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Abstract

The last decade has seen considerable progress in the analysis of floating-point

programs. There now exist frameworks to verify both the total amount of round-off

error a program accrues and the robustness of floating-point programs. However,

there is a lack of static analysis frameworks to identify causes of erroneous behaviors

due to the use of floating-point arithmetic. Such errors are both sporadic and

triggered by specific inputs or numbers computed by programs. In this work, we

introduce a new static analysis by abstract interpretation to define and detect

responsible entities for such behaviors in finite precision implementations. Our

focus is on identifying causes of test discontinuity where small differences in inputs

may lead to large differences in the control flow of programs causing the computed

finite precision path to differ from the same ideal computation carried out in real

numbers. However, the analysis is not limited to just discontinuity, as any type

of error cause can be identified by the framework. We propose to carry out the

analysis by a combination of over-approximating forward partitioning semantics and

under-approximating backward semantics of programs, which leads to a forward-

backward static analysis with iterated intermediate reduction. This gives a way

to the design of a tool for helping programmers identify and fix numerical bugs in

their programs due to the use of finite-precision numbers. The implementation of

this tool is the next step for this work.
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Chapter 1

Introduction

Floating point numbers are the widely used standard of carrying out computations

over real numbers in finite-precision. The IEEE Standard for Floating-Point Arith-

metic [08] provides certain theoretical guarantees about how much error is accrued

due to the use of finite-precision arithmetic. However, these results only hold for

single opertions and are no longer true when we compose operations. Further-

more, basic algebraic facts about real numbers no longer hold when working with

floating-point numbers. Thus, an unfamiliar programmer may observe seemingly

unpredictable behaviors when using floating point arithmetic. This is due to the

unintuitive semantics of the IEEE Standard for those who are not familiar with it.

Round-off error can slowly build up and go undiscovered before abruptly crashing

a program or causing catastrophes. Such examples include the resetting of the

Vancouver stock exchange [Mac15] and the failure of the Partiot missile system

during the Gulf war [Ske]. In both examples, the subtle build-up in rounding errors

were only revealed after causing a major issue.

Another problem besides rounding is that the control flow of floating-point
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programs may not follow the ideal (expected) control flow of the same program

under real semantics. For example, a conditional statement that we always expect

to evaluate to true may sometimes become false. This leads to floating-point

programs exhibiting instability in its control flow where for certain inputs the finite

precision control flow differs from the same execution of the program using real

numbers. Discontinuity can cause major bugs in critical systems such as when a

F22 Raptor military aircraft almost crashed after crossing the international date

line [Bus11]. This near-crash occurred because the software on board encountered

a discontinuity in the treatment of dates.

There has been a lot of progress in statically analyzing programs to estimate

the round-off error. However, these analyses are only sound under the so called

stable test assumption where the analysis is sound only if no test conditional

divergence occurs. Some recent work such as [GP13] has focused on statically

verifying robustness properties of floating-point programs which is a concept closely

related to the continuity of programs. Introduced in [Ham02], a program is called

continuous if small pertubations in its input do not cause large pertubations in its

output. So, a program that has a test discontinuity could lead to a large variation

in its result which makes it ‘un-robust.’

Static analysis by abstract interpretation [CC77] works especially well for this

type of analysis as we can consider all possible inputs without testing. Exhaustive

testing is difficult to carry out in general and especially difficult for floating-

point computations as the inputs that cause errors can be sporadic and very

specific. Furthermore, with abstract interpretation we may design a sound over-

approximation of all the possible behaviors of a given program. Thus, all errors are

guaranteed to be detected, though there may also be some false alarms.



3
Detecting round-off errors that exceed a threshold or test discontinuity is

already a non-trivial task. An even harder problem that is overlooked in many

frameworks is the identification of the causes of undesirable floating-point behaviors.

Programmers who focus on numerical computing are able to look at the numerical

software and identify the points in the program that may cause issues. But, not all

programmers are experts and they may not be aware of stability and rounding issues

in floating-point programs. They may not realize where an error in their numeric

code comes from even if a tool alerts them to the presence of errors. To address

this issue, this thesis introduces the static responsibility analysis of floating-point

programs. Our first contribution is a formalization of when a program entity can

be considered responsible for some bad floating-point behavior B. For this, we use

the framework for responsibility analysis introduced in [DC19] where causation

is defined counterfactually and characterized using hyperproperties of programs

[CS10]. Then, we introduce the abstaction of this concrete semantics which utilizes

both the forward and backward semantics of floating-point programs along with

trace partitioning [RM07] to detect floating-point errors. Lastly, we present a

method to identify responsible program entities with respect to our definition of

responsibility. Our analysis is able to detect all types of floating-point errors along

with their responsible entities. However, for this thesis we focus on the finding

responsible entities for test discontinuity.

Organization of the thesis. We begin with Chapter 2 which presents an

example program to demonstrate test discontinuity. Furthermore, this example

program will be used as a running example throughout the thesis. In Chapter 3 we

review the necessary background knowledge for this thesis. This review consists

of floating-point numbers, abstract interpretation, constrained affine sets [GP13],
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definition of responsibility, trace partitioning and backward semantics. Chapter 4

introduces the responsibility analysis for floating-point programs where the analysis

is built piece by piece. There are also detailed discussions for each section. The

thesis concludes with Chapters 5 and 6 that discusses some related work and future

directions for this research.
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Chapter 2

Motivating Example

In this chapter we demonstrate the occurence of test discontinuity for a simple

program and how the analysis of constrained affine sets for robustness introduced

in [GP13] would detect the discontinuity. Throughout this section the words

discontinuity and (conditional) divergence will be used interchangeably to refer

to the same phenomenon. When we say if-else divergence we mean that the real

program took the if branch of a conditional while the floating-point program took

the else branch of a conditional. Similarly, else-if divergence is when the real

program evaluates to the else branch while the floating-point program evaluates to

the if branch. In the example Program 2.1 both types of divergence occurs for a

given range of inputs for the program. Affine analysis will allow us to both identify

the divergence and also split it into its cases such that we may characterize the

traces that lead to specific types of discontinuity. Throughout the rest of the thesis

we will refer back to Program 2.1 and how the proposed analysis will be able to

identify the responsible entities for divergence through a series of analyses.
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1 z := [0,1] + uz // z is in [0,1] with uncertainty uz
2 x := [1,3] + ux
3 y := [0,2] + uy
4 z = z + 4
5 if (x <= 2 && y >= 1) {
6 z = x + y
7 } else {
8 z = x - y
9 }

Program 2.1: Example program.

2.1 Constrained Affine Sets for Detecting Discon-

tinuity

The example program, which will be referred to as Program 2.1, is similar to

the example program given in [GP13]. The program is specified with three input

variables x, y and z. Each input variable is abstracted by an affine form which

represents the range of values the real variables can take. So, following the notation

of [GP13], the value of variable z at line 1 is represented by r̂z[1] = 0.5 + 0.5εr1 where

εr1 is a symbolic variable whose values lies in the range [−1, 1]. Similarly, x at line

2 is represented by r̂x[2] = 2 + εr2 and y at line 3 is represented by r̂y[3] = 1 + εr3. The

values uz, ux and uy correspond to the error each of these real variables can have.

This error is most of the time used to represent errors because of the finite-precision

representation of floating-point numbers but can also come from other uncertainties

such as imprecise data from sensors [GP13]. The values of ui are assumed to be

0 ≤ ui << 1 just as in [GP13]. The error of each variable is then given by ε̂z[1] = uz,

ε̂x[2] = ux and ε̂y[3] = uy which defines the floating-point values for each variable:

f̂ z[1] = r̂z[1] + ε̂z[1] = 0.5 + 0.5εr1 + uz (f̂x[2] and f̂
y
[3] are obtained similarly). Looking at
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variable z we see that [0,1] corresponds to 0.5 + 0.5εr1 and its error is ε̂z[1] = uz

is the symbolic term uz (here we omit the actual value of the error and treat it

symbolically).

These forms can then be used to obtain other affine forms that correspond to

the result of arithmetic operations and to interpret tests including possible test

discontinuity. For example, the re-assignment of the value of variable z on line [4]

leads to a real value of r̂z[4] = r̂z[1] + 4 = 0.5 + 0.5εr1 + 4 = 4.5 + 0.5εr1 and leads to

an error of ε̂z[4] = ε̂z[1] + δεe4 where δ bounds the rounding error on the new value of

z due to floating-point addition. Thus, the floating point value of z at program

location [4] becomes f̂ z[4] = r̂z[4] + ε̂z[4].

We proceed to line [5] where a possible discontinuity can occur in the test

condition. For x, the conditions on both the real and floating-point values to

take the then branch is given by r̂x[2] ≤ 2 =⇒ 2 + εr2 ≤ 2 =⇒ εr2 ≤ 0 and

f̂x[2] ≤ 2 =⇒ 2 + εr2 + ux ≤ 2 =⇒ εr2 ≤ −ux respectively. The condition

ux > 0 implies that if εr2 ≤ −ux then the computation for both the real and the

floating-point values will take the same branch. For y’s real and floating-point

values to take the then branch, the conditions for the test evaluating to true are

r̂y[3] ≥ 1 =⇒ εr3 ≥ 0 and f̂ y[3] ≥ 1 =⇒ εr3 ≥ −uy. Again, since uy > 0, the

computation does not diverge if and only if εr3 ≥ 0. Then, to take the else branch

of the conditional it must be that either r̂x[2] > 0 or r̂y[3] < 0 for the real case or

f̂x[2] > −ux or f̂ y[3] < −uy for the floating-point case. These sets of constraints

in turn define the conditions for which test-divergence occurs for this program.

Firstly, consider the case where the real program takes the if branch while the

floating-point program takes the else branch. It must be that −ux < εr2 ≤ 0

since if εr2 > −ux the floating-point variable will take the else branch while as
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long as εr2 ≤ 0 the real variable will take the if branch. For the variable y no

divergence occurs as for the real case we require εr3 ≥ 0 and for the floating-point

case we require εr3 > −uy which are incompatible. The conditions for the else-if

discontinuity can be similarly obtained and this is given by the case −uy ≤ εr3 < 0.

In general, if Φr are the set of constraints on the real values of a variable and Φf

are the ones for the floating-point value, then the unstable tests are obtained by

Φr∩Φf . Thus, we see that for this program it is possible to observe both an if-else

divergence and an else-if divergence and the conditions for such divergences can

be obtained from the affine forms. We also note that it is possible to bound the set

of inputs that lead to the test instability as follows: −ux < εr2 ≤ 0 corresponds to

2− ux < rx ≤ 2 and −uy ≤ εr3 < 0 corresponds to 1− uy ≤ ry < 1 [GP13].

We do not outline how the affine forms in lines [6] and [8] are computed here as

they are not necessary for determining the responsibility for the test divergence.

Furthermore, we note that a join operator t is needed for line [9] to consider the two

possible values z can take but we do not discuss this here. The join will also take

into account the issue of discontinuity and introduce two new error terms which are

only accounted for if the value of ε̂r[9] falls under the divergence conditions. A more

detailed explanation of affine forms and their use in both discontinuity analysis and

error estimation can be found in Section 3.3. The overall idea is that these affine

forms may be used to detect when a divergence in real and floating-point control

flow occurs and the constraints on the noise symbols characterizes the different

possibilities of divergence and non-divergence.
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2.2 Responsibility

We see that for program 2.1 while we have detected the discontinuity it is not

immediately obvious who should be held responsible for this behavior. Of course,

the candidate variables are x and y as they are the variables used in the test but

which one of these are responsible and under what conditions? The results of the

affine analysis shows the conditions under which conditional divergence occurs

in terms of the uncertainty in the declared variables. For example, if variable x

were to have zero uncertainty error, ux = 0, then it might be that the conditional

divergence does not occur while if ux is close to 1 then divergence will occur for

many traces. So it might make sense to vary the uncertainty and make some sort

of observation. Furthermore, we might be able to obtain some information from

the weakly relational property of affine forms and look at the error symbols used

when the test x <= 2 && y >= 1 is analyzed. But, it is possible that many error

symbols are lost meaning in the general case we may obtain little information.

However, these approaches are unsystematic which makes it difficult to design a

static analysis.

Intuitively, the declarations of variables x and y should be the responsible

program locations for the divergence. This is because if we were to change these

variables to have zero error, i.e. ux = 0 and uy = 0, then the erroneous behavior

would no longer occur. Regardless of the values of the uncertainty, if they are greater

than zero then we are always guaranteed to cause errors. Since the uncertainty

values correspond to converting a real value to a floating-point value, we may think

of these variables as making a choice. Either they choose to not lose any precision

or they choose their floating-point values which leads to some error. Additionally,

we may also think of the other floating-point expressions including arithmetic as
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also making a choice. Here they may either compute their result exactly or round

the result following the IEEE rules. This means that we consider all the choices

that can be made in the program. In the case of Program 2.1 changes to other

program locations in the form of a choice, including having zero-rounding error

for arithmetic, does not have any effect on whether we would get a conditional

divergence or not. Thus, it makes sense to assign responsibility to both x and y

because if they chose to have zero uncertainty then the discontinuity would not

occur.

There are two issues we must consider: (1) how should responsibility be defined

in the context of floating-point programs, and (2) how can the responsible program

entities be found with respect to this definition? For the first question the preceeding

paragraph has given some intuition for this definition. To answer the second question

we would ideally like to have an analysis that gives us the exact program locations

that are responsible. However, this problem is undecidable due to Rice’s Theorem.

Therefore, we will soundly approximate the responsible entities using abstract

interpretation [CC77]. Specifically, we will combine a series of analyses to show

how we can obtain the responsible entities our inuition points us towards.

This thesis formally defines responsibility for floating-point programs and for-

mulates an analysis that is able to determine the responsible program entities

for all possible floating-point errors. The coming chapters will primiarly focus on

answering questions (1) and (2) while also presenting relevant extra material.
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Chapter 3

Background Knowledge

We review the background knowledge that is used to construct the proposed analysis

of this thesis. Relevant material for further reading is also pointed out.

3.1 Floating-Point Review

This section reviews the basics behind the IEEE Standard for Floating-Point

Arithmetic (commonly referred to as IEEE-754) [08] [19] along with some basic

facts regarding rounding.

3.1.1 Represenation

The IEEE standard is the current standard for working with finite preicison numbers

and arithmetic. Let F ⊂ R be the set of floating-point numbers. Then, a normalized

number x̂ ∈ F is represented as

x̂ = (−1)s(1 +m)be
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Name Total bits p k emin emax

Half precision 16 10 5 −14 15
Single precision 32 23 8 −126 127
Double precision 64 52 11 −1023 1022

Quadruple precision 128 112 15 −16382 16383

Table 3.1: IEEE754 normalized encoding formats.

where b = 2 or b = 10 is the base, s is a bit that indicates whether the number is

negative or not, e is a signed integer in the range [emin, emax] and m = 0.b1 . . . bp is

a fixed-point value in the range [0, 1) which is defined using p bits. To compute e

we subtract from the k-bit unsiged integer e′ = bk−1 . . . b0 the bias 2k−1 − 1 where

e′ 6= 0 and e′ 6= 1. The values of e and m are referred to respectively as the exponent

and the mantissa of the floating-point number and are defined by the format of the

floating-point number. Table 3.1 summarizes the standard formats of normalized

floating-point numbers.

Normalized encoding is used to avoid multiple representations of the same

number [Mar17]. However, we may sometimes wish to obtain numbers that are

smaller in absolute value than the numbers representable in normalized encoding.

For this case, IEEE754 defines denormalized numbers of the form

x̂ = (−1)s(0 +m)be

where the exponent e is now obtained by setting e = 0. This format makes numbers

very close to 0 representable by gradual underflow [Mul+18].

Furthermore, special values occur when e = 0 and m = 0 which gives +0 and −0

depending on the sign bit, e = 1 and m = 0 which gives +∞ and −∞ depending

on the sign bit, and e = 1 and m 6= 0 which gives the value “not a number’, also

known as NaN. In general, operations that analytically lead to an indeterminate
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form, such as ∞−∞, will produce NaN.

Even though IEEE754 is defined for both b = 2 and b = 10, throughout this

thesis we will assume without loss of generality b = 2 as this is most commonly

used for floating-point number representation [Mar17].

3.1.2 Rounding

The IEEE Standard “mandates that floating-point operations be performed as if the

computation was done with infinite precision and then rounded.” [Bol+15] [08] In

the context of representation, since not all numbers can be represented exactly (e.g.

0.1 cannot be written in base 2 with a finite number of digits), IEEE754 guarantees

that a real number x ∈ R is represented by a floating-point number x̂ ∈ R that is

the closest number to x. This guarantee is with respect to some rounding operation

ρ? : R → F where ? is the rounding mode [08]. The rounding modes that are

given in [08] are:

• round towards nearest,

• round towards +∞,

• round towards −∞, and

• round towards 0.

In the case of round towards nearest, the “tablemaker’s dilemma” situation

arises where there is a tie between two possible numbers that could be rounded to.

The two choices to solve the dilemma are:

• round to the nearest even, and
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• round to the largest magnitude.

Given the value x and a fixed rounding mode ?, its corresponding rounded value

x̂ can be expressed as

x̂ = ρ?(x) = x(1 + δx) + ηx, with |δx| < εM and |ηx| < εM × 2emin

where δ is the error associated with rounding a normalized number, η is the error

associated with rounding a denormalized number and δ × η = 0 as a number

cannot be both normalized and denormalized at the same time [Gou14] [Chi+17].

The value εM is referred to as machine precision. It is the maximal relative error

introduced by the rounding operation and is given by 2−(p+1). Similarly, the value η

is the absolute error associated with rounding to a denormalized number as relative

error estimation does not work well for such small numbers [Chi+17]. If x = x̂ then

clearly the errors δ and η are 0.

3.1.3 Arithmetic

Elementary floating-point arithmetic operations are defined by the set {+,−,×, /}

and standarized by the IEEE Standard [08]. We note that IEEE754 also standardizes

the square root operation [08] but we do not deal with it in this thesis. For any

x̂, ŷ ∈ F and elementary floating-point operation ◦, let z = x̂ ◦ ŷ and ẑ = ρ?(z) =

ρ?(x̂ ◦ ŷ) where ŷ 6= 0 if ◦ = /. Then, the IEEE Standard ensures as long as no

overflow or underflow has occurred that the following holds

ẑ = ρ?(z) = ρ?(x̂ ◦ ŷ) = (x̂ ◦ ŷ)(1 + δz) + ηz, with |δz| < εM and |ηz| < εM × 2emin
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where δ is relative rounding error associated with rounding the result of arithmetic

on two normalized numbers, η is the absolute error for denormalized numbers and

δ × η = 0 [Gou14]. Overflow occurs when the computed result is larger in absolute

value than the largest representable in a given floating-point format and if it occurs

we may simply state that the difference between ẑ and z is ±∞ [Gou14]. Underflow

arises from the fact that numbers smaller than the machine precision εM cannot be

represented in IEEE format and if a user tried to use such values then an underflow

error occurs.

IEEE754 states the computed value of x̂ ◦ ŷ is “as good as” the rounded exact

answer, meaning that the result will be equal to doing the operation in infinite

precision and then rounding the result [08]. Furthermore, there is no possibility

of error occurring due to x̂ and ŷ having different lengths (because of different

formats) due to the use of guard digits [08].

3.1.4 Measuring Error

There are two ways of measuring the error between some intended result x∗ ∈ R

and its computed approximation x̂ ∈ F. The first is what is referred to as the

absolute error and can be calculated as

εabs = |x∗ − x̂| .

If x∗ 6= 0 we may also compute what is called the relative error, which is calculated

by

εrel =
εabs
|x∗|

.
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The relative error gives a better sense of how much error has occurred when

comparing the errors caused by approximations of varying sizes. For example,

consider having a measurement where the absolute error is always 3. Now, if the

actual value is 30 then the relative error is 0.1 while if the actual value is 300000

then the relative error is 0.00001. Clearly, the relative error can distinguish the

situation where the error is negligible but the absolute error says nothing about

this.

Floating-point errors occur either due to the finite-precision representation of

real numbers (Section 3.1.2) or arise from floating-point arithmetic which introduces

errors (Section 3.1.3). In both cases, we may want to measure the error so as to

ascertain that a program computes some value up to this error. For this thesis we

will be using the absolute error for this measurement as our approximation will

actually compute an abstraction of the absolute error [GP11].

From the perspective of static analysis, the error being tracked is not as impor-

tant. One can always recover the relative error from the absolute error as most

analyses will compute both a real non-rounded value for some computation and its

associated error. Also, it is easier to compute the absolute error at first and not

deal with the divide by zero that might occur. For example, if an analysis were to

compute only the relative error of some floating-point computation it would need

to handle division by zero accurately. While the solution is simply to revert back

to the absolute error it is even simpler to just not compute the relative error in the

first place.
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3.2 Abstract Interpretation

Abstract interpretation provides a way to soundly approximate the semantics of

programs. The high level idea is to abstract sets of traces of programs to an abstract

domain that approximates these sets which we refer to as the concrete domain.

Then, the semantics of programs may be formulated as a fixpoint which may be

computed by various iteration and fixpoint approximation techniques [Cou01]. In

this section we review the basic concepts necessary to design a program analysis

framework using abstract interpretation.

A partial order on v a set S is a binary relation over the elements of S that is

(1) reflexive, (2) transitive and (3) anti-symmetric. A partially ordered set, referred

to as a poset, is a set S that is equipped with a partial order v. We denote such

posets with (S,v). Two elements of the poset x, y ∈ S are comparable when either

x v y or y v x and otherwise incomparable.

Definition 3.2.1. Let (C,v1) and (A,v2) be two posets. We say that the pair

(α, γ) of functions α ∈ A → C and γ ∈ C → A form a Galois connection if and

only if

∀x ∈ C, ∀y ∈ A.α(x) v2 y ⇐⇒ x v1 γ(y),

which we denote by

(C,v1) −−→←−−α
γ

(A,v2).

We refer to C as the concrete domain and γ as the concretization function while

A is called the abstract domain and α the abstraction function.

Given a poset (P,v) and a subset S ∈ ℘(P ) we say that y ∈ P is an upper

bound of S if and only if ∀x ∈ S. x v y. Furthermore, we say that tS is a least
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upper bound, referred to as a join, of S if and only if tS is an upper bound of S

and tS is smaller than all other upper bounds of S. Similarly, we say that y ∈ P is

a lower bound of S if and only if ∀x ∈ S. y v x and uS is a greatest lower bound,

referred to as a meet, of S if and only if uS is a lower bound and uS is greater

than all other lower bounds of S.

A complete lattice is a poset (P,v) in which all subsets S ∈ ℘(P ) have a join

and a meet. We denote a complete lattice by (P,v,⊥,>,t,u) where uP = ⊥ and

tP = >. If S = {x, y} (i.e. a set of two elements) then we will denote tS as x t y

and, similarly, uS as x u y.

Given two complete lattices (P1,v1,⊥1,>1,t1,u1) and (P2,v2,⊥2,>2,t2,u2),

a function f : P1 → P2 is a complete join-morphism if and only if

∀S ∈ ℘(P1). f(t1S) = t2{f(x) | x ∈ S}, f(⊥1) = ⊥2.

Again, given the above two complete lattices, a function g : P2 → P1 is a complete

meet-morphism if and only if

∀S ∈ ℘(P2). g(u2S) = u1{g(y) | y ∈ S}, g(>2) = >1.

Proposition 3.2.1 ([CC79]). Let (P1,v1,⊥1,>1,t1,u1), (P2,v2,⊥2,>2,t2,u2)

be two complete lattices and the pair (α, γ), where α ∈ P1 → P2 and γ ∈ P2 → P1,

form a Galois connection. Then each function in the pair uniquely determines the
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other

α(x) = u2{y ∈ P2 | x v1 γ(y)}

γ(y) = t1{x ∈ P1 | α(x) v2 y}

Also, α is a complete join-morphism and γ is a complete meet-morphism.

