BIBLIOGRAPHY 202

SS85]

[SS88]

[Wol91]

[Yem82]

June 1987.

Edith Schonberg and Edmond Schonberg. Highly Parallel Ada —
Ada on an Ultracomputer. In Ada in Use: Proceedings of the Ada
International Conference, 1985. Special edition of Ada Letters, 5(2),

September 1985.

Dennis Shasha and Marc Snir. Efficient and Correct Execution of
Parallel Programs that Share Memory. ACM Transactions on Pro-

gramming Languages and Systems, 10(2):282-312, April 1988.
Michael Wolfe. Personal communication, April 1991.

Shaula Yemini. On the Suitability of Ada Multitasking for Express-
ing Parallel Algorithms. In Proceedings of the AdaTEC Conference
on Ada, 1982.

BIBLIOGRAPHY 201

[Ost89]

[PCF88]

[PBG85]

[Pol87]

[Qui8T]

[Ric89]

[SDDS86]

[Shu87]

Anita Osterhaug, editor. Guide to Parallel Programming on Sequent

Computer Systems. Sequent Technical Publications, 1989.

Parallel Computing Forum. PCF FORTRAN: Language Definition,
August 1988.

G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kle-
infelder, K. P. McAuliffe, E. A. Melton, V. A. Norton, and J. Weiss.
The IBM Research Parallel Processor Prototype RP3: Introduction

and Architecture. In International Conference on Parallel Process-

ing, pages 764—771, 1985.

Constantine Polychronopoulos. Loop Coalescing: A Compiler
Transformation for Parallel Machines. In International Conference

on Parallel Processing, pages 235—-242, 1987.

Michael J. Quinn. Designing Efficient Algorithms for Parallel
Computers. Series in Supercomputing and Artificial Intelligence.

McGraw-Hill, 1987.

V.F. Rich. Parallel Ada for Symmetrical Multiprocessors. In Dis-
tributed Ada, pages 61-69, December 1989.

J.T. Schwartz, R.B.K. Dewar, E. Dubinsky, and E. Sconberg. Pro-
gramming with Sets An Introduction to SETL. Texts and Mono-

graphs in Computer Science. Springer-Verlag, 1986.

Normal Victor Shulman. The Semantics of Shared Variables in Par-

allel Programmaing Languages. PhD thesis, New York University,

BIBLIOGRAPHY 200

[Tha90]

[Keng88]

[KKLWS4]

[Krig9)

[KS84]

[KW85]

[Law75]

[Mit8§]

Rakesh Jha. Parallel Ada — Issues in Programming and Implemen-
tation. In Fourth International Workshop on Real-Time Ada Issues,
pages 126-132. ACM Press, July 1990. Appeared in Ada Letters
10(9).

Ken Kennedy. Public Communication, 1988.

D. J. Kuck, R. H. Kuhn, B. Leasure, and M. Wolfe. The Structure
of an Advanced Vectorizer for Pipelined Processors. In Kai Hwang,

editor, Supercomputers: Design and Applications, pages 163-178.
IEEE Computer Society Press, 1984.

E.V. Krishnamurthy. Parallel Processing Principles and Practice.

International Computer Science Series. Addison-Wesley, 1989.

Philippe Kruchten and Edmond Schonberg. The Ada/Ed System: a
Large-Scale Experiment in Software Prototyping Using SETL. Tech-
nology and Science of Information, 3:175-181, 1984.

Clyde P. Kruskal and Alan Weiss. Allocating Independent Subtasks
on Parallel Processors (Extended Abstract). IEEE Transactions on

Computing, 11(10):236-240, October 1985.

Duncan Lawrie. Access and Alignment of Data in an Array Proces-

sor. IEEE Transactions on Computing, ”"C-247:1145-1155, 1975.

Thanasis Mitsolides. Ada Tasks in a Parallel Environment. New

York University, April 1988.

BIBLIOGRAPHY 199

[Hil91]

[Hin8s]

[HS91]

[Hum388§|

[Hun90]

[IBMSS]

[IBMS9]

[Ich84]

[Inc81]

Paul Hilfinger. Personal communication, June 1991.

Michael Hind. Parallelizing Compilers. New York University, June
1988.

Michael Hind and Edmond Schonberg. Efficient Loop-Level Paral-
lelism in Ada. In TRI-Ada, October 1991.

Susan Flynn Hummel. SMARTS - Shared-Memory Multiprocessor
Ada Run Time Supervisor. PhD thesis, New York University, De-

cember 1988.

Geoffrey Hunter. The Fate of FORTRAN-8X. Communications of
the ACM, April 1990.

IBM. Parallel Fortran Language and Library Reference. Techni-
cal report, International Business Machines, March 1988. Pub. No.
SC23-0431-0.

IBM. VAST-2 for VS FORTRAN User’s Guide. Technical report,
International Business Machines, December 1989. Pub. No. SC26-
4668-0.

Ada: Past, Present, Future: An Interview with Jean Ichbiah, the
Principal Designer of Ada, 1984. Communications of the ACM,
27(10), September 1984.

Cray Research Inc. Fortran (cft) reference manual. Technical report,

Cray Research, Inc., August 1981. Pub. No. SR-009, rev. H.

BIBLIOGRAPHY 198

[FOWST]

[Fra87]

[GGK*83]

[GLRS3]

[Hel78]

[Hil82a)

[Hil82b)]

[Hi190]

Jeanne Ferrante, Karl J. Ottenstein, and Joe Warren. The Program
Dependence Graph and its Use in Optimization. ACM Transactions

on Programming Languages and Systems, pages 319-349, July 1987.

Gary Frankel. Improving Ada Tasking Performance. In Interna-
tional Workshop on Real-Time Ada Issues, Fall 1987. Ada Letters
7(6).

A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe,
L. Rudolph, and M Snir. The NYU Ultracomputer — Designing
an MIMD Shared Memory Parallel Computer. IEEE Transactions

on Computing, February 1983.

A. Gottlieb, B. D. Lubachevsky, and L. Rudolph. Basic Techniques
for Efficient Coordination of Very Large Numbers of Cooperating Se-
quential Processors. ACM Transactions on Programming Languages

and Systems, 5(2):164-189, April 1983.

Don Heller. A Survey of Parallel Algorithms in Numerical Linear

Algebra. SIAM Review, 20(4):740-777, October 1978.

Paul N. Hilfinger. Abstraction Mechanisms and Language Design.
MIT Press, 1982.

Paul N. Hilfinger. Implementation Strategies for Ada Tasking Id-
ioms. In Proceedings of the AdaTEC Conference on Ada, 1982.

Paul N. Hilfinger. Tasking Idioms and Enhancements in Ada 9X.
Draft Version 1, November 1990.

BIBLIOGRAPHY 197

[DFSS8Y]

[Dri90al

[Dri90b]

[E1186]

[EN9Q]

[FH90]

Burke. The NYU Ada Translater and Interpreter. In ACM-
SIGPLAN Symposium on the Ada Programming Languages, pages
194-201, November 1980. SIGPLAN Notices 15(11).

Robert Dewar, Susan Flynn, Edmond Schonberg, and Norman Shul-
man. Distributed Ada on Shared Memory Multiprocessors. In Dis-
tributed Ada, pages 229-241, December 1989.

Kenneth W. Dritz. Personal communication, August 1990.

Kenneth W. Dritz. Tutorial on Parallel Programming in Ada. Pre-
sented at the Eighth Annual National Conference on Ada Technol-

ogy, Atlanta, Georgia, March 1990.

J.R. Ellis. Bulldog: A Compiler for VLIW Architectures. 1985 ACM
Doctoral Disseration Awards. MIT Press, 1986.

Kemal Ebcioglu and Toshio Nakatani. A New Compilation Tech-
nique for Parallelizing Loops with Unpredictable Branches on a
VLIW Architecture. In David Gelernter, Alexandru Nicolau, and
David Padua, editors, Languages and Compilers for Parallel Com-
puting, pages 213-229. MIT Press, 1990. Selected papers from the
Second Workshop on Languages and Compilers for Parallel Com-

puting at Urbana, Illinois in August 1989.

Lawrence E. Flynn and Susan Flynn Hummel. Scheduling Variable-
Length Parallel Subtasks. Technical Report RC # 15492, IBM T.J.

Watson Research Center, February 1990.

BIBLIOGRAPHY 196

Ada for Tightly Coupled Systems. In Distributed Ada, pages 183—
205, December 1989.

[CFR*89] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman,
and F. Kenneth Zadeck. An Efficient Method for Computing Static
Single Assignment Form. In 16th Annual ACM Symposium on the

Principles of Programming Languages, January 1989.

[CHH89] Ron Cytron, Michael Hind, and Wilson Hsieh. Automatic Genera-
tion of DAG Parallelism. In SIGPLAN 89 Conference on Program-

ming Language Design and Implementation, 1989.

[Clag7] Donald R. Clarson. Proposal for Adding Discriminants for Ada Task
Types. Ada Letters, 8(5), September 1987.

[Col87] Howard B. Coleman. The Vectorizing Compiler for the UNISYS ISP.
In International Conference on Parallel Processing, pages 567-576,
1987.

[Cyt85] Ron Cytron. Useful Parallelism in a Multiprocessing Environment.
In International Conference on Parallel Processing, pages 450—-456,
1985.

[Cyt91] Ron Cytron. Personal communication, March 1991.

[Dew90] Robert B. K. Dewar. Shared Variables and Ada 9X Issues. Special
Report SEI-90-SR-1, SEI, January 1990.

[DFS*80] Robert B. K. Dewar, Gerald A. Fisher Jr., Edmond Schonberg,
Robert Froehlich, Stephen Bryant, Clinton F. Goss, and Michael

BIBLIOGRAPHY 195

[BDH*87] Mark Byler, James R. B. Davies, Christopher Huson, Bruce Lea-

[Beh90]

[Ber88|

[Blu81]

[BMWS8E]

[BN8T7]

[Bur85]

[CCB8Y]

sure, and Michael Wolfe. Multiple Version Loops. International

Conference on Parallel Processing, pages 312-317, August 1987.

Kurt Behnke. Implementation of Task Arrays with Single RTS
Nodes. Ada/Ed Documentation, New York University, 1990.

Wayne Berke. ParFOR - A Structured Environment for Parallel
FORTRAN. Technical report, New York University, April 1988.

Ultracomputer Note #137.

E. K. Blum. Programming Parallel Numerical Algorithms in Ada.
In J.K. Reid, editor, The Relationship Between Numerical Com-
putation and Programming Languages, pages 297-304. IFIP TC2,
North-Holland Publishing Company, August 1981.

W. C. Brantley, K. P. McAuliffe, and J. Weiss. RP3 Processor-
Memory Element. Proc. 1985 International Conference on Parallel

Processing, pages 782-789, 1985.

Thomas M. Burger and Kjell W. Nielsen. An Assessment of the
Overhead Associated with Tasking Facilities and Task Paradigms in
Ada. Ada Letters, 7(1):49-58, January 1987.

A. Burns. Efficient Initialisation Routines for Multiprocessor Sys-

tems Programmed in Ada. Ada Letters, 5(1):55-60, July 1985.

Lawrence Collingbourne, Andrew Cholerton, and Tim Bolderston.

BIBLIOGRAPHY 194

[AKS4]

[ALS9]

[Ard87]

[ASUS6]

[Babsg]

[BCS6]

[BCF+88)]

John R. Allen and Ken Kennedy. PFC: A Program to Convert
Fortran to Parallel Form. In Kai Hwang, editor, Supercomputers:
Design and Applications, pages 186-203. IEEE Computer Society
Press, 1984. Also appeared in the Proceedings of the IBM Confer-

ence on Parallel Computers and Scientific Computations, 1982.

Anders Ardo and Lars Lundberg. The MUMS Multiprocessor Ada
Project. In Distributed Ada, pages 243-266, December 1989.

Anders Ardo. Real-Time Efficiency of Ada in a Multiprocessor En-
vironment. In International Workshop on Real-Time Ada Issues,

Fall 1987. Ada Letters 7(6).

A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, 1986.

Robert G. Babb II, editor. Programmaing Parallel Processors.
Addison-Wesley, 1988.

Michael Burke and Ron Cytron. Interprocedural Dependence Anal-
ysis and Parallelization (Extended Version). Technical report, IBM
Research, 1986. Report RC11794.

Michael Burke, Ron Cytron, Jeanne Ferrante, Wilson Hsieh, Vivek
Sarkar, and David Shields. Automatic discovery of parallelism: A
tool and an experiment. ACM SIGPLAN Symposium on Parallel
Programming: Experience with Applications, Languages, and Sys-

tems, pages 77-84., July 1988.

Bibliography

[Ada83]

[ABC+87]

[ACKS7]

[Ada90]

[AG89)

American National Standards Institute. Ada Programming Lan-
guage Military Standard. Technical report, American National Stan-
dards Institute, January 1983. ANSI/MIL-STD-1815A.

Frances Allen, Michael Burke, Philippe Charles, Ron Cytron, and
Jeanne Ferrante. An Overview of the PTRAN Analysis System for
Multiprocessing. Proceedings of the 1987 International Conference
on Supercomputing, 1987. Also published in The Journal of Parallel
and Distributed Computing, October, 1988, 5(5):617-640.

Randy Allen, David Callahan, and Ken Kennedy. Automatic De-
composition of Scientific Programs for Parallel Execution. In 1jth
Annual ACM Symposium on the Principles of Programming Lan-

guages, pages 63—-76, January 1987.

Ada 9x Project Report. Ada 9x Requirements. Technical report, Of-

fice of the Under Secretary of Defense Acquisition, December 1990.

George S. Almasi and Alan Gottlieb. Highly Parallel Computing.

The Benjamin/Cummings Publishing Company Inc., 1989.

193

APPENDIX A. EXAMPLES

—— query which exception was raised.
end if:

end loop;

—— We inform the caller about the exception(s)

—— by raising a user-defined exception.

raise minitask_exception;
end if:
return C;
end matmult;

end matmult_pack;

192

APPENDIX A. EXAMPLES 191

with gen_minitask;

package matmult_pack is
type matrix is array(integer range <>, integer range <>) of float;
function matmult(A, B : matrix) return matrix;

end matmult_pack;

package body matmult_pack is
function matmult(A, B : matrix) return matrix is
C : matrix(A'RANGE(1), B'RANGE(2));
subtype ij_range is integer
range 1 .. A'LENGTH(1) * B'LENGTH(2);

procedure ij_body(ij : ij_range) is

i,] integer;
begin

i .= (ij-1) div B'LENGTH(2) + A'FIRST(1);

j = (ij-1) mod B'LENGTH(2) + B'FIRST(2);

C(@.j) :=0.0;

—— For each of B’s rows

for k in B'RANGE(1) loop

C(i, j) == C@, j) + A, k) * B(k, j);

end loop;
end ij_body;
package ij_minitask 1s new gen_minitask(ij_range, ij_body);

begin

if not ij_minitask.success then

for i in ij_range loop

if not task_completion(i) then

—— We can use task_exception(i) to

APPENDIX A. EXAMPLES 190

In a standard parallelization of matrix multiplication the outer two loops are
executed in parallel. Although this can be achieved by nesting gen_minitask
instantiations, we coalesce these two parallel loops, we choose not to nest uses
of our idiom for the usual performance reasons; by combining the two outer loops
into one loop we reduce the number of forks (i.e. gen_minitask instantiations)
from A’LENGTH +1 to 1. This user-specified optimization is typical when dealing
with nested parallel loops.

The body of the parallel loop is represented by the procedure ij_body. The
parameter of the procedure plays the role of the iteration variable. After val-
ues for the ¢ and j variables have been computed, we perform the standard

computation for the innermost loop of matrix multiplication.

APPENDIX A. EXAMPLES 189

end if:
end;
end loop;
declare —— Second nest of loops.

subtype ij_range is integer range 1 .. X'LENGTH(1) * X'LENGTH(2);

procedure ij_body(ij : ij_range) is —— i & j loops combined

i,] integer;

begin
i = (ij-1) div X'LENGTH(2) + X'FIRST(1); —— Compute appropriate value of i.
j = (ij-1) mod X'LENGTH(2) + X'FIRST(2); —— Compute appropriate value of j.

X(i, j) .= AB(i, j + AB'LasT(1) / AB(i, i);
end ij_body;
package ij_minitask is new gen_minitask(ij_range, ij_body);
begin
if not ij_minitask.success then
raise minitask_error;
end if:
end;

end parallel_gauss_jordan;

A.3 Matrix Multiplication

Our final example is a package version of matrix multiplication. This package
contains two visible entities: an unconstrained type declaration (matrix) and a
function (matmult) that multiplies two matrices and returns the product.

The function matmult takes the two matrices, A and B as parameters and once

again uses the predefined array attributes to determine the size of these matrices.

APPENDIX A. EXAMPLES

procedure parallel_gauss_jordan(AB: in out matrix; X: out matrix) is
mult : float;
begin
for j in AB'RANGE(1) loop —— Sequential loop
declare
subtype i_range is integer range AB'RANGE(1);
procedure i_body(i : i_range) is —— Body of i loop (par)
begin
if i = j then
return;
end if:
mult := AB(i, j)/AB(, j);
declare

subtype k_range is integer range AB'RANGE(2);

procedure k_body(k : k_range) is —— Body of k loop (par)

begin
AB(i, k) := AB(i, k) - mult * AB(j, k);
end k_body;

package k_minitask is new gen_minitask(k_range, k_body);

begin
if not ij_minitask.success then
raise minitask_error;
end if:
end;
end i_body;
package i_minitask is new gen_minitask(i_range, i_body);
begin
if not ij_minitask.success then

raise minitask_error;

188

APPENDIX A. EXAMPLES 187

of nested parallel loops. As no operations are performed inside of the outer
loop and outside the inner loop, these loops are coalesced [Pol87]. This transfor-
mations eliminates the spawning of the N minitask families without decreasing

parallelism.

procedure serial_gauss_jordan(AB: in out matrix; X: out matrix) is
mult : float;
begin
for j in AB'RANGE(1) loop
for i in AB'RANGE(1) loop —— Parallel Loop
if i /= j then
mult := AB(i, J)/AB(,]);
for kin j + 1 .. AB'LAST(2) loop —— Parallel Loop
AB(i, k) := AB(i, k) - mult * AB(j, k);
end loop;
een 1if’
end loop;
end loop;
for i in X'RANGE(1) loop —— Parallel Loop
for j in X'RANGE(2) loop —— Parallel Loop
X(i, j) := AB(i, j + AB'LasT(1))/AB(i, i),
end loop;
end loop;

end serial_gauss_jordan;

APPENDIX A. EXAMPLES 186

if procnum_minitask.success then

for i in num_tasks_type loop

pi .= pi + sum_array(i);

end loop;
else

raise minitask_exception; —— Minitask error condition.
end if:

end;

end calculate_pi;

A.2 Gauss_Jordan

This program solves a linear system AX = B, where A is an N by N matrix,
X is an N by M matrix, and B is an N by M matrix. The method used is
Gauss-Jordan elimination as described by Heller [Hel78].

Two versions of the algorithm are supplied. The first performs Gauss-Jordan
elimination by executing each of the parallel loops sequentially. The second pro-
cedure utilizes the gen_minitask idiom to express the inherent loop-level paral-
lelism of the algorithm.

Both procedures are passed two matrices, A and X, as parameters. For
convenience, matrices A and B are passed as one parameter, AB, (B extended
to the right of A). Upon conclusion of the algorithm, out parameter matrix X
contains the solution. The bounds of these parameters are obtained by using
the predefined attribute operations, 'RANGE and "LAST. In computing X,
the algorithm overwrites matrix AB.

One optimization is performed in the gen_minitask version in the second set

APPENDIX A. EXAMPLES 185

with text_io; use text_io;
with gen_minitask;
procedure calculate_pi is
pi : float; —— The final result
num_tasks, num_intervals : integer; —— Input
sum_array : array (num_tasks_type) of float;
package int_io is new integer_io(integer); use int_io;
package my_float is new float_io(float); use my_float;
begin —— Acquire number of threads and intervals.
put(” Enter number of tasks: "); get(num_tasks);

put(” Enter number of intervals: "); get(num_intervals); new_line;

declare —— Call subroutine concurrently to do work.
subtype iteration_range is integer range 1..num_tasks;
procedure iteration_body(iterate : iteration_range) is

local_sum : float := 0.0;

current_interval : integer; —— Current interval

x : float; —— Value of z used for integration
begin

current_interval := iterate;

while current_interval <= num_intervals loop

x := (float(current_interval) - 0.5) / float(num_intervals)

local_sum := local_sum + interval_width * 4.0 / (1.0 + x * x);
current_interval := current_interval 4+ num_tasks;

end loop;

sum_array(iterate) := local_sum; —— Deposit local sum.

end iteration_body;

package procnum_minitask is new

gen_minitask(iteration_range,iteration_body);

begin

APPENDIX A. EXAMPLES 184

the package instantiation, a check is performed on the family of minitasks. If the

value true is returned, the local sums of each minitask are totaled and reported.

APPENDIX A. EXAMPLES 183

precision of the computation; it defines the number of intervals between 0 and
1. The second variable, num_tasks, specifies the amount of parallelism to be
used in the computation. As the number of instructions required to compute an
interval is small, it is desirable to have num_intervals larger than num_tasks.

The intervals are assigned in the following manner: each minitask receives
one of the first num_tasks intervals. After computing the area for its first in-
terval, a minitask acquires its next interval by adding num_tasks to its initial
interval. This process is repeated until num_intervals is surpassed. For example,
the first minitask computes intervals 1, num_tasks + 1, 2- num_tasks + 1, ...,
{%J - num_tasks + 1.

Current_interval takes on values spanning from 1 to num_ntervals. As it
should be representative of the range of values from current_interval - 1 to cur-

rent_interval, 0.5 is subtracted to obtain an average. To determine the value of

X, current_interval - 0.5 is scaled down according to the number of intervals, i.e.

1

el to determine the

it is divided by num_ntervals. This value is substituted in
y value for this interval. This value is used to obtain the area represented by
this interval; it is the product of the y value and the interval_width. Lastly this
product is added to the local_sum for this minitask.

As the computation for this interval is complete, an attempt is made to com-
pute the minitask’s next interval; current_interval is incremented by num_tasks.
A check is performed to see if this new value represents a valid interval. If it
does, this process continues. However, if there are no more intervals for this task
to compute, the local_sum value is stored into the shared array sum_array in the
appropriate index.

When the main program regains control after the begin statement following

Appendix A

Examples

In this chapter we illustrate the expressive power of the gen_minitask idiom by
presenting three examples. Each of these examples utilizes loop-level parallelism,

making them suitable candidates for our idiom. The examples we present are:

1
1422

calculate_pi: A program that computes 7 by integrating between 0 and

1.

gauss_jordan: A program that performs Gauss-Jordan elimination on a linear

system of equations.

matrix_mult: A package that contains a matrix multiplication function.

A.1 Calculate Pi

This program computes © by integrating H—% over the interval from 0 to 1
[Bab88]. The computation is based on the value of two variables given by the

user and is given on page 185. The first variable, num_intervals, specifies the

182

CHAPTER 7. CONCLUSIONS 181

beneficial. Once this representation is obtained, care must be taken to en-
sure that the algorithms used to obtain the control dependence graph and
static single assignment form are still applicable. Work on this problem as
it applies to a parallel version of FORTRAN is currently being done by Wolfe
and his colleagues [Wol91]. Since Ada tasking semantics provide a more
powerful mechanism than those of the FORTRAN being studied, devising a

representation for Ada should prove to be more challenging.

CHAPTER 7. CONCLUSIONS 180

architectures, such as distributed memory machines, vector machines, or

even sequential machines.

e Another possible area of interest would be to attempt to find additional
parallelism by transforming sequential portions of an Ada program to the
idioms we have suggested. These idioms could then be executed efficiently
under the proper implementation. As mentioned in Section 7.2.2; the
exception semantics of Ada make it more challenging to accomplish this
goal. Although there is discussion that these semantics will be relaxed in
Ada 9X to allow vectorization, a further relaxation would be required for

parallelization to occur.

In addition, the presence of both multiple threads of execution and shared
variables can lead to dependences that are not present when sequential
programs are parallelized [SS88|. Parallelization of Ada programs that
contain these two features must ensure that these dependences are upheld.

Despite these challenges, we feel that this area merits attention.

e Traditionally, the control flow graph has provided a useful representation
for performing data flow analysis on sequential programs [ASU86|. More
recently this graph has been used to construct the control dependence
graph [FOWST7] and to convert a program into static single assignment
form [CFR*89]. Both of these representations can be used to provide

more efficient algorithms for various program optimizations.

As the control flow graph is central to all of this work, obtaining an equiv-

alent representation for parallel programs (in particular, Ada) would be

CHAPTER 7. CONCLUSIONS 179

have cited. Therefore, it unfortunately appears that the definition and imple-

mentation of these requirements will not provide efficient loop-level parallelism.

7.3 Future Work

We now focus on possible extensions of our work.

e This work has provided efficient solutions to several significant shortcom-
ings in the Ada tasking model. We have obtained these solutions by spec-
ifying Ada idioms that take the form of a generic package. This technique

has two major advantages:

— Since the specification is written solely in Ada, portability is main-

tained across all machines.

— Due to the restricted accessibility of the contents of the package,
special optimizations can be performed that normally would not be

allowed if full programmer accessibility were present.

Since this technique is not specific to the problems we have addressed, it
may be used to develop other idioms (tasking and non-tasking) that an
implementor may feel are desirable. This includes, but is not limited to,

any future shortcomings that may arise out of the Ada 9X standard.

e Our work has focused on providing efficient implementations of our idioms
on a shared memory multiprocessor. A logical extension of this work

would be derive efficient implementations of these idioms for alternative

CHAPTER 7. CONCLUSIONS 178

Although this requirement mentions the desirability of efficient loop-level
parallelism in Ada, it appears to rule out the addition of a language construct
that would allow the programmer to specify this form of parallelism. Instead
it favors a compiler detection approach. While this continues to be an area of
research, it seems odd that the requirements team would rely on the presence
of an optimizing compiler to provide this desirable feature, instead of allowing
the programmer to specify this type of parallelism directly.

In addition, it appears that an accommodation for the parallelization of loops
is not included in this requirement. Although many of the compiler techniques
used for vectorization can be used in parallelization, the semantics of a vector
loop differ from those of a parallel loop. In a vector loop an ordering of iterations
is defined; a loop may be vectorized even though certain dependences (anti-)
exist among iterations. However, a parallel loop contains no implicit ordering;
no dependences may exist among iterations.

Furthermore, the size of vector loops are ultimately limited by the function-
ality of the underlying machine; each loop is constrained to contain only one
vector assignment. On the contrary, the size of a parallel loop may be arbitrar-
ily large. Therefore, if the compiler detection approach is used in Ada 9X it
appears that a specific requirement to accommodate Ada 9X to parallelization
would be needed.

Both of the requirements we have cited address issues that are important in
obtaining loop-level parallelism in Ada. As these are requirements, it is difficult
to determine what language revisions will eventually result. However, these re-

quirements fail to mandate the resolution of two of the three deficiencies that we

CHAPTER 7. CONCLUSIONS 177

7.2.2 Vector Architectures

This requirement discusses statement level parallelism in vector architectures.
Although the topic appears to be out of the context of our work, some of the

1ssues addressed our relevant.

“Study Topic S7.3-A(1) — Statement Level Parallelism: Ada
9X should accommodate compiler techniques for efficiently map-
ping sequences of Ada statements, including particularly appropriate

loops, onto vector architectures.

Discussion: Although Ada permits the use of tasks for explicitly
describing parallelism, this is much too heavy a mechanism for loop
level parallelism. In other languages, approaches to this problem
have involved automatic recognition of loop parallelism by compilers
and the introduction of specialized loop constructs explicitly speci-

fying parallel execution.

Compiler techniques for mapping sequential code onto vector archi-
tectures are well known. However, there is some difficulty in applying
these techniques to Ada because of exception semantics. The relax-
ations permitted by section 11.6 of the Ada standard are insufficient
to permit vectorization to the desired degree. For example, a simple
loop that adds the elements of two vectors together cannot be vec-
torized since Ada requires that an exception occurring in the first

[iteration of the| loop prevent further iteration|s] of the loop.”

CHAPTER 7. CONCLUSIONS 176

Discussion: A critical requirement for efficiency of large scale par-
allel applications is that there be no “serial bottlenecks,” i.e. points
at which the execution time depends on executing serial code whose

execution time is dependent on the number of processors.

Ada 83 does provide many of the needed facilities to meet this re-
quirement. Tasks can be initiated in parallel, and terminated in
parallel (using the terminate alternative). However, there is no easy
way to give tasks an identity so that the tasks that are initiated in
parallel can work on separate parts of a problem without communi-

cating with some master controlling task.

There are a number of possible approaches to solving this problem.
One approach is to provide a task with the ability to directly deter-
mine its own identity (for example, its index in an array of tasks).
Another approach is to provide some kind of mechanism for param-

eterizing tasks.”

It is encouraging to see that this requirement addresses the first shortcoming
that we (and others) have identified, the inability of a task to determine its own
identity. It appears that this deficiency was an oversight in the original design
which will be fixed in the new revision. However, the same cannot be said for
the two remaining obstacles to efficient loop-level parallelism. Although neither
loop-level parallelism or these two deficiences are addressed by the requirements

document, the next section does discuss related issues.

CHAPTER 7. CONCLUSIONS 175

the Ada 9X requirements were defined and made public [Ada90]. These re-
quirements were given to the Mapping/Revision Team whose goal is to design
specific changes to the Ada-83 standard that satisfy these requirements. As
these changes are made, the Implementation/Analysis Team investigates the
ramifications of their implementation.?

Although many of the Ada 9X requirements are worthy of study, we refer
the interested reader to [Ada90] for a full description. Instead, we point out the
requirements that are relevant to this work.

