <]3(1) > 6(1),6(2)> L
<ﬁ(1) D> a(y), 6(2)> where p = Te[[el]]efwt, ¢ = Te[[eg]]efwt, and a = Te[[eg]]eﬁvt. T.[if €1 then
ez else ezlenvy is either (py) B ¢(1),¢(z)) or (pa) B> ¢1),¢(z)) Where p = T.[er]enivy, ¢ =
T.[ez]envs, and @ = T.[es]env; depending on the standard semantic value of e;. In any
case, by the structural induction hypothesis and the definition of >, it holds.

3. e = ereg: Te[[eleg]]eﬁvt: <f(1) > aAp(l),a”p(Qﬂ where f = Te[[el]]eﬂvt), and dp =
f(z)(Te[[eg]]eﬁvt). Te[erea]envi= (f1) > apq), ap)) where [ = Te[[el]]efwt), and ap =
f(z)(Te[[eg]]eﬁvt). By the structural induction hypothesis, f and d@p are safe for f and ap,
respectively. Then, by the definition of > and safe, it holds.

4. e = lambda(z).eq: T.[lambda(z).elenv,= (1, \y.T.[e]eivsz — y]). T.[lambda(z).e]
envy= (1, \y.T.[e]env;[z — y]). By the structural induction hypothesis, T.[e]ervi[z — y]
is safe for T.[e]envs[z — y| and thus it holds.

5. e=1letrec &y = e1;...;&, = €,;ineg: T.[letrec 1 = e1;...; &, = €,; in eglefv,=
Te[[eo]]eﬁv; where eniv,= efiv;[z; — Te[[ei]]eﬁv;], and T.[letrec z; = €1;...; T, = €,;in eg]
envi= T.[eg]env, where envi= env;[z; — T.[e;Jenv]]. Here, env’ and env’ are recursively
defined. We prove that env;[y] is safe for env;[y] for all y by fixpoint induction on envi-
ronments env’.

0)

1. Base Case: The first approximation em);( of enw} is efivy[z; — L]. The first approx-

(0)

imation env{5 of env} is env[z; — L]. Thus, for all y, envi[y] is safe for envi[y].

Then, by the structural induction hypothesis, Te[[eo]]efw;. is safe for 1.[eg]env;.

2. Fixpoint Induction Step: Assume that, for some fixed k& > 0, the k** approxima-

tion e'fw;(k) [y] is safe for emj;(k) [y] for all y. (fixpoint induction hypothesis) Then,

(k+1)_ envez; — Te[[ei]]eﬁv;(k)], and em);(kﬂ):

)

The (k 4 1) approximation efw;
(k)]

is safe

env[x; — Te[[ei]]env; . By the structural induction hypothesis, Te[[ei]]eﬁv;(k
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BS

SS ABS “information content”

Figure 5.5: Relationship among Standard and Before semantics

for Te[[ei]]env;(k). Thus, eﬁv;(k+1)[[y]] is safe for envg(k-l_l)[[y]] for all y. Then, by the

structural induction hypothesis, T.[eq]env} is safe for T.[eg]env).
O

Theorem 5.2 (Termination) For any (finite) program pr € Program, Tpr[[pr]] is com-

putable, i.e. it always terminates in finite number of steps.

Proof : All the abstract before semantic domains are finite, and, because the operator >
is monotonic, all functions over before semantics domains are monotonic functions. Thus,
the fixpoints can be computed in a finite number of steps, and the interpretation under the
abstract before semantics is guaranteed to terminate for all programs. O

The relationship among the standard semantics (SS), the non-standard exact before se-

mantics (BS), and the abstract before semantics (ABS) is shown in Figure 5.5.

5.2.3 Testing for Before Demand

Since the abstract before semantics is guaranteed to terminate, the abstract before semantics
can be used as a basis to infer the before information at compile-time. We consider two
kinds of before information for higher-order functions: global and local. The global before
information of a function f defined by f z; ...z, = body; holds true for every possible
application of f to n arguments, and is determined by examining only at the body of f.
The local before information is computed for a particular application of f and depends
upon the number and properties of the arguments in the application. It turns out that the
global before information is equivalent to the local before information in case of first-order

functions.
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Global Before Test

The global before testing of a function f is performed by applying the abstract before
semantic value of f to n arguments in D, that contain the least before information possible.

Thus, any before information obtained from the application arises solely from properties of

/.

Definition 5.2 (Worst-case Before Function) For each type 7 such that m is the num-
ber of arguments that a function of type 7 can take before returning a primitive value, we
define the abstract function W7 that corresponds to the worst-case (i.e. least) before infor-

madtion.

m

%% def /\$1-<1, /\$2-<1, . --7/\$m-<|_|$¢(1),€7’7‘> .. >> m > 1
- 1=1

err m =10

Given a function f defined by f z; ... x, = bodys of type f: 71 — ... — 7, = T, two sets
X and Y of occurrences of the formal parameters of f, and an abstract before semantic
environment env; mapping f to an element in ﬁt, the global analysis function G_before?
determines whether the before relation between X and Y holds globally. It is defined as

follows:

G_before?(f, X, Y, env;) =

Te[[f’ TI1 e Tig1) -+ Tl - - .xno(n)]]e'ﬁvt[f’ — f’,xij — Y]
where

f" is the auxiliary function for f, f/ = Te[[f’]]eﬁvt, o(i) is the number of occur-

rences of z;,
for each z;; € X,
yij = (2, W),
for each z;; € Y,
gij = (0, W),
and for each z;; ¢ X UY,
zi; = (1L, W),

The value that G_before?(f, X, Y, env;) returns is a pair (p, §) interpreted as follows:
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o If p = 0 or 1, then we can conclude that ¥ < X in any possible application of f to n

arguments.

e Otherwise, if p = 2 then an occurrence in Y might or might not be demanded before
the first demand of any occurrence in X. Thus, in this case, we cannot conclude that

Y < X in all possible applications of f.

If the result in the standard semantics of the application of f to n argumentsis a function g,
then G_before? will only give us the order-of-demand information about the bound variable
occurrences inside the body of f during the execution of the application of f. We might also
want to obtain order-of-demand information about the bound variable occurrences inside f
if g were subsequently applied to other arguments. This extra amount of order-of-demand
information is obtained by applying § to the abstract value (1, W79), where 7, is the type
of the argument expected by the result of f.

For example, consider a function defined by

f xyz=1if x = 0 then lambda(w).z+y+w

else lambda(w) .z*xy*w
The auxiliary function £’ derived from f is

£’ x y1 y2 z1 z2 = if x = O then lambda(w).zl+yl+wl
else lambda(w) .z2*y2*w2

G_before?(f,{y1,y2},{z1,22}) would return < 1,§ > indicating that neither y nor z is
demanded during an application of £ to three arguments. If the result of the application of
f is applied to a fourth argument, the information that z would always be demanded before

y can be obtained by applying g to the abstract value (1,err).

Local Before Test

Given a function f defined by f 2y ... z, = bodys of type f: 74 — ... — 7, — 7 in a par-
ticular application fe; ... e, twosets X and Y of occurrences of f’s formal parameters,
and an abstract before semantic environment efiv; mapping f and all free identifiers within
e; and e, to elements of Dt, the local analysis function L_before? determines whether the

before relation between X and Y holds locally in fe; ... e,. It is defined as follows:

L_before?(f,e1,...,€m, X, Y, env,) =

(Teﬂf/ T11 - xlo(l) R 2 S xmo(m)]]eﬁvt[f’ = f’, Tij = .f”])(l)

112



where

f" is the auxiliary function for f, f/ = T.[f'envy, o(i) is the number of occur-

rences of z;,
for each z;; € X,

yij = (2, (T[eilefvs)(2)),

for each z;; €Y,

yij = (0, (T[eilefv,)(2)),

and for each z;; ¢ X UY,

yi; = (1, (Te[[eiﬂeﬁvt)(Q)).
Then,

o If L before?(f,e1,...,em,X,Y,env;) = 0 or 1 then we can conclude that ¥ < X in

the evaluation of (f e1 ...€4).

o Otherwise, if L_before?(f,e1,...,e,,X,Y,env;) = 2 then an occurrence in Y might or
might not be demanded before an occurrence in X. Thus, in this case, we are unable

to conclude that Y < X during the evaluation of (f ey ... ey).

5.3 Using Before Analysis

Our motivation for developing the order-of-demand analysis is to obtain evaluation status
information. As we describe above, evaluation status information can be used to optimize
lazy evaluation by avoiding run-time checks to see if a bound variable is evaluated or not.
Since each occurrence of a bound variable corresponds to a potential demand for the value
of the variable, order-of-demand analysis is used to determine which occurrences correspond
to demands of an already evaluated variable.

As a nice side-effect, order-of-demand analysis can be used to compute (approximately,
of course) the relative evaluation orders of the parameters of a function, and the strictness

properties of a function.
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5.3.1 Computing Status-of-Evaluation Information

Given an occurrence z;; of a bound variable z;, if we can determine that there will always
be some other occurrence z;; of z; demanded before z;;, then no run-time test of the status
of z; is required when z;; is demanded.

We can determine the evaluation status of z;; when it is demanded by computing the

order of demand information between z;; and all other occurrences of z;.

Theorem 5.3 Let [ be a function defined by [ x1...x, = bodys and x1, ..., T, be all

the occurrences of x; in bodys. Then,

1. (Gbefore?(f,{zij}, {Ti1, - Tio(s)} — {24j}, €hve)) 1y = 0 or 1 = whenever z;; is
demanded, x; will have already been evaluated and thus the demand can be satisfied

by retrieving the saved value, for any possible application of f.

2. (G-before?(f, {1, .., i)} — {@ij}, {7ij}, efve) )1y = 0 or 1 = the demand on z;;
the first demand of any occurrence of z;, and thus will always be the occurrence (if

any) causing the evaluation of x;.

Proof : If (G_before?(f,{zi;j},{zi1, -, o)} — {2:5}),€)(1) = 0 or 1 then some occurrence
of z; other than z;; is always demanded before the occurrence z;; is ever demanded first.
This means that whenever z;; is ever demanded, z; has been already evaluated.

If (G_before?(f,{zi1, ..., Tio(i)} — {@ij}, {45}, €fvr)) (1) = 0 or 1 then before any occur-
rence z;; of z;, k # j, is demanded z;; must be demanded. Thus, whenever z;; is ever
demanded it is the first demand of z; which causes actual evaluation of z;, and thus z;; has
an unevaluated status. O

A similar theorem can be stated about the use of the local before analysis to provide

evaluation status information about a particular function application.

5.3.2 Computing Order-of-Evaluation Information

In lazy evaluation, the evaluation of an argument takes place only when some occurrence of
the corresponding parameter is demanded. The order of evaluation between two parameters
of a function can be determined by computing the order of demands between the set of

occurrences of one parameter and the set of occurrences of the other.

Theorem 5.4 Let [ be a function defined by [ z1...x, = bodyy, and lel z;y, ..., T and

Ti1yee., @ be all of the occurrences of x; and x; in bodyy, respectively. Then,

jo(i)
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1. (Gbefore?(f,{zi1, - s Tio(i) }s 1Tj15 - - 5 Tjo(j) }, €R0:)) (1) = 0 or 1 = z; is evaluated

before x; in any possible application of f.

Proof : If (G-before?(f, {1, ..., Tio(s)}> 1T i1, - - s Tjo(j) }» €f01))(1)= 0 or 1 then before any
demand of an occurrence w;;, of z;, there is a demand on an occurrence z;,, of z;. Thus,
z;is always evaluated before ;.

O

A similar theorem can be stated about the use of the local before analysis to provide
evaluation order information for the arguments in a particular function application.

It is important to note that although it is clearly not necessary to distinguish the in-
dividual occurrences of each formal parameter to perform an order-of-evaluation analysis,
there is no added cost in doing so (other than simply labeling the occurrences). Since all
occurrences of a parameter are placed in the same set, they are treated as a unit by our
order-of-demand analysis. The cost is not proportional to the size of the sets of occur-
rences, but rather to the number of times the order-of-demand analysis must be performed

on different sets.

5.3.3 Computing Strictness Information

Strictness information about a function, both in any possible application of the function
and in a particular application of the function, can be determined using order-of-demand
analysis. Like all compile-time strictness analyses, the order-of-demand analysis provides a

safe approximation of the actual strictness properties of a function.

Theorem 5.5 Let [ be a function defined by [ x1...x, = bodyy and lel x;1,. .., 0 be

all occurrences of a single parameter x; in bodys. Then,
1. (Gbefore?(f,{$},{zi1, .-, Tio(a) ), €R0:)) (1) = 0 = [ is slrict in x;, in any possible
application of f.
2. L before?(f,e1,. .., 0, {8}, {@i1, ..., Tio(i)}, €00r) = 0 = [ is strict in x; in the par-

ticular application of f to ey through e,.

Proof : We sketch the proof here for the global strictness analysis. The proof for the local
strictness analysis is similar. (G_before?(f, {3}, {zi1,...,%i()}, €fvs))(1) = 0 implies one of

two things:

1. Atleast one of z;1 ... %;,(;) is demanded during the any application of f to n arguments.

This is obtained from the meaning of 0 in B, that is {z; .. oyt < {5}
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2. Or, because the bottom element of B< is 0, the fixpoint finding iteration determined
that the fixpoint of f’ is a function that always return 0, which would be the case if

f’ (and thus f) is everywhere undefined (non-terminating).

In either case, f is strict with respect to z;. O

5.3.4 Examples
Consider the following lazy functional program:

letrec f w x y z = if (w=0) then z+x elseif (y=0)
then z+x else (z+y) + f (w-1) x (y-1) z
in
We assume that £ is of type int — int — int — int — int. The definition of the before

semantic value f of £ is:

Jwzyz = ((wq) >zq) bagy)U(wagy >(ya) > 2a) > z@)U

(ya) B za) B ya) > (f (way > Lerr)z (yqy > 1,err) z)q))), err)
((way B2y Do) U(way > yay B 2zay B o))l

(way B> yay B2y B (f (way B> Lerr)a (yq) > 1,err) z)q))), err)
Since f is recursively defined, it can be computed in a finite steps using a fixpoint finding

method as follows:

FOwazyz= (0,err)

fDweyz= (W) B zq) B2y U(wa) >ya) > 2a) >za))
(way > yay > 2q) >0),err)

fDweyz= (W) B zq) B o)) U(wa) > ya) > 2a) >za))
(way > yay > 2q) >0),err)

Since f) = f(?) we have that
Jwzyz = (1, w(l, Az (1, y.(1, Az {(wq) > 21) B 2q))U
(w(l) > Y() > 2(1) > x(l)) L (w(l) > Y() > 2(1) > 0), e'r'r>>>>>>

The auxiliary function £’ of £ is defined as follows:

£’ wl w2 x1 x2 x3 y1 y2 y3 z1 22 z3 z4 = if (w1=0) then zl+x1l
elseif (y1=0) then z2+x2
else (z3+y2) + f (w2-1) x3 (y3-1) z4
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Again, notice that £’ is not recursive, but rather calls £. Then, the definition of the before

semantic value f’ of £’ is given as follows (without a fixpoint iteration).

Jhwy wy @y w3 3 Y1 Y2 Y3 21 22 23 24 =
(1, Awq.(1, Adwa. (1, Azq.(1, Aza.(1, Azs.(1, Ayr.(1, Ay2.(1, Ays.
(1, A21.(1, Az (1, Az (1, Azg((wy (1) B 21(1) B @1(1))U
(wia) B yi1) B 221) > 2201)) U (wi) B yir) > 23(1) B> y21) >
(f (waqa) > 1 err) 23 (ysry > 1,err) za)y), err))))NINN)

Evaluation-Status Information
Let envy = [ — f].

(G_before?(£f, {y2},{y1,y3}, eftvy)) 1) =
T.[f? wi w2 x1 x2 x3 y1 y2 y3 z1 z2 z3 z4]]er£v’t)(1) =1
where
67”2’0’15 = eﬁvt[f’ = f/7y2 = <27€”’T>7ylay3 = <07€7“7'>7
wl, w2, x1,x2,x3,21,22,23,24 — <1,€T7‘>]

Thus, we can conclude that when y2 is demanded, either y1 or y3 has already been evaluated
and no run-time check is required. Similarly, we conclude that when y3 is demanded, either

y1 or y2 has already been already evaluated because

(G—before?(f7 {ys}v {yla y2}7 eﬁvt))(l) =
T.[f" wi w2 x1 x2 x3 y1 y2 y3 z1 z2 z3 z4]]e7€v’t)(1) =1
where
env'y = envyf’ — f,y3+— (2,err),y1,y2— (0,err),
wl,w2,x1,x2,x3,21,22,23,24 — (1, err)]

And, because

(G_before?(£,{y2,y3}, {y1}, €ﬁvt))(1) =
T.[£2 wi w2 x1 x2 x3 y1 y2 y3 z1 z2 23 z4]]eTZv’t)(1) =1

where

env'y = envf’ — f,y2,y3 — (2,err),y1 — (0,err),
wl,w2,x1,x2,x3,21,22,23,24 — (1, err)]

we can conclude that y1 is the occurrence of y that is demanded first within £.
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Evaluation-Order Information

(G-before?(£, {z1,22,23,24}, {wl, w2}, efvy))(q) =
T.[£> wi w2 x1 x2 x3 y1 y2 y3 z1 22 z3 z4]]e¢£v’t)(1) =0

where

67”21)’15 = e’fbf)t[f L f/7 wl, w2~ <O7 (37'7">7 z1,z2,23,z4 — <27 67‘7’>,
x1,x2,x3,y1,y2,y3 — (1, err)]
Thus, we can conclude that w is always evaluated before z in f£.