Proposition 3.2.2 ([CC79]). The following statements are equivalent:

1. (α, γ) is a Galois connection,

2. α and γ is monotone, α ◦ γ is reductive (∀y ∈ P2. α(γ(y)) v2 y) and γ ◦ α is

extensive (∀x ∈ P1. x v1 γ(α(x))),

3. α is a complete join-morphism and γ is determined by α by Proposition 3.2.1,

4. γ is a complete meet-morphism and α is determined by γ by Proposition 3.2.1.

Proposition 3.2.3 ([CC79]). α is onto if and only if γ is one-to-one if and only if

α ◦ γ = λy. y.

Definition 3.2.2 ([CC79]). Let (P,v,⊥,>,t,u) be a complete lattice. Then, the

function ∇ : P × P → P is called a widening operator if for all x, y ∈ P x v x∇y

and y v x∇y and for all increasing chains x0 v x1 v . . . , the increasing chain

y0 = x0, . . . , yi = yi−1∇xi for all i > 0 is not strictly increasing.

Given a function f over a poset (P,v) and x ∈ P , we denote lfpvx f as the least

fixpoint of that function where the function is computed as f(. . . (f(f(x)))).
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Proposition 3.2.4. Let (P,v,⊥,>,t,u) be a complete lattice, F : P → P be a

monotone function and ∇ a widening operator for P . Then, the sequence

X0 = ⊥

Xi+1 = Xi if F (Xi) v Xi

= Xi∇F (Xi) otherwise

is ultimately stationary with the limit X such that lfpv⊥F v X where the least

fixpoint lfpv⊥F of F exists due to [Tar+55].

3.3 Affine Sets for Floating-Point Analysis

We introduce here the necessary background knowledge to understand constrained

affine sets [GGP10] which we will use as the underlying domain to compute invariants

for floating-point programs. The section begins by presenting affine forms and affine

arithmetic and then moves onto a series of subsections that describes the necessary

machinery to understand constrained affine sets for floating-point analysis. An

example of the analysis of a floating-point program using constrained affine forms

can be found in Section 2.1.

3.3.1 Affine Forms

Affine forms, first introduced in [CS93], are a sum over a set of noise symbols εi of

the form

x̂ = αx0 +
n∑
i=1

αxi εi
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where each αxi ∈ R and each εi is an unknown quantity bounded in the range [−1, 1].

Thus, “each noise symbol is an independent component of the total uncertainty”

on the sum written above [GGP10]. The coefficients αxi are known real values and

they express the magnitude of a given symbol εi. If more than one variables which

are assigned an affine form share some common symbol then these symbols can

express an implicit dependency between these variables, hence making the affine

forms domain weakly relational [GP11].

Given an affine form x̂, its concretization, which defines the range of values the

affine form can take, is given by

γ(x̂) = [αx0 −
n∑
i=1

|αxi | , αx0 +
n∑
i=1

|αxi |]

if each symbol is constrained in [−1, 1]. However, in [GGP10] and [GP13] the

constrained noise symbols may actually be refined to ranges smaller than [−1, 1].

For example, we may have the range [−1, 0] for εi. In that case, we need to write

down a more general form of the concretization and for that we define the functions

u([a, b]) = b and l([a, b]) = a to retrieve the upper and lower bounds of some noise

symbol constrained in the range [a, b]. Now, the concretization function becomes

γ(x̂) = [αx0 −
n∑
i=1

αxi l(εi), α
x
0 +

n∑
i=1

αxi u(εi)].

To abstract a set of real number R to an affine form it is enough to first abstract

into an interval using the interval abstraction [CC76] to obtain the interval [a, b]

and then abstract the interval into an affine form using

αi([a, b]) =
a+ b

2
+
b− a

2
εi.
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We parameterize the abstraction function α by i as we may want to control

symbolically the name of the noise symbol. That is, if we have variables in affine

forms that contain the symbols ε1, . . . , εn and we wish to abstract a new variable

that has no relation to any of our previous variables, then we should abstract this

new value using αn+1 so as to not introduce false relationships between variables.

We let the set AR be the set of affine forms. The order relation between any two

elements is given by

∀x, y ∈ AR. x vAR y ⇐⇒ γ(x) vIR γ(y)

where vIR is the interval order relation which is given by

∀[a, b], [c, d] ∈ IR. [a, b] vIR [c, d] ⇐⇒ a ≥ c ∧ b ≤ d.

3.3.2 Affine Arithmetic

Given two affine forms x̂ and ŷ, we can also perform arithmetic on them. If the

operation we are doing is linear, i.e. addition or subtraction, then the result is also

a linear affine form [GP08]. Thus, given a real number λ we get

λx̂+ ŷ = (λαx0 + αy0) +
n∑
i=1

(λαxi + αyi )εi.

For non-linear operations we must select an approximate affine form as our answer

[GP11]. The following approximate form is used for multiplication operations

x̂ŷ = (αx0α
y
0) +

n∑
i=1

(λαxi α
y
0 + αyiα

x
0)εi + (

n∑
i=1

|αxi α
y
i |+

n∑
i<j

∣∣αxi αyj + αxjα
y
i

∣∣)εn+1
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where the new noise symbol εn+1 is introduced to bound the error created by the

linearizing form [GP08].

3.3.3 Affine Sets

LetMn,m be the space of matrices with n rows and m columns and we will say each

element has a dimension of n×m. Each matrix M ∈Mn,m has entries Mi,j ∈ R. A

set of m affine forms over n noise symbols ε1, . . . , εn can be represented by a matrix

M ∈Mn+1,m [GGP10]. The concretization γM of M defines a zonotope [GGP10].

Definition 3.3.1 ([GGP10]). Let M ∈Mn+1,m be the matrix that defines m affine

forms over n noise symbols. Then, the resulting zonotope from its concretization is

given by

γM(M) = {Mᵀeᵀ | e ∈ Rn+1, e0 = 1, ‖e‖∞ = 1} ⊆ Rm.

To be able to define an order relation that preserves input/output relations

we now define two zonotopes: (1) a central zonotope γM(CX) and a pertubation

zonotope γM(PX) centered around 0 [GGP10]. So, we will represent an affine set X

with noise symbols εri capturing uncertainty on the inputs to the program. These

symbols will be contained in the central zonotope and the goal is to retain as many

implicit relations as possible [GGP10]. Now, we will also define noise symbols εej

which represent uncertainty that arises due to the abstraction of control-flow when

carrying out a computation (for example, taking the join of two abstract elements

after evaluating a conditional branch) [GGP10]. These symbols will be contained

in the pertubation zonotope.

Definition 3.3.2. An affine set is defined by the pair of matrices (CX , PX) ∈

Mn+1,m × o,m. There are 1 ≤ k ≤ m variables in this set and each is defined by
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the affine form

Xk = cX1,k +
n+1∑
i=2

cXi,kε
r
i +

m∑
j=1

pXi,kε
r
j

where cXi,k is the i, k-th entry from CX , pXj,k is the j, k-th entry from PX and Xk is

the k-th variable in the affine set [GGP10].

Now, the order relation between two variables may be defined by the matrix

norm induced by vectors at u ∈ Rm. We do not outline the relation here and instead

refer the reader to look Definition 3 from [GGP10] and [GP08] for more details.

For this thesis, we will assume that the order relation between two affine sets from

[GGP10] and denote it as vX where X is the space of affine sets. When it is obvious

from the context vX is being used in the subscript X may be dropped. Finally,

we note that this order relation is “slightly more strict than the concretization

inclusion” vAR as it takes into account the fact that the central noise symbols

define an input-output relationship [GGP10].

3.3.4 Constrained Affine Sets from Zonotopes

Zonotopes describe affine sets where each noise symbol is constrained in the range

[−1, 1]. While this is useful, we may also wish to refine such constraints to limit

the set of possible values the affine set defines. For example, limiting the range

of constraints will be useful in defining a new affine set after an if branch has

been taken as we wish for the affine set to express a subset of the original values

it initially represented. To this end, [GGP10] introduces constrained affine sets

(mainly for the purpose of definining the intersection of affine sets). Let A be any

lattice (A,vA,tA,uA) that is used to abstract the values of the noise symbols εri

and εei [GGP10]. Some possible candidates for A include intervals [CC76], octagons
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[Min06] or polyhedra [CH78]. Since A is used to abstract the values of the noise

symbols we require a concretization function

γA : A→ P({1} ×Rn ×Ro)

which will concretize n noise symbols of the form εri and o noise symbols of the

form εej . This function exists for the mentioned candidates for A. Furthermore, we

assume the existence of an abstraction function αA that need not necessarily be the

most precise one (e.g. for polyhedra the most precise abstraction does not exist but

for intervals it does) [GP13]. Thus, constrained affine sets are defined as follows.

Definition 3.3.3 ([GGP10]). A constrained affine set is defined by the pair X =

(CX , PX ,ΦX) where (CX , PX) is an affine set and ΦX is an element of A [GGP10].

Given two constrained affine sets X = (CX , PX ,ΦX) and Y = (CY , P Y ,ΦY ),

X v Y if and only if ΦX vA ΦY and (CX , PX) vX (CY , P Y ) with respect to the

constraints ΦX and ΦY .

The most common instantiation of A is boxes as it provides a combination of

good performance and accurate results [GGP09]. While using octagons or polyhedra

could lead to more accurate results, the decrease in performance can become costly.

3.3.5 Constrained Affine Sets for Floating-Point Analysis

Affine sets describe an interval as the sum of symbolic terms ei where each term

is viewed as some noise limited to the range [−1, 1]. In the case of floating-point

analysis, we will keep track of two independently acting sets. The first keeps track of

the value of program variables with respect to real semantics and the second keeps
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track of the floating-point value associated with each real value. The floating-point

forms may be viewed as a pertubation of the real forms [GP13].

Let R be the set of constrained affine forms where the noise symbols are only of

the form εri such that R represents the real values of program variables. Similarly,

let E be the set of constrained affine forms where the noise symbols can consists of

a combination of εri and εei which means that E is the corresponding floating-point

pertubation of the elements of R. Thus, the floating-point values can be obtained

by computing R + E.

The sets of R and E are sufficient to compute the results of arithmetic operations

by using affine arithmetic on linear expressions (such as addition) and linearizing

non-linear ones (such as multiplication). However, to interpret tests accurately

(such as <=) we need to be able to further refine the [−1, 1] range each noise symbol

has. As an example, consider the test from Section 2.1 where we have the affine

form 2 + εr2 and we wish to determine when it is ≤ 2. We see that 2 + εr2 ≤ 2 means

that εr2 must be ≤ 0 such that we constrain εr2 to the smaller interval of [−1, 0].

We will consider the constraints on a real and its corresponding floating-point

value so we need to have two sets of constraints on the noise symbols. Φr are

the constraints on the noise symbols when considering the real control flow while

Φf are the constraints on the noise symbols when considering the finite precision

control flow. Thus, we must use the constrained affine sets described in the previous

section.

Definition 3.3.4. Let n be the number of real noise symbols εri and m be the

number of error noise symbols εej . Given a program location that has p variables

x1, . . . , xp, the abstract value X is the tuple X = (RX , EX ,ΦX
r ,Φ

X
f ) ∈ Mn+1,p ×

Mn+m+1,p ×A×A which describes the constrained affine values for each program
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variable along with constraints on all noise symbols. Then, RX is the (n+ 1)× p

matrix where the k-th column corresponds to the n + 1 co-efficients of the real

noise symbols for variable xk and EX is the (n+m+ 1)× p matrix where the k-th

column corresponds to the n+m+ 1 co-efficients of the noise symbols of the real

and error noise symbols for variable xk. So, for all k = 1, . . . , p we have:


RX : r̂Xk = rX1,k +

∑n+1
i=2 r

X
i,kε

r
i where er ∈ ΦX

r

EX : êXk = eX1,k +
∑n+1

i=2 e
X
i,kε

r
i +

∑m
j=1 e

X
n+j,kε

e
j where (er, ee) ∈ ΦX

f

f̂Xk = r̂Xk + êXk

This definition is almost the same as the definition given in [GP13] but here we

omit the discontinuity terms DX that are used to track errors due to test divergence.

The reason for this is that our partitioning scheme will keep track of these terms

instead and this will become clearer in Section 4.

Note that the symbols εri are used in an overloaded way. When referring to

elements of R each εri models a real value while when referring to elements of

E each εri models the uncertainty on the real value due to the numbers being

floating-point. Then, for the latter case, εei models the uncertainty on the errors

caused by rounding. Therefore, the floating-point value of some program variable

is a pertubation of its real value [GP13].

We also need to define the transfer functions for arithmetic. These transfer

functions are similar to those described in Section 3.3.2 but since we have addi-

tional information regarding the noise symbols they can be used to derive bounds

for the linearization of the non-linear part of multiplication operations [GGP10].

Furthermore, just like in [GP11], extra error terms that describe the error due to
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floating-point operations must be introduced when computing new values for EX .

We will not detail transfer functions here and instead use them “as is” from the

existing literature.

Definition 3.3.5 ([GGP10]). Let X = (RX , EX ,ΦX
r ,Φ

X
f ) ∈Mn+1,p×Mn+m+1,p×

A×A be an abstract element for a program with p variables x1, . . . , xp. Then, the

function AS that computes the following:

1. The result of assigning to a new variable xp+1 the value of [a, b] + u, denoted

Z = ASJxp+1 = [a, b] + uKX.

2. The result of adding two variables xi and xj and assigning the result to a

new variable xp+1, Z = ASJxp+1 = xi + xjK.

3. The result of multiplying two variables xi and xj and assigning the result to

a new variable xp+1, Z = ASJxp+1 = xi × xjK.

For point 1 of Definition 3.3.5 Z is a matrix Z ∈Mn+2,p+1×Mn+m+2,p+1×A×A

and two new constraints εrn+1 and εem+1 are generated to obtain the new set of

constraints ΦZ
r and ΦZ

f . The first symbol models the uncertainty in the value of

[a, b] while the second one models the error u due to finite-precision representation.

The matrix Z in point 2 of Definition 3.3.5 is of the form Z ∈ Mn+1,p+1 ×

Mn+m+2,p+1 ×A×A and a new constraint εem+1 is generated to obtain ΦZ
r and ΦZ

f .

This new symbol models the round-off error due to finite-precision arithmetic. We

may use the rounding facts from Section 3.1.3 to bound this error.

The resulting matrix Z ∈ Mn+2,p+1 × Mn+m+3,p+1 × A × A for point 3 of

Definition 3.3.5 is a little more involved. Three new constraints εrn+1, εem+1 and

εem+2 are generated to obtain ΦZ
r and ΦZ

f . The first symbol models the uncertainty
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in the new value xp+1 while the second models the error due to the linearization of

the non-linear multiplication (see Section 3.3.2) while the third models the error

due to finite-precision arithmetic which can be bound, again, using Section 3.1.3.

For more details on transfer functions for general constrained affine sets see

[GGP10] while for the semantics of transfer functions for the domain defined in

Definition 3.3.4 see [GP11]. Compared to [GGP10], [GP11] must introduce more

error terms due to finite-precision arithmetic.

Definition 3.3.5 is enough to define all types of arithmetic operations. For

example, re-assignment to a variable can be done by slightly modifying the definition

so that it replaces a column p rather than creating a new column p+ 1. Thus, the

function AS is general enough to compute the result of assignment to constrained

sets and the addition, subtraction and multiplication of elements of constrained

affine sets. Constants, such as 3.14, may also be made affine terms first before

using AS.

We also define the semantics of tests. When computing conditional tests we

would like to also obtain constraints on the values of the real and floating-point

values of variables that restrict the values of the affine forms to those that only

pass the test. This can be used to compute the set of values that lead to a test

discontinuity when evaluating a test. Test discontinuity occurs when a test leads

to the control flow of a program taking an if or else branch in real semantics but

the opposite branch in floating-point semantics. As mentioned before, [GP13] is

sound even when discontinuity happens so we must take it into account in the

abstract domain. So, the semantics of tests will evaluate a test under a given set of

constraints Φr and Φf and produce a new set of constraints Φ′r and Φ′f respectively

that refine the initial constraints. The affine forms themselves are not changed but
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the value obtained by their concretization may now lie in a smaller range due to

test. Since we evaluate tests independently under Φr and Φf , we will obtain the

set of conditions that the real and floating-point values of a variable will take a

branch. This in turn can be used to discover any possible discontinuities.

Definition 3.3.6 ([GP13]). Given a constrained affine set X = (RX , EX ,ΦX
r ,Φ

X
f )

over p variables, the semantics of tests is given by the function BS where the

result is given by Z = BSJe1 opBe2KX for opB ∈ {≤, <,≥, >,=, 6=}. To compute

Z we first compute Y = ASJxp+1 = e1 − e2KX which then we use to compute

Z = dropp+1(BSJxp+1 op
B 0KY ). The function dropp+1 takes an affine set of p+ 1

variables and returns an affine set of p variables where the p + 1 (intermediary)

variable has been removed from the set. All that remains is to define BSJxk opB 0K

and this is given by:

(RZ , EZ) = (RX , EX)

ΦZ
r = ΦX

r ∩ αA(εr | rX0,k +
n∑
i=1

rXi,kε
r
i op

B 0)

ΦZ
f = ΦX

f ∩ αA((εr, εe) | rX0,k + eX0,k +
n∑
i=1

(rXi,k + eXi,k+)εri +
m∑
j=1

eXn+j,kε
e
j op

B 0)

For more details on test interpretation for general constrained affine sets see

[GGP10].

To fully define the constrained affine sets for floating-point analysis we also need

to define a join, meet and widening operator for two constrained affine sets. For the

join t we use the join operator for constrained affine sets introduced in [GLP12].

This join, at a high level, tries to keep as much as possible of the relationships

between variables and throws away any relationships it cannot keep by replacing
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them with new symbols. However, unlike other relational domains such as octagons

a lot more information may be lost due to joins and the join we use here is only

optimal in some settings [GLP12]. In the context of floating-point analysis the join

for constrained affine sets occurs point-wise on the co-efficient matrices using the

union of the appropriate set of constraints [GP13]. Here we omit the join of the

discontinuity terms DX as they are no longer computed.

For the meet u we use the meet operator for constrained affine sets introduced in

[GGP10] which is used to compute the results of tests as described in Definition 3.3.6.

The general idea is to keep all noise symbols and refine the constraints on the

symbols such that the two affine sets intersect.

Finally, [GGP09] defines a widening ∇ for constrained affine sets. ∇ works by

keeping only the noise symbols with equal coefficients in two iterates and collapses

the rest into new error symbols. The common way to utilize this widening is to

unroll a loop for some N amount of iterations and apply no widening. Then, if a

fixpoint is not reached in N iterations, ∇ may be used for the rest of the iterates.

The number of iterates is a heuristic. For example, in [GGP09] N is set to 100

such that loops are unrolled 100 times before ∇ is used and a fixpoint is reached.

Throughout the thesis we use these operators “as is” and for more details we refer

the reader to the relevant citations.

3.3.6 Summary

Starting with [Gou01] sets of affine forms have been used in a variety of works

for the analysis of floating-point programs with the framework evolving over time.

Constrained affine forms can be thought of as a functional abstraction as the affine

form represent a function from inputs variables to their output values [GP13]
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where the function is computed using the symbolic variables εri and εej introduced

for each program location and variable by the analysis. The concretization of

the elements of the domain correspond to zonotopes [GP11]. Additionaly, this

functional abstraction also means that the domain is weakly relational [Min04b] just

like other weakly relational numerical abstract domains such as octagons [Min06].

For this thesis we will use the constrained affine sets presented in Section 3.3.5

and more details can be found in [GP11] and [GP13].

3.4 Responsibility Analysis

We review responsibility analysis in tandem with how responsibility analysis would

work in the context of floating-point programs. The explanation takes Program 2.1

as an example program and illustrates how responsibility analysis would work.

3.4.1 Definition of Responsibility

In Section 2.1 the question “how should responsibility be defined in the context

of floating-point programs?” was posed. To answer this, we use the notion of

responsibility introduced in [DC19] which proposes a novel definition of responsibility

derived from the trace semantics of a program. In [DC19] traces are defined using

events which in turn are actions in a system. Some examples of actions include

reading input from the user, assigning a value to a variable or conditional branching.

For floating-point programs we use the same definition of entities and the main

events we are interested in are assigning values to variables, floating-point arithmetic

and conditional tests that involve floating-point values. In summary, and adopting

the notation used in [DC19], a responsible program entity ER is one that is free to
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choose its values at its discretion, for example via inputs from a user. Then, ER is

responsible for behavior B in a given trace if and only if, the choice of ER’s value

is the first one amongst other responsibile entities that guarantees that B occures

in that trace. [DC19] details how this notion of responsibility can be defined as an

abstract interpretation of the program’s event trace semantics [CC77].

In the analysis of floating-point programs, the responsible entities of a program

consist of each floating-point variable of the program along with the corresponding

uses of these variables in floating-point arithmetic expressions and tests. For

Program 2.1 the responsible entities then correspond to lines 1 through 6 and line

8. The program is interpreted with real semantics meaning the values of both the

variables and the results of the arithmetic operations range over the elements of

the real numbers, R. Then, the choices that these entities can make are that they

either exactly compute a result or round the result using some rounding operator

ρ : R→ R. ρ is a function that takes any element x ∈ R and rounds it such that

ρ(x) ∈ R is also an element of the floating-point numbers F. Since floating-point

numbers represent a finite subset of the real numbers, this operation corresponds

to converting the result of some program expression to a floating-point value. For

example, ρ(r̂z[1]) = f̂ z[1] and if every program location uses ρ then we end up with

the corresponding floating-point semantics of the program. The details for the

rounding-mode [Gol91] are abstracted away here but we assume ρ gives results

depending on some fixed rounding as defined by the rounding modes in Section 3.1.2.

So, for a single trace if an entity chooses its value to be a floating-point one and

this choice is the first one that guarantees B then this entity is responsible for

B. For a given set of traces there may be more than one responsible entity for

behavior B, but for any single one trace there will always be one entity that is
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Figure 3.1: Possible traces of Program 2.1.

responsible for B. The determination of the responsible entity for any one trace

does not only depend on that trace alone but on the semantics of the whole system.

This makes responsibility a hyper-property [CS10], in contrast to a trace property,

of the system [DC19].

We illustrate the concrete semantics of responsibility analysis for the program

given in Program 2.1 with Figure 3.1. A more detailed treatement of how re-

sponsibility analysis works in general can be found in Section 3.4. The analysis
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begins by building the trace semantics of Program 2.1 and obtaining a lattice

of system behaviors such that the divergent and non-divergent program traces

can be identified. To make the example simpler, the join that occurs at line 9 of

Program 2.1 is omitted and it is assumed that the program terminates when it

reaches either lines 6 or 8. We overload r̂z[1] and f̂
z
[1] to denote the set of all prefixes

of the program’s traces that end with either z picking a real or floating-point value.

In fact, Figure 3.1 shows a representation of an infinitely branching tree where

each branch corresponds to a prefix of a trace for each possible value a variable

may pick and the nodes marked as Exit complete the trace. We denote by B and

¬B all the possible traces that satisfy the condition −ux < εr2 ≤ 0 ∨ −uy ≤ εr3 < 0

and ¬(−ux < εr2 ≤ 0 ∨−uy ≤ εr3 < 0), respectively, where the former indicates that

there was a conditional divergence (either if-else or else-if). For the sake of brevity,

the updating of z to either z[6] or z[8] is abbreviated by the transition labeled with

“· · · ”.