Recall from Chapter 2 the three shortcomings in the Ada tasking model when

trying to achieve loop-level parallelism:
1. the lack of the ability to distribute identities to tasks in parallel,
2. the synchronization point that is required during task initiation, and
3. the storage overhead required to manage a task’s status.

The next two sections specify the two Ada 9X requirements that most closely

address these deficiencies.

7.2.1 Managing Large Number of Tasks

Section 7.2 of the requirements document [Ada90] specifies:

“Study Topic S7.2-A(1): Ada 9X must provide for the efficient
creation, initialization, execution, and termination of large number

of tasks.

!The NYUAda project has been chosen as the Implementation/Analysis team for Ada 9X.

CHAPTER 7. CONCLUSIONS 174

(see Chapter 2) by modifying our idiom so that an instantiation would provide
subprograms that can later be called to obtain a parallel loop. While this would
place the parallel loop idiom in the sequence of statements section of the pro-
gram, it would not remove the necessity of specifying the loop body and iteration
range as parameters.

However, whatever we lose in “ease of programming”, we gain in reliability.
Due to the fact that our idiom is a package instantiation, we can associate more
information with it then can be done with a parallel loop control structure. In
particular, we can collect status information about each thread in the loop and
provide functions that can be used to obtain this information, something that
we have not seen in any other parallel loop construct. Furthermore, both of

these features would not be present if the Dritz scheme were used.

7.2 Ada 9X

To maintain portability, we have placed an important restriction on our work:
all idioms we supply must be written in standard Ada. During the development
of this work, a revision of the 1983 standard has begun. The eventual outcome
of this process will be a new standard called Ada 9X, (where X is a digit in
the range 0-9). This section focuses on this revision process with particular
emphasis on the problems we have discussed.

In October 1988, the Ada 9X project was initiated with an invitation to
the public to submit revision requests. This period concluded in October 1989

and produced over 750 requests for language changes. Out of these requests

CHAPTER 7. CONCLUSIONS 173

the overhead associated with initialization, issues of granularity may no longer

need to be considered; all semantically parallel loops will be executed in parallel.

A Limitation of the Gen_Beacon Idiom

The gen_beacon idiom provides the programmer with a monitored fetch_and_add
shared variable. Since this idiom takes the form of a package instantiation its
declaration appears in a declarative part, as is the case with other variable
declarations. We provide access to this variable through several subprograms.
As Ada does not permit subprogram parameters, we are unable to pass access
fetch_and_add variables to subprograms.

To fullfil this need, the designers of the language suggest the using generic
subprograms. In Chapter 3 we illustrate this limitation with an example and
show how it can be overcome with the use of generics.

Furthermore, recall that our goal in constructing the gen_beacon idiom was to
provide fetch_and_add variables for our parallel loop idiom. As the gen_minitask
idiom does not need to pass fetch_and_add variables as parameters, the gen-
_beacon idiom realizes this goal; it provides an efficient mechanism for obtaining

fetch_and_add variables within Ada.

Readability of the Gen_Minitask Idiom

We have constructed the gen_minitask idiom to play the role of a parallel loop
in Ada. In doing so we have substituted a declarative item (a package instanti-
ation) for a control statement (a loop). Despite this fact, we have not sacrificed
any expressive power. However, the resulting program can be difficult to read.

A possible solution to this problem is to utilize the scheme suggested by Dritz

CHAPTER 7. CONCLUSIONS 172

might lead one to expect our work to be only applicable to machines that im-
plement the fetch_and_add primitive in this manner. While it is true that a
combining network removes the serial bottleneck normally associated with task
initialization, its absence does not preclude an efficient implementation.

In Chapter 6 we saw that the time to initialize one minitask compared fa-
vorably to both the time to initialize an iteration of a Parallel Fortran loop and
a regular Ada task. This fact is independent of whether multiple initializations
can be performed in parallel (as is the case with our work with the presence of
a combining network) or serially, (as done in the other two methods). For this
reason we conclude that our work can provide efficient loop-level parallelism
even when the fetch_and_add primitive is not implemented using a combining

network.

When to use the Gen_Minitask Idiom

In Chapter 6 we define the lower bound granularity for a parallel loop construct
and compute this value for the gen_minitask idiom. We show that a particular
threshold exists where use of our idiom is expected to out perform a sequential
execution. This threshold is measured in terms of the average size of each
iteration and is a function of the number of iterations. We saw that although
our idiom has a lower threshold than other parallel loop idioms, it should not
be used when this threshold is not surpassed. As is the case with most parallel
loop idioms used today, a potential parallel loop that has a small body, or a
small number iterations should be executed serially.

It remains to be seen whether the need to consider this threshold will exist in

the future. If developments in hardware and software can be found that reduce

CHAPTER 7. CONCLUSIONS 171

7.1 Our Work

The goal of this work is to provide efficient loop-level parallelism in Ada without
modifying the language. In Chapter 2 we discussed three significant shortcom-
ings that must be overcome before this goal can be achieved.

In Chapter 3 we presented an enhanced version of a previous solution to
the first of these deficiencies, the bottleneck that results when one wishes to
distribute distinct identities to a group of tasks. The solution presented, the
gen_beacon generic package, is more efficient in both time and space then its
predecessor.

We addressed the latter two deficiencies, the synchronization point required
between task creation and task activation and the storage overhead required
to manage an Ada task, in the remaining chapters. In Chapter 4 we explored
possible solutions to these deficiencies and presented, the gen_minitask generic
package. In Chapter 5 we described the implementation of this idiom in detail
and explored other implementation issues. In Chapter 6 we showed that the
overhead and efficiency of our idiom outperforms the standard means of obtain-
ing a parallel loop in Ada. Moreover, we showed that it compares favorably with
the parallel loop construct of IBM Parallel Fortran.

In this section we address other issues concerning our work.

Combining Network Dependence

The analysis of our implementation assumes that multiple fetch_and_add oper-

ations to the same memory location are combined in the network. This fact

Chapter 7

Conclusions

In an interview in the 1984, Jean Ichbiah, head of the Ada design team stated:

“The Ada language was designed with three overriding concerns:
a recognition of the importance of program reliability and mainte-
nance, a concern for programming as a human activity, and effi-

ciency.” [Ich84]

In this work we have addressed the last of these concerns. We have shown
that although Ada’s tasking model provides a robust method for specifying
interprocess communication, its semantics hinder the realization of efficient loop-
level parallelism.

This concluding chapter is divided into three sections. First, we summarize
our work, pointing out it advantages and disadvantages. Next, we discuss the
current effort to revise the 1983 standard of the language. Lastly, we outline

some future areas of study.

170

CHAPTER 6. PERFORMANCE ANALYSIS

for i in 1..N loop
A(i) := B(i) * C(i); —— A(i) is stored here.

D(i) := A(i-1) / 2; —— and used here in next iteration.

end loop;

declare
—— Add an extra iteration.
subtype i_range is integer range 0..N;
procedure i_body (i : i_range) is
begin
if i > 0 then —— Must check the end points
A(i) := B(i) * C(i);
end if;
if i < N then
D(i+1) := A(i) / 2; —— Shift indices of D and A
end if;
end loop_body;
package i_loop is new gen_minitask (i_range, i_body);
begin
if not i_loop.success then
—— Handle error condition appropriately.
end if;

end;

Figure 6.10: An Example of Loop Alignment

169

variable where information is flowing, we can align the two statements in this

loop so that the store and use are performed in the same iteration. This is done

in the second part of Figure 6.10 where the resulting loop is executed in parallel

using the GMI.

Although this transformation appears to be very promising it can only be

applied to the special case illustrated by Figure 6.10, when no other flow de-

pendences are adversely affected by the alignment. For more details about this

transformation see [ACKS87].

CHAPTER 6. PERFORMANCE ANALYSIS 168

for i in 1..M loop
for jin 1..N loop
A(i,) = A(-1,)) * A(+1, j);
end loop;
end loop;

declare
subtype j_range is integer range 1..N;
procedure j body(j : j_range) is
begin
for i in 1..M loop
A(i, j) :== A(-1, 5) * A(I+1, j);
end loop;
end loop_body;
package j_loop is new gen_minitask (j_range, j_body);
begin
if not j_loop.success then
—— Handle error condition appropriately.

end if;

end;

Figure 6.9: An Example of Loop Interchange

among iterations of the | loop, it can be executed in parallel. Although we could
execute the inner j loop in parallel using the GM I, it will be more beneficial by
having the i loop nested inside of the j loop as shown in the second loop part of

Figure 6.9. Therefore, we interchange the i and j loop.

6.6.3 Loop Alignment

The last transformation we consider deals with loops that appear to exhibit a
flow of values among iterations as shown in Figure 6.10. In the first loop we see
that the value stored in A(i) during the i'" iteration is used in the next iteration.

This appears to render this loop unparallelizable. However, since this is the only

CHAPTER 6. PERFORMANCE ANALYSIS

for i in 1..N loop

temp := A(i); —— Reuse of temp impedes parallelization
A(i) := B(i);
B(i) := temp;

end loop;

declare

subtype swap _range is integer range 1..N;
procedure loop_body (i : swap_range) is

temp : item; —— Give each iteration its own copy
begin

temp := A(i);

A(i) := B(i);

B(i) := temp;

end loop_body;

package swap is new gen_minitask (swap_range, loop_body);

begin
if not swap.success then
—— Handle error condition appropriately.
end if;

end;

Figure 6.8: An Example of Scalar Expansion

167

CHAPTER 6. PERFORMANCE ANALYSIS 166

compilation system. Since dependence analysis is beyond the scoop of this work

we refer the interested reader to [Hin88,BC86] for a more detailed discussion.

6.6.1 Scalar Expansion

The most useful transformation that can be performed to parallelize a loop is
scalar expansion. Consider the two loops shown in Figure 6.8. In the first
loop arrays A and B are being interchanged, element by element. Since the
scalar, temp, is reused during each iteration, it appears that this loop is not
parallelizable. However, notice that no values stored in temp during one iteration
flow to any other iteration. Therefore, if each iteration is allocated its own temp
variable, this loop can be executed in parallel. In the second part of Figure 6.8

we show the resulting transformation and incorporate it with the GM1I.

6.6.2 Loop Interchange

Another useful transformation is loop interchange. Recall from Chapter 5 that
when two nested loops, one parallel, one sequential, surround a section of code
it is better to execute the outer loop in parallel, and the inner loop sequentially

> The primary reason for this is to reduce the number

on a multiprocessor.
of fork-join points, while also increasing the size of the outer loop as done in
chunking.

Consider the nested loops in the first part of Figure 6.9. Due to the flow of

values in the i loop, it must be executed sequentially. However, as no values flow

50n a vector machine the opposite is true. Since a parallel loop can correspond to a vector
operation, we desire these loops to enclose basic instructions only; a sequential loop enclosed by
a parallel loop is not beneficial on a vector machine.

CHAPTER 6. PERFORMANCE ANALYSIS 165

for i in 1..N loop
A(i) := 2 * A(i-1);

end loop;

task body iteration is

i : integer;
begin

i := get_iteration; —— A function that gets the iterate

if i /=1 then —— First iterate need not wait
accept signal do —— Wait for previous iterate

null :

end signal;

end if;

A(i) := 2 * A(i-1);

if i /= N then —— Last iterate has no one to signal
par_loop (i+1).signal; —— Signal next iterate

end if;

end iteration:

Figure 6.7: A Non-Parallel Loop with Synchronization Inserted

perform this synchronization. Therefore, we suggest a sequential execution for

loops of this type.

However, some seemingly sequential loops can be executed in parallel with
the help of special transformations. In the remainder of this section we discuss
three types of transformations. The transformations we discuss have been de-
veloped by the fields of vectorizing and parallelizing compilers, compilers that
attempt to automatically convert serial loops into parallel ones.* Although these
transformation are predominately performed on Fortran programs, most apply
to Ada as well. As is the case with chunking, these transformations can either be
performed manually by the programmer or automatically by the compiler. The

latter approach requires incorporating sophisticated dependence analysis into a

4Although vectorizing compilers deal only with loops, some parallelizing compilers
[BCF*88,CHHB89] also focus on other areas of the program to find parallelism.

CHAPTER 6. PERFORMANCE ANALYSIS 164

¢ is the chunking factor (the number of iterations per processor). This enhance-
ment increases the size of the body of the loop, without increasing the total
computation, and thereby increases the efficiency of our idiom. Furthermore,
the number of minitasks required is reduced by ¢, freeing processors for other
uses.

This enhancement can be performed either by the programmer, sometimes
called loop coalescing, or by the implementation, often referred to as chunking.
The matrix multiplication example in Appendix A specifies an example of loop
coalescing. For more details on chunking, see the work by Flynn and Flynn

[FHI0] and Kruskal and Weiss [KW85].

6.6 Other Types of Loops

Up to this point we have dealt solely with parallel loops with no synchronization
requirements. In this section we discuss how loops that require synchronization
among iterations can be handled by our idiom and other methods.

The first loop in Figure 6.7 gives an example of a loop that cannot be executed
in parallel without the presence of synchronization; values computed in iteration
¢ are used in iteration ¢ + 1. In order to execute this loop in parallel, explicit
synchronization is required; iteration ¢ must signal iteration : + 1 after it stores
the value in A(7). Likewise, iteration 7 + 1 must wait for this signal before it
may use the value of A(i — 1). Although synchronization for this loop can be
specified in Ada, (see Figure 6.7), the resulting program is inefficient. Since most
of iteration ¢ must be executed before iteration ¢ + 1 is executed, any increase of

performance due to parallelism is offset by the additional overhead required to

CHAPTER 6. PERFORMANCE ANALYSIS 163

the same as the number of iterations. This implies a form of chunking is present.
Chunking was discussed in Chapter 5 and is addressed in a different context in
the next section.

Note that the unit of measure for vS FORTRAN is a machine instruction
rather than a C instruction that was used for the gen_minitask idiom. With this
in mind, it is clear that the complete constant overhead for vS FORTRAN is lower
than the gen_minitask idiom (121 machine instructions vs. 413 C instructions).
However, it is also clear that the cost for initializing each iteration is much less
with the gen_minitask idiom than it is with vS FORTRAN (38 C instructions vs.
290 * N machine instructions). As the latter comparison is more critical, we
conclude that our idiom compares favorably with the parallel loop construct of

VS FORTRAN.

Further Enhancements

In addition to providing a useful metric for the performance of a parallel con-
struction, the efficiency formula can also be used as a guide to increase system

performance. For example, let’s consider the equation for E,,,.

B = s

As we can see, E,, is a function of S, the average size of loop body. By
increasing this size, we can improve the efficiency of the GMI. Furthermore, we
wish to increase S, without increasing the total amount of computation to be
performed.

One way of achieving this is to assign more than one iteration to a minitask.

Using this scheme each minitask will execute an average loop body of ¢- S, where

CHAPTER 6. PERFORMANCE ANALYSIS

AVERAGE THREAD SIZE
EFFICIENCY Apa PLE | TREE-BaSEpD PLE | Gen_Minitask

5% 22.4-N +43.7 34.4. Llog NJ + 29 21.6
10% 4T3-N+944 | 726 [logN]| +63.4 47.9
20% 106.5- N + 213 | 163.3 - [log N| + 143.3 110.3
30% 182.6 - N + 370 | 279.9 - |log N| + 250.4 190.4
40% 284 - N + 576.7 | 435.3 - [log N| + 390.7 297.3
50% 426 - N + 866 653 - |log N| + 587 447.0

Table 6.7: Average Thread Size Required for Various Efficiency Levels

A Comparison with IBM VS Fortran

162

Another way of evaluating the efficiency of our idiom is to compare its overhead

with the overhead of a parallel loop from a different language. We have see

that our idiom requires 451 C instructions before all minitasks begin executing.

As a comparison we give the corresponding figures for vs FORTRAN [IBM89] as

estimated by Cytron [Cyt91].

The Parallel Loop construct in VS FORTRAN executed on a 3090 requires:

58 machine instructions to initiate a parallel loop,

290 machine instructions to initialize each iteration thread,

58 machine instructions to terminate the loop construct.

5 machine instructions (performed in parallel) for each thread commence,

Thus, 121 4290 % N instructions are required to execute a parallel loop in Vs

FORTRAN on a 3090, where N is the number of processors assigned to execute

the loop. Note that the number of processors assigned to a loop isn’t necessarily

CHAPTER 6. PERFORMANCE ANALYSIS 161

for the tree-base PLFE out performs the serial version.

Efficiency of the GM I

In this section we apply (13) to the gen_minitask construct and get:

S+2
E,, = 17
g 451+ S (17)

Comparing E,,, with E,. and Ej,.., we see two major differences:
1. E,, does not depend on N.
2. E,,, has a lower constant factor associated with its overhead.

These two differences substantially reduce the size of each thread that is needed
to obtain a particular level of efficiency. Since E,,, does not depend on N, we
use (14) to solve for S.

E,, - 451 — 2

S
1—E,.,

(18)

We use (18) with E,,,, = 25% to compute the required value of S. We contrast
this value which is constant for all values of N with the values of the other two
idioms (Figure 6.6).

In Table 6.7 we use (18) to specify the size of each thread that is needed
to achieve various levels of efficiency. From this table we see that obtaining an
efficiency of 50% with the gen_minitask requires 451 instructions. Although this
value may seem rather large, the GMI is able to achieve reasonable levels of
efficiency with small thread sizes, something both versions of the Ada PLE are

unable to do.

CHAPTER 6. PERFORMANCE ANALYSIS 160

5000

4500 :

4000

3500

3000 .

2500+ i

2000

1500

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

1000+ [T ’ 1

Average Number of Instructions Per Iteration

,,,,,,,,

500 | |

5 10 15 20 25 30 35 40 45 50

Number of Iterations
Figure 6.6: 25% Efficiency for E (- +), Etree(— — —), and Ey,(—)
Efficiency of the Ada PLE With Tree-Based Initialization

Applying (13) to the tree-base version of the Ada PLE, we get:

S+2
653 - [log N| + 591+ S

Etree (16)

As is the case with the serial version of the Ada PLE, the efficiency of the
tree-based version is a function of the number of threads and the size of each
thread. Note that a linear term has been replace by a logarithmic one.

Once again we use (14) to compute the values of S that is needed to obtain
an efficiency rate of 25% (Figure 6.6). We compare these values with those of

the serial version of the Ada PLE. As expected the average thread size required

CHAPTER 6. PERFORMANCE ANALYSIS 159

- (13)

As O, is usually greater than 2, efficiency ranges from 0 to 1. Solving (13)

for S, we get:

Efficiency of the Ada PLE

Equation 13 specifies that the efficiency of a parallel loop construct is a function
of its overhead and the size of each iteration. Applying this equation to the Ada
PLE, we get:

S+2
5

Ey. 15
" 426 - N + 870+ S (15)

The efficiency of the Ada PLFE is a function of the number of threads and the size
of each thread. Since the denominator of (15) contains a rather large constant
factor (870) and also a large factor of N (426), it takes a significant thread size
to get the efficiency close to one.

To get a feel for the significance of this denominator, we use (14) to compute
the values of S for particular values of N that are needed to achieve an efficiency
of 25% (see Figure 6.6). In order to obtain this level of efficiency, the size of
each thread must increases rapidly as N gets larger. Once again this is a result

of the serial bottleneck that is required in distributing iterates to each task.

CHAPTER 6. PERFORMANCE ANALYSIS 158

reducing the running time of their program, but reducing it in proportion to the
amount of parallelism that is present. In this section we examine each parallel
loop construct in this light; we determine how efficient they are in achieving
their optimal performance.

Before we discuss efficiency we define the speedup of parallel loop construct
¢, SP., in the usual manner. That is, it is the ratio of the number of executed
instructions of the sequential version to the number of executed instructions of

the parallel version, i.e.
_ SEQ
- PAR.

SP. (12)

Speedup is useful in measuring how much faster a parallel construct is com-
pared to the sequential version. A speedup greater than one signifies that the
parallel version is faster than the sequential version, a desirable result. How-
ever, this metric does not convey how much parallelism is required to achieve
this value. An application with a speedup of five using five tasks should be
distinguished from an application with a speedup of five using ten tasks. As the
second application needs five more tasks to achieve the same speedup, it is not
as efficient.?

To capture how efficient an application is in utilizing its resources, the metric,
efficiency is defined. E. is the ratio of the speedup for parallel loop construct ¢

over the number of tasks that are used, i.e.

SP,
E. =

3In this discussion we assume all tasks are being used productively.

CHAPTER 6. PERFORMANCE ANALYSIS 157

illustrates for a given number of iterations the number of instructions that are
required for parallel execution to be beneficial. All coordinates that lie below the
curve correspond to values of the iteration size and number of iterations where
the parallel construct is not beneficial. Likewise, all coordinates above the curve
show values where the parallel construct out performs sequential execution.

This figure illustrates that the gen_minitask idiom is the most general in
that it requires both a smaller number of iterations and iteration size than
the other two idioms. For example, when N = 100, the Ada PLE and its
tree-based version require an average iteration size of greater than 437 and 43
instructions, respectively, to justify their use, while the GMI only requires an
average iteration size of 2.5 instructions. While it is certainly possible for a
parallel loop to contain an average iteration size of 43 instructions, this threshold
is rather high considering this is the first point at which an increased performance
is obtained.

While this metric shows that the GM T is much more efficient than the two
versions of the Ada PLE, it more importantly illustrates that the granularity
of our idiom is small; for all but the smallest loops, our idiom is superior to a

sequential execution.

6.5.2 Efficiency

The previous section describes the lower bound granularity required to offset
the overhead associated with a parallel loop construct. This metric is useful
in determining when it is beneficial to use a parallel loop construct. However,

most applications that employ parallelism do so with the expectation of not only

CHAPTER 6. PERFORMANCE ANALYSIS 156
Computing LBG,,,

Lastly, we compute LBG,,,, the lower bound granularity for the GMI. Since
Oy = 451, we have
BN N <225
LBG,, = (11)
0 if N > 226
The value of LBG,, is also equal to zero as N gets larger. Thisis as expected;
as the amount of parallelism increases, the required grain size that is needed to

offset the overhead decreases. Although the limits of LBG,,, and LBGy,.. are

equal, the GM I out performs the tree-based version of the Ada PLE.

800
700}
600 - ,\\
500

400

300+

200

Average Number of Instructions Per Iteration

100+

0 10 20 30 40 50 éO 70 80 90 100

Number of Iterations

Figure 6.5: LBG (-), LBGtree(——), and LBG,,(—)

In Figure 6.5, we plot the values of LBG ., LBG¢.. and LBG,,,. Each curve

CHAPTER 6. PERFORMANCE ANALYSIS 155

Regardless of the level of parallelism of our machine, the average size of each
iteration must be greater than 424 instructions in order for the execution time
to be reduced. As this number is rather large, we can see why the Ada task is
considered to be a coarse grain construct not amenable to loop-level parallelism.
This is a direct consequence of the serial bottleneck that is present in distributing

iterates to each task.

Computing LBG,..

We next compute LBGy,., the lower bound granularity for the Ada PLE using
the tree-based initialization. As in the case of the serial Ada PLE we use (8)
to compute this value. Since Oy, = 653 - [log N| + 591, for values of N where
653 - [log N| + 591 > 2- N we have

655-[log NJ+391-2N i¢ 653 . |]oo N| +591 >2- N
LBGy.. = Nt llog) (10)

0 otherwise

For sufficiently large N, 653- |log N |+591 < 2- N, thereby making LBG4,.e =
0. This fact confirms our intuition that as N becomes large, the tree-based
version of initializing the Ada PLE is more efficient than its serial counterpart;
the required granularity per processor is zero. However, we shall see that it still

does not provide a means of realizing efficient loop-level parallelism.

CHAPTER 6. PERFORMANCE ANALYSIS 154

the running time of the program. To compute LBG,. we need to find the value
of S such that
SEQ) = PAR..

Substituting (5) and (6), and solving for S we get the following:

0.—2-N
LBG. = —/—/——
G N1 (7)

As the unit of measure for LBG. is the average number of instructions in an

iteration, it is bounded below by 0. Thus, the formal definition of LBG. is:

(8)

0 otherwise

Oc—2-N : ¢

Equation 8 provides a lower bound grain size for any parallel loop construct.

In particular, it can be applied to our three parallel loop constructs. In this

way we can determine the minimum number of instructions each must execute

before any savings due to parallelism is realized.

Computing LBG.

First we consider the Ada PLFE construct with serial initialization. Recall from

Table 6.6 that O, = 426 - N + 870. Therefore,

424 - N + 870
LBG,. _
Gpl N —1 (9)
For large values of N we find:
lim 424- N +870 — 494,

CHAPTER 6. PERFORMANCE ANALYSIS 153

Definition 1 Let N be the number of iterations of a loop, S be the average
number of instructions executed by each iteration, and O,., be the iteration
overhead associated with a sequential loop. The number of instructions required

to execute the loop sequentially is given by
SEQ =N - (S + Osy). (5)

Since two C instructions are needed to increment and test the index variable

of loop, Oy, = 2.

Definition 2 Let O. represent the overhead of a parallel loop construct ¢ and S
be the average number of instructions executed by each iteration. The number

of instructions required to execute the loop in parallel using ¢ is
PAR.=0.+ S. (6)

In order to determine the granularity of a particular parallel construct we
first determine the point at which the parallel construct reduces the execution
time as compared with the sequential execution, i.e. at what point is it beneficial

to utilize this construct. We define this point formally.

Definition 3 Let ¢ be a parallel loop construct. We define LBG.., Lower Bound
Granularity of ¢, to be the minimum average number of instructions executed by
each iteration such that the number of instructions executed using ¢ (a parallel
construct) is equal to the number of instructions executed by the sequential

version of the loop.

By computing the LBG. for a loop construct ¢, we obtain a lower bound for

this construct; any use of ¢ with greater than this number of instructions reduces

CHAPTER 6. PERFORMANCE ANALYSIS 152

| Actmion | Apa PLE | TREE-BAseDp Apa PLE| GMI |
Initiation 975 975 413
Initialization || 426 - N — 105 653 - [log N| — 384 38

| Total [426- N +870 [653-[logN]+591 | 451 |

Table 6.6: Overhead Requirement for Each Parallel Loop Idiom

It shows that task initiation is reduced by over 50% using the GMI. Further-
more, a more significant savings is found in the initialization process. The GMT
requires a constant number of instructions regardless of the number of iterations
to be executed, where as both versions of the Ada PLFE require a number of in-
structions dependent on the number of iterations of the parallel loop. Although
the tree-based version of the Ada PLE replaces a linear term with a logarithmic
one, it is nevertheless still dependent on N. This fact combined with the high
initiation requirements required for both versions of the Ada PLFE renders them

inappropriate in obtaining efficient loop-level parallelism.

6.5.1 Granularity

Once the overhead for a parallel loop construct has been determined, its granu-
larity can be computed. The previous section identified the amount of overhead
required for the GM T and the two versions of the Ada PLE. In this section we
compute the granularity for all three versions of parallel loops.

Before we discuss granularity, we define two terms, SEQ and PAR.. The
former corresponds to the number of instructions required to execute a loop
sequentially, while the latter represents the number of instructions needed to

execute the loop in parallel using parallel loop construct c.

CHAPTER 6. PERFORMANCE ANALYSIS 151

ACTION NUMBER OF
PERFORMED INSTRUCTIONS
faa Function Call 0
loop_body Function Call 38

Table 6.5: Initialization Overhead for each Minitask

increased functionality not normally associated with parallel loops. Namely, the
ability to create local objects, be it variables, subprograms, or tasks. For this
reason, we cannot “inline” the loop_body procedure. In Table 6.5, we specify the
number of instructions required to implement the faa function call and the call

to the loop_body procedure.

We now consider the combined overhead required before a minitask begins
its execution. From Table 6.4, we see that 413 instructions are required for
minitask initiation. Once a minitask has been initiated, it executes an additional
38 instructions during its initialization. Therefore a total of 451 instructions are

executed before each minitask begins its execution.

6.5 Comparing Parallel Loop Idioms

In this section we compare the overhead requirements of the gen_minitask idiom
with those of both versions of the Ada PLE. As expected our idiom compares
favorably. We discuss issues of granularity and efficiency for each of the parallel
loops idioms.

Table 6.6 specifies the overhead requirements for each form of parallel loop.

CHAPTER 6. PERFORMANCE ANALYSIS 150

task body minitask is
iterate : iteration_range;
procedure record_exception (exception_raised : exception_type) is

end record_exception;

begin
iterate := iteration_range (iteration_counter.faa (1));
loop_body (iterate);

exception

end minitask;

Figure 6.4: The Body of a Minitask

phase of both versions of the Ada PLE.

Consider the body of the minitask as shown in Figure 6.4. Once a minitask 1s
activated, it performs two operations before the sequence of statements of the
parallel loop are executed; it calls the faa function to obtain its iterate, and then

it calls the procedure, loop_body, to execute the corresponding iteration.

The faa function call is implemented in a highly optimized manner; multiple
faa requests are performed in parallel. Moreover, as described in Chapter 4, we
acquire the value of the iterate for free; we do not need to execute any additional
instructions to obtain this value. As we have seen in Sections 6.2.2 and 6.3.1,
this is a substantial savings over the corresponding method used to distribute
iterates to each task of the Ada PLE.

We implement the procedure call to loop_body in the usual manner. At first
glance, one may wish to remove the procedure call by inserting the code of the
procedure into the minitask body itself. However, recall that by allowing the

user of our idiom to specify the body of the loop using a procedure, we provide

CHAPTER 6. PERFORMANCE ANALYSIS 149

ACTION NUMBER OF | PERCENTAGE
PERFORMED INSTRUCTIONS OF TOTAL
Pre-Minitask Creation 149 36%
Minitask Creation/Activation 198 48%
Post Execution 66 16%
[Total I 413 | 100% |

Table 6.4: Initiation Overhead for a Family of Minitasks

Recall that in order to initiate tasks in the Ada PLE a synchronization point
exists between task creation and task activation. To implement this synchro-
nization point, a “join” and subsequent “fork” must take place. If a processor
executing a thread is delayed before the join occurs, the fork, and subsequently
all threads will be delayed. Although our analysis accounts for the instructions
that are executed to perform the join and fork, it does not account for the
possible delays in performing this join.

