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Abstract

Digital geometric models are fundamental to modern engineering, media, andmanufacturing.

However, models created by artists in-the-wild often contain ambiguities that precludes their use

in simulation and manufacturing, while complex designs may need to be simplified for efficiency

or functionally optimized to meet competing aesthetic and performance goals. This necessity for

robust, useful, and high-performing geometry creates a critical need for advanced computational

techniques that can automatically repair, simplify, and optimize digital shapes. Our research

addresses these challenges by developing a suite of shape processing and optimization methods

designed to enhance the quality and functionality of geometric models for a range of applications.

This thesis delivers solutions across three key areas. First, we present a Bézier curve sim-

plification framework that simplifies complex vector graphics while preserving visual fidelity by

defining a curve-to-curve distance metric and repeatedly conducting local segment removal op-

erations. Second, we propose a solid or shell labeling technique for artist-created surface meshes

that lack a well-defined interior, guided by a sparse set of user inputs. These labels reduce am-

biguity and enable the construction of valid volumetric meshes for downstream applications.

Finally, we introduce two powerful shape optimization frameworks: one that leverages neural

network-based models to independently control the tactile properties and visual appearance of

a texture, and another that optimizes the geometry and position of radiofrequency (RF) receive

coil arrays to increase signal-to-noise ratio (SNR) in magnetic resonance imaging (MRI).
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1 | Introduction

Contemporary advancements across various domains, from artistic endeavors to advanced

engineering, such as 3D printing, CNC milling, and biomedical manufacturing, have made it eas-

ier and more cost-effective to produce highly customized and high-performing objects, ranging

from intricate animated assets to precise medical devices. This drives continuous innovation in

computational methodologies. However, the lifecycle of digital shapes, from initial conceptual-

ization to final fabrication, is often challenged by complexities such as eliminating redundancy,

rectifying inherent imperfections in acquired data, and optimizing the geometric representation

to achieve specific functional or physical properties. These challenges demand sophisticated com-

putational tools that can automate and enhance the design, refinement, and analysis processes

beyond what traditional manual or heuristic approaches can offer.

In this context, computational design and geometric processing plays a pivotal role, offering

a broad spectrum of techniques that assist designers and engineers in creating new and improved

objects and tools tailored to diverse needs. The primary objective is to develop and apply robust

algorithms capable of precisely defining, analyzing, and repairing geometric data. This involves

simulating various behaviors, extracting key quantities of interest, and intelligently adjusting

the shape or its representation to improve an objective function, which measures the quality and

performance of the digital structure.

The recent rise of advanced computational methods, including sophisticated optimization al-

gorithms, machine learning techniques, and robust simulation frameworks, has led to significant
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breakthroughs in tackling these problems. These approaches have been highly successful in ma-

terial design [175, 199], structural mechanics [79, 181], and fluid dynamics [117], but have yet to

be effectively applied to magnetic resonance imaging (MRI) coil design. This opens up substan-

tial potential for enhancing coil performance by parameterizing and optimizing the geometric

features of a given coil configuration.

Beyond engineering performance, the realm of perceptual design introduces distinct chal-

lenges. Tactile textures, for example, are ubiquitous across fabricated objects—from toys and

woven fabrics to human skin and manufactured surfaces—often serving specific practical or aes-

thetic purposes. Despite the common task of creating a particular tactile feeling, existing work

has largely overlooked the ability to independently control tactile and visual properties. Ad-

vanced fabrication technologies like high-resolution 3D printing make it possible by the highly

flexible control of both visual and tactile texture.

Similarly, in the domain of vector graphics processing, maintaining geometric efficiencywith-

out sacrificing artistic intent poses a significant hurdle. While artists craft designs using vector

graphics, these assets can frequently become overly dense or detailed through various processes,

such as aggressive upsampling before pointwise filters, inadvertent anchor point accumulation

during curve manipulation, or inefficient raster art vectorization. Consequently, simplification

becomes a core sub-routine in popular vector graphics editing tools (e.g., Inkscape, Adobe Il-

lustrator, CorelDRAW). However, current simplification methods often leave substantial room

for improvement, particularly when aiming for highly accurate or even lossless reduction while

preserving the artist’s original intention.

Furthermore, preparing digital models for physical simulation and fabrication often requires

transforming surface representations into volumetric meshes. Generating volumetric meshes

from a given shape is a fundamental subroutine within geometric computation and modeling, en-

abling critical downstream applications such as Constructive Solid Geometry (CSG)modeling and

simulations. In practice, however, existing volumetric meshing algorithms frequently produce
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unexpected results, stemming from the assumption that the input triangle mesh defines a well-

defined solid volume. This assumption often fails for artist-created assets or complex real-world

geometries lacking a clear interior. Therefore, obtaining user-desired face labels—distinguishing

between solid faces for tetrahedral meshing and shell faces for offset meshing—is paramount. In-

correct labeling can lead to significant artifacts in the resulting volume mesh, including distorted

appearance, unintended deletion of invisible structures, and unpredictable physical behavior.

In this thesis, we focus on developing novel computational methods for digital shape cre-

ation, editing, repair, and optimization across diverse applications. In Chapter 2, we introduce a

Bézier splines simplification framework that simplifies vector graphics as much as possible while

maintaining exceptional accuracy to preserve the artist’s intention. In Chapter 3, we present a

method for volumetric meshing by classifying each face of a triangle mesh as belonging to either

a solid or shell component, requiring only sparse user guidance. Further, in Chapters 4 and 5, by

leveraging optimization frameworks, we develop pipelines to independently control the tactile

properties and visual appearance of a texture, and automatically improves the radiofrequency

(RF) coil configurations for better signal-to-noise ratio (SNR) performance in MRI.
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2 | Bézier Spline Simplification Using

Locally Integrated Error Metrics

This chapter is adapted from the publication [196] on SIGGRAPHAsia 2023, a joint work with

Chenxi Liu, Daniele Panozzo, Denis Zorin, and Alec Jacobson.

abstract

Inspired by surface mesh simplification methods, we present a technique for reducing the

number of Bézier curves in a vector graphics while maintaining high fidelity. We propose a curve-

to-curve distance metric to repeatedly conduct local segment removal operations. By construc-

tion, we identify all possible lossless removal operations ensuring the smallest possible zero-error

representation of a given design. Subsequent lossy operations are computed via local Gauss-

Newton optimization and processed in a priority queue. We tested our method on the OpenCli-

pArts dataset of 20,000 real-world vector graphics images and show significant improvements

over representative previous methods. The generality of our method allows us to show results

for curves with varying thickness and for vector graphics animations.
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input
#curves = 2233 (100%)

chamfer error: 0

our lossless 
#curves = 1961 (87.82%)

chamfer error: 7.493e-10 

our lossy
#curves = 687 (30.77%)
chamfer error: 2.478e-4

Adobe Illustrator
#curves = 687 (30.77%)
chamfer error: 8.927e-4

[Schneider 1990]
#curves = 687 (30.77%)
chamfer error: 5.143e-3

Figure 2.1: Left to right: Our method accepts as input collections of Bézier curves (left) and simplifies
them losslessly to remove redundant control points. Our lossy extension produces much more simplified
result without sacrificing visual quality. Simplifying using Adobe Illustrator and the method of Schneider
[163] (in Inkscape) produce worse results for the same number of curves. Input image by Olga Bikmullina
(CC0).

2.1 Introduction

Simplification is a core sub-routine found in any popular vector graphics editing tool (e.g.,

Inkscape, Adobe Illustrator, CorelDRAW). There are many ways that a design could end up with

too many or too detailed curves: densely upsampling before applying a pointwise filter, adding

anchors along curves but forgetting to delete them if they’re nevermoved, scaling down a detailed

design relative to its final display resolution, vectorizing raster art inefficiently, etc. With increas-

ingly popular vector graphics animation formats (e.g., Lottie), dense vector graphics designed for

static display or print may now expect to be served up to mobile devices at high framerates.

Furthermore, vector graphics also function as path descriptions for CNC machines such as laser

cutters, routers, and plotters. Overly dense designs cause fabrication defects or firmware failure.

In this paper, we demonstrate that existing simplification methods leave significant room for

improvement. We are particularly interested at the high end of the simplification-accuracy curve:

simplifying as much as possible while remaining exceptionally accurate to preserve the artist’s

intention. A critical unit test is recovering lossless simplification. For example, take a coarse
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Original = Ours (lossless)
Adobe Illustrator (lossy)

Figure 2.2: As a stress test, the blue curve is upsampled in place from 19 to 304 segments. Our method
losslessly simplifies back to the original 19 segments. Adobe Illustrator’s proprietary simplification to 19
segments produces noticeable error.

spline, subdivide it repeatedly, and then try to simplify back to the original number of curves (see

Fig. 2.2). Existing methods found in the literature and in commercial software fail this seemingly

simple test.

We propose a Bézier spline simplification technique inspired by progressive surface mesh

simplification methods. We conduct local segment removal operations in a priority queue. These

operations are based on a measure of curve-curve distance which is carefully constructed to effi-

ciently identify lossless removals as zero-cost operations. Once lossless removals are exhausted,

subsequent lossy operations based on local Gauss-Newton optimization are conducted in a greedy

manner (see Fig. 2.3).

To evaluate our method, we conduct a large-scale — first of its kind — benchmark compar-

ison on a large dataset of vector graphics images. Our method consistently outperforms repre-

sentative state-of-the-art methods. Our method is agnostic to the dimension of the input curves’

embedding space: we show results appending varying stroke thickness as a 3rd coordinate. We

also demonstrate simplifying across an entire animation, implicitly ensuring temporally coherent

control point distribution and movement.
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our lossy (#segments: 300)

our lossless (#segments: 1164)

densely upsampled  DESIGN + brushwork (#segments: 7224)

Figure 2.3: Simplification is a core subroutine in an editing setting. Densely upsampling this input allows
an artist’s Warp brushwork in Illustrator to apply a pointwise deformation over the design. Our lossless
simplification removes geometrically unnecessary segments, and further lossy simplification produces a
coarse, yet visually accurate design.

2.2 Related Work

The literature on simplification for polylines is vast beginning with the error-bound method

of Douglas and Peucker [38], which still enjoys practical use. We focus our attention on methods

for Bézier curve simplification and related problems on smooth curves.

Sampling-and-refitting. Schneider [163] proposes a thorough and widely-used𝐺1
-continuous

solution to the general problem of fitting a cubic Bézier spline to a digitized curve, which can also

be applied to Bézier curve simplification, as is used in the Path Simplify tool of Inkscape. Simi-

lar algorithms include [23, 130, 159, 160] based on recursive segment subdivision, characteristic

points detection, and least-square fitting or other curve approximation approaches. Kolesnikov

[97] introduces the inflection points with relaxed constraints of tangent continuity. Shao and
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Zhou [170] proposes a global least-squares optimization fitting method with critical points iden-

tification to fit the input data points using block coordinate descend to do non-linear optimiza-

tion. This global optimization technique struggles to find a global minimum for long complicated

chains. Mokhtarian, Ung, and Wang [134] fits the digitized contours through curvature scale

space techniques. Goethem et al. [59] takes polygon as input and allows topology-preserving

Bézier curves fitting with Voronoi diagrams. The software Potrace can also transform bitmaps

into vector graphics but takes a faster and simpler approach that only generates a subset of all

possible Bézier curves. These methods are mostly aimed at fitting digitized curves or boundaries

of bitmap images. However, in our setting, sampling and refitting the input introduces errors,

cannot guarantee consistent tangents at endpoints, and cannot provide a lossless solution. Be-

sides, the method has to pick a point on the closed loop to serve as the overlapping start and end

points of the chain, which cannot be moved, and the selection is not optimized. These papers

experimented on a small set of representative examples but were not tested on a large dataset.

From the comparison of the latest paper [130] among them, the out-performance over [163] is in-

significant. Thus, we use the widely-implemented method [163] as a representative comparison

in our benchmark.

Cubic Bézier fitting. De Boor, Höllig, and Sabin [32] describes an interpolation scheme that

matches position, tangents, and curvature at the endpoints and proves convexity preservation

and 𝑂 (𝑛6) error scaling; but the solution is not guaranteed to exist for all input data. Penner

[143] presents three criteria – fitting curvature at endpoints, least squares orthogonal distance

fitting, and the fitting center of mass, with the former two relevant to our problem. However, the

presented method for orthogonal distance fitting requires an initial setting of the parameters and

is very slow. Levien [112] provides a highly efficient and accurate solution to cubic Bézier curve

fitting by building an error metric to match the signed area of a cubic Bézier curve, which involves

solving a quartic-polynomial system, and making careful decisions in the subdivision. However,

this method sometimes generates cusps as one of the solutions. We included a comparison of the
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reference implementation of [112] (Kurbo) with our method in Section 2.4.

B-spline knot removal. Lyche and Mørken [125] proposes a knot removal algorithm for para-

metric B-spline curves, which aims to reduce the number of polynomial segments in a curve

without exceeding a given error bound. Jupp [89] and Loach and Wathen [122] keep the number

of knots fixed but optimize their positions. Kang et al. [90] solves a sparse optimization prob-

lem followed by additional fitting to determine the number and positions of knots. Dierckx [37]

reviews a variety of methods for fitting curves, including variable knots, choosing number and

initial knot placement, adding smoothing terms, and convexity preservation constraints. Some

of these methods use a Gauss-Newton optimization akin to ours to minimize their respective

distance metrics. Dung and Tjahjowidodo [40] presents a new strategy for fitting any forms of

the curve by B-spline functions via a local algorithm by first splitting the data with bisection and

then optimizing via the non-linear least-squares technique.

Vector graphics animation. Dalstein, Ronfard, and Van De Panne [31] allows features of a

connected drawing to have topological changes via keyframes. Liu, Jacobson, and Gingold [121]

provides a solution to animate an SVG with linear blend skinning interactively via least-squares

fitting the control points of the input splines (whose density is defined by the user). Some 2D

animation software, such as Cartoon Animation 5, supports the vector graphics format, but none

pays attention to simplifying the SVG time series and keeping temporal coherency. In the ani-

mation software that has the functionality of adding spring bones and Free-Form Deformation

(FFD), our work can also act as an adjoint tool to remove the redundant control points, add con-

trol points in the necessary regions, and export a smooth and clean SVG sequence. To maintain

temporal coherency, a lot of work in mesh animation uses principle component analysis (PCA)

or clustered principal component analysis (CPCA) to achieve animation compression, e.g. [3, 92,

111, 161, 188]. None of these methods can export a simplified sequence of vector graphic frames.

9



2.3 Method

Our method takes as input a vector graphics image and outputs a simplified vector graphics

image. We operate directly on the underlying cubic Bézier splines representing the paths of

standard vector graphics formats (e.g., .svg or .ai files). Consistent with common practice of

vector graphics software (Inkscape, Illustrator, CorelDRAW) during editing, we homogenize all

paths (e.g., circles, arcs, ellipses, quadratic Béziers) into cubic Bézier splines. These paths may

define strokes, fill boundaries, clip-mask path boundaries, and other stylings. Our method is

agnostic to stylings, which are reassociated with the simplified output paths to render the final

image. We’ll use the following terminology in this paper:

• segment: a single cubic Bézier curve,

• chain: 𝐺1
continuous sequence of one or more segments,

• component: 𝐶0
continuous sequence of one or more chains,

and unless context demands, Bézier always refers to cubic Bézier.

Thus, the input to our method is a collection of 𝑁 segments in R𝑑 and a target number of

output segments 𝐾 . The output is a collection of 𝐾 segments in R𝑑 whose components closely

match corresponding input components.

2.3.1 Overview

Our method works in a greedy manner analogous to edge-collapse decimators for triangle

mesh simplification in computer graphics [48, 74]. We define local “collapse” operations which

remove a single segment and adjust neighboring control points on the component. We define a

non-negative (and sometimes zero) cost function to measure the loss incurred by each operation.

All possible operations are placed into a priority queue and processed in a greedy manner. When
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Figure 2.4: We measure the distance between partial parametric spans of two Bézier segments as an
integral over a shared parametric domain that is linearly warped into each segment’s Bézier parameter
space.

a collapse operation is conducted, operations involving neighboring segments become out of

date and are replaced in the queue with operations referencing the newly repositioned control

points. All local operations are constructed to have 𝑂 (1) complexity so that total processing is

asymptotically efficient: 𝑂 (𝑁 log𝑁 ). Let us now consider the definitions of operations and cost

functions.

2.3.2 Distance between two segments

A fundamental expression in the following section will be a measure of distance between

parametric spans of two Bézier segments.

There are many ways to measure distance between two curves. Hausdorff distance is difficult

to compute precisely and sensitive to outliers [1]. Chamfer distance or integrated closest point

is a good choice perceptually, but does not have a closed form expression and is sensitive to

(near) overlaps and self-intersections. Meanwhile, Fréchet distance leverages that both curves

may be parameterized over the real line segment [0,1]. Fréchet distance considers all possible re-

parameterizations of the two curves. Imagine taking the max distance between your left fingertip

as it runs over one curve and your right fingertip as it runs over the other. Fréchet distance

takes the minimum across all possible parameterizations of each curve, or all possible speeds that
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our fingertips move relative to each other. Precise computation of Fréchet distance is somewhat

tractable [157] but has similar outlier issues as Hausdorff: ultimately the measure is determined

by a single pair of points [1].

Similar to Fréchet, we propose considering all possible pairs of piecewise-linear reparametriza-

tions of each curve with parameter locations co-located at each segment boundary, but unlike

Hausdorff or Fréchet we take the integrated squared distance along the curves. That is, the Bézier

parameterization of each segment is only affected by a linear mapping. We will show this is both

friendly to computation and a good model of perceived distance, as indicated by our qualitative

results. Additionally, the distance is zero if and only if a lossless merge is possible and smoothly

increases away from this case, enabling gradient-based minimization.

Consider a Bézier segment A : [0, 1] → R𝑑 defined
1
by control points a1, a2, a3, a4 ∈ R𝑑 .

Similarly, define another curve B : [0, 1] → R𝑑 with control points b1, b2, b3, b4 ∈ R𝑑 . The

parametric domains of A and B are both [0,1], but we will integrate distance over an arbitrary

parametric subdomain:

∫ 𝑦

𝑥

∥A(𝑔𝐴𝑤 + ℎ𝐴) − B(𝑔𝐵𝑤 + ℎ𝐵)∥2 𝑑𝑤, (2.1)

where various parameters appear to control the measure: 𝑥,𝑦 control the stretch of a shared para-

metric domain from which the variable of integration 𝑤 spans, 𝑔𝐴, ℎ𝐴 and 𝑔𝐵, ℎ𝐵 are parameters

which define an affine map from this shared domain to the Bézier parameter domains of curves

A and B, respectively.

2.3.3 Distance between two chains

Building on segment-segment distance, we now consider distance between two chains. Con-

sider a chain of 𝑛 segments: A : [0, 1] → R𝑑 defined by control points P = {p1, . . . , p3𝑛+1} and a

1A(𝑢) = (1 − 𝑢)3 a1 + (1 − 𝑢)2𝑢 a2 + (1 − 𝑢)𝑢2 a3 + 𝑢3 a4.
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Figure 2.5: Piecewise-constant indexing functions for i(𝑥) and j(𝑥).

set of 𝑛 + 1 parameter locations 𝑠0, 𝑠1, . . . , 𝑠𝑛 ∈ [0, 1] where 𝑠0 = 0 and 𝑠𝑛 = 1:

A(𝑥) =



A1

(
𝑥−𝑠0
𝑠1−𝑠0

)
if 𝑥 ≤ 𝑠1

A2

(
𝑥−𝑠1
𝑠2−𝑠1

)
else if 𝑥 ≤ 𝑠2
...

A𝑖
(
𝑥−𝑠𝑖−1

𝑠𝑖−𝑠𝑖−1

)
else if 𝑥 ≤ 𝑠𝑖
...

A𝑛
(
𝑥−𝑠𝑛−1

𝑠𝑛−𝑠𝑛−1

)
else if 𝑥 ≤ 𝑠𝑛,

(2.2)

where points p3𝑖−2, p3𝑖−1, p3𝑖 , p3𝑖+1 control each segment A𝑖
. Similarly, define a chain B : [0, 1] →

R𝑑 with 𝑛 − 1 segments with control points Q = {q1, . . . , q3𝑛−2} and parameter locations 𝑡 𝑗 .

For each of these, let us define piecewise-constant indexing functions (see Fig. 2.5):

i : [0, 1] → {1, . . . , 𝑛}, where i(𝑥) = 𝑖 if 𝑠𝑖−1 < 𝑥 ≤ 𝑠𝑖, and (2.3)

j : [0, 1] → {1, . . . , 𝑛 − 1}, where j(𝑥) = 𝑗 if 𝑡 𝑗−1 < 𝑥 ≤ 𝑡 𝑗 . (2.4)

Without loss of generality, assume the parameter locations 𝑠𝑖 and 𝑡 𝑗 are disjoint (outside of

endpoints) so they cut up the domain [0,1] into 2𝑛 − 2 intervals. Since 𝑠𝑖 and 𝑡 𝑗 may be in any
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order relative to each other, we introduce a joint sequence notation:

{𝑥0, 𝑥1, . . . , 𝑥2𝑛−2} = {0, sort(𝑠1, . . . , 𝑠𝑛−1, 𝑡1, . . . , 𝑡𝑛−2), 1}, (2.5)

while this simplifies notation, it obscures that each parameter location 𝑥𝑘 depends (when it comes

to derivatives) on some 𝑠𝑖 or 𝑡 𝑗 ; this will be essential for correct gradient computation later.

Equipped with a way to refer to these intervals in order, we may define a distance between

these chains as a sum over intervals:

E(P, {𝑠𝑖},Q, {𝑡 𝑗 }) =
2𝑛−2∑︁
𝑘=1

𝜔𝑘

𝑥𝑘∫
𝑥𝑘−1




Ai(𝑥)
(

𝑥−𝑠i(𝑥 )−1

𝑠i(𝑥 ) −𝑠i(𝑥 )−1

)
− B j(𝑥)

(
𝑥−𝑡j(𝑥 )−1

𝑡j(𝑥 ) −𝑡j(𝑥 )−1

)


2

𝑑𝑥, (2.6)

where — despite the indexing hellscape — we observe that each term in the summation is an

integral of the form in Eq. 2.1. The 𝜔𝑘 term weighs the impact of the 𝑘th integral on the total.

One choice would be to use the arc-length of the corresponding pieces of the segments ofA and

B. This will be problematic in our setting because only the longer curveA is known in advance

and approximating arc-lengths of Bézier curves relies on computationally expensive operations.

Instead, we propose to use 𝜔𝑘 = 1/(𝑠𝑖 − 𝑠𝑖−1) + 1/(𝑡 𝑗 − 𝑡 𝑗−1), which can be seen as a first-order

approximation of arc-length (i.e., assumes segments are straight) and discourages intervals from

disappearing by inversely proportionally growing in scale. We draw special attention that 𝜔𝑘

therefore depends on some 𝑠𝑖 and 𝑡 𝑗 values.

2.3.4 Segment removal operation

Analogous to an edge-collapse operation for triangle meshes, we now define a local seg-

ment remove operation for a chain of length 𝑛 (see Fig. 2.6), defined by control points P =

{p1, . . . , p3𝑛+1}. For now, let us assume the input to this subroutine are 𝑛 segments forming a

chain within a possibly longer chain continuing at either end. The output are 𝑛 − 1 segments
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4→3
segment removal

Figure 2.6: Local segment remove operation for a chain of length 𝑛 = 4.

defined by control points Q = {q1, . . . , q3𝑛−2} and a measured cost of accepting this solution:

cost = min
{𝑠𝑖 },Q,{𝑡 𝑗 }

𝐸 (P, {𝑠𝑖},Q, {𝑡 𝑗 }) . (2.7)

2.3.4.1 General case (𝑛 ≥ 2)

The cost in Eq. 2.7 is a minimization of a continuous function of the unknowns {𝑠𝑖}, Q, {𝑡 𝑗 }.

We will optimize this via a modified Gauss-Newton method.

By appending constraints to this opimization, we ensure𝐶0
and𝐺1

continuity at the endpoints

(where the chain joins neighboring segments) and at internal interpolated control points in the

output (for 𝑛 > 2). Namely, we maintain 𝐶0
continuity with:

q1 = p1 and q3𝑛−2 = p3𝑛+1 (2.8)
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and 𝐺1
continuity with:

∃ 𝛼 > 0 | q2 − q1 = 𝛼 (p2 − p1) , (2.9)

∃ 𝛽 > 0 | q3𝑛−3 − q3𝑛−2 = 𝛽 (p3𝑛 − p3𝑛+1) , (2.10)

∃ 𝛾 𝑗 > 0 | q3 𝑗 − q3 𝑗+1 = 𝛾 𝑗
(
q3 𝑗+1 − q3 𝑗+2

)
∀ 𝑗 = 1, . . . , 𝑛 − 2. (2.11)

The constraints in Eq. 2.8 can be substituted into Eqs. 2.9 & 2.10, revealing they are linear in 𝛼, q2

and 𝛽, q3𝑛−3, respectively. These are easily enforced via the null-space method: introducing 𝛼 and

𝛽 as variables.

That is, we build a matrix N ∈ R𝑑 (3𝑛−2)×(3𝑑 (𝑛−2)+2)
from relevant entries of P so that:

Q = N y + Q̃ such that Eqs. 2.8-2.10 hold for any y ∈ R3𝑑 (𝑛−2)+2
(2.12)

where y collects remaining free variables in Q and 𝛼, 𝛽 .

Meanwhile, the constraints in Eq. 2.11 are bi-linear in the 𝛾𝑖s and Q, respectively. Treating the

𝑠, 𝛾 , and 𝑡 variables as known, then the cost function is a quadratic function inQ. This implies it has

a closed-form solution Q★
, which can be expressed as a non-linear function 𝑓 : R3𝑛−5 → R𝑑 (3𝑛−2)

of 𝛾 , 𝑠 , and 𝑡 variables:

Q★ = 𝑓 ({𝑠𝑖}, {𝛾 𝑗 }, {𝑡 𝑗 }). (2.13)

We can now substitute Q★
from Eq. 2.13 into the optimization problem in Eq. 2.7 to get a

non-linear optimization problem over {𝑠𝑖}, {𝛾 𝑗 }, {𝑡 𝑗 }:

min
{𝑠𝑖 },{𝛾 𝑗 },{𝑡 𝑗 }

𝐸 (P, {𝑠𝑖}, 𝑓 ({𝑠𝑖}, {𝛾 𝑗 }, {𝑡 𝑗 }), {𝑡 𝑗 }). (2.14)

While we could apply simple gradient descent, we see significant improvements leveraging
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the sum-of-squares nature of the distance in Eq. 2.6 to use Gauss-Newton method.

Because the integrands in Eq. 2.1 are sixth-order polynomials over the integration variable

(squared norm of a cubic polynomial), wemay immediately apply sixth-order accurate quadrature

rules to exactly evaluate these integrals for any input parameters.

∑︁∫
∥ . . . ∥2

exact quadrature
−−−−−−−−−−−−−−−−−−→

∑︁∑︁
∥ . . . ∥2 =

∑︁
∥ . . . ∥2

Our sum of integrals is now a simple sum of squared function evaluations: suitable for discrete

Gauss-Newton method.

