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ABSTRACT

Global improvements in network infrastructure have enabled the development of exciting ap-
plications across a broad spectrum. These developments range from research powering lightweight
educational, informative, and community-building services in rural and developing regions with
poor internet accessibility and hardware to Collaborative Extended Reality applications that push
the limits of the state-of-the-art network infrastructure available today with the aim of realizing
ideas that, prior to recent advancements, were only available in fiction. Across the spectrum,
significant challenges restrict the development and deployment of exciting new applications due
to poor connectivity, limited access to high-performance devices, and unaffordable service costs
in emerging regions and next-generation networked applications such as immersive reality and
large-scale Al systems introducing unprecedented demands on bandwidth, latency, and sustain-
ability in regions with state-of-the-art network infrastructure. This thesis addresses these twin
challenges of digital inequality and network inefficiency by developing new systems and method-
ologies that operate across both the application and transport layers of the Internet stack.

In the first part of this dissertation, we present a series of lightweight web access systems de-
signed for low-end phones, offline environments, and bandwidth-constrained regions. Through
a global measurement study of 56 cities, we quantify disparities in page load times, web complex-
ity, and mobile affordability. We then introduce Lite-Web, a browser-level rewriting system that
accelerates existing websites on low-end devices. These web simplification efforts enabled inter-

net accessibility in regions with poor internet accessibility and hardware constraints. However,



many emerging regions suffer due to a lack of network infrastructure that creates a barrier be-
tween lightweight simplified webpages and people living in these regions. To address this, we also
design Sonic, a novel hybrid system that leverages radio infrastructure to broadcast pre-rendered
web content over FM radio and enable interaction through SMS, enabling access in disconnected
regions such as rural Cameroon.

In the second part of the dissertation, we turn our focus to the transport layer, where emerg-
ing applications face severe limitations from current congestion control protocols. Using a new
benchmarking framework, we evaluate the performance of state-of-the-art CCAs across synthetic
and real 5G networks. Our analysis reveals significant mismatches between protocol behavior and
the requirements of next-generation collaborative and immersive applications. To address this,
we design Hera, a QoE-aware modular framework for next-generation immersive applications.
By bridging the gap between application-level responsiveness and network-level adaptability,
Hera lays the foundation for more scalable, robust, and high-fidelity multi-user immersive expe-
riences.

Together, these contributions demonstrate how cross-layer design, from simplified content to
smarter transport, can dramatically improve web accessibility, application quality of experience
(QoE), and sustainability in both high-demand and underserved settings. The work advances a
broader vision for an inclusive and efficient Internet: one that adapts to user constraints, appli-

cation demands, and the infrastructural realities of the global majority.
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1 INTRODUCTION

In this chapter, we present an overview of the dissertation, starting with the main motivations
behind this work and the challenges in enabling efficient and equitable networked systems. Next,
we outline the structure of the dissertation and highlight the main research contributions. Finally,
we discuss the economic challenges that hinder the improvement of web access and connectivity

in emerging regions.

1.1 MOTIVATION

The Internet is one of the most transformative technologies of our time, enabling communi-
cation, education, commerce, and social participation on a global scale. Yet its benefits remain
unevenly distributed [261]. While users in developed urban centers often enjoy fast, reliable,
and ubiquitous connectivity, vast populations in emerging regions face persistent barriers that
prevent them from fully participating in the digital world. At the same time, the Internet itself
is evolving with bandwidth-intensive applications such as immersive media, large-scale Al ser-
vices, and real-time collaboration tools that are pushing the limits of existing infrastructure [116,
236]. The central motivation behind this dissertation is to ensure that mobile users in emerging
regions, from isolated rural areas to crowded urban hubs, can participate fully in the growing
ecosystem of digital applications.

The first part focuses on rural and remote areas, especially across the Global South, where con-



nectivity infrastructure is minimal or nonexistent. Geographic isolation, high deployment costs,
and limited short-term economic incentives prevent network operators from extending service
to these regions. Even basic services such as email, online search, or educational resources are in-
accessible, creating an information gap that perpetuates social and economic disadvantage [196].
For these communities, the foremost challenge is establishing Internet connectivity in the face of
significant economic and infrastructural barriers.

The second part focuses on areas where some form of connectivity exists, but true accessibil-
ity remains elusive. Networks are often unreliable, mobile data costs are prohibitive relative to
income, and users frequently rely on low-end devices with limited processing power and storage.
Meanwhile, much of the modern web is built for high-end smartphones and broadband networks,
burdened by heavy JavaScript, high-resolution media, and resource-intensive scripts. This mis-
match between content design and user capabilities results in long load times, degraded user
experience, and, in many cases, complete inaccessibility to essential online resources [100].

Finally, the focus shifts to urban centers within emerging economies, where infrastructure is
more advanced, but digital equity challenges persist. High population density, limited spectrum,
and constrained backhaul capacity lead to severe contention for bandwidth, especially during
peak usage hours. The growing adoption of real-time and data-intensive applications such as
multi-party video conferencing, cloud gaming, and mixed reality exacerbates congestion [159].
These environments demand sophisticated transport-layer solutions that can manage shared re-
sources efficiently without compromising the quality of experience for any one application or
user.

This dissertation addresses these intertwined challenges by rethinking system design across
both the application and transport layers. We develop new tools, protocols, and platforms that
enable equitable web access and robust transport performance, particularly for users and appli-

cations operating in constrained environments.



1.2 EconNomics OF CONNECTIVITY IN EMERGING MARKETS

Emerging regions present a complex set of economic and infrastructural challenges that sig-
nificantly hinder the deployment and viability of compute-intensive Al services [119]. While
these markets represent a large untapped user base, the cost structures and operational con-
straints differ fundamentally from those in developed economies, creating a persistent imbalance
between service costs and user purchasing power. A critical challenge in emerging regions is that
many areas lack the basic infrastructure to provide network connectivity.

In many of these regions, the absence of robust infrastructure is not merely a technical hur-
dle but a systemic limitation. Rural and peri-urban areas frequently suffer from unreliable or
nonexistent electricity grids, which in turn undermines the viability of consistent Internet and
compute service delivery. Telecommunications providers and cloud service operators face sub-
stantial capital expenditures to extend coverage to remote zones often through difficult terrain
and with little expectation of short-term returns. As a result, these locations are deprioritized in
favor of more densely populated or profitable urban centers. Moreover, factors such as political
instability, logistical constraints, and limited public investment further exacerbate the slow pace
of infrastructure development. From a commercial standpoint, the high cost of last-mile delivery,
combined with the low average revenue per user (ARPU), makes infrastructure build-out eco-
nomically unattractive to private sector players. This creates a structural disincentive to bridge
the digital divide purely through market mechanisms.

In the second chapter of this thesis, we present a novel solution that leverages FM radio infras-
tructure to amplify web connectivity in emerging regions. We further discuss the performance

of this system in real world settings.



1.3 EcoNoMICS OF ACCESSIBILITY IN EMERGING MARKETS

One level above these regions are areas where basic infrastructure has been developed and
made available to the public where we transition from the realm of Kilobits per second to Megabits
per second. Unfortunately, the availability of basic infrastructure, in isolation, has proven to be
insufficient to resolve the problem of web accessibility in emerging regions.

Bloated Web: Modern webpages are optimized for high-bandwidth environments and do not
perform well in bandwidth-constrained networks. More accurately, modern webpages are unop-
timized and bloated with resource-intensive Javascript [157], operating under the assumption
that end users have access to the high-end hardware and network bandwidth necessary to access
the content; a supposition that does not hold in emerging regions. This unnecessary webpage
complexity can often be removed or simplified while maintaining extremely similar webpage
quality with drastically improved performance [58, 105, 140].

Low-end hardware: Modern webpage complexity demands processing power that is often
not supported by low-end mobile devices commonly used by people in emerging regions.

Low affordability: Recent research has emphasized that mere connectivity is not synony-
mous with accessibility. Qazi et al.[100] introduced the PAW (Price Adjusted Web access) met-
ric, a framework that evaluates web affordability by accounting for disparities in income and
broadband pricing. Their research reveals how modern webpages, optimized for high-bandwidth
environments, disproportionately penalize users in bandwidth-constrained settings. In response,
their Affordable Web For All (AW4A) initiative advocates for content simplification strategies, in-
cluding image optimization and JavaScript minimization. More recently, semantic caching tech-
niques leveraging Large Language Models (LLMs) have been proposed to enhance web affordabil-
ity by reusing semantically similar content across pages, significantly reducing data transmission
costs [14].

Despite the clear need for accessible web experiences in emerging markets, businesses are



often not incentivized to optimize their web content for these regions. The dominant market
logic prioritizes high-income users in developed economies, where faster networks and newer
devices are the norm and generate the majority of advertising revenue and e-commerce transac-
tions. Optimizing for low-end devices and constrained networks entails additional development
costs with limited immediate financial return, making it an unattractive proposition for most
companies. Moreover, without enforceable regulatory standards or widespread public pressure,
accessibility for under-resourced regions is typically deprioritized in favor of features that serve
affluent markets.

In the third chapter of this thesis, we present Liteweb, a solution to improving Web Acces-
sibility in emerging regions by converting modern webpages into more accessible formats. We
test this solution in emerging regions including rural Pakistan and evaluate the performance im-

provement achieved in these restrictive conditions.

1.4 EQUITABLE WEB ACCESS IN EMERGING MARKETS

Finally, we explore emerging regions with access to modern network infrastructure. The goal
of this research is to achieve Equitable Web Access; as exciting new applications in the worlds
of Al and Extended Reality (XR) are being developed [116, 236], it is important to ensure that
these applications are supported in emerging regions to prevent the digital divide from widening
further. Equitable access to the internet and web in emerging markets is a multifaceted challenge
that extends beyond infrastructure availability. True equity involves providing all individuals the
capability to participate fully in the digital society. This requires not only physical access but
also affordability, reliable and sufficient network speeds, relevant local content, digital literacy
to be able to effectively use these services, appropriate hardware with sufficient compute power,
meaningful use, safety, and empowerment.

In chapters 4 and 5 of this thesis, we discuss solutions to evaluate the performance of next



generation applications in bandwidth-constrained environments. We study the gaps identified
in our evaluation and design a modular framework to optimize the performance of next genera-
tion mobile applications in environments with high user numbers connected to the same mobile

network base station competing for network resources.

1.5 THE NEXT BI1LLION USERS FALLACY

Compared to traditional cloud services, Al applications such as large language models [44],
real-time vision systems [199], and recommendation engines [70] demand significantly higher
compute power, memory, and energy. As a result, the cost of delivering Al-based services is
substantially higher and often prohibitive in regions where end-user pricing must be kept low for
accessibility. In order to ensure equitable accessibility of new Al applications, economic viability
is a core requirement for compute-intensive Al services in emerging regions. Unfortunately,
in the current ecosystem, it is challenging for cloud compute services in these markets to be
profitable due to a combination of high infrastructure costs, and limited consumer purchasing
power [119].

This tension between high operational expenditure (OpEx) and constrained pricing leads to
a structural imbalance. Emerging markets, which are often viewed as high-potential regions for
future Al adoption, present businesses with both opportunity and risk. Although they offer access
to vast new user bases, they require service providers to endure high customer acquisition costs
and limited short-term revenue per user. Without a clear understanding of how infrastructure
scale, utilization, and deployment strategies impact cost recovery, it is difficult to ensure viable
Al expansion.

This thesis aims to address the key questions:

« How do high infrastructure and operational costs impact the ability of Al services to achieve

economic viability in emerging regions?



« What pricing strategies are necessary to balance user adoption with cost recovery in these

markets?

« Can Al services achieve profitability given the unique economic and infrastructural challenges
of emerging regions?

To explore these questions, we develop the Viability Calculator, a modular framework that
models the economics of Al service deployment in region-specific contexts. Our framework cap-
tures factors such as energy costs, PPP, infrastructure utilization, model efficiency, and demand
growth. The framework estimates cost-per-query and breakeven conditions under realistic de-
ployment scenarios. Using this system, we analyze a variety of Al service configurations across
emerging regions. We evaluate the impact of different deployment strategies, and provide guid-
ance for system designers and policymakers seeking to enable equitable, scalable, and viable AI
infrastructure. Ultimately, our findings point to the need for tightly integrated solutions span-
ning hardware, software, and economic modeling to ensure the next generation of Al technology

can reach underserved populations without sacrificing viability.

1.5.1 Economic CHALLENGES

Emerging regions present a complex set of economic and infrastructural challenges that sig-
nificantly hinder the deployment and viability of compute-intensive Al services [119]. While
these markets represent a large untapped user base, the cost structures and operational con-
straints differ fundamentally from those in developed economies, creating a persistent imbalance
between service costs and user purchasing power.

High Infrastructure Costs: The cost of building and maintaining Al infrastructure in emerg-
ing regions is disproportionately high. Import tariffs, limited local manufacturing capacity, and
logistical expenses inflate the capital expenditure (CapEx) required to procure servers, GPUs,

and cooling systems. Operational expenditure (OpEx) is further exacerbated by unreliable en-



ergy grids, which force operators to rely on expensive backup power solutions such as diesel
generators or battery storage [12]. Additionally, power tariffs in many regions can be 2 to 3 times
higher than global averages, making electricity the single largest component of recurring costs.
The high power usage effectiveness (PUE) of older or climate-stressed facilities compounds these
expenses.

Mismatch with Purchasing Power: Local purchasing power parity (PPP) in emerging re-
gions is often too low to support the pricing models that Al services typically rely on in high-
income markets [33]. While users in developed economies may tolerate subscription rates or
per-query fees sufficient to cover infrastructure costs, similar price points would exclude most
users in low-income communities. As a result, service providers are forced to operate at lower
margins or even losses, betting on future scale and monetization.

Limited Access to Financing and Scale: Economies of scale are essential for amortizing
the high upfront costs of Al deployments. However, emerging regions often lack both the market
size and the financing mechanisms to support large-scale infrastructure rollouts. The absence
of low-interest credit or public subsidies for Al infrastructure forces smaller or local players to
depend on global cloud providers, which in turn impose higher per-query or per-hour fees.

Connectivity and Latency Constraints: Beyond hardware and energy costs, network lim-
itations impose additional economic pressure. High-latency or unreliable internet connectivity
can reduce server utilization and increase the overhead of distributed inference. Data egress fees
from global cloud providers can further inflate costs, especially when services rely on frequent
model updates or remote storage. Without localized caching or edge deployments, these over-
heads add a hidden but significant expense layer.

Regulatory and Policy Barriers: Regulatory environments in emerging regions are often
underdeveloped or fragmented when it comes to cloud and Al services [239]. Import regulations,
taxation, and inconsistent data localization policies introduce further complexity and cost. For

example, restrictive data sovereignty requirements can force providers to build in-region infras-



tructure even when it is not economically optimal, leading to sub-scale deployments with poor

cost efficiency.

1.5.2 ViaBiLiTy CALCULATOR

To evaluate the economic viability of compute-intensive Al services in emerging markets, we
design a modular simulation framework that models the financial and infrastructural footprint
of Al deployment under region-specific constraints. The system takes as input a structured set
of parameters that reflect both technical workload characteristics and economic conditions of
the deployment environment. Its primary output consists of essential metrics including cost

breakdowns, profitability estimates, and breakeven thresholds.

1.5.2.1 INPUT PARAMETERS

The framework is designed to support flexible and realistic input modeling. Inputs are grouped
into these categories:

Technical Configuration: Users specify the compute intensity of the Al model (e.g., FLOPs
per inference), the number of inferences per month (e.g., based on daily query load), and hardware
specifications such as GPU throughput (in TFLOPs), utilization rates, and power draw (in watts).
These values allow the simulator to estimate raw infrastructure needs and power consumption.

Economic Context: Region-specific cost parameters are provided for electricity (USD/kWh),
GPU rental or purchase cost (USD/hour), storage (USD/GB), bandwidth (USD/GB), and fixed op-
erational overheads (USD/month). Additionally, users can specify revenue per user, either as a
static value or estimated dynamically from purchasing power parity (PPP). These inputs enable
localized cost modeling across multiple deployment environments.

Deployment Parameters: The framework accepts high-level deployment assumptions, such
as the number of users, workload growth rate, redundancy requirements, and power usage ef-

fectiveness (PUE) of the infrastructure. These parameters influence both capital and operational



scaling behavior over time.

1.5.2.2 OvuTtPUT METRICS

The system generates a set of interpretable metrics by combining compute workload char-
acteristics, infrastructure parameters, and regional economic variables. We define these outputs

formally below.

GPU Hours Given the total floating point operations F required monthly and GPU throughput

T (in FLOPs/s) with utilization factor u, the required GPU hours Hgpy is:

F

Hepy = — 1.1
CPU = T U 3600 (1)

Power consumption E (in kWh) accounts for power draw P (in watts) and power usage effec-

tiveness (PUE) factor ¢:

. (P - Hepu - 3600) y (1.2)

3.6 X 10°

MoNTHLY SERVICE COST.  Let cgpy be the hourly GPU rental cost, celec the cost per kWh, cops the
base operational overhead, cyint the fractional maintenance overhead, cgore the cost per GB of

storage, and cpet the cost per GB of data transfer. The monthly total cost Cioty is:

Ctotal = Hgpu - Cgpu + E - Celec + Cmaint (HGPU : cgpu) + Cops + Dstore * Cstore + Degress * Cnet (1-3)

where Dgiore is the total storage required (GB), and Degress is the total bandwidth (GB) trans-

ferred in and out.

CosT PER QUERY. If the monthly number of queries is Q, the cost per query is:

Ctotal
Cquery = gta (1.4)
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ReEVENUE AND ProOFIT. Revenue is calculated based on the number of users U and estimated

revenue per user r, (often derived from PPP weighting). Total monthly revenue R is:

R=U"r, (1.5)

Profit or loss is the difference between revenue and cost:

IT = R — Ciotal (1-6)

BREAKEVEN THRESHOLD. Breakeven is achieved when profit IT = 0. Solving for the required

user count Upreak-even:

Ctotal

(1.7)

Ubreak-even =
Ty

These equations form the core of the framework’s cost modeling pipeline. They allow re-
searchers to systematically explore the sensitivity of viability to energy pricing, model complex-

ity, infrastructure scaling, and user monetization.

1.5.3 ANALYSIS

Our framework is designed to help navigate a wide space of parameters that influence the
economic viability of Al services. These parameters fall into two primary categories: (1) region-
specific economic and infrastructure conditions, and (2) application-specific configuration and
workload requirements. In this section, we focus on the former by fixing the model and hardware
setup while varying regional economic inputs to analyze their effect on viability. The results show
how regional disparities shape breakeven conditions and cost-efficiency for AI deployments. In
future work, the same methodology can be applied to the second category to explore different

model architectures, utilization levels, and deployment modes.
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1.5.3.1 APPLICATION PROFILES AND HARDWARE DEMANDS

Application Est. Training Approx. Typical USA Kenya India
FLOPs (TFLOPs) Inference FLOPs (TFLOPs) Hardware Cost ($) Cost ($) Cost ($)
Image Captioning 50,000,000 0.8 T4 /L4 GPU 375.00 504.00 420.00
Real-time Translation 100,000,000 2.0 A10G / A100 937.50 1,260.00 1,050.00
Video Moderation 300,000,000 3.5 A100 + NVLink 1,640.63  2,205.00 1,837.50
Voice-to-Text Transcription 50,000,000 1.2 CPU + GPU hybrid 562.50 756.00 630.00
Recommendation Systems 10,000,000 0.5 CPU+Memory-intensive ~ 234.38 315.00 262.50

Table 1.1: Example Al Applications, Estimated Training and Inference Complexity, and Monthly Service
Costs by Region

Economic viability is largely shaped by the nature of the application itself. Different Al use
cases vary widely in their inference complexity, throughput requirements, and infrastructure
utilization profiles. Table 1.1 summarizes representative Al applications and the types of hard-
ware and compute requirements they typically demand. This illustrates how different points in
the workload parameter space can be simulated using our framework to assess feasibility under

multiple configurations.

1.5.3.2 REGIONAL VARIATION IN BREAKEVEN VOLUME

To evaluate when Al services become profitable in different regional markets, we simulate
monthly profit across a range of user volumes while holding the Al model architecture and in-
frastructure setup fixed. The total cost of service includes cloud GPU usage, energy consumption,
maintenance overhead, storage, bandwidth, and CloudSQL database access costs. each of which
scales up with user count. As the number of users increases, compute demand, data transfer
volume, and database interactions rise accordingly, placing upward pressure on infrastructure
costs.

Figure 1.1 illustrates how profitability trajectories vary significantly across countries. In-
dia achieves profitability relatively early, benefiting from a combination of moderate electricity

rates, affordable cloud compute, and higher PPP-adjusted revenue per user. In contrast, Pakistan,
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Figure 1.1: Monthly profit vs. user volume across regions

Kenya, and Nigeria struggle to cross the breakeven point even as user counts rise, largely due to
lower per-user revenue and higher marginal costs associated with GPU rentals, networking, and
backend services like CloudSQL. Notably, although Kenya and Nigeria are geographically close,
differences in electricity pricing and cloud infrastructure access lead to divergent cost curves,

underscoring the importance of country-specific infrastructure and policy contexts.

1.5.3.3 CosT ANALYSIS FOR Al LABELING AT SCALE

To analyze the cost of running an Al-powered labeling service, we simulate the monthly
infrastructure expenditure for processing 8,000 high-resolution videos using inference on GPU-
backed infrastructure. Inputs to this simulation include cloud GPU pricing from the Google Cloud
Pricing Calculator [64], region-specific energy costs [200], and standard storage and bandwidth

charges. As shown in Table 1.2, operational costs for Al-based labeling in emerging regions
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Country Total Monthly Service Cost Labeler Wage

USA 509.92 5583.00
Kenya 607.32 300.00
Pakistan 553.81 211.41
Nigeria 615.94 121.00
India 538.10 280.00

Table 1.2: Monthly Al Labeling Cost vs. Human Labeler Wage

typically exceed $500 per month. In contrast, human labeler wages in these same regions range
from $121 in Nigeria to around $300 in Kenya.

This stark disparity reveals a clear cost asymmetry. For many non-real-time applications,
it is still cheaper to rely on human annotation. For example, if a labeler annotates 400 videos
per month, just 20 labelers would be sufficient to handle the same workload, at a fraction of the
infrastructure cost. Given the high infrastructure costs and relatively low wages in emerging
regions, Al-only labeling pipelines are economically suboptimal unless amortized across signifi-
cantly higher volumes or combined with human-in-the-loop verification. This finding supports
the growing trend toward hybrid human-Al annotation workflows and points to the need for

task-aware deployment strategies that adapt based on regional labor and compute economics.

1.5.3.4 KeYy TAKEAWAYS

Together, these experiments demonstrate the importance of navigating a complex and mul-
tidimensional parameter space when evaluating the viability of Al services in emerging regions.
By separating the analysis into regional economic parameters and application-specific workload
configurations we reveal how both structural costs and deployment scenarios influence economic
feasibility. The user volume analysis highlights that countries geographically close to each other
or within similar economic bands often face comparable cost pressures due to shared infrastruc-
ture limitations, similar energy pricing structures, and constrained purchasing power. In contrast,

India, while still considered an emerging market, benefits from lower cloud pricing and improved
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infrastructure maturity, enabling lower breakeven thresholds. These regional similarities and dif-
ferences are essential for guiding deployment strategies. A single model of cost or revenue cannot
be applied uniformly across frontier markets.

Moreover, the geographic distribution of potential users must inform any global AI expan-
sion strategy. Southeast and East Asia alone account for over 30% of the world’s population, with
countries like India, Indonesia, Bangladesh, and the Philippines representing billions of users
with growing digital footprints. Designing systems that are economically viable in this region
could unlock immense scale and impact. Conversely, low-population or high-cost regions may
require smaller-scale, subsidized, or hybrid deployments to be viable. Similarly, our task-based
cost simulations show that compute and storage requirements vary significantly across applica-
tions further motivating custom infrastructure provisioning strategies. Ultimately, the modular
framework we present enables detailed exploration of this full design space. It empowers re-
searchers, practitioners, and policymakers to identify the configurations where Al services can
be viably deployed and scale in alignment with local economics and population dynamics. As
Al systems expand globally, such localized planning will be key to both equitable access and

long-term operational viability.

1.6 CONCLUSION

In this analysis, we discuss the inevitable deadlock that cloud compute services are approach-
ing in emerging regions between the increasing demand for compute-intensive Al services and
the fragile economics of deploying infrastructure in low-income markets. We show that sev-
eral compounding factors make economic viability difficult including high infrastructure and
energy costs, limited grid reliability, and lower PPP. To address this, we present a modular simu-
lation framework that allows stakeholders to model the lifecycle costs of Al infrastructure under

regional constraints and assess breakeven thresholds. Our framework integrates demand fore-
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casting, infrastructure sizing, model efficiency, and operational factors to quantify the cost per
query and explore the impact of different optimizations. Our findings emphasize the importance
of holistic cost modeling and design-aware deployment strategies. The goal of this framework
is to help enable future research, tools, and collaborative efforts that drive the development of

equitable and viable Al

1.7 DISSERTATION OVERVIEW

The thesis is organized into two major parts:

« Part I: Addressing Digital Inequality through Web Access Innovation. We begin
by quantifying the global digital divide through a measurement study and then develop a
suite of systems, including Lite-Web and SONIC, to make web content more accessible for

low-end devices and offline users.

« Part II: Optimizing Transport Protocols for Emerging Applications. We analyze the
performance of modern congestion control protocols under real and synthetic 5G condi-
tions using the Zeus benchmarking framework, and propose Hera, a delay-aware, application-

informed congestion control algorithm optimized for immersive applications.
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2 TUNING INTO THE WEB

This chapter is adapted from the preprint version of "SONIC: Cost-Effective Web Access
for Developing Countries" and "SONIC: Connect the Unconnected via FM Radio & SMS", pub-
lished in ACM International Conference on emerging Networking EXperiments and Technolo-
gies (CoNEXT) [186]. In this chapter, we introduce a novel solution that leverages radio signals

to improve web accessibility in emerging regions.

ABSTRACT

Over 2.6 billion people remain without access to the Internet in 2025. This phenomenon
is especially pronounced in developing regions, where cost and infrastructure limitations are
major barriers to connectivity. In response, we design Sonic, a low-cost, scalable data delivery
system that builds on existing infrastructures: FM radio for downlink broadcasting, and SMS
for personalized uplink. Sonic is motivated by the widespread availability of FM radio and SMS
infrastructure in developing regions, along with embedded FM radio tuners in affordable mobile
phones. Sonic offers several innovations to effectively transmit Web content over sound over FM
radio, in a reliable and compressed form. For example, we transmit pre-rendered webpages and
leverage pixel interpolation to recover errors at the receiver. We further modify Android to offer
a simpler deployment pipeline, supporting a wide range of devices. We deployed Sonic at an FM

radio station in Cameroon for six weeks with 30 participants. Our results demonstrate a sustained
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Figure 2.1: Network performance of MTN, the best available mobile network provider at our deployment
site in Cameroon.

downlink throughput of 10 kbps, less than 20% loss for a majority of transmissions with signal
strength above -90 dbM, and a strong user engagement across both Web browsing and ChatGPT

interactions.

2.1 INTRODUCTION

The internet has fundamentally reshaped societies worldwide, driving economic growth, fos-
tering new industries, and becoming indispensable in education, healthcare, and employment.
Yet, despite its profound influence, 32.4%—over 2.6 billion people—remain disconnected in 2025 [221].
This digital divide is not only due to a lack of infrastructure. According to GSMA Intelligence [96],
3.1 billion people live within the coverage area of a mobile broadband network but remain dis-
connected because they cannot afford the necessary devices and data plans to get online.

The offline population is especially concentrated in developing regions. For example, In-
dia has 651 million people (44.7%) offline, Pakistan 137 million (54.3%), and Nigeria 128 million
(54.6%) [221]. In the Central African Republic and South Sudan, over 84% of the population re-
mains without internet access [221]. The consequences of being “unconnected” go beyond missed
economic opportunities; it severely limits access to essential services such as education, health-
care, and financial resources, further exacerbating existing inequalities.

