
POINTER-GENERATOR TRANSFORMERS FOR
MORPHOLOGICAL INFLECTION

A Thesis Submitted in Partial Fulfillment of

the Requirements for

the Degree of

MASTERS OF SCIENCE

at

NEW YORK UNIVERSITY

by

Assaf Singer

May 2020

POINTER-GENERATOR TRANSFORMERS FOR
MORPHOLOGICAL INFLECTION

A Thesis Submitted in Partial Fulfillment of

the Requirements for

the Degree of

MASTERS OF SCIENCE

at

NEW YORK UNIVERSITY

by

Assaf Singer

May 2020

Kyunghyun Cho

Professor of Computer Science

Date

He He

Professor of Computer Science

Date

ii

iii

Acknowledgements

First and foremost, my highest gratitude goes to my great supervisors, Katha-

rina Kann and Kyunghyun Cho. To Katharina, for your endless support and very

wise council. Thank you for leading this research so professionally and for guiding

me at times of struggle. And to Kyunghyun, for providing me the opportunity to

conduct this research and explore the fascinating worlds of natural language and

machine learning.

Finally, I want to thank my amazing family, that supported me when I was

across the street, and when I was 6,000 miles away. Thank you for being an

inspiration and a role model to me.

Assaf Singer

May 2020

iv

Abstract

In morphologically rich languages, a word’s surface form reflects syntactic and

semantic properties such as gender, tense or number. For example, most English

nouns have both singular and plural forms (e.g., robot/robots, process/processes),

which are known as the inflected forms of the noun. The vocabularies of mor-

phologically rich languages, e.g., German or Spanish, are larger than those of

morphologically poor languages, e.g., Chinese, if every surface form is considered

an independent token. This motivates the development of models that can deal

with inflections by either analyzing or generating them and, thus, alleviate the

sparsity problem.

This thesis presents approaches to generate morphological inflections. We cast

morphological inflection as a sequence-to-sequence problem and apply different

versions of the transformer, a state-of-the art deep learning model, to the task.

However, for many languages, the availability of morphological lexicons, and, thus,

training data for the task, is a big challenge. In our work, we explore different

ways to overcome this: 1. We propose a pointer-generator transformer model to

allow easy copying of input characters, which is known improve performance of

neural models in the low-resource setting. 2. We implement a system for the

task of unsupervised morphological paradigm completion, where systems produce

inflections from raw text alone, without relying on morphological information. 3.

We explore multitask training and data hallucination pretraining, two methods

which yield more training examples.

With our formulated models and data augmentation methods, we participate in

the SIGMORPHON 2020 shared task, and describe the NYU–CUBoulder systems

for Task 0 on typologically diverse morphological inflection and Task 2 on unsu-

v

pervised morphological paradigm completion. Finally, we design a low-resource

experiment to show the effectiveness of our proposed approaches for low-resource

languages.

vi

Contents

Acknowledgements . iii

Abstract . iv

List of Figures . ix

List of Tables . x

1 Introduction 1

1.1 Morphology . 1

1.2 Aim and Scope . 2

2 Background 4

2.1 Morphology in NLP . 4

2.2 Neural Networks . 8

3 Research 22

3.1 Approach Details . 22

3.2 Related Work . 24

3.3 SIGMORPHON 2020 Shared Task 26

3.4 Methods . 28

3.5 Experiments . 33

3.6 Ablation Studies . 38

vii

4 Conclusions 40

viii

List of Figures

2.1 The paradigm of the English lemma spend, according to the nota-

tion defined in Section 2.1.2. The morphological tag is a bundle of

morphosyntactic features. 5

2.2 Multi-layer perceptron with one hidden layer. Figure by (Hassan

et al., 2015) . 9

2.3 Left: the RNN encoder–decoder. Figure by (Cho et al., 2014b)

Right: the attention-based encoder-decoder model architecture. Fig-

ure by (Bahdanau et al., 2015) . 14

2.4 The transformer: model architecture. Figure by (See et al., 2017) . 15

2.5 (left) Scaled Dot-Product Attention. (right) Multi-Head Attention

consists of several attention layers running in parallel. Figure by

(Vaswani et al., 2017) . 17

2.6 Pointer-generator model. For each decoder timestep a generation

probability pgen ∈ [0, 1] is calculated, which weights the probability

of generating words from the vocabulary, versus copying words from

the source text. The vocabulary distribution and the attention dis-

tribution are weighted and summed to obtain the final distribution,

from which we make our prediction. Figure by See et al. (2017) . . 19

ix

3.1 An English multitask training example. 30

x

List of Tables

3.1 The hyperparameters used in our models. 32

3.2 Macro-averaged results over all languages on the official develop-

ment and test sets for Task 0. Low=languages with less than 1000

train instances, Other=all other languages, All=all languages. . . . 34

3.3 Results for all test languages on the official test sets for Task 2. . . 36

3.4 Results on the official development data for our low-resource experi-

ment. Trm=Vanilla transformer, Trm-PG=Pointer-generator trans-

former, Baseline=neural transducer by Makarov and Clematide (2018). 37

3.5 System components for the ablation study. Each model is a trans-

former which contains a combination of the following components:

copy mechanism, multitask training and hallucination pretraining. . 38

3.6 Ablation study; development set results, averaged over all languages.

Low=languages with less than 1000 train instances, Other=all other

languages, All=all languages. 39

1

Chapter 1

Introduction

1.1 Morphology

In linguistics, morphology is the study of words, how they are formed, and their

relationship to other words in the same language (Anderson, 2016). Morphology

is concerned with analyzing the structure of words and morphemes. Many words

can be related to other words by rules that are described for that language. For

example, English speakers recognize that the words dog and dogs are closely re-

lated, differentiated only by the plural morpheme ”-s”, only found bound to noun

phrases. Speakers of English recognize these relations from their innate knowledge

of word formation rules. They infer intuitively that dog is to dogs as cat is to cats ;

and, in a similar fashion, that dog is to dog walker as dish is to dishwasher. The

rules understood by a speaker reflect specific patterns or regularities in language,

and in how morphemes interact.

Morphological rules can be identified by three key processes, inflection, deriva-

tion and compounding, corresponding to word change and word formation, respec-

2

tively. Inflection modifies a word only to express different grammatical categories

such as tense, case, number and gender, while usually tending to keep the basic

meaning of the word. The base form of a word is called its lemma, and other

forms of a lemma are referred to as inflected forms. The set of all inflectional

forms of a given lemma are called its paradigm. For example, in English, run,

runs, ran and running are forms of the same paradigm. Each inflection in the

paradigm expresses certain morphosyntactic features, e.g., the PAST form of run

is ran. Unlike inflection which expresses only minor semantic changes in the orig-

inal word, derivation is the process of forming a new word from an existing word.

In many languages, this is done by adding a prefix or suffix, such as un- or -ness.

For example, unhappy and happiness are both derived from the root word happy.

Generally speaking, inflection applies in more consistent patterns to all members

of a paradigm, while derivation follows less consistent patterns.

Compounding occurs when two or more words or signs are joined to make one

longer word. In English, a word such as blackbird is a compound, composed of the

adjective black and the noun bird.

1.2 Aim and Scope

As we fill further elaborate in subsequent chapters, handling morphology is

essential for many natural language processing (NLP) tasks, especially when deal-

ing with morphologically rich languages (Minkov et al., 2007). Therefore, in this

thesis, we aim to take a closer look at morphology, with a focus on computational

approaches to inflectional morphology. In recent years, major advances on deep

learning research, a sub-field of machine learning, have lead to the development of

3

many high-performing deep learning-based natural language processing systems.

These models have advanced the state of the art in various areas, such as ma-

chine translation (Cho et al., 2014b; Sutskever et al., 2014; Bahdanau et al., 2015;

Vaswani et al., 2017), language modelling (Mnih and Teh, 2012; Al-Rfou et al.,

2019), and parsing (Vinyals et al., 2015). Based on these successes, I present a

neural network-based approach for morphological inflection.

The following chapter covers the background for understanding both the tasks

which are the focus of this thesis as well as the machine learning models used to

approach them. We first discuss the importance of handling morphology (2.1.1),

introduce the morphological inflection and morphological reinflection tasks (2.1.2),

and present main channels through which research in computational morphology

is promoted (2.1.3). Then, we lay out the foundation for the models used in

this thesis, and present an overview of several neural network architectures such

as multi-layer perceptrons (2.2.1), recurrent neural networks (RNNs) (2.2.2) and

recurrent neural sequence-to-sequence architectures (2.2.3). Finally, we present

the transformer (2.2.5) and pointer-generator (2.2.6) network architectures, which

are used in this thesis.