3.4.2 Lattice of System Behaviors

Let SMax be the set of all possible maximal traces of Program 2.1. D corresponds

to the set of maximal traces where the behaviors of the real and floating-point

programs diverge, while A denotes those where no divergence occurs. Similar to

[DC19], we note that the traces we refer to are event traces. An example prefix

event trace for Program 2.1 would be ρ(z := [0,1] + uz) B x := [1,3] + ux B

y := [0,2] + uy. B separates events. Instead of using events, the tree of traces

in Figure 3.1 is labeled by the values chosen (float vs real) and whether there

was a test discontinuity or not to make the presentation succinct. Converting

Figure 3.1 to a actual event traces is a simple task where we replace each label
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⊥ = ∅

¬B = A B = D

> = SMax

Figure 3.2: Lattice of systems behaviors for Program 2.1.

with its corresponding event. For example, r̂z[1] becomes x := [0,1] as there is no

uncertainty in the input while f̂ z[1] becomes x := [0,1] + uz to reflect the initial

error with a floating-point variable. It is clear that D ∪A = SMax and D ∩A = ∅

which means that the lattice of system behaviors given in Figure 3.2 can be built

where the elements of the lattice are now “responsibility properties,” i.e. elements

of the powerset of the set of maximal traces of the program.

The analysis now boils down to finding for any given trace the first entity that

leads to the trace property B. This is achieved by first abstracting the maximal

traces into prediction prefix traces, which maps the traces that define the property

B to a set of prefix traces that lead to B. This abstraction allows us to infer from

any prefix trace the strongest possible property by the use of an inquiry function

that maps prefixes to properties [DC19]. Then, a cognizance function is given which

defines whether an observer of a trace, such as an attacker, can distinguish between

given traces. For floating-point programs, observers have omniscient cognizance

meaning they can distinguish between any two traces. Together, these two functions

define the observation function used for responsibility abstraction [DC19]. The

observation function takes a property B and for each maximal trace that defines B

computes a single responsible entity. Note that it is actually also possible to find

the responsible entities for the behavior ¬B. That is, we can determine program



37
entities that guarantee ¬B occurs.

In Figure 3.1, the first choices that lead to an erroneous behavior are in bold

font and highlighted in red. We see that in the case that the variable x[2] chooses

its floating-point value f̂ 2
[x] we are guaranteed the divergent behavior B under

the constraints −ux < εr2 ≤ 0, and if x[2] chooses its real value then if variable

y[3] chooses its floating-point value f̂ 3
[y] we are guaranteed divergence under the

constraints −uy ≤ εr3 < 0. Or in other words, if we restrict our attention to the

traces with the constraints −ux < εr2 ≤ 0 ∨ −uy ≤ εr3 < 0 then if x[2] chooses f̂ 2
[x]

divergence always occurs and, if not, then if y[3] chooses f̂ 3
[y] divergence always

occurs. No other entities of Program 2.1 under all constraints derived by the affine

analysis will lead to B in any choice they make. Thus, entities x[2] and y[3] are

responsible entities of B for Program 2.1.

¬B = A B = D

Dif−else Delse−if

> = SMax

⊥ = ∅

Figure 3.3: Refined lattice of systems behaviors for Program 2.1.

3.4.3 Refining the Lattice

We note that B could have been refined to the cases of if-else divergence and else-if

divergence by taking the set D and splitting into the cases that correspond to each
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type of discontinuity. In this case, the lattice Figure 3.2 will get two new elements

which are beneath D and above ⊥ which allows for a finer analysis. The refined

lattice is given in Figure 3.3. However, since we only wish to show responsible

entities for any type of discontinuity here, Figure 3.2 works well.

3.4.4 Summary

The definition of responsibility and the semantics introduced here allows us to

precisely define responsibility for floating-point errors. We see that in the case

of Program 2.1, the responsible entities are x[2] and y[2], which correspond to the

variables x and y. This is an intuitive result as we see that the affine analysis

determines the conditions on the noise symbols associated to these variables that

leads test divergence. We note that we are able to derive the same conditions

derived from the affine analysis. Furthermore, if we were to drop the affine symbols

and choose a different representation of the numerical values we would derive

constraints isomorphic to the ones we derived here meaning we are not limited to

using the affine analysis for the responsibility analysis of floating-point programs.

However, we should note that [DC19] only defines a concrete semantics for

responsibility which is not computable in general. Thus, we require an abstract

responsibility analysis for floating-point programs which is one of the contributions

of this paper.

3.5 Trace Partitioning

When designing a static analysis by abstract interpretation a common strategy

is to abstract program traces and prove properties on the set of reachable states



39
[RM07]. For example, to obtain the set of values a program computes one can

compute an overapproximation of the set of reachable states and a value associated

with each state using interval analysis [CC76]. However, when computing such

reachable states the analysis loses information regarding the flow of computation

[RM07]. This makes it difficult to prove certain properties about programs as the

result from the analysis is too coarse. For example, consider Program 3.4, taken

from [RM07], that is analyzed using interval analysis.

`0: int x, y, s;

`1: if (x < 0) {

`2: s = -1;

`3: } else {

`4: s = 1;

`5: }

`6: y = x / s;

Program 3.4: Motivating example program for trace partitioning.

Clearly a divide by zero error cannot occur as the variable s is either −1 or 1

depending on the branch taken. However, an interval analysis would not discover

this issue. The assignment s = -1 will be abstracted as the interval [−1,−1] and

s = 1 will be abstracted as [1, 1]. The join of these intervals upon exit of the

conditional branch is [−1, 1] and since 0 ∈ [−1, 1] the analysis will report an alarm

(i.e. there is a possible error). This is a well known issue with the use of the

interval domain as joins may add elements in the convex hull of the two intervals

[RM07]. There are a number of possible fixes that include using a more expressive
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abstract domain such as relational domains (octagons [Min06] or polyhedra [CH78])

or expressing the intervals using disjunctive completion [CC79]. We do not go

into details here but the introduction section of [RM07] describes the possible

approaches and trade-offs.

An intuitive way to solve this problem, as proposed by [RM07], is to have the

value of s be related to the control flow of the program. This results in analyzing

Program 3.5 which is a re-writing of Program 3.4.

(`0, t0): int x, y, s;

(`1, t1): if (x < 0) {

(`2, t1): s = -1;

(`6, t1): y = x / s;

(`3, t2): } else {

(`4, t2): s = 1;

(`6, t2): y = x / s;

(`5, t0): }

Program 3.5: Re-writing of Program 3.4.

Now we are able to prove that a divide by zero never occurs. In general, a

technique based on syntactic program rewriting may be useful as not all partitions of

a program’s control flow may not be expressible by the programming language under

consideration [RM07]. Thus, [RM07] proposes an abstract domain construction for

the partitioning of a program’s control flow. This approach has two advantages:

(1) it is more expressive compared to syntactic re-writing and (2) the domain is

formalized in a way that makes it possible to integrate it into other static analyses
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[RM07]. In this section we give a high-level overview of the trace partitioning

domain and point the reader towards [RM07] for further reading.

3.5.1 Preliminary Definitions

For this thesis we only need to cover the case for partitioning when there are no

function calls. Let X be the set of values and V the finite set of variables. A store is

a mapping from variables to values which we denote by ρ ∈M where M = V→ X.

A control state (i.e. program point) is given by a label ` ∈ L and can be thought

of as being similar to a program counter that keeps track of program points during

an execution of a program. We define the set of states S = L×M where one such

state may be written as s = (`, ρ). Next, we define a transition system by a set

of initial states Si and a transition relation (→) ⊆ S× S which describes how a

computation proceeds from one state to another. Typically, the starting state is

given by Si = {`i} ×M where `i is the first point in the program. We will use the

words transition system and program interchangeably. Finally, a trace σ is a finite

sequence σ0σ1 . . . σn ∈ S and we denote the set of traces as S∗.

3.5.2 Partitioning and Coverings

We introduce the notions of partitioning and extended transition systems.

Definition 3.5.1 ([RM07]). Let I, F be two sets and δ : I → ℘(F ). Then, δ

is a covering of F if and only if ∀x ∈ I. δ(x) 6= ∅ and F =
⋃
x∈I δ(x). Also, δ is

a partitioning of F if and only if it is a covering of F and ∀x, y ∈ I. x 6= y =⇒

δ(x) ∩ δ(y) = ∅ [RM07].

We note that it is possible to define a Galois connection between the poset
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(℘(F ),⊆) and the poset (I → ℘(F ),⊆) [RM07].

Now, assume a program P is given as a transition system defined as the tuple

(Si,→). An extended transition system can be defined as a transition system where

each label is also attached some token from a set of tokens T ⊆ T. The purpose of

the tokens is to capture information regarding the history of execution and associate

them with program points. Furthermore, the tokens can guide partitioning [RM07].

Definition 3.5.2 ([RM07]). Let T ∈ T. The set of extended control states is given

by LT = L × T and ST = LT ×M is the set of extended states. An extended

transition system is defined by the tuple (T,SiT ,→T ) where SiT ⊆ S is the set of

extended initial states and →T is the transition relation for extended states.

The notions of covering, partitioning and complete covering/partitioning are

formally defined in [RM07]. Here we describe these notions informally. Let P0 with

tokens T0 and P1 and tokens T1 be two extended transition systems and define

τ : T0 → T1 which we refer to as the forget function, then for all τ :

• P0 is a τ -covering of P1 if and only if it simulates all of the transitions of P1,

• P0 is a τ -partitioning of P1 if and only if any transition in P1 is simulated by

exactly one transition in P0, and

• P0 is a complete τ -covering/partitioning of P1 if and only if P0 is a cover-

ing/partitioning of P1 and P0 does not add any fictitious transition when

compared to P1 [RM07].

Intuitively, a complete covering/partitioning describes the same set of traces as the

original system with the only extra information being added is tokens.
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Referring back to our example programs, Program 3.4 is the original system P

where we have labelled each line with labels `i. Then, Program 3.5 is the extended

system P ′ which is a partitioning of P as each transition, namely from the branch

exits to `6 is simulated by exactly one transition: `2 to `6 and `4 to `6. The tokens

t1 and t2 indicate which of the branches we took so that we can distinguish the

control flow of the program. We also note that this partitioning is complete as

any execution run of P ′ corresponds to some execution of P . We could have also

defined P using the trivial extension of a transition system.

Definition 3.5.3 ([RM07]). Let Tε ∈ T where Tε = {tε}. The trivial extension

of a transition system P = (Si,→) is Pε = (Lε,S
i
ε,→ε) where Lε = L× Tε, Siε =

{((`, te), ρ) | (`, ρ) ∈ Si} and ((li, tε), ρi)→ε ((lj, tε), ρj) ⇐⇒ (li, ρi)→ (lj, ρj).

3.5.3 The Trace Partitioning Domain

We can define an ordering between extended transition systems with respect to

some forget function τ . The relations “is a covering of,” “is a partition of” and “is

complete with respect to” all form a preorder � on transition systems induced by

partitioning. Such an ordering can be used to define valid computational orderings

[CC92] [RM07].

Let P = (L,Si,→) be a transition system. Then, Pε is the trivial extension of

P as described in Definition 3.5.3. Given the set P which is the set of all complete

coverings of P , we say that Pε is the basis of P. The ordering amongst any two

extended systems is given by

PT0 � PT1 ⇐⇒ ∃τ : T1 → T0, PT1 is a τ -covering of PT0
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and Pε is the least element of P ordered by �. Note that it is also possible to define

other ordering such as “is a τ -partitioning” of PT0 . To define a trace partitioning

domain we need elements of the domain to specify a covering PT of the original

transition system and a function mapping each extended control state of the covering

to some abstract domain. Then, the (store abstracted) trace partitioning domain

is defined by an abstract poset (D]
M
,v) which abtracts sets of traces to abstract

invariants.

Definition 3.5.4 ([RM07]). An element of the partitioning abstract domain is a

tuple (PT ,Φ
]) where T ∈ T, PT = (T,SiT ,→T ) is a complete covering and Φ] is a

function Φ] : LT → D]
M
. The domain of such tuples is denoted as D].

Now, an abstract value is a value in LT → D]
M

= (L × T ) → D]
M

which by

curryfication is isomorphic to value in L→ T → D]
M
. The latter representation is

useful for the implementation of the partitioning abstract domain as we now have

a mapping from program locations to partitioning tokens that describe an abstract

invariant at each location with respect to some partitioning.

The ordering between any two abstract elements can be defined with respect to

the ordering of the extended transition systems and the function Φ].

Definition 3.5.5 ([RM07]). Let (PT0 ,Φ
]
0), (PT1 ,Φ

]
1) be two transition systems and

τ : T1 → T0. Then, we define

Γτ : (LT1 → D]
M

)→ (LT0 → D]
M

)

Φ]
0 7→ λ(l`

′ ∈ dom(Φ]
1)).

⊔
{Φ]

0(l) | ` ∈ dom(Φ]
0), τ(`) = `′}
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which we can then use to define the ordering between any two transition systems as

(PT0 ,Φ
]
0) �] (PT1 ,Φ

]
1) ⇐⇒ PT0 �τ PT1 ∧ Φ]

0 v Γ]τ (Φ
]
1).

We may also define a concretization function that maps elements of D] to

elements of D where D is defined by the pair (PT ,Φ) = ((T,SiT ,→T ),LT → ℘(S∗)).

That is, we may map abstract partitions to their concrete ones.

Definition 3.5.6 ([RM07]). Let γ]
P
be the function γ]

P
: D] → D which we define

as

(PT ,Φ
])→ (PT , λ(l ∈ LT ). γM ◦ Φ](l))

where γM : D]
M
→ ℘(M) is the concretization function for the abstract domain

D]
M
.

Finally, it is possible to define widening for elements of D] so that we may

ensure convergence of the partitioning analysis. We must choose ∇M as a widening

for D]
M

and ∇P as a widening over the basis so as to obtain a pairwise widening

∇D] .

Definition 3.5.7 ([RM07]). Let (PT0 ,Φ
]
0), (PT1 ,Φ

]
1) ∈ D], then the widening is

defined as

(PT0 ,Φ
]
0)∇D](PT1 ,Φ

]
1) = (PT2 ,Φ

]
2)

where

• PT2 = PT0∇PPT1 such that PT0 �τ0 PT2 and PT1 �τ1 PT2 , and

• Φ]
2 = (Φ]

0 ◦ τ0)∇M(Φ]
1 ◦ τ1).
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The intuition behind the widening operation is that it should first stabilize the

partitioning of the transition system so as to enforce termination of the partitioning

strategy and then stabilize the abstract elements D]
M
.

3.5.4 Remarks

We see that the trace partitioning domain formalizes the notion of trace partitioning

as an abstract interpretation of an underlying transition system. Soundness of

the analysis follows by the soundness of the abstract domain being used and the

soundness of the partitioning strategy. As long as our created partitions are either

coverings or partitions, soundness is provided free. It is also possible to relate one

partitioning to another using the computational ordering �τ and relate the abstract

partitions to their concrete counterparts via γ]P. Furthermore, by curryfication we

can view partitions as mappings from program points to partitioning tokens which

makes it possible to incorporate partitioning domains into the calculational designs

of generic abstract interpreters [Cou99]. Finally, partitioning may occur either

statically or dynamically. This makes the trace partitioning domain a powerful

abstract domain that we will use for the responsibility analyses of floating-point

programs.

3.6 Under-approximating Backward Semantics

Historically, the majority of abstract interpretation research has focused on design-

ing sound forward semantics. Given some abstract pre-condition we may deduce

an over-approximation of a post-condition for programs. The dual of this problem

is to consider an abstract post-condition and infer an under-approximation of a



47
pre-condition that causes the post-condition to hold true. Thus, we wish to automat-

ically infere sufficient pre-conditions using abstract interpretation. In this section

we review some definitions from [Min14] which outlines how to design backward

under-approximation for numeric abstract domains such as boxes, octagons and

polyhedra.

3.6.1 Summary

Classical abstract domains have abstract operators for both backward and for-

ward analyses. When an exact result cannot be computed due to inherent lim-

itations in the abstract domain (e.g. boxes can only describe convex sets) an

over-approximation is computed. These approximate results can be used to infer nec-

essary conditions but are not suitable for the inference of sufficient conditions. Thus,

to soundly approximate sufficient condition we must compute under-approximations.

Backward analysis is the process of inferring a pre-condition given a post-condition.

[Min14] addresses the problem of inferring sufficient pre-conditions using backward

under-approximations.

Definition 3.6.1 ([Min14]). Given two sets A and B, the backward function
←−
f

of a function f : ℘(A)→ ℘(B) is defined as

←−
f : ℘(B)→ ℘(A)

←−
f (B) , {a ∈ A | f({a}) ⊆ B}. (3.1)

Definition 3.6.1 can be used to define the backward semantics of a function that

computes the forward semantics. We can lift ⊆, ∪ and ∩ element-wise to functions

A→ ℘(B). We say that f ⊆ g ⇐⇒ ∀a ∈ A. f(a) ⊆ g(a), f ∪ g , λa. f(a) ∪ g(a)
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and f ∩ g , λa. f(a) ∩ g(a). We denote function compositions with ◦.

Proposition 3.6.1 ([Min14]). The following properties are true.

1.
←−
f is monotonic and a ∩-morphism.

2. If f is monotonic, then
←−
f ◦ f is extensive, i.e. A ⊆ (

←−
f ◦ f)(A).

3. If f is a ∪-morphism then f ◦
←−
f is reductive, i.e. (f ◦

←−
f )(B) ⊆ B.

4. If f is extensive then
←−
f is reductive. If f is reductive then

←−
f is extensive.

5. If f is a ∪-morphism then ℘(X) −−−→←−−−
f

←−
f

℘(Y ) is a Galois connection.

By Property 1 from Proposition 3.6.1 we know that fixpoints exist for backward

functions. Furthermore, using the properties from Proposition 3.6.1 we may prove

certain properties about inverting forward functions.

Proposition 3.6.2 ([Min14]). The following properties are true.

1.
←−−−
λA.A = λB.B.

2.
←−−−
f ∪ g =

←−
f ∩←−g .

3.
←−−−
f ∩ g ⊇

←−
f ∪←−g .

4. If f is a ∪-morphism then
←−−
f ◦ g =←−g ◦

←−
f

5. f ⊆ g =⇒ ←−g ⊆
←−
f . If f is a ∪-morphism then f ⊆ g ⇐⇒ ←−g ⊆

←−
f and so

f = g ⇐⇒
←−
f =←−g .

6. If f and g are monotonic and f ◦ g = g ◦ f = λx. x then
←−
f = g and ←−g = f .

7. If f is an extensive ∪-morphism then
←−−−−−
λx. lfpxf = λy. gfpy

←−
f where gfp is the

greatest fix-point.
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8. If f is a ∪-morphism then

←−−−−−−−−−−−−−−−
λx. lfpx(λz. z ∪ f(z)) = λy. gfpy(λz. z ∩

←−
f (z)).

Now, using the properties from Proposition 3.6.2 we may define abstract seman-

tics that compute backward under-approximations for programs. Given a concrete

domain D and an abstract domain D] that is connected by a Galois connection

(α, γ) we may define the abstract forward necessary conditions.

Definition 3.6.2 ([Min14]). The soundness condition of an abstract over-approx-

imating forward function F ] : D] → D] with respect to the concrete forward

function F : D→ D is given as

∀X] ∈ D]. (F ◦ γ)(X]) ⊆ (γ ◦ F ])(X]).

Using Proposition 3.6.2 and Definition 3.6.2 we then define the abstract sufficient

conditions for backward under-approximations.

Definition 3.6.3 ([Min14]). The soundness condition of an abstract under-approx-

imating backward function F ] : D] → D] with respect to the concrete backward

function F : D→ D is given as

∀X] ∈ D]. (γ ◦ F ])(X]) ⊆ (F ◦ γ)(X]).

Furthermore, using the definition of forward widenings given in Definition 3.2.2

we define a lower widening that obeys the soundness condition in Definition 3.6.3

and ensures the termination of greatest fix-point computations.

Definition 3.6.4 ([Min14]). Let (D],v,⊥,>,t,u) be a complete lattice. Then,

the function ∇ : D] ×D] → D] is a lower widening operator if for all x, y ∈ D]
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x∇y v x and x∇y v y and for all decreasing chains x0 v x1 v . . . the decreasing

chain y0 = x0, . . . , yi = yi−1∇xi for all i > 0 is not strictly decreasing.

Definition 3.6.5 ([Min14]). Given F ] and X] along with the corresponding con-

crete F and X, the sequence Y ]
0 = X], Y ]

i+1 = Y ]
i ∇F ](Y ]

i ) is utimately sta-

tionary which we denote by limX] λY ]. Y ]∇F ](Y ]). This limit is a sound under-

approximation of the greatest fixpoint of the concrete function F :

γ(lim
X]

λY ]. Y ]∇F ](Y ])) ⊆ gfpXF.

Thus, we see that there is a duality between the forward over-approximating

necessary semantics and the backward under-approximating sufficient semantics.

This duality applies to defining backward operators from forward operators and to

the calculational design of a backward abstract interpreter which can be expressed

as the dual of a forward abstract interpreter. An example backward abstract

interpreter is given in [Min14] which is similar to the one given in [Cou19]. We will

be using this construction for the design of our backward abstract semantics which

means we only need to define backward semantics for assignments and Boolean

expressions. Some key results from [Min14] to help define backward semantics is

given in the next section.

3.6.2 Review of Key Results

Definition 3.6.6 ([Min14]). Given a function τJBK that computes the forward

semantics of Boolean tests with respect to the abstract environment E, we know

that τJBK ⊆ λx. x. By Proposition 3.6.1 we get that the backward function
←−τ JBK ⊇

←−−−
λx. x = λx. x. Thus, the abstract fallback operator for Boolean tests is
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defined as

←−τ ]JBK , λx. x.

The fallback operator given Definition 3.6.6 provides too coarse of an under-

approximation but is useful for when no other backward Boolean semantics may be

defined. In the case of boxes, octagons and polyhedra, [Min14] also provides back-

ward under-approximating Boolean tests that evaluate different types of Boolean

expressions. The general idea is to remove the test constraint from the current

abstract environment which has the effect of adding all points that satisfy the nega-

tion of the test. Note that it is possible to define other types of backward Booleans

tests that compute smaller invariants since we are computing under-approximations.

Next, we consider backward projections and assignment statements.

Definition 3.6.7 ([Min14]). Let ←−τ JV := [−∞,∞]K be a backward projection

operator. For any convex closed domain←−τ JV := [−∞,∞]K can be efficiently and

exactly implemented using the forward projection operator τJV := [−∞,∞]K.

←−τ JV := [−∞,∞]KX] ,


X] if γ(τJV := [−∞,∞]KX]) = γ(X]),

⊥] otherwise.

Proposition 3.6.3 ([Min14]). The projection operator for the forward semantics

over-approximates the semantics of assignments: τJV := eK ⊆ τJV := [−∞,∞]K.

By Proposition 3.6.2 we have that the backward projection under-approximates

the backwards semantics of assignments: ←−τ JV := [−∞,∞]K ⊆ ←−τ JV := eK.

Definition 3.6.8 ([Min14]). Given the forward functions τJadd VK and τJdel VK

that, respectively, add and remove variables from abstract environments, we can



52
compute the semantics of backward assignments as follows

←−τ JV := eK , τJdel V’K ◦←−τ JV := [−∞,∞]K ◦←−τ JV’ = eK ◦ τJadd VK ◦ [V’ \ V]

where [V’ \ V] renames all variables V in the abstract environment X] by V’ (which

is always capture-free).