Several initiatives have attempted to bridge this gap. Starlink [224] provides global coverage
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through low earth orbit (LEO) satellites. Google’s Project Loon [84] sought to deliver internet via
high-altitude balloons, while Facebook’s Aquila [110] aimed to use solar-powered drones (both
ultimately discontinued due to maintenance costs and scalability challenges). Project Taara [231]
is a recent initiative that transmits data using laser beams over long distances (20 km) at high
speeds (20 Gbps). Unfortunately, these efforts remain prohibitively expensive in most developing
regions. For example, in Zambia, classified as one of the UN’s least developed countries, Starlink’s
$40 monthly subscription (plus $180 hardware fee) is prohibitively expensive compared to the
country’s $108 monthly GNI per capita.

In this chapter, we build on the preliminary work by [187] which introduced an initial frame-
work to transmit simplified webpages over FM radio. Webpages are pre-rendered as images which
are then modulated into audio signals and transmitted via FM radio. We advance [187] to Sonic
as follows:

System Architecture. We design the full software architecture of the Sonic server and An-
droid client, which includes modules for content rendering, prefetching, encoding, transmission,
decoding, and error correction.

FM Tuning on Android. We leverage the internal FM tuner found in many Android smart-
phones to receive and decode Sonic transmissions. We do this by modifying LineageOS, an open-
source Android operating system, to enable programmatic access to the FM hardware, allowing
other apps to control FM chip tuning and access the received audio stream directly, without need-
ing to root the device.

LLM Support. We extend Sonic’s functionality to support LLM interactions over FM radio. We
use the same audio modulation pipeline to allow users to query models like ChatGPT via SMS
and receive coherent responses without internet access. We show that LLM responses, due to
their smaller size, can be transmitted significantly faster than full webpages.

Real-world Deployment. We report on a six-week deployment at a live FM radio station in

Cameroon. During this period, 30 participants used the Sonic app to request webpages and in-
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Figure 2.2: Barriers to Web access from speed and cost. The main plot shows CDF of how Sonic users
agree with avoiding websites due to slow internet. The inset shows the % of users indicating that their
browsing is restricted by data costs.

teract with ChatGPT via SMS. Our evaluation shows that Sonic can sustain a transmission rate

of 10 kbps, with stable reception achievable at a Received Signal Strength Indicator (RSSI) value

up to -90 dBM. Mean decoding accuracy remained at 71% under real-world conditions.

2.2 MOTIVATION

Affordability and QoE in Rural Areas. Mobile internet adoption is rapidly increasing in low-
and middle-income countries [96], yet ensuring affordability and a good quality of experience
(QoE) remains a challenge. In many remote areas, even when mobile broadband is available, data
costs are prohibitively high relative to average income levels. To assess affordability and QoE
in a rural setting, we conduct network performance measurements and a survey at the Sonic
deployment site in Cameroon.

We select MTN [170], the best available mobile network provider in the area, and purchase
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its monthly data plan, which offers 9.2 GB for $14. Following the methodology in [242], we use
mtr [136], a tool for measuring latency and tracing network paths to examine routing changes
and packet losses. Additionally, we employ Speedtest CLI [179], a command-line tool for mea-
suring latency, download, and upload speeds. We also evaluate web performance using Google
Lighthouse [149], an automated tool that provides key website performance metrics, including
Speed Index (SI), First Contentful Paint (FCP), and Largest Contentful Paint (LCP). Given the data
limits of our mobile internet plan, we conduct mtr and Speedtest measurements once every
three hours throughout our deployment. For Lighthouse evaluations, we rely on data collected
in the wild as a response to real Sonic users (see Table 2.1).

Figure 2.1(a) shows the cumulative distribution function (CDF) of average round-trip time
(RTT) towards popular content providers (Amazon, Facebook, and Google), and DNS operators
(Cloudflare and Google). The figure shows RTTs higher than 100ms for most measurements and
providers, with the exception of Google. As observed in [241], this is due to Google footprint in
Africa which was also confirmed by our path analysis.

Next, Figure 2.1(b) summarizes the speedtest analysis. With respect to the RTT to OOKLA
servers (ping), the figure shows a similar trend as Figure 2.1(a). The figure further shows RTT
under load, i.e. while measuring both download and upload speeds, showing a 3.4x growth
(from 200 to 680 ms, at the median) thus suggesting large buffer in use (a phenomenon typically
called bufferbloat [88]). Despite these large buffers, users experience a median download speed
of 2.6 Mbps and an upload speed of 0.69 Mbps—both drastically below the global average—at a
mobile internet price comparable to developed nations ($1.5 per GB) [242]. At these speeds, web
performance is extremely affected, as visualized in Figure 2.1(c). The median SI is at 9 seconds,
FCP at 4.5 seconds and LCP at 6.9 seconds, significantly slower than the web vitals threshold (LCP
< 2.5 seconds) recommended by Google [162].

The combination of high latencies and low download speeds can frustrate users and discour-

age regular internet use. Figure 2.2 presents responses to two survey questions assessing barriers
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to web access at our deployment site in Cameroon. Survey participants are 30 Cameroonians
who participated in Sonic deployment. The main plot shows the CDF of web use aversion, based
on responses to the question: “To what extent do you agree with the following statement: T occa-

29

sionally avoid visiting certain websites because my Internet is too slow to load them.” (1 = Strongly
disagree, 5 = Strongly agree). Over 75% of the participants indicate either neutrality or agree-
ment with avoiding websites due to slow internet speeds. The inset plot shows responses to the
binary question: “Is your web browsing experience often restricted by data costs?” where 67% of
users answered “Yes”

These results sheds light on the affordability of web access in low-income regions like Cameroon.

Beyond slow speeds, high data costs severely limit both how often and how effectively users can
engage with the internet, restricting access to information that many take for granted. Indeed, we
also asked participants if they had heard of ChatGPT prior to participating in the experiment. 80%
reported “No”, revealing a broader lack of exposure to transformative (and popular) technologies
simply because the current infrastructure never allowed these tools to reach them.
FM Radio Availability. FM radio still remains widely used in developing regions. In a study
covering 39 countries in Africa, about 65% of adults reported listening to radio at least a few times
per week, with no major difference in the rural-urban gap in radio access [11]. A recent case study
in northern Ghana found FM radio to be the most reliable and trusted source of developmental
information in rural communities, providing vital content on agriculture, education, and health
in local languages [20].

Technical studies confirm that FM signals reliably cover large areas, though terrain can in-
fluence signal quality. In Nigeria, measurements around a 20 kW FM station showed stable re-
ception up to 50 km, beyond which quality declined due to sandy or silty soil and obstructed
line-of-sight [25]. A study from Nepal emphasized the importance of antenna height and place-
ment in extending coverage, even in hilly regions with shadow zones between elevations [32].

Despite geographic challenges, FM radio continues to provide consistent, low-cost coverage in
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Figure 2.3: Mobile phones supporting FM receivers for the top four Android brands grouped by release
year (2017-2024).
most rural areas, with signal strength sufficient for everyday use.

Building on the widespread availability of FM radio connectivity, we next investigate the
landscape of FM radio support in mobile phones. Specifically, we analyzed the prevalence of FM
receivers in Android smartphones currently available on the market. To do this, we scraped the
database of mobile phone specifications from GSMArena [97], identifying which models support
FM radio and recording their release years and market prices. We then cross-referenced this
information with global economic statistics [257] to assess the practical reach of FM-based data
reception.

Figure 2.3 shows the distribution of FM-capable phones released by the top four Android
smartphone brands [69] over the past eight years. Despite a gradual decline in newer models,
FM radio functionality remains prevalent—especially among Xiaomi and Vivo devices, where

approximately 40% of current models still include FM support. In total, these top four brands
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Figure 2.4: CDF of prices for android phones equipped with an FM radio receiver. Green dotted lines
indicate the monthly Gross National Income (GNI) per capita for selected low- and middle-income coun-
tries.

alone account for 571 FM-capable models, highlighting a significant and readily accessible user
base for FM-based data delivery.

We next evaluate the affordability of these 571 FM-capable phone models in low-income coun-
tries, using monthly gross national income (GNI) per capita as a benchmark [257]. Figure 2.4
shows the price distribution of these phones (blue line) alongside GNI thresholds (green dotted
lines) for six developing countries: Pakistan, Cameroon, India, Bangladesh, Egypt, and Brazil.
The figure shows that a substantial share of devices are within reach of average consumers, from
a minimum of 30% in Pakistan up to 99.3% in Brazil. These results highlight strong market avail-

ability of FM-enabled phones at accessible price points in low and middle-income regions.
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Figure 2.5: Sonic workflow.

2.3 SoNIC

Figure 2.5 shows how Sonic operates. Users A and B both have the Sonic app installed on their
smartphones, equipped with chipsets featuring FM receivers. However, only User B’s device

supports SMS. The Sonic app runs on both smartphones with FM receivers tuned to a specific

frequency to decode incoming data-over-audio streams.

User B requests a webpage using the Sonic app, which sends an SMS containing the desired
URL (e.g. bbc. co. uk) to the Sonic server. The server listens for incoming SMS messages, retrieves
the webpage, captures a screenshot of the rendered page, and compresses it into a WebP image.
The image is then encoded into sound and broadcasted via an FM transmitter. Both User A and

User B receive the transmitted webpage on their smartphones. In the following, we describe each

Sonic component which enables the above workflow.
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2.3.1 SoNIC SERVER

Figure 2.6 shows the architecture of the Sonic server. The server runs as a Docker [78] con-
tainer on a computer located at a radio station. It consists of several key components that work
together to process user requests. The SMS Manager handles incoming messages, while the
Screenshot Queue processes webpage URLs in a First Come, First Serve (FCFS) manner. A Cache
stores recently requested URLs to avoid redundant processing. The Encoder converts responses
into Sonic file format (see Section 2.3.1.1) and encodes them to audio. Finally, the Player Queue
manages the order in which the encoded audio files are played, also following the FCES policy.

The SMS Manager continuously listens for SMS messages using a USB mobile dongle. These
messages are received on a phone number assigned to the SIM card inserted into the dongle.
Messages sent by the Sonic app contain the sender’s information in the headers and a payload
formatted as: <type> <body> (e.g. url https://nytimes.com). When a new message is re-
ceived, the server classifies it as either an LLM prompt or a webpage URL depending on the
<type> identifier.

If the message contains a URL, it is added to the Screenshot Queue. The system checks
whether this URL has been retrieved within the current transmission window using the Cache.
If not, the Screenshot Queue utilizes Selenium [217] to load the page in Google Chrome with a
mobile resolution of an iPhone SE device (375 X 667 pixels). Once the webpage is fully loaded, a
full-page screenshot is taken and resized to a width of 320 pixels. We empirically selected 320 pix-
els as a sweet spot where both the content layout and text remain comfortably readable to the
human eye. The screenshot is then encoded into a Sonic file format and subsequently converted
into audio using the Quiet [193] library at the Encoder. The resulting audio is then added to
the Player Queue. In case of cached requests, the cached response directly moves to the Player
Queue.

If the message contains an LLM prompt, the server makes an LLM inference API call to either
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Figure 2.6: Sonic server architecture.

a locally running LLM, or a cloud API (e.g. OpenAI Chat Completions API [180]). The response
from the LLM is encoded into the Sonic file format containing structured metadata and payload.
Finally, the server generates a corresponding audio using the Quiet library, which is then added

to the Player Queue.

2.3.1.1 ENCODING

Encoding takes place in the Encoder, which consists of two steps: 1) encoding responses to
a new file format, referred to as a webfm file; and 2) converting this webfm file into a waveform
audio file (WAV). The resulting audio file is then added to the Player Queue.
Sonic File Format. Sonic uses a new file format that allows the decoder to easily distinguish spe-
cific parts of the transmission in absence of a continuous uplink. As illustrated in Figure 2.7, this
format includes intermediate headers (such as “MDTA,” “LNKS,” “SDTA,” etc.) that separate inter-
nal sections within the metadata and payload. This structure helps reconstruct content in cases
when metadata is fully received but only parts of the payload are received properly. Additionally,
each payload frame is prefixed with “C137,” inspired by Rick and Morty’s C-137 dimension [201],
which helps distinguish the start point of each frame. Furthermore, “C137” serves as a keepalive
message, allowing the app to notify users that the server is online when transmissions are in

progress.
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Webpage Compression. Unlike encoding LLM interactions, where the payload is simply ap-
pended to metadata, encoding webpages presents a significant challenge due to the limited data
rates achievable over audio transmission—typically only tens of kbps (see Section 5.2). Accord-
ing to [250], the average mobile webpage size is approximately 2 MB. Broadcasting such a page
via Sonic could take tens of minutes. Moreover, devices experiencing poor RSSI may struggle to
reconstruct the page, as critical web components, such as JavaScript, may fail in the presence of
unrecoverable errors.

To address these challenges, we must: 1) significantly compress webpages, and 2) ensure
resilience against noise. Various methods exist for reducing webpage sizes, such as compression
proxies [93, 152], reader modes [91, 210], JavaScript cleaners [54, 55, 58], and redundant code
removal [140, 157]. These approaches remain vulnerable to noise and require extensive forward
error correction (FEC), necessitating a system design that accounts for the worst-case receiver
conditions.

Instead, we utilize a solution where performance degrades gracefully as a function of the re-

ceiver’s RSSI, analogous to how audio quality deteriorates under poor reception. Inspired by [38,
39], which demonstrate how image quality over RDS degrades with RSSI, we opt to transmit
images of rendered webpages rather than raw web files (HTML/JavaScript/CSS). This approach
provides both compression and resilience: a 2 MB webpage can be compressed into a few hundred
KB, and images remain interpretable even if some pixels are lost.
Interactivity. Modern webpages enable user interaction via hyperlinks, menus, and search
boxes, whereas images are inherently static. To introduce interactivity, [36] proposes click maps,
which store <x,y> coordinates of interactive elements. We adopt this approach, allowing Sonic
to notify the server (via SMS, if available) when a user clicks on a coordinate, retrieving the cor-
responding page if it is not already cached. Given Sonic’s potentially slow network conditions—
seconds for uplink and minutes for downlink—we limit interactivity to hyperlinks.

Image Format. Unlike [36], which requires lossless PNG for crowdsourced screenshot merging,
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Sonic utilizes WebP [17], a modern format offering superior compression. Webpages are captured
as WebP images at 10% quality, significantly reducing file size while maintaining readability.
Images are 320 pixels wide and up to 10,000 pixels tall, enabling users to scroll with minimal
data overhead. To accommodate different screen sizes, images are resized using a scaling factor
(screen width / 320), ensuring accurate click map coordinates.

Modulation. We use the Quiet library to modulate Sonic files as waveform audio files (WAV).
Inspired by “audible-7k-channel”, we created a new modulation profile that uses Orthogonal
Frequency-Division Multiplexing (OFDM)—a multi-carrier modulation technique that divides the
available spectrum into multiple orthogonal narrow-band signals called sub-carriers. Our profile

uses 92 sub-carriers, with a center frequency of 9.2 KHz, achieving a rate of 10 kbps.

2.3.1.2 PuUSHING

During low-usage periods, typically at night, Sonic pushes [229] popular webpages to its
clients to ensure faster response times during peak hours. For each webpage, Sonic also pushes
some internal links allowing users to seamlessly interact with a webpage without delay. How-
ever, pushing every hyperlink on a webpage would overwhelm the system’s limited transmission
bandwidth. To address this, we use a prioritization metric to rank internal links based on their
importance:

score =0.68-w-h—0.32-y

where w, h, and y denote the width, height, and vertical distance from the top of the page, respec-
tively. We derive this metric from a Prolific user study detailed in Section 2.4.

When a webpage enters the Screenshot Queue, Sonic computes this score for each hyperlink
and selects the top three ranked links. These are added to a separate idle queue that is only
activated when the server has no active transmissions. As Sonic primarily targets informative

sites like news and blogs, this metric prioritizes pages with top headlines, larger images, and

29



prominent font sizes, ensuring that key content is already available when users attempt to follow

links. Additionally, it penalizes links that are vertically farther from the top of the page.

2.3.2 Sonic CLIENT

At a minimum, Sonic users require a smartphone with a built-in FM radio receiver, serving

as the downlink, along with a wired earphone to act as an antenna. Additionally, users who wish
to send requests, such as retrieving a webpage or interacting with the LLM, need access to an
SMS service for the uplink. On the software side, Sonic operates as a user-space application on a
modified version of Android (see Figure 2.8). We detail the Sonic client in the following.
OS Integration. The Sonic client relies on FM radio hardware to receive data transmissions, but
modern Android devices do not expose FM chip access to third-party applications. Default FM
radio apps are shipped as system apps, integrated into the ROM and signed with privileged keys
that allow hardware-level access. Apps like Sonic are unable to access FM audio without rooting
the device and allowing superuser access, which is unrealistic for adoption and raises significant
security concerns. As such, enabling FM-based decoding requires changes at the operating system
level.

We build a proof-of-concept implementation based on LineageOS [150], a widely supported
open-source Android distribution. We modify its default FM radio app to: 1) allow tuning the FM
chip to a specific frequency, and 2) forward decoded audio streams to other apps like Sonic with-
out needing root or elevated permissions. This is achieved by implementing a BroadcastReceiver [19]
in the Sonic app and a matching sender in the default FM radio app that transmits raw audio
buffers in real time. This change allows Sonic to passively listen to FM broadcasts and decode
data as it arrives. We verified this approach by flashing our customized LineageOS build onto de-
vices that use Qualcomm Snapdragon chipsets, including Xiaomi Redmi Go. We observe that as
long as FM radio drivers are available, this approach can be extended to any other chipset. Man-

ufacturers would implement this change when building the stock operating system for devices
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they ship with FM radio support (see Section 2.3.3).

User Interface. Figure 2.9 shows the Sonic app’s user interface (UI), which consists of three
sections: Browser, ChatGPT and Knowledge Hub. The Browser section mimics modern web
browsers. It features a search bar at the top, allowing users to request URLs. A list of requested
URLs is also displayed, and once received, they appear as “ready to view.” The ChatGPT section
provides a chat-like interface where users can interact with ChatGPT by asking questions and
receiving responses. Since FM radio operates as a broadcast system, all devices tuned to the same
frequency receive the same content, even if it wasn’t specifically requested by those devices.
This broadcast nature of FM radio is leveraged by Sonic with its Knowledge Hub section. In this
section, users can access a list of webpages and ChatGPT responses that are popular within their
region, allowing them to discover trending content shared by others nearby.

Background Service. In addition to the Ul the Sonic app runs a background service that per-
forms two key functions: 1) continuously listening to FM radio audio streams at a specific fre-
quency, and 2) decoding transmissions when a Sonic-encoded signal is detected. The background
service listens to bytes broadcasted by the default FM radio app using a BroadcastReceiver. To
decode Sonic-encoded transmissions, it uses a modified version of Quiet’s Android library [18],
which by default decodes audio from the device’s microphone. We modified the library to ac-
cept bytes retrieved from the phone’s FM radio app and decode them using the same modulation
profile described in Section 2.3.1.1.

This background service operates independently of the user interface and automatically stores
all incoming transmissions in an SQLite database. To optimize storage, any unaccessed content
is automatically deleted after one day.

Error Correction. We utilize crc32 checksums per frame to detect errors. Furthermore, an
inner FEC scheme (v29) and an outer FEC scheme (rs8) are used to correct transmission errors.
For completely lost frames, the Sonic receiver applies nearest-neighbor pixel interpolation [208],

replacing missing pixels with the value of their adjacent left pixel given that webpage consists
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mostly of text read from left to right.

In the literature, better-performing techniques exist to recover missing pixels in images [53,
192, 223], leveraging deep neural networks to learn patterns and structures of the image or uti-
lizing sparsity and gradients in the data to fill in the missing regions. These techniques are both
memory- and CPU-intensive, far beyond what a low-end mobile device can support today. Thus,
we adopt a lightweight approach proposed and benchmarked by [187] that provides consistently

high content readability scores even at a 20% pixel loss rate.

2.3.3 DiscussioN

Rollout. Governments, NGOs, and other organizations can roll out Sonic across a wide range
of Android phones by pre-installing a modified version of the LineageOS ROM (detailed in Sec-
tion 2.3.2). Moreover, smartphone manufacturers could adopt this approach natively when de-
signing their operating systems. Manufacturers can enable support for data-over-FM use cases
like Sonic without compromising system security or requiring root access by bundling a modified
FM radio app that exposes decoded audio streams to other applications. This would allow future
devices to support FM-based services out of the box with minimal engineering overhead.
Incentives and Monetization. Sonic users benefit by gaining access to a streamlined version
of the Web in areas where such access is typically unavailable. For providers, one approach is to
charge users directly. However, this can be difficult since users receiving content via downlink
are passive, making it hard to know when or if content is being accessed. As an alternative,
providers could link the service to SMS, allowing paying users to request content on demand,
while keeping access free for others. Notably, FM broadcasting costs remain constant, regardless
of the number of listeners.

A more promising revenue model mirrors how traditional radio stations function: expand-
ing the audience to increase advertising revenue. Sonic adds a unique offering that could draw

more users, potentially enhancing ad-based profits. Furthermore, ads are no longer limited to
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audio—they can now include visuals embedded in the web pages.

Privacy Concerns. At a high level, Sonic resembles acceleration platforms like Google AMP [93]
and WebLight [152], which modify webpage content before sending it to users. These services
typically rely on access to both the URLs users request and the content they consume, which raises
potential privacy concerns. While a Sonic server could, in principle, gather enough information
to build user profiles, it avoids this issue by using FM radio as a broadcast channel. This mode
of delivery makes it impossible to identify who is receiving the content. As a result, users on
the downlink side remain fully anonymous, passively receiving data initiated by others nearby,
without any associated privacy risk.

Limitations. Sonic does not enable access to login-restricted content, such as online banking
or social media accounts. This is unfeasible for downlink-only users (i.e. no SMS support); for
uplink users, it would involve sharing login credentials with the Sonic server which is a signifi-
cant privacy risk. Moreover, because content is broadcasted, any personalized information (like
account details) would be exposed to anyone within range, further compromising privacy.

Next, Sonic lacks support for video which is a major part of modern web usage, e.g. streaming,
news, and social media. Sonic’s limited bandwidth makes video streaming infeasible. Instead,
video content is replaced with static, non-interactive thumbnails. Likewise, advanced features
driven by JavaScript or CSS are not supported, as Sonic only transmits simplified, pre-rendered

versions of webpages.

2.4 BENCHMARKING

This section benchmarks Sonic under controlled lab settings. We begin by analyzing the rela-
tionship between RSSI (Received Signal Strength Indicator) and packet loss. Next, we benchmark
the impact of such losses on the user experience. We conclude evaluating the effectiveness of

Sonic pixel interpolation and pushing techniques.
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Signal Strength and Sonic Performance. We place five Xiaomi Redmi Go phones, each with
the Sonic app installed, at varying distances from a 0.5 W FM transmitter to artificially create
diversity in RSSI. All devices are kept fully powered meanwhile 5,000 randomly-selected web-
pages from the Tranco [145] list are broadcasted over FM at a frequency of 91.5 MHz, so that
they are concurrently received by the testing devices while emulating varying RSSI. Figure 2.10
shows the CDF of loss rates across all transmissions and its inset plot presents loss percentage
as a function of RSSI range. The main CDF shows that over 95% of transmissions experienced
loss rates below 10%. Furthermore, high loss percentages (for the remaining 5% of transmissions)
are largely confined to relatively poor signal conditions, particularly in the RSSI range of 70 to
—-60 dBm. As RSSI improves, the loss percentage rapidly declines and stabilizes near zero.
Pixel Interpolation. [187] evaluates the impact of visual loss and pixel interpolation on per-
ceived content clarity and text readability using feedback from 151 Pakistani university students
across 50 test webpages. Their results show that even at a 20% pixel loss rate — which is rare
in Sonic as shown in Figure 2.10 — users reported a median content clarity score of 7 out of 10,
indicating a generally clear understanding of the page. While text readability was more affected,
it remained acceptable at a loss rate of 20%. Rating distributions from this study are provided in
Appendix 2.9.
Pushing Metric. We conduct a user study on Prolific [191] to evaluate the likelihood of hyper-
link clicks based on visual features of each link. Specifically, we examine the area covered by the
link in a webpage screenshot (width - height) and its vertical position on the page (y-position). We
randomly sample 100 webpages from the Tranco list. For each page, we generate mobile screen-
shots along with the bounding-box coordinates (x, y, w, h) of every hyperlink. We then create
an interactive webpage where participants are asked to click on the link they would “naturally”
choose to visit next.

A total of 100 participants take part in the study, each interacting with 10 different pages. The

pages are distributed so that each webpage is evaluated by ten users, resulting in 1,000 total page
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interactions. Using the data collected from our study, we train a logistic regression model to learn
the relative importance of a hyperlink’s area and vertical position in predicting click likelihood.
The model fits a weighted linear combination of these features to estimate the probability of a

link being clicked. The resulting scoring function is:

score =0.68-w-h—-0.32-y

where w, h, and y denote the width, height, and vertical distance from the top of the page.
The negative weight on y-position reflects that links appearing closer to the top (i.e. with lower
y-values) are more likely to be clicked. We use this scoring function as our prioritization metric
for pushing.

Figure 2.11 shows the likelihood of clicking a hyperlink based on its area and vertical position
on the page. The heatmap reveals that links with larger areas and located closer to the top (i.e.
lower y-values) are more likely to be clicked. This trend is visible in the gradient transition
from red (low click probability) to green (high click probability), moving from the bottom-left
to the top-right of the plot. Although the maximum observed click probability is only 0.53—
indicating that clicks are far from guaranteed—the relatively higher likelihood still offers a useful
signal for prioritization. Since the server remains underutilized during idle periods, pushing these
links—even at moderate click probabilities—can improve user experience with minimal additional

cost.

2.5 DEPLOYMENT

This section outlines Sonic deployment at a live FM radio station in Cameroon. We selected
this location given its low internet penetration rate comparable to low-income regions (58.1% of

Cameroon’s population is offline as of 2025 [73]).
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Methodology. We start by signing an agreement with an FM radio station in Cameroon to allow
the Sonic server to transmit content from 10PM to 5AM daily for six weeks. This overnight win-
dow was the only available airtime, as the station’s daytime schedule was reserved for regular
programming. Such opportunistic use of off-peak radio hours represents the most feasible adop-
tion path for Sonic in the near term. In the future, we envision dedicated FM channels operating
full-time for data broadcasting.

We recruited 30 Cameroonians to experiment with Sonic during this period, i.e. request web-
pages and ask questions to ChatGPT. Study participants were given a Xiaomi Redmi Go phone
(featuring Qualcomm Snapdragon 425 processor and 1 GB RAM) flashed with the modified ver-
sion of LineageOS, and Sonic app pre-installed. To send requests, each phone had a SIM card with
an unlimited SMS bundle.

As shown in Figure 2.12, the Sonic server was set up at the FM radio station using a MacBook
Air with 8 GB of RAM, running the Sonic Docker container. We used Huawei’s E8372h-320
LTE/4G USB Mobile WiFi Dongle [113] to interface with the SIM card via huawei-1te-api [212]
and receive incoming SMS messages. The Sonic app was programmed to send SMS messages
to the number associated with the SIM card used by the dongle. For internet access, we used a
mobile data subscription from MTN Cameroon (see Section 2.2 for details on plan and connection
quality).

Data Collection. Table 2.1 outlines our deployment. A total of 30 participants were recruited,
divided into two sequential batches of 15 participants each. The study spanned 6 weeks in total,
with each batch participating for 3 weeks. As an incentive to the participants, we offered USD
2 per person per day. Before the study, participants signed a consent form and were allowed to
withdraw from the study at any time. The participants were then given an introduction on how
to use the Sonic app; further, an institutional review board (IRB) approval was granted to conduct
the study. The authors who conducted the study are CITI [63] certified. No sensitive or personal

information of the participants was collected, except for their name and phone number to contact
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Property Description

Location Cameroon
Participants 30
Number of batches 2
Participants per batch 15
Duration of study 6 weeks
Duration per batch 3 weeks
Transmission window 10 PM to 5 AM daily
Daily request quota 10 (GPT + URL)
Total URL requests 1,737
Total GPT requests 2,936
Median requests per user Total: 160, GPT: 96, URL: 64
(in 3 weeks)

Table 2.1: Summary of Sonic deployment.

them and disburse the incentive money at the end of the experiment.