All the code used for our experiments can be found at: https://github.com/

AssafSinger94/sigmorphon-2020-inflection

4

Chapter 2

Background

2.1 Morphology in NLP

2.1.1 The Importance of Handling Morphology

Different languages portray different levels of inflection. While some languages

like English are morphologically impoverished with regards to inflection, others

have many inflections per base form or lemma. For example, a Polish verb has

nearly 100 inflected forms (Janecki, 2000) and an Archi verb has thousands (Kib-

rik, 1998). Those transformations of forms in morphologically rich languages yield

a much larger vocabulary than in other languages. In such morphologically com-

plex languages, approriate handling of morphology can reduce data sparsity. For

example, statistical machine translation suffers from data sparsity when trans-

lating morphologically-rich languages, since every surface form is considered an

independent entity. Translating into lemmas in the target language and then ap-

plying inflection generation as a post-processing step has been shown to alleviate

the sparsity problem (Minkov et al., 2007; Clifton and Sarkar, 2011; Fraser et al.,

5
Lemma Inflected form Morphological tag
spend spending V;V.PTCP;PRS
spend spends V;3;SG;PRS
spend spend V;NFIN
spend spent V;PST
spend spent V;V.PTCP;PST

Figure 2.1: The paradigm of the English lemma spend, according to the notation
defined in Section 2.1.2. The morphological tag is a bundle of morphosyntactic
features.

2012). Modeling inflection generation has also been used to improve language

modeling (Chahuneau et al., 2013b) and identification of multi-word expressions

(Oflazer et al., 2004), among other applications.

2.1.2 Morphological Generation Tasks

In this thesis, we work on a group of closely related tasks concerning the gen-

eration of inflected forms. In order to formally describe our tasks, we define the

following notation:

Let T be the set of all morphological tags being expressed in a language and l a

lemma in the same language. The morphological paradigm π of lemma l is defined

as follows:

π(l) = {(fk[l], tk)}k∈T (l) (2.1)

fk[l] denotes an inflected form corresponding to morphological tag tk, and l and

fk[l] are sequences of letters from the alphabet Σ of the language. Note that, even

though we follow the convention to describe word forms as functions of the lemma,

in the vast majority of the cases, each inflection is uniquely defined given any other

inflected form of the same paradigm and the two respective tags.

Morphological inflection is the task of, given a lemma together with mor-

6

phosyntactic features defining the target form, generating the indicated inflected

form. Formally, it is the task of predicting inflected form fk[l], given a lemma l

together with a morphological tag tk. An English example is:

(spend,V;V.PTCP;PRS)→ spending

Morphological reinflection is a generalized version of the morphological

inflection task, which consists of producing an inflected form from any given source

form – i.e., not necessarily the lemma –, and target tag. In our notation, it is

the task of predicting a fj[l] from a paradigm, given a different form fi[l] in the

paradigm or the lemma l, as well the target tj and optionally the source tag ti.

This is a more complicated task, as the model needs to infer l of the source form

in order to correctly inflect it to fj[l].

The final task is the one of paradigm completion. Given a partial paradigm

π(w)p with π(w)p ⊆ π(w), the goal of paradigm completion is to produce all

inflected forms fi[w] such that (fi[w], ti) ∈ π(w), but (fi[w], ti) /∈ π(w)p. The

corresponding tags are supposed to be known.

For example, consider the following partial paradigm, which is a subset of the

English paradigm shown in Table 2.1:

π(spend)p = {(spends,V;3;SG;PRS), (spend,V;NFIN)}

We then expect a paradigm completion system to produce all unknown inflected

forms, which correspond to the tags V;V.PTCP;PST, V;PST and V;V.PTCP;PRS.

7

2.1.3 The SIGMORPHON shared task

The ACL Special Interest Group on Computational Morphology and Phonology

(SIGMORPHON) provides a forum for exchanging news of recent research devel-

opments and other matters of interest in the areas of computational morphology

and phonology. As part of its activity, the group hosts yearly workshops with

the purpose of bringing together researchers interested in applying computational

techniques to problems in the field.

In 2016, the yearly SIGMORPHON shared task was launched, with the goal

of promoting further research on computational morphology, focusing on varying

settings for learning and analyzing inflectional patterns. In 2017 and 2018, SIG-

MORPHON partnered with the SIGNLL Conference on Computational Natural

Language Learning (CONLL) to launch the CoNLL-SIGMORPHON shared task,

before resuming to launch the task alone in 2019 and 2020. Many of the tasks

include classic morphological generation in different setups such as morphologi-

cal inflection and morphological reinflection (Cotterell et al., 2017a, 2018). These

shared tasks have propelled research in computational morphology and many of

the state-of-the-art models for morphological generation in recent years were pre-

sented by participants (Kann and Schütze, 2016b; Makarov et al., 2017; Makarov

and Clematide, 2018). In an attempt to lead the development of morphological

analysis in more general settings, some less traditional tasks are incorporated.

Such as was the 2018 ”Inflection in Context” cloze task (Cotterell et al., 2018)

where participants were given a sentence with a number of missing word forms

and corresponding lemmas with the goal of filling in the missing forms. Another

example is Task 2 on unsupervised morphological paradigm completion of this

year’s shared task, where participants are given raw text in a given language and a

8

list of lemmas, with the objective the complete the entire paradigm of each lemma

(Jin et al., 2020). The majority of the research presented in this thesis is based

on the NYU–CUBoulder submissions created by Professor Katharina Kann and

myself, to the SIGMORPHON 2020 Task 0 on typologically diverse morphological

inflection and Task 2 on unsupervised morphological paradigm completion.

2.2 Neural Networks

An important family of machine learning models are neural networks, also

known as deep learning. Neural networks have been inspired by biology, designed

to mimic the behavior of our brain (Rosenblatt, 1957). A human brain contains an

enormous amount of nerve cells, called neurons. Each of these cells is connected to

many other similar cells, creating a very complex network of signal transmissions.

Each cell collects inputs from all other neural cells it is connected to, and if the

magnitude of its input reaches a certain threshold, it sends out a signal to all other

cells it is connected to.

2.2.1 Perceptron and Multi-Layer Perceptron

One of the earliest attempts to mimic the behavior of a neuron was the per-

ceptron (Rosenblatt, 1957). A perceptron processes several weighted inputs, sums

them up, and, if this sum is above a threshold, produces an output signal. For a

vector of inputs x, a perceptron can be formulated as:

Y = f(wx+ b) (2.2)

9

Figure 2.2: Multi-layer perceptron with one hidden layer. Figure by (Hassan et al.,
2015)

where the nonlinear activation function f() is given by a step function of the form

f(a) =

+1 if a ≥ 0

−1 if a < 0

(2.3)

Y is the output signal, w is a weight vector, and b is a bias.

A neural network, also known as a multi-layer perceptron, is based on this

concept. A multi-layer perceptron (MLP) consists of layers of nodes: an input

layer, hidden layers and an output layer. Each node in a layer is computed as

a weighted sum of the layer’s inputs, passed through a nonlinear function. The

nodes are then stacked together and passed on to the next layer, until reaching the

output layer. More formally, given the vector x of stacked input nodes, each layer

applies:

Y = g(Wx+ b) (2.4)

Where Wij connects input node i and output node j, and b is a bias vector. g is

a nonlinear function, usually the sigmoid or ReLu functions in the hidden layer

10

and the softmax in the output layer. The network is also called a feed-forward

neural network, due to this forward motion of the network. The model can get

more complex as it grows deeper and contains more hidden layers. Neural network

models are most commonly trained by minimizing a loss function, which accounts

for errors, and updating the parameters via gradient descent.

2.2.2 Recurrent Neural Networks

While feed-forward neural networks are used for a variety of tasks, the fixed

number of nodes in a network allows it to only handle inputs of constant size.

Padding can be used to handle ranging-size data to a certain degree. Using

padding, the model is defined to process a maximum size input and output (hope-

fully large enough to handle the majority of examples), where any data that is

shorter than the maximum size is padded with zeros to fit the model’s dimensions.

This, however. is limiting as the network’s input and output sizes cannot exceed

the predetermined maximum size.

Recurrent neural networks (RNN) are a straightforward adaptation of the stan-

dard feed-forward neural network made to allow modeling of variable length se-

quences of input data. At each step, the model processes not only the current

input, but also a representation of the data computed in previous model steps,

implementing a sense of memory. This property makes RNNs highly suitable for

dealing with sequential data such as natural language (Cho et al., 2014a; Sutskever

et al., 2014; Al-Rfou et al., 2019) and music (Eck and Schmidhuber, 2002). The

RNN architecture is as follows: given a sequence of input vectors (x1, · · · , xT),

the network computes at each time step t a hidden state ht, producing a sequence

11

(h1, · · · , hT), as follows:

ht = g(Whxt + Uhht−1 + bh) (2.5)

where matrices Wh, Uh and bias bh are learnable. h0 is either provided the user,

set to zero or learned, and g is an element-wise nonlinear function. Once all in-

puts are processed, the model produces an output, either on top of each hidden

state individually or on top of the last hidden state hT . Gradients of the network

are computed using backpropagation through time (BPTT). Recurrent neural net-

works are notoriously difficult to train because of the vanishing gradient problem.