Definition 3.6.9 ([Min14]). If X] is a closed convex set then the backward seman-

tics of ←−τ Jv := [a,b]K is given by

←−τ Jv := [a,b]KX] ,(τJV := [−∞,∞]K ◦

(τJV := aK u τJV := V - bK) ◦

τJV >= a && V <= bK)X].

In Definition 3.6.8 the operation ←−τ JV’ = eK can be defined by reduction to

the sound under-approximation of Boolean expressions. Furthermore, [Min14]

also presents a few other backward assignment operators that can be used for

particular cases such as assignments that assign a value to a variable in some

given range (Definition 3.6.9) or when ←−τ JV’ = eK can be exactly modeled in the

abstract domain. For numeric domains, backwards abstract assignments lead to an

over-approximation so they cannot exactly model ←−τ JV’ = eK.

Finally, we note that a lower widening may always jump to ⊥ after some number

of iterations. Since the lower widening is supposed to under-approximate greatest

fixpoints of a decreasing function, we may jump below the actual fixpoint to ⊥ and

this will be sound. In [Min14] lower widening for polyhedra and intervals are given

with the latter being based on widening thresholds [Ber+15] which then jump to ⊥
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if a fixpoint is not reached after widening to the threshold limits.



54

Chapter 4

Floating-Point Responsibility

Analysis

The concrete semantics for responsibility as described in the Section 3.4 is not

computable for all programs in general. Thus, we must soundly approximate the

responsibility semantics and compute an approximate set of entities that may be

responsible for bad behaviors. We wish to compute what we will refer to as a set of

left bounds and right bounds of responsibility. A left bound and its corresponding

right bound are program locations where if there is a responsible entity for some

trace then it must lie within that bound. This means that for any single trace

the left and right bound should soundly approximate the responsible entity for

that trace. Since we will be computing an approximation, in our case the left and

right bounds will include the responsible entity for a set of traces which share a

common responsible entity (recall that there is only one responsible entity per

trace). Now, the responsible entity may change depending on the trace so we must

compute a set of left and right bounds where each of them contains a responsible
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entity. Let [i, j] denote the interval of responsibility where i ≤ j means that the

responsibility program locations are between points i and j. i > j means there is

no responsible entity. Finally, we note that if the left bound is chosen to be the

start of the program and the right bound of the program is chosen to be the end of

the program then this is the trivial sound interval for responsibility for all traces.

This chapter begins by outlining the syntax of programs. Then, we discuss the

forward followed by the backward semantics of floating-point programs and how

they are used to partition the sets of traces that are being approximated. This

partitioning may be used to possibly refine the left and right bounds of responsibility

to obtain more accurate bounds. Throughout the explanation Program 2.1 is used

as a running example.

4.1 Syntax

We present a simple C-like language to be used for the formal construction of

the analysis. The syntax reflects some of the restrictions we pose on the analysis.

Firstly, there are no function calls and instead the program starts executing from

the first statement it encounters. Secondly, the numeric values in our programs are

real numbers and we do not allow for integer values. This restriction allows us to

avoid the issue of casting between integers and floating-point types which can lead

to errors such as integer overflow or underflow and some other bugs if not treated

properly [Dan02]. Thirdly, we do not have floating-point division as part of our

arithmetic operations. New program features could be added by first extending the

syntax and then defining a sound semantics for the expression and/or statement

just added to the program. We will show a sound semantics for this syntax so this
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extension would only focus on the features added to the language. For example,

floating-point division can be added by using the semantics of affine division given

in [GP11].

The set V defines the infinite set of program variables that is disjoint from

the other syntactic structures of a program. We do not explicitly support the

Boolean constants > and ⊥ but these are easily obtainable (for example doing

the Boolean test x == x which is trivially true). Program variables represent two

different values. They can be thought of as a tuple where the first component is

the “errorless” real value of the variable and the second component is the floating-

point counterpart of this value. Thus, the first element keeps track of what the

computation would ideally compute, i.e. without any floating-point error, while

its corresponding floating-point value is what is actually computed. The error

assertion is a limited form of a C assertion where the only condition being checked is

whether the absolute error between a program variable var’s real and floating-point

components is smaller than num. The programmer may check that a program

does not accrue too much error using this construct.

Another interesting construct of the language is the assignment statement.

The assignment with uncertainty allows the programmer to associate with a real

interval some error, typically in the range 0 ≤ u << 1. This error can correspond

to either an error due to floating-point representation (as not all real values are

representable in floating-point) or some other uncertainty such as measurement

error. If there is no uncertainty in the assignment then this becomes a special case

of the uncertain assignment where u = 0. We syntactically separate the case where

an assignment with uncertainty occurs and where a variable is assigned the result of

some arithmetic expression as intervals are not a part of the syntax for arithmetic
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expressions.

num ∈ R real numbers

var ∈ V variables

A ∈ A ::= num | var arithmtic expressions

| A opA A where opA ∈ {+,-,*}

B ∈ B ::= not B | B or B | B and B boolean expressions

| A opB A where opB ∈ {<,<=,>,>=,=,<>}

S ∈ S ::= program statement

var = [num,num] + u ; assignment with uncertainty

| var = A; arithmetic assignment

| if (B) S else S conditional

| while (B) S iteration

| assert(var,num) error assertion

| ; skip statement

| { Sl } multiple statements

Sl ∈ Sl ::= Sl S | ε statement list

P ∈ P ::= Sl programs

Figure 4.1: Syntax of programs to be analyzed.
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atJSK : Pc→ L label for program point where execution of S starts

afterJSK : Pc→ L label for program point after the execution of S has

completed (assuming the instruction at S terminates)

inJSK : Pc→ P(L) labels for all the potentially reachable program points

inside S if S is executed (includes atJSK, excludes

afterJSK)

labsJSK : Pc→ P(L) labsJSK , inJSK ∪ {afterJSK}

Figure 4.2: Description of label functions for programs.

4.1.1 Labels

We use the explicit labelling scheme from [Cou19] and [CC98] to attach unique

labels to each program point. This in turn allows the construction of the semantics

of programs where an abstract invariant is attached to each program point. The

functions defined below are same or similar to those given in [Cou19] and [CC98].

Let L be the set of labels and Pc = S ∪ Sl ∪ P be the set of all program

components. Then, we define the functions given in Figure 4.2.

Next, we decorate the syntax in Figure 4.1 with labels to obtain an explicit

labelling [CC98]. The definition of atJSK is given by Figure 4.3 and afterJSK by

Figure 4.4. Using atJSK we can obtain inJSK where we note that while Figure 4.5

does not enforce the uniqueness of labels, it can easily be made to do so by adding

the following conditions:
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S ::= ` var = [num,num] + u ; atJSK , `

S ::= ` var = A ; atJSK , `

S ::= if ` (B) St else Sf atJSK , `

S ::= while ` (B) Sw atJSK , `

S ::= ` assert(var,num) atJSK , `

S ::= ` ; atJSK , `

S ::= ` { Sl } atJSK , atJSlK

Sl ::= Sl’ S atJSlK , atJSl’K

Sl ::= ε atJSlK , afterJSlK

P ::= Sl ` atJPK , atJSlK

Figure 4.3: Computing atJSK structurally on the syntax.

S ::= if ` (B) St else Sf afterJStK , afterJSfK , afterJSK

S ::= while ` (B) Sw afterJSwK , `

S ::= ` { Sl } afterJSlK , atJSK

Sl ::= Sl’ S afterJSl’K , atJSlK, afterJSK , afterJSlK

P ::= Sl ` afterJPK , afterJSlK , `

Figure 4.4: Computing afterJSK structurally on the syntax.

• atJSK /∈ inJStK ∪ inJSfK, inJStK ∩ inJSfK = ∅ for the conditional statement;

• atJSK /∈ inJSwK for the while statement; and

• afterJSlK /∈ inJSlK for the top-level.

The labelling functions will be used to give the semantics of programs in the

following sections. Also, note that the labelling given here corresponds to the

labelling of nodes in the transition system Figure 4.7 where we pick each ` from the

lines of the program. To obtain the more refined transition systems from Section 2,
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S ::= var = [num,num] + u ; inJSK , {atJSK}
S ::= var = A ; inJSK , {atJSK}
S ::= if (B) St else Sf inJSK , {atJSK} ∪ inJStK ∪ inJSfK

S ::= while ` (B) Sw inJSK , {atJSK} ∪ inJSwK

S ::= assert(var,num) inJSK , {atJSK}
S ::= ; inJSK , {atJSK}
S ::= { Sl } inJSK , {atJSlK}

Sl ::= Sl’ S inJSlK , inJSl’K ∪ inJSlK

Sl ::= ε inJSlK , {atJSlK}
P ::= Sl ` inJPK , inJSlK

Figure 4.5: Computing inJSK structurally on the syntax.

we will have to incorporate more information than these labels into our program

semantics.

4.2 Lattice of System Behaviors

We formally define the system behaviors of interest [DC19] for floating-point pro-

grams using event traces. The semantics of programs interpreted using constrained

affine sets are with respect to both real and floating-point numbers. So, for the

simple language given in Section 4.1, we need to define so-called real events and

their floating-point counterparts. Let ER be the set of real events and EF be the

set of floating-point events. In our case, we have the following real events er ∈ ER:

assignment (both with uncertainty and arithmetic), Boolean test, error assertion

and skip. Since we also need to obtain a floating-point event for any given real

event we also introduce the event rounding operator ρ : ER → EF that takes any
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event er ∈ E and returns a floating-point version of that event ρ(er) ∈ EF . As

an example, if we have the assignment x = [1,3] + ux in the source code then

the corresponding real event and floating-point events are x = [1,3] + ux and

ρ(x = [1,3] + ux) respectively. Note that these events have an implicit seman-

tics where the real event corresponds to assigning x the interval [1,3] while the

floating-point event also adds the error term ux to this event. For arithmetic and

Boolean operations ρ will round all sub-expressions to their floating-point values.

The rounding for skip and error assertion will not do anything and return the

original event. The semantics of error assertions for real events will always evaluate

to true as real numbers have no round-off error while for floating-point events we

will measure the absolute error of the variable in the assertion. Thus, the concrete

semantics of programs will be all possible combinations of its real and floating-point

events and this can be represented as a tree such as in Figure 3.1.

Let E = ER∪EF be the set of all events. Then, a trace σ ∈ E∗∞ is either a finite

or infinite sequence of events with length |σ| that represents a single execution of the

system. Note that ε is the empty trace with length 0 and the length of any infinite

trace is denoted by ∞. We may also define a prefix ordering of traces. A trace σ is

less than or equal to another trace σ′, denoted by σ � σ′, if and only if σ is a prefix

of σ′. An example prefix trace is given in Section 3.4.2. In the case of responsibility

analysis, we are concerned with the set of maximal traces of the program which

we denote as SMax ∈ ℘(E∗∞) [DC19]. The maximal traces of an empty program is

{ε}. Given a set of traces T , the function Pref(P ) ∈ ℘(E∗∞)→ ℘(E∗∞) returns all

prefixes of every trace in T :

Pref(T ) , {σ′ ∈ E∗∞ | ∃σ ∈ T. σ′ � σ ∧ |σ′| ≤ |σ|}.
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Almost all behaviors of a given system can be represented as sets of maximal

traces [DC19]. We refer to such sets as trace properties, denoted P ∈ ℘(SMax),

which describe a set of traces where a given property holds. For the responsibility

analysis of floating-point programs the set of bad behaviors B is defined as

B = {σ ∈ SMax | ∃i < |σ| − 1. σi = B ∧ ¬ρ(B)

∨ σi = ρ(B) ∧ ¬B

∨ σi = ¬B ∧ ρ(B)

∨ σi = ¬ρ(B) ∧ B

∨ σi = ¬(assert(var,num))

∨ σi = ¬ρ(assert(var,num))}.

B is the set of all maximal traces where there exists at least one event σi such that

there is a conditional divergence or the absolute error of a variable var exceeds

some bound num. The set of OK behaviors, i.e. those are not bad, is given by

¬B = SMax \ B. We can build a complete lattice of maximal trace properties

for floating-point properties of interest (LMax,⊆,>Max,⊥Max,∪,∩) where LMax =

{B,¬B, SMax, ∅} ∈ ℘(℘(E∗∞)) is the set of behaviors of interest and >Max = SMax,

⊥Max = ∅ and ⊆,∪,∩ are standard set operations. The Hasse diagram of this

lattice is given in Figure 3.2 but now B also covers the case of the program accruing

too much error due to rounding. Note that we could also refine our lattice to

specific cases similar to Figure 3.3 to discern between bad responsible entities for

different bad behaviors. In the case for this thesis we will be using the 4-element

lattice construction as described above. Finally, this definition defines the case

of detecting too much error as an annotation that the programmer writes to the
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program. If the programmer never inserts any error assertions then regardless of

how high the error gets it will never be included in the set of bad behaviors B.

Despite its expresivness, the maximal trace property does not reveal the point

along a maximal trace where exactly in the trace is a property guaranteed to

hold. So, it is difficult to characterize who can be considered responsible in any

given maximal trace. Because of this we abstract every maximal trace property

P ∈ LMax to prefixes of maximal traces. These prefixes can be grouped as the set

of all prefixes where P will hold at some point in the computation and exclude

those whose maximal extension will not satisfy P. As presented in [DC19], this

abstraction is called prediction abstraction.

αPredJSMaxK ∈ ℘(E∗∞)→ ℘(E∗∞) prediction abstraction

αPredJSMaxK(P) , {σ ∈ Pref(P) | ∀σ′ ∈ SMax. σ � σ′ =⇒ σ′ ∈ P}

γPredJSMaxK ∈ ℘(E∗∞)→ ℘(E∗∞) prediction concretization

αPredJSMaxK(Q) , {σ ∈ Q | σ ∈ SMax} ∩ SMax = Q ∩ SMax

There is a Galois bijection between maximal trace properties and prediction

trace properties:

(℘(SMax),⊆) −−−−−−−−−→−→←←−−−−−−−−−−
αPredJSMaxK

γPredJSMaxK
(ᾱPredJSMaxK(℘(SMax)),⊆)

where

ᾱPredJSMaxK ∈ ℘(℘(E∗∞))→ ℘(℘(E∗∞))

ᾱPredJSMaxK(X) , {αPredJSMaxK(P) | P ∈ X}
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is the prediction trace domain. Now every behavior in the floating-point lattice

LMax can be abstracted as follows:

• αPredJSMaxK(>Max) = Pref(SMax), meaning every valid prefix trace guarantees

>Max.

• αPredJSMaxK(B) is the set of all prefixes where divergence occurs or the error

assertion fails.

• αPredJSMaxK(¬B) is the set of all prefixes where divergence does not occur

and the assertion does not fail.

• αPredJSMaxK(⊥Max) = ∅ as no valid trace can guarantee ⊥Max.

In this thesis we associate with program prefix traces the strongest possible

maximal trace property that can be inferred from them.

4.3 Forward Semantics of Expressions

To define the forward semantics of programs we must first give the forward semantics

for arithmetic and boolean expressions. Responsibility analysis for floating-point

programs can actually be made generic with respect to some underlying abstract

domain D] as long as the following three conditions hold:

1. D] provides a way to compute D]
R
which provides a sound abstraction of the

values of variables and arithmetic expressions with respect to real semantics,

2. there exists a way to obtain for each x ∈ D]
R
an abstract element x̂ ∈ D]

F
which

corresponds to a sound approximation of x if all operations and declarations
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used to obtain the value of x were replaced by floating-point numbers which

has some error, and

3. D] is a mapping from variables to D]
R
and D]

F
(i.e. D] : V→ (D]

R
×D]

F
)).

Two possible ways to satisfy the above three conditions are to either compute an

error value associated with each element of D]
R
such that corresponding elements

in D]
F
can be recovered or to compute both D]

R
and D]

F
which then allows for the

recovering of the error between the two values. The former approach is taken in

[Tit+18], [GP11] and [GP13].

We also define A as the transfer functions associated with doing arithmetic

operations and B be the function associated with boolean comparisons. As long

as these transfer functions are shown to be sound we may use the domain D]

throughout the responsibility analysis. In this work, D] will be isntantiated with

the constrained affine sets domain from [GP13] which is described in Section 3.3.5.

4.3.1 Instantiating D]

The constrained affine sets for floating-point analysis is a suitable candidate for the

domain D]. The constrained affine set X = (RX , EX ,ΦX
r ,Φ

X
f ) lets us compute both

a real value D]
R
with the constrained affine set RX . Then, D]

F
can be computed by

calculating RX + EX . Thus, we instantiate D] using this domain and assume the

existence of the functions AS as a transfer function for artihmetic expressions and

assignments and BS for the computation of Boolean comparisons. Furthermore,

we assume the existence of join tD] , meet uD] and widening ∇D] . All of these

functions and operations are described in Section 3.3.5.
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Definition 4.3.1. The semantics of arithmetic expressions is given by the function

A : A×D] → D
]

where A , AS.

Definition 4.3.2. The semantics of Boolean comparison operators is given by the

function

B : B×D] → D
]

which is defined by the function BS from Section 3.3.5. To handle conjuncts, dis-

juncts and negations we proceed structurally on the syntax of Boolean expressions.

BJA1 op
B A2KX , BSJA1 op

B A1KX

BJB1 and B1KX , BJB1KX uBJB2KX

BJB1 or B1KX , BJB1KX tBJB2KX

The not operation is handled during a pre-processing phase where the negation

operations are pushed into the other Boolean operations like in [Min06]. The
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negation of and and or follows from DeMorgan’s Laws.

not (B1 and B2) → (not B1) or (not B2)

not (B1 or B2) → (not B1) and (not B2)

not (not B) → B

not (B1 < B2) → B1 >= B2

not (B1 <= B2) → B1 > B2

not (B1 > B2) → B1 <= B2

not (B1 >= B2) → B1 < B2

not (B1 = B2) → B1 <> B2

not (B1 <> B2) → B1 = B2

The reason for this pre-processing is that for constrained affine sets the comple-

mentation operation may not exist for the underlying constraints, which is the case

for octagons [Min06], or it might become too costly to compute complements of

constraints via disjunctive completion [CC79] as in the case of intervals. Finally,

the function

B̄ : B→ D
] → D

]

computes the negation of a Boolean condition and is defined as BJ¬BK.

The soundness of the above two definitions with respect to sets of both the real

and floating-point numbers follows from the soundness of constrained affine sets as

presented in [GGP10] and [GP13]. In turn, the soundness of the constrained affine

sets follows from the soundness of a sound implementation of affine forms, such as in

[GP11], and the soundness of the underlying domain used to interpret the constraints.
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For example, the domain can be instantiated with a boxes interpretation for the

noise symbols and we know that boxes are sound. The poset (V→ ℘(R)×℘(R),⊆)

and the poset formed from the domain of constrained affine sets (D],⊆D]) forms a

Galois connection

(V→ ℘(R)× ℘(R),⊆) −−−−→←−−−−
α
D]

γ
D]

(D],vD]).

The order on V → (℘(R) × ℘(R)) is defined as point-wise set-inclusion on each

variable and we know that the set of subsets of a power set ordered by inclusion is

always a poset. The definitions of αD] and γD] are presented in Section 3.3.

4.4 Forward Semantics of Programs

The forward abstract affine semantics of program Program 2.1 can be computed by

abstracting the forward reachability semantics of programs [CC04] to the invariants

represented by the constrained affine sets. This gives way to a forward static

analysis with forward iteration by abstract interpretation. The results of such an

analysis can also be represented using a transition system (sometimes referred to

as a flowchart or control-flow graph) [CC98] where the transitions correspond to

program statements (or events) and each node is attached an invariant that is

calculated by the analyses. The transition system of Program 2.1 is given in figure

Figure 4.7 where transitions correspond to events in the system. In fact, this system

is also equivalent to the trivial extension (see Section 3.5) of the non-tokenized

system where we now use the empty token tε (in this case each node is marked as

[i]ε).

Each node of the transition system is labelled above with the strongest property
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[0]ε

>Max

>D]

Entry [1]ε

>Max

−1 ≤ εr1 ≤ 1

[2]ε

>Max

−1 ≤ εr1 ≤ 1,
−1 ≤ εr2 ≤ 1

[3]ε

>Max

−1 ≤ εr1 ≤ 1,
−1 ≤ εr2 ≤ 1,
−1 ≤ εr3 ≤ 1

[4]ε

>Max

−1 ≤ εr1 ≤ 1,
−1 ≤ εr2 ≤ 1,
−1 ≤ εr3 ≤ 1

[5]ε

>Max

−1 ≤ εr1 ≤ 1,
−1 ≤ εr2 ≤ −ux,
uy ≤ εr3 ≤ 1

[7]ε

>Max

−1 ≤ εr1 ≤ 1,
0 < εr2 ≤ 1,
−1 ≤ εr3 < 0

[6]ε

>Max

−1 ≤ εr1 ≤ 1,
−1 ≤ εr2 ≤ −ux,
uy ≤ εr3 ≤ 1

[8]ε

>Max

−1 ≤ εr1 ≤ 1,
0 < εr2 ≤ 1,
−1 ≤ εr3 < 0

[9]ε

>Max

−1 ≤ εr1 ≤ 1,
−1 ≤ εr2 ≤ 1,
−1 ≤ εr3 ≤ 1

Exit
L R

Figure 4.6: Original transition system of Program 2.1.

that can be guaranteed after that point where the properties come from the lattice

given in Figure 3.2 and Section 4.2. The reason every node is labelled >Max is

because both conditional divergence and non-divergence occur in Program 2.1 but

the transition system does not split the analysis into four cases to distinguish

between them. Instead, the analysis will compute the condition for the if branch

and the else branch and once a join happens it will also introduce the difference

of the results of the two branches as a discontinuity term as described in [GP13].

However, we will no longer be computing the terms here and instead perform

partitions. Below each node, we give the set of constraints the affine analysis

will derive for each program point. We start with the empty set represented by

>D] . Each transition either adds a constraint to the set or refines an existing

constraint. For the sake of brevity, only the constraints on the symbolic error

symbols εri are given (and they are actually the only ones needed for this example).

The introduction of the new error symbol due to arithmetic that occurs from the

transition from nodes [3] to [4] is omitted.

Let the right bound of the responsible entities for a system behavior be defined

as the first node n from the end node of the transition system that guarantees the

behavior B or ¬B after any outgoing transition from n. This means that if all
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the outgoing transitions of a node only lead to one behavior and the node is the

left-most such node then it is a right bound for that behavior. If no such node exists

then the last node of the transition system is the right bound. This definition makes

sense because if we can show in the abstract that all traces from n lead to B/¬B

then it must be that either the concrete traces obtained by the concretization of n

will also lead to B/¬B or there is a possibility of a false positive. We denote the

right bounds of a system with a blue box around the node and labeled R at the

top left corner of the box.

For Figure 4.6, it is clear that the right bound for the bad behavior B must be

the node [9]ε as every node is marked with >Max. We could say that location 9

is the right bound of responsibility but clearly this is unsatisfactory as the result

is too coarse. So, we need to refine Figure 4.6 in some way to obtain a more

precise abstraction. The key insight lies in the fact that the affine domain actually

computes the conditions of discontinuity in its forward pass. Thus, it is possible to

use trace partitioning [RM07] to refine Figure 4.6 in our forward computation to

the 4 possible cases of ‘no if discontinuity,’ ‘if discontinuity’, ‘no else discontinuity,’

and ‘else discontinuity’. This will lead to some gains in precision.

We formalize the forward partitioning semantics of programs. First, the abstract

domain and the partitioning tokens are defined. Then, we describe the partitioning

functions we will use for our semantics. Finally, the forward semantics is presented

as a refinement of a generic abstract interpreter similar to the ones presented in

[Cou19] and [Cou99].
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4.4.1 Abstract Responsibility Domain

Definition 4.4.1. The abstract responsibility domain

D
]
R , D

] × LMax

is defined as the product of abstract elements D] and the set of system behaviors

of interest LMax.

