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Abstract
Quantum physics, despite its intrinsic probabilistic nature, is formulated as time-

reversible. We propose an entropy for quantum physics, which may conduce to the emergence

of a time arrow. That entropy is a measure of randomness over the degrees of freedom of

a quantum state and is quantified in quantum phase spaces. Its minimum is positive due to

the uncertainty principle.

To study the relation of the entropy to physical phenomena, we classify the behaviors of

quantum states according to their entropy evolution. We revisit transition probabilities and

Fermi’s golden rule to show their close relation to states with oscillating entropy. We study

collisions of two particles in coherent states, and show that as they come closer to each

other, their entanglement causes the total system’s entropy to oscillate.

We conjecture an entropy law whereby the entropy never decreases, and speculate that

entropy oscillations trigger the annihilations and the creations of particles.
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INTRODUCTION AND SUMMARY

Today’s classical and quantum physics laws are time-reversible, and a time arrow

emerges in physics only when a probabilistic behavior of ensembles of particles

is considered. In contrast, no mechanism for a time arrow has been proposed for

quantum physics even though it introduces probability as intrinsic to the description

of even a single-particle system. The concept of entropy has been useful in classical

physics but extending it to quantum mechanics (QM) has been challenging. For

example, von Neumann entropy [22] requires the existence of classical statistics

elements (mixed states) in order not to vanish, and consequently it must assign the

entropy of 0 to one-particle states (pure states). Von Neumann entropy captures the

randomness associated with not-knowing precisely the quantum state. Therefore,

it is not possible to start with von Neumann entropy if one wants to assign an

entropy that measures the randomness of a given pure quantum state. Wehrl entropy

[23] is based on Husimi’s [16] quasiprobability distribution, rooted in projecting

states to an overcomplete basis representation of coherent states. Note that no two

coherent states are orthogonal to each other. Therefore, Kolmogorov third axiom

for a probability distribution, for events to be mutually exclusive, is not satisfied.

Thus, probability properties such as for example, the monotonicity of probabilities

and the complement rule, are not satisfied by Husimi’s quasiprobability distribution.

These limitations prevent Wehrl entropy from correctly counting the random values

of the observables. Say we have just observed a particle in position space at r0.

The state is then a peak at such a position. Projecting it onto coherent states, we

will produce a non-zero value distribution for all possible position coordinates 𝑞 in

the phase space coordinate (𝑞, 𝑝), where 𝑝 is the momentum coordinate. Clearly,

this is not the description of the random position observable r in QM. We require

the quantum entropy to be invariant under special relativity transformations and

under point-wise transformation of position coordinates (such as a spherical-polar
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coordinate change), and Wehrl entropy is not invariant under neither of these two

transformations. Indeed Wehrl intent was to define an entropy for the classical phase

space, an approximation to a quantum state, and not to construct a quantum entropy

in quantum phase space. We point out that coherent states minimize the uncertainty

principle [19], and as shown by Lieb [18] they also minimize Wehrl entropy. And as

we show here, they also minimize our proposed entropy. We then argue that neither

von Neumann entropy nor Wehrl entropy capture the exact amount of randomness

associated with the observables of a pure quantum state.

In classical physics, Boltzmann entropy and Gibbs entropy and their respective

H-theorems [14] are formulated in the classical phase space, reflecting the degrees

of freedom (DOFs) of a system. In quantum physics the complete description of

randomness of a particle state goes beyond the randomness of the DOFs of a state

as illustrated by the uncertainty principle. Even though the momentum description

of a state can be recovered by the position DOFs description of a state (via a Fourier

transform), the randomness of the state is only captured in quantum phase space

formed by position and momentum (or spatial frequency) projections of a quantum

state. Note that there are internal DOFs, such as the spin orientation of a particle,

which must be accounted for via their own phase space when quantifying total

randomness.

