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Abstract

A class of multilevel methods for second order problems is considered in the additive
Schwarz framework. It is established that, in the general case, the condition number of
the iterative operator grows at most linearly with the number of levels. The bound is
independent of the mesh sizes and the number of levels under a regularity assumption.
This is an improvement of a result by Dryja and Widlund on a multilevel additive Schwarz

algorithm, and the theory given by Bramble, Pasciak and Xu for the BPX algorithm.

Additive Schwarz and iterative substructuring algorithms for the biharmonic equation
are also considered. These are domain decomposition methods which have previously been
developed extensively for second order elliptic problems by Bramble, Pasciak and Schatz,

Dryja and Widlund and others.

Optimal convergence properties are established for additive Schwarz algorithms for
the biharmonic equation discretized by certain conforming finite elements. The number
of iterations for the iterative substructuring methods grows only as the logarithm of the
number of degrees of freedom associated with a typical subregion. It is also demonstrateed
that it is possible to simplify the basic algorithms. This leads to a decrease of the cost
but not of the rate of convergence of the iterative methods. In the analysis, new tools are
developed to deal with Hermitian elements. Certain new inequalities for discrete norms

for finite element spaces are also used.
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Chapter 1

Introduction

1.1 An Overview

Finite element discretizations of elliptic problems, e.g. the biharmonic problem, often re-
sult in very large, sparse linear systems. Domain decomposition methods are very powerful
iterative methods for solving such problems. The domain is decomposed into overlapping
(resp. non-overlapping) subdomains; the algorithms are often referred to as Schwarz type
(resp. iterative substructuring) methods. In each iteration step, a number of smaller sub-
problems, which correspond to the restriction of the original problem to subregions, or to
a problem with a coarse mesh, are solved. The number of subproblems can be large and

these methods are promising for parallel computation.

The Schwarz alternating method, the first domain decomposition algorithm, was pro-
posed by H.A. Schwarz [42] in 1869. It involves solving problems on two subdomains
sequentially. In [34], P. L. Lions interpreted the method in a variational framework.
Many subdomain cases were also considered. Because of the sequential nature of the
method, it is not ideal for parallel computations. In [24], Dryja and Widlund introduced
the additive Schwarz method to remove this sequential behavior of the Schwarz alternating
method making it possible to solve all the subproblems in parallel, see also Matsokin and
Nepomnyaschikh [37] and Nepomnyaschikh [39]. The additive Schwarz method can be
regarded as an iterative method for an equivalent system with a better condition number.
Dryja and Widlund showed the optimal convergence properties of the algorithm for second

order problems discretized by linear elements. Generalization to certain stationary and



parabolic convection-diffusion problems have been carried out by Cai and Widlund; cf.

[14,16,17].

Iterative substructuring methods for second order problems were developed by Bram-
ble, Pasciak and Schatz [10,11], Bjorstad and Widlund [7], Widlund [47,46] and Dryja
[23,22]. Techniques for analyzing some iterative substructuring methods using the addi-
tive Schwarz framework were developed in Dryja and Widlund [25]. They demonstrated
that certain iterative substructuring methods can be viewed as additive Schwarz methods
with a set of special overlapping subdomains. For discussions of the relationship between

the two type schemes, see also Bjorstad and Widlund [8] and Chan and Goovaerts [19].

Multilevel methods, such as multigrid methods, are among the most efficient methods
for linear equations arising from elliptic problems; cf. Hackbusch [32], McCormick [38]
and the references therein. Recently, with the increasing interest in parallel computation,
several new multilevel methods have been developed; cf. Yserentant [52], Bank, Dupont
and Yserentant [1], Bramble, Pasciak and Xu [13], and Dryja and Widlund [28]. In this
thesis, we give improved results for a class of multilevel methods by showing that the
condition number of the iteration operator grows at most linearly with the number of
levels in general, and is bounded by a constant independent of the mesh sizes and the
number of levels if the elliptic problem is H?-regular. This is an improvement on Dryja
and Widlund’s results on a multilevel additive Schwarz method as well as Bramble, Pasciak

and Xu’s results on the BPX algorithm.

We also study the additive Schwarz and iterative substructuring methods for the bi-
harmonic Dirichlet problem. We construct additive Schwarz algorithms for the biharmonic
equation using standard conforming finite element discretization. Some new tools are de-
veloped for the proofs of the optimal convergences of the algorithms. By using a weak
coupling property of the degrees of freedom, some simplified versions are also derived.
This leads to a decrease of the cost per iteration but not of the rate of convergence of the
iterative methods. In the case of the iterative substructuring methods, we demonstrate
that direct generalizations of some known iterative substructuring methods result in algo-

rithms with a condition number which grows at least like O((H/h)?). Better algorithms



are obtained by using certain vertex spaces. Some parallel multilevel algorithms are also
constructed for the biharmonic problem. Some earlier works on the biharmonic problem
can be found in Glowinski and Pironneau [30], Bjorstad [2], Widlund [45] and Chan, E
and Sun [18].

The thesis is organized as follows. In the remainder of chapter 1, we review some basic
Sobolev spaces. We also discuss some preliminary material for the biharmonic problem
and some standard finite element discretizations. In chapter 2, we review some domain
decomposition techniques in a form used in this thesis. In chapter 3, we discuss a class
of multilevel methods, including a multilevel additive Schwarz method of Dryja and Wid-
lund and the BPX algorithm of Bramble, Pasciak and Xu. We present our algorithms and
analysis using the additive Schwarz framework. In chapter 4, we construct some interpo-
lation and quasi-interpolation operators and establish approximation properties of these
operators. We also construct discrete Sobolev norms and establish their equivalence to the
corresponding continuous Sobolev norms. We also prove a theorem regarding the norm
estimates of some standard interpolation operators. These results are used in chapters 5
and 6 to show the optimal and almost optimal convergence properties of the algorithms. In
chapter 5, we construct additive Schwarz schemes for the biharmonic problem discretized
by some standard finite elements and we establish the optimal convergence properties of
the algorithms. By using the weak coupling property of the degrees of freedom of the
finite elements, some computationally more efflicient algorithms are also derived. We also
consider a multilevel method. Numerical experiments with the algorithms are reported. In
chapter 6, we discuss some generalization of the iterative substructuring methods for the
biharmonic problem. We first demonstrate that direct generalizations of some algorithms
designed for the second order problems result in algorithms with very large condition
numbers. We then show that better algorithms can be obtained by adding certain vertex
spaces to the space decomposition. Finally, we present numerical experiments to support

our theoretical conclusions.



1.2 Some Sobolev Spaces

Let 2 C R? be a bounded Lipschitz domain and let LP(2) be the Banach space of p-th
power integrable functions.

We use the multi-index notation for partial derivatives. Let a = (aq,---, @4) be a non-
negative multi-index representing the order of the partial derivatives, |a| = a3 + - -+ ay,

and let
po def 0% def o
o Qze dat -zt

The Sobolev space WP(Q) is defined by

Wr(Q) € fo] D% € LP(Q), if |o] < m}

with a norm

||U||€Vm’p(g): Z ||Da”||ip(g)-

| <m

We also need the seminorm

|U|]Ljvm,p(g) = E ||Davl|ip(9)'

|a|=m
The most useful space in this thesis is the case p = 2, which by convention is denoted by

H™(Q),

def

H™Q)Z W™(Q).

To study the homogeneous Dirichlet problem, we need the Sobolev space
H () % fvlv € H™(Q), D50 = 0,]a] < m — 1}.

This is the closure of the space of C5°(£2) with respect to H™—norm.

The following inequalities establish equivalences of certain norms in subspaces of

HYQ).

Lemma 1.2.1 (Friedrichs’ inequality) 7There exisls a positive constant C(Q), which
depends only on the Lipschilz constant of the boundary of Q, such that, for all w € HL(Q),

l|lul|z2(0) < C(Q)Halu|g ()

Here Hg is the diameter of €.



Let {u}q = Jau be the average value of the function u over 2. We have

2]
Lemma 1.2.2 (Poincaré’s inequality) There ezists a positive constant C (), which

depends only on the Lipschitz constant of the boundary of Q, such that, for allu € HY(Q),
llu — {u}tallmiq) < C(Q)Halu|lgi(q)-
Here Hg is the diameter of €.

Proofs of Lemma 1.2.1 and Lemma 1.2.2 can be found in [40].

For applications to the biharmonic problem, the following generalization of Poincaré’s

inequality is useful.
Lemma 1.2.3 (Generalized Poincaré’s Inequality) If {D%u}q =0, |a| < k then,
||u||Hs(Q) < CQH£+1_S|U|Hk+1(Q) fors<k+1,uc Hk+1(Q),

and

1D%u|oe < CoHy 0] s gy (Ja] < &+ 1 d/2).
The second inequality also holds for the W*t1P —norm, with d/2 replaced by d/p.

Proof. The first inequality can be proved by applying Poincaré’s inequality several

times to D%u. The second follows from the embedding theorem:
HM(Q) = W2 (Q), s<k+1-d/2;
the powers of Hg are obtained by a scaling argument. |

We also need the following lemma.
Lemma 1.2.4 Ifu € H*Y(Q), then there exists a polynomial p € Py such that
{D*(u—p)}a=0, |af<k.

Proof. We establish that for any given d,,|a| < k, there exists a polynomial p € Py,
such that

/ D% = d,.
Q

6



The lemma then follows by setting d, = [, D%u. Let

p= E bpa®. (1.1)

1BI<k

We define a partial order for the set of multi-index a = (a1, ag, -+, aq):
a<lp iffa; <, 1<i<d.

We have

D= 3" bsD*’ = 3 bsCypa?, (1.2)
B1<k 181<k
!

where C, g = % for 8 > a, and Cy g = 0 otherwise. We obtain a linear system

> Aapbs = /QD“p = da, (1.3)

1B<k

with Ay g = Cap [q xB=dzx. It is easy to see that Ayp=0for B £ a, and A, , = a!|Q|.
We can therefore find a permutation so that the matrix A, g is upper triangular with

nonzero diagonals. Therefore there exists an unique solution bg and thus a unique p € Py,

satisfying {D%(u — p)}q = 0,Yu € H*1(Q). |
Corollary 1.2.5 For the polynomial p constructed above, we have

lu — plrs@) < CQH£+1_S|’LL|Hk+1(Q) for s<k+1
Lemma 1.2.6 (Quotient space lemma) Lel

- ~ g B ‘
||“||Hk/Pk_1 pellglk_lﬂu Pl a»

Then
[ulgr < ||l ey, -

For a bounded Lipschiz region €, we have

lallgr/p_, < C(Y)|ulgn

Proof. The lemma follows from Corollary 1.2.5 and Lemma 1.2.3. |



Lemma 1.2.7 (Bramble-Hilbert’s lemma) Let Q be an open Lipschitz region in RZ.
Let k > 0 be an integer and p € [0,00]. Let f be a continuous linear form on WHt1r(Q)

with the property that
f(p) =0, Vpe P(Q).

Then, there exists a constant C'(Q) such that
O] < COIMgnsroa el Vo € WHIP(Q),
where || - ||ka+17p(ﬂ) is the norm of the dual space of W*+1P(Q).
Proof. Yor all p € P,(Q), we have

[/ (o)l =[S (v + P < s (@ylv + Plwrsis(g),

and thus
|f(v)] < ||f||€vk+1,p(g) pEiI%f(Q) v+ p|Wk+17P(Q)-
The conclusion follows by the quotient space lemma. |

1.3 The Biharmonic Equation

Consider the biharmonic Dirichlet problem in a plane region

Ay = f in Q,

u = go on 09, (1.4)
g—% = n on 09).

There are also other types of boundary conditions which are of interest. For example, one
can impose u|sg = go and Au = go; this corresponds to the mathematical model for a
simply supported plate. That problem can be decomposed into two second order problems

and is therefore relatively easy to solve.

Weak Formulation. We consider the variational form of the problem with homogeneous

boundary condition: Find u € HZ(Q) such that

a(u,v) = f(v), Vv e H(Q), (1.5)



where f is a bounded linear functional on HZ(Q) and a(u,v) is a symmetric, continuous,

HZ-elliptic bilinear form. Two examples of such bilinear forms are
a(u,v) = / AulAv dz, (1.6)
Q

and

0%u 0% 0%u 0*v  0%u 0%v
a(u,v)_/Q{AuAv—F(l—a)(Qmm— d—x%é?—x%_ 0—36%0—36({)} de, (1.7)

The first one arises in Fluid Dynamics, and the second provides a variational formulation
of the Clamped Plate Problem. Here 0 < ¢ < 1/2 is Poisson’s coefficient of the plate. By
the Lax-Milgram Theorem, the boundness and ellipticity imply existence and uniqueness

of the solution; cf. Lax and Milgram [33] and Ciarlet[21].

1.3.1 The Finite Element Formulation

The finite element formulation is obtained by replacing the infinite dimensional space
V = HZ(Q) with a finite dimensional subspace V" C V.

We triangulate the domain € into non-overlapping regions called elements, generally
triangles or rectangles. V" is a space of piecewise polynomials with respect to the trian-

gulation. The finite element solution uj € V" satisfies

a(u, ¢n) = f(¢n), Von e V" (1.8)

We note that the finite element solution uy is the a(-,-)-projection of the true solution u
onto the finite element space V",
The norm derived from the bilinear form a(-,-) defines a semi-norm in the Sobolev

space H2(Q). Tt is a norm of the space HZ(2), and therefore a norm in its subspace V.
Let {¢;} be the nodal basis for V*. Then u; can be represented as
up =Y xii.
7
Thus we obtain a linear system for x, the degrees of freedom of up,

Kzr=1b



with the stiffness matrix given by
Kij = a(¢i; ¢5)

and the load vector by
bi = f(¢i).

The stiffness matrix K is symmetric, positive definite. After a proper scaling, its con-
dition number x(K) = O(h™*). Since the system is usually very large, and the condition
number of K is also quite large, solving the system can be very expensive. Many precon-
ditioners have been designed for K. Among them, the additive Schwarz methods studied

in this thesis seem to be particularly successful and promising.

1.3.2 Some Conforming Elements

For the biharmonic equation, the finite elements are all relatively complicated. In this
thesis, we restrict ourselves to some standard conforming elements. In particular, we
consider the Argyris triangle V}, the Bell triangle V% and the bicubic element Véﬁ These
elements are complicated but among the simplest conforming elements for the biharmonic

equation.

The Argyris element consists of continuously differentiable functions, the restrictions
of which to any triangle are in P5. The degrees of freedom for this element in a triangle
with vertices a;,¢ = 1,2, 3, are given by

o« 0

{P(ai)awp(ai)a laf <2, 8—7%17(52')}7

where b; is the midpoint of edge @;ay, and n; is the outward normal direction of @ja;. The

number of the degrees of freedom for each triangle is 21.

It is easy to see that, in general, the normal derivatives of an Argyris element is a
polynomial of degree 4. Let Pg be the subspace of P5 formed by those polynomials of
Ps whose normal derivatives along each side of a triangle are polynomials of degree 3 in
t, the abscissa along an axis containing the side. We note that Py C P C Ps. The Bell

element consists of C'! functions whose restrictions to a triangle are in Pg. The degrees

10



of freedom for the Bell element are given by

0 5] 9? 9? 0?2
{p(ai)v 8—3029(%)7 %P(ai)a Wp(ai)a mp(ai)a Wp(ai)}-

as

a1 a2

Figure 1.1: The Argyris and Bell triangles

If the domain is build from rectangles, we can also use the bicubic element, known as
the Bogner-Fox-Schmit rectangle in the engineering literature. It is space of C'! functions
whose restrictions to a rectangle are in Q3 = span{z'y’,4,j < 3}. The degrees of freedom

of the bicubic element are given by

KPR PR o
{p(az)v %(az)v %(az)v 8$18$2(a2)}'

We note that nonconforming elements such as Morley’s triangle, Adini’s rectangle,

etc., are also widely used in engineering computation. However, they will not be discussed

here.

The approximation properties of these elements are well understood. We have
lu = uallzo < Ch¥uls g,
lu — uB|l2,a < Ch®luls,q.

