
Quantum Information Physics II
TR2021-997

Revised March 28, 2022

Davi Geiger and Zvi M. Kedem

Courant Institute of Mathematical Sciences

New York University, New York, New York 10012

Abstract
We study quantum entropy, a measure of randomness over the degrees of freedom of a

quantum state and quantified in quantum phase spaces. We show that it is dimensionless, a

relativistic scalar, and it is invariant under coordinate and CPT transformations.

We show that the entropy evolution of a coherent state is increasing with time. We

augment time reversal with time translation and show that CPT with time translation can

transform particles with decreasing entropy evolution for a finite time interval into anti-

particles with increasing entropy evolution for the same finite time interval. We revisit

transition probabilities of a two state Hamiltonian and show how they relate to entropy

oscillations.

We also explore the possibility that entropy oscillations trigger the annihilations and the

creations of particles.
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INTRODUCTION

A time arrow emerges in physics only when a probabilistic behavior of ensembles

of particles is considered in classical physics. In contrast, quantum physics is

presented as time reversible even though a probabilistic behavior is intrinsic even to

a single-particle. In [7] we proposed a definition of quantum entropy to measure

the randomness of a quantum state, while accounting for all its degrees of freedom

(DOFs). That entropy is a sum of two components: the coordinate-entropy and

the spin-entropy, each defined in its own quantum phase space. By quantum phase

space we mean, the space where the projection of a state in each phase space basis is

simultaneously represented. The spin entropy was elaborated in [8]. We analyzed

there the possible entropy evolution and conjectured that a law analogous to the

classical second law of thermodynamics holds, applicable to all particle physics.

This paper provides more technical depth to further develop the issues studied

in [7]. The results are applicable to both the Quantum Mechanics (QM) and

the Quantum Field Theory (QFT) settings, but we generally present them in only

a more convenient setting. We also further develop the coordinate-entropy for

multiple particles. We show that the coordinate-entropy is invariant under changes in

continuous 3D coordinate transformations, continuous Lorentz transformations, and

discrete CPT transformations. We then analyze the evolution of coherent states. We

study time reflection of particles’ evolution and the impact of the transformation into

anti-particles. We study entropy oscillations for a two-state Hamiltonian and their

relation to Fermi’s golden rule. Following the results described above, we review

a conjectured entropy law that the entropy of a quantum system is an increasing

function of time, and end with conclusions.

We also compare our proposed entropy with two different entropy concepts

studied in quantum physics, namely the von Neumann’s entropy [10] and the Wehrl’s

entropy [11]. While von Neumann’s entropy is a quantification of the randomness
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of specifying a quantum state, Wehrl’s entropy is an attempt to adapt a classical

entropy to a quantum state based on the Husimi’s quasiprobability distribution and

using coherent states as an overcomplete basis representation of a classical phase

space. Von Neumann’s entropy assigns a zero entropy to any quantum (pure) state

and thus does not address the randomness of the observables as we propose. Wehrl’s

entropy does not satisfy the third Kolmogorov axiom of mutual exclusivity of events,

and as a consequence does not satisfy the monotonicity or the complement rules.

Also, Wehrl’s entropy will not be invariant under the Lorentz group transformations

or under pointwise transformations of the position. Thus because of the above

shortcomings, Wehrl’s entropy will not quantify exactly the randomness of the

quantum-phase observables.

QUANTUM ENTROPY IN PHASE SPACE

Given a state |𝜓〉𝑡 and its density operator 𝜌𝑡 = |𝜓〉𝑡 〈𝜓 |𝑡 , we consider the quantum

coordinate phase space to be the space of simultaenous projections of all possible

states to the basis |r〉 , |p〉, i.e., the state |𝜓〉𝑡 is described in quantum phase space

by the pair (〈r|𝜓〉𝑡 , 〈p|𝜓〉𝑡). The coordinate-entropy in quantum phase space was

defined in [7] as

S = −
∫
𝜌r(r, 𝑡)𝜌𝑘 (k, 𝑡) ln (𝜌r(r, 𝑡)𝜌𝑘 (k, 𝑡) ) d3r d3k ,

where Sr = −
∫
𝜌r(r, 𝑡) ln 𝜌r(r, 𝑡) d3r, and analogously for Sk, 𝜌r(r, 𝑡) = 〈r| 𝜌𝑡 |r〉 =

|𝜓(r, 𝑡) |2 and 𝜌𝑘 (k, 𝑡) = 〈k| 𝜌𝑡 |k〉 = |𝜙(k, 𝑡) |2, with 𝜓(r, 𝑡) and 𝜙(k, 𝑡) representing

in QM the wave function and in QFT the coefficients of the Fock states. The

momentum is described by the change of variables p = ℏk, so that the entropy is

dimensionless and invariant under changes of the units of measurements.
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A natural extension of this entropy to an 𝑁-particle QM system is

𝑆 = −
∫

d3r1 d3k1 . . . d3r𝑁 d3k𝑁 𝜌r(r1, . . . , r𝑁 , 𝑡)𝜌k(k1, . . . , k𝑁 , 𝑡)

× ln (𝜌r(r1, . . . , r𝑁 , 𝑡)𝜌k(k1, . . . , k𝑁 , 𝑡))

= −
∫

d3r1 . . .

∫
d3r𝑁 𝜌r(r1, . . . , r𝑁 , 𝑡) ln 𝜌r(r1, . . . , r𝑁 , 𝑡)

−
∫

d3k1 . . .