An instance of D]
R is given as D]

R = (D],P). Here, D] is a constrained affine set

associated with a program point and P is the strongest program property that can

be inferred from D]. By strongest property that can be inferred we mean that D]

implies that property P holds if we use D] as an abstraction of the program’s prefix

traces. There is an implicit lifting of the states D] characterizes to program traces

which is defined in Section 4.4.5 where the forward semantics of programs are given.

So, an alternative definition of the strongest property that can be inferred from

D] is the smallest set P from the lattice of system behaviors such that the prefix

traces described by D] is a subset of P. If P is >Max then all traces are responsible

for either B or ¬B.

Definition 4.4.2. Let 1D]
R = (1D], 1P) and 2D]

R = (2D], 2P). Then, we define the

join t
D

]
R
and meet t

D
]
R
of the two abstract elements component-wise

1D]
R tD]

R

2D]
R , (1D] tD]

2D], 1P ∪ 2P),

1D]
R uD]

R

2D]
R , (1D] uD]

2D], 1P ∩ 2P).
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Similarly, the order relation v

D
]
R
is defined as

1D]
R vD]

R

2D]
R ⇐⇒

1D] vD]
2D] ∧ 1P ⊆ 2P.

From the above definitions, it is evident that

>D
]
R = (>D]

,>Max),

⊥D
]
R = (⊥D]

,⊥Max).

Note that we denote the ordering of the elements of the lattice of system

behaviors using subset inclusion ⊆. However, the concrete responsibility semantics

of programs is not computable meaning such a subset check cannot be implemented.

So, we must abstract these hyperproperties to symbolic terms that represent them.

Then, there is an abstract ordering of responsiblity properties which is equivalent to

the ordering on the Hasse diagram given in Figure 3.2. Throughout this thesis we

overload ⊆ to mean both concrete and abstract inclusion which means that elements

P can be thought of as either concrete or abstract elements of the responsibility

domain.

Proposition 4.4.1. The poset (D]
R,vD]

R
) forms a complete lattice

(D]
R,vD]

R
,⊥D

]
R ,>D

]
R ,t

D
]
R
,u
D

]
R

).

There is a simple reduced product between D] and LMax [CCM11]. If either

element of the pair (D],P) is the bottom element of their respective lattices then it

must be that the other is also bottom of its respective lattice. We do not explicitly

write a reduced product operator for any of our abstract operations but it is implicit
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that such reductions are done throughout the analysis.

4.4.2 Partitioning Directives

For abstract responsibility analysis for floating-point programs we will be using a

single partitioning token. Unlike [RM07], the goal is not to partition all control

flows of programs but rather to partition control flows depending only on the values

of variables. The intuition behind this approach follows from the definition of

responsibility. We say that a responsible entity for a behavior B (or ¬B) is one

that is part of a trace that exhibits B and it must be the first entity that chooses its

value such that B is guaranteed to occur. Thus, we wish to separate sets of traces

into those that guarantee B occurs when some variable chooses a real value and its

corresponding floating-point value leads to the error. This type of partitioning is

referred to as a value-based trace partitioning [MR05].

We define two partitioning directives which constitute a subset of the partitioning

directives defined in [RM07]. Each directive includes a label so that we discern

the program point where the directive was created and keep track of a history

of directives. For example, given two tokens t1 and t2 it is possible to say that

the partition associated with t1 was created before t2. Taking this further, if we

associate t1 with program location `1 and t2 with location `2 then we can obtain

even more refined information of the form partition t2 created at `2 is a partitioning

of t1 created at `1.

Definition 4.4.3. The set of partitioning directives, denoted D, consists of tokens

t`val which indicate that a value based partitioning has been performed at point

` and the null directives tNone and tmNone which indicate that no partitioning has

been performed.
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Directives of the form tmNone and tNone are used for partition merging just like

in [RM07]. For example, we may wish to collapse multiple partitions into a single

partition and remove the tokens from the set of partition directives. In that case,

we may replace all collapsed directives by the null directive that forgets the control

flow information of the partitions we just removed. The only difference between

the two tokens is that tmNone indicates a possible loss information due to a merge

while tNone is a place-holder to ensure two trees have the same height. The purpose

of tmNone will become clearer when we reach the backward semantics of programs

in Section 4.5. There is also a practical purpose for having the token tmNone as

an implementation of our partitioning scheme may want to distinguish between

merge points that could potentially lose information from those that do not lose

any information to see where the analysis may encounter problems.

The mapping of partitions to elements of the abstract resposibility domain will

correspond to a partitioned abstract program environment. So, instead of mapping

variables to values, which is a standard construction in abstract interpretation, we

want to map partitions to variables to values. Furthermore, as stated previously,

we will keep a history of partitions that lead to a current partition. Trees are a

good representation for storing this kind of history as multiple partitions may share

the same history which can be compactly represented in tree form. Thus, abstract

program environments are defined inductively using a recursive tree definition.

Definition 4.4.4 ([RM07]). An abstract environment E ∈ D→ D
]
R is of the form

E ::= leaf[D]
R] where D]

R ∈ D
]
R,

| node[φ] where φ ∈ D→ (D→ D
]
R).
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The set of abstract environments is denoted by E.

The join of two abstract environments can be computed using the scheme given

in [RM07]. The idea is to consider the set of paths in both tree environments and

if there exist two tokens t0 and t1 such that t0 is a strict prefix of t1 then t0 is

replaced by a node with the token tNone that maps to t0. We create a new tree

such that the prefix sequences that are common to both trees are shared in the

resulting representation. Then, the join is simply defined as the point-wise join of

both environment where each corresponding leaves of the tree are joined to creating

the resulting joined tree.

Definition 4.4.5 ([RM07]). The function

joint : E×E→ E

takes two abstract environments E1 and E2 and produces the join of them E by

using D]
R point-wise on the leaves of the joined tree.

To generate and destroy tokens we also define the partition creation and merging

functions. To add a token to the current environment we will keep all current tokens

and add a token just above the leaf levels of the tree. The history of partitions for

any one leaf can be obtained by tree traversal from the root of the tree.

Definition 4.4.6 ([RM07]). The function

generate : ℘(D)×E→ E

takes as input a set of directives δ and an abstract environment E and further
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partitions as follows.

generate(δ, leaf[D]
R]) = node[λ(t ∈ δ). leaf[D]

R]]

generate(δ, node[φ]) = node[λ(t ∈ dom(φ)). generate(δ, φ(t))]

Throughout partition generation we assume that when adding new directives,

unique names are introduced for them. For merging partitions, we remove the

relevant token, replace it by either the null merge directive tmNone or tNone depending

on whether the join lost information. After the token replacement, the join of all

children of the sub-tree induced by the token is taken to collapse the partitions.

This means that the loss of information due to a join is characterized as whether

the join forced the strongest property inferred to become >Max. If the resulting

abstract environment still either guarantees B or ¬B, then clearly this operation

did not lose any information with respect to responsibility.

Definition 4.4.7 ([RM07]). The function

merge : ℘(D)×E→ E

takes as input a set of directives δ and an abstract environment E and removes all
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partitions t ∈ δ from E.

merge(D, leaf[d]) = leaf[d]

merge(D, node[φ]) = node[φ′]

where φ′ ,


t /∈ D 7→ merge(D,φ(t))

t′ 7→
⊔
D

]
R
{D]

R at a leaf of φ(t) | t ∈ D}

and where t′ =


tmNone if

⊔
D

]
R
results in >Max,

tNone otherwise.

Finally, to interpret tests and assignments for partitions we can apply the

semantic function for tests and arithmetic on each leaf of the partition tree.

Definition 4.4.8 ([RM07]). The function

testB : B×E→ E

takes as input a semantic function B that interprets tests, a Boolean test B and

an environment E. The result is a new environment where all leaves have been

restricted by the semantics of tests.

testB(B, leaf[(D],P)]) = leaf[(BJBKD],P)]

testB(B, node[φ]) = node[λ(t ∈ dom(φ)). testB(B, φ(t))]

Definition 4.4.9 ([RM07]). The function

assnAD : A×E→ E
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takes as input a semantic function AS that interprets assignments, an arithmetic

operation A and an environment E. The result is a new environment where all

leaves have been re-interpreted under the assignment.

assnAS(A, leaf[(D],P)]) = leaf[(ASJAKD],P)]

assnAS(A, node[φ]) = node[λ(t ∈ dom(φ)). assnAS(A, φ(t))]

4.4.3 Partitioning Functions

Besides the functions associated with directives from the previous section, it is also

necessary to define partitioning functions based on the results of the constrained

affine analysis. The goal is to identify when a bad behavior occurs, which is detected

using constrained affine sets. Then, based on the values we obtain, we will perform

partitions on the traces of the program to refine the transition system and possibly

improve the bounds of responsibility.

The constrained affine sets are able to detect when a test discontinuity occurs.

For example, if Φr
if is the set of real constraints on the noise symbols associated with

the if-branch and Φf
else is the set of floating-point constraints on the else-branch

then the intersection Φr
if ∩ Φf

else gives us the set of constraints on the real noise

symbols that lead to test discontinuity. Similarly, taking the intersection of Φr
if and

Φf
if gives us the set of constraints on the real noise symbols where both the real

values and the floating-point values take the same branch. We overload Φr
if∩Φf

if to

also give constraints on the floating-point noise symbols. In practice, it is possible

to realize this intersection by adding all real noise symbols in Φf
if to Φr

if and then

taking the intersection.

These refined constraints may be used to perform partitions. The constraints
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given by Φr

if ∩Φf
else guarantee that an affine set will always lead to the behavior B

from the point of its detection and onwards. This result follows from the soundness

of constrained affine sets. Thus, conditional divergence may be detected when the

semantics of Boolean tests are being evaluated. A first idea is to partition the

abstract environments right after the interpretation of tests. However this idea will

not work and the actual partitioning of the affine sets must occur during the join

after each branch of the conditional is evaluated. This is because the results of the

computations that occur in each branch of the test are interpreted independetly.

That is, the real value may go one branch and the floating-point another branch

but we cannot take both branches simultaneously. This means that if divergence

occurs we must consolidate the result of the two branches after we compute the

results for the real value that took some branch and the floating-point value that

took a different branch. We refer to these consolidating points as join points.

At any join point, the relevant intersections for the constraints on the affine

sets may be computed and then the result partitioned based on these values. To

this end, we define a partitioning function that we will use at the join points of

conditional statements.

Definition 4.4.10. The partitioning join t`P of two abstract elements 1D]
R =

(1D], 1P) and 2D]
R = (2D], 2P) at program location ` splits the join into the four

cases of agreement and disagreement. Let

((RX , EX ,ΦX
r ,Φ

X
f ), 1P) = (1D], 1P)

and

((RY , EY ,ΦY
r ,Φ

Y
f ), 2P) = (2D], 2P)
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be the decomposition of the abstract elements to their affine sets. Then, t`P is

defined as

t`P ((1D], 1P), (2D], 1P)) = node[φ]

where φ ,



1
t`val 7→ leaf[((RX , EX ,ΦX

r ∩ ΦX
f ,Φ

X
r ∩ ΦX

f ), 1P)]

2
t`val 7→ leaf[((RX , EX + (RY −RX),ΦX

r ∩ ΦY
f ,Φ

X
r ∩ ΦY

f ),B)]

3
t`val 7→ leaf[((RY , EY ,ΦY

r ∩ ΦY
f ,Φ

Y
r ∩ ΦY

f ), 2P)]

4
t`val 7→ leaf[((RY , EY + (RX −RY ),ΦY

r ∩ ΦX
f ,Φ

Y
r ∩ ΦX

f ),B)]

where the result of the join that would normally occur here is split into the four cases.

The terms (RY −RX) and (RX−RY ) introduce freshly named noise symbols similar

to the discontinuity terms in [GP13]. The token 1
t`val corresponds to if agreement,

2
t`val to if divergence, 3

t`val to else agreement and 4
t`val to else disagreement. If any

one of the tokens maps to ⊥D
]
R then that partition is omitted as there is no purpose

in partitioning based on bottom.

Note that the above definition partitions any two abstract elements into 4

partitions but does not actually consider the values of 1P and 2P. If both are B

then there is no added value in performing any more partitions as the behavior B

has already occurred meaning a responsible entity must be somewhere before the

join point. The same reasoning holds when both behaviors are ¬B as the join of

these traces must continue to guarantee that ¬B holds. Thus, in these cases the

analysis should actually fall back to using t
D

]
R
for such pairs of abstract elements.

While tP is given as a very general definition, it is assumed that such checks occur

so that the number of partitions created can be lowered. Furthermore, if one of the

branches is B and the other is ¬B we may simply perform no processing and keep
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the partitions as is. Thus, the 4-partitioning only occurs when either 1P or 2P is

>Max.

An alternative definition of tP is to collapse the non-discontinuity and disconti-

nuity cases together to only produce 2 partitions rather than 4. This could lower

the cost of partitioning. However, the join of two constrained affine sets may lose a

lot of information in certain cases. Thus, further investigation into this alternative

definition is required and experimental evaluation could prove useful. With the

current definition of tP we essentially ensure that no information loss occurs as

‘traditional’ joins t
D

]
R
have been eliminated and the intersection of the constraints

on affine symbols is exact.

Proposition 4.4.2. The operation tP is a complete partitioning of its arguments.

Proposition 4.4.2 follows from the fact that the join of two abstract elements

are split into four partitions where taking the join over all partitions gives the join

of the original two abstract elements.

Definition 4.4.10 can be used to define the join any two partitioned abstract

environments.

Definition 4.4.11. The partitioning join tite : E× E→ E takes two abstract

environments Ei and Ee that correspond to the interpretation of the if and else

branches respectively. The output is a new environment that is a partitioning of E.

tite is defined as tt but now the use of t
D

]
R
is replaced with tP .

The above definition allows us to match each leaf node of E that took the if

branch with its corresponding value for the else branch. Since if-then-else statements

may nest, care must be taken for when the two branches Ei and Ee do not share

the same tokens and have different heights. In this case, we introduce null tokens to
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the tree so that the trees are structurally the same. This partitioning scheme may

end up being too costly in degenerate cases due to possible exponential blow-up.

For example, assume before evaluating an if-then-else statement there is only 1

partition and the if branch has another if statement inside it while the else branch

has no further branching. Then, in the worst case where discontinuity occurs at

every test, the partitioning will produce 16 partitions upon exit. This is because

the if branch’s environment will have 4 partitions due to discontinuity and when

joining with the else branch we will create 4 partitions per partition from the if

branch. While such degenerate cases are unlikely to occur often, a merging strategy

for when they do occur might be useful.

Lemma 4.4.1. The partitioning tite is a complete partitioning as long as Ei and

Ee are complete partitionings.

Proof. The proof of the above lemma follows from induction. As a base case

consider when Ei and Ee have no uncommon partitions. Then the partitioning

using tite is a complete partitioning because the underlying function tP is a

complete partitioning. Next, we may assume that any Ei and Ee is generated from

this base case. Since tite is complete in the base case, it is also complete at each

step it is used from that point on. All that remains to consider is whether the

branches are partitioned in any other way except for the partitions generated from

tite. In this case, we assume that if such other partitions are created then they

are also complete which completes the proof sketch.

In addition to conditional branching, test divergence may also occur at loop

heads. That is, when evaluating a test for whether an iterate of a while loop should

be executed, the floating-point and real values may evaluate to different conditions.
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This means that the while loop could potentially execute for a different amount

of iterations depending on whether the value we are considering is floating-point

or not. In some cases the loop may even fail to terminate depending on the value.

However, we must not make the mistake of partitioning the conditional branches

during the evaluation of the iterations of the loop iterates. This is because, as

noted before, the constrained affine sets interpret the results of tests independently

on the real and floating-point affine sets. Thus, it is actually sufficient to perform

the partitioning tite upon exit from the loop as this will soundly split the loop

into the divergent and non-divergent cases. If either the floating-point or real value

leads to a non-terminating loop then upon exit we will either assign the real value

∞ or associate with it an infinite error.

Besides the partitioning functions defined above we need one more partitioning

function for the case of checking whether the rounding-error of a program has

exceeded some threshold n. This partitioning function is similar to the interpretation

of tests where we can simply work towards the leaves of the partitioning tree and

perform partitions by introducing another level in the tree. These partitions are

performed only if the floating-point rounding error of some variable has exceeded

the threshold.

Definition 4.4.12. The error-threshold partitioning function e`n : L×V×E→ E

takes a program variable x ∈ V and an abstract environment E at program location

` and checks all leaves of the partitioning tree on whether that variable’s floating-

point error has exceeded the threshold n. For a constrained affine set D], we define

D][x] as the operation that retrieves the variable x from the affine sets and the
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relevant noise symbols for the affine terms in those sets.

e`n(x, leaf[(D],P)]) =


node[t`val 7→ leaf[(D],B)]] if P 6= B ∧ γD](EX [x]) ≥ n,

node[tNone 7→ leaf[(D],P)]] otherwise.

e`n(x, node[φ]) = node[λ(t ∈ dom(φ)). e`n(x, φ(t))]

This function does not perform actual partitions but instead serves as a filter on

the leaves of the tree. Thus, it is a trivially complete partitioning of the input

environment E.

The partitioning functions described in this section will be used to dynamically

partition the forward semantics of programs.

4.4.4 Partitioning Hints

The partitioning strategies of the previous section will lead to some improvements

in the discovery of the bounds of responsibility. However, we wish to obtain more

refined results. To that end, at each program location we will compute what we

refer to as partitioning hints. These hints give underapproximations of sufficient

conditions for ending up in a state that can be marked as B or ¬B. This means

that every trace described by the hint invariant guarantees B/¬B occurs at some

point, possibly later, in the computation. We do not outline how these conditions

are computed here but instead assume that there exists a function that gives a set

of such invariants along with the property it guarantees for each program location.

Definition 4.4.13. The function H ∈ L→ (D→ D
]
R) attaches to each program

point a set of abstract elements of the form (D],P). If the behavior is P = B or
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¬B then all traces described by D] are sufficient to cause B or ¬B respectively.

The structure of H is a tree which is equivalent to the final abstract environment

E that is produced by the forward analysis. The backward semantics of programs,

as described in Section 4.5, will compute for each leaf of this tree new abstract

invariants that are the sufficient conditions to reach the invariants in E. Then, in

another pass of the forward semantics the hints may be used to further partition

the program. The idea is to first compute the new abstract environment at some

program location and then partition each leaf node further using the hints in H.

This way we can associate with each program point the sets of traces that cause

bad behaviors much earlier than when the partitioning functions of Section 4.4.3

detect such behaviors. Since these hints describe an under-approximation of the

sufficient conditions that cause B, it must be that the concrete traces described by

the hint contain a responsible entity for B somewhere in their prefixes.

There is a slight caveat to the partitioning proposed here as we require the

existence of a complementation operation for constrained affine sets. That is, if

we have a set of traces 1D] with behavior >Max and we know another set of traces

2D] vD]
1D] with behavior B then we would like to split 1D] into 2D] and 1D]\2D].

However, such an operation does not exist for zonotopes as the complement of any

zonotope is not necessarily convex. This also holds for other numeric domains such

as boxes, octagons and polyhedra. One option is to define the complement set in

terms of boxes which can be abstracted back into constrained affine sets. Since

there is a Galois connection between the two domains and the composition α ◦ γ

will always produce the same abstract element in terms of its concretization we

may first concretize any D] into boxes and then represent the complement set as

a disjunction of boxes. This representation is known as disjunctive completion
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[Min+17]. For example, given a pair of intervals [a, b] × [c, d] ∈ R2 × R2 which

forms a rectangle we may represent the complement set as the set of disjuncts

{[−∞,∞] × [−∞, c], [−∞,∞] × [d,∞], [−∞, a] × [c, d], [b,∞] × [c, d]}. A naive

implementation for a cube would lead to 23 disjunctions but there also exists a

construction with 22 of them. As the size of the set increases the representation

of the complement will increase which may cause the analysis to get unwieldly,

considering the fact that we are already creating many other partitions. Another

drawback of this approach is that the relationships between variables will be lost as

the concretization function will throw away all noise symbols and the re-abstraction

will introduce fresh ones.

Instead of relying on disjunctive representations of complements we will use a

notion similar to pseudo-complements of abstract elements [Cor+97]. Given an

element D from a complete lattice L, its pseudo-complement S is the most general

element such that D u S = ⊥. If the pseudo-complement of D ∈ L exists then we

may define it as S =
⊔
{s ∈ C |D u s = ⊥}. In our case we do not seek to find a

pseudo-complement of abstract elements but instead we define the partitioning set

of an abstract element.

Definition 4.4.14. Let D be an element of a complete lattice L. The set S ∈ ℘(L)

is a covering set for D if and only if
⊔
S = D and

d
S = ⊥. If all elements of S

are also pair-wise independent of each other, that is for any element x, y ∈ S we

have ¬(x v y ∧ y v x) =⇒ x u y = ⊥, then S is also a partitioning set for D.

Definition 4.4.15. Let t be a partitioning token of E ∈ E that points to a leaf

node leaf[D]
R] and H(`) ∈ D→ D

]
R be the partitioning hint tree associated with

some program location `. If the tree for E contains any new tokens besides those of

the form tNone then H(`) cannot contain a candidate partitioning set for elements
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of E. Otherwise, define S to be the set of hints at the leaves of the sub-tree induced

by t in H(`):

S = {(D],P) at a leaf of t | t ∈ H(`)}.

If
⊔
D

]
R
S = D]

R and if for all non-equal pairs (1D], 1P), (2D], 2P) ∈ S there exists a

variable x for each pair (this variable might change from pair to pair) such that
1D[x]] uD]

2D[x]] = ⊥D] then S is a partitioning set for D.

Definition 4.4.15 might seem like a relaxation of Definition 4.4.14 but this is

not the case. If all pairs indeed split on some variable, i.e. they describe different

ranges for that variable, then these must be disjoint zonotopes in a single dimension.

This in turn means that elements of S partition the values of one or more variables

and S is a partitioning set of D. Furthermore, this definition allows us to define

more refined partitions. For example, if the forward semantics already creates a

few partitions before the partitioning hint is applied, then not all of the leaves of

H(`) may be a part of the partitioning set S. In fact, it is likely in this case that

for any leaf in E the join over all leaves of H(`) produces a much larger invariant

than that leaf. We take advantage of the fact that we store histories of partitions

which we then use to find a candidate set of leaves. If a current environment is a

strict prefix of the hint environment then it must be that the forward pass will

eventually produce the same structure if no partitioning using hints is done. Recall

that this is the case because the tree for H has the same structure as the tree from

the resulting abstract environment of a previous forward pass of the program. Any

two iterates of the forward semantics using just the functions from Section 4.4.3

will necessarily produce the same result. This is why Definition 4.4.15 checks for

whether the trees E and H(`) have any different tokens because if they do then the
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guarantee just described no longer holds. Now, we can use Definition 4.4.15 and

the function H to define complementing partitions of abstract environments E.

Definition 4.4.16. Given partitioning hints H at program location ` (which can

be obtained by H(`)) and an abstract environment E ∈ E, we define the hint based

partitioning of E with the function

hintP : (D→ D
]
R)×E→ E.