As discussed by Wehrl [23], a quantum entropy is not an observable as there is

no entropy operator, instead, entropy is a function associated with a state. We argue

that the entropy in quantum physics must (i) account for all the DOFs of a state,

(ii) be a quantification of randomness of the observables of such a state, and (iii) be

invariant under the applicable transformations of the state. We propose an entropy

defined in quantum phase spaces associated with the DOFs and that satisfies those

conditions. We defined the quantum phases space to simultaneously be the space

of all possible states projected in the position and a spatial frequency basis. It is

applicable to both QM and Quantum Field Theory (QFT).
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To analyze particles’ evolution, we introduce a QCurve structure imposed on the

evolutions of a quantum state. We partition the set of all the QCurves according to

their entropies’ behavior during an evolution.

An important set of QCurves is the one in which the entropy oscillates. This

set includes the cases of transitions from one state to another with probabilities

obtained from Fermi’s golden rule. Fermi’s golden rule is derived from a unitary

evolution of a state. Consequently, for the hydrogen atom, in order to account for a

transition from an excited state to the ground state with the emission of a photon,

Fermi’s golden rule assigns a coefficient to the ground state that increases with time

while the coefficient assigned to the excited state decreases with time, but both states

remain in a superposition. One can not conclude that the event of a photon creation

and its emission either occur or not, unless an experiment is devised to observe the

event, and the outcome may be that such transition does not occur.

In our study of the QCurves corresponding to the evolution of the hydrogen atom

in an excited state, we show a close association between the entropy and Fermi’s

golden rule probabilities. The mathematical behavior of both is related as they both

oscillate in tandem: first increasing and then decreasing. We then conjecture that

there is an entropy law, universally applicable to particle physics, stating that the

entropy never decreases in a physical scenario.

Then, such law acts as a trigger, “causing” the electron to jump to the ground

state and emit a photon. In contrast to Fermi’s golden rule probabilistic reasoning

over the superposition of states, the entropy law guarantees that the jump does

occur and a photon is emitted. Thus, the law provides a deterministic cause for

that event. We examine this and other scenarios where such an entropy law may be

applicable. From an information-theoretic point of view, such a law states that during

the evolution of a physical scenario the information (the “inverse” of randomness)

cannot be increased.
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QUANTUM ENTROPY IN QUANTUM PHASE SPACES

The quantum entropy must account for both the coordinate and the internal (spin)

DOFs, and we define the entropy in light of this requirement.

Coordinate-Entropy

We associate with a state |𝜓〉 its projection onto the QM eigenstates of the opera-

tors r̂ and p̂ , i.e., |r〉 and |p〉. Either one projection, 𝜓(r) = 〈r|𝜓〉 or 𝜙(p) = 〈p|𝜓〉,
is sufficient to recover the other one via a Fourier transform. We define the quantum

coordinate phase space as the space of all possible states projected simultaneously

in pairs (𝜓(r), 𝜙(p)). The density operator associated with state |𝜓〉 is 𝜌 = |𝜓〉 〈𝜓 |
and its time evolution according to a Hermitian Hamiltonian 𝐻 is described by

𝜌𝑡 = e−i𝐻
ℏ
𝑡𝜌ei𝐻

ℏ
𝑡 . Projecting the density operator into the quantum coordinate

phase space we obtain the probability densities 𝜌r(r, 𝑡) = 〈r| 𝜌𝑡 |r〉 = |𝜓(r, 𝑡) |2 and

𝜌𝑝 (p, 𝑡) = 〈p| 𝜌𝑡 |p〉 = |𝜙(p, 𝑡) |2. By considering a quantum coordinate phase space

we will be able to capture the randomness of the coordinates of a particle as illus-

trated by the uncertainty principle. We argue that it is necessary to consider both

projections in order to capture all the randomness of the observables, and in order

to produce appropriate entropy invariance under applicable transformation (such as

changes of position coordinates).