∫
d3k𝑁 𝜌k(p1, . . . , k𝑁 , 𝑡) ln 𝜌k(k1, . . . , k𝑁 , 𝑡) ,

where 𝜌r(r1, . . . , r𝑁 , 𝑡) = |𝜓(r1, . . . , r𝑁 , 𝑡) |2 and 𝜌k(k1, . . . , k𝑁 , 𝑡) = |𝜙(k1, . . . , k𝑁 , 𝑡) |2

are defined in QM via the projection of the state |𝜓𝑡〉𝑁 of 𝑁 particles (the product

of 𝑁 Hilbert spaces) onto the position 〈r1 | . . . 〈r𝑁 | and the momentum 〈k1 | . . . 〈k𝑁 |
coordinate systems.

ENTROPY INVARIANT PROPERTIES

Continuous Transformations of the Phase Space

In the QM setting, we investigate a point transformation of coordinates and a

translation in phase space of a quantum reference frame [1].

Consider a point transformation of position coordinates 𝐹 : r ↦→ r′. It induces

the new conjugate momentum operator [3]

p̂′ = −iℏ
[
∇r′ +

1
2
𝐽−1(r′)∇r′ · 𝐽 (r′)

]
, (1)

where 𝐽 (r′) = 𝐽 (𝐹−1) (r′) = 𝜕r(r′)
𝜕r′ is the Jacobian of 𝐹−1 at r′.

Theorem 1. The entropy is invariant under a point transformation of coordinates.

Proof. Let S be the entropy in phase-space relative to a conjugate Cartesian pair of

coordinates (r, p). Let p′ be the momentum conjugate to r′. As the probabilities in
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infinitesimal volumes are invariant,

|𝜓′(r′) |2 d3r′ = |𝜓(r(r′)) |2 d3r(r′) and |𝜙′(p′) |2 d3p′ = |𝜙(p(p′)) |2 d3p(p′) , (2)

where r(r′) ≡ 𝐹−1(r′) and p(p′) ≡ 𝐺−1(p′) with𝐺 : p ↦→ p′ specified by (1). Thus,

by Born’s rule the probability density functions are |𝜓′(r′) |2 and |𝜙′(p′) |2. The Jaco-

bian satisfies det 𝐽 (r′) d3r′ = d3r(r′), and applying this to (2) we get |𝜓′(r′) |2 d3r′ =

|𝜓(𝐹−1(r′)) |2 det 𝐽 (r′) d3r′, i.e., |𝜓′(r′) |2 = |𝜓(𝐹−1(r′)) |2 det 𝐽 (r′). Similarly, we

define 𝑔(p′) = det 𝐽 (𝐺−1) (p′) and so 𝑔(p′) d3p′ = d3p, and to satisfy the in-

finitesimal probability invariant in momentum space |𝜙(p) |2 d3p = |𝜙′(p′) |2 d3p′ at

p′ = 𝐺 (p) we obtain |𝜙′(p′) |2 = |𝜙(𝐺−1(p′) |2𝑔(p′).

As noted in [3], there is an arbitrariness in the choice of 𝐺 that allows a new

transformation 𝐺′ to be specified by (1) with det 𝐽 (𝐺′−1) (p′) =
𝑔(p′)
𝑓 (p′) , i.e., the

arbitrariness of 𝐺′ is equivalent to the choice of a function 𝑓 (p′) to define the

determinant of its (inverse) Jacobian. Then, associated with such a 𝐺′ we must also

define a new density function |𝜙′(p′) |2 scaled by 1
𝑓 (p′) , producing an equally valid

conjugate solution. Thus,

Sr + Sp = −
∫

d3r d3p 𝜌r(r, 𝑡)𝜌𝑝 (p, 𝑡) ln
(
𝜌r(r, 𝑡)𝜌𝑝 (p, 𝑡)

)
− 3 ln ℏ

= Sr′ + Sp′ − 〈ln det 𝐽−1(r′)〉𝜌′
𝑟 ′
+ 〈ln 𝑔(p′)〉𝜌′

𝑝′

= Sr′ + Sp′ ,

and given the arbitrariness of 𝐺, we chose 𝑔(p′) to satisfy 〈ln 𝑔(p′)〉𝜌′
𝑝′

=

〈ln det 𝐽−1(r′)〉𝜌′
𝑟 ′

.

We next investigate translation transformations. When a quantum reference

frame is translated by 𝑥0 along 𝑥, the state |𝜓𝑡〉 in the position representation

becomes 𝜓(𝑥 − 𝑥0, 𝑡) = 〈𝑥 − 𝑥0 |𝜓𝑡〉 = 〈𝑥 | 𝑇𝑃 (−𝑥0) |𝜓𝑡〉, where 𝑇𝑃 (−𝑥0) = ei𝑥0 𝑃̂,

6



and 𝑃̂ is the momentum operator conjugate to 𝑋̂ . When the reference frame is

translated by 𝑝0 along 𝑝, the state |𝜓𝑡〉 in the momentum representation becomes

𝜙(𝑝 − 𝑝0, 𝑡) = 〈𝑝 − 𝑝0 |𝜓𝑡〉 = 〈𝑝 | 𝑇𝑋 (−𝑝0) |𝜓𝑡〉, where 𝑇𝑋 (−𝑝0) = ei𝑝0 𝑋̂ , and 𝑋̂ is

the position operator conjugate to 𝑃̂.