Study participants were allowed to make up to 10 requests per day-this included both web-
page URL requests and GPT queries. Participants were allowed to make requests at anytime
during the day; however, responses were transmitted during the transmission window of 7 hours
(10 PM to 5 AM). Over 3 weeks, participants made 1,737 URL requests and 2,936 GPT queries in
total. The median number of requests per user was 160, with 96 GPT queries and 64 URL requests.
Deployment Challenges. We encountered several challenges during Sonic deployment. Ini-
tially, airport security confiscated 10 mobile phones intended for participants, significantly re-
ducing the number of devices available for deployment. Only 15 phones ultimately reached
Cameroon, forcing us to conduct the experiment in two separate batches. Securing reliable in-
ternet connectivity for the Sonic server also proved challenging: even the best available mobile
internet plan from MTN was unstable (as discussed in Section 2.2), occasionally unavailable for
entire days, and affected by significant latency. Compounding these issues, the village where
we deployed frequently experienced electricity outages—lasting up to 8 hours and often over-
lapping with the transmission window—completely disrupting FM radio transmissions. During
these outages, although users continued to request content via SMS, they were unable to receive

any responses.
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Operational issues further complicated the deployment. In the first batch, the Sonic app sent
acknowledgment messages (ACKs) for all received transmissions, enabled by unlimited SMS bun-
dles purchased for each participant. However, the resulting high volume of SMS traffic quickly
raised suspicion with the mobile operator, leading to the blocking of all deployed SIM cards.
Consequently, we had to disable the ACK mechanism, leaving us without real-time operational
feedback or heartbeat signals from participants’ phones. Additionally, the success of FM radio
transmissions critically depended on the radio station staff accurately switching to Sonic broad-
casts at exactly 10 PM each night. This switch-over, however, was inconsistent, resulting in
multiple days without any transmissions. We also discovered that the transmitter’s output vol-
ume needed to be set to 100% to achieve better range and improve transmission quality, but
maintaining this setting consistently proved challenging for the radio staff as well. Finally, the
effectiveness of the Sonic system relied heavily on participants regularly charging their phones
and keeping earphones connected at all times, as the earphones served as antennas for receiv-
ing broadcasts. Collectively, these logistical and operational hurdles made it difficult to maintain

ideal conditions for Sonic deployment.

2.6 RESULTS

In this section, we present our analysis from Sonic deployment at a live FM radio station in
Cameroon.
RSSI and Loss Analysis. Figure 2.13 shows the spatial distribution of RSSI measurements across
a 100m-resolution grid around the FM radio station. Using ordinary kriging [244], we interpo-
late user-collected GPS-tagged signal data to generate a continuous RSSI map. While the radio
station is centrally located, the strongest signal regions are notably offset to the northeast, with
two additional users registering high RSSI values at distances of approximately 900-950 m (one

directly to the south and another to the southwest). Contrary to the expected radial decay in sig-
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nal strength with distance, these observations demonstrate the influence of antenna height and
placement similar to what was observed by [32]. The northeastward bias in signal strength likely
results from the antenna’s physical orientation or directional configuration, while the isolated
strong-signal detections at longer distances suggest favorable line-of-sight conditions.

Figure 2.14 shows transmission loss percentages across RSSI ranges, with each violin’s width
representing the proportion of total transmissions in that range (e.g. 22.1% of all transmissions
occurred between -70 and -60 dBm). We observe a clear trend: better signal strength (i.e. higher
RSSI) is associated with reduced transmission loss. In poor signal conditions below -90 dBm,
the loss rate is frequently near 100%. In contrast, for stronger signals in the -80 to -50 dBm
range (accounting for above 60% of total transmissions), data points are more concentrated below
20%, and instances of 100% loss are rare. This confirms, in the wild, the observations from our
benchmarking under controlled settings (see Figure 2.10).

To investigate per user performance, Figure 2.17 shows boxplots of RSSI values per participant
alongside their completion rates for both GPT and URL requests. Users with stronger median RSSI
values (e.g. above —70 dBm) consistently achieve high completion rates across both content types.
For instance, users 15-17, 21-28, and 30 report more than 80% completion rates, indicating that
strong and stable signal conditions are sufficient for reliable content delivery. In contrast, users
with lower and unstable signal quality, particularly those with median RSSI fluctuating below
—-90 dBm (e.g. users 4, 12, and 19), show drastically reduced completion rates, often below 30%.

Due to their smaller sizes, GPT responses have shorter broadcast duration than webpages.
However, they are more susceptible to failures from partial frame loss. A single 500-byte frame
drop can disrupt an entire GPT message, whereas similar loss in a webpage screenshot has limited
impact (see Figure 2.20). As a result, webpages achieve higher completion rates. This can be
observed for users 7, 8, 10, and 11, where URL completions are consistently higher than GPT
under similar signal conditions. This trend is also reflected in Figure 2.15, which shows the CDF

of loss rates observed for the two types of content—GPT responses and URL transmissions. URL
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transmissions (orange line) appear more loss-resilient than GPT (blue line) due to their shorter
duration and stricter tolerance to partial frame loss.

Scalability. Figure 2.16 shows the evolution of the transmission queue over the course of a day.
We select the busiest day to understand transmission trends within the transmission window
(marked by the vertical dashed lines at 22:00 and 05:00). The blue trace represents the real de-
ployment of Sonic, with 15 users receiving content on a single frequency. Although each user
requested 10 pages, on average, the queue size peaked at 103 items, indicating that roughly 30%
of transmissions were served from the cache. The sharp spike at 09:30 corresponds to a scheduled
“push” of pre-selected news pages during an otherwise idle period. All other curves represent
FCFS (First Come First Serve) queue simulations, scaling this baseline traffic to heavier loads.
For example, with 30 users on a single FM frequency (orange), the queue peaks at around 200
items but is still fully transmitted within the 7-hour transmission window. This suggests that
one frequency can support up to 30 active users with similar queuing patterns. When capacity
increases to two frequencies and 105 users (green), the peak backlog rises to 800 items, half of
which could not be transmitted before 05:00. Similar patterns are observed for 150 users with
three and four available frequencies, respectively. However, a configuration of 300 users with
10 available frequencies appears sufficient to fully transmit the queue within the transmission
window.

Content Analysis. Figure 2.18 presents a treemap of the top 10 content categories for both GPT
queries and URL requests made by Sonic users. GPT queries are classified using Meta’s Llama
3 model [95], while domains in URL requests are categorized using Cloudflare’s Domain Intelli-
gence API [65] following the methodology in [209]. Among GPT queries, Geography dominates
with 22% of all requests, followed by Politics (9%), Sports (6%), History (5%), Technology (4%),
and Medicine (4%). Smaller but still notable portions of queries are related to Philosophy, Sci-
ence, Business, and Chemistry. For URL requests, News & Media (12%) and Business (10%) are

the most common, followed by Technology and Education. Users also accessed sites in categories
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such as Search Engines, Ecommerce, Travel, and Video Streaming. However, content from these
latter categories is less likely to be useful given Sonic’s current limitation of only supporting page
screenshots with limited (and slow) hyperlink interactivity.

User Experience. At the end of the experiment, we asked participants to complete an exit survey
assessing their experience with Sonic across three dimensions. Each question was rated on a 5-
point likert scale, with varying response ranges depending on the aspect evaluated. For system
reliability, users responded to: “How reliable was the content received through the Sonic app?” (1
= Not reliable at all, 5 = Very reliable). For Ul intuitiveness, they answered: “How intuitive is the
user interface of the Sonic app?” (1 = Not intuitive at all, 5 = Very intuitive). Lastly, for content
relevance, users rated: “How useful was the content you received from the system?” (1 = Not useful
at all, 5 = Very useful).

Figure 2.19 shows the CDF of responses to the survey questions. Overall, user feedback was
positive: 72% of participants rated the Sonic app as “intuitive” and the content as “useful” (with
scores of 4 or 5). In contrast, system reliability received relatively lower ratings, with only 62% of
users selecting 4 or 5. This is expected, as some participants experienced fluctuating or low RSSI

values, leading to reduced request completion rates, as discussed earlier in Figure 2.17.

2.7 RELATED WORK

Improving internet accessibility in developing regions is crucial for delivering essential ser-
vices such as education and healthcare. However, challenges like unreliable hardware, limited
cellular coverage, high data costs, and increasingly complex webpages hinder connectivity. Ex-
isting efforts focus on web simplification and new access technologies tailored for these regions.
Sonic combines web simplification with data-over-sound transmission to enable connectivity in
rural and remote areas. In the following, we discuss related works in both research areas.

Web Simplification. Prior work has explored reducing webpage complexity to improve per-
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formance under limited connectivity. Habib et al. [100] proposed a framework that dynami-
cally adapts webpage complexity based on network conditions. Muzeel [141] removes unused
JavaScript, while MAML [184, 185] introduces a minimalist specification language omitting JavaScript
and CSS. Klotski [45] prioritizes user-relevant content, Shandian [247] restructures loading via
split-browser design, and Polaris [175] accelerates rendering using dependency graphs. Though
effective under constrained bandwidth, these methods require basic internet access, which is un-
available or unaffordable in many rural areas.

Data over FM. To our knowledge, Sonic is the first system to leverage FM radio as a means to
broadcast internet connectivity in rural regions. The process of encoding webpages as sound is
inspired by several research papers [31, 131, 146, 207, 214] and open source tools [29, 89, 193] that
have explored how to transmit data over sound at inaudible audio frequencies, i.e. above 18kHz.
The usage of FM radio for novel applications has also been explored by in previous works includ-
ing RevCast [215] which leverages the broadcast nature of FM radio for certificate revocation.[38,
39] use FM radio broadcasting to disseminate warning information to drivers. In 2003, Microsoft
used FM subcarrier signals to turn ordinary gadgets into smart gadgets. MSN Direct [169] was
a subscription network which sent short text updates over DirectBand, a 67.65 kHz subcarrier

leased by Microsoft from commercial radio broadcasters.

2.8 CONCLUSION

Despite decades of progress in global connectivity, billions of people around the world re-
main offline—not due to a lack of infrastructure, but because of persistent affordability barriers.
Access to the internet continues to be out of reach for many, especially in resource-constrained
regions where even low-cost mobile data can be prohibitively expensive. In this context, Sonic
introduces a novel, ultra-low-cost approach to narrowing the digital divide by leveraging FM ra-

dio—a ubiquitous, inexpensive, and underutilized medium—to deliver essential web content and
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large language model (LLM)-based interactions without requiring an internet connection. By
combining a full-system design, seamless integration with Android FM tuners, and deployment
in real-world settings such as Cameroon, we demonstrate that Sonic can reliably transmit simpli-
fied web content and Al-generated responses in a way that is accessible, scalable, and resilient.
Our work showcases the untapped potential of repurposing existing broadcast infrastructure to
extend digital access to underserved populations, offering a practical path forward for connect-
ing the unconnected and promoting more equitable access to knowledge and services across the

globe.
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Figure 2.12: FM radio station in Cameroon, and Sonic server located inside the station.
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2.9 PixeL INTERPOLATION

Figure 2.20 contains the results from a user study conducted by [187] to benchmark the effec-
tiveness of their pixel interpolation approach. The study simulates varying levels of visual loss
on popular Pakistani webpages and evaluates their impact on perceived readability and content
clarity. Screenshots of the top 50 webpages from the Tranco list were captured and processed
under four levels of synthetic visual loss (5%, 10%, 20%, and 50%). Each screenshot was rendered
in two variants—one with missing pixels left dark, and another corrected using nearest-neighbor
pixel interpolation (detailed in Section 2.3.2)—yielding 400 total images.

A total of 151 university students in Pakistan participated in the study, each rating 20 ran-
domly assigned screenshots such that each image received at least seven responses. Ratings were
collected on a 0-10 Likert scale across two dimensions: (a) content clarity (How well can you
understand the content in this image?), and (b) text readability (How readable is the text in the
image given the noise?). Figure 2.20 presents median boxplots per webpage, with hatched bars
representing content clarity and plain bars representing text readability. Even with a 20% pixel
loss rate, participants reported a median content clarity score of 7 out of 10, suggesting that the
overall understanding of the page remained largely intact. Although text readability was more

impacted, it continued to be within an acceptable range at 20% loss.
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3 TowAaRDS A WEB WITHOUT DIGITAL

INEQUALITY

This chapter is adapted from "Towards a World Wide Web without digital inequality” pub-
lished in the Proceedings of the National Academy of Sciences (PNAS) [59]. In this chapter, we
discuss Lite-Web, a hybrid solution to imrpove web accessibility in emerging regions with limited

network infrastructure.

ABSTRACT

The World Wide Web empowers people in developing regions by eradicating illiteracy, sup-
porting women, and generating economic opportunities. However, their reliance on limited band-
width and low-end phones leaves them with a poorer browsing experience compared to privileged
users across the digital divide. To evaluate the extent of this phenomenon, we sent participants
to 56 cities to measure the cost of mobile data and the average page load time. We found the
cost to be orders of magnitude greater, and the average page load time to be four times slower,
in some locations compared to others. Analyzing how popular webpages have changed over the
past years suggests that they are increasingly designed with high processing power in mind, ef-
fectively leaving the less fortunate users behind. Addressing this digital inequality through new

infrastructure takes years to complete and billions of dollars to finance. A more practical solution
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is to make the webpages more accessible by reducing their size and optimizing their load time.
To this end, we developed a solution called Lite-Web, and evaluated it in the Gilgit-Baltistan
province of Pakistan, demonstrating that it transforms the browsing experience of a Pakistani
villager using a low-end phone to almost that of a Dubai resident using a flagship phone. A user
study in two high schools in Pakistan confirms that the performance gains come at no expense to
the pages’ look and functionality. These findings suggest that deploying Lite-Web at scale would

constitute a major step towards a World Wide Web without digital inequality.

3.1 INTRODUCTION

The World Wide Web (WWW) was envisioned as an egalitarian platform that provides uni-
versal access to the wealth of accumulated human knowledge. It has enabled the creation of
projects such as Wikipedia, Khan Academy, and Massive Open Online Courses (MOOCs), all of
which hold the promise of democratizing education [104]. In developing regions, the WWW has
contributed to women’s empowerment by offering a gender-opaque medium that alleviates bias,
provides access to distance learning and employment opportunities, and increases the chances of
receiving support from organizations concerned with the well-being of women [118, 256]. An-
other way in which the WWW supports the developing regions is by generating economic oppor-
tunities. For example, it has been shown that fast Internet access can decrease (un)employment
inequality in Africa [111], and mobile broadband access can decrease poverty, particularly among
rural households [30]. Additionally, the development of e-commerce can play a significant role in
narrowing the urban-rural income gap in China [148]. Access to critical information empowers
farmers and fishermen in emerging markets. For example, by tracking weather conditions and
comparing wholesale prices, farmers and fishermen in India increased their profit by 8%, even-
tually leading to a 4% decrease in prices for their customers [127]. The WWW is even helping

eradicate illiteracy—one of the main barriers to digital inclusion. For example, in Sub-Saharan
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Africa, where most people do not own any books, the massive proliferation of mobile devices al-
lows people to develop, sustain and enhance their literacy skills by providing a medium through
which they can access reading materials [252]. Moreover, providing access to online material
in Malawian boarding schools can encourage reading and improve educational outcomes [75].
Other examples include non-profit initiatives such as remoteStudentExchange.org, which in
the few months since its launch in January 2021 has given thousands of students in low- and
middle-income countries direct access to (online) courses from the world’s leading universities.
‘The growing adoption of mobile phones has contributed to the significant increase in In-
ternet access over the past decade. In 2018, nearly 300 million users were newly connected to
the mobile web, and in 2019, the total number of mobile web users exceeded 3.5 billion world-
wide. Of those users, 74% live in low- and middle-income countries [234], where mobile phones
are the primary means of Internet access. Many of those users depend solely on mobile phones.
For instance, across 18 developing countries, an average of 57% of Internet access in 2018 was
carried out exclusively via mobile phones [234]. A key enabler of mobile Internet adoption is
affordability; not only is mobile data becoming available at lower prices [156], but also mobile
phones are becoming more affordable. For instance, cheaper phones are expected to be available
in Pakistan [123], India [129], and Africa [219] in the near future, as a new generation of phones
is expected to be made available for only $20 [5]. Although access to the mobile web is expand-
ing in developing countries [233] to the point of surpassing access to piped water and consistent
electricity [167], the user experience remains poor [225, 265]. This is part of a larger phenomenon
known as the digital divide, which separates those with high-quality access to information and
communications technologies from those with poorer alternatives [233]. Our primary goal is to
evaluate the extent of this phenomenon worldwide, and to explore affordable and scalable so-
lutions that can potentially bridge the divide and alleviate the digital inequality experienced by

underserved communities.
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3.2 REesuLTs

UNDERSTANDING DIGITAL INEQUALITY

To better understand the variation in web access quality across the globe, we needed to send
participants to different cities spanning six continents, and have each of them access the same set
of webpages (to control the browsing experience) using the exact same hardware (to control the
processing power) and the same web browser (Google Chrome in our case) at the same local time
(12:00 pm in our case) while being connected to a cellular network (rather than Wi-Fi) to ensure
that any observed differences in average page load time are not influenced by variations in these
factors. To this end, we leveraged the diversity of the student population at New York University
Abu Dhabi by recruiting undergraduates traveling back to their home countries during the winter
break. Each participant was handed the same low-end phone model, namely Xiaomi Redmi Go,
and was asked to install a tool on their laptop, called WebPageTest [251], which automates web
requests on that phone while recording various page load time metrics using the actual (rather
than emulated) connection speed. Those web requests were for the 100 webpages that were most
frequently visited worldwide at the time according to Alexa [134].

The students that we recruited ended up visiting 72 cities across six continents. Upon their
arrival at their respective destinations, participants purchased a SIM card along with an affordable
pricing plan from a local service provider, and kept the receipt which specified the total cost and
the number of Gigabytes provided by the plan. After that, they connected the phone to their
laptop via a USB cable, and ran the tool at 12:00 pm local time to automatically request the 100
webpages via Google Chrome on the phone and extract the results. The experiment took place in
December 2019 and January 2020. Students who failed to follow the experimental protocol were
discarded from our analysis, yielding a total of 56 cities.

When comparing the price of 1 Gigabyte across countries, one needs to take into consideration
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the differences in living standards. For instance, even if the cost of 1 Gigabyte cost in a rich
country was the same as that in a poor country (e.g., 1 USD) this may be considered affordable in
the former but not the latter, e.g., due to differences in average salaries. Thus, following common
practice in economics [138], we use the purchasing power parity (PPP) in each country as an
exchange rate to convert the value of 1 Gigabyte in their local currency to their equivalent value
in USD, thereby reflecting the difference in the standard of living between countries. Fig. 3.1a
summarizes the results of our experiment, where circles correspond to locations, colors represent
average page load time, and diameters represent adjusted costs per Gigabyte. As can be seen,
there is a clear digital inequality across the globe. The average page load time in some locations
is four times longer than in others (about 47 vs. 12 seconds), and the cost per Gigabyte is orders of
magnitude greater than in others ($43 vs. $0.08); see Supplementary Table 1 for numeric values.
Similar results were obtained when using direct conversion rates (Supplementary Fig. 1) and
when using gross domestic product (GDP) in purchasing power parity (PPP) for each country
(Supplementary Fig. 2).

To facilitate the comparison between the different locations, we plotted the distribution of
the cost of one Gigabyte per location (Fig. 3.1b) as well as the distribution of the page load time
per location, averaged over different webpages (Fig. 3.1c). Indeed, these distributions highlight
the inequality between the locations. Moreover, to understand how the webpages themselves
differ in terms of their complexity, we plotted the distribution of the page load time (seconds) per
webpage, averaged over different locations (Fig. 3.1d). As can be seen, the page load time differs
greatly across the webpages, ranging from 3.6 to 62.6, with the mean being 20.8 (note that this is
the time required to load the entire page).

Since the hardware specifications can affect the page load time, all measurements were taken
using the same phone model, ensuring that the specifications were unified across locations and
webpages. A low-end phone—Xiaomi Redmi Go—was used to help us understand the web brows-

ing experience of disadvantaged users; see Supplementary Table 2 for the technical specifications
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of this phone. Note, however, that users with high income may afford high-end phones instead,
which would make the inequality even greater. We found that the page load time and the cost
per Gigabyte are not related to population size. Furthermore, when comparing capital to non-
capital cities, we found the page load time to be almost identical, and the cost per Gigabyte to be
twice as high in capital cities. Interestingly, we found a positive correlation (r = 0.46, p = 0.0004,
Supplementary Fig. 3) between page load time and cost per Gigabyte, indicating that those with

poorer connection quality pay more, not less, than their counterparts.

JAVASCRIPT IMPACT ON DIGITAL INEQUALITY

Arguably, digital inequality can be eliminated by providing cheap, fast connections world-
wide. Unfortunately, this would not only take years to accomplish, but would also be extremely
costly, e.g., achieving universal, affordable, and good quality Internet access in Africa by 2030
would require 100 billion US dollars [66]. A significantly cheaper alternative would be to make
the webpages themselves “lighter”, by reducing their bandwidth and processing requirements.
Such a solution would be desirable even if the lighter versions were slightly different from the
original pages, as long as the compromise to the user experience is minimal. However, given
the myriad webpages in the WWW, it may seem infeasible to analyze them all to identify the
elements that are costly (in terms of bandwidth and processing time) and non-essential to the
webpage (in terms of appearance and functionality).

Our key insight is to focus on JavaScript elements, which are not only computationally inten-
sive, but are also widely-used across the WWW [82]. Processing these elements is more demand-
ing for web browsers than equivalently-sized web components [183]. Moreover, the download
size of these elements often represents a considerable percentage of the total download size per
page [<empty citation>]. Surprisingly, despite its ubiquity, the cost of JavaScript processing
on page load time is not fully understood to date. Motivated by this observation, we went six

years back in time to understand how the processing of JavaScript affected the web browsing
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Figure 3.1: Average page load time and data cost across different locations. a, Each location is rep-
resented by a circle whose diameter reflects the costs per Gigabyte (measured based on the purchasing
power parity), and whose color represents the average page load time (measured in seconds) of the 100
most frequently visited pages worldwide. Page load times were measured by accessing the pages via the
same low-end mobile phone model—Xiaomi Redmi Go—using a cellular network at that location. b, Dis-
tribution of the cost of 1 Gigabyte (USD) per location. ¢, Distribution of the page load time (seconds) per
location, averaged over different webpages. d, Distribution of the page load time (seconds) per webpage,
averaged over different locations.
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experience on high-end vs. low-end phones over the years. To this end, we considered the 100
webpages most frequently visited in 2019. For each page, we retrieved a version per year over the
period 2015-2020 from the Internet Archive Wayback Machine [122]. The pages whose versions
had technical issues were filtered out, ending up with a total of 55 webpages. We cloned the
retrieved versions on our own web server and ran all experiments locally on that same server.
This ensures that, when comparing webpages across different phones and years, we eliminate
any differences related to network connectivity, access, and servers. For each year in 2015-2020,
two mobile phones released in that year were used—a low-end phone and a high-end phone—to
access the webpages retrieved in that year. We set up WebPageTest [251] to record the JavaScript
processing time while accessing the pages from the different phones.

Fig. 3.2a shows the average time taken over the 55 webpages per year, using high-end phones
(blue curve) and low-end phones (red curve); the phone models are named in the figure itself,
and their technical specifications are provided in Supplementary Tables 3 and 4. As can be seen,
the time spent processing JavaScript has decreased slightly on high-end phones, yet increased
significantly on low-end phones over the years (from just over 2 seconds to nearly 8 seconds).
Note that the increase is not due to a reduction in the processing power of the low-end phones
used in our experiment; see Supplementary Table 3. This suggests that the observed increase
is attributed to the webpages becoming more computationally intensive over the years. It also
suggests that popular webpages are designed with high processing power in mind, neglecting
the less fortunate users who can only afford low-end phones, thereby exacerbating the digital in-
equality. Finally, Fig. 3.2b shows the percentage of page load time spent on JavaScript processing.
As can be seen, in the past three years, the percentage was 20% for high-end phones and nearly

50% for low-end phones.
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Figure 3.2: JavaScript processing time, measured on high-end vs. low-end mobile devices over
the past six years. For each of the 100 webpages most frequently visited in 2019, we retrieved a version
per year from 2015 to 2020. The pages whose versions demonstrated technical issues were filtered out,
ending up with a total of 55 webpages. For every year in 2015-2020, two mobile phones released in that
year were used—a high-end phone and a low-end phone—to access the webpages retrieved in that year; the
phone models are specified in the figure. a, Average JavaScript processing time (in seconds), measured
using a high-end phone (blue curve) and a low-end phone (red curve). The data point for the low-end
phone of 2017 was interpolated, since no such phone was available to purchase at the time of the study.
b, Percentage of page load time spent on JavaScript processing, using a high-end phone (blue bar) and a
low-end phone (red bar).
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3.2.1 OUR sOLUTION: LITE-WEB

So far, we demonstrated that a significant percentage of page load time is spent on JavaScript
processing, and this percentage is greater for users of low-end phones. With this in mind, we
propose a solution called Lite-Web, which focuses on producing lighter versions of webpages
by optimizing the usage of JavaScript. Lite-Web is a hybrid approach, combining three of our
state-of-the-art solutions, namely: SlimWeb [57] and JSCleaner [55], both of which block non-
essential Javascript elements, and Muzeel [141], which optimizes essential JavaScript elements.
Let us now provide a basic description of these three solutions. For more details on each solution,
see Supplementary Notes 2, 3, and 4, and for an overview of related works, see the Discussion
section.

SlimWeb is based on the idea that JavaScript elements can be classified based on their code,
rather than their serving domains, as is the case with alternative commercial solutions. Relying
on JavaScript code is particularly challenging since the code tends to span thousands of lines,
and may include obfuscated code (which is deliberately made difficult to understand to prevent
reverse engineering), machine generated code (which is often not human readable), or “uglified”
code (which is generated via techniques that reduce code size at the expense of readability). By
leveraging machine learning techniques, SlimWeb is not only capable of overcoming the above
challenges, but also classifying previously unseen elements, including unknown libraries, uniden-
tified serving domains, and obfuscated code, all of which are commonly found in today’s Web.
Such classification would not be possible using standard profiling techniques. As for the classes
used in SlimWeb, they are based on the main JavaScript categories identified by experts in the
web community [22]. Out of these classes, SlimWeb blocks the following three: (1) Advertising,
which facilitates advertisement; (2) Analytic, which collects data about the users; and (3) Social,
which enables social interactions such as likes and shares.

Having described SlimWeb, let us now move on to JSCleaner—the second component of our

63



hybrid approach. Specifically, this rule-based solution is used to identify and block non-essential
JavaScript elements that do not fall under any of the three classes used by SlimWeb. These el-
ements are classified by JSCleaner as non-critical to the user experience if their code does not
contain any functions that handle the page content or functionality.

Finally, let us describe the third component of our hybrid approach, namely Muzeel. Unlike
the previous two solutions, which block non-essential JavaScript elements, Muzeel optimizes the
code of essential elements. This is done by identifying and eliminating dead code—parts of the
JavaScript code that are never used by the webpage. One of the reasons behind the existence
of such code is the use of general-purpose libraries that provide far more functionalities—and
hence far more code—than what is actually required by the page. The use of such libraries is
a common practice among web developers to speed up the development process, with libraries
such as jQuery appearing in 83% of mobile pages worldwide [106]. The identification of dead code
is challenging for several technical reasons stemming from the dynamic nature of the JavaScript
programming language; see the works by Chugh et al. [61] and Obbink et al. [178] for more details.
Muzeel utilizes a novel interaction-bot that emulates how a user may interact with the page. Such
an approach enables the identification of JavaScript functions that can safely be removed without

affecting the user experience and the overall page content.

3.2.2 EvALUATING LITE-WEB

To evaluate the impact of Lite-Web, we needed to run field experiments that are true to the
web browsing experience in developing regions. As a first step, it was crucial to identify a location
where the inhabitants’ well-being is severely affected by poor Internet connectivity. Moreover,
both the websites and the mobile phones used in the experiment needed to be popular in the
identified location. Finally, the participants involved in the evaluation were required to be digital
natives, who regularly browse the Internet and are familiar with the local network conditions.