By application of the chain rule, derivatives are multiplied down the network (from

the final to the initial layer) to compute the derivatives of the initial layers. How-

ever, when n hidden layers use an activation function like the sigmoid function,

n small derivatives are multiplied together. Thus, the gradient decreases expo-

nentially as we propagate down to the initial layers. Several model architectures

were developed to approach this problem, such as the gated recurrent unit (GRU)

network (Cho et al., 2014b), and the long short-term memory (LSTM) network

(Hochreiter and Schmidhuber, 1997) (which we will not describe here).

Introduced by Cho et al. (2014b), the gated recurrent unit has an update

gate and a reset gate, which control the flow of information through the network.

For input xt and previous hidden state ht−1 at timestep t, the reset gate rt and

update gate zt are computed as follows:

rt = σ(Wrxt + Urht−1 + br)

zt = σ(Wzxt + Uzht−1 + bz)

(2.6)

12

Here, σ is the sigmoid function, and weight matrices Wr,Wz, Ur, Uz and biases

br, bz can be learned. The reset weights are then used to compute the candidate

hidden state h̃t, and subsequently, ht using the update weights.

h̃t = tanh(Wh̃xt + Uh̃(rtht−1) + bh)

ht = ztht−1 + (1− zt)h̃t
(2.7)

2.2.3 Encoder-Decoder Recurrent Neural Networks

For an input sequence (x1, · · · , xT), most classic RNN architectures either pro-

duce one output for the entire sequence, or compute an output for each input xt.

While beneficial for many tasks, such as classification or part of speech tagging,

this forcibly binds the length of the output to that of the input. However, in many

sequence-to-sequence tasks, such as machine translation, the sequence length of

the input differs from the output. For example, the term Hello world in English

is made of two words, differing in length from its three-words French translation

Bonjour le monde. Cho et al. (2014b) approach this restriction developing a model

which decouples the output sequence length from the input, allowing flexibility in

both sequences. The model consists of two main components: an encoder and a

decoder. The encoder’s role is to process the input and abstract the relevant infor-

mation, which the decoder then uses to generate the output. For input sequence

(x1, · · · , xTx), the encoder, computes the hidden states (h1, · · · , hTx) as follows:

ht = f(xt, ht−1) (2.8)

13

Where f is modeled by a GRU, and eventually outputs a context vector c, holding

meaningful information about the input.

c = m (h1, · · · , hTx) (2.9)

M can be any function that utilizes the hidden states, where in the model by Cho

et al. (2014b) simply outputs the last hidden state hTx . The decoder, implemented

as a second RNN, then uses the context vector to generate the output in a sequen-

tial manner. At each step t, the model predicts output yt based on all previous

outputs, as well as the context vector.

p(y) =

Ty∏
t=1

p(yt|y1, · · · , yt−1, c) (2.10)

Where p is a conditional probability modeled by an RNN.

p(yt|y1, · · · , yt−1, c) = g(yt−1, st, c) (2.11)

Again, g is modeled by a GRU and st is the hidden state of the decoder RNN.

2.2.4 Attention

While the input and output sequences may vary in length, the context vector

remains constant in size. This creates an information bottleneck, and Cho et al.

(2014a) show that it decreases the performance of models as the length of the

input increases. To alleviate this issue, Bahdanau et al. (2015) propose an encoder-

decoder model based on a novel concept known as attention.

This model is largely identical to the previous encoder-decoder model. However,

14
Encoder-decoder RNN

x1 x2 xT

yT' y2 y1

c

Decoder

Encoder

Attention-based encoder-decoder RNN

x1 x2 x3 xT

+
αt,1
αt,2 αt,3

αt,T

yt-1 yt

h1 h2 h3 hT

h1 h2 h3 hT

st-1 s t

Figure 2.3: Left: the RNN encoder–decoder. Figure by (Cho et al., 2014b) Right:
the attention-based encoder-decoder model architecture. Figure by (Bahdanau
et al., 2015)

in order to avoid the constraint of the single fixed-length context vector c, the

output distribution is conditioned on a distinct context vector ci for each target

word yi as follows.

p(yi|y1, · · · , yi−1, x) = g(yi−1, si, ci) (2.12)

ci is computed as a weighted sum of the hidden states produced by the encoder:

ci =
Tx∑
j=1

αijhj (2.13)

Where the attention weight αij for each annotation hj is computed by:

eij = a(si−1, hj)

αij =
exp(eij)∑Tx

k=1 exp(eik)

(2.14)

where a is an alignment model which scores how well the input at position j and

the output at position i match, implemented using a feedforward neural network.

The score is based on the RNN hidden state si−1 (just before emitting yi) and

15

Figure 2.4: The transformer: model architecture. Figure by (See et al., 2017)

hidden state hj. We parameterize the alignment model as a feed-forward neural

network which is jointly trained with all the other components of the proposed

system, where the attention weights determine how strongly the current output yt

is affected by the input xj.

To model each hi to obtain information about the surrounding positions, the

encoder RNN is implemented as a bi-directional RNN. The bi-directional RNN

is composed of a forward and a backward RNN, producing (h⇒1 , · · · , h⇒T), and

(h⇐1 , · · · , h⇐T), which are concatenated to produce hidden states (h1, · · · , hT).

2.2.5 Transformer

One major setback is that RNNs take a long time to train. At each time

step t, an RNN must know the previous hidden state ht−1 when producing ht.

16

This sequential nature imposes a computational bottleneck, which precludes par-

allelization within training examples. This issue becomes critical at longer se-

quence lengths, as memory constraints limit batching across examples. Recently, a

new model architecture was introduced for sequence-to-sequence tasks, called the

transformer (Vaswani et al., 2017). It is based solely on attention mechanisms,

dispensing with recurrence entirely, offering more parallelization and requiring sig-

nificantly less time to train. Transformers have produced state-of-the-art results

on various tasks, such as machine translation (Vaswani et al., 2017) language mod-

eling (Al-Rfou et al., 2019), question answering (Devlin et al., 2019) and language

inference (Devlin et al., 2019).

The transformer consists of an encoder and a decoder, each composed of a

stack of layers. Given an input sequence (x1, · · · , xT), the encoder processes the

entire sequence at once to produce hidden states (h1, · · · , hT). At generation step

t, the decoder reads the previously generated sequence (y1, · · · , yt−1) to produce

states (s1, · · · , st−1). During training, the entire target sequence (y1, · · · , yT y)

is input to the decoder at once, along with a sequential mask used to prevent

positions from attending to subsequent positions. In order to differentiate between

the different positions, a sinusoidal positional encoding is added to the input and

output sequences, which the model then learns to recognize.

2.2.5.1 Encoder and Decoder Stacks

The architecture of the encoder and decoder stacks is shown in Figure 2.4.

The encoder and decoder are both composed of a stack of N subsequent layers.

The encoder layers consist of a self-attention layer, followed by a fully connected

layer, and the decoder layers contain an additional inter-attention layer between

17
Scaled Dot-Product Attention Multi-Head Attention

Figure 2.5: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention
consists of several attention layers running in parallel. Figure by (Vaswani et al.,
2017)

the two. Using self-attention helps the model explore the alignment between the

different positions within the same sequence as it encodes a specific word, where the

inter-attention acts as an alignment model which measures how well the different

positions of the input sequence and the output sequence align. Another way in

which the decoder differs from the encoder is that the self-attention sub-layer in

the decoder stack is modified to prevent positions from attending to subsequent

positions. This masking, combined with the fact that the output embeddings are

offset by one position, ensures that the predictions for position i can depend only

on the known outputs at positions less than i.

Residual connections are applied after every sub-layer, along with layer normal-

ization. The sequence length and embedding dimensions do not change between

each sub-layer and between layers and stay the same through the entire network.

18

2.2.5.2 Scaled dot-product Attention

Attention can be seen as aligning a set of queries with a set of key-value pairs.

For a given query q, the output is a weighted average of the values, based on the

alignment between the query and the corresponding keys. In scaled-dot-product

attention, for queries and keys of dimension dk, and values of dimension dv, we

compute the dot products of the query with all keys, and apply a softmax function

to obtain the weights on the values. To allow for parallel attention computation,

the queries, keys and values are stacked together, producing all outputs at once as

follows:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (2.15)

In order to prevent the dot products from growing large in magnitude, the product

is then scaled down by
√
dk. For the inter-attention which seeks to align the input

and output sequences, the inputs to the decoder layer are used as queries, and

the encoder hidden states are used as both the keys and values. In self-attention,

where we align the different positions of the same sequence, the inputs to the layer

are used as the queries, keys and values.

2.2.5.3 Multi-Headed Attention

In order to allow the model to learn different representations of the inputs, the

embeddings are projected to different sub-spaces, as follows. Each attention layer

is divided to h separate heads, where at each head, the inputs of the layer are

projected to h different sub-spaces of dimension dk. The model then applies the

attention between the projected embeddings, eventually concatenating all heads

19

Source Text

Germany emerge victorious in 2-0 win against Argentina on Saturday ...

...