Similarly, we also conclude that z is always evaluated before x because

(G-before?(f, {x1,x2,x3}, {z1,22,23,24}, efvy))q) =
T.[£> wi w2 x1 x2 x3 y1 y2 y3 z1 22 23 z4]]e¢£v’t)(1) =0
where

env'y = env £’ — f',21,22,23,24— (0,err),x1,x2,x3 — (2, err),

y1,y2,y3 — (1, err)]

Hence, we conclude that the parameters to £ are evaluated in the order w, z, x. In addition,
we can conclude that w is evaluated before y, if y is evaluated at all. We cannot conclude

anything, however, about the relative evaluation order between x and y and between z and

y.

Strictness Information

(G-before?(£, {8}, {w1,w2}, enivy))q) =
T.[f’ wi w2 x1 x2 x3 y1 y2 y3 z1 z2 z3 z4]]e¢£v’t)(1) =0

where

env'y = env (£’ — flowl, w2 — (0,err),x1,x2,x3,y1,y2,y3,21,22,23,24 —
(1,erm)]

Then, we conclude that £ is strict in w. Similarly, we conclude that £ is strict in x and z,

because

(G_before?(£, {$}, {x1,x2,x3}, envy))q) =
T.[f’ wi w2 x1 x2 x3 y1 y2 y3 z1 z2 z3 z4]]e¢£v’t)(1) =0

where

118



env'y = env £’ — f,x1,%2,%3 — (0,err),wl,w2,yl,y2,y3,21,22,23,2z4 —

(1,err)]
and
(G_before?(£,{$},{z1,22,23,24}, efivy)) (1) =
T.[f’ wi w2 x1 x2 x3 y1 y2 y3 z1 z2 z3 z4]]eﬁv’t)(1) =0
where

env'y = env[f’ — f',21,22,23,24 — (0,err),wl,w2,x1,x2,x3,y1,y2,y3 —
(1,err)]

However, since

(G_before?(£,{$}, {y1,y2,y3}, enivs)) ) =
T.[f" wi w2 x1 x2 x3 y1 y2 y3 z1 z2 z3 z4]]eTZv’t)(1) =1

where

env'y = env[f? — f,y1,y2,y3 — (0,err),wl, w2 ,x1,x2,x3,21,22,23,2z4 —
(1,err)]

we cannot conclude that £ is strict in y.

5.4 Complexity of Before Analysis

The abstract interpretation framework for order-of-demand analysis is very similar to the
framework for strictness analysis except that a three-element (rather than two-element)
domain is used as the basic abstract semantic domain. Thus, the order of complexity of
order-of-demand analysis is that of strictness analysis which is known to be exponential
in the worst-case. The majority of the complexity of analysis based on the abstract inter-
pretation technique comes from finding the fixpoints of recursive functions in the abstract
semantic domains. Advanced methods for finding fixpoints on finite domains can also be
applied to order-of-demand analysis in order to reduce the average-case complexity. The
complexity of finding fixpoints depends on the size of the abstract semantic domains. It has
been argued that for many function, especially in the higher-order case, finding fixpoints is
intractable unless the sizes of the abstract domains are reduced. Our method has a much

lower complexity than the path model [11], even in the first-order case.
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5.5 Extensions to Other Evaluation Models

So far we have described the order-of-demand analysis for a sequential lazy evaluation model.
In this section, we discuss various extensions to parallel lazy evaluation, to optimized lazy
evaluation using strictness information, and to non-flat domains.

Consider a parallel lazy evaluation model in which arguments of primitive functions may
be evaluated in parallel. The semantic equations of the abstract before semantic function

for strict primitive functions are modified as follows:

Te[[el + eg]env; = let = Aeﬂel]]efwt/* same for ey — ey and e; = ey */
r = Te[[€2ﬂ€’ﬁ/0t
P =(ln) >ra)U(ra) >y
in (p,err)
Consider an optimized lazy evaluation model in which all strict arguments of a user-
defined function are evaluated either sequentially or in parallel before the execution of
the function. We assume that each function definition is annotated to indicate in which

arguments it is strict. The semantic equation of the abstract before semantic function for

AZ1....Ax,.€ is modified as follows:
Teﬂ/\xl. o Axgelenvy, = let ap = (Te[[e]]eﬁ'vt[xi — yi])
in (1, y1.(1,.. . Ayn((1 > s B> ap()), ap(z)) - - )

where

o In sequential (left-to-right) evaluation of strict arguments: s = (y1)1) > ... > (yn)q)

where each z;,1 <17 < n is strict parameter.

o In sequential (right-to-left) evaluation of strict arguments: s = (y,)q) > ... > (y1)(1)

where each z;,1 <17 < n is strict parameter.
o In parallel evaluation of strict arguments: s = |_| (?/z’)(1)
t s.t. z; 1s a strict parameter

A naive way for the before analysis to handle a language with non-flat domains (due to
lists) is that when an object is put in a list we assume that it could be demanded whenever
car or cdr is applied to that list. The abstract before subdomain D, for expressions of type

7 l1st is defined as follows:

15{ st — IA)tT abstract subdomain for lists
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The abstract before semantic function 7., for constants associated with list-type expressions

is defined as follows:

T.[nil] = (1,err)

T.[cons] = (1,Az.(1,Ay.(2,2(9) U ym))))
T.Jear] = (1, z.z)

T.edr] = (1, z.z)

T.[null] = (1,)z.(z (1), €77))

Clearly, more work remains to be done to provide a more precise analysis for languages with

non-flat domains.
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Chapter 6

Polymorphic Invariance

All the semantic analyses presented in the preceding chapters have dealt with a higher-order
functional language with a monomorphic type system in which every expression is rigidly
typed. Most modern functional languages adopt a rich polymorphic type system which is
more flexible.

In this chapter, we present a method, based on the notion of polymorphic invariance ([1],
[3]), for applying the escape analysis, the reference escape analysis, and the order-of-demand
analysis to a polymorphic language using the analysis techniques for a monomorphic lan-
guage. First, we describe the notion of polymorphic invariance of information and analysis
on polymorphic functional languages. The proofs of polymorphic invariance of the escape
analysis, the reference escape analysis, and the order-of-demand analysis are then presented.

Finally, we discussed the approach for analyzing polymorphic functions.

6.1 Issues in Analyzing Polymorphic Functions

Most modern functional programming languages support some polymorphism with a flexible
polymorphic type system. A function is said to be polymorphicif it can be applied uniformly
to arguments of a range of types more than one type. We particularly concentrate on a kind
of polymorphism, called parametric (generic) polymorphism, which most modern functional
languages like ML support. Type expressions are parameterized with type parameters and
all type parameters are universally quantified at the top level.

Fach semantic analysis for monomorphic languages presented in the previous chapters
can be applied to polymorphic languages by performing monomorphic semantic analysis to

each monomorphic instance of a polymorphic function. There are, however, two problems
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connected with this approach ([1], [3]):

e The number of monomorphic instances of a polymorphic function becomes infinite as

soon as we allow structured types or higher-order functions.

e The size of the abstract domain for structured and higher-order types goes so fast

that fixpoint computations become infeasible

Thus, this approach of performing the semantic analysis for a monomorphic language on
each monomorphic instance of a polymorphic function is semantically sound, but is not
satisfactory from a pragmatic point of view. Analysis of higher-order polymorphic functions
is best done by proving a polymorphic invariance result for the analysis and then computing
those non-basic instances of the abstract functions necessary to compute all basic instances

of the abstract functions.

6.2 Polymorphic Invariance

We define the notion of the polymorphic invariance of properties and of analyses for poly-

morphic languages ([1], [3]).

Definition 6.1 (The Polymorphic Invariance of a Property) Let P be a property of
expressions over a polymorphic language. P is said to be polymorphically invariant if €'
satisfies P <= €' satisfies P for all e € Fap, for all €', e” in the set of possible monomorphic

instances of e.

This says that if a property is polymorphically invariant then for any polymorphic expression

e, that property must hold either for all its monomorphic instances or for none.

Definition 6.2 (The Polymorphic Invariance of an Analysis) Let A be an analysis
for detecting some property. A is polymorphically invariant if the application of the analysis

to any two monomorphic instances of a polymorphic function always yields identical results.

This means that if an analysis is polymorphically invariant then a polymorphic function can
be analyzed by considering only one of its monomorphic instances, since the result would

apply to all its monomorphic instances.
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6.3 Polymorphic Invariance Proofs

We think of a polymorphic function as a generic notation for the set of its possible monomor-
phic instances. When we apply the function in an actual computation, the ultimate effect
is that data of a determinate base type is produced, so we can regard each application as
one of the monotype instances. This suggest that sets of monomorphic instances for some
polymorphically typed expression are handled in a semantically natural fashion, and that

some properties should be invariant over such sets.

6.3.1 Escape Analysis

The polymorphic invariance of the escape property of functions implies that whether a
parameter escapes from a function or not is independent of the type of the parameter. Thus,
given a polymorphic function, it will return the same escape result on any two monomorphic
instances of the function. As a consequence of this fact, the escape analysis problem for
polymorphic functions can be reduced to the escape analysis problem for monomorphic
functions. Since a smaller types means fewer elements of that type, and since the efficiency
of escape analysis and similar analyses requiring fixpoint finding is dependent on the number
of elements in the domain, the proof that our escape analysis is polymorphically invariant
is important. By means of this reduction, it should be possible in practice to confine
applications of the escape analysis method to lower-order types.

We prove that our escape analysis is indeed polymorphically invariant, that is, given a
polymorphic function, it will return the identical escape result on any two monomorphic
instances of the function. We first introduce a relation among all possible monomorphic
instances of a polymorphic function which relates them with respect to their escape property.
Given a polymorphic expression e, consider any two of its monomorphic instances €’ and
€' as follows: €’ and €’ are of type 7" and 7", and n’ and n” are the number of arguments
that the types 7/ and 7" can take before returning a primitive value, respectively. Let
u' and u” be the values in the abstract escape domain D, of ¢’ and €”, respectively. We
define a notion of similarity between u’ and u” with respect to the escape property, written

u' ~~ " which relates the escape property of «’ to that of u”. We say that ' ~~ u’ iff

(NAPk(u’, 81, .,Sk))(l) = (NAPk(u”, {1, .. .,tk))(l)

for all k < n, where n is the minimum of »’ and »”, and for all i < k, s; ~~ ;.
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Lemma 6.1 Let f be a polymorphic recursive function defined as f x1 ... x, = e where

e contains free variables vy ...v,,. Let f' and f' be two monomorphic instances of [, typed

as follows:
[v9:07,..,om ol ff i — .= 1, =1
. n . n "o, 1 n n
[v9 10, om0l 1 f i — =T =T

where each o and T is a monotype. For monotyped abstract escape environments env! and

env! that map each v; to an element in D, such that for each v;, env’[v;] ~~ env”[v;],
f/ N f//

where f' = O JAz1. ... Aap.elent! and ' = O Axy. ... Aey.e]env!.

Proof : Let efv! and env! be defined as follows:

eiv,= env! ' > O] f' Jeiw),

env!'= env”[f" — O] f" Jenrv"]
and let f' and f” be defined as follows:

Jr = envi[f1]

J = e
We can prove f’ ~n f” by fixpoint induction on f, i.e. env,.
(I) Base Case of Fixpoint Induction : The first approximation 'O of f1is (0, Ay1-(y1(1), Ay2-
(y1(1) U 92(1) - - - AYn-Lr7) .. ))). The first approximation 'O of f is (0, Ay1-(y1(1), Ay2-
(y1(1) U ¥2(1)5 - - - AYn-Lym) .. ))). Since L ~~ L, it holds.
(IT) Fixpoint Induction Step : Assume that f'(m) ~ f”zm) for some m > 0. (fixpoint
induction hypothesis) Then, we prove that f'(m+1) f”(T;L‘H). This can be proved by
structural induction on expression e. Let efw;(m) and eﬁvg(m) be env![z; — y;, f'— f/(m)]
and env’[z; — yi], [ — f )], respectively.
I. Base Case of Structural Induction:

l.e=c: flmtl) = (0, Ay1-(y1(1), Ay2- (Y1(1) U Y21 - - - Aynéc[[c]]>>>> Similarly,

F D = (0, Ay ), Ava-(wi 1) U 9201)s - - - A¥n-Oclel) .. ). Since O[] = Oc[c],
it holds.

2.e=ux: fl(mH) = <07/\y1'<y1(1)7/\y2'<yl(1) U y2(1ys - - /\ynOe[[Jc]] Eﬁ”;(m)>--->> and
f”(m+1) = (0, )\yl-<?/1(1)7 )\yz-<?/1(1)|—|?/2(1)7 oo MY Oc[2] €ﬁvg(m)> ...))). By the fixpoint

induction hypothesis, in either = z; or x = f, it holds.
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II. Structural Induction Step: Assume that f'(m) ~ f”zm) for e1,e5 and eg. (structural

induction hypothesis)

O

L e=er+e: Since [ = (0, Ay1.(y1 1) Ay2-(y1(1) U 92(1)s - - - Agn(0, 7)) ..)) and

an

it = Ao, Ay1(y1(1), AY2-(Y1(1) U Y2(1)s - - - AYn-(0,€77)) .. ))), it holds. Similarly,

this holds for e; — eg and e; = es.

. e = if ¢; then e; else ey : f ("1 = (0, Ay1{y1(1)s AY2-(y1(1) U Y1) - - - At -(Oclez]

eﬁv;(m)uée[[eg]] efw;(m))) o)) JrmtD) = (0, Ay1-(y1(1), Ay2-(y1(1)LY2(1)5 - - - Ayn-(ée[[ez]]
eiv, U0, [es] eno, ™)) .. ))). By the fixpoint and structural induction hypotheses,

it holds.

- €= €162 fl(mﬂ) = (0, /\y1.<y1(1), /\’y2-<?J1(1)|—|Z/2(1)7 cee /\yn'(éeﬂel]] em’,o(m))@) (Oeﬂez]]

efw'o(m)» ...))),and fm+1) — (0, Ay1(y1 (1), Ay2-(y1(1)UY2(1)5 - - - Ayn.(ée[[el]] efw;’(m))@)
(Oc[ea] env, ™)y .. ))). By the structural induction hypothesis and the definition of
~~, it holds.

. € = lambda(z).e; : fimt1) = (0, Ay1-(y1(1), Ay2-{y1(1) U Y2015 - - - /\yn.<f”, Ay.éeﬂel]]

enwM[z; = i) ). ), and fHD = (0, Ay (m1 0y, A (i U paa)s - - - A (V7
Ay.Oc[en] env, U [z; — y]) V.. ). Since erv (™M[z]) ~~ env.M[z]), V! = V"
Then, by the structural induction hypothesis, it holds.

The above lemma says that all possible monomotype instances of a polymorphic function

are similar with respect to escape property of their arguments and local objects. Based

on this fact, we prove that both the global and local escape analyses are polymorphically

invariant.

Theorem 6.1 (Global Escape Analysis) Let f be a polymorphic function of arity n,

and let ' and " be any two monomorphic instances of f. Assume that env’' and env” are

abstract escape semantic environments that map [ and [ to elements of 150, respectively.

Then, for 1 <i < n,

G_escape?(f',i,env’) = G_escape?(f", 1, env")

Proof : From the definition of the global escape test function,

G_escape?(f',i,env’) = (O.[f 1 ... z,] env'[z; — vil)

where y! = (1, W™) and, for j < n and j # i, Y = <O,WTJ/>. Let f' = env'[f]. Then, by
the definition of (je,
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G_escape?(f',i,ent’) = (NAP,(f', 4}, .. S Un))()-

Similarly,

G_escape?(f",i,env’) = (NAP,(f", 4!, .. SU)))

where [ = env"[f], v = <1,W72‘”> and, for j < n and j # 4, y/ = <O,WTJ”>. By the
definition of the worst-case escape function W, y; N yy for all 1 <k < n. Thus, by the
Lemma 6.1, f/ ~~ f”. Then, by definition of ~~, we have that (NAPn(f’,y{, csYn)))
= (NAP,(/" 91, ¥5)))- Thus, we conclude that

G_escape?(f',i,env’) = G_escape? (f", i, env").
O

Theorem 6.2 (Local Escape Analysis) Let f be a polymorphic function of arity n in
an application f ey ... e,. Let f" and f" be any two monomorphic instances of f, and !
and ¢! be two monomorphic instances of ;. Assume that env’ and env” are abstract escape
semantic environments that map f' and all free identifiers within €}, and f" and all free

identifiers within €! to elements of D,, respectively. Then, for 1 < i< n,

L_escape?(f',i,€l,... el env’) = L_escape? (" i,ef,... el env")

Proof : This can be proved in a similar way to the polymorphic invariance proof of the

global escape analysis. O

6.3.2 Refined Escape Analysis

The polymorphic invariance of the refined escape property of functions implies that the
extent of a parameter which does not escape from the function call is independent of the type
of the parameter. Thus, given a polymorphic function, it will return the same refined escape
result on any two monomorphic instances of the function. The polymorphic invariance of
the refined escape analysis means that given a polymorphic function, it will return the
same refined escape result for any two monomorphic instances of that function. Actually,

the refined escape analysis is polymorphically invariant when it is stated the following way:

Given a polymorphic function, the number of spines of a parameter that does
not escape from the function application is the same for any two monomorphic

instances of the function.