In the GMT task creation and activation are combined; no synchronization
point exists. Therefore, delays of this type only affect the task executing on the

processor that exhibits the delay, not all tasks.

6.4.2 Minitask Initialization

In this section we analyze the number of instructions each minitask executes to
receive its unique identity or iterate. This initialization must occur before a
minitask can begin to execute the sequence of statements of the procedure that
corresponds to the body of the parallel loop. The overhead required for our

idiom is substantially less than the overhead associated with the initialization

CHAPTER 6. PERFORMANCE ANALYSIS 148
e Passing these objects as parameters to the generic instantiation.
Minitask Creation/Activation: This category represents all actions involved
with the creation and activation of minitasks. Since minitask creation and
activation are combined, this category includes actions that are the se-

mantic equivalent to task creation, post task creation, and task activation

in the Ada PLE. It includes the following actions:
e The parent task places the appropriate number of minitask items on
to the parallel queue.

e Each of these items is removed by a processor and a minitask is cre-

ated.

e The declarative part of each minitask is elaborated.
Post Execution: This category involves:

e reclaiming storage for each of the minitasks,
e exiting the package’s stack frames,
e unblocking the parent task, and

o the parent task exiting the stack frame of the block statement.

Table 6.4 specifies the number of the instructions that are performed to
complete each of these categories. Although these initiation figures offer a better
than 50% improvement over the corresponding figures for the Ada PLE, the

actual performance may be even better:

CHAPTER 6. PERFORMANCE ANALYSIS 147

e Our implementation combines task creation with task activation and per-
forms these combined operations in parallel with other creation/activation

operations.

e Our implementation reduces the number of instructions needed to create

each iteration task by reducing the status required for each of these tasks.

e Our implementation distributes unique iterates to each task in parallel.

Although all four of these factors contribute to the reduction in overhead, the
last factor plays the most significant role.

In the next two sections we elaborate on these factors by providing the num-
ber of instructions that are required to perform minitask initiation and initializa-
tion. This is followed by Section 6.5 where we compare these numbers against

the corresponding values for both versions of the Ada PLE.

6.4.1 Minitask Initiation

In this section we describe the amount of overhead that is required to initiate a
family of minitasks. The figures we present include the elaboration of the sub-
type and procedure body, in addition to performing instantiation of the generic

package. We divide this initiation into the following three categories:

Pre-Minitask Creation: Actions that are performed before the creation of any

minitasks. These correspond to:

e Elaborating the subtype,

e Elaborating the loop body procedure, and

CHAPTER 6. PERFORMANCE ANALYSIS 146

326 and 327 instructions, respectively, we have the following upper bound for

the number of instructions needed to initialize N tasks in an incomplete tree:

INTL4ee(N) < 206+ 326 [log N| +327 - ([logN| — 1)+ 57 (3)

= 653 |logN| — 64 (4)

The first term in (3) corresponds to the parent task initializing task number 1.

The second and third terms represent the most left and right child initializa-

tions that can occur, respectively. The last term corresponds to the number of

instructions that a leaf node executes to determine that it has no children to
initialize.

Combining (2) and (4), we have the following inequality:

653 - [log N| — 384 < INTLy,eo(N) < 653 - |log N| — 64

As expected, the initialization overhead for the tree-base PLE is logarithmic in
N. As the lower and upper bounds for INT L;,.. are relatively close, we choose

to use the lower bound in our comparisons of Section 6.5.

6.4 The Gen Minitask Idiom (GMI)

In this section we describe the overhead associated with both versions of the
GMI. As expected, this overhead is substantially less than the overhead asso-
ciated with the Ada PLFE as described in the previous sections. The reduction

in overhead is due to a number of factors:

e Our implementation does not need to elaborate the types and objects

required for the Ada PLE.

CHAPTER 6. PERFORMANCE ANALYSIS 145

The true value of INTL;,..(N) is a function of how much of the leaf level is
complete. Instead of determining this value we derive an upper bound for it,
and show that this bound is quite close to the lower bound for INT Ly, ..(N).

As all tasks numbered less than C'Ty are initialized when we initialize C'Ty,
any task that would make INT Ly,..(N) greater than INT Ly,..(CTy) must be
numbered greater than C'Ty, i.e. it must be on the incomplete leaf level. Con-
sider one of these leaf tasks, T. As we have seen, the time at which T' becomes
initialized is a function of when its ancestors become initialized. Left children
become initialized after their parents are initialized. However, as right children
must wait for both their parent to become initialized and for the parent to ini-
tialize its left child, right children ancestors of 7' must wait the longest. Since
task C'Tx has to wait for [log N | left and right children initializations, any leaf
task that would make the value of INTLy,..(N) greater than INTLy,..(CTn)
must have to wait for more than |log CTx | left and right children initializations.

As task T is at level [logT'|, it must wait for [logT| left initializations or
326 - |log T'| instructions. Since |[logT| = |log CTy]| + 1, at most 326 additional
instructions can be attributed to left initializations. As right initializations
require one more instruction than left initializations, in order for INT Ly,.(T') to
be greater than INT Ly,..(CTn), at least [log CTx| right children initializations
must occur via the ancestors of T'.

Ounly one task at level |log T'| requires |log T'| right initializations: the right-
most task at level [logT'|. As the initialization of N tasks does not form a com-
plete tree, |logT'| right initializations cannot take place. Therefore, the most
delay task T can exhibit is by waiting for [log N| (= |log T'|) left initializations

and [log N| — 1 right initializations. Since a left and right initialization require

CHAPTER 6. PERFORMANCE ANALYSIS 144

initialize the root, or first task of the tree. Next, each of the ancestors of the N
must initialize their children. Since N forms a tree, there are |log N | ancestors of
N. Each ancestor must initialize two children which comprises 653 instructions.?
Therefore, an additional 653 - [log N | instructions must be executed before task
N 1s initialized.

Once task N has been initialized, it attempts to initialize potential chil-
dren tasks. Although it has no children tasks to initialize, it nevertheless has

to execute 57 instructions to determine this fact. Thus, the total number of

instructions required to initialize N tasks, where N forms a complete tree is:

INTLyeo(N) = 206+ 653 |logN| + 57

= 653 [logN| + 263 (1)

Incomplete Trees

We now compute INT Ls,..(N), where the initialization of these N tasks does

not form a complete tree. Therefore, we assume
N #£2F — 1 for all integers k > 1,

and let C'Tx be the task number that corresponds to the rightmost node on the
last complete level of the initialization tree for N tasks, i.e. CTy = 2lleN] 1,

Since the initialization of N tasks must include the initialization of the task

numbered CTy, a lower bound for INTL;,..(N) exists:

INTLyeo(CTy) < INTLy.(N) (2)

2We do not include the last 6 instructions associated with the initialization of a child task
because the children do not need to wait for these instructions to be executed before they are
initialized.

CHAPTER 6. PERFORMANCE ANALYSIS 143

PRE-ENTRY | ENTRY
CHILD CALL CALL | RENDEZVOUS || TOTAL
Left 170 59 97 326
Right 171 59 97 327
Post-Children - - - 6
‘ Total Per Iterate H - ‘ - ‘ - H 659 ‘

Table 6.3: Per Task Initialization Overhead for Tree-Based Version

task 2¢ becomes initialized 326 instructions after INT Ly,.(7), i.e.
INTLpee(21) = INT Lyyee (1) + 326.

Likewise, task 2¢ + 1 is initialized 327 instructions after INT Ly,..(27) or 653
instructions after INT Ly..(¢). Note that while task ¢ is performing the initial-

ization of task 2: + 1, task 2¢ can begin the initialization of its children tasks.

Complete Trees

To analyze the total overhead in performing these initializations we first consider

the case when the initialization of N forms a complete tree. Thus, let
N = 2F — 1, for some integer k > 1.

Consider any level of the tree. As the right child of a task always get initialized
after the left child, it follows that the last task to be initialized in any complete
level of the tree is the rightmost task. Since a task cannot be initialized until
its parent is initialized, the last task to be initialized in a complete tree of size
N 1is the rightmost leaf task of the tree, i.e. task N.

To determine when task N is initialized, we consider what must precede it.

We have already seen that 206 instructions are required for the parent task to

CHAPTER 6. PERFORMANCE ANALYSIS 142

6.3.1 Initialization Overhead

We now focus our attention on the overhead required to initialize N tasks using
this method. After all tasks have been initiated, the parent task calls the entry
of the first task. Since a for loop is no longer needed, the category label pre-
entry call in Table 6.2 is reduced. However, the instructions required to perform
the entry call and rendezvous remain the same. A total of 206 instructions are
required for the first task to receive its iterate, and to reach the point immedi-
ately following the accept body. At this point the parent task no longer plays a
role in distributing iterates.

Since tasks in the array are activated in parallel, we assume they will reach
their accept statement before the parent task reaches its entry call. The in-
structions associated with these pre-initialization actions are included in the
instructions required for the parent task to distribute an iterate to the first
task. After a child task receives its iterate, it attempts to call the entries of
its two children. In Table 6.3, we categorize the instructions executed to carry
out the associated rendezvous into three phases: pre-entry call, entry call, and
rendezvous. As we can see, 326 and 327 instructions are required to initialize
the left and right child, respectively. As right child initialization occurs after left
child initialization, a total of 653 instructions are required to initialize a right
child.

We now determine the total amount of instructions required to initialize N
tasks using the tree-based approach. Consider a child task, i, with two children.
We define INT Li,..(t) to be the number of instructions required for task i to

become initialized using tree-based initialization. From Table 6.3 we see that

CHAPTER 6. PERFORMANCE ANALYSIS 141

declare
task type iteration_task is
entry get_iterate (iterate : in integer);
end iteration_task;

par_loop : array (1..N) of iteration_task;

task body iteration_task is
my _iterate, left_child : integer;
begin
accept get_iterate (iterate : in integer) do
my_iterate := iterate;
end get_iterate;

—— Distribute iterates to two potential children.

left_child := 2 * my_iterate;
if left_child < N then
par_loop (left_child).get _iterate (left_child);
if left_child + 1 < N then
par_loop (left_child 4+ 1).get_iterate (left_child + 1);
end if;
end if;
S
STL
end iteration_task;

begin —— Main only initializes the first task.
par_loop (1).get_iterate (1);
end;

Figure 6.3: Tree-Based Initialization Variant of the Ada PLE

CHAPTER 6. PERFORMANCE ANALYSIS 140

executing its iteration 426 instructions after the :** task has begun its iteration,
1.e.

INTL,.(i + 1) = INTL,.(i) + 426.

Therefore, the total overhead of the Ada PLFE is linearly dependent on N and
is given by
Opie = 426 - N + 870.

We shall see in Section 6.5 that this fact renders the Ada PLE inappropriate

for expressing loop-level parallelism.

6.3 Tree-Based Initialization

As the last section illustrates, distributing identities sequentially significantly
increases overhead. An alternative method of task initialization is to have each
child task distribute identities to other tasks in a tree-like manner. We refer to
this method as tree-based initialization.

As shown in Figure 6.3, this scheme replaces the N entry calls formerly in the
parent task with one entry call to the first task of the par_loop array. However,
each task, T, of the array is now responsible for distributing iterates to two
children tasks.! We refer to these children as the left and right child of 7. To
determine these tasks a “heapsort”-like method is used; a task with iterate 2
has descendants with iterates 2: and 2: 4+ 1. As this method has greater built-in

parallelism, we can expect a logarithmic overhead, instead of a linear one.

1From here on “children” is meant in the sense of the initialization tree.

CHAPTER 6. PERFORMANCE ANALYSIS 139

the 198 instructions that are attributed to the child task in the accept statement
category of Table 6.2.

Once the parent and first child task have executed their pre-rendezvous in-
structions, a rendezvous occurs. While the body of the accept statement is
performed by the child’s processor, the parent task is blocked. The body of the
accept statement requires 97 instructions to execute. Upon its completion the
child task begins to execute the iteration of the parallel loop that it has been
assigned. At this point this iteration has begun.

The parent task, however, has only begun with its job. After the rendezvous
has completed, the processor executing the parent task executes instructions
labeled post entry call to unblock the parent task. Omnce the parent task has
been unblocked, it attempts to execute the next iteration of the for loop, which
includes some loop overhead. Once this has been performed, the next entry call
is made, and this process continues.

From Table 6.2 we can conclude that 321 instructions are required to ini-
tialized the first task using the Ada PLE. Combined with the 975 instructions
that are executed by the parent task to initiate this task, we see that 1,296
instructions are executed before the first iteration commences.

We define INTL,.(N) to be the number of instructions required to initialize
N iterations using the Ada PLE. Note that INTL,, does not include those
instructions required to initiate these N tasks.

Table 6.2 allows us to compute when the second and subsequent children
tasks begin executing their iterations. As task initialization is performed se-
quentially, the i child task must wait for 7 — 1 children tasks to acquire their

identity before it can receive its own. In particular, the ¢ + 1% child task begins

CHAPTER 6. PERFORMANCE ANALYSIS 138

| ACTION(S) PERFORMED | PARENT TasK | CHILD TAsK
Pre-Entry Call/Pre-Accept Stmt. 165 16
Entry Call/Accept Stmt. 59 198
Rendezvous 97
Post Entry Call 130 T
Loop Overhead 140
Entry Call/Accept Stint. 59 198
Rendezvous 97
Post Entry Call 130 T

TAt this point the child task begins its execution.

Table 6.2: Task Initialization Overhead for the Ada PLE

the execution rate of each task must be made. As mentioned in Section 6.1.1,
our analysis assumes that enough processors are available to execute each task,
and that each task executes at the same rate. Therefore, while the parent task
executes the instructions labeled pre-entry call and entry call, each of the N
children tasks execute the instructions labeled pre-accept statement and accept
statement. Since the number of instructions required to execute the pre-entry
call category is greater than the number of instructions required to execute
the pre-accept statement category (165 vs. 16), we assume that each child task

reaches its accept statement before the parent calls any entry.

While a child task waits for the parent task to perform its entry call, it
is blocked. In the Ada/Ed system a rendezvous is executed by the processor
of the task that executes the accept statement. Thus, when the parent task
executes this entry call, it awakens the child task. This blocking of the child

task, and its subsequent awakening by the parent account for the majority of

CHAPTER 6. PERFORMANCE ANALYSIS 137

ACTION NUMBER OF | PERCENTAGE
PERFORMED INSTRUCTIONS OF TOTAL
Pre-Task Creation 465 47.7%
Task Creation 216 22.1%
Post Task Creation 33 3.4%
Task Activation 227 23.3%
Post Execution 34 3.5%
| Total [975 | 100.0% |

Table 6.1: Task Initiation Overhead for the Ada PLFE

amount of the overhead associated with the Ada PLE.

In order to distribute a unique identity, or iterate, to each task, a task must
call each child task’s entry, specifying the iterate as a parameter. In the case
of the Ada PLE, these calls are performed by the parent task. As it is not
possible for these entry calls to be performed parallel, iterates are distributed
sequentially (see Figure 6.1 on page 130). Since each child task cannot begin its
execution until it receives this iterate, the first action it performs is to execute
an accept statement on that entry.

At the conclusion of the rendezvous the child task begins executing the itera-
tion of the parallel loop it has been assigned. At the same time, the parent task
continues executing its for loop and calls the entry of the next task. This process
continues until all iterates have been distributed. As this is a serial operation
for the parent, the amount of delay a child task must endure is dependent on
when its get_iterate entry is called by the parent.

Table 6.2 specifies the overhead involved in distributing iterates to each child

task. Since this involves the coordination of two tasks, some assumptions about

CHAPTER 6. PERFORMANCE ANALYSIS 136

Post Task Creation: After all tasks are created the rest of the declarative part

is elaborated. This includes elaborating the task body of iteration_task.

Task Activation: At the conclusion of the elaboration of the declarative part

all tasks are activated. This activation occurs in two steps:

o The parent task notifies all tasks that they may begin their execution;

it places them on the ready queue.

e Each new task elaborates its declarative part.

Post Execution: Once all tasks have terminated, their stacks are reclaimed
and the stack frame associated with the block statement in the parent

task is popped.

We specify the number of instructions needed to perform each of these actions
in Table 6.1. As this table illustrates, pre-task creation accounts for almost 50%
of the instructions that comprise task initiation. This is due to the elaboration
of the entities (task type and array) that are needed to specify a parallel loop
in Ada. As expected, most of the remaining overhead is due to task creation
(22.1%) and task activation (23.3%). Although these actions are also present
in the GM I, we shall see that most actions performed in the pre-task creation
category are not required, therefore allowing for the elimination of a significant

portion of task initiation overhead.

6.2.2 Task Initialization

In this section we examine the overhead that results when task initialization is

performed sequentially. We show that this process accounts for a substantial

CHAPTER 6. PERFORMANCE ANALYSIS 135

Task Initiation: This category includes the instructions required to initiate

the tasks of the array.

Task Initialization: Once the tasks have been initiated, their iterates must be
distributed. This category includes the instructions required to distribute

unique identities to each task, i.e. to solve the task initialization problem.

In the next two sections we discuss the overhead associated with each of

these categories in executing the Ada PLE.

6.2.1 Task Initiation

Although task creation and task activation comprise a major portion of task

initiation, other actions must be performed. These actions include:

Pre-Task Creation: This category includes actions that are completed before
the tasks are created. These actions create the Ada objects that are needed

to construct a parallel loop. They include:

e the elaboration of the task type, iteration_task, and

o the elaboration of the array, par_loop, up to, but not including, the

creation of the tasks.

Task Creation: Once the task type and array have been created, the creation
of each task takes place. This involves allocating and initializing the task’s
stack and tcb. As the reference manual specifies that the order in which
these creations occur is “not defined by the language” (ARM 9.2(2), 3.2.1),

the Ada/Ed system performs them in parallel.

CHAPTER 6. PERFORMANCE ANALYSIS 134

6.1.1 Assumptions

In order to provide a reasonable measurement of overhead we make some sim-

plifying assumptions:

1. All tasks execute at the same rate. If N tasks execute the same ten
instructions starting at the same time, we assume all complete in the time
it takes one task to execute ten instructions. To compare with a sequential

execution we say that ten instructions are executed.

2. There are sufficient processors available to execute all parallel actions. If
N tasks are eligible to execute, we assume at least N processors exist to
execute them. It is a simple matter to scale our results when the number

of tasks is greater than the number of processors.

3. No error conditions arise. Although it is certainly possible for a run time
error (e.g. storage_error) to occur, we are most interested in the cases where
no errors occur. Thus, when code is encountered that is conditionally
dependent on whether an error condition has occurred, we assume that

the non-error branch is taken.

6.2 The Ada Parallel Loop Equivalent (PLFE)

In this section we describe the amount of overhead that is required to execute the
Ada PLE in the Ada/Ed system. We divide the instructions that are executed

by the Ada PLFE into two categories:

CHAPTER 6. PERFORMANCE ANALYSIS 133

methods of obtaining parallel loops in Ada and suggest further enhancements.

6.1 Preliminaries

As noted in Chapter 2, our implementation is based on the Ada/Ed system, a
descendant of the first validated Ada compiler [DFS*80]. In addition to pro-
viding the basis for the implementation of the gen_minitask idiom, we use the
Ada/Ed implementation to determine the overhead associated with executing
the Ada PLE. Although this overhead figure is likely to differ from the corre-
sponding figures of other implementations, we feel that as our implementation
utilizes the same compiler model as the Ada/Ed system, it is a fair comparison.
Moreover, sources of overhead in the actions performed by the Ada/Ed system
are mandated by the semantics of Ada, and therefore, must be performed by
any implementation.

Since we do not have access to an Ada implementation on a parallel machine,
our overhead analysis is static. As both the Ada/Ed system and our implemen-
tation are interpreters written in C, the unit of measure we use in our analysis is
the number of C instructions executed by each implementation. Although this
approach may not be as accurate as counting machine instructions, we feel that
the results presented in this chapter are a good approximation of the magnitude

of the overhead of both, our implementation, and a standard implementation of

the Ada PLE.

CHAPTER 6. PERFORMANCE ANALYSIS 132

declare
subtype my loop_range is integer range 1..N;
procedure my_loop_body (my_iterate : my_loop_range) is
begin
S51;

Sni
end my_loop;

—— This instantiation corresponds to the execution
—— of all N iterations.
package my minitask is new
gen_minitask (my_loop_range,my_loop_body);
begin
if not my_minitask.success then
—— Handle error condition.
end if ;

end;

Figure 6.2: A Parallel Loop Using the Gen_Minitask Idiom (GM1I)

for the parent thread to inspect the status of the tasks that play the role of
iterates; the conditional in Figure 6.2 cannot be written in Figure 6.1. For
this reason, we do not include the instructions associated with executing this
conditional in computing its overhead. However, we do account for the allocation
and recording of status information that is used when executing this conditional.
The GM1 also provides two functions that allow the parent thread to inspect the
completion status of each iteration. It thereby provides a more robust version
of a parallel loop, in addition to a reduction in overhead.

The rest of this chapter is organized in the following manner. First we present
the assumptions that underly our analysis. Next we analyze the overhead asso-
ciated with the Ada PLFE and a tree-based variant. This is followed by a similar

analysis of the gen_minitask idiom. We conclude the chapter by comparing both

CHAPTER 6. PERFORMANCE ANALYSIS 131

declare
task type iteration_task is
entry get_iterate (iterate : in integer);
end iteration_task;

par_loop : array (1..N) of iteration_task;

task body iteration_task is
my _iterate : integer;

begin
accept get_iterate (iterate : in integer) do
my_iterate := iterate; —— Acquire iterate from parent.
end get _iterate;
S
STL
end iteration_task;
begin —— All “iterations” begin to execute.
for i in 1..N loop —— Iterations are distributed sequentially.
par_loop (i).get_iterate (i);
end loop;
end; —— Wait for all iteration_tasks to terminate.

Figure 6.1: An Ada Parallel Loop Equivalent (PLE)

Chapter 6

Performance Analysis

In this chapter we analyze the performance of three implementations of a par-
allel loop written in Ada. The first two methods represent standard ways of
expressing such a parallel loop. We describe the amount of overhead that is
required to execute both of these methods. These figures are compared to the
execution overhead of our implementation using the gen_minitask idiom. We
show how the latter overhead compares favorably with the other two. We then
examine issues of granularity and efficiency for all three forms of parallel loops,
supporting the conclusion that our idiom provides a more efficient version of
loop-level parallelism.

We use the standard means of expressing a parallel loop in Ada as shown
in Figure 6.1. Throughout the rest of this chapter, we refer to this code as an
Ada “parallel loop equivalent” or PLE. Figure 6.2 contains the corresponding

example of the gen_minitask idiom or GM 1.

Although both versions of the parallel loop offer similar semantics, the GM T

provides an increase in functionality. In the Ada PLE there is no mechanism

130

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 129

‘ FuncrtioNn CALL ‘ VALUE RETURNED ‘

my _mini.task_completion(i); | my_mini.task_comp(i)

my_mini.task_exception(i); | my_mini.task_exc(i)

Note: iteration_range refers to the type parameter that was specified for the instantiation
of my_mini.

Table 5.7: Implementation of the task_completion and task_exception Subpro-
grams

The two functions, task_completion and task_exception are implemented in a
straightforward manner. Each call is translated to the appropriate dereference
operation into the two run time storage arrays: task_comp and task_exc. return-
ing the appropriate value to the caller. Table 5.7 specifies the implementation
details for these two functions. It assumes that the gen_minitask instantiation is

called my_mini.

CHAPTER 5. GEN_MINITASK IMPLEMENTATION

procedure create_and_execute_minitask
INPUTS: node
begin
Initialize local stack and tcb.
Mark that this processor is executing a minitask.
loop
iterate := node.id + node.iteration_rangefirst;
task_comp (iterate) := true;
task_exc (iterate) := None;
loop_body (iterate);
—— Check if we are the last minitask to terminate.
if fetch_and_add (node.parent.num_items,-1) = 1 then
unblock parent;
Mark that processor is NOT executing a minitask.
exit;
else —— Try to get another minitask.
node := dequeue next minitask in this family;
if node = NIL then
Mark that processor is NOT executing a minitask.
exit;
end if;
end if:
end loop;
end create_and_execute_minitask;

Figure 5.9: Algorithm to Create, and Execute a Minitask

128

CHAPTER 5. GEN_MINITASK IMPLEMENTATION

procedure create_minitask_family
INPUTS: iteration_range, loop_body
OUTPUTS: success
begin
success := alloc(1);
if alloc is unsuccessful then
raise STORAGE_ERROR In instantiating declarative part.
end if;
success .= true;
Let N = iteration_range’last - iteration_range’first + 1.
task_comp := alloc(N);
task_exc := alloc(N);
if either alloc is unsuccessful then
raise STORAGE_ERROR In instantiating declarative part.
end if;
Mark exception_type, task_completion and task_exception
visible to the instantiator.

if processor is already executing a minitask then
Execute minitasks sequentially.
else —— Execute minitasks in parallel.
my _tcb.num_items := N;
node := alloc (MINI_RTS_NODE_SIZE);
if alloc is unsuccessful then
raise STORAGE_ERROR.

end if;

node.mult := N;

node.proc := loop_body;
node.range := iteration_range;
node.parent := my.d;

node.type := CREATE_MINI;

enqueue (node);

block until a minitask child unblocks us.
end if;

end create_minitask_family;

Figure 5.8: Instantiating Task’s Algorithm

127

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 126

procedure handle_exception
INPUTS: exception, iterate
MODIFIED: success, task_comp, task_exc
of current instantiation.
begin
case exception is
when CONSTRAINT_ERROR =>
task_exc(iterate) := Constraint;
task_comp(iterate) := false;
success = false;
when NUMERIC_ERROR =>
task_exc(iterate) := Numeric;
task_comp(iterate) := false;
success = false;
when PROGRAM_ERROR =>
task_exc(iterate) := Program;
task_comp(iterate) := false;
success = false;
when STORAGE_ERROR =>
task_exc(iterate) := Storage;
task_comp(iterate) := false;
success = false;
when TASKING_ERROR =>
task_exc(iterate) := Tasking;
task_comp(iterate) := false;
success = false;
when others =>
task_exc(iterate) := Others;
task_comp(iterate) := false;
success = false;
end handle_exception;

Figure 5.7: Minitask Exception Handling Algorithm

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 125

Consider the case where an exception is raised and handled inside of loop-
_body. Under this scenario, the standard implementation ensures that control
passes to the appropriate exception handler; no special implementation is re-
quired.

Now consider the case when an exception is raised inside of the minitask,
but is not handled by the loop_body procedure. A “normal” implementation of
a minitask would install a handler upon entering the body of this task. This
handler would contain pointers to instructions to be executed depending on
what exception is raised. Since the minitask handler is known, we can create
a predefined handler that satisfies the semantics of the handler specified in the
body of the minitask. Using this approach we are able to avoid the overhead
involved with calling the procedure, record_exception; we execute its instructions
inline.

Figures 5.8 and 5.9 summarize the implementation described in this chapter.
Figure 5.8 specifies the actions that the instantiating task executes, while Fig-
ure 5.9 describes the manner in which each minitask is created, activated, and
commences execution. In the latter algorithm we assume that a process which
is not currently blocked on a minitask has dequeued a minitask item from the
queue. This item with multiplicity N is enqueued by the former algorithm.

Upon returning from the loop_body procedure the minitask algorithm at-
tempts to begin the execution of another minitask. If no more minitasks exist,
this routine terminates.

If an exception is raised or propagated to the body of the routine in Fig-
ure 5.9, it is handled as previously described; a default minitask exception han-

dler is present to handle these exceptions appropriately.

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 124

package body gen _minitask is

—— Create a fetch_and_add variable for minitask initialization.
package iteration_counter is new
gen_beacon(integer(iteration_range'first));

begin
declare
loop_tasks : array(iteration_range) of minitask;
begin
null ;
end;
end gen_minitask;

Figure 5.6: The Instantiation of Gen_Beacon Revisited

can be raised during the instantiation itself:
e an exception raised during the elaboration of the package declaration, and
e an exception raised during the execution of the package body.

If an exception is raised during the elaboration of the generic package decla-
ration, this exception is propagated to the declarative part that instantiated the
generic (ARM 11.4.2(7)). If an exception is raised while elaborating the declara-
tive part of gen_minitask, our implementation simply propagates this exception,
and abandons any further action concerning this instantiation.

When an exception is raised during the execution of the package body of the
minitask generic, different semantics are in effect. As mentioned in section 4.5.2,
the manner in which this type of exception is handled depends on where in the
minitask the exception is raised and whether an exception handler exists for the

generic parameter, loop_body.

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 123

| SYNCHRONIZATION POINT ‘ AcTION{ |

Start of activation Flush activator’s cache

End of activation None

Start of faa rendezvous None

Start of any other rendezvous Flush both tasks’ caches
End of faa rendezvous None

End of any other rendezvous Flush both tasks’ caches
Completion of task’s execution | Flush terminating task’s cache

i “Flush Cache” refers to flushing all Ada shared variables that have been written to
since the last cache flush.

Table 5.6: Cache Actions Required for Minitasks

Theorem 5.4 The instantiation of iteration_counter requires no run time action

to be performed.