The function hint`P considers every token t that points to a leaf node leaf[D]
R] and if

Definition 4.4.15 holds then replaces every leaf node of E by a function that points

to new leaves as defined by its corresponding partitioning set.

hint`P (H, leaf[D]
R]) =



∀ sD]
R ∈ S. node[t` 7→ leaf[sD]

R]] if ∃S ∈ H(`) such that

S is a partitioning set

of D]
R,

leaf[D]
R] otherwise,

hint`P (H, node[φ]) = node[λ(t ∈ dom(φ)). hint`P (H, φ(t))]

Definition 4.4.16 allows us to partition traces based on hints. To reduce the num-

ber of partitions created hintP may choose to ignore leaves that already guarantees

B or ¬B as it does not make sense to further partition a trace where we already

know a specific behavior either occurred or will occur. So, in practice hintP will

only partition the leaves of an environment where the associated behavior is >Max

to try to refine the partitioning scheme and remove traces where we are certain

some behavior are bound to occur from those we do not know what behavior is
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bound to occur. Note that since hintP introduces new partitions we can only use it

once during the forward semantics of programs. This is because as soon as hintP

creates the partitions it will generate fresh tokens that are no longer shared with

H at any program location `. By Definition 4.4.15, H can no longer produce valid

partitioning sets. This is not a problem as we shall see later that responsibility

analysis involves multiple forwad-backward passes which may generate new valid

hints at each backward analysis.

Lemma 4.4.2. hintP is a complete partitioning of its input.

Lemma 4.4.2 follows from Definition 4.4.15.

4.4.5 Forward Semantics

The forward semantics of programs is a refinement of a generic abstract interpreter

for abstracting the set of reachable states [Cou19] to constrained affine sets. Our

goal is to utilize both the set of partition hints and the partitioning functions of

Section 4.4.3 to refine the forward semantics. We will construct the function
−→
S of

type
−→
S : Pc× (L→ (D→ D

]
R))×E→ (L→ E)

by calculational design. Here,
−→
S takes the syntax of programs, a function H that

gives partitioning hints to every program location and an initial environment E.

In turn, it outputs a function that maps program labels to abstract environments

which approximate the set of reachable states of the concrete trace semantics of

the program. Furthermore, the output also provides a sound approximation of sets

of concrete traces that lead to behaviors B and ¬B.

Before giving the abstract semantics, we also need to define the ordering relation
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between any two partitioned transition systems so that we may compute fixpoints

for iteration statements.

Definition 4.4.17. The ordering of extended transition systems PT ∈ L→ E is

given by �E which is an instantiation of Definition 3.5.5 with the abstract domain

D
]
R.

We can now present the partitioned forward semantics of programs. Initially,

H = λ(` ∈ labsJSK. ∅ because there will be no partition hints from the backward

analysis. This means that partitions will only occur from the partitioning functions.

The semantics of programs.

• Abstract semantics outside a statement S:

` /∈ labsJSK =⇒
−→
S JSKHE` = leaf[⊥D

]
R ]

• Abstract semantics of a program P ::= Sl :

−→
S JPK ,

−→
S JSlK

• Abstract semantics of a statement list Sl ::= Sl’ S:

−→
S JSlKHE` ,



−→
S JSl’KHE` if ` ∈ labsJSl’K \ {atJSK},
−→
S JSKH(

−→
S JSl’KHE atJSK)` if ` ∈ labsJSK,

leaf[⊥D
]
R ] otherwise.
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• Abstract semantics of an empty statement list Sl ::= ε:

−→
S JSlKHE` ,


E if ` = atJSlK,

leaf[⊥D
]
R ] otherwise.

• Abstract semantics of assignment S ::= v = [n1,n2] + u ; with un-

certainty:

−→
S JSKHE` ,


E if ` = atJSK,

hint`P (H, assnAS(v=[n1,n2]+u;,E)) if ` = afterJSK,

leaf[⊥D
]
R ] otherwise.

• Abstract semantics of assignment S ::= v = A ;:

−→
S JSKHE` ,


E if ` = atJSK,

hint`P (H, assnAS(v = A;,E)) if ` = afterJSK,

leaf[⊥D
]
R ] otherwise.

• Abstract semantics of an error assertion S ::= assert(v,n) ;:

−→
S JSKHE` ,


E if ` = atJSK,

e`n(v,E) if ` = afterJSK,

leaf[⊥D
]
R ] otherwise.



92

• Abstract semantics of a conditional S ::= if (B) St else Sf:

−→
S JSKHE` ,



E if ` = atJSK,

−→
S JStKH testB(B,E)` if ` ∈ inJStK,

−→
S JSfKH testB̄(B,E)` if ` ∈ inJSfK,

tite(Ei,Ee,E)) if ` ∈ afterJSK,

leaf[⊥D
]
R ] otherwise.

where Ei =
−→
S JStKH testB(B,E)` and Ee =

−→
S JSfKH testB̄(B,E)`.

• Abstract semantics of a while loop S ::= while ` (B) St:

−→
S Jwhile ` (B) StKHE`

′
, lfp�E(

−→
F Jwhile (B) StKHX)`

′

where
−→
F Jwhile ` (B) StKHE ∈ E→ ((L→ E)→ (L→ E)) is defined

as

−→
F Jwhile ` (B) StKHEX`′ ,

joinP (E,
−→
S JSbKH testB(B,X(`))`) if `′ = `,

−→
S JSbKH testB(B,X(`))`

′
`′ ∈ inJSbK \ {`},

tite(Ee, Ei(`
′
),E) `′ = afterJSK,

leaf[⊥D
]
R ] otherwise.

and Ei =
−→
S JSbKH testB(B,X(`)), Ee = testB̄(B,X(`)).
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• Abstract semantics of a skip S ::= ;:

−→
S JSKHE` ,


E if ` = atJSK ∨ ` = afterJSK

leaf[⊥D
]
R ] otherwise.

• Abstract semantics of a compound statement S ::= { Sl }:

−→
S JSK ,

−→
S JSlK

We see that the forward semantics uses our partitioning functions and hints

throughout the computation of the semantics to perform partitions. These parti-

tions will either detect errors, such as in the case of the evaluation of if-then-else

statements or while loops, or apply the hints after computing an abstract value.

Note that the hints of H are only accessed during assignment statements as stated

previously. We do not expect to produce a large amount of partitions using hints.

As an example for why this is the case, when entering a loop, H might be used to

partition and refine the set of abstract invariants and these new abstract invariants

will most likely be smaller than the partition hints we just used. So, at the next

iteration of the loop, it is unlikely that they will be used again. In practice, one

could only apply the hints at the first iterate of the loop and then not use them

again. Conversely, the use of the join partitioning after branching will cause at

least an exponential blow up by a factor of 4. This can be mitigated with partition

merges which start happening after the number of partitions reaches a threshold.

The forward semantics presented above is a very general semantics that applies



94
partitioning freely. One can always replace the behaviors of the partitioning

functions such that less partitions are created. In fact, experimental evaluation

of this liberal abstract interpreter would allow for the design of better abstract

interpreters that take into account the trade-off betwen the accuracy of the analysis

and the cost of computation. The generic nature of this abstract interpreter is

an advantage when it comes to refining its design as parts can be changed locally

without effecting the soundness of the rest of the analysis.

Proposition 4.4.3. The forward semantics given by
−→
S is sound with respect to

the forward reachable states of the concrete semantics of programs. Furthermore,

the forward semantics is sound with respect to the detection of behaviors B and

¬B.

The above proposition can be proved in a few steps. Firstly, we may lift the

Galois connection of Section 4.3 to program prefix traces

(℘(E∗∞)→ (L→ ℘(E∗∞), ⊆̈) −−→←−−α
γ

(D] → (L→ D
]), v̈D])

where ⊆̈ indicates point-wise inclusion on functions. Here α and γ are not defined

but we know that they exist from [Cou02]. The prefix trace semantics sits at

the bottom and the constrained affine forms domain sits at a higher level in the

hierarchy of semantics given in [Cou02]. In fact, α and γ can be written as a

composition of Galois connections starting from the prefix trace semantics followed

by the relational reachability semantics which is then followed by the constrained

affine sets semantics. Thus, an abstract interpreter using constrained affine sets

without partitioning is sound with respect to the prefix traces of programs. Due to

[RM07], the trace partitioning abstract interpreter is also sound with respect to
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the prefix traces of the program as at any given point only complete partitionings

are performed. All that remains to show is that the behaviors we associate with

abstract invariants is sound.

We define an inquiry function that maps every trace σ ∈ E∗∞ to the strongest

maximal trace property in LMax that can be guaranteed [DC19].

I ∈ ℘(E∗∞)→ ℘(℘(E∗∞))→ E∗∞ → ℘(E∗∞) inquiry function

I(SMax,LMax, σ) ,
⋂
{P ∈ LMax | σ ∈ αPredJSMaxK(P)}

This definition relies on the prediction abstraction from Section 4.2. The formulation

in [DC19] goes on to define a cognizance and observation function but since all

floating-point entities have omniscient cognizance they are no longer needed here.

The results of the constrained affine sets analysis is a sound over-approximation

of the inquiry function. This is due to the Galois connection above where each

prefix trace is soundly abstracted by the domain and the fact that the affine sets

domain is sound with respect to the type of program behaviors we are interested in.

Firstly, we detect when the error assertion statement fails as soon as the statement

is evaluated which means that all prefix traces that are erroneous are detected at

that point. The inquiry function may associate an error with some traces before

we get to the point of the assertion but since we associate such traces with >Max

this is sound. Similarly, for conditional divergence we attach B only at join points

meaning all prefix traces at program points before are also marked wiht >Max. A

caveat to note here is that we may identify some traces to be B earlier than when

the affine analysis detects the behavior. This is sound as we assume these invariants

are calculated by an under-approximating sufficient condition analyzer. So, we also
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have the Galois connection

(℘(E∗∞)→ (L→ ℘(E∗∞), ⊆̈) −−−→←−−−
α′

γ′

(D]
R → (L→ D

]
R), v̈

D
]
R

)

where α′ can be defined in terms of α and we can infer P from the constrained affine

sets. γ′ is simply equal to γ where we drop the property before concretizing. Since

our actual partitioning is on this connection, our abstract interpreter is sound.

4.4.6 Widening for Loops

To compute the fixpoint for the semantics of while statements we need to introduce

a widening operator that speeds up the fixpoint computation. Otherwise, we are

not guaranteed to compute a fixpoint in a finite amount of time as the constrained

affine sets domain does not have a finite height. Furthermore, we define the fixpoint

in terms of both partitions and the underlying values the partitions define. There

may be degenerate cases that introduce partitioning tokens at each iterate of the

loop. We must prevent the computation from introducing an arbitrary amount

of partitions. Thus, we use a widening operator to reach a post-fixpoint of the

semantics of while statements. This is a sound approximation of the least fixpoint

of the same function.

From Section 3.3.5 we know that a widening ∇D] exists for constrained affine

sets. Recall that this widening works by loop unrolling. Let N be the number of

unrollings. Then, ∇D] is not used for N iterates and if a fixpoint is not reached

beyond this point we start using ∇D] for every iterate. In this case, the convergence

is accelerated by collapsing noise symbols that do not have equal coefficients. We

can take inspiration from this widening along with the widening for partitioning
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used in [RM07] to define a widening over the partitioning.

Firstly, if we start noticing that the loop is continously generating divergence

tokens in the loop body then this probably means that we are going to encounter

an exponential blow-up in partitioning tokens if we let the partitioning continue.

In this case, we stop the generation of partition tokens after some O amount of

iterates if this behavior is observed. Secondly, after the N iterates as defined for

∇D] occurs, we should stop the generation of new partitioning tokens to stabilize

the partitioning before starting the widening on the underlying abstract domain.

Finally, we can define a threshold P amount of partition tokens that we will allow

to be created before we start merging tokens and disallowing any new partitions to

occur. The last idea can actually be used throughout the whole analysis and not

just only loops. At some point it may make sense to stop partition generation and

let the analysis finish as doing otherwise could be computationally costly.

Definition 4.4.18. Let ∇
D

]
R

= (∇N,O,P
P ,∇N

D]) be a widening for abstract environ-

ments E ∈ E. ∇N
D] unrolls a loop N times before starting to apply the widening

operation ∇D] onto the constrained affine forms. Similarly, ∇N,O,P
P unrolls a loop N

times before disallowing the creation of any new partitions. Furthermore, if for any

consecutive O iterates of partitioning, the transition systems Pi as defined by the

partitioning leads to Pi �τ Pi+1 �τ · · · �τ Pi+O then again the partitioning forbids

the creation of any new partitioning tokens. Finally, for any iterate that causes the

partitioning to exceed P tokens, then the widening disallows the creation of any

new partitioning token in the next iterates. To disallow the creation of tokens we

stop using all partitioning functions and revert to joinP when computing joins.

Since no known narrowings exist for both the trace partitioning domain and

the constrained affine sets domain, we do not define a narrowing for D]
R.
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4.4.7 Running Example

The forward semantics of programs will refine the system from Figure 4.6 using the

information obtained by the affine analysis. Recall from Section 2.1 that we have

an if-else discontinuity if −ux < r̂r[2] and an else-if discontinuity if −1 ≤ r̂r[3] < −uy.

This means that the analysis detects the conditions of divergence but, as we noted

above, does not discriminate between the cases which in turn limits the precision of

inferring the right bound. So, we deal with this issue by explicitly considering each

case on its own. This results in the transition system given in Figure 4.7. As noted,

the partitioning occurs at the join point, i.e. exit, of the if-then-else statement.

This system’s transitions are also explicilty labelled with the events that cause the

transition. For example, the event ¬(x <= 2 && y >= 1)∧¬ρ(x <= 2 && y >=

1) corresponds to the event where the program interpreted in real semantics takes

the else branch and the program interpreted in floating-point semantics also takes

the same branch. Finally, the right and left bounds are again labelled as R and L

and we will ignore the left bound.

Again, each node of Figure 4.7 is labelled above with the strongest property

that can be guaranteed after that point where the properties come from the lattice

given in Figure 3.2 and below we have constraints on the noise symbols. The nodes

of the transition system are now marked with a label and a corresponding token.

We see that besides label [9] no partitioning on the system has been performed and

at [9] 4 new tokens were introduced. Node [9], 1t`val corresponds to the transition

where the real program takes the if branch and the error symbols are constrained

to the case where the floating-point program does not diverge. Node [9], 1t`val is the

transition where the real program still takes the if branch but now the error symbols

are constrained to the case where the floating-point program diverges towards the
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[0], tNone

>Max

>D]

Entry [1], tNone

>Max

−1 ≤ εr1 ≤ 1

[2], tNone

>Max

−1 ≤ εr1 ≤ 1,
−1 ≤ εr2 ≤ 1

[3], tNone

>Max

−1 ≤ εr1 ≤ 1,
−1 ≤ εr2 ≤ 1,
−1 ≤ εr3 ≤ 1

[4], tNone

>Max

−1 ≤ εr1 ≤ 1,
−1 ≤ εr2 ≤ 1,
−1 ≤ εr3 ≤ 1

[5], tNone

>Max

−1 ≤ εr1 ≤ 1,
−1 ≤ εr2 ≤ −ux,

0 ≤ εr3 ≤ 1

[6], tNone

>Max

−1 ≤ εr1 ≤ 1,
−1 ≤ εr2 ≤ −ux,

0 ≤ εr3 ≤ 1

[7], tNone

>Max

−1 ≤ εr1 ≤ 1,
0 < εr2 ≤ 1,
−1 ≤ εr3 < −uy

[8], tNone

>Max

−1 ≤ εr1 ≤ 1,
0 < εr2 ≤ 1,
−1 ≤ εr3 < −uy

[9], 1t`val

¬B

−1 ≤ εr1 ≤ 1,
−1 ≤ εr2 ≤ −ux,

0 ≤ εr3 ≤ 1

[9], 2t`val

B

−1 ≤ εr1 ≤ 1,
−ux < εr2 ≤ 0,

0 ≤ εr3 ≤ 1

[9], 3t`val

¬B

−1 ≤ εr1 ≤ 1,
0 < εr2 ≤ 1,
−1 ≤ εr3 < −uy

[9], 4t`val

B

−1 ≤ εr1 ≤ 1,
0 < εr2 ≤ 1,
−uy ≤ εr3 < 0

z := [0,1]
+ uz

x := [1,3]
+ ux

y := [0,2]
+ uy z = z + 4

(x
<=

2 &&
y >=

1)
∧

(ρ(
x <=

2 &&
y >=

1)

¬ (x <= 2 && y >= 1)
∧

¬(ρ(x <= 2 && y >= 1)

z = x + y

z = x + y

L

]R

R

R

R

Figure 4.7: Partitioned transition system of Program 2.1.

if branch. Similar reasoning follows with nodes [9], 3t`val meaning no divergence

and [9], 4t`val meaning divergence when the real program takes the else branch.

The refinement we have performed to obtain Figure 4.7 is a trace partitioning of

Figure 4.6 which we computed with
−→
S .

In this example, the trace partitioning of the forward semantics
−→
S inserted

partition directives at the join point. We split a 2-way conditional into a 4-way

one but in a somewhat intuitive way as the splitting occurs where normally the

conditional would collapse into a single path. The computations of the non-divergent

cases occur with a single transition such as from [6] to [9], 1t`val. On the other hand,

the computation of the divergent cases must use two transitions as the independent

computations of the real and floating-point values can only be joined at the branch

exit. For example, the node [9], 2t`val corresponds to the case of if divergence and

is computed using nodes [6] and [8]. The results of the affine analysis gives the

invariants for each branch including for discontinuity. We note that if the analysis
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at any point returns ⊥ then we know that a specific partition, or more generally

node, is unreachable.

The basis transition system given in Figure 4.6 corresponds closer to the source

code of Figure 2.1. However, as we previously noted, this system is much less

informative than Figure 4.7 as all nodes’ labels are >, meaning the best that can

be inferred is that any behavior is possible at all nodes. This is because at nodes

[6] and [8] of this system we took a join over all possible behaviors (i.e. divergence

vs non-divergence) at these nodes such that this system is unaware of the fact that

conditional agreement or conditional divergence occurred. On the other hand, the

partitioned system given in Figure 4.7 partitions the original system into more

precise behaviors which leads to a more informative system with the splitting of the

conditional branch at node [9]. While this does not give us a better right bound

for this program we now have sufficient conditions for the behaviors B and ¬B.

Looking at Figure 4.7 we see that the right bounds are [9], 2t`val (which corresponds

to program location 9) and [9], 4t`val (which again corresponds to program location 9).

This makes sense, as any point after the divergent case is taken clearly guarantees

B from that point on. If we had more nodes from this point onwards then clearly

our right bound would be more accurate compared to the right bound of Figure 4.6

which is always the very last node of the transition system. In general, the forward

trace partitioning of the original system using the constraints derived by the affine

analysis leads to a more informative transition system.

The right bounds for Figure 4.7 are not better than the right bounds for

Figure 4.6, but we did gain some useful information to discern between the traces

that lead to divergence and those that do not. So, our partitioning strategy in

the forward pass proved to be useful. We see that a forward affine analysis of
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a floating-point program leads to a partitioning strategy that may improve the

accuracy of the right bound. However, this is still unsatisfactory as we know the

real right bound of responsibility is either line 2 or 3. We can improve these right

bounds by refining the system further using another partitioning of Figure 4.7. For

this we will consider the backward semantics of program Program 2.1 with respect

to the transition system Figure 4.7 which we discuss in section Section 4.5.

4.4.8 Remarks

This section has introduced the trace partitioning forward semantics of floating-

point programs. The goal of partitioning is to separate prefix traces where behaviors

B occur from those where B does not occur. To that end, partitioning directives

are either introduced by the results of the constrained affine analysis or using

partition hints. We expect the analysis to almost always improve the results of

a standard semantics that abstracts the set of reachable states and in the worst

case should not lead to a loss in precision. Furthermore, the generic design of

the analysis allows for the definition of different partitioning functions without

changing other aspects of the analyzer. In fact, the analysis can be made generic

with respect to the underlying abstract domain D]. However, for responsibility

analysis the partitioning functions of Section 4.4.3 is not enough and we must

generate partitioning hints using the backward semantics of programs. This will be

introduced in the next section.

There are also a few future directions for the forward semantics. Firstly, and

most importantly, the representation of complement sets for constrained affine

sets should be further explored as partitioning based on partitioning hints will

be crucial for the analysis. While the notion of a partitioning set seems to be
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intuitive, experimental verification will be useful in verifying that this definition

works in practice. Besides complementation, further experimentation on different

types of floating-point programs including those that could possibly lead to too

many partitionings should be considered. This will allow for the refinement of

the partitioning strategies described in this section to strategies that balance the

trade-off between accuracy and performance. The partitioning strategy here is very

expressive but it might actually not be necessary to perform so many partitions.

Furthermore, this kind of analysis will be useful in identifying merge points in

programs where partitions may be thrown away to reduce the computational

cost. Finally, the analysis proposed here only utilizes partitions based on values.

However, trace partitioning in its most general form performs partitions based on

many factors. Future work should consider the possibility of such partitions and

how gains in precision may be made by introducing more sophisticated partitions.

Finally, since we are performing a value-based partitioning it may prove useful to

take a look at constraint solving techniques [PMR12] to refine the results of our

partitioning.

4.5 Backward Semantics of Programs

The forward semantics of Section 4.4 detects errors but does not refine the transition

system enough such that we can compute accurate bounds of responsibility. A

backward semantics that does not incur any loss in precision would compute both

the necessary and sufficient conditions for a given post-condition. However, such an

analysis is not computable so we rely on sound under-approximations of sufficient

conditions. The reason for the use of under-approximations of sufficient conditions
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is that the forward analysis will compute a set of invariants that describe traces that

may lead to either B or ¬B. So, the backward semantics should compute invariants

that describe concrete traces that we know always lead to these behaviors such that

another pass of the forward analysis may eliminate traces that are guaranteed to

cause a behavior earlier on in the analysis. If instead the analysis were to compute

over-approximations then such a partitioning cannot be done as there may be too

many so-called phantom concrete traces, i.e. those that do not actually exist in the

concrete semantics of the program but are introduced by our over-approximating

abstraction, in the concretization of abstract values. Under-approximations allow

us to mitigate this issue.

The backward semantic function will take as input each terminal state of a

transition system produced by the forward semantics and assume each to be a

post-condition that either causes B or ¬B. Then, the analysis will compute the

backward semantics of programs for each post-condition independently. The result

will be a function from program labels to the invariants the backward semantics

associates with each label. This function can then be used as the partitioning hints

function H for another iteration of the forward semantics which should lead to

some gains in accuracy due to earlier partitioning of the program.

We formalize the backward semantics of programs. First, we focus on the

backward semantics of assignment statements and Boolean expressions. Then,

we describe the backward semantics and present the result of the analysis on the

transition system of Figure 4.7.
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4.5.1 Backward Semantics of Expressions

Before formalizing the backward semantics of programs we must define the backward

semantics of assignments and Boolean expressions. Instead of assuming the existence

of a general abstract domain D]
R, the semantics presented here will only work for

numeric domains such as constrained affine sets. For the backward semantics of

assignments, a first thought may be to define the backward semantics as the inverse

of the affine forms as all affine forms are linear, thus invertible. However, this will

not work because the interpretation of tests is carried out by either boxes, octagons

or polyhedra where there is a loss of information during the approximation on

the bounds of the noise symbols. Additionally, the inverse multiplication is affine

division which will introduce terms for its linearization and we will have to check

for division by 0. It is simpler to follow the schemes as described in Section 3.6.

Definition 4.5.1 (Definition 3.6.7). The backward projection operator for con-

strained affine sets is defined as

←−
AJv = [-∞,∞];KD] ,


D] if γD](AJv = [-∞,∞];KD]) = γ(D]),

⊥D] otherwise.