All that remains is to apply chain-rule and differentiate each term with respect to the free

variables. Our implementation uses complex-step numerical differentiation [126] to easily (with-

out hand-coding any derivatives), accurately (up to machine precision), and efficiently (with little

more cost than a few forward evaluations) compute necessary Jacobian matrices. For small 𝑛 (in

our cases 𝑛 ≤ 4), this choice is appropriate. For much larger 𝑛 (e.g., 𝑛 = 𝑂 (𝑁 )), sophisticated

automatic-differentiation tools such as [2] may start to see performance improvements.

Given a Gauss-Newton search direction we conduct a back-tracking line-search [17] to find a

suitable step length, while constraining 𝛼, 𝛽,𝛾 parameters to stay positive. For our most common

case of 𝑛 = 4, we observe convergence typically in ≈10 iterations. For fixed 𝑛, this entire local

optimization is 𝑂 (1) with respect to the complete input vector graphics image of 𝑁 segments.

To initialize our optimization, we set 𝑠𝑖 =
∑𝑖
𝑘=1

ℓ𝑘/
∑𝑛
𝑘=1

ℓ𝑘 , where ℓ𝑖 is the arc-length of the 𝑖th

segment (approximated numerically). Then we pick the best {𝑡 𝑗 } initial values among all 𝑛 − 1

subsequences of {𝑠𝑖} and an additional uniform setting of 𝑠𝑖 = 1/(𝑛 − 1). For small 𝑛, we observe

that trying a few initial values often helps speed up convergence. Our specific heuristic ensures

that we immediately identify input chains of 𝑛 − 1 straight segments where one segment can

always be losslessly removed. Tangent length ratios 𝛼, 𝛽,𝛾 are initialized to relative arc-lengths:

again agreeing with constant speed straight segments.
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2.3.4.2 Special lossless case 𝑛 = 2

If 𝑛 = 2 and we know that we are only interested in accepting the segment removal for

numerically zero cost, then we can avoid the continuous optimization of the previous section

and jump directly to the solution of the low-order polynomial root finding problem.

Key Observation: A lossless segment removal on a two-segment chain defined by control

points c1, c2, c3, c4 ∈ R𝑑 and d1, d2, d3, d4 ∈ R𝑑 exists if and only if there exists a single curve with

control points q1, q2, q3, q4 ∈ R𝑑 and a parameter value 𝑡 ∈ (0, 1) such that subdividing the q at 𝑡

produces the segments c and d.

The output segment q has constant third derivative, so to admit a lossless removal the inputs

must have equal third derivatives that must be equal up to a scale factor. That scale factor can be

written in terms of a parameter 𝑡 ∈ (0, 1) such that c and d segments are the result of splitting

the output segment q at 𝑡 :

−6q1 + 18q2 − 18q3 + 6q4 =
−6c1 + 18c2 − 18c3 + 6c4

𝑡3
=
−6d1 + 18d2 − 18d3 + 6d4

(1 − 𝑡)3 , (2.15)

c̈
𝑡3

=
d̈

(1 − 𝑡)3 , (2.16)

where we further assume that third-derivatives c̈, d̈ ∈ R𝑑 are non-degenerate (if they both are,

then the segments could be merged as quadratic or linear Bézier curves).

Now, we can solve this third-order polynomial equation for 𝑡 :

d̈ · c̈

d̈

2︸︷︷︸
𝑟

(1 − 𝑡)3 = 𝑡3
(2.17)

−(1 + 𝑟 )𝑡3 + 3𝑟𝑡2 − 3𝑟𝑡 + 𝑟 = 0. (2.18)
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For 𝑟 > 0 (implying c̈ and d̈ point in the same direction), this equation has a single real root:

𝑡 =

(
1 + 𝑟−1/3

)−1

. (2.19)

Finally, if this lossless removal is possible, then we can recover the corresponding control

points from our continuity assumptions:

q1 = c1 (2.20)

q4 = c4 (2.21)

q2 − q1 =
c2 − c1

𝑡
(2.22)

q4 − q3 =
d4 − d3

1 − 𝑡 . (2.23)

To determine if a lossless removal is actually possible, a practical approach is to compute 𝑡

and q𝑖 as above and then check if the integrated error between the original two segments and the

new single segment (using Eq. 2.6) is (numerically close enough to) zero.

Assuming an infinite precision machine, a straightforward algorithm for lossless simplifica-

tion of a sequence of 𝑛 segments is to process all consecutive pairs of segments in a queue or

stack. Upon each pop, if the pair is still valid and can be losslessly merged, then conduct it and

insert any new consecutive pairs into the queue. The 2 → 1 merge operation is local and 𝑂 (1)

cost, and the full algorithm is 𝑂 (𝑛). The algorithm is also guaranteed to find all possible lossless

mergers, resulting in the most compact lossless representation.

In practice, floating point operations introduce errors and these errors may accumulate. In

the worst case, we could merge pairs in order along a chain of 𝑁 segments all stemming from a

single (𝐾 = 1) curve, accumulating error 𝑁 times over before the final merge. Instead, we can

process operations in a queue, which accumulates the worst case error at a rate of log𝑁 .

Our cubic root finding relies on floating point operations which are not error-free. We observe
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that in the range 𝑡 ∈ [10
−3, 1 − 10

−3] the numeric loss for theoretically lossless merges is very

low <10
−16

. However, this numeric loss grows toward larger values ≈10
−5

as the solution 𝑡 gets

closer to 0 or 1. We apply one iteration of the Gauss-Newton descent on 𝐸, initialized at our c

and 𝑡 values to “brush off” the last bit of numerical error.

2.3.5 Greedy PriorityQueue Processing

Equipped with our local operations, we split the input into chains at corners, determined by a

threshold on incident tangents. Every pair of consecutive segments is initially placed in a priority

queue based on its lossless 2→ 1 operation (see Section 2.3.4.2). These are processed — pushing

neighboring lossless 2→ 1 operations onto the queue any time an operation is accepted — until

the queue is empty or only 𝐾 segments remain.

If more than 𝐾 segments remain, then for every consecutive four segments we push a (po-

tentially lossy) 4 → 3 operation on the queue. For chains of length 𝑛 < 4, we also push an

appropriate 𝑛 → (𝑛 − 1) operation. These are processed — again pushing appropriately updated

neighboring operations upon each acceptance — until 𝐾 segments remain.

We use a priority queue with pop-min, update-key, and insert operations with cost 𝑂 (log𝑛),

keyed on the cost of each possible 4 → 3 or 2 → 1 operation. Computing each cost is 𝑂 (1)

and there are 𝑂 (𝑛) operations: filling the queue has thus a 𝑂 (𝑛 log𝑛) cost. Finding the cheapest

operation is 𝑂 (log𝑛), executing it 𝑂 (1), and updating the cost of the neighboring elements is

𝑂 (log𝑛) (note that the number of neighbors is constant): overall, it is 𝑂 (log𝑛) total work per

pop. Since we have 𝐾 ≤ 𝑛 operations to pop, the final time complexity is 𝑂 (𝐾 log𝑛 + 𝑛 log𝑛) =

𝑂 (𝑛 log𝑛).

Finally, our algorithm assumes all corners are preidentified. We can also simplify across cor-

ners (cost permitting) by relaxing the𝐺1
constraints in Eq. 2.11 based on a user-provided thresh-

old. To support loops: during the local segment removal optimization for closed loop chains of

length ≤ 𝑛, 𝐺1
continuity constraints are appropriately modified so that the choice of endpoints
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is unbiased.

2.4 Experiments and Discussion

We implemented our algorithm in Matlab, using gptoolbox [82] for vector graphic support

and basic geometry processing. We implemented our Gauss-Newton solver with backtracking

line search (𝛼 = 0.3, 𝛽 = 0.5) [18], with stopping criteria: relative energy < 10
−15

, relative gradient

< 10
−5
, or max 30 iterations. Our algorithm and implementation is by construction 𝑂 (𝑁 log𝑁 ),

but beyond ensuring correct asymptotic performance, we did not optimize our method and leave

a high-performance implementation as incremental future work. We report the runtime of our

implementation for the examples in the paper in Table 2.1, measured on an Intel i7 processor

clocked at 2.6 GHz. Instead, we focus on the superior quality of our results in terms of error

and the generality of our approach with respect to input. Fig. 2.7 contains a gallery and our

supplemental data contains a more thorough .html explorer of results.

Table 2.1: Runtime performance across the examples in Chapter 2.

Example #segments before #segments after Runtime (s)

Fig. 2.1 2,233 687 558

Fig. 2.2 304 19 1

Fig. 2.3 7,224 300 367

Fig. 2.11 2,280 400 432

Fig. 2.12 1,000 300 125

Fig. 2.13 1,130 × 100 (avg.) 89 × 100 1,349

Fig. 2.7 (1) 2,916 1,458 779

Fig. 2.7 (2) 5,001 1,500 1,595

Fig. 2.7 (3) 20,293 6,087 1,822

Fig. 2.7 (4) 16,628 6,651 2,094

Large-Scale Evaluation. We conducted a large-scale quantitative evaluation on 17,944 in-the-

wild .svgs composed of 55 million segments in total from OpenClipArts dataset [77] (≈2k models

were excluded because our .svg loader does not support esoteric path commands). Our loss-
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our lossy
#curves = 2332 (79.97%)
chamfer error: 6.935e-09

our lossy
#curves = 1749 (59.98%)
chamfer error: 1.676e-06

input
#curves = 2916 (100%)

our lossless 
#curves = 2484 (85.19%)
chamfer error: 5.473e-09

our lossy
#curves = 1166 (39.99%)
chamfer error: 1.073e-04

input
#curves = 5001 (100%)

our lossless 
#curves = 4555 (91.08%)
chamfer error: 1.910e-10

our lossy
#curves = 4500 (89.98%)
chamfer error: 1.980e-10

our lossy
#curves = 3000 (59.99%)
chamfer error: 1.279e-07

our lossy
#curves = 1500 (29.99%)
chamfer error: 2.053e-05

input
#curves = 20293 (100%)

our lossless 
#curves = 15364 (75.71%)
chamfer error: 2.299e-09

our lossy
#curves = 14205 (70.00%)
chamfer error: 2.539e-09

our lossy
#curves = 10146 (50.00%)
chamfer error: 1.26e-08

our lossy
#curves = 6087 (30.00%)
chamfer error: 6.845e-07

input
#curves = 16628 (100%)

our lossless 
#curves = 14066 (84.59%)
chamfer error: 8.334e-10

our lossy
#curves = 13303 (80.00%)
chamfer error: 2.103e-09

our lossy
#curves = 9977 (60.00%)
chamfer error: 4.444e-07

our lossy
#curves = 6651 (40.00%)
chamfer error: 6.062e-06

Figure 2.7: Our simplification results on stock images from the Internet. Our algorithm losslessly simpli-
fied the images to around 75-90% and managed to simplify the images further to 40% or less than 40% of
its original number of segments without noticeable visual difference. The top-row input image © Aleksey.
The second-row input image © Rudzhan. The third-row input image © studiostoks. The bottom-row input
image © Irina.
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100

Chamfer Error (median + quartile intervals)

[Schneider 1990]

Ours

OpenClipArts .svg files
Chamfer Error

[Schneider 1990]

Ours
5800×

less error

our median is 
always less

lossless

Percentage of segments remainingPercentage of segments remaining

order of magnitude
error difference

{

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Figure 2.8: We conducted a large-scale benchmark of vector graphics simplification — as far as we know
— the first of its kind. We compare our simplification method to [163] for a variety of target segment
counts, recording the chamfer error to the original (left). Around 75% experience at least some lossless
removals. On the right, we bin collected samples in deciles and report their medians and quartile intervals.
Our method’s median is always smaller though best improvements are observed for larger percentages.
For visualization clarity, we snap extremely small errors of our lossless results to axis bounds.

less simplification benefited 74.2% of the models. This suggests that most vector graphics found

in the wild could save on storage and bandwidth without any noticeable change: motivating

our lossless contributions. Our method demonstrates favorable quality for the same simplifica-

tion amount compared to [163] (Fig. 2.8). For each model, we consider a series of 𝐾 values: we

run our lossless process until completion 𝐾 = 𝐾lossless, then applying our lossy process to reach

𝐾 = 90%, 80%, . . . , 10% of the original number of segments until no lossy removal is possible with-

out exceeding a very large error value. We run [163] until achieving roughly the same 𝐾 values.

We measure bi-directional chamfer error between the input and output: densely, uniformly ran-

domly sampling all curves of the input and taking the mean squared 𝐿2
distance to the output

curves, then vice versa, and averaging the two errors. Our method outperforms [163] across the

entire range of the simplification amount: the median curve mostly staying around an order of

magnitude lower, with a much large difference improvement in the 90-100% range.

We conducted a smaller quantitative comparison including Kurbo [112] on 5,000 especially

numerically smooth chains of length𝑁 ≥ 20 from randomly sampledmodels of the OpenClipArts

dataset. We constructed this dataset out of fairness to Kurbo, as it is more sensitive to slight

tangent mismatches at perceptually smooth control points than [163] and our algorithm. Kurbo
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Figure 2.9: To include Kurbo [112] in our comparisons, we build a smaller dataset of long, smooth chains.
When Kurbo works, it works reasonably well: its median is similar to ours. However, it often creates
extreme error results or even addsmore segments instead of removing them. We snap extremely large/small
errors and increased segment counts to axis bounds.

does not provide a direct way of controlling the output number of segments, so we do a 13-

value sweep over its simplifier’s tolerance parameter. Fig. 2.9 visualizes the collected data and

demonstrates our method again consistently outperforming [163]. We also observe that when

Kurbo succeeds it works fairly well, but it often fails in one of three different ways: (1) getting

no results after an extremely long time (>1 hour), (2) producing excessively high error results

due to explosion (curves far outside the input’s bounding box), and (3) outputtingmore segments

than the input (see types (2) & (3) in Fig. 2.9). We ran Kurbo 65, 000 = 5, 000× 13 times, of which

Kurbo failed — in one of these three ways — 34.4% of the time.

Operation Type Ablation. We conducted an ablation experiment on the Night Horsewoman

poster in Fig. 2.7. We compared performing only a single operation independently against our

algorithm that combines them. We observe that 4 → 3 only and 3 → 2 only cannot simplify

as much as our reference strategy, leading to higher errors. The 2 → 1 only strategy is more

flexible and can simplify as much as our reference but with higher errors. Overall, this experiment

confirms that using all operations leads to superior simplification results for the same quality.

Editing Software. Our method qualitatively out-performs standard software: Adobe Illustrator
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Figure 2.10: Ablation study on the Night Horsewoman poster in Fig. 2.7 by comparing only a single
operation independently against our algorithm that combines them.

and Inkscape ([163]), as shown in Fig. 2.1 and Fig. 2.2. Additionally, it supports lossless simplifi-

cation, which is not supported by these software. In Fig. 2.1, our lossless simplification down to

87.82% of the original segments. We further lossily simplify to 30.77% without perceptible visual

change: at the same simplification level, Adobe Illustrator introduces noticeable visual differences

over the entire image (especially on the mushroom) and Schneider [163] significantly alters the

image. Kurbo [112] fails on this input.

Lossless simplification workflow. In Fig. 2.3, we emulate an artist’s workflow with a black

box pointwise brush tool. We densely upsample a graphic so the brush is applied directly to

control points, then simplify to preserve only the necessary control points. The editing operation

often leaves parts of the model with dense samples unmoved or moved in a locally affine way:

this presents a significant opportunity for lossless simplification. We simplify down to 16.1% in

this example. The artist can continue to repeat this workflow of upsampling, editing, lossless

simplification for as many iterations as desired because no information is lost in the procedure,

unlike in all previous methods. Once the artist is satisfied with the final design, the image can

be processed by our lossy simplification into a much smaller file without a noticeable change

to the design. This opens the door to a workflow similar to traditional photo editing, where

lossless compression formats (.png) are used for editing, and lossy formats (.jpg) are used for
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original
#segments: 2280

our lossy
#segments: 400, chamfer error: 3.002e-06

photo of
plotter
drawing

fuzzier
fjords

Figure 2.11: Attempting to draw a dense spline with a robotic plotting machine results more ink bleeding
than plotting its simplification.

distribution.

Manufacturing. Our simplification can benefit manufacturing methods (plotting, laser cutting)

that take vector paths as input. We drew the boundary of Norway using a robotic plotting ma-

chine (Fig. 2.11) and observe that the vector path simplified by our algorithm has less ink bleeding

compared to the original one.

Higher dimensions. Simplification is a core subroutine for not only 2D vector images but also

vector data of higher dimensions. We demonstrate that our method can be easily extended to

higher-dimensional vector data, including vector images with stroke width and vector anima-

tion. The “John Hancock” signature in Fig. 2.12 consists of cubic Bézier curves whose control

points contain an extra stroke width dimension. Our method yields a more compact image with-

out losing noticeable accuracy. In Fig. 2.13, we densely upsampled the input .svg and applied an

embedded mesh animation based on a full-space complementary dynamics [217] and barycen-

tric coordinates interpolation: this procedure is necessary to faithfully capture the deformation

but introduces many redundant control points. If the animation is applied directly on the .svg

without upsampling, the final animation is noticeably defective: e.g., the dolphin’s blowhole is in-
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original
#segments: 1000

ours
#segments: 300

Figure 2.12: We are able to simplify a "3D" curve by treating the stroke width as an extra dimension. The
bottom row visualizes stroke radii (3rd dimension) as an orange circle at each interpolated control point.
We show that the hand-written "John Hancock" with 1000 segments can be represented by 300 curves
without losing noticeable accuracy. Original input image sourced from John Hancock’s signature (public
domain).

correctly appears outside of the poorly animated silhouette. With our method, we can efficiently

simplify the upsampled sequence with temporal coherency by (1) applying truncated principal

component analysis (PCA) on the high dimensional animation data similar to [3] and then con-

ducting lossy simplification on the PCA vectors and then (2) applying lossless simplification on

each frame individually as a post process to remove redundant control points. Our simplifica-

tion result is qualitatively better than a baseline of simplifying every frame independently, which

leads to undesired temporal popping artifacts.

2.5 Conclusions and Limitations

We focused exclusively on asymptotic performance and implemented our prototype in Mat-

lab where scripting overhead is high. We expect that a high-performance implementation in

C++ is a straightforward extension, there are also advances in parallelism for surface mesh sim-

plification in parallel which could be adapted to our analogous setting [91].

Our method does not conduct topological simplification; most notably, we simplify but never

remove an entire input component. Thus, a valid input 𝐾 should be greater than or equal to
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Figure 2.13: Naively applying animations to vector graphics either ends up with artifacts or too many
segments. Simplifying per-frame produces popping artifacts, while our method is temporally coherent.

the number of input components. We conjecture that topological simplification requires more

advanced perceptual metrics and leave for a future work which may benefit from our method

as a subroutine. We also do not consider overdraw (we don’t flatten or remove hidden paths).

More perceptually accurate corner detection and persistence would aid all smooth simplification

methods, including ours. Finally, we hope our emphasis on statistically meaningful large-scale

testing inspires chasing down the remaining gains in vector graphics simplification.
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3 | Solid-Shell Labeling for Discrete

Surfaces

This chapter is adapted from the submission [197] to SIGGRAPH Asia 2025, currently condi-

tionally accepted, a joint work with Janos Meny, Izak Grguric, Mehdi Rahimzadeh, Denis Zorin,

Daniele Panozzo and Hsueh-Ti Derek Liu.

abstract

Artist-created meshes in-the-wild often do not have a well defined interior. We observe that

they typically consist of a mix of solid elements, faces that bound a volume, and shell elements

that represent the medial surface of a thin shell. The lack of a well-defined interior prevents

downstream applications, such as solid-modeling, simulation, and manufacturing. We present a

method that takes as input a surface mesh and assigns to each face a label determining whether

it belongs to a solid or shell. These labels reduce ambiguity by defining the interior for solid faces

through thresholding the generalized winding number field, and for shell faces as the volume

within an offset. We cast the labeling problem as an optimization that outputs a solid/shell label

for each face, guided by a sparse set of user inputs. Once labeling is complete, we show how the

shape can be volume meshed by passing the shell faces through an offset mesher and the solid

faces to an off-the-shelf tetrahedral mesher, producing a final volumetric mesh by taking their
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union. Experiments on diverse meshes with defects and multiple solid and shell components

demonstrate that our approach delivers the desired labels, enabling modeling and simulation on

wild meshes in a way that respects the user intent.

solid

shell

shell

solid

Input InputVolumetric MeshOurs Volumetric MeshOurs

Figure 3.1: Given an input shape, our method labels each triangle as either the boundary of a solid (pur-
ple) or the medial surface of a shell (yellow), driven by sparse user guidance. These facet labels can be
passed to off-the-shelf tetrahedral (for solid faces) and offset (for shell faces) meshers to produce volu-
metric meshes (orange) that are ready for downstream applications.

3.1 introduction

Generating volumetric meshes from a given shape is a fundamental subroutine within ge-

ometric computation and modeling. Accordingly, extensive research has addressed key sub-

problems, such as tetrahedralizing a bounded volume and determining inside/outside relative to

Figure 3.2: Unexpected results of exisiting volumetric meshing algorithms [75].
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Figure 3.3: Given a triangle mesh (left), whether a shape is a shell or solid may require understanding the
semantics, such as an eggshell (middle) or a marble (right). Our method incorporates user guidance and
is able to produce user-desired face labels (yellow shell and purple solid) from the same input geometry.

a triangle mesh. Decades of research have yielded robust methods that reliably mesh volumetric

domains.

Despite these advancements, existing volumetric meshing algorithms can sometimes produce

unexpected results (see Fig. 3.2), especially for artist-created assets in online repositories. These

failures stem from the assumption that the input triangle mesh “approximately” describes the

boundary of a well-defined solid volume. In practice, however, this assumption does not always

hold. Whether a shape is a volumetric thin shell or a solid depends on the semantics (see Fig. 3.3),

instead of purely relying on geometric information. Moreover, many shapes in the wild consist

of a mixture of solid and shell components (see Fig. 3.1), posing further challenges to meshing.

This ambiguity between shell and solid structures results in some heuristic strategies in prac-

tice, such as assuming everything is solid (or shell) or attempting to infer solids/shells based on

visibility. However, these heuristics frequently prove inadequate (see Fig. 3.4), leading to metic-

ulous, time-consuming manual intervention to correct inaccuracies at the individual polygon

level. Obtaining user-desired face labels is critical to volumetrically meshing the object: tetra-

hedral meshing for solid faces and offset meshing for shell faces. Incorrect labeling can cause

artifacts in the resulting volume mesh such as distorted appearance (Fig. 3.15), deletion of invis-

ible structures (Fig. 3.4), and unexpected physical behavior (Fig. 3.12).

In lieu of this, we present a method for classifying each face of a triangle mesh as belong-
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Figure 3.4: Existing heuristics, such as using triangle visibility [221], to classify solid/shell faces are prone
to artifacts, such as deleting interior components.

ing to either a solid or a shell component, requiring only sparse user guidance. We formulate this

labeling problem as an energy optimization, wherein the label of each face serves as the optimiza-

tion variable, and the user-provided guidance is incorporated into the energy functional. After

minimization, we take the resulting face labels to construct a volumetric mesh. Faces labeled as

“solid” are processed through tetrahedral meshing tools to obtain a volumetric mesh. Faces that

are identified as “shell” are passed through offset surfacing techniques, yielding a volumetric thin

shell (see Fig. 3.5). After these two streams of volumetric meshing, we union the results and ob-

tain a single mesh which is amenable to downstream applications, such as the Constructive Solid

Geometry (CSG) modeling or physically-based simulation.

3.2 Related Work

Our method classifies each face in a mesh as either solid or shell to support volumetric mesh-

ing. We provide a brief overview of volumetric meshing and related topics that require determin-

ing the interior of an object.
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Figure 3.5: Given an input mesh (left), our method optimizes the label for each face to be either a solid
(purple) or a shell (yellow) given sparse user guidance (purple/yellow dots). After the optimization, shell
faces are passed through an offset mesher (top), solid faces are passed through a tetrahedral mesher
(bottom). Then these two volumetric meshes are unioned to produce the final volumetric mesh (orange).

3.2.1 Volumetric Meshing and Offset Construction

One can compute a volumetric mesh from a surface mesh with either volumetric (e.g., tetrahe-

dral meshing) or offseting meshing algorithms, which operate under opposing implicit assump-

tions. Solid-oriented volume meshers (e.g., [5, 35, 36, 75, 76, 174]) assume the input triangle mesh

is an approximation of a closed solid and produce a volume mesh whose boundary faces approx-

imate the input. This “closed-solid” assumption leads these methods to automatically close gaps

and remove interior details, but this behavior can conflict with artistic intent (see Fig. 3.14). In

contrast, shell-oriented meshers, such as [21, 22, 224], treat each triangle of a mesh as a thin shell

element. These methods construct a volumetric mesh by offsetting the surface in both directions

and tetrahedralizing the thin volume enclosed within the resulting shell. While offset surfac-

ing methods preserve the visual appearance and maintain all interior components, they tend to

produce unrealistic physical behaviors for objects that should behave as solid bodies. Due to

conflicting assumptions between solid- and shell-oriented meshers, existing techniques are only
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applicable to homogeneous inputs where all faces in the mesh are consistently either solid or shell.

In practice, however, artist-created meshes frequently contain mixed elements that violate these

assumptions (see Fig. 3.1), causing both approaches to produce undesirable results. To address

this limitation, our method automatically generates per-face labels that reconcile these two per-

spectives. Faces classified as solid are processed by a solid-oriented tetrahedralizer, while faces

labeled as shell are handled by an offsetter that generates a thin volumetric meshwith appropriate

physical thickness.

3.2.2 Solid/Shell Heuristics in Mesh Repairing

Mesh repairing aims at converting defective triangle soups into watertight manifolds by, for

instance, filling gaps [87, 118] and removing self-intersections [6, 20, 63, 222]. Comprehensive

surveys are provided by Attene, Campen, and Kobbelt [7] and Ju [86]. The question of whether

a triangle belongs to a shell or solid often come up as a subproblem in a repairing pipeline. For

instance, wrapping-based methods [27, 149] often impose the assumption that all faces should

be labeled as solid, similar to tetrahedral meshing techniques, but similarly suffer from the prob-

lem of removing internal structures. The method by Huang, Zhou, and Guibas [78] indirectly

determines face labels by checking whether each element connects to infinity through a vox-

elized representation of the shape. The closest method to ours is the method proposed by Zheng

et al. [221]. Their pipeline uses ray casting to estimate the visibility of each face and converts

this visibility information into an openness score. Faces judged open are offset, all geometry is

inserted into a BSP tree, and a global graph cut is used to extract a watertight surface. Because

the test hinges on visibility, shell structures hidden behind other geometry can be misclassified

(see Fig. 3.4 and Fig. 3.14).

Our approach differs in two key ways. First, we rely on the visibility-independent generalized

winding number (GWN), eliminating occlusion-related errors. Second, solid–shell segmentation

can depend on semantics or be genuinely ambiguous, so a fully automatic method may choose
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an unintended interpretation with no easy recourse for the user. We let users add “inside” hints,

treating them as soft constraints when optimizing the face labels and providing an intuitivemech-

anism for correcting ambiguous regions.

3.2.3 Winding Numbers for Inside/Outside Reasoning

The generalizedwinding number (GWN) introduced by Jacobson, Kavan, and Sorkine-Hornung

[83] determines whether a point lies inside or outside an arbitrary triangle soup. Most applica-

tions assume the entire mesh encloses a uniform solid region, using the GWN for isosurface

extraction via marching cubes [123] or dual contouring [88], or as the basis for “fuzzy” CSG op-

erations [10]. We discard this uniform-solid assumption: our method removes faces not intended

to enclose volume, yielding a cleaner set of solid faces whose induced GWN field is better suited

to downstream contouring, CSG, and simulation. Fast-evaluation schemes for the GWN, such as

that of Barill et al. [10], can be incorporated into our method for improved speed.