<START>

Vocabulary Distribution

Context Vector

Germany

a zoo

beat

a zoo

Partial Summary

Final Distribution

"Argentina"

"2-0"

At
te

nt
io

n
Di

st
rib

ut
io

n

En
co

de
r

H
id

de
n

St
at

es

Decoder H
idden States

Figure 2.6: Pointer-generator model. For each decoder timestep a generation prob-
ability pgen ∈ [0, 1] is calculated, which weights the probability of generating words
from the vocabulary, versus copying words from the source text. The vocabulary
distribution and the attention distribution are weighted and summed to obtain the
final distribution, from which we make our prediction. Figure by See et al. (2017)

together. Formally, the multi-head attention layer is defined as follows:

MultiHead(Q,K, V) = concat(head1, · · · , headh)WO

where headi = Attention(QWQ
i , KW

K
i , V W

V
i)

Where the projections are parameter matrices WQ
i ∈ Rd×dk , WK

i ∈ Rd×dk , W V
i ∈

Rd×dv and WO ∈ Rhdv×d, and d is the input dimension.

2.2.6 Pointer-Generator Network

Copying of pieces from the input in order to generate an output has been proved

as beneficial to some natural language tasks. A popular example is extractive sum-

marization, where models extract words from an article to form its summary. This

20

use of copying was also implemented by the pointer network (Vinyals et al., 2015),

which constructs an output by pointing to different positions of the input. This

concept was then extended by See et al. (2017), who introduce a pointer-generator

network for abstractive summarization. The pointer-generator network can copy

words from the source text via pointing, which facilitates accurate reproduction

of information, while retaining the ability to produce novel words. This model

has sometimes been enhanced by a coverage mechanism, which helps keep track of

previously generated outputs, in order to reduce repetition during generation.

The pointer-generator transformer uses a combination of a ”generation” dis-

tribution and a ”copy” distribution, which allows for both generating characters

from a fixed vocabulary, as well as copying from the source text via pointing. This

is managed by the generation probability pgen ∈ [0, 1] which acts as a soft switch

between the two actions.

The model is constructed as an extension over the attention-based encoder-

decoder network by Bahdanau et al. (2015), with the encoder and decoder imple-

mented with an LSTM instead of a GRU. Given inputs (w1, · · · , wT), the attention-

based encoder-decoder model produces the ”generational” probability at timestep

t using a distribution over the output vocabulary:

Pvocab = softmax(V ′(V [st, h
∗
t] + b) + b′) (2.16)

Then, pgen is calculated from the context vector ht, the decoder state st and

the decoder input xt:

pgen = σ(wT
h∗h∗t + wT

s st + wT
x xt + bgen) (2.17)

21

where vectors wh∗ , ws, wx and scalar bptr are learnable parameters and σ is the

sigmoid function. For each document let the extended vocabulary denote the union

of the vocabulary, and all words appearing in the source document. The probability

distribution over the extended vocabulary is computed by:

P (w) = pgenPvocab(w) + (1− pgen)
∑

i:wi=w
ati (2.18)

Note that if l is an out-of-vocabulary (OOV) word, then Pvocab(w) is zero, and if l

does not appear in the source document, then
∑

i:wi=w a
t
i is also zero. The ability to

produce OOV words is one of the primary advantages of pointer-generator models;

by contrast models such as our baseline are restricted to their pre-set vocabulary.

22

Chapter 3

Research

3.1 Approach Details

In this thesis, we suggest new approaches to problems in inflectional mor-

phology, more specifically morphological inflection and paradigm completion. We

model morphological inflection as a sequence-to-sequence problem, where the in-

put is the sequence of the lemma’s characters with morphological tags, and the

output is the sequence of the inflected form’s characters. First, we apply a trans-

former model to the task. Then, we present the pointer-generator transformer

model, based on the vanilla transformer model (Vaswani et al., 2017) and the

pointer-generator model See et al. (2017). After adding a copy mechanism to the

transformer, it produces a final probability distribution as a combination of gen-

erating elements from its output vocabulary and copying elements – characters in

our case – from the input. In order to examine our proposed model, we participate

in Task 0 of the SIGMORPHON 2020 shared task on typologically diverse morpho-

logical inflection and Task 2 on unsupervised morphological paradigm completion.

23

Task 0 consists of generating morphological inflections from a lemma and a set

of morphosyntactic features describing the target form. For our submissions, we

further increase the size of all training sets by performing multi-task training on

morphological inflection and morphological reinflection, i.e., the task of generating

inflected forms from forms different from the lemma. . For languages with small

training sets, we also perform hallucination pretraining (Anastasopoulos and Neu-

big, 2019), where we generate pseudo training instances for the task, based on

suffixation and prefixation rules collected from the original dataset.

For Task 2, participants are given raw text and a source file with lemmas. The

objective is to generate the complete paradigms for all lemmas. Our systems for

this task consist of a combination of the official baseline system (Jin et al., 2020)

and our systems for Task 0. The baseline system finds inflected forms in the text,

decides on the number of inflected forms per lemma, and produces pseudo training

files for morphological inflection. Our inflection model then learns from these and,

subsequently, generates all missing forms.

As most inflected forms derive their characters from the source lemma, the

use of a mechanism for copying characters directly from the lemma has proven to

be effective for morphological inflection generation, especially in the low resource

setting (Aharoni and Goldberg, 2017; Makarov et al., 2017). As all Task 0 datasets

are fairly large, we further design a low-resource experiment to investigate the

effectiveness of our model.

24

3.2 Related Work

3.2.1 Morphological Generation

In recent years, the SIGMORPHON and CoNLL–SIGMORPHON shared tasks

have promoted research on computational morphology, with a strong focus on

morphological inflection and reinflection. Research related to those shared tasks

includes Kann and Schütze (2016a), who used an LSTM (Hochreiter and Schmid-

huber, 1997) sequence-to-sequence model with soft attention (Bahdanau et al.,

2015) and achieved the best result in the SIGMORPHON 2016 shared task (Kann

and Schütze, 2016b; Cotterell et al., 2016a). Due to the often monotonic align-

ment between input and output in the tasks of morphological generation, Aharoni

and Goldberg (2017) proposed a model with hard monotonic attention. Unlike

sequence-to-sequence models based on soft attention (Bahdanau et al., 2015), this

model attends to only a single input state at a time and either adds a symbol to

the output sequence or moves the position of the attention pointer to the next

hidden state of the encoder. Based on this, Makarov et al. (2017) implemented a

neural state-transition system which also used hard monotonic attention to trans-

duce the lemma into the inflected form by a sequence of explicit edit operations,

and achieved the best results for Task 1 of the SIGMORPHON 2017 shared task.

In 2018, the best results were achieved by a revised version of the neural trans-

ducer, trained with imitation learning (Makarov and Clematide, 2018). That model

learned an alignment instead of maximizing the likelihood of gold action sequences

given by a separate aligner.

For paradigm completion, extended work has been done for Task 2 of the 2017

shared task. Cotterell et al. (2017b) considered a multi-source setting for paradigm

25

completion. They modeled paradigms using graphical models with neural param-

eterizations, defined over multiple string-valued random variables.

Earlier influential work on paradigm completion or inflection— both neural and

non-neural—which is not mentioned above, included but was by no means limited

to (Dreyer et al., 2008; Faruqui et al., 2016; Hulden et al., 2014)

3.2.2 Sequence-to-Sequence Models in NLP

In the last few years, sequence-to-sequence models have been found useful to

several natural language processing (NLP) tasks, limited not only to machine trans-

lation (Cho et al., 2014a; Sutskever et al., 2014; Bahdanau et al., 2015) but also to

parsing (Vinyals et al., 2015), speech recognition (Graves and Schmidhuber, 2005)

and many more tasks.

3.2.3 Transformers

Transformers have produced state-of-the-art results on various tasks such as

machine translation (Vaswani et al., 2017) and language modeling (Al-Rfou et al.,

2019). Several revisions have been done to the model, most notably is BERT

Devlin et al. (2019), which stands for Bidirectional Encoder Representations from

Transformers. BERT is designed to pretrain deep bidirectional representations

from unlabeled text by jointly conditioning on both left and right context in all

layers. BERT achieved state-of-the-art results on several tasks such as question

answering and language understanding (Devlin et al., 2019). There has been very

little work on transformers for morphological inflection, with, to the best of our

knowledge, Erdmann et al. (2020) being the only published paper. However, the

widespread success of transformers in NLP leads us to believe that a transformer

26

model could perform well on morphological inflection.

3.2.4 Pointer-Generators

In addition to the transformer, the architecture of our model is also inspired

by See et al. (2017), who used a pointer-generator network for abstractive sum-

marization. Their model could choose between generating a new element and

copying an element from the input directly to the output. This copying of words

from the source text via pointing (Vinyals et al., 2015), improved the handling of

out-of-vocabulary words. Copy mechanisms have also been used for other tasks,

including morphological inflection (Sharma et al., 2018). Transformers with copy

mechanisms have been used for word-level tasks (Zhao et al., 2019), but, as far as

we know, never before on the character level.