11



Qs

Figure 1.2: The bicubic element

lu = ugallz < Ch?lulag,
For more details on the convergence and error estimates; see Ciarlet [20,21].
1.3.3 Properties of the Basis Functions
Only the following two properties of the basis functions will be used.

e The uniformity of the basis functions.
e The invariance of linear functions under interpolation.

We state the properties for the Bell element, the same results hold for the Argyris and
bicubic elements. Let us denote the nodal basis functions of the Bell element by ¢, |a| <

2. The basis functions satisfy

or 1, ifj=1t¢and = a;
Wﬁbi(%‘):{ ! ’

0, otherwise.

Lemma 1.3.1 The basis functions ¢ of the Bell element are uniform to order 2 in the
sense of Strang [44], i.e.
|68 [preee < CRIZI=S s < 2, (1.9)

and uniform lo order 2 in the following weak sense,
|62 | s < ChRMFlel=s s <2, (1.10)
The same conclusions hold for the Argyris element and the bicubic element.

12



If we write down the basis functions explicitly, it is straight forward to check that they
are uniform to order 2.

We remark that for the additive Schwarz methods, we only need (1.10). For some basis
functions, it is easy to check that (1.10) holds, but difficult to check whether (1.9) holds

or not.

Another property of the basis functions is the invariance of linear function under
interpolation. Let HVJQ be the standard interpolation operator to Vg. For p linear in a

triangle, vap = p. This implies that, restricted to a triangle,

p € span{¢f;|a| < 1},

which gives us the following relationships for the basis functions of the Bell element:

I = 3 ¢i(x)
v o= yiridir)+ ¢7(z)
y = Y vidi(x)+ ¢} (x)

Similar equations can be worked out for the Argyris elements and the bicubic elements.
The above equations show that in each triangle, a linear function can be constructed

from only the basis functions associated with nodal values and the first derivatives, since

the basis functions associated with second derivatives do not appear in the above equation.

This fact is important in later chapters.

13



Chapter 2

Domain Decomposition
Techniques

2.1 The Conjugate Gradient Method

Stationary schemes like the Jacobi, Gauss-Seidel, SOR, Block Jacobi and Block Gauss-
Seidel methods can be viewed as subspace correction methods. The approximate solution is
updated by solving problems associated with a set of subspaces of the solution space. These
methods can be accelerated by using the conjugate gradient method or the Chebyshev
semi-iterative method; we concentrate on the conjugate gradient method.

The conjugate gradient(CG) method is of fundamental importance for the domain de-
composition methods. All algorithms studied in this thesis are variations of preconditioned
conjugate gradient methods(PCG). Since CG and PCG are well known algorithms, we only
give a brief description. For more complete treatment, see Golub and Van Loan [31]. We
note that in the conjugate gradient algorithm, we only need to be able to apply the matrix
A to a given vector; an explicit representation of the matrix is not needed. This is a very

important for domain decomposition algorithms.

Conjugate Gradient Algorithm

Set k= 0;29=0;79 = b.
while |rg| > €|ro]

k=k+1
k=1

P1=To
else

Br = (Tk—1,Tk=1)/(Tk—2,Tk—2)

14



Pk = Tk—1 + BrPr—1
end

ok = (1, 7%)/(Prs Apr)
Tp = x) + akpk
i = rp — g ApF

end

The reduction in the energy norm of the error, after n steps of conjugate gradient iteration,

is given by, see e.g. [31],

N
NGE:

Here k = k(A) is the condition number of A given by

Amax(A)
Amin(A4)

[z = zn]] < 2( )*llz = @oll

K =

The conjugate gradient method is therefore often an effective iterative algorithm to solve

symmetric, positive definite systems

Az =b.

The algorithm converges to a good approximate solution in relatively few iterations for a
well conditioned matrix A. When A is not well conditioned, which is generally the case
for discretizations of elliptic problems, we can introduce a preconditioner B and solve the
preconditioned linear system

B YAz = B 1.

by using the conjugate gradient method with the A-inner product. Domain decomposition
is an effective way to construct such preconditioners. Other preconditioners are also used

in practices, e.g. the diagonal scaling and incomplete Cholesky preconditioners.

2.2 Multiplicative Schwarz Schemes

The Schwarz alternating method is the first domain decomposition method, proposed
by H. A. Schwarz in 1869, [42]. Schwarz established convergence using the mazimum
principle. In the 1930’s, Sobolev extended the result to the partial differential equations
of linear elasticity [43]. New theoretical tools for the analysis of multiplicative Schwarz

schemes have been developed more recently. The continuous problem has been studied by

15



Lions [34]; see also Nepomnyaschikh [39]. For the finite element case, the two subspace
case has been discussed in Bjgrstad [3], Mandel and McCormick [35] and Bjgrstad and
Mandel [4]. Results for the case of more then two subspaces have been found by Widlund
[48] and Mathew [36] and most successfully by Bramble, Pasciak, Wang, and Xu [12]. We
review this theory and the results which can be used in analyzing multiplicative variants

of the algorithms.
Let us consider the domain, shown in Figure 2.1, with Q@ = 4 U Q5 on which we wish

to solve

—Au=f in €,
u=20 on 09.

Ql Ql N QQ ‘Q?

Figure 2.1: Schwarz alternating scheme

The Schwarz alternating procedure approximates the solution iteratively by solving

problems on the each subdomain ;.

_Aun+1/2 = f ill Ql,
w2 =y on 09,
and
—Autl = f in Qy,
wtl = ynt1/2 on 09Q,.
Let

a(u,v) = /QVU'V’U and  f(v) = /va

16



Then the algorithm can be written as
a(wt? —u", ) = [(9) - a(u", 9), w2 =t € Hy(0),Y9 € Hi(),
and
a(w™t — w2 ) = [(6) —a(wH 2, g),  wrt —w € Hi(Q),Y0 € H ().

In each half-step, the correction is thus the projection of the error onto the subspace

H(Qy) or HY(Q3). The projection P; : HI(Q) — HL(Q;), is defined by
a(Pu, ¢) = a(u, ¢), Vo € HH ().

The error propagation operator for a complete step of the alternating Schwarz method is
simply
(I —Py)(I - P).
The alternating Schwarz method can be considered as a special example of an abstract

multiplicative Schwarz scheme. Consider the general variational problem: Find u € V

such that
a(u,¢) = f(¢), VoeV. (2.1)

Let V; be subspaces of V so that V = V; +---+ Vjy. Associated with each subspace is the
corresponding orthogonal projection operator P; : V. — V,;. The abstract multiplicative
Schwarz scheme proceeds by sequentially projecting the error onto the subspaces V;. The

error propagation operator for a complete step of the alternating Schwarz method is given
by
(I—-Py)---(I—=Pr).

To include the case of approximate solver for the subproblems, it is sometimes necessary

to consider a more general form
(L =Tn)---(I=T),
where T; are symmetric, positive semi-definite, linear operators with
IT5lle <w < 2.

17



Usually, the T; are either the projections P; or approximations thereof. Define F; by
E,=1-T)I-Ti—1)---(I =T1).

The effectiveness of the particular multiplicative algorithm is determined by the reduction

in the error for one complete iteration step, i.e. the best v in the inequality
|EXola < [0l

Estimates for v are given in Bramble, Pasciak, Wang and Xu [12] and Xu [51].
Let

T=> 1T,

and let Apin(7") be the minimum eigenvalue of 7. A main result of Bramble, Pasciak,

Wang, and Xu is given in

Theorem 2.2.1
2 2
|Enol, < 7lvlg,
with

(2 — @) Amin(T) (2 — @) Amin(T) )
(N +wIN(N - 1)/2) 2(1 + 02N(N - 1)/2)"

7 =1 — max(

To obtain stronger results, we use a coarse subspace Vo = V# and make assumptions

on the subspaces V;. Let £ be the matrix such that
la(v;, v;)| < eija(vi,vi)l/{‘)a(vj,vj)l/:), Vo, e Vi,Vo; € Vj,i,5=1,---N.  (2.2)

The inequalities (2.2) are strengthened Cauchy-Schwarz inequalities. Let p(£) be the
spectral radius of £. We note that as the overlap between the spaces increases Apin(7)
will generally improve while the bound in (2.2) will degrade, i.e. the spectral radius p(&)
will increase.

Using the strengthened Cauchy inequality (2.2), the above result can be improved; cf.
Xu [51].

18



Theorem 2.2.2 Assume that (2.2) hold. Then
| Envls < vl0lg,
with

o (2= @) Anin(T)
’ 2(1+w?p(£)?)

An important parameter in the above two theorems is Apin(7'). Estimates for Apin(7") was
obtained by Dryja and Widlund [24,25]. An important special case of this general result
is when the T; are projections P;. In this case, Apmin(1') can be estimated by 00_2 in the
following assumption: For all v € V, there exists a decomposition v = > v; with v; € V;

such that
N

E a(vi,v;) < Cla(v,v).

=1
For the proof of this result, see Lemma 2.3.2 in the following section. In addition, we note,
that since the P; are orthogonal projections, w is one.
We remark that it is also possible to treat one or several of the subspaces separately;

cf. Bramble, Pasciak, Wang and Xu [12], Dryja [27] and Widlund [49].

2.3 Additive Schwarz Schemes

One possible problem with the multiplicative Schwarz methods is the sequential nature
of the fractional steps of each iteration. For more than two subspaces, these schemes are
also inherently nonsymmetric. Therefore, symmetric variants, which can almost double
the number of fractional steps, have to be used if we wish to use the standard conjugate
gradient method to accelerate the convergence. The additive Schwarz methods were de-
signed by Dryja and Widlund to remove the inherent sequential behavior of the fractional
steps and to preserve symmetry. Independent work on additive Schwarz methods can
also be found in Matsokin and Nepomnyaschikh [37] and Nepomnyaschikh [39]. Optimal
convergence properties of certain algorithms were established for second order self-adjoint
elliptic problems, see [24,25]. Generalizations to nonsymmetric and indefinite cases have
been made by Cai and Widlund; cf.[14,15,16,17]. We will show in chapter 5 that certain

additive Schwarz methods for the biharmonic equation are also optimal.
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Additive Schwarz methods can be viewed as iterative methods for the solution of an
auxiliary linear problem that has the same solution as the original finite element problem.

We consider the finite dimensional variational problem: Find w € V such that
a(u,¢) = f(¢), VoeV. (2.3)
Suppose V can be written as the sum of N 4+ 1 subspaces
V=Vo+ Vit +Vy.

Let P,:V — V;,i=0,---, N, be the orthogonal projections, with respect to a(-, -), defined
by
a(Pu,¢) = a(u,¢), Yo e V. (2.4)

Let P = > P;. The additive Schwarz method for solving equation (2.3) is introduced in

terms of an auxiliary problem: Find » € V' by solving
Pu= Z Pu=yg. (2.5)

The right hand side g has to be chosen such that the auxiliary equation has the same
solution as equation (2.3). For this to hold, the right-hand side must be equal to g =

Ef\;o gi, where g; = P;up can be computed by solving
a(g;,v) = a(Pyup,v) = a(up,v) = f(v),Yv € V.

Thus P;u can be found without knowing the solution of (2.3). Once the right-hand side
g is known, we can use an iterative method, e.g. the conjugate gradient method, to solve
equation (2.5). To define an additive Schwarz method, it is sufficient to define the space
decomposition. The fundamental issue is to estimated the condition number of P.

The reason for going from problem (2.3) to problem (2.5) is that, by a suitable choice
of the subspaces V;, we can turn a large ill-conditioned system into a very well conditioned
problem at the expense of solving many small independent linear systems.

The following lemmas, which establish the relations between the decomposition of u

and the spectrum of P, allow us to develop bounds on the condition number of P.
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Lemma 2.3.1 Let V be a Hilbert space, V; be subspaces of V and V =" V;. Let Py, be
the projections from V to V; and P =), Py,. Then P is invertible and

with u; € V; and the minimum is achieved al u; = P;P™ ' u.

Proof. We use the properties of the projections and Cauchy-Schwarz’s inequality to

obtain,

a( P u, u) S a( P u, u;)
Ea(PiP_lu,ui)
S|P P g il
(PP ) VA | )M
a( P~y w) (5 [uil )2,

AN IA

Thus,
a(P~ u,u) <Y alui, ).

Equality holds if and only if u; = PP~ u. |
The following lemma is a direct consequence of Lemma 2.3.1.

Lemma 2.3.2 Let V be a Hilbert space, V; be subspaces of V and V =" V;. Let Py, be
the projections from V to V; and P = )", Py,. Then

_1 . . .
/\_1 (P) = /\max(P_l) = maxw — max mjn M
min u a(’LL, ’LL) u EUiZ’u a(u, u)

and
_ _ . a(P7lu,u) . .oy alug, ug)
Al (P) = Amin(P7Y) = —_ = =
max( P) = Amin(P) mn a(u,u) et Enzl}iu a(u,u)
Remark 2.3.1 If we can find a constant € such that there exists a decomposition of
u = ). u; satisfying
Ea(uivui) < Cla(uvu)v VueV,

z
then, it follows from Lemma 2.3.2 that Apin(P) > C’l_l. This result, known as Lions’
lemma, is very important in estimating the minimum eigenvalue of P; cf. Dryja and

Widlund [24].
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If we can find a constant C'y such that Vu € V and for any decomposition of u = )~ u;,

we have

Z a(u;,u;) > Cra(u,u)

7

then, from the Lemma 2.3.2, we know that Apax(P) < C'Q_l.

For domain decomposition algorithms, the following lemma, gives a convenient way of

estimating an upper bound of A(P).

Lemma 2.3.3 Consider the undirected graph with a node for each subspace V;, and an
edge between node 1 and node j if and only if V;N'V; # 0. Let N, be the number of colors
needed to color the graph so that no two nodes connected by an edge have the same color.
Then

Amax(P) < N..

Proof. All the subspaces of a particular color are disjoint; hence their corresponding
projection operators are mutually orthogonal. Therefore the sum of the projection opera-
tors of a particular color is itself a projection operator. P then is the sum of N, projection
operators, each of norm one. |

An alternative way, as in the multiplicative case, is to use a strengthened Cauchy-

Schwarz inequality. The proof of the following lemma is quite elementary.
Lemma 2.3.4 Assume equation (2.2) holds, then

Amax(P) < p(€)+ 1.
This is especially useful for the multilevel schemes.

Remark 2.3.2 As in the multiplicative case, we can also use approximate solvers 1; to

replace P;.

Remark 2.3.3 In the case of two subspaces, the relation between the additive and mul-
tiplicative versions for the same pair of subspaces is well understood; cf. [3],[4], and [35].
However little can be said for the case of more than two subspaces. The same two pa-

rameters p(&) and Apin(7) provide bounds for the convergence rates of both variants.
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However, there is no general theory which explicitly relates the actual convergence rates
of the two variants. The architectures of a particular parallel machine, etc. seems more
likely to determine which variant to prefer rather than a strict mathematical analysis.
We note that the multiplicative variant leads to a nonsymmetric operator. Therefore to
accelerate it with the conjugate gradient method, we must introduce additional fractional
steps to make it symmetric. We could also accelerate the nonsymmetric problem directly
using GMRES, a conjugate gradient type method; cf. Fisenstat, Elman and Schultz [29]
and Saad and Schultz [41].
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Chapter 3

Second Order Problems

3.1 Second Order Equations

We consider second order uniformly elliptic equations of the following type

—(%Z(a”(:c)aix])u = f in Q,
w = g on 09,

(3.1)

with {a;;} symmetric, uniformly positive definite, bounded and piecewise smooth on a

Lipschitz region Q@ C R%, d = 2 or 3.

It is convenient to write (3.1) in a weak form: Find u € H3(f) such that
a(u,v) = f(v), Yo € Hy(Q),

with the bilinear form a(u,v) and the functional f(v) given by
o= 3 [ 2 )= [ Sl a
a(u,v) = a;;— - — d, v) = x)v(x) de.
’ =1 Q ]awi ()x]' Q
The bilinear form a(u,v) is bounded and uniformly elliptic (coercive), i.e.
constants C'; and Cy such that

a(u,v) < Cilulgyo)lvlmye)  and  a(u,u) > Cafulfy g

Existence and uniqueness follows from the Lax-Milgram’s Theorem.