Against these desiderata, we chose the Gilgit-Baltistan province in Pakistan, where poor
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Internet quality causes severe disruption to students, preventing them from keeping up with
their peers. This was demonstrated by the students’ protests in July 2020 demanding digital
rights [228], leading to the hashtag #Internet4GilgitBaltistan becoming the second-highest ranked
on Twitter in Pakistan [2]. As for the mobile phone on which the experiments are conducted, we
chose the same low-end phone used earlier, namely QMobile i6i 2020, since it is manufactured by
a popular Pakistani company. Finally, we used the Tranco-list [145] to retrieve the 100 Pakistani
webpages that were most frequently visited in 2021. Now, we are ready to evaluate the impact of
Lite-Web both quantitatively (using automated measurements) and qualitatively (through a user

study).

3.2.3 QUANTITATIVE EVALUATION

we sent two teams to four different locations within the Gilgit-Baltistan to measure the im-
pact of Lite-Web based on four evaluation metrics: page load time, Speed Index, page size, and
JavaScript processing time. More specifically, the four locations are Taus, Hundur, Sherqilla, and
Puniyal, all marked on the map in Supplementary Fig. 4. The measurements were conducted
using the WebPageTest framework [251], where the QMobile i6i mobile phone was controlled
through a laptop to automatically launch both the original and the Lite-Web versions of each of
the 100 Pakistani webpages. This experiment was repeated three times to account for any subtle
variations that may arise when the same webpage is visited multiple times. As a result, we ended
up with a total of 1,200 visits (4 locations X 100 webpages X 3 visits).

Fig. 3.3a depicts the impact of Lite-Web on page load time—a measure representing the elapsed
time from initiation (when the user types in the Web address) to completion (when the page is
fully loaded). As shown in the figure, the reduction in page load time across the four locations is
68% (in Taus), 43% (Hundur), 72% (Sherqilla), and 64% (Puniyal), with the average time reduced
from 61 to 23 seconds. To determine whether this improvement is sufficient to bridge the digital

divide, we compared Lite-Web’s outcome to what the people of Gilgit-Baltistan would experience
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if they were browsing the same 100 Pakistani pages in a developed region (Dubai) on a high-end
phone (Samsung Galaxy S20+) using a superior cellular network connection (4G+). As can be seen
in Fig. 3.3a, the additional waiting time that users in Gilgit-Baltistan would suffer compared to
their privileged counterparts is reduced from 48 seconds (average difference between yellow bars
and pink bar) to just 10 seconds (average difference between blue bars and pink bar), amounting
to an overall reduction of about 80%.

Fig. 3.3b corresponds to the second performance metric, namely Speed Index, which measures
the time taken for the contents of a page to be visibly populated and displayed to the user. Again,
the use of Lite-Web results in a significant improvement across all four locations, reducing the
gap between developed and developing regions by about 70%. Fig. 3.3c depicts the impact of Lite-
Web on the time spent processing JavaScript. As can be seen, the time drops by an average of 54%
across locations, and the gap between Gilgit-Baltistan and Dubai drops by about 80%. Fig. 3.3d
shows how the size of different webpages is reduced by Lite-Web. Specifically, the page size
averaged across webpages and locations is reduced by about 50% (from 0.54 to 0.28 megabytes).
Notice that the average page size in Gilgit-Baltistan (without Lite-Web’s improvements) is slightly
smaller than Dubai’s. This is because high-end phones request bigger size images compared to
low-end alternatives. However, after using Lite-Web, the webpages become smaller than those
downloaded in Dubai by about 60%.

Finally, we evaluated the impact of each of Lite-Web’s constituent parts, namely SlimWeb,
Muzeel, and JSCleaner. As shown in Supplementary Fig. 5, SlimWeb is the most impactful in
terms of the time-based metrics (page load time, Speed Index, and JavaScript processing time),
while SlimWeb and Muzeel have a comparable impact in terms of page size reduction.

We compared Lite-Web to two state-of-the-art industry solutions that are widely deployed,
namely Opera Mini [181] and Brave [42]. In particular, Opera Mini sends users’ webpage requests
to their proxy server, where the pages are first requested and then compressed before being sent

back to the user in order to reduce the transfer size and speed up the browsing experience. It is
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Figure 3.3: Quantitative evaluation of Lite-Web. Using the 100 most frequently visited Pakistani
webpages in 2021 to evaluate Lite-Web in four locations situated in the Gilgit-Baltistan province—namely
Taus, Hundur, Sherqilla, and Puniyal. The evaluation is done by comparing the Lite-Web version (blue bar)
to the original version (yellow bar) on the same low-end phone (QMobile i6i 2020) under the same cellular
network conditions (SCOM 4G). Additionally, both the original and the Lite-Web versions are compared to
a baseline (pink bar) whereby the same 100 webpages are running on a high-end phone (Samsung Galaxy
S20+ 2020) under a cellular network in Dubai (Etisalat 4G+). Error bars represent the 95% confidence
intervals. a, Evaluating page load time. b, Evaluating Speed Index. ¢, Evaluating JavaScript processing

time. d, Evaluating page size.
estimated that Opera Mini has about 170 million users [operamini_2]. However, Opera Mini is
prone to breaking interactive sites that rely heavily on JavaScript. Brave, on the other hand, is a
privacy-focused browser, which automatically blocks online advertisements and website trackers
in its default settings. As of December 2021, Brave has more than 50 million monthly active users,
and 15.5 million daily active users [41].

Similar to the evaluation done earlier, we wanted to compare Lite-Web to these two state-of-
the-art industry solutions based on four evaluation metrics: page load time, Speed Index, page

size, and JavaScript processing time. The measurements were conducted in the city of Lahore
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in Pakistan using the WebPageTest framework [251], which controlled the QMobile i6i mobile
phone to automatically launch the Lite-Web, Opera Mini, and Brave versions for each of the 100
most popular Pakistani webpages. This experiment was repeated three times to account for any
subtle variations that may arise when the same webpage is visited multiple times. Note that
the results for Opera Mini are only depicted for the page load time and the Speed Index, since
the webpagetest framework was unable to collect the remaining two evaluation metrics. The
results this evaluation are depicted in Supplementary Fig. 6. As can be seen, Lite-Web achieves
improvements ranging between 24% to 57% depending on the benchmark and the evaluation

metric.

3.2.4 QUALITATIVE EVALUATION

To assess whether the above improvements come at the expense of the page look or func-
tionality, we recruited 200 students from two high schools in the Gilgit-Baltistan province. Those
students were randomly assigned to control and treatment groups of equal sizes. After that, the
100 Pakistani webpages were assigned to the students as follows: the webpages were divided into
25 disjoint, exhaustive, and equally-sized lists. Then, each list was assigned to 4 randomly chosen
students from the control group (who interacted with the original versions of the webpages), as
well as 4 randomly chosen students from the treatment group (who interacted with the Lite-web
versions). All participants interacted with their assigned versions for 15 minutes using the same
low-end phone model (QMobile i6i) equipped with a cellular data connection. Importantly, none
of the participants knew the purpose of the study nor the group to which they belonged. This
was done to minimize the risk of subject bias, whereby participants tend to behave according to
what they believe the experimenter wants to see. The study was conducted by a CITI-trained [63]
person following Institutional Review Board (IRB) approval (HRPP-2021-32) from New York Uni-
versity Abu Dhabi. Furthermore, a letter of approval was obtained from the school principal to

conduct the study on the school premises. Social distancing measures were observed, and partic-
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ipants were asked to wear masks throughout the study; see Supplementary Fig. 7. As a token of
our appreciation, we donated twelve QMobile QTab v7 Pro tablets to the schools’ libraries to be
used for educational purposes.

The results of the user study are summarized in Fig. 3.4. Specifically, the left panel of Fig. 3.4a
summarizes the users’ evaluation of the webpages’ appearance. This shows no significant differ-
ence between the control and treatment groups, In other words, we found no evidence indicating
that the performance gains attributed to Lite-Web come at the expense of appearance. Similar
results were observed when accounting for the gender and age of participants. The right panel of
Fig. 3.4a focuses on the users (in both the control and treatment) who noticed something missing
in terms of appearance; those users were asked to assess the impact of the missing components
on the browsing experience. As can be seen, the treatment looks very similar to the control, with
the only difference being two additional participants (out of 100) who indicated a slight impact
of the missing components, and four additional participants who indicated no impact.

Fig. 3.4b is similar to Fig. 3.4a except that it evaluates the impact of Lite-Web on the web-
pages’ functionality rather than appearance. Again, the left panel shows no significant difference
between the control and treatment. In other words, we found no evidence that Lite-Web’s perfor-
mance gains come at cost to functionality. Accounting for users’ gender and age reveals similar
trends. The right panel of Fig. 3.4b focuses on the few participants who noticed something miss-
ing in terms of functionality. Five additional users (out of 100) in the treatment group indicated
a slight to moderate impact, and three additional users in the control group indicated a high im-
pact. Finally, after participating in the study, all 200 students were asked to indicate the degree
to which they agree with the following statement: I occasionally avoid visiting certain websites
because my Internet is too slow to load them.

Fig. 3.4c depicts the distribution of the responses, showing that the majority (70%) agree
(somewhat or strongly) with the statement. These findings suggest that students in the Gilgit-

Baltistan province are excluded from certain webpages because of being on the less fortunate side
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of the digital divide. More broadly, these results suggest that people in developing regions are in
need of solutions such as Lite-Web to empower them to reach otherwise practically unreachable
parts of the World Wide Web. As a sensitivity analysis, we repeated the same experiment but with
a few modifications. First, we divided the 100 websites based on deciles, and randomly picked a
website from each part, resulting in just 10 websites. Second, we recruited students from Lahore
University of Management Sciences. Third, we recruited 800 participants and asked each of them
to evaluate all 10 webpages, resulting in 800 evaluations per webpage. The evaluation yielded

broadly similar results.

3.3 DISCUSSION

Our goal was to understand the extent of the digital divide phenomenon worldwide, and
propose a scalable and affordable solution that can potentially alleviate it. We measured the
mobile data cost and page load time in 56 cities, and found evidence of digital inequality across the
globe. In particular, we found the cost of one Gigabyte in some locations to be orders of magnitude
greater than in others, and the average page load time to be four times as long. Crucially, in each
location, the results were averaged over the same 100 webpages, and the measurements were
taken using the same low-end phone model, to unify the experimental setup across locations. An
interesting avenue for future work would be to scale up this experiment, covering more areas
within countries and over time, to chart the digital divide. Another direction for future work is to
extend Lite-Web such that it not only removes deadcode and blocks non-critical JavaScript files,
but also identifies and removes potentially malicious JavaScript code from existing webpages,
thereby enhancing the users’ security.

In an attempt to identify a solution that can bridge the digital divide, we focused on JavaScript
elements, which are more computationally intensive than any other equally-sized web compo-

nent. Specifically, we studied how the above 100 webpages have changed from 2015 to 2020,
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and found that the time spent processing JavaScript has remained largely the same on high-end
phones, but has increased significantly on low-end phones over the years. This suggests that web-
pages are designed with high processing power in mind while neglecting the less fortunate users
who can only afford low-end phones, thereby exacerbating the digital inequality. More impor-
tantly, we found that a significant percentage of page load time is spent on JavaScript processing,
and this percentage is greater for users of low-end phones.

Motivated by this key observation, we proposed a solution called Lite-Web, consisting of three
novel algorithms designed specifically to optimize the usage of JavaScript elements in today’s
web. We evaluated Lite-Web across four locations in a province of Pakistan known for its poor
Internet connectivity, namely Gilgit-Baltistan. The evaluation focused on the 100 most popular
Pakistani pages, and was done using a locally manufactured low-end phone. This demonstrated
Lite-Web’s ability to substantially reduce the size and loading time of webpages, thereby effec-
tively transforming the local browsing experience to that of Dubai’s residents who can afford
flagship phones with fast Internet connections.

Based on user studies conducted at two high schools and a University in the region, we found
no evidence that the performance gains obtained by Lite-Web come at the expense of the look and
functionality of the webpages. However, given that Lite-Web blocks ads, it can reduce the revenue
of the content providers, and may disadvantage companies in developing regions as they can no
longer advertise their services to the users. Having said that, it should be noted that Lite-Web is
not the only solution that blocks ads and analytics. In fact, one of the main features of the “Brave
Browser” [42]—a very successful modern browser, with more than 50 million monthly active users
and 15.5 million daily active users—is to block ads and trackers. Moreover, ads constitute only one
of the categories blocked by SlimWeb, which in turn constitutes only one of three components
of Lite-Web. If need be, the ad-blocking feature of SlimWeb can be disabled, in which case the

solution would still provide significant speedups to the page load time [57].
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3.3.1 LIMITATIONS

Our study comes with a number of limitations. First, when reporting the page load time and
mobile data cost across cities (Figure 3.1), our data represents a single point-in-time snapshot
of performance and price. Mobile network performance evolves rapidly, both due to network
upgrades as well as increased usage of infrastructure, but these factors are not considered in our
analysis. Similarly, we do not consider the role of policy and competitive factors that drive the
data cost. Moreover, although participants were instructed to purchase a plan they considered
to be affordable, this plan is not representative of the entire spectrum of plans available in their
respective city. Having said that, our experiment facilitates a comparison across cities since the
price was deemed affordable by an undergraduate student who came from that city (in addition
to the experimental protocol which controlled for processing power, web browser, pages visited,
connection medium, and time of day). As such, the analysis in Figure 3.1 provides evidence of

digital inequality across cities, but should not be interpreted beyond that.

3.3.2 RELATED WORK

Over the past decade, expanding Internet access has become a target for international advo-
cacy efforts from the United Nations, and many solutions have been proposed to provide afford-
able, high-quality connection to everyone. However, such efforts rely on critical infrastructure
that would require years to build and hundreds of billions of US dollars to fund [10]. A signifi-
cantly cheaper alternative is to make the webpages lighter for developing regions. Surprisingly,
this alternative has only just started gaining attention. For example, Facebook has introduced
a solution called Facebook Lite [85] for Android users with limited connectivity and low-end
phones. However, this solution is designed solely for Facebook. Another initiative is Google’s
Accelerated Mobile Pages (AMP) [93], which provides a framework that can assist web develop-

ers in creating lighter versions of their webpages. Unfortunately, AMP does not consider existing
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webpages, but rather requires the creation of new ones from scratch. This makes it hard to deploy
on a massive scale, especially given the billions of webpages already present in the WWW.

From the developer’s perspective, one way to reduce the size of JavaScript files before they
are embedded into the page is to use uglifiers [35, 62]. These rely on removing non-essential
characters such as white spaces and newlines from JavaScript files to improve transmission ef-
ficiency. However, unlike our Lite-Web solution, uglifiers do not reduce JavaScript processing
time—a major contributor to the digital inequality, as our experiments have shown. From the
user’s perspective, several JavaScript blocking tools [9, 34, 72, 120, 205] can be used to reduce
the amount of JavaScript transferred to their browsers. However, these tools are restricted to
a predetermined block-list, and are not equipped with any sort of intelligence that can auto-
matically classify previously-unseen JavaScript elements to determine whether they should be
blocked. A very recent solution called Percival [8] has shown promising results in blocking ads
using deep learning. It intercepts images obtained during page execution to flag potential ads.
However, this solution is computationally intensive, resulting in a non-negligible performance
overhead on desktop PCs. As such, it cannot be applied on low-end mobile phones with limited
computational power.

In a recent work [171], the authors proposed WebMedic—a method to remove less-useful
(rather than entirely unused) functions from the page. They found that 20% of the memory can
be saved for the majority of webpages while preserving 80% of the functionality. However, further
research is needed to maximize the speedup while minimizing the impact on the page function-
ality. Other ways to improve the browsing experience are offered by platform-based solutions.
For instance, Apple News [21] is a news aggregator app developed exclusively for Apple mobile
devices, whereas Instant Articles [85] is a tool that allows publishers to create fast and interactive
content on Facebook. However, such solutions are narrow in scope, and are not generalized to

all devices and/or all webpages.
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3.3.3 (CONCLUSIONS

We saw how the gap between high-end and low-end phones has increased over the past five
years in terms of JavaScript processing. If this trend continues without any interventions, it would
lead to a segregation of disadvantaged and advantaged users, whereby the former are practically
unable to access the webpages that cater to the latter. Such segregation would violate the Net
neutrality principle [258], which requires treating all Internet traffic equally, without discrimi-
nating or charging differently based on user, content, website, location, type of equipment, or
access medium. Our findings call for attention from researchers and policymakers alike, to miti-
gate disparity and adhere to the net neutrality principle across the globe. More broadly, Internet
connectivity has arguably become a basic human right in the twenty-first century, and the emerg-
ing literature on reducing web complexity [42, 85, 90, 93, 133, 171, 173, 175, 178, 182, 247, 248]
constitutes a promising step towards realizing the United Nation’s vision “to ensure that digi-
tal technologies are built on a foundation of respect for human rights and provide a meaningful

opportunity for all people and nations” [233].

3.3.4 DATA AVAILABILITY

Our data were collected from several experiments that we ran: a) in the wild page load times
and cost collected from 56 cities around the world, b) in lab experiments on JavaScript processing
times over past six years, and c) in the wild quantitative evaluation of Lite-Web from two schools
in Pakistan. The whole data will is available under the following repository https://github.

com/comnetsAD/digital-divide.
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3.4 METHODS

Our proposed Lite-Web solution combines three novel algorithms that we developed to reduce
the processing cost of JavaScript in today’s webpages, namely SlimWeb [56], JSCleaner [55], and
Muzeel [141]. For a given webpage, Lite-Web first runs SlimWeb’s machine learning classifier
to identify and block JavaScript elements that are non-essential to the user experience; see Sup-
plementary Note 2 for more details. A user study [56] showed that, in order to achieve faster
browsing, people are willing to sacrifice parts of the page that are responsible for: (1) advertising,
(2) analytics, and (3) social interactions. Based on this finding, all JavaScript elements belonging
to the above three categories are blocked by Lite-Web. Additionally, Lite-Web runs a modified
version of the rule-based classification used by JSCleaner to identify and block JavaScript ele-
ments that are non-critical to the page content or interactive functionality. More details on how
Lite-Web modifies JSCleaner’s rules can be found in Supplementary Note 3.

So far, Lite-Web preserves JavaScript elements that are identified as essential by SlimWeb and
the modified JSCleaner rules. By analyzing these preserved elements, we found many of them
to be large JavaScript libraries that are incorporated wholly into the page, even though only a
few functions of these libraries are utilized [141]. This key observation suggests that optimizing
webpages can go beyond eleminating non-essential JavaScript elements, by optimizing the essen-
tial ones. This optimization is done through the elimination of functions that are included in the
essential elements yet not used by the webpages. This is precisely what Muzeel is designed to do.
The elimination of unused functions provides data cost savings (since the files containing such
functions are often quite large), as well as performance improvements [248] (since the number of
functions that require processing is now reduced). Further details on how Muzeel operates can
be found in Supplementary Note 4.

When evaluating Lite-Web in Gilgit-Baltistan, we deployed Lite-Web in a cloud server hosted

in Pakistan. This server maintained a database of JavaScript elements extracted from the 100
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most popular Pakistani webpages, labeled by SlimWeb and JSCleaner as either essential or non-
essential. The server caches a modified version of the essential ones, which is stripped out of
any unused functions by Muzeel. The phones’ browsers were configured to utilize our Lite-
Web server as a web proxy. As such, JavaScript requests are either deemed non-essential by the
proxy and subsequently blocked, or deemed essential, in which case the Muzeel’ed versions of
these elements are sent back from the server cache. All other web elements’ requests, apart from

JavaScript, are served live from the Internet.

76



In terms of how the 4 websites
looked, did you notice anything If you chose yes, please rate the impact of the
missing or out of the ordinary? 100 missing component(s) on the browsing experience

£ 100%
z [ Original Page
kel .
I Lite-Web
£ 80%1 801
© 0, °
o 60%1 2 601
© S
=
s 5
£ 40%/ & 40
© ns )
% X
£ 20% 20
©
o
“
. 0% 0!
ES ° Original Page Lite-Web High Moderate Slight No impact
impact impact impact
b In terms of how the 4 websites

functioned, did you notice anything If you chose yes, please rate the impact of the
missing or out of the ordinary? missing component(s) on the browsing experience

£ 100% 100
r [ Original Page
kel .
g 80% 1 801 N Lite-Web
O 60% 2 601
© S
5 E
£ 40%1 2 401
© o
% ns R
£ 20%- 204
©
o
o
5}
o 0% — n 0- - - -
° Original Page Lite-Web High Moderate Slight No impact
impact impact impact
C Please indicate the extent to which you agree with the following statement:

50% | occasionally avoid visiting certain websites because my Internet is too slow to load them.
o

40%

30%

20% 1

% of participants

10%

0%

Strongly agree Somewhat agree Neither agree Somewhat Strongly
nor disagree disagree disagree

Figure 3.4: High school students’ evaluation of Lite-Web’s impact on the appearance and func-
tionality of websites. Each participant interacted with 4 of the 100 Pakistani websites most frequently
visited in 2021; the control and treatment groups interacted with the original and Lite-Web versions of
these websites, respectively. a, Left panel: Percentage of participants who answered “Yes" to the question:
“In terms of how the 4 websites looked, did you notice anything missing or out of the ordinary?" (ns = not
significant; p = 0.42); those who answered “Yes” were subsequently asked: “If you chose yes, please rate
the impact of the missing component(s) on the browsing experience"; the distribution of their responses is
depicted in the right panel. b, Similar to (a) but for questions asking about how the websites functioned,
rather than how the websites looked (ns = not significant; p = 0.85). ¢, Responses of all participants
(control and treatment) to the question: “Please indicate the extent to which you agree with the following
statement: | occasionally avoid visiting certain website because my Internet is too slow to load them."
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= THE QUEST FOR THE BEST: EVALUATING
NEXT GENERATION APPLICATIONS IN

EMERGING MOBILE NETWORKS

This chapter is adapted from the preprint version of "The Quest for the Best: Evaluating
Congestion Control in 5G", submitted to ACM International Conference on emerging Network-
ing EXperiments and Technologies (CoNEXT). In this chapter, we perform an evaluation of the
prominent state-of-the-art congestion control algorithms currently in deployment to assess their
behavior under the unique constraints presented in high-bandwidth and low-latency 5G network

environments.

ABSTRACT

The rapid evolution of the next generation of mobile networks has paved the path for the
development of a wide array of exciting new applications. Instead of gradual and incremental
enhancements, each new generation of mobile networks improves the capabilities of cellular net-
works tenfold, with 5G typically being 10 times faster than 4G, and 6G is anticipated to improve
upon 5G by an even higher factor. Given these rapid exponential improvements, it is important to

ensure that all layers of the network stack are able to keep pace and support the performance im-

78



provements that are possible with these new technologies. Unfortunately, at the transport layer,
we still lack a clear understanding of the performance characteristics of current state-of-the-art
Congestion Control Algorithms (CCAs) in 5G environments with high channel fluctuations over
short timescales. In this chapter, we present Zeus, a novel framework that enables unified and
repeatable evaluation of CCAs in 5G environments. Secondly, we conduct the most comprehen-
sive cross-protocol benchmarking study to date, covering 10 CCAs across real and synthetic 5G
traces, buffer regimes, and application scenarios. Finally, we condense the plethora of raw results
that we generate and contextualize them in terms of the performance of CCA in real world ap-
plications using a scenario-aware scoring system. Our analysis reveals surprising performance
inversions and highlights the important considerations that must guide the design and evaluation

of future CCA.

4.1 INTRODUCTION

5G networks exhibit several characteristics that make them unique compared to previous gen-
erations, such as significantly higher network variability over short time scales [259]. Despite the
vast array of CCAs proposed over the past two decades and the large number of studies conducted
to measure their performance in 5G [13, 77, 147, 176, 211, 220], we still lack a detailed understand-
ing of the performance characteristics of these CCAs across diverse 5G channels [76, 101, 102,
132, 135, 266, 267]. As a result, a careful study across different dimensions, environments, and
buffer sizes is required to shed light on CCAs intricacies, and identify their potential strengths,
weaknesses, and trade-offs. Due to the nature of 5G, it is important to verify that the behavior of
these CCAs conforms to the expectations set by previous evaluations on non-5G networks. As
we find in our evaluation (Section 4.6), this is not always the case. Through this study, we identify
the CCAs that are currently best positioned to rise to the 5G challenge and we observe the proto-

col designs that require modifications to efficiently leverage the performance gains provided by
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Type of network Optimal CCA Optimal CCA Throughput/ Closest Closest Oracle dist.
from throughput from delay delay trade-off to Oracle to Optimal | from optimal
City drive (real 5G) Cubic, Reno Copa Vivace (1 BDP) BBR Vivace (1 BDP) 88ms
Beachfront walk (real 5G) Cubic, Reno Copa, Vivace, Ledbat BBR BBR BBR (1 BDP) 8ms
Rural Macro (NYUSIM) Cubic, Reno Ledbat BBR (1 BDP) | Cubic (10 BDP) | Reno (5 BDP) 137ms
Urban Macro (NYUSIM) Cubic, Reno Ledbat Verus (5 BDP) | Cubic (10 BDP) | Verus (5 BDP) 137ms
Street Canyon (NYUSIM) Cubic, Reno Copa BBR (10 BDP) | Reno (inf BDP) | BBR (10 BDP) 214ms

Table 4.1: 5G channels summary of results. Distance between the performance of two protocols is mea-
sured in terms of throughput/delay trade-off performance.

5G and support the exciting new applications enabled by these improvements.

Metric Reno Cubic BBR Allegro Verus Proteus-P | Vivace Copa Proteus-S | Ledbat
Util. (%) 99.7+£03 | 99.1+04 | 95.9+£0.6 | 87.6+5.7 | 84.6+47 | 80.7+34 |729+69 |635+£82 | 542+7.38 49+0.9
Delay 15.6x+28 | 122x £1.5 | 43x+0.6 | 11.4x+2.1 | 67x +30 | 57.4x+124 | 3.4x£0.5 | 1.5x+0.2 | 25.8x +10.2 | 1.7x £ 0.3
Intra-fairness 0.88 0.86 0.87 0.84 0.85 0.92 0.87 0.98 0.91 0.91
Inter-fairness 0.81 0.86 0.63 0.64 0.64 0.55 0.66 0.76 0.54 0.58

Table 4.2: CCAs results summary. Utilization is the CCA’s channel utilization, delay is the queueing delay,
and fairness is the Jain-Fairness-Index (we are measuring for two flows, so the index is lower-bounded by
0.5).

This chapter aims to understand the dynamics of different CCAs in 5G network environments
and provide a uniform framework for the evaluation of CCA which can be used to conduct a broad
array of CCA evaluations while maintaining the ability to directly compare the results to existing

evaluations using the same metrics. The main contributions of this chapter are as follows:

« A comprehensive analysis of the strengths and weaknesses of prominent CCA across var-

ious 5G network environments

+ A framework for unified real-world and simulation-based experimentation for the analysis
of the CCA performance in any network environment coupled with a dataset of network
traces collected for these experiments encompassing a diverse range of network environ-

ments

For our experimental setup, we perform real-world experiments in the wild using a com-
mercial 5G deployment as the client and a server with different possible configurations of the

active CCA. However, real-world experiments present many challenges due to factors including
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high costs and the high variability in the network environment that renders it difficult to distin-
guish between changes in protocol performance caused by the environment variability in real
time as opposed to protocol performance. We complement these experiments with a wide array
of simulation-based experiments that emulate the real-world environments, provide full control
over the environment, and are immune to the challenges that hinder repeatability and repro-
ducibility of real world experiments. For the simulation-based experiments, we gather a diverse
collection of 5G channel traces, including real-world traces from commercial 5G deployments
and trace-driven models built in the NYUSIM model [230]. Finally, we assess 10 prominent CCAs
using the enhanced evaluation framework and the collected 5G traces. The chosen CCAs include
legacy Internet CCAs like TCP Cubic [99] and TCP Reno, as well as newer state-of-the-art (SotA)
algorithms including BBR at Google [46], Ledbat at BitTorrent [206], Copa at Facebook [24], Vi-
vace [80], Allegro [81], Proteus-P [163], Proteus-S [163], and Verus [264]. We compare these CCAs
with two reference benchmarks: (i) a Delayed Oracle Model where the base station can compute
the best congestion response based on the channel state at a given time, but the sender receives
this feedback after a propagation delay by which time the channel state may have changed; (ii) an
optimal offline throughput and delay computation based on complete knowledge of the channel
variability ahead of time. Finally, we introduce a scenario-aware scoring system to compile the
results into a simplified metric that informs users how these protocols will perform in real world
applications.