3.3 SIGMORPHON 2020 Shared Task

The SIGMORPHON 2020 Shared Task is composed of three tasks: Task 0 on

typologically diverse morphological inflection, Task 1 on multilingual grapheme-

to-phoneme conversion, and Task 2 on unsupervised morphological paradigm com-

pletion. We submit systems to Tasks 0 and 2.

3.3.1 Task 0: Typologically Diverse Morphological Inflec-

tion

SIGMORPHON 2020 Task 0 focuses on morphological inflection in a set of

typologically diverse languages. Different languages inflect differently, so it is not

trivially clear that systems that work on some languages also perform well on

27

others. For Task 0, systems need to generalize well to a large group of languages,

including languages unseen during model development.

The task features 90 languages in total. 45 of them are development languages,

coming from five families: Austronesian, Niger–Congo, Uralic, Oto-Manguean, and

Indo-European. The remaining 45 are surprise languages, and many of those are

from language families different from the development languages. Some languages

have very small training sets, which makes them hard to model. For those cases,

the organizers recommend a family-based multilingual approach to exploit simi-

larities between related languages. While this might be effective, we believe that

using multitask training in combination with hallucination pretraining can give the

model enough information to learn the task well, while staying true to the specific

structure of each individual language.

3.3.2 Task 2: Unsupervised Morphological Paradigm Com-

pletion

Task 2 is a novel task, designed to encourage work on unsupervised methods for

computational morphology. As morphological annotations are limited for many of

the world’s languages, the study of morphological generation in the low-resource

setting is of great interest (Cotterell et al., 2018). However, a different way to tackle

the problem is by creating systems that are able to use data without annotations.

For Task 2, a tokenized Bible in each language is given to the participants,

along with a list of lemmas. Participants should then produce complete paradigms

for each lemma. As slots in the paradigm are not labeled with gold data paradigm

slot descriptions, an evaluation metric called best-match accuracy was designed for

this task. First, this metric matches predicted paradigm slots with gold slots in the

28

way which leads to the highest overall accuracy. It then evaluates the correctness

of individual inflected forms.

3.4 Methods

In this section, we introduce our models for Tasks 0 and 2 and describe all

approaches we use, such as multitask training, hallucination pretraining and en-

sembling.

3.4.1 Transformer

With inputs (x1, · · · , xT) being a lemma’s characters followed by tags repre-

senting the morphosyntactic features of the target form, the encoder processes

the input sequence and outputs hidden states (h1, · · · , hT). At generation step

t, the decoder reads the previously generated sequence (y1, · · · , yt−1) to produce

states (s1, · · · , st−1). The last decoder state st−1 is then passed through a linear

layer followed by a softmax, to generate a probability distribution over the output

vocabulary:

Pvocab = softmax(V st−1 + b) (3.1)

During training, the entire target sequence
(
y1, · · · , yTy

)
is input to the decoder at

once, along with a sequential mask to prevent positions from attending to subse-

quent positions.

29

3.4.2 Pointer-Generator Transformer

The pointer-generator transformer allows for both generating characters from a

fixed vocabulary, as well as copying from the source sequence via pointing (Vinyals

et al., 2015). This is managed by pgen – the probability of generating as opposed

to copying – which acts as a soft switch between the two actions. pgen is computed

by passing a concatenation of the decoder state st, the previously generated out-

put yt−1, and a context vector ct through a linear layer, followed by the sigmoid

function.

pgen = σ(w[st; ct; yt−1] + b) (3.2)

The context vector is computed as the weighted sum of the encoder hidden states

ct =
∑T

i=1
atihi (3.3)

with attention weights (at1, · · · , atT). For each inflection example, let the extended

vocabulary denote the union of the output vocabulary, and all characters appearing

in the source lemma. We then use pgen, Pvocab produced by the transformer, and the

attention weights of the last decoder layer (at1, · · · , atT) to compute a distribution

over the extended vocabulary:

P (c) = pgenPvocab(c) + (1− pgen)Pcopy(c) (3.4)

with

Pcopy(c) =
∑

i:xi=c
ati (3.5)

30

raw
grip grips V;SG;3;PRS
grip gripped V;PST

generated
grips grip V;LEMMA
grips gripped V;PST
gripped grip V;LEMMA

Figure 3.1: An English multitask training example.

The copy distribution Pcopy(c) for each character c is the sum of attention weights

over all source positions where xi = c. Note that if c is an out-of-vocabulary

(OOV) character, then Pvocab(c) is zero; similarly, if c does not appear in the

source lemma, then
∑

i:xi=c a
t
i is zero. The ability to produce OOV characters is

one of the primary advantages of pointer-generator models; by contrast models

such as our vanilla transformer are restricted to their pre-set vocabulary.

3.4.3 Multitask Training

Some languages in Task 0 have small training sets, which makes them hard

to model. In order to handle that, we perform multitask training, and, thereby,

increase the amount of examples available for training.

Morphological reinflection. Morphological reinflection is a generalized version

of the morphological inflection task, which consists of producing an inflected form

for any given source form – i.e., not necessarily the lemma –, and target tag. For

example: (hugging;V ;PST)→ hugged.

This is a more complex task, since a model needs to infer the underlying lemma

of the source form in order to inflect it correctly to the desired form. Many morpho-

logical inflection datasets contain lemmas that are converted to several inflected

forms. Treating separate instances for the same source lemma as independent is

31

missing an opportunity to utilize the connection between the different inflected

forms. We approach this by converting our morphological inflection training set

into one for morphological reinflection as described in the following.

From inflection to reinflection. Inflected forms of the same lemma are grouped

together to sets of one or more (inflected form, morphological features) pairs. Then,

for each set, we create new training instances by inflecting all forms to one another,

as shown in Figure 3.1. We also let the model inflect forms back to the lemma by

adding the lemma as one of the inflected forms, marked with the synthetically gen-

erated LEMMA tag. The new training set fully utilizes the connections between

different forms in the paradigm, and, in that way, provides more training instances

to our model.

3.4.4 Hallucination Pretraining

Another effective tool to improve training in the low-resource setting is data hal-

lucination (Anastasopoulos and Neubig, 2019). Using hallucination, new pseudo-

instances are generated for training, based on suffixation and prefixation rules

collected from the original dataset. For languages with less than 1000 training in-

stances, we pretrain our models on a hallucinated training set consisting of 10,000

instances, before training on the multitask training set.

3.4.5 Submissions and Ensembling Strategies

We submit 4 different systems for Task 0. NYU-CUBoulder-2 consists of one

pointer-generator transformer model, and, for NYU-CUBoulder-4, we train one

32
Hyperparameter Value
Embedding dimension 256
Encoder layers 4
Decoder layers 4
Encoder hidden dimension 1024
Decoder hidden dimension 1024
Attention heads 4

Table 3.1: The hyperparameters used in our models.

vanilla transformer. Those two are our simplest systems and can be seen as base-

lines for our other submissions.

Because of the effects of random initialization in non-convex objective func-

tions, we further use ensembling in combination with both architectures: NYU-

CUBoulder-1 is an ensemble of three pointer-generator transformers, and NYU-

CUBoulder-3 is an ensemble of five pointer-generator transformers. The final de-

cision is made by majority voting. In case of a tie, the answer is chosen randomly

among the most frequent predictions. Models participating in the ensembles are

from different epochs during the same training run.

As previously stated, all systems are trained on the augmented multitask train-

ing sets, and systems trained on languages with less than 1000 training instances

were pretrained on the hallucinated datasets.

3.4.6 Task 2: Model description

Our systems for Task 2 consist of a combination of the official baseline system

(Jin et al., 2020) and our inflection systems for Task 0. The system is given

raw text and a source file with lemmas, and generates the complete paradigm of

each lemma. The baseline system finds inflected forms in the text, decides on

the number of inflected forms per lemma, and produces pseudo training files for

33

morphological inflection. Any inflections that the system has not found in the raw

text are given as test instances. Our inflection model then learns from the files

and, subsequently, generates all missing forms. We use the pointer-generator and

vanilla transformers as our inflection models.

For Task 2, we use ensembling for all submissions. NYU-CUBoulder-1 is an

ensemble of six pointer-generator transformers, NYU-CUBoulder-2 is an ensemble

of six vanilla transformers, and NYU-CUBoulder-3 is an ensemble of all twelve

models. For all models in both tasks, we use the hyperparameters described in

Table 3.1.

3.5 Experiments

3.5.1 Task 0

Data. The dataset for Task 0 covers 90 languages in total: 45 development

languages and 45 surprise languages. For details on the official dataset please refer

to Vylomova et al. (2020).