127



From this point of view, we will prove that our refined escape analysis is indeed polymor-
phically invariant. We introduce a relation among all possible monomorphic instances of
a polymorphic function which relates them with respect to their refined escape property
as stated above. Given a polymorphic expression e, consider any two its monomorphic
instances e and e” as follows: € and €” are of type 7/ and 7", and n’ and n” are the
number of arguments that the types 7/ and 7" can take before returning a primitive value,
respectively. Let «' and «” be the values in the abstract refined escape domain ﬁp of ¢
and e, respectively. We define a notion of similarity between u’ and «” with respect to the
refined escape property, written u’ ~~ u”, which relates the refined escape property of u’

to that of u”. We say that o/ ~~ " iff
NAPk(w', 81,y 8)) 1) = NAPg(u” 1y, ..., 1)) 1) = (0,0)

or

NAPn(u’, 81y Sk))(l)(l) = NAPn(u”, t1,.. 4, tk))(l)(l) =1 and
d — NAPn(u’, 815 ey 5k))(1)(2) =d" — NAPn(u”, b1, ., tk))(l)(Q)

forall k < n where n is the minimum of n" and n”, forall j <k, (s;)) = (1,d}) and (¢;)q) =
(1,d7) where d; and d7 is the number of spines of the jth parameter of that n parameters,

forall I # j and I <k, (s1)1) = (t)1) = (0,0), and for all ¢ <k, s; ;.

Lemma 6.2 Let f be a polymorphic recursive function defined as f x1 ... x, = e where

e conlains free variables vy ...v,,. Let ' and f' be two monomorphic instances of f, typed

as follows:
[v1:00,...,0m o 1 f i — ... 1, =1
. n . n "o, n n"
I I o R A 2

!
P

and env, that map each v; to an element in D, such that for each v;, env,[v;] N env, [vi],

where each o and T is a monotype. For monotyped abstract refined escape environments env

f/ L f//
where f! = ]36[[/\331. .o Azy.€e]env), and frr = Pe[[/\xl. Az e]envy).

!/

Proof : Let epr

and efw;’ be defined as follows:

envl,= env,[f' — B f Jenvy],

P
envy= envy [f" — AWK Jenv)]
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and let " and f” be defined as follows:

J' = envl[f']
J" = envll[ 1]

We can prove this by fixpoint induction on f, ie. env,.

(I) Base Case of Fixpoint Induction : The first approximation O of fr ({0, 0), Ay1-(y1 (1), Ay
(Y1) U Y2(1)5 - - - AYn-Lsr) .. ))). The first approximation 7O of f ((0,0), AY1{Y1(1)s AY2-
(y1(1) U 2(1)5 - - - AYn-Lru) .. ))). Since L ~~ L., it holds.

(II) Fixpoint Induction Step : Assume that f'(m) N f”zm) for some m > 0. (fixpoint
induction hypothesis) Then, we prove that f'(m"'l) N f”(”A"“H). This can be proved by
structural induction on expression e. Let eﬁv;(m) and efw;(m) be envy[z; — y;, [ — f'(m)]
and env)[z; — y], [ — f”(m)], respectively.

I. Base Case of Structural Induction:

l.e=c: flm+D) = ((0,0), A\y1-(y1(1), Ay2- (Y11) U Y2(1)s - - - /\yn.f)c[[c]b ...))). Similarly,
£ = (0,0, Ayr. (31 Y1(1)> AY2-{v1 1) U Y2015 - - - Ayn.Boc]) .. ))). Thus, clearly it
holds.

2. e=a: [ = ((0,0), A1 (w1 1), A2-(y1(1) U Y2(1)s - - - Ayn-Pelz] eiv™) .. )) and
fom D = (0, 0), AY1Y11)s AY2-(Y1 (1) U Y2(1)s - - - AYn-Pe[7] eﬁv;(m)> ...))). By the

fixpoint induction hypothesis, in either z = z; or x = f, it holds.

II. Structural Induction Step: Assume that f'(m) N f”zm) for e1,e; and es. (structural

induction hypothesis)

1. e = e;+ey : Since f (m+1) =((0,0), /\?/1-<?/1(1)7 /\y2.<y1(1)|_|y2(1), o AYn((0,0), err)) .. )
and f'(mt1) = ({0, 0), Ay1-(y1(1)s AY2-(y1(1) LU Y2(1)5 - - - AYn-((0,0), err)) .. ))), it holds.

Similarly, this holds for e; — e and €7 = es.

2. e = if €1 then ey else ey : f (M) = (0, 0), Ay1-{y1(1)> Ay2-(v1(1)UY2(1)5 - - - /\yn.(Pe[[eQ]]
eiv,™ U P, [[63]] eiw, ™)) .. )Y and 10D = ((0,0), Agr-(y11), M- (1) U 92(1); -
Ay (P.]es] env ™) U P, [es] env ‘7)) .. ))). By the fixpoint and structural induction
hypotheses, it holds.

3. e = ereg : f (m+1) — ((0,0), /\?/1-<?/1(1)7/\?/2-<?/1(1) U Y2(1)5 - - - /\yn'(Pe[[el]] 6ﬁ“;(m))(2)
(Pulez] env, ™)y . 0)). F/0+) = ((0,0), Agr(y11)s Ay2-(9101) U H2(1)s - - - An-(Le[en]
epr( )) (P [ez] en ”(m))> .)))- By the structural induction hypothesis and the
definition of ~~, it holds.
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4. e = lambda(z).e; : fim+1) — ({0, 0), Ay1-{y1(1)> Ay2-(y1 (1) U Y21 .Ayn.<V’, /\y.Pe[[el]]
eivo "™ [z; %]) ). )), and 10 = (0, > AY1-(y1(1)s AYa- <y1< )U?/z( e AV,
Ay.P.eq] env ™ag — ) )..))). Since em)p( )[[z]]> ~n env ™[], Vo= V7.
Then, by the structural induction hypothesis, it holds.

O

The above lemma says that all possible monomorphic instances of a polymorphic function
are related with respect to refined escape property of their arguments and local objects.
Based on this fact, we prove that both the global and local refined escape analyses are

polymorphically invariant.

Theorem 6.3 (Global Refined Escape Analysis) Let f be a polymorphic function of
arity n, and let f' and [ be any two monomorphic instances of f. Assume that env’ and
env’ are abstract refined escape semantic environments that map f' and f" to elements of

ﬁp, respectively. Then, for 1 <1 < n,
G_rescape?(f',¢,env’) = (0,0) <= G_rescape?(f",¢,env”) = (0,0)
or

G_rescape?(f',i,env’) = (1,k') <= G_rescape?(f",i,env") = (1, k")
such that st — k' = s — k" where st and s are the number of spines of the it

parameler of f' and [", respectively.
Proof : From the definition of the global refined escape test function,
G_rescape?(f,i,ent’) = (P.[f x1 ... z,] env'[z; — i)

where y! = <<1,3§>,W7i'> and, for j < nand j £ 4, ¥y = <<O,O>WTJ,>. Let f' = env'[ f].
Then, by the definition of P., Then,

G_rescape?(f', i, env’) = (NAPL(J', 91, -, 4))a)-
Similarly,
G_rescape?(f",i,env’) = (NAP,(f", 4/, .. SY))a)

where f = env"[f], v/ = ((1,s"), W™} and, for j < n and j # i, Y, = <<O,O>WTJ”>. By
the definition of the worst-case escape function W, y; N yy for all 1 < k < n. Thus, by
the Lemma 6.2, f’ NN f”. Then, by definition of ~~, we have that

NAP,(f,4},...,y.) = NAP, (f",4",....y") = (0,0)

130



or

(NAPL(f" 9, - ul ) yy = (NAPL (/" 0 a2y = 1

and

st — (NAPL(J', 05, ub) )2 = 87 — (NAPL (/" 0 (1))
Thus, we conclude that it holds. O

Theorem 6.4 (Local Refined Escape Analysis) Let f be a polymorphic function of ar-
ity n in an application f e ... e,. Let f' and f" be any two monomorphic instances of f,
and € and €/ be two monomorphic instances of ;. Assume that env’ and env” are abstract
escape semantic environments that map f' and all free identifiers within €., and f" and all

free identifiers within ! to elements of bp, respectively. Then, for 1 <i<mn,

L_rescape?(f',i,€},..., €., env’) = (0,0)

"IN

<= L_rescape?(f",i,€e!,... el env”) = (0,0)

A 1

or

L_rescape?(f',i,€],... e, env’) = (0,0) = (1, k")

"IN

<= L_rescape?(f",i,€},... el env") = (0,0) = (1,k")

Y Tn
such that s. — k' = s’ — k" where s; and s} are the number of spines of €; and

"

€

respectively.

Proof : This can be proved in a similar way to the polymorphic invariance proof of the

global refined escape analysis. O

6.3.3 Reference Escape Analysis

The polymorphic invariance of the reference escape property of functions says that whether
a reference to a heap allocated object escapes a call to a polymorphic function or not is
independent of the type of the object to which the reference is pointing. This means that
given a polymorphic function, reference escape analysis will provide the same reference
escape result on any two monomorphic instances of that function.

We prove that our reference escape analysis is indeed polymorphically invariant. We
introduce a relation among all possible monomorphic instances of a polymorphic function
which relates them with respect to their reference escape property. Given a polymorphic
expression e, consider any two its monomorphic instances e’ and e” as follows: ¢’ and e”

are of type 7" and 7", and n’ and n” are the number of arguments that the types 7’ and 7"
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can take before returning a primitive value, respectively. Let u’ and u” be the values in the
abstract reference escape domain D, of ¢’ and €”, respectively. Let «’ and u” be the values
in the abstract reference escape domain D, of €’ and €”, respectively. We define a notion of
similarity between u’' and u” with respect to reference escape property, written u' ~~ u”,

which relates the reference escape property of ' to that of u”. We say that u’ ~~ u/ iff
(NAPk(u’, Slyeeny Sk))(l)(l) = (NAPk(U//, tl, ey tk))(l)(l)
for all £ < n where n is the minimum of #’ and »n”, and for all i < k, s; ~~ ;.

Lemma 6.3 Let f be a polymorphic recursive function defined as f x1 ... x, = e where

e conlains free variables vy ...v,,. Lel [ and [’ be lwo monomorphic instances of [, typed

as follows:
[v1:0y,...;0m ol 1ff i — ... 1, =7
. " . n [/ n n
R T i R A 2

where each o and T is a monotype. For monotyped abstract reference escape environments
T T
env!. and env! that map each v; to an element in D, and for each v;, envl.[v;] ~~ env/[v;],

respectively,

f/ N~ f//
where f! = ]%e[[Axl. . Azg.e]envl and fr = Re[[/\xl. Az .e]env!.
Proof : Let env! and efiv! be defined as follows:

env.= envl[f — R.[ [ Jenv'],

env”= env”[f" — R.[ f" Jenv”
and let f' and f” be defined as follows:

J' = et [f]
Jr = e "]

We can prove f’ ~ f” by fixpoint induction on f, i.e. env,.

(I) Base Case of Fixpoint Induction : The first approximation O of f'is ({0, 0), Ay1-(y1(1)> Ay
(y11)U%2(1)5 - - - AYn-L71) .. ))). The first approximation 1O of f7is ({0, 0), Ay1-(y1(1)> Ay
(Y1) U Y2(1)s - - AYn-Lrr) .. ). Since L/ ~~ 1.1, it holds.

(L) Fixpoint Induction Step : Assume that f'(m) ~~ f"(m) for some m > 0. (fixpoint
induction hypothesis) Then, we prove that f'(m+1) ~J~ f"(”A”“H). This can be proved by
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structural induction on expression e. Let efw;(m) and efw;/(m) be env![z; — yi, [ — f'(m)]
and env![z; — yi], f' — f”(m)], respectively.
I. Base Case of Structural Induction:

l.e=c: fiimtl) = = {(0,0), Ay1-(y1(1), Ay2- {¥1(1) U Y2(1), - - - /\yn.IA{C[[C]D ...))). Similarly,
£t = (00, 0), Ayy. (1 Y1(1)> AY2-{y11) U Y201)s - - - Ay Ro[c]) .. ). Thus, clearly it
holds.

2. e=a: [0 = ((0,0), Agr-(y1 (1), A2-(100) U U2(1)s - - - M- Re[z] v, (™) .. ) and
fmt) = ((0,0), AY1(Y1(1) AY2-(¥1 1) Y Ya(ays - - - Ayn.Ro[2] env. (™) ))). By the

fixpoint induction hypothesis, in either z = z; or x = f, it holds.

II. Structural Induction Step: Assume that f’ (m) f” ) for ey, ey and e3. (structural

induction hypothesis)

1. e = e;+ez : Since f (m+1) = ((0,0), /\?/1-<?/1(1)7 /\?/2-<?/1(1)|—|?/2(1)7 Ay ((0,0), erm)) )
and f'(mt1) = ({0, 0), Ay1-(y1(1)s AY2-(y1(1) LU Y2(1)5 - - - AYn-((0,0), err)) .. ))), it holds.

Similarly, this holds for e; — e and €7 = es.

2. ¢ = if €1 then ey else ey : f ("H1) = ({0, 0), Ay1-{y1(1)> Ay2-(v1 (1)U Y2(1)5 - - - /\yn.(fie[[e;)]]
env, (™ U Re[es] env,™))..)) and f'0"+1 = ((0,0), Ayr.(ya(1y, Ave-(101) U w21 - -
Ayn.(R.[e2] envo, "L R, [es] env, ™)) .. ))). By the fixpoint and structural induction
hypotheses, it holds.

3. e = eey: fl(mﬂ) = <<0,0>,/\y1.<y1(1),/\y2.<y1(1) U y2(1)s - - /\yn'(Re[[el]] efw;(m))@)
(Relez] env, ™)) o)), F0 D = ((0,0), Mya-(wr 1), A (910) U G215 - - - An-(Relen]
eﬁv:(m))@) (Re[ea] eno, ™)) .. ))). By the structural induction hypothesis and the
definition of ~~, it holds.

4. e = lambda(z).e; : fim+1) = ({0, 0), Ay1-{y1(1)> Ay2-(v1 (1) UY2a ./\yn.<‘7’, /\y.f{e[[el]]
e, z; = y) ) .. )), and f10mHD) = ({0, > y1-{91(1), AYz2- <y1< Ug2(1); - - - Ay (V"
Ay R [eq] eno, Uz — yi]) V.. ). Since env(M[z]) ~~ env, M[z]), V! = V"
Then, by the structural induction hypothesis, it holds.

O

The above lemma says that all possible monomorphic instances of a polymorphic function
are similar with respect to reference escape property of references created within them.
Based on this fact, we prove that both the global and local reference escape analyses are

polymorphically invariant.
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Theorem 6.5 (Global Reference Escape Analysis) Let f be a polymorphic function
of arity n, and let f' and f" be any two monomorphic instances of f. Assume that env' and
env’ are abstract reference escape semantic environments that map f' and f" to elements

of D, respectively. Then, for 1 <i<n and for 1 < j < o(t),
G_refescape?( f', 1, 7, env’) = G_refescape?(f", i, ], env"”).

Proof : Let f! and f! be the auxiliary functions for f’ and f”, respectively. From the

definition of the global reference escape test,
G—refescape?(f,7i7j7 em/) = (fze[[fz; 11 .- - .’Eno(n)]]env,[fz; = f,avxij = yl]])(l)(l)

where f' = R.[flenv’, fI = R.f!Jenv'[f" — f'], Yl = (1,8, W), for all k < o(i) and
k#j,y, = <<O,O>,W7i’>, and for all 1 <m < o(l) and [ # 4, y;,, = <<O,O>,WTI’>. Then, by
the definition of R.,

Gorefescape? (', i, j.env') = (NAP (1. 4h1.- -+ tlo))1)

where m = 3, o(7). Similarly,
G_refescape?(f",i,j,env") = (NAP,.(f. 41, .. '7?/7/1/0(n)))(1)(1)

where f" = fZe[[f”]]em)”, fZ’ = Re[[f;’]]env”[f” — f”], 3/2/; = <<1,5§’>,W7i”>, for all £ < o(%)
and k # 7,y = ((0,0), W7, and for all 1 < m < o(l) and 1 # 4, y' = ((0,0), W7).

By Lemma 6.3, f’ ~eo f” and thus fz ~ f:;’ By the definitions of the worst-case escape
function W, y;, ~ y/; forall 1 <7 < nand 1 < j < o(i). Then, by the definition of e,

NAP,,.( Aéa Y115 - - '7y;w(n))(1) = NAP,,( Z’a Yi1s - - -,@/Zo(n))(l)-
Thus, we conclude that

G_refescape?( f', 1, j, env’) = G_refescape?( f”,1, j, env")
O

Theorem 6.6 (Local Reference Escape Analysis) Let f be a polymorphic function of
arity n in an application f e1 ... e,. Let ' and [" be any two monomorphic instances
of f, and €. and €!' be two monomorphic instances of e;. Assume that env' and env” are
abstract escape semantic environments that map f' and all free identifiers within €., and f"
and all free identifiers within € to elements of ﬁr, respectively. Then, for 1 <1 < n and

for 1< j < o(i),

134



L_refescape?(f’,i,j,€},... €., env’) = L_refescape?(f",i,j,€!,... el env")

Proof : This can be proved in a similar way to the polymorphic invariance proof of the
global reference escape analysis. O

As a consequence of this fact, the reference escape analysis problem for polymorphic
functions can be reduced to the problem for monomorphic functions. The reference escape
analysis algorithm need only be applied to the simplest monomorphic instance of a function.
Smaller types implies fewer elements of that type, and the efficiency of reference escape
analysis and similar analyses requiring fixpoint finding is dependent on the number of

elements in the domain.