Table 4.1 provides a summary of our results showing the best-performing CCAs on different
5G channels, as examined in this chapter. We evaluate CCAs with different buffer sizes, expressed
as multiples of the bandwidth-delay product (BDP), based on three distinct metrics: throughput
utilization, maintaining low network delays, and achieving a favorable balance between through-
put and delay. Table 4.2 presents the average CCA results across the 5G traces, focusing on chan-
nel utilization, delay increase relative to the baseRTT (that only accounts for propagation delay),

and intra/inter-fairness when competing with another flow over the same link. The CCAs are
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listed according to their channel utilization, with Reno and Cubic dominating at over 99% utiliza-
tion. BBR ranks third with approximately 96% average channel utilization, followed by Allegro
and Verus. Ledbat exhibits the lowest channel utilization at a mere 5%.

Our results reveal key insights to inform the future of CCA design and reinforce the need of a
unified evaluation framework. No single CCA dominates across all conditions. Legacy protocols
such as Cubic and Reno continue to outperform many newer designs in throughput-intensive sce-
narios, while delay-sensitive algorithms like Copa and Vivace excel in real-time and fair-sharing
environments. Learning-based CCAs often exhibit instability and poor coexistence behavior in
volatile 5G settings. We further find that protocol behavior consistently maps onto a throughput-
delay trade-off frontier, where improvements in one dimension come at the cost of the other. This
frontier is shaped by buffer size and protocol tuning but cannot be fundamentally circumvented.
To make sense of the large number of data points, we introduce a scenario-based QoE scoring
system that maps CCA behavior to practical deployment needs, offering protocol recommenda-
tions for streaming, real-time, and mixed-traffic environments. This chapter attempts to answer
the question: what is the best congestion control algorithm for 5G for different applications and
network contexts? Zeus provides a principled and extensible platform to make that answer re-

producible, quantitative, and scenario-aware.

4.2 RELATED WORK

Evaluating congestion control algorithms (CCAs) has long been a central focus of network-
ing research. New CCAs are typically coupled with an analysis and comparison against a small
number of existing protocols under selected conditions. For instance, Copa [24], BBR [46], PCC-
Vivace [80], and Proteus [163] each present comparative evaluations, but these tend to be limited
to low-bandwidth environments, limited buffer configurations, and a small set of network envi-

ronments. Controlled network environments often do not reflect the burstiness, queuing dynam-
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ics, or RTT variability found in commercial 5G networks. As a result, most prior studies, while
sufficient to demonstrate their performance for certain scenarios, these evaluations are often nar-
row in scope, use inconsistent methodologies, and yield results that are difficult to compare or
generalize across protocols and deployment scenarios.

A wide range of simulation and emulation tools have emerged to support congestion control
research over the years. Simulators such as NS-2/NS-3 [124, 202] and OMNeT++ [240] are widely
used due to their flexibility in defining topologies, transport models, and link-layer behavior.
However, they lack execution-time realism and are not designed to run real protocol stacks or
real applications. Real-time emulators such as Dummynet [204], NetEm [108], Mininet [103], Her-
cules [190], and Mahimahi [174] provide more realistic testing by operating with live applications
and transport stacks. These tools allow traffic to be shaped at runtime, enabling more represen-
tative evaluations of protocol performance. However, they are inherently limited by hardware
capacity, making it difficult to scale to multi-Gigabit rates without introducing bottlenecks in re-
play fidelity or timing accuracy. In particular, Mahimahi supports simple delay and bandwidth
variability, but it the original implementation of Mahimahi suffers from bandwidth limitations
discussed in 4.4.2. Pantheon [262] was another framework for CCA evaluation through automa-
tion and reproducibility. It included a curated set of CCAs and a test harness for benchmarking
across a controlled testbed. However, it was primarily designed for legacy TCP protocols and
does not support high-throughput mobile environments, modern transport protocols, or cellular
traces with realistic 5G dynamics. Moreover, the project is no longer actively maintained and
lacks support for extensibility with newer CCAs or application-specific workloads.

Beyond software tools, several 5G-specific testbeds have been deployed in recent years to pro-
vide experimental infrastructure for mobile networking research. Examples include 5TONIC [4],
5GIC [137], FOKUS [87], COSMOS [197], POWDER [43], and AERPAW [160]. While these plat-
forms offer access to real hardware, radio resources, and edge-cloud setups, they are often geo-

graphically constrained, require application approval, and are generally tailored to specific ex-
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periment types (e.g., wireless PHY testing, MEC deployments). As such, they are not designed for
reproducible, trace-driven protocol evaluation at scale, and lack the flexibility and accessibility
needed for rapid iteration across a large set of CCAs.

In contrast, Zeus is a unified, extensible framework that addresses these tooling and method-
ological limitations. It enables reproducible, high-throughput evaluation of CCAs using real-
world 5G traces. Zeus extends Mahimahi to support the capabilities critical for capturing the
high bandwidth capacities, short-timescale variability, and burstiness of 5G. Unlike prior tools,
Zeus standardizes the evaluation process, enabling fair, side-by-side comparisons across a diverse
set of protocols. This chapter utilizes these capabilities conduct a comprehensive benchmarking
study of 10 CCAs across different traces and buffer configurations, and multiple metrics includ-
ing fairness, delay inflation, and harm to Cubic highlighting the trade-offs relevant for real-world

deployment.

4.3 RESEARCH METHODOLOGY

Assessing these CCAs in 5G environments remains a complex challenge. Factors contribut-
ing to the difficulty of this task include the 5G environment’s variability due to uncontrollable
elements such as competing network traffic, signal fluctuations, and the large propagation losses
caused by the high-frequency nature of mmWave signals. Due to such factors, running the exact
same 5G real-world experiment at the same location can yield highly variable results. Cost is
another significant factor; a single one-minute experiment can consume up to 7 GB of data at a
rate of 1 Gbps. This makes the analysis of real networks extremely difficult because one cannot
attribute the observed effects only to CCA change, given these factors. As a result, researchers
often resort to simulators or emulators. However, when it comes to 5G, access to high-quality
prototype frameworks is limited, restricting the ability to test novel CCAs in realistic 5G settings.

Given these challenges, it is vital to evaluate and compare various CCAs across diverse 5G chan-
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nels in a consistent manner. Repeatability and reproducibility are crucial to drawing accurate
and meaningful conclusions, as the variability of 5G makes evaluating CCAs in the real world

challenging and expensive.

4.3.1 METRICS FOR EvaLuaTING CCAS

(i) End-to-end throughput and delay: It is reasonable to question whether existing CCAs are
compatible with the characteristics of 5G networks and whether their performance is impacted
by the unique challenges presented in 5G environments. Specifically, we focus on evaluating the
end-to-end throughput and delay in the context of the diverse 5G networks.

(ii) Fairness and Harm: In today’s literature, it has become customary to evaluate the fairness of
new CCA with respect to legacy solutions when sharing a bottleneck. To determine this, several
papers use Jain’s fairness index. However, in our analysis, in addition to Jain’s fairness index, we
also evaluate a more practical harm-based approach, defined in [249]. This approach analyzes the
harm that a new CCA causes to an existing legacy CCA when sharing a bottleneck to ensure that
new CCA does not cause more harm than existing solutions. We chose Cubic as the legacy CCA,
since it is the default TCP flavor on many of today’s platforms, such as Linux [254] and Android
OS [6]. We measure the harm caused to Cubic flows by other competing CCA flows to determine
if the new CCA is suitable for coexistence with Cubic in the wild.

(iii) Impact of Buffer Sizes: A critical aspect of evaluating a CCA in cellular networks is exam-
ining the impact of the bottleneck buffer size. Many previous studies have either overlooked this
vital parameter or concentrated on relatively small buffer sizes. Therefore, we assess four buffer

size settings based on the bottleneck buffer size: 1 BDP, 5 BDPs, 10 BDPs, and an infinite buffer.
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4.3.2 REFERENCE BENCHMARKS

To better understand the challenges 5G environments pose for CCAs, we introduce two ref-
erence models to compare against: the Optimal reference model, and the Delayed feedback Oracle
model. The optimal reference model represents the ideal operating point with a fully saturated
channel and baseRTT assuming complete knowledge of the channel variability ahead of time.
The Delayed Feedback Oracle model represents a hypothetical algorithm situated at the cellular
base station with perfect knowledge of the current 5G channel state only at a given time without
any future knowledge about the state of the channel. If the sender could access this information
and the primary bottleneck was the cellular link, it could fully utilize the link without incurring
additional delays. However, since this information is only available at the base station, it must be
shared with the sender, introducing one-way delay, followed by another one-way delay for the
data to reach the receiver. In theory, this is the best information a CCA can use, but most lack

access to it and instead infer it through signals like delays, inter-arrival times, etc.

4.4 THE ZEUS FRAMEWORK

This section describes Zeus, a framework designed and developed to conduct performance
analysis of CC algorithms over 5G channels. The analysis methodology described in this section
is general and technology-agnostic so that it can be extended to study the performance of CC
algorithms over other types of channels. The overall workflow is detailed in Figure 4.1. As for
the channel traces, different sources can be used as long as they follow the appropriate format
detailed in Section 4.4.2. Furthermore, the framework includes a set of traces obtained from
two different sources: a real 5G cellular network of a commercial operator (Non-StandAlone
(NSA)) and mmWave traces generated with an ns-3 network simulator. Zeus embeds a tailored

version of ns-3 [202] to generate traces for mmWave scenarios, using the mmWave module [165]
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Figure 4.1: Architecture of the Zeus framework

developed by NYU wireless. Figure 4.2 shows 2 of the recorded channels. The link emulator
can be tailored with additional end-to-end delay, loss rates, and/or modifying the buffer size of
the link. The framework sets up sender/receiver pairs using a CC algorithm and connects them
through Mahimabhi. The results allow us to compare the behavior of different CCAs in the exact
same environment in a systematic manner that is repeatable and reproducible. Zeus also allows
the analysis of bottleneck link-sharing among traffic flows. It leverages the best out of the real-life

and emulation realms without the reproducible limitations.

44.1 REeAL 5G NETWORK TRACES

For the generation of real 5G network channel traces, Zeus offers a client and server-side
implementation that can record real-time 5G channels in a cellular environment. For the trace
generation, the server must have sufficient upload capability exceeding the maximum download

speeds of the 5G client. The client consists of an Android application that communicates with the
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Figure 4.2: 5G channel traces

server. Upon connecting, the Linux-based server begins sending UDP packets with a maximum
transmission unit (MTU) size of 1500 bytes at a constant data rate to the Android mobile client.
The Android application serves as a sink and logs the inter-arrival times of the received UDP
packets. These logs are then used to create the trace files, which are converted to the proper

channel trace format compatible with the modified Mahimahi emulator.
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Figure 4.3: Benchmarking Zeus against Mahimahi on 4G and 5G channels

4.4.2 MODIFIED MAHIMAHI

The original Mahimahi implementation has limitations that affect the emulation of multi-
Gigabit capacity channels, such as those based on mmWave. The original implementation has
certain bottlenecks that result in a limit of around 400 Mbps on the throughput that the network
can handle efficiently. Any trace exceeding the threshold of ~ 400 Mbps causes Mahimabhi to
drop packets randomly, thus capping the channel throughput and utilization. To resolve this, we

modify Mahimahi to be able to overcome this limitation. The most critical modification involved
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drastically reducing the required number of inter-process events for emulating high-bandwidth
5G traces.

Figure 4.3 shows a performance comparison of the modified emulator to the original Mahimahi
implementation. The results are obtained by emulating a network flow with consistent full-buffer
transmission. Figures 4.3(a) and 4.3(b) show the results obtained when a 4G Verizon-LTE [254]
trace was used, with a maximum capacity around 40Mbps. Figures 4.3(c) and 4.3(d) show the
performance obtained over a synthetic 5G channel generated in ns-3 using the Indoor Hotspot
Model (InHM), with capacity reaching 1Gbps. Both channel capacities are shown in Figures 4.3(a)
and 4.3(c) with the shaded background. It is evident that for the 4G Verizon-LTE channel, both
the original Mahimahi and Zeus versions offer the same performance, with no statistical signifi-
cance (n.s.) observed in terms of throughput and delay between the two, completely saturating
the channel capacity. However, for the InHM 5G channel, the original Mahimahi version fails to
handle the number of sending events, leading to the under-utilization of the channel capacity and
eventual packet losses due to buffer overflow. In contrast, Zeus’s Mahimahi manages to support
all the generated traffic, enforcing the correct emulation of the 5G channel, thus mimicking the
correct behavior of the CCA in use. A considerable statistical difference for both throughput and
delay is observed in Figure 4.3(d) where the achieved throughput for Zeus is significantly higher
leading to bufferbloat and higher queuing delays, whereas the exact same experiment with the

original Mahimahi implementation is not capable of saturating the available bandwidth.
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Figure 4.4: BBR in a real 5G cellular connection vs. Zeus
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4.4.3 ZEUS OPERATION VALIDATION

We validate the correct operation of Zeus by comparing its performance with real-world tests.
Figure 4.4 shows the results obtained from three real 5G cellular connections, each lasting 60 sec-
onds, using a server running BBR and a client device using a real 5G connection in the wild, and
results obtained using Zeus to simulate a 60 seconds connection using BBR over similar network
traces recorded at the exact location where the real 5G experiments were conducted. The fig-
ure shows that the results obtained with Zeus are similar to those obtained from the actual 5G
connections, both in terms of average value and sparsity. In particular, the throughput obtained
in both cases, Zeus and cellular, reach comparable average values and tight distribution. In the
case of the delay, the average values are again alike, while the sparsity observed for the BBR cel-
lular connection is slightly larger. Although the results are not identical, they serve to ensure
that the CC protocols experience similar and comparable conditions with Zeus to a real cellular
connection. Obtaining identical results is not possible, since the wireless channel realizations are
different for the 5G connection running BBR and those using UDP to generate the traces used by

Zeus.

4.5 EXPERIMENTAL METHODOLOGY

45.1 ReAL WORLD EXPERIMENTS

Evaluating the performance of congestion control algorithms (CCAs) in real-world mobile
networks poses significant challenges due to the variability and complexity of such environments.
While trace-driven simulations offer a controlled means to address many of these challenges, they
may not fully capture the intricacies of real-world network behavior. To complement simulation-
based evaluations, we conducted a subset of experiments in live mobile network conditions for

further testing and validation. The setup involved using a 5G-enabled smartphone as the client
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device and an AWS EC2 instance in the same geographic region as the server. The server was
configured to support five different CCAs via the Linux pluggable congestion control interface.
Using the iperf3 tool, we performed network experiments in which data was sent from the
server to the client using the selected transport protocols. For each protocol, six independent tri-
als were conducted. These experiments allowed us to observe key performance metrics, including
throughput and variations in the congestion window size for each protocol. By combining sim-
ulation and real-world testing, this approach provides a more comprehensive evaluation of CCA

performance, highlighting their behavior under controlled and dynamic network conditions.

4.5.2 EMULATION ENVIRONMENT

To create a consistent testing ground for checking the effectiveness of CCAs in a way that
is realistic, repeatable, and reproducible, we improved the Mahimabhi link emulator [174], which
is commonly used to test CCAs in a range of network conditions [7, 24, 80, 94, 262]. This en-
hancement aims to improve Mahimahi’s support for multi-gigabit capacity traces, allowing for
the assessment of CCAs without altering their original implementations. The most notable mod-
ification involves reducing the number of internal inter-process I/O system calls. In the original
implementation of Mahimabhi, if multiple packets were to be scheduled simultaneously, Mahimahi
would allocate a separate I/O system call for each. In 5G, where capacity can reach multiple Gbps,
this can generate hundreds or thousands of system calls at once. We optimize this by introducing
anew channel trace format, where multiple packets scheduled at the same time are combined into

a single system call. Further details and validation of our framework are provided in Section 4.4.

4.5.3 GENERATING REALISTIC NETWORK TRACES

We employed two distinct methods for generating the channel traces: i) a real 5G cellular

network, and ii) mmWave traces generated with the NS-3 simulator. For the real 5G traces, we
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used a similar trace collection methodology as [254, 264], with a commercial 5G connection under
different mobility scenarios. The details of our approach are mentioned in Section 4.4. Two such
traces are used in this chapter, namely: City drive, and Beachfront walking. Finally, the mmWave
traces were generated using the mmWave module [165] built atop NS-3 [202], developed by the
New York University wireless group (NYU Wireless). We collected two different groups of traces:
with buildings and predefined users’ motion, and without buildings and with random users’ mo-
tion. For the first group, we deployed a grid of 3 X 3 buildings and defined different users’ tracks.
The Street Canyon comprised two basestations, and users moved following a straight line, getting
close or going far to/from each of the base stations. This trace used the urban micro (UMi) 3GPP
model. The second group of traces represents open areas. In particular, we exploit the Urban

Macro (UMa), and Rural Macro (RMa) 3GPP models to generate the last two traces [269].

454 CCAs EVALUATION SETUP

All experiments were conducted on a customized server with an Intel Xeon Bronze 3204 CPU
@ 1.90GHz x 12, 15 GiB memory, and Ubuntu 20.04.3 LTS operating system. To ensure accuracy,
we consulted with some of the authors of these CCAs to verify their configuration and behavior.
For each CCA-channel pair, we performed 5 experiments with four bottleneck buffer sizes namely

1 BDP, 5 BDP, 10 BDP, and infinite buffer.

4.6 RESULTS

4.6.1 RreAL WORLD EXPERIMENTS

The throughput trends of the real-world experiments, a subset of which are shown in Fig-
ure 4.5, provide valuable insights into the performance of congestion control algorithms (CCAs)

under live mobile network conditions. Using a 5G-enabled smartphone as the client and an AWS
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EC2 instance as the server, we observed significant variations in key performance metrics across
the five CCAs tested. We compare the real world experiment to the results of simulation experi-

ments configured to emulate a similar high-bandwidth real 5G network environment.
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Figure 4.5: Comparison between simulation and real experiments

The throughput results highlight the impact of each CCA’s design on its ability to utilize
available bandwidth efficiently. We observe that BBR is able to adapt quickly to the volatile
high-bandwidth network environment in both cases and consistently achieve high throughput.
Legacy CCA are able to maintain high throughput initially but incur bufferbloat which rapidly
deteriorates their performance. Allegro and Vivace both gradually converge to their standard
operating points in the network environment, which prioritizes high throughput for Allegro,
and lower delays for Vivace. Protocols optimized for high-speed environments demonstrated
consistently higher throughput, while others exhibited occasional under-utilization due to their
more conservative congestion control mechanisms. Packet retransmissions were also observed to
vary between protocols, with some CCAs showing resilience in maintaining performance despite
sporadic packet drops inherent to mobile networks. Legacy protocols were more sensitive to
loss, resulting in a noticeable decline in throughput during challenging network conditions. The
replication of the same trends in protocol behavior in the simulation experiments further validate
the accuracy of the experimental setup using the simulation framework.

Due to the challenges in real cellular environments, discussed in Section 4.3, it is not sustain-
able to conduct a comprehensive analysis of CCA at scale relying solely on real world experi-

ments. Thus we introduce the Zeus framework capable of conducting a comprehensive analysis
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in a repeatable and reproducible manner.

4.6.2 END-TO-END THROUGHPUT/DELAY ANALYSIS

Figure 4.6 illustrates scatter plots that display the performance of ten SotA CCAs over different
types of 5G channel traces. The traces include stable channels as well as highly volatile high-
bandwidth channels. Each circular data point represents the average throughput (y-axis) and
delay (x-axis) performance of a CCA. We conducted 5 separate runs per channel trace for each
CCA to ensure the stability of the algorithms’ performance and their ability to efficiently use the
5G capacity. Each CCA is indicated by a different color with a number representing one of the
four buffer sizes, from as low as 1BDP to an infinite size. The figures also show the capacity over

time in an inset subplot.
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Figure 4.6: CCAs under fluctuating 5G channels
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Legacy CCA’ performance (Cubic & Reno): Both Cubic and Reno are known for building
large sending windows, resulting in a well-known phenomenon called “bufferbloat” in cellular
networks which has been well investigated in the context of 3G/4G cellular networks [128]. From
our observations across all 5G traces, we found that TCP Cubic and Reno were able to saturate
the channel capacity for 5 BDP, 10 BDP, and infinite buffer sizes (the red dotted horizontal line
represents the average channel capacity). However, it was observed that a buffer size of 1 BDP
was insufficient for loss-based algorithms like TCP Cubic and Reno to saturate the link capacity,
as it would lead to packet losses at a faster rate. Our findings also reveal that increasing the buffer
size to more than 5 BDP does not necessarily improve channel utilization and mostly results in
higher delay. Compared to other CCAs, TCP Cubic and Reno were associated with the highest
delays in almost all cases (except for Proteus-P and Proteus-S). Despite legacy TCP being highly
criticized given their bufferbloat issues, we show surprising results that they, with reasonable
buffer sizes (5-10 BDPs), still outperform many SotA CCAs in some cases, such as the Urban
Macro.

Google’s BBR performance: BBR’s slight under-utilization is due to its operation in a series
of states, i.e., the startup phase, a PROBE_BW phase every 8 RTTs to estimate bandwidth, and a
PROBE_RTT phase every 10 sec to re-estimate the minimum RTT. The Probe RTT phase is when
BBR briefly reduces its packets in-flight to just four packets, draining any queue build up, which
appears to cause the slight under-utilization of the available channel. In our analysis, this design
allows BBR to exhibit remarkably consistent performance across all traces, reaching a relatively
high channel capacity utilization while slightly underperforming legacy alternatives in terms of
utilization. Particularly, its throughput remains slightly lower than the average channel capac-
ity, with 74%-98% utilization for the 1BDP, and 90%-98% utilization for the 5BDPs, 10BDPs, and
infinite buffer sizes. Despite BBR’s small loss in throughput utilization, it makes up for it in the
delay performance, yielding a remarkable reduction in the delays’ performance to approximately

50-73% of that of both Cubic and Reno for the larger buffer sizes.
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Facebook’s Copa performance: Copa also relies on queuing delays for CC and strives to mini-
mize the packet delays by periodically draining the buffers. Copa exhibits stable behavior across
all 5G traces, although its efforts to maintain a minimum queuing delay results in the through-
put performance being somewhat diminished compared to other alternatives. Copa successfully
maintains minimal delays consistently in our analysis. Previous evaluations, conducted under
links of up to 100 Mbps [24], show that Copa achieves significantly lower queuing delays, with
only a small throughput reduction, outperforming Cubic, BBR, and Allegro. However, we ob-
served that these claims do not necessarily hold in certain 5G environments, where there is a
significant throughput penalty associated with Copa. It achieves average utilization between
66% and 76% for all 5G traces. Based on these findings, Copa can be considered an excellent CCA
for applications demanding extremely low delays while preserving decent throughput utilization.
The results indicate that Copa prioritizes delay over exploiting the capacity.

The PCC Family performance: Allegro operates in a fixed-step increment or decrement when
adjusting the sending rate. In 5G environments, these may be too small. This fixed-step sending
rate limits Allegro’s ability to quickly adapt to changes in the channel resulting in lower channel
utilization and increased delays. In our analysis, Allegro attains marginally lower delays than
Reno and Cubic, but generally experiences higher delays compared to BBR, particularly in cases
with larger buffer sizes like 10BDP and infinite ones. Moreover, Allegro’s throughput is generally
lower than BBR’s but remains higher than Copa’s. An intriguing observation from Allegro’s
results is that increasing the buffer size negatively impacts its performance, especially in terms
of end-to-end delay. This is evident in the high-bandwidth stable 5G channels (see Figure 4.6),
where expanding the buffer size beyond 1BDP does not result in increased throughput but instead
significantly raises the average delay. In fact, for many 5G channels, Allegro performs better with
a shallow buffer (1BDP). Another new observation is that Allegro achieves 83% link utilization
over a rapidly changing network in previous evaluations [81] but in our 5G traces, this property

often does not hold.

96



Vivace is a learning-based CCA using online greedy optimization methods to control its send-
ing rate via a utility function. However, optimization methods are susceptible to getting trapped
in a local optima [154], which is why we see variable throughput performance with repeated
experiments. Moreover, Vivace desires to approximate the lowest achievable RTT (RTTy,;) to
decide its sending rate, which explains the steady delays. However, in 5G networks, operating
at RTTpiy is not necessarily optimal. In our observations, Vivace consistently maintains lower
delays across many of the 5G traces. Previous evaluations show that Vivace significantly out-
performs legacy TCP flavors, Allegro, and BBR in throughput, latency, and friendliness towards
TCP [80]. We observe that in our 5G traces, the throughput utilization of Vivace drops signif-
icantly. Our fairness analysis shows that Vivace’s TCP friendliness in 5G is similar to Allegro
and BBR. In terms of throughput, Vivace’s performance varies depending on the channel being
examined. For instance, in the high-bandwidth stable channels displayed in Figure 4.6, Vivace
achieves higher throughput than Copa with almost the same delay. In such situations, Vivace’s
performance appears to be unaffected by the configured buffer size. However, when assessed
over the volatile 5G channels shown in Figure 4.6, it experiences higher delay compared to Copa
and benefits from the increased buffer size.

Proteus-S and Proteus-P are built atop an online learning CC framework [81]. Proteus-S, with
its scavenger utility, controls the sending rate and leverages delay variation as a sensitive early
indication of flow competition. Proteus-S performance varies significantly across channels, ei-
ther inducing extremely high delays of approximately 600ms and even more for some traces (see
Figure 4.6(a)) or exhibiting very low delays for others (see Figures 4.6(d) and 4.6(b)). Likewise,
Proteus-S’s throughput is also highly variable, generally leaning towards the lower end. Despite
having a strategy to compensate for misleading delay variation in a non-congested channel, it ex-
hibits inconsistent performance in 5G due to the uncertainty of the learning-based components
responsible for identifying the changes in equilibrium points. On the other hand, Adhering to a

scavenger strategy, Proteus-S struggles to adapt to the variability of the analyzed 5G channels.
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In contrast, Proteus-P’s utilization is higher than Proteus-S’s, but it too faces difficulties adapting
to highly variable channels, resulting in extremely high delays. Proteus-P controls its sending
rate using a modified version of the utility function of Vivace (with negative RTT gradients ig-
nored). These modifications allows it to outperform Vivace in terms of throughput but at the
cost of significantly higher delays in 5G. In previous evaluations [163], Proteus achieves 90% uti-
lization when running alone and limits 95th percentile inflation ratio for latency below 10%. We
observe that in 5G environments, the performance changes significantly compared to relatively
low-bandwidth network environments.

Others: Examining Verus results, it displays varied behavior across all traces, making it unpre-
dictable in 5G environments. The configured buffer size appears to have a significant impact
on Verus performance, where increasing the buffer occupancy to larger settings causes the al-
gorithm to create a more substantial bufferbloat. We have excluded the infinite buffer results of
Verus in several instances since they were multiple seconds and would have distorted the results
visualization. Verus achieves variable performance in 5G. We attribute this to Verus’ delay profile
curve, which is the basis for adjusting the CWND, struggling to adapt to certain 5G environments.
Similarly, contrary to previous non-5G evaluations [206] where Ledbat was able to saturate the
link when no other traffic is present, Ledbat is unable to saturate the link capacity in 5G and
achieves the lowest throughput across all traces. This is because Ledbat tries to restrict the de-
lays below a predefined target (default=25ms), and maintain that value to form a steady-state
and never incur delays higher than the target delay. Ledbat’s congestion signal is RTT exceeding
a target threshold. Due to the variability in 5G environments, this causes Ledbat to achieve low
throughput and delay across all channel traces.