The winding number has also been employed in applications outside of meshing, such as

coloring vector sketches [166], reconstruction [26] and has inspired work like computing gener-

alized signed distances [44]. Another line of work [119, 131, 208] has used the GWN to orient

pointclouds. Our method is similar in spirit, but has a different use case. We optimize a scalar

variable attached to each face of a triangle mesh, determining how that face contributes to the

GWN field. This optimization process results in a set of solid faces for which the GWN field more

closely approximates that of an ideal closed solid object, so downstream volumetric meshing with

homogeneous solid assumptions are more well behaved.

3.3 Method

The input to our method is a triangle meshM = (V, F), comprising a set of vertex positions

V and a set of faces F. Our method imposes no constraints on the input topology and is capable
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of handling non-manifold elements or even a soup of triangles. We do, however, assume that

each face has the orientation intended by the artist. The output of our method is a set of (soft)

labels ℓ = {ℓ𝑓 } where each label ℓ𝑓 ∈ [0, 1] indicates whether the face 𝑓 is a shell (0) or a solid (1)

component. These soft labels can then be thresholded to achieve the final binary labels.

We cast the labeling problem as an energy optimization, where the labels ℓ are the optimiza-

tion variable, and the energy can optionally incorporate user-controllable terms. Without user

guidance, our method can serve as an automatic tool to provide solid/shell labels. But, in gen-

eral, the label for a face can be ambiguous and can depend on the semantics of the object (see

Fig. 3.3). We thus provide additional user-controllable terms to manipulate the outcome of the

optimization.

3.3.1 Energy

We obtain face labels by solving an unconstrained optimization problem

ℓ = arg min
ℓ

𝐸𝑑 (ℓ) + 𝛼𝐸𝑢 (ℓ) + 𝛽𝐸𝑠 (ℓ), (3.1)

where 𝛼, 𝛽 ∈ R+ are positive scalars to control the balance between these terms. 𝐸𝑑 encourage

the resulting face labels to induce a well-separated interior/exterior regions, 𝐸𝑢 incorporates user

controls into the optimization, and 𝐸𝑠 encourage smoothness across the labels ℓ within the same

surface patch.

Double-Well Term. We observe that artist-created shapes often do not contain too many “ir-

relevant” components, meaning that most triangles in a mesh are created for a purpose. With

this observation in mind, we design an energy which, by default, preserves nested interior struc-

tures (e.g., furniture inside a house, see Fig. 3.6). We draw inspiration from the globally injective

parameterization [39] which detects nested structures using the winding number (see Fig. 3.7).

Specifically, the winding number field of a set of closed, non-self-intersecting curves will be piece-
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Figure 3.6: Generalized winding number field of a collection of segments before (left) and after (right)
the optimization. Segments are colored by the tendency of being classified as solid or shell.

Figure 3.7: Winding number illustration for non-nested (left) and nested (right) structures.

wise constant 0/1 if the curves neither overlap nor have inverted orientations. This motivates our

design of a double-well energy 𝐸𝑑 which encourages the winding number field induced by the

labeling to be either 0 or 1

𝐸𝑑 (ℓ) =
1

|P |
∑︁
p∈P

(
𝑤 (p, ℓ) (1 −𝑤 (p, ℓ)

)2
(3.2)

with

𝑤 (p, ℓ) = 1

4𝜋

∑︁
𝑓

Ω𝑓 (p)ℓ𝑓 , (3.3)
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where P denotes the set of sampled points we use to evaluate the energy, |P | denotes the number

of samples, Ω𝑓 is the solid angle of triangle 𝑓 with respect to point p, and ℓ𝑓 is the face label for

face 𝑓 bounded between 0 ≤ ℓ𝑓 ≤ 1. Intuitively, one can think of𝑤 (p) as a weighted generalized

winding number [83] with options to ignore shell faces (ℓ𝑓 = 0). The double well energy 𝐸𝑑 has

two global minima when 𝑤 (p) = 0 or 1, promoting a binary winding number field as the result

of minimization.

User-Control Term. However, this energy formulation is motivated by the idealized scenario in

[39] designed to promote global injectivity. When applied to 3D triangle soups that may contain

various defects and non-manifold elements, minimizing 𝐸𝑑 alone does not always produce the

results users expect. Moreover, geometric cues by themselves (i.e., 𝐸𝑑 alone) are insufficient to

achieve the desired solid/shell classifications (see Fig. 3.3). To incorporate user preference in

the labeling process, we introduce another energy term which allows users to specify the target

winding number 𝑡q ∈ {0, 1} for a sparse set of spatial locations q ∈ C, indicating whether the

point q should lie in the interior or exterior of the model. Specifically, we define the user control

energy 𝐸𝑢 as

𝐸𝑢 (ℓ) =
1

|C|
∑︁
q∈C
∥𝑤 (q, ℓ) − 𝑡q∥𝛾 , (3.4)

where |C| denotes the number of user-specified points and𝛾 is a positive even integer, controlling

how sensitive this term is to small deviations from the target winding number 𝑡q. The higher the

power, the more tolerant this term becomes to small errors. Empirically, we set the default 𝛾 = 4

which gives us the easiest way to control the output labels (see Sec. 3.4.3).

Smoothness Term. As the control of 𝐸𝑢 is local, using only 𝐸𝑢 often requires more computation

time to propagate label adjustments or specifying more constrained locations C. We therefore

add a smoothness energy 𝐸𝑠 on face labels ℓ to encourage connected pieces to share the same
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label.

𝐸𝑠 (ℓ) =
1

𝐴

∑︁
𝑖, 𝑗∈N𝐹

𝑎𝑖 𝑗 ∥ℓ𝑖 − ℓ𝑗 ∥2, (3.5)

where we use N𝐹 to indicate neighboring faces which share an edge in-between, 𝑎𝑖 𝑗 denote the

barycentric edge area, and 𝐴 =
∑
𝑖 𝑗 𝑎𝑖 𝑗 is the sum of the areas. The combination and three terms

forms our energy (see Eq. (3.1)). We set 𝛼 = 10
3, 𝛽 = 10 as the default parameter throughout the

experiments.

3.3.2 Implementation

We implement our method in Python, utilize PyTorch library [142] for auto-differentiation,

and optimize our energy with the Adam optimizer [96]. We evaluate the double-well loss 𝐸𝑑 on

points P sampled near the surface. Specifically, we uniformly sample points (by default 64
3
) that

have distance less than 𝜖 away from the mesh, where 𝜖 is set to be 10% of the longest edge of the

mesh bounding box.

As the winding number computation Ω𝑓 (p) for p ∈ P are constant throughout the optimiza-

tion, we cache the result of {Ω𝑓 (p)} as a single matrix to accelerate the optimization, leading

to less than 1 millisecond runtime per optimization step with GPU acceleration on an Apple M4

Pro chip. The models presented in this paper converge in 5 to 30 seconds, with convergence

determined by the gradient norm.

We notice that some meshes have big triangles slicing through multiple solid/shell regions

(like a ground plane of a house scene). This issue prevents users from getting desired volumetric

meshes because neither assigning solid nor shell to the problematic face yields a user-desired

result. We thus apply a mesh arrangement [20, 63] algorithm as a preprocessing step to partition

intersecting triangles into smaller fragments before running our algorithm.

We visualize the result of our method with Polyscope [171]. We allow users to add constraint
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points in Eq. (3.4) by clicking points in our preliminary interface and then specify whether this

point belongs to an interior region or not. Due to the efficiency of our method, one can interac-

tively see the result updated during optimization (please see the supplementary video for a demo

usage of our implementation).

After obtaining the face labels ℓ , for the solid part, we extracted a closed surface mesh from

the tetrahedral mesh computed with TetWild [76]. For the shell part, we extrude shells with a

user-specified thickness 𝜏 using a robust topological offset algorithm [224], where 𝜏 is by default

1% of the longest edge of the mesh bounding box. Next, we take the union of the two closed

surfaces with a robust mesh boolean code [28]. Finally, we use TetWild [76] to obtain our output

tetrahedral mesh, that is ready for solidmodeling and simulation applications as shown in Sec. 5.8.

Moreover, one could apply the method by Attene et al. [8] to extract a closed manifold triangle

mesh from our output to support surface computations.

3.4 Results

Our method outputs a set of face labels indicating solid and shell faces. We show that these la-

bels can benefit off-the-shelf algorithms for constructing volumetric meshes, with unambiguous

definitions of inside and outside based on users’ specifications. With such user-defined inte-

rior/exterior definitions, one can ensure that the simulation behavior aligns with the semantic

properties of an object (see Fig. 3.12) and can perform boolean operations without the need of

relying on extra tools for “guessing” where the interior region is located (see Fig. 3.8).

Our method enables user control through point-based constraints that specify whether loca-

tions should be inside or outside the object. This approach can obtain a wide variety of user-

desired segmentations by placing constraints appropriately. When all specified points are con-

strained to be outside, our energy function has a unique global minimum that labels every face as

shell (provided there is at least one outside constraint). For instance, in Fig. 3.9, our optimization
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input model our labels our volumetric mesh

cell fractureCSG operations

Figure 3.8: The face labels optimized by our method can assist volumetric meshing (green). This mesh
is ready for boolean operations (e.g., intersection, union, subtraction) with the method by [28], and volu-
metric simulation such as the fractures.

solid

shell
Figure 3.9: Left: A single constraint guides the optimization to classify a corrupted bunny (10 percent of
faces removed) as fully solid. Right: A pipe modeled as a union of cylinders is classified as pure shell after
placing some constraints.
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produces an all-shell result for a watertight mesh representing pipes. When a constraint specifies

that a point lies inside the object, the optimization encourage face labels to be solid when doing

so helps achieve a winding number of 1 at that point. Fig. 3.9 shows a watertight mesh with a

randomly deleted subset of faces, where a single inside constraint produces an all-solid segmenta-

tion. While classification is straightforward when meshes contain only solid or shell faces, in the

wild meshes often combine faces that bound solids with others that represent thin shell surfaces.

Our method provides flexibility to achieve diverse segmentations on wild meshes. Fig. 3.10 shows

how adding constraints incrementally modifies face labeling until the desired result is achieved

(bracket and light source as solid, light bulb as shell). These interactions allows one to place dif-

ferent constraint configurations to achieve different solid/shell segmentations (Fig. 3.11). Fig. 3.12

demonstrates the importance of user interaction in the labeling process. Given a closed manifold

representing a coke can —which most heuristics would classify as solid (e.g., [221]) — our method

allows users to specify a thin shell result, producing simulation behavior that better matches the

expected physical properties of an actual coke can.

solid

shell

Figure 3.10: Incrementally adding point constraints can alter whether faces are labeled as solid or shell.
Purple spheres denote interior constraints—points designated to lie within the solid—whereas yellow
spheres denote exterior constraints—points designated to lie outside it.
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solid

shell

Figure 3.11: Our method allows one to control face labeling results by setting different configurations of
the guidance point (colored spheres).

3.4.1 Comparison to Explicit Labeling

To evaluate our method, we build a preliminary interface that enables users to provide hints

by specifying whether selected points should be classified as inside or outside the object. Table 3.1

quantifies the user effort required to obtain manually-created target labels for a set of five bench-

mark meshes (see Fig. 3.13) and compares our method against two baselines. The first baseline

represents individual face labeling, where each face is selected separately. The second baseline

approximates practical selection mechanisms such as face component selection or flood filling by

counting the number of face components that contain at least one shell/solid face. For the second

baseline, we pre-process the mesh by merging duplicate vertices to reduce the number of face

components, because the meshes have too many face components to make selection mechanisms

that rely on mesh connectivity practical. Note that this number represents a lower bound since

connected face components do not necessarily correspond to actual shell/solid regions. These

comparisons consistently show that our tools requires orders of magnitude less effort, in terms

of the number of constraints needed, to achieve manually created target labels.

We further note that our labeling paradigm depends only on whether a point lies inside or

outside the object and is independent of the object’s discretization, requiring only that the dis-

cretization supports the definition of a GWN field. Users therefore need to understand only the
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solid

shell

solid

shell

simulation

simulation

volumetric mesh

volumetric mesh

v

v

Figure 3.12: We present solid/shell labels (second column) and the corresponding volumetric mesh (third
column) produced by our method (top) with two user-added constraints and the (all-solid) labeling from
[221] (bottom). The last column shows a non-inverting, neo-Hookean elasticity simulation with con-
tact [114] imposed on the two volumetric meshes, where we fix the bottom 5% and move the top 5% of
the can downwards to compress the can. Making the can filled with solid yields unexpected simulation
behavior (bottom right), contrasting our method which successfully produce the compression bending
behavior (top right).

inside or outside concept, not details about the geometry representation. By contrast, both base-

line methods require awareness of the triangle mesh, and the component-selection approach is

especially fragile: it often requires an additional preprocessing step to merge vertices before it is

practical.

3.4.2 Comparison to Prior Arts

Labeling all the faces as solid or shell does not always create a physically meaningful volu-

metric mesh. In Fig. 3.15 (left), we demonstrate a naive uniform solid labeling of the tree leads to

artifacts when reconstructing a volumetric mesh based on the method by [75]. Labeling based on
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Cartoon Car
Display 
Cloche

Grandfather 
Clock

Helicopter

Pirate Ship

Figure 3.13: Five models benchmark for measuring the labeling effort. Face color represents the target
labels: solid faces are colored purple, shell faces are colored yellow. The purple and yellow spheres in
the scene represent the interior and exterior constraints in Eq. (3.4) one needs to obtain the target labels,
respectively.

Table 3.1: Summary of labeling effort for each benchmark mesh in Fig. 3.13. For each model, we first
obtain target face labels through manual face selection by a user. We report: (i) the number of con-
straints added to our optimization to achieve the target segmentation, (ii) the number of faces labeled as
shell/solid, and (iii) the number of face components containing at least one shell/solid label. This table
demonstrates that using our tool requires less effort compared to manual selection, by comparing the
number of constraints needed to achieve target labels.

Model #Constraints #Faces #Components

Cartoon Car 3 2764/480 14/18

Display Cloche 1 496/1610 6/32

Grandfather Clock 4 2331/1245 48/16

Helicopter 4 8347/5110 236/146

Pirate Ship 8 8118/1361 11/78
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all shell ours[Zheng et al. 2024]

Figure 3.14: We show the volumetric mesh (bottom) created by our solid/shell face labels (no user con-
straint is needed in this case), which successfully labels the lid as shell and the cheese as solid (right), in
contrast to all-shell labeling (left) and the visibility-driven labeling by [221] (middle).

heuristics, such as visibility [221], tends to label closed object as solid, which is prone to unex-

pected physical behavior or deleting invisible structures. In Fig. 3.12, solid/shell labeling method

based on visibility [221] tends to label the can as all-solid, while with easy user-added constraints,

our method gives the capability to label the body as shell and the zip as solid. These two different

labels lead to different physical behavior when performing a compression simulation. For models

with self-occlusion, the visibility-based labeling tends to remove important, but invisible, struc-

tures (e.g. Fig. 3.14) or assigning solid labels to invisible shell structures (see Fig. 3.15). In contrast,

our method addresses the above issues by using a non-visibility-based winding number field as

a prior, augmented with user guidance, to allow control over different inside/outside labelings

(e.g., in Fig. 3.11) to be aligned with user’s intent.

3.4.3 Ablation

We have an ablation study on how 𝛾 in Eq. (3.4) influences the convergence behavior of labels

ℓ in optimization. In Fig. 3.16, we demonstrate that for a given mesh with the same user-specified

constraint, 𝛾 = 4 leads to an immediate convergence on ℓ towards either 0 or 1, while 𝛾 = 2 fails

to converge during the optimization with non-decreasing gradient. As even higher exponent can
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solid

shell

Figure 3.15: Given a tree model with a mixture of solid (e.g., trunk) and shell (e.g., leaves) elements (top
left), using a visibility-driven classification by [221] is prone to label invisible leaves as solid elements (top
middle), yielding unwanted volumes after tetrahedralization (bottom middle). In contrast, our method
is able to label trunk faces to be solid, and leaf triangles to be shell (top right), yielding a user-desired
volumetric mesh (bottom right). We also include the reconstruction from [75] if one assign every face to
be solid.

lead to numerical instability, we choose 𝛾 = 4 in Eq. (3.4) for better optimization behavior and

more effective solid/label classification.

3.5 Conclusions and Limitations

Our approach lays the groundwork towards an accessible tool that could help turning “in-the-

wild” 3D assets into simulation-, solid-modeling-, or 3D-print-ready form. Our strategy requires

far less manual efforts (often less than 10 user provided points C) to divide meshes into solid
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solid

shell

Figure 3.16: Comparison on the differences of the convergence behavior between 𝛾 = 2 (left) and 𝛾 = 4

(right) in Eq. (3.4).

and shell components, in comparison to explicit face selection, which typically requires select-

ing thousands of faces and familiarity with 3D modeling details such as triangulations, connec-

tivity, selection, and flood-filling. Future work could involve developing a comprehensive and

intuitive user interface that enables users to place spheres to designate interior/exterior regions,

along with common utilities like mesh selection, undo, and slicing. Collecting a wide range of

examples from such an interface could motivate future data-driven methods to learn how to au-

tomatically place those guiding spheres. Removing the assumption of requiring the input faces to

be correctly oriented, possibly by incorporating normal orientation tools [131], could extend the

reach of our method to more types of mesh defects. Allowing face orientations to change during

optimization could achieve a broader range of user intents, such as turning a sphere inside out

to create a volumetric mesh that extends towards infinity but is hollow inside. Building on top

of the generalization of winding number to other representations [10], extending our methods

to different representations (e.g., point clouds) could further impact other fields, such as robotics

and 3D sensing/reconstruction.
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4 | Appearance-Preserving Tactile

Optimization

This chapter is adapted from the publication [184] on ACM Transactions on Graphics, a joint

work with Chase Tymms and Denis Zorin.

abstract

Textures are encountered often on various common objects and surfaces. Many textures com-

bine visual and tactile aspects, each serving important purposes; most obviously, a texture alters

the object’s appearance or tactile feeling as well as serving for visual or tactile identification and

improving usability. The tactile feel and visual appearance of objects are often linked, but they

may interact in unpredictable ways. Advances in high-resolution 3D printing enable highly flex-

ible control of geometry to permit manipulation of both visual appearance and tactile properties.

In this paper, we propose an optimization method to independently control the tactile properties

and visual appearance of a texture. Our optimization is enabled by neural network-based models,

and allows the creation of textures with a desired tactile feeling while preserving a desired visual

appearance at a relatively low computational cost, for use in a variety of applications.
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Figure 4.1: Our optimization procedure enables the control of a texture’s tactile roughness while main-
taining its visual appearance. Starting with a target texture (left), the procedure optimizes toward a de-
sired tactile roughness while preserving the visual appearance (center). The resulting textures can be
used to fabricate visually similar but tactually different objects, such as these 3D-printed starfish (right,
photographed).

4.1 Introduction

Tactile textures are ubiquitous in everyday life. We encounter tactile textures on the surfaces

of fruits and plants, skin, woven fabrics, and many manufactured surfaces. Tactile texture often

serves a specific purpose, practical or aesthetic (an object should feel good, not just look good).

Creating a particular tactile feeling is a common task which receives less attention than visual

appearance, although is often just as important. Tactile feeling plays a particularly important role

for people who are visually impaired, who rely on the sense of touch much more.

The tactile feeling and visual appearance of objects can interact in unpredictable ways; for ex-

ample, the tactile texture may be a byproduct of creating a particular appearance (e.g., an etched

pattern), or vice-versa (e.g., knurled grips have a particular look). The goals of achieving par-

ticular visual and tactile appearances may be conflicting: e.g., one may want a particular visual

pattern on a tool handle, while achieving specific tactile properties optimal for usability. While

in many cases, little can be done about the interaction of visual and tactile properties, advanced

fabrication technologies like high-resolution 3D printing enable highly flexible control of both

visual and tactile texture.
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A characteristic feature of both visual and tactile textures is their statistical nature: that many

distinct patterns and geometries may look or feel the same. We refer to distinct (in the sense of

per-point equality) textures that are perceived in a similar way as perceptually equivalent. The

large space of perceptually equivalent textures makes it possible to adjust one aspect of a texture

(e.g., tactile) without affecting the other (visual). This type of adaptation makes it possible to

separate the process of visual and tactile design.

In this paper, we propose an efficient optimization method for independent control of tac-

tile feeling and visual appearance of a surface. More precisely, the problems we solve can be

formulated as follows: given input texture geometry, how can we modify it to achieve certain

target tactile properties while minimizing changes to its visual appearance? And conversely,

how can we achieve specific visual appearance by modifying geometry, while preserving tactile

properties? Our method builds on the previous work on quantitative modeling of perceptual

roughness, as well as visual appearance perception. One of the main drawbacks of the highly

accurate roughness model we use is the relative expense of its evaluation and the lack of differ-

entiability, making it difficult to apply in the optimization context. One of the main contributions

of our work is efficient neural network-based differentiable versions of models for tactile rough-

ness, visual appearance and contact area. The roughness model is in close agreement with an

accurate but expensive-to-evaluate model while it also does not require expensive 3D meshing

and FEM simulation and can be evaluated directly on the input texture geometry. The speedups

we obtain are on the order of 10,000 times for roughness evaluation (although the original FEM

model we compare to was not fully optimized), making it possible to use this model in the inner

optimization loop. In addition, the resulting neural-network model provides gradients, making it

trivial to plug it into an efficient optimizer.

Using the same basic approach, we also constructed a similar neural network model for con-

tact area and for a visual similarity measure for geometric textures involving advanced lighting

effects, both with multiple-orders-of magnitude speedups.
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Using these models, we developed an optimization method that allows for controlling the

changes in visual appearance and tactile roughness. With the same approach, it can also control

another aspect of tactile perception, temperature sensation. We demonstrate the behavior of our

system for a variety of examples in different contexts and validate our approach with several

visual and tactile experimental studies on flat and curved surfaces.

4.2 Related Work

Our work is related to previous work in several domains. Two of the most important works

we build on are [183] (we use the roughness model described in that paper as a starting point),

and [80], which describes an image-to-image CNN that we adapt to our purposes. Our work is

connected to a spectrum of work in visual and tactile perception modeling, texture synthesis and

applications of CNN to optimization.

Tactile perception. Research on the sense of touch has found that tactile perception consists of

4-5 dimensions ([178]), including large-scale and small-scale roughness; compliance; friction; and

temperature. Here we focus on large-scale roughness, elicited by features larger than 0.1 mm in

size and detected through strain; we also consider temperature, controlled here by mediating the

area of contact between the skin and a surface. Most previous research in roughness perception

has used different types of natural or artificial stimuli that are difficult to control, e.g. [127], [30].

We use 3D printing to allow creation of higher-resolution, more precisely controllable surfaces.

We also gain insights from [179], who performed experiments on temperature perception based

on the thermal diffusivity and found a relative threshold of discrimination of 43%.

Tactile fabrication. [145] developed a quantitative model for tactile compliance perception us-

ing stimuli fabricated from materials with different perceived tactile compliance, and demon-

strated its applications to fabricating shapes with variable properties. Compared to roughness,

compliance rarely affects the visual appearance of an object, so combining the two is relatively
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straightforward. In [43] a roughness model was obtained using tactile textures fabricated from

a set of visual textures converted to shallow height maps, implicitly creating a close connection

between visual and tactile appearance. In our work, we aim to decouple these.

Other recent work in the fabrication domain has aimed to facilitate the incorporation of tac-

tile properties in 3D printed models. [180] provides an interface to fabricate objects with a user-

specified weight, compliant infill, and rough displacement map. However, their roughness metric

relies on texture feature size, which is not always definable and does not provide a comprehen-

sive model for all textures. [25] develops methods to fabricate objects with specified deformation

behavior and textured surface displacement, but does not allow direct perceptual control. [33] ad-

dresses a more specific question using 3D-printed hair structures to adequately simulate material

roughness and softness for use in immersive virtual reality.

Thermal conductivity is of interest in fabrication but is typically controlled by altering the

base material or creating a composite; [198] reviews several options to vary thermal conductivity

and other material properties. We aim to control conductivity for tactile contexts by altering ge-

ometry. In a related application, [220] optimizes the tessellation pattern of 3D-printed orthopedic

casts for thermal comfort.

Texture synthesis. [150] created a model for texture synthesis based on a set of image statistics.

Their method performs well on some natural and artificial textures, but fails for others; it also re-

quires a significant amount of time and is therefore poorly suited to optimization. [194] is based

on CNN feature-based model (VGG-19) but similarly does not provide a close match for many

textures. Classical non-parametric texture synthesis work, e.g. [41];[202], yield high-quality re-

sults for many textures, but are not readily adaptable for our optimization purposes. A recent

survey of synthesis methods can be found in [11]. Works such as [49] and [186] present syn-

thesis methods based on CNNs but are not robust enough for our optimization purposes. [223]

presents a recent GAN-based texture synthesis method with impressive results, but it requires

several hours of training for each image, and similarly [215] provides perceptually-based texture
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synthesis but requires days of training for a set of similar textures; neither is suitable for opti-

mization in its current form. In contrast, we seek a method that is robust for all textures, and

whose loss computation does not require a large amount of time.

Optimizing fabricated visual appearance. Several works use optimization to accomplish a

similar goal of appearance preservation for 3D printing. [165] uses optimization to alter the

geometry of 3D objects to maintain visual appearance subject to other geometric constraints, to

produce bas-reliefs for fabrication. [158] designed a pipeline to optimize a 3D printed surface’s

microgeometry to replicate a desired BRDF. [42] employs optimization to correct for light scatter

to more accurately reproduce color in 3D printing, and [173] uses optimization of the internal

layer structure of color multimaterial 3D-printing to replicate the full spectrum of color of 2D

art, invariant to illumination, more accurately than traditional 2D printing.

Visual similarity of images and textures. Visual similarity metrics are designed to quantify

perceptual similarity, with consistency with perception measured by pairwise or three-way com-

parisons: if the numerical indicator of similarity for one pair of images is higher than for another,

then we expect the first pair to be perceived as more different. Well-established visual metrics

include those based on structural similarity: SSIM [201], FSIM [218], MSSIM [200]. A different

metric designed primarily for evaluation of image compression quality, and based on a complex

visual system model, is found in [128]. [219] presents a metric based on deep features learned for,

e.g., a classification task and combined with a simple metric in the feature space. These metrics

were demonstrated to be closer (on relevant datasets) to human perception compared to SSIM.

We use a simple, tighter metric based on surface normals discussed in Section 4.3. We discuss

our experiments with other measures there. This is consistent with some of the work on depth

images, e.g., [68] a method for increasing resolution of depth images using an additional color

channel, uses a metric including estimation of the normal difference. [129] develops a procedure

to measure texture similarity by matching a localization task to texture statistics; but the current
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implementation was not shown successful for diverse textures.

Neural networks in model reduction. Model reduction is a well-established area which was

using a variety of machine learning-related techniques to decrease the number of parameters

needed to simulate a physical model, with the goal of reducing the cost of the simulation, which

is particularly important in optimization context. We share this motivation, although we do not

aim to achieve this goal through explicitly reducing the number of parameters of themodel. Older

methods are relatively well-covered in the survey [46]. Very recently, and concurrently to this

work, neural networks were applied for reduced-order modeling of Poisson and fluids in 2D [70].