Theorem 2 (Frames of reference). The entropy of a state is invariant under a change

of a quantum reference frame by translations along 𝑥 and along 𝑝.

Proof. Let |𝜓𝑡〉 be a state and S its entropy. We start by showing that S𝑥 =

−
∫∞
−∞ d𝑥 |𝜓(𝑥, 𝑡) |2 ln |𝜓(𝑥, 𝑡) |2 is invariant under two types of translations:

(i) translations along 𝑥 by any 𝑥0

S𝑥+𝑥0 = −
∫ ∞

−∞
d𝑥 |𝜓(𝑥 + 𝑥0, 𝑡) |2 ln |𝜓(𝑥 + 𝑥0, 𝑡) |2 = S𝑥 ,

which is verified by changing variables under the infinite integration interval.

(ii) translations along 𝑝 by any 𝑝0

𝜓𝑝0 (𝑥, 𝑡) = 〈𝑥 | 𝑇𝑋 (𝑝0) |𝜓𝑡〉 =
∫ ∞

−∞
〈𝑥 | 𝑇𝑋 (𝑝0) |𝑝〉 〈𝑝 |𝜓𝑡〉 d𝑝

=

∫ ∞

−∞
〈𝑥 |𝑝 + 𝑝0〉 𝜙(𝑝, 𝑡) d𝑝 =

∫ ∞

−∞

1
√

2π
ei 𝑥 (𝑝+𝑝0)𝜙(𝑝, 𝑡) d𝑝

= 𝜓(𝑥, 𝑡) ei 𝑥 𝑝0 ,

implying |𝜓𝑝0 (𝑥, 𝑡) |2 = |𝜓(𝑥, 𝑡) |2.

Similarly, by applying both translations to Sp = −
∫∞
−∞ d𝑝 |𝜙(𝑝, 𝑡) |2 ln |𝜙(𝑝, 𝑡) |2 we

conclude that Sp is invariant under them too. Therefore S = S𝑥 + Sp − 3 ln ℏ is

invariant under translations in both 𝑥 and 𝑝.
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CPT Transformations

We will be focusing on fermions, and thus on the Dirac spinors equation, though

most of the ideas apply to bosons as well. The QFT Dirac Hamiltonian is

HD =

∫
d3r𝛹 †(r, 𝑡)

(
−iℏ𝛾0 ®𝛾 · ∇ + 𝑚𝑐𝛾0

)
𝛹 (r, 𝑡) .

A QFT solution 𝛹 (r, 𝑡) satisfies [HD,𝛹 (r, 𝑡)] = −iℏ 𝜕𝛹 (r,𝑡)
𝜕𝑡

and the 𝐶,

𝑃, and 𝑇 symmetries provide new solutions from 𝛹 (r, 𝑡). As usual,

𝛹C(r, 𝑡) = 𝐶𝛹
T(r, 𝑡), 𝛹 P(−r, 𝑡) = 𝑃𝛹 (−r, 𝑡), 𝛹T(r,−𝑡) = 𝑇𝛹 ∗(r,−𝑡), and

𝜓CPT(−r,−𝑡) = 𝐶𝑃𝑇𝜓
T(−r,−𝑡), For completeness, we briefly review the three

operations, Charge Conjugation, Parity Change, and Time Reversal.

Charge Conjugation transforms particles 𝛹 (r, 𝑡) into antiparticles 𝛹
T(r, 𝑡) =

(𝛹 †𝛾0)T(r, 𝑡). As 𝐶𝛾𝜇𝐶−1 = −𝛾𝜇T,𝛹C(r, 𝑡) is also a solution for the same Hamil-

tonian. In the standard representation, 𝐶 = i𝛾2𝛾0 up to a phase. Parity Change

𝑃 = 𝛾0, up to a sign, effects the transformation r ↦→ −r. Time Reversal effects

𝑡 ↦→ −𝑡 and is carried by the operator T = 𝑇𝐾̂ , where 𝐾̂ applies conjugation. In the

standard representation 𝑇 = i𝛾1𝛾3, up to a phase.

Theorem 3 (Invariance of the entropy under CPT-transformations). Given a quan-

tum field𝛹 (r, 𝑡), its Fourier transform𝛷(k, 𝑡), and its entropy S𝑡 , the entropies of

𝛹 ∗(r, 𝑡),𝛹 P(−r, 𝑡),𝛹C(r, 𝑡),𝛹T(r,−𝑡), of and𝛹CPT(−r,−𝑡), and their correspond-

ing Fourier transforms are all equal to S𝑡 .