Proof Consider iteration_counter, an instantiation of the gen_beacon generic
package as shown in Figure 5.6. This instantiation provides three subprograms:
read, write, and faa. In the body of each minitask object, only the faa function
is called. From the discussion in the previous paragraph and Section 5.5.2,
we have concluded that this call need not be performed. As this is the only
call that accesses the underlying beacon variable, no allocation of the beacon
variable, and therefore, the gen_beacon_struct need occur. Hence, instantiating

iteration_counter does not require any run time action. q

5.5.4 Handling Exceptions

This section describes the method employed to handle exceptions that may arise

during the execution of an instantiation of gen_minitask. Two types of exceptions

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 122

occur: the current value of the beacon shared variable is saved to be re-
turned, and the beacon shared variable is incremented by the appropriate
value. As the beacon shared variable is actually a local variable to the
beacon task, no access to an Ada shared variable is performed during the

rendezvous. For this reason, no cache flush is required at this time.

If other minitask rendezvous exist, a cache flush is required if any Ada

shared variables have been updated during the rendezvous.

At the completion of a task’s execution: When a minitask completes its
execution it can potentially have reference Ada shared variables. These
variable could have been cached locally and used by the instantiating task.
Therefore, when a minitask completes its execution, any Ada shared vari-

ables that have been store locally are flushed into global memory.

These results are summarized by Table 5.6.

In Section 5.5.2, we mentioned that the function call to faa can be optimized
away. However, we must note that this function call led to a rendezvous, and
thus, a synchronization point for Ada shared variables. Although this operation
is no longer needed, we must still ensure that the proper semantics are upheld
with respect to any Ada shared variables. Specifically, if any local copies of
an Ada shared variable exist, they must be flushed at the point where the
rendezvous would have occurred. As described above, no local copies of Ada
shared variables can exist, allowing for the cache flush, too, to be optimized

away.

The following theorem allows for another optimization to be performed.

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 121

The start of an activation is also a synchronization point with the task that
causes this activation, the task that instantiates the gen_minitask generic.
Since this task can possess local copies of Ada shared variables, they must

be flushed at the start of minitask activation.

At the end of its activation: Since no Ada shared variable is accessed during
the activation of a minitask, no cache flush is required. Similarly, as the
instantiating task does not access any variables since the start of this

activation, no cache flush is required for this task.

At the start of a rendezvous: Since minitasks do not contain entry points,
they can only execute rendezvous when they call another task. As we
saw in Chapter 3, the call to the faa function results in a rendezvous.
In the general case, this rendezvous would require a cache flush of any
of the caller’s Ada shared variables. However, this statement is the first
statement executed by a minitask; no local copies can exist. Thus, no cache

flush is required for this synchronization point.

If the procedure parameter to gen_minitask contains tasks, then other ren-
dezvous are possible. Under this scenario, the procedure would declare a
task and then call one of its entries. This call constitutes a synchroniza-
tion point for any Ada shared variables this procedure may have accessed.

Therefore, at this time any local copies of these variables must be flushed.

At the end of a rendezvous: Between the beginning and end of the ren-

dezvous that is executed by the call to the faa function, only two operations

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 120

The execution of the program is erroneous if any of these assumptions

1s violated.”

A synchronization point for a shared variable is defined in the following:

“Two tasks are synchronized at the start and end of their rendezvous.
At the start and at the end of its activation, a task is synchronized
with the task that causes this activation. A task that has completed

its execution is synchronized with any other task.” ARM 9.11(2)

As mentioned in ARM 9.11(7) an implementation is allowed to keep local
(cache) copies of an Ada shared variable associated with a task, flushing them
to global memory at the task’s synchronization points. Although the gen_-
minitask and gen_beacon generic packages do not contain any Ada shared vari-
ables, we cannot guarantee that a program that uses these generics does not
contain these variables. Therefore, in our implementation of an instantiation of
the gen_minitask generic, we must ensure that proper semantics are upheld in
respect to these Ada shared variables.

Note that although minitasks are not visible to the users of the gen_minitask
generic, the reference manual nevertheless requires that the above mentioned
synchronization points be honored with respect to Ada shared variables.

In considering how these synchronization points affect the minitask imple-

mentation, we consider each potential point in turn.

At the start of its activation: The beginning of a minitask activation is the
first synchronization point a minitask reaches. Since no memory accesses
have been made by the minitask, no local copies exist; no cache flushes

need to be performed for the activating minitask.

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 119

Theorem 5.3 allows us to remove the constraint check that is associated with
the faa call. Since the identity values returned by the dequeue operation of the
Ada/Ed RTS is a value starting at one [Hum88|, our implementation simply adds
iteration_range'first to this identity to obtain the proper iterate. This addition

replaces the faa function call.

5.5.3 Ada Shared Variables

In Section 3.3.1 of Chapter 3 we discussed how Ada shared variables and the
gen_beacon package interact. In this section we explore how the potential use of
these variables affect the implementation of the gen_minitask package.

Recall from Chapter 2 that an Ada shared variable is a scalar or access vari-
able that is not declared as pragma shared, but is nonetheless used in a shared
fashion, i.e. by several tasks without explicit synchronization. The manner in

which these types of shared variables can be used is described in ARM 9.11(3-6):

“For the actions performed by a program that uses shared variables,

the following assumptions can always be made:

e If between two synchronization points of a task, this task reads
a shared variable whose type is a scalar or access type, then the
variable is not updated by any other task at any time between

these two points.

o If between two synchronization points of a task, this task up-
dates a shared variable whose type is a scalar of access type,
then the variable is neither read nor updated by any other task

at any time between these two points.

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 118

that uniquely distinguishes the task to be created.

At the heart of the parallel queue algorithm is the fetch_and_add primitive.®
Although the value that is returned by this fetch_and_add operation is not avail-
able to the Ada programmer, it nevertheless does exist. The first operation of
a minitask is to acquire a unique identity via the fetch_and_add construct. Since
this identity has already been obtained by the dequeue operation, there is no
need to execute a fetch_and_add operation at the time a minitask is created.

As suggested by the code in Figure 5.5, after executing the fetch_and_add
operation, a constraint check is made to ensure that the value returned by faa
is in the bounds of iteration_range. However, the following theorem allows this

check to be eliminated.

Theorem 5.3 The value returned by the faa function in the body of minitask us

always within the range iteration_range'first .. .iteration_range’last.

Proof Upon instantiation of the gen_beacon package, the initial value sup-
plied for the beacon variable is iteration_range'first. The first call to faa returns
this initial value, while incrementing the beacon variable by one. By inspecting
the body of the minitask we see that exactly one call to faa is made for each mini-
task. Since iteration_range’last - iteration_range'first + 1 minitasks exist, precisely
this number of calls to faa are made. Since each call provides a unit increment,
the values iteration_range'first, iteration_range'first 4+ 1, ... iteration_range'last are
returned to each of these calls. Therefore, the values returned by the faa satisfy

the constraint specified by the iteration_range type. q

®For more information about this algorithm see [Hum8§].

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 117

task body minitask is
iterate : iteration_range;

procedure record_exception(exception_raised : exception_type) is
begin
task_status(iterate).exception_kind := exception_raised;
task_status(iterate).completed := false;
success ;= false;
end record_exception;

begin
iterate := iteration_range(iteration_counter.faa(1));
loop_body(iterate);

exception

when CONSTRAINT_ERROR =>> record_exception(Constraint);
when NUMERIC_ERROR =>> record_exception(Numeric);
when PROGRAM_ERROR => record_exception(Program);
when STORAGE_ERROR => record_exception(Storage);
when TASKING_ERROR => record_exception(Tasking);
when others => record_exception(Other);

end minitask;

Figure 5.5: The Body of Minitask Revisited

minitask to obtain a unique identity in the appropriate iteration range. The
value returned is converted into an integer type and assigned to the local variable,
iterate.

As specified in Chapter 3, the function call to faa can be translated into a
fetch_and_add operation. However, in the context of minitasks a more efficient
implementation can be realized.

In our implementation, tasks are created and activated in parallel; the task
performing the elaboration of loop_tasks enqueues an item on to a parallel queue.
This item has a multiplicity corresponding to the number of tasks to be created.
As available processes perform a dequeue operation, the multiplicity of this item

is decremented. The processor that performs the decrement receives an identity

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 116

task type. Since the minitask task type is specified without a priority, a
predetermined priority is assigned to it by the implementation, eliminating

the need for this field in the tcb.

rdv This boolean flag is set when a task executes an open accept statement.
It signifies that a calling task may participate in a rendezvous immedi-
ately. Since minitasks contain no entry points, no accept statements can

be executed, rendering this flag unnecessary.

num _entries This field contains the total number of entries associated with
a task. Since a minitask does not contain any entries, this field can be

eliminated.

save_prio This field is used to save the priority of a calling task when it per-
forms a rendezvous with this task. Since minitasks do not have any entries,

it need not allocate storage for any potential callers’ priorities.

tcb_serviced This field corresponds to the current calling task of an entry.
Once again, since minitasks do not contain any entries, this field is not

required.

5.5.2 Further Reducing Beacon Overhead

We have just seen how to reduce the amount of storage associated with a mini-

task. Now we turn out attention to the operations a minitask must perform before

it executes the “sequence of statements” given by the loop_body procedure.
Consider the body of the minitask as shown in Figure 5.5. The first action

an activated minitask performs is the call to the faa function. This allows a

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 115

FIELD NAME \ TYPE ‘USAGE

action integer | action executing when blocked

entry_item pointer | pointer to item in entry queue
current_entry | pointer | pointer to current entry queue

event integer | event to unblock (set by others)

first integer | used for task termination

iotem pointer | current io_item (made when delay)

num items integer | number of items

num noterm | integer | number of nonterminatable direct dependents
num _deps integer | number of nonterminated direct dependents
num_events integer | number of pending events

next integer | next task to activate or

previous task being serviced by this task

Table 5.5: Tcb Fields Needed for Minitasks that Contain Tasks

directly. q

As mentioned in Chapter 3, a minitask can be aborted indirectly if its master
task is aborted. However, in this case there is no task that retains visibility to
the minitask, eliminating for any abort-related context.

We now turn to those fields not included in Tables 5.4 or 5.5. With each

field we give a brief description of why it is not needed in the tcb of a minitask.

abnormal This boolean is set to true when a task reaches an abnormal state; it
is either aborted or an exception is raised during its execution that is not
handled. By theorem 5.2, a minitask cannot be aborted directly. When a
minitask is aborted Since all exceptions are caught by the handler located

in each minitask, (see Figure 5.5), this field is not needed.

priority This is the priority of a minitask. A priority is associated with a

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 114

| NAME | TYPE | USAGE
id integer | index of task in rts item
master_task integer | task number of the master task
master_block integer | number of the master block
block_ptr pointer | currently executing block frame
exception integer | current exception raised
parent integer | tcb index of parent task

template_base | integer | task template base address

template_offset | integer | task template offset

brother integer | next direct dependent of master construct
rts_item pointer | current rts item
tch_status integer | task’s current status, set before blocking

Table 5.4: Tcb Fields Needed for Minitask Implementation

can call an entry of a minitask. Therefore, we need only keep status information
in the tcb that pertains to entry calls, rather than entry management. Table 5.5

specifies the additional fields that need to be included.

Before we discuss those fields that can be eliminated from the tcb of a mini-

task, we prove the following theorem:
Theorem 5.2 A minitask cannot be aborted directly.

Proof A task is allowed to abort any task (ARM 9.10(10)). However, in
order to abort a task directly, the name of the task must be supplied (ARM
9.10(2)). Therefore, only tasks that are visible may be aborted directly. To
abort a minitask, another task would need to name the corresponding task ob-
ject, loop_tasks(i), for some i. This array of tasks is only visible inside of the
block statement of the gen_minitask generic package. Since no abort statement

exists anywhere in this statement, we conclude that minitasks cannot be aborted

CHAPTER 5. GEN_MINITASK IMPLEMENTATION

NAME

‘ TYPE ‘USAGE

template_base | integer | task template base address
template_offset | integer | task template offset
brother integer | next direct dependent of master construct
block _ptr pointer | currently executing block frame
exception integer | current exception raised
id integer | index of task in RTS item
master_task integer | task number of the master task
master_block integer | number of the master block
num_entries integer | number of entries
parent integer | tcb index of parent task
rts_item pointer | current rts item
tch_status integer | task’s current status, set before blocking
action integer | action executing when blocked
entry_item pointer | pointer to item in entry queue
current_entry pointer | pointer to current entry queue
event integer | event to unblock (set by others)
first integer | used for task termination
io_item pointer | current io item (made when delay)
num_items integer | number of items
num_noterm integer | number of nonterminatable direct dependent
num_deps integer | number of nonterminated direct dependent
num_events integer | number of pending events
abnormal boolean | flag set when task is aborted
priority integer | task priority
rdv boolean | flag set when task executes an open accept
save_prio integer | save area for priority
tch_serviced integer | current calling partners chain
next integer | next task to activate or
previous task being serviced by this task

Table 5.3: The Ada/Ed Task Control Block

113

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 112

for the management of a regular Ada task are not necessarily needed for the
management of a minitask; these fields can be omitted from the tcb of a minitask.

Table 5.4 gives the fields that are required to manage the context of a minitask.

5.5.1 Parallelism Within a Minitask

As mentioned in the previous section, a programmer may find it useful to nest
instantiations of the gen_minitask generic package. Under this scenario, the
loop_body procedure would contain its own instantiation, thereby creating its
own minitask family. Matrix multiplication as described in Appendix A is one
example of this type of application.

Another common example of nested parallelism is when a parallel library
package is used inside of a program that already contains loop-level parallelism.
While the additional parallelism may not necessarily improve performance, it
should nevertheless be executed correctly. For this reason our implementation
of the gen_minitask idiom supports full nesting of gen_minitask instantiations.

Although the intended usage of the gen_minitask package is to simulate a
parallel loop, there is nothing to prevent the threads of the minitask, represented
by the loop_body procedure, from creating and activating other tasks. Since these
tasks can be of any type, they can contain entry points. In particular, they can
allow a minitask to call an entry of one of its child tasks. While this may have a
detrimental effect on the execution performance of a minitask, it is nonetheless
valid. Therefore, the tcb of a minitask must be expanded.

Note that this form of communication is only one-way. Since we have assured

that minitasks do not contain any entry points, no task, specifically a child task,

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 111

contexts [FH90,Cyt85, KW85].

An alternative scheme would be to postpone the decision regarding the man-
ner in which the inner loop is executed until run time; the inner loop would be
executed in parallel if the number of available processors is sufficient to improve
program performance. Otherwise, the inner loop would be executed sequen-
tially. This scheme is similar to the transformations described by Byler, et. al.
in [BDH*87].

The second potential disadvantage of this scheme is the extra storage that
it requires. In a standard implementation of Ada tasks, a stack is allocated for
each task. In our approach we allocate a stack for each processor, regardless of
the number of tasks. While this approach does indeed use excess storage when
the number of tasks in a program are less than the number of processors, our
intended domain of applications will almost always have at least as many tasks
as processors. Under this more likely scenario, our approach reduces the amount

of stack storage required.

5.5 Reducing Minitask Overhead

The previous section described a mechanism to remove the synchronization point
that exists between task creation and task activation. In this section we con-
sider the overhead that is associated with each minitask, and describe how our
implementation reduces it.

Each executing or blocked task in an Ada implementation has a task control
block (tcb) associated with it. For a regular Ada task in the Ada/Ed run time

system (rts), the tcb is given in Table 5.3. Many of the fields that are required

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 110

declare
subtype outer_range is integer range 1..M;

procedure outer_loop_body (outer_id : outer_range) is
subtype inner_range is integer range 1..V;
procedure inner_loop_body (inner_id : inner_range) is
begin
—— Instructions nested inside of both “loops” go here.
end inner_loop_body;
package inner_minitask is new
gen_minitask (inner_range,inner_loop_body);
begin
if not inner_minitask.success then
—— Handle error.
endif ;

end my_loop;

package outer_minitask is new
gen_minitask (outer_range,outer_loop_body);
begin
if not outer_minitask.success then
—— Handle error.
endif ;

end;

Figure 5.4: Nested Parallel Loops using the Gen_Minitask idiom

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 109

The first potential disadvantage of this approach is that if a minitask blocks
its execution, the processor it is executing on is unable to execute other minitasks;
the minitask stack for that processor is already in use. To better understand the
severity of this limitation, we consider the circumstances that would cause a
minitask to block.

Consider the case where an instantiation of the gen_minitask package is used
strictly as a parallel loop construct; the loop body contains a simple sequence
of statements. Used in this fashion, the only reason for a minitask to block is if
it performs 1/0,* an event that we expect to happen infrequently.

However, since the body of a minitask is specified by a procedure (loop_body),
it may contain other instances of the gen_minitask generic package (see Fig-
ure 5.4). As a consequence of this, a minitask may need to block its execution

while it awaits the completion of the activation of its subtasks.

However, in most cases this nesting of tasks will create more tasks than there
are processors, giving the appearance of increased parallelism. If we attempt to
execute these nested tasks in parallel, we will most likely reduce program per-
formance. Therefore, our implementation attempts to find “useful parallelism”
by executing nested occurrences of minitasks sequentially.’

This approach directly corresponds to executing the outer of two parallel
loops in parallel, while the inner loop is executed sequentially. This scheme
reduces the number of fork and join points (from N to 1) in addition to increasing
the size of each parallel thread. This concept of reducing parallelism to increase

program performance has been called chunking, and is described in several other

4We assume scheduler interference was a minitask begins its execution.
>The concept of “useful parallelism” is discussed in [Cyt85].

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 108

Since all stack allocations are made before a program begins its execution,
there is no need to request storage for this purpose during the instantiation
of the gen_minitask package. All other storage requests are performed by the
instantiating task before any minitasks are enqueued.® Once these requests have
been satisfied, we are assured that STORAGE_ERROR will not be raised during
the elaboration of loop_tasks. Applying Theorem 5.1, we combine task creation
and task activation.

In addition to allowing the combination of task creation and activation, this

scheme also offers the following advantages:

e All minitask stacks reside in the local memory of the processor that is

executing it. Hence, all stack and tcb operations are local accesses.

e The total number of stacks used for the execution of minitasks in an ap-
plication is bounded by the number of processors, not by the number of

minitasks.

5.4.3 A Critique of the Stack Recycling Scheme

In the previous section we discussed some of the advantages of using the stack
recycling scheme. In this section we critique this scheme, discussing the potential
disadvantages. We shall show that these disadvantages are either insignificant
or can be overcome by enhancing our scheme. The two disadvantages we discuss
both rise from the fact that minitask stacks are allocated on a per processor basis

rather than one per minitask.

3In our implementation, the initialization of the task_status array is performed by each mini-
task avoiding a potential bottleneck.

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 107

If this storage request is successful, we know that STORAGE_ERROR will not
be raised for this elaboration. By applying Theorem 5.1, we can combine task
creation with task activation. Each minitask could then use its identity to index
into the pool of storage to obtain its own section.

Although this approach does remove the synchronization point associated
with task initiation, there is one major drawback: since the processor that
allocates the memory is not necessarily the same one that uses it, this chunk of
storage must be allocated in shared memory. Consequently, all stack operations
that a task undertakes would need to suffer the performance penalty of a shared
memory access. Since accessing shared memory on a machine such as the RP3
can take up to ten times as long as an access to local memory, this approach is

rejected.

5.4.2 Stack Recycling

In this section, we suggest an alternative stack allocation scheme, called stack
recycling, which satisfies the condition needed to apply Theorem 5.1.

Under the stack recycling scheme, each processor has associated with it a
stack which is used exclusively for the execution of minitasks.? This “minitask
stack” is allocated by a processor as part of that processor’s initial execution,
before it attempts to execute any tasks. Once this allocation has been performed,
a processor can execute a minitask using its local minitask stack. When the
minitask terminates, this stack is recycled by using it for the next minitask that

is executed by this processor.

2Recall that a “stack” also includes a tcb.

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 106

we attempt to ascertain if an elaboration of loop_tasks is going to raise STOR-
AGE_ERROR before we begin the elaboration.

Consider how STORAGE_ERROR could be raised during the elaboration of
loop_tasks. As was noted in the proof of lemma 5.1, storage is requested at several
places throughout this elaboration; storage is also allocated for the array and to
manage the new task’s status (the task control block) and to store values (its
stack). In our implementation, these requests can combined. If this combined
request fails, STORAGE_ERROR is raised. However, we would like to determine
this before we begin the elaboration.

If we implement this elaboration in a straightforward manner, we will not be
able to determine if STORAGE_ERROR is raised until after all the storage requests
are made, 1.e. after task creation is performed. Thus, under this straightforward
implementation a synchronization point exists; task creation cannot be combined
with task activation. The next two sections describe methods in which the

synchronization point can be removed.

5.4.1 One-Shot Allocation of Stacks

One implementation approach is have the parent task attempt to allocate a
large chunk of storage for all minitasks. This approach takes advantage of the
fact that the amount of storage needed for a minitask instantiation is a function
of the number of minitasks that are to be created. Since this number is known
before the elaboration of loop_tasks, the total amount of storage to be requested
by this elaboration is known. Therefore, this storage can be requested by the

instantiating task before the elaboration of loop_tasks commences.

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 105

Proof Assume STORAGE_ERROR is not raised during the elaboration of loop_-
tasks. By Lemma 5.1, we conclude that no exception is raised during this elab-
oration. By lemma 5.2, all minitasks are activated immediately following this
elaboration. Thus, there is no need for a synchronization point between the
creation and activation of the minitasks; this activation can be combined with

the elaboration of loop_tasks. q

Before we discuss how our implementation utilizes this theorem, we note the
existence of a second synchronization point associated with task initiation. This
point occurs when the last task that has completed its activation unblocks its
parent task. At this point the parent can begin executing the statements that
follow the begin statement that prompted this activation.

In our implementation of the gen_minitask idiom, we are able to ignore this
synchronization point. The only statement after the inner begin statement of
Figure 5.3 is a null statement. Executing a null statement has no effect (ARM
5.1(5)), so the parent task is blocked until all of its dependent tasks have termi-
nated. Thus, our implementation does not awaken the parent task until all of
its dependent tasks have terminated. Although a synchronization point is not
implemented, we nevertheless uphold proper Ada semantics.

We now consider how to remove the synchronization point referred to in
Theorem 5.1. This theorem states that if we can determine that the elaboration
of loop_tasks does not raise STORAGE_ERROR, then task creation and activation
can be combined. While one cannot guarantee that STORAGE_ERROR will never

be raised, we can tailor our implementation to take advantage of this theorem;

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 104

1. “The subtype indication or the constrained array definition is first elaborated.”

2. “If the object declaration includes an explicit initialization, the initial value is
obtained by evaluating the corresponding expression. Otherwise any implicit
initial values for the object or for its subcomponents are evaluated.”

3. “The object is created.”

4. “Any initial value is assigned to the object.”

Table 5.2: The Four Steps Involved in Elaborating an Object Declaration

Lemma 5.2 If no exception is raised during the elaboration of loop_tasks in
Figure 5.3, then all minitasks can be activated immediately following their cre-

ation.

Proof Assume no exception is raised during the elaboration of loop_tasks.
During this elaboration all minitasks are created. As there are no other items
between this declaration and the begin statement, no exception can be raised
after this item is elaborated. By (ARM 9.3(2)), once the declarative items of
the block statement have been elaborated, the activation of all tasks declared
in the corresponding declarative part commences. Hence, once all minitasks are

created, they can be activated. q

These two lemmas allow us to prove the following theorem. This theorem
forms the basis for our implementation of the block statement and allows us to

eliminate the synchronization point.

Theorem 5.1 If STORAGE_ERROR 18 not raised during the elaboration of loop_-
tasks, then the creation and activation of minitasks can be combined, and per-

formed in parallel.

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 103

Step

Step

Step

The elaboration of an index constraint consists of evaluating the discrete
range which can potentially raise NUMERIC_ERROR (ARM 3.6.1(11)). How-
ever, since the range itself is a type definition that has already been suc-
cessfully elaborated as a generic parameter, we are assured that when
control reaches this point of the text, this evaluation does not raise NU-
MERIC_ERROR. Elaborating the component subtype, minitask, creates that

subtype.

Summarizing this step, we see that the only exception that can be raised
is STORAGE_ERROR. Due to insufficient storage for the creation of any of

the objects mentioned. (ARM 11.1(8)).

2: Since no explicit initialization is specified (or allowed) for the loop_tasks
declaration, the first part of this step does not apply. The implicit initial
value for a task designates a task. Since storage is allocated when a task

is created, STORAGE_ERROR may be raised in this step.

3: The creation of the array object, loop_tasks, can also raise STORAGE _-

ERROR. No other exception can be raised by this creation.

4: Assigning the initial value of each task to the appropriate components

of the array cannot raise any exception.

In each of the four steps, no other exception besides STORAGE_ERROR can

be raised. Therefore, STORAGE_ERROR is the only exception that can be raised

during the elaboration of the loop_tasks. q

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 102

5.4 Removing the Synchronization Point

This section describes how the two phase process of task creation and task acti-
vation can be combined into one phase. The optimization we describe removes
the synchronization point between the time when a task is created and when it
is activated. This optimization uses the first property, that the behavior of the
declarative part that contains the task object is known.

Recall the origin of this synchronization point (see Section 4.2): a statically
declared task object is not activated until all declarative items that follow it in
the same declarative part have been elaborated successfully. If the elaboration of
any of these items raises an exception, then the task is not activated. We provide
an implementation of the block statement that removes the synchronization

point, while still satisfying proper Ada semantics. We begin with two lemmas.

Lemma 5.1 STORAGE_ERROR s the only exception that can be raised during

the elaboration of loop_tasks.

Proof The elaboration of an object declaration proceeds in the four steps
described in Table 5.2. We consider each step, in turn, examing what exceptions

might be raised.

Step 1: Since the object declaration we are considering is a constrained array,
we consider the manner in which this entity is elaborated. Section 3.6(10)
of the reference manual specifies that in addition to creating the array
type and array subtype, the index constraint and the component subtype

indication are elaborated.

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 101

the instantiating declarative part.

Now that we have specified the semantics of the block statement, we consider
how to obtain an efficient implementation that satisfies these semantics.

In Section 4.2, two deficiencies in the Ada tasking model were specified that

prevent the realization of efficient loop-level parallelism. In summary, they are:

e The synchronization point required between task creation and task acti-

vation.

o The storage overhead used to maintain a task’s status.

The body of the gen_minitask package is constructed in such a way that
optimizations may be performed to overcome these two deficiencies. Note the

following properties about the block statement:

1. Once all minitasks have been created, they are immediately activated; there
are no declarative items between the creation of these tasks and their

activation.

2. Minitasks do not possess any entry points, nor can they be aborted directly.

In addition, no priority is specified for the minitask.

In the next two sections, we considered the aforementioned deficiencies. We
show how the properties mentioned in the previous paragraph are instrumental
in removing these obstacles (as described in Section 4.2) to efficient loop-level

parallelism.

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 100

begin
declare
loop_tasks : array(iteration_range) of minitask;
begin
null;
end:
end gen_minitask;

Figure 5.3: The Sequence of Statements of the Gen_Minitask Body

to the instantiating block. Figure 5.3 specifies the sequence of statements for

the body of the gen_minitask package.

As mentioned in Section 4.5.2, a block statement is the only statement con-
tained in the sequence of statements section of the gen_minitask body. A block

statement is executed in a straightforward manner:

“The execution of a block statement consists of the elaboration of its
declarative part (if any) followed by the execution of the sequence of

statements.” ARM 5.6(4)

The declarative part of the block statement contains only one declarative
item, an array of minitasks. When this item is elaborated, the array and the
appropriate number of tasks are created. Each element of the array is assigned
an implicit initial value designating the corresponding task (ARM 3.2.1(11)).

After the array has been successfully elaborated, the elaboration of declara-
tive part is complete. Since the declarative part contains task objects that were
created, they are activated upon reaching the begin statement. From then on all
minitasks execute in parallel. Before exiting the sequence of statements section
of the block statement, the task that executed this block, the instantiating task,

must wait for all minitasks to terminate. At this point, control is returned to

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 99

DECLARATIVE ITEM

| VisiBLE? | IMPLEMENTATION ACTION{ |

type exception_type is ... Yes No Action Required.

success : boolean := true; Yes Allocate a boolean variable.
Initialize it to true.

function task_completion ... Yes No action required.

function task_exception ... Yes No action required.

task type minitask; No No action required.

type task_status_record is ... No No action required.

task_status : array(iteration_range) No Allocate 2N storage units.

of task_status_record;

package iteration_counter is ... No Allocate one storage unit.}
Set it to iteration_range’first.
Make read, write, and faa visible.

task body minitask is ... No No action required.

function task_completion is ... No No action required.

function task_exception is ... No No action required.

FWhen the compiler is created, it is initialized with the first four items.

iSection 5.5 describes a method that eliminates these actions.

Table 5.1: The Elaboration of the Declarative Part of the Gen_Minitask

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 98

time action is required.

function task_completion is ...

function task_exception is ...
Subprogram bodies are elaborated in the same manner as task body as

described in the following;:

“The elaboration of a subprogram body has no other effect than
to establish that the body can from then on be used for the

execution of calls of the subprogram.” ARM 6.3(5)

As in the case with the minitask body, a “callable” boolean variable can be
used to mark the elaboration of a function body. However, our implemen-
tation need not maintain this variable; these functions are not used within
the gen_minitask generic and any use by the instantiating task must follow
the instantiation itself. Since these function bodies are elaborated during

this instantiation, no boolean variable or run time action is needed.

Table 5.1 summarizes the actions that we perform for the elaboration of the

each item in the declarative part of the gen_minitask package.