Our formulation of the entropy is clearly motivated by previous work, and

we mention as examples, Gibbs [14], Shanon [21] and Jaynes [17]. Let the

entropy associated only with the spatial coordinates be the differential entropy

Sr = −
∫
𝜌r(r, 𝑡) ln 𝜌r(r, 𝑡) d3r. Let k = 1

ℏ
p be the spatial frequency, and 𝜌𝑘 (k, 𝑡) =

1
ℏ3 𝜌𝑝 (p, 𝑡) the associated probability density, and Sk = −

∫
𝜌k(k, 𝑡) ln 𝜌k(k, 𝑡) d3k.

Then we define the entropy associated with the quantum coordinate phase space
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distributions as

S = −
∫
𝜌r(r, 𝑡)𝜌𝑘 (k, 𝑡) ln (𝜌r(r, 𝑡)𝜌𝑘 (k, 𝑡) ) d3r d3k = Sr + Sk . (1)

The entropy is dimensionless and thus, invariant under changes of the units of

measurements. For an extension to 𝑁-particle systems, see [11].

Fields in QFT are described by the operators 𝛹 (r, 𝑡), where (r, 𝑡) is the

space-time, and 𝛷(k, 𝑡) is the spatial Fourier transform of 𝛹 (r, 𝑡). A represen-

tation for a system of particles is based on Fock states with occupation number��𝑛𝑞1 , 𝑛𝑞2 , , . . . , 𝑛𝑞𝑖 , . . . 𝑛𝑞𝐾
〉
, where 𝑛𝑞𝑖 is the number of particles in a QM state |𝑞𝑖〉.

The number of particles in a Fock state is then 𝑁 =
∑𝐾
𝑖=1 𝑛𝑞𝑖 , and a QFT state is

described in a Fock space as |state〉 = ∑
𝑚 𝛼𝑚

��𝑛𝑞1 , 𝑛𝑞2 , , . . . , 𝑛𝑞𝑖 , . . .
〉
, where 𝑚 is an

index over configurations of a Fock state, 𝛼𝑚 ∈ ℂ, and 1 =
∑
𝑚 |𝛼𝑚 |2. The QFT op-

erators act on a state producing a phase space state (𝛹 (r, 𝑡) |state〉 , 𝛷(k, 𝑡) |state〉).
We then define the probability density function for the spatial coordinates as

𝜌
QFT
r (r, 𝑡) = |𝛹 (r, 𝑡) |state〉 |2 = 〈state|𝛹 †(r, 𝑡)𝛹 (r, 𝑡) |state〉 .

Analogously, 𝜌QFT
k (k, 𝑡) = |𝛷(k, 𝑡) |state〉 |2 = 〈state|𝛷†(k, 𝑡)𝛷(k, 𝑡) |state〉.

One may call the coefficients “the wave function” and interpret them as distribu-

tions of the information about the position and the space frequency of the state of

the field. The QFT coordinate-entropy is then described by (1), where we dropped

the superscript QFT, as it will be clear which framework is used, QM or QFT.

In [11], we proved that the coordinate-entropy is invariant under continuous 3D

coordinate transformations, continuous Lorentz transformations, and discrete CPT

transformations.
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Mixed Quantum States

We now extend the entropy (1) to mixed states. Consider a mixed

state formed from 𝑚 ≥ 2 pure quantum states
��𝜓 𝑗 〉 ; 𝑗 = 1, . . . , 𝑚, de-

fined by the density matrix 𝜌M =
∑𝑚
𝑗=1 𝜆 𝑗

��𝜓 𝑗 〉 〈
𝜓 𝑗

��, where 𝜆 𝑗 > 0 and

1 =
∑𝑚
𝑗=1 𝜆 𝑗 . Then, projecting the density matrix onto the quantum coor-

dinate phase space basis yields 𝜌M
𝑟 (r, 𝑡) = 〈r| 𝜌M |r〉 =

∑𝑚
𝑗=1 𝜆 𝑗 |𝜓 𝑗 (r, 𝑡) |

2

and 𝜌M
𝑘
(k, 𝑡) = 〈k| 𝜌M |k〉 =

∑𝑚
𝑗=1 𝜆 𝑗 |𝜙 𝑗 (k, 𝑡) |

2. These are the distribu-

tions associated with the observables. We can also consider the distributions

𝜌 𝑗 (r, k, 𝑡) = 𝜆 𝑗 |𝜓 𝑗 (r, 𝑡) |2 |𝜙 𝑗 (k, 𝑡) |2, where 1 =
∑𝑚
𝑗=1

∫
𝜌 𝑗 (r, k, 𝑡) d3r d3k, which

account for the quantum coordinate phase space as well as the probabilities associ-

ated with specifying the quantum state, namely the probabilities 𝜆 𝑗 ; 𝑗 = 1, . . . , 𝑚.