Definition 4.5.2. The under-approximating backward semantics of arithmetic

assignments is given by the function

←−
A : S×D] → D

]

that takes as input an assignment statement either of the form v = [n,n] + u; or

v = A; where A ∈ A and a constrained affine set D]. If the statement is vp = A;
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then the result is computed as

←−
AJvp = A;KD] , dropp(

←−
AJvp= [-∞,∞];K ◦BJvp+1 = A’KD]).

where A’ is equivalent to A but all occurrences of vp have been replaced by a fresh

variable vp+1. If the statement is v=[n1,n2]+u then the result is computed as

←−
AJv = [n1,n2] + u;KD] ,(AJv = [-∞,∞];K ◦

(AJv = v - n1 - u;K uD] AJv = v - n2 - u;K) ◦

BJv >= n1 and v <= n2K)D].

The first definition is derived from Definition 3.6.8 and the second is derived from

Definition 3.6.9. Both are sound under-approximations as constrained affine sets

describe closed convex sets.

Note that in the above definition v = v - n1 - u; subtracts n1 from v’s

real value and subtracts n1 + u from v’s floating-point value. This also holds

for v = v - n2 - u;. Furthermore, the test v>=a and v<=b is correct as under

floating-point interpretation it will be evaluated as v>=a+u and v<=b+u as long as

we negate the error symbol u before interpreting the test. So, we get a backward

semantics that does not rely on the fallback projection of assignments.

For the backward semantics of tests there are two choices. Notice that test

interpretation with constrained affine sets refines the values of the noise symbols to

ranges smaller than [−1, 1]. This means that the maximum area any affine form can

describe is if its symbols are all set to [−1, 1]. Thus, the first option for backward

interpretation of tests is to simply expand all noise symbols that were involved
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in the test to [−1, 1] as this is equivalent to removing the refinement of the test

from the set of constraints. After removing the constraints there should be a check

on whether the interpretation of the test under these new constraints implies the

post-condition using vD] . However, for the responsibility analysis of floating-point

programs, the constraints on the noise symbols are useful as they can be used to

limit the abstract values to the cases where test discontinuity occurs. Thus, as

a second option we may choose to use the fallback test from Section 3.6 instead.

Without evaluating the two strategies empirically it is hard to say which one leads

to more accurate results but the second strategy seems to be intuitively better. So,

we choose a slight variant of this fallback test and note that we require empirical

verification of this choice.

Definition 4.5.3. The under-approximating backward semantics of arithmetic

assignments is given by the function

←−
B : B×D] → D

]

which takes a Boolean expression and outputs the meet of the given abstract element

with its interpretation under the forward semantics of the Boolean expression.

←−
BJBKD] , BJBKD] uD] D].

Definition 4.5.3 will fallback to the identity function if the test interpretation

produces an invariant larger than its input. In some cases, it might be that the

post-condition came exclusively from one branch so this definition allows us to

remove the information of that branch in the backward direction. With these sound

backward operators we can now define the backward semantics of programs. Before
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we do so, we lift these definitions to the domain D]

R.

Definition 4.5.4. The lifting of
←−
A to D]

R is defined as

←−
AJS = ...K(D],P) =


(
←−
AJS = ...KD],P) if

←−
AJS = ...KD] vD] D].

(
←−
AJS = ...KD],>Max) otherwise.

The lifting of
←−
B is much simpler and is defined as

←−
BJBK(D],P) = (

←−
BJBKD],P)

Definition 4.5.4 ensures the soundness of the backward analysis. Recall that the

abstract domain D]
R is a pair where the first element describes an abstract invariant

while the second describes a property that can be inferred from that invariant. Our

post-condition assigns to an invariant a property for which we know with certainty

that it occurs and this is an over-approximation of the inquiry function I. But, when

we compute the backward semantics, the set of values described by the abstract

invariants may start getting larger due to projections. In this case, this means that

we can no longer guarantee that the behavior in the post-condition holds so we

must revert to >Max, i.e. anything can happen. With this definition, the backward

semantics is now sound with respect to both constrained affine sets and the system

behaviors of interest. The reduced product between the two domains still holds

where if one reverts to bottom then the other must become bottom as well.
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4.5.2 Backward Semantics of Programs

The definition of the backward semantics is straightforward as it is identical to the

generic backward abstract interpreters given in [Min14] and [Cou19]. We simply

perform the backward analysis on each leaf of the partitioning tree that is computed

for the very end of the program by the forward semantics. Tree nodes that guarantee

the property >Max may be marked as ¬B no errors have been detected and the

analysis has reached the end of the program. However, care must be taken to not

mark all such nodes as ¬B as some might be the result of partition merging which

has collapses the divergent and non-divergent invariants together. For example,

the widening ∇
D

]
R
may start merging partitions which in turn will lose information

regarding which abstract invariants are associated with B. So, any leaf node that

has a parent which is a partitioning directive of the form tmNone is not marked as

¬B and the rest can be safely marked as such. This processing leaves us with the

set of leaves which we know either guarantee B if they were marked so or ¬B if

they are marked as >Max. Note that the backward semantics will still be computed

for all post-conditions so that the notion of partitioning set may be utilized.

The function
←−
S , defined as

←−
S : Pc× (L→ D

]
R)× (L→ D

]
R),

takes as input the syntax of programs, a mapping from program labels to elements

of the responsibility abstract domain R and produces a new mapping from labels

to abstract elements. The first function allows us to define post-conditions or

assumptions at multiple program points. In our case, we will only be attaching a

post-condition to the last program point and every other label is mapped to ⊥
D

]
R
.
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For each post-condition D] the following is computed.

The backward semantics of programs.

• Abstract semantics of a program P ::= Sl :

←−
S JPK ,

−→
S JSlK

• Abstract semantics of a statement list Sl ::= Sl’ S:

←−
S JSlKR ,

←−
S JSl’K(λ(` ∈ labsJSl’K).

if ` = afterJSl’K then R(`) u
D

]
R

←−
S JSKR

else R(`))

• Abstract semantics of an empty statement list Sl ::= ε:

←−
S JSlKR , R(atJSlK)

• Abstract semantics of assignment S ::= v = [n1,n2] + u ; with un-

certainty:

←−
S JSKR , R(atJSK) u

D
]
R

←−
A Jv = [n1,n2] + u ;KR(afterJSK)
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• Abstract semantics of assignment S ::= v = A ;:

←−
S JSKR , R(atJSK) u

D
]
R

←−
A Jv = A;KR(afterJSK)

• Abstract semantics of an error assertion S ::= assert(v,n);:

←−
S JSKR , R(atJSK) u

D
]
R
R(afterJSK)

• Abstract semantics of a conditional S ::= if (B) St else Sf:

←−
S JSKR , R(atJSK) u

D
]
R

←−
BJBK(

←−
S JStKR) u

D
]
R

←−
BJ¬BK(

←−
S JSfKR)

• Abstract semantics of a while loop S ::= while ` (B) St:

←−
S Jwhile ` (B) StKR , gfp

v
D

]
R (
←−
F Jwhile (B) StKR)

where
←−
F Jwhile ` (B) StKR ∈ Pc× (L→ D

]
R)→ (L→ D

]
R) is defined

as

←−
F Jwhile ` (B) StKR X`′ , R(`) u

D
]
R

←−
BJBK(R(afterJSK))u

D
]
R

←−
BJBK(

←−
S JStK(λ(`

′∈ labsJSK). if `′ = ` then R(`) u
D

]
R
X else R(`′)))

• Abstract semantics of a skip S ::= ;:

←−
S JSKR , R(atJSK) u

D
]
R
R(afterJSK)
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• Abstract semantics of a compound statement S ::= { Sl }:

←−
S JSK ,

←−
S JSlK

Since there does not exist any lower widenings for constrained affine sets

we accelerate loop convergence for greatest fixpoint computations by performing

unrollings for N iterations and afterwards returning ⊥
D

]
R
. Finally, to produce the

partitioning hint function H we map each label of the program to the abstract tree

environment we used to generate the post-conditions and replace each leaf by the

invariants for each corresponding location.

Proposition 4.5.1. The backward semantics
←−
S is sound.

There is not much to explain here as the soundness follows from [Min14] and

[Cou19]. The only key issue is how to deal with program properties when going

backwards and this was addressed with Definition 4.5.4.

4.5.3 Running Example

Doing a backward analysis on Figure 4.7 yields the transition systems given in

Figures 4.8 through 4.11. We have 4 systems now as we performed the analysis for

4 post-conditions; one for each of the accepting states of Figure 4.7. Each node

of each system is again labelled below with constraints on the noise symbols and

above with the strongest guaranteed behavior.

For the transition from [6] to [5] we know that there is an assignment of the

form z = x + y or z = x - y. The inverse of linear affine forms is exact for these
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[0]

>Max

¬B

Exit [1]

>Max

>D]

[2]

>Max

−1 ≤ εr1 ≤ 1

[3]

>Max

−1 ≤ εr1 ≤ 1,
−1 ≤ εr2 ≤ −ux

[4]

¬B

−1 ≤ εr1 ≤ 1,
−1 ≤ εr2 ≤ −ux,

0 ≤ εr3 ≤ 1

[5]

¬B

−1 ≤ εr1 ≤ 1,
−1 ≤ εr2 ≤ −ux,

0 ≤ εr3 ≤ 1

[6]

¬B

−1 ≤ εr1 ≤ 1,
−1 ≤ εr2 ≤ −ux,

0 ≤ εr3 ≤ 1

[7]

¬B

−1 ≤ εr1 ≤ 1,
−1 ≤ εr2 ≤ −ux,

0 ≤ εr3 ≤ 1

[8]

¬B

−1 ≤ εr1 ≤ 1,
−1 ≤ εr2 ≤ −ux,

0 ≤ εr3 ≤ 1

[9] Entry

¬B

−1 ≤ εr1 ≤ 1,
−1 ≤ εr2 ≤ −ux,

0 ≤ εr3 ≤ 1

L R

Figure 4.8: The backward semantics of Program 2.1 for if agreement.

[0]

>Max

>D]

Exit [1]

>Max

>D]

[2]

>Max

−1 ≤ εr1 ≤ 1

[3]

>Max

−1 ≤ εr1 ≤ 1,
−ux < εr2 ≤ 0

[4]

B

−1 ≤ εr1 ≤ 1,
−ux < εr2 ≤ 0,

0 ≤ εr3 ≤ 1

[5]

B

−1 ≤ εr1 ≤ 1,
−ux < εr2 ≤ 0,

0 ≤ εr3 ≤ 1

[6]

B

−1 ≤ εr1 ≤ 1,
−ux < εr2 ≤ 0,

0 ≤ εr3 ≤ 1

[7]

B

−1 ≤ εr1 ≤ 1,
−ux < εr2 ≤ 0,

0 ≤ εr3 ≤ 1

[8]

B

−1 ≤ εr1 ≤ 1,
−ux < εr2 ≤ 0,

0 ≤ εr3 ≤ 1

[9] Entry

B

−1 ≤ εr1 ≤ 1,
−ux < εr2 ≤ 0,

0 ≤ εr3 ≤ 1

L R

Figure 4.9: The backward semantics of Program 2.1 for if disagreement.

[0]

>Max

>D]

Exit [1]

>Max

>D]

[2]

>Max

−1 ≤ εr1 ≤ 1

[3]

>Max

−1 ≤ εr1 ≤ 1,
0 < εr2 ≤ 1

[4]

¬B

−1 ≤ εr1 ≤ 1,
0 < εr2 ≤ 1,
−1 ≤ εr3 < −uy

[5]

¬B

−1 ≤ εr1 ≤ 1,
0 < εr2 ≤ 1,
−1 ≤ εr3 < −uy

[6]

¬B

−1 ≤ εr1 ≤ 1,
0 < εr2 ≤ 1,
−1 ≤ εr3 < −uy

[7]

¬B

−1 ≤ εr1 ≤ 1,
0 < εr2 ≤ 1,
−1 ≤ εr3 < −uy

[8]

¬B

−1 ≤ εr1 ≤ 1,
0 < εr2 ≤ 1,
−1 ≤ εr3 < −uy

[9] Entry

¬B

−1 ≤ εr1 ≤ 1,
0 < εr2 ≤ 1,
−1 ≤ εr3 < −uy

L R

Figure 4.10: The backward semantics of Program 2.1 for else agreement.

[0]

>Max

>D]

Exit [1]

>Max

>D]

[2]

>Max

−1 ≤ εr1 ≤ 1

[3]

>Max

−1 ≤ εr1 ≤ 1,
0 < εr2 ≤ 1

[4]

B

−1 ≤ εr1 ≤ 1,
0 < εr2 ≤ 1,
−uy ≤ εr3 < 0

[5]

B

−1 ≤ εr1 ≤ 1,
0 < εr2 ≤ 1,
−uy ≤ εr3 < 0

[6]

B

−1 ≤ εr1 ≤ 1,
0 < εr2 ≤ 1,
−uy ≤ εr3 < 0

[7]

B

−1 ≤ εr1 ≤ 1,
0 < εr2 ≤ 1,
−uy ≤ εr3 < 0

[8]

B

−1 ≤ εr1 ≤ 1,
0 < εr2 ≤ 1,
−uy ≤ εr3 < 0

[9] Entry

B

−1 ≤ εr1 ≤ 1,
0 < εr2 ≤ 1,
−uy ≤ εr3 < 0

L R

Figure 4.11: The backward semantics of Program 2.1 for else disagreement.
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assignments since we only use linear operations so we can actually compute the

old value algebraically. This is why the noise symbol for z, ε1r, does not change in

terms of how it is constrained. Thus, the results of these backward analyses are

exact assuming we lose no precision in terms of the noise symbols. The meet at

node 4 is trivial as both of its operands will be the same constrained affine set.

We see that after node [4] we can no longer ensure that the invariants we

compute guarantee either B or ¬B. This is because line 3 of Program 2.1 is an

assignment to the variable y which we project to [−∞,∞]. However, we still do

get an improvement of the right bound for all transition systems. In Figure 4.7 we

had a right bound node [9] while the right bound for these systems are node [4].

We know that the actual responsible entities are either nodes [2] or [3] so the new

right bound of [4] is a definite improvement. There are no improvements in the left

bound as it remains at [0].

Figure 4.8 suggest to us that at node [3] we perform a partitioning. The

set of noise symbols from the forward semantics at line 3 of Program 2.1 is

Φ3
r = {−1 ≤ εr1 ≤ 1,−1 ≤ εr2 ≤ 1,1 ≤ εr3 ≤ 1}. Looking at node [4] we see that

the partitioning of Φ3
r into Φ

[4]
r = {−1 ≤ εr1 ≤ 1,−1 ≤ εr2 ≤ −ux, 0 ≤ εr3 ≤ 1} and

Φ3
r \ Φ

[4]
r should let us split the cases where we guarantee B occurs from the cases

where we only know >Max is guaranteed. This complement could be represented as

disjunctive completion but notice that our partitioning set definition works here.

Let’s consider Figures 4.9 through 4.11. The union of these constraints and the

constraint at node [4] of Figure 4.8 are exactly equal to Φ3
r. Furthermore, if we

split the cases into Figure 4.8 and Figure 4.9 we see that the range of εr3 is fixed

and for Figure 4.10 and Figure 4.11 the range of εr2 is fixed. Thus, the intersection

of Figure 4.8 and Figure 4.9 produces bottom for variable εr2 and the intersection
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of Figure 4.10 and Figure 4.11 produces bottom for variable εr3. Furthermore, the

other pair-wise complements will also lead to bottom in either εr3 or εr2. This implies

that in the forward semantics we can split node [3] perfectly using the definition

of partitioning set such that we know now that there are conditions at line 3 of

Program 2.1 that guarantee either B or ¬B occurs. Finally, the forward analysis

need not perform any further partitions after this point as there is no longer any

partitions in the abstract environment that are associated with >Max. Thus, the

hints produced by our backward semantics has managed to push the right bound

of responsibility to [3] which is exactly where some responsible entities for B are in

the concrete semantics.

Carrying out another forward analysis using the hints from the backward analysis

produces a new transition system which is given in Figure 4.12. The transition

event labels are again omitted and the above labels describe the strongest possible

behavior. The below labels are omitted beyond nodes [3], t as they are easy to infer.

The labels L and R are for the left and right bounds for the behaviors B or ¬B

which may be inferred by checking the strongest guaranteed property above node

[3], t.

We see that similar to Figure 4.7 we introduce partitions for the 4 possible

cases after an if-statement (if agreement, if disagreement, else agreement and else

disagreement). However, due to the hints produced by the backward analysis we

now perform this partitioning at node [3] and not node [9]. This vastly improves

the precision of the analysis as now all right bounds of responsibility are at nodes

of the form [3], t. This is a good result. We may actually push the left bound of

responsibility to node [2] which gives us the most accurate responsibility bounds for

Program 2.1 though we do not need outline how to do this here (see Section 4.6).
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[0], tNone

>Max

∅

Entry [1], tNone

>Max

−1 ≤ εr1 ≤ 1

[2], tNone

>Max

−1 ≤ εr1 ≤ 1
−1 ≤ εr2 ≤ 1

[3], 1t`val

¬B

−1 ≤ εr1 ≤ 1,
−1 ≤ εr2 ≤ −ux,

0 ≤ εr3 ≤ 1

[3], 2t`val

B

−1 ≤ εr1 ≤ 1,
−ux < εr2 ≤ 0,

0 ≤ εr3 ≤ 1

[3], 3t`val

¬B

−1 ≤ εr1 ≤ 1,
0 < εr2 ≤ 1,
−1 ≤ εr3 < −uy

[3], 4t`val

B

−1 ≤ εr1 ≤ 1,
0 < εr2 ≤ 1,
−uy ≤ εr3 < 0

[4], 1t`val

¬B

[5], 1t`val

¬B

[6], 1t`val

¬B

[7], 1t`val

¬B

[8], 1t`val

¬B

[9], 1t`val

¬B

Exit

[4], 2t`val

B

[5], 2t`val

B

[6], 2t`val

B

[7], 2t`val

B

[8], 2t`val

B

[9], 2t`val

B

Exit

[4], 2t`val

¬B

[5], 2t`val

¬B

[6], 2t`val

¬B

[7], 2t`val

¬B

[8], 2t`val

¬B

[9], 2t`val

¬B

Exit

[4], 4t`val

B

[5], 4t`val

B

[6], 4t`val

B

[7], 4t`val

B

[8], 4t`val

B

[9], 4t`val

B

Exit

L

]R

R

R

R

Figure 4.12: Forward partitioning of Figure 4.7 using hints from backward analysis.
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The forward-backward analysis will not be able to refine Figure 4.12 any further

due to the backward assignment at node [3].

We could consider splitting the case of backward assignment into those that

assign to ranges of the form v = [a,b] + u and those that assign to ranges of

the form v = expr. For the latter we keep our current backward operator and for

the former we use the identity function which will be sound. However, this will

have the unintended conseqeuence of pushing the partitioning hint all the way to

node [0] and we know that there does not exist any transition from node [0] that

guarantees B unless we fix the value of variables a priori. So this type of backward

operator will not work as we do not let variables’ choose values which goes against

the idea of responsibility.

4.5.4 Remarks

In this section we have defined the hint producing backward semantics of floating-

point programs. The goal of this analysis is to provide hints to the partitioning

forward semantics so that its result may be refined. This refinement should cause

the forward analysis to perform a better partitioning such that we may obtain more

accurate left and right bounds of responsibility. From [RM07] we know that trace

partitioning will never produce less accurate information. Thus, in the worst case

the results of this analysis will not help with forward partitioning but we expect

this to not occur often. The overall idea is to iterate back and forth between the

forward semantics and the backward semantics where each will improve the results

of the other. We stop when no new refinements can be produced. This process will

be formalized in the next section.

One limitation of our backward semantics is that assignments to intervals will
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always project the values to infinity. There are two ways to fix this issue. The first

is to only allow a single uncertain assignment to a variable. All further assignments

will either be arithmetic assignments and for re-assignments to that variable the

user should simply declare a new variable. This is somewhat restrictive so there is

also another solution. We can simply introduce new temporary variables before the

analysis begins that keep track of the variable’s old value before a new assignment

occurs. In this case, this tracking should happen after the first uncertain assignment

occurs so that the last uncertain assignmnet we encounter during the backward

pass may project the variable back to infinity safely. We haven’t outlined this

here but a realistic implementation of this domain should probably use either of

these proposals. Either one is simple and does not require much changing to the

semantics as they can either be implemented using synctactic addition of variables

or checking the program for re-declarations before starting the analysis.

For future work we are considering whether it is possible to design backward

partitioning semantics. We do not want to partition the system any further

but it might be useful to design a way such that it is easy for Definition 4.4.15

to identify candidate partitions quickly and Definition 4.4.16 may use its hint

partitioning more than once in a forward pass. Another direction is the design

of non-trivial backward operators for Boolean expressions. We know that our

backward assignment operators are exact because affine operations are always

invertible which we can express in programs by re-writing expressions. However, we

could still explore alternatives that may lead to an increase in the precision of the

analysis. For Boolean expressions we theorized that any non-trivial operator should

not grow the constraints on the affine symbols by too much as this may lead to a

loss of precision. Referring back to the systems given in Figures 4.8 through 4.11,
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consider expanding all noise symbols to larger ranges. Assuming such an operation

is sound, we will encounter two issues. The first is that the invariants at node [4] of

each system no longer perfectly partition the set Φ3
r as these invariants will no longer

form a partitioning set. So, we will only be able to partition according to a subset

of the invariants instead of all of them and as of now there is no systematic way to

go about this. Secondly, the right bounds of responsibility will have to be pushed

to node [5] and [7] as increasing the ranges on the noise symbols leads to larger

concretizations compared to the concretization of the post-condition. Clearly, not

performing such an operation and sticking to the trivial backward function produces

better results. Finally, we note that experimental evaluation of the hints generated

by the backward semantics may allow us to evaluate whether a complementation

based approach works better compared to partitioning sets. For example, in the

preceeding section the partitioning set worked perfectly but this may not always

be the case.

4.6 Responsibility Analysis

From Section 4.4 and Section 4.5 we know that we wish to go back and forth

between the two semantics and refine the results of each one. This process is a

forward-backward static analysis with iterated intermediate reduction [Cou19].

Definition 4.6.1. The abstract responsibility analysis of floating-point programs
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is defined by the following iterates.

X0 , E

Y 0 , H

X1 ,
−→
S JSKY 0E

Y 1 ,
←−
S JSKX1

...

Xn+1 ,
−→
S JSKY nE

Y n+1 ,
←−
S JSKXn

...

where E = leaf[>D
]
R ] is the initial environment for the forward analysis and H is

the function that maps all program locations to leaf[⊥D
]
R ].

Ideally, we would like to continue the iterates from Definition 4.6.1 until we

reach a fix-point. That is, if we cannot further refine the forward semantics and

cannot produce any new partition hints from one iterate to another then we have

reached a stable transition system. However, characterizing this is difficult and

we would have to design a widening operator. Fortunately, these iterates are a

reduction which means that the iteration may be safely stopped at any point and

the results will be sound [Cou19]. Thus, the abstract responsibility analysis of

floating-point programs consists of iterating Definition 4.6.1 some N many times

and then stopping the process. From the resulting transition system defined by

the final iterates of the forward semantics we extract the left and right bounds of

responsibility.



120
4.6.1 Concrete Responsibility Semantics

We begin by stating the concrete responsibility analysis from [DC19]. Since we only

have an omniscient cognizance for floating-point responsibility analysis, we drop the

definition of the cognizance and observation functions from our presentation. Given

a behavior of interest P and a set of traces to be analyzed T, every trace in σ ∈ T

can be split into σ = σHσRσF where H means history, R means responsible part

and F means future. If ⊥Max ( I(SMax,LMax, σHσR) ⊆ P ( I(SMax,LMax, σH)

holds then σH cannot guarantee P as it must be strictly greater than P, which in

our case becomes >Max. Furthermore, σHσR guarantees that a behavior at least as

strong as P occurs as it cannot be ⊥Max due to the strict inclusion. In the trace

σHσRσF , σR is said to be the responsible entity for P and we require |σR| = 1 such

that only a single entity may be responsible for P.