To simplify the presentation, we work with the model problem

{—Au(w) = f(z) in Q,
w(z) = 0 on 09,
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We consider a finite element discretization of equation (3.2). We triangulate the do-
main € into non-overlapping elements 7; (triangles or rectangles) and denote the triangu-
lation by 7" = {r;}. We assume the triangulation is shape regular. The finite element
space V" is a subspace of H3(Q) consisting of continuous functions whose restrictions to
each element 7; are polynomials. Here, we will restrict ourselves to the simplest finite
elements, in particular, we will use the linear element (for R? or R?), the bi-linear element
(for R?) or the tri-linear element (for R®). We will use the nodal basis functions {¢;(z)}

as the basis for V*. The nodal basis functions satisfy
¢Z($]) = (52']‘, V.Ij € Ah(Q)

To obtain the finite element problem, we replace the Sobolev space H}(Q) by the finite

dimensional subspace V": Find u; € V" such that
a(up,vp) = f(vr), Yo, € VE (3.4)

Using the nodal basis {¢;}, u(z) can be represented as u(z) = >, z;¢;(z). Thus, we
obtain a linear system

K =b, (3.5)

where K = {a(¢;, ¢;)} is the stiffness matrix and b; = f(¢;). K is a symmetric, positive
definite, sparse matrix. It is known that its condition number x(A4) = O(h™?). Thus K is

ill conditioned for large problems.

3.2 Additive Schwarz Methods

3.2.1 The Algorithm

JFrom chapter 2, we know that in order to define an additive Schwarz scheme, it is
sufficient to define the space decomposition; different space decompositions give different
algorithms.

Following Dryja and Widlund [24,25], we define two levels of triangulations. We start
with a coarse triangulation 77 = {Q;}. BEach € is then further divided into smaller
elements to get a fine triangulation 7" = {r;}. Let H;=diameter of Q;, H = max;{H;}

h;=diameter of 7;, and h = max;{h;}.
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To get an overlapping decomposition of 2, we extend each ; to a larger region QZ-,
such that cH; < dist{0;, OQZ} < CH;, and o0, align with the boundaries of element 7;.
We cut off the part of Q, that is outside of Q.

[N R

ad
7
~

Figure 3.1: Two levels of triangulation

It is easy to see that {QZ} forms a finite covering of domain . Due to the generous
overlap of {QZ}, we have a partition of unity {6;} satisfying

N
ZHZ' =1 with 4, € Wl’OO(QZ'),O <#; <1, and |02'|W1,oo < C/HZ

=1

Let V" and V¥ be the linear elements associated with the triangulations 7" and 7,
respectively. Let Vo = VH and V; = V*(Q;) = V" n H}(£};). We obtain a decomposition

of the finite element space V"

N
VE=3"V.
=0

Let Py, : V' — V;, be the H'-projection defined by
a( Py,u,v) = a(u,v), Yv €V,

The matrix form of Py, after a permutation is

Kb oY, 4.
Pw—<0 O)Ix_lxilx,
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where K is the stiffness matrix associated with the domain Q and K is the stiffness matrix

associated with the subdomain ;. The additive Schwarz operator, P is given by

N
P=>"Py.
1=0

The additive Schwarz algorithm for equation (3.4) is to solve an auxilary equation which

is equivalent to equation (3.4).

Algorithm 3.2.1 Find up, € V" by solving iteratively the equation
Puy, = gy, (3.6)

with g, = >, g; and the g; given by the solutions for the following problems

a(gi, o) = a(Piu, o) = f(on),Vor € Vi (3.7)

We use the conjugate gradient method to solve Pup = g,. We only need to compute Pv
for a given v € V" in each iteration, thus, the explicit representation of P is not needed.

The computation is carried out in the following steps.
e Compute the right hand side g, by first solving equations (3.7) and then setting
g =29
e In each iteration, compute Pv, for given vy by first solving
a(Pyon, @) = a(ve, @), Vo €V,
and then setting Pvy = > Pvy

Remark 3.2.1 We consider a special choice of subregions. Let Q; = supp{¢;}, and thus
V; = span{¢;}. Then the corresponding additive Schwarz method, without a coarse space,
corresponds to applying the CG algorithm to D~ Kz = Db, where D = diag(K ). This

is the Jacobi conjugate gradient method.
3.2.2 Condition Number Estimate

Theorem 3.2.1 (Dryja and Widlund) For the operator P defined above, there exists

a constant C such that
Cra(v,v) < a(Pv,v) < (Ne + 1a(v,v), Yve V"
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Thus k(P) < (N.+ 1)/C1, and the rate of convergence of the additive Schwarz algorithm

s independent of the mesh size and the number of subdomains.
Proof. We first establish the upper bound. It is trivial to see that
a(Pu,u) < (N + 1l)a(u,u).

However we want to get an upper bound independent of the number of substructures as

well as the mesh size h. For v € V*,
a(Piu,u) = a( Pyu, Pu) = ag (Pu, Pu) < ag (u,u).

Summing over ¢, using the finite covering property of {QZ}, we get

N
Z a(Piu,u) < Nea(u,u).

=1

We also note that a(Pou,v) < a(u,u). Thus the upper bound follows with Cy = (N, + 1).

To prove the lower bound, for any u € V", one needs to find a good partition {u;} of
u as in Lions’ Lemma. Let Q¥ : H}(Q2) — VH be the L, projection. It is known that Q¥

has the following property

IN

lw — Q@7 ul| 120 CH |u|gq) (3.8)

1Q 7 ullpie) < Clulpq (3.9)

Let 11* : HY(Q) N C(2) — V", be the standard interpolation operator. Let ug = uy =
Q" up, wy, = up — ug, and u; = Hh(HZ-wh). It is easy to see that up = Zév u;. To see
that we indeed get a good partition of up, we have to estimate the norms of ;. It can be

shown that

IN

0 (0:0)ra,y < ClOileslwlpa, + Cloilwsslwl 2,

IN

C|w|H1(Qi) + C/Hi|w|L2(Qi)
Using the approximation property of Q¥, we have
el @) = B a,) < Clulipa)-
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Summing over ¢, and using the finite covering property of {QZ}, we obtain

2 2
The lower bound of P follows from Lions’ Lemma. |

Remark 3.2.2 If we do not use the coarse space, the condition number of the operator
will grows like H~2. This fact was pointed out and proved by Widlund; cf. [47].
In practice, the maximum eigenvalue of P is between N, and N. + 1, and gets closer

to N. as H/h grows.

3.3 Multilevel Methods

In two level methods, we need to solve a coarse problem of size O(1/H?) and some local
problems of size (H/h)?. If h is small, we cannot have both 1/H and H/h small. Thus at
least one of the subproblems is large. The computation can be made cheaper by recursively

using the additive Schwarz method to solve the coarser problems.

We consider a class of multilevel algorithms including the multilevel additive Schwarz
method considered in Dryja and Widlund [28] and the BPX algorithm studied in Bram-
ble, Pasciak and Xu [13] and Xu [50]. We use the space decomposition and projection
techniques, introduced by Dryja and Widlund, to study the algorithms. We improve the
old results by showing that the condition number of the iteration operator grows at most
linearly with the number of levels in general, and is bounded by a constant independent
of mesh sizes and the number of levels under the H?-regularity assumption of the elliptic

operator. We note that similar results are already known for multigrid methods.

3.3.1 Description of the Multilevel Additive Schwarz Methods

We discuss a class of L-level additive Schwarz methods. We define a sequence of nested
triangulations {7,2,}. We start with a coarse triangulation 71 = {7} f\;ll, where 7} repre-
sent an individual triangle. The successively finer triangulations 7' = {r/}(l = 2,---, L)

are defined by dividing each triangle in the triangulation 7°~! into several triangles, i.e.
1 14N, refinement o 14N, refinement refinement -7, LNL
7" ={mh = 77 ={mh = = 70 ={r" "

29



We assume that all the triangulations are shape regular. Let hl = diam(7}), h; = max;{h!}
and h = hy,.
Let VI,1 = 1,---, L, be the space of continuous piecewise linear element associated

with the triangulation 7*. The finite element solution, u, = Pyru € V* = VI, satisfies
a(un, on) = f(dr), Vo € Vi=VE (3.10)

We assume that there are L —1 sets of overlapping subdomains {Qi}Nl 1=2,3,---, L.

=1

On each level, we have an overlapping decomposition
Q=ul 0l
We assume that the sets {Q}} satisfy
Assumption 3.3.1 The decomposition ) = ufﬁlﬂﬁ- satisfies

° (?Qi aligns with the boundaries of level | triangles, i.e. Qi is the union of level |
triangles. Diameter(Q) = O(h_y).

e On each level, the subdomains {Qﬁ}fﬁl form a finite covering of 2, with a covering
constant N., i.e. we can color {Qi 5\21, using at most N. colors in such a way that

subdomains of the same color are disjoint.

Ny

e On each level, associated with {Qﬁ i1, there exists a partition of unity {60!} satisfying

S0 =1, with 6; € Hy ()N C°(Q),0 < 6; < 1 and [V} < C/hy_1.

The first property is very natural; it simply says that the restriction of the triangulation
7' to subdomain Qﬁ defines a triangulation for Qi and the finite element problem on Qi is
well defined. The second condition is used to establish the upper bound of the spectrum

of the additive Schwarz operator. The last condition is used for the lower bound of the

spectrum.
One way of constructing subdomains {Qﬁ»}f\il,l =2,---,L, with the above properties
is described in Dryja and Widlund [24,25]. Each triangle Til_l,i =1,---,N,l=2,--- L,

is extended to a larger region 77! so that chi-_l < dist(()ﬂl_l,()rz-l_l) < Chi-_l, aligning

K3

872,}_1 with the boundaries of level [ triangles. We cut off the part of f'il_l that is outside

30



Q. We use 77! as the subdomains Q. Another way of constructing {Q}} is given in

section 3.3.3.

Let Ny =1,V =Vand V} = VIn HY(QY) fori=1,---, Nl = 2,---, L. The finite
element space V* = VI is represented by
L L N
vE=3vi=> v (3.11)
=1

1=1:=1

Let PZ»Z V- VZ], be the projection defined by
a(Piu,¢) = a(u, ), Vo€ V.

The L-level additive Schwarz operator P is defined by

L N

P=3"3"Pr. (3.12)

(=0:=1
Instead of solving the original finite element equation (3.10), we solve the following equiv-

alent equation:

Algorithm 3.3.1 Find uy € VL by solving iteratively the equation
Pup = gp,
with gn = >, >; gf-. Here the gf- are the solutions for the following finite element problems

a(gt¢) = a(Pyu,¢) = f(9), Von € V. (3.13)

To find up, we first find the right hand side g, by solving (3.13), and we then use the
conjugate gradient method to solve the system. In each iteration, we need to compute

Pluy, for a given v, € V* by solving the equation
a(PVizvh,fbh) = a(vy, én) Von € Vi

This is a finite element equation on Q! with mesh size h;, and dim(V}) = ¢(hj_1/h)?.

Thus the size of all such problems can be very small.
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3.3.2 Condition Number Estimate

When using the conjugate gradient method to solve a linear system, the crucial issue is
the condition number of the iteration operator. Dryja and Widlund [28] established the
following estimates for the spectrum of P, cf. theorem 3.2 in Dryja and Widlund [28].

Theorem 3.3.1 For P defined above, the following inequalities hold
ClL_la(uh,uh) < a(Pup,ur) < CoL a(up,up) Yuy, € Vv (3.14)

Thus k(P) < CQCl_lL?, i.e. the condition number of P grows at most quadratically with
the number of levels. Here the constants C'; and Cy are independent of the mesh sizes {h;}

and L.

In this section, we improve the upper bound in (3.14) by eliminating the dependence
on L. Using H?-regularity, which holds for convex regions, we can also eliminate the

dependence on L in the lower bound.

Theorem 3.3.2 For the mullilevel additive Schwarz operator P defined above, we have
C’lL_la(uh,uh) < a(Pup,up) < Cyalup,un) Yuy, € V.
If the equation has H?*-reqularity, then the lower bound can also be improved, and we have
Cra(up, up) < a( Puy, up) < Cya(up,up) Yuy, € V.

All the constants are independent of {h;} and L.

Let P': V* — V! be the orthogonal projection. Then, for uy € V# and 1 <1< L,
we have

[
Pluy, = Zui, with u' = (P' — P Vuy, u' = Pluy,. (3.15)
=1

In particular, up = Pluy = E{;l u'. Using the fact that V¥ C V!, for & < [, we obtain

PEpt = P'Pk = Pk Thus P' — P'=! is also a projection, and
(Pl _ Pl—l)(Pk _ Pk—l) — 6”{:(Pl _ Pl_l).
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Therefore up, = S>2 ;' is an a(-, -)-orthogonal decomposition of uy, and

L

a(up,up) = Za(ul,ul) (3.16)

=1

Since, on each level, the subdomains {Qj}fﬁl form a finite covering of 2 with a covering
constant N., we can color the Qﬁ using only N, colors, in such a way that all subdomains
of the same color are disjoint. On each level, we can group the subdomains Qﬁ by color,
obtaining N, sets of subregions. Let A;,s =1,---, N, be the sets of indices of these sets.
Since the subdomains Qﬁ of the same color are disjoint, subspaces V! of the same color are
mutually orthogonal and Pil1 PZ»Z2 = 0 for 71,29 in the same A;. This in turn implies that
Py =i, P!is aprojection from V" onto Vi = 3 ;cx. V{. In particular, (P{ )? = P} .

We can therefore write

N Ne¢ Ne
PRCEDIDIE DI/
=1 s=11€A; s=1

where the P/lxs are projections.

The next lemma, similar to the strengthened Cauchy inequality, plays an important

role in obtaining an upper bound for Apax(P).

Lemma 3.3.1 Fork <1, and u* € V*, we have
a(P,lXSuk,uk)l/2 < rkJa(uk,uk)l/Q
with i < 1,7k k41 <1 and 1y < Cri=1=F fork <1—1.

Proof. Since le\S is a projection, the conclusions for [ = k and [ = k41 are trivial. For
[ — 1>k, we decompose A into two disjoint sets Ay and Ag; ¢ € Ay if the subdomain Qﬁ
lies in the interior of a triangle 7%, while i € Ap if Q! intersects ot¥ for some i'. We write
Pp, = Pr, 4+ Pr,. We note that u” is linear in each triangle 7']1C and therefore harmonic in
7F. For each i € Af, Plu* € HY(Q) € HY(rh) for some i, and therefore, a(Pll\Iuk, u*) = 0.
Thus,

a(P/leuk, uk) = a(P/leuk, uk)
Let 5 = SUPP{PABuk} = UiEAgﬂé' Then
a(Plleuk,uk) = aS(PIZXBuk,uk) < as(uk,uk)
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Since u* is linear in T Vu 1s constant in Tk Therefore

k

.k mes(S N75) Lk

G (0, w?) = — L Ak (0 w) <
J

hi—1
- aTJk(uk,uk) = C’r,%’laﬁk(uk,uk).

Summing over j, we obtain

as(u”,u*) < C’ri’la(uk, u®).

Therefore

a(PllXSuk,uk) = a(Plleuk,uk) < as(uk,uk) < C’rila(uk,uk).

Proof of Theorem 3.3.2. We first establish the upper bound. Since VI{S =D Vic
V!, we have PIZXSPZ = lexs- Thus,

a(PIIXSuh, up) = a(PIIXSuh, Pfxsuh) = a(PIIXSPluh, PIIXSPluh).

Substituting (3.15) into the above equation, we obtain

[ l

{
a(PAzSuh,uh) = ZZ“(PLUIC?P/Z&SU])S E |P/lxsuk|a|P}\SuJ|a
k=1j=1 k=1
l

l
= (Z | Pp,uf])? < C(Z ri|uf]a)
ZT;” Zmlau u® <Ci{2rk1au u*)}.