Proof. The probability densities of 𝛹 ∗(r, 𝑡), 𝛹T(r,−𝑡), 𝛹 P(−r, 𝑡), 𝛹C(r, 𝑡), and
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𝛹CPT(−r,−𝑡) are

𝜌∗r (r, 𝑡) =𝛹 T(r, 𝑡)𝛹 ∗(r, 𝑡) =𝛹 †(r, 𝑡)𝛹 (r, 𝑡) = 𝜌(r, 𝑡) ,

𝜌C
r (r, 𝑡) =

(
𝛹
T)† (r, 𝑡)𝐶†𝐶𝛹

T(r, 𝑡) =𝛹 ∗(r, 𝑡)𝛹 T(r, 𝑡) = 𝜌r(r, 𝑡) ,

𝜌P
r (−r, 𝑡) =𝛹 †(r, 𝑡) (𝛾0)†𝛾0𝛹 (r, 𝑡) =𝛹 †(r, 𝑡)𝛹 (r, 𝑡) = 𝜌r(r, 𝑡) ,

𝜌T
r (r,−𝑡) =𝛹 T(r, 𝑡)𝑇†𝑇𝛹 ∗(r, 𝑡) =𝛹 T(r, 𝑡)𝛹 ∗(r, 𝑡) = 𝜌r(r, 𝑡) ,

𝜌CPT
r (−r,−𝑡) =

(
𝛹
T)† (r, 𝑡) (𝐶𝑃𝑇)†(𝐶𝑃𝑇)𝛹 T(r, 𝑡) = 𝜌r(r, 𝑡) . (3)

As the densities are equal, so are the associated entropies.

Equations (3) also hold for𝛷(k, 𝑡) and its density. Thus, both entropies terms in

S𝑡 = S𝑟 + S𝑘 are invariant under all CPT transformations.

Lorentz Transformations

Theorem 4. The entropy is a relativistic scalar.

Proof. The probability elements dP(r, 𝑡) = 𝜌r(r, 𝑡) d3r and dP(k, 𝑡) = 𝜌k(k, 𝑡) d3k

are invariant under Lorentz transformations since event probabilities do not depend

on the frame of reference. Consider a slice of the phase space with frequency

𝜔k =

√︂
k2𝑐2 +

(
𝑚𝑐2

ℏ

)2
. The volume elements 1

𝜔k
d3k and𝜔k d3r, are invariant under

the Lorentz group [12], that is, 1
𝜔k

d3k = 1
𝜔k′

d3k′ and 𝜔k d3r = 𝜔k′ d3r′, implying

d𝑉 = d3k d3r = d3k′ d3r′ = d𝑉 ′, where r′, k′, and𝜔k′ result from applying a Lorentz

transformation to r, k, and 𝜔k. Thus, from the probability invariant elements we

conclude that 1
𝜔k
𝜌r(r, 𝑡) and𝜔k𝜌k(k, 𝑡) are also invariant under the group. Thus, the

phase space density 𝜌r(r, 𝑡)𝜌k(k, 𝑡) is an invariant under Lorentz transformations.

Therefore the entropy is a relativistic scalar.

Note that in QFT, one scales the operator𝛷(k, 𝑡) by
√

2𝜔k, that is, one scales the
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creation and the annihilation operators 𝛼†(k) =
√
𝜔k a†(k) and 𝛼(k) =

√
𝜔 a(k).

In this way, the density operator 𝛷†(k, 𝑡)𝛷(k, 𝑡) scales with 𝜔k and becomes a

relativistic scalar. Also, with such a scaling, the infinitesimal probability of finding

a particle with momentum p = ℏk in the original reference frame is invariant under

the Lorentz transformation, though it would be found with momentum p′ = ℏk′.

QCURVES AND ENTROPY-PARTITION

In [7], we introduced the concept of a QCurve to specify a curve (or path) in a

Hilbert space parametrized by time. In QM, a QCurve is represented by a triple(
|𝜓0〉 ,𝑈 (𝑡), δ𝑡

)
, where |𝜓0〉 is the initial state,𝑈 (𝑡) = e−i𝐻𝑡 is the evolution operator,

and [0, δ𝑡] is the time interval of the evolution. Alternatively, we can represent the

initial state by (〈r|𝜓0〉 , 〈k|𝜓0〉) and in QFT as (𝛹 (r, 0) |state〉 ,𝛷(k, 0) |state〉).

Definition 1 (Partition of E from [7]). Let E to be the set of all QCurves. We define

a partition of E based on the entropy evolution into four blocks:

C: Set of the QCurves for which the entropy is a constant.

I: Set of the QCurves for which the entropy is increasing, but it is not a constant.

D: Set of the QCurves for which the entropy is decreasing, but it is not a constant.

O: Set of oscillating QCurves, with the entropy strictly increasing in some subin-

terval of [0, δ𝑡] and strictly decreasing in another subinterval of [0, δ𝑡].

Consider stationary states |𝜓𝑡〉 = |𝜓𝐸〉 e−i𝜔𝑡 with 𝜔 = 𝐸/ℏ, where 𝐸 is an energy

eigenvalue of the Hamiltonian, and |𝜓𝐸〉 is the time-independent eigenstate of the

Hamiltonian associated with 𝐸 .

Theorem 5. All stationary states are in C.