Baselines. This year, several baselines are provided for the task. The first sys-

tem has also been used as a baseline in previous shared tasks on morphologi-

cal reinflection (Cotterell et al., 2017a, 2018). It is a non-neural system which

first scans the dataset to extract suffix- or prefix-based lemma-to-form transfor-

mations. Then, based on the morphological tag at inference time, it applies the

most frequent suitable transformation to an input lemma to yield the output form

(Cotterell et al., 2017a). The other two baselines are neural models. One is a

transformer (Vaswani et al., 2017), and the second one is a hard-attention model

34
System: Sub-1 Sub-2 Sub-3 Sub-4 Base

Development Set

Low 88.71 88.02 84.90 84.07 -
Other 90.46 90.63 90.20 90.94 -
All 90.06 90.02 88.96 89.34 -

Test Set

Low 84.8 84.8 85.5 83.9 89.77
Other 89.7 89.8 89.8 90.2 92.43
All 88.6 88.7 88.8 88.8 91.81

Table 3.2: Macro-averaged results over all languages on the official development
and test sets for Task 0. Low=languages with less than 1000 train instances,
Other=all other languages, All=all languages.

(Wu and Cotterell, 2019), which enforces strict monotonicity and learns a latent

alignment while learning to transduce. To account for the low-resource settings for

some languages, the organizers also employ two additional methods: constructing

a multilingual model trained for all languages belonging to each language fam-

ily ?, and data augmentation using hallucination (Anastasopoulos and Neubig,

2019). Four model types are trained for each neural architecture: a plain model,

a family-multilingual model, a data augmented model, and an augmented family-

multilingual model. Overall, there are nine baseline systems for each language.

We compare our models to an oracle baseline by choosing the best score over all

baseline systems for each language.

Results. Our results for Task 0 are displayed in Table 3.2. All four systems

produce relatively similar results. NYU-CUBoulder-3, our five-model ensemble,

performs best overall with 88.8% accuracy on average. We further look at the

results for low-resource (< 1000 training examples) and high-resource (>= 1000

training examples) languages separately. This way, we are able to see the ad-

vantage of the pointer-generator transformer in the low-resource setting, where all

35

pointer-generator systems achieve an at least 0.9% higher accuracy than the vanilla

transformer model. However, in the setting where training data is abundant, the

effect of the copy mechanism vanishes, as NYU-CUBoulder-4 – our only vanilla

transformer – achieved the best results for our high-resource languages.

3.5.2 Task 2

Data. For Task 2, a tokenized Bible in each language is given to the participants,

along with a list of lemmas. Participants are required to construct the paradigms

for all given lemmas.

The languages for Task 2 are again divided into development and test languages.

Development languages are available for model development and hyperparameter

tuning, but are not used during the final evaluation. The test languages are used for

evaluation only, and do not have development sets. The development languages are:

Maltese, Persian, Portuguese, Russian, Swedish. The test languages are: Basque,

Bulgarian, English, Finnish, German, Kannada, Navajo, Spanish and Turkish.

Baselines. The baseline system for the task is composed of four components,

eventually producing morphological paradigms. The first three modules perform

edit tree (Chrupala, 2020) retrieval, additional lemma retrieval from the corpus,

and paradigm size discovery, using distributional information. After the first three

steps, pseudo training and test files for morphological inflection are produced.

Finally, the non-neural Task 0 baseline system Cotterell et al. (2017a) or the neural

transducer by Makarov and Clematide (2018) are used to create missing inflected

forms.

36
System Baseline 1 Baseline 2 Sub-1 Sub-2 Sub-3

Test Set
slots macro slots macro slots macro slots macro slots macro

Basque 30 0.0006 27 0.0006 30 0.0005 30 0.0005 30 0.0007
Bulgarian 35 0.283 34 0.3169 35 0.2769 35 0.2894 35 0.2789
English 4 0.656 4 0.662 4 0.502 4 0.528 4 0.512
Finnish 21 0.0533 21 0.055 21 0.0536 21 0.0547 21 0.0535
German 9 0.2835 9 0.29 9 0.273 9 0.2735 9 0.2735
Kannada 172 0.1549 172 0.1512 172 0.111 172 0.1116 172 0.111
Navajo 3 0.0323 3 0.0327 3 0.004 3 0.0043 3 0.0043
Spanish 29 0.2296 29 0.2367 29 0.2039 29 0.2056 29 0.203
Turkish 104 0.1421 104 0.1553 104 0.1488 104 0.1539 104 0.1513
All 0.2039 0.2112 0.1749 0.1802 0.1765

Table 3.3: Results for all test languages on the official test sets for Task 2.

Results. Systems for Task 2 are evaluated using macro-averaged best-match ac-

curacy (Jin et al., 2020). Results are shown in in Table 3.3. All three systems

produce relatively similar results. NYU-CUBoulder-2, our vanilla transformer en-

semble, performed slightly better overall with an average best-match accuracy

of 18.02%. Since our system is close to the baseline models, it performs simi-

larly, achieving slightly worse results. For Basque, our all-round ensemble NYU-

CUBoulder-2 outperformed both baselines with a best-match accuracy of 00.07%,

achieving the highest result in the shared task.

3.5.3 Low-resource Setting

As most inflected forms derive their characters from the source lemma, the

use of a mechanism for copying characters directly from the lemma has proven to

be effective for morphological inflection generation, especially in the low-resource

setting (Aharoni and Goldberg, 2017; Makarov et al., 2017). As all Task 0 datasets

are fairly large, we further design a low-resource experiment to investigate the

effectiveness of our model.

37

Data. We simulate a low-resource setting by sampling 100 instances from all

languages that we already consider low-resource, i.e., all languages with less than

1000 training instances. We then keep their development and test sets unchanged.

Overall, we perform this experiment on 21 languages.

Experimental setup. We train a pointer-generator transformer and a vanilla

transformer on the modified datasets to examine the effects of the copy mechanism.

We keep the hyperparameters unchanged, i.e., they are as mentioned in Table

3.1. We use a majority-vote ensemble consisting of 5 individual models for each

architecture.

Baseline. We additionally train the neural transducer by Makarov and Clematide

(2018), which has achieved the best results for the 2018 shared task in the low-

resource setting (Cotterell et al., 2018). The neural transducer uses hard mono-

tonic attention (Aharoni and Goldberg, 2017) and transduces the lemma into the

inflected form by a sequence of explicit edit operations. It is trained with an im-

itation learning method (Makarov and Clematide, 2018). We use this model as a

reference for the state of the art in the low-resource setting.

System Trm Trm-PG Baseline
All 63.06 67.61 70.06

Table 3.4: Results on the official development data for our low-resource experi-
ment. Trm=Vanilla transformer, Trm-PG=Pointer-generator transformer, Base-
line=neural transducer by Makarov and Clematide (2018).

Results. As seen in Table 3.4, for the low-resource dataset, the pointer-generator

transformer clearly outperforms the vanilla transformer by an average accuracy of

4.46%. For some languages, such as Chichicapan Zapotec, the difference is up to

38
Model: 1 2 3 4 5
Copy X X X
Multitask Train X X X
Hallucination X X X X

Table 3.5: System components for the ablation study. Each model is a transformer
which contains a combination of the following components: copy mechanism, mul-
titask training and hallucination pretraining.

14%. While the neural transducer achieves a higher accuracy, our model performs

only 2.45% worse than this state-of-the-art model.1 We are also able to observe

the use of the copy mechanism for copying of OOV characters in the test sets of

some languages.

3.6 Ablation Studies

Our systems use three components on top of the vanilla transformer: a copy

mechanism, multitask training and hallucination pretraining. We further perform

an ablation study to measure the contribution of each component to the overall

system performance. For this, we additionally train five different systems with

different combinations of components. A description of which component is used

in which system for this ablation study is shown in Table 3.5.

3.6.1 Results

Copy mechanism. Comparing models 2 and 4, which are both trained on the

original dataset, pretrained with hallucination and differ only by the use of the

copy mechanism, we are able to see that adding this component slightly improves

performance by 0.06− 0.16%. When comparing models 1 and 3, the copy mecha-

1We could probably obtain better results with appropriate hyperparameter tuning.

39

nism decreases performance slightly by 0.3% for the high-resource languages and

0.11% overall, but increases performance for low-resource languages by 0.68%.

Multitask training. Unlike the copy mechanism, multitask training actually

consistently decreases the performance of the models. Looking at models 1 and

2, training the pointer-generator transformer on the multitask dataset decreases

accuracy by 1.8 − 2.03% for all three language groups. The same happens for

the vanilla transformer with an accuracy decrease of 1.67 − 2.32%. A possible

explanation are the relatively large training sets provided for the shared task, as

this method is more suitable for the low-resource setting.

Hallucination pretraining. In order to examine the effect of hallucination pre-

training on our submitted models, we now compare the pointer-generator trans-

formers trained on the multitask data with and without hallucination pretraining

(models 1 and 5). Hallucination pretraining shows to be helpful: it increases the ac-

curacy on low-resource languages by 1.85%. The performance on the high-resource

languages is necessarily the same, as only models for low-resource languages are

actually pretrained.

Model: 1 2 3 4 5
Development Set

Low 88.20 90.00 87.52 89.84 86.35
Other 90.63 92.66 90.93 92.60 90.63
All 90.02 92.04 90.13 91.96 89.63

Table 3.6: Ablation study; development set results, averaged over all languages.
Low=languages with less than 1000 train instances, Other=all other languages,
All=all languages.