Summing over all colors (1 < s < N,.), we get

IN

N; Ne

2
Za(PZ-luh,uh) = E a( Py up,up) < CN, 1— ETk ja(u® ub)).

=1 s=1 k=1

Summing over [ and changing the order of the summation for k£ and [, we get

L N; L L
ZZ@(Piluh,uh) < C’N erk 1a( uF, P
1=1:=1 -r k=1 Il=k

L

< CN —{E k)(z Th)}
= ’ =

< CN Z

_ C N 2 2

= (I C(—l — 'r) a(up, up).
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In the last step, we have used the orthogonality property (3.16) of the u*. This concludes
the proof of the upper bound of P =3, 3. Pl

We now establish the lower bound. We note that, for the general case, it is given in
Dryja and Widlund [28]. When the problem is HZ%-regular, we can use Nitsche’s trick to

show that the a(-,-)-projection P! satisfies the approximation property
||Plu—u||Lz(Q) < Chl|u|H1(Q) Yu € Hl(Q) . (3.17)
We use the orthogonal decomposition

L
up, = Pluy, = Zul = Pluy + (P2 — Pl)uh 4+ 4 (PL — PL_l)uh.
=1

Since u! = (P! — PI7V)uy, = (P! — P71)2uy, = (I — P!, we get, using (3.17),

[u']z20) < C hicalv! 1) (3.18)
We further decompose u' as
Ny
ul = Zuﬁ , with u} = M (0!) e V.
=1

Here I is the interpolation operator from V" to V% and {6'} a partition of unity as in

Assumption 3.3.1. It can be shown that

|ui|121[1(gi) = |th(0iu1)|ij1(gé)

IN

C(|0i|%°°(ﬂ)|ul|12q1(@é) + |02|%/I/1°°(Q)”uil|iz(gi))

C(lulﬁjl(ﬁé) + (1/h12—1)||“£'||%2(95))-

IN

Summing the above inequality over ¢, using the finite covering property of {Qi} and

inequality (3.18), we obtain

Z |U§|12111(Q)

Z |ui|12ql(ﬁi) < Cz{lullip(gi) + 1/h12—1||ul||22(§22)}

C{lw |y + /b llw]72)} < Clu'fng)-

IN

Summing over /, 1 <1 < L, and using the orthogonality of u', we get

L
> luiltg) < Clunlt )

=1 =

The lower bound for P now follows from Lions’ lemma. |
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Remark 3.3.1 Although the proof of the upper bound is given for the model problem,
it is easy to see that it works for any uniform elliptic operator. Since we can confine our
study to one substructure at a time, we also see that the upper bound is independent of

jumps in the coefficients between the substructures.

3.3.3 A Multilevel Diagonal Scaling

We begin this section by constructing a special decomposition of the domain . We then
show that this decomposition, and the corresponding decomposition of the finite element
subspaces, satisfies Assumption 3.3.1. We then demonstrate that the algorithm is a mul-
tilevel diagonal scaling (MDS), a natural generalization of diagonal scaling. For problems
with constant coefficients and with uniform triangulations, the multilevel diagonal scal-
ing algorithm is identical, up to a constant multiple, to the BPX algorithm of Bramble,
Pasciak and Xu [13]. In the general case, BPX with diagonal scaling results in MDS

algorithm.

Let {T" le be a nested sequence of triangulations, with 7'*! obtained from 7' by
dividing the triangles (rectangles) of 7' into four triangles (rectangles). In three dimension,
we make a similar construction. We consider the piecewise linear and bilinear elements
or trilinear elements, respectively. As in the previous section, the finite element space
associated with 7' is denoted by V!, and V" = VL. Let cbﬁ- be a nodal basis function of
V! and associate with each ¢} a subdomain Qﬁ = supp{¢!}. We choose V! = span{¢}} =
Vin HL(Q!) and obtain the decomposition

L N

V=33

=1 :=1

1
and the projections Py : yr 2 Vi, Using P = Zle >; Pyi, we define an additive

Schwarz algorithm

Algorithm 3.3.2 (MDS) Find the finile element solution uj, € V" by solving iteratively
the equation

Pup = gn
with an appropriate right hand side gy,.
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We define the degree of a vertex z; as the number of edges directly connected to z;,
and the degree of a triangulation 7" as the maximum of the degrees of its vertices. It is
easy to see that the overlapping subdomains {Qi} satisfly Assumption 3.3.1. In particular,
we see that on each level, {Qﬁ}fﬁl form an finite covering of  with a covering constant less
than or equal to degree(7')+1. We also see that on each level, {Qi} provides relatively
generous overlap. The nodal basis {¢!} can be chosen as a partition of unity.

The optimal convergence properties of the algorithm follow from theorem 3.3.2, and
as a consequence, we obtain an improved estimate for the BPX algorithm; see further
discussion below.

To see that the above algorithm is in fact a generalization of the diagonal scaling
method, we first consider a matrix representation of two simple algorithms.

Algorithm 1. In the two level additive Schwarz algorithm, the matrix form of the
projections Py, is given by

K71 oY, o,
PVi_(O O)Ixh_lxilxh

after a permutation. Here K is the stiffness matrix associated with the subspace V. Let
H}I?I : VH — V" be the standard interpolation operator and Hf be its adjoint. In matrix
form, the two level additive Schwarz algorithm can then be written as a preconditioned
system

Bi'Kpz = By 'b,

where

N
Byt =LKy I + > K.
=1

Algorithm 2. With the special choice of the subregions Q; = supp{¢;}, and V; =

spanq{¢;}, the additive Schwarz algorithm corresponds to
D 'Kni= D',
where D = diag(K,). This gives us the Jacobi conjugate gradient method.

In the multilevel case, let HE cVho— Vl?,(ll > [3) be the standard interpolation

(prolongation) operator, and let Hg (VS vh = (Hﬁf )i, (I3 > I3) be a local averaging
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operator, which is the adjoint operator of H%’ Algorithm 3.3.2 can then be written as:

Find the solution of Kz = b by solving the preconditioned system
B;i'Kpz = By'0,

where

Bpt = MYK'G 4+ W& DI + -+ MF_ DY T2 4+ Dt
Here K is the stiffness matrix associated with V! and D; = diag(K;). We note that K;*
can be replaced by any good preconditioner By of Kj.

If we replace the matrices D; by identity matrices, we obtain the BPX algorithm.
However, since the diagonal elements contain information on the shapes of the triangles
and the coeflicients of the problems, we expect that the multilevel diagonal preconditioner
will work better in practice for non-model problems, since it more closely reflects the
properties of the problem.

The method described in this section is similar to the hierarchical basis method [52].
The work in each iteration is about % of that of the hierarchical basis method. However, the
condition number is much better than for the hierarchical basis method, and the method
also works well in higher dimensions, at least for problems with smooth coeflicients. A
detailed comparison of the BPX algorithm and the hierarchical basis method is given in

Yserentant [53].
3.3.4 Numerical Experiments

In this section, we report on some the numerical experiments with the multilevel additive
Schwarz methods.

In these experiments, we only concern with the convergence properties of the algo-
rithms. For implementations of the algorithms on a parallel computer, see Bjorstad,
Moe and Skogen [5] and Bjgrstad and Skogen [6]. They implemented multilevel additive
Schwarz algorithms on a massively parallel, SIMD machine (MasPar MP-1). Approximate
solvers for the subproblems are also discussed.

The experiments were carried out for Poisson’s equation on a unit square with homo-

geneous Dirichlet boundary conditions

—Au = f(z) in Q,
{ w = 0 in 0Q. (3.19)
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total no. | no. of subdomains | ovlp ratio | no. of levels | cond no. | no. of iter.
of elements | of a lower level L K(P) for e = 1076
N x N
82 2 X 2 1/2 3 7.2 11
162 2 X 2 1/2 4 9.3 17
322 2 X 2 1/2 5 10.7 20
642 2 X 2 1/2 6 11.7 21
92 3x3 1/3 2 4.6 9
272 3x3 1/3 3 7.1 16
812 3x3 1/3 4 8.4 19
2432 3x3 1/3 5 9.5 21
274 3% 3 1/3 2 4.8 8
814 3% 3 1/3 2 4.7 7
162 4 x4 1/4 2 5.1 13
642 4 x4 1/4 3 7.3 17
2562 4 x4 1/4 4 8.4 20
642 4 x4 1/4 2 5.3 8
252 5X5 1/5 2 5.7 14
1252 5% 5 1/5 3 7.6 17

Table 3.1: Multilevel Additive Schwarz Scheme, Using Bilinear Element

We divide the domain Q into N X N square elements 7}

4247 = 1,---, N, and obtain

a triangulation 7' = {r].}. We then divide each 7!; into N x N squares to obtain
the triangulation 72 = {Tfj}, etc. The length of an edge of TZ»Ij is denoted by H; and

H; = (1/N)\. For [ =2,---, L, we extend Tl»lj_l to a larger square f'il] L. The overlap ratio

dist{o#;", 075!

H_4

overlap ratio =

measures the width of %Z-lj_l \7'2-1]71 in terms of H;_1, the side of the square TZ-IJ-_l. We use (2

as our domain for / = 1, and Qi-]- =7t

;; as our subdomains forl =2,---, N.

In these experiments, we take N = 2,3,4 or 5, and ?Z-lj_l

-1 - .
\7;; " is one element wide( H,),
i.e. the overlap ratio is 1/N. Therefore, we only need to solve very small linear systems
of order 9, 16 25 and 36, respectively. We use the conjugate gradient method to solve the
system Pujp = gp, iteratively. The last column of the table gives the number of iterations

required to decrease the I, norm of the residual by a factor of € = 1076.
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Chapter 4

Some Approximation Properties
of Finite Elements

In this chapter, we discuss some properties of the conforming finite element for the bi-
harmonic problems. We first discuss and prove some approximation properties of the
finite elements. We then define some discrete norms for the finite element spaces and
establish their equivalence to the corresponding continuous Sobolev norms or semi-norms.
In section 4.4, we estimate the norm of the interpolant of a product of two functions.
These results are used to prove the estimates for the convergence properties of the domain

decomposition methods developed in chapters 5 and 6.

Let 7" = {r;} and TH# = {Q} be the fine and coarse triangulations of the domain €,
respectively. Let ch, Vj{ and Vg be the spaces of the bicubic, Argyris and Bell elements,
respectively, associated with the fine triangulation. Véq , V f and V, é‘l are similarly defined.
For a vertex ;, let 7(x;) be the support of the basis functions associated with z;, i.e. 7(z;)
is a region containing all elements with this vertex z;. For a element 7, let 7 be the smallest
region containing 7 and all its neighboring elements, i.e. 7 = Uz 767 ;-

We also need to consider some subspaces of VCSL, Vj and Vg. Let &%, |a| = 0,1, and

7Y be the basis functions of Véq. Let
V4! = span{®,|a| = 0,1,i € A"},

Thus, f/éq is the subspace of Véf consisting of functions whose mixed second derivatives
vanish at all vertices of the substructures. Vi ¢ VI and VA C VA are defined similarly.

We use A"(D) and A¥(D) to denote the sets of fine and coarse grid points in the set D,
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respectively.

4.1 Approximation by Quasi-Interpolation

In this section, we discuss and prove a stable approximation property of the finite element
spaces V2, Vj{ and Vg. The results are based only on the two properties of the nodal basis
functions stated in section 1.3.3. Thus if another basis satisfies the same assumptions, the

same results hold.

We describe the results for the Bell element; the results for the Argyris and bicubic
elements are similar.

We first construct a local linear operator. We note that for @ C R?, we have the
inclusion VA C Vi C H3(Q) C COQ). Let %, |a| < 2 and let 7 be an element. We define

a local linear operator IG5 : H*(7) — Pg(7), by

Tpu =) u(z)gi(z)+ > > {D%u}¢3(x), z€erT. (4.1)

i i Jal=1

Thus,

(Upu)(zi) = u(z:),
(D% gu)(z:) = {D%}s, o] =1,

(D°Ig)(zi) = 0, |a|=2.

We find that if p is a linear function in 7, then I/5p = p. The operator /§ has the following

local approximation properties.

Lemma 4.1.1 Operator If satisfies the following inequalities

Hgulmz(ry < Clulgz(r),

|I]T3u — ule(T) < Ch2_5|u|H2(7),5 =0,1.

Proof. By Lemma 1.2.4, we know that there exists a linear function p(z) such that u

can be written as p + R with R satisfying
{DQR}T =0, |a| =0,1.
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The extended Poincaré’s inequality gives
[Rlpe(ry < Coh2™°|Rlp(ry = Coh2™*ul oy (4.2)

Using the linearity of I5, we have Igu = Igp+ IgR = p+ IgR. By the definition of Ig
and using the fact that {D*R}. = 0 for |a| = 1, we get

IgR = Z R(z;)pi(z).
By the triangle inequality
[ER 1oy < D |R(2)|| il () (4.3)
;From Lemma 1.2.3, with k = 1,|a|=0,Q2 =7, d = 2, and (4.2), we have
|R(z)| < Crhe|Rlpe(ry = Crhzlulga(ry.-
The basis functions are uniform to order 2 in the weak sense, i.e.
|62 ey < CRMF=2 for [a] =0,1,]8] = 0,1,2,
especially [¢;[gs(r) < Ch'=s. Substituting the above two inequalities into (4.3) gives
HBR 27y < Chelulyz(ryhi ™ < CR*~*|ul 2y, s = 0,1,2, (4.4)

The first part of the lemma follows from (4.4) with s = 2. By the triangle inequality and
by using (4.2) and (4.4), we have

I5u — ulpgs = IR — Rlge < |IER|ue + | Rlie < CR**|ulga). (4.5)

This proves the second part of the lemma. |

We now construct a global linear operator. Let Iy : H*(Q) — Vg, be the quasi-
B
interpolation operator defined by
I‘ygu =up = Z u(z;)gi(z) + Z Z {D%u} (o) d5 ().
i€AR(R) ieAn(Q) [al=1

Thus,

Ivgu(xi) up(z;) = u(z;),
Dal‘ygu(xi) = Dauh(*ri) = {Dau}ﬂ'(zi)v |a| = 17

Daff,gu(xi) = Dauh(,ri) = O7 |a| = 2’
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where T(2;) = Uz, er, T; defined as above. The quasi-interpolation operator Iy, : H*(Q) —
A
f/jv and Iyn ¢ HQ(Q) — Vc’j, are defined similarly.
Q

The quasi-interpolation operator Iy, has the following approximation properties.
B

Theorem 4.1.1 Given a function u € H*(Q), u, = Ignu € VE satisfies
B

IN

lur|m2(a) Clulgz(a)

lun, = ulge@)y < CR**lulpz(g), s = 0,1,2.
Here the constant C' is independent of h.

Proof. We first consider one element 7. We note that, locally in an element 7, I is
B
defined similarly as I}, except that I, uses the average of the first derivatives over 7(z;),
B

while I} uses the average of the first derivatives over 7. Let
e = {Dau}ﬂ'(m) —{D%};, |a|=1.

Then

Ippu—Thulgy = 1Y Y 66

|a|=1i€AR(7)
< Y el 168 (@) aer)- (4.6)
la|=1i€AR(7)

;From the fact that the basis functions ¢{(z) are uniform to order 2 in the weak sense,

we have
165 (2)|mre(r) < Csh* 1= for |a] = 1,5 = 1,2.

Using Poincaré’s inequality, we obtain

;|

e

= {D"u} o) — D"l

< Ch'~ d/2|Dau|H1 ) < CR= 2 gz
Substituting this into (4.6), we get
|I‘”;£U — I§U|H5(T) < Ch2_5|u|H2($) s=1,2.
Combining this inequality and (4.5) and using the triangle inequality, we have
|I‘~,£u — ulgs(r) < |I‘~,£u —Igulgs(r) + |u — Igulgsr) < Ch2_8|u|H2(5_) (4.7)
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and
[Lynulpzry < Hpnu = I5u|p2(r) + gt pairy < Clulpags).- (4.8)
The theorem follows by summing (4.7) and (4.8) over all the triangles 7 C  and using

the finite covering property of {7}. |

Note that in Theorem 4.1.1, we made no conclusion about the boundary values of

If,gu. However, if u € H%(), we have for a boundary triangle 7 (7N 9 # 0),
Hu®}; — 0] < Chlulgzqy, |a| = 1.
Using this fact and a simple modification at the boundary, we can show the following

Theorem 4.1.2 Given a function u € HZ(Q), we can find u, € VN HZ(Q) such that

IN

lun|m2(a) Clulg2(q)

lup — ulgs@) < CR*~°lulyz(g),s =0,1,2.