Proof. Follows from the time invariance of the probabilities.
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The Coordinate-Entropy of Coherent States Increases With Time

Dirac’s free-particle Hamiltonian in QM [5] is

𝐻 = −iℏ𝛾0 ®𝛾 · ∇ + 𝑚𝑐𝛾0 . (4)

It can be diagonalized in the spatial Fourier domain |k〉 basis to obtain

𝜔(k) = ±𝑐
√︂
𝑘2 + 𝑚

2

ℏ2 𝑐
2 , (5)

where 𝜔(k) is the frequency component of the Hamiltonian. We focus on the

positive energy solutions and so the group velocity becomes

vg(k) = ∇k𝜔(k) =
ℏ

𝑚

k√︃
1 + ( ℏ𝑘

𝑚𝑐
)2
. (6)

In (9) we will use the Taylor expansion of (5) up to the second order, thus requiring

the Hessian H(k), with the entries

H𝑖 𝑗 (k) =
𝜕2𝜔(k)
𝜕𝑘𝑖 𝜕𝑘 𝑗

=
ℏ

𝑚

(
1 +

(
ℏ𝑘

𝑚𝑐

)2
)− 3

2
[
δ𝑖, 𝑗

(
1 +

(
ℏ𝑘

𝑚𝑐

)2
)
−

(
ℏ𝑘𝑖

𝑚𝑐

) (
ℏ𝑘 𝑗

𝑚𝑐

)]
(7)

for the positive energy solution. The three (positive) eigenvalues of H(k) are

𝜆1 =
ℏ

𝑚

(
1 +

(
ℏ𝑘

𝑚𝑐

)2
)− 3

2

= ℏ
𝑚2(

𝑚2 + 𝜇2(𝑘)
) 3

2
,

𝜆2,3 =
ℏ

𝑚

(
1 +

(
ℏ𝑘

𝑚𝑐

)2
)− 1

2

= ℏ
1

(𝑚2 + 𝜇2(𝑘)) 1
2
,
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where 𝜇(𝑘) = ℏ𝑘/𝑐 is the kinetic energy in mass units. The Hessian is positive

definite for positive energy, and so it gives a measure of the dispersion of the wave.

We now consider initial solutions that are localized in space, 𝜓k0 (r − r0) =

𝜓0(r − r0) eik0·r, where r0 is the mean value of r. Assume that the variance,∫
d3r (r− r0)2𝜌r(r), is finite, where 𝜌r(r) = |𝜓0(r) |2. In a Cartesian representation,

we can write the initial state in the spatial frequency domain as 𝜙r0 (k − k0) =

𝜙0(k − k0) e−i(k−k0)·r0 , where 𝜙0(k) is the Fourier transform of 𝜓0(r), and so the

variance of 𝜌k(k) = |𝜙r0 (k − k0) |2 is also finite, with the mean in the spatial

frequency center k0.

The time evolution of 𝜓k0 (r − r0) according a Hamiltonian with a dispersion

relation 𝜔(k), and written via the inverse Fourier transform, is

𝜓k0 (r − r0, 𝑡) =
1

(
√

2π)3

∫
𝛷r0 (k − k0) e−i𝜔(k)𝑡eik·r d3k . (8)

As 𝜙r0 (k − k0) fades away exponentially from k = k0, we expand (5) in a Taylor

series and approximate it as

𝜔(k) ≈ vp(k0) · k0 + vg(k0) · (k − k0) +
1
2
(k − k0)TH(k0) (k − k0) , (9)

where vp(k0), vg(k0), and H(k0) are the phase velocity 𝜔(k0)
|k0 | k̂0, the group velocity

(6), and the Hessian (7) of the dispersion relation 𝜔(k), respectively. Then after

inserting (9) into (8), we obtain the quantum dispersion transform

𝜙r𝑡k0
(k − k0, 𝑡) ≈

1
𝑍𝑘

e−i𝑡vp (k0)·k0𝛷r𝑡k0
(k − k0)N

(
k | k0,−i𝑡−1H−1(k0)

)
,

𝜓k0 (r − r𝑡k0
, 𝑡) ≈ 1

𝑍r
e−i𝑡vp (k0)·k0 𝜓k0 (r − r𝑡k0

) ∗N
(
r | r𝑡k0

, i𝑡H(k0)
)
, (10)

where r𝑡k0
= r0 + vg(k0)𝑡, 𝛷r𝑡k0

(k − k0) = 𝜙0(k − k0) e−i(k−k0)·r𝑡k0 , with Fourier

transform𝜓k0 (r−r𝑡k0
); ∗ denotes a convolution, 𝑍𝑟 and 𝑍𝑘 normalize the amplitudes,

12



and N is a normal distribution. Consequently, 𝜓k0 (r − r𝑡k0
, 𝑡) is the spatial Fourier

transform of𝛷r𝑡k0
(k − k0, 𝑡).

The probability densities associated with the probability amplitudes in (10) are

𝜌r(r − r𝑡k0
, 𝑡) = 1

𝑍2
r
|𝜓k0 (r − r𝑡k0

) ∗N
(
r | r𝑡k0

, i 𝑡H(k0)
)
|2 ,

𝜌k(k − k0, 𝑡) =
1
𝑍2
𝑘

|𝛷r𝑡k0
(k − k0) |2 . (11)

Lemma 1 (Dispersion Transform and Reference Frames). The entropy associated

with (11) is equal to the entropy associated with the simplified probability densities

𝜌S
r (r, 𝑡) =

1
𝑍2 |𝜓0(r) ∗N (r | 0, i 𝑡H(k0)) |2 ,

𝜌S
k (k, 𝑡) =

1
𝑍2
𝑘

|𝛷0(k) |2 = 𝜌S
k (k, 𝑡 = 0) . (12)

Proof. Consider (11). If the frame of reference is translating the position by r𝑡k0
=

r0+vg(k0)𝑡 and the momentum by ℏk0, we get the simplified density functions (12).

Theorem 2 shows that the entropy in position and momentum is invariant under

translations of the position r and the spatial frequency k, and that completes the

proof.

The time invariance of the density 𝜌S
k (k, 𝑡), and therefore of Sk, reflects the

conservation law of momentum for free particles.