5.3 Executing the Sequence of Statements

After the elaboration of the package specification and the declarative part of the
package body, the sequence of statements associated with the package body is

executed. Once these statements have been executed, control is returned back

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 97

However, although the time to perform each initialization is small, N ini-
tializations are required. As it is our goal to reduce run time overhead,
an action that is dependent on the size of N is undesirable. We avoid this
serialization point by postponing the initialization until the correspond-
ing minitask is created. Upon being created each minitask initializes its
element in the task_status array. These initializations are performed in

parallel.

package iteration_counter is new gen_beacon(...)
This item is an instantiation of the gen_beacon package. Elaborating this
instantiation involves extracting the 'first value from the iteration_range
type, converting it to an integer, and using it for the gen_beacon instanti-
ation. As described in Chapter 3, instantiating this package corresponds
to allocating an integer variable and assigning it the initial value that is
passed as its parameter. It also makes visible the three monitoring sub-
programs: read, write, and faa. Section 5.5 describes how all these actions

are performed implicitly and therefore, have zero run time cost.

task body minitask is ...
The elaboration of a task body “has no other effect than to establish that
the body can from then on be used for the execution of tasks designated

by objects of the corresponding task type” (ARM 9.1(5)).

This can be accomplished by setting a “callable” boolean variable associ-
ated with this task to true. However, by inspecting the the gen_minitask
package, we can conclude that the minitask body is always elaborated be-

fore any of its uses are encountered. Therefore, no boolean variable or run

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 96

From this section we see that this elaboration corresponds to creating the
array type, and elaborating the index constraint and the array subtype.
As is the case with other types, actually creating the type can be omitted;

this type is not to be used anywhere else.

Since the index constraint corresponds to the type parameter to the generic,
it already has been evaluated in order to satisfy the parameter matching
rules. Similarly, the component subtype, task_status_record, has also been
elaborated. Thus, the first part of the elaboration of the array object does

not require any action.

Turning to the second step, we note that no explicit initialization of the
array is specified. However, the record type does specify an initial value
for both of its subcomponents. Since these values are known constants

their run time evaluation is not required.

The last two steps specified for the elaboration of the array object re-
quire run time action. The object must be created and its subcomponents
assigned their initial values. To comply with this requirement, our im-
plementation allocates a block of storage of 2N units in shared memory,
where N = task_range’last - task_range’first + 1. It should be noted that we
could pack the boolean and the enumerated type into four bits, allowing

for a total allocation of 4N bits.

Once this storage has been allocated, it would normally be initialized;
each of the completed fields would be set to true, while each of the excep-
tion_kind fields would be set to None. This initialization would complete

the elaboration of this object declaration.

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 95

As is the case with other types, a type template is associated with the type
task_status_record. Since this type is static, its type template is generated
at compile time. This template is used when an object of this type is

created or accessed.

task_status : array(iteration_range) of task status_record;

This item is an object declaration that utilizes the previous type definition.

“The elaboration of an object declaration proceeds as follows:

1. The subtype indication or constrained array is first elabo-

rated. This establishes the subtype of the object.

2. If the object declaration includes an explicit initialization,
the initial value is obtained by evaluating the correspond-
ing expression. Otherwise any implicit initial values for the
object or for its subcomponents are evaluated.

3. The object is created.

4. Any initial value is assigned to the object or to the corre-

sponding subcomponent.” ARM 3.2.1(4-8)

The first step specifies that the array is first elaborated. To determine the

manner in which this is done, we consider the following:

“The elaboration of a constrained array definition creates the
corresponding array type and array subtype. For this elabora-
tion, the index constraint and the component subtype indication

are elaborated.” ARM 3.6(10)

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 94

package body gen _minitask is
task type minitask;
type task_status_record is record
completed : boolean := true;
exception_kind : exception_type := None;
end record;
task_status : array(iteration_range) of task_status_record;
package iteration_counter is new
gen_beacon(integer(iteration_range'first));
task body minitask is ...
function task_completion is ...
function task_exception is ...
begin

end gen_minitask;

Figure 5.2: The Declarative Part of Gen_Minitask Body

type task_status_record is record ...

task_status_record is a record type definition. The semantics of its elabo-

ration are given by the following:

“The elaboration of a record type definition creates a record
type; it consists of the elaboration of any corresponding (sin-
gle) component declarations, in the order in which they appear,

including any component declaration in a variant part.” ARM

3.7(7)

This quote specifies that elaborating this record type creates that type.
Since this type can only be used within this package, we do not need to
actually create it. However, when we subsequently use this type we do
need to recognize it as a created type with the components and default

values that are specified.

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 93

In summary, elaborating the package specification requires the designating of
three entities (exception_type, task_completion, and task_exception) as elaborated
in addition to allocating a boolean variable with an initial value of true. All four

of these entities are visible to the instantiating block.

5.2 Elaborating the Declarative Part

Once the package specification is elaborated, we can begin elaborating the declar-
ative part of the package body. In contrast to the package specification the
declarative entities in the package body are not visible to the programmer; they
cannot be used in any program specified by a user. Hence, our implementation of
these entities does not necessarily have to process these items in the same man-
ner as it would if they were visible. However, the elaboration and subsequent
use of these entities must still uphold proper Ada semantics.

Figure 5.2 specifies the declarative part of the gen_minitask generic package
body. In the remainder of this section, we consider each item, specifying the

semantics of its elaboration.

task type minitask;

A task type is an example of a task specification.

“For the elaboration of a task specification, entry declarations
and representation clauses, if any, are elaborated in the order

given.” ARM 9.1(5)

Since the minitask specification does not contain any entry or representa-

tion clauses, this elaboration requires no action.

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 92
enumeration type; this elaboration includes that of every enu-

meration literal specification.” ARM 3.5.1(3)

success : boolean := true;
The elaboration of this object declaration involves the following four steps:
1. Elaborate the type, boolean.
2. Evaluate the initial value, true.
3. Create the object, success.
4. Assign the initial value, true, to success.
Since the type and initial value are predefined, the first two steps do not

require any action. However, the last two steps, creating the object and

assigning it an initial value do need to be performed at run time.

function task_completion ...

function task_exception ...

These two function declarations are elaborated in the same manner:

“The elaboration of a subprogram declaration elaborates the
corresponding formal part. The elaboration of a formal part has

no other effect.” ARM 6.1(6)

These statements specify that no action is required in elaborating these
two subprogram declarations except recording the fact that they have been

elaborated.

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 91

package gen_minitask is
type exception_type is (None, Constraint, Numeric, Program,
Storage, Tasking, Other);
success : boolean := true;
function task_completion(iterate : in iteration_range) return boolean;
function task_exception(iterate : in iteration_range) return exception_type;
end gen_minitask;

Figure 5.1: The Package Specification of Gen_Minitask

5.1 Elaborating the Package Specification

Consider the gen_minitask generic package specification as shown in Figure 5.1.
Since the items declared in this specification are visible to an instantiating block,
they are be treated as any other declarative item; the optimizations we can
perform are limited. Therefore, we make these items available in the standard
way other library packages (Calendar and System, for example) are processed; the
compiler is initialized with the information contained in these packages when it is
created. Any program that instantiates the gen_minitask generic gains visibility
to the appropriate entities declared in the specification of this package.

For completeness, we review the semantics of the elaboration of the package
specification. We shall see that although we are limited in the optimizations that
we can perform, the run time overhead involved with elaborating these items is

minimal.

type exception_type is ...

The elaboration of this enumerated type is specified by the following:

“The elaboration of an enumeration type definition creates an

CHAPTER 5. GEN_MINITASK IMPLEMENTATION 90

2. The entities in the package body are not accessible outside of its body.
Therefore, the manner in which these entities are used is also known
at compiler writing time. Of particular interest, minitasks are used in
a light-weight manner; they do not contain any entry points and cannot

be aborted directly.

To determine the manner in which an instantiation of the gen_minitask generic
package is elaborated, we consult the appropriate section in the reference man-

ual:

“For the elaboration of a generic instantiation, each expression sup-
plied as an explicit generic actual parameter is first evaluated. ...

Finally, the implicitly generated instance is elaborated.”

ARM 12.3(17)

Since the parameters of our generic are a type and a procedure, no expressions
need be evaluated.! An elaboration of an instantiation corresponds to elaborat-
ing the gen_minitask generic package with the actual parameters substituted for
the formals. This elaboration is broken into three phases: the elaboration of the
package specification, the elaboration of the package body, and the execution of
the sequence of statements associated with the package body. We describe each

of these phases in the following three sections.

1At compile time, checks are performed to ensure that the actual parameters satisfy the
constraints given by the formals.

Chapter 5

Gen_Minitask Implementation

This chapter describes the manner in which an instantiation of the gen_minitask
generic package is implemented. Our goal in this implementation is to minimize
common initialization, and to eliminate, if possible, all serial operations in real-
izing a “parallel loop” idiom. Ada semantics force the serialization of a number
of operations, some of which are not obvious. Through the use of several opti-
mizations, we attempt to either remove these operations all together, or perform
them in parallel, while still upholding Ada semantics.

The implementation we describe is directly related to the usefulness of our
idiom in obtaining efficient loop-level parallelism. To obtain this efficiency we
make use of several optimizations. Underlying these optimizations are two prin-

ciples:

1. Asis the case with the gen_beacon generic, the contents of the gen_minitask
generic are known at compiler writing time. This information is synthe-

sized into our implementation to allow for an efficient implementation.

89

CHAPTER 4. THE GEN_MINITASK PACKAGE 88

function task_completion(iterate : in iteration_range) return boolean is
begin

return(task_status(iterate).completed);
end task_completion;

function task_exception(iterate : in iteration_range) return exception_type is
begin

return(task_status(iterate).exception_kind);
end task_exception;

Figure 4.11: The Task_Completion and Task_Exception Functions

In turn, the sequence of statements of the gen_minitask body cannot be completed
until this block statement is completed. Therefore, control is not returned to the
instantiating task wntil all minitasks have terminated. In addition, the sequence
of statements that corresponds to the declarative region that instantiated the

gen_minitask package retains visibility to the completion status information.

4.5.3 The Completion Status Routines

In addition to creating the appropriate number of parallel threads, an instance
of the gen_minitask package provides a boolean variable and two functions to
help determine the status of a minitask family. We have already seen how the
success variable is manipulated. In Figure 4.11, we specify the two functions
task_completion and task_exception. We shall show in Chapter 5 how a call to
these functions corresponds to a straightforward access to the task_status data

structure to determine the behavior of a particular iterate.

CHAPTER 4. THE GEN_MINITASK PACKAGE

package body gen _minitask is
task type minitask;

type task_status_record is record
completed : boolean := true;
exception_kind : exception_type := None;
end record;

—— The data structure to hold the each minitask’s status:
task_status : array(iteration_range) of task_status_record;

—— Create a fetch_and_add variable for minitask initialization.
package iteration_counter is new
gen_beacon(integer(iteration_range'first));

task body minitask is ... (See Figure 4.9)

function task_completion is ... (See Figure 4.11)
function task_exception is ... (See Figure 4.11)
begin
declare —— This block is the minitasks’ master.
loop_tasks : array(iteration_range) of minitask;
begin
null:
end:—— All minitasks terminate before this block is exited.
end gen_minitask;

Figure 4.10: The Improved Version of Package Body of gen_minitask

87

CHAPTER 4. THE GEN_MINITASK PACKAGE 86

termination of these tasks can be made.

If we place the gen_minitask instantiation in its own block statement, we can
guarantee that all minitasks terminate before executing any other statements.
However, consider the case where the instantiating task wishes to discover the
completion status of the minitask family, a common occurrence. Normally this
would be achieved by either inspecting the success variable or by calling one of
the two status reporting functions. Since these activities can not be performed
until we are assured that the minitask family has completed its execution, we
must wait until after the end statement of the proposed block statement. How-
ever, since the instance of the gen_minitask occurs in the declarative region of
this block, the boolean variable and two functions are no longer visible once this
block is exited.

Thus, this solution is not effective. By placing the instantiation inside the
block statement we ensure that the minitask family terminates, but at the point
where this termination takes place the information we desire is no longer avail-
able.

A solution that solves this problem is given in Figure 4.10. It involves the
placement of the array declaration of minitasks. By placing this array object in
a block statement inside of the gen_minitask package we achieve the best of both
worlds; we can guarantee to an instantiating task that all minitasks will terminate
at a point where visibility to the boolean and two functions is maintained.

By placing the array object inside a block statement we have effectively
changed the master of these tasks from the instantiating task to the block state-

ment itself. Thus, this block cannot be exited until all minitasks have terminated.

CHAPTER 4. THE GEN_MINITASK PACKAGE 85

The Placement of the Minitask Array Object

Consider the placement of the declaration of the array of minitasks. At first
glance, it seems natural to declare this array in the declarative part of the
gen_minitask package body as was done in Figure 4.8. Under this scenario, the
tasks begin their execution once the begin statement of the package body is
reached.

However, we must consider when these minitasks would terminate. The ref-

erence manual specifies that
“the instance of a generic package is a package.” ARM 12.3(5)

Thus, an instance of the gen_minitask package is the same as declaring this
package in the declarative region where the instantiation occurs. Unlike subpro-
grams, packages cannot be a master of any task. The master of a task that is
declared inside a package body is the nearest enclosing task, block statement,
subprogram, or library package (ARM 9.4(1)). Since an instance of a generic
package is not a library package, if we declared the minitasks in the declarative
region of the gen_minitask package body, their master would be in the instant:-
ating task, subprogram, or block statement.

While this in itself is not undesirable, the termination semantics it implies
are. Consider the instantiation of the gen_minitask package. At instantiation
time all minitask will begin to execute. However, when can the instantiating task
be assured that all minitasks have terminated? The answer is clear, although
undesirable. All minitasks must terminate upon the completion of the sequence
of statements corresponding to the declarative region where the instantiation

occurred. Thus, in the sequence of statement section no guarantee about the

CHAPTER 4. THE GEN_MINITASK PACKAGE 84

Handling Exceptions in a Minitask

This section describes how exceptions are handled during the execution of a mini-
task. Of primary importance is where the exception is raised. If the exception
is raised in the body of the minitask, it is handled by the appropriate case of the
exception handler located in the minitask itself. This handler records the fact
that an exception was raised by setting the success variable to false and marking
the appropriate record element of the task_status array. Since all cases in the
exception handler are similar, they combined into a procedure, record_exception.

If an exception is raised while executing the loop_body procedure, this pro-
cedure has the capability to catch this exception and continue processing. Since
this procedure is provided by the programmer, it enables the programmer to
specify the semantics of an iteration should an exception be raised. Possible

scenarios include:

1. abandon executing this iteration by catching the exception and returning

from the procedure,

2. continue execution of this iteration by catching it and execute alternative

instructions,

3. abandon execution of this iteration and signal (via a shared variable) to

all other minitasks to abandon their execution,

4. do not catch the exception and let it propagate to the minitask body.

If the last option is used (the default when no exception handler is specified)
the exception is caught by the minitask’s exception handler. The handler records

this exception in the same manner as specified above.

CHAPTER 4. THE GEN_MINITASK PACKAGE 83

gen_beacon package, iteration_counter. Recall that this instantiation provides
a monitored variable onto which fetch_and_add operations can be performed
efficiently in parallel. As each minitask calls the faa procedure with an increment
of one, a unique identity is returned to it. This identity is used as the iterate
for that minitask; it is passed as the parameter to the procedure parameter of
the generic package.*

In this way an iteration of the parallel loop is executed. As our implemen-
tation of an instantiation of gen_beacon allows multiple faa calls to proceed in
parallel, all minitasks execute fully in parallel; no bottleneck is present. Further-
more, the semantics of a parallel loop are realized. This satisfies constraint 3 of
Table 4.1.

Note that the value returned from the faa function is converted to the sub-
type iteration_range before it is assigned to iterate. This is done to ensure type
correctness with the local variable iterate and the formal parameter of the pro-
cedure parameter. We show how the range checking associated with this type
conversion can be eliminated when we discuss gen_minitask implementation.

Although minitasks are not visible outside of their package, their execution
can still be controlled. The procedure parameter corresponding to loop_body
may access any visible object, allowing minitasks to collaborate on a computa-
tion. Furthermore, each minitask may decide to abandon its execution by simply
exiting from its procedure. In this manner, one minitask may signal a whole fam-
ily of minitasks to abandon their execution by setting a boolean variable that is

visible to all minitasks.

“Note that the value returned to loop_tasks(i) is not necessarily i.

CHAPTER 4. THE GEN_MINITASK PACKAGE 82

task body minitask is
iterate : iteration_range;
procedure record_exception(exception_raised : exception_type) is
begin
task_status(iterate).exception_kind := exception_raised;
task_status(iterate).completed := false;
success ;= false;
end record_exception;
begin
—— Acquire an iterate & increment counter atomically.

iterate := iteration_range(iteration_counter.faa(1));
loop_body(iterate);

exception —— Any unhandled exception raised

—— in loop_body is caught here.
when CONSTRAINT_ERROR =>> record_exception(Constraint);
when NUMERIC_ERROR =>> record_exception(Numeric);
when PROGRAM_ERROR => record_exception(Program);
when STORAGE_ERROR => record_exception(Storage);
when TASKING_ERROR => record_exception(Tasking);
when others => record_exception(Other);

end minitask;

Figure 4.9: The Body of a Minitask

element in the iteration_range parameter as the initial value to the underlying
fetch_and_add variable. Next, the bodies of the minitask, and the two status
reporting functions are specified.

The body of the minitask is given in Figure 4.9. A local variable of type
iteration_range is declared to hold the iteration value this task should execute.
The only other item in the declarative part of this task is a local procedure.
This procedure is used solely for convenience and is discussed when we deal

with exceptions.

Two statements comprise the sequence of statements part of the minitask

body. The first statement acquires a unique iterate by using an instance of

CHAPTER 4. THE GEN_MINITASK PACKAGE 81

package body gen _minitask is
task type minitask;

type task_status_record is record

completed : boolean := true;

exception_kind : exception_type := None;
end record;

—— The data structure to hold the each minitask’s status:
task_status : array(iteration_range) of task_status_record;
loop_tasks : array(iteration_range) of minitask;

—— Create a fetch_and_add variable for minitask initialization.
package iteration_counter is new
gen_beacon(integer(iteration_range'first));

task body minitask is ... (See Figure 4.9)

function task_completion is ... (See Figure 4.11)

function task_exception is ... (See Figure 4.11)
begin

null;

end gen_minitask;

Figure 4.8: The First Version of Package Body of Gen_Minitask

CHAPTER 4. THE GEN_MINITASK PACKAGE 80

status of the minitask family in the manner described previously.

Since the building blocks of a minitask instance, the subtype and the pro-
cedure, are declarative items, a declarative section must be entered in order to
utilize our idiom. At first glance this seems to violate constraint 2 for our par-
allel loop idiom: that it should be able to be used in the same spot as a parallel
loop. However, since Ada allows a block statement to be placed arbitrarily in a

sequence of statements, this constraint is indeed satisfied.

4.5.2 The Gen_Minitask Body

In this section we present the body of gen_minitask package. The manner in
which this package is constructed is important in our efficient realization of
loop-level parallelism; it allows for an optimized implementation of an instance
of this generic package.

The gen_minitask package as specified in Figure 4.8 declares two types and
an array object. As mentioned previously, the minitask is the underlying task
that executes an iteration. The record type, task_status_record, is used by the
array object, task_status, as a data structure to store termination information
about each minitask.

After this object declaration we declare the array of minitasks. These tasks
begin their execution once the begin statement of the package body is reached.
We shall see later that this declaration may be more effective if it is placed
elsewhere.

The next item is the instantiation of the gen_beacon package which is used

to to distribute task identities to each minitask in parallel. We supply the first

CHAPTER 4. THE GEN_MINITASK PACKAGE 79

on the range of 1..100 is declared.? In the body of the gen_minitask package this
range is used to distribute iterates to each task executing an iteration. As is the
case with all integer ranges, the lower bound need not necessarily start at one.
An application can have its iterations span over any integer range by simply
constructing the appropriate integer range subtype.

The body of the parallel loop is represented by the procedure my_loop_body.
The statements would have appeared in the parallel loop are placed in this pro-
cedure. The parameter of the procedure plays the role of the iteration variable.
This procedure can reference any visible global variables, thus allowing minitasks
to collaborate on a computation on composite data structures or to communicate
via shared variables.

After the subtype and procedure are declared, the instantiation of the gen_-
minitask can occur. This package is constructed so that the following occur upon

instantiation (barring an exception being raised):
1. All minitasks are created.
2. All minitasks are activated.
3. All minitasks receive a unique identity in the subtype range.
4. All minitasks execute the body of the procedure parameter.
5. All minitasks terminate.

At the point where control is returned back to the instantiating task, all minitasks

have completed their execution allowing the instantiating task to inspect the

3Since the upper and lower bounds of this range need not be constant, a subtype is used even
though in this particular case a type is sufficient.

CHAPTER 4. THE GEN_MINITASK PACKAGE

declare
subtype my_range is integer range 1..100;
procedure my_loop_body(id : my_range) is
begin
S51;

Sni
end my_loop_body;
package my_minitask is new gen_minitask(my_range, my_loop_body);
begin
if not my_minitask.success then
for i in my_range loop
if not task_completion(i) then
—— An exception was raised in the i" iterate.
—— We can use task_exception to determine
—— which exception.
end if;
end loop;
endif:

end;

Figure 4.7: A Typical Usage of gen_minitask

78

CHAPTER 4. THE GEN_MINITASK PACKAGE 77

However, if success is false, the instantiating task may want to determine
where the exception(s) was raised. To determine if an exception was raised for a
particular iteration, the function, task_completion, is called. This function takes
an iterate as a parameter, and returns a boolean value corresponding to whether
execution of this iteration raised an exception. If an exception was raised in this
iteration, task_exception can be called to determine the type of exception that was
raised. The value returned by this function is of exception_type, an enumerated
type which is made visible when gen_minitask is instantiated.

By providing this information our idiom satisfies the fifth constraint of a
parallel loop idiom (Table 4.1). Namely, that a programmer should be able to
determine exception information about the parallel loop and each of its itera-

tions.

4.5.1 Gen_Minitask Usage

Before considering the body of the gen_minitask package we illustrate the manner
in which this package can be used. Figure 4.7 gives a typical usage of the
gen_minitask package. It simulates a parallel loop with one hundred iterations.

The declarative region can be broken down into three parts:
1. The constrained subtype declaration,
2. The loop body declaration,

3. The instantiation of the generic package.

The first two declarations provide the parameters for the gen_minitask instan-

tiation. Since one hundred iterations are desired a integer subtype constrained

CHAPTER 4. THE GEN_MINITASK PACKAGE 76

with gen_beacon;
generic
type iteration_range is range <>;
with procedure loop_body(iterate : in iteration_range);

package gen_minitask is
type exception_type is (None, Constraint, Numeric, Program,
Storage, Tasking, Other);
success : boolean := true; —— Minitask family completion status

—— These functions provide access to status information.
function task_completion(iterate : in iteration_range)
return boolean:
function task_exception(iterate : in iteration_range)
return exception_type;
end gen_minitask;

Figure 4.6: The Visible Part of Gen_Minitask

The visible part of the package contains information that aid an applica-
tion in determining the completion status of both the minitask family and each
minitask. Upon completing the execution of a minitask family, the instantiating

subprogram can ascertain the following information:
e If an exception was raised in the minitask family
e If an exception was raised in a particular minitask
e What exception was raised for a particular minitask

This information is made available through a boolean variable, success and
two functions, task_completion and task_exception. A typical use of this infor-
mation would be for the instantiating task to first inspect the boolean variable,
success, to determine if any exception was raised in the minitask family. If this
boolean is true, then all minitasks completed successfully and normal processing

can continue.

CHAPTER 4. THE GEN_MINITASK PACKAGE 5

Since our idiom is to be used as a general means for expressing loop-level
parallelism, it must be able to take parameters, specifically the loop body and
the range of iterations to be executed. Since the loop body is a sequence of
statements, it can be represented as a procedure as shown in Figure 4.5. This
procedure contains one parameter, the iteration value of the loop it is executing.
The body of the procedure contains the sequence of statements that would have
appeared as the statements of the parallel loop. As is the case with a parallel
loop, these statements can reference the value of the loop iteration.

To ease in our presentation, we note that the underlying tasks that execute
a loop iteration are called minitasks. A minitask is simply an Ada task object.
A collection or array of minitasks that simulate a parallel loop is referred to as
a minitask famaly.

We construct our idiom in a similar fashion to the gen_beacon generic package
discussed in Chapter 3. By using a generic package as the basis of our construct,
we can group together the underlying tasks that execute the loop iterations with
two functions and a boolean variable that summarize the completion behavior
of the these tasks.

Figure 4.6 gives the gen_minitask package specification. It uses the gen_beacon
package to distribute task identities to each task. We shall see the manner in
which this is done when we discuss the body of this package. Two parameters
are passed to the gen_minitask package: a type and a procedure. The type
corresponds to an integer range over which the iterations of the parallel loop
span. The procedure parameter corresponds to the body of the parallel loop.
It contains one parameter of type iteration_range. This parameter is passed the

iterate this procedure should execute.

CHAPTER 4. THE GEN_MINITASK PACKAGE 74

1. It should be written in Ada.
2. It should be usable in the same spot as a parallel loop.
3. The semantics of the idiom should be the same as those of a parallel loop.

4. It should be constructed so that optimizations can be performed to obtain com-
parable efficiency of a parallel loop.

5. Since it is written in Ada, a programmer should be able to determine exception
information about each “iteration” task, and about all “iterations”.

Table 4.1: Five Constraints of a Parallel Loop Idiom

procedure loop_body(iteration_value : integer) is
begin
S51;

Sn;

end

Figure 4.5: An Example of a Loop Body Procedure

CHAPTER 4. THE GEN_MINITASK PACKAGE 73

correct transformations,? it ignores a vital asset in the design of programs: the
programmer’s knowledge of the program.

For these reasons, compiler detection of light-weight tasking is rejected.

4.4.3 The Idiom Approach

The method of choice in this work is to construct an Ada idiom such that its
implementation can be optimized into an efficient realization of loop-level paral-
lelism. Since this idiom is written solely in Ada, portability is maintained. This
approach is similar to the pragma approach in that the programmer designates
where loop-level parallelism is being employed. However, it differs in that we
are able to provide an increase in functionality, as well as an efficient implemen-
tation. The remainder of this chapter describes this idiom and the increase in

functionality that it provides. Its implementation is described in the Chapter 5.

4.5 Our Idiom — The Gen_Minitask Package

In this section the gen_minitask generic package is introduced. This package
provides its users with an efficient means of obtaining loop-level parallelism
without modifying the language. Before specifying this package, we specify
several constraints a parallel loop idiom should satisfy (See Table 4.1).
Consider the first constraint. As the task is the only parallel construct in
Ada, it will form the basis for any idiom we suggest. In the course of presenting

our idiom, we show that all five of these constraints are satisfied.

2provided the compiler is correct, of course!

CHAPTER 4. THE GEN_MINITASK PACKAGE 72

4.4.2 The Compiler Detection Approach

For a compiler to detect if a task is light-weight, it would have to determine if
any heavy-weight tasking operations (rendezvous, abort, etc.) are performed.
In order to detect all occurrences of light-weight tasking, tasks that could po-
tentially perform heavy-weight operations would be considered in an attempt to
determine whether these operations are actually performed at execution time.
If they were not performed, this task could be deemed light-weight.

In order to determine if a task is going to perform a rendezvous or be aborted,
knowledge of the actual execution is required. Therefore, detecting light-weight
tasking, in general, is not possible. Despite this grim news, one may wish to
limit the tasks that are detected to a subset of all light-weight tasks.

By taking this less ambitious approach, a compiler may be able to detect
some uses of light-weight tasking: those tasks that do not contain any “heavy-
weight” tasking operations. Although it is possible to statically check if a task
type contains an accept statement or entry call, determining if the task can ever
be aborted would require inspection of all uses of the task type. This type of
analysis 1s not only undesirable, but, in general, impossible when the compilation
unit is a library package.

Another problem with this approach, as is the case with parallelizing com-
pilers, is that the programmer is dependent solely on the compiler for choosing
the correct form of parallelism, be it a regular Ada task or a light-weight task.
The programmer may know that a particular task is being used in a light-weight
fashion, but since there is no means of communicating this fact to the compiler,

it may go undetected. While this “hands oft” approach to parallelism only makes

CHAPTER 4. THE GEN_MINITASK PACKAGE 71

2. The burden of tasking efficiency can be kept on the compiler, by requiring

it to detect when a task is used in a light-weight manner.

3. We can construct an Ada :diom that allows the efficiency of loop-level

parallelism to be realized without sacrificing portability.

4.4.1 The Pragma Approach

By designating a task as being light-weight, the compiler can reduce the context
that must be maintained for that task. However, consider what happens if that
task subsequently attempts an operation that the light-weight task does not sup-
port. Assuming that the compiler does not attempt to detect these operations,
an error will occur. Moreover, when this program is run on a machine that does
not support this pragma the compiler will simply ignores the pragma and treats
the task as a regular Ada task. If a heavy-weight operation is attempted no
error will occur. Thus, this program exhibits different behavior depending on
the system it is executed on and appears to be non-portable.

Hilfinger remarks that this hypothetical program is incorrect and “that the
portability of incorrect programs has never been a serious concern” [Hil91]. He
puts a further damper on the “lack of portability” argument by pointing out that
the language maintenance body (ARG) has deemed that “pragmas are allowed
to cause a program to become erroneous” [Hil91]. Thus, it appears that this

approach is a reasonable one to pursue.

CHAPTER 4. THE GEN_MINITASK PACKAGE 70

have been created. Therefore, this proposed solution has not eliminated the
synchronization point, merely relocated it.

Although it seems that we have the same scenario as in the case of statically
declared tasks, there is one key difference: the semantics of the allocator specify
that task activation takes place immediately after the tasks have been created.
When task objects are statically declared, this is not necessarily the case; if any
declarative items follow the task declaration, they must be elaborated, without
an exception being raised, before any task is activated.

In our quest to reduce the overhead of task initiation, the knowledge that
activation is performed once creation has been successfully completed, may pro-
vide a source of optimization. As we shall see, this type of knowledge is used in

the construction of the gen_minitask package.