6.3.4 Order-of-Demand Analysis

The polymorphic invariance of the order-of-demand property of functions implies that the
order of demand between parameters of a function during the evaluation of the function
is independent of the type of the parameters. Thus, given a polymorphic function, it will
return the same escape result on any two monomorphic instances of the function.

We prove that our before analysis is indeed polymorphically invariant. We introduce a
relation among all possible monomorphic instances of a polymorphic function which relates
them with respect to their order-of-demand property. Given a polymorphic expression e,
consider any two its monomorphic instances e’ and e” as follows: ¢’ and €’ are of type 7/
and 7, and »’ and n' are the number of arguments that the types 7’ and 7" can take
before returning a primitive value, respectively. Let u’ and u” be the values in the abstract
before domain Dy of ¢’ and €”, respectively. We define a notion of similarity between v’ and
u” with respect to order-of-demand property, written w’ s u, which relates the before

property of «’ to that of u”. We say that o’ o ! T
(NAPk(u’, S1y.n . Sk))(l) = (NAPk(u”, t1,..., tk))(l)

for all ¥ < n where n is the minimum of »’ and n”, and for all i < k&, s; NN t;.

Lemma 6.4 Let f be a polymorphic recursive function defined as f x1 ... x, = e where

e contains free variables vy ...v,,. Let ' and f' be two monomorphic instances of f, typed

as follows:
[y :0y,...,0m ol ff i — ... 1, =1
. n . n [/ n n
I T . R A )
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where each o and T is a monotype. For monolyped abstract before environments env, and
oA ¢
envy that map each v; to an element in D; and for each v;, envi[v;] ~~ env][v;], respec-

tively,
]?/ Lo f//
where [ = T.[Axy. .. Az,.elenv] and [ = T.[Axy. .. Az,.elenv?.
Proof : Let efnv) and env}] be defined as follows:
ehvi= envy[[" = T [ [ Jeavi),
envl'= env![f" — T.[ f" Jenv!]
and let f" and f” be defined as follows:

Jr = ennilr]
j = et
We can prove f’ s f” by fixpoint induction on f, i.e. envy.
(I) Base Case of Fixpoint Induction : The first approximation FO of fis (1, Ay1.(1, Aya.
(1,.. Ayn.Ls) ... ))). The first approximation £ of f”1is (1, Ayy.(1, Aya. (1, ... Agn.Lpn) .. ).
Since 1 N L _n, it holds.
(IT) Fixpoint Induction Step : Assume that f'(m) N f”zm) for some m > 0. (fixpoint
induction hypothesis) Then, we prove that f'(mH) N f"(7%+1). This can be proved by
structural induction on expression e. Let efw;(m) and efw:(m) be envj[z; — y;, f'— f'(m)]
and envy'[z; — yi], [ — f”(m)], respectively.
I. Base Case of Structural Induction:
l.e = ¢: f(mt) = (1, Ay1.(1, Ay (1,... /\ynTc[[c]]>>>> Similarly, f'(m+1) =
(1, Ay1.(1, Aya.(1, ... /\yn.Tc[[c]D ..))). Thus, clearly it holds.
2. e=x: [ = (1, Ay (1, Ay (1, .. Ay T[] efw;(m)> ) fIm) =1 A1,
Aya. (1, ... Ay T[] e'ﬁv:(m)> ...))). By the fixpoint induction hypothesis, in either
x = x; or x = f, it holds.
II. Structural Induction Step: Assume that f'(m) ) f”zm) for e1,e; and es. (structural
induction hypothesis)
1. e=ejtey: Letl' = Te[[el]]e'ﬁv;(m) and 1’ = Te[[eg]]eﬁv;(m). Let I" = Te[[el]]eﬁv:(m) and
r' = Te[[@]]eﬁv:(m). Then, f 7D = (1, Ay1.(1, Ayan(1,. .. )\yn.<l£1) > T(l)’ err))...))
and f07t) = (1, Ay (1, Aya.(1, . .. Ayn-(l(1) > 7(1),€r7))..))). By the structural
induction hypothesis and the definition of Ntrv, it holds.
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2. € = if e; then e; else e3 : Let p' = Te[[el]]efw;(m), c = Te[[€2]]6ﬁﬂ;(m), and o' =
Teﬂeg]]eﬁv;(m). Let p" = Te[[el]]eﬁv:(m), ' = Te[[eg]]eﬁv;,(m), and o’ = Te[[eg]]eﬁv;’(m).
Thenll‘f,(m+1) = <17 Ayl<17 A?/2<17 s A?/’m(pzl) > C21)7 CEZ)> I_|<p,(1) > a21)7 a€2)>> s >>
and F"0 ) = (1 Ay (L Agao(L, . Aga(plhy B el el LB, B alhysaly)) <. ).
By the structural induction hypothesis and the definition of Ntrv, it holds.

3. e=ereg: Let f' = Te[[el]]eﬁv;(m)), ap’ = f(Q)(Te[[EQ]]eﬁv;(m)). Let f" = Te[[el]]eﬁv:(m)),
ap" = fo)(T.Lealeo, ™).

Then7 f’(m-l—l) = <17 Ayl<17 A?/2<17 s Ayn<f(/1) > ap21)7apz2)>> s >>>7 and f‘”(m—}-l) =
(1, Ay1.(1, Agau(1, ... /\yn<f(’i) > apz’l), ap2’2)>> ..))). By the structural induction hy-
pothesis and the definition of Ntrv, it holds.

4. e = lambda(z).e; : flim+1) = (1, Ay1.(1, Ay (1, ... Ayn.(1, Ay T.[eq] eﬁv;(m)[:vi —
gil) )., and FHD = (1 Ag (1, Agac(1, - Ay (1, Ay T[] e, e — i)
Yoo eﬁv;(m)[[z]b N efw;/(m)[[z]b, and by structural induction hypothesis, it holds.

O
The above lemma says that all possible monomorphic instances of a polymorphic function
are related with respect to the order-of-demand property of all occurrences of their param-

eters and local objects. Based on this fact, we prove that both the global and local before

analyses are polymorphically invariant.

Theorem 6.7 (Global Before Analysis) Let f be a polymorphic function of arily n,
and let ' and f" be any two monomorphic instances of f. Assume that env' and env”
are abstract before escape semantic environments that map f' and f" to elements of ﬁt,

respectively. Then, for X andY,
G_before?(f', X, Y, env’) = G_before? (", X,Y, env")

Proof : Let f! and f! be the auxiliary functions for f' and f”, respectively. From the
definition of the global before test function,

G_before?(f', X,Y, env') = (T.[f" 211 ... Tpo(n)JEnV'[ f f’a,xij = Y-
Then, by the definition of 7,
G_before?(f', X,Y, env’) = (NAPm(fé, Yiqs- - 'vf‘/:w(n)))(l)

where m = Y2, 0(i), f = T.[f'|en', fI = T.[f']env'[f' — f], for each zi; € X, yl; =
(2, W), for each z;; € Y, Y, = (0, W), and for each z;; ¢ X UY, Y, = (1, W),

Similarly,
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G_before?(f", X, Y, env") = (NAP,,( Z’, yls - '7?/7/1/0(71)))(1)

where f" = T.[f"]env", I = T.[f"]env"[f" — f"], for each z;; € X, yr: = (2, W), for
each z;; € Y, %/; = <0,I/VT:‘”>7 and for each z;; g X UY, yZ’; = <1,W7z‘”>. By Lemma 6.4,
f’ s f” and thus fé s fZ’ By the definition of the worst-case escape function W,

Yi; s y:. Then, by the definition of ~~, we have that
NAP . (f1: 9505 s Yooy 1) = NAPw (S g 9l
Thus, we conclude that
G_before?(f', X, Y, env’) = G_before?(f", X,Y, env")
O

Theorem 6.8 (Local Before Analysis) Let f be a polymorphic function of arity n in
an application f ey ... e,. Let f' and f" be any two monomorphic instances of f, and €.
and € be two monomorphic instances of e;. Assume that env’' and env” are abstract escape
semantic environments that map f' and all free identifiers within €}, and f" and all free

identifiers within €! to elements of Dy, respectively. Then, for X and Y,

L_before?(f', X,Y, €|, ... el env’) = L before?(f", X, Y €, ... el env")

€0 *r TN

Proof : This can be proved in a similar way to the polymorphic invariance proof of the

global before analysis. O

6.4 Analysis of Polymorphic Languages

The type variables appearing in the type of a lambda-bound identifier, called non-generic
type variables, are shared in every occurrence of the identifier in the function body, and
cannot be instantiated to different types in the same expression. However, the type variables
which occur in the type of a letrec-bound identifier, called generic type variables, can be
instantiated to different types in the same expression. Since the letrec-bound identifier is
local to the expression, we know exactly how it is defined and can use this information to
deal with each of its occurrences individually.

In proving the polymorphic invariance of the semantic analysis, we treated a poly-
morphic expression as the set of its possible monomorphic instances. In this section, we
describe the semantic analysis of a higher-order functional language with a polymorphic

type system which allows generic (parametric) polymorphism, and all type variables are
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universally quantified at the top level. Furthermore, quantifiers can not be nested inside
type expression, called shallow types. Occurrences of the same generic letrec-bound iden-
tifier may have different monotyped-instances. This can be resolved by making each of

differently monotyped occurrences a distinct non-generic identifier. We transform each

letrec-expression as follows:

letrec letrec
1 = €1, CL‘%Iel; .’ET(I)Iel;
—
Ty = €p; Tl =en; ... x?(l):en;
in e in €

where m(7) is the number of occurrences of z; with differently monomorphic instances in the
expression e, and ¢’ is derived from e by replacing the j** occurrence of z; with differently
monomorphic instances by xf forall 1 <7< nand0<j<m(e).

As an example, consider the polymorphic function as follows:

f x yz = letrec

len a = if (null a) then 0 else 1 + len (cdr a);

sum b if (null b) then 0 else (car b) + sum (cdr b);
in
if (sum y)*(len y) < (sum (car z))*(len z)

then x else (cdr x)

The types of functions £, len, and sum are

f : VYa. alist — int list — int list list — « list
len : Vp. (0 list — int
sum : V9. g list — int

Two occurrences of the letrec-bound identifier len are instantiated to different types, i.e.

The first occurrence of len : VB, Blist —int [ B = int |

The second occurrence of len : V3. §list — int [ f = int list ]

Thus, we transform the function definition of £ into as follows:

f xy z = letrec

len’ a = if (null a) then 0 else 1 + len’ (cdr a);

len’’ a = if (null a) then O else 1 + len’’ (cdr a);
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sum b = if (null b) then O else (car b) + sum (cdr b);
in
if (sum y)*(len’ y) < (sum (car z))*(len’’ z)

then x else (cdr x)

In order to get some polymorphically invariant information about the polymorphic function
£, we find the simplest monomorphic instance of £ and analyze that function using the
monomorphic analysis. As a simplest monomorphic instance, we let @ = int. Then, the

monotypes of functions £, len’, len’’ and sum are

f : ant list — int list — int list list — int list
len’ 1 int list — int

len’’ : intlist list — int

sum 1 ant list — int

Then, we apply the analysis for monomorphic languages to this transformed functions.
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Chapter 7

Extensions to Non-strict

Languages

So far in the previous chapters we have discussed a set of escape analyses for higher-order
functional languages with sirict semantics. Many modern functional languages, however,
adopt a non-strict semantics and use the lazy evaluation model. These languages are more
powerful than strict languages in expressiveness but requires quite a different kind of im-
plementation model.

In this chapter, we extend the escape analysis and the reference escape analysis for a
strict language to a non-strict language. First, we describe a method, based on a source-to-
source transformation of non-strict programs, to extend the escape analysis and the reference
escape analysis for a strict language to a non-strict language with normal-order evaluation
using the analysis techniques for a strict language. The lazy evaluation model is identical
to the normal-order evaluation model in the standard semantics, but not in an operational
semantics. In lazy evaluation, arguments to a function are not evaluated unless and until
their values are demanded, and are evaluated only once upon the first demand. Their values
are then saved to be used for subsequent demands, thus avoiding reevaluation. Using the
order-of-demand analysis described in Chapter 5, we extend the escape and reference escape
analyses to non-strict functional languages using lazy evaluation. Finally, the extension for
a non-strict language using optimized lazy evaluation based on the strictness information

is discussed.
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7.1 Escapement under Normal-Order Evaluation

Two methods are used for implementing non-strict semantics: either a normal-order (call-
by-name) evaluation or a lazy (call-by-need) evaluation. In a non-strict semantics with
normal order evaluation, all arguments to a function are passed to the function in an
unevaluated form and are only evaluated whenever needed inside the function call. In order

to achieve normal order evaluation, the following two mechanisms are required:

1. A mechanism to delay or suspend the evaluation of expressions when their evaluated
values are not needed immediately;(for example, when expressions are passed to some

non-strict function.)

2. A mechanism to force the evaluation of suspended expressions when their values are

needed; (for example, when they are passed to some strict function.)

On a conventional machine, normal-order evaluation is effected by creating a closure, called
thunk, consisting of some code along with bindings for its free variables, to represent a de-
layed expression. These thunks must generally be allocated in the heap and their evaluation
requires a function call to force the evaluation.

In general, we can simulate a non-strict language using a strict language by the intro-
duction of explicit delays and forces. A way to simulate normal-order evaluation is to insert
some code to delay the evaluation of any expression which will not be immediately needed,
including all arguments passed to user-defined functions, and to insert appropriate code to
force the evaluation of the delayed expression when they are needed. It is possible to repre-
sent delayed expressions by using the same closures which are used for representing function
values. Given an argument expression e, we can use beta-abstraction to translate e into the
expression (Az.e) y for any y provided neither z nor y occur free in e. For convenience, we

define as follows:
o () denotes a void identifier
e [] denotes a dummy expression.

Then we can write this as (A().e) [] without having to worry about naming problem. When-
ever the value of e is required, we have to explicitly force the evaluation of e. To do this, we
have to apply the closure for e to a dummy argument. This forcing is only required to be
done when the value of the expression is actually needed. The delay and force operations

can be implemented by a strict language as follows:
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DELAY exp = lambda(). exp /* create delayed expression */

FORCE delayed_exp = (delayed_exp []) /* evaluation */

Thus, in general, any non-strict language can be simulated by a strict language through a
source-to-source transformation of non-strict programs into their strict counterparts.

Since the operational semantics of a strict language is not equivalent to that of its non-
strict counterpart, the escapement under non-strict semantics with normal-order evaluation
becomes different from the escapement under strict semantics. As an example, consider the

following non-strict (using normal-order evaluation) program:

letrec f x y = x+y;
g a = if (a=0) then (f a) else (f 3);
hcd =g (ctd);

in

Consider the escapement of the parameters ¢ and d from the function h. In a strict language,
during the execution of h’s body, the expression (c+d) will be evaluated before g is applied
to it, and therefore neither c or d escape from h. However, in a non-strict language, during
the execution of h’s body, a closure representing the delayed expression (c+d) will be created
and passed to g. During the execution of g’s body, the closure is passed to £ and thus both
c and d may escape from h within the closure representing the partial application of £.
Consider the escapement of references associated with occurrences of the parameters c
and d from their function h. When h is called, its activation record contains two references,
corresponding to the parameters ¢ and d, to the actual arguments. The actual param-
eters are themselves closures. During the evaluation of the body of h, when (g (c+d))
is evaluated, a closure is created for (c+d). The references corresponding to ¢ and d are
copied into the closure. Then, the reference to this closure is copied into the activation
record for g. During the execution of g’s body, this reference is passed to £ and thus both
references associated with ¢ and d may escape from h within the closure representing the

partial application of f.

Property 7.1 (Non-strict Escape Property) In the normal-order evaluation model,
given an expression ezp, the escape semantic value of exp when its evaluation is delayed,

has the following properties:
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e The first component of the escape semantic value of exp is the least upper bound of
the first components of the escape semantic values of all identifiers in exp, because

when ezp is eventually evaluated, the values of all identifiers in exp will be needed.

e The second component of the escape semantic value of exp is err because the delayed

exp itselfis not a function type and thus it can not be applied directly to any argument.

e The escape semantic value of exp must be retained somehow in order to represent the

escape semantic value when ezp is evaluated.

7.1.1 Program Transformation

Thus, the escape analysis and the reference escape analysis for a non-strict functional lan-
guage can be achieved by first transforming non-strict programs into equivalent strict pro-
grams and then by applying the analyses to the transformed programs. The source-to-source
transformation function N of type Exzp — Powerset(/d) — Exp for non-strict programs is

defined in Figure 7.1.