We now focus on the case of coherent states, represented by |𝛼〉, eigenstates of the

annihilator operator. In 1D position space they are represented as 𝜓𝛼 (𝑥) = 〈𝑥 |𝛼〉 =
e−

𝑝2
0
2

π
1
4

e−
1
2

(
𝑥−

√
2𝛼

)2

, where 𝛼 = 1√
2
(𝑥0 + i𝑝0). Squeeze states extend to all eigenstate

solutions of the annihilator operator by allowing different variances for the Gaussian

13



solution, and together their representation in 3D position and momentum space are

𝜓k0 (r − r0) = 〈r|𝛼〉 = 1
23π

3
2 (det𝚺) 1

2
N (r | r0,𝚺) eik0·r ,

𝛷r0 (k − k0) = 〈k|𝛼〉 = 1
23π

3
2 (det𝚺−1) 1

2
N

(
k | k0,𝚺

−1
)

ei(k−k0)·r0 , (13)

where 𝚺 is the spatial covariance matrix.

Theorem 6. A QCurve with an initial coherent state (13) and evolving according

to (4) is in I.

Proof. To describe the evolution of the initial states (13), we apply (10). Then, after

applying Lemma 1,

𝜌S
r (r, 𝑡) =

1
𝑍2

2
N (r | 0,𝚺 + i𝑡H(k0))N (r | 0,𝚺 − i𝑡H(k0)) = N

(
r | 0,

1
2
𝚺(𝑡)

)
,

𝜌S
k (k, 𝑡) = N

(
k | 0,𝚺−1

)
,

where 𝚺(𝑡) = 𝚺 + 𝑡2H(k0)𝚺−1H(k0). Then

S = Sr + Sk

= −
∫
N

(
r | 0,

1
2
𝚺(𝑡)

)
lnN

(
r | 0,

1
2
𝚺(𝑡)

)
d3r

−
∫
N

(
k | 0,𝚺−1

)
lnN

(
k | 0, 2𝚺−1

)
d3k

= 3(1 + lnπ) + 1
2

ln det
(
I + 𝑡2(𝚺−1H(k0))2

)
.

As det
(
I + 𝑡2(𝚺−1H(k0))2) > 0, the entropy increases over time.

The theorem suggests that quantum physics has an inherent mechanism to in-

crease entropy for free particles, due to the spatial dispersion property of the Hamil-

tonian. Note that at 𝑡 = 0 a coherent state (13) reaches the minimum possible

14



coordinate-entropy value, while the spin-entropy remains constant.

Time Reflection

We consider a time-independent Hamiltonian, investigate the discrete symmetries

C and P, and propose that Time Reversal be augmented with Time Translation, say

by δ𝑡. We refer to the mapping 𝑡 ↦→ −𝑡 + δ𝑡 as Time Reflection, because as 𝑡 varies

from 0 to δ𝑡, 𝑡′(𝑡) = −𝑡 + δ𝑡 varies as a reflection from δ𝑡 to 0. We define the Time

Reflection quantum field

𝛹Tδ (r,−𝑡 + δ𝑡) = T𝛹 (r, 𝑡) = 𝑇𝛹 ∗(r, 𝑡) .

Note that in contrast to the case of Time Reversal,𝛹Tδ (r, 𝑡′) = T𝛹 (r,−𝑡′ + δ𝑡),
and the entropies associated with𝛹 (r, 𝑡) and𝛹Tδ (r, 𝑡) are generally not equal. Thus,

an instantaneous Time Reflection transformation will cause entropy changes.

We next consider a composition of the three transformation, Charge Conjugation,

Parity Change, and Time Reflection.

Definition 2 (𝛹CPTδ). Let the CPTδ quantum field be

𝛹CPTδ (−r,−𝑡 + δ𝑡) = 𝜂δ𝐶𝑃𝑇𝛹
T(r, 𝑡) = 𝜂𝛾5 (𝛹 †)T(r, 𝑡) , (14)

where 𝜂 is the product of the phases of each operation, 𝜂δ is the phase of time

translation, and 𝛾5 = i𝛾0𝛾1𝛾2𝛾3.

Definition 3 (𝑄CPTδ
). Let𝑄CPTδ

be
(
𝜓(r, 0),𝑈 (𝑡), [0, δ𝑡]

)
↦→

(
𝜓CPTδ (−r, 0),𝑈 (𝑡), [0, δ𝑡]

)
.

Using (14) we see that,

𝜓CPTδ (−r, 0) = 𝜂𝛾5 (𝛹 †)T(r,−0 + δ𝑡) = 𝜂 𝛾5 (𝛹 †)T(r, δ𝑡) . (15)

15



Theorem 7 (Time Reflection). Consider a CPT invariant quantum field theory

(QFT) with energy conservation, such as Standard Model or Wightman axiomatic

QFT [13]. Let 𝑒0 = (𝜓(r, 0),𝑈 (𝑡), [0, δ𝑡]) be a QCurve solution to such QFT. Then,

𝑒1 = 𝑄CPTδ
(𝑒0) is (i) a solution to such QFT, (ii) if 𝑒0 is in C, D, O, I then 𝑒1 is

respectively in C, I, O, D, making C, I, O, D reflections of C, D, O, I, respectively.