4.4 Reducing Tasking Context

As previously discussed, a reason why the Ada task is not suitable for loop-level
parallelism deals with its granularity. The functionality, and thus granularity,
of the Ada task is not something that we have the power to modify. Therefore,
we search for other means that a programmer can inform the compiler that a
light-weight version of the Ada task can be used.

There are several ways this can be achieved:

1. By using the pragma facility, a programmer can designate a task type as
being light-weight. In doing so the implementation can perform optimiza-

tions that reduce the context that is required for objects of this type.

CHAPTER 4. THE GEN_MINITASK PACKAGE 69

declare
task type worker is ...
type loop_tasks is array (1..10) of worker;
type ref_loop_tasks is access loop_tasks;
ten_tasks : access_loop_tasks;
task body worker is ...

begin —— All tasks are activated
ten_tasks := new loop_tasks;
end —— Wait for all tasks to terminate

Figure 4.4: A Dynamic “Parallel Loop”

Consider the assignment statement. The right hand side of this statement
contains a dynamic allocation of an array of ten tasks. This is processed in the

following manner (ARM 9.3(6)):

1. The array is created.
2. The ten tasks of the array are created.
3. The ten tasks are activated.

4. The access value is assigned to the variable ten_tasks.

Although the first two steps may be interchanged, the reference manual
clearly states that the activation of these tasks can not begin until initialization
of the object has completed (ARM 9.3(6)). In particular, all the tasks must be
created. These semantics are consistent with static tasking semantics; a distinct
synchronization point exists during the initiation of a task object, so that if
an exception has been raised before that point, then no tasks are activated.
For statically declared tasks, this point is the begin statement of the frame

that declares the task. For dynamic tasks, this point is right after the tasks

CHAPTER 4. THE GEN_MINITASK PACKAGE 68

in a more efficient manner.
In order to be able to express loop-level parallelism in Ada, these two prob-

lems must be overcome.

4.3 Removing the Synchronization Point

As we have just seen there are two reasons why Ada tasks are not suitable for

expressing loop-level parallelism:

e the synchronization point that is necessary between task creation and task

activation,
o the significant context required to manage an Ada task.

In this section we attempt to overcome the first problem.

4.3.1 An Observation

A naive, but instructional approach to removing the synchronization point re-
quired between task creation and activation is to use tasks in a dynamic fashion.
Consider the block statement shown in Figure 4.4. The declarative part con-
tains three type declarations: a task type, an array of ten tasks, and an access
to this array. After these declarations, an access object, ten_tasks, is declared,
followed by the body of worker. Since the declarative part contains no task ob-
jects, upon reaching the begin statement, the sequence of statement is executed
immediately; the task executing this block statement does not have to wait for

any tasks to be activated.

CHAPTER 4. THE GEN_MINITASK PACKAGE 67

the tasks are activated and begin their execution. The point at which this ac-
tivation occurs depends on whether the task is declared statically or allocated
dynamically. The motivation behind this is that if a problem arose creating one
or more tasks, then the programmer probably does not want “normal” process-
ing to continue, be it trying to create more tasks, or activating the ones that
already have been created. While this two stage process is beneficial for han-
dling exceptions, the synchronization point it mandates reduces the usefulness
of Ada in specifying loop-level parallelism.

Unfortunately, this is not the only reason why Ada is seemingly unsuitable
for loop-level parallelism.

A second deficiency in the Ada tasking model is its relative coarseness, as it is
intended primarily for programming embedded applications with relatively small
rate of intertask communication. As has been often noted, the tasking model
of Ada is nevertheless very general [Fra87,Hil82b,Blu81]. While this generality
provides the programmer with a powerful mechanism to express a program’s
communication and synchronization semantics, the overhead it requires is a
hindrance in expressing light-weight parallelism.

By providing a sophisticated method of task communication and synchro-
nization, an Ada implementation must maintain additional context (informa-
tion associated with rendezvous, entry queues, task priorities, etc.). Since the
full generality of the Ada task is not needed to specify loop-level parallelism —
parallel loop iterations do not communicate with each other or specify different
priorities — a heavy price is being paid for something that is not required. How-
ever, if a compiler can ascertain that a task will execute in a light-weight fashion

(i.e. with no synchronization with other tasks), then it can implement this task

CHAPTER 4. THE GEN_MINITASK PACKAGE 66

“Should one of these tasks thus become completed during its ac-
tivation, the exception TASKING_ERROR is raise upon conclusion of
the activation of all of these tasks (whether successfully or not); the
exception is raised at a place that is immediately before the first
statement following the declarative part (immediately after the re-

served word begin).” ARM 9.3(3)

This quote illustrates that the constraint that the master must wait for all
dependent tasks to complete their activation before continuing its execution is
indeed a practical one; if any of these tasks raise an exception the master must
raise TASKING_ERROR instead of continuing its normal execution.

What happens if an exception is raised by more than one activating task?

“Should several of these tasks thus become completed during their
activation, the exception TASKING_ERROR is raised only once.” ARM

9.3(3)

An implementation can satisfy this rule by maintaining a boolean for the master
signifying if TASKING_ERROR should be raised upon conclusion of the all of the
dependent’s activation.

Notice that the reference manual takes a different view when a task raises
an exception during its activation as opposed to when it is being created. This
is because activation marks the beginning of a task’s execution, and thus, once
this has begun, abnormal actions in it should not affect a sibling task.

These quotes illustrate that the initiation of a task is a two stage process.

First, the task objects are created, and then, provided no exceptions are raised,

CHAPTER 4. THE GEN_MINITASK PACKAGE 65

“If an exception is raised during the elaboration of the declarative

part of a given frame, this elaboration is abandoned.” ARM 11.4.2(1)

Therefore, task objects are not elaborated when the elaboration of a previous
item raises an exception.
Next, we consider the scenario when an exception is raised after a task object

has been elaborated, but before the corresponding task(s) has been activated:

“Should an exception be raised by the elaboration of a declarative
part or package specification, then any task that is created (directly
or indirectly) by this elaboration and that is not yet activated be-

comes terminated and is therefore never activated.” ARM 9.3(4)

As in the case when the exception is raised before the task object is elaborated,
no tasks are activated.

We next consider the case when no exception has occurred, and a task object
has been elaborated successfully. What happens if an exception is raised during

task activation?

“Should an exception be raised by the activation of one of these tasks,
that task becomes a completed task; other tasks are not directly

affected.” ARM 9.3(3)

Thus, if an exception is raised during the activation of one of the tasks associated
with the array ten_tasks, that task becomes completed, while the other nine
tasks, in addition to one_task, are not affected.

How does an exception being raised during the activation of a task affect the

master task?

CHAPTER 4. THE GEN_MINITASK PACKAGE 64

Once again, consider Figure 4.3. The master of the single task, one_task,
and the array of tasks, ten_tasks, is the block that declares it. Likewise, each
of these eleven tasks depends on this block. Although the task that is created
dynamically is also dependent on this block, it is for a different reason; namely,
the access type definition is declared in this block. This is consistent with normal
scope rules for objects created by an allocator.

The concept of task dependence is useful in determining the tasks a block
must wait for before exiting. This is precisely all tasks that are dependent on

that block, i.e.

e all task objects that were statically declared in that block statement, and

e all tasks that were created by an allocator (possibly in some inner frame)

using an access type definition that was declared in this block.

Returning to the block statement in Figure 4.3, we see that the task execut-
ing this block statement must wait for the tasks associated with one_task and
ten_tasks. In addition, any tasks associated with the access type, ref_worker,

must also terminate prior to the completion of this block.

4.2.2 Tasks and Exceptions
Since exceptions are an integral part of Ada, a reasonable question to ask is:
How are tasking semantics affected by the presence of exceptions?

The reference manual defines how these two important features interact. First,
it defines what happens if an exception is raised before or while a task object is

elaborated:

CHAPTER 4. THE GEN_MINITASK PACKAGE 63

a successful activation has occurred, an access to the value of the task is stored
in ref_task. Execution of both the rest of the sequence of statements and the
newly activated task proceed in parallel. Upon reaching the end statement, the
task that is executing the block statement must wait for the twelve other tasks
to terminate, if they haven’t already done so, before proceeding.

Note that an initial value for the access variable ref_task could have been
provided in the declarative part by using a call to the allocator. If this were the

case, a task would be created and then immediately activated.

4.2.1 Task Dependence

The reference manual defines the related concepts of task dependence and a

master of a task (ARM 9.4(1-3)):

“Each task depends on at least one master. A master is a construct
that is either a task, a currently executing block statement or sub-
program, or a library package. The dependence on a master is a

direct dependence in the following two cases:

o The task designated by a task object that is the object, or a sub-
component of the object, created by the evaluation of an allo-
cator depends on the master that elaborates the corresponding

access type definition.

e The task designated by any other task object depends on the

master whose execution creates the task object.”

CHAPTER 4. THE GEN_MINITASK PACKAGE 62

4. “Any initial value is assigned to the object.”

Thus, ten tasks are created and are associated with the array, ten_tasks. The
reference manual does not specify how these tasks are created, so they may be
created sequentially, in parallel, or some combination of the two. As is the case
with one_task, none of these tasks may start their execution at this time.

Next, the access object, ref_task, is created. As with any access type, unless
an initial value is provided by a call to the allocator, no object is created. Thus,
no task is created when ref_task is elaborated.

The elaboration of the declarative region is complete once the body of worker
is elaborated. This elaboration “has no other effect than to establish that the
body can from then on be used for the execution of tasks designated by objects
of the corresponding task type” (ARM 9.1(6)).

Upon conclusion of this elaboration, the sequence of statements is ready to
be executed. However, prior to executing these statements, all tasks that were
created in the declarative part are activated (ARM 9.3(2)). Activation of a task
“consists of the elaboration of the declarative part, if any, of the task body” (ARM
9.3(10)). After a task has been activated, it can start executing its sequence
of statements; it need not wait for any other task to complete its activation.
Although different task objects are elaborated sequentially, activation of their
corresponding tasks proceeds in parallel (ARM 9.3(1)).

Once all tasks have been successfully activated and begun their execution,
the assignment of ref_task is encountered. Since ref_task is an access variable,
the object it accesses is not created until the allocator, new, is called. When

this transpires, a task object is dynamically created, and then activated. Once

CHAPTER 4. THE GEN_MINITASK PACKAGE 61

declare
task type worker is ...
type ref_worker is access worker;
one_task : worker; —— Create a task.
ten_task : array (1..10) of worker; —— Create ten tasks.
ref_task : ref_worker:;
task body worker is ...

begin —— Activate one_task and ten_task(i), ¢ € 1..10
ref_task := new ref_worker; —— Create & activate a worker task.
end —— Wait for all tasks to terminate.

Figure 4.3: Task Creation and Activation Example

part and begin its execution.

To illustrate these two notions, consider the block statement of Figure 4.3.
During execution, the declarative part of this block is elaborated sequentially
(ARM 3.9(3)); followed by the execution of the sequence of statements (ARM
5.6(4)).

After elaborating the task type, worker, and the access type, ref_worker, the
task object, one_task is encountered. Elaborating a task object corresponds to
creating the task, i.e. allocating its storage, making it known to the system, etc.,
but not starting its execution. The array of tasks, ten_tasks is treated similarly.
Elaborating this array is just like elaborating any other array object declaration,

and proceeds as follows (ARM 3.2.1(4-8)):

1. “...the constrained array is first elaborated.”
2. “...any implicit initial values for the object ... are evaluated.”

3. “The object is created.”

CHAPTER 4. THE GEN_MINITASK PACKAGE 60

declare
task type iteration_task is
entry get_id(id : in integer);
end iteration_task;

par_loop : array (1..N) of iteration_task;

task body iteration_task is
my_id : integer;

begin
accept get_id(id : in integer) do
my_d := id; —— Acquire an id from parent.
end get_id;
S1
Sn
end iteration_task;
begin —— All “iterations” begin to execute.
for iin 1..N loop
par_loop(i).get-id(i); —— Identities are distributed sequentially.
end loop;
end; —— Wait for all “iteration” tasks to terminate.

Figure 4.2: An Ada “Parallel Loop”

a coarse grained construct, the Ada task. While the introduction of a loop-level
parallel construct, i.e. a parallel loop, would solve this problem, our goal is not to
modify Ada, but to use the current language to express this form of parallelism
efficiently. Before suggesting how this can be achieved, let us review the process

of task initiation in Ada.

4.2 Task Initiation

This section describes the manner in which tasks are initiated. Tasks can be
initiated statically or dynamically. Task initiation can be broken into two phases:
task creation and task activation. The former corresponds to when the task

object is created, while the latter is when the task elaborates its declarative

CHAPTER 4. THE GEN_MINITASK PACKAGE 59

requires that each task acquires a unique identity. In the case of a parallel loop,
this identity is used as the iteration value of the loop. As discussed in Chap-
ter 2, a major shortcoming of Ada is the inability to distribute task identities in
parallel, (the task initialization problem).

The serial bottleneck it implies increases the amount of overhead associated
with the task initialization. Since this overhead is of more importance with
loop-level parallelism than with a more coarse grain type, this shortcoming is
most critical in the construction of a parallel loop.

In Chapter 3 we presented a solution, the gen_beacon idiom, to this problem
using the fetch_and_add primitive. Although this idiom is used in subsequent
sections of this chapter, we first describe the manner in which a parallel loop
can be constructed without using the gen_beacon construct.

Figure 4.2 shows how one might achieve the effects of a parallel loop in Ada.
A task type, iteration_task is declared; it corresponds to an iteration of the loop.
This task contains one entry point, get_id, which is used to receive its identity
or iteration value. This is followed by the declaration of an array of N tasks,

corresponding to the N iterations of the loop.

After the task body is specified, iteration values of the “parallel loop” are
distributed to each of the iteration_tasks by the for loop. Iteration ¢ of this loop
calls the get_id entry of the i'* task, supplying it with the iteration value :.
This distribution of task identities is done sequentially, forming an undesirable
bottleneck in our “parallel loop”.

Even though we have suggested an idiom to remove this serial bottleneck, a

source of inefficiency still exists; loop-level parallelism is being expressed using

CHAPTER 4. THE GEN_MINITASK PACKAGE 58

Parallel Doi =1, N
Si
Sr,

End

Figure 4.1: A Typical Parallel Loop

fine or instruction-level: At this level, parallelism is obtained by expanding
the width of a machine instruction. Several operations are executed con-
currently within one instruction on distinct processing units. Machines
that support this form of parallelism are know as VLIW (Very Long In-
struction Word) machines. As this form of parallelism is directly accepted
by the machine, no overhead is required to initiate a parallel thread. The

difficulty lies in finding enough operations that can be performed in parallel

by one instruction [El86,EN90].

Parallelism in Ada is of the coarse grain variety. The Ada task is a “procedure-
like” object that executes in parallel with other active tasks in the program. As
described in Chapter 2, the rendezvous mechanism provides a manner in which
synchronization and communication can be performed between two otherwise
asynchronous tasks. Although the Ada tasking model is well-suited for those
applications that utilize coarse grain parallelism, many scientific applications
require the lower overhead associated with loop-level parallelism.

Figure 4.1 illustrates a typical parallel loop. The programmer specifies that
all N iterations can be executed in parallel. Although no “parallel loop” con-
struct exists in Ada, one can use tasks to specify a semantically equivalent entity.

Constructing a parallel loop, like many other problems in parallel processing,

CHAPTER 4. THE GEN_MINITASK PACKAGE o7

of the parallel construct that is used. Although granularity has been defined as
“the basic size of a process chosen for parallelism” [Kri89], synchronization and
communication costs must also be considered.

We define the overhead associated with a parallel construct as the amount
of additional computation that is required to initiate and terminate the parallel
threads that are associated with the construct. Overhead plays a significant
role in determining the granularity of a construct. From it we can determine
the minimum amount of computation that each thread must execute to ensure
that the expected execution time is reduced, compared to sequential execution.

Granularity can be divided into three levels:!

coarse or procedure-level: A thread at this level of granularity can have up
to the functional equivalent of an operating system process. It can contain
calls to subprograms, access global variables, and perform synchronization
and communication with other executing threads. However, due to this
robust functionality a significant amount of overhead is required to manage
these heavy-weight threads. Thus, this level of parallelism is only utilized
when each thread requires this full functionality, and is going to execute a

significant amount of computation to offset the corresponding overhead.

medium or loop-level: This form of parallelism severely limits the amount
of communication and synchronization that a thread is allowed. Due to
this limitation, this level of parallelism typically requires less overhead.
Thus, a sequence of statements, or a loop iteration, often supplies enough

computation to offset this overhead.

! Although most people agree that three levels of parallelism exist, there is no consensus as
to what these three levels are. See [Kri89] for an alterative definition.

Chapter 4

The Gen_Minitask Package

A significant shortcoming of the Ada tasking model is the inability to specify
loop-level parallelism in an effictzent manner. This shortcoming, first discussed
in Chapter 2, impedes the use of Ada as a language for expressing a large class of
parallel algorithms, namely, those algorithms that utilize loop-level parallelism.

In this chapter, we introduce the gen_minitask package to overcome this short-
coming. This package is similar to the gen_beacon package, described in Chap-
ter 3, in that both of these packages supply efficient solutions to well known Ada
shortcomings, without modifying the language. In order to understand the need
for this package, we discuss various types of parallelism before illustrating why

Ada is lacking in the loop-level variety.

4.1 Types of Parallelism

An important characteristic of a parallel algorithm is the manner in which the

parallelism is expressed. Of particular significance is the granularity or grain size

o6

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD

procedure insert(data : item) is
my_insert, dummy : integer;
function num_upper_tir is new
test_increment_reset(num_upper.read, num_upper.faa);
begin
if num_upper_test_increment_reset(1, queue_size) then
my_insert := next_insert.faa(1) mod queue_size;
—— Wait turn at my_insert
Q(my-insert) := data;
dummy := num_lower.faa(1);
else
raise OVERFLOW;
end if:

end insert;

function delete return item is
my _delete, dummy : integer;
function num _lower tdr is new
test_decrement_reset(num_lower.read, num_lower.faa);
begin
if num_lower_tdr(1) then
my_delete := next_delete.faa(1) mod Queue_Size;
—— Wait turn at my_delete
data := Q(my_delete);
dummy := num_upper.faa(-1);
else
raise UNDERFLOW;
end if;

end delete;

Figure 3.14: The revised insert and delete Routines

95

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD

generic
with function read_beacon return integer;
with function faa_beacon return integer;
procedure test_increment_reset(delta, bound : in integer) is
dummy : integer;
begin
if read_beacon + delta <= bound then
if faa_beacon(delta) <= bound then
return true;
else
dummy := faa_beacon(-delta);
return false;
end if;
else
return false;
end if:
end test_increment_reset:

generic
with function read _beacon return integer;
with function faa_beacon return integer;
procedure test_decrement_reset(delta : in integer) is
dummy : integer;
begin
if read_beacon - delta >= 0 then
if faa_beacon(-delta) >= 0 then
return true;
else
dummy := faa_beacon(delta);
return false;
end if;
else
return false;
end if;
end test_decrement_reset;

o4

Figure 3.13: Generic Version of test_increment_reset and test_decrement_reset

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD 53

variable of interest. This provides the test_increment_reset procedure a means
to access the shared variable without specifying the variable itself. Thus, a
subprogram can instantiate this generic function, and later call it, using the read
and fetch_and_add routines that are made available by the gen_beacon package.
The test_decrement_reset routine is treated in a similar manner. Figure 3.14 gives

the revised insert and delete routines using the generic functions of Figure 3.13.

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD 52

an attempt to claim this item. Assuming this is successful, true is returned to
delete. This allows delete to remove this item and decrement the num_upper
counter.

Both inserts and deletes can be performed in parallel. Since shared vari-
ables are accessing using the fetch_and_add construct, potential bottlenecks are
avoided. Thus, the insert and delete routines provide a mechanism to support

highly parallel queues.

3.4.1 An Apparent Shortcoming of Gen_Beacon

Consider the test_increment_reset routine shown in Figure 3.11. As previously
mentioned, the original test_increment_reset routine has three parameters as in-
put: a shared variable, a delta value, and an upper bound. However, in Fig-
ure 3.11 we assume the first parameter is always num_upper. While this is the
case with this particular algorithm, one would hope to write the test_increment-
_reset procedure in a more general manner.

Intuitively, one would expect to pass the shared variable by reference to the
test_increment_reset procedure. However, by using an instantiation of a package
to represent a shared variable, we lose the ability to pass references of this
variable; packages are not first class objects. Thus, it appears that we are
unable to specify test_increment_reset in a general way.

This, however, is not the case. As Figure 3.13 illustrates, test_increment _reset
can be specified as a generic procedure. Instead of passing the shared variable
to this procedure, we provide the means to access this variable by passing two

functions. The functions correspond to a read and a fetch_and_add on the shared

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD 51

procedure test_decrement_reset(delta : in integer) is
dummy : integer;

begin
if num_lower.read - delta >= 0 then —— anything to delete?
if num_lower faa(-delta) >= 0 then —— try to claim it
return true;
else —— num_lower decremented between ifs
dummy := num_lower.faa(delta); —— reset num_lower
return false;
end if;
else

return false;
end if;

end test_decrement_reset:

function delete return item is
my _delete, dummy : integer;
begin
if test_decrement_rest(1) then —— see if an item exists
my_delete := next_delete.faa(1) mod queue_size;
—— Wait turn at my_delete
data := Q(my_delete);

dummy := num_upper.faa(-1); —— delete is complete
else —— no items to delete
raise UNDERFLOW;
end if;
end delete;

Figure 3.12: The delete and test_decrement_reset Routines

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD 50

takes three parameters as input: a shared variable, a delta value, and an up-
per bound. For the call located in insert, these parameters correspond to the
num_upper counter, 1, and queue_size, respectively. If the upper bound reports
that no space exists, then test_increment_reset returns the value false to insert,
which in turn raises the OVERFLOW exception.

If test_increment_reset returns true, we are not only guaranteed that space
exists somewhere in ¢ to insert the new item, but also that this space has been
reserved. To acquire this space, a fetch_and_add is performed on the insertion
index, next_insert, yielding a unique value which is stored in the local variable,
my_insert. This value modulo queue_size is the index of q where the item is
stored.

It is possible that a delete operation has not finished removing the previous
element stored at this index. Therefore, we must wait until we are assured that
this element is free to use.® Once q(my_insert) is no longer occupied, data is in-
serted and num_lower is incremented atomically via the fetch_and_add construct;

this signifies that the element has been inserted.

The delete procedure, shown in Figure 3.12, is constructed in a similar man-
ner. It also utilizes a function to determine, and reserve, an item to be removed
from the queue. This routine, test_decrement_reset, checks the lower bound on
the number of items in the queue to determine if one exists to be deleted. If
no item exists, false is returned to the delete function and the UNDERFLOW ex-

ception is raised. If, however, an item does exist, num_lower is decremented in

6This can be done by using two semaphores, insert and delete, for each element of the array.
Although these semaphores can be represented in Ada, we omit their specifications in this
example. Before an insert operation is performed, a P operation is performed on the insert
semaphore. The corresponding V' operation is performed after the item is deleted. Similar
actions are taken for the delete semaphore. For more details, see [GGK*83].

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD 49

procedure test_increment_reset(delta, bound : in integer) is

dummy : integer; —— used to receive unwanted faa values
begin
if num _upper.read + delta <= bound then —— Any room?

if num_upper.faa(delta) <= bound then —— Try to claim it.
return true;

else —— num_upper incremented between two if s
dummy := num_upper.faa(-delta); —— reset num_upper
return false;
end if;
else

return false;
end if;

end test_increment_reset;

procedure insert(data : item) is
my_insert, dummy : integer;
begin
if test_increment_reset(1, queue_size) then —— try to find room
my_insert := next_insert.faa(1) mod queue_size;
—— Wait turn at my_insert
Q(my-insert) := data;

dummy := num_lower.faa(1); —— insert is complete
else —— no room available
raise OVERFLOW;
end if;
end insert;

Figure 3.11: The insert and test_increment_reset Routines

respectively. These two variables never differ by more than the number of ac-
tive insertions and deletions [GGK*83]. Both counters are initialized to zero,

indicating an empty queue.

Figure 3.11 specifies the insert and test_increment_reset routines. Before con-
sidering the insert procedure, we turn our attention to the test_increment_reset
function. The goal of test_increment_reset is to guarantee and reserve space for

an insertion into the queue. As originally specified in [GGK*83], this routine

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD 48

Upon instantiating this package, two subprograms are visible: insert and
delete. The former is passed a parameter of type item to be inserted at the
back of the queue. The latter returns an item after removing it from the front
of the queue. If an attempt is made to insert into a full queue, the exception,
OVERFLOW is raised. Similarly, an attempt to delete an item from an empty
queue will raise the exception, UNDERFLOW. The insert and delete routines are
specified so that these operations are performed in a “highly paralle]” manner.

In the package body, we represent a queue of length, queue_size, by a cir-
cular array. Since concurrent inserts and deletes are desired, q is used in a
shared manner. Although Ada does not allow composite objects to be de-
clared pragma shared (ARM 9.11(10)), others feel this restriction is too severe
[Dew90,Shu87,Hum88]. Even though atomic updates to the entire composite
object are not possible on most machines, atomic updates to a component of
the object are possible, and therefore, in the spirit of ARM 9.11(11). In the work
of Hummel [Hum88]|, a new pragma, volatile, is introduced as a means of mark-
ing those composite objects that are used in a shared fashion. In this work, we
subscribe to this usage.

In addition to the shared array, q, the algorithm utilizes four integer shared
variables. Since fetch_and_add operations are performed on these variables, the
gen_beacon construct is used to realize them. The shared variables represented
by the packages, next_insert and next_delete, correspond to the front and rear
of the queue, respectively. The initial value passed to these packages is zero,
signifying an empty queue.

The algorithm also makes use of two counters, num_lower and num_upper,

corresponding to lower and upper bounds for the number of items in the queue,

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD 47

generic
queue_size : integer;
type item is private;

package parallel_queue is
OVERFLOW, UNDERFLOW : exception;
procedure insert(data : item);
function delete return item;

end parallel_queue;

package body parallel_queue is
q : array(0..queue_size - 1) of item;
pragma VOLATILE(q);
package next_insert is new gen_beacon(0);
package next_delete is new gen_beacon(0);
package num_upper is new gen_beacon(0);
package num_lower is new gen_beacon(0);

procedure test_increment_reset(delta, bound : in integer) is ...
procedure insert(data : item) is ...

procedure test_decrement_reset(delta : in integer) is ...
function delete return item is ...
end parallel_queue;

Figure 3.10: The parallel_queue Generic Package

is used to solve the task initialization problem. In this section we illustrate
by example how a “fetch_and_add algorithm” would appear in Ada, when the

gen_beacon construct is employed.

The algorithm we choose, given by Gottlieb et al. in [GGK*83], provides
a means of management of “highly parallel queues”. Since the algorithm was
originally described as a collection of Pascal-like routines, it seems intuitive
to collect these routines and their data structures into an Ada package. This
package, shown in Figure 3.10, is constructed in a generic fashion with two
parameters: queue_size and item, corresponding to the maximum size of the

parallel queue and the type of item to be stored in the queue.

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD 46

Translated subprogram calls to read, write, and faa are given in Table 3.1.
Note that although we have eliminated the querying of status variables, we do
need to flush any Ada shared variables® associated with the calling task that
have been stored locally. This observation is also true with all previous variants
of the beacon task and was first attributed to Robert Dewar in [Hum88]. The
need for this cache flush is because a fetch_and_add-like rendezvous, as with any
other rendezvous, is a synchronization point for Ada shared variables. This
implies that any local copies of Ada shared variables of the calling task must be
stored into global memory before and after a rendezvous occurs (ARM 9.11(7)).

The only variable used in a shared fashion that is associated with the gen-
_beacon package is v. While it is possible to keep local copies of this variable for
each task that has access to it, the usage of this variable seems to suggest that
storing it in the shared global memory would be a better choice. Therefore, there
are no Ada shared variables associated with the gen_beacon package. Although
the gen_beacon package provides a means to obtain an integer shared variable,
there is no guarantee that the user will not employ Ada shared variables else-
where. Thus, each read, write, and fetch_and_add is preceded by a flush of any

of the user’s Ada shared variables.

3.4 An Example

By defining the gen_beacon construct, we have given the Ada programmer an

efficient means to utilize the fetch_and_add primitive. In Chapter 4 this construct

SAn Ada shared variable is a variable that is not declared by a pragma as shared, but
nevertheless is used in a shared manner.

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD 45

| OrRIGINAL CODE | TRANSFORMED CODE |
X := my_beacon.read; flush current task’s Ada shared variables
x := my_beacon.value;
my_beacon.write(x); flush current task’s Ada shared variables
my_beacon.value := x;
x := my_beacon.faa(inc); | flush current task’s Ada shared variables
x := fetch_and_add (my_beacon.value,inc);

Table 3.1: Code Fragments for read, write, and faa Subprograms
1. call the read_var entry,
2. access the monitor variable,
3. return its value to the read function,
4. return this value to its caller

is replaced by a single hardware read instruction. The write procedure is trans-
formed in a similar fashion.

Consider the faa procedure. As is the case with the read and write subpro-
grams, the procedure and entry calls can be eliminated. On an architecture that
supports the fetch_and_add hardware primitive, the faa procedure is transformed
exactly as is the case with read and write. However, even on machines that do
not possess this primitive, this type of transformation can still be performed.
In particular, the procedure and entry calls can both be removed. However,
since the read and increment operations that form the fetch_and_add, cannot
be performed atomically, semaphores must be used to ensure that concurrent

fetch_and_adds do not interfere with each other.

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD 44

the generic have been evaluated, the elaboration of the instantiated package can
begin.