Thus, two different entropies can be considered, one quantifying just the randomness

of the observables and the other also quantifying the randomness of specifying the

quantum state.

When we are quantifying just the randomness of the observables, then we must

consider the probability densities in quantum coordinate phase space to be 𝜌𝑀𝑟 (r, 𝑡)
and 𝜌M

𝑘
(k, 𝑡) and the differential entropy can be applied to the product of these

distributions, i.e., we obtain the entropy

S𝑀 = −
∫
𝜌𝑀𝑟 (r, 𝑡)𝜌M

𝑘 (k, 𝑡) ln
(
𝜌𝑀𝑟 (r, 𝑡)𝜌M

𝑘 (k, 𝑡)
)

d3r d3k . (2)

When however, we attempt to quantify both sources of randomness, the ran-

domness associated with the observables and the randomness associated with the

specification of the quantum state, then the density to be considered is 𝜌 𝑗 (r, k, 𝑡) =
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𝜆 𝑗 |𝜓 𝑗 (r, 𝑡) |2 |𝜙 𝑗 (k, 𝑡) |2, yielding the entropy

S𝑀.𝜆
2
𝑗 = −

𝑚∑︁
𝑗=1

∫
𝜆 𝑗 |𝜓 𝑗 (r, 𝑡) |2 |𝜙 𝑗 (k, 𝑡) |2 ln

(
𝜆 𝑗 |𝜓 𝑗 (r, 𝑡) |2 |𝜙 𝑗 (k, 𝑡) |2

)
d3r d3k

= −
𝑚∑︁
𝑗=1
𝜆 𝑗 ln𝜆 𝑗 +

𝑚∑︁
𝑗=1
𝜆 𝑗 𝑆 𝑗 , (3)

where 𝑆 𝑗 = −
∫
|𝜓 𝑗 (r, 𝑡) |2 ln |𝜓 𝑗 (r, 𝑡) |2 d3r −

∫
|𝜙 𝑗 (r, 𝑡) |2 ln |𝜙 𝑗 (r, 𝑡) |2 d3k is the

entropy of each pure state.

This entropy has two terms: the von Neumann entropy and the weighted average

value of the entropies of the observables for each pure state, weighted by the mixed

coefficients 𝜆2
𝑗
. Clearly, the proposed entropy is larger than the von Neumann

entropy.

Our proposed entropy for mixed states also differs from Wehrl entropy because

it is based on a probability distribution of the observables and not on a quasiprob-

ability distribution that lacks probability properties needed to characterize exactly

the randomness of the observables.

One can interpret both entropies (2) and (3) as different generalizations to mixed

states of the proposed entropy (1). When the mixed state is reduced to one pure

state, with 𝑚 = 1, both reduce to the entropy (1).

In this paper we will focus on pure quantum states and leave as future research

to extend the study to mixed states.

Spin-Entropy

The DOFs associated with the spin are captured by a vector or a bispinor repre-

sentation of the states in both frameworks. It is not possible to know simultaneously

the spin of a particle in all three dimensional directions, and this uncertainty, or

randomness, was exploited in the Stern–Gerlach experiment [13] to demonstrate the
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quantum nature of the spin. We explore elsewhere [12] the entropy associated with

the quantum spin phase space.

THE MINIMUM ENTROPY VALUE

The third law of thermodynamics establishes 0 as the minimum classical en-

tropy. However, the minimum of the quantum entropy must be positive due to the

uncertainty principle’s lower bound. Let θ(𝑥) be 1 for positive 𝑥 and 0 elsewhere.