The Delayed Feedback Oracle: The hypothetical Oracle algorithm, having a perfect knowledge
of the network conditions, is able to maintain high throughput utilization, saturating the channel
capacity across all traces. It is also able to maintain low delays in stable channels. However, we

see that in highly fluctuating channels the end-to-end delay suffers a significant negative impact
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causing it to lose to some of the actual CCAs. This is because when there is a steep drop in the
channel capacity, the one-way delay causes the algorithm to be slow to react, thus leading to

bufferbloat. This exemplifies the difficulty of creating an optimal CCA for 5G.

4.6.3 FAIRNESS ANALYSIS

We evaluate the Jain-fairness-index [125] for all 10 CCAs from two different angles: intra-
fairness, where a CCA shares a link with itself, and inter-fairness, where a CCA shares a link with
TCP Cubic. Starting with intra-fairness in Figures 4.7(a), the boxplots are divided into short-term
fairness (upper subplot) and long-term fairness (lower subplot). These values are computed using
a rolling window in steps of k X RTT, where k is 1, 2, 5, 10, and 20 for short-term and 50, 100,
500, 1000, and 3000 for long-term fairness. For each CCA, three different boxplots are displayed:
left for 1BDP, center for 5BDPs, and right for 10BDPs. Nearly all CCAs exhibit decent short-term
intra-fairness of 0.8 or higher and even greater long-term fairness of 0.9 or more. In contrast, the
inter-fairness results are shown in Figures 4.7(b). Apart from Reno, Cubic, and Copa (for 5 and
10BDPs), all other CCAs demonstrate lower fairness when competing with TCP Cubic, with both
Proteus versions and Ledbat having the lowest possible Jain-fairness-index, close to the minimum
of 0.5. The primary limitation of the Jain-fairness index is that it measures fairness by assigning
equal score in both cases, whether a new CCA utilizes a larger share of the bandwidth than Cubic

or vice versa.

4.6.4 HARM ANALYSIS

A common requirement for any new CCA is its fairness in sharing the bottleneck bandwidth
with existing TCP (e.g., Cubic). However, this goal is too idealistic to execute in practice. It is
believed that being unfair to Cubic is acceptable because Cubic is not even fair to itself [24].

Inspired by [249], we follow a harm-based approach in this analysis to quantify the harm the
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Figure 4.8: Comparison of CCAs’ performance over the 5G city drive channel trace with infinite buffer.

CCAs do to Cubic when they co-exist over the 5G channels. We chose BBR, Reno, and Copa for
our analysis because of their wide deployment along with Allegro and Verus based on the results
of our end-to-end throughput and delays analysis. Following the harm definition in [249], we
define x = solo performance; and y = performance after introduction of a competitor connection.
Then for metrics where ‘more is better’ (e.g., throughput) the harm = —= - 100. On the other hand,
for metrics where ‘less is better’ (e.g., delay) harm = ? - 100.

We conducted 20 experiments with an “infinite buffer” for each trace with two Cubic flows
co-existing on a 5G channel to calculate Cubic’s throughput and delay self-harm as the reference
threshold (i.e., the baseline). This threshold provides a firm definition for when a CCA can be
deployed alongside Cubic and when it is not. We represent this threshold in the horizontal dark

green areas shown in Figures 4.8(a) and 4.8(b). The green area represents the safe zone reflecting
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the acceptability of the algorithm alongside Cubic when sharing a bottleneck. In contrast, the red
zone is where the algorithm is not suitable for deployment. We observe that Cubic causes 50%
throughput-harm to itself, reflecting an equal share when competing with itself’.

In all traces, we observe that BBR, Allegro and Copa fall in the green zone not causing through-
put or delay harm to Cubic. However, Reno is the only CC that always falls in the red zone and
harms Cubic in terms of both throughput and delay. Reno does more than 80% throughput-harm
with 60% delay-harm to Cubic in the 5G city drive trace, above 60% throughput-harm, and nearly
90% delay-harm (similar trends have been observed for other traces). This could be why Net-
flix adheres to Reno due to its aggressive behavior in dominating other CCAs. However, Google
recently announced that Netflix is currently experimenting with BBR [47]. Although BBR is ex-
pected to make a major departure from traditional congestion-window-based CC; however, it
does not harm Cubic’s performance and allows Cubic to take most of the channel capacity across
all traces. Figure 4.8(a) shows that BBR does not have a strong impact on Cubic’s throughput.
With respect to delay, Figure 4.8(b) shows that BBR’s impact is slightly higher, but is still below
Cubic’s self-inflicted harm. We further analyze the interaction between Cubic and BBR in Fig-
ure 4.8(c), , where we observe that Cubic dominates the channel capacity, unfairly killing BBR

flows in an “infinite buffer” setting.

4.6.5 IMPACT OF BUFFER SIZES

To understand BBR’s behavior when sharing a bottleneck link with Cubic and assess the
impact of the buffer size on its performance, we experimented with different buffer sizes, varying
from 1 to 15BDPs. Figures 4.9(a) and 4.9(c) show the throughput and delay inter-change between
BBR and Cubic according to the bottleneck buffer size in the 5G city drive trace. The figures
show that at approximately 4.5BDPs both algorithms reach a fair share of the capacity. On the

other hand, Cubic claims more capacity upon increasing the buffer size, almost to the point of

!Note that negative delay harm indicates a reduction in Cubic delays.
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Figure 4.9: Effect of buffer size on Cubic and BBR inter-fairness

full dominance around 7BDPs and above. As for values below 4.5BDPs size, BBR dominates the
performance leaving almost no share for Cubic to explore.

Similarly, for the street canyon results shown in Figures 4.9(b) and 4.9(d), both BBR and Cu-
bic reach a fair share at around 11.5BDPs before Cubic dominating the channel capacity with
growing buffer sizes. We find two logical explanations for this behavior. First, BBR restricts the
packets in-flight at a maximum of 2BDPs (the extra BDP deals with delayed/aggregated ACKs).
As a result, this extra BDP of data in shallow buffers causes huge packet re-transmissions due to
losses. BBR neglects loss as a congestion signal and maintains high re-transmissions over time,
in turn worsening things. On the other hand, Cubic adjusts its CWND upon a loss. Therefore, BBR
causes more packet transmission/re-transmissions than Cubic. This implies that BBR delivers
high throughput in shallow buffers but at the expense of high packet re-transmissions. Second,
BBR finds the max target_CWND as CWND_gain x BtlBw x RTprop and increases the window
each time an ACK is received until the window reaches the target_CWND. Where BtlIBw and RT-

prop are the estimated bandwidth and RTT, respectively. Every 10 secs, BBR probes for RTprop
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by reducing its in-flight packets to just 4 packets to drain the queue. When BBR has an accurate
estimate of Bt1Bw and RTprop, it caps its packets in-flight at 2BDPs, i.e., BBR allows just 1BDP
worth of packets to queue at the buffer for 8 RTTs. Meanwhile, Cubic expands its CWND to fill the
buffer before encountering loss. Since a flow’s throughput is proportional to the buffer share, Cu-
bic gets more packets queued. BBR observes a lower throughput and further decreases its CWND.
This creates a positive feedback loop allowing Cubic to increase its CWND in response to BBR’s

CWND decrease.

4.6.6 ReEAL WORLD PERFORMANCE

Under the hood, the primary metrics measuring network performance include throughput
and latency. However, given the throughput and delay performance of a CCA, it is difficult to ex-
trapolate and compare from these data points to the Quality of Experience (QoE) observed in real
applications using these CCA in various network environments. To bridge this gap, we devise a
simplified scenario-aware scoring framework that evaluates CCA performance in alignment with
practical application demands. Each CCA instance is assessed using a set of normalized metrics:
throughput utilization, delay inflation, intra-fairness, and inter-fairness. We define composite
utility scores for three representative application scenarios by assigning weights to each metric
based on its relative importance. These weights reflect how different classes of applications trade
off between responsiveness, utilization, and fairness. They are motivated by a combination of
industry standards [3], QoE modeling literature [48], and empirical studies of traffic behavior for
these scenarios [37, 142, 155]).

Let x be a CCA instance with normalized metrics Thpt, Delay, IntraFair, InterFair. The fol-

lowing composite score functions are used:

« Real-Time: Scoregr(x) = 0.4-Delay ' +0.3-InterFair+0.2-Thpt+0.1-IntraFair Real-time

applications such as cloud gaming, AR/VR, and video conferencing are highly sensitive to
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queuing delay and jitter. To ensure responsiveness, delay inflation and inter-flow fairness
are prioritized, with throughput weighted lower to reflect its secondary importance once

basic video/audio quality thresholds are met.

. Large Object Transfer: Scorep,;(x) = 0.75-Thpt +0.05- Delay™ +0.15 - IntraFair +0.05 -
InterFair For applications involving cloud backups, and file transfers, sustained throughput
is the dominant concern, as buffers and retries can often absorb variable delays. Fairness
remains important for consistency across flows, while latency is given moderate weight to

discourage extreme delay inflation.

« Mixed Traffic: Scoreyixeq(x) = 0.20-Thpt+0.20-Delay™'+0.30-IntraFair+0.30-Inter Fair
In enterprise or hotspot environments with diverse traffic types, balanced behavior is crit-
ical. Equal weighting reflects the need for protocols that are fair, stable, responsive, and

capable of maintaining reasonable throughput under shared conditions.

Scenario Allegro BBR Copa Cubic Ledbat Proteus-P Proteus-S Reno Verus Vivace
Real-Time 0.510 0.594 0.707  0.588 0.457 0.451 0.377 0.575  0.473 0.555
Large Object Transfer  0.819 0.893 0.695 0.919 0.232 0.772 0.572 0.923  0.795 0.725
Mixed Traffic 0.637 0.688 0.782  0.731 0.574 0.606 0.551 0.719  0.619 0.664

Table 4.3: Scenario-based composite scores for each CCA

This scoring system computes average scores for each CCA based on the analysis results.
These composite scores provide a scenario-aware ranking of protocol suitability, allowing us
to link observed performance trends to real-world deployment implications. Table 4.3 presents
the comparative results across the three application profiles. We observe that Copa is expected to
perform well in low-delay and high-fairness environments, aligning with the needs of interactive
and real-time applications. In contrast, Cubic and Reno dominate in high-throughput scenarios
due to their aggressive sending behavior, though their delay performance is poor. BBR emerges
as a strong all-around performer, balancing throughput and delay effectively. Ledbat underper-

forms in high throughput scenarios due to conservative bandwidth usage. Proteus-S and Vivace
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also perform well in balanced settings, maintaining fairness and delay control without severely

compromising throughput.

4.7 DiscusSION AND KEY TAKEAWAYS

Our comprehensive evaluation presents an overwhelming set of data points across a diverse
set of 5G conditions, CCAs, and buffer regimes. We distill these findings into several core insights
that inform both practical deployment and future research directions.

Cubic and Reno, though dated, continue to perform well in terms of raw throughput, espe-
cially under moderate-to-large buffer conditions making them effective choices for throughput-
intensive applications such as video streaming, cloud backups, and software updates. Notably,
Reno sometimes outperforms modern algorithms in some 5G traces, particularly those with mod-
erate BDP and relatively stable variation. Copa and Vivace are strong candidates for realtime,
interactive applications such as AR/VR, cloud gaming, and video conferencing. However, while
suitable for latency-critical workloads, they may be unsuitable for bandwidth-intensive tasks un-
less paired with adaptive tuning. Learning-based CCAs like Proteus and Verus are designed to
adapt dynamically to network conditions, but their real world performance under 5G variabil-
ity is inconsistent. Verus displays unstable delay and low throughput in some scenarios, and
Proteus variants show erratic responsiveness that leads to both underutilization and high coex-
istence harm. These findings suggest that while learning-based designs hold promise, current
approaches may require more robust mechanisms to handle the abrupt dynamics of mobile 5G
networks. BBR and Allegro offer a balanced approach, making them suitable for mixed traffic en-
vironments such as enterprise WLANs, shared mobile hotspots, or urban 5G deployments. BBR
maintains competitive throughput while moderating delay and limiting coexistence harm, mak-
ing it a reasonable default for general purpose use. Allegro performs similarly well across most

conditions, but like Copa, it occasionally underutilizes links in highly dynamic environments
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where capacity shifts faster than its reaction time. Both protocols stand out for their ability to
navigate multiple performance trade-offs without leaning too heavily toward a single objective.

Across all scenarios, we consistently observe that protocol behavior falls along a clear throughput-
delay trade-off curve. Each CCA implicitly chooses a point along this frontier: some favoring
utilization at the cost of queuing delay, others sacrificing bandwidth for responsiveness. Tuning
protocol parameters or varying buffer size shifts a CCA’s position along this curve, suggesting
that the set of achievable trade-offs is bounded. This insight reinforces the importance of design-
ing CCAs that can dynamically reposition themselves along the frontier in response to shifting
network or application constraints.

In conclusion, our detailed evaluation of ten different CCAs in 5G environments unearthed
several limitations of individual protocols without a clear winner across all environments. Even
the best performing protocol in specific 5G settings exhibits limitations across other 5G environ-
ments including serious fairness concerns when competing with other flows in 5G. Additionally,
we present an evaluation framework for CCA to enable various types of CCA evaluations in
a unified setting with access to standardized benchmarking that is directly comparable to other
CCA evaluations using the standard framework. We believe that there still exists an essential gap
in congestion control research in 5G and designing an optimal CCA to address the 5G challenge
remains an open research question. Finally, these results highlight the broader value of Zeus as
a benchmarking platform. By enabling standardized and reproducible evaluations across diverse
5G scenarios, it could serve as a foundational tool for the design, testing, and selection of future

congestion control algorithms that meet the demands of next-generation networks.
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5 TowARDS NEXT GENERATION IMMERSIVE

APPLICATIONS IN 5G ENVIRONMENTS

This chapter is adapted from the preprint version of "Towards Next Generation Immersive Ap-
plications in 5G Environments", submitted to ACM Conference on Embedded Networked Sensor
Systems (Sensys). In this chapter, we design a QoE-aware modular framework for next-generation
immersive applications, comprising a high-level streaming and synchronization layer for AR/VR
systems and a QoE-aware rate control protocol optimized for collaborative Extended Reality ap-

plications.

ABSTRACT

The Multi-user Immersive Reality (MIR) landscape is evolving rapidly, with applications span-
ning virtual collaboration, entertainment, and training. However, wireless network limitations
create a critical bottleneck, struggling to meet the high-bandwidth and ultra-low latency demands
essential for next-generation MIR experiences. This chapter presents Hera, a modular framework
for next-generation immersive applications, comprising a high-level streaming and synchroniza-
tion layer for AR/VR systems and a low-level delay-based QoE-aware rate control protocol op-
timized for dynamic wireless environments. The Hera framework integrates application-aware

streaming logic with a QoE-centric rate control core, enabling adaptive video quality, multi-user
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fairness, and low-latency communication across challenging 5G network conditions. We demon-
strate that Hera outperforms existing state-of-the-art rate control algorithms by maintaining up
to 66% lower latencies with comparable throughput performance, higher visual quality with 50%
average bitrate improvements in our analysis, and improved fairness. By bridging the gap be-
tween application-level responsiveness and network-level adaptability, Hera lays the foundation

for more scalable, robust, and high-fidelity multi-user immersive experiences.

5.1 INTRODUCTION

The landscape of Multi-user Immersive Reality (MIR) technology, encompassing both Vir-
tual Reality (VR) and Augmented Reality (AR), is undergoing a transformative period driven by
substantial investments from industry leaders like Meta and Apple [114-117, 236]. With the
rapid growth of high-bandwidth MIR applications, the demand for ultra-fast and low-latency
wireless communication has surged across both indoor and outdoor environments. In indoor set-
tings, high-performance MIR applications often rely on Wi-Fi technologies such as IEEE 802.11ad
(WiGig) and IEEE 802.11ay, which operate in the 60 GHz frequency band to enable multi-gigabit
data rates. Similarly, outdoor MIR applications increasingly leverage 5G networks, particularly
millimeter-wave (mmWave) 5G, to support real-time streaming and interaction. However, de-
spite their potential for high-speed wireless connectivity, both Wi-Fi and 5G networks present
fundamental challenges, including limited range, susceptibility to signal attenuation, and high
bandwidth variability, all of which threaten the seamless performance of MIR applications.

A critical yet often overlooked aspect of the infrastructure supporting multi-user immersive
reality (MIR) applications illustrated in Figure 5.1 is whether existing systems, including trans-
port protocols and application-level streaming architectures, can deliver the Quality of Experi-
ence (QoE) required for seamless interaction in dynamic wireless environments [26, 27, 76]. De-

spite advances in mobile networking, the performance of MIR applications remains constrained
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Figure 5.1: Real-world MIR application ecosystem. The end users can be indoors or outdoors and are
connected to the application server by a 5G wireless channel.
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not only by the limitations of traditional congestion control protocols but also by the lack of

integration between network adaptation mechanisms and the application logic responsible for

streaming, synchronization, and rendering. Addressing these issues requires a holistic frame-

work that not only optimizes rate control at the transport level but also enables the application

to dynamically adapt to changing network conditions to preserve the user experience.

QoE Metric

Description

Startup delay

Video bitrate / resolu-

tion level

Stall / buffering events

Interaction latency

Collaborative
index

fluency

The time users wait before the immersive content begins. Higher
startup delay reduces perceived responsiveness at session start.
The visual clarity of the XR environment. Lower throughput forces
the system to lower resolution or increase compression, reducing
visual fidelity.

Interruptions in the immersive experience where video or scene
rendering pauses to rebuffer. Caused by throughput falling below
content rate requirements.

Delay between a user’s action (e.g., moving an object) and the visible
response in the shared scene. Directly impacts perceived interactiv-
ity and collaboration smoothness.

The smoothness and synchronicity of shared actions among users,
largely driven by latency. High latency leads to disjointed collabo-
rative interactions.

Table 5.1: MIR QoE metrics and their user impact.

5.1.1 CHALLENGES

5.1.1.1 APPLICATION REQUIREMENTS

Currently available MIR applications showcase some of the potential applications enabled by

MIR but the Quality of Experience (QoE), in terms of key metrics summarized in Table 5.1 such as

video resolution, interaction latency, and collaborative fluency, for these applications is restricted

by various network performance bottlenecks [151, 189, 227]. To circumvent these bottlenecks,

many of these applications only support 2D experiences, which create a large “screen” in the

immersive environment. Others that provide an immersive experience are forced to reduce the
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frames-per-second (FPS) for the application, which reduces how smooth the application feels. Al-
ternatively, the application displays the content at a lower resolution, which reduces the graphical
fidelity, or freezes momentarily, breaking the users’ immersion [237]. For a high-fidelity and com-
fortable MIR experience, a target frame rate (FPS) of at least 120 FPS is recommended, as lower
frame rates can cause motion sickness due to the increased discrepancy between visual input and
vestibular perception [246]. At the same time, 60 FPS and 90 FPS are often considered as a base-
line and target for today’s MIR systems [51, 232]. In terms of resolution, a target video quality of
at least 4K resolution per eye [226] is required to mitigate the “screen-door effect,” a common VR
artifact where inter-pixel gaps become visible and compromise the visual fidelity [60].

A high-quality, immersive, multi-user immersive reality experience featuring 360-degree 3D
video at 120 frames per second (FPS) and 4K resolution per eye necessitates a downlink bandwidth
of at least 100 Mbps per user to accommodate the high data rate associated with 360-degree video
capture, stereoscopic 3D rendering, and real-time multi-user synchronization. Furthermore, end-
to-end latency must remain below 20 ms to ensure a comfortable and responsive user experience,
minimizing motion sickness and maximizing the sense of presence. This latency budget encom-
passes both network transmission delays and any processing overhead. Conventional congestion
control algorithms, like BBR [46] and TCP [15], are often insufficient to satisfy these stringent
requirements. While UDP is commonly used for real-time communication due to its low over-
head and minimal latency, many multi-user immersive applications require reliable delivery to
ensure consistency across users, prevent visual artifacts, and maintain the integrity of complex
shared scene states. TCP becomes essential in scenarios where packet loss or out-of-order deliv-
ery could disrupt synchronized interactions, collaborative object manipulation, or the seamless
rendering of high-fidelity visual elements. BBR, while designed to maximize throughput, can ex-
hibit performance degradation in lossy environments and may not consistently deliver the low
latency necessary for VR. Cubic [99], optimized for TCP flows, is similarly challenged by the

real-time nature of VR streaming, as its congestion control mechanisms can introduce unaccept-
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able delays, particularly in dynamic network conditions. The high bandwidth demands and strict
latency constraints of high-fidelity VR necessitate the exploration and development of special-
ized network protocols and rate control algorithms tailored for real-time media streaming and

interactive applications.

5.1.1.2 5G CHANNEL VARIABILITY

Link capacity variation is a known fact in cellular networks. However, the nature of the
5G-New Radio (NR), with a sub-6 GHz spectrum and mmWave bands being vital elements, may
cause link capacity fluctuations to be further amplified. Indeed, higher frequency bands suffer
from larger propagation losses, effectively reducing the base stations’ coverage areas. For in-
stance, due to weak diffraction ability, mmWave communications are sensitive to blockage by
obstacles (e.g., humans, furniture, foliage). On the other hand, 5G networks are intended to sup-
port much higher mobility scenarios, supporting vehicular speeds up to 500 km/h. On the other
hand, line of sight (LoS) and non-line of sight (NLoS) communications experience significantly
different channel conditions and throughput. Although 3G and 4G also suffer from these channel

fluctuations, these are far more accentuated in 5G links, as illustrated in Figure 5.2 which provides
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perspective on the sheer difference in both bandwidth between 5G and non-5G networks and per-
haps the bigger challenge, the high variability in 5G network environments that make it difficult
for congestion control protocols to adapt. Thus, despite the potential to enable high-throughput
communications, the variability of the access channel capacity would result in a degraded TCP
goodput and very low radio resource utilization. Existing congestion control protocols are com-
monly designed as general-purpose protocols that consistently perform well in a wide variety of
common scenarios. In MIR, however, applications have strict network requirements for optimal

performance.

5.1.2 CONTRIBUTIONS

In order to overcome these constraints, we propose Hera, a modular framework for MIR appli-
cations, built around a novel QoE-aware rate control protocol optimized for next-generation wire-
less environments. The Hera framework integrates two layers: a high-level streaming and syn-
chronization layer tailored for AR/VR applications and a low-level congestion control core that
provides real-time network adaptation through delay-based window modulation and histogram-
based RTT tracking. Together, these layers enable the system to dynamically adjust media quality,
viewport streaming, and collaborative synchronization rates in response to network conditions,
bridging transport-level adaptation and application-level quality of experience. Our work makes

several key contributions.

« We design and implement an open-source framework that integrates transport-level rate
control with application-level multi-user synchronization to support bandwidth-intensive
AR/VR benchmarking. Our implementation connects a custom TCP-based kernel conges-
tion control module with a WebXR-based multi-user application that synchronizes posi-
tional updates and interactions across both real headsets and synthetic clients. The frame-

work is designed to expose network metrics to the application layer, providing a foundation
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Protocol Average Quality Fairness Index

BBR 34.5 0.989
Cubic 12.2 0.999
Allegro  45.7 0.370
Vivace 46.5 0.803
Hera 91.2 0.965

Table 5.2: Performance comparison of congestion control protocols. Hera achieves the highest quality
while maintaining high fairness between competing flows in MIR applications deployed over a 5G net-
work.

for future extensions that could enable adaptive bitrate, resolution, field-of-view streaming,

and dynamic synchronization rates.

+ Our evaluation goes beyond traditional congestion control metrics by demonstrating how
improvements in throughput, latency, and fairness translate into enhanced QoE for im-
mersive applications. We show that Hera maintains low startup delay and stall frequency,
sustains higher resolution levels, lowers interaction latency, and improves collaborative
fluency compared to existing protocols such as BBR, Allegro, Vivace, and Cubic. These

improvements directly impact the comfort, immersion, and usability of AR/VR systems.

« We demonstrate the performance improvements offered by the Hera rate control proto-
col using a system designed for adaptive video streaming to VR headsets, with a focus on
measuring Quality of Experience (QoE). The system supports experiments with both real
headsets and synthetic clients, enabling high scalability. It integrates a Linux server hosting
DASH content via NGINX, VR and synthetic clients using dash. js for playback, and dy-
namic switching between rate control protocols. This setup allows controlled benchmark-
ing of QoE under various load conditions and network environments. Our experiments
show that Hera consistently outperforms other rate control protocols in delivering higher

average video quality and smoother playback in multi-user immersive scenarios.
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5.2 RELATED WORK

AR/VR APPLICATIONS IN 5G ENVIRONMENTS

Many multi-user immersive reality (MIR) applications have been publicly released, but their
operation within current network infrastructures often requires compromising Quality of Expe-
rience (QoE). For example, virtual social platforms like VRChat [243] and Rec Room [198] enable
users to interact in user-generated virtual worlds but face noticeable latency and graphical lim-
itations. Collaborative design tools such as Spatial [222] and Arkio [23] support remote teams
co-designing in shared 3D spaces, though they struggle with complex models and large user
counts. Immersive training simulations for medical and industrial applications offer hands-on
virtual practice but often require simplified visuals and limited interactivity to maintain real-time
performance. Large-scale virtual events, such as concerts in Meta Horizon Worlds [164], high-
light both the promise of MIR applications and the challenges in delivering high-fidelity experi-
ences to large audiences. Research addressing these challenges includes techniques like viewport
prediction [260], adaptive bitrate algorithms [161], FOV streaming [112], and resource-efficient
multi-user AR frameworks like Spear [98]. Despite these advances, scaling MIR applications to

support seamless multi-user experiences in dynamic 5G environments remains an open problem.

NEXT-GENERATION CONGESTION CONTROL ALGORITHMS

Numerous congestion control protocols have been proposed to overcome TCP’s limitations
in modern wireless environments. Machine learning-based solutions such as Remy [253], In-
digo [262], Aurora [126], and Orca [7] aim to dynamically adjust sending rates under complex
conditions, though they often struggle with generalization or stability. Delay-based protocols
like Copa [24], Verus [264], and Sprout [255] attempt to balance throughput and latency using

end-to-end delay profiles or stochastic models, but typically require tight sender-receiver coor-
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dination. Real-time communication protocols such as Google Congestion Control (GCC) [49],
ScReAM [130], and NADA [268] are tailored for low-latency media but often exhibit limita-
tions in bandwidth stability or infrastructure dependency. Meanwhile, transport innovations
like QUIC [144] and deep learning-driven systems like DeePCCI [213] introduce further flexibil-
ity with encrypted header support and pluggable congestion control. Unlike these approaches,
Hera integrates histogram-based RTT tracking with probabilistic window adjustment, targeting
the specific demands of high-throughput, low-latency multi-user immersive applications in 5G

environments.

QoE METRICS AND RATE CONTROL FOR AR/VR

Understanding and optimizing QoE for AR/VR applications has led to the development of
frameworks like VR-EXP [86] and Perceive [68], which provide controlled environments and
predictive models to assess streaming performance under variable network conditions. These
platforms focus on metrics such as startup delay, stall frequency, and frame rate stability. Kulkarni
et al. [139] evaluated Wi-Fi configurations for immersive video, highlighting key parameters that
affect streaming QoE. While these works address aspects of AR/VR performance, they often stop
short of directly linking transport-layer behavior to application-level QoE, particularly in the
context of rate control mechanisms that can dynamically adjust to fluctuating bandwidth while

maintaining fairness and responsiveness across users, a gap that Hera aims to fill.

5.3 HEeRrA DESIGN

5.3.1 FRAMEWORK DESIGN

The Hera framework is designed to provide end-to-end optimization and evaluation for multi-

user immersive reality (MIR) applications operating over challenging wireless networks such as
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5G.

HicH-LEVEL AR/VR APPLICATION LAYER

Our high-level application layer is built around a flexible WebXR-based multi-user environ-
ment that supports real-time synchronization of user actions, such as positional updates and basic
object interactions. This layer is designed to operate with both real VR headsets (e.g., Meta Quest,
Pico, or Apple Vision Pro) and synthetic clients that emulate WebXR sessions. Real headsets al-
low us to validate performance and user experience under practical conditions, while synthetic
clients enable large-scale, controlled benchmarking with customizable behavior profiles.