7.1.2 Using Escape Analysis for Strict Languages

The abstract escape semantic function O, for a dummy expression [] is defined as follows:
Ol = (0,err)

Global Non-strict Escape Test

We describe a global escape test for non-strict functions. Given a non-strict function
fxi 29 ...z, = bodys of arity n, the position 7 of an interesting parameter, and an
abstract escape semantic environment env, mapping a transformed version of f to an ele-

ment of D,, the global non-strict escape test function G_n_escape? determines whether the

it" parameter of the non-strict function f could possibly escape f globally or not. It is

defined as follows:

G_n_escape?(f,1,env,) = (Oe[[f’ Ty ... Ty] envo[a; — yi])(1)
where f’ is a transformed version of f,

g = (1LAOSL W),
for all 7 < n and j # ¢,

Y; = <07 ’\()'<07Wﬂ>>7
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Nie] FId = A().c
N[z] F1d = if (z € FId) then z else (z [])
Nle1 + e2] FId = (N[ei] FId)+ (Nez] FId)

/* same for strict operators like (e; — e3) and (e; = e3) */

N[if e; then ey else es] FId = if (N[ei] FId)
then (N[ez] FId)
else (N[es] £1d)

Nlejes] FId = ife; € { car, cdr }

then /* strict operator */
(N[ei] FId) (N[ez] FId)
else /* non-strict operator */
(N[e1] FId) (A().N[ez] FId)
N[lambda(z).e] F'/d = lambda(z).(N[e] FId)
N[letrec zy = €y;...2, = €y;ine] FId = letrec
1 = Ner] (FIdU {zq,

&, = Nle,] (FIdU{zy,

in

ce e Tn})i

e T )

Nle1] (FIdU {zq,...,z,})

Np[pr] = N[pr]0

Figure 7.1: Non-strict Program Transformation
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and 7; is the type of the i*" parameter of f. Then, from the result of the global non-strict

escape test function, we can conclude as follows:

o If G_n_escape?(f,¢,env,) = 0 then we conclude that in any possible application of a

non-strict f to n arguments, the i** delayed argument does not escape f.

o If G_n_escape?(f,i,env,) = 1 then it means that the it" delayed argument could escape

f in some possible application of a non-strict f to n.

Local Non-strict Escape Test

We describe a local escape test for non-strict functions in a particular context. Given a non-
strict function f @1 3 ... z, = body; of arity n in an application f e; ... e,, the position
¢ of an interesting parameter, and an abstract escape semantic environment efnv, mapping
a transformed version of f and the free identifiers within e; through e, to elements of f)o,

the local non-strict escape test function L_n_escape? determines whether the it parameter

of the non-strict function f could escape f during the evaluation of f e; ... e,. It is defined
as follows:
L—n—escape?(fa 1, €1, .., €n, erﬁ/vo) = (Oe[[f/ T1 ... 2] eivglri yz])(l)

where f’ is the transformed version of f,
yi = (LAO(L (Oc[ei] eitvo)a)),
and for all j < n and j # ¢,
yi = (0,20-(0, (Oc[e;] €v, ) 3)))-
Then, from the result of the local non-strict escape test function, we can conclude the

following:

o If L _n_escape?(f,¢,eq,...,€e,,env,) = 0 then we conclude that the ith delayed argu-

ment does not escape [ locally in the particular application of f to e; through e,.
o If L_n_escape?(f,i,€e1,...,€,,€e00,) = 1 then it means that the ith delayed argument
could escape f locally in the particular application of f to e; through e,.
7.1.3 Using Reference Escape Analysis for Strict Languages

The abstract reference escape semantic function R, for a dummy expression [] is defined

as follows:
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Global Non-strict Reference Escape Test

Given a non-strict function f zy 29 ... z, = bodys of arity n, the position (¢,7) of an in-
teresting occurrence of a parameter, and an abstract reference escape semantic environment
env, mapping the auxiliary function of the transformed version of f to an element of D,

the global non-strict reference escape test function G_n_refescape? determines whether the

reference associated with the j¥* occurrence of the i** parameter of the non-strict function

f could escape f globally. It is defined as follows:

G_n_refescape?( f,1, j, env,) =

(Relf" w1 <. @io) - T - Tuo(y] €00, [ = 7205 = vy

where f” is an auxiliary function for f’, f’ is a transformed function of f,

fr = R.[feqo,

gij = ((1,0), A0)-((1,0), W7)),
for all k < o(7) and k # 7,

yir = ((0,0), A().((0,0), W™)),
forall 1 <m < o(l) and [ # 1,

yim = ((0,0), A0).{(0,0), W™)),

and 7; is the type of the i* parameter of f. Then, from the result of the global non-strict

reference escape test function, we can conclude as follows:

o If G_n_refescape?(f,¢, 7, env,) = 0 then we conclude that in any possible application of
anon-strict function f to n arguments, the reference associated with the j** occurrence

of the i** delayed argument does not escape f.

o If G_n_refescape?(f,i,j,env,) = 1 then it means that in some possible application of a
non-strict function f to n arguments, the reference associated with the j** occurrence

of the " delayed argument could escape f.

Local Non-strict Reference Escape Test

Given a non-strict function f zy 22 ... z, = bodys of arity n in a particular function
application f ey ... e,, the position (¢,7) of an interesting occurrence of a parameter, and

an abstract reference escape semantic environment env, mapping the auxiliary function for
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the transformed version of f and the free identifiers within e; through e, to elements of ﬁr,

the global non-strict reference escape test function L_n_refescape? determines whether the

th

reference associated with the j** occurrence of the i** parameter of the non-strict function

f could escape f in the evaluation of f ey ... €,. It is defined as follows:

L_n_refescape?(f,7,j,€1,...,€,, €00, ) =

(Relf" w1 <. @io) -+ T - Tuo(y] €00, [ = 7,25 = wiiDy)

where f" is an auxiliary function for f/, f' is a transformed function of f,

[ = R[f]env.,

yij = ((1,0), A0-((1,0), (Rc[ei]env, ) 2))),
for all k < o(i) and k # 7,

yir = (0,0, A)-{(0,0), (Re[esleqo, ) 2))),
and for all 1 < m < o(l) and [ # 4,

Yim = {{0,0), A().((0,0), (Rc[eidenv, ) (2)))-

Then, from the result of the local non-strict reference escape test function, we can conclude

the following;:

o If L _n_refescape?(f,%,7,€1,...,€n,env,) = 0 then we conclude that the reference as-

sociated with the j** occurrence of the i'" delayed argument does not escape f in

(fer...en).
o If L_n_refescape?(f,%,7,€1,...,€n,env,) = 1 then it means that the reference associ-
ated with the 5" occurrence of the i"* delayed argument could escape fin (f ey ... €,).
7.1.4 Examples
As an example, consider the following non-strict program:

letrec f x y = x+y;
g a = if (a=0) then (f a) else (f 3);
hcd =g (ctd);

in

where £, g, h:int — inl — int. The transformed functions £’, g’ and h’ for £, g and h,

based on the program transform function N, are defined as follows:
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letrec £’ xy=(x [1) + (y [1);
g’ a=1if ((a [1) = 0) then (£’ lambda().(a [1))
else (£’ lambda().3);
h’ ¢ d = g’ lambda().((c [1) + (d [1));
in
where £, g’, h’ : (x — int) — (* — int) — (¥ — int) and * denotes the type of a void

identifier and a dummy expression.

Non-strict Escape Information

The definitions of the escape semantic values f’, ¢’, and A’ of £7, g’, and h’ are expressed

as follows:
= (0,Az. <£L‘(1 Ay.(0, err)))
9" = (0, 2a.(f(y) (aq@), A().a (0, err)) U (f(y (0,A().(0,err))))
= (0, Aa.(f{3 (a@), A().a (0, err)))
R = {0, Ae(cqy) )\dg ((cy U dy) A()-(0,erm))))

Let efiv, = [£? — [/, g’ — ¢, b’ — 1]
To find the global escape property of the non-strict function h, we apply the non-strict

global escape test function G_n_escape? as follows:

G.n_escape?(h,1,env,) = (O.[h’ c d]]eﬁv’o)(l)
=1

where

env', = efivgc — (1, A().(1, WE—int)=(=int)yy g . (0, X().(0, W (x—int)=(x—int))}]
and

W=t =0=int) = Mg (@), Ay.z 1) U ya), err)).

Then, we can conclude that the first parameter c of the function h could escape h globally.

Similarly,

G.n_escape?(h,2,env,) = (O.[h’ c d]]eﬁv’o)(l)
=1

where

GTZ’UIO — efwo[c — <O7 A()<07 W(*—>znt)—>(*—>znt)>>7 di— <17 A()<17 W(*—>2nt)—>(*—>znt)>>]
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and
W (x—int) = (x—int) — Az (2 (1), Ay 2 (1) U Y1), €77)).

Thus, we can conclude that the second parameter d of the function h could also escape h.

Non-strict Reference Escape Information

The definitions of the reference escape semantic values f', ¢', and b’ of £, g’, and h’ are

expressed as follows:

o= ((0,0), Az.(z (1), Ay.((0,0), err)))

g = (0,00 NSl (any A0 (0,0}, err)U (7l ({0, 00, A0-4(0, 03, err))))
= (00,00, 2Tl (aguy A {0, 0, err))

h' = {{0,0), Ac(c), Ad-g(y ((cay U d(1)), A()-((0,0), err))))

The auxiliary functions £’?, g’’ and h’’ for the transformed functions £’, g’ and h’ are

defined as follows:

£ xy=(&x [+ (G [D;

g’ al a2 = if ((al [1) = 0) then (f’ lambda().(a2 [1))
else (f’ lambda().3);

h’ ¢ d =g’ lambda().((c [1) + (d [1));

Then, the definitions of reference escape semantic values f”, ¢”, and A" of £27, g’’, and

h’’ are expressed as follows:

I 0,00 A {ay, Ay 4(0,0) err)))
9" = U0,0), Aal{al), Aa2(fp) {a2qr), A)-a2(z) (0, 0), err))
R = ((0,0), Ae{eqr), Ad-gly) ((eqy U dgay), A)-4(0,0), err))))
Let efiv, = [£2 — f/,£27 — [ g’ — ¢'.g’> — ¢",h’ — h',h’’> — B"].
To find the global reference escape property of the non-strict function h, we apply the

non-strict global reference escape test function G_n_refescape? as follows:

G_n_refescape?(h, 1,1,env,) = (Re[[h” c d]]eﬁv’r)(l)(l)
= 1

where
erzvlr = env,[c — ((1,0), A().((1,0), I/V(*—>int)—>(*—>mt)>>7

150



Then, we can conclude that the reference associated with the first occurrence of the first

parameter c of the function h could escape h globally. Similarly,
G_n_refescape?(h,2,1,env,) = (}%e[[h’ ’ ¢ d]]eﬁv’r)(l)(l)
=1

where

env!, = eiv,[c — ((0,0), A().((0,0), WE—int)=(x—int)))
d— <<17 0>7 A()<<1, 0>7 W(*_*mt)*(*ﬁmt)»]

Thus, we can conclude that the reference associated with the first occurrence of the second

parameter d of the function h could also escape h.

7.2 Escapement under Lazy Evaluation

The demand-driven evaluation of an expression in a non-strict language is effected by creat-
ing some delayed representation which contains enough information to enable the expression
to be evaluated later when needed. In particular, this requires some mechanism for creating
the delayed expression and some mechanism for forcing its evaluation. A naive imple-
mentation of normal-order reduction would result in an implementation in which actual
parameters were copied as they were bounded to formal parameters in function applica-
tion. Using this strategy, an argument could be evaluated several different times, resulting
in some inefficiency. The lazy evaluation model is an efficient implementation method in
which each argument is computed at most once. In a non-strict semantics using lazy eval-
uation, all arguments to a function are passed to the function in an unevaluated form and
are evaluated only once when first needed inside the function call. Thus, in lazy evaluation,
some other mechanism is needed to avoid the recomputation of a value. In addition, the
representation of the delayed expression must contain the code to be evaluated and the en-
vironment in which to evaluate the code. In order to effect the lazy evaluation, we basically

require the following three mechanisms:

1. A mechanism to delay or suspend the evaluation of expressions when their evaluated
values are not needed immediately;(for example, when expressions are passed to some

non-strict function.)

2. A mechanism to force the evaluation of evaluation-suspended expressions when the
evaluated values of evaluation-suspended expressions are needed; (for example, when

they are passed to some strict function.)
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3. A mechanism to avoid the re-evaluation of suspended expressions when their values

are needed and their evaluations have already been forced.

On a conventional machine, lazy evaluation is effected by creating a run-time structure,
called self-modifying thunk, consisting of some code along with bindings for its free vari-
ables, the status of the evaluation and the value when already evaluated, to represent a
delayed expression. These self-modifying thunks must generally be allocated in the heap
and their evaluation requires a test of the evaluation status, a function call to force the
evaluation, and an update with the evaluated value. Due to the absence of side effects
of functional languages, lazy evaluation is equivalent to normal-order reduction under the
standard semantics, but it is often more efficient since it requires no recomputation. We
can not implement a lazy evaluation model using a strict pure functional language because
we cannot explicitly overwrite the environment. Lazy evaluation can be implemented only
through the use of side-effects. One way of implementing the lazy evaluation model is as

follows:

DELAY exp = lambda(). exp /* create delayed expression */

FORCE delayed_exp = if already_evaluated?(delayed_exp)
then return V; /* no evaluation */
else V := (delayed_exp []); /* evaluation */
save V in some place;

return V;

The escapement under a non-strict semantics with lazy evaluation is not equivalent to
the escapement under a non-strict semantics with normal-order evaluation, because their
operational semantics are different. Consider the following program as before but with lazy

evaluation:

letrec f x y = x+y;
g a = if (a=0) then (f a) else (f 3);
hcd =g (ctd);

in
Consider the escapement of the parameters ¢ and d from their function h. As described

before, in a non-strict language with normal-order evaluation, a closure representing the
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delayed expression of (c+d) will be created and passed to g during the execution of h’s
body. During the execution of g’s body, this closure is passed to £ and thus both ¢ and d
may escape from h within the closure representing the partial application of £. However,
in a non-strict language with lazy evaluation, a closure representing the delayed expression
of (c+d) will be created and passed to g during execution of h’s body. In the execution of
g, the delayed expression of (c+d) is forced to be evaluated during the evaluation of (a=0)
and thus neither ¢ and nor d will escape h.

Consider the escapement of references associated with occurrences of the parameters
c and 4 from their function h. When h is called, its activation record contains two ref-
erences, corresponding to the parameters ¢ and d, to actual parameters which are self-
modifying thunks. During the evaluation of the body of h, when (g (c+d)) is evaluated, a
self-modifying thunk is created for the delayed evaluation of (c+d). The references corre-
sponding to ¢ and d are copied into the self-modifying thunk. Then, the reference to this
self-modifying thunk is copied into the activation record for g. During the execution of
g’s body, this self-modifying thunk is actually evaluated via (a=0) and the result value is
saved in the self-modifying thunk for later demand. When the value of this self-modifying
thunk is demanded in future, the value saved is just returned without further evaluation.
Thus, even if this self-modifying thunk is passed to £ in the partial application to £, both
references associated with ¢ and d, which are contained in the self-modifying thunk, do not

escape from h because they are no longer needed.

Property 7.2 (Lazy Escape Property) In the lazy evaluation model, given an expres-
sion exp, the escape semantic value of exp when its evaluation is delayed, has the following

properties:

e The first component of the escape semantic value of exp is the least upper bound of

1. the least upper bound of the first components of the escape semantic values of

all identifiers in exp that have not yet been evaluated.

2. the least upper bound of the first components of the escape semantic values
of all identifiers in exp that have been already evaluated, because when exp is

eventually evaluated the values of all identifiers in exp are needed.

e The second component of the escape semantic value of exp is err because exp itself is

not a function type and thus it can not be applied directly to any argument.

e The escape semantic value of exp must be retained somehow in order to represent the

escape semantic value when ezp is evaluated.
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Thus, information about evaluation status is useful for the escape analysis and the reference

escape analysis of a non-strict functional language with lazy evaluation.

7.2.1 Using Status-of-Evaluation Information

Information on the evaluation status of arguments to a function when they are demanded is
useful for describing the escapement behavior under lazy evaluation. Given an occurrence
z; of a variable z in the body of a function f, if there exists another occurrence z; of z
such that z; is demanded before z; in each possible execution of the body of f then we say
that x; has an evaluated status. This means that  must already have been evaluated by
the time z; is encountered. Information about the evaluated status of an occurrence of a
parameter of a function can be inferred at compile-time using the order-of-demand analysis
described in Chapter 5.