The conclusions of Theorem 4.1.1 and Theorem 4.1.2 also hold for the Argyris and bicubic
elements, if we replace the subspace Vg by f’j and V/, and the smooth interpolation

operator Iyn by I‘@, and I‘@,
B A Q
4.2 Approximation by Interpolation

A proof of the following lemma can be found in Yserentant [52].

Lemma 4.2.1

1

To?

S el < Cllor(R o)+ 1/4) s
where S denotes the disk of radius R > o > 0 with center g and u € H3(5).
We know that for linear element

|wnl Lo (o) < C(1+ log(H /1)) ||un]| 1 (p);

and that the right hand side can be replaced by the semi norm |Uh|H1(D) if the mean value
of w over D vanishes; cf. Bramble [9], Bramble, Pasciak and Schatz [10] and Yserentant
[52]. Similar results for the bicubic element Véb, the Argyris element V% and the Bell
element Vg can be established by applying Lemma 4.2.1 to Vu.
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Lemma 4.2.2 Foru € V", we have
|ulyprco () < C(1+ log(H /h))?|Jun|pr(q)

The right hand side can be replaced by the semi-norm |up|g2(p), if {u}p = {uz}p =
{uy}p = 0.

Let V" be one of the spaces Vh Vh or T %, and let VH denote the relevant subspace
‘75[7 Vf or f’g. Let IIy# and Il be the standard interpolation operators from Vo to

VH and VH, defined by

0
HvH’LLh = Z Z 4h uh )@?(%), S Q,

| <2 i€ AH ( Q)

and
0“ up,

My pun = Z Z

|| <1i€AH 9)

un(2) (), € Q.

Lemma 4.2.3 The interpolation operator 1y, u has the following properties:

If up € V*, and uy = lyau, € VY, then
|uh - qu?'{S(Q) < CHZ(Q_S)(H/h)QluhﬁI?(Q)v s = 07 1727

and

|’LLh — ’U,H|%/Vs,oo(9) S CHQ(I_S)(H/h)ﬂU}Ll%p(Q), S = 0, 1

Proof. We give a proof for the Bell element. Let 2; be a substructure, and z;,7 = 1,2, 3,
be its vertices. Let ®{ be the basis functions for the Bell element at the vertex z;. We

have

Ug = HVB{’{U/ = E Z Da ¢Oz ) V.T c Q[.
(EAH () o] <2

We want to estimate the difference up — Iy muy. Using the linear function invariance
property of Il n, we can assume, without loss of generality, that {D%u}q, =0, |a] =0, 1.

By the triangle inequality, we have

|unlweee @) < E Z [D%u(z)| |95 ()| weeo (0
PEAF () [o|<2
< Z Z |u|IV|a|700(QZ)|(I)?|st°°(ﬂl)v

ieAE () |a|<2
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and

A

unlme@) < >0 D0 IDw(@)|9F(@)|me(a,)

ieAE () |a|<2

Yo X lulwialeo o ®F o)

PEAT () [al<2

IN

Using the fact that the basis functions are uniform to order 2, i.e.
B (2) ey < CHII™* and |9 (2)|ge(q,) < CHIT,
we get
|unlweeo(a) < € {H_S|“|L°°(Qz) + H' 7 |ulroo(q,) + H2_S|U|W2’°°(Ql)} ;

and
Junli@) < C {Hulra@) + H* ™ |ulgaay + H*Julpega, }

Since {D%u}q, =0, |a| = 0,1, we find that

lulpee < CHlulg2q,,

[ufwreo(qy < C(l‘|‘10g(H/h))1/2|U|H2(QZ)7

A

lulwzoqy < Ch™ulgzq,)-

The first inequality follows by the embedding Theorem, Poincaré’s inequality, and a scaling
argument. The second is just a consequence of Lemma 4.2.2. The third is the inverse

inequality. Using these inequalities in the estimate for |ug |y« (q,) and |um|g+(q,), we get

—s —s H —s H
lurlwee() < C {Hl lul gz, + H (1 +10g(g))1/2|u|H2(Ql) +H' (F)|U|H2(Ql)}

< CH'™(H/h)|ulpq,),
and
2—s 2—s H 1/2 2—s H
lurlme) < CVH [ulnzy + H7°(1 4 log(5-)) lulmea) + H7°(5-)[ulmzqy)
< CH**(H[h)|ulp2g,)-

By the triangle inequality, and the vanishing mean values property of « we have
|U - H‘IHU|%V57“(QZ) S 2|U|%V57®(Ql) + 2|HVHU|%V5700(QZ) S CHQ_QS(H/h)2|U|%2(QZ),
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and
|U - H‘/Huﬁqs(gl) S 2|U|?¥S(Ql) + 2|HVHU|§¥S(QZ) S CH4_25(H/h)2|U|%'_I2(QZ)-

The conclusion for the Bell element follows by summing over all €;. The results for the

bicubic element and Argyris element can be proved similarly. |

Remark 4.2.1 It is easy to construct examples to demonstrate that the bound in the
above theorem is sharp. As in the 3-d problems, interpolations for the Hermitian elements

also have a very poor bound.

To get better bounds, we consider the interpolation interpolation operator Il . The

approximation properties of Il 5 is summarized in the next lemma.

Lemma 4.2.4 The interpolation operator Iy, defined above, has the following proper-
ties:

For uy, € Vh, ug = llgruy € VH, we have

Jur, — wn |t < CH* 7)1 + log(H/h))|u,

2
H2(S:)

and

un = wrlfy (g, < CHY (1 + log(H /1) |unlir2(q,)-
Proof. We prove the result for the Bell element; the assertions for the bicubic and
Argyris elements can be proved similarly. Let €; be a substructure, and z;, ¢« = 1,2, 3, be
its vertices. Let ® be the basis functions for the Bell element at the vertex z;. We have

Oyru = Z Z D%u(z;)®¢(z), Va € Q.
PEAF(Q) [a|<1

Because of the linear function invariance property of Hg, we can assume, without loss of
generality, that {D%u}q, = 0,|a| = 0,1. Note that the only difference between Il 5 uy,
and Ilyzuy, is that Il 5 uy does not contain the terms D%u(z;)®f,|al = 2. Therefore we
can repeat the proof of Lemma 4.2.3 to obtain

Mprulwes@)y < D D lulwiateo(ny) @ oo (ay)
i€AF (Q) || <1
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< CH™’lulpee(q) + CH ™*lulyreq,)
< CH'™*(1+1og(H /1) ?|ul g2y,
and
Mpaulme@)y < D D lulwialeo (|98 o)
ieAH () |al<1
< CH *Julpeiay + H**(1 + log(H/h)"*|ul (g,

< CH**(1+log(H/h)*|ul g,
Using the triangle inequality and the vanishing mean value property of u, we have

|Uh - HVHUH%VS,W(QZ) < |u|%/Vs,oo(Ql) + |H‘7Huh|%Vs,oo(Ql)

< CH*™%(1 +log(H/h))|ul}z
and
fun = My nunlfoy < lulireqg,) + Mpntnliq,
< CHY(1+ log(H/h))|ulfr(q,)-
The inequalities for operators Hf,é{ and HVf can be established similarly. |

4.3 Some Discrete Norms

In this section, we define some discrete norms for the finite element spaces Vh,ij and
V h, and show that these discrete norms are equivalent to the corresponding continuous
Sobolev norms. These discrete norms are used in establishing the optimal convergence
property of the additive Schwarz method for the biharmonic equation when these finite
elements are used. We note that similar ideas can be used to show the optimal property
of the additive Schwarz methods for other conforming Lagrangian or Hermitian elements.

We considered the bicubic element ch, the Argyris element Vj and the Bell element
V. ]é“ . We define the discrete norms in terms of the degrees of freedom of the finite element

spaces.

Definition 4.3.1 The following are discrete norms for the finite element spaces:

(1) For u € ng. Lel 7 be a reclangle with vertices x;,1 = 1,2,3,4. The discrete norms
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over T are given by

oo = WX lue) + 3 S 0%u(e)f 1

la]=1 2
lulfyy = D lu(i) —ulz)]* + 52 Y Y (D% )|2+h4
£ la]=1 2
1 o o
wlba = g lbu(edl + 30 3 1D%u(i) - Du(ei)* 4473 (2)2,
i lo|=1 i)
where

Lu(z) = w(z;) = {u(z1) + (Vu)(e1) - (zi = 21)}-

(2) For uw € VL. Let T be a triangle with vertices x;. The discrete norms over T are given

by
lulgo = h22| OF Y30 > D% (@) + 1 30 > 1D u(e
le|=1 2 la|=2 i
s = Y lules) —u(@)l* + 4% 37 3 [D%u(z)l* + % 2 Y |D%u(x
#i laf=1 i lol=2 i
1 o o o
lulby = 732 [Lu(@)*+ 30 > |ID%w(@i) = D*u(z;)[* + A% >0 3 [D%u(
7 la|=1 t#75 lo|=2 i
(3) For w € V. Let T be a triangle with vertices x;. The discrete norms over T are given
by
o = lulho+ HID" (50
lulfas = |U|?31+h2|D”i(yi)|2,
ulf, = IUIBerEID”‘ = D™ u(ys)|?,

where y; = (z; + x)/2 is the midpoint of the edge T; Tr.
The square of the global norms are defined by summing the square of the local norms

over all 7 C Q.

Let P(7) be a space of polynomials defined on 7. We say that two functionals f; and
f2 on P(7) are equivalent, f; ~ f, if there exist two constants C; and Cy independent of

win P(7) such that
Cifi(u) < fa(u) < Cafr(uw). (4.9)
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If furthermore, C; and C5 are independent of 7, then we say f; and f; are uniformly

equivalent. We have the following theorem on uniform norm equivalency.

Theorem 4.3.1 Let @ be the vector consisting of the degrees of freedom of the finite

element in a triangle 7. Then,

h
Jor uw e Vg
lullzy = (KO, @) ~ |uld o
ulfpnyy = (KW, i) ~ [ulf,
|u|?{2(7—) = (](7('2)67 fl_[) ~ |U|Q,2a
forue VL
lullfzy = (KO @) ~ |ulf,
by = (KW@, a) ~ |ulh,
ulboy = (K@@, @) ~ Julf o
for u € Vj
lullfeiry = (KO i) ~ |ul}
ultny = (KW@ @) ~ |l
lultry = (K@) ~ |uff .

The theorem still holds if we replace the norms on the left hand side by the norms over (2

and the right hand side by sums over all vertices x; € €.

Proof. For a fixed 7, the left and right hand sides define quadratic forms, which have
the same null space. Thus the two forms are equivalent, since they are defined on a finite
dimensional space. However the equivalency constants C; and C3 may depend on the
triangle 7. We claim that C; and Cy can be chosen so that they depend only on the
minimum angle of triangle 7.

This is trivial for the bicubic elements, since it can be embedded in an affine family.
Using a reference element and a mapping, it is therefore easy to see that the discrete

norms are uniformly equivalent to the corresponding continuous norms. Argyris and Bell

50



elements are not affine elements. To check the uniform norm equivalency for the Bell
element and Argyris element, we note that similar triangles have the same equivalency
constants. Therefore, it is enough to establish the result for triangles of unit size with
a minimum angle bounded from below by Oni,. Let AABC be such a triangle, with
A =1(0,0),B=(1,0). Then its third vertex C' must lie in a compact region D(min). We
note that the continuous and discrete norms define two quadratic forms of the degrees of

freedom:

lu|? = (K.z,2) and |ul3 = (Kgz,2),
and that K, and K4 depend continuously on C. The eigenvalues A(K.) and A(K ) are
continuous functions of the coefficients of the matrices, and therefore continuous functions
of C. Let Apin(K ;) and Apin( K 4) be the minimum nonzero eigenvalues, and Amax(K ;) and

Amax(f(q) be the maximum eigenvalues. Since C' lies in the compact set D(0min), there

exist constants C; and Cq, depending only on D(0miyn), thus only on iy, such that
Cl S Amin(ﬁrc) S Amax(](c) S CQv

and

Cl S Amin(](d) S Amax(](d) S CQ-

Since the matrices K. and Ky have the same null space, we have
(C1/C)( Koz, z) < (Kgqz,z) < (Cy/Cr) (Ko, x), VC € D(Omin)-

Thus we have proved the norm equivalency for the class of triangles of unit size with
minimum angles bounded from below by #,;,. The powers of h in the discrete norms can
be obtained by shrinking AABC' to a similar triangle of diameter .

The global norm equivalency follows by summing over all elements. |

4.4 Estimates for the Interpolant of a Product of Two
Functions

In the proofs of the estimates for the domain decomposition methods, we need to estimate

the norm of the interpolant of the product of two functions, i.e. |Ilyn(fu)|y2, where 8
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is a smooth partition function and u is a finite element function. For simplification, we

assume that 6(z) € C*°(Q2). Let
Oo = |0(2)|reo(ryy  O1 = 10(2)|wreo(r), O2 = |0(2)]w2.00(r)- (4.10)

Let IIyn, IIy» and IIy,» be the standard interpolation operator to the finite element spaces
Q A B

ViV j{ and V; ng respectively. We then have the following estimates
Lemma 4.4.1

[Ty (0w fary < € {®3|HV£U|12112(7) + O Mynulf () + @%HHVC’;U”%z(T)}, Vu € V.
(4.11)

My n(0u)l3p(y < C {®3|vau|12q2(7) + OF[Mypulfp () + ®§||vau||%2(7)}, Vu € V.
(4.12)

My n(0u)lipegry < C {®(2J|vau|12q2(7) + OF My nulfp () + ®§||vau||%2(7)}, Vu € V.
(4.13)

All constants are independent of mesh size h.

Proof. We prove inequalities (4.12) and (4.13). The proof for (4.11) is similar. By

Theorem 4.3.1, using the equivalent discrete norm, we have

|y n(0u)lF(r)
~ % SOILEw) )P+ 3 D7 (DM (Bu)(a:) = D*(Bu)(w)* + 1?32 [D*(Bu)(w:)]”

1#]7 |a|=1 |a|=2

= Ty + T+ T3, (4.14)

where

Using the identity

L(bu)(2) = 0(i) Lu(z;) + w(z:) LO(x;) — (0(2i) — 0(21))(u(z:) — w(z1)),
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we have

I = % ZI 0(xi) Lu(z;) + u(zi)LO(x;) + [0(x) — 0(1)][u(zi) — u(z1)] |*

S i S0l + o) 2O + 1820 0} (utes) — u(n))F
~ 308y ulla) + 2y Y 100 Pluen) P + (@R[l

L is a Taylor’s expansion and we have |L(z;)| < ©zh%. Since
B S u(a)? < Myl
we get an estimate for 77,
Ty < CLOM yulley + O2Mypull o + OMypaldng . (415)

Manipulating the terms in the expression of T3, we have, by elementary calculus

o= 303 10 ual(e) + w(zi)a(zi) — 0(x;)ua(z;) — u(z;)ba(z;)?

i#j |al=1
= > > {(ualwi) — ualw))8(z:) + (0(2i) — 6(x;))ual;)
i#j |al=1
Hu(z) — u(z))0a(z:) + (Balz:) — a(z;))u(z;)}?