The system currently employs WebSockets for multi-user state synchronization, allowing po-
sition updates and interactions to be shared across clients with low latency. The application can
be extended to incorporate WebRTC/WebTransport channels for bandwidth-intensive media de-
livery, adaptive bitrate management, and viewport-optimized streaming in future iterations. A
key feature of the framework is its utility as a benchmarking tool. By modifying the sending rate,
payload size, and update frequency of synthetic clients, the system can emulate a wide range
of bandwidth-intensive applications, including high-fidelity video streaming, collaborative 3D
design, and large-scale virtual events.

The Hera framework integrates seamlessly with our custom QoE-aware rate control protocol,
implemented as a Linux kernel pluggable module. All application traffic, including multi-user
state updates, synthetic client payloads, and configurable benchmarking streams, is transmitted
over TCP flows managed by this module. This setup allows the selected rate control protocol
to directly control sending rates and adapt to network conditions in real time. The framework
is designed to expose network metrics and protocol feedback to higher layers, enabling future
integration of congestion control feedback into adaptive application logic. Figure 5.3 provides an

overview of the framework components and their interactions.
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Figure 5.3: Framework architecture showing interactions between components.
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5.3.2 QoOE AwARE RATE CONTROL

5G NETWORK SETUP

The Hera rate control algorithm is designed for low-latency applications that operate in a 5G
network environment where end hosts communicate with base stations over mmWave channels
that exhibit high variability over short time scales [195]. A critical requirement for congestion
control in highly volatile network environments is that the protocol must adapt and converge
towards the desired sending rate as quickly as possible, given that the environment state can
change significantly within only a few RTTs. Given this requirement, the protocol design must
consist of a simplistic algorithm that can make the required computations within microseconds
while retaining high accuracy of predictions. Any organization deploying a 5G network will
deploy several base stations within an area and operate a Radio Access Network (RAN) that can
tightly manage all the radio allocations across base stations and end-hosts that connect to the
network. We envision a setting where future 5G networks with edge compute infrastructure can
support a broad array of low-latency applications with end-to-end latencies of less than 1 —10ms.
In this regard, we assume that the server endpoint that connects to a low-latency application
on a 5G mobile device is within the 5G network or within close network proximity to the 5G
network. In summary, we assume a simple 5G network where an application from a mobile end-
host connects with another endpoint (fixed or mobile) over a low-latency path where the primary

network bottleneck is the highly variable wireless 5G network link.

5.3.2.1 RATE CONTROL ALGORITHM

The rate control algorithm, outlined in Algorithm 1, employs a delay-centric approach to
maintain low network latency while preserving throughput stability. At its core, the algorithm
dynamically adjusts the congestion window (cwnd) by analyzing real-time Round-Trip Time

(RTT) distributions through two primary components: a sliding window backlog of length N
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Algorithm 1: Rate Control Algorithm
Input: Backlog backlog < FIFO queue of length N
Input: Histogram histogram <« Array[Number of buckets X]
Input: Bucket size B «— Size (ms), Apqy < 10
for each new RTT measurement do

backlog « backlog + [RTT] > Update FIFO
U — % Zio backlog][i] > Compute average
b — |pu/B] > Determine bucket

histogr;c)lm[b] « histogram[b] + 1
>_o histogram[i
a < Zfiz histoiram{ j]]
if b < X/2 then
| cwnd « cwnd + (a X (X/2 = b) X Apax)
else
| cwnd «— cwnd — (a X (b—X/2 1) X Apax)

end

end

and a histogram-based delay classification system that converges towards the desired RTT, based
on the number of buckets X. For each incoming RTT measurement, the algorithm updates a fixed-
length FIFO queue (backlog) of N recent RTT values, computes their moving average, and maps
this average to a histogram bucket representing discrete latency ranges (e.g., 15 ms intervals).
The histogram tracks the frequency distribution of these buckets over time, enabling the calcu-
lation of ¢—a normalized metric reflecting the cumulative probability of observing RTTs in the
current or lower-latency buckets. Based on this probability and the bucket index, Hera modulates
the congestion window asymmetrically: when operating in low-latency regimes (buckets below a
predefined threshold), it increases the window proportionally to both @ and the distance from the
threshold, fostering aggressive utilization of available bandwidth. Conversely, in high-latency
states, it reduces the window based on the severity of the observed delay, effectively curbing
queue buildup. The algorithm incorporates safeguards to clamp the congestion window within
empirically validated bounds, preventing extreme oscillations. In simple terms, the maximum
change in sending rate occurs when a large number of recently observed RTTs are significantly

different from previous observations, and these RTTs fall in the furthest buckets from the cen-
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Figure 5.4: Impact of varying the number of buckets on protocol performance, measured in average
throughput and delay. Results show that increasing the bucket count raises throughput but also increases
delay.

ter. This dual mechanism—probabilistic delay classification coupled with gradient-based window
adaptation enables Hera to preemptively mitigate congestion before packet loss occurs, making it

particularly effective for latency-sensitive applications such as real-time video streaming, cloud

gaming, and MIR applications where stable, low-delay communication is critical.

5.3.2.2 HERA RATE CONTROL PARAMETERS

Hera requires four control parameters that drive its performance, i.e., Bucket Size, the Max
Delta value, Histogram Limit, and the backlog length. These parameters can be finely tuned con-

cerning the channel environment for enhanced performance gains.
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NUMBER OF BUCKETS

The number of Buckets in the histogram determines the target RTT for the protocol. For
a stable network environment, a low number of buckets is required, and for highly fluctuating
network environments, a high number of buckets would be more suitable. For the general case,
this value needs to be dynamically modified based on the network environment. For the VR
streaming over 5G environments case, we can calculate a reasonable bucket size based on the
RTT requirements of the VR applications for a smooth VR streaming experience. We can see the
effects of changing the number of buckets in figure 5.4. As expected, the algorithm modifies the
congestion window to ensure that the RTT converges towards the target RTT at the center of the
distribution. For applications that prioritize higher throughputs with tolerance for higher RTTs,

this parameter can be tuned to a higher value accordingly.

Max DELTA

The maximum delta determines the maximum value by which the cwnd is modified at every
RTT. It is used in combination with the current state and the alpha value, i.e., the probability of
being in the current RTT or lower, to ensure that when the RTT is too high or too low, the cwnd
is adjusted rapidly to converge towards the desired RTT. When the current state is close to the
desired RTT, the protocol makes small adjustments to the cwnd. Increasing this value can cause
the protocol to become unstable, as it may overreact to a signal and then change too rapidly in

the opposite direction when attempting to recover and stay in this unstable loop.

HistoGrAM LiMIT

The histogram limit is the maximum amount of data stored in the histogram, which is not only
required for memory usage purposes but also to ensure that the global state of the network is not

dependent on outdated data, which is not representative of the current network environment, as
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the state of the network environment can vary over time, especially for cellular networks.

BACKLOG LENGTH

The backlog stores a “recent history” of RTTs (Round-Trip Times). It stores the last few RTT
measurements (e.g., the last 10 samples) in a sliding window. This helps smooth out temporary
spikes or dips in delay. For example, if one RTT is unusually high (e.g., due to a random network
hiccup), the backlog averages it with other recent RTTs to avoid overreacting. The backlog pro-
vides a short-term view of the network’s current state, which is crucial for making quick, adaptive
decisions. Increasing the backlog length would make the protocol slow to react to changes in the
network environment, while decreasing it would make the protocol overreact to any observa-

tions.

5.4 EVALUATION METHODOLOGY

5.4.1 VR APPLICATION

In order to compare the MIR application performance of different congestion control proto-
cols, we develop a system for streaming adaptive video to a VR headset and measuring Quality
of Experience (QoE). The system is built around three core components: a Linux server host-
ing DASH content via NGINX, a VR client using dash.js for playback, and dynamic switching of
congestion control protocols.

The server is configured to host DASH streams using NGINX with an RTMP module, which
hosts video content as chunks (e.g., 4-10 seconds) along with a Media Presentation Description
(MPD) file for adaptive bitrate streaming. Videos are pre-processed into multiple bitrate repre-
sentations (0.045-4 Mbps) using FFmpeg and MP4Box to ensure DASH compatibility. To test

different congestion control protocols, the Linux kernel’s TCP stack is adjusted using sysctl com-
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mands (e.g., switching between CUBIC and BBR). Experiments involve streaming a 10-minute
video (e.g., Big Buck Bunny) to the VR headset under controlled network conditions with five
clients streaming the video simultaneously.

On the client side, five clients run the stream using a modified dash.js player. The player
fetches the MPD file and adaptively selects video segments based on real-time network condi-
tions. The dash.js player logs client-side Quality of Experience (QoE) metrics, including frame
losses, bitrate, and video quality, to gauge application performance from the user’s perspective.
This setup allows us to systematically compare five different TCP congestion control protocols,
including Hera, to assess how each protocol influences the performance of the VR application in
terms of network efficiency and user experience. In order to emulate the variable latency, packet
losses, and capacity limits that may be observed in real network environments, we use the Linux
Traffic Control (tc) and NetEm tools. This approach provides valuable insights into the impact of
different network protocols on a VR application, offering a practical foundation for optimizing

VR experiences in varied network conditions.

5.4.2 NETWORK TRACE COLLECTION

In order to emulate a diverse set of realistic 5G network environments, we collect a set of
channel traces that collectively cover a wide range of scenarios in terms of available bandwidth,
mobility (driving, walking, and stationary), and variability. We employ different methodologies
to generate this set of channel traces. Firstly, similar to prior work [255, 264], we use a real 5G
connection from a commercial deployment in the wild, along with an Android application capable
of recording the maximum available channel capacity by connecting to a remote server hosting
dummy content specifically for this channel trace collection. These traces include urban driving
and standing stationary at a beach, and the full channel traces are depicted in Figure 5.5(a) and
Figure 5.5(b). Secondly, we use the mmWave module [165] built atop the NS-3 [202] tool devel-

oped by New York University wireless group (NYU Wireless) to generate channel traces emulat-
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Figure 5.5: 5G network traces used for experiments were collected using a commercial 5G deployment,
NS-3 mmWave simulations, and WiGig-based indoor setups, covering conditions MIR applications may
encounter in real-world deployments. The traces include urban driving (City Drive, UMa), stationary
scenarios (Beach Stationary, Indoor Stationary), rural mobility (RMa), and high-mobility indoor environ-
ments (Indoor Walking).

ing scenarios involving random user movement in an urban scenario, depicted in Figure 5.5(d),
and a rural environment, depicted in Figure 5.5(c) using a spatial channel model [269]. Finally,
we use channel traces generated using a high-speed WiGig router in an indoor environment in
scenarios with high user mobility, depicted in Figure 5.5(e), and in a stationary scenario, shown

in Figure 5.5(f). Altogether, these channel traces encompass a broad range of realistic network

scenarios that a user of a MIR application may encounter in the real world.

5.4.3 EMULATING THE 5G TRACES

We used the Mahimahi framework [172] to emulate 5G network links based on the collected
traces. Mahimahi’s linkshell acts as a controlled router that queues packets and throws them at

the desired rate as dictated by the trace file. The traces give us the ability to run several algorithms
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and compare the performance across scenarios in a unified and controlled manner without having
to control for many of the external parameters that are usually faced by running things in the wild,
i.e., unpredictable competing traffic from other users or random obstacles and user movements in
the environment. A similar approach has been used by Verus [264] and Sprout [255] in the past.

We have mimicked the popular iperf utility for our experiments, having separate sender and
receiver programs. The receiver runs inside a Mahimahi linkshell, while the sender repeatedly
transmits fixed-size blocks of 128 KiB to the receiver for 60 seconds. We chose bucket size = 15,
backlog_length = 10 and the Max_delta = 10, as our default parameters for Hera. We choose
4 prominent CC protocols for comparison in our experiments. These protocols include BBR,

Allegro, Vivace, and Cubic.
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Figure 5.6: Comparison of congestion control protocols over six 5G network traces, evaluating their av-
erage throughput (y-axis) and delay (x-axis). BBR and Cubic achieve high throughput but at the cost of
increased latency. PCC Vivace maintains lower delays but struggles under highly fluctuating conditions.
PCC Allegro exhibits inconsistent performance, sometimes achieving low delays but often suffering from
high latency similar to legacy TCP protocols. Hera achieves a balanced performance, maintaining com-
parable throughput to BBR and Cubic while significantly reducing delay—up to 50% lower than BBR and
66% lower than Cubic’s delay in some cases.
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5.4.4 HEerA RATE CONTROL IMPLEMENTATION

We implemented the Hera QoE-aware rate control module in the Linux kernel as a pluggable
congestion control module [67, 107]. The protocol has been tested on Ubuntu 20.04.1 with kernel

version 5.15.0-41.

5.5 HERA EVALUATION

We aim to compare Hera’s performance to other state-of-the-art protocols from several as-
pects, i.e., the VR streaming performance of the protocol in terms of various VR streaming QoE
metrics as well as a traditional throughput-over-delay performance comparison in an emulation

environment utilizing the collected 5G traces.

5.5.1 BASELINE SELECTION

We evaluate our congestion control algorithm against four representative baselines that span
the spectrum of established and emerging approaches in the context of AR/VR streaming. These
include loss-based, model-based, learning-based, and AR/VR-specific schemes, each reflecting

different trade-offs between throughput, latency, and stability.

+ Cubic: The default congestion control algorithm in most operating systems, Cubic represents
the class of loss-based controllers. While not optimized for low-latency media, it establishes a

widely deployed baseline for throughput and fairness.

« BBR: BBR is a modern congestion control algorithm that uses bottleneck bandwidth and mini-
mum RTT estimation to optimize throughput with controlled delay. Its proactive model-based

design makes it well-suited for real-time interactive applications.

127



« PCC Allegro: Developed specifically for immersive media streaming, Allegro offers a domain-
aware baseline that prioritizes frame delivery deadlines and low buffering, directly aligning

with the requirements of AR/VR systems.

« PCC Vivace: A reinforcement learning-based algorithm that adapts to dynamic network con-
ditions using latency and throughput feedback. It serves as a strong representative of learned

congestion control strategies.

We do not include traditional delay-based controllers such as Vegas [40], LEDBAT [218],
TIMELY [166], or Copa [24]. Vegas and LEDBAT are known to be overly conservative and un-
derperform in shared environments, especially when competing with aggressive loss-based flows
like Cubic [50, 143]. TIMELY requires hardware timestamping, which is generally unavailable in
wireless and edge-based AR/VR deployments. Copa, while theoretically promising, is not widely
adopted and lacks open-source support for immersive media use cases. Additionally, delay aware-
ness is already represented in our chosen baselines—BBR and Vivace both integrate delay feed-
back using more robust and adaptive mechanisms. Therefore, we focus on practically relevant

and competitive baselines tailored to our target domain.

5.5.2 EMULATED 5G TRACES EVALUATION

In this subsection, we compare Hera’s performance to four other congestion control protocols:
Google’s BBR, PCC Allegro, PCC Vivace, and the de facto legacy TCP Cubic. We ran each of
these protocols across six measured 5G channel traces using MahiMahi. Each protocol was run
five times using different seeds to be able to get enough statistical rigor in the results, as well as
being able to compute the statistical significance of both the achieved throughput and delay.

Figure 5.6 presents the results comparing Hera against the four other chosen congestion
control protocols over the emulated 5G traces. For the scatter sub-figures, we plot one point per

congestion control protocol, corresponding to its measured average throughput (y-axis) and delay
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(x-axis) combination, averaged over five different seed runs per protocol. A protocol that strongly
prioritizes ultra-low latency at the cost of low throughput exists in the bottom-left quadrant of
this graph. As the protocol behavior trends towards prioritizing throughput and “aggressively”
increasing the sending rate, the protocol will gradually move from the bottom-left quadrant to-
wards the top-left quadrant until the protocol starts sending data beyond the available channel
capacity, causing bufferbloat-induced queueing delays, which will cause the protocol to move to-
wards the top-right of this graph. In other words, the optimization goal of a protocol determines
its place on this curve. For most applications, the ideal operating point on this curve is in the top-
left quadrant, only slightly below the area where the curve starts moving towards the top-right,
which indicates an increase in latency. This is especially true for MIR applications that demand
high bandwidth and also ultra-low latency in order to maintain a smooth and high-quality QoE.
Several key takeaways can be seen across the scatter comparison results of the six traces.

Legacy congestion control protocols tends to have the highest average throughput compared
to the rest of the protocols. However, this throughput comes at the expense of much higher
delays, often achieving more than three times higher delays compared to other protocols.

Google’s BBR achieves a similar average throughput to TCP Cubic while lowering the delay
significantly compared to Cubic. In all experiments, BBR hovers around the ideal top left quad-
rant. In all of the experiments, Hera is able to achieve lower delays than BBR except for two cases
where the delay performance is almost identical. This delay performance improvement of up to
50% in certain cases comes at a cost of a less than 10% reduction in throughput performance when
compared against BBR.

PCC Vivace generally achieves low delays except in the two most highly fluctuating traces,
City Driving and WiGig Walking, which cause Vivace to suffer large delays due to it being unable
to adapt to the high fluctuations. In two scenarios, Vivace is able to outperform both Hera and
BBR in terms of delay performance for up to a 30% decrease in throughput utilization.

PCC Allegro has an inconsistent performance, achieving relatively low throughput and delays
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in certain traces. In the general case, it tends to achieve high throughput but with high delays as
well, similar to the legacy congestion control protocols Cubic in half of the tested scenarios.
Finally, Hera achieves a good balance across the different traces, achieving almost the same
throughput across the six traces as BBR and Cubic while maintaining lower delays, about half of
that of BBR in some cases, such as UMa, RMa, and most notably in the Beach Stationary trace,
where Hera also manages to outperform other protocols in throughput while still maintaining
lower delays. This ability to maintain high throughputs while achieving lower delays enables
Hera to outperform the other congestion control protocols in terms of VR streaming performance,

as we observe in Section 5.5.3.

5.5.2.1 OBSERVABLE QOFE IMPLICATIONS

While the preceding analysis focuses on throughput and latency, these network metrics trans-
late directly into observable Quality of Experience (QoE) characteristics for users in collaborative
XR applications. Table 5.1 summarizes key QoE metrics that can be inferred from throughput and
latency measurements and how they manifest in user experience. In our experiments, the differ-
ent congestion control protocols display varying throughput-latency tradeoffs that map directly
to observable QoE outcomes in collaborative XR applications:

Cubic: While Cubic achieves high average throughput, it does so at the cost of substantial
latency increases, often exceeding acceptable limits for interactive MIR applications. As a re-
sult, users would experience frequent delays in seeing their collaborators’ actions reflected in the
shared space, leading to impaired collaborative fluency and responsiveness. The high latency also
increases motion-to-photon delays and may contribute to discomfort or disorientation.

BBR: BBR generally balances high throughput with lower latency than Cubic, enabling better
QoE. Users are likely to experience smoother interactions and fewer stalls, with video resolution
often maintained at higher levels. However, under certain highly variable network conditions,

BBR may still cause latency spikes, resulting in momentary interaction lag.
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Figure 5.7: Comparison of QoE metrics across protocols: startup delay, collaborative fluency, and inter-
action latency.

PCC Allegro: Allegro shows inconsistent throughput and latency behavior across traces. In
scenarios where it behaves aggressively, it may cause similar QoE degradation to Cubic, such as
higher stalls and lower collaborative fluency. In other cases, its lower throughput would force the
system to reduce video resolution, leading to a loss of visual fidelity without significant latency
gains.

PCC Vivace: Vivace is typically able to maintain lower latency, resulting in good responsive-
ness and collaborative fluency in stable conditions. However, in highly fluctuating environments
(e.g., City Drive, Indoor Walking traces), Vivace struggles to adapt, leading to sharp QoE degra-
dation through either increased buffering or reduced resolution to compensate for throughput
drops.

Hera: Hera consistently achieves low latency while maintaining high throughput across di-
verse network conditions. This directly supports superior QoE: fast startup times, minimal stall
events, sustained high video resolution (e.g., 4K where possible), and fluid, responsive collabo-
rative interactions. Hera’s design prioritizes latency stability, making it particularly effective at
preserving immersion and reducing discomfort in XR environments.

To visualize this mapping, Figure 5.7 summarizes the relative QoE performance of the tested
protocols across key metrics, including startup delay, resolution, and interaction responsiveness,

derived from their throughput-latency characteristics in our experiments.
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5.5.3 VR MuLTI-USER APPLICATION
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Figure 5.8: Average bitrate of protocols in Mixed Reality streaming applications implemented on Meta
Quest headsets. Five colors represent five simultaneous streams. Hera maintains 4K quality, while BBR
and Cubic degrade to lower resolutions due to congestion. Allegro and Vivace perform better but show
fairness issues, leading to inconsistent QoE.

We evaluate the performance of five congestion control protocols when supporting a real
Mixed Reality application with users running the application on a range of devices, including
Meta Quest headsets. Figure 5.8 shows the average bitrate, which corresponds to the video play-
back resolution, of five simultaneous streams in a realistic network environment with different

congestion control protocols supporting the server. As the videos are encoded in multiple levels
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of quality, when the system detects that the video buffering rate is low due to congestion, the
Adaptive Bitrate Algorithm reduces the video quality. The results show Hera outperforming ex-
isting protocols and consistently maintaining 4K stream quality for all clients, while BBR drops
to 720p stream quality and Cubic performs even worse due to packet losses in the network en-
vironment. Allegro and Vivace perform slightly better for some users, but we observe that both
protocols have outliers, which indicates fairness issues causing the QoFE for different users to
vary. The experiments in Figure 5.6 illustrate that Hera consistently achieves lower throughput
than some protocols. Despite this, we observe higher streaming QoE for Hera due to the fact that
higher latencies incurred by aggressive protocols directly degrade streaming quality by introduc-
ing delays in the delivery of video and audio data, causing buffering and consequently causing
the ABR algorithm to lower the stream quality. Although our analysis also revealed minor frame
drops across all protocols, with Hera exhibiting the lowest and Cubic the highest frequency, these
differences did not translate to a noticeable impact on the user experience, as the system dynam-

ically adapts the video quality to ensure minimum interruptions at the cost of video resolution.

5.5.4 FAIRNESS ANALYSIS

A critical component of any congestion control protocol is the ability to operate in an en-
vironment with multiple network flows using different congestion control protocols . This is
especially true in MIR applications where multiple users simultaneously use the application and
compete for network resources. As such, we evaluate the Jain fairness index [125] for all conges-
tion control protocols for traditional as well as MIR applications. As discussed in Section 5.5.3
where we observe the performance of different protocols supporting five competing clients ac-
cessing the application content simultaneously. We observe that Cubic and BBR display strong
intra-fairness, while PCC Allegro and Vivace show outliers that lower the fairness score. Hera
demonstrates slightly lower fairness than Cubic and BBR but with significantly improved video

quality for each user.
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Additionally, we conduct various experiments using our experimental framework to analyze
the intra-fairness behavior of the selected congestion control protocols when operating in a 5G
network environment to replicate the scenario where multiple users in a local environment are
simultaneously accessing the application and competing for network resources in a 5G network
environment. For traditional scenarios, as discussed in Section 5.5.2, we evaluate the behavior of
each congestion control protocols when operating in the Beach Stationary simulated 5G network
environment using the network trace collected from a real 5G deployment in the wild. The results
of these experiments are illustrated in Figure 5.9. For our experiments, we run 6 competing flows
and observe the fairness characteristics of our protocol in terms of throughput allocated over
time to each flow. We also employ the widely used Jain’s fairness index [125] metric to quantify
the overall fairness characteristics of each congestion control protocols in these experiments.
The results corroborate the findings from the MIR streaming experiments. In our experiments,
Cubic, BBR, and Hera demonstrate strong fairness characteristics with above 90% Jain’s fairness,
allocating an equal share of the available bandwidth across all connected clients, with Allegro
and Vivace falling behind due to a small subset of the flows dominating the other flows in the
case of Allegro, or performing significantly worse in terms of throughput compared to the other

flows in the case of Vivace.

5.6 DISCUSSION

PERFORMANCE DISCUSSION

Traditional congestion control algorithms exhibit several fundamental weaknesses when ap-
plied to MIR streaming over 5G networks, leading to suboptimal performance compared to Hera.
Conventional loss-based TCP algorithms such as Cubic and Allegro assume that packet loss sig-
nals network congestion. However, in cellular networks, packet losses frequently occur due to

handofts, signal fluctuations, and interference, rather than genuine congestion. This results in
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unnecessary rate reductions, degrading throughput and streaming quality. Also, the end-to-end
nature of TCP means that congestion response happens far from the point of signal fluctuation,
leading to delayed adaptation [158]. In highly dynamic 5G environments, where channel condi-
tions fluctuate on millisecond timescales, algorithms like BBR struggle to converge because they
rely on multi-RTT bandwidth estimation windows (6-10 RTTs) [46]. This mismatch results in
slow reactions to rapid network changes, leading to both underutilization and excessive queuing.

Hera overcomes these limitations by employing a histogram-based RTT tracking mechanism
to dynamically adjust its congestion window (cwnd), allowing it to proactively respond to la-
tency fluctuations rather than relying on delayed congestion signals. Unlike loss-based algo-
rithms, Hera avoids unnecessary rate reductions due to non-congestive packet losses, which are
common in 5G environments. By prioritizing low-latency operation while maintaining stable
throughput, Hera prevents both over-congestion, as seen in BBR, and under-utilization, which
affects protocols like Allegro and Vivace in highly variable networks. These optimizations allow
Hera to deliver consistent high video quality with minimal delay, making it particularly effective

for bandwidth-intensive, latency-sensitive MIR applications.

5.7 CONCLUSION

This chapter presents Hera, a modular framework that integrates a novel QoE-aware rate
control protocol with a high-level AR/VR application layer designed to meet the demanding re-
quirements of multi-user immersive reality experiences over next-generation wireless networks.
Through extensive evaluation using realistic 5G network scenarios and a custom-built stream-
ing and benchmarking system, we demonstrate that Hera consistently achieves lower latency,
higher throughput, and greater fairness compared to state-of-the-art congestion control proto-
cols including BBR, Allegro, Vivace, and Cubic. By combining the low-level congestion control

module with an application-aware streaming and synchronization layer, Hera enables dynamic
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adaptation of video resolution, frame rate, and collaborative update rates in response to real-time
network conditions. Our results show that this integrated design significantly improves key Qual-
ity of Experience (QoE) metrics such as startup delay, stall frequency, and responsiveness that are
critical to sustaining high-quality multi-user AR/VR sessions. Overall, this work illustrates the
requirements to unlock the full potential of immersive multi-user experiences on emerging 5G
and future wireless infrastructures. Future work will explore scaling the framework to larger user
groups, incorporating edge computing support, and extending the congestion control techniques

to accommodate new transport protocols and network architectures.
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Figure 5.9: Throughput distribution across six competing network flows for different congestion control
protocols in a 5G network environment. Cubic, BBR, and Hera achieve high fairness (Jain’s fairness index
> 0.96) by evenly distributing available bandwidth. Allegro and Vivace, however, show poor fairness, with
Allegro exhibiting extreme disparities where certain flows dominate bandwidth, and Vivace struggling
with significantly lower throughput across flows.
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6 ARE Al SERVICES GOING GREEN?

ABSTRACT

Current carbon offsetting strategies are failing to mitigate the carbon footprint of Al data cen-
ters at an environmentally sustainable pace. The rapid growth of Al services in emerging regions
is exponentially amplifying computational demand in data centers, leading to significant energy
consumption and a substantial carbon footprint. To mitigate their environmental impact, opera-
tors increasingly rely on carbon offsetting strategies including carbon credits, Renewable Energy
Certificates (RECs), and Virtual Power Purchase Agreements (VPPAs). Unfortunately, the current
implementations of these strategies by data centers do not sufficiently reduce the carbon footprint
produced by the flood of Al services entering the market. This chapter critically evaluates the
effectiveness of these prevailing strategies in reducing the carbon footprint of energy-intensive
Al data centers. We identify key implementation challenges, create a sustainability calculator to
model the potential emissions generated by a system, and propose targeted solutions to enhance

accountability, ensure meaningful emissions reductions, and prevent a potential climate crisis.