Theorem 1. The minimum entropy of a particle with spin 𝑠 is 3(1+lnπ)+θ(𝑠) ln 2𝜋.

Proof. The entropy is the sum of the coordinate-entropy and the spin-entropy.

The coordinate-entropy (1) is Sr + Sk. Due to the entropic uncertainty principle

Sr + Sk ≥ 3 ln eπ as shown in [1, 2, 15], with Sk = Sp − 3 ln ℏ. To complete the

proof, note that in [11] we showed that the minimum spin-entropy is θ(𝑠) ln 2𝜋.

Higgs bosons in coherent states have the lowest possible entropy 3(1 + lnπ).
The dimensionless element of volume of integration to define the entropy will

not contain a particle unless d3r d3k ≥ 1, due to the uncertainty principle, and this

may be interpreted as a necessity of discretizing the phase space. We note that the

minimum entropy of the discretization of (1) is also 3(1 + lnπ), as shown in [7].

QCURVES AND ENTROPY-PARTITION

We introduce the concept of a QCurve to specify a curve (or path) in a

Hilbert space parametrized by time. In QM a QCurve is represented by a triple(
|𝜓0〉 ,𝑈 (𝑡), δ𝑡

)
where |𝜓0〉 is the initial state, 𝑈 (𝑡) = e−i𝐻

ℏ
𝑡 is the evolution

operator, and [0, δ𝑡] is the time interval of the evolution. Of course, one may

also represent the initial state by a triple
(
𝜌0,𝑈 (𝑡), δ𝑡

)
, where 𝜌0 = |𝜓0〉 〈𝜓0 |

is the density matrix. Alternatively, we can represent the initial state in the
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quantum coordinate phase space by (〈r|𝜓0〉 , 〈k|𝜓0〉) or by (〈r| 𝜌0 |r〉 , 〈k| 𝜌0 |k〉),
and in QFT by (𝛹 (r, 0) |state〉 ,𝛷(k, 0) |state〉), or via the density operators

(〈state| 𝜌𝑟 (r, 0) |state〉 , 〈state| 𝜌𝑘 (k, 0) |state〉), with 𝜌𝑟 (r, 0) =𝛹 †(r, 0)𝛹 (r, 0) and

𝜌𝑘 (k, 0) = 𝛷†(k, 0)𝛷(k, 0). We will use any of these representations to describe a

QCurve as more convenient for manipulations for the problem at hand.

Definition 1 (Partition of E). Let E to be the set of all the QCurves. We define a

partition of E based on the entropy evolution into four blocks:

C: Set of the QCurves for which the entropy is a constant.

I: Set of the QCurves for which the entropy is increasing, but it is not a constant.

D: Set of the QCurves for which the entropy is decreasing, but it is not a constant.

O: Set of the oscillating QCurves, with the entropy strictly increasing in some

subinterval of [0, δ𝑡] and strictly decreasing in another subinterval of [0, δ𝑡].

It is straightforward to show that all stationary states are in C (see [11]).

The Coordinate-Entropy of Coherent States Increases With Time

Coherent states, represented by state |𝛼〉, are eigenstates of the annihilator op-

erator. The 1D quantum phase space of observable variables (𝑥, 𝑝) can be con-

structed by the unitary operator 𝑈 (𝑥0, 𝑝0) = e i
ℏ
(𝑥0𝑋−𝑝0𝑃) applied to “zero-state”

|𝑥 = 0, 𝑝 = 0〉, i.e., they can be constructed as |𝛼〉 = |𝑥0, 𝑝0〉 = e i
ℏ
(𝑥0𝑋−𝑝0𝑃) |0, 0〉,

where 𝛼 = 𝑥0 + i𝑝0. Projecting the state to position space yields 𝜓𝛼 (𝑥) = 〈𝑥 |𝛼〉 =
e−

𝑝2
0
2

π
1
4

e−
1
2

(
𝑥−

√
2𝛼

)2

, where𝛼 = 1√
2
(𝑥0+i𝑝0). Squeeze states extend coherent states to all

eigenstate solutions of the annihilator operator by allowing different variances to the