Other model examples are considered in [152].

Steganography. Steganography algorithms aim to hide watermarking or other types of infor-

mation in data, with a few papers focusing on 3D data; see e.g., [195] for a survey, and more

recently [210]. As we do in our work, these methods aim to preserve visual appearance, but the

goal is to conceal the hidden information from the naive observer; in our case, we do not want

to make the modification of tactile properties apparent.

4.3 Overview

The main goal of this work is to develop a process to allow the control of a texture’s tactile

roughness or tactile temperature while maintaining its visual appearance, which can produce a

range of effects.

Summary. Given an input 2D height field and a desired tactile roughness value or contact area,

the model uses learned functions – one for appearance based on rendered shading, and one either

for tactile roughness, based on variation of strain in simulated skin, or for tactile temperature,

based on a simulated skin contact area – to perform an optimization for roughness or contact area

while minimizing visual distortion. We use psychophysical experiments to validate the results.
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A general overview of the process is shown in Figure 4.1.

The development of our optimization process consists of the following steps:

• We create a set of 6300 height maps comprising a variety of textures and grayscale images.

We run simulations estimating the human finger contacting these heightmaps, and find the

resulting field of maximum compressive strain.

• We use a convolutional neural network to learn a function taking the input heightmap and

outputting the maximum compressive strain field, and we compute tactile roughness on

this field.

• We use a similar neural network to learn a function taking the input heightmap and out-

putting the contact area between the skin and the texture.

• We learn a function for the height field’s visual appearance using a CNN to learn the ren-

dering with shadow and lighting.

• We develop an optimization procedure taking the losses from the learned roughness or con-

tact function and the learned rendering function to optimize for a target tactile roughness

or temperature while minimizing change in appearance.

• We validate this procedure by testing several textures both as renderings and as 3D-printed

textures and running human psychophysical experiments. We compare against the simpler

method of altering tactile feeling using linear scaling.

4.4 Optimization

The optimization procedure acts to alter the geometry of the input texture height field, in

order to modify the tactile feeling of the input while minimizing its change in visual appearance.
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4.4.1 Optimization Overview

We use three functions in our optimization process to compute tactile and visual difference

estimates:

• Roughness: 𝜙𝑟 : R𝑛 → R𝑛 , where 𝑛 is the number of pixels in the height and stress maps,

mapping the height field to stressmagnitudes at a plane inside the skinwhere tactile sensors

are located. The stresses are sampled at the same resolution as the input height field.

• Visual appearance: 𝜙𝑣 : R𝑛 → R𝑘𝑛 , mapping the height field to the pixel values of 𝑘 ren-

dered images with different lighting.

• Contact area: 𝜙𝑐 : R2𝑛 → R𝑛 , where 𝑛 is the number of pixels in the height and contact

maps, mapping the height field and corresponding strain field to the distance between the

skin and the surface at each point.

In addition, we use a function 𝑉 : R𝑛 → R, to evaluate the perceptual roughness estimate from

the stress field 𝜎 = 𝜙𝑟 (𝐻 ) of height field 𝐻 .

Using these functions, which we define precisely below, our target functional is defined as

follows. For a given input texture height field 𝐻0, and target perceptual roughness 𝑟𝑡𝑟𝑔, target

contact area 𝑐𝑡𝑟𝑔 and target height range [0, 𝐻𝑡𝑟𝑔] we define the following energy terms:

1. 𝐸𝑟𝑜𝑢𝑔ℎ (𝐻 ) = |𝑟𝑡𝑟𝑔 −𝑉 (𝜙𝑟 (𝐻 )) |: the difference between the current roughness and the target

roughness, with the strain variation function 𝑉 defined in Section 4.4.2.

2. 𝐸𝑐𝑜𝑛𝑡𝑎𝑐𝑡 (𝐻 ) = |𝑐𝑡𝑟𝑔 − 𝐴(𝐻 )) |: the difference between the current contact and the target

contact, where 𝐴 is the weighted contact distance function defined in section 4.4.3.

3. 𝐸𝑣𝑖𝑠 (𝐻,𝐻0) =
∑

1

𝑛
∥𝜙𝑣 (𝐻0) − 𝜙𝑣𝑘 (𝐻 )∥2: the visual difference, computed as the L2-norm of

the pixel-wise difference between the current rendered image and target rendered image,

summed over the three different rendering conditions used.
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4. 𝐸𝑟𝑒𝑔 (𝐻,𝐻0) =
∑

1

𝑛
(∥Δ𝑥 (𝜙𝑣 (𝐻0)−𝜙𝑣𝑘 (𝐻 ))∥2+∥Δ𝑦 (𝜙𝑣 (𝐻0)−𝜙𝑣𝑘 (𝐻 ))∥2): the sum of difference

variation regularization energies for all rendering conditions, where Δ𝑥 and Δ𝑦 are finite

difference matrix operators for horizontal and vertical directions; i.e., an approximation of∫
∥∇(𝜙𝑣 (𝐻0) − 𝜙𝑣 (𝐻 )∥2𝑑𝐴.

5. 𝐸𝑐𝑙𝑎𝑚𝑝 (𝐻 ) = ∥𝐻 −clamp[0,𝐻𝑡𝑟𝑔] (𝐻 )∥
2

2
: the clamping energy to keep the result in the [0, 𝐻𝑡𝑟𝑔]

range.

The total energy we minimize is defined as

𝐸 (𝐻,𝐻0) = 𝐸𝑟𝑜𝑢𝑔ℎ (𝐻 ) +𝑤1𝐸𝑣𝑖𝑠 (𝐻,𝐻0) +𝑤2𝐸𝑟𝑒𝑔 (𝐻,𝐻0) +𝑤3𝐸𝑐𝑙𝑎𝑚𝑝 (𝐻 ) (4.1)

To make the optimization of this function practical, we need to compute 𝐸 (𝐻,𝐻0) as well as

∇𝐻𝐸 (𝐻,𝐻0) efficiently. However, computation of 𝐸𝑟𝑜𝑢𝑔ℎ involves a 3D finite element simulation,

including 3D domain meshing and contact resolution; computation of 𝐸𝑣𝑖𝑠 requires rendering of

textures with some global illumination effects.

We address both of these problems by approximating 𝜙𝑟 , 𝜙𝑐 and 𝜙𝑣 using neural networks, as

these provide (a) fast evaluation of function values (b) evaluation of derivatives with respect to

the input parameters. The details of the approximations are discussed below.

Convergence criteria and weight choices. The main parameter of the optimization is 𝑤1,

controlled by the user, which represents the trade-off between visual fidelity and closeness to the

target roughness.

The weight𝑤3 is chosen to be relatively high, 10
5
, so that the last term operates as constraint.

The weight 𝑤2 is chosen to be lower compared to 𝑤1, as 𝐸𝑟𝑒𝑔 acts as a regularizing term, mini-

mizing small-scale noise by picking smoother solutions among those with low values of the first

two terms. We use𝑤2 = 0.06.

For contact area, which has values on the order of 100mm
2
, approximately 1000 times the
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Figure 4.2: Parameter convergence during optimization for roughness and visual appearance. The goal
is to alter the roughness of the input texture (iteration 0) while preserving its visual appearance, which is
done by the final iteration.

typical roughness values, these weights were scaled up by 1000.

We use a stopping criteria for optimization that places bounds on three of the energy com-

ponents: For roughness, 𝐸𝑟𝑜𝑢𝑔ℎ < 𝜀𝑟𝑟𝑡𝑟𝑔, with 𝜀𝑟 = 0.1, about half of the 19% threshold for tac-

tile roughness discrimination described in [183]. For visual difference, 𝐸𝑣𝑖𝑠 < 𝜀𝑣 ∥𝜙𝑣 (𝐻0)∥2, with

𝜀𝑣 = 8; this is proportional to image resolution, and was experimentally found as a conservative

goal to avoid visible changes, corresponding to a 2% change in pixel values.

The height constraint is expected to be satisfied nearly precisely: 𝐸𝑐𝑙𝑎𝑚𝑝 < 𝜀𝑐 , with 𝜀𝑐 = 10
−4
.

We used 𝐻𝑡𝑟𝑔 = 3, to ensure the height remain below 3 mm, selected as a reasonable maximum

height for a fabricable tactile texture.

An example of the optimization process for a texture is shown in 4.2. The effect on conver-

gence of using altering the weights is shown in Figure 4.3.
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Figure 4.3: a) When a significantly (10x) lower weight is used for 𝑤1, convergence of roughness to the
target may not occur. b) A significantly higher (10x) weight for 𝑤1 causes the visual energy to converge
more slowly, and it may not reach the target threshold.

TheAdam optimizer ([95]) implemented in Pytorch is used for optimization. A learning rate of

0.027 was chosen through trials with single parameters to permit convergence of the parameters

but avoid excessive oscillation. In the next sections, we explain how the roughness, contact and

visual functions, respectively 𝜙𝑟 , 𝜙𝑐 and 𝜙𝑣 , are defined.

4.4.2 Tactile roughness

We use a modified version of the model developed in [183], which computes the tactile rough-

ness of a surface by simulating the strain variation field resulting from skin contact on the surface.

The computation of the model is relatively expensive; we briefly summarize the model here for

completeness. The main step of the model is a finite element method simulation of the contact

of the skin with the tactile texture defined by 𝐻 (𝑥,𝑦), to obtain a corresponding displacement

field u𝐻 (𝑢, 𝑣,𝑤), where 𝑢, 𝑣,𝑤 are 3D coordinates in the undeformed layer of skin, with 𝑤 = 0

corresponding to the surface, and 𝑤0 = 0.75 mm corresponds to the approximate depth of the

tactile receptors.

To approximate the skin, we use the same two-layer block model as [183]. The block is 1 cm
2

in surface area and 0.5 cm in height, with a rigid upper half and soft lower half, and a force of 10
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Figure 4.4: In the original roughness model, a 3D FEM simulation was used to simulate the skin touching
a textured surface, and the maximum compressive strain field was sampled from a depth of 0.75 mm.

N is used. A model of the simulation is shown in Figure 4.4.

For a displacement field u, 𝜖 [u] = 1

2
(∇u + ∇𝑇u) is small-deformation strain tensor. If 𝜆3(𝜖)

is the largest-magnitude negative (compressive) eigenvalue of the strain tensor, our perceptual

roughness estimate 𝑓 (𝐻 ) can be written as

𝑓 (𝐻 ) = V(𝜆3(𝜖 (u𝐻 (·, ·,𝑤0)))) (4.2)

where V is the strain variation function on the plane 𝑤 = 𝑤0. We replace a stochastic function

defined in the original model with a deterministic function described in more detail below.

The expensive step is the computation of displacements u𝐻 for a given 𝐻 : it requires suffi-

ciently fine 3D meshing to resolve the detail at the scale of smaller texture features, and solving

a nonlinear (due to contact) constrained elastic deformation problem, which in our current im-

plementation has a computation time of 20-40 minutes and uses 15GB of memory when using

the required highly-refined mesh. In addition to the cost of evaluation, it is difficult to obtain

an approximation of the derivative of this function other than by extremely expensive finite dif-

ferences, so optimizing a functional depending on the u𝐻 can only be done with gradient-free

methods.
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This is the step that we replace with a direct map

𝜙𝑟 (𝐻 ) (𝑢, 𝑣) ≈ 𝜆3(𝜖 (u𝐻 (𝑢, 𝑣,𝑤0))), (4.3)

represented with a neural network.

Strain variation function. In [183], the strain variation function 𝑉 (𝜎) was computed using a

large set 𝑆 of 𝑁 randomized pairs of samples (𝑝1, 𝑝2), 𝑝𝑖 = (𝑢𝑖, 𝑣𝑖), separated, on average, by a

distance 𝑑 , are computed. Denoting 𝜎 (𝑢, 𝑣) = 𝜆3(𝜖 [u𝐻 ] (𝑢, 𝑣,𝑤0)),

𝑉 (𝐻 ) = 1

𝑁

∑︁
(𝑝1,𝑝2)∈𝑆

|𝜎 (𝑢1, 𝑣1) − 𝜎 (𝑢2, 𝑣2) | (4.4)

𝑁 = 8000 sample pairs were used, sampled from disks of radius 0.8mm placed at the endpoints

of randomly selected segments of length 2.2mm.

Instead of using a random sampling of points, here we use a deterministic evaluation of vari-

ation between each point and its neighbors within the desired distance, in order to derive a strain

variation field (Fig. 4.5):

𝑉 (𝐻 ) = 1

2𝑟𝑙

∫ 𝑙

𝑥=0

∫ 𝑙

𝑦=0

∫ 𝑑+𝑟

Δ=𝑑−𝑟

∫ 𝜋

𝜃=0

|𝜎 (𝑥,𝑦) − 𝜎 (𝑥 + Δ cos𝜃,𝑦 + Δ cos𝜃 ) |𝑑𝑥𝑑𝑦𝑑Δ𝑑𝜃 (4.5)

This function is smooth, so the gradient of the complete roughness estimates can be computed.

Learning the strain field. The FEM simulation used to compute 𝜎 (𝑢, 𝑣) in [183] is used solely

to find a single 2D strain field; that is, the simulation takes as input a 2D grid (the heightmap

defining the boundary conditions for the contact area), and returns as output a 2D grid (the

maximum compressive strain at a depth of 0.75mm). Image-to-image translation problems have

been studied extensively in machine learning, and here we adapt a convolutional neural network
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Figure 4.5: a) Stochastic sampling; b) Equivalent deterministic sampling

described in [80] to learn a relationship𝜙𝑟 between the input heightmap and the outputmaximum

compressive strain.

To acquire ground truth simulation data, we ran the FEM simulation for the 3D skin model

using a heightmap dataset of with 6307 image pairs, similar to the size of several datasets suc-

cessfully trained with this neural network structure. We use a set of black and white images

and textures (including the Describable Textures Dataset [29], VisTeX [132], and Brodatz texture

database [19]) and procedural textures to enrich the dataset. In some cases, images were ran-

domly cropped and/or scaled, and in some cases procedural noise was added. Heightmaps had

a maximum vertical height of 3mm and represented a texture of size 100mm
2
. As suggested in

[183], for each simulation we found the maximum compressive strain field at a depth 0.75mm,

and the strain field of a flat texture simulation was subtracted to discount any effect from edges.

Inputs and outputs were scaled to 128 × 128px images. The set was split randomly into three

sets: testing (312 images); training (4918), and validation (1077). We used the convolutional neural

network used as the generator in [80], with no dropout and using BCE loss, and trained for 200

epochs with batch size 1.

The learned strain field and its resulting tactile roughness value were computed from an un-
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Figure 4.6: Two examples from the learned CNN test set show the learned and ground-truth maximum
compressive strain fields from the input heightmaps. Strain fields are shown with increased contrast for
visual clarity.

seen testing set, and the learned value was compared against the actual value. The median error

in roughness was 5.3%, and the average error was 8.0%, well below the perceptual threshold of

19%. These values are well below the threshold of discrimination of 19% described in [183]. The

error distribution is shown in Figure 4.7.

Figure 4.7: The difference in computed roughness between the learned strain field and the real strain
field is typically very low, with a median of 5.3%.

The network allows the roughness to be computed in an average of 0.05 seconds, a significant
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speedup compared to the 20-40 minutes required to run the full FEM simulation.

The learned function and its gradient are used in optimization for a texture to converge toward

a desired tactile roughness, as shown in Figure 4.2.

4.4.3 Contact area

Computing the contact area requires the same time-intensive FEM simulation as computing

the roughness field. To compute the contact area, we use a function taking as input the height

field and outputting the field of distances between the surface and the simulated skin at each

point. The computation of this distance field is expensive and requires an FEM simulation as

described in section 4.4.2. Therefore, we replace this step with a neural network.

Learning the contact distance field. The FEM simulation takes in the input height field 𝐻 and

outputs a mesh displacement field u𝐻 describing the displacement of the skin when in contact

with height field 𝐻 . From this displacement field and the height field, we can acquire the field

of the distance d between the skin and the input texture at each point, where a distance of 0

indicates skin contact with the texture surface.

We adapt a similar convolutional neural network to learn the relationship between the input

height map𝐻 and the output distance field d = 𝜙𝑐 (𝐻 ). We used the same height field training set

as used previously in Section 4.4.2, which had about 6300 pairs. To improve the accuracy of the

learned function, we also provided the strain field as input, so that the input to the function has

2 channels of input: the height field and the strain field. An example of the function’s input and

output is shown in Figure 4.8.

To compute the error for the testing set of size 250, the learned distance field was computed

for each input heightmap with its learned strain fields, and the contact area was computed and

compared to the actual contact area derived from simulation. The errors in computed contact

area for this set had a mean of 2.7%, as shown in Figure 4.9.
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Figure 4.8: The contact area function takes as input the input heightmap (left, red channel) and the strain
field (left, green channel) and outputs the distance field (center, where black indicates a distance of 0).
The distance field can be used to compute the contact area (right, where the contact area is black)

.

Figure 4.9: The learned contact area matches the actual contact area very closely, with an error of 2.7%.
.

Contact optimization. The optimization aims to modify a texture so that its total contact area

moves to a particular target. Because contact area itself is a discontinuous function, the opti-

mization process was often unable to converge. Therefore, we use a smooth function weighting

the contact area at each point proportionally to the inverse of its distance. That is, for contact

distance field d, contact area is approximated by:

𝐴(𝐻 ) =
∫ 𝑙

𝑥=0

∫ 𝑙

𝑦=0

1

1 + 80 ∗ d(𝑥,𝑦) (4.6)
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This function provides a smoothweighted contact distance, so that a distance of 0 has aweight

of 1; weights decay rapidly so that a distance of 0.01 mm has a weight of 0.5 and a distance of 0.1

mm has a weight of 0.1.

4.4.4 Visual appearance

To preserve a texture’s visual appearance during optimization, we use a custom function based

on visual similarity of the original height field and the optimized one. Ideally, to measure visual

similarity, we would consider all possible views of a pair of textures under different lighting

conditions, apply a visual difference metric between each pair, and compute an aggregate metric.

We follow these steps, but use a restricted set of lighting conditions and use the simplest visual

metric to compare the images. In Section 5.8, we validate the setup we use comparing it with a

more expensive multiview optimization.

Figure 4.10: A texture heightmap rendered with (center) or without (right) shadowing and ambient oc-
clusion. Shadowing in small regions of lowered height is critical to a texture’s visual appearance.

We found that to ensure realistic results some features of images used to evaluate visual sim-

ilarity are critical. Specifically, we have observed that shadows, ambient occlusion and gloss affect

visual texture perception in a critical way (Figure 4.10), as a texture comprises many small ele-

ments that cast shadows over the surface. For this reason, we must opt for a rendering pipeline
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Figure 4.11: Plot showing render DSSIM and L2 difference errors for a set of textures in optimization
steps.

supporting these features to generate views of the texture, rather than, e.g., approximating the

texture image with the dot products of the normal with the light direction.

As discussed in Section 4.2, a variety of measures of visual similarity exist and are widely used.

Most could be used in our context in a way similar to the function 𝑉 above used for roughness;

e.g., [219] describes a perceptual measure of visual similarity represented with a neural network,

that can be easily applied in our context. However, we found that in the optimization context,

these measures tend to be too "permissive": while these metrics are good for measuring distance

between real images, synthetic images can be far from a given image perceptually, but close in

the sense of these metrics. For this reason, we opt for a relatively conservative 𝐿2 norm of the

difference between images. Figure 4.11 shows a scatter plot exhibiting that 𝐿2 has a correlation

with DSSIM.

Rendering. Heightmaps were rendered in a gray material with low specularity, similar to matte

plastic, using a Phong shader. Objects were rendered with three different lighting conditions,

with a single constant-direction parallel-ray light sources at an angle of 35° from the x-y plane
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Figure 4.12: Two examples from the test set for visual rendering. The learned function for the rendering
of heightmaps was learned with high accuracy: in most cases generated and real renderings are visually
indistinguishable.

and rotated on the z-axis 10°, 130°, or 250°. Images were rendered at 128 × 128px using Blender.

While differentiable renders have recently appeared [115], given the highly restricted nature

of the renderings that we need to compute (square texture samples), we opted for a similar ap-

proach as we use for the stress maps for the roughness measure. As an additional benefit, this

approach also provides a gradient of the rendered image with respect to the heightfield.

For each lighting condition, we trained the generative adversarial network of [80] on a set

of 4764 images, with a validation set of size 1059. The network was trained for 200 iterations.

Results showed high accuracy, as seen in Figures 4.12 and 4.13. All three lighting conditions had

similarly high accuracy (with mean pixel errors of 2.2%, 2.3%, and 2.4%).

The neural network offers a significant speedup to rendering: the neural network render

computation time is only 0.05 seconds after the network is loaded; while traditional rendering

time is approximately 15 seconds with ray-tracing shadows using Adaptive QMC and 20 samples

for the lighting source, and ambient lighting and occlusion.
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Figure 4.13: Left: L1 loss convergence of the generator during training of the GAN on texture rendering
for one lighting condition. Right: Histogram of the percent differences of all rendered pixel values across
300 real and generated texture pairs in the test set. Real pixel values are approximated very closely by the
network, with most pixels changing by less than 5%. The mean difference is 2.3%.

4.5 Results

4.5.1 Optimization results

Figure 4.15 shows the results of altering the roughness of a selection of textures using our

optimization for a desired tactile roughnessmaintaining visual appearance. Textures are rendered

here using a different lighting setup than the ones used for learning. Textures shown represent

10mm × 10mm in size.

Choosing a ground truth to compare to in our experiments is somewhat difficult, as we are

not aware of any previous work on optimizing tactile properties for complex textures. We have

chosen linear scaling as one obvious way to change geometry to increase texture roughness, while

maintaining similarity to the original texture; this method was used in [183].

On the righthand side of Figure 4.15, we show the results of using linear scaling of textures

to achieve the desired roughness. Textures are first scaled in height up to a limit of 3 mm; then,

if necessary, they are scaled in the x-y direction. The optimization-generated textures are nearly
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Figure 4.14: Renderings of two textures optimized for different contact areas.

indistinguishable from the original textures, while the textures modified with linear scaling are

almost always noticeably different, except in cases where the desired roughness is very close

to the original roughness. Making the texture flatter or scaling it upwards results in obvious

differences. Additionally, for some textures, a sufficient change in roughness is not achievable

through linear scaling alone.

4.5.1.1 Errors

Roughness. To ensure that the learned functions were robust to the types of textures gener-

ated with optimization, the errors in computed roughness were also computed for a set of 150

optimized textures, with three different target roughness values. The average error between the

simulated and learning-computed roughness for the optimized texture was 8.4% with a median

of 6.4%, compared to an average of 8.0% and mean of 5.3% for the overall test set.

Contact area. The same test was performed for a set of 100 textures optimized to have signifi-
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Figure 4.15: Seven example textures optimized for a desired roughness. The leftmost column shows the
original, target visual texture; the next three columns show the results when the roughness is achieved
through our optimization process; the final three columns show the results when the same roughness
is achieved through linear scaling in the z and/or xy directions. The optimization process achieves the
desired roughness with nearly-imperceptible changes to the visual appearance.
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Figure 4.16: Example of a texture cross-section for textures optimized for roughness. Changes to peaks
and troughs are not easily predictable.

cantly different target contact area. Here the average error in contact area between the simulation

and the learned data was 9%with amedian of 4.1%. The average error for the non-optimized input

set was 7.9%, with a median of 2.4%.

4.5.2 Evaluation and comparisons

The relationship between a surface’s geometry and its tactile properties is intricate, as it de-

pends on the difficult-to-predict way the elastic skin contacts the texture geometry. The tactile

roughness is dependent on the uneven distribution of pressure resulting from that contact area.

Optimization for these tactile properties while maintaining a similar appearance results in subtle

changes to the texture geometry, as shown in Figure 4.16. It typically is not as simple as, for ex-

ample, using height modification or frequency filtering: the target may be impossible to achieve,

and the visual appearance may not be preserved well, as discussed below.

4.5.2.1 Comparison with other methods

Height modification. Linear scaling is a simple method of altering a texture’s roughness or

contact area. If a texture is scaled up vertically, the contact area will decrease and the roughness
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Figure 4.17: Comparison of textures optimized or vertically scaled to alter contact area. The optimization
results in smaller changes to the geometry and better preservation of visual appearance.

will increase. The relative geometry is preserved, which suggests the appearance is also preserved

to an extent. However, as seen in Figures 4.17 and 4.15, the appearance often cannot be preserved.

In contrast, our contact and roughness optimizations alter the geometry in precise and small ways

to change the contact while preserving appearance.

Frequency modification. Another intuitive method of altering a texture’s roughness is to use

bandpass filtering, altering the texture in the frequency domain to reduce or amplify certain

frequencies. Literature and psychophysics studies suggest that roughness perception is highest
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Figure 4.18: Comparison of modifying a texture’s roughness by modifying the dominant frequency of
the texture, and using the optimization process. Modifying the frequency adds large-scale noise to the
geometry, which is clearly visible on the texture.

when features are spaced at a wavelength of 2-3 mm apart [72].

However, we have observed that modifying a texture to alter the frequencies in that range

does not alter the roughness is a reliable manner for all textures. For example, if the frequency is

increased but the amplified areas are not contacted by the skin, the roughness will not be affected.

More importantly, modifying the frequencies does not guarantee preservation of visual appear-

ance. Figure 4.18 shows an example of modifying a texture’s roughness by 4 just-noticeable-

difference (JND) thresholds by increasing the geometry’s frequencies in the 2.5mm wavelength

range. The large-scale noise added to the geometry to achieve the target roughness is visible

in the texture. Our optimization produces smaller changes in the geometry that are not easily

apparent.

Other filtering methods. Contact area and tactile roughness depend on the way the elastic

skin conforms around the geometry, which changes in nontrivial ways when the geometry is

e.g. smoothed using a filter. For example, smoothing a sharp peak results in increased contact

area and decreased height, which decreases roughness; but smoothing a round peak results in

decreased contact area and therefore may increase perceived roughness.
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Figure 4.19: Top: We tested the optimization with the addition of more points of view, 45
◦ from vertical

on the yz and xz planes, along with the original single top point of view. Bottom: The table shows the
percent pixel difference between the optimization heightmap results, for the original top point of view, one
additional point of view, or all five points of view. Only small changes occur when one or more additional
points of view are added.

4.5.2.2 Alternate points of view

Our visual optimization used a single, top point of view and multiple lighting conditions. To

determine the value of utilizing additional view directions, we ran the optimization with four

additional points of view, 45
◦
from the vertical direction at four angles (Figure 4.19, top) and with

the same three lighting conditions. As with the top view, additional neural networks (one per

view) were successfully trained to produce the rendered image from the specified angle and light

source. Rendered images were rescaled to 128 × 128 pixels. The roughness optimization was run
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with visual weight assigned to the new points of view: the single additional point of view was

weighted 40%; and when using all five points of view, 40% was given to the four new points of

view. The remainder of the visual weight was given to the top view direction. We choose a higher

weight for the top view to reflect higher importance of direct viewing in surface perception. As

the sensitivity of the results to the addition of new points of view was shown to be low, we did

not explore other options for weight allocation further.