For example, consider the following function:
g a = if (a=0) then (f a) else (f 3);

Let the two occurrences of the parameter a in the body of the function g be a’ and a’’
from left-to-right, respectively. The occurrence a’’ has an evaluated status, because the
argument a is evaluated before it is demanded via a’’ due to the demand via the occurrence

a)

7.2.2 Escape Analysis for Lazy Evaluation

The abstract escape semantic domain ﬁo (an abstraction of D,), and the domain EO of

abstract escape environments are defined as follows:

D, = Zi)g /* Abstract escape semantic domain */

T
E, = Id— D, /* Domain of abstract escape environments */
Dint = B, x {err} abstract subdomain for integers
Dbl = B, x {err} abstract subdomain for booleans
Dn—m = B, x (lA)gl — f)g2) abstract subdomain for functions

Dnlist = pn abstract subdomain for lists

The abstract escape semantic functions are as follows:

0. : Con— D, /* Abstract escape semantic function for constants */
O. : Ezp— E,— D, |* Abstract escape semantic function for expressions */
O, : Program — D, /* Abstract escape semantic function for programs */
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O.[ll] (0, err)

O.[] = (0,err), c€4...,-1,0,1,...,true, false}
O[nil™ %] = 1, (The bottom element of f)o)
O.[cons] = (0,Az.(z(1), Ay.z LU y))
O.[car] = (0,\z.z)
O.[cdr] = (0,\z.z)
O [nu11] = (0,Az.(0,err))
O.[c]edrv, = 0.c]
O.[z]env, = env,[z]
O.le1 + e2]env, = (0,err) /* same for e; — ey and e; = ey */
O.[if e; then e, else eslenv, = (Oc[ei]env,)U (Oc[ez]enrv,)
Ocleres]eiv, = (Ocler]env,)(ay (Oclez]env,)
O.[lambda(z).e]eriv, = (V,Ay.Oc[e]enrv,[z — y])

where

V=ou( || (erwlDapu( || (Ol (=) Ievo)n)),

ZEF_Feval ZEFeval
F' = Set of free identifiers in (lambda(z).e), and

Fevel — Set of free identifiers with an evaluated status.

O.[letrec z; = e1;...2, = ey;ineeiv, = O.fe]enr),
where env’, = efiv,[z) — O.fei]env’, ..., z, — O.e,]env’)]
Oplpr] = O.[pr]nulienv,

Figure 7.2: Abstract Escape Semantic Functions for Lazy Evaluation
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The definitions of the abstract escape semantic functions are given in Figure 7.2. Note that
the definition of the abstract escape semantic function O, for lambda expressions of the

form lambda(z).e treats free identifiers differently according to their evaluation status.

Global Lazy Escape Test

We describe a global escape test for lazy functions. Given a lazy function fzy z9 ... 2, =
bodys of arity n, the position ¢ of an interesting parameter, an abstract escape semantic
environment env, mapping a transformed version of f to an element of D,, the global lazy
escape test function G_l_escape? determines whether the i** parameter of the lazy function

f could possibly escape f globally or not. It is defined as follows:
G—I—escape?(fv (» eﬁvo) = (Oe[[f/ T1 .. @] edvofa; yz])(l)

where [’ is a transformed function of f,

Y = <17 /\()'<17Wﬂ>>7

for all 7 < n and j # ¢,

Y; = <07 ’\()'<07Wﬂ>>7

and 7; is the type of the i** parameter of f. Then, from the result of the global lazy escape

test function, we can conclude as follows:

o If G_l escape?(f,i,env,) = 0 then we conclude that in any possible application of a

lazy function f to n arguments, the i*" delayed argument does not escape f.

o If Gl escape?(f,i,efnv,) = 1 then it means that the i*" delayed argument could escape

f in some possible application of a lazy function f to n.

Local Lazy Escape Test

We describe a local escape test for lazy functions in a particular context. Given a lazy
function f xy zo ... z, = bodys of arity n in an application context f e; ... e,, the
position ¢ of an interesting parameter, and an abstract escape semantic environment enwv,
mapping a transformed version of f and the free identifiers within e; through e, to elements
of f)o, the local lazy escape test function L_l_escape? determines whether the i** parameter
of the lazy function f could escape f in the evaluation of f e; ... e,. It is defined as

follows:
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Ll escape?(f,i,€1,...,en,env,) = (Of @1 ... x,] env,[z; — yil) )
where [’ is a transformed function of f,
yi = (1, AL, (Ocle] eiivo)(2)))
and for all j < n and j # 1,
¥ = (0,200, (Ocle;] eivo)2)))-
Then, from the result of the local lazy escape test function, we can conclude the following:

o If Ll escape?(f,i,e1,...,¢e,,e0v,) = 0 then we conclude that the i** delayed argument

does not escape f in the particular application of f to e; through e,.
o If Ll escape?(f,¢,€1,...,€,,€0v,) = 1 then it means that the ith delayed argument
could escape f in the particular application of f to e; through e,.
7.2.3 Reference Escape Analysis for Lazy Evaluation

The abstract reference escape semantic domain i)r and the domain ET of the abstract

reference escape environments are defined as follows:

Zf); /* Abstract reference escape semantic domain */
E, = Id— D, /* Domain of abstract reference escape environments */
Dt = B, x {err} abstract subdomain for integers
Dbt = B, x {err} abstract subdomain for booleans
157?_’72 = B X (DZ1 — f)?) abstract subdomain for functions
15; st — DZ abstract subdomain for lists of typer lest

We now introduce the abstract reference escape semantic functions to give the syntax the

reference escape meaning as follows:

R. : Con— D, /* Abstract reference escape function for constants */
R. : Ezp— E.— D, /* Abstract reference escape function for expressions */
R, : Program — D,  /* Abstract reference escape function for programs */

The semantic equations for the abstract reference escape semantic functions are given in
Figure 7.3. Note that the definition of the abstract reference escape semantic function R.
for lambda expressions of the form lambda(z).e treats free identifiers differently according

to their evaluation status.
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R [[[]]] = <<070>7€TT>
R[] = ((0,0),err), ce{...,—1,0,1,... true,false}
R.[nil" %] = 1, (The bottom element of D,.)
R [[ ons]] = <<07 0>7 Az < (1) Ay.x U y>>
R [car®] = ((0,0), Az.cut®(z))
R [cdr] = ((0,0), Az.z)
R [nul1] = ((0,0), Az.((0,0),err)

R.[c]env, = R.]
R [z]efv, = env,[z]
R.[e1 + ez]env, = ({(0,0),err) /* same for e; — ey and € = ey */
R.[if e, then e, else ezleniv, = (Re[ei]env,)U (Re[ez]env,)
R.[eres]env, = (Re[[el]]efwr)@) (Re[ez]env,)
R.[lambda(z).c]erv, = (V,Ay.Re[e]erv [z — y])

where

V=0u( || (eanlDa)u( || OGNl w)

ZGF_Feval ZeFeval

F' = Set of free identifiers in (lambda(z).e), and

Fevel = Set of free identifiers with an evaluated status.
R.[letrec z; = e1;...2, = e,;inefenv, = R.[e]env’

where env!, = efv,[z; — Rc[ei]env), ..., z, — R.[e,]env]]
Ry [pr] = Re[pr]nulienv,

Figure 7.3: Abstract Reference Escape Semantic Functions for Lazy Evaluation
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Global Lazy Reference Escape Test

Given alazy function f 1 23 ... z, = bodyy of arity n, the position (¢, 7) of an interesting
occurrence of a parameter, and an abstract reference escape semantic environment env,
mapping an auxiliary function for a transformed version of f to element of D,, the global lazy

reference escape test function G_l refescape? determines whether the reference associated

with the j** occurrence of the i*" parameter of the lazy function f could escape f globally

It is defined as follows:

G_I_refescape?( f,1, j, env,) =

(R[S 21 oo 1001) - Tn o Zo(y] €00 [ = [ w05 = i) (1))

where f” is an auxiliary function for f’, f’ is a transformed function of f,

J" = Re[[]eiv,,

gij = ((1,0), A0)-((1,0), W7)),
for all k < o(7) and k # 7,

yir = ((0,0), A().((0,0), W™)),
and for all 1 < m < o(l) and [ # 1,

yim = ((0,0), A0).{(0,0), W™)),

and 7; is the type of the i** parameter of f. Then, from the result of the global lazy reference

escape test function, we can conclude the following:

o If G_l_refescape?(f, 1,7, env,) = 0 then we can conclude that in any possible application
of a lazy function f to n arguments, the reference associated with the j** occurrence

of the i** delayed argument does not escape the function f.

o If G_Irefescape?(f,i,j,env,) = 1 then it means that in some possible application of
a lazy function f to n arguments, the reference associated with the j* occurrence of

the it delayed argument could escape the function f.

Local Lazy Reference Escape Test

Given a lazy function f 2y #2 ... z, = body; of arity n in an application fe; ... e,, the
position (i, j) of an interesting occurrence of a parameter, and an abstract reference escape

semantic environment efiv, mapping an auxiliary function for a transformed version of f
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and the free identifiers within e; through e, to elements of ﬁr, the global lazy reference
escape test function L_|_refescape? determines whether the reference associated with the ;"
occurrence of the i*" parameter of the lazy function f could escape f in the evaluation of

fer ... e, It is defined as follows:

Ll refescape?(f,%,7,€1,...,€n, €00,) =

(R[S 21 oo 10(1) - Tn o To(y] €00 [ = [ 25— i) (1) 1)
where f” is an auxiliary function for f’, f’ is a transformed function of f,
J" = Re[[]eivv,,
yii = ({1,0), A0{(1,0), (Re[eileivvr ) 2))),
for all k < o(7) and k # 7,
yir = ((0,0), A().((0,0), (Rc[eileirv, ) (2))),
and for all 1 < m < o(l) and [ # 1,

Yim = <<07 0>7 ’\()'<<07 0>7 (Reﬂel]]efwr)@)»'

Then, from the result of the local lazy reference escape test function, we can conclude the

following:

o If L | refescape?(f,1,j,€1,...,€n,€nv,) = 0 then we conclude that the reference as-

sociated with the j** occurrence of the i'" delayed argument does not escape f in

(fer...en).

o If L I refescape?(f,i,7,€1,...,€n,€env,) = 1then it means that the reference associated

with the j** occurrence of the i*" delayed argument could escape fin (fe; ... €,).
7.2.4 Examples

As an example, consider the following non-strict (with lazy evaluation) program:

letrec f x y = x+y;
g a = if (a=0) then (f a) else (f 3);
hcd =g (ctd);

in
where £, g, h:int — inl — int. The transformed functions £°, g’ and h’ for £, g and h,

based on the program transformation function N, are defined as follows:
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letrec £’ xy=(x [1) + (y [1);
g’ a=1if ((a [1) = 0) then (£’ lambda().(a [1))
else (f’ lambda().3);
h’ ¢ d = g’ lambda().((c [1) + (d [1));
in
where £, g’, h’ : (x — int) — (¥ — int) — (* — int) and * denotes the type of a
void identifier and a dummy expression. Note that the occurrence of g’s parameter a in the

expression (£’ lambda().(a [])) has an evaluated status.

Lazy Escape Information

The definitions of the abstract lazy escape semantic values f’, ¢, and A’ of £7, g’, and h’

are expressed as follows:

o= (0, z. <$(1 Ay.(0, err)))

¢ = {0 2a(fly (0,700 (0, err) U (1) (0,20-0,err})))
= (0, Aa. (f’2 (0,A().a (0,err)))

B = {0, Ac. (c , Ad. g( 2) <(C(1) L d(l)), A().(0,err))))

Let efiv, = [£? — f',g’ — ¢, b’ — 1.
To find the global escape property of the lazy function h, we apply the lazy global escape

test function G_|_escape? as follows:

G_l_escape?(h,1,efiv,) = (O,[h’ c d]]erlv’o)(l)
=0

where

67”21)/0 _ efwo[c s <1’ /\()‘<07W(*—>int)—>(*—>mt)>>’d e <0’ /\()'<O’W(*—>int)—>(*—>int)>>]’

W e—int)=(e—int) — Az (7 (1), Ay.z (1) U Y1), €T7)).
Similarly,

G_l_escape?(h,2,efiv,) = (O,[h’ c d]]erlv’o)(l)
=0

where

€7€’l)/0 — €TAL’UO[C — <07 A()<07 W(*—>2nt)—>(*—>znt)>>7 di— <17 A()<O, W(*—>2nt)—>(*—>znt)>>]’
W (e—vint)— (x—int) — Az (2 1), Ay 2 (1) U Yy, €77)).

161



Thus, we can conclude that neither the first parameter ¢ nor the second parameter d of the
function h escapes h.
Lazy Reference Escape Information

The definitions of reference escape semantic values f’, ¢’, and h’' of £?, g’, and h’ are

expressed as follows:

I = {(0,0),A2-(2 (1), Ay-{(0,0), err)))

9" = ({0,0), Aa.(fiz) {{0,0), A().a ({0, 0), err)) U (£ (0,0),A().{(0,0), err))))
= ((0,0), Aa-(f(y) {e(1), A)-a ({0, 0), err)))

h' = {{0,0), Ac(c), Ad-g(y ((cay U d(1)), A()-((0,0), err))))

The auxiliary functions £?°, g’ and h’’ for the transformed functions £’, g’ and h’ are

defined as follows:

£ xy=(x [+ G [D;

g’ al a2 = if ((al [1) = 0) then (f’ lambda().(a2 [1))
else (f’ lambda().3);

h’ ¢ d =g’ lambda().((c [1) + (d [1));

Then, the definitions of reference escape semantic values f”, ¢”, and h"” of £°, g’’, and

h’’ are expressed as follows:

"= ((0,0), Az (z 1), Ay-((0,0), err)))
9" = ({(0,0), Aal(al(), Aa2.(f{y) (a2(1), A().a2(z) ((0,0), err)))
R = {(0,0), Ae{eqwy, Ad-gly ((e(y U da)), AO-((0,0), err))))
Let efiv, = [£ = [', £ = [", g’ — ¢, 8" = g", 0> — B, 0> = b,
To find the global reference escape property of the non-strict function h, we apply the

non-strict global reference escape test function G_I refescape? as follows:

G_l_refescape?(h, 1,1,eftv,) = (R[h’’ c d]]eﬁv’T)(l)(l)
= 0

where

env', = env,[c— ((1,0), ,\(),<<17O>7W(**im)*(**int)»’
d = ((0,0), A()-{{0,0), W{==int)=(x=int)))]

Similarly,
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G_l refescape?(h,2,1,env,) = (R.J[h’’ c d]]eﬁv’T)(l)(l)
=0

where

env', = efw,]c — ((0,0), A().((0,0), W—int)=(x—int)))
d— <<17 0>7 /\()<<1, 0>7 W(**mlf)ﬁ(*ﬁmt)»]

Thus, we can conclude that neither the reference associated with the first occurrence of the
first parameter ¢ of the function nor the reference associated with the first occurrence of

the second parameter d of the function h escapes h.

7.3 Escapement under Evaluation with Strictness

Strictness information about parameters of a lazy function can be used for improving the
lazy evaluation strategy by directly evaluating strict arguments before they are passed
to the function body. This evaluation strategy can be considered as a combination of
applicative-order evaluation (strict semantics) and lazy evaluation (non-strict semantics).
The escapement property under this evaluation strategy can be effected by transforming
non-strict programs using the strictness information about non-strict functions. We assume
that with individual application nodes in the bodies of functions strictness information is
annotated to indicate strict applications ([66]). The new source-to-source transformation
function M of type EFxzp — Powerset(I/d) — FExp for non-strict programs with strictness

annotations is defined in Figure 7.4.
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Mc] FId = A().c
M[z] FId = if (z € FId) then z else (z [1)
Mler + e2] FId = (M[eq] FId)+ (Meg] F1Id)
/* same for strict operators like (e; — e3) and (e; = ez) */
M]Jif e; then ey else eg] FId = if (M[eq] FId)
then (M[ez] F1d)
else (M[es] F1d)
M[eyes] FId = ife; € { car, cdr } /* strict operator */
then (Mf[e1] FId) (Meq] FId)
elseif (strict_application?) [* strict application */
then (M[e1] FId) (Mleq] F1Id)
else /* non-strict application */
(M[e1] FId) (A().M[eq] FId)
M{[lambda(z).e] #1d = lambda(z).(M[e] F'1d)
M[letrec zy = ey;...2, = €,;ine] FId = letrec
1 = Mer] (FIdU {z1,...,2,});

z, = Mle,] (FIdU {z1,...,2,});

in

Mle1] (FIdU {z1,...,z4})

Mp[pr] = M[pr] 0

Figure 7.4: Non-strict Program Transformation with Strictness Information
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Chapter 8

Storage Management

Optimizations

The escape information that is inferred at compile-time from the semantic analyses which
have been described in preceding chapters, including escape analysis, refined escape anal-
ysis, reference escape analysis, and order-of-demand analysis, allows a variety of storage
management optimizations in functional language implementations.

In this chapter, we propose a variety of optimization techniques, based on statically
inferred escape information, to reduce the storage management overhead in functional lan-
guage implementation, including stack allocation, explicit reclamation, in-place reuse of
garbage cells, reference counting elimination, block allocation/reclamation, and improving

generational garbage collection.

8.1 Stack Allocation

The need for heap allocation of objects, such as arguments and locally defined objects
within a higher-order function, arises because they may outlive a call to that function,
that is, the environment in which they were created. Thus, they cannot be deallocated
when the environment is left and its bindings are deallocated. For example, when a partial
application or explicit lambda expression is evaluated to produce a closure, the storage must
be allocated and the values must be moved into the closure. Generally, closures (the code
pointer and environment) need to be stored in the heap at run-time and reclaimed by some
garbage collection process.