We now consider the body of the gen_beacon package. All entities declared
here are not visible to the instantiator. Elaborating a package body corresponds
to elaborating its declarative part (ARM 7.3(2)). This corresponds to elaborat-
ing the task type definition, creating the task object, and then elaborating the
subprograms and beacon task body. Since the task type and bodies of the all of
these entities are known, no action is required to elaborate them (ARM 6.3(5)).
Since the beacon task is transformed into a passive object, creating it corre-
sponds to allocating space for the beacon_struct record.

After elaborating the declarative part of the package body, the associated se-
quence of statements is executed (ARM 7.3(2)). The gen_beacon package does not
contain a sequence of statements. Thus, instantiating gen_beacon corresponds

to allocating space for the integer variable which holds the beacon variable.

The read, write, and faa Subprograms

Since the beacon task is no longer visible to its user, access to the integer variable
it monitors must be provided by some other means. This is the role of the
three visible subprograms: read, write, and faa. The semantics of these routines
are straightforward; each routine calls the appropriate entry call of the hidden
beacon task.

As was the case when transforming the original beacon task’s entry calls,
these subprogram calls, and their corresponding entry calls, are also trans-

formed. For example, a call to the function read which formerly did the follow-

ing:

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD 43

task body beacon is
v: integer := initial_value;
begin
loop
select
accept read_var(val out integer) do
val := v;
end read_var;
or
accept write_var(val: in integer) do
v = val;
end write_var;
or
accept F_and_A(val: out integer; inc: in integer) do
val := v;
V=V + inc
end F_and_A;
or
terminate;
end select;
end loop;
end beacon;

Figure 3.9: Beacon Task Body for the Generic Beacon Package

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD 42

this initial value is supplied before the beacon task is activated, we not only en-
sure that an initial value is provided, but also eliminate the need to coordinate
initialization attempts by competing tasks. This fact, combined with the “pack-
aging” of the beacon task, reduces the representative beacon data structure to
a single integer variable: an integer that holds the value of the fetch_and_add

variable. Thus, the data structure to manage a beacon task becomes:

type gen_beacon struct is record
value : integer;
end record;

An instantiation of gen_beacon provides three visible subprograms: the func-
tions read and faa, and the procedure write. Both read and faa return integer
values, while write accepts an in parameter of the type integer. Each of the visible
subprograms of gen_beacon calls the appropriate entry of the hidden beacon_task

(see Figure 3.8).

3.3.1 Implementation

In this section we describe the Ada semantics of gen_beacon and show how under
these semantics an efficient implementation can be realized. Below is an example

of instantiation of the gen_beacon package.

my_beacon is new gen_beacon(1);

The instantiation of a generic package has the same effect as specifying the
package in the place where the generic is instantiated, substituting all references

to generic parameters with the actuals (ARM 12.3). Once the parameters of

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD

generic
initial_value : integer;

package gen_beacon is

function read return integer;

procedure write(val: in integer);

function faa(inc: in integer) return integer;
end gen_beacon;

package body gen_beacon is
task type beacon is
entry read_var(val out integer);
entry write_var(val: in integer);
entry F_and_A(val: out integer; inc: in integer);
end beacon:

beacon_task : beacon:

function read return integer is
tmp : integer;

begin
beacon _task.read_var(tmp);
return tmp;

end read;

procedure write(val: in integer) is
begin
beacon _task.write_var(val);
end write;
function faa(inc: in integer) return integer is
tmp : integer;
begin
beacon _task.F_and_A(tmp, inc);
return tmp;
end faa;

task body beacon is ...
—— See Figure 3.9
end beacon:

end gen_beacon;

Figure 3.8: The Generic Beacon Package

41

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD 40
is used to represent a transformed beacon task is reduced to the following;:

type beacon_struct is record
value : integer;
initialized : boolean := false;
init_sync : integer := 0;
end record;
The code fragments are likewise reduced by eliminating all checks of the elimi-

nated completed field.

3.3 Owur Construct: The Generic Beacon Pack-
age

Although we have reduced the run time overhead to calls of read, write and
F_and_A by encorporating the beacon task in a library package, Ada semantics
still requires us to inspect the initialized field before access to the beacon variable
can occur. Furthermore, two variables are still required for the management of
initialization.

In an attempt to eliminate these variables and the undesirable overhead
that is required to inspect them, while still providing means to ensure proper
initialization, we introduce the generic beacon package, gen_beacon (see Figures
3.8 and 3.9). This generic package captures all of the advantages of the beacon
task and package, while also solving the problem of beacon initialization.

As seen in Figure 3.8, the generic beacon package overcomes the problem of

initialization by having an initial value provided as the generic parameter. Since

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD 39

e The beacon task contained in the beacon package no longer contains a local
variable. Thus, all entry calls to this task must supply an access variable
that is to be modified or read. This gives the appearance that operations
on two different fetch_and_add variables will occur in a sequential manner.
Although this is true of beacon package at the Ada level, a compiler can

removal this potential bottleneck.

Consider two tasks, both of which are to perform a fetch_and_add opera-
tion on distinct variables. Since both tasks subsequently call the F_and_A
rendezvous, Ada semantics specify that these rendezvous must occur se-
quentially. However, since the two tasks operate asynchronously, the order

in which these calls are made is not known.

Now consider when these entry calls are translated directly to the fetch_-
and_add hardware primitive. Instead of engaging in a rendezvous, each
task now performs a fetch_and_add operation. Since the programmer is
unable to detect the order in which these operations occur, they can be

executed concurrently.

Thus, although an undesirable bottleneck is present at the Ada level, it is
removed when these entry calls are transformed. The underlying hardware

decides in what order the operations occur.

The second difference is transparent to the programmer and therefore not an
issue. However, the first difference is one the programmer must be aware of. A
solution to this problem, given by Mitsolides [Mit88], would be to provide the
user of the beacon package with another procedure to allow initialization (and

creation) of new fetch_and_add variables. Using this approach, the structure that

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD 38

task type beacon is
entry read_var(var: in shared_integer; val out integer);
entry write_var(var: out shared_integer; val: in integer);
entry F_and_A(var: in out shared_integer;
inc: in integer; val: out integer);
end beacon;

task body beacon is
v: integer;
begin
loop
select
accept read_var(var: in shared_integer; val out integer) do
val := var.all;
end read_var;
or
accept write_var(var: out shared_integer; val: in integer) do
var.all := val;
end write_var;
or
accept F_and_A(var: in out shared_integer;
inc: in integer; val: out integer) do
val := var.all;
var.all := var.all 4 inc;
end F_and_A;
or
terminate;
end select;
end loop;
end beacon;

Figure 3.7: Beacon Task Type as in [Hum88]

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD 37

of a task dependence relation with its calling tasks, and also can not be aborted
by its callers.

In an approach suggested by Hummel [Hum88g|, the beacon task is hidden
inside the private part of a library package body (see Figure 3.6). Access to its
entries is only possible by procedure calls visible to the subprogram using this
package.

This approach offers the following advantages:

e Since the task is hidden in the private part of the library package, no

subprogram that uses it can name it, and therefore abort it directly.*

e Since the task is declared in a library package, the subprogram that uses
this package does not need to wait for this task to complete before it can

terminate (ARM 9.4(13)).

A direct result from these two observations is that we no longer need to store in-
formation about the beacon task’s status (completed or not); it will not complete
until after all tasks that can potentially call it have terminated. Furthermore,
since it 1s contained in a library package, tasks that can call it need not wait for

its completion in order to terminate (ARM 9.4(13)).

However, the proposed solution, (Figure 3.7) differs from the original beacon

task (Figure 3.1) in a few ways:

e The beacon package version no longers ensures that the local variable as-
sociated with the beacon task has been properly initialized. Thus, calls to

read and F_and_A may return unknown results.

4The task can still be aborted if its master task is aborted. However, in this case all potential
callers will also be aborted.

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD

package beacon_pack is

type shared_integer is access integer;

function read(var: in shared_integer) return integer);

procedure write(var: in out shared_integer; val: in integer;

function faa(var: in out shared_integer; inc: in integer) return integer;
end beacon_pack;

package body beacon_pack is

type shared_integer is access integer;

task type beacon is
entry read_var(var: in shared_integer; val out integer);
entry write_var(var: out shared_integer; val: in integer);
entry F_and_A(var: in out shared_integer;

inc: in integer; val: out integer);
end beacon:

beacon_task : beacon:

function read(var: in shared_integer) return integer is
tmp : integer;

begin
beacon _task.read_var(var, tmp);
return tmp;

end read;

procedure write(var: in out shared_integer; val: in integer) is
begin

beacon _task.write_var(var, val);
end write;

function faa(var: in out shared_integer; inc: in integer) return integer is
tmp : integer;

begin
beacon_task.F_and_A(var, inc, tmp);
return tmp;

end faa;

end beacon_pack;

Figure 3.6: Body of Beacon Package as in [Hum88|

36

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD 35

When a beacon task is aborted, the completed field is set to true. As we
have seen by the code fragments, any task that calls an entry of this aborted
task, will find the completed field set to true. The calling task will then take the
appropriate action depending on the type of entry call.

When a calling task is aborted, the transformed beacon task is not affected;
the beacon data structure still exists for other tasks to access. These semantics
are consistent with those of the untransformed beacon task.

Since a task that is aborted need not terminate until it reaches a synchro-
nization point (ARM 9.10(6)), the body of the code fragments may be executed
in its entirety. However, since completing the code fragment represents the end
of the entry call, and hence a synchronization point, an aborted task must cease

execution at this time.

3.2 Packaging a Beacon Task

Recall that one motivation behind creating the beacon task is to make the
fetch_and_add primitive available at the Ada level. To this extent, the beacon
task achieves this goal. However, by introducing an active object (a task) to
represent a passive one (a shared variable), the semantics of Ada have neces-
sitated the inclusion of additional status variables. These status variables are
undesirable; we desire a direct translation of uses of the fetch_and_add idiom to
actual fetch_and_add operations.

Since some of these status checks are required by the semantics of task com-
pletion and abort instructions, one may try to specify a beacon task in a manner

such that these issues are not of concern; we want a beacon task that is not part

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD 34

DT .=CLOCK + D;
while not T.initialized or T.completed loop
if T.completed then
raise TASKING_ERROR;
end if;
exit when CLOCK > DT,
end loop;
if CLOCK < DT then
case type of operation is
when read => var := T.value;
when write => T.value := val;
when F_and_A => val := felch_and_add (T .value, inc);
end case;
—— Execute any other statements associated
—— with the entry call part of the select statement.
else
—— Execute the statements associated with
—— the delay part of the select statement.
end if;

Figure 3.5: Code Fragment for a Timed Entry Call with delay D

part of the select statement are executed.

3.1.2 Handling Aborts

Since the beacon task is originally an Ada task, it may be aborted by any
task that can name it. Although the abort statement “should be used only
in extremely severe situations” (ARM 9.10(10)), care must be taken to ensure
that proper Ada semantics are upheld when beacon tasks are abstracted away.
Therefore, we must ensure that any transformation of the beacon task properly
handles any attempts to abort it. Additionally, we must show that if any task
that can call one of the beacon task’s entries is aborted, the integrity of the

transformed beacon task is maintained.

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD 33

if T.completed then

raise TASKING_ERROR;
end if;
if T.initialized then
case type of operation is

when read => var := T.value;

when write => T.value := val;

when F_and_A => val := fetch_and_add (T .value, inc);
end case;

—— Execute any other statements associated

—— with the conditional part of the select statement.
else

—— Execute the statements associated with

—— the else part of the select statement.

end if;

Figure 3.4: Code Fragment for a Conditional Entry Call

the appropriate operation is performed followed by any other statements present
in the select option of this entry call. If T is not initialized, then the rendezvous
does not occur; the statement(s) contained in the else part of the select statement
are executed.

The code fragment for timed entry calls utilizes the methods used in both
the simple entry call and the conditional entry call. It is given in Figure 3.5. A
timed entry call specifies a delay D which is the maximum amount of time the
calling task is willing to wait for the receiving task to reach its accept statment
(ARM 9.7.3(1)). Thus, a timed entry call does not necessarily require that the
rendezvous occurs immediately. Once again, a loop is employed to check the
initialized and completed status variables.

Once initialization is completed, a check must be performed to ensure that D
time has not passed. If D time has passed since execution of the code fragment

begun, the rendezvous does not occur; the statements associated with the delay

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD 32

while not T.initialized or T.completed loop
if T.completed then
raise TASKING_ERROR;
end if:
end loop;
case type of operation is
when read => var := T.value;
when write => T.value := val;

when F_and_A => val := felch_and_add (T .value, inc);

end case;

Figure 3.3: Code Fragment for an Unconditional Entry Call

calling task access to the beacon variable, check must be performed to ensure
that the beacon task has been initialized and has not been aborted. We describe
below the manner in which this is done.

The code fragment for an unconditional entry call is given in Figure 3.3. If T
is yet to be initialized and is not marked completed, the calling task loops until
one of these two conditions change. If T becomes completed, i1.e. another task
aborts it, TASKING_ERROR 1is raised in the calling task. This corresponds to the
beacon task being aborted before it reaches one of the accept statements con-
tained in the select statement. As is the case with the init code fragment, raising
TASKING_ERROR precludes execution of the rest of the code fragment. However,
if T becomes initialized, before it is completed, the value field is accessed in the
appropriate fashion (read, write, or fetch_and_add).

If the entry call is of the conditional variety, then the code fragment described
in Figure 3.4 is executed. Since a conditional entry call attempts to perform a
rendezvous immediately, a loop is no longer needed; we first check if the task is
completed, raising TASKING_ERROR if it has. If T is not completed, a check is

made to see if the variable has been initialized. If T has been properly initialized,

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD 31

receives this value is designated as the “winner” and is allowed to set the value
field to the value passed. The initialized flag is then set to true. By executing
a fetch_and_add on the init_sync field, we ensure that only one task is allowed to
initialize the value field, avoiding a race condition.

If a non-zero value is returned from the fetch_and_add operation, then another
task has, or is about to, initialize the value field. When this occurs the action
performed is dependent on the type of init entry call that was executed. If the
call was a timed entry call, the calling task would normally wait the specified
amount of time before proceeding with the statement immediately following the
call. To uphold these semantics, the calling task delays the appropriate amount
of time and then exits the code fragment for init.

When a conditional entry call to init is unsuccessful — another task has al-
ready been selected as the initializer — the calling task executes the else part
associated with the entry call. Thus, when a non-zero value is returned from
the fetch_and_add of init_sync, the else part of the entry call is executed.

If the entry call is unconditional, then Ada semantics specify that the calling
task should wait until this call can be satisfied. However, the beacon task is
constructed so that it only accepts one init entry call; a subsequent rendezvous
can never occur. Thus, if a task that executes an unconditional entry call receives
a non-zero value, it is blocked until it is aborted. This program most likely

contains a logic error.

The Read, Write, and F_and_A Entry Calls

The code fragments for the read, write, and F_and_A entry calls are similar. We

present each fragment according to the type of entry call. Before allowing a

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD 30

if T.completed then
raise TASKING_ERROR;
end if;
num := fetch_and_add(T.init_sync, 1);
if num = 0 then
T.value :=e;
T.initialized := true;
else —— task T has already been initialized.
case type of entry call is
when timed => wait for the stated time
when unconditional => block until calling task is aborted
when conditional =>
execute statements associated with else part
end case;

end if;

Figure 3.2: Code Fragment for T.init(e)
The Init Entry Call

Consider the code fragment executed when the init entry is called (Figure 3.2).
First, a check is performed to ensure that T is not marked completed; it has
not completed its execution or been aborted. Ada Semantics specify that both
“the call of an entry of an abnormal task” (ARM 9.10(7)) and “an attempt to
call an entry of a task that has completed its execution” (ARM 9.5(16)) result
in TASKING_ERROR being raised at the place of the call. Thus if T.completed is
true, TASKING_ERROR 1is raised in the calling task. This precludes the execution

of the rest of the code fragment.

If T.completed is still false, an attempt is made to mimic the init rendezvous.
To do this we must ensure that only one of several potential callers is allowed
to initialize v. This is done by having each of the potential initializers execute
a fetch_and_add operation with increment of one on the init_sync field. Only one

of these tasks will have the original value of zero returned. The calling task that

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD 29

to Ada tasking semantics, each of these operations must be preceded by a check
of some status variables associated with the transformed beacon task. These
variables are used to coordinate beacon initialization, as well as ensuring that
an abnormal beacon is not accessed. They are contained in a data structure along
with the integer value associated with the beacon task. The data structure that

represents the transformed beacon task is:

type beacon_struct is record
value : integer;
initialized : boolean := false;
completed : boolean := false;
init_sync : integer := 0;

end record;

The value field corresponds to the local variable, v, in the original beacon task.
Two boolean fields, initialized and completed hold information on the callability
of the beacon task. A beacon task is initialized once some other task provides
an initial value via the init entry call. A beacon task becomes completed when
it is aborted or when the task that declares it, its master task, and all of its
descendents terminate.®. If any of these tasks try to access the beacon task
when it is completed, TASKING_ERROR is raised in the calling task. The integer,
init_sync, is used to coordinate multiple initialization attempts.

We now discuss the code fragments that a calling task executes in place of

the entry calls to a beacon task T.

3We discuss task dependence in more detail in Chapter 4

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD 28

Of particular importance is the semantics of the F_and_A entry. As mentioned
in Chapter 2.1, the semantics of the fetch_and_add primitive specify that the
variable is incremented by the value supplied and the original value returned.
These two operations must appear to occur atomically. Since access to the local
variable is monitored by the beacon task, the F_and_A entry ensures that these

semantics are upheld.

3.1.1 Transforming the Beacon Task

Due to the manner in which the beacon task is constructed, it can be transformed
into a passive data structure. On a machine that supports the fetch_and_add
primitive, reads, writes, and F_and_A’s are performed atomically. Hence, we
would like to replace a call to any of these entries with the actual read, write or
fetch_and_add operation.? As described in [SS85], the “beacon thus disappears
as a separate task entity, and leaves behind a simple data structure and code
fragments to access it.” This type of transformation is an example of the kind
proposed by Hilfinger [Hil82a,Hil82b,Hil90].

Note that even on a machine that does not support the fetch_and_add prim-
itive, a transformation of this type can still be performed. However, synchro-
nization must be provided to ensure that the two instructions that comprise the
F_and_A rendezvous are both executed before any other task is permitted access
to v. A simple semaphore is sufficient to provide this synchronization.

Although it would appear that each call to the beacon task can be directly

translated into the corresponding hardware operation, this is not the case. Due

2Initialization is viewed as a form of a write operation.

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD

task type beacon is

entry init(e: in integer);

entry read(l: out integer);

entry write(e: in integer);

entry F_and_A(l: out integer; e: in integer);
end beacon;

task body beacon is
v: integer;
begin
accept init(e: in integer) do
vVi=¢
end init;
loop
select
accept read(l: out integer) do
| :=v;
end read;
or
accept write(e: in integer) do
Vi= e
end write;
or
accept F_and_A(l: out integer; e: in integer) do
| :=v;
V.=V + €
end F_and_A;
or
terminate;
end select;
end loop;
end beacon;

Figure 3.1: Definition of the beacon Task Type as in [SS85]

27

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD 26

3.1 The Beacon Task Type

In this section we present the beacon task type as originally formulated [SS85].
An instance of a beacon task provides the user with an integer variable which
may be used in a shared fashion. In addition to reading and writing this variable,

an operation that satisfies the fetch_and_add semantics is permitted

As shown in Figure 3.1, the beacon task contains an integer variable, v.
This variable corresponds to the shared variable to be used. Access to it is
provided through four entry calls. In addition to the three operations mentioned,
an initialization entry call, init, is also provided. In order to ensure that v is
properly initialized, another task must call the init entry, supplying an initial
value. Once this rendezvous has occurred, the beacon task accepts any of the
other three entry calls: read, write, and F_and_A.

These entry calls are enclosed in a select statement. The semantics of this
statement specify that if more than one of the accept statements are open,
i.e. a task has called their corresponding entry, then “one of them is selected
arbitrarily” (ARM 9.7.1(6)). Since the select statement is enclosed by a loop,
this process continues until no more active callers exist. These semantics are
precisely the way our target machine model treats simultaneous reads, writes,
and fetch_and_adds — as if they occurred in some unspecified serial order. Thus,
the semantics of the beacon task match nicely with its desirable implementation.

By declaring v local to the beacon task, access to it is restricted; it is only
possible through one of the four entry calls. This characteristic, when combined
with the fact that the beacon task can only be executing one of these entries at

a time, ensures that atomic access to this variable is maintained.

CHAPTER 3. BEACON TASKS AND FETCH_AND_ADD 25

has been rewritten in Ada to utilize the fetch_and_add construct we suggest.
In specifying a fetch_and_add construct at the Ada level, we impose the fol-

lowing three constraints:

1. The fetch_and_add construct must be easy to use syntactically and should

not add unnecessary complexity to any program that utilizes it.

2. The semantics of the fetch_and_add construct must be consistent with those
of the fetch_and_add primitive. This enables architectures that do not
support the fetch_and_add primitive to execute this construct with the

same results,! albeit not as efficiently.

3. To make best use of those architectures that do support the fetch_and_add
primitive, a translation of the fetch_and_add construct to the hardware
primitive must be available. This requires that a compiler targeted for
a machine that supports the fetch_and_add primitive be able to recognize
and exploit uses of the fetch_and_add construct. A direct translation from

the fetch_and_add construct to the fetch_and_add primitive is desirable.

The original beacon task satisfies all three of these constraints. However,
by allowing for a more direct translation from the fetch_and_add construct to
the fetch_and_add primitive, the new gen_beacon generic package satisfies the 3"
constraint in a more robust manner. In order to understand why this is the case,

we turn our attention to the beacon task.

1Since the fetch_and_add primitive incorporates non-determinism into its semantics, same
results may not be possible even on the same architecture. However, we expect the seman-
tics of fetch_and_add construct to be consistent across architectures, regardless of whether the
fetch_and_add primitive is available.

Chapter 3

Beacon Tasks and

Fetch_And_Add

This chapter presents a solution to the task initialization problem as discussed
in Chapter 2. This solution uses a generic package, gen_beacon, to make the
fetch_and_add primitive available at the Ada level. By making this primitive
available to the Ada programmer, we not only solve the task initialization prob-
lem, but also extend the possibilities of process synchronization in Ada.
Schonberg and Schonberg [SS85] first introduced this idea through the use
of the beacon task type. In this work, we specify an enhanced version of the
beacon task. Since the work of Schonberg and Schonberg forms the foundation
of this work, we first describe the beacon task as given in [SS85]. We then
show how encapsulating this task into a generic package helps to reduce run-
time overhead and storage. This generic package is used in Chapter 4 where
the problem of tasking overhead is addressed. We also present a parallel queue

algorithm that utilizes the fetch_and_add primitive [GGK*83]. This algorithm

24

CHAPTER 2. BACKGROUND

generic
type index_type is (<>); —— any discrete subtype
with procedure body_proc (i : in index_type);
procedure self_scheduling_loops (num_tasks : in positive;
Ib, ub : index_type);

procedure self_scheduling_loops (num_tasks : in positive;
Ib, ub : index_type) is

task type worker;

workers : array (1 .. num_tasks) of worker;

task loop_control is
entry get_loop_status (done : out boolean);
entry get_index_index_value (i : out index_type);

end;

task body worker is

i index_type;

done : boolean;
begin

loop

loop_control.get_loop_status (done);
exit when done;
loop_control.get_index_value (i);
body_proc (i);
end loop;
end;

task body loop_control is
begin
for jin Ib .. ub loop
accept get_loop_status (done : out boolean) do
done := false;

end;

accept get_index_value (i : out index_type) do
=

end;

for k in 1..num_tasks loop

accept get_loop_status (done : out boolean) do

done := true;

end;
end loop;
end;
begin
null;
end;

Figure 2.5: Dritz’s Self_Scheduling Loops

23

CHAPTER 2. BACKGROUND 22

and is shown in Figure 2.5.

A typical use of this generic would require an instantiation as follows:

procedure self_scheduling_loop is new self_scheduling_loops (st, loop_body);

where st corresponds to the “common base type of the expressions for the bounds
[of the loop], or any subtype thereof containing both of the bounds”. Declaring st
as integer will certainly suffice. The second parameter, loop_body, corresponds
to a procedure that contains the statements in the body of the loop. After
this generic has been instantiated, a parallel loop is obtained by calling the

instantiated procedure in the following manner:

self_scheduling_loop(10, 1, 1000);

Although this solution is quite elegant, it differs from our work in the fol-

lowing ways:

1. No optimized implementation algorithm has been devised [Dri90a]. There-

fore, worker tasks are implemented as a regular Ada task.

2. The task initialization problem has not been overcome; iterates are as-
signed sequentially. This implies that overhead associated with this para-
digm is similar to that of the Ada parallel loop equivalent shown in Fig-

ure 2.4.

3. There is no mechanism for the parent thread to inspect the status of any

of the child threads that execute the iterates.

In [Dri90b], Dritz specifies an enhanced version of this generic that reuses
the iteration tasks in subsequent instantiations. This facility is desirable if the

overhead associated with the initiation of worker tasks proves to be a bottleneck.

CHAPTER 2. BACKGROUND 21

experiment was to construct an Ada compiler. Due to the flexibility that high-
level programming in SETL provides, the compiler was rapidly produced. In
1983, the Ada/Ed system became the first validated Ada compiler, in addition
to becoming the de facto standard operational definition of Ada [Hum88|.

The next goal of the experiment was to increase system performance by
translating it to low-level SETL and eventually C [KS84]. The C version was
developed on a Vax and has been ported to a variety of machines including Sun,
Alliant, and the PC.

In her PhD thesis, Hummel [Hum88] described a highly parallel version
of the Ada/Ed run time system free of serialization points. It relies on the
fetch_and_add primitive and supports Ada’s tasking features in a highly paral-
lel manner. Her work has been incorporated into the Ada/Ed-C system and
has been implemented on the NYU Ultracomputer [Beh90]. Although Hum-
mel’s work avoids implementing Ada tasks as heavy weight operating system
processes, these tasks are still not suitable to specify loop-level parallelism. Our
work extends the work of Hummel by specifying two idioms and their imple-

mentations that allow efficient loop-level parallelism to be realized.

2.3.2 Dritz’s Work

We conclude this chapter by describing a suggested solution developed indepen-
dently by Dritz [Dri90b] to obtain loop-level parallelism in Ada. In this work,
Dritz shows how several important tasking paradigms can be realized in Ada.
He describes monitors, barriers, gates, and a self-scheduling for-loop. The latter

paradigm is similar in spirit to the gen_minitask generic discussed in Chapter 4

CHAPTER 2. BACKGROUND 20

called Ada 9X. Dewar [Dew90] discusses some of the issues involved with shared
variables in relation to possible Ada 9X requirements. In Chapter 7 we discuss
the current state of the revision process, focusing on the proposed revisions that
directly relate to our work.

In addition to problems discussed by Dewar, Shulman [Shu87] and Hum-
mel [Hum88| discuss other issues pertaining to shared variables. In particular,
they specify an algorithm to detect unmarked synchronous shared variables.
Although in most cases these variables can be found at compilation time, the
use of Ada’s separate compilation facility can hamper this detection, forcing its
postponement until bind time.

Synchronous shared variables are relevant to our work because the cache
semantics they imply affect the optimizations that we can perform. Chapters 3

and 5 address this issue further.

2.3 Related Work

This section describes related work to this thesis and is broken into two sections.
The material presented in the first section forms the basis for our work. The
last section describes a proposed solution to the problem of obtaining loop-level

parallelism developed independently by Dritz [Dri90b).

2.3.1 The NYU Ada/Ed System

The basis for our work is the NYU Ada/Ed system, a translator/interpreter
of the full Ada language. The NYUAda project began as an experiment in

large-scale prototyping using the SETL language [SDDS86]. The goal of the

CHAPTER 2. BACKGROUND 19

SHARED, while the synchronous variety cannot.? Thus, all variables not marked
as pragma SHARED, but nevertheless used by more than one task, are syn-
chronous shared variables.

Dewar [Dew90] notes:

It is a source of continuing confusion that pragma SHARED does not
correspond to the concept of shared variable, as defined in Steelman®
or the RM, but rather to a particular subset of shared variables,
namely the asynchronous ones. This means for example that the
Steelman requirement that shared variables be marked is not satis-

fied by the provision of pragma SHARED, since synchronous shared

variables do not have to be marked in Ada.

In addition to this deficiency, not allowing the programmer to designate
composite data structures as pragma SHARED variables presents a problem. Most
applications that employ loop-level parallelism typically have several threads
working independently on parts of a shared data structure. Since different tasks
access different parts of this composite object simultaneously, it is used in an
asynchronous manner. However, Ada does not permit composite objects to be
declared as pragma SHARED variables.

As suggested by Hummel [Hum88|, an additional pragma can be used to
overcome this deficiency. For example the DEC Ada compiler supports a pragma
VOLATILE to designate composite objects that are used in a shared manner. This

problem and many others are being addressed in the revision of the language,

4Asynchronous shared variables are sometimes referred to as pragma SHARED variables, while
the synchronous variety are called Ada shared variables.
5Steelman is the requirements document for Ada-83.

CHAPTER 2. BACKGROUND 18

These deficiencies and their solutions are further described in Chapters 3 and

2.2.3 Shared Variables in Ada

In Ada a shared variable corresponds to a variable that is referenced by more

than one task. There are two types of shared variables:

Synchronous: A synchronous shared variable is a variable referenced by more
than one task, but for which local copies can be maintained between
language-defined synchronization points; if one task writes to this vari-
able, no other task can read or write to it until a synchronization point is

reached.

Asynchronous: An asynchronous shared variable is a variable referenced by
more than one task which does not satisfy the exclusive access constraint of
synchronous shared variables between synchronization points. In addition,

asynchronous shared variables are restricted to scalar and access types.