< 405 D I(wal@i) — val@))l* + O1h* Y fua(e;)|*
i#] Ja|=1
‘|‘®22| ) — u(z; |2‘|‘®h22| u(z;)|*}
1#]
< C{eg |th“|H2 + ®%|vau|%11(7) + ®§||vau||%2(7)}- (4.16)

T3 can be estimated as

Ty = B2 Y [D*0u)@)> =h® Y |D0D%u)(a;)?

|O‘|_2 |a1+a2|—2
< 02 Y | Du(x)? + 02k 3 [Du(z)? + 0282 Y Ju(s
|a|=2 lo]=1 7
< Oplypulfye (o) + OF My nulfp,y + OF[[Hypullfz ). (4.17)

Inequality (4.12) follows from the inequalities (4.14)-(4.17).
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To establish inequality (4.13), we only need to estimate Y, | D™ (0u)(y;)— D™ (u)(z;)|?
and h?| D™ (0u)(y;)|*. We estimate the first one; the estimate of the second is similar.

Z | D™ (0u)(yi) — D™ (0u) ()|
= Z 10 (g3 )uyi) + 0(y: )t (9i) = On; (wi)ul@s) + 02 g, (1)
= Z 100 (yi)(u(y:) — w(z3)) + (0n,(9:) — On, (@i))u(i)

+(0(y:) — 0(2:))un;(y:) + 0(20) (uni(y:) — um(ﬂﬁi))l2
ICEIH (4 |2+CZ| = O, (21))u(;)|®

+CZ| 2;))tn, (4i) |2+CZ|0 )t (4i) = ()|
=T+ Ty 4+ T4 Ty (4.18)

Using Theorem 4.3.1, each term can be estimated as follows:

i< 0} [u(y) - u()

T, < O3 z:u(:cz)2 < C’@%|vau|%2(7). (4.19)
T3 < ®2h22|un. yi)|* < COF|Mynulfp,). (4.20)
T, < @22 |unI Y;) — un, (2)* < C®0|thu|H2 (4.21)

Using the basis representation for functions in Ps, we have

u(ys) =D wlw)oi(yi) + D D walw)df (vi) + 3 wn, (4795 (4:)-

J J |al<L2

Recalling that 3.7 ¢;(z) = 1, using the fact that u € Ps; and the fact that the basis

functions for the Argyris element are uniform to order 2, we have

|u(y:) — U(%’)lQ
|Z ¢] Yi ‘I’Z Z Uy w] yz ‘|’Zun] y] ¢n](y2)|2

J |al<2
§C2|u (z;) — u( |2—|—Z Z h2|°‘||u (z;) |2—|—Zh2|un] (y;)]
J J |al<2

< Clulipg,
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Thus,
T < 03 luly) - u(w)l? < COZald, (4.22)

Inequality (4.13) now follows from (4.18)—(4.22). n
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Chapter 5

Additive Schwarz Methods for
the Biharmonic Problem

In this chapter, we study additive Schwarz methods for the biharmonic problem using the
abstract framework of chapter 2. We use the bicubic element VCS“, the Argyris element Vj

and the Bell element V, g.
Suppose that the finite element space V' can be written as a sum of subspaces
V=Vot Vit + Vi,

where Vj is a coarse subspace, and V; subspaces associated with subregions ;. Instead of
solving the original finite element equation, the additive Schwarz method is introduced in

terms of an auxiliary problem: Find w € V' by solving iteratively the equation
Puy, = (Py, + Py, + -+ Py )up = gn
for some gy,.

The natural question is how to find decompositions of V' and what properties of the
decomposition give optimal algorithms.

As we pointed out earlier, the coarse problem is crucial in our algorithm. In the
second order case, an obvious candidate for the coarse subspace is the space associated
with 7H. However for the biharmonic case, when Argyris and Bell’s elements are used,
the coarse finite element spaces Vi and V2! are not subspaces of the fine finite element

spaces Vj” and Vg. Therefore, new coarse subspaces have to be found. The discovery of
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the appropriate coarse subspaces results directly from an observation of a weak coupling
property between the different degrees of freedom of the elements and some results on
discrete Sobolev norms. This observation also leads to some simplified algorithms, which
turns out to be useful even for the algorithms using the bicubic element.

In the iterative substructuring case, the situation is even worse. Even when we use the
bicubic element and Véq C Vc}gl can be used as coarse subspace, the direct generalization of
some algorithms for second order problems results in algorithms with condition numbers
which grow at least like (H/h)%. Better algorithms are obtained by adding certain vertex
spaces to the space decomposition; cf. chapter 6.

The difficulty of proving the optimality of the algorithms depends on the presence of
high order derivatives in the definition of the elements. The tools that work for second

order equation and linear element cannot be used here.

5.1 The Bicubic Element

5.1.1 Basic Algorithms

We first triangulate the domain € into nonoverlapping rectangles Q;,¢ = 1,---, N, to
obtain the coarse triangulation 7H = {Q;}V. Then each rectangle ; is further divided
into smaller rectangles 7; to obtain the fine triangulation 7" = {r;}. We also decompose
Q into overlapping subdomains Q;,i = 1,---,N. We assume that the decomposition
Q = UN,Q; satisfies Assumption 3.3.1. Let A*(D) and A (D) be the sets of the fine and
coarse grid points in the set D, respectively.

We use two finite element spaces Vg = Véq and V%, which are the bicubic element
associated with the triangulations 79 and 7", respectively. In addition, we use the
subspaces V; = VéL(Qz) = VéL N H2 ().

Let Py, : ch — V;, be the a(-, -)-orthogonal projection and let

N
P=>"Py.
=0

We have the following additive Schwarz algorithm

Algorithm 5.1.1 Find u, € V" such that
Puy, = gy, (5.1)
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with g, = >, g; and the g; given by the solutions of

a(gi, on) = a(Pvu, én) = f(Pn), Voén € Vi (5.2)

To find uy, we first find the right hand side g, by solving equations (5.2). We then use
the conjugate gradient method to solve the system. In each iteration, we need to compute
Py, for some element vy, € V. This is done in the following steps, which can be carried

out in parallel.

o Compute Pyvy, by solving KHz = b. This is a finite element problem in the subspace
VA Here KH is the stiffness matrix and dim(Véq) = 4N, where N = [A7(Q)], is

the number of interior coarse grid points.

e Compute P;vy, by solving fo = b. This is a finite element problem in the subdomain
Q);. Here K; is the stiffness matrix and dim(V;) = 4n;, where n; = |Ah(Qi)|, is the

number of fine grid points inside Q.

5.1.2 Simplified Algorithms

It is of course desirable to reduce the work in each iteration without decreasing the rate
of convergence. Let ¢¢ and ®¢ be the nodal basis functions of VCS” and Véq, respectively.

To describe our alternative algorithm, we need to introduce some new subspaces.

o The vertex space V;, = span{¢,’(z)}, for each vertex zj. We note that for ¢ € V,,

T(z) = supp(¢) is a polygon of diameter O(h).

oV, = span{¢2(z),|a| < 1,k € A*(Q,)}. V; is a subspace of V; consisting of functions

with vanishing mixed second derivatives ( 88$3Uy ) at all the vertices.

o f/éq = span{®%,|a| < 1,7 € AH(Q)}. f/éq is a subspace of Véq consisting of functions

with vanishing mixed second derivative (;;gy ) at all the vertices of the substructures.

Algorithm 5.1.2 Find uy € ch by solving

PPy, = (Poz + 32 P+ D2 Prun = g (5.3)
@ keAhR

with the appropriate right hand side gp,.
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The computation of g is similar to Algorithm 5.1.1. In each conjugate gradient step

of Algorithm 5.1.2, we need to solve three sets of problems.

1. Compute Pyrv, by solving K"z = b. This is a finite element problem in the
Q

subspace Véf Note that K is a principal minor of K, and dim(f’éq) = %dim(Véq).
2. Compute Py vy, by solving ﬁfx = b. This is a finite element problem in the subdo-

main Q;. K is a principal minor of K and dim(V;) = Sdim(V;).

3. Compute Py, vy by solving K © = b, with  and b scalars, where K, = a(¢,", ¢}")
is the 1 by 1 stiffness matrix corresponding to the degree of freedom associated the

. . . 2
mixed second derivative (aazgy ) at the vertex zj. These problems are very easy.

5.2 The Argyris and Bell Elements

We next consider the Bell and Argyris elements. First, we present the basic algorithms.

We then describe the computationally more efficient algorithms.

5.2.1 Basic Algorithms

The triangulations 7%, 7H and the subregions Q; are defined as in the the second order
case. We first divide the domain Q into non-overlapping substructures Q;,¢ =1,2,---N.
All the substructures 2; are further subdivided into elements T; Thus we have two levels
of triangulations, namely the coarse triangulation 7H = {Q;} and the fine triangulation
Th = {7;}. We denote by h; and H; the diameters of element 7; and substructure €;,
respectively, and let h = max; h; and H = max; H;. We assume that all the substructures
and elements are shape regular in the usual sense. We also extend each substructure to
a larger region QZ We assume that the distance between the boundaries 9€2; and 8@2-
is bounded from below by a fixed fraction of H; and that 9€); does not cut through any
element. It is clear that {€2;} satisfies Assumption 3.3.1.

Let Vg and VEI be the space of Bell elements with respect to 7" and 7%, respectively.
\4 /{“ and V f are similarly defined. We present the algorithms for the Bell element. The

algorithms for the Argyris element are similar.

In general, the second derivatives of ® € VZ at the edge nodes z; have two different
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values except at the vertices of the substructures. Therefore, Vg 74 Vg. Thus, a new
coarse space has to be found. An easy way of modifying VEI to achieve this goal is by
replacing the basis functions of Vé{. Note that, in a substructure ;, basis functions @ of

Vé{ can be represented by the basis functions of Vg:

®z)= Y, > Palw)ef(@)+ D D Palw)di(z) ze,
z €AR(Q;) |a|<2 z; €AR(0Q;) || <2
which is now replaced by
V()= D, D @alzi)ef(e)+ D D Bali)ef(2).
o €AR(R;) o] <2 i€AR(39;) o] <2
Note that the second derivatives of ¥ vanish at the nodes on 9€;. We define the coarse
space Ug as
UH = span{¥%, |a| < 2, i € AH}.

It is easy to see that we have the inclusion U C VL. Let Vo = UZ, V; = VlEn H2().

Then we obtain a space decomposition

and the corresponding orthogonal projections Py;.
Algorithm 5.2.1 Find wj, € V£ such that

Puy, = (Py, + Pv, + -+ Pvy )un = gn (5.4)
with gp, = Eév g; and g; given by the solutions of

a(gi7¢h) = a(PViuvth) = f(cbh)v Vﬁbh € ‘/2

Once we have computed the right-hand side g, we use the conjugate gradient method
to solve equation (5.4). In each iteration, we need to compute Pv, for some element

v, € V", This is done in the following steps

1. Compute Pyvy by solving Kz = b. This is a finite element problem in the subspace
UH. Here KH = Kyn = {a(¥;,¥;)} is the stiffness matrix associate with U} , using
the modified basis {¥2}. We note that dim(Vp) = dim(Uf) = dim(VE) ~ 6N,

where N = |AH(Q)] is the number of substructure vertices.
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2. Compute P;vy, by solving Kz = b. This is a finite element problem in the subdomain

;. The number of unknowns ~ 67;, where f; = |Ah(Qz)| is the number of nodes

inside €2;.

Remark 5.2.1 Notice that to solve the coarse problem, we need to form the matrix
K1 = Kyn = {a(V;,¥;)}, where ¥; and ¥; are the modified basis functions. Although
the stiffness matrix K = KV};{ = {a(®;,®;)} can be computed explicitly in terms of the
coordinates of the three vertices of €2;, the computation of KUg for the modified basis is
not straightforward. A standard way is to use numerical integration. An alternative is
to replace Kl,’g by I(Vé{. This is equivalent to using an inexact solver P(; to replace Fp.
It can be shown that {a(®;, ®;)} and {a(¥;, ¥;)} are spectrally equivalent. Thus we still

have an optimal algorithm.

5.2.2 Simplified Algorithms

The simplified algorithms for Bell and Argyris element are quite similar to those for the
bicubic element.

To describe these algorithms, we need to introduce the following subspaces.
o The vertex space V,, = span{¢}(z), |a| = 2}, for each vertex zy.

oV, = span{¢f(z),|a| < 1,k € A™(9;)}. Note that V; is a subspace of V; consisting

of functions with vanishing second derivatives at all the vertices of the elements.

o Ul = span{¥% |a| < 1,i € AH(Q)}. U} is a subspace of U} consisting of the

functions with vanishing second derivatives at all the vertices of the substructures.

o U = span{¥¢,|a| < Lvi(z),i € AF(Q)}. VI is a subspace of UK consisting of

functions with vanishing second derivatives at all the vertices of the substructures.
Algorithm 5.2.2 Find uj, € VL such that

Pup = (Pgg + 3 Py + Y P, Jun =g (5.5)
@ keAhR

with the appropriate right hand side gy,.
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The computation of g is similar to Algorithm 5.2.1. In each iteration step of Algo-

rithm 5.2.2, we need to solve three sets of problems:

1. Compute Pgrv, by solving K"z = b. This is a finite element problem in the
B

subspace ﬁg Note that K is a principal minor of K and dim(Ug) A %dim(b’g).

2. Compute Py o by solving I;th = b. This is a finite element problem on the subdo-

main ;. Here K is a principal minor of K% and dim(V;) ~ Tdim(V;).

3. Compute Py, vp at each interior vertex zy by solving Ixﬁkx = b. Here z,b € R? and
K! = {a(¥y, \Ifi)} is a 3 by 3 matrix, V¢ and \Ifg are the modified basis functions
associated with the second derivatives at the vertex x;. These problems are very

easy.

5.3 Optimality of the Basic Algorithms

Our result, concerning the optimality of the basic additive Schwarz algorithm, is contained

in the following theorem.

Theorem 5.3.1 The condition numbers of the iteration operator P in Algorithms 5.1.1
and 5.2.1 are bounded by a constant independent of number of substructures and the mesh

sizes. More precisely, we have
Cra(u,u) < a(Pu,u) < Coalu,u), Yu € V"

Proof. The upper bound follows from the finite covering property of {QZ} and the

properties of the projections, with Cy = (N.+ 1). Here N. is the finite covering constant.

To establish the lower bound, we need to construct a good partition v = 3, u;,YVu € V*
in order to use the Lions’ Lemma.

For the bicubic elements, by Theorem 4.1.2, we know that Vuy € ch C HZ(Q), we can
find a uy € f/éq N H(Q) satisfying

lur| 20y < Clurlm2q), (5.6)

and

Ug — Up

H:(Q) < CH2_5|uh|H2(Q). (5.7)
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We define uwg = upg, wy = up — ug. Since Véq C Véq, we find ug € Véq C VéL. Because
of the generous overlap of ;. we know that there exists a partition of unity {6;} with

6; € C5°(L);), which satisfies

N
> 6i=1,
1
and

0, = m&X|9i|Ws,oo(Q.) <CH™*, s<2.
7 2
Let IT" = va be the standard interpolation operator to the finite element space Vé“. We

define u; by
Uu; = Hh(Oiwh).

It is easy to check that u; is well defined, and that u; € V;. By the linearity of II*, we

know that
N

up = Zui, u; € ‘/2
1=0
JFrom Lemma 4.4.1, we know

|uilFrz(ry < C (@3|thh|%12(7) + OF | w31y + ®§|thh|%2(7)) :

h

Using the fact that wy = up — wy € V", we obtain

|wilfeiry < C <®3|wh|12112(7) + 01 |wltp oy + ®§|wh|%2(7)) :
Summing over 7 € €, we get

|uz|12q2 Q. <C ®3|wh|12q2 Q. ‘I'Q%lwh
( !) ( z)

iy T Olonlag,)
The conclusion N
;Wﬂfqz(ﬂ) < |unlira(q)
follows from the fact that ©, < CH %, |wh|Hs(Q) < H2_s|uh|H2(Q) and the finite covering

property of ;.

For the Argyris and Bell elements, we note, from the results on the discrete Sobolev
norms, and the construction of U and UH, that the modified basis functions ¥¢ have
similar properties as the basis functions of Vé{. In particular, ¥$* have the two properties
of studied in chapter 1. Thus, the stable approximation properties hold for Ug. The rest

of the proof is similar to the case for the bicubic element. |

63



5.4 Optimality of the Simplified Algorithms

We have the following result on the optimality of the simplified algorithms.