On most current systems, the stack allocation and deallocation is usually more efficient
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both in space and in time than the heap allocation and garbage-collected reclamation, al-
though the overhead of a garbage collection can be quite small with a sufficiently large
amount of physical memory and a sophisticated garbage collection strategy [5]. The moti-
vation is to avoid allocation of objects in the heap and instead to allocate them in the stack.
Objects that would otherwise be allocated in the heap and then reclaimed using garbage
collection are allocated in stack-like storage and cheaply reclaimed without invoking garbage
collection. Optimizations that convert heap allocations into stack-like storage allocations
are expected to save significant time. Converting heap allocation to stack allocation may
also permit further optimizations.

Escape information about parameters of a strict function that is inferred through the
(refined) escape analysis can be used for the stack allocation optimization. Consider any

expression of the form of

(fer...e ...ep)

where f is a function with n parameters, and each ¢;, 1 < ¢ < n, is any possible expression.
Let e; be an expression whose evaluation requires to storage allocation. The storage for the
value of e; generally needs to be allocated from a heap, because the lifetime of e; cannot be
predicted. Based on the global escape information about the parameters of f, more efficient

storage allocation can safely be done for e; as follows:

e If the i parameter of f does not escape f globally then allocate the storage for e in
the stack where the activation record for f resides, else allocate the storage for e in

the heap.

o If the value of e; is a constant list and the top j spines of the i*" parameter of f does
not escape [ globally then allocate the storage for cells at the top 7 spines in the
stack where the activation record for f resides, and allocate the storage for cells at

the remaining spines in the heap.

Consider a particular subexpression of

(fer...e ...ey)
where fis a function with n parameters. Similarly, the local escape information of param-
eters of fin (fer ... € ... e,) can be used for more efficient storage allocation for e; as
follows:
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e If the i*" parameter of f does not escape f in the particular application (fer...e ...
then allocate the storage for e; in the stack where the activation record for f resides,

else allocate the storage for e; in the heap.

e If the value of e; is a constant list and the top j spines of the i** parameter of f does
not escape fin (f e; ... €; ... e,) then allocate the storage for cells at the top j
spines in the stack where the activation record for f resides, and allocate the storage

for cells at the remaining spines in the heap.

As an example, consider the program given in Chapter 2 as follows:

letrec g a b = if (a < b) then O else a;

hcd

if (c < d) then d else 0;

map £ 1 = if (null 1) then nil
else cons (f (car 1)) (map f (cdr 1));

in ... (map (g 3) [1,3,5]) ... (map (h 3) [1,3,5])

From the global escape analysis, we know that the first parameter £ of the function map can
never escape map globally. Thus, in any subexpression of (map e; e3) where the evaluation
of e1 requires storage allocation, that storage for e; can safely be allocated in the stack in
which the activation record for map resides. So, the storage for the closures representing (g
3) and (h 3) can be allocated in the stack instead of the heap.

Even though we cannot conclude from the global escape analysis that the second pa-
rameter 1 of the function map does not escape map globally, the local escape analysis tells us
that the second parameter 1 of the function map does not escape map locally in (map (g 3)
[1,3,5]), while the second parameter 1 of the function map does escape map locally in (map
(h 3) [1,3,5]). Thus, the storage for the cons cells of [1,3,5] in (map (g 3) [1,3,5])
can also be allocated in the stack instead of allocating in the heap.

The global refined escape analysis tells us more refined escape information about the
second parameter 1 of map, i.e. the top spine of 1 does not escape map globally. Thus, the
storage for the cons cells of [1,3,5] in (map (h 3) [1,3,5]) can also be allocated in the
stack instead of the heap.

Escape information about the parameters of a non-strict (lazy) function that is inferred

through the escape analysis can be used for the stack allocation optimization. Consider any
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expression of the form of

(fer...e ...ep)

where f is a lazy function with n parameters, and each ¢;, 1 < ¢ < n, is any possible
expression. Fach argument e; to f requires storage allocation for representing its delayed
evaluation such as a thunk in the normal-order evaluation model or a self-modifying thunk
in the lazy evaluation model. Generally, the storage for each e; needs to be allocated in
a heap. Based on the global escape information about the parameters of f, more efficient

storage allocation can safely be performed for the thunk of each e; as follows:

o If the i*" parameter of f does not escape f globally then allocate the storage for the
thunk of e; in the stack where the activation record for f resides, else allocate the

storage for the thunk of e; in the heap.

Similarly, the local escape information about the parameters of fin (fe; ... & ... e,)

can be used for more efficient storage allocation for the thunk of each e; as follows:

o If the ¥ parameter of f does not escape fin (fe; ... € ... e,) then allocate the
storage for the thunk of e; in the stack where the activation record for f resides, else

allocate the storage for the thunk of e; in the heap.
As an example, consider the following lazy program from Chapter 7:

letrec f x y = x+y;
g a = if (a=0) then (f a) else (f 3);
hcd =g (ctd);

in ... h(f12) (f34)

From the global escape analysis, we know that neither the first parameter c nor the second
parameter d of the function h escapes h. Thus, in any subexpression of (h e; e3), the storage
for the thunks for e; and ey can safely be allocated in the stack where the activation record
map resides. So, the self-modifying thunks for both (f 1 2) and (f 3 4)inh (f 1 2) (f

3 4) could be allocated in the stack where the activation record for h resides.

Safety Issue

From a practical point of view, however, there are safety issues in the application of storage
allocation optimization, i.e. unrestricted application of the stack allocation optimization

may be unsafe in the sense that it can convert programs that run well into programs that
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fail (due to stack overflow). The safety condition is that the stack allocation optimization

should not convert a program that runs robustly into one that does not ([20], [21]).

8.2 Explicit Reclamation

When heap-allocated objects are no longer needed, they can often be reclaimed into a free
storage list explicitly by the program without invoking the garbage collection. This is done
by identifying at compile time where run-time storage management decisions can be made,
i.e. the places in a program where storage can safely be collected. When we can predict at
compile time when cells will become garbage, we can embed into the executable program
additional operations which immediately link the garbage cells to the available free list.
Thus, we can avoid some of the expensive operations usually used to detect garbage at run

time.

Detecting Sharing using Escape Information

Sharing information about cells can be determined using the escape information.

Theorem 8.1 (Sharing Information) Let f be a function which takes n arguments such
that d; is the number of spines of the ith parameter of f fori=1...n, and let f return a
list with dy spines. If esc; be the number of escaping spines of the ith parameter of f for

i =1...n (statically inferred by escape analysis), then

1. all cells in the top (dy — maz{min{escy,(dy —u1)},...,min{esc,, (d, —uy,)}}) spines
of the result of (f e1...e,) are unshared for arguments ey, ....e, such thal u; is the

number of unshared spines of e;.

2. all cells in the top (dy — maz{escy,...,esc,}) spines of the result of (feq...ey), for

any set of arqguments ey, . ...e,, are unshared.

Proof : 1. The number of spines of ¢; that are shared is (d; — u;). The number of
shared spines of e; that could escape f is min{esc;,(d; — u;)}. In the result of (fe1...€,),

the bottom maz{min{esc;,(d; — u;)}} spines will be shared. Thus, all cells in the top

(df — maz{min{escq,(dy — u1)},..., min{escy,(d, — u,)}}) spines of the result are not
shared.
2. Since we consider any set of arguments eq,....e,, and we have no sharing information

of e;, we assume that u; = 0 as the worst-case. Then, min{esc;,(d; — 0)} = esc; because
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esc; < d;. Thus, all cells at top (df — maz{min{escy,...,esc,}}) spines of the result are
not shared. O

As an example, consider the program given in Chapter 3 as follows:

letrec ps x = if (null x) then nil
else letrec y = split (car x) (cdr x) nil nil;
in append (ps (car y))
(cons (car x) (ps (car (cdr y))));

split p x 1 h = if (null x) then (cons 1 (cons h nil))
elseif (car x)<p then
split p (cdr x) (cons (car x) 1) h
else split p (cdr x) 1 (cons (car x) h);

append x y = if (null x) then y
else cons (car x) (append (cdr x) y);

in ps [5,2,7,1,3,4]

The function ps takes a list with one spine as its argument, and returns a list with one spine.
From the global refined escape analysis, we know that no spine of the argument escapes
ps globally. Thus, for any expression (ps €) where e is a list with one spine, we conclude
that the top spine of the result list of (ps €) is not shared. The function split takes four
arguments p, x, 1 and h whose type are int, tnt list, int list and ent lest, respectively,
and returns a list with two spines. From the global refined escape analysis, we know that
none of the first parameter p, all but the top spine of the second parameter x, and all of
the third and fourth parameters 1 and h escape split globally. Thus, we conclude that,
for any subexpression of (split e; ez e3 e4) where each e; is any possible expression, the
top spine of the result list of (split e; e3 e3 e4) is not shared.

We can detect some garbage objects at compile-time using sharing and escape informa-

tion.

Theorem 8.2 Consider an expression (f e1,...,€;,...,e,), where f is a function of arity

n. Then,

1. If e; is a function type and the i*"

parameter of f does not escape f, then the storage
for representing the closure of e; is garbage after the execution of the expression, and

thus can safely be reclaimed after the execution of the expression.
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2. Ife; is a list with top u; unshared spines and the bottom esc; spines of the it parameter
with d; spines escape f, then all cells at the top min{u;,(d; — esc;)} spines of e; are
garbage after the execution of the expression, and thus can safely be reclaimed after

the execution of the expression.

Proof : Since the number of unshared spines of e; is w;, all cells in the top wu; spines of e;
are unshared before the execution of f. Since the bottom esc; spines of e; escape f, the top
(d; — esc;) spines of e; do not escape f. The spines of e; that do not escape f and are not
shared will be inaccessible at the end of execution of f. Thus, the top min{u;, (d; — es¢;)}
spines of e; become garbage during the execution of the body of f and are garbage after
the execution of f. O

Escape information that is inferred from the (refined) escape analysis can be used for

the explicit reclamation optimization. Consider any subexpression of the form of

(fer...eici(gey...el)er1...€)

where f and g are functions with arity n and m, respectively. Let the result of (g €] ...€],)

be a heap-allocated object. Generally, that object is reclaimed by garbage collection. Using

the global escape information about the parameters of f, more efficient storage reclamation

can safely be done for the result of (g €] ...€!.) as follows:

e When the i** parameter of f is a function type : If the i** parameter of f does not

escape [ globally then the subexpression can safely be transformed into
RECLAIM;(fe1...e;-1 (g€ ...€.) €it1...€)
where RECLAIM; reclaims the i** argument of f.

e When the i*" parameter of f is a list type with d; spines : If the bottom esc; spines
of the i*" parameter of f escapes f then the subexpression can safely be transformed

into

RECLAIM!(fey...e;—1 (g€ ...€,) €ir1...€,)
where

s = min{(d; — maz{esc,... escl }),(d; — esc;)},

m

esch, 1 < i < m, is the number of bottom spines of the i** parameter of g that escape

g, and RECLAIM? reclaims all cells in the the top s spines of the i** argument of f.
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As an example, consider the same program as in section 8.1. From the global refined escape
analysis, we know that append returns all of its second argument y, and all but the top
spine of the first argument x. We also know that, for any expression (ps €) where e is a list
with one spine, the top spine of the result of (ps e) is unshared. Thus, the definition of ps

can be transformed into PS as follows:

PS x = if (null x) then nil
else letrec y = split (car x) (cdr x) nil nil;
in RECLAIM<1,1> append (PS (car y))
(cons (car x) (PS (car (cdr y))));

where RECLAIM<1,1> reclaims all cells in the top spine of the first argument of append.
Note that, from the global escape analysis, we know that the top spine of ps’s parameter
does not escape from ps, only some elements do. So, each cell of the top spine of the list

ps [5,2,7,1,3,4] could be allocated in the activation record for ps.

8.3 In-place Reuse

When heap-allocated objects are no longer needed and other objects need to be allocated,
the storage can be reused directly by the program without new allocation and without
invoking garbage collection. The motivation is to replace the allocation of new cells by

direct reuse of previously deallocated garbage cells.

Theorem 8.3 Consider an expression (f e1,...,€;,...,€,), where f is a function with
n parameters. Then, if each e; is a list with its top u; spines unshared, and the bottom
esc; spines of the d; spines of the it" parameter of f escape f then all cells in the top
min{u;, (d; — esc;)} spines of e; are garbage after the execution of the expression, and thus

can safely be reused during the execution of the expression.

Proof : Since the number of unshared spines of e; is wu;, all cells at top u; spines of
e; are unshared before the execution of f. Since the bottom esc; spines of e; escape f,
the top (d; — esc;) spines of e; do not escape f. The spines of e; that do not escape f
and are not shared will be inaccessible at the end of the execution of f. Thus, the top
min{u;, (d; — esc;)} spines of e; become garbage during the execution of the body of f and
are garbage after the execution of f. O

Escape information about parameters of a strict function that is inferred by the (refined)
escape analysis can be used for the in-place reuse optimization. Consider an expression of

the form of
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(fer...e ...e)

where f is a function with n parameters, the i*" parameter of f is a list type with d; spines,
and there occurs some cons in the body of f. Let all cons cells at the top u; spines of the
result of e; be unshared. Generally, each cons appearing in the body of [ allocates a new
cons cell in the heap, and such cons cells are reclaimed by garbage collection. Using the global
escape information of parameters of f, more efficient storage allocation and reclamation can

safely be performed as follows:

o If the bottom esc; spines of the i** parameter of f escapes f globally then the subex-

pression can safely be transformed into
S
(ffer... e ...en)
where
s = min{u;, (d; — esc;)},

and f? is a new version of f which directly reuses cells in the top s spines of the 7"

argument of f for new cells needed in the body of f.
Consider a function [ as follows:

faz1 ...z, = ... (consejey) ...

e If there is no use of the i** parameter z; of f after the evaluation of the subexpression
(cons ey e3) then a new version f? of f which uses the in-place reuse optimization

can be defined as follows:
ffaxy ...z, = ... (DCONS z; € €3) ...

where DCONS is a destructive version of cons defined by

DCONSabe = {p:=a;
car(a) := b;
cdr(a) 1= ¢;
return(p)}.

As an example, consider the partition sort program from the previous section. From the
global refined escape analysis, we know that append returns all of its second argument y,

and all but the top spine of the first argument x. The top spine of the list that ps returns is
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unshared. We also know that, for any expression (ps €) where e is a list with one spine, the
top spine of the result of (ps €) is unshared. Thus, the definition of ps can be transformed

into PS as follows:

PS x = if (null x) then nil
else letrec y = split (car x) (cdr x) nil nil;
in APPEND (PS (car y))
(cons (car x) (PS (car (cdr y))));

where APPEND is a version of append in which cells are directly reused. It is defined by

APPEND x y = if (null x) then y
else DCONS x (car x) (APPEND (cdr x) y);

Furthermore, if we know that the top spine of the argument of ps is unshared, then the

definition of ps can be transformed into PS’ as follows:

PS’ x = if (null x) then nil
else letrec y = split (car x) (cdr x) nil nil;
in APPEND (PS’ (car y))
(DCONS x (car x) (PS’ (car (cdr y))));

8.4 Reference Counting Elimination

Reference counting is a storage reclamation method in which each object contains a count,
called the reference count, of the number of references (pointers) pointing to it. When an
object is first allocated, its reference count is set to one. The reference count is updated
during execution as follows: Each time a new reference to an object is created, the object’s
reference count is incremented by one. Each time a reference to an object is destroyed,
the object’s reference count is decremented by one. When an object’s reference count
becomes zero, it can be reclaimed and the reference count of each object that it points
to is decremented. Though the reference counting strategy has disadvantages, such as
storage fragmentation and the inability to reclaim cyclic structures, its major advantage is
that storage reclamation occurs incremently throughout program execution; storage can be
reclaimed as soon as it has become garbage. It is also especially suitable in multiprocessor
architectures with distributed memory, since reference counting is an inherently real-time

and localized activity.
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The major overheads that are incurred in reference counting schemes are as follows:
e Space overhead for maintaining a reference count in each object.

e Time and code overhead for updating reference counts when references are created or

destroyed.

e Communication overhead for manipulating a remote reference and for synchronizing

the operations on reference counts in distributed memory environments ([57]).

We describe a method for reducing the time, code, and communication overhead of reference
counting in both uniprocessor and multiprocessor environments by compile-time program
analysis. Our approach is based on the observation that such overheads can be reduced by
avoiding unnecessary reference count updates using statically inferred information about
the lifetime of each reference. The lifetime of a reference to an object is the period from
when the reference is created until its last use. Suppose O is an object that is active at
some time l; during execution. Since this object is active, there is at least one reference
pointing to it. If its reference count O,. is n then there are exactly n references pointing to
it. Suppose A is one of those references. Now, suppose that a new reference B to the object
is created. The current reference count of the object is incremented, i.e. O, := O, + 1.
At some later time ¢;, suppose that B is discarded. Then, the current reference count of
the object is decremented, i.e. O, := O, — 1.

If we can determine, at compile-time, that A will still be active at time ¢;, then no
reference count operations are required when B is created or destroyed. Since the reference
count of O always remains greater than or equal to one from time {5 to time ¢;, O will not
to be reclaimed between time {; and time ¢;. Thus, the reference count updating operation
for the reference B can be avoided. This avoidance optimization is safe because any object
which is still active will not be reclaimed.