Proof. Let 𝑡′ = −𝑡 +δ𝑡. The QCurve 𝑒1 describes the evolution 𝜓CPTδ (−r, 𝑡′) during

the period [0, δ𝑡].

Since 𝑒0 is a solution to a QFT that is CPT-invariant and time-translation invari-

ant, 𝑒1 is also a solution to the QFT, proving (i).

The time evolution of 𝜓CPTδ (−r, 0) from 0 to δ𝑡 is described by 𝜓CPTδ (−r, 𝑡′),
and by (15) 𝜓CPTδ (−r, 𝑡′) = 𝜂 𝛾5 (𝛹 †)T(r,−𝑡′ + δ𝑡) = 𝜂 𝛾5𝛹 ∗(r, δ𝑡 − 𝑡′). Thus, the

evolution of 𝜓CPTδ (−r, 𝑡′) as 𝑡′ evolves from 0 to δ𝑡, by Theorem 3, has the same

entropies as 𝜓(r, δ𝑡− 𝑡′). Since 𝜓(r, δ𝑡− 𝑡′) traverses the same path as 𝜓(r, 𝑡′) but in

the opposite time direction, we conclude that 𝑒1 produces the time evolution states

𝜓CPTδ (−r, 𝑡′) in the time interval [0, δ𝑡] traversing the same path and with the same

entropies as 𝜓(r, 𝑡′), but in the opposite time directions.

Applying the above to a QCurve respectively in I, D, C, O, results in a QCurve

respectively in D, I, C, O. Thus, we conclude the proof of (ii).

For a visualization see Figure 1, which we repeat here from [9] for the reader’s

convenience.

Entropy Oscillations

Theorem 8 (Coefficients for two states). Consider a particle in an eigenstate
��𝜓𝐸1

〉
of a Hamiltonian 𝐻 that has only two eigenstates

��𝜓𝐸1

〉
and

��𝜓𝐸2

〉
with eigenvalues

𝐸1 = ℏ𝜔1 and 𝐸2 = ℏ𝜔2, respectively. Let this particle interact with an external

field (such as the impact of a Gauge Field), requiring an additional Hamiltonian
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Figure 1. A visualization of the Time Reflection Theorem. (i) Axis 𝑡: A QCurve 𝑒1 =(
𝜓0(r), e−i𝐻𝑡 , δ𝑡

)
. (ii) Axis 𝑡 ′ = δ𝑡 − 𝑡: The antiparticle QCurve is created as 𝑒2 =

𝑄CPTδ
(𝑒1) =

(
𝜓CPTδ (−r, 𝑡 ′ = 0), e−i𝐻𝑡′, δ𝑡

)
. Axis 𝑡 ′ shows the evolution as going forward

in time 𝑡 ′. The evolution of 𝜓CPTδ (−r, 𝑡 ′) = 𝜂𝛾5 (𝛹 †)T(r, δ𝑡 − 𝑡 ′) is mirroring the evolution
of 𝜓(r, 𝑡), with 𝑡 = 𝑡 ′ evolving from 0 to δ𝑡. If 𝑒1 ∈ D, then 𝑒2 ∈ I.

term 𝐻I to describe the evolution of this system.

Let 𝜔I
𝑖, 𝑗

= 1
ℏ

〈
𝜓𝐸𝑖

��𝐻I
��𝜓𝐸 𝑗

〉
, 𝜔total

1 = 𝜔1 + 𝜔I
11, 𝜔total

2 = 𝜔2 + 𝜔I
22,

𝜂 =

√︂(
𝜔total

1 − 𝜔total
2

)2
+ 4(𝜔I

12)2, and 𝜆± =
𝜔total

1 +𝜔total
2 ±𝜂

2 . The probability of

the particle to be in state
��𝜓𝐸2

〉
at time 𝑡 is

4(𝜔I
12)

2

𝜂2 sin2 (𝜆+ − 𝜆−)𝑡
2

.

Proof. The Hamiltonians in the basis
��𝜓𝐸1

〉
,
��𝜓𝐸2

〉
are

𝐻 = ℏ
©­«
𝜔1 0

0 𝜔2

ª®¬ and 𝐻I = ℏ
©­«
𝜔I

11 𝜔I
12

𝜔I
12 𝜔I

22

ª®¬ ,
where the real values satisfy 𝜔I

21 = 𝜔I
12 as 𝐻I is Hermitian. The eigenvalues of the
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symmetric matrix 𝐻′ = 𝐻 + 𝐻I are ℏ𝜆±, and so we can decompose it as

𝐻′ = ℏ
©­«
𝜔total

1 𝜔I
12

𝜔I
12 𝜔total

2

ª®¬ =
©­«
cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃
ª®¬ ©­«

ℏ𝜆+ 0

0 ℏ𝜆−

ª®¬ ©­«
cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃
ª®¬ , (16)

where

𝜃 =
1
2

arcsin
2𝜔I

12
𝜂

. (17)

The time evolution of
��𝜓𝐸1

〉
is |𝜓𝑡〉 = e−i (𝐻+𝐻 I)

ℏ
𝑡
��𝜓𝐸1

〉
=

∑2
𝑘=1 𝛼𝑘 (𝑡)