We evaluated the results of the new optimizations against each other and the results from

the previous optimization, using pairwise comparisons. As shown in the table in Figure 4.19, the

optimized heightmap did not change significantly when new points of view were incorporated:

the image pixel difference between the results differed by less than 2.1%. For this reason, we

determined that using a single top viewpoint in the visual difference functional is an adequate

choice: this agrees with the intuition that views of a texture from different directions are highly

correlated from a broad range of angles.

4.5.3 Visual Experiments

In a set of visual psychophysics user studies, we tested the accuracy of our visual optimization

by comparing the source texture appearance to the optimized texture appearance and a simple

baseline method. For the baseline, we used a version of the texture scaled linearly in the direction

perpendicular to the surface to achieve the same roughness. We also tested the validity of our

single-view formulation by comparing it with a more expensive multiple-view formulation.

4.5.3.1 Stimuli

Six source textures were tested (shown in Figure 4.20). Source textures comprised different

types of natural and manufactured textures and had different base tactile roughness values.

For each source texture, four target roughness values were selected, and textures were opti-

mized to achieve those four roughness values. Additionally, successive linear scaling was used to
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Figure 4.20: Heightmaps of the six textures used in visual experiments.

create alternate textures with the same four target roughnesses.

For each source textures, a set of eleven 25mm square textured stimuli plates were 3D-printed

using a B9Creator DLP stereolithography printer, at 50 µm resolution. Three of the textures were

derived from different patches of the source textures; four were the optimized textures; and four

were linearly scaled textures.

As we have used B9 Black resin to yield the most accurate geometric results, to improve

visibility, textures were spray-painted with matte gray primer (Rust-Oleum Flat Gray Primer)

and a coat of clear matte varnish.

4.5.3.2 Experiments

In each trial, two textures were placed in a case that slides beneath a circular window, through

which one of the textures could be seen. Observers viewed the textures overhead at a distance of

40 cm, viewing through a mirror placed at an angle of 45
◦
as seen in Figure 4.21.

During each trial, observers were presented with two different textured surfaces sequentially.
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Figure 4.21: The experimental setup for visual experiments, which allows the subject to comfortably view
the three trial textures from an overhead view.

One of the pair was derived from the original source texture, and the other could be either another

patch of the source texture; a version scaled to a different roughness using linear scaling; or a

version scaled to a different roughness using our optimization process. Observers were tasked to

choose whether the two textures appeared the same (i.e., derived from the same texture source)

or different. Locations of the pair of textures were switched with equal probability. Observers

were given 4 seconds to view the textures two times each.

Trials were presented in a pseudorandom ordering, with the constraint that trials using the

same source texture were separated by at least two trials.

Six subjects took part in the experiments and performed four repetitions per texture pair.

Experiments took place in an office setting with ambient fluorescent lighting.

Experiment results. Our experiment results showed that the optimization process performed

substantially better than linear scaling. Figure 4.22 shows the proportions for the 48 test textures.

The dotted black line on each graph shows the threshold at which subjects judged the reference

textures from the same patch as similar to each other. Of the 24 optimized textures tested, 20
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Figure 4.22: Top panel: results from the experiments for each of our six textures. Bottom panel: Propor-
tions for all textures accumulated by JND distance from the reference texture. The x-axis for each graph
shows the distance in just-noticeable-differences in roughness values between the test texture and the
reference, and the y-axis shows the proportion judged the same. The dotted black line shows the refer-
ence threshold at which the reference textures were judged the same as each other.
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of them were judged the same as the source at least 50% of the time. In contrast, only 4 of the

linearly scaled textures were judged the same as the source at least 50% of the time. In fact,

half of the linearly scaled textures were judged different from the reference textures over 90% of

the time throughout all trials. 23 of 24 of the optimized textures were judged more similar than

the non-optimized version. The other one was derived from T1, a texture which was had high

sensitivity to small changes, as shown by the fact that only 50% of textures from the same source

were judged the same.

The bottom panel of Figure 4.22 shows textures accumulated by JND threshold distance from

the reference texture, according to the difference threshold of 19% found in [185]. In all cases, the

optimized textures match the references better than the linearly scaled textures. In general, linear

scaling tends to perform more successfully for small decreases in roughness, but performs poorly

for larger decreases or increases in roughness. Optimization creates textures that appear very

similar for small differences in roughness; the visual difference is only visible when the target

roughness is much larger.

4.5.3.3 Alternate points of view

To validate the visual similarity for different points of view and complex geometry, a subset

of three textures was chosen for a less restricted version of the experiments. In these experi-

ments, three texture heightmaps (T4, T5, T6) were used to fabricate a new set of textured objects,

whose curved geometry includes a local maximum and saddle (Figure 4.23). As in the previous

experiment, the reference stimulus was the source texture, and the test stimuli included a source

texture along with three optimized textures and three linearly-scaled textures of different rough-

ness values. The textures on the test stimuli were shifted by 50% so as to not appear identical

to the reference source texture. Protocols were similar to the previous experiment: the reference

and test stimulus were displayed sequentially for one second each, and the participant was asked

whether the two plates had the same or different textures. The participant sat around 30 cm from
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Figure 4.23: A shape with curvature, including a local maximum and a saddle, was used for a less-
restricted visual experiment. A rendering of the textured shape with the T5 input texture and a two-JND
rougher optimized output texture is shown here.

the textures on the table, and was free to move their head and rotate the textures; in combination

with the shape’s curvature, the viewer was able to see the texture geometry frommany directions.

Eight people participated in the study, and each performed two evaluations of each texture

against the source. As shown in the results in Figure 4.24, participants judged the optimized

textures the same as the reference a majority of the time, but the linearly-scaled textures were

almost never judged the same. The linearly-scaled textures were judged the same as the reference

at a lower rate than the previous experiment as a result of the new viewing angles, suggesting

differences are more apparent when many view directions are allowed; in contrast, the optimized

textures were judged the same at a rate similar to the previous experiments, showing that our

optimization is robust to different viewing directions.

The bottom panel of Figure 4.22 shows textures accumulated by just-noticeable-difference

(JND) threshold distance from the reference texture, according to the difference threshold of 19%

found in [185]. In all cases, the optimized textures match the references better than the linearly

scaled textures. In general, linear scaling tends to perform more successfully for small decreases

in roughness, but performs poorly for larger decreases or increases in roughness. Optimization

creates textures that appear very similar for small differences in roughness; the visual difference

is only visible when the target roughness is much larger.
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Figure 4.24: Texture similarity results from the experiments on a subset of three textured shapes with
curved geometry. The x-axis shows the difference in roughness just-noticeable-difference intervals be-
tween the test texture and the reference, and the y-axis shows the proportion judged the same. The
dotted line shows the reference threshold a which the reference textures were judged the same as each
other.

4.5.4 Tactile roughness experiments

Tactile roughness experiments were used to validate the tactile roughness optimization. Stim-

uli for this experiment were the same six sets of five 3D-printed texture plates used in the first

visual experiments.

In the tactile experiments, ten participants were asked to sort groups of five texture plates by

touch from smoothest to roughest. In each trial, the five plates were placed in a random order

beneath a translucent panel that obscured the textures’ fine-scale appearance. Participants used

their dominant index finger to press each plate and determine a sorted order. They were free to

feel the plates multiple times and to use as much time as needed.

4.5.4.1 Results

The heat map in Figure 4.25 shows the mean proportion with which each texture plate was

judged rougher than each other of the same texture source. Textures are numbered from 1 to

5 according to the designed JND level from smoothest to roughest. Participants were able to

reliably sort the plates, including pairs differing by only one threshold, a majority of the time.
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Figure 4.25: This map shows the average proportion of trials in which each texture (vertical) was sorted
as tactually rougher than each other texture (horizontal). Almost all discrepancies were between textures
designed to differ by one threshold, and the error rate is close to the expected 84%.

Participants sorted these most-similar pairs according to the designed ordering 85% of the time

(across-subject standard deviation 4%), which is nearly the expected threshold of 84% with which

consecutive plates were designed. Only three of the 60 total comparisons resulted in an ordering

discrepancy between a pair of textures differing by more than one threshold step.

4.5.5 Contact area experiments

Twelve textures were fabricated to experimentally verify the change in contact area. For each

texture, three versions were fabricated: the original texture, a texture optimized to have 70% the

contact area, and a texture optimized to 140% the contact area. These 36 textures were fabricated

as 10mm squares, using B9Creator V1.2 with a resolution of 50 µm in B9 black resin.

To compute the contact area, the fabricated texture surfaces were coated in ink using a com-

pliant sponge and an ink-pad. The thumb or second finger of each participant was covered with

Tegaderm (3M), a thin layer of transparent plastic with a thickness of 0.1 mm. The tegaderm was
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Figure 4.26: The results of one texture optimized for a lower (top) or higher (bottom) contact area. From
left to right: texture rendering, texture fingerprint, thresholded finger contact, and simulated contact.

used to avoid discrepancies due to the fingerprint ridges, and to provide easier cleaning of the

finger surface between trials to avoid ink residue. The finger was pressed against the texture with

a weight of 8.8 N placed on the finger to ensure uniform force. Then the finger was pressed to a

sheet of paper to derive an inkprint of the contact surface.

Nine participants provided texture finger prints in this manner. The prints were scanned at

600dpi in 8-bit grayscale, and the contact areas were computed and averaged over all subjects.

The pipeline is shown in Figure 4.26. All optimized contact surfaces fell within 20% of their target

contact area, with an average difference of 9.2%. Additionally, the contact areas of the 36 printed

textures were compared against the simulated contact areas. Figure 4.27, shows the result of this

comparison, with a close linear correlation with an approximate slope of 1.

4.5.5.1 Temperature Experiments

An additional set of experiments was used to determine whether the printed textures felt

different from one another in tactile temperature.
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Figure 4.27: Comparison of the experimental and simulated contact area of 36 textures.

Stimuli. The stimuli for this experiment were twelve textures: four base textures (T2, T3, T4,

T5) each optimized with three different contact areas differing by 40%. Each texture surface was

applied to the top of a flat plate 1.2mm in height. To enable tactile discriminability at room

temperature for the purposes of the experiment, we used metal rather than plastic, due to its

higher thermal conductivity: texture models were 3D printed and cast in bronze. A photograph

is shown in Figure 4.28.

Setup and protocols. In the experiments, textures placed on a flat cast-iron plate over ice,

which maintained a temperature at the top surface of approximately 16°C as measured by a laser

thermometer.

In each trial, the participant was presented with two textures of the same class with different

optimized contact area (either 40% smaller or 40% greater, where 40% is approximately the JND

threshold for thermal discrimination described by [179]). A cover was placed over the experiment

area to hide the textures from view.

In experiments, eight participants were asked to feel the two textures using static pressure

with the index finger and to answer which texture felt colder. Participants were allowed as much
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Figure 4.28: Photograph of sets of bronze-cast textures used for tactile temperature experiments (T3 and
T5). Textures are ordered from less to more contact area. Inconsistencies in appearance may be due to the
manufacturing process and polishing.

time as needed to feel the textures, and were given time between trials to ensure the finger itself

was not too cold.

Results. Throughout the trials, participants responded that the texture with more contact area

felt colder 83.1% of the time, which suggests that the threshold of discrimination is indeed ap-

proximately 40%, as found by previous research. For pairs that differed by two JND, the texture

with more contact area was judged as colder 91% of the time.

4.6 Applications

Applying tactile textures to fabricated objects is useful for both aesthetic and practical pur-

poses. We have formulated several examples and have fabricated a subset as textured 3D models

(Figure 4.29).
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Figure 4.29: From left to right: texturedmodels; models colored by roughness; photographs of 3D-printed
models. a) Two frogs textured with a tactile wood texture optimized for different roughnesses. (Modified
from [209]). b) A bracelet with textured links that have the same visual texture but have alternating
roughnesses. c) A procedural texture slider for a light switch, where the tactile roughness corresponds to
light intensity.
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Modeling. Often, one might prefer a particular visual texture for an object while preferring a

distinct tactile feeling. For example, imitation plastics are often used tomatch a specificmaterial’s

appearance, and our model could help match the material’s desired feeling. Our model could

enable the creation of multiple surfaces that look similar but feel different, either for aesthetic

purposes or to serve as a tactile signifier of another characteristic. It could also be used to make

surfaces that feel similar but look different, which could be combined in a visual pattern or logo,

for example on a mat, that feels uniform when touched.

We manufactured two different animal models as examples. First, a starfish model was tex-

tured with a relatively smooth surface texture (roughness 0.05). The texture was altered to feel

rougher (roughness 0.092), and was applied to produce another, rougher fabricated starfish with

the same appearance (shown in Figure 4.1). We also fabricated a textured model of a tree frog

with a keeled wood pattern. The initial texture had a roughness of 0.045, and was modified to

produce a smoother texture of roughness 0.03 and used to fabricate a smoother frog with the

same appearance (Figure 4.29a).

Wearables. Tactile and visual aesthetics are common to clothing, jewelry, and other wearables,

which often touch the skin. Tactile properties may also serve as functional. Some wearable

devices, such as headphones with buttons, have areas that the user finds and uses by touch rather

than sight; these areas could be hidden visually for aesthetic appearance or for more discreet use.

Wearables could also use roughness actively to convey haptic signals that are unobtrusive to the

user and invisible to others: a watchband with a high-resolution pin array could produce different

tactile textures that could be felt by the user to convey different signals; similarly, altering the

contact area could allow different rates of thermal transfer between a wearable and the user’s

skin.

As an example of a wearable with tactile aesthetics, we fabricated a bracelet band with links

having the same texture appearance, but alternating smoother and rougher tactile feelings (Figure

4.29b). Smoother links had a roughness of 0.06, and the rougher links had roughness 0.09.
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Accessibility. Tactile items and textures are particularly useful for people with visual impair-

ments. If a designer creates two objects that look different, our model could be used to tune the

textures so that they also feel different, while preserving the designed visual appearance. Visual

textured objects are commonly used in pieces for board games, puzzles, and household items,

where colors or visual labels are often used to distinguish between otherwise similar objects or

regions. A variation in tactile feeling can provide similar cues for a person unable to see the

differences. As an example, we produced a model for a dimmer light switch slider. The texture

gradient looks the same throughout, but the roughness increases such that it will correspond

with the light intensity as the slider is moved (Figure 4.29c).

4.7 Conclusion

We have presented an optimization procedure to preserve texture appearance while alter-

ing tactile roughness or temperature. We used neural networks to enable computation of tac-

tile roughness, contact area, and visual appearance at speeds several orders of magnitude faster

than the standard methods, providing differentiable functions usable in optimization for a target

appearance and feeling. We used psychophysical experiments to demonstrate that our method

provides a significant improvement over simple linear scaling in controlling tactile roughness,

and we provided several examples of how our procedure can be used to produce interesting and

useful textured objects.

4.8 Limitations and Future Work

While the tactile model has been tested on objects with moderate curvature ([183]), it may

not be usable for high-curvature 3D objects. Furthermore it was tuned for hard materials, and it

has a minimum feature resolution; using it for soft or fine materials may require changes. Our
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static touch simulation is adequate for dynamic touch up to a certain resolution, as static touch

receptors dominate perception for features over 100𝜇𝑚 ([73]); nevertheless it may be improved

by dynamic simulation. The model is also based on a simulation of a simplified model of human

skin, which, while found to be robust, may be improved by amore complex model. Our procedure

could used for a different material or more physically complex skin structure by retraining the

neural network on a new set of simulation field outputs.

Similarly, our procedure describing visual appearance was tuned for the shading of the our

material (diffuse plastic resin) and may not be directly usable for surfaces that are much more

glossy, translucent, or non-smooth. In these cases, our method could be modified to learn the

rendered appearance for a particular desired material given a suitable training set. However, as

seen in Figure 4.28, our current visual model can still work to preserve visual appearance fairly

well even for non-matte materials.

Our model presents a tradeoff between preserving exact visual appearance and achieving an

exact tactile roughness. Very high changes in tactile roughness may not be achievable while

fully preserving visual appearance. We found that similarly-appearing textures can typically be

producedwithin a range of 3-4 JND thresholds in each direction. Ourmetric for visual appearance

similarity is likely a lower bound for perceptual similarity, so a fast perceptually-basedmethod for

texture similarity could be used instead in the optimization and could improve texture generation.

Our model was evaluated to target either a tactile roughness or contact area; optimizing for both

or more quantities is future work. Other optimization parameters could also be used: for example,

we could enforce printability constraints depending on the printer used to manufacture a model.

Our visual model uses shading from an overhead view with ambient lighting. At severe an-

gles or severe lighting conditions, the differences may be more apparent. Our model could be

tuned to a particular lighting condition or viewpoint if it were used in the training set, but any

optimized texture likely will not appear exactly the same under all lighting and viewing condi-

tions, as some geometric changes will always be present near the surface. However, as we found
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in both optimization tests and human user studies with curved objects, our optimization using a

single viewpoint is robust, and the results look similar to the target even when viewed at other

angles.

Our model limits texture height to 3mm as a manufacturing constraint. We have observed

that due to the limited elasticity of the finger, textures deeper than this are not different tactually

from those with the lower-depth truncated to 3mm. However, we could easily optimize a taller

texture by optimizing the top 3mm of it, and preserving the remainder.

To aid in the fabrication process, our method could be integrated into a 3D modeling tool to

provide precise control of tactile feeling when modeling a textured fabricable object. Using our

model and existing models for compliance using compliant microstructures, it would be possible

to control three of major dimensions of touch: compliance, temperature, and roughness, and to

study the unknown interactions between these properties. Creating objects with differing tactile

properties as separate from appearance may also be of interest to the fields of neuroscience and

neurophysiology in future studies of psychophysics and multi-modal perception.
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5 | Rational MRI Coil Design: An

Optimization Framework for the

Design of Radiofreqency Coils for

Magnetic Resonance Imaging

This chapter is adapted from a preprint [167], a joint work with José E. Cruz Serrallés, Ilias I.

Giannakopoulos, Damien Chen, Daniel Zint, Daniele Panozzo, Denis Zorin and Riccardo Lattanzi.

abstract

The radiative characteristics of the radiofrequency receive coils dictate the signal-to-noise ra-

tio (SNR) of magnetic resonance images. Despite the crucial importance of RF coils, the practical

coil design process has remained a largely empirical one. This work introduces a novel optimiza-

tion framework for rational coil design, which relies on a fully automated pipeline that combines

rapid electromagnetic simulations, shape optimization and coil meshing. The objective function

iteratively maximizes SNR performance in a target region of interest with respect to the ultimate

intrinsic SNR, which is the theoretically highest SNR independent from any particular coil de-

sign. The forward simulation employs a fast electromagnetic solver based on coupled surface
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and volume integral equations. The coils are represented as B-spline curves with an associated

width, and automatically meshed for EM simulation. We implemented a new method to tune

and decouple coils at each iteration without manual user intervention. The algorithm optimizes

the size and position of a given number of coils with a combination of grid search and a line

search. We demonstrated the framework by designing receive arrays of increasing complexity

that yield optimal SNR for different target regions inside a numerical head model. SNR simula-

tion time ranged from 15 s for a 3-coil configuration to 32 s for a 12-coil array, constrained to a

helmet-like surface, including tuning and decoupling. The optimized 12-coil geometry yielded

9% higher average SNR performance in the brain at 3 T. This work represents the first automated

coil optimization framework that uses full-wave electromagnetic simulations and ultimate per-

formance benchmarks. This novel approach enables the systematic design of coils for magnetic

resonance imaging with significantly improved SNR performance, potentially transforming coil

development from empirical design to physics-driven optimization.

5.1 Introduction

Radiofrequency (RF) coils are at the heart of any magnetic resonance (MR) imaging applica-

tion. They are the source of the RF fields that generate MR signals and the mechanism by which

RF fields generated by excited nuclear spins are detected. RF coil design is therefore a critical

determinant of the performance of all MR imaging (MRI) systems. As the number of channels

available in MR systems has increased to enable faster acquisitions with parallel MRI [93, 162,

205], building prototypes of coil arrays has become more difficult and expensive; as a conse-

quence, coil design has relied ever more on electromagnetic (EM) simulations. While careful coil

design is important at all field strengths, appropriate coil designs are truly essential for high-field

MRI, both for the preservation/improvement of image quality and for the avoidance of adverse

effects in patients. This work aims to introduce a novel optimization framework for rational RF

94



coil design.

For receive arrays, the number, geometry, and arrangement of each coil element, as well as

interelement decoupling, coil loading, and parallel imaging performance, are important design

parameters that can impact the overall signal-to-noise ratio (SNR) [93, 162, 205]. However, current

approaches to coil design (Section 5.2.1 are limited by time-consuming simulations and a lack of

systematic, automated tools to explore complex design spaces.

This previous work does not address another major limitation of the current approach to coil

design: the quality of a coil is typically judged in comparison to other available coils, giving no

indication of whether there is room for further improvement beyond the best-performing design

tested. To address this, theoretical coil performance limits [50, 100, 102, 109], such as the ulti-

mate intrinsic SNR (UISNR), could be used as absolute references during coil design [57, 100, 101,

103, 187]. The UISNR is the highest possible SNR compatible with electrodynamics and inde-

pendent from any particular coil design [109, 138, 139, 204]. The UISNR represents the highest

SNR allowed by electrodynamics, independent of any specific coil configuration. Prior studies

(Section ?? showed that even state-of-the-art coils capture only a fraction of this limit in cortical

regions, especially at ultra-high field strengths, leaving substantial room for improvement. This

suggests the need for alternative design strategies that aim to approach ultimate performance.

UISNR integration into the coil design process has remained an open problem. To address

this, we employed the MRGF concept to develop a novel shape optimization technique that au-

tomatically enhances coil configurations based on ultimate performance benchmarks. Given an

existing coil configuration, we compute its variations for a set of design parameters to find a

design that improves coil performance. This approach has been highly successful in material de-

sign, structural mechanics, and fluid dynamics, but has yet to be effectively applied to MRI coil

design [66, 107, 108, 136, 212].

A key challenge is the need for an unconditionally robust simulation and modeling pipeline.

At each step of the optimization, a new coil geometry must be generated, meshed, tuned, and
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simulated with no human intervention – a task currently infeasible with standardMRI simulation

tools, in which users routinely spend days setting up a single simulation [216].

We propose an integrated approach to tackle this problem, which jointly considers forward

simulation, shape computation, and coil meshing. Together with a new framework for rational

coil design based on shape optimization, this work introduces several innovations: an accurate

and fast solver for the surface integral equation, a method to automatically tune RF coils, an ap-

proach tomimic preamplifier decoupling in coil simulations, and amethod for automatic meshing

of coil geometries.

We demonstrate the use of our optimization framework through numerical examples of in-

creasing complexity, from single-coil positioning, to shape optimization of small arrays, to large-

array performance optimization toward the UISNR. We also show that the optimization results

are consistent for different anatomical models.

The rest of the manuscript is organized as follows. In Section 5.2, we present a brief overview

of previous work that is relevant to this paper. In Section 5.3, we specify the constraints of

the design space for our proposed coil optimization. In Section 5.4, we describe our approach

to efficiently model RF coils, whereas in Section 5.5, we describe the new SIE solver and the

proposed method for automatic coil tuning and ideal decoupling. In Section 5.6, we introduce

the coil design optimization algorithm and in Section 5.7, we provide details of the numerical

experiments performed in this study to demonstrate it. The results are presented in Section 5.8

and discussed in Section 5.9, whereas Section 5.10 summarizes the main points of this work.

5.2 Related Work

In this section we briefly review related work in MRI coil optimization and shape optimiza-

tion. Some more in-depth discussion of most closely related numerical methods can be found in

Section 5.5.1.4.
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5.2.1 Coil design optimization

Initial work on coil design optimization was performed in the quasi-static regime due to lower

field strengths and hence lower operating frequencies [47, 98, 156, 182, 206]. Analytical methods,

such as spherical harmonics [156] and cylindrical harmonics (Fourier-Bessel series) [182], were

employed for the design of receive coils, gradient coils, and solenoidal coils. Analytical methods

were popular because their corresponding basis and testing functions yield diagonalized systems,

which are easily invertible. Later on, the quasi-static Biot-Savart Law was used explicitly to de-

sign gradient and RF coils, along with an error function that was minimized using conjugate

gradient descent [206]. Further work involved variations of these basic approaches, such as ran-

domized Monte Carlo sampling to match desired spherical harmonics [98], applications of the

Biot-Savart Law to obtain desired field patterns (inverse design), and full-wave simulation using

thin-wire approximations [47], among others. Quasi-static coil design methods have remained

popular tools, especially for gradient coils, since these operate at much lower frequencies than

RF coils. More recent examples of quasi-static coil optimization include parametric optimization

of 1- and 2-loop arrays using the Biot-Savart law [67], boundary element method-based field pro-

file matching with ohmic loss penalties for gradient coil design [147], and multi-objective field

matching for gradient and shim coil design [148], among others [207].

Biot-Savart and quasi-static harmonic solutions are no longer accurate at MRI field strengths

higher than 1.5 T.While Jefimenko’s Equation [81] offers a full-wave equivalent of the Biot-Savart

Law, modeling using this equation can be difficult due to the strong
1

𝑅3 singularity in the Green’s

function and requires making approximations that might not be valid, such as uniform current

distribution in a loop. Early attempts at coil optimization in the full-wave regime include the

application of the Helmholtz Green’s function with so-called stream functions to design a loop at

4.5 T [106], the design of a body coil by simulating first with Biot-Savart and then with Method

of Moments discretization of the EFIE formulation while optimizing with a genetic algorithms
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metrics such as slice B1 homogeneity [211], and the application of a genetic algorithm to body

coil design using a method-of-moments approach [155]. More recent examples in the full-wave

regime include an inverse design approach for the design of a uniplanar RF coil while optimizing

for RF field homogeneity [69] and parametric coil optimization for the design of RF transmit

arrays while optimizing for slice homogeneity [168].

Another work solved an optimization problem to find the current density that maximized

SNR for parallel imaging applications [135]. All these works focused on the design of one- or

two-element arrays, rather than dense arrays, and used simple geometries to mimic the anatomy.

Genetic algorithms have also been proposed to simultaneously optimize multiple design param-

eters for birdcage coils or two-element arrays, also in this case using uniform objects with simple

geometries [66, 136, 212]. The main limitation of these previous studies was the time-consuming

EM simulations that prevented the implementation of iterative optimization algorithms to design

many-element arrays using realistic anatomical models.

The Magnetic Resonance Green Function (MRGF) method, based on a fast EM solver tailored

to MRI applications, was more recently proposed to simulate in minutes the EM field inside a

realistic anatomical model for any RF coil designed over a specified substrate for which theMRGF

had been precomputed [190]. A proof-of-concept study suggested that the MRGF method could

be employed to iteratively optimize size and position of two transmit coils to maximize magnetic

field homogeneity inside a numerical human head model [168]. No other attempts have been

made at using MRGF to automatically optimize the design of arrays with a larger number of coil

elements.

The UISNR mentioned in the intro provides an absolute benchmark for coil design, repre-

senting the highest possible SNR compatible with electrodynamics, and was considered in a few

previous works [100, 102, 109, 138, 139, 204]. It is computed using a complete EM basis to sim-

ulate idealized, infinite arrays. Prior studies have shown that conventional coils achieve only a

fraction of the UISNR, particularly in superficial cortical regions and at higher field strengths [50,
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57, 101, 103, 187]. This underscores the significant potential for improvement. More recently,

UISNR has been used to directly inform coil design and optimization pipelines [99, 104, 192, 216],

motivating the approach taken in this work.