The motivation behind these definitions is that a synchronous shared variable
may be cached locally to a processor, and flushed to shared memory at syn-
chronization points of the task executing on the processor. On the other hand,
asynchronous shared variables cannot be cached locally; they must reside in
shared memory.

A major distinction between these two types of shared variables is that the

asynchronous type can be tagged as such by the programmer using the pragma

CHAPTER 2. BACKGROUND 17

requires that each task possess a unique identity. In the case of a parallel
loop, this identity is the iteration value for the corresponding iterate. The
only mechanism by which each task can initialize its state uniquely (with
its iterate) is to provide each with an appropriate entry, and to have an-
other task perform a rendezvous with each iterate task.? This solution is
undesirable not only because of the rendezvous that must be performed,
but more importantly because of the bottleneck that results. Additional

descriptions of this shortcoming can be found in [Yem82,Cla87,Blu81].

2. Task initiation is a two stage process [Ada83]. Task objects are first cre-
ated, and then, provided no exceptions are raised, they are activated.
While this two stage process is beneficial for handling exceptions, the syn-
chronization point it mandates increases overhead, and thereby limits the

usefulness of Ada in specifying loop-level parallelism.

3. In order to provide a sophisticated method of task communication and
synchronization, an Ada implementation must maintain additional con-
text (information associated with rendezvous, entry queues, task priori-
ties, etc.). As the full generality of the Ada task is not needed to specify
loop-level parallelism, unnecessary context is present. However, if a com-
piler can ascertain that a task will execute in a light-weight fashion (i.e.

with no synchronization with other tasks), then it can implement this task

in a more efficient manner [Fra87,Hil82b,Blu81].

3Although this initialization is performed serially in Figure 2.4, a more efficient tree-based
solution is possible. However, as we shall see in Chapter 6 a bottleneck is also present in this
solution.

CHAPTER 2. BACKGROUND

declare
task type iterate_task is

entry get_id(id : in integer); —— iterate_task contains one entry.

end iterate_task:
par_loop : array (1..N) of iterate_task; —— Create N iterate_tasks.

task body iterate_task is
my_id : integer;

begin

accept get_id(id : in integer) do
my_d := id; —— Acquire an id from parent.

end get_id;
S1
Sn

end iterate_task:

begin —— All iterate_tasks begin to execute.

for i in 1..N loop —— Identities are distributed sequentially.
par_loop(i).get_id(i);
end loop;
end; —— Wait for all iterate_tasks to terminate.

Figure 2.4: An Ada Parallel Loop Equivalent

16

CHAPTER 2. BACKGROUND 15

description here, but instead focus on other issues concerning the Ada tasking

model. See ARM 9.7.2 and ARM 9.7.3 for more details.

2.2.1 The Suitability of Ada for Shared Memory Multi-

Pprocessors

Although it may appear that Ada’s tasking model is designed with a distributed
memory architecture in mind, it is nevertheless well-suited for shared memory
multiprocessors. The very fact that Ada’s block structure implies that more than
one task can access the same variable implies that a shared memory architecture
is required.

Several implementations of Ada exist on shared memory architectures [Ric89]
[DFSS89,AL89,CCB8Y| [Alliant,Sequent]. In addition, it has also been shown
that parallel numerical algorithms normally written in FORTRAN for these ma-
chines can also be written in Ada [Blu81,5585]. The intended goal of our work
is to add to this effort by illustrating how loop-level parallelism can be both

expressed, and efficiently implemented, in Ada.

2.2.2 Deficiencies of Ada Tasking Model

Three significant deficiencies in the Ada tasking model are manifested when one

attempts to express loop-level parallelism:

1. Although no parallel loop construct exists in Ada, one can use tasks to
specify a semantically equivalent entity as shown by Figure 2.4. Con-

structing a parallel loop, like many other problems in parallel processing,

CHAPTER 2. BACKGROUND 14

task buffer is
entry write(in_item: in item);
entry read(out_item: out item);

end buffer;

task body buffer is
local_item: item;

begin
accept write(in_item: in item) do
local_item := in_item;
end write;
loop
select

accept read(out_item: out item) do
out_item := local_item;
end read;
or
accept write(in_item: in item) do
local_item := in_item;
end write;
or
terminate;
end select;
end loop;

end buffer;

Figure 2.3: An Example of a Selective Wait Statement

terminate, endlessly looping, waiting for entry calls. However, the terminate al-
ternative specifies that upon reaching the select statement, if all potential callers
have either terminated or reached a select statement with a terminate alterna-
tive, then this task terminates. The apparently infinite loop of Figure 2.3 is
indeed finite. If upon reaching the select statement no entry calls are pending,
but potential callers still exist, this task does not terminate; it waits for either
an entry call or for all potential callers to terminate or reach a select with a
terminate alternative.

The select statement can also be used for entry calls. We avoid a detailed

CHAPTER 2. BACKGROUND 13

task student is
begin
select
accept study do

end study;
or
accept have_fun do

end have_fun;:
end select;
end student;

Figure 2.2: An Example of a Selective Wait Statement

In addition to this simple form, three other forms of select statements are
available. In Figure 2.3, we consider a select statement with a terminate alter-
native. This figure illustrates an example of a monitor of a protected variable,
local_item. All accesses to this variable are made by calling the read or write
entries of the task buffer.

Consider the body of the buffer task. After accepting a write entry call
to initialize the local variable, an apparently infinite loop containing a select
statement with a terminate alternative is entered. The semantics of this select
are as follows: each of the entries corresponding to the accept statements is
evaluated to determine if a task has called that entry. If one or more of these
entries has a task waiting, a rendezvous occurs with one of these waiting tasks
as demonstrated in the simple version of the select statement.

At the conclusion of the rendezvous, the select statement has completed its
execution. The next iteration of the loop is executed and the process contin-

ues. Without the presence of the terminate alternative, this task would never

CHAPTER 2.

BACKGROUND

shared : integer;

task tl is
entry sync;
end tl;

task body tlis

x : integer;
begin

accept sync do

null;

end sync;

x := shared; —— shared is declared globally
end tl;

task body t2 is
begin
shared := 5:

tl.sync; —— signal to t1 it can now use shared.

end t2;

Figure 2.1: A Rendezvous used for Synchronization

The Select Statement

12

A select statement can be used to non-deterministically accept one of several

potential entry calls (ARM 9.7.1). Consider Figure 2.2 which shows an example

of a select statement. In this example the student task wishes to accept either

one of two entry calls. This can be accomplished by using a select statement.

Upon reaching this statement, a check is made to determine if any tasks have

called either the study or have_fun entries. If only one of these entries has a caller

waiting, that entry is accepted and a rendezvous occurs. If neither entry has a

caller waiting, execution blocks until a call on one of these entries occurs. If at

least one caller exists for each of these entries, one is chosen non-deterministically

and the rendezvous is performed. At the conclusion of the rendezvous the select

statement is complete.

CHAPTER 2. BACKGROUND 11

communication between two otherwise asynchronous tasks, Ada allows a task to
declare one or several entry points. An entry may be called by another task to
participate in a rendezvous with the first task. The task that declares this entry
can specify when in its execution it wishes the rendezvous to occur by executing
an accept statement naming the appropriate entry. Likewise, the calling task
can specify the point at which it wishes to call an entry by executing an entry
call. An entry may have parameters associated with it in the same manner as
subprograms, making the rendezvous mechanism a means of communication as
well as synchronization.

When two tasks perform an entry call and accept statement for the same en-
try, a rendezvous occurs (ARM 9.5(14)); the calling task suspends its execution
while the body of the accept statement is executed.? Upon completion of this
rendezvous, both tasks continue their independent execution at the point imme-
diately following the body of the accept statement and entry call, respectively.

Figure 2.1 shows an example of how two tasks can synchronize access to a
shared variable by using the rendezvous mechanism. In this example, tasks tl
and t2 coordinate their accessing of the global variable, shared, by synchronizing
via the sync entry located in task t1. The programmer has deemed that up until
t2 calls this entry, it is allowed to write to shared. After this has occurred, t2
signals to t1 that it may now access this variable exclusively by calling the sync

entry.

?We assume that no other task has executed an entry call, prior to this entry call, for the
same entry.

CHAPTER 2. BACKGROUND 10

While the fetch_and_add primitive can be implemented in software using locks
and/or critical sections, machines such as RP3 and Ultracomputer implement
this primitive directly in hardware. This is accomplished by adding extra logic
to the switches in the omega network. This logic has the ability to combine mul-
tiple fetch_and_add operations on the same variable, substituting one operation
with an increment specified by the sum of the increments of the requests. By
performing this combining in the network, multiple fetch_and_adds are satisfied
in the time it takes for one shared memory access.

Consider the scenario where all N processors simultaneously issues a fetch-
_and_add operation on the same variable. Without the presence of a combining
network, hot spots will arise at certain nodes of the network. By combining these
requests, all N requests can be satisfied in the time it takes for one fetch_and_add

operation.

2.2 Ada Tasking

In this section we present a brief overview of the Ada tasking model. In addition
to highlighting some of its features, we illustrate three deficiencies of this model
that arise when one attempts to express loop-level parallelism. Other features
of the language are illustrated in subsequent chapters.

Parallelism in Ada is expressed by using the task construct (ARM 9(1-2)).!

A task is an entity that executes in parallel with other tasks. To facilitate

!The semantics of the language are defined by the Ada Reference Manual [Ada83]. As many
references are made to this document throughout this work, we employ a shorthand in referring
to a particular section. We use “ARM c.s(i)” to correspond to item 1 of section s located in
chapter ¢ of the Ada Reference Manual.

CHAPTER 2. BACKGROUND 9

2.1.2 Memory Hierarchy

An important consideration in constructing a shared memory machine is decid-
ing how processors are connected to memory. Although we assume a configu-
ration in the spirit of the Ultracomputer and RP3, our work can be tailored to
alternative configurations. In what follows we discuss the memory hierarchies
found in the Ultracomputer and RP3.

To facilitate massive parallelism in a uniform way, processors are connected
to shared memory via a connection network. Both the RP3 and Ultracomputer
utilize an Omega-network for this purpose. An omega network provides pro-
cessors with uniform access to shared memory. In addition, an omega network
provides a very efficient processor/memory routing scheme [GLRS83].

In a traditional omega network (as used in the Ultracomputer) processors
reside on one side of the network with the memory units on the opposite side
[Law75]. Since a path of log N switches connects each processor to shared mem-
ory, all shared memory requests require log N steps. In an attempt to reduce
the amount of network accesses, the designers of the RP3 also connect each pro-
cessor directly to a memory unit. If a processor references shared memory of the
memory unit that it is connected to, the access is performed locally, avoiding
a network traversal. If a processor references shared memory that is not in its
companion memory unit, then the network is used to satisfy this request.

In addition to this local memory, a cache is often provided to further reduce
network accesses. In the RP3 this cache can be managed by software, allowing

for both greater flexibility and responsibility in coordinating data placement.

For more details see [BMW85].

CHAPTER 2. BACKGROUND 8

For example, suppose V' is a shared variable and processor ¢ executes
X, := fetch_and_add (V, ¢;),
while processor j executes
X; = fetch_and_add (V, ¢}).

If V is not updated by any other processor, then the result of these two opera-

tions is either

XZ:V
X]' =V +e

or

XZ»::V—I—ej
X, =V

As a further illustration of the usefulness of the fetch_and_add primitive we
consider the following problem: suppose we wish to distribute N entries of an
array to N distinct threads in parallel. By using the fetch_and_add primitive,
we can solve this problem in a straightforward manner. First, initialize a shared
variable to the value of the first index, nq, of the array. Next have each of the N
processors execute a fetch_and_add operation on this variable with a unit incre-
ment. By the semantics of the fetch_and_add primitive, each processor receives
a unique index value ranging from n; to ny + N — 1.

We describe the implementation of the fetch_and_add primitive in the next

section.

CHAPTER 2. BACKGROUND 7

architecture allows faster access to local memory, while rendering non-local ac-
cesses more costly. A shared memory machine provides uniform access to all of
memory, but this access cannot be performed in constant time.

We follow the work of Hummel [Hum88] and assume an asynchronous, shared
memory multiprocessor as our model. The IBM RP3 [PBG*85] and its prede-
cessor, the NYU Ultracomputer [GGK*83], are examples of machines that fall

under this model.

2.1.1 The Fetch_ And _Add Primitive

Our work utilizes the fetch_and_add primitive. The fetch_and_add primitive is
a universal coordination primitive that provides an efficient means of synchro-
nization among many asynchronous processors while avoiding “hot spots”. The
fetch_and_add primitive can be used as a solution to the mutual exclusion prob-
lem, the readers-writers problems, and other problems dealing with parallel ac-
tivities [GLR83]. In addition, it can simplify program analysis; it presents a
form of synchronization that can be used to prove an algorithm is free of race
conditions.

The semantics of the fetch_and_add primitive are as follows: if a process
executes fetch_and_add(shared_var, inc), the value of shared_var is incremented
by inc, and the original value is returned. These two operations are performed
atomically. If two processors execute fetch_and_add operations on shared_var,
the result is that shared_var is incremented by the sum of the two increments
and one processor is returned the original value of shared_var, while the other

receives the sum of the original value and the first processor’s increment.

Chapter 2

Background

This chapter is divided into three sections, providing the background for this
work. The first section describes the machine model. The second section dis-
cusses the Ada tasking model, highlighting its advantages as well as its short-
comings. We conclude this chapter by discussing the NYU Ada/Ed system and

related work.

2.1 The Machine Model

As our work deals with practical parallelism, our underlying machine contains
multiple processors. A fundamental decision in designing a multiprocessor is the
placement of memory. In a shared memory machine a common memory can be
accessed by each processor. In a distributed memory machine each processor has
its only local memory; no shared memory exists. Since both architectures pro-

vide the same computational power, the main issue is efficiency. A distributed

CHAPTER 1. INTRODUCTION

in this regard. Geoffrey Hunter [Hun90] postulates that,

“The only technically rational way of advancing the art of scientific
and engineering programming is to abandon FORTRAN in favor of a

modern, block-structured language such as Algol-68 or Ada.”

We believe this work will help towards this transition.

CHAPTER 1. INTRODUCTION 4

“Ada tasking can be made as efficient as any other method of con-
currency programming, but the generality of the Ada model requires

special cases to be extracted and used.”

This work will focus on making loop-level Ada tasking efficient by using pro-
gram transformations similar to those described in [SS85], [Hil82a] and [Hil82b].
Using these methods, we are able to achieve an efficient implementation without
sacrificing portability.

Chapter 2 provides a background for this work; it discusses our multipro-
cessor model and the fetch_and_add primitive. It also gives an overview of the
Ada tasking model and introduces three shortcomings in Ada: the lack of the
ability to distribute identities to tasks in parallel, the synchronization point that
is required during task initiation, and the high overhead required to manage a
task’s status.

Chapter 3 not only solves the first of these two problems, but also makes the
fetch_and_add primitive available at the Ada level. By doing this we provide the
user with a efficient synchronization mechanism that can be used to prove an
algorithm is free of race conditions.

Chapter 4 provides a solution for obtaining efficient loop-level parallelism.
This solutions is illustrated by the examples in Chapter A. Chapter 7 concludes
this work and suggest some future research directions.

The expected result of this work is to widen substantially the use of Ada in
large scale scientific programming on current and future multiprocessor archi-
tectures. One may even hope for a progressive replacement of FORTRAN in this

domain of applications, even though past history gives us the slimmest of hopes

CHAPTER 1. INTRODUCTION 3

to a parallel thread before it starts to execute, no synchronization is required
between starting and terminating each parallel thread. This characteristic allows
this type of parallelism to be implemented efficiently on a variety of machines.

Ada is a modern programming language which supports parallelism as well
as programming in the large, data abstraction, strong typing, and exception
handling. An ANSI standard [Ada83] is intended to ensure portability across
implementations. Many compilers exist for Ada on sequential machines and
efforts have been undertaken to make Ada available on parallel architectures as
well [Ric89,AL89,CCB89]. For these reasons, Ada appears to be an excellent
choice for algorithms geared toward parallel architectures.

The parallel construct of Ada is the task. It is a powerful generalization
of coroutines, that supports coarse-grain parallelism, as well as synchroniza-
tion and communication (both conditional and unconditional) among otherwise
asynchronous processes. Due to its generality, a significant amount of over-
head is required to activate and terminate a task [BN87,Ard87,Hil82b]. This
overhead makes the Ada task seemingly inappropriate for loop-level parallelism
[Yem82,Bur85,Jha90)].

However, the attractiveness of programming in Ada with its desirable fea-
tures (exception handling, programming in the large, strong typing, etc.) sug-
gests that if the overhead associated with task initiation and termination were
eliminated, Ada would be a language of choice for the largest scientific com-
putations — an area of application where FORTRAN continues to reign. Frankel

[Fra87] postulates,

CHAPTER 1. INTRODUCTION 2

doalli =1, N
S1
Sn

endall

Figure 1.1: A ParFOR Code Fragment

level of granularity required by multiprocessors [Ken88|.

An alternative approach is to allow the programmer the full power to express
the parallelism of an algorithm directly, by writing it in a parallel programming
language [Bab88,Qui87]. This approach not only lets the programmer decide the
appropriate granularity of parallelism, but also how and where this parallelism
should be employed in the program. The manner in which the programmer is
allowed to specify the parallelism in an algorithm is a very important decision.

An increasing amount of programs are being written for parallel machines
using languages that are essentially sequential languages onto which parallel con-
structs have been grafted [IBM88,Ber88,Inc81,0st89]. Since each parallel ma-
chine often provides its own idiosyncratic parallel constructs, portability across
machines is troublesome. Although an effort has been undertaken to agree on
common parallel constructs for multiprocessors [PCF88], it remains to be seen

whether this work will develop into an industry-wide standard.

Figure 1.1 presents a code fragment written in a version of FORTRAN that
has been modified to support parallelism [Ber88]. The semantics of the doall
construct specify that each iteration of the loop may be executed in parallel. This
medium grain or loop-level parallelism is the most common form of parallelism
used in scientific applications. Each iteration of the loop executes the same set

of instructions with only the loop index varying. Since each iterate can be given

Chapter 1

Introduction

More and more computationally intensive applications are being executed on
parallel machines [AG89]. These machines achieve their increased processing
power by exploiting the parallelism present in an application and distributing it
among multiple processing elements. Since most of these applications have been
written for sequential machines, their implementation on parallel architectures
requires new approaches to algorithmic development.

One approach, the field of Parallelizing Compilers [Hin88,ACK87,ABC*87]
takes programs written for sequential architectures and automatically converts
them to semantically equivalent parallel programs. Typically, these compilers
take as input a sequential FORTRAN program (FORTRAN still being the prevalent
language for scientific computation) and produce a FORTRAN program with ap-
propriate parallel constructs added. Although great success has been achieved
in the related field of Vectorizing Compilers [AK84, KKLW84,Col87], compilers
that generate code for vector machines, it remains to be seen whether paralleliz-

ing compilers can detect and exploit a sufficient amount of parallelism at the

6.4
6.5
6.6
6.7
6.8
6.9

The Body of a Minitask 150

LBG(), LBGiee(——), and LBGyp(—) . . . o o o o oo . 156
25% Efficiency for E (- -), Etpee(— — —), and Egp(—) 160
A Non-Parallel Loop with Synchronization Inserted 165
An Example of Scalar Expansion 167
An Example of Loop Interchange 168

6.10 An Example of Loop Alignment 169

3.13 Generic Version of test_increment_reset and test_decrement_reset

3.14 The revised insert and delete Routines
4.1 A Typical Parallel Loop
4.2 An Ada “Parallel Loop”
4.3 Task Creation and Activation Example
4.4 A Dynamic “Parallel Loop”
4.5 An Example of a Loop Body Procedure
4.6 The Visible Part of Gen_Minitask
4.7 A Typical Usage of gen_minitask
4.8 The First Version of Package Body of Gen_Minitask
4.9 The Body of a Minitask
4.10 The Improved Version of Package Body of gen_minitask
4.11 The Task_Completion and Task_Exception Functions
5.1 The Package Specification of Gen_Minitask
5.2 The Declarative Part of Gen_Minitask Body
5.3 The Sequence of Statements of the Gen_Minitask Body
5.4 Nested Parallel Loops using the Gen_Minitask idiom
5.5 The Body of Minitask Revisited
5.6 The Instantiation of Gen_Beacon Revisited
5.7 Minitask Exception Handling Algorithm
5.8 Instantiating Task’s Algorithm
5.9 Algorithm to Create, and Execute a Minitask
6.1 An Ada Parallel Loop Equivalent (PLE)
6.2 A Parallel Loop Using the Gen_Minitask Idiom (GMI)
6.3 Tree-Based Initialization Variant of the Ada PLE

o4

List of Figures

1.1 A ParFOR Code Fragment 2
2.1 A Rendezvous used for Synchronization 12
2.2 An Example of a Selective Wait Statement 13
2.3 An Example of a Selective Wait Statement 14
2.4 An Ada Parallel Loop Equivalent 16
2.5 Dritz’s Self_Scheduling Loops 23
3.1 Definition of the beacon Task Type as in [SS85] 27
3.2 Code Fragment for T.init(e) 30
3.3 Code Fragment for an Unconditional Entry Call 32
3.4 Code Fragment for a Conditional Entry Call 33
3.5 Code Fragment for a Timed Entry Call with delay D 34
3.6 Body of Beacon Package as in [Hum88]. 36
3.7 Beacon Task Type asin [Hum88] 38
3.8 The Generic Beacon Package 41
3.9 Beacon Task Body for the Generic Beacon Package 43
3.10 The parallel_queue Generic Package 47
3.11 The insert and test_increment_reset Routines 49
3.12 The delete and test_decrement_reset Routines 51

x11

List of Tables

3.1
4.1
5.1
5.2
5.3
5.4

5.6
5.7

6.1
6.2
6.3
6.4

6.6
6.7

Code Fragments for read, write, and faa Subprograms
Five Constraints of a Parallel Loop Idiom
The Elaboration of the Declarative Part of the Gen_Minitask . . .
The Four Steps Involved in Elaborating an Object Declaration

The Ada/Ed Task Control Block
Tcb Fields Needed for Minitask Implementation
Tcb Fields Needed for Minitasks that Contain Tasks
Cache Actions Required for Minitasks

Implementation of the task_completion and task_exception Subpro-

Per Task Initialization Overhead for Tree-Based Version
Initiation Overhead for a Family of Minitasks
Initialization Overhead for each Minitask
Overhead Requirement for Each Parallel Loop Idiom

Average Thread Size Required for Various Efficiency Levels . . .

x1

6.5 Comparing Parallel Loop Idioms 151

6.5.1 Granularity 152

6.5.2 Efficiency 157

6.6 Other Typesof Loops 164
6.6.1 Scalar Expansiono 166

6.6.2 Loop Interchange 166

6.6.3 Loop Alignment 168

7 Conclusions 170
7.1 OurWork 171
7.2 Ada9X ..o 174
7.2.1 Managing Large Number of Tasks 175

7.2.2 Vector Architectures 177

7.3 Future Worko 179

A Examples 182
Al Calculate Pi.o 182
A2 GaussJordan 186

A.3 Matrix Multiplication 189

5 Gen_Minitask Implementation 89

5.1 Elaborating the Package Specification 91
5.2 Elaborating the Declarative Part 93
5.3 Executing the Sequence of Statements 98
5.4 Removing the Synchronization Point 102
5.4.1 One-Shot Allocation of Stacks. 106
5.4.2 Stack Recyclingo 107
5.4.3 A Critique of the Stack Recycling Scheme 108

5.5 Reducing Minitask Overhead 111
5.5.1 Parallelismm Within a Minitask 112
5.5.2 Further Reducing Beacon Overhead 116
5.5.3 Ada Shared Variables 119
5.5.4 Handling Exceptions 123

6 Performance Analysis 130
6.1 Preliminaries 133
6.1.1 Assumptions 134

6.2 The Ada Parallel Loop Equivalent (PLE) 134
6.2.1 Task Initiation 135
6.2.2 Task Initialization 136

6.3 Tree-Based Initialization 140
6.3.1 Inmitialization Overhead 142

6.4 The Gen Minitask Idiom (GMI) 146
6.4.1 Minitask Initiation 147

6.4.2 Minitask Initialization 149

3.1

3.2
3.3

3.4

The
4.1
4.2

4.3

4.4

4.5

The Beacon Task Type. 26

3.1.1 Transforming the Beacon Task 28
3.1.2 Handling Aborts 34
Packaging a Beacon Task 35
Our Construct: The Generic Beacon Package 40
3.3.1 Implementation 42
An Exampleo 46
3.4.1 An Apparent Shortcoming of Gen_Beacon 52
Gen_Minitask Package 56
Types of Parallelism 56
Task Initiation Lo 60
4.2.1 Task Dependence 63
4.2.2 Tasks and Exceptions 64
Removing the Synchronization Point 68
4.3.1 An Observation 68
Reducing Tasking Context 70
441 The Pragma Approach 71
4.4.2 The Compiler Detection Approach 72
4.4.3 The Idiom Approach, 73
Our Idiom — The Gen_Minitask Package 73
4.5.1 Gen_Minitask Usage 77
4.5.2 The Gen Minitask Body, 80

4.5.3 The Completion Status Routines 88

Contents

Abstract il
Acknowledgements iv
1 Introduction 1

2 Background

2.1

2.2

6
The Machine Model 6
2.1.1 The Fetch_And_Add Primitive 7
2.1.2 Memory Hierarchy 9
Ada Tasking 10

2.2.1 The Suitability of Ada for Shared Memory Multiprocessors 15

2.2.2 Deficiencies of Ada Tasking Model 15

2.2.3 Shared Variablesin Ada 18

2.3 Related Worko 20
2.3.1 The NYU Ada/Ed System 20

2.3.2 Dritz’s Worko 21

3 Beacon Tasks and Fetch_And_Add 24

Vil

her inspiration, and her love.

particular, I would like to thank Ron Cytron for his guidance and insight.

I would also like to acknowledge David Clark, Anthony Dos Reis, Hanaman-
tagouda Sankappanavar, and the rest of the faculty of the Mathematics and
Computer Science department at S.U.N.Y. New Paltz for their fine instruction
during my undergraduate years. In particular, I would like to thank Hanaman-
tagouda Sankappanavar whose guidance and inspiration eventually led to my
decision to pursue a doctorate.

I have had the pleasure of knowing many students during my years at
Courant. I thank all of them for making this time memorable. In particular, I
would like to thank my friend and officemate, Ernest Campbell, for the many
theoretical discussions we have shared. I would also like to thank Pankaj Agar-
wal for his motivation and friendship, Babu Narayanan for letting me win a few
racquetball games and making me laugh, Juan Cardenas, Prasad Tetali, Naomi
Silver, Patricia Bedard and Karen Clark for many good times, and Venkatara-
man Sundareswaran for showing me how to draw. John Goodman, my officemate
for my complete stay at NYU, deserves special thanks for his advice, for putting
up with me, and especially for use of his Ada Reference Manual.

I would also like to thank the members and officers of the Imprecision Bridge
Club at NYU for offering both a challenging and friendly outlet during the many
hectic years of my study. In particular, I would like to thank Ofer Zajicek for
letting me become involved with the club, as well as for his advice with my work.

Last, but certainly not least, I would to thank my fiancee, Laureen Treacy.
From the start she has encouraged me to pursue my dreams and helped me in
every way that she could. Her careful proofreading and advice have no doubt

contributed to the quality of this work. I will forever appreciate her sacrifices,

Acknowledgements

First and foremost I would to thank my parents and the rest of my family who
have supported me throughout the years. Their sacrifices and encouragement
will always be remembered.

I would like to thank my advisor, Edmond Schonberg, not only for his tech-
nical guidance, but also for his encouragement and motivation in helping me
produce this work. I would like to thank Robert Dewar for insight into shared
variables, and Ben Goldberg and Paul Hilfinger for their careful reading and
valuable comments. In addition, I would like to thank the rest of my commit-
tee, Malcolm Harrison and Alan Gottlieb.

I would also like to thank Susan Flynn Hummel and other members of the
NYU Ada/Ed group, past and present. In particular, Bernard Banner deserves
a special thank you for the help he has given me during my time with the group.
I would also like to thank Bob Paige for his encouragement, Anina Karmen-
Meade for always being helpful, and the rest of the faculty and administrative
staff at Courant for their services.

I am thankful to Fran Allen and the members of the PTRAN group at IBM
Research (Michael Burke, Ron Cytron, Jeanne Ferrante, Vivek Sarkar, and Dave

Shields, etc.) for making my stays with them enjoyable and educational. In

v

Abstract

Parallelism in scientific applications can most often be found at the loop level.
Although Ada supports parallelism via the task construct, its coarseness renders
it unsuitable for this light-weight parallelism. In this work, we propose Ada
constructs to achieve efficient loop-level parallelism in ANSI-Ada. This is ac-
complished in two steps. First, we present an idiom that allows the specification
of light-weight tasks. Second, we give an efficient implementation of this idiom
that is considerably more efficient than a standard Ada task.

In addition, we present an idiom that makes the fetch_and_add synchroniza-
tion primitive available at the Ada level. Our implementation of this idiom is
more efficient in both time and space than previous results. In addition to pro-
viding universal synchronization, using fetch_and_add simplifies program analysis
(e.g. proving the absence of race conditions in the implementation of a parallel
algorithm). Since all these idioms are written in standard Ada, they maintain

the portability that is central to the mandated uses of the language.

111

(© Copyright 1991
by Michael Hind
All Rights Reserved

Efficient Loop-Level Parallelism in Ada

Michael Hind
October 1991

A dissertation in the Department of Computer Science submitted
to the faculty of the Graduate School of Arts and Sciences in
partial fulfillment of the requirements for the degree of Doctor of

Philosophy at New York University

Approved:

Edmond Schonberg

Research Advisor