Theorem 5.4.1 Algorithms 5.1.2 and 5.2.2 are optimal, i.e. the iteration operator P(2)
satisfies

Cra(u,u) < a(P(Q)u,u) < Caa(u,u), Yu € Vg,

where C1 and Cy are independent of the number of substructures and the number of ele-

ments.

Remark 5.4.1 The optimality of Algorithms 5.1.2 and 5.2.2 can essentially be proved
by showing that the vertex spaces V., are weakly coupled to the other subspaces. This
property will also be important in developing iterative substructuring algorithms for the

biharmonic equation.

Proof. We know that {QZ} forms a finite covering of ) with a covering constant N,.
It is easy to see that {7(z)}repn forms a finite covering of Q with a covering constant
degree(7") 4+ 1. Thus {Q;, 7(zx)}ix also forms a finite covering of Q with a covering
constant (degree(7")+ 1) + N.. The upper bound of P follows with Cy = (degree(7") +
1)+ N+ 1.

To establish the lower bound, we need to construct a good decomposition u, =, u;
in order to use the Lions’ Lemma. By Theorem 4.1.2, we can find uyg € f’g N HF(Q)
satisfying

|uH|H2 < C|uh|H2
and
|uH—uh|H <CH2 s|uh|H2
Let ug = ug, wp, = up, — ug and

B ?wp(zr) o

Uy, () = S2dy — T 6 (z), for ay € AM(Q).

JFrom the properties of the basis functions, it is clear that

[tz (%) o) < Clwp(@)|fs(r(a)-

64



Summing over all z; € A", we have
keAh

Taking s = 2, and using the fact that |wy|y2 < Clup|y2, we obtain

Y luaylte < Clunlfzg)- (5.8)

keAh
Let W, = wp, — > p ug,. Then |wp|gs < Clwp|gs. Let wi(z) = va(&wh). JFrom the
linearity of va, we obtain

up = ug + Z Ug,y, +Zui7
keAh 4

and

D (up, — ug — Z g, )(z) = 0, for [a] = 2,k € A",
keAn

Thus, D%u;(z;) = 0, for k € A", which implies that u; € V;. Using the same technique as

in the proof of Theorem 5.3.1, we can prove that

2. (5.9)

wy,

Combining (5.6), (5.8) and (5.9), we obtain
lur|fz + Y g fe + D Jwilf < Clugl .
k 7

The theorem now follows from Lions’ Lemma. The conclusions for the Argyris and Bell

elements can be established similarly. |

5.5 Numerical Results

In this section, we report on some numerical results with the additive Schwarz methods
for the biharmonic equation. The computations were carried out on a Sparc Station 1 and
a CONVEX C-1machine. All the experiments are for the unit square domain Q = [0, 1]%

We divide the domain  into Ny X Ny idential square subdomains €2;; and obtain a

coarse triangulation 7 = {Q;;}. The length of sides of ;; is H = Nl_H and
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Each square €);; is further divided into smaller square elements 7y of the same size and
we obtain the fine triangulation 7" = {7;;}. Let n? be the number of elements. Then the

length of sides of the elements is h = t and

7ij = (i = Dh,ih) x (( = D)k, 7h).

We extend each €;; to a larger region Q”

Qi = ((i—-O)H—rHiH+rH)x ((j—1)H —rH,jH+rH) (5.10)

= (1 —=1)H —mch,iH +mch)x ((j — 1)H — mch,jH +m.h).  (5.11)

We cut off any part of Qij that is outside of Q. Here r is the overlap ratio and m, is the
number of elements by which €2;; is extended in each direction. We note that rH# has to

be a multiple of h, since we want the (?Qij to align with element boundaries.

For simplicity, we want all the subproblems to have the same size, i.e. all the submains

();; have the same size. For this to hold, we need to modify the boundary subdomains
Qi]’. Instead of extending €;; by m. elements, it is extended by 2m. elements towards the
interior. This is especially useful for computations on SIMD machines; cf. Bjgrstad and
Skogen [6]. For all the experiments of this section, we stop the iteration when the norm

of the residual is reduced by a factor of € = 1074,

In the first set of experiments, we discretize the equation using the bicubic elements
VCS” and we use Algorithm 5.1.1. The total number of degrees of freedom, dim(VéL) =
4(np, —1)%. The results are summarized in table 5.1. The first column contains 4(nj, —1)?,
the total number of degrees of freedom. The second column contains N, the number of
subdomains. In the third column, we give the overlap ratio r and the number of elements
me by which Qij is extended from €2;;. We note that the real overlap ratio for boundary
subdomains will be slightly different from that of the interior ones. The fourth, fifth and
sixth columns give the minimum and minimum eigenvalues and the condition number of
the iteration operator P, respectively. The last column contains the number of iteration
required to reduce the norm of the residual by a factor of € = 10~

We observe from table 5.1 that, in general, Ay ¢ is between four and five, except in
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total # unkns | # of subdom | ovlp ratio | Amin | Amax | K(P) | # of iter.

x (8 —1)? 22 1L,1/2 1099 |50 |5.0 8
(16 — 1)* 22 1,1/4 | 0.51 | 4.3 |83 10
(16 — 1)* 42 1,1/4 | 0.65 | 4.5 | 7.0 11
(16 — 1)? 42 2,1/2 1.00 | 9.0 |9.0 12

x (32 — 1)? 42 2,1/4 | 0.65 |45 |69 10

x (32 — 1)? 82 1,1/4 06245 |73 11

x (64 — 1) 82 2,1/4 06245 [7.2 10

x (64 — 1) 162 1,1/4 |o061 |45 |73 11

X (80 — 1)? 82 2,1/5 048 | 43 |9.0 11

X (80 — 1)? 162 1,1/5 047 |43 |91 12

x (100 — 1)* 10? 2,1/5 048 | 43 |9.0 11
X (100 — 1)* 20 1,1/5 047 |43 [9.1 12

Table 5.1: ASM Using the Bicubic Element Vél.

the fourth row, where Ay ax = 9. The reason that Apa.x = 9 in the fourth row is that, in
this case, we extend the (2;; too much and the covering constant N yye, = 8.

For comparison, we also compute the condition numbers of the additive Schwarz
method without a coarse subspace. For a problem with 16 by 16 grid points, 4 by 4
subregions and overlap ratio r = 1/4, we have x(P) = 250.

The condition numbers of the stiffness matrices K" for these fourth order problems

are extremely large. We give two examples here. For nj = 10, we have x(K1312) = 1800

and for nj, = 20 we have k(K z0,20) = 14000.

In the next set of experiments, we consider Algorithm 5.1.2. We also use the bicubic
element. The two triangulations 7%, 7 and the subdomains Qij are defined as in the

previous case and so are the overlap ratios r and m.. The operator for Algorithm 5.1.2 is

defined by

PO = Pyu +3 P+ Pr.,.

The Véq is the bicubic element associated with the coarse triangulation 77, V; the bicubic
elements associated a subdomain € and V;, the vertex spaces associated with a fine grid

point zx; = (kh,lh).
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total # unkns | # of subdom | ovlp ratio | Amin | Amax | #(P)
4x(8-1)* 22 1/2 0.93 | 4.49 4.8
4x (16 —1)? 22 1/2 0.83 | 4.47 5.4
4x (16 —1)? 22 1/2 0.65 | 4.24 6.4
4x(32-1)2 22 1/4 0.83 | 4.45 5.3
4x(32-1)? 42 1/4 0.74 | 4.43 6.0
4x(32-1)? 82 1/4 0.60 | 4.43 7.4
4 x (64 —1)2 82 1/4 0.64 | 4.42 6.9
4 x (64— 1)2 162 1/4 0.60 | 4.41 7.4

Table 5.2: ASM Using the Bicubic Element VéL: The Simplified Version

We note that we can use different weights for different projections. In our experiments,

we use

PO = Py +3 Py +23 Py,

The results are summarized in table 5.2. We observe that, for the same triangulations
T" and TH, the condition number x(P?)) is approximately of the same size as x(P) of

Algorithm 5.1.1, in some cases, even smaller.

In a third set of experiments, we consider the Bell element discretization. We use
Algorithm 5.2.1 to solve the linear system. Since we need triangular elements, the two
triangulations 7%, 7H are defined by dividing the squares obtained from the previous
cases into two triangles. For simplicity we use square subdomains Qij as in the previous
cases. The results are summarized in table 5.3.

We recall that, in this case, the coarse problem
a(PUgu,'iI)) = a(u,®), Vo e UH,

corresponds to the linear system

ErUg$ - b.

Here Ug is the modified coarse space. In our experiments, we do not form matrix K u.
B
Instead, we use Ky u, the stiffness matrix for the coarse Bell elements. This is equivalent
B

to solving I(ng = b by an approximate solver. Since KUg and ](Vé{ are spectrally
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total # unkns | # of subdom | ovlp ratio | Amin | Amax | K(P) | # of iter.
6 x (16 —1)* 22 2,1/2 1.0 [ 6.0 |6.0 9
6 x (16 —1)? 22 1,1/4 1033 |43 |[13.0 12
6 x (16 — 1) 42 1,1/4 0.40 [ 4.6 | 11.3 14
6 x (32 —1)2 42 2,1/4 044 | 45 |10.3 12
6 x (32— 1) 82 1,1/4 | 0.35 | 4.6 | 128 15
6 x (64— 1) 82 2,1/4 1038 [ 45 |[11.9 13
6 x (64 —1)? 162 1,1/4 035 |46 |13.2 14
6 x (80 — 1)* 10? 2,1/5 0.41 | 54 | 128 13

Table 5.3: ASM Using the Bell Element V}

equivalent, we still have an algorithm with optimal convergence properties. The numerical
results are summarized in table 5.3. Since we do not solve the coarse problem exactly,

Amax(P) does not always lies in between 4 and 5.

5.6 Multilevel Methods for the Biharmonic Problem

In this section, we study multilevel additive Schwarz methods for the biharmonic equa-
tion. Although, all the multilevel methods studied in chapter 3 can be modified for the
biharmonic problem, we only consider a special case, which in matrix form corresponds
to a multilevel block diagonal scaling (MBDS). To simplify the presentation, we use the
bicubic elements.

We first define a sequence of nested rectangular triangulations {7'}1, as in case of
second order problems, cf. chapter 3. We use 7/ to denote the elements in 7. The level
grid points are denoted by A’, and the basis function by cbéa,i € Al

Let V! = Vé” be the bicubic element associated with 7. The finite element solution

uy, € VL satisfies

a(un, én) = f(dn), on € V" =VE (5.12)

Let Q! = supp{qbaa} be the support of an individual basis function and let V! = span{qbﬁ»Q}
be the span of the level [ basis functions at the grid point z;. We note that for bicubic

elements dim{Vil} = 4. On each level, we have an overlapping decomposition of the
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domain

Q =yl

This decomposition satisfies Assumption 3.3.1. In particular, the decomposition has the
finite covering property and there exists a partition of unity {6'} associate with {Q!}. We
use the space decomposition

L N

‘/h — ‘/L — ‘/H 1+ ZZ‘/ZI

[=11=1

The operator of the L-level additive Schwarz algorithm is given by

L N L N
PeY YRS R,
=1 :=1 =1 :=1

with PVil : Vh — V! the a(-,-)-orthogonal projections.
Algorithm 5.6.1 (MBDS Algorithm) Find u;, € V¥ by solving
Puy, = g, (5.13)
with an appropriate right hand side gy,.
In matrix form, equation (5.13) can be written as:
B'Kpz =B

where

B™'=D 4 N DFE G 4+ T KT

Here K is the stiffness matrix associated with 7!, D; = diag{ K}, II; a prolongation
operator and IIf a restriction operator. The matrix Kl_l can be replaced by any good

preconditioner of K.
Theorem 5.6.1 The mullilevel additive Schwarz operator P satisfies
Cy L™ a(u,u) < a(Pu,u) < CLa(u,u).

Thus
K(BT'K)<CL?
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Remark 5.6.1 For second order problems, the corresponding algorithm is a multilevel
diagonal scaling method, which is equivalent to the BPX algorithm of Bramble, Pasciak
and Xu [13]. We note that in the second order case, we obtain a constant upper bound for
the operator P; cf. chapter 3 and Zhang [54]. It is also possible to strengthen the result
of Theorem 5.6.1.
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Chapter 6

Iterative Substructuring
Algorithms

6.1 Introduction and Overview

In this chapter, we study iterative substructuring methods for the biharmonic problem.
We first review some methods for second order problems, using the additive Schwarz
framework introduced by Dryja and Widlund [25]. We then generalize some iterative
substructuring schemes to the biharmonic equation. We demonstrate that direct general-
izations of the iterative substructuring methods designed for second order problems give
slow algorithms. Better algorithms are obtained by adding certain vertex spaces to the
decomposition of the finite element spaces.

We recall that iterative substructuring methods are domain decomposition methods
using non-overlapping subregions; cf. Bramble, Pasciak and Schatz [10,11], Widlund [47].
Techniques for analyzing some iterative substructuring methods in the additive Schwarz
framework were developed by Dryja and Widlund [25,26], where it was shown that the
algorithm of [10] can be viewed as an additive Schwarz method with a set of specially

chosen subdomains.

As always, we use two triangulations 77 = {Q;} and 7" = {r;}. Let I;; = 7;z;
be a common edge of the two neighboring substructures €; and Q; and let Q;; = Q; U
I';; UQ;. The subdomains {;;} play the role of the overlapping subdomains {€;} in the

decomposition of domain. Using {€;;}, we obtain a decomposition of the domain €.
Q= Uﬁij.
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Let V%, VH be the linear element associated with 7" and 7%, respectively. Associated

with each edge I';;, we have a subspace V;;, defined by
Vi = Vin HY ().
Using the space decomposition

VH+ZI”,

and the corresponding projections

P=Pyu+) Py

z]’

we obtain
Algorithm 6.1.1 Find u, € V" by solving

Puy, = g
with an appropriate right hand side gy,.

Let V%la C Vi; be space of discrete harmonic functions and let V; = V* n H}(Q,).

Then we have an orthogonal decomposition of V;;:
Vij = ViV + Vi,

Thus, Py, = Py, + Py, + P ha' Computing Py, v, corresponds to solving a local finite
element problem in ;. In matnx form, P ha is closely related to the Schur complement
Si;. Let J be the square root of the dlscrete Laplacian operator along the edge I';;. If
we replace 5;; by J in our preconditioner, we obtain the BPS algorithm considered in
Bramble, Pasciak and Schatz [10].

The condition number of the BPS algorithm grows like (1 + log?(H/h)), see Bramble,
Pasciak and Schatz [10], or Dryja and Widlund [25] for a proof using the additive Schwarz
framework.

We remark that the BPS algorithm and the algorithms developed in this chapter are it-
erative substructuring methods. We do not solve subproblems on overlapping subdomains
(;;. Instead, we solve subproblems on non-overlapping subdomains €2;, and subproblems
related to the interface I';;. Estimates for the convergence rate of iterative substructuring

algorithms are independent of the jumps in the coefficients of the elliptic problems.
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6.2 Iterative Substructuring Methods for the Biharmonic
Problem

We present the algorithms and the analysis only for the bicubic elements. The algorithms
and analysis for the Argyris and Bell elements are similar. We first look at a direct
generalization of the BPS algorithm and show that the condition number grows at least
like O((H/h)?); this is also verified by numerical experiments. Modifications are needed
to get well conditioned operators.

As in the additive Schwarz algorithms cases, we use VCSL and Véq to denote the bicubic
elements associated with the fine and coarse triangulations, respectively. f/g is also defined
as in the previous chapter. As in the second order case, we need the subspaces V;;, defined
by

Vi = VB 0 (9.

We describe several possible decompositions of the finite element space. Each of them
results in an algorithm. Our first algorithm resembles one of the algorithms of Bramble,
Pasciak and Schatz for second order elliptic problems.