40

Chapter 4

Conclusions

In this thesis, we suggested new approaches to problems in inflectional mor-

phology. Specifically, we focused on the following questions: 1. How can we create

morphological inflection systems that generalize well to a large group of languages?

2. How can we assist morphological inflection systems to perform in settings where

training data is limited? 3. How can we utilize data that is not annotated to infer

complete paradigms?

In Chapter 2 we first provided some background on the importance of handling

inflection in natural language, defined the different morphological inflection genera-

tion tasks, and presented the SIGMORPHON shared task, founded for the purpose

of promoting research on computational approaches to inflectional morphology.

We then introduced the feed-forward neural network model, discussed its limi-

tations, and presented the recurrent neural network designed to handle sequential

data. We then discussed several recurrent neural sequence-to-sequence architec-

tures and the concept of attention (Bahdanau et al., 2015) as a tool to enable sys-

tems to attend to different positions in the source data when making predictions.

41

Finally, we present the transformer (Vaswani et al., 2017) and pointer-generator

(See et al., 2017) network architectures, which are used in this thesis.

We presented the NYU-CUBoulder submissions for SIGMORPHON 2020 Task

0 of typologically diverse morphological inflection and Task 2 of unsupervised mor-

phological paradigm completion (Vylomova et al., 2020).

We developed morphological inflection models, based on a transformer and a

new model for the task, a pointer-generator transformer, which is a transformer-

analogue of a pointer-generator model. For Task 0, we further added multitask

training and hallucination pretraining, with the goal of improving performance

in low-resource settings. For Task 2, we combined our inflection models with

additional components from the provided baseline (Jin et al., 2020) to obtain a

fully functional system for unsupervised morphological paradigm completion.

We performed an ablation study to examine the effects of all components of

our inflection system. Finally, we designed a low-resource experiment to show that

using the copy mechanism on top of the vanilla transformer is beneficial if training

sets are small, and achieved results close to a state-of-the-art model for low-resource

morphological inflection (Makarov and Clematide, 2018; Cotterell et al., 2018).

Overall, we hope that this thesis will make a contribution to research on mor-

phology generation and analysis, and help to make neural network models appli-

cable in low-resource settings.

42

Bibliography

R. Aharoni and Y. Goldberg. Morphological inflection generation with hard mono-

tonic attention. In Proceedings of the 55th Annual Meeting of the Association

for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August

4, Volume 1: Long Papers, pages 2004–2015, 2017. doi: 10.18653/v1/P17-1183.

R. Al-Rfou, D. Choe, N. Constant, M. Guo, and L. Jones. Character-level language

modeling with deeper self-attention. In The Thirty-Third AAAI Conference on

Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of

Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on

Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii,

USA, January 27 - February 1, 2019., pages 3159–3166, 2019. doi: 10.1609/

aaai.v33i01.33013159.

A. Anastasopoulos and G. Neubig. Pushing the limits of low-resource morpholog-

ical inflection. In K. Inui, J. Jiang, V. Ng, and X. Wan, editors, Proceedings

of the 2019 Conference on Empirical Methods in Natural Language Process-

ing and the 9th International Joint Conference on Natural Language Processing,

EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 984–996.

Association for Computational Linguistics, 2019. doi: 10.18653/v1/D19-1091.

43

S. R. Anderson. Morphology. Encyclopedia of Cognitive Science. Macmillan Ref-

erence, Ltd., Yale University., 07 2016.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly

learning to align and translate. In 3rd International Conference on Learning

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference

Track Proceedings, 2015.

V. Chahuneau, E. Schlinger, N. A. Smith, and C. Dyer. Translating into morpho-

logically rich languages with synthetic phrases. In Proceedings of the 2013 Con-

ference on Empirical Methods in Natural Language Processing, EMNLP 2013,

18-21 October 2013, Grand Hyatt Seattle, Seattle, Washington, USA, A meeting

of SIGDAT, a Special Interest Group of the ACL, pages 1677–1687. ACL, 2013a.

V. Chahuneau, N. A. Smith, and C. Dyer. Knowledge-rich morphological priors for

bayesian language models. In L. Vanderwende, H. D. III, and K. Kirchhoff, edi-

tors, Human Language Technologies: Conference of the North American Chapter

of the Association of Computational Linguistics, Proceedings, June 9-14, 2013,

Westin Peachtree Plaza Hotel, Atlanta, Georgia, USA, pages 1206–1215. The

Association for Computational Linguistics, 2013b.

K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio. On the prop-

erties of neural machine translation: Encoder-decoder approaches. In

D. Wu, M. Carpuat, X. Carreras, and E. M. Vecchi, editors, Proceedings of

SSST@EMNLP 2014, Eighth Workshop on Syntax, Semantics and Structure in

Statistical Translation, Doha, Qatar, 25 October 2014, pages 103–111. Associa-

tion for Computational Linguistics, 2014a. doi: 10.3115/v1/W14-4012.

44

K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk,

and Y. Bengio. Learning phrase representations using RNN encoder-decoder for

statistical machine translation. In A. Moschitti, B. Pang, and W. Daelemans,

editors, Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meet-

ing of SIGDAT, a Special Interest Group of the ACL, pages 1724–1734. ACL,

2014b. doi: 10.3115/v1/d14-1179.

G. Chrupala. Towards a machine-learning architecture for lexical functional gram-

mar parsing. 05 2020.

A. Clifton and A. Sarkar. Combining morpheme-based machine translation with

post-processing morpheme prediction. In D. Lin, Y. Matsumoto, and R. Mihal-

cea, editors, The 49th Annual Meeting of the Association for Computational Lin-

guistics: Human Language Technologies, Proceedings of the Conference, 19-24

June, 2011, Portland, Oregon, USA, pages 32–42. The Association for Computer

Linguistics, 2011.

R. Cotterell, C. Kirov, J. Sylak-Glassman, D. Yarowsky, J. Eisner, and M. Hulden.

The SIGMORPHON 2016 shared task - morphological reinflection. In M. El-

sner and S. Kübler, editors, Proceedings of the 14th SIGMORPHON Workshop

on Computational Research in Phonetics, Phonology, and Morphology, Berlin,

Germany, August 11, 2016, pages 10–22. Association for Computational Lin-

guistics, 2016a. doi: 10.18653/v1/W16-2002.

R. Cotterell, H. Schütze, and J. Eisner. Morphological smoothing and extrapola-

tion of word embeddings. In Proceedings of the 54th Annual Meeting of the As-

sociation for Computational Linguistics, ACL 2016, August 7-12, 2016, Berlin,

45

Germany, Volume 1: Long Papers. The Association for Computer Linguistics,

2016b. doi: 10.18653/v1/p16-1156.

R. Cotterell, C. Kirov, J. Sylak-Glassman, G. Walther, E. Vylomova, P. Xia,

M. Faruqui, S. Kübler, D. Yarowsky, J. Eisner, and M. Hulden. Conll-

sigmorphon 2017 shared task: Universal morphological reinflection in 52 lan-

guages. In M. Hulden, editor, Proceedings of the CoNLL SIGMORPHON 2017

Shared Task: Universal Morphological Reinflection, Vancouver, BC, Canada,

August 3-4, 2017, pages 1–30. Association for Computational Linguistics, 2017a.

doi: 10.18653/v1/K17-2001.

R. Cotterell, J. Sylak-Glassman, and C. Kirov. Neural graphical models over strings

for principal parts morphological paradigm completion. In M. Lapata, P. Blun-

som, and A. Koller, editors, Proceedings of the 15th Conference of the European

Chapter of the Association for Computational Linguistics, EACL 2017, Valen-

cia, Spain, April 3-7, 2017, Volume 2: Short Papers, pages 759–765. Association

for Computational Linguistics, 2017b. doi: 10.18653/v1/e17-2120.

R. Cotterell, C. Kirov, J. Sylak-Glassman, G. Walther, E. Vylomova, A. D. Mc-

Carthy, K. Kann, S. J. Mielke, G. Nicolai, M. Silfverberg, D. Yarowsky, J. Eis-

ner, and M. Hulden. The conll-sigmorphon 2018 shared task: Universal mor-

phological reinflection. In M. Hulden and R. Cotterell, editors, Proceedings of

the CoNLL SIGMORPHON 2018 Shared Task: Universal Morphological Rein-

flection, Brussels, October 31 - November 1, 2018, pages 1–27. Association for

Computational Linguistics, 2018. doi: 10.18653/v1/k18-3001.

J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep

bidirectional transformers for language understanding. In J. Burstein, C. Do-

46

ran, and T. Solorio, editors, Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Human

Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-

7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186. Association for

Computational Linguistics, 2019. doi: 10.18653/v1/n19-1423.

M. Dreyer and J. Eisner. Graphical models over multiple strings. In Proceedings

of the 2009 Conference on Empirical Methods in Natural Language Processing,

EMNLP 2009, 6-7 August 2009, Singapore, A meeting of SIGDAT, a Special

Interest Group of the ACL, pages 101–110. ACL, 2009.