5.2.2 Shape optimization

There is an extensive literature on shape optimization in a variety of contexts, ranging from

fluid dynamics to electromagnetic modeling and metamaterial design. The general mathematical

foundations of PDE-constrained shape/topology optimization can be found in classical references

[4, 12, 13, 133].

Most of these work focus on optimization of surfaces bounding 3D domains or planar curves

bounding 2D domains in the context of fluid or heat flows or elasticity. A recent survey [124] fo-

cuses on shape optimization in the context of electromagnetic modeling. POE-constrained shape

and topology is widely used for metamaterial design in the context of elasticity [15, 141], electro-

magnetics and optics [34, 116]. PDE-constrained optimization of curves on surfaces of the type

we perform in our work is less common. Most of the work is related to either curve smoothing/-

fitting to data e.g., adaptation of active contours to surfaces [16] and other smoothing methods

[71, 85, 105]. Our approach to avoiding overlaps in coils, based on the contact potential intro-

duced in [114] and extended to codimensional objects in [113] is related to the potential-based

repulsive curves approach considered in [214]. A constrained-optimization based approach to

self-avoiding curves is applied to polymer adsorption on surfaces in [193].

5.3 Coil Design Constraints

The coil optimization pipeline must satisfy specific constraints to ensure that the array can be

constructed as designed and utilized effectively for MRI. The first constraint is that a coil cannot

intersect itself, and no two coils should touch each other. Otherwise, the current patterns would
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Figure 5.1: Coils are constrained so that they do not self intersect nor go outside the domain of the
substrate. We implemented this by adding a barrier energy term 𝑏 (𝑑, 𝑑), which vanishes if the distance 𝑑
between contact pairs is larger than a predefined 𝑑 threshold.

be modified, and for example, two touching coils would effectively become a single, larger coil.

In addition, these topology changes could result in sharp changes in the objective function with a

negative effect on the optimization algorithm. The second constraint is that the coils cannot be too

small, otherwise the SNR would be dominated by electronic noise and the loading of the sample

would be poor, resulting in low performance [61]. The third constraint is that the optimized

values for lumped elements (capacitance, inductance, and resistance) should fall within a user-

defined range that reflects commercially available capacitors. The fourth constraint is that the

coils must belong to the parametrization domain of the surface of the substrate (Section 5.4.2).

During the automated design process, the first constraint is guaranteed by selecting a design

space that satisfies it by construction. While optimizing the coil geometry, this is achieved by

enforcing a barrier potential term, where we consider (1) a coil edge and the parameterization

domain boundary edge; (2) edges within one individual coil to be the set of possible contact pairs

(see Figure 5.1 and Section 5.6.1). We also introduced bridges (Section 5.4.4) to avoid coils touching
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each other. Instead of specifying a minimum value for the coil radius, the second constraint is

automatically enforced by adding coil noise into the SNR calculation. In this work, we used only

capacitors as lumped elements, and we satisfied the third constraint by specifying the minimum

and maximum capacitance to be 1 pF and 200 pF, respectively, in the input JSON. These values are

read and enforced during tuning and ideal decoupling (Sections 5.5.4.1 and 5.5.4.2). The fourth

constraint is enforced by construction during the meshing process (Section 5.4.4).

5.4 Modeling

We represent coils in a parametrized way, suitable for optimization. The coil parametrization

is established in two steps. First, we construct a map from a 2D domain to the 3D surface of the

coil former (Section 5.4.2). Second, we represent coils as parametric curves with width in the

2D domain (Section 5.4.3). Finally, we discretize the parametrized coil design (Section 5.4.4). To

facilitate interactive coil design, a graphical user interface (GUI) was developed (Section 5.4.1).

5.4.1 User interface

The GUI was implemented in TypeScript and based on the Babylon.js framework (Figure 5.2).

TheGUI allows users to place and adjust control pointswithin a 2D domain, where coil geometries

are rendered in real-time as a collection of B-splines. The interface supports intuitive translation,

scaling, and duplication of entire coils, individual strips, or single control points. Lumped element

components (Section 5.4.3) can be both visualized and parametrically adjusted through dedicated

property panels. All modifications to the coil geometries are automatically reflected within the

integrated 3D scene, which also allows users to overlay visualizations of volumetric body models

that can be loaded as isosurfaces. A 3D cursor tool enables precise selection and transformation

of coil elements within the 3D view, ensuring that users can configure coil geometries and their

associated lumped element properties in a single, closed environment.
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Figure 5.2: The graphical user interface (GUI) to manually design or display coils. The GUI visualizes
coils and the substrate using both 2D and 3D interconnected views.

The parametrized coil design (control points, width, lumped elements information etc.) can

be exported in a human-readable JSON file. This file is also the input for the optimization pipeline

(Section 5.6.2).

5.4.2 Substrate parametrization

We assume that the substrate surface, i.e., the coil former, is given as a triangular surface

mesh, which is a collection of triangles embedded in 3 dimensions. The triangular surface mesh is

flattened in 2D with the method of Scalable Locally Injective Maps (SLIM) [151]. SLIM minimizes

distortion energies with a re-weighting scheme and prevents flipped geometry. Any position u

in 2D can be mapped to a position on the 3D substrate surface with Φ(u) : R2 → R3
, by finding

the nearest 2D triangle, computing the position’s barycentric coordinates for that triangle, and

evaluating the coordinates in the corresponding 3D triangle (Figure 5.3). For efficient evaluation

of Φ(u), we use an axis-aligned bounding box (AABB) tree data structure [14] to find the nearest

triangle.
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(a) (b) (c)

(u, v) (x, y, z)

SLIM

Figure 5.3: (a) Geometry of an example substrate surface mesh outside the head model. (b,c) Scalable
Locally InjectiveMaps (SLIM) [Rabinovich 2016] with symmetric Dirichlet tominimize arbitrary distortion
energies.

5.4.3 Coil parametrization

We use B-splines 𝐵(𝑡), 𝑡 ∈ (0, 1) as parametric curves to represent coils in 2D. Every coil has a

width𝑤 , such that the entire coil domain in 2D is described as 𝐵(𝑡, 𝑠), 𝑡 ∈ (0, 1), 𝑠 ∈ (−𝑤/2,𝑤/2),

where ∇𝑠 is orthogonal to ∇𝑡 . The 3D coil geometry is described by Φ(𝐵(𝑡, 𝑠)).

RF coils have electrical components (capacitors, inductors, resistors, or feeding ports) attached

to them that also need to be part of the coil parametrization. We represent those components as

lumped elements and store their parametric position 𝑡 ∈ [0, 1) within the B-spline to which they

are attached. Note that lumped elements always span the entire coil width, i.e., 𝑠 ∈ (−𝑤/2,𝑤/2).

5.4.4 Meshing

We discretize the coils in 2D with triangle meshes and then map those triangles to the 3D

surface (Figure 5.4). The entire meshing pipeline consists of: (1) converting the B-splines into

polylines, (2) generating strips from the polylines by offsetting them by 𝑤/2 in both directions,

(3) inserting a line for each lumped element, (4) triangulating, and (5) mapping to 3D.
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B-Spline Polylines Strip Insert Lumped Elements Triangulate

2D Output Map to 3D

Figure 5.4: Overview of the meshing pipeline.
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b2

b3l(t)

b(t)
f

Figure 5.5: Illustration for the flatness evaluation in Equation (5.1), where the flatness 𝑓 of a cubic Bézier
curve 𝑏 (𝑡) is defined as the maximum distance between 𝑏 (𝑡) and 𝑙 (𝑡).

Conversion into polylines. For simpler handling, we convert the B-splines into Bézier curves.

We recursively subdivide the Bézier curves at 𝑡 = 0.5 until the flatness of each curve is below

a certain threshold 𝜏 [45]. For a cubic Bézier curve with four control points [b0, b1, b2, b3], the

flatness of a curve 𝑏 (𝑡) is defined as

𝑓 = max
0≤𝑡≤1

| |𝑏 (𝑡) − 𝑙 (𝑡) | |, (5.1)

where 𝑙 (𝑡) is the line segment between the start point b0 and end point b3 (see Figure 5.5),

which can also be represented as a cubic Bézier curve with control points [b0, (2b0 + b3)/3, (b0 +
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2b3)/3, b3]. Hence we have

𝑏 (𝑡) − 𝑙 (𝑡) = (1 − 𝑡)2𝑡 (3b1 − 2b0 − b3) + (1 − 𝑡)𝑡2(3b2 − b0 − 2b3). (5.2)

For 𝜉 = (3b1 − 2b0 − b3) and 𝜂 = (3b2 − b0 − 2b3), we obtain an upper bound for the flatness,

𝑓 2 = max
0≤𝑡≤1

∥𝑏 (𝑡) − 𝑙 (𝑡)∥2

= max
0≤𝑡≤1
(1 − 𝑡)2𝑡2 [((1 − 𝑡)𝜉𝑥 + 𝑡𝜂𝑥 )2 + ((1 − 𝑡)𝜉𝑦 + 𝑡𝜂𝑦)2]

≤ 1

16
(max{𝜉2

𝑥 , 𝜂
2

𝑥 } +max{𝜉2

𝑦, 𝜂
2

𝑦}).

(5.3)

By recursively subdividing the curves until max{𝜉2
𝑥 , 𝜂

2
𝑥 } + max{𝜉2

𝑦, 𝜂
2
𝑦} ≤ 16𝜏2

is satisfied, and

replacing all curves with line segments, we guarantee to introduce a discretization error of at

most 𝜏 .

Strip generation. We generate a strip contour from the polylines by offsetting each line segment

by 𝑤/2 in the positive and negative normal direction and computing their intersections (Fig-

ure 5.6). The vertices in the interior of a strip are the intersections between two adjacent offset

polylines; for example, in Figure 5.6, 𝐴 and 𝐵 are computed by intersecting lines 𝑙1 and 𝑙2, and

𝑙2 and 𝑙3, respectively. The polyline’s boundary vertices are offset in the normal direction of the

incident line segment. In this way, we obtain the Planar Straight Line Graph (PSLG) of the strips.

To avoid introducing small discretized elements due to short lines in the PSLG, we collapse edges

shorter than a tolerance of 𝜖 = 10
−3
, starting with the shortest edge (Algorithm 1).

Lumped elements insertion. The lumped elements are modeled with the delta-gap method

[84], which requires the lumped elements to be attached to edges that are aligned. We store the

lumped element position as a parametric position 𝑡 ∈ [0, 1) on the B-Spline. While converting

B-splines into polylines, we first split the B-splines at these parametric positions, so that the

lumped element position exists among the converted polyline vertices. We treat all the lumped
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Algorithm 1 PSLG decimation for strip generation

1: Input: PSLG with vertices and edges, tolerance 𝜖

2: Output: Simplified PSLG with vertices and edges

3: for all edges (𝑣1, 𝑣2) do
4: Compute edge length 𝐿𝑣1𝑣2

5: Insert (𝑣1, 𝑣2) into priority queue 𝑄 with cost 𝐿𝑣1𝑣2

6: end for
7: while the minimum cost > 𝜖 do
8: Extract edge (𝑣1, 𝑣2) with minimum cost from priority queue

9: if 𝑣1 is an endpoint or 𝐿𝑣1𝑣3
< 𝐿𝑣0𝑣2

then ⊲ (𝑣0, 𝑣1) and (𝑣2, 𝑣3) are the adjacent edges
10: 𝑣′← 𝑣1

11: else
12: 𝑣′← 𝑣2

13: end if
14: Collapse (𝑣1, 𝑣2) to 𝑣′
15: Remove all edges adjacent to 𝑣′ from queue

16: for all edges (𝑣′, 𝑣𝑖) adjacent to 𝑣′ do
17: Recompute edge length 𝐿𝑣 ′𝑣𝑖 as cost

18: Reinsert edge (𝑣′, 𝑣𝑖) into priority queue 𝑄

19: end for
20: end while

element vertices as endpoints, so that they still exist after collapsing the small edges during strip

generation. Finally, for each lumped element, we insert a line segment (the "delta gap") that

connects the two endpoints of the lumped element and attaches it to the strip PSLG. We also

enforce that each lumped element is attached to a collection of edges forming a straight line,

which is a requirement of MARIE.

Triangulation. We compute the Delaunay triangulation of the PSLG using the software Triangle

[172]. During triangulation, we also save all the edge correspondences for the lumped elements

by adding edge masks.

Mapping to 3D.Once the coils are discretized in 2D, the vertex positions of the triangulation are

mapped to 3D using Φ(u). However, while coils may overlap in the 2D representation, they must

not touch in 3D. We ensure this by adjusting our mapping function Φ(u) for each coil. The first

coil 𝐶0 is mapped without any modifications, i.e., Φ0(u) = Φ(u). For every new coil we ensure
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Figure 5.6: Strip generation (solid black) by offsetting polylines (dashed green).

that it does not intersect with the other coils already placed on the substrate. We achieve this by

applying a displacement to the mapping,

Φ𝑘 (u) = Φ(u) + 𝐷𝑘 (u) (5.4)

𝐷𝑘 (u) = 𝜆
𝑘∑︁
𝑖=0

𝑊 (𝑑𝑖 (u),𝑤𝑖 + 𝜖) (5.5)

𝑊 (𝑟, ℎ) =


(
1 − 𝑟

ℎ

)4 (
4
𝑟
ℎ
+ 1

)
if 𝑟 < ℎ

0 otherwise

, (5.6)

where 𝑑𝑖 (u) is the distance to the 𝑖𝑡ℎ coil, and𝑊 (𝑟, ℎ) is theWendland function [203]. The param-

eters 𝜆 and 𝜖 control the height and the steepness of the displacement. The Wendland function

has compact support and therefore influences the coil geometry only locally, creating bridges on

the coil 𝐶𝑘 (Figure 5.7).
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(a) (b)

create
bridges

Figure 5.7: Coils can overlap in the 2D representation (a), but they must not intersect in the 3D model
(b). We ensure this by embedding a displacement mapping that automatically creates bridges at positions
where two coils cross each other.

5.5 Simulation

5.5.1 Background

Integral equation (IE) techniques offer distinct advantages for electromagnetic (EM) modeling

in MRI applications. Unlike finite-difference time-domain and finite element methods, they are

inherently free from grid dispersion artifacts [110, 177]. This is because IE formulations rely on

Green’s functions, which serve as exact propagators of EM fields from sources to observation

points. Furthermore, for time-harmonic (single-frequency) simulations, like MRI simulations, IE-

based solvers give rise to densematrices with properties such as symmetry, low-rank, hidden low-

rank, or smooth spectral decay, which can be leveraged for fast and memory-efficient solutions

using numerical linear algebra algorithms [213].

5.5.1.1 Definitions

All EM simulations operate in periodic steady-state, at frequency 𝑓 with units Hz. We define

the angular frequency as 𝜔 = 2𝜋 𝑓 with units rad/s. In MRI, the frequency of operation is given by

𝑓 = 𝛾𝐵0, where 𝛾 ≈ 42.58MHz/T is the gyromagnetic ratio of
1
H hydrogen atoms in water and B0
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is the static magnetic field strength of the scanner.

Given real-valued relative permittivity 𝜖R, electrical conductivity σ, absolute permittivity in

vacuum 𝜖0, and imaginary unit 𝑖 , we define the complex-valued relative permittivity as:

𝜖 = 𝜖R +
𝜎

𝑖𝜔𝜖0

. (5.7)

In the IE formulation, we also use the complex-valued electric susceptibility 𝜒 = 𝜖 − 1. In EM

modeling, 𝜖 , 𝜒 , 𝜖R, and σ are scalar fields, which we denote as 𝜖 (®𝑟 ), 𝜒 (®𝑟 ), 𝜖R(®𝑟 ), and 𝜎 (®𝑟 ), respec-

tively. We discretize these quantities and the EM fields onto a uniform 3D grid of 𝑁𝑣 voxels, and

we denote them with a subscripted index to refer to their value at the voxel with the same index.

To describe coil tuning and decoupling, we extensively use the Schur complement, which is

defined as follows: Given a block matrix,

M =


A B

C D

 , (5.8)

the Schur complement of block A in M is denoted as M/A and defined as:

M/A = D − CA−1B. (5.9)

Similarly, the Schur complement of block D in M is defined as:

M/D = A − BD−1C. (5.10)

5.5.1.2 Volume Integral Eqation (VIE) solver

The Volume Integral Equation (VIE) formulation that we use involves calculating the volu-

metric current density ®𝐽𝑏 (®𝑟 ) in the body subject to an incident electric field excitation at a single
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frequency 𝑓 . The body is characterized by a distribution of relative permittivity 𝜖R(®𝑟 ) and elec-

trical conductivity 𝜎 (®𝑟 ), which we group into a distribution of complex relative permittivities

𝜖 (®𝑟 ).

To discretize the system, we can employ piecewise constant (PWC) basis functions and PWC

testing functions, which results in a Galerkin discretization. We first consider a basis function

centered at the origin 𝑓0 : R3 → {0, 1} in a grid of voxel dimensions Δ𝑥 × Δ𝑦 × Δ𝑧 . We define 𝑓0

evaluated at point ®𝑟 = [𝑥 𝑦 𝑧] as:

𝑓0(®𝑟 ) =


1 if |𝑥 | < Δ𝑥

2
∧ |𝑦 | < Δ𝑦

2
∧ |𝑧 | < Δ𝑧

2

0 otherwise

. (5.11)

We then define the basis function 𝑓𝑖 : R3 → {0, 1}, at voxel 𝑖 with center ®𝑟𝑖 :

𝑓𝑖 (®𝑟 ) = 𝑓0(®𝑟 − ®𝑟𝑖). (5.12)

Note that each Cartesian component of the current density at a voxel has its own basis func-

tion, which means that the total number of PWC basis functions needed to discretize the current

density is equal to 3𝑁𝑣 .

We lump all possible body current contributions into density ®𝐽𝑏 and consider this density to

consist of equivalent current distributions in free space, for simplicity. The discretized system is

given by: (
∆ − P𝜒/𝜖N

)
J𝑏 = 𝑖𝜔𝜖0P𝜒/𝜖Ei (5.13)

The term Ei refers to the discretized incident electric field distribution. The operator P𝜒/𝜖 multi-

plies each Cartesian component at voxel 𝑖 by the corresponding ratio 𝜒𝑖/𝜖𝑖 . The operator ∆ refers

to the self-testing term or Gram matrix and for PWC basis functions is equal to Δ𝑥Δ𝑦Δ𝑧I, where

I is the identity matrix of appropriate dimensions.
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With as few as 30 × 30 × 30 voxels for a 5mm discretization, the full system would occupy

approximately 100GB of RAM when using double-precision arithmetic. To address this, we ex-

ploit the translation invariance of the Green’s function underlying the problem, and diagonalize

the block Toeplitz operator N using the 3D Fast Fourier Transform (FFT), lowering the mem-

ory footprint from 𝑂
(
𝑁 2
𝑣

)
to 𝑂 (𝑁𝑣 ). To invert the system, we can employ an iterative solver for

non-symmetric systems, such as the Generalized Minimal Residual (GMRES) method.

5.5.1.3 Surface Integral Eqation (SIE) solver

The Surface Integral Equation formulation that we employ discretizes the single-frequency

Electric Field Integral Equation (EFIE) using Rao-Wilton-Glisson (RWG) basis functions and RWG

testing functions, resulting in a Galerkin discretization of the underlying system. Each RWG basis

function is defined over a different pair of edge-adjacent triangles in the corresponding mesh.

Given a vector of basis coefficients J𝑐 ∈ C𝑁 , where 𝑁 is the number of triangles in the mesh

that discretizes the conductors, and a vector of applied voltages V𝑐 ∈ C𝑁𝑡 at the terminals, where

𝑁𝑡 is the number of terminals (e.g., one port for each element of a coil array), the SIE system is

given by:

Z𝑐𝑐J𝑐 = −FV𝑐 (5.14)

The complex symmetric matrix Z𝑐𝑐 ∈ C𝑁×𝑁 is the Galerkin discretized system, and the opera-

tor F ∈ C𝑁×𝑁𝑡 maps voltages to electric fields at the terminals. Assembling the Z𝑐𝑐 system in-

volves computing𝑂 (𝑁 ) singular and𝑂
(
𝑁 2

)
non-singular integrals. We adapt 1DGauss-Legendre

quadrature rules to compute these integrals, using a simple nesting scheme to approximate in-

tegrals over triangles. We compute the singular integrals using case-specific coordinate system

transformations that remove the singularity from the integrand, at the expense of heavy use of

trigonometric and inverse trigonometric functions.

Because the system Z𝑐𝑐 is complex symmetric and not Hermitian, we use direct inversion
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instead of conjugate gradients to invert the system in (5.14). Note that our SIE system results from

the discretization of a Fredholm equation of the First Kind, which yields eigenvalues clustering

at 0, further compromising the speed and applicability of iterative solving methods such as the

conjugate gradients.

5.5.1.4 Magnetic Resonance Integral Eqation (MARIE) suite

In the Magnetic Resonance Integral Equation (MARIE) suite [189], SIE and VIE are jointly

solved to compute the EM fields generated by RF coils within a dielectric sample (e.g., a numerical

body model). The SIE models the coils by discretizing their geometry with triangular surface

meshes and representing surface currents using RWG basis functions [153]. The VIE models the

EM phenomena within the body, discretized on a uniform voxel grid, with polarization currents

approximated via PWC basis functions [146]. The combined volume-surface integral equation

(VSIE) framework exploits the multilevel Toeplitz structure of the Green’s function operators

that map volumetric currents to fields, enabling fast matrix-vector multiplications through FFT

[225].

We combine the SIE system with the VIE system by calculating the body-coil coupling opera-

tor Z𝑐𝑏 ∈ C𝑁×𝑁𝑣 , which maps from body current PWC basis coefficients J𝑏 to an incident electric

field for each RWG basis function. Similarly, we calculate the operator Z𝑏𝑐 = ZT

𝑐𝑏
that maps RWG

currents to incident electric field at each voxel. We introduce the term Z𝑏𝑏 :

Z𝑏𝑏 =
(
𝑖𝜔𝜖0P𝜒/𝜖

)−1 (∆ − P𝜒/𝜖N
)
. (5.15)

Finally, the coupled VSIE system is given by:


Zcc Zcb

−ZT

cb
Zbb



Jc

Jb

 =

−FVt

0

 . (5.16)

112



In the past decade, a series of algorithms have been implemented to further improve MARIE’s

accuracy and efficiency. In terms of accuracy, it was shown that piecewise linear (PWL) basis

functions yield more accurate simulations than PWC basis functions [51]. MARIE’s solution time

can considerably increase for simulations involving fine voxel resolutions. To address this, since

the discretized Green’s function tensors of the VIE sub-problem exhibit low multilinear ranks, it

was shown that they can be compressed by at least two thousand times using the Tucker model,

without sacrificing numerical precision [53]. As a result, the compressed operators can more

easily fit in the limited memory of graphical processing units, leading to faster simulations. It

was later shown that also the full VSIE system [56] can be compressed, using the precorrected

FFT (pFFT) [64, 65] for cases when the coils are close to the body model, tensor train (TT) [55]

for cases when the coils (or shields) are far from the body. A hybrid formulation of the VSIE that

combines pFFT, cross-TT, and the adaptive cross approximation can also be used [54]. Finally, the

SIE formulation has been adapted to explicitly model the coils’ lumped elements in the simulation

[84] rather than considering each lumped element a separate port [190], which can considerably

increase the number of required MARIE solves.

These advances have enabled a broader class of applications that involve iterative evalua-

tions of MARIE or its constituent modules. In particular, the increased speed and accuracy of

MARIE’s solver have allowed for the efficient use of body model-specific EM field bases to com-

pute theoretical ultimate performance limits and the associated ideal current patterns (ICP) [57].

Tissue-dependent EM bases can be combined with the discrete empirical interpolation method

[24] to construct the Magnetic Resonance Green Functions (MRGF) [191], which is a reduced-

order model of MARIE’s VIE and VSIE operators.

5.5.1.5 The Magnetic Resonance Green Function (MRGF)

EM simulation tools typically require an initial preprocessing step to assemble the necessary

geometrical matrices involved in the simulation [191]. This preprocessing step can become com-
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putationally intensive, particularly for multi-element coil arrays discretized with thousands of

triangles. For coil design optimization, where the coil geometry changes in each iteration, this

pre-processing step becomes a significant bottleneck. The MRGF method addresses this high

computational cost by allowing the incident fields of arbitrary RF coils to be expressed as linear

combinations of precomputed fields of an EM basis [191]. This allows considerably faster predic-

tions of the resulting electromagnetic fields in the body with less than 1% average accuracy loss

when comparedwith the full MARIE solver [191]. SinceMRGF transformsMARIE into a powerful

framework for inverse problems, it was employed to implement the RF coil design optimization

framework in this work.

Next, we briefly describe the steps associated with the MRGF method. First, one generates

a basis of incident electric fields for a given body model by computing the fields generated by

current sources external to the body. These current sources may consist of either a cloud of

voxelized volumetric currents surrounding the body or of RWG surface currents whose support

is a closed surface enclosing the body model [52]. One assembles the basis by exciting with one

current element at a time and storing the vectorized incident field as a column of the incident

field matrix Ei ∈ C3𝑁𝑠×𝑁 𝐽 , where 𝑁𝑠 is the number of non-air voxels in the grid and 𝑁 𝐽 is the

number of source current elements. Next, one applies the singular value decomposition (SVD) to

Ei, yielding the following factorization.

Ei = UiΣiVH

i
. (5.17)

The orthonormal columns of the Ui matrix contain the dominant incident field modes, which one

would then truncate up to a desired tolerance in the matrix 𝐿2 norm sense, or equivalently one

would keep all vectors whose singular values 𝜎𝑘 satisfy 𝜎𝑘 > 𝜎1𝜀, where 𝜎1 is the largest singular

value and 𝜀 is the prescribed tolerance.

After the calculation of the incident field basis, one applies the Discrete Empirical Interpo-
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lation Method (DEIM) [24] to select a subset of voxels for which to calculate the incident fields,

which can then be interpolated to derive the incident fields for all tissue voxels using the operator

X that DEIM provides. After DEIM, one solves the VIE system Zbb for all incident fields in Ui,

yielding a set of volumetric currents stored in matrix M. One then forms the matrix Mm:

Mm = XT

(
UT

i
M
)
X. (5.18)

When simulating a coil geometry, one would calculate the matrix Zdc, which is equal to the

incident electric field at the DEIM interpolation points over all of the RWG coil currents. The

product ZT

dc
MmZdc is a close approximation of the term ZcbZ−1

bb
ZT

cb
of the full VSIE system. One

then applies the SVD to Mm, resulting in the approximate factorization UmΣmVH
m, which one

would then truncate to achieve a specified tolerance, as was done with the incident fields in Ui,

concluding the MRGF assembly process.

The MRGF only needs to be assembled one time per body model, and can be used to simulate

any coil configuration constrained to surfaces that lie or extend beyond the substrate where the

current sources used to generate the basis were defined. In summary, using the MRGF method,

we can precompute the inverse of the VIE operators and reduced the number of points needed

to compute the electric and magnetic field over all voxels, drastically accelerating the solution of

(5.16), which we invert directly following the procedure outlined in [191]. With this precomputed

solution, we then calculate the total electric and magnetic fields, which are required to determine

the SNR during coil design optimization.