The finite element space Véj can be represented as:

Vi =vi+> v (6.1)

Using this space decomposition and corresponding projections, we have

Algorithm 6.2.1 Find uy € VCS“ such that
P(l)uh = (Pvg + ZPVL‘] )uh = gy
with an appropriate right hand side gy,.

We recall that the condition number of the BPS algorithm grows like (1 + log*(H/h)).
However, for the biharmonic operator, the condition number of P(1) grows as fast as
(14 log(H/h))(H/R)?% cf. table 6.1 and the algorithm is not very practical. If we use
the decomposition 6.1, we obtain up = ug + Z -u;;. We note that the only choice for
ug is the interpolant vauh. Because of the appearance of the second derivatives in the

interpolation operator vav we get a poor bound when we try to bound |vauh|H2 by
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|up| g2 and this is reflected in the poor bound in the condition number of P(1). This is a
new phenomenon for Hermitian type elements.

One way to overcome this difficulty is to add certain vertex subspaces to the space
decomposition 6.1. We then have more freedom to choose uy and can avoid the inter-
polation operator HV(f' For each grid point z; € A*(Q2), we define a vertex space V,
by

Vi, = span{¢;”},

where ¢7Y is the basis function of VCS“ associated with the mixed second derivative. We

then have a space decomposition
Vi=vi+>Y vij+ > V.
keAH (Q)

Using the corresponding projections, we obtain

Algorithm 6.2.2 Find uy € VCS“ such that
P(Q)’U;h = (Pvg ‘I‘ ZPVU ‘I’ Z Pka )Uh = gh
keAH ()

with an appropriate right hand side gy,.
In each iteration of this algorithm, we have three sets of subproblems.

1. Compute PVé“’h by solving Kvgx = b. This is a finite element problem in Véq.
Here Kvg is the stiffness matrix, and dim(VéI) = 4N, where N is the number of

interior coarse grid points.

2. Compute Py, v, by solving Ky, x = b exactly, or by using a preconditioner. This is
a finite element problem in the subdomain €2;;. Techniques for constructing precon-

ditioners for the problem on the union of two subdomains can be used.

3. Compute Py, vy, for each coarse grid point. There are N = |A"(Q)] such problems.
For each zy, Py, vj is computed by solving K;Lkw = b, where = and b are scalars
and K;fk = a(¢,”,¢,”) is the 1 by 1 stiffness matrix corresponding to the degree
of freedom associated the mixed second derivative at the vertex z. Solving such

problems are trivial.
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We want to further reduce the cost per iteration, without decreasing the rate of con-
vergence. Using the fact that the degrees of freedom associated with the second order
derivatives are only weakly coupled to the other degrees of freedom, we can modify Algo-

rithm 6.2.2 slightly, to get a computationally more efficient algorithm. Let
Vij = span{gf, a| = 0,1},

where ¢, |a| = 0,1, are the basis functions of Vél associated with the interior vertices of
();;. We note that V” is a subspace of V;;, with vanishing mixed second derivatives at all
the fine grid points z, € Ah(Q). Using Vij and f/éq instead of V;; and VH, we obtain the

following space decomposition,
FELUED DTS DTS
keAR ()
Using the sum of the corresponding projections
VH + E P~ + Z Pka
keAR (Q

We obtain

Algorithm 6.2.3 Find uy € ch such that
P()Uh— VH—I_ZPV + Z P‘ )uh:gh
with an appropriate right hand side gy,.
We note that, in the modified algorithm, we reduce the size of the the coase problem and

the size of the subproblems associated with €2;;. This reduces the amount of work per

iteration considerably. We need to solve the following subproblems in each iteration.

1. Compute Pyrvp by solving Kyrz = b. This is a finite element problem in the space
Q Q

f/éq We note that K‘;g is a principal minor of Kvg and dim(f/éq) = %dim(Véq).

2. Compute PV'] vy by solving Kynz = b. This is a finite element problem in the
2 Z]
subdomain );; using the space f/” This task is similar to computing Py, jvp. We

note however that Ky is a principal minor of Ky;; and dim(V;;) = 2dim(V;;).
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3. Compute Py, on by solving Ky, = = b; cf. Algorithm 6.2.2. There are n such
problems, where n is the total number of interior fine grid points. Each subproblem
itself is similar to the those of Algorithm 6.2.2. Although we have more subproblems
for this algorithm, each of them is easy to solve. The total amount of work is

proportional to the number of unknowns.
6.3 Condition Number Estimates
We have the following theorem for the operators defined above.

Theorem 6.3.1 The condition numbers of the operators P i = 1,2,3, for the additive

algorithms defined above, satisfy the following estimates.

=
—
g

=

N
A

C(H[h)*(1 +log(H/[h)) (6.2)
C(1+log(H/h))? i = 2,3. (6.3)

=
—

A
=
IA

The constant C' is independent of h and H .

Before we prove the theorem, let us discuss the decompositions of the domain and the
corresponding partition of unity for the iterative substructuring methods constructed in
this chapter.

Let z}; and z}; be the two end points of I';;, let 7 be an element of T" and let

r(7) = min{dist(7, x}j), dist(r, ‘rZQJ)}

We do not use a the subscript for 7(7), since we always work on only one substructure £;;
at a time.

First we consider the decomposition
Q= Uijﬁij.

Associated with this decomposition of the domain, there is a partion of unity {;;}. The

properties of {6;;} are summarized in the following lemma.
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Lemma 6.3.1 There exists a partition of unity {6;;}, which salisfies

Zeij(f) = 1, forxz € Q, (6.4)
]

02']' € C(())O(Qu - {leﬁxzzj )
Oilwese(ry < Cr(T)7"

If we use additional subdomains, we have a better partition of unity in the sense that
we can get a better bound for the W**-—norm of the partition functions. We consider the

following decomposition of domain 2:

= Ui Ugenr() T(2k)-

<l

Corresponding to this decomposition of €, we have a partition of unity {6;;,6r}. The

properties of this partition of unity are summarized in the following lemma.

Lemma 6.3.2 The partition of unity {6;;,0:}(i,j,k € AH) has the following properties:

D0+ Y k() = 1, foraeQ, (6.5)

keAH
02']‘ € CSO(Q”) and 0, € CSO(F(]C))
|02']'|Ws,oo(7—) < C(min{r(7)™%,h7%}), s=1,2,

Oklweco(reyy < Ch™%, s=1,2,
The following lemma gives bounds of the spectrum of P(1).
Lemma 6.3.3 The operator P satisfies the estimales:
C1((1+ log(H/h)(H/R)*) Y alun, un) < a(PDup, up) < Cralup, up), Yuy € V.
The constants C'1 and Cy are independent of h and H .

Proof. The upper bound follows from the finite covering property of {£;;} and prop-
erties of the projections, with Cy < N.+ 1. Here N, = 4 for rectangular elements and 3

for triangular elements.

To prove the lower bound, we need to get a partition for uy € Vél. Let ug = Hvé*{Uh

and wy, = up, — uy. Then
0%wy,

m(ggj) =0, Ve; e A(Q). (6.6)

D%wy(z;) =0, |a| = 0,1,
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Let 8;; be the partition of unity given in Lemma 6.3.1. We note that each 8;; is smooth
except at the two substructure vertices common to €; and (2;, and that 6;; is uniformly

bounded. Using equation (6.6), we can show that

0(6ijwn)
dxdy

It is not difficult to see that the interpolant va(&jwh) is well defined and that va(gijwh) €

D“(Hijwh)(xj) =0, |a| =0,1, (x]) =0, Vaﬁj € AH(Q)

Vi;. By the linearity of the interpolation operator HVC;;, we have,

wp = up+wy,=ug+ Yy (0;wp)
= ug+ ZHVéL(HZ’jwh) =uy + Zuif’
where up € Véq and u;; € V;;. We now estimate |up|y2 and |u;;|g2. By Lemma 4.2.3, we
have
By < CCR un e,

JFrom Lemma 4.4.1, we obtain

Yo ilteey = Y [Tya( 0:iwn) | 52(r)

2
|uij |H2(Qi])

TCQG5 TCQ;
< {Z Od(Mwalfpery + Do OIMwilip gy + Do OF(n)|walis }
TCQU TCQU TCQL]
= N1 +1,+ 153,

where ©;(7) = [0;j]ws .o (7). Using the fact that |6;;] < 1, we get

T <C Y |wilpgy = Clunlipg,,)-

TCQi]
We have the estimates
[H/H]
SR r(r)?<C Y] 1/1< C(1+1og(H [ h)), (6.7)
TC 4y =1

Thus,

T2 = C Z @ |wh|H1

TCQU
S C Z (") h2|wh|W1 oo(Q])
TCQU
h2
< 00 (();
- CTCXQ: r(7)? |whlwl (€4;)
< C(1+ log(H/h))|whlfye(q,,)-
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We note that, since wy vanishes at the substructure vertices,

|'U_7h %oo( ) < CT2|wh|",V1 oo(Q”)
Thus,
[wilZa(ry € CRwhlieo(ry) < CR*r?[wilfys, o q,,)-
Therefore,
T3 = E @ |’wh Lz SC Z _h2 2|'UJh w1, oo(Q )
TCEyy TCQU
= C Z _|wh|W1 o () < C(1+ log(H/h))wh/f, 09 ()"

TCQU

Thus,

|uijlirz(a,,) = T+ T+ T3 < Clwplfzg,) + C(1+1og(H/h))|wilfy e q,,)-
JFrom Lemma 4.2.3, we know that
Wil () < CUH R [unl g, )

and
Wiz, < COH /) [unlfaq,)
Thus,
|wijliraq,,y < C((L +log(H/h))(H/h)*|ur|fr2(q,,)

Summing over all £2;; and taking the finite covering property of {;; into account, we get
lun|Fr2 () + D |uijlirea,,) < C(L+log(H/h))(H [ h)?|un |}z
The lower bound now follows from Lions’ lemma. |

Remark 6.3.1 For any decomposition uy, = ug + E u;j, the coarse function uy has to

be the interpolant vauh. It is easy to construct a function uy such that

|HVguh 12112(9) > C(H/h)2|uh|121[2(9)

Thus, it follows from Lemma 2.3.2 that Apin(P®M)) < C(H/h)=2. This shows that the
estimate in Lemma 6.3.3 is almost sharp. This bad bound for the condition number of

PW indicates that Algorithm 6.2.1 is not practical.
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We next give bounds for the spectrum of P(?).
Lemma 6.3.4 The operator P\?) salisfies the estimales:
Ci(1+ log(H/h))_Qa(uh,uh) < a(P(Q)uh,uh) < Caalup,up), Vup € VS

Proof. As in the proof of the previous lemma, the upper bound follows by the finite

covering property of {€;;, 7, } with Cy = N, + 1.

We now establish the lower bound. Let uy = Hyruy € Véq and wp = up — up. By
Q

the definition of Ilyruy, we know that
Q

This implies

8;3(”) =0, |a/<1and gi—g;(ggk) = g;g;( 0
Let
Uy = Ty (Bwn) and wij = Tlyp(8;508).
Then,
uite) = Gy = Wiy = S0y —0, v e 0
and
el = Sy ) = Pon ey =0, Stk = D), v € AP(0)
Therefore,
Uy, = g;gZ(wk)¢iy €V, YEeAT(Q) and u;; e Vi

By the linearity of va, we obtain

up, = ug + wp = up ‘|‘Zgijwh‘|‘ E Orwy,
] keAE(Q)

= up —|—ZHVh 02]wh)‘|‘ Z va kah)

ke AH ()
= up+ Z U5 + E

keAH (Q
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We now estimate |u;;| g2 and |ug, |g2. As in the proof of the last lemma, we have

Y luiliegy = D [y 0:5wh) 2

2
[wisl2 @)

TCQi] TCQz]
< cSettuli + X ol + X ol |
TCQ TCQ
= Th+ T+ 13
< Clwalipq,,) + C(1+log(H/R))|whliy1q,,)

< C(1+log(H/h))*urlfzq,,)-
In the last inequality, we have used the following inequalities from Lemma 4.2.4.
|whlfyree o,y < C(1+log(H /7)) unlfz(q,,)

and
|wh|12qz(9ij) <C(1+ 10%(H/h))|uh|12q2(9 )

By Lemma 4.4.1 and the fact that [0k|ys.co(r(zy)) < Ch™%, we have

uzy i)y = |talire(rien) = |HV£(0kwh)|?{2(T(zk))

IN

CLUB nl Lo rayy) + 1 10kl (o) + 10nlRr2(r o)) )

IN

Clwnlira(r(zp))-
In the last step, we have used the fact that D%wy(z;) = 0,|a| = 0,1, which implies that
[whlr2(r(er)) < CPlwnlg2gr(ey) and  |walg(r(on)) < Chlwnl gz ep)-
Combining the estimates for u;; and u,,, we obtain
|un|fr2 () + Z |wijlFraqa,,) + D lueltizgq) < (1+log(H/h)?)|unlf g
which by Lions’ lemma results in the required lower bound of the spectrum of P(2), |
Lemma 6.3.5 The operator P®) satisfies the estimates:
C1(1 + log(H/h)) *a(un, up) < a( PPup, up) < Craun,ur), Vup € V5.
Proof. The proof is quite similar to that of Lemma 6.3.4 |

82



6.4 Numerical Results

In this section, we report on some numerical results with the iterative substructuring
methods for the biharmonic equation. We only consider the bicubic element and domain
Q = [0,1]%. As for the additive Schwarz cases, we divide the Q into Ny by Np square
subdomains €2;;. Fach €;; is further divided into elements. Let nfb be the total number

of elements. Then, the total number of degrees of freedom is 4(n; — 1)%. Let H = Nl_H

and h = ﬁ We stop the iteration when the norm of the residual is reduced by a factor
of e = 1074,

In the first set of experiments, we consider the iterative substructuring methods with-
out vertex spaces; cf. algorithm 6.2.1. To study the dependence of the condition number
of P on (H/h)?, the number of elements inside a substructure, we restrict our experiments
to the two by two substructure case. ;From table 6.1, we can clearly see that the mini-
mum eigenvalue of P decreases at least quadratically with H/h and that the maximum
eigenvalue of P remains almost fixed, as predicted by our theory. We note, however, that
although the condition number of P grows very fast, the number of iteration grows slower
than expected. The reason might be that convergence rate of the conjugate gradient
methods depends not only on the condition number, but also on the distribution of the
eigenvalues of the iteration operator. In these special two by two subdomain cases, we
believe that only a few eigenvalues of P decrease fast, while the rest of the eigenvalues
remain in a fixed interval. For a finite difference discretization, a similar phenomenon has
been observed by Chan, E and Sun [18]. They also gives a rigorous proof. We believe
however that this is not true for problems with many substructures.

In the next set of experiments, we consider the iterative substructuring methods, with
vertex spaces, i.e. Algorithm 6.2.2. For a comparison with last set of experiments, we
also restrict our experiments to two by two substructure cases. ;From table 6.2, we can
see that the maximum eigenvalue is uniformly bounded by three. In fact the maximum
eigenvalue decreases slightly as H/h increases. The minimum eigenvalue of P appears to

decrease logarithmically with H/h, the number of elements in each substructure.
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total # unkns | # of subdom Amin Amax | K(P) | # of iter.
4x(4-1)2 22 0.99E-01 | 2.1 21 9
4x(8—1)? 22 0.22E-01 | 2.1 95 11
4% (16 —1)? 22 0.53E-02 | 2.1 | 400 13
4x(32-1)* 27 0.13E-02 | 2.1 | 1600 14

Table 6.1: ISM Using the Bicubic Element V%, without Vertex Spaces

total # unkns | # of subdom | Apin | Amax | K(P) | # of iter.
4x(4-1)* 22 0.374 | 2.1 5.7 8
4x(8—1)2 22 0.222 | 2.1 9.6 8
4% (16 —1)? 2? 0.146 | 2.1 | 14.5 8
4x(32-1)? 22 0.103 | 2.1 | 205 9
4 x (64 —1)2 22 0.0766 | 2.1 | 27.6 9
4 x (100 — 1)* 27 0.0645 | 2.1 | 32.6 9

Table 6.2: ISM Using the Bicubic Element, with Vertex Spaces
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