Reference escape information that is inferred from the reference escape analysis can be
used for the reference counting elimination optimization. Let f be a strict or lazy function

defined as follows:

for ooz = T

where z;; is the jt occurrence of the it" parameter z; in the body of f such that it causes
the creation of a reference to the i** argument of f during the evaluation of an application
of f to n arguments. In classic reference counting scheme, the reference count of the 7"

argument of f needs to be updated when the reference associated with z;; is created and
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destroyed. Based on the global reference escape information of occurrences of the parameters

of f, more efficient reference count updating can safely be done as follows:

o If z;; does not reference-escape f globally then just create and destroy the reference
without reference count updates else create and destroy the reference with reference

count updates

Furthermore, given two references A and B to a heap allocated object, the relative
lifetimes of A and B can be computed by determining if there is a scope from which one
of them escapes but not the other. If so, when the shorter-lived reference is created and
destroyed, no reference count operations are necessary. In some programs, in fact, our
analysis can determine if some reference R to an object outlives all others. Thus, the object
can be reclaimed as soon as R is destroyed. No other reference counting operations are
needed. Notice, however, that it may not be possible to determine lifetime of R (if it is
embedded in a structure, for instance), and thus of the object, at compile time.

As an example, consider the program given in Chapter 4:

letrec map £ 1 = if (null 1) then nil
else cons (f (car 1)) (map f (cdr 1));

sum 1 = if (null 1) then O

else (car 1) + sum (cdr 1);

addsum x y = cons x (cons y (cons
(map (lambda(z). (sum Y) + z) X) nil));

in ...

From the reference escape analysis, we know that the reference associated with the second
occurrence of each parameter x and y of addsum does not escape. Thus, updates on the
reference count of each parameter could be avoided when creating and deleting the reference.

Consider the following lazy program from Chapter 7:

letrec f x y = x+y;
g a = if (a=0) then (f a) else (f 3);
hcd =g (ctd);

in
From the reference escape analysis, we know that neither the reference associated with the

first occurrence of the first parameter ¢ of the function nor the reference associated with
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the first occurrence of the second parameter d of the function h escapes h. Thus, reference

count updatings can be avoided when these references are created and deleted.

8.5 Block Allocation/Reclamation

In this scheme, a number of objects are allocated together in a contiguous block of a heap
storage and the whole block is put on the free list, rather than the individual objects. This
allows reclamation of larger segments of storage, and reduces run-time overhead by avoiding
the traversal of the individual objects (in mark-sweep collection, for instance).

Escape information about the parameters of a strict function that is inferred at compile-
time through the (refined) escape analysis can be used for the block allocation/reclamation

optimization. Consider any subexpression of the form of

(fer...e ...e)

where f is a function with n parameters, and each ¢;, 1 < ¢ < n, is any possible expression.
Let e; be an expression whose evaluation requires the allocation of a number of storage
cells. Generally, each individual cell of the value of e; needs to be allocated in a different
area from a heap. Based on the global escape information of parameters of f, more efficient

storage allocation can safely be performed for e; as follows:

o If the top j spines of the i** parameter of f does not escape f globally then allocate

all cells in the top 7 spines together in the same block in the heap

Consider a particular expression

(fer...e ...e)

where [ is a function with n parameters. Similarly, the local escape information about the
parameters of fin (fey ... e ... €,) can be used for more efficient storage allocation for

e; as follows:

o If the top j spines of the i*" parameter of f does not escape fin (fe; ... € ... €,)

then allocate all cells at the top 7 spines together in the same block in the heap

As an example, consider the program in section 8.1. From the escape analysis, we know that
the top spine of ps’s parameter does not escape from ps, only some elements do. Thus, each
cells of the top spine of the list ps [5,2,7,1,3,4] could be allocated in the same block in
the heap.

177



8.6 Improving Generational Garbage Collection

Generational garbage collection groups objects into areas according to their predicted life-
times, and collect areas independently and asynchronously.

Escape information about parameters of a strict function that is inferred at compile-time
through the (refined) escape analysis can be used for improving the generational garbage

collection schemes. Consider any expression of the form of

(fer...e ...e)

where f is a function with n parameters, and each e;, 1 < ¢ < n, is any possible expression.
Let e; be an expression whose evaluation requires storage for the result. In classic gener-
ational garbage collection, the storage for the value of e; needs to be allocated in a new
area (the youngest generation) in a heap. Based on the global escape information about
the parameters of f, more efficient selection of generations can safely be performed for e;

as follows:

o If the i** parameter of f does not escape f globally then allocate the storage for e;
in a region with current youngest generation else allocate the storage for e; in some

region with older generations.

o If the value of ¢; is a list and the top j spines of the i** parameter of f does not escape
/ globally then allocate the storage for cells at the top j spines in a region with the
youngest generation and allocate the storage for cells in the remaining spines in some

region with older generations.

Consider a particular expression

(fer ...e ...€e)

where f is a function with n parameters. The local escape information about the parameters

of fin(fer ... e ...e,)can be used for more efficient storage allocation for e; as follows:

o If the ¥ parameter of f does not escape fin (fe; ... € ... e,) then allocate the
storage for e; in a region with the youngest generation else allocate the storage for e;

in some region with older generations.

e If the value of ¢; is a constant list and the top j spines of the i*" parameter of f does
not escape fin (f e; ... e; ... e,) then allocate the storage for cells at the top j
spines in a region with the youngest generation and allocate the storage for cells in

the remaining spines in some region with older generations.
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Escape information about the parameters of a non-strict function that is inferred at
compile-time through the escape analysis can be used for improving the generational garbage

collection scheme. Consider any expression of the form

(fer...e ...e)

where f is a lazy function with n parameters, and e;, 1 < ¢ < n, is any possible expres-
sion. Each argument e; to f requires the allocation of storage for representing its delayed
evaluation, such as a thunk in the normal-order evaluation model or a self-modifying thunk
in the lazy evaluation model. Generally, the storage for each e; needs to be allocated from
a heap. Based on the global escape information about the parameters of f, more efficient

selection of the generations of storage for e; can be done as follows:

o If the i parameter of f does not escape f globally then allocate the storage for the
thunk for e; in a region with the current youngest generation else allocate in some

region with older generations.

Similarly, the local escape information about the parametersof fin (fe; ... € ... e,) can
be used for more efficient storage allocation for the thunk for each e; in (feq ... e ... €,)
as follows:

o If the i*" parameter of f does not escape f locally in (fer ... & ... e,) then

allocate the storage for thunk of e; in a region with the current youngest generation

else allocate in some region with older generations.
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Chapter 9

Related Work, Conclusions, and
Future Work

In this chapter, we survey some previous work related this thesis, summarize the contribu-

tions of this thesis, and suggest some further research in this area.

9.1 Related Work

Escape and Lifetime Information

Brooks, Gabriel, and Steele [16] described a simple first-order escape analysis for numbers
in LISP, but did not extend it for arbitrary objects. Orbit, an optimizing compiler for
Scheme, used a simple first-order escape analysis to stack allocate closures [42]. Hudak and
Kranz [42] used a simple first-order escape analysis of a non-strict functional language for
stack allocation of self-modifying thunks.

There have been a number of papers describing analyses for optimizing storage of lists
and other structures. Most of these analyses have been first-order (i.e. not accounting for
higher-order functions.) Ruggieri and Murtagh ([71], [72]) described a lifetime analysis for
a language with side-effects and complex data structures, but, again, it is first-order.

Inoue, Seki, and Yagi [49] described an analysis for functional languages to detect,
and reclaim run-time garbage cells based on formal language theory and grammars. They
focused only on the explicit reclamation of cons cells. It is unclear if this approach could be
extended for higher-order languages. Besides being higher-order, the escape analysis that
we describe in this thesis is a more general lifetime analysis that can be applied to objects

other than lists.
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Jones and LeMetayer [51] described an algorithm, based on forward and backward anal-
yses, for detecting sharing of objects in first-order functional languages, and describe a
method for reusing of cells based on the sharing analysis. We use only forward analysis
providing, perhaps, a simpler conceptual framework.

Chase, Wegman, and Zadeck [22] described a first-order analysis for LISP that constructs
graphs representing possible list structures and analyzes the graphs for possible storage
optimizations. Our analysis, in contrast, benefits from a type system that restricts the
ways that lists can be created and that restricts the kinds of sharing that can occur within
a list (for example, one cannot write cons(x,x).)

Deutsch [28] presented a lifetime and sharing analysis for higher-order languages. The
analysis consisted of defining a low-level operational model for a higher-order functional
language, translating a program into a sequence of operations in this model, and then
performing an analysis to determine the lifetimes of dynamically created objects. The
approach is one of collecting interpretation, in that it analyzes a whole program to infer
properties of program points. Our approach is to define a high-level non-standard semantics
that in many ways is similar to the standard semantics and captures the precise escape
behavior caused by the constructs in a functional language. We then define an abstraction
of these semantics which provides less precise information but which allows the analysis to
be performed at compile time. The advantage of our analysis lies in its conceptual simplicity
and less computational cost (compared to a collecting interpretation).

Deutsch and Bobrow [29] proposed a method for reducing the overhead of updating
reference counts in which reference counting activities are deferred by being stored into a
file called a transaction file instead of being immediately performed. Reference counts are
then adjusted at suitable intervals. Barth [9] showed that this particular reference count-
ing scheme could benefit from compile time optimization by generating fewer transactions
(reference counting activities) based on compile time analysis of first-order programs.

Using the idea of weighted references, i.e. each reference carries a weight such that
the sum of the weights of all references to an object is equal to the reference count of the
object, there have been a variety of works [10,82], in which, when a new reference is created
to an object, no access to the object is needed. Goldberg [32] presented a generation-
based approach for distributed systems that also avoids reference count operations when
a reference is created, and also described the applicability of escape information among
references to reference counting schemes, but did not present the analysis.

In the garbage collection area, using the lifetime of objects(not statically inferred),
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Lieberman and Hewitt [58] suggested a copying garbage collection in which storage is di-
vided into regions according to ages. Hudak [39] presented a semantic model for describing
the number of active pointers to objects for an applicative-order interpreter of a first-order
function language, and a variety of its abstractions based on abstract and collecting inter-

pretations.

Strictness, Evaluation Order, and Evaluation Status Information

Information about which arguments of a function will definitely be demanded, called strict-
ness information, is used to optimize lazy evaluation by converting lazy evaluation into
applicative-order evaluation and thus reducing the overhead of lazy evaluation. Informa-
tion about the order of evaluation of the arguments to a function can be useful for a number
of optimizations, including copy elimination [11,30,35] and process scheduling in a parallel
system [13]. Information on the status of evaluation of arguments when they are demanded
is useful for eliminating unnecessary checking [14].

There have been many papers published in the field of strictness analysis for languages
with higher-order functions, polymorphism, and non-flat domains ( [18], [45], [36], [37], [43],
[1], [80], [81]), but these do not provide information about the order or status of evaluation
of arguments. Issues of order of evaluation are addressed in [41], and a variety of models
for obtaining order of evaluation information in a first-order non-strict functional language
without non-flat domains are described in [12]. However, those models are somewhat com-
plex and the extension to higher-order languages is not clear.

Bloss [13] proposed a path analysis which provides a range of static information in-
cluding strictness, evaluation-order, and evaluation-status information in a first-order lazy
functional language. The analysis consists of determining the set of all possible evaluation
sequences called paths and extracting interesting information from the set. Since the size
of the abstract semantic domain is very large, the time complexity of the analysis for first-
order languages is significantly higher than that of strictness analysis. Path analysis can
also be extended to higher-order languages [11]. However, the complexity becomes even
worse in the case of higher-order languages, and it is not clear how to extract much useful
information from higher order path analysis. In [35] a method, similar to the path model,
for extracting some information about order of evaluation in a higher-order strict functional
language was presented.

Draghicescu and Purushothaman [30] presented a compositional analysis for obtaining

at compile-time some information about the order of evaluation of variables in a first-order
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non-strict functional language with both lazy evaluation and other evaluation strategies
using strictness information. This approach is based on strictness information and achieves
a lower complexity than path analysis by analyzing relations between parameters instead
of computing all possible paths of parameters. Our work deals with higher-order functional

languages and uses a smaller abstract domain and thus shows much lower complexity.

Polymorphic Invariance

Abramsky [1] extended the strictness analysis for monomorphic languages to polymorphic
languages based on the notion of polymorphic invariance. This implies that the strictness
property derived from one monomorphic instance of a polymorphic function applies to all
possible monomorphic instances. Hughes [47] proposed a method for extending abstract in-
terpretation to first-order polymorphic functions by calculating approximations to abstract
functions of all instances from the abstract function of the simplest monomorphic instance.
Abramsky and Jensen [3] showed a proof of the polymorphic invariance of strictness analysis

based on the categorical notions of relators and transformations.

9.2 Summary

One of the major overheads that incur in implementing functional languages is the storage
management overhead due to dynamic allocation and automatic reclamation of indefinite-
extent storage. The goal of this thesis was to compute information about the lifetime
of dynamically-allocated objects in higher-order, polymorphic, (either strict or non-strict)
functional languages with non-flat domains, through semantics-based compile-time analyses
of high-level source programs, and to use such statically inferred information for reducing
the storage management overhead in functional language implementations.

In a higher-order functional language, exact information about the lifetime of objects,
such as arguments and local objects defined within a function, with respect to the lifetime
of the activation of the function call is generally unknown at compile-time. Thus, when
storage is needed to be allocated for such object, it is usually allocated from a heap and has
to be reclaimed using some kind of automatic reclamation methods. Lifetime information,
if inferred at compile-time, can be useful for efficient management of storage allocated for
those objects at run-time. In Chapter 2, we have presented a method for computing safe
information about the relative lifetime of arguments and local objects defined within a

function with respect to the lifetime of an activation of the function for a monomorphic,
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strict, higher-order functional language. This method is based on a compile-time semantic
analysis called escape analysis which provides information about the lifetimes of objects
A method for improving the precision of escape information is also presented using the
position information of objects in a list structure.

For structured objects such as lists and trees, the escape information that is obtainable
through the escape analysis is rather coarse because it does not specify how much extent of
the object escapes even when only some part of structured object escapes. In Chapter 3, we
have developed a method for computing more refined escape information for a monomorphic,
strict, higher-order functional language. This method is based on a compile-time semantic
analysis called refined escape analysis which is an extension of the escape analysis and
indicates how much of an object outlives the activation of the function call.

In a higher-order functional language, exact information about the lifetime of a dynam-
ically created reference to a heap-allocated object is generally unknown at compile-time.
Such information, if inferred at compile-time, can be useful for improving the reference
counting scheme for both uniprocessor and multiprocessor environments. In Chapter 4,
we have described a method for computing at compile-time safe information about the
relative lifetime of dynamically created references to objects. This method is based on a
compile-time semantic analysis called reference escape analysis.

In lazy evaluation, arguments to a function are not evaluated unless and until their values
are demanded, and are evaluated only once upon the first demand. Their values are then
saved to be used for subsequent demands, thus avoiding reevaluation. Exact information
about the strictness of arguments, the order of evaluation among the arguments, and the
evaluation status of arguments when demanded is generally unknown at compile-time. If
inferred at compile-time, such information can be useful for a number of optimizations for
lazy evaluation. In Chapter 5, we have presented a method for statically inferring a range
of information including strictness, evaluation-order, and evaluation-status information in
a monomorphic, higher-order, non-strict (with lazy evaluation) functional language. This
method is based on a compile-time analysis called order-of-demand analysis which provides
safe information about the order in which the values of bound variables are demanded.

All of the semantic analysis presented in the preceding chapters have dealt with a higher-
order functional language with monomorphic type system in which every expression is rigidly
typed. Most modern functional languages adopt a rich polymorphic type system which is
more flexible. In Chapter 6, we have described a method, based on the notion of polymorphic

invariance, for applying the escape analysis, the reference escape analysis, and the order-

184



of-demand analysis for a monomorphic language to a polymorphic language.

In Chapter 7, we have extended the escape analysis and the reference escape analysis for
a strict language to a non-strict (either with normal-order evaluation or with lazy evaluation)
language. Based on a source-to-source transformation of non-strict programs, we have
described a method to extend the escape analysis and the reference escape analysis for a
strict language to a non-strict language with normal-order evaluation using the analysis
techniques for a strict language. The lazy evaluation model is identical to normal-order
evaluation model in the standard semantics, but not in its operational semantics. We
then presented the escape analysis and the reference escape analysis of non-strict functional
languages with lazy evaluation based on the evaluation status information statically inferred
by the order-of-demand analysis presented in Chapter 5.

Finally, in Chapter 8, based on the statically inferred escape information, we proposed a
variety of optimization techniques to reduce the storage management overheads in functional
language implementations. These include stack allocation, explicit reclamation, in-place
reuse of garbage cells, reference counting elimination, block allocation/reclamation, and

improving generational garbage collection.

9.3 Future Work

We would like to observe how a combination of these analyses and optimizations described
in this thesis work when they are implemented in real compilers. Future work includes
extensions of escape analyses to user-defined types (e.g. trees, etc.) and investigations of
more efficient algorithms for finding fixpoints or of using a type system. Effective extension
of the order-of-demand analysis to functional languages with lists and investigation of its
applications for optimizations in lazy evaluation would be useful.

For practical purpose, it will be worth investigating a method for determining at compile-
time whether the stack allocation optimization is safe in the sense that such optimization
does not convert a program that runs robustly into one that does not.

It might also be fruitful to develop other semantic analyses for higher-order functional
languages based on the framework which is used in the semantic analyses presented in this

thesis.
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