M. Dreyer, J. Smith, and J. Eisner. Latent-variable modeling of string trans-

ductions with finite-state methods. In 2008 Conference on Empirical Methods

in Natural Language Processing, EMNLP 2008, Proceedings of the Conference,

25-27 October 2008, Honolulu, Hawaii, USA, A meeting of SIGDAT, a Special

Interest Group of the ACL, pages 1080–1089. ACL, 2008.

D. Eck and J. Schmidhuber. A first look at music composition using lstm recurrent

neural networks. Technical report, 2002.

A. Erdmann, M. Elsner, S. Wu, R. Cotterell, and N. Habash. The paradigm

discovery problem. CoRR, abs/2005.01630, 2020.

M. Faruqui, Y. Tsvetkov, G. Neubig, and C. Dyer. Morphological inflection gener-

ation using character sequence to sequence learning. In K. Knight, A. Nenkova,

and O. Rambow, editors, NAACL HLT 2016, The 2016 Conference of the

North American Chapter of the Association for Computational Linguistics: Hu-

man Language Technologies, San Diego California, USA, June 12-17, 2016,

47

pages 634–643. The Association for Computational Linguistics, 2016. doi:

10.18653/v1/n16-1077.

A. M. Fraser, M. Weller, A. Cahill, and F. Cap. Modeling inflection and word-

formation in SMT. In W. Daelemans, M. Lapata, and L. Màrquez, editors,

EACL 2012, 13th Conference of the European Chapter of the Association for

Computational Linguistics, Avignon, France, April 23-27, 2012, pages 664–674.

The Association for Computer Linguistics, 2012.

A. Graves and J. Schmidhuber. Framewise phoneme classification with bidirec-

tional lstm and other neural network architectures. Neural networks : the official

journal of the International Neural Network Society, 18:602–10, 07 2005. doi:

10.1016/j.neunet.2005.06.042.

H. Hassan, A. Negm, M. Zahran, and O. Saavedra. Assessment of artificial neural

network for bathymetry estimation using high resolution satellite imagery in

shallow lakes: Case study el burullus lake. International Water Technology

Journal, 5, 12 2015.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation,

9(8):1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735.

M. Hulden, M. Forsberg, and M. Ahlberg. Semi-supervised learning of morpholog-

ical paradigms and lexicons. In G. Bouma and Y. Parmentier, editors, Pro-

ceedings of the 14th Conference of the European Chapter of the Association

for Computational Linguistics, EACL 2014, April 26-30, 2014, Gothenburg,

Sweden, pages 569–578. The Association for Computer Linguistics, 2014. doi:

10.3115/v1/e14-1060.

48

K. Janecki. 300 Polish Verbs. Barron’s Educational Series, 2000.

H. Jin, L. Cai, Y. Peng, C. Xia, A. D. McCarthy, and K. Kann. Unsupervised

morphological paradigm completion. CoRR, abs/2005.00970, 2020.

K. Kann and H. Schütze. Single-model encoder-decoder with explicit morphological

representation for reinflection. In Proceedings of the 54th Annual Meeting of

the Association for Computational Linguistics, ACL 2016, August 7-12, 2016,

Berlin, Germany, Volume 2: Short Papers, 2016a.

K. Kann and H. Schütze. MED: the LMU system for the SIGMORPHON 2016

shared task on morphological reinflection. In Proceedings of the 14th SIG-

MORPHON Workshop on Computational Research in Phonetics, Phonology,

and Morphology, Berlin, Germany, August 11, 2016, pages 62–70, 2016b. doi:

10.18653/v1/W16-2010.

A. E. Kibrik. The handbook of morphology. In A. Spencer and A. M. Zwicky,

editors, Andrew Spencer and Arnold M. Zwicky, editors, pages 455–476. Oxford:

Blackwell Publishers, 1998.

P. Makarov and S. Clematide. UZH at conll-sigmorphon 2018 shared task on

universal morphological reinflection. In M. Hulden and R. Cotterell, editors,

Proceedings of the CoNLL SIGMORPHON 2018 Shared Task: Universal Mor-

phological Reinflection, Brussels, October 31 - November 1, 2018, pages 69–75.

Association for Computational Linguistics, 2018. doi: 10.18653/v1/k18-3008.

P. Makarov, T. Ruzsics, and S. Clematide. Align and copy: UZH at SIGMOR-

PHON 2017 shared task for morphological reinflection. CoRR, abs/1707.01355,

2017.

49

A. D. McCarthy, E. Vylomova, S. Wu, C. Malaviya, L. Wolf-Sonkin, G. Nicolai,

C. Kirov, M. Silfverberg, S. J. Mielke, J. Heinz, R. Cotterell, and M. Hulden.

The SIGMORPHON 2019 shared task: Morphological analysis in context and

cross-lingual transfer for inflection. In Proceedings of the 16th Workshop on

Computational Research in Phonetics, Phonology, and Morphology, pages 229–

244, Florence, Italy, Aug. 2019. Association for Computational Linguistics. doi:

10.18653/v1/W19-4226.

E. Minkov, K. Toutanova, and H. Suzuki. Generating complex morphology for

machine translation. In J. A. Carroll, A. van den Bosch, and A. Zaenen, ed-

itors, ACL 2007, Proceedings of the 45th Annual Meeting of the Association

for Computational Linguistics, June 23-30, 2007, Prague, Czech Republic. The

Association for Computational Linguistics, 2007.

A. Mnih and Y. W. Teh. A fast and simple algorithm for training neural prob-

abilistic language models. In Proceedings of the 29th International Conference

on Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1,

2012. icml.cc / Omnipress, 2012.

K. Oflazer, Ö. Çetinoğlu, and B. Say. Integrating morphology with multi-word

expression processing in Turkish. In Proceedings of the Workshop on Multiword

Expressions: Integrating Processing, pages 64–71, Barcelona, Spain, July 2004.

Association for Computational Linguistics.

F. Rosenblatt. The Perceptron—a perceiving and recognizing automaton. Report

85-460-1. Cornell Aeronautical Laboratory., 1957.

A. See, P. J. Liu, and C. D. Manning. Get to the point: Summarization with

50

pointer-generator networks. In Proceedings of the 55th Annual Meeting of the

Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July

30 - August 4, Volume 1: Long Papers, pages 1073–1083, 2017. doi: 10.18653/

v1/P17-1099.

W. Seeker and Ö. Çetinoglu. A graph-based lattice dependency parser for joint

morphological segmentation and syntactic analysis. Trans. Assoc. Comput. Lin-

guistics, 3:359–373, 2015.

A. Sharma, G. Katrapati, and D. M. Sharma. IIT(BHU)-IIITH at conll-

sigmorphon 2018 shared task on universal morphological reinflection. In Proceed-

ings of the CoNLL SIGMORPHON 2018 Shared Task: Universal Morphological

Reinflection, Brussels, October 31 - November 1, 2018, pages 105–111, 2018.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neu-

ral networks. In Advances in Neural Information Processing Systems 27: An-

nual Conference on Neural Information Processing Systems 2014, December 8-13

2014, Montreal, Quebec, Canada, pages 3104–3112, 2014.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin. Attention is all you need. In Advances in Neural Information

Processing Systems 30: Annual Conference on Neural Information Processing

Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages 5998–6008,

2017.

O. Vinyals, L. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. E. Hinton. Grammar

as a foreign language. In Advances in Neural Information Processing Systems 28:

51

Annual Conference on Neural Information Processing Systems 2015, December

7-12, 2015, Montreal, Quebec, Canada, pages 2773–2781, 2015.

E. Vylomova, J. White, E. Salesky, S. J. Mielke, S. Wu, E. Ponti, R. H. Maud-

slay, R. Zmigrod, J. Valvoda, S. Toldova, F. Tyers, E. Klyachko, I. Yegorov,

N. Krizhanovsky, P. Czarnowska, I. Nikkarinen, A. Krizhanovsky, T. Pimentel,

L. T. Hennigen, C. Kirov, G. Nicolai, A. Williams, A. Anastasopoulos, H. Cruz,

E. Chodroff, R. Cotterell, M. Silfverberg, and M. Hulden. The SIGMORPHON

2020 Shared Task 0: Typologically diverse morphological inflection. In Proceed-

ings of the 17th Workshop on Computational Research in Phonetics, Phonology,

and Morphology, 2020.

S. Wu and R. Cotterell. Exact hard monotonic attention for character-level trans-

duction. In A. Korhonen, D. R. Traum, and L. Màrquez, editors, Proceed-

ings of the 57th Conference of the Association for Computational Linguistics,

ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Pa-

pers, pages 1530–1537. Association for Computational Linguistics, 2019. doi:

10.18653/v1/p19-1148.

W. Zhao, L. Wang, K. Shen, R. Jia, and J. Liu. Improving grammatical er-

ror correction via pre-training a copy-augmented architecture with unlabeled

data. In Proceedings of the 2019 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies,

NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long

and Short Papers), pages 156–165, 2019.