5.5.2 Simulation improvements

The previous versions of MARIE [65, 190] assembled the SIE operators using fixed quadrature

orders that were too low for precise computation of the coil-to-coil interaction matrix Zcc. A lack

of precision in these operators means that gradient calculations via finite differences will be too
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Figure 5.8: Convergence of error in SIE integrals as a function of Gauss-Legendre quadrature order, when
assembling Zcc using the original implementation.

inaccurate for optimization, unless the step size is increased substantially. This code was addi-

tionally unoptimized and implemented in the Matlab scripting language, resulting in assembly

times for Zcc that would render the optimization intractable. Additionally, the previous version

lacked algorithms for tuning, matching, and decoupling, which are essential components of any

electromagnetic simulations involving coils and antennas. In this work, we developed optimized

routines for the assembly of Zcc that are not only faster but also considerably more precise. We

also developed algorithms for tuning and decoupling of coil arrays that allow us to simulate the

coil-to-coil interactions more realistically.

5.5.2.1 Improving the precision of the SIE operator assembly

The SIE assembly process for computing coil-to-coil interactions Zcc involves numerically in-

tegrating complex-valued singular functions for four different scenarios: vertex adjacent pairs,

edge adjacent pairs, overlapping or self-term pairs, and non-singular pairs. Since the non-singular
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Figure 5.9: Evaluation of 𝑓1(𝑥) using direct evaluation (blue) and Taylor Series approximation (red). The
precision of direct evaluation suffers from a total loss of precision for arguments of magnitude 10-3 or
smaller. The threshold is set to the point in the graph where the two sets of data meet (𝑥 ≈ 3).

pairs are analytic over the 4D integration domains, we apply simple Gauss-Legendre quadrature

to integrate these terms. However, for the other three cases, we apply coordinate transforma-

tions that then eliminate these singularities at the expense of greater numerical complexity in

the integrands. We start by considering the real part of an integrand used in the vertex-adjacent

integrals,

𝑓1(𝑥) =
(
𝑥2

2
− 1

)
cos(𝑥) − 𝑥 sin(𝑥) + 1. (5.19)

When evaluating these integrands, 𝑥 is equal to 𝑘0𝑟 , where 𝑘0 is the wavenumber in free space

and 𝑟 is the distance between observation and source quadrature points. Such a function, when

evaluated for small arguments as defined, suffers from catastrophic loss of numerical precision.

We can understand why by expressing this function in terms of its Taylor series about 𝑥 = 0,
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which has an infinite radius of convergence in 𝑥 :

𝑓1(𝑥) = 1

−1 + 𝑥
2

2!
− 𝑥

4

4!
+ 𝑥

6

6!
− . . .

+ 𝑥
2

2
− 𝑥4

2 · 2!
+ 𝑥6

2 · 4!
− . . .

− 𝑥
2

1!
+ 𝑥

4

3!
− 𝑥

6

6!
− . . .

= − 𝑥
4

8
+ 𝑥

6

72
− . . .

(5.20)

As is evident, the constant and quadratic terms in the Taylor series cancel out. For small argu-

ments, the quartic terms are considerably smaller than the quadratic terms. When these terms

cancel out, most of the precision in the floating point representation is lost, resulting in a catas-

trophic loss of numerical precision. Figure 5.9 shows the relative error in the direct evaluation

of 𝑓1(𝑥) when using double-precision floating point numbers with respect to the direct evalua-

tion when using 512-bit precision floating point numbers, as well as the relative error of a Taylor

Series approximation with 12 non-zero coefficients (polynomial order 26). Figure 5.8 shows the

convergence of the relative error in Zcc as a function of Gauss-Legendre quadrature order, for

each different adjacency type. For the quadrature orders in the original implementation, the rela-

tive error in Zcc was on the order of 10
−4
, which is insufficient for coil optimization. Additionally,

even when the quadrature order was increased to the maximum possible order, the relative er-

ror in Zcc plateaued at approximately 10
−8
, which was still significant, potentially impacting the

estimation of gradients and the line search procedure when optimizing coil array geometries.

We addressed this loss of numerical precision by dividing the evaluation of each singular in-

tegrand into two cases depending on whether the absolute value of the argument is smaller or

larger than a threshold. The threshold depends on the approximated function but is usually either

|𝑥 | = 1 or |𝑥 | = 3. For this work, it was determined empirically for every integrand by comparing

the evaluation in double-precision with the evaluation in either 512-bit floating point representa-
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Figure 5.10: Convergence of error in SIE integrals as a function of Gauss-Legendre quadrature order,
when assembling Zcc using the proposed implementation.

tions for logarithmically spaced samples. When the input exceeds the threshold, we evaluate the

integrands using their functional forms, as in (5.19). When the input is smaller than the thresh-

old, we use the Taylor series of the integrand, evaluated using Horner’s method for polynomial

evaluation, because direct polynomial evaluation can also suffer from loss of precision. We also

subdivided the non-singular interactions into four categories, based on the ratio of the distance

between the triangle pairs to the free-space wavelength 𝜆 = 𝑐/𝑓 . We used a high quadrature order

for the near terms and progressively lowered the quadrature order as for greater distances.

We summarize all of the replaced integrands in the SIE assembly and their Taylor series ap-

proximations in Table 5.1. We include the leading term of each Taylor series about 0, as the order

of the leading term correlates with the severity of the loss of numerical precision. Fig. 5.10 demon-

strates the same convergence analysis as in Fig. 5.8 but with the proposed implementation. We

observe that with these improvements, the relative error can drop to 10
−17

, with the largest rela-

119



tive error equaling 10
−15

for edge adjacent interactions. The quadrature order for each category

was then set to values for which the relative error was minimized.

Table 5.1: Singular integrals needed for the SIE assembly and associated Taylor expansion when the input
𝑥 is lower than the specified threshold.

Function Leading Term Threshold

cos(𝑥) − 1 + 𝑥2

2
+𝑥4

4!
1

cos(𝑥) − 1 + 𝑥2

2
− 𝑥4

24
−𝑥6

6!
1

𝑥 − sin(𝑥) +𝑥3

3!
1

𝑥 − 𝑥3

3!
− sin(𝑥) −𝑥5

5!
3

cos(𝑥) + 𝑥
2

sin(𝑥) − 1 −𝑥4

4!
3

cos(𝑥) + 𝑥
2

sin(𝑥) − 1 + 𝑥4

4!
+2𝑥6

6!
3

𝑥
2
(cos(𝑥) + 1) − sin(𝑥) + 𝑥3

12
+𝑥4

80
3

𝑥
2
(cos(𝑥) + 1) − sin(𝑥) −𝑥3

12
1

(
1 − 𝑥2

8

)
cos(𝑥) + 5𝑥

8
sin(𝑥) − 1 −𝑥6

6!
3

3𝑥
8
+ 𝑥3

48
+ 5𝑥

8
cos(𝑥) −

(
1 − 𝑥2

8

)
sin(𝑥) − 𝑥5

320
3

(
3 − 𝑥2

2

)
cos(𝑥) + 2𝑥 sin(𝑥) − 3 − 𝑥4

4!
−𝑥6

5!
3
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Function Leading Term Threshold

2𝑥 cos(𝑥) +
(
𝑥2

2
− 3

)
sin(𝑥) + 𝑥 −3𝑥5

5!
3

(
1 − 𝑥2

8

)
cos(𝑥) + 3𝑥

4
sin(𝑥) − 1 − 𝑥2

8
+ 𝑥4

48
− 𝑥6

4·6!
3

(
𝑥2

8
− 1

)
sin(𝑥) + 3𝑥

4
cos(𝑥) + 𝑥

4
+ 𝑥3

12
+ 𝑥5

4·5!
3

𝑥
2

cos(𝑥) +
(
𝑥2

8
− 1

)
sin(𝑥) + 𝑥

2
− 𝑥3

4!
−𝑥5

5!
3

cos(𝑥) − 1 + 𝑥
4

sin(𝑥) + 𝑥2

4
+ 𝑥6

2·6!
3

𝑥
4

cos(𝑥) − sin(𝑥) + 3𝑥
4
− 𝑥3

4!
+ 𝑥5

4·5!
3

cos(𝑥) + 𝑥 sin(𝑥) − 1 +𝑥2

2
1.6818

cos(𝑥) + 𝑥 sin(𝑥) − 1 − 𝑥2

2
−𝑥4

8
3

𝑥 cos(𝑥) − sin(𝑥) −𝑥3

3
3

(
1 − 𝑥2

2

)
cos(𝑥) + 𝑥 sin(𝑥) − 1 +𝑥4

8
3

𝑥 cos(𝑥) +
(
𝑥2

2
− 1

)
sin(𝑥) +𝑥3

6
1.6818

(
1 − 𝑥2

2

)
cos(𝑥) +

(
𝑥 − 𝑥3

6

)
sin(𝑥) − 1 −𝑥4

4!
1.6818

(
𝑥 − 𝑥3

6

)
cos(𝑥) +

(
𝑥2

2
− 1

)
sin(𝑥) +4𝑥5

5!
3

cos(𝑥) + 𝑥
3

sin(𝑥) + 𝑥2

6
− 1 − 𝑥4

3·4!
3
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Function Leading Term Threshold

𝑥
3

cos(𝑥) − sin(𝑥) + 2𝑥
3

+ 2𝑥5

3·5!
3

(
1 − 𝑥2

6

)
cos(𝑥) + 2𝑥

3
sin(𝑥) − 1 + 𝑥4

3·4!
2

(
𝑥2

6
− 1

)
sin(𝑥) + 2𝑥

3
cos(𝑥) + 𝑥

3
−𝑥5

5!
3

(
𝑥2

2
− 1

)
cos(𝑥) − 𝑥 sin(𝑥) + 1 −𝑥4

8
3

(
1 − 𝑥2

2

)
sin(𝑥) − 𝑥 cos(𝑥) −𝑥3

6
3

(
𝑥2

2
− 1

)
cos(𝑥) −

(
𝑥3

6
− 𝑥

)
sin(𝑥) + 1 +𝑥4

4!
1.6818

(
1 − 𝑥2

2

)
sin(𝑥) +

(
𝑥3

6
− 𝑥

)
cos(𝑥) −𝑥5

30
3

(
−𝑥4

24
+ 𝑥2

2
− 1

)
cos(𝑥) +

(
𝑥3

6
− 𝑥

)
sin(𝑥) + 1 + 𝑥6

144
3

(
+𝑥4

24
− 𝑥2

2
+ 1

)
sin(𝑥) +

(
𝑥3

6
− 𝑥

)
cos(𝑥) +𝑥5

5!
3

5.5.2.2 Accelerating the assembly of SIE Operators

The original SIE assembly implementation was written in the Matlab scripting language and

was unoptimized. As we saw in the previous section, many of the integrands in the calculation

of singular integrals also suffered from catastrophic loss of numerical precision, necessitating

custom implementations of these functions for small arguments that are also fast to compute.

We addressed this requirement and the need for optimized code by rewriting the SIE assembly

code in C++. We introduced a number of optimizations meant to both decrease assembly times
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and to lighten the load on CPU caches.

Each singular integrand type uses a number of trigonometric expansions that are indepen-

dent of the dimensions of the pairs of triangles, and depend only on the quadrature order. We

calculated these geometry-independent quantities at compile time using the C++11 standard’s

constexpr variable and function modifier, which forces evaluation at compile time. Additionally,

the original implementation kept a sorted list of non-singular interaction pairs over the 𝑁𝑡 trian-

gles of the mesh that grows as𝑂
(
𝑁 2

𝑡

)
, as well as sorted lists of vertex-adjacent, edge-adjacent, and

self term pairs that grow as𝑂 (𝑁𝑡 ). The self term pairs consist of pairs {(𝑖, 𝑖) for 𝑖 ∈ {1, 2, . . . , 𝑁𝑡 }},

which can be inferred automatically during assembly. The non-singular pairs consist of all pairs

that are not vertex-adjacent, edge-adjacent, or self terms. This allows us to discard entirely the

list of non-singular pairs, which we replace with a loop that iterates over all possible pairs, using

a binary search algorithm over the entries in the vertex-adjacent and edge-adjacent lists to deter-

minewhether to carry out the computation. The binary search introduces a negligible𝑂 (log(𝑁𝑡 ))

term during assembly, but because the input data needed to assemble the operator grows as𝑂 (𝑁𝑡 )

instead of𝑂
(
𝑁 2

𝑡

)
, the assembly is typically considerably faster due to improved cache coherence.

5.5.3 Admittance and impedance parameters over terminals

When we apply voltages Vt to the coil array, we obtain a corresponding set of currents Jt,

with positive currents flowing into the corresponding positive side of each terminal. The linear

operator describing this transfer function is called the admittance parameter matrix, which we

denote as Yt. The voltage-current relationship can thus be summarized as

Jt = YtVt. (5.21)
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In order to calculate the admittance parameters Yt, we use the Schur complement of block Zbb in

(5.16) to obtain the loaded coil-to-coil interaction matrix Zcbc,

Zcbc = Zcc + ZcbZ−1

bb
ZT

cb
. (5.22)

We can thus express the solution for Jt in (5.16) as

ZcbcJc = −FVt. (5.23)

Finally, we use the identity Jt = −FTJc to obtain the following relationship between applied

terminal voltages Vt and induced terminal currents Jt. The minus sign stems from FTJc resulting

in the current flowing out of the positive side of the terminal,

Jt = FTZ−1

cbc
FVt = YtVt. (5.24)

The operator acting on Vt is precisely the admittance parameter matrix of the system.

5.5.3.1 Accelerating SVIE using the MRGF

As discussed in Sec. 5.5.1.5, we used the MRGF method to drastically accelerate the computa-

tion of Zcbc in (5.22). More specifically, for each coil geometry, we calculated the incident electric

field over the DEIM interpolation points Zdc and computed the product with

(
ZT

dc
Um

)
Mm

(
VH

mZdc

)
≈ ZcbZ−1

bb
ZT

cb
. (5.25)

The right-hand side is precisely the SVIE term appearing in (5.22), which we replace with the

left-hand side to calculate the SVIE termmuchmore efficiently with the precomputed VIE inverse

operator Mm. In this work, we required fewer than 5, 000 interpolation points when assembling
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the MRGF operators for all numerical experiments at 5mm isotropic resolution.

Yt

JnJn′
+

−
Cn

JC

Vn

Jp
+

−
Vp

Figure 5.11: Circuit schematic demonstrating the tuning approach.

5.5.4 Adding tuning capacitors to coils

The terminals can be subdivided into two categories: non-port terminals and port terminals.

We denote each type using subscripts 𝑛 and 𝑝 , respectively. As such, we can subdivide the termi-

nal voltages, terminal currents, and admittance (or impedance) parameters using this convention,

allowing us to rewrite (5.24) as follows:


Jp

Jn

 =

Ypp Ypn

YT
pn Ynn



Vp

Vn

 . (5.26)

In order to tune the coil array, we attach capacitors Cn at the non-port terminals in parallel.

Consequently, when we express the admittance parameters of (5.26) with a new non-port termi-

nal current J′n = JC+Jn flowing into the parallel combination, with JC corresponding to the vector

of currents flowing into the capacitors. The Voltage-Current (V-I) relationships of the capacitors

are

JC = D( 𝑗𝜔Cn)Vn. (5.27)
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We can thus write the current-voltage (I-V) relations with respect to Jn′ ,


Jp

Jn′

 =

Ypp Ypn

YT
pn Ynn + D( 𝑗𝜔Cn)



Vp

Vn

 . (5.28)

We introduce Ynn′ = Ynn + D( 𝑗𝜔Cn) and obtain the loaded impedance parameters by applying

the Schur complements to invert the loaded admittance matrix over the terminals,

Zt =


Zpp Zpn

ZT
pn Znn

 =


(Yt/Ynn′)−1 −Y−1
ppYpn

(
Yt/Ypp

)−1

−Y−1

nn′Y
T
np(Yt/Ynn′)−1

(
Yt/Ypp

)−1

 . (5.29)

This square matrix dictates the Voltage-Current (V-I) relationships of the loaded system. How-

ever, because only the capacitors at the non-port terminals load the coil array, no current will

flow into the primed terminals, meaning that Jn′ = 0, which allows us to ignore the second block

column, 
Vp

Vn

 =


I

−Y−1

nn′Y
T
np

 (Yt/Ynn′)−1Jp. (5.30)

The top block dictates the Voltage-Current relationships over the ports and is equal to the impedance

parameter matrix over the ports Zp. The admittance parameters over the ports, which we use in

the following section when tuning, are simply the inverse of Zp,

Yp(Cn) = Yt/Ynn′ = Ypp − Ypn(Ynn + D( 𝑗𝜔Cn))−1YT

pn. (5.31)

While not relevant when tuning, the lower block contains the transfer function from the port

currents Jp to the voltages at the non-port terminals, which we will use when discussing our

decoupling strategy.
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5.5.4.1 Tuning a coil array

We apply Lorentz reciprocity to our problem and argue that decoupling preamplifiers behave

like current sources in parallel with source resistances under reciprocity. We set these resistances

to∞ and refer to this process as ideal decoupling. Note that this could be approximated in practice

for receive arrays with preamplifier decoupling. As a result, when a port is driven, all of the other

port currents are identically 0. Therefore, we only consider the self-interactions when tuning the

coil array, i.e., we consider only the diagonal of loaded impedance parameters Yp in (5.31). We

tune the coil array by solving the following optimization problem:

min
Cn∈R𝑁𝑐



Im{
D
(
Yp

)}

2

2

s.t. (C𝑙 )𝑘 ≤ (Cn)𝑘 ≤ (C𝑢)𝑘 ∀𝑘 ∈ {1, . . . , 𝑁𝑐}.
(5.32)

The vectors C𝑙 and C𝑢 denote lower and upper bounds, respectively, for the tuning capacitors.

This optimization problem is highly non-convex and features sharp peaks near the optima with

flat regions between these optima. When the cost function exceeds a pre-determined threshold,

we solve this problem using a Particle Swarm optimization. Once that optimization completes,

we refine the solution by solving the optimization problem using Newton’s Method.

5.5.4.2 Decoupling a coil array

When we solve the coupled SVIE system, we simply invert the operator on the left-hand side

of (5.23) while setting Vt to the identity matrix. This is equivalent to setting the voltage at a port

to 1 V and the rest to 0 V using voltage sources, and repeating this for all ports. We denote this

solution as Ĵc, which we further subdivide,

Ĵc =

[
Ĵcp Ĵcn

]
,
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based on whether the voltage was applied at a port or a non-port terminal. We then perform

tuning, resulting in a set of capacitors Cn. Given these capacitors, we can obtain the voltage

at each terminal using the transfer function in (5.30) that maps from port currents to terminal

voltages. We then multiply our original solution Ĵc by this transfer function to obtain the RWG

basis coefficients corresponding to driving a tuned, decoupled coil using current sources,

Jc =

[
Ĵcp Ĵcn

] 
I

−Y−1

nn′Y
T
np

 Zp. (5.33)

5.6 Optimization

We cast the optimization of an RF coil as a constrained optimization problem. We define an

objective function 𝑓 (𝑥), which evaluates the coil’s absolute performance in an ROI, along with

a constraint function 𝑔(𝑥) that ensures that the coil geometry is valid (Section 5.3). Whenever a

coil is considered invalid, 𝑔(𝑥) is negative, e.g., for the case of a coil intersecting itself or other

coils. Our coil shape optimization problem can therefore be written as:

min
𝑥
𝑓 (𝑥), s.t. 𝑔(𝑥) ≥ 0. (5.34)

We convert this into an unconstrained optimization problem where the constraints are enforced

by a barrier potential term 𝐵𝑔 (𝑥) that increases to infinity if 𝑔(𝑥) approaches 0, and vanishes

when 𝑔(𝑥) > 0 is sufficiently large.

min
𝑥
𝑓 (𝑥) + 𝐵𝑔 (𝑥). (5.35)

The conversion to the unconstrained problem using a potential has several advantages: First,

while inequality constraints may introduce non-smoothness to the solution, replacing these with
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a smooth barrier in general leads to approximating smooth solutions of similar accuracy, as long

as the underlying PDEs allow for this. Second, converting the problem to an unconstrained op-

timization problem allows one to use simpler and more reliable optimization algorithms. On the

downside, barrier potentials introduce additional non-physical forces in configurations close to

contact. However, if the extent of barrier potential is chosen to be sufficiently small, the overall

solution error is dominated by the geometry discretization error.

We solve the optimization problem in (5.35) using L-BFGS [120]. The gradients for the bar-

rier term are computed analytically. The gradients for the objective are estimated using finite

differences. Although an analytic derivation of the gradient of 𝑓 (𝑥) is possible, one would need

to compute multiple derivatives of multidimensional singular integrals appearing in the MRGF’s

geometrical Green’s function operators [191]. For simplicity, this work employs the finite differ-

ence method. In future work, we will consider analytic gradients to make searching for a larger

design parameter space computationally manageable. Finally, we use explicit line-search checks

to ensure that the optimization remains within the feasible space 𝑔(𝑥) > 0 (Section 5.6.2).

5.6.1 Objective function

Our goal is to optimize receive coils so that the associated SNR approaches the UISNR within

a target region of interest (ROI). Once the electric (e) and magnetic (h) fields of each coil element

are computed using an EM simulator (e.g., MARIE or MRGF described in 5.5), the optimal SNR at

a position of interest r0 ∈ ROI can be computed as [109]:

SNR(r0) =
𝜔𝑀0√︃

4𝑘𝐵𝑇
(
SH (Ψ𝑏 +Ψ𝑎) S

)−1

, (5.36)

with 𝜔 the angular operating frequency,𝑀0 the equilibrium magnetization, S ∈ C𝑛×𝑝 the receive

coil sensitivity
(
= hx − ihy

)
, 𝑘𝐵 Boltzmann’s constant, 𝑇 the temperature of the sample, 𝑛 the

number of coils in the array, and 𝑝 the number of positions of the voxels discretizing the sample.
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The noise covariance matrix Ψ𝑏 ∈ R𝑛×𝑛 [94] accounts for intrinsic thermal losses due to the

sample’s conductivity and its elements can be computed for each coil pair 𝑛1, 𝑛2 as:

Ψ𝑛1,𝑛2

𝑏
=

∭
𝜎𝑒 (r) e𝑛2

(r) e∗𝑛1
(r) 𝑑r3, (5.37)

where the integral is computed over the entire sample and 𝜎𝑒 ∈ R𝑝×1
is the electric conductivity.

Ψ𝑎 ∈ R𝑛×𝑛 is a diagonal matrix computed using the equivalent-power formulation presented in

[154], which models the noise equivalent resistance associated with Joule heating of the coil con-

ductors. The RF coils are modeled as non-perfect electric conductors by incorporating the finite

surface resistivity of copper directly into the surface integral equation (SIE) matrix, following the

formulation in [84], to account for ohmic losses in the conductors.

The UISNR is computed using Equation 5.36, without Ψ𝑎 , combining the elements of an EM

basis as if they were coils in a hypothetical infinite array. One can construct a basis of EM fields

following the Huygens–Fresnel principle [9] and the approach in [52]. This basis includes all pos-

sible field distributions within the sample generated by RF sources placed outside an enclosing

surface. As the number of modes included in Equation 5.36 increases, the resulting SNR con-

verges to the UISNR [137, 140, 164], which represents the theoretical maximum achievable SNR

for the given sample, independent from coil geometry. The UISNR must be computed once as

the benchmark of the optimization problem, while the SNR is updated in every iteration of the

optimization for each new coil configuration.

For our problem, the objective function (Equation 5.35) quantifies the difference between the

simulated SNR and the UISNR within a target ROI indicated by r,

𝑓 (x, c, r) = 1 − ∥SNR(x, c, r)∥∥UISNR(r)∥ . (5.38)

Here, x represents the geometric parameters of the coils, and c are the variable capacitors dis-

tributed around the coil conductors, which are optimized for coil tuning (see Section 5.5.4.1).
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Note that, depending on the sample and frequency of operation, the UISNR values could diverge

at voxels near the surface of the sample due to numerical instability [144]. To ensure the validity

of our results, the ROIs considered in this work do not include voxels located within 2.5 cm of the

surface of the sample.

For a meshed coil, we define the constraint 𝑔(𝑥) as

𝑔(x) = min
𝑘∈C𝑎

𝑑𝑘 (x)

where C𝑎 is the set of all possible pairs (𝑒, 𝑣) of edges 𝑒 and vertices 𝑣 on the boundaries of

coils, and 𝑑𝑘 is the signed distance between a vertex and an edge in the pair 𝑘 , where the sign is

determined by the dot product with edge perpendicular pointing outside the coil.

Note that we do not compute 𝑔(𝑥) explicitly; rather, we define a potential 𝐵𝑔 that ensures that

𝑔(x) remains positive, and much less expensive to compute, as it uses only nearby pairs.

We constrain the objective function with a barrier potential term 𝐵𝑔 (𝑥) that forces the coils to

stay within the feasible domain, and prevent individual coils from self-intersecting (Section 5.3):

𝐵𝑔 (x) = 𝜅
∑︁
𝑘∈C

𝑏 (𝑑𝑘 (x), 𝑑). (5.39)

𝐵𝑔 (𝑥) measures the sum of these barriers over each contact pair 𝑘 ∈ C ⊂ C𝑎 , which are suf-

ficiently close. The parameter 𝜅 > 0 controls the barrier stiffness, which primarily affects the

optimization efficiency. Following [114], we construct a continuous barrier energy 𝑏 that cre-

ates a localized repulsion force when primitives are closer than a distance 𝑑 , and that vanishes

otherwise (see Figure 5.1).

𝑏 (𝑑,𝑑) =

−(𝑑 − 𝑑)2 ln

(
𝑑

𝑑

)
, 0 < 𝑑 < 𝑑

0 𝑑 ≥ 𝑑.
(5.40)

In the definition of 𝐵𝑔, the set C can be restricted to pairs which are closer than 𝑑 . We use the log-
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arithmic potential following [114]; this choice is far from unique, as long as the essential barrier

properties are satisfied (infinite barrier at contact, zero value at a small distance to contact and

smoothness w.r.t., geometric degrees of freedom). The logarithmic potential was demonstrated

to work well in [114] and follow-up works, and is also commonly used in interior-point solvers

for constrained optimization.

5.6.2 Optimization process and line search

The objective function (5.38) and the barrier potential term (5.39) are both smooth, allowing

gradient-based optimization to be employed. The optimization algorithm consists of two steps.

First, we optimize the size and location of the coils with only affine transformations by defining

a scaling factor 𝑠 and translation distances 𝑡𝑢 and 𝑡𝑣 for each coil. Second, we further optimize

individual B-spline control point coordinates (𝑝𝑢, 𝑝𝑣 ). The first step has 3×𝑛 parameters, and the

second step has 2 ×𝑚 parameters to optimize, where 𝑛 is the number of coils and𝑚 is the total

number of control points.

In each step, we start with a grid search of the parameters, using𝑞 samples on each dimension,

which requires𝑂 (𝑞𝑛) simulations. To reduce computational load, we use coordinate descent, i.e.,

we search for the optimal solution in one dimension at a time, and terminate when the objective

can no longer decrease in any dimension. This reduces the complexity to 𝑂 (𝑛𝑞) simulations.