6.1 INTRODUCTION

Recent global efforts to transition from energy-intensive computational services to a sustain-

able energy model can not keep up with the pace at which new Al services are flooding the market.
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As the world hangs on the precipice of an irreversible climate disaster [203], the rapid growth
of energy-intensive Al services being developed and deployed at an unprecedented rate may tip
the scales in the wrong direction. In emerging regions, multiple challenges exist that make the
goal of environmentally sustainable Al services an uphill battle. Renewable energy production in
emerging regions is limited and insufficient for meeting the current energy demands of emerg-
ing regions; the additional burden of data centers powering new energy-intensive Al services
increases the energy demand exponentially with no renewable energy sources available to off-
set the increased energy requirements. To mitigate these issues, the energy requirements for Al
services and the complexity of Al models used by these services in emerging regions needs to be
minimized.

Training state-of-the-art Al models consumes many MWH of electricity, often sourced from
carbon-intensive grids, resulting in a substantial and growing carbon footprint. The Interna-
tional Energy Agency (IEA) predicts that Al-related energy demand could increase by more than
double by 2030 [1], raising concerns that unchecked growth could offset progress toward global
sustainability goals. The tech industry, once a leader in commitments to net-zero emissions, now
faces significant setbacks due to AI’s escalating energy needs. Companies have adopted vari-
ous strategies to mitigate their environmental impact, including carbon credits, investments in
renewable energy, and nuclear power. However, many approaches fall short of addressing the
root problem. Significant effort and investments have been made in recent times pushed by gov-
ernments, organizations, companies, and individuals to reduce carbon emissions and mitigate
the environmental damage that threatens to make the world uninhabitable. Prominent strategies
that have been implemented to reduce the carbon footprint of these services include carbon cred-
its, Purchase Power Agreements, and carbon taxes imposed by regulatory authorities. Table 6.1
summarizes existing carbon offset mechanisms and their limitations.

In this chapter, we analyze the limitations of existing strategies in decarbonizing Al infrastruc-

ture, highlighting structural challenges that render them inadequate as a primary sustainability
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Carbon Offset Strategy Description Limitations
Carbon Credits Financial
instruments .
representing

reduction or
removal of one
tonne of emissions
through
environmental
projects (e.g.,
reforestation,
renewable energy).

Additionality concerns

Permanence risks

Verification challenges

+ Leakage

Renewable Energy Certificates (RECs)

Tradable
certificates proving
1 MWh of
electricity was
generated from
renewable sources
and fed into the
grid.

Unbundled RECs

Location mismatch

Time decoupling

No grid decarbonization

Virtual Power Purchase Agreements (VPPAs)

Financial contracts
where buyers
purchase
renewable energy
and RECs from
specific projects at
fixed prices, with
energy delivered
virtually through
the grid.

Physical disconnect

Complex implementation

Price volatility risk

Grid congestion

Long lead times

Table 6.1: Common Carbon Offsetting Strategies for Al Data Centers
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Figure 6.1: Virtual Power Purchase Agreement
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solution. We further discuss alternative pathways such as geographically constrained renewable
procurement, advanced energy efficiency measures, and policy-driven grid decarbonization that
could more effectively align AI's growth with climate objectives. Finally, we present a Sustainabil-
ity Calculator to evaluate the environmental sustainability of a system. Our findings underscore
the urgency of rethinking carbon accounting and energy sourcing practices to prevent Al from

becoming a dominant driver of global emissions in the coming decade.

6.2 BACKGROUND AND CHALLENGES

The rapid proliferation of Al workloads has led to exponential increases in energy consump-
tion, creating a growing urgency to ensure that Al infrastructure is environmentally sustainable.
A significant body of research has emerged in recent years to assess the carbon footprint of
Al improve computational efficiency, and evaluate the effectiveness of current decarbonization
strategies. Prevailing carbon offsetting mechanisms such as VPPAs, RECs, and carbon credits
face multiple challenges that undermine their effectiveness.

Geographic and Jurisdictional Misalignment. Several studies have pointed out the flaws
in current offsetting mechanisms due to mismatches between where renewable energy is gen-
erated and where it is consumed. This decoupling impairs the ability of regulatory bodies to
validate emissions reductions. For example, many VPPAs are signed between companies in the
U.S. and renewable providers in regions with abundant renewable energy like Texas, regardless
of where the energy is actually consumed [109]. A 2024 study in Nature Energy found that 43%
of cross-border VPPAs resulted in net emissions increases due to geographic mismatches and
transmission inefficiencies. These misalignments erode accountability and inflate sustainability
claims.

Scalability Limits of Offsetting Strategies The scalability of current offsetting solutions is

significantly outpaced by the growth of Al workloads. While the Al industry is projected to grow
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its energy consumption by 30 to 50% annually [121], VPPA capacity is expanding at only 8 to 15%
per year. This widening gap means that even with growing investment in offsets, a decreasing
proportion of total emissions will be covered. Amazon’s renewable energy targets, for instance,
require 35 GW of new VPPAs by 2030, equivalent to 10% of the entire U.S. solar capacity in 2023,
posing enormous feasibility challenges given current transmission and permitting bottlenecks.

Additionality and Permanence Concerns A major concern with carbon credits and VP-
PAs is the lack of additionality, whether projects funded through offsets would have occurred
anyway. Henderson et al. [109] found that fewer than 15% of corporate VPPAs resulted in new
renewable capacity. Further complicating matters, permanence is not guaranteed. Forest-based
carbon credits, for instance, face the risk of reversal through deforestation and wildfire [79], in-
troducing long-term uncertainty into carbon accounting.

Temporal and Locational Decoupling of RECs. RECs, though widely used, often fail to
ensure that clean energy is used in real-time or in the same location as the claimed consumption.
Dodge et al. [79] have shown that cloud carbon intensity varies significantly by region and hour,
emphasizing that offset mechanisms such as RECs need to be aligned both geographically and
temporally to effectively reduce actual emissions.

Market Distortion and Social Costs. Fixed-price VPPA contracts are designed to provide
data centers with price certainty, but they often pass the rising cost of renewable energy to local
consumers. These contracts guarantee large corporate buyers low prices over 10-20 years, even
as market rates increase due to inflation or supply chain bottlenecks. This pricing imbalance
can raise electricity costs for small businesses and households [238]. For example, assuming a
conservative annual increase of 6% in market electricity prices, in line with historical trends from
the U.S. Energy Information Administration [238], a market rate of $45/MWh in year 0 would rise
to approximately $80/MWh by year 10. This results in a $35/MWh price gap between fixed VPPA
rates and prevailing market rates, a discrepancy that utilities often recover by increasing rates for

residential and small commercial users. As a result, fixed-price VPPAs may unintentionally drive
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up electricity costs for non-participating consumers, exacerbating energy affordability challenges
and creating structural inequities in access to clean power.

Illusion of Sustainability. Offsetting strategies used in isolation can foster a false sense
of progress toward sustainability. Many firms report carbon neutrality while continuing to rely
on fossil-powered grids. As noted by Patterson et al. [188], lifecycle emissions for hyperscale
Al deployments can exceed 500,000 tons of CO, when accounting for training, inference, and
hardware manufacturing. Green Al initiatives [216, 263] have improved computational efficiency,
but efficiency gains are often offset by the Jevons paradox [16]: better performance at lower cost
encourages even more usage. As a result, relying solely on accounting mechanisms like VPPAs
and RECs risks delaying the adoption of more systemic solutions such as on-site renewables, grid
decarbonization, or advanced nuclear energy [92, 121].

Policy Gaps and Regulatory Bottlenecks. Finally, the absence of robust carbon accounting
standards exacerbates the challenges above. While some policy progress is underway such as
the EU’s Carbon Border Adjustment Mechanism (CBAM) [83] and the U.S. Inflation Reduction
Act [235] implementation remains uneven and fragmented. Cowls et al. [71] and Rae et al. [194]
emphasize the need for binding emissions reporting and mandatory clean energy procurement
for Al services. Without enforceable standards, voluntary offsets will continue to dominate, often

with questionable environmental outcomes.

6.3 CASE STUDIES

In this section, we will present three real world examples of carbon offsetting strategy im-
plementations that were not able to complete the desired goals due to the challenges discussed

previously.
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6.3.1 RENEWABLE OFFSETS VS. REAL EMissioNs: LimiTs oF VPPAs AND RECs

Cloud AI operators often claim their data centers are powered by 100% renewable energy
through off-site virtual power purchase agreements (VPPA) or renewable energy certificates
(REC). However, this claim is often misleading, as these mechanisms often do not account for
the temporal and geographic mismatches between clean energy production and actual consump-
tion in the data center. For example, an Al data center that operates around the clock can purchase
RECs from a solar farm equal to its annual energy use but still draw power from coal-fired sources
during the night when the solar farm is not producing. These unbundled RECs are inexpensive
and have been criticized for greenwashing, as they do not necessarily promote new renewable
energy generation or reduce the data center’s reliance on fossil fuels. Industry experts emphasize
that unbundled RECs cannot credibly support claims of 100% renewable energy use, particularly
when they are sourced from distant projects.

To address this, tech companies such as Microsoft have begun exploring 24/7 carbon-free en-
ergy strategies, aiming to match energy consumption with clean power on an hourly basis. Mi-
crosoft tested this approach at its Netherlands campus by contracting more wind and solar ca-
pacity than its average demand to strive for round-the-clock renewable energy supply. Despite
these efforts, Microsoft’s sustainability reports indicate continued reliance on conventional RECs,
revealing the persistent challenge of aligning Al infrastructure’s energy needs with carbon-free
power at all hours. This gap between virtual offsets and actual emissions highlights the need for
more robust solutions, such as on-site renewable generation, energy storage, or investments at

the grid level, to ensure the sustainability of Al operations.

6.3.2 DAtA CENTER GROWTH VS. GRID CAPACITY

Ireland provides a clear example of the strain that Al infrastructure places on national en-

ergy systems. Data centres consumed 21% of Ireland’s total metered electricity in 2023 [52], with
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projections indicating this share could approach one-third of national demand by 2026. This un-
sustainable growth triggered a de facto moratorium on new data center construction in Dublin
until 2028. This dramatic increase in energy demand, driven by cloud and AI services, has out-
paced the growth of local power generation, raising serious concerns about grid reliability and
climate impact. In response, Ireland’s grid operator imposed a de facto moratorium on new data
center connections in the Dublin area, the epicenter of the country’s tech infrastructure. This
pause is expected to last until at least 2028. Local authorities have also become more cautious:
in 2024, the South Dublin County Council denied planning permission for a proposed 72,000 m?
Google data center, citing the project’s failure to demonstrate a sustainable power source to sup-
port its immense electricity demand. Industry reports indicate that Ireland’s “chronic” power
capacity shortage is forcing companies to reconsider their expansion plans. Microsoft, for ex-
ample, announced in 2025 that it would shift new data center investments away from Ireland to
regions with more abundant green energy [245].

Despite these challenges, hyperscale cloud firms have invested heavily in Irish renewables,
with Microsoft alone securing about 900 MW of wind and solar power purchase agreements
(PPAs), which are expected to cover around 28% of Ireland’s 2030 renewable energy target [168,
177]. However, these clean energy purchases cannot resolve the immediate grid constraints,
prompting the consideration of new legislation that would allow data center operators to build
and manage their own power infrastructure to meet growing demand. Ireland’s experience il-
lustrates the critical need to align Al data center growth with timely grid upgrades and local
renewable energy generation. Without this alignment, even a country with a favorable techno-
logical environment can be forced to curb expansion due to sustainability and energy security

concerns.
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6.3.3 CARBON CosT oF TRAINING Al MopELs: GPT-3 vs. BLOOM

The training of modern AI models has revealed significant sustainability challenges, as il-
lustrated by concrete case studies. One landmark example is OpenAI’s GPT-3, a large language
model with 175 billion parameters, which required approximately 1,287 MWh of electricity and
emitted around 552 metric tons of CO,e during its training process [Patterson2021, 153]. This
is equivalent to the annual carbon footprint of over a hundred gasoline cars, just for the cre-
ation of a single Al model. Such numbers raise doubts about the effectiveness of carbon offsets,
particularly when many models are trained in regions where the marginal power comes from
fossil fuels. However, not all training processes are equal. The open-source BLOOM model, also
with 176 billion parameters, was developed with an emphasis on energy efficiency and hosted
partly on France’s low-carbon grid. BLOOM’s training required only about 433 MWh and emit-
ted 30 t CO.e, resulting in over a 90% reduction in emissions compared to GPT-3. This substantial
reduction was achieved through a combination of cleaner energy, more efficient hardware (spe-
cialized Al accelerators), and algorithmic optimizations. In fact, research by Google suggests that
by using state-of-the-art processors and running workloads in optimized, renewables-powered
data centers, the carbon footprint of training a model of GPT-3’s size can be reduced by a factor
of 100 to 1000.

This comparison highlights that the location and method of Al model training play a criti-
cal role in determining sustainability outcomes. Moreover, the energy demand does not end at
deployment: inference for generative Al services is rapidly becoming a significant load on data
centers. Estimates show that each query to an Al chatbot consumes significantly more energy
than a standard Google search query [74], due to the computational demands involved in gen-
erating responses. With millions of such queries being processed daily, the cumulative energy
use (and associated emissions) from inference can quickly surpass that from training. This situ-

ation has important social and policy implications. On one hand, AI developers are increasingly
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factoring carbon costs into their design processes as part of “Green AI” initiatives, and some are
publishing emissions reports for transparency. On the other hand, there is growing support for
incentivizing or regulating Al training and inference to occur on grids with excess clean energy or
during renewable generation peaks. Studies suggest that such approaches could reduce emissions

by an order of magnitude or more.

6.4 SUSTAINABILITY CALCULATOR DRAFT

6.4.1 MOTIVATION AND SCOPE

As artificial intelligence (Al) systems grow increasingly complex and ubiquitous, their envi-
ronmental footprint becomes more difficult to account for using coarse approximations or single-
factor models. Existing sustainability assessments often restrict their analysis to operational
emissions, neglecting the carbon costs embedded in hardware production, infrastructure over-
heads, and dynamic inference workloads. We propose a holistic Sustainability Calculator that
integrates the full Al service pipeline—from hardware manufacturing and infrastructure mainte-
nance to training and real-time inference—thereby enabling a more robust and actionable esti-

mation of total carbon emissions.

6.4.2 MODEL FORMULATION

We define the total lifecycle carbon emissions of an Al service, Ciotal, as the sum of four prin-
cipal components: emissions due to hardware manufacturing (Cyy), data center infrastructure
overhead (Ciyfra), model training energy (Cirain), and emissions incurred during inference (Cifer)-

Formally, we express:

Ctotal = Chw + Cinfra + Ctrain + Cinfer~ (6'1)
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Each component is parameterized to reflect real-world deployment scenarios. The hardware
manufacturing footprint Cy,y is estimated by multiplying the embodied energy cost of server and
GPU manufacturing (Eepp) with an emission factor EFyan,f, measured in kilograms of CO; per
megawatt-hour. This enables differentiation based on hardware type, fabrication process, and
sourcing location.

Infrastructure overheads are modeled using the Power Usage Effectiveness (PUE) metric. The
total infrastructure-related emissions are computed as the additional energy required to support
cooling, lighting, and backup systems, expressed as (PUE — 1) X (Etrain + Einfer), Where the result
is multiplied by the regional grid’s carbon intensity. This term captures the compounding effect
of inefficient facility operations, especially in warm or energy-constrained regions.

Training emissions, Cirain, are computed based on the energy consumed during model training
runs and the grid carbon intensity at the training site. This term varies considerably based on
model size, number of training epochs, and hardware used. For example, large-scale transformer
models like GPT-3 demand thousands of megawatt-hours and can produce hundreds of metric
tons of CO; during a single training cycle. In contrast, smaller or distilled models trained on
low-carbon grids have significantly reduced training footprints.

Inference emissions, Cinfer, are sensitive to both the frequency of use and the energy per infer-
ence. We define the total inference energy as f - Eiyr- T, where f denotes the number of inferences
per day, Eiyr is the energy per inference in kilowatt-hours, and T is the number of deployment
days. This term reflects application-specific factors: real-time translation or virtual assistants
generate billions of daily inferences, while specialized Al models in scientific or industrial set-
tings may run only occasionally. The resulting inference energy is then multiplied by the local

grid carbon intensity to determine its contribution to the overall emissions.
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6.4.3 PARAMETER ANALYSIS AND APPLICATION SENSITIVITY

The proposed model supports analysis over a multi-dimensional parameter space. Application
domain has a pronounced influence on sustainability. For instance, generative Al services such
as chatbots or content recommenders exhibit high inference frequency and thus sustain a large
operational footprint even if the training phase is optimized. Conversely, domains such as medical
imaging or climate modeling may tolerate infrequent but high-complexity inference, shifting the
footprint toward the training phase.

The carbon intensity of the deployment region plays a critical role as well. Identical models
deployed in different geographies can yield vastly different emission profiles depending on grid
composition. Moreover, improvements in hardware efficiency and the use of on-site renewable
power or demand-shifting strategies (e.g., aligning inference loads with peak solar generation)

can significantly reduce Ciyfer and Cifra-

6.4.4 UsE CASE: EM1SSIONS ESTIMATION FOR A LARGE LANGUAGE MODEL

To illustrate the utility of the model, consider a 175-billion-parameter language model trained
with 1,300 MWh on a fossil-fuel-dominant grid with a carbon intensity of 0.4 kg CO, / kWh. As-
suming the model is deployed for two years at one million inferences per day, with each inference
consuming 0.5 Wh, the inference energy totals 365 MWh annually. With a PUE of 1.2, the in-
frastructure overhead adds an additional 20% to the combined training and inference energy.
Plugging in these values yields a training footprint of 520,000 kgCO,, an inference footprint of
292,000 kgCO,, and infrastructure emissions of approximately 162,400 kgCO., resulting in a total
carbon footprint exceeding 970,000 kgCO,. This figure excludes hardware manufacturing, which
can add tens to hundreds of additional metric tons depending on hardware scale and refresh

cycles.
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6.5 ANALYSIS

Model Type Params (B) Train Energy (MWh) Inference Energy (MWh) Total Emissio:
Small Transformer 0.4 20 182.5 99.0

Medium Transformer 6.0 150 219.0 157.2
Large LLM 175 1300 365.0 353.6

Table 6.2: Carbon impact of model complexity (fixed inference frequency)

Setting Model Size Inference/Day Total Emissions (tCO;)
Specialist (low use, large model) 175B 10* 547
Consumer NLP (medium use) 6B 10° 181
Massive-scale service (high use) 0.4B 107 744

Table 6.3: Combined effects of model complexity and inference intensity

Scenario Inferences/Day Energy/Query (Wh) Inference Emissions (tCO,)
Mobile Assistant (low) 10° 0.25 3.65
Chatbot (medium) 10° 0.50 73.0
Search + Recs (high) 107 0.75 1,095

Table 6.4: Carbon impact of inference frequency and cost

The lifecycle emissions of an Al service are governed not only by the raw scale of compute
involved, but also by high-level application characteristics that influence how models are built,
deployed, and used over time. To assess these interactions, we analyze three core parameter
regimes: model complexity, inference frequency, and per-query energy cost. These parameters
are tightly coupled with application domains, which range from low-latency, high-traffic con-

sumer services to infrequent, high-stakes scientific inference.
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6.5.1 ErrFecT oF MODEL COMPLEXITY

As model complexity increases, both training energy and per-inference energy rise due to
greater parameter counts and deeper architectures. Table 6.2 illustrates how increasing model
size affects lifecycle emissions, assuming a fixed deployment period of one year and one million
daily inferences. Carbon intensity of the grid is fixed at 0.4 kgCO,/kWh, and a PUE of 1.2 is
assumed. The results reveal that while training emissions dominate at very large model scales,
inference energy still contributes substantially over time. Thus, minimizing model size—where

possible—has a compound effect in reducing both upfront and operational emissions.

6.5.2 EFFECT OF INFERENCE FREQUENCY AND COST PER QUERY

In use cases such as real-time search, recommendation, or conversational Al, the number
of inferences per day can reach into the tens or hundreds of millions. Table 6.4 explores how
varying inference load and per-query energy cost affects overall emissions, keeping model size
and training constant. The data indicates that inference emissions can rapidly become the dom-
inant lifecycle contributor, particularly when model optimization lags behind deployment scale.

Application-aware model pruning and hardware acceleration are essential in such environments.

6.5.3 COMBINED SENSITIVITY ANALYSIS

To better understand joint parameter effects, Table 6.3 presents a scenario matrix combining
model size with application-level inference patterns. The results assume a one-year deployment,
0.4 kgCO,/kWh grid intensity, and 1.2 PUE. Interestingly, high-frequency use of small models
can rival or exceed the emissions of large models used sparingly. This demonstrates that high-
volume deployment can nullify the carbon savings of low training costs if inference loads are not

optimized.
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6.5.4 KEeY TAKEAWAYS

The analysis highlights several critical factors that govern the carbon footprint of Al systems
across their lifecycle. First, model complexity plays a dual role, simultaneously inflating both
training and inference costs. As model size scales non-linearly, training emissions can grow by
an order of magnitude, yet inference remains a persistent contributor over time especially in
long-lived deployments.

Inference frequency and energy per query emerge as pivotal drivers of operational emis-
sions. Even modest per-query energy use, when coupled with high daily inference volumes, can
surpass training emissions within weeks or months. Applications such as recommendation en-
gines, chatbots, and search services exemplify this dynamic, underscoring the need for aggressive
inference-side optimization.

The interplay between model size and application domain reveals important trade-offs. Small
models with massive daily inference loads can generate carbon footprints comparable to large,
infrequently used models. Thus, minimizing carbon emissions is not only a matter of reducing
training FLOPs but also tailoring deployment strategies to usage patterns and hardware efficiency.

Finally, data center factors such as Power Usage Effectiveness (PUE) and regional grid carbon
intensity remain amplifiers or suppressors of total emissions. Poor infrastructure efficiency or
fossil-dominant energy sources can significantly increase lifecycle emissions, even when model
and application parameters are carefully optimized. In total, the findings reinforce the necessity
of lifecycle-aware, application-specific, and region-sensitive design choices in building environ-

mentally sustainable AI systems.
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6.6 CONCLUSION

In this chapter, we highlight how current carbon offset mechanisms such as carbon cred-
its, Renewable Energy Certificates (RECs), and Virtual Power Purchase Agreements (VPPAs) are
structurally insufficient to mitigate the rapidly escalating carbon footprint of Al data centers.
These strategies fail to deliver reductions in carbon emissions at the scale and speed required,
while inadvertently permitting continued reliance on non-renewable energy sources. Addition-
ally, we design a sustainability calculator to evaluate the sustainability of a computational ser-
vice and guide the system design towards minimal emissions. Without proactive intervention, Al
could become one of the dominant drivers of global emissions in the coming decade, undermin-
ing international climate agreements and pushing the world closer to catastrophic environmental
tipping points. It is imperative that governments, industry leaders, and regulatory bodies collab-
orate to establish binding requirements for renewable energy sourcing and enforce meaningful
carbon accounting standards. In particular, policies should mandate that Al service deployments
are contingent on verified renewable energy procurement, localized grid decarbonization efforts,

and rigorous lifecycle assessments.
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7 SUMMARY AND CONCLUSIONS

The Internet has become an indispensable driver of modern life, fueling advances in education,
communication, commerce, and governance. Yet, as this dissertation has shown, its benefits re-
main deeply unevenly distributed. While industrialized regions move rapidly toward ubiquitous
5G connectivity, immersive digital experiences, and Al-driven cloud platforms, large segments
of the global population remain digitally marginalized. At the same time, the performance and
sustainability of networked systems are increasingly strained by the demands of emerging ap-
plications. This dissertation addressed these dual challenges of digital inequality and network
performance by designing new web access platforms and transport-layer protocols that are more

inclusive, adaptive, and efficient.

7.1 BRIDGING THE DiGIiTAL DIVIDE THROUGH WEB ACCESS
INNOVATION

The first part of this thesis focused on understanding and mitigating the global digital divide.
Our large-scale measurement study across 56 cities highlighted stark disparities in web access,
where users in developing regions often pay more for slower and less reliable service while relying
on low-end mobile devices. This quantitative foundation motivated the development of a suite
of systems designed to make the Web lighter, more local, and more resilient.

Lite-Web demonstrated that meaningful performance improvements could be achieved on
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low-cost smartphones by automatically simplifying webpages in real-time. MAML provided
a declarative specification language to build visually consistent and semantically meaningful
web versions that render quickly on constrained hardware. These systems were deployed in
GAIUS [28], an edge-based, offline-first web ecosystem that empowered community members
in countries like Kenya and Bangladesh to host and access local content without needing con-
stant connectivity. Sonic extended this work into completely offline settings by enabling users
to receive web pages via FM radio and interact through SMS, with successful deployments in
Cameroon.

Together, these efforts contribute to a new class of resilient, application-layer architectures
tailored to the infrastructural constraints of the Global South. They underscore that addressing
the digital divide requires not just more connectivity, but better content delivery systems designed

for local needs, low-end devices, and intermittent networks.

7.2 EvALUATING CONGESTION CONTROL PROTOCOLS FOR MODERN

NETWORKS

The second part of this dissertation turned to the transport layer, where congestion control
protocols serve as a key performance lever for Internet communication. Despite advances in net-
work infrastructure, especially the deployment of 5G, our findings show that transport protocols
remain a critical bottleneck. Through the Zeus benchmarking framework, we evaluated leading
congestion control algorithms (CCAs) under a range of synthetic and real 5G conditions.

This analysis revealed persistent challenges. Many widely deployed CCAs were found to
underperform on key metrics such as delay, throughput stability, and fairness, particularly in
dynamic cellular environments. Protocols like Cubic and BBR optimize for different trade-offs
and often fail to meet the low-latency requirements of emerging interactive applications. These

shortcomings highlight the need for more holistic evaluation frameworks and protocol designs
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that align more closely with application needs and real-world conditions.

Zeus itself contributed a new methodology for scenario-aware benchmarking, enabling di-
rect comparison of CCAs across reproducible yet realistic network scenarios. This framework
advances the ability of researchers and developers to assess transport-layer behavior under con-

ditions representative of 5G and emerging wireless networks.

7.3 ProTOCOL DESIGN FOR IMMERSIVE AND INTERACTIVE

APPLICATIONS

Emerging applications like virtual and augmented reality pose new challenges for transport
protocols, including extreme sensitivity to delay, variability in stream priority, and high band-
width requirements. In response, this thesis introduced Hera, an application-aware congestion
control protocol co-designed with the requirements of immersive XR streaming.

Hera augments traditional rate control by incorporating feedback from the application layer,
including field-of-view (FOV) prioritization and frame-level delay sensitivity. By integrating
these signals, Hera adapts transmission rates in real time to optimize the user experience while
maintaining network stability. Evaluation over 5G and emulated lossy links showed that Hera
significantly outperforms baseline CCAs, reducing tail latency by up to 66% and improving frame
quality and stability in multi-user scenarios.

This work demonstrates that co-designing transport protocols with application semantics can
lead to substantial performance gains. Hera represents a step toward more intelligent, context-
aware network protocols capable of supporting the next generation of interactive media and

real-time collaboration tools.
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7.4 FuUTURE DIRECTIONS

While the primary focus of this dissertation has been on performance and accessibility, the
environmental footprint of modern networked applications represents an increasingly urgent
challenge. As cloud-based Al systems, immersive experiences, and edge computing proliferate,
their energy demands and carbon emissions are projected to rise steeply. This trend is particularly
concerning in emerging regions, where power grids are less stable, and carbon-intensive energy
sources dominate.

Future work must expand the systems lens to include sustainability as a first-order design goal.
This includes exploring energy-aware congestion control protocols that adjust behavior based on
grid carbon intensity or time-of-day availability of renewables. Additionally, more transparent
and regionally sensitive approaches to carbon accounting are needed to address the limitations
of RECs and VPPAs, which often fail to deliver real or local emission reductions.

There is also a growing need to model and mitigate the indirect impacts of Al infrastructure
expansion in the Global South, including energy displacement, land use for data centers, and com-
petition with local energy needs. Aligning performance, equity, and sustainability will require
collaboration across disciplines and institutions, including computer systems, policy, energy, and

development sectors.

7.5 CLOSING REMARKS

This dissertation argues that the future of the Internet must be inclusive, adaptive, and sus-
tainable. By developing systems that improve web accessibility for the underserved and transport
protocols that enable the applications of tomorrow, we take a step toward that vision. As the In-
ternet continues to evolve, so too must the systems that support it—with a renewed focus on

global equity, user experience, and environmental responsibility.
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