Note that for Figure 3.2 we have that I(SMax,LMax, σHσR) must equal P while

I(SMax,LMax, σH) must equal >Max. In a more refined lattice such as Figure 3.3

this is no longer the case.

The function

αR ∈ ℘(E∗∞)→ ℘(℘(E∗∞))→ ℘(E∗∞)→ ℘(E∗∞)→ ℘(E∗∞ × E × E∗∞)

αR(SMax,LMax,P,T) , {(σH , σR, σF ) | σHσRσF ∈ T ∧ |σR| = 1 ∧

⊥Max ( I(SMax,LMax, σHσR) ⊆ P ( I(SMax,LMax, σH)}

defines the responsible entities for P for any given trace. Since αR(SMax,LMax,P)

preserves joins on traces T we also have the Galois connection

(℘(E∗∞),⊆) −−−−−−−−−−−−→←−−−−−−−−−−−−
αR(SMax,LMax,P)

γR(SMax,LMax,P)
(℘(E∗∞ × E × E∗∞),⊆).
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Lemma 4.6.1 ([DC19]). If σR is a responsible entity for a behavior P in a valid

trace σHσRσF then σHσR guarantees the occurrence of behavior P and there must

exist another valid prefix trace σHσ′R such that behavior P is not guaranteed.

4.6.2 Abstract Responsibility Semantics

In the abstract responsibility semantics we define the right and left bounds of

responsibility. For the right bound of responsibility the idea is quite simple: any

node that is the first one marked as B on a path from the beginning of the transition

system to an ending state must be the right bound of responsibility. This follows

from the definition of αR. For the left bound we will rely on Lemma 4.6.1.

Definition 4.6.2. The right bound of responsibility for property P in a given path

in a transition system which starts at the starting state and ends at an ending

state is the left-most node from the ending state that guarantees the behavior P.

Alternatively, the right bound of responsibility for a given path in a transition

system is the first node that guarantees P when traversing that path. If no such

node exists then the ending state of the system is the right bound.

Definition 4.6.3. The left bound of responsibility for property P in a given path

in a transition system is the first node on that path that after a single transition

any of its outgoing nodes no longer guarantees >Max. If no such node exists then

the starting state of the system is the left bound and all nodes up the right bound

are responsible candidates for P.

The intuition for Definition 4.6.2 has already been given and it is the application

of αR. For Definition 4.6.3 we rely on the fact that if in the abstract we can show

all outbound nodes from a given node lead to either B or ¬B then it must be that



122
all concrete traces from that point on also are either responsible for B or ¬B. By

Lemma 4.6.1 this node must be the left bound of responsibility. Otherwise, if there

are some outgoing nodes that are marked with >Max then we cannot be sure in

the concrete what the current node’s choices will always cause a single behavior to

occur.

Lemma 4.6.2. The abstract responsibility analysis for floating-point programs is

sound which follows from the soundness of the forward partitioning semantics of

programs.

To actually compute the left and right bounds of responsibility we may do a

tree traversal on the final transition system of the forward semantics.

4.6.3 Running Example

As noted in Section 4.5.3 it is not possible to refine the transition system given

in Figure 4.12 any further. So, we start finding the responsible entities for the

behavior B by tree traversal and get the following bounds of responsibility

{[([2], tNone), ([3], t2val)], [([2], tNone), ([3], t4val)]}.

The bound [([2], tNone), ([3], t2val)] describes the bounds of responsibility for the traces

where the constraints on the affine noise symbols given by the node ([3], t2val) hold.

Similar reasoning applies for the pair [([2], tNone), ([3], t4val)]. For both responsibility

bounds [3] is the actual responsible entity as the error happens only after [3] makes

its choice on whether to take the if branch or the else branch. This result is

somewhat unintuitive as we know that with respect to the concrete semantics the

actual responsible entity can either be [2] or [3]. However, this makes sense as [2]
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can only be responsible for B if we know that [3] will pick its value such that the

flow of computation goes to the if branch of the program. Furthermore, the choice

that [2] makes is actually pushed into [3] such that node [3] makes two choices. This

is not a problem in the abstract and is actually caused by the projection of variable

y which means that x can never guarantee in the abstract that B occurs even

though we know in the concrete that such traces exist. Future work in the abstract

backward semantics may lead to interesting partitioning schemes. In the case of

Figure 4.12 if we could define a sort of chained partitionings where any partitioning

is immediately followed up by another partitioning, then this would remedy the

problem as long as we can estabilish that the chain does indeed guarantee B. Of

course, the soundness of such a result needs to be shown. A promising direction is to

use abstraction interpretation of CTL (Computation Tree Logic) [CE81] properties

as presented in [UUM18]. For more information on CTL see [BK08]. Nevertheless,

our current result is sound as both concrete responsible entities lie in the ranges of

both bounds.

We can also calculate the responsible entities for the behavior ¬B. This gets

us the set of bounds

{[([2], tNone), ([3], t1val)], [([2], tNone), ([3], t3val)]}

which is again a sound result. Overall, we see that the analysis has allowed us to

obtain the most accurate bounds of responsibility with respect to both the process

of forward-backward refinement and the concrete semantics.
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4.6.4 Remarks

The abstract responsibility analysis of floating-point programs allows us to soundly

approximate responsible entities for possible floating-point errors. Throughout

this chapter we have presented the analysis, discussed limitations and looked at

future directions. In terms of Definition 4.6.1, we expect that improvements in the

forward semantics, especially of our partitioning strategies, and backward semantics

will lead to improvements in the result. An implementation of this analysis could

begin by alerting the user to the errors detected but not actually perform too many

partitions on the system. This is to prevent a possible blow-up on the number of

partitions. Then, the user could select whether they would like to pursue the issue

further and the analysis would then perform a more thorough partitioning. If the

user cannot still identify what’s wrong with the program, then further partitions can

be performed at which point the responsibile entity should slowly start becoming

apparent. Another idea is to allow the programmer to pick parts of the program that

must be correct or allow the programmer to only pick certain parts of the program

to partition. These approaches are theoretically justified as the framework allows

us to define many different partitioning without breaking soundness and have an

ordering of extended transition systems. Furthermore, such practical considerations

are also justified by the fact that not every floating-point error is bad, e.g. see the

summation algorithms in [Hig93], and floating-point error is unavoidable. The user

has also access to the amount of error that occurs as the constrained affine sets

computes such values, so they may determine whether it makes sense to further

pursue certain numerical issues.

The next step in this work is to implement an analyzer for this framework that

is generic in terms of how the analysis should be carried out. We can then evaluate
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the results of our analysis experimentally and decide on a more specific analysis

that works well. All the future directions mentioned throughout this chapter can

also be looked into during the implementation and experimental evaluation phase

to further improve the analysis.

4.7 Towards an Implementation

An implementation of the proposed analysis is the next step for this thesis. In this

section we discuss some strategies and details for the implementation phase.

So far, the constrained affine sets domain we have presented and used throughout

the analysis has relied on real intervals. This means that we wish to compute the

possible real values for a given program variable. However, representing the co-

efficients of the affine forms and the intervals of the noise symbols as rational numbers

in a computer, perhaps by using symbolic expressions, can be computationally costly

and the use of real numbers is infeasible in general. Thus, we need a way to also

soundly approximate these values. For real intervals, we say that a floating-point

interval is a sound approximation of a real interval if it is a superset of that real

interval. Similarly, a floating-point value is a sound approximation of a real value

if its absolute value is greater than or equal to the real value. One way to realize a

sound implementation of both the constrained affine sets and the analysis in general

is to use double-precision floating-point values with outward rounding [GGP09].

If more precision is required then arbitrary precision floating-point libraries such

as MPFR [Fou+07] may be used. These libraries allow the user to change the

rounding mode and set the precision of the numbers being calculated. Since the

Apron [JM09] library for numerical abstract interpretation already provides an
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interface to arbitrary precision arithmetic libraries, it is an ideal candidate for the

implementation of the analysis.

In fact, the library Taylor1+ [GGP09] for constrained affine sets is also provided

in the Apron framework as a domain. This library implements aspects of the

constrained affine sets domain but does not fully automate the process of using

constrained affine sets for floating-point analysis as described in Section 3.3. So,

an implementation must take care to track noise symbols belonging to a real

computation and the corresponding errors of the computation. Furthermore, new

noise symbols that are used to model rounding errors must be generated manually.

We may first introduce a new noise symbol to represent the error and then use

the rounding error bounds given in Section 3.1 to bound it appropriately. Finally,

any errors due to discontinuity must also be detected manually and introduced by

the programmer as new noise symbols. Overall, Taylor1+ implements constrained

affine sets for computing arbitrary real values and the programmer must take care

to actually implement the domains given in [GP11] or [GP13]. This should not

be a difficult task as all the information required to realize this implementation is

already outlined in Section 3.1 and Section 3.3. However, we must make sure to

pay attention to the fact that all aspects of the domain are implemented fully. For

example, if we forget to introduce a noise symbol at some point or do not use the

outward rounding mode of MPFR then the whole analysis will produce unsound

results.

After implementing the domain for floating-point analysis, we must build

the abstract interpreter. We may split the development of the tool into a few

phases. Firstly, we need to implement the partitioning domain with hints from

Section 4.4.3 and Section 4.4.4. This domain needs to define the tree structure from
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Section 4.4.2 where each leaf node refers to our implementation of the constrained

affine sets. Then, the partitioning functions can be realized using a combination of

tree traversals and function calls to the constrained affine set domain.

The next phase involves implementing both the generic forward and generic

backward abstract interpreters as presented in Section 4.4.5 and Section 4.5.2. This

is a fairly straightforward process as we can produce an abstract syntax tree of

programs using off-the-shelf program lexing and parsing tools and then pattern

match on this tree. Each node of the tree corresponds to a synctactic component

of our program and since we provide the semantics of all such components we

may simply implement the provided semantic functions. Each function in turn

will use the interface of the partitioning domain that we implemented in the first

phase. Finally, we need to write some code that manages both abstract interpreters,

performs the abstract responsibility analysis as described in Section 4.6 and extracts

the responsible entities from the final result. Overall, while there may be a lot of

parts that need be realized, this thesis lays out how each part should be implemented

and the structure of the analysis allows us to modularize the implementation into

individual components.

The Apron library provides C, C++ and OCaml interfaces which means our

choice of programming language is constrained to these three. We plan to use

OCaml to implement the domain so that we can take advantage of its powerful

module system to split the analysis into parts and functional features such as

pattern matching to implement the generic abstract interpreters. Furthermore,

we can take advantage of the ocamllex (lexer) and ocamlyacc (parser) [Smi06]

libraries to generate the abtract syntax tree of programs.
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Chapter 5

Related Work

This thesis incorporates floating-point analysis with responsibility analysis, back-

ward semantics and trace partitioning. We describe related work in the context of

the analysis of floating-point programs.

5.1 Floating-point Verification

Existing work on the analysis and verification of floating-point programs is quite

diverse. The area falls under a few broad categories. The Fluctuat tool [GP11]

performs an abstract interpretation based analysis which has been shown to verify

the numeric precision of embedded systems [Bou+09]. This work consists of a

long lineage of ideas and its foundations can be traced to [Gou01] which gives an

abstract domain to compute the loss in precision of a floating-point program and

[Mar02] which defines a concrete semantics to identify sources of errors. Zonotope

abstractions are introduced in [GP06] and further developed in [GGP10]. The

constrained affine sets domain used to detect floating-point divergence is formulated

in [GP13]. Other directions for this work involves forward under-approximating
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semantics [Gou+14], the analysis of probabilistic numeric programs [Adj+13] and

combined over-under-approximating analyses of floating-point programs [GP19].

Besides Fluctuat, there is also the PRECiSA tool which was introduced in [Mos+17]

and then formulated as an abstract interpretation in [Tit+18]. The real values

of program variables and their errors are represented as symbolic expressions

whose values are then computed using a branch-and-bound optimization algorithm

implemented in Kodiak [Smi+15] and the results of the analysis are certified using

the interactive theorem prover PVS [ORS92]. Similar to Fluctuat, PRECiSA is also

sound under test divergence and computes the bounds of errors without assuming

the stable test condition. This means that the symbolic error expressions also

capture test divergence. Both Fluctuat and PRECiSA are able to identify the

contributions of certain program points to the error of a program but they do not

have a notion of responsibility. Other older abstract interpretation approaches such

as polyhedra which are used in Astrée [CMC08] and octagons [Min04a] are able to

detect floating-point run-time errors for ‘real world’ programs.

Optimization based tools such as FPTaylor [Sol+18] and Real2Float [MCD17]

bound the error a program accrues due to floating-point arithmetic using optimiza-

tion techniques. FPTaylor uses symbolic Taylor expansions to approximate the

round-off error and then applies a global optimization procedure to obtain tight

bounds of the error. Furthermore, the tool emits certificates to HOL Light [Har09].

The main drawback of FPTaylor is that its use is restriced to smooth functions

and its design focuses on the analysis of arithmetic expressions. FPTuner [Chi+17]

is a tool inspired by FPTaylor and focuses on allocating precision to program

variables such that the total error of the program does not exceed a threshold while

also minimizing the execution time of the program by choosing lower precision
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floating-point formats. Real2Float is able to compute certified bound of errors by

using semi-definite programming and sum of squares certificates.

Floating-point arithmetic has been formalized in proof assistants such as in Coq

[Bou+14] and HOL Light. Some examples include [Bol14] and [JSG15]. Gappa

[DLM10] automatically computes the bounds of round-off errors for floating-point

arithmetic expressions and then provides a proof that may be checked by Coq.

However, the generation of these proofs along with the computation of the bounds

may require hints by the user. The main challengse of proof assistant based

approaches has been the lack of automation and the high barrier to entry due to the

domain specific knowledge required to use them. Besides the formalization of errors,

there are also formally verified compilers such as [Bol+15] which builds on top

of the CompCert framework [Ler09] and provides a way to compile floating-point

programs into semantically equivalent programs. Recall that common algebraic

identities do not hold in floating-point so the compiler may not soundly perform

transformations it may usually use for other data types such as integers. The

Rosa [DK14] tool compiles an ideal real-valued implementation of a program to a

floating-point version which meets a precision requirement if such a program exists.

Rosa deals with test instability and combines SMT-solving with affine arithmetic.

5.2 Floating-Point Blame Analysis and Tuning

Precimonious [Rub+13] is a tool that uses delta-debugging to search for floating-

point type configurations in a program to reduce the precision of floating-point

variables. The goal is to find an optimal configuration that does not cause the error

of a program to exceed a threshold while also lowering the precision of variables as
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much as possible. Higher precision floating-point types are both more power hungry

and expensive in terms of how long it takes to compute with them. This work has

been followed up with blame analysis as introduced in [Rub+16] that defines a set of

floating-point variables in a program to blame. The high level idea is to iteratively

vary the precisions of variables and decrease them as long as the total error of the

program does not exceed a threshold. Then, the analysis builds what it refers to

as blame sets and identifies the variables that it may safely lower their precisions.

The variables whose precisions cannot be lowered any further can be considered as

‘blamed. This definition of blame somewhat corresponds to responsibility as the

analysis considers the variables which would lead to large round-off errors as causes

of those errors. However, both the analysis in Precimonious and blame analysis

occurs dynamically and the results are normally local minima of an objective

function. This means that there is no guarantee that the best configuration is

found which in turn implies that the blame set is also not ideal. It might be that

under a better configuration we may remove blame from some variables and assign

blame to others. Furthermore, this work does not consider conditional divergence

and is not sound for all possible inputs. In this thesis, the analysis is sound for all

possible inputs and causality is estabilished in terms of a formal definition with

respect to program traces. In terms of blame sets, this means that for any given

trace we detect the ideal candidate to blame.

The work on Precimonious has demonstrated that it has good performance

while our analysis’ performance is yet to be determined. In general, abstract

interpretation based analyses are known to be more computationally expensive

compared to dynamic analyses due to the expressiveness of the abstract domains.

Another approach to tuning is program re-writing. In [Tan+10] possible expres-
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sion re-writes are searched from a database of templates with the goal of improving

program precision. [Mar09] proposes an operational semantics to define the possible

re-writings of program statements such that we obtain lower amounts of round-off

error. Herbie [Pan+15] also proposes a heuristic search that selects re-writes of

program expressions by sampling floating-point values while selecting re-writes

from a pre-defined list of rules. An interesting aspect of Herbie is that it may also

synthesize conditionals that can select different re-writes of the program depending

on the run-time inputs. Program re-writing is orthogonal to the current focus of

this thesis but an interesting direction to explore in the future.

5.3 Root Causes of Floating-Point Errors

Herbgrind [Pan+15] dynamically keeps track of dependencies to identify what

it refers to as root causes of floating-point errors. Unlike responsibility analysis,

the root cause of errors may be more than one program entity. These causes are

determined by using taint analysis where every floating-point number is associated

with a set of floating-point intstructions influencing its value. Then, to identify

which floating-point operations cause error, Herbgrind uses the notion of local error

from Herbie [Pan+15] which measures how much error an operation’s output would

have even if its inputs were accurately computed and then rounded to floats. This

is similar to the notion of choice we use in this thesis where every floating-point

variable is allowed to choose either its real or floating-point value which in turn

may or may not cause erroneous behaviors. Unlike our analysis, Herbrgrind also

identifies errors over function calls and heap allocations.

The limitations of Herbgrind are that the tool requires a set of representative
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inputs from the programmer and treats the inputs to the program discretely. The

analysis in this thesis considers a real interval and detects all errors along with the

associated sub-intervals that lead to the error. Herbgrind only requires one run of

the program which it dyamically instruments. We require multiple iterations of a

sequence of analyses to determine responsible entities.

Besides Herbgrind there are also a few works that attempt to find floating-

point inputs that lead to high amounts of error in programs. [Chi+14] performs a

random search of possible floating-point input values to locate those that lead to

high amounts of error while [Zou+15] proposes a genetic algorithm to find such

inputs. These analyses occur dynamically and are not sound but do exhibit good

performance in general.

The key difference between Herbgrind and this thesis is that Herbgrind defines

responsibility as a set of candidates. The concrete semantics of responsibility will

assign to any one trace only a single responsible entity. In the abstraction of this

semantics we try to group similar traces together in such a way that we can identify

responsibile entities. Anything that cannot be pinpointed becomes a range of

responsible entities. For methods that attempt to find inputs that lead to high

error there is no notion of responsibility. With floating-point programs there always

exists inputs that lead to degenerate outcomes but these outcomes are most of the

time caused by very specific instructions or program expressions. For this thesis

instead of relying on the values of the inputs themselves we abstract program traces

which better characterizes where the floating-point program may go wrong for a

wide range of inputs.



134
5.4 Floating-Point Conditional Divergence

Floating-point error often leads to divergence in the control flow of programs.

The IEEE standard sets the expectation that floating-point programs be correctly

rounded versions of real numbers. However, this does not exclude the fact that

errors introduced by floating-point arithmetic may lead to behaviors that should not

happen if the program were computed using real numbers. Continuity, as introduced

in [CGL10], attempts to determine if a program represents a continuous function. If

very small pertubations in the program’s inputs leads to very small changes in the

program’s outputs then we say that the program is continuous. Such an analysis

can then be used to decide whether a program is robust or not as robustness is

also defined in terms of small pertubations to inputs and observing changes in

outputs. Another notion of robustness is given in [MS09]. Here the authors propose

an algorithm that symbolically traverses program paths and collects constraints

on the inputs and outputs of the paths. Then, for each pair of program paths the

algorithm can determine the values of the input that causes the program to explore

these two paths and for which inputs the difference in the output from the two

paths is maximized. There also exists work on synthesizing robust programs such

as in [MRT11] and [Tab+12].

With respect to floating-point programs, [CFK14] models floating-point discon-

tinuity by considering every branch to be a non-deterministic one. This leads to the

detection of such errors but the results can be coarse. The authors of FPTaylor and

FPTuner also have another work [CGR15] which proposes search heuristics to find

inputs that lead to divergence. [Bag+13] generates test inputs for floating-point

programs for a given control flow in a program. Finally, the work given in [GP13]

which this thesis uses as its underlying asbtract domain shows how constrained
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affine sets may be used to both detect conditional divergence and also characterize

divergence in terms of the constraints on the noise symbols of the affine forms.

This in turn allows the analysis to determine the interval of inputs that lead to a

specific divergent path.

As far as we are aware, this thesis is the first work to define responsible program

entities for divergence (or non-robust behavior) in floating-point programs. We show

not only the set of inputs or the constraints on certain program expression that lead

to discontinuity, but also define the cause of such behaviors using counterfactual

dependence. This way, programmers can identify under which conditions divergence

occurs along with which program expressions they should consider fixing to mitigate

the error. Since responsibility analysis in the context of floating-point programs

corresponds to whether a program entity chooses its floating-point value, the

programmer can implement fixes to programs in terms of lowering the amount of

error accrued.

5.5 Backward Semantics and Trace Partitioning

There does not exist much literature for the backward semantics of floating-point

programs. The construction given in [Min14] applies broadly to numerical domains

and the authors of Fluctuat also provide a forward under-approximating semantics

for affine arithmetic [GP07]. This work is based on generalized affine arithmetic

[Gol+05] which itself is based on Kaucher arithmetic [Kau80]. The overall idea is

to create existentially quantified domains which means that instead of considering

all traces that satisfy a property we consider the question of whether there exists a

trace that satisfies a property. [GP07] has lead to the development of [Gou+14]
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which can be used to under-approximate the set of reachable states of a program.

An over-under analyses can be combined for dynamical systems [GP19] such that

the set of reachable states for both types of analyses can be expressed as an ordinary

differential equation. The next step for responsibility analysis of floating-point

programs is to formulate an analysis that works on all combinations of under-

over-approximating forward-backward analyses. Such an analysis will allow for

the discovery of better partitions of traces that may improve both the results of

the partitioning and the performance of the analysis. We may begin exploring

this direction by first considering the application generalized affine arithmetic

for constrained affine sets. This topic is briefly mentioned in [Gou+14] but not

formalized.

Trace partitioning is a very general framework and a thorough detail of its

history can be found in [RM07]. In terms of floating-point programs, most of the

analyses mentioned in that paper form some kind of partitioning on the input space

to determine diferent kinds of outputs such as those that lead to high amount of

error. The work in this thesis is different compared to this type of partitioning as

the partitions we seek are aimed to separate traces based on their hyperproperties

[CS10]. We try to delineate as much as we can and as early as we can in the

program execution the traces that lead to B from those that lead to ¬B. Such an

approach may be also applicable to both static and dynamic analyses and could

lead to interesting characterizations of blame, root causes and robustness.
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Chapter 6

Conclusion

We have proposed an abstract interpretation based static analysis to identify

responsible entities for floating-point analysis. The analysis incorporates both

the forward and backward semantics of programs to perform trace partitionings

on a transition system of the program being analyzed and identify tight bounds

where a responsible entity for a behavior P must lie in. The presented analysis is

very expressive and liberally partitions programs. However, this does not mean

an implementation must follow the scheme presented here exactly. More coarse

partitions can be plugged in and as long as they are shown to be approximations

of the partitioning functions demonstrated here, then new sound analyses can be

constructed. This is because we have demonstrated the soundness of this analysis

for a general class of partitions. Throughout the presentation we have discussed

potential future directions and the possible points that may need to be addressed

after implementing the analysis. Thus, the next step in this research is to create

an analyzer that implements the analysis presented here and evaluate it on various

floating-point programs from toy ones to more realistic examples.
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