After the grid search, we continue with gradient-based optimization with gradient descent or

L-BFGS. We compute the gradient of the objective from (5.35) by adding ∇𝑓 (𝑥), computed with

finite differences, and the gradient of the barrier potential ∇𝐵𝑔 (𝑥). ∇𝐵𝑔 (𝑥) is derived with a chain

rule by multiplying the analytic derivative D𝐵𝑔 of the barrier potential term [114] and the shape

velocity D𝑣 defined on mesh vertices with respect to the optimization parameters:

D(𝐵𝑔 ◦ 𝑣) = D𝐵𝑔D𝑣 . (5.41)
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Next, we propose a continuous, intersection-aware line search for the optimization param-

eters. In each line search, we first apply an intersection-aware continuous collision detection

(CCD) [114, 176] (StepSizeUpperBound in Algorithm 2) to conservatively compute the largest

feasible step size along the gradient descent direction. We then apply a backtracking line search,

bound by the largest feasible step size, to obtain an energy decrease. We terminate the optimiza-

tion when the norm of gradient is smaller than 𝜖𝑑 = 10
−4

or the line search fails to find an energy

decrease with a maximum number of iterations 𝑛𝑑 = 30 (Algorithm 2).

Algorithm 2 Gradient-based Optimization. ComputeConstraintSet determines the set of pairs

of segments for which the contact potential is not zero.

1: Input: Geometric parameters to be optimized 𝑥0, tolerance 𝜖𝑑 , maximum number of itera-

tions for line search 𝑛𝑑
2: Output: Optimal geometric parameters 𝑥

3: 𝑥 ← 𝑥0

4: C ← ComputeConstraintSet(𝑥, 𝑑)
5: 𝐸prev ← 𝑓 (𝑥) + 𝐵𝑔 (𝑥, 𝑑, C)
6: 𝑥prev ← 𝑥

7: do
8: 𝑝 ← −∇𝑓 (𝑥) − ∇𝑥𝐵𝑔 (𝑥, 𝑑, C)
9: 𝛼 ← min(1, StepSizeUpperBound(𝑥, 𝑝, C)) ⊲ CCD line search

10: 𝑖 ← 1

11: do
12: if 𝑖 > 𝑛𝑑 then ⊲ Line search failed

13: return 𝑥
14: end if
15: 𝑥 ← 𝑥prev + 𝛼𝑝
16: C ← ComputeConstraintSet(𝑥, 𝑑)
17: 𝛼 ← 𝛼/2
18: 𝑖 ← 𝑖 + 1

19: while 𝑓 (𝑥) + 𝐵𝑔 (𝑥, 𝑑, C) ≥ 𝐸prev
20: 𝐸prev ← 𝑓 (𝑥) + 𝐵𝑔 (𝑥, 𝑑, C)
21: 𝑥prev ← 𝑥

22: while ∥𝑝 ∥ > 𝜖𝑑
23: return 𝑥
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5.7 Methods

We first demonstrated the numerical issues that we addressed with the improved precision in

the SIE assembly code (Section 5.5.2.1) by estimating gradients of the SNR cost function (Eq. (5.38))

of a simple parametrization of a single loop. We then conducted numerical experiments of in-

creasing complexity to demonstrate the coil design optimization pipeline. We started by optimiz-

ing a single parameter – the horizontal placement of a single electric dipole (Section 5.7.3) – as we

moved the target ROI. We then optimized the position and shape of three coils to maximize the

average SNR within a spherical ROI at different locations inside a head model (Section 5.7.4). To

evaluate our framework for different cost functions, we optimized four coils to maximize SNR on

two decoupled ROIs (Section 5.7.5). Finally, we optimized a 12-coil head array for different ROIs

in the brain (Section 5.7.6) and tested the generalization capacity of our optimization approach

by evaluating the consistency of the results for a different head model. All computations were

executed on a server running the Ubuntu 24.04.2 LTS operating system, equipped with an AMD

Ryzen Threadripper PRO 3995WX CPU at 2.70 GHz, 64 cores, 2 threads per core and an NVIDIA

GeForce RTX 3080 Ti GPU with 12 GB of memory.

5.7.1 Numerical samples

The experiments in Sections 5.7.3, 5.7.4, 5.7.5, 5.7.6 used the realistic Duke human model of

the Virtual Family Population [60]. The computational domain enclosing the Duke’s head model

was 18.5 × 23 × 22.5 cm
3
and was discretized over a uniform grid of 5 mm

3
voxel resolution,

corresponding to 38×47×46 voxels. For one experiment in Section 5.7.6, we used the Ella human

model of the Virtual Family with a computational domain of 17.5 × 21 × 24 cm
3
, which was

discretized over a uniform grid of 5 mm
3
voxel resolution, corresponding to 35 × 42 × 48 voxels.
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(a) Ultimate (b) Bell-Shaped (c) Elliptical Cylinder

Figure 5.12: Geometry of the ultimate (a), the bell-shaped (b), the cylindrical elliptical (c) current-bearing
substrate surfaces. The ultimate surface closely surrounded the realistic head model (Duke).

5.7.2 Coil formers

To calculate the UISNR, we expanded the isosurface of Duke by approximately 2 cm and con-

structed a Hugyens’ surface that fully surrounded the sample (Figure 5.12(a)) [57]. This basis

support was discretized with 11 618 triangular elements, and a basis of incident fields was gener-

ated using RWG surface currents (see Section 5.5.1.5). For the coil SNR calculations, we modeled

two realistic coil formers. The first former resembled a bell-shaped structure with its front region

carved out (Figure 5.12(b)). The former was 24 cm long and spanned 25 cm in the x-direction and

20 cm in the y-direction. We used 9, 205 triangular elements for its discretization. The second

former was an open elliptic cylinder of height ℎ = 28.5 cm, semi-major axis length 14.7 cm, and

semi-minor axis length 12.8 cm. We used 2 643 triangular elements for its discretization (Figure

5.12(c)). The SVD operations required for the basis generation method were performed using a

threshold 𝜀 = 10
−3

(see Section 5.5.1.5).
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Figure 5.13: Schematic visualization of the seven locations of the spherical ROI for the three-coil opti-
mization. All locations were centered on an axial plane at 𝑧 = 5 cm. A manual initial guess was defined
before optimizing for the ROI at location 1. For each subsequent ROI location, the coil configuration in
the last iteration of the optimization for the previous location was used as initial guess.

5.7.3 Optimization of the position of a single dipole

We optimized the position of a single dipole with length 𝑙 = 25 cm operating at 14 T, mapped

on the elliptic cylinder former (Figure 5.12(c)). The dipole was segmented with two capacitors

positioned at one-quarter and three-quarters of the dipole length, which were adjusted at every

step of the optimization to ensure tuning. We uniformly sampled seven voxels as the target op-

timization ROIs, along an elliptical trajectory on the transverse plane at 𝑧 = 5 cm. The dipole

was placed vertically to the X-Y plane. Starting from a position behind the head, we optimized

the horizontal placement of the dipole on the elliptic cylinder substrate for each ROI indepen-

dently. This was performed as a two-step optimization: grid search followed by a gradient-based

optimization.
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5.7.4 Three-coil optimization with a moving spherical ROI

We optimized a three-element array at 3 T. The loops were mapped to the bell-shaped former

(Figure 5.12(b)), discretized with triangular elements of average edge length 6mm, and segmented

with seven capacitors for tuning. The values of the capacitors were adjusted to ensure tuning and

ideal decoupling at every iteration of the optimization. The optimization target was the average

SNR within a spherical ROI defined on a transverse plane 𝑧 = 5 cm with a radius 𝑟 = 2 cm. The

ROI was moved to different locations within the head (Figure 5.13). For location 1, we initialized

the optimization with an arbitrary initial guess for the shape and position of the three coils. We

then performed a four-step optimization: grid search on the coil size and position with only

affine transformation, gradient-based optimization on the coil size and position, grid search on

the control point position, and gradient-based optimization on the control point position (see

Section 5.6.2). For locations 2 to 7, the initial guess was the last iteration of the second-step

optimization (after affine transformation) for the previous ROI location.

5.7.5 Four-coil optimization with two regions-of-interest

We optimized a four-element loop array at 3 T with two separate voxels as the optimization

target, one in the frontal part and the other in the rear part of the head. We also introduced a

weighted formulation of the cost function in Equation (5.38):

𝑓 ′(x, l, r) = 𝑤1𝑓 (x, l, r1) +𝑤2𝑓 (x, l, r2), (5.42)

where𝑤1 and𝑤2 are weights that prioritize the relative importance of voxel r1 or r2 for the SNR

optimization.
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5.7.6 12-coil optimization

We performed three experiments aimed at optimizing a 12-coil receive array for 3 T brain

imaging. We defined two ROIs: one for the cerebrum and one that combined the white matter

(WM), gray matter (GM), and cerebrospinal fluid (CSF) of the Duke’s head model. We used the

cost-function of equation (5.42). In the first experiment, we optimized the average SNR perfor-

mance with equal weighting for the two ROIs; in the second experiment, we assigned a larger

weight to the cerebrum; in the last experiment, we optimized the array to maximize SNR per-

formance solely over the cerebellum. Finally, to evaluate the generalizability of the optimization

process, we loaded the optimized coil configuration of the first experiment with Ella’s head model

and calculated the SNR performance.

5.8 Results

5.8.1 Numerical precision of the VSIE

We used a simple loop geometry with initial node coordinates r𝑖 , one port, and three tuning

capacitors. As the parametrization for the coordinates, we use a simple affine transformation

(a) Change in cost function
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Figure 5.14: Change in cost function and estimated gradient of cost function about 𝛼 = 1 as a function
of Forward Euler finite difference step size using original implementation and proposed implementation.
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with parameter 𝛼 . The parametrized coordinates r(𝛼) are defined as

r(𝛼) = 𝛼 (r𝑖 − ⟨r𝑖⟩) + ⟨r𝑖⟩ (5.43)

with r(1) = r𝑖 and ⟨r𝑖⟩ denoting the mean of the initial coordinates.

We estimated the gradient using the original implementation with limited precision and with

the proposed implementation with enhanced precision for a number of step sizes. We estimated

the gradient of the cost function about 𝛼 = 1 using the Forward Euler approximation of the

derivative, which is given by

𝜕𝑓

𝜕𝛼

����
𝛼=1

≈ 𝑓 (1 + ℎ) − 𝑓 (1)
ℎ

(5.44)

for step size ℎ.

Fig. 5.14 shows the change in the cost function and the estimated gradient magnitude as a

function of step size ℎ, using the existing and proposed approaches. As can be seen in Fig. 5.14(b),

estimating the gradient of the SNR cost function fails catastrophically when the finite-difference

step size is too small, even for a simple affine transformation that results in all nodes chang-

ing position. Fig. 5.14(a) shows that below ℎ = 10
−5
, the change in the cost function becomes

independent of the step size, explaining why estimating the gradient fails catastrophically.

5.8.2 Coil design optimization experiments

Without the MRGF, the iterative optimization process would have been intractable. For ex-

ample, the MRGF approach resulted in a solution time, including tuning and decoupling, of 15 s

for each three-coil design, as opposed to a few minute when assembling the full system in Equa-

tion (5.16). The full solution would take several minutes for the 12-coil array, whereas it required

32 s with MRGF. The optimization of the dipole position required seven minutes for each ROI

location. The length of the full coil optimization ranged between 5 and 21 hours for the seven

three-coil optimization experiments (Section 5.7.4), and between a week and two weeks for the
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Figure 5.15: Optimization of the absolute SNR performance of a dipole at 600 MHz (14 T), as the target
ROI is moved around the head. The dipole was constrained to move azimuthally on a cylindrical former
surrounding the head. From top to bottom row: position of the dipole resulting from the optimization,
with the red voxel indicating the target ROI; performance maps showing the percentage of the UISNR
achieved by the dipole along sagittal, coronal, and axial sections cutting through the target voxel (in red).
The absolute performance for each configuration is reported at the bottom.

four 12-coil optimization experiments (Section 5.7.6). Note that the exact duration of the individ-

ual iterations is not reported since it varied during the optimization based on the convergence of

each step of the grid search and gradient-based optimization.

Figure 5.15 shows that the optimization algorithm adapts the position of the dipole as the

position of the target ROI moves around the head. Since in this experiment we did not optimize

the shape of the coil but only its azimuthal position, the relative SNR performance of the dipole

was lower for ROI 6 and ROI 7 because they are closer to the surface of the head, where the UISNR

grows exponentially.

Figures 5.17–5.30 show the results of the three-coil optimization for the seven positions of the
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spherical ROI.

For each experiment, there are two figures. The first figure shows the evolution of the cost

function during the four steps of the optimization: grid search on the coil size and position with

only affine transformation (Grid Search 1), gradient-based optimization on the coil size and po-

sition (Gradient-based optimization 1), grid search on the control point position (Grid Search 2),

and gradient-based optimization on the control point position (Gradient-based optimization 2).

The second figure shows the evolution of the coil design for different iterations, together with

the associated performance maps for three orthogonal section of the head cutting through the

center of the spherical ROI. In these and subsequent figures, the coils were constrained to be on

a bell-shaped former surrounding the head. In each figure, from top to bottom, the rows show:

geometry and ROI (in red); performance maps showing the percentage of the UISNR achieved by

each configuration along sagittal, coronal, and axial sections cutting through the center of the

ROI (contour shown in red). The mean and maximum performance within the ROI is reported at

the bottom.

For all cases, the average ratio of SNR over the UISNRwithin the ROI increased monotonically

with the number of iterations. The performancewas lower when the ROIwas closer to the surface

of the head, where it is more difficult to approach the UISNR [187]. Since the three coils were

constrained to the bell-shaped former, the performance difference among ROI positions was also

affected by the distance between the former and the surface of the head. Table 5.2 summarizes the

results of the three-coil experiments. Except for ROI 1, for which the optimization was initialized

to a random geometry, in all other cases the initial guess was the coil geometry optimized for the

previous ROI position. The values in Table 5.2 show that the cost function decreased in each case.

The optimization algorithm converged to a different coil geometry as the ROImoved to a different

position. Figure 5.16 shows that the three-coil geometry optimized for ROI 4 is consistent with

the corresponding ideal current patterns associated with the UISNR.

Using Equation (5.38), the four-coil optimization starting from an arbitrary initial guess con-
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(a) Geometry (b) ICP (𝜔𝑡 = 0) (c) ICP (𝜔𝑡 = 𝜋
2
)

Figure 5.16: Realistic coil former surrounding the head model along with optimal coil configuration for
spherical ROI 4 ((a)). The former also served as a current-bearing surface for the estimation of the ideal
current patterns (ICP). Temporal snapshots of the ICP yielding optimal signal-to-noise ratio at the center
of the spherical ROI 4 for two time-points are shown in ((b)) and ((c)).

verged to a geometry in which three coils were clustered near the target voxel at the back of the

head and one coil was located near the target voxel in the front (Figures 5.31 and 5.32). When the

target voxels were separately considered, using Equation (5.42) with𝑤1 = 𝑤2 = 0.5, the optimized

configuration yielded two coils in the front of the head and two coils at the back (Figures 5.33

and 5.34). The optimization with the weighted cost function achieved higher SNR performance

than the one that considered both voxels as a single target ROI.

For all 3 T 12-coil array experiments, we used an arbitrary initial guess with loop elements

surrounding the head. Figures 5.35 and 5.36 show the results using equal weights 𝑤1 = 𝑤2 = 0.5

for the two ROIs. The optimized coil design achieved 7% higher performance at the center of

the head and improved the averaged SNR performance over the entire brain (both ROIs) by 9%.

The average performance in the cerebrum and WM-GM-CSF was 57.8% and 47.4%, respectively.

Figures 5.37 and 5.38 show the optimization results when weights 𝑤1 = 0.6 and 𝑤2 = 0.4 are

used for the cerebellum and WM-GM-CSF, respectively. The optimized SNR performance in the

center of the head was 6% higher than the initial guess, and the averaged SNR performance over

the entire brain improved by 8%. The average performance in the cerebrum and WM-GM-CSF
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Table 5.2: Summary of three-coil optimization results. For each position of the spherical ROI (Figure
5.13), we report: the cost function of the initial guess, the cost function at the end of the optimization, the
average and maximum performance within the ROI after the optimization.

ID Cost Function
(first iteration) %

Cost Function
(final iteration) %

Average
SNR/UISNR %

Maximum
SNR/UISNR %

ROI 1 64.4 26.4 74.7 83.9

ROI 2 35.7 23.2 77.9 88.0

ROI 3 38.5 29.8 73.2 86.3

ROI 4 60.9 54.8 54.5 79.7

ROI 5 63.8 57.7 52.8 79.0

ROI 6 72.5 65.9 46.7 75.2

ROI 7 84.2 80.2 34.1 66.2

was 57.5% and 46.5%, respectively. Figures 5.39 and 5.40 show the results when optimizing for

the cerebellum alone (𝑤1 = 1, 𝑤2 = 0). The region with the highest performance shifted to the

center of the cerebellum, where the performance improved on average by 14%. The average SNR

performance in the cerebrum andWM-GM-CSF was 59.2% and 27.2%, respectively. Note that this

example was included only for completeness, because it would neither be practical nor useful

to construct a 12-coil array to image exclusively the cerebellum. Figures 5.41 and 5.42 show the

results when the cerebellum ROI was excluded from the optimization target (𝑤1 = 0, 𝑤2 = 1). In

this case, the optimized coil design achieved 8.5% higher performance at the center of the head

and improved the averaged SNR performance over the entire brain by 10%. The average SNR

performance in the cerebrum and WM-GM-CSF was 42.2% and 48.9%, respectively.

Figures 5.43 and 5.44 show the performance of the coil designs found at the completion of

each optimization step (when𝑤1 = 0.5,𝑤2 = 0.5) in Figures 5.35 and 5.36 when Ella’s head model

is used instead of Duke’s one. These results show that the optimized coil geometries at different

optimization steps can also monotonically improve the SNR performance on Ella’s brain. The

final optimized coil configuration increased the SNR performance in the center of Ella’s brain by

8% and improved the average SNR performance over the entire brain by 9%.
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Figure 5.17: The cost function evolution for three-coil optimization with the spherical ROI in region 1.

5.9 Discussion

The goal of this work was to develop an optimization framework for rational coil design for

MRI applications. We developed an automatic tool that combines geometry processing tech-

niques with state-of-the-art EM simulations to optimize coils using the UISNR as the reference.

We eliminated user interactions, whereas setting up a single simulation could take days with the

current coil design software. To achieve automation and computational efficiency, several inno-

vations were introduced in this work. The new approach to solving the singular integrals during

the assembly of the SIE operators considerably increases numerical precision, which is critical

when these operators are used in iterative optimizations. We also introduced a novel C++ imple-

mentation that dramatically accelerates the assembly of the SIE operators. To perform iterative

shape optimization of coil configurations, we needed to develop a rapid coil meshing method,

including the automatic implementation of bridges to avoid contact between overlapping coil

conductors, a feature not available in commercial coil design software. To efficiently simulate
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Figure 5.18: Evolution of the three-coil geometry during the iterative optimization of the average SNR
performance within the spherical ROI in region 1.

coils at each iteration, we developed an algorithm for automatic coil tuning and a method for

ideal coil decoupling.

Previous work showed that ideal current patterns associated with the UISNR can provide a

qualitative target to design coils that approach the optimum performance [57, 100]. Here, we have

shown that certain coil configurations found by the optimization algorithm resemble the ideal

current patterns, confirming graphically the near-optimality of common surface quadrature coil

designs. Previous work on coil optimization cannot be directly compared with our results, since

it was limited to one or two coils, used different design targets, and was performed in the quasi-

static regime or using simplified analytical models. This is the first approach to use full-wave EM

simulations and ultimate performance limits in the cost function to optimize coils for high-field

MRI. As a proof of principle, in this work, we showed that it is computationally feasible to auto-
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Figure 5.19: The cost function evolution for three-coil optimization with the spherical ROI in region 2.

matically optimize a 12-coil receive head array at 3 T using only grid search and gradient descent,

achieving an absolute SNR performance in the brain region comparable to that of state-of-the-art

32-coil arrays [103]. The objective function that iteratively evaluates new coil geometries against

the UISNR is smooth, which is favorable for gradient descent. However, optimizing denser arrays

can become increasingly inefficient, so in future work we plan to calculate the gradients analyt-

ically using the Hermitian adjoint solution of the VSIE as in other optimization problems that

utilize it [58, 169]. This will also allow us to broaden the design space parametrization, which in

this work was limited to the size and position of the coils. We included various design constraints

to ensure that the optimization would converge to coil configurations that could be practically

constructed. Additional constraints could be added in the future to accommodate design require-

ments for particular clinical applications. Different constraints would also be needed to optimize

transmit and transceive coils. For example, the ideal decoupling strategy developed for this work

would not be feasible for transmitters since preamplifiers are not used during transmission. The

objective function would also need to be modified to account for different metrics, such as the

146



G
eo

m
et

ry

Iteration 0 Iteration 8 Iteration 20 Iteration 50 Iteration 100 Iteration 125

Sa
gi

tt
al

0

0.2

0.4

0.6

0.8

C
or

on
al

A
xi

al
SN

R
U

IS
N

R 0.656
0.825

0.717
0.821

0.743
0.851

0.753
0.848

0.758
0.856

0.779
0.880

Mean
Max

Figure 5.20: Evolution of the three-coil geometry during the iterative optimization of the average SNR
performance within the spherical ROI in region 2.

ultimate intrinsic SAR [62, 102] or the optimal transmit efficiency [50]. Note that the proposed

optimization framework is flexible and generalizable enough to enable the incorporation of these

changes in a straightforward manner.

The proposed optimization framework affects the entire flow of coil design and evaluation,

and we expect that it will result in coils that yield higher performance than currently available

coils. Since previous studies have shown that traditional coil designs cannot approach the ul-

timate SNR performance at ultra-high field MRI [101, 192, 216], this project could lead to the

discovery of novel coil types that yield superior signal encoding capabilities. The coil designs

generated by the automated pipeline would be directly importable into computer-aided design

(CAD) environments for rapid prototyping, making application-specific, tailored coils a practical

possibility.
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Figure 5.21: The cost function evolution for three-coil optimization with the spherical ROI in region 3.

This work aimed to introduce the new optimization framework. Several extensions will be

pursued in future work, in addition to the already mentioned adjoint formulation and the im-

plementation of other target optimization metrics. For example, replacing PWC with PWL ba-

sis functions would improve the accuracy of the UISNR [52]. However, the memory footprint

and computational complexity would increase considerably, requiring the incorporation of novel

strategies for tensor compression and efficient computation. We also plan to incorporate a wire

integral equation solver to efficiently optimize coils with wire conductors, which are often pre-

ferred over flat copper strips to reduce coupling in arrays with many coil elements.

5.10 Conclusion

This work introduced the first fully automated software pipeline for optimizing coil design

using ultimate performance limits as the reference benchmark. The pipeline integrates novel ap-

proaches for rapid EM simulations, shape optimization, and coil meshing. Several improvements
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Figure 5.22: Evolution of the three-coil geometry during the iterative optimization of the average SNR
performance within the spherical ROI in region 3.

and new features were incorporated into MARIE, an open-source VSIE solver tailored to MRI

simulations. These include orders of magnitude higher precision in the assembly of the SIE oper-

ators, automatic coil tuning, and ideal decoupling of array elements. The coil design pipeline was

demonstrated for optimizing head receive arrays with respect to the UISNR, for an increasing

number of elements and different optimization target regions. The optimizations monotonically

converged in all cases. The optimized 12-coil design at 3 T yielded approximately 10% higher SNR

performance over an extended region of the brain compared to an arbitrary designed array.
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Figure 5.23: The cost function evolution for three-coil optimization with the spherical ROI in region 4.
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Figure 5.24: Evolution of the three-coil geometry during the iterative optimization of the average SNR
performance within the spherical ROI in region 4.
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Figure 5.25: The cost function evolution for three-coil optimization with the spherical ROI in region 5.
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Figure 5.26: Evolution of the three-coil geometry during the iterative optimization of the average SNR
performance within the spherical ROI in region 5.
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Figure 5.27: The cost function evolution for three-coil optimization with the spherical ROI in region 6.
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Figure 5.28: Evolution of the three-coil geometry during the iterative optimization of the average SNR
performance within the spherical ROI in region 6.
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Figure 5.29: The cost function evolution for three-coil optimization with the spherical ROI in region 7.

G
eo

m
et

ry

Iteration 0 Iteration 5 Iteration 14 Iteration 42 Iteration 70 Iteration 103

Sa
gi

tt
al

0

0.2

0.4

0.6

0.8

C
or

on
al

A
xi

al
SN

R
U

IS
N

R 0.286
0.620

0.313
0.646

0.323
0.650

0.331
0.660

0.337
0.664

0.341
0.662

Mean
Max

Figure 5.30: Evolution of the three-coil geometry during the iterative optimization of the average SNR
performance within the spherical ROI in region 7.
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Figure 5.31: The cost function evolution for four-coil optimization with a two-voxel ROI.
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Figure 5.32: Evolution of the four-coil geometry during the iterative optimization of the average SNR
performance within a two-voxel ROI.
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Figure 5.33: The cost function evolution for four-coil optimization with two target voxels, equally
weighted and considered as separate ROIs.
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Figure 5.34: Evolution of the four-coil geometry during the iterative optimization of the average SNR
performance within two target voxels, equally weighted and considered as separate ROIs.
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Figure 5.35: The cost function evolution for 12-coil optimization with the cerebellum and cerebrum ROIs,
equally weighted (𝑤1 = 𝑤2 = 0.5).
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Figure 5.36: Evolution of the 12-coil geometry during the iterative optimization of the average SNR
performance within the cerebellum and cerebrum ROIs, equally weighted (𝑤1 = 𝑤2 = 0.5).
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Figure 5.37: The cost function evolution for 12-coil optimization with the cerebellum and cerebrum ROIs,
with weights𝑤1 = 0.6,𝑤2 = 0.4.
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Figure 5.38: Evolution of the 12-coil geometry during the iterative optimization of the average SNR
performance within the cerebellum and cerebrum ROIs, with weights𝑤1 = 0.6,𝑤2 = 0.4.
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Figure 5.39: The cost function evolution for 12-coil optimization with the cerebellum ROI.
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Figure 5.40: Evolution of the 12-coil geometry during the iterative optimization of the average SNR
performance within the cerebellum ROI.
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Figure 5.41: The cost function evolution for 12-coil optimization with the cerebrum ROI.
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Figure 5.42: Evolution of the 12-coil geometry during the iterative optimization of the average SNR
performance within the cerebrum ROI.
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Figure 5.43: The cost function evolution for 12-coil optimization with the cerebellum and cerebrum ROIs
using the Ella head model.
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Figure 5.44: Evolution of the 12-coil geometry during the iterative optimization of the average SNR
performance within the cerebellum and cerebrum ROIs using the Ella head model.
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6 | Conclusion

To summarize, this thesis advances shape design, repair, and optimization through contribu-

tions spanning fidelity-preserving vector graphics simplification, minimal-input solid/shell mesh

labeling, neural-driven texture synthesis, and physics-based MRI coil optimization. First, our

simplification method reduces vector artwork to the minimal number of curves while maintain-

ing exceptional accuracy, preserving the artist’s intent. Its effectiveness has been demonstrated

through large-scale evaluations, and it has been extended to handle curves of varying thickness as

well as vector graphics animations. Second, our repair tool streamlines the conversion of “in-the-

wild” assets into formats suitable for simulation, solid modeling, or 3D printing with orders-of-

magnitude less manual effort. Finally, our optimization frameworks preserve texture appearance

while altering tactile roughness or temperature with neural acceleration, and deliver the first

fully automated software pipeline for optimizing coil design using ultimate performance limits

as the reference benchmark. Collectively, these techniques provide a unified, practical framework

for high-fidelity, application-aware geometry processing, enabling efficient design workflows in

computer graphics, manufacturing, and biomedical imaging.
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