��𝜓𝐸𝑘

〉
, and

projecting on
〈
𝜓𝐸 𝑗

��, we get 𝛼 𝑗 (𝑡) =
〈
𝜓𝐸 𝑗

�� e−i (𝐻+𝐻 I)
ℏ

𝑡
��𝜓𝐸1

〉
. From (16),

e−i 𝐻
′

ℏ
𝑡 =

©­«
cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃
ª®¬ ©­«

e−i𝜆+𝑡 0

0 e−i𝜆−𝑡
ª®¬ ©­«

cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃
ª®¬

=
©­«
e−i𝜆+𝑡 cos2 𝜃 + e−i𝜆−𝑡 sin2 𝜃 e−i𝜆+𝑡−e−i𝜆−𝑡

2 sin 2𝜃
e−i𝜆+𝑡−e−i𝜆−𝑡

2 sin 2𝜃 e−i𝜆+𝑡 sin2 𝜃 + e−i𝜆−𝑡 cos2 𝜃

ª®¬ .
Thus,

©­«
𝛼1(𝑡)
𝛼2(𝑡)

ª®¬ = e−i 𝐻
′

ℏ
𝑡 ©­«

1

0
ª®¬ =

©­«
cos2 𝜃 e−i𝜆+𝑡 + sin2 𝜃 e−i𝜆−𝑡

sin 2𝜃
(

e−i𝜆+𝑡−e−i𝜆−𝑡

2

) ª®¬ ,
and so

©­«
|𝛼1(𝑡) |2

|𝛼2(𝑡) |2
ª®¬ =

©­«
1 − 1

2 sin2 2𝜃 (1 − cos(𝜆− − 𝜆+)𝑡)
1
2 sin2 2𝜃 (1 − cos(𝜆− − 𝜆+)𝑡)

ª®¬ .
As 1 − cos(𝜆− − 𝜆+)𝑡 = 2 sin2 (𝜆+−𝜆−)𝑡

2 , the probability of being in state
��𝜓𝐸2

〉
at

time 𝑡 is |𝛼2(𝑡) |2 = sin2 2𝜃 sin2 (𝜆+−𝜆−)𝑡
2 . Using (17), completes the proof.

If 𝜔1 � 𝜔I
11, 𝜔2 � 𝜔I

22, and |𝜔1 − 𝜔2 | � 𝜔I
12, then 𝜆+,− ≈ 𝜔1,2, and the

coefficient of transition becomes |𝛼2(𝑡) |2 ≈ 4(𝜔I
12)

2

(𝜔1−𝜔2)2
sin2 (𝜔2−𝜔1)𝑡

2 , which is Fermi’s
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golden rule [4, 6].

In [7] we showed that when the probability of two states oscillates as above, the

entropy oscillates too.

The derivation of 𝛼2(𝑡) can be extended to multiple states. However, for multiple

states, the sum over all the frequencies 𝜆𝑘 − 𝜆𝑖 may cancel the oscillations unless

some frequencies dominate the sum, such as when the transition to the ground state

dominates other transitions. Thus, to obtain the entropy oscillation in the presence of

multiple transitions may require approximations similar to the ones that are usually

used in derivations of Fermi’s golden rule.

An Entropy Law and a Time Arrow

In classical statistical mechanics, the entropy provides a time arrow through the

second law of thermodynamics [2]. We have shown that due to the dispersion

property of the fermions Hamiltonian some states in quantum mechanics, such as

coherent states, already obey such a law. However, current quantum physics is

described as time reversible. In [7] we conjectured the following

Law (The Entropy Law). The entropy of a quantum system is an increasing function

of time.

The law may help explain why particles are created and/or annihilated in scenarios

such as high-speed collision e+ + e− → 2γ, kaons decay into mesons, and photon

creation and emission when the electron in the hydrogen atom transitions from

an excited state to the ground state. In those scenarios, while such final states are

reachable in a unitary evolution of the initial state, it seems that only those evolutions

in which entropy increase are realized. According to the S-matrix formulation [12],

similar to Fermi’s golden rule in QM, these final states are among the possible

transition states. We note that similarly to Fermi’s golden rule, these are also entropy
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oscillation scenarios in which the evolution is blocked from entering a time interval

of decreasing entropy. The creation and/or annihilation of a particles seem to occur

when the entropy of the evolution from the initial to the final state is oscillating, and

but for such events the entropy would decrease, which the conjectured law forbids.

Furthermore, the spin-entropy evolution of system of particles or fields is also

subject to this law, which may have implications in all physical scenarios including

quantum information and quantum computing.

CONCLUSIONS

The concepts of entropy in quantum phase spaces in [7] were further developed

here. We extended the coordinate-entropy in QM to multiple particles. We proved

that the coordinate-entropy is invariant under coordinate transformations, Lorentz

transformations, and CPT transformations. We analyzed the entropy evolution of

coherent states, showing that the Dirac’s Hamiltonian has a mechanism to disperse

the information and to increase entropy. We proved that Time Reflection transforms

QCurves in C, I, O, D into QCurves in C, D, O, I, respectively. We proved that for a

two-state Hamiltonian, the addition of a Hamiltonian term not only causes a state os-

cillation (as suggested by Fermi’s golden rule when the appropriate approximations

hold) but also causes entropy oscillation. In light of the technical advancements

here, we reviewed the conjectured entropy law [7]. According to that law, not only

a time arrow would emerge, but should the formation of new particles be triggered

by the entropy law, the history of the universe would have to be revised through such

a lens. Perhaps, the collapse of a wave function occurs not due to measurements,

but instead due to the restrictions posed by the entropy law.
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