Gaussian solution, and together their representation in 3D position and momentum
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space are

𝜓k0 (r − r0) =
1

23π
3
2 (det𝚺) 1

2
N (r | r0,𝚺) eik0·r ,

𝛷r0 (k − k0) =
1

23π
3
2 (det𝚺−1) 1

2
N

(
k | k0,𝚺

−1
)

ei(k−k0)·r0 , (4)

where 𝚺 is the spatial covariance matrix. We will continue to refer to these states

as coherent, with the understanding that we are including squeezed states and

that replacing the general covariance 𝚺 by I reduces to the formal definition of

coherent states. The foundational material follows from most common textbooks,

e.g., [6, 10, 20, 24].

In [11] we proved that for a QCurve with an initial coherent state (4) and evolving

according to the energy ℏ𝜔(k) = ℏ

√︂
k2𝑐2 +

(
𝑚𝑐2

ℏ

)2
, the entropy evolves as 3(1 +

lnπ) + 1
2 ln det

(
I + 𝑡2(𝚺−1H)2) , where

H𝑖 𝑗 = H𝑖 𝑗 (k0) =
ℏ

𝑚

(
1 +

(
ℏ𝑘0
𝑚𝑐

)2
)− 3

2
[
δ𝑖, 𝑗

(
1 +

(
ℏ𝑘0
𝑚𝑐

)2
)
−

(
ℏ𝑘0𝑖

𝑚𝑐

) (
ℏ𝑘0 𝑗

𝑚𝑐

)]
,

and H is positive definite. Thus, the QCurve is in I. This suggests that quantum

physics has an inherent dispersion mechanism to increase entropy for free fermion

particles. Note that for coherent states of photons, no dispersion occurs as the

electromagnetic Hamiltonian is non-dispersive.

Time Reflection as a Mechanism to Convert QCurves in I to D and Vice-Versa

We consider a time-independent Hamiltonian and investigate the discrete sym-

metries C and P, and Time Reflection, the augmentation of Time Reversal with

Time Translation, i.e., the classical mapping 𝑡 ↦→ 𝑡′ = −𝑡 + δ𝑡. We define the Time

Reflection quantum field, Tδ, as 𝛹Tδ (r,−𝑡 + δ𝑡) = T𝛹 (r, 𝑡) = 𝑇𝛹 ∗(r, 𝑡), where
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Figure 1. A visualization of the Time Reflection Theorem. (i) Axis 𝑡: A QCurve 𝑒1 =(
𝜓0(r), e−i𝐻𝑡 , δ𝑡

)
. (ii) Axis 𝑡 ′ = δ𝑡 − 𝑡: The antiparticle QCurve is created as 𝑒2 =

𝑄CPTδ
(𝑒1) =

(
𝜓CPTδ (−r, 𝑡 ′ = 0), e−i𝐻𝑡′, δ𝑡

)
. Axis 𝑡 ′ shows the evolution as going forward

in time 𝑡 ′. The evolution of 𝜓CPTδ (−r, 𝑡 ′) = 𝜂𝛾5 (𝛹 †)T(r, δ𝑡 − 𝑡 ′) is mirroring the evolution
of 𝜓(r, 𝑡), with 𝑡 = 𝑡 ′ evolving from 0 to δ𝑡. If 𝑒1 ∈ D, then 𝑒2 ∈ I.

𝛹T(r,−𝑡) = T𝛹 (r, 𝑡) = 𝑇𝛹 ∗(r, 𝑡) is the Time Reversal transformation.

Note that in contrast to the case of Time Reversal, the entropies associated with

𝛹 (r, 𝑡) and𝛹Tδ (r, 𝑡) are generally not equal. Thus, an instantaneous Time Reflection

transformation will cause entropy changes.

Definition 2 (𝑄CPTδ
). Let 𝛾5 = i𝛾0𝛾1𝛾2𝛾3 and 𝜂 a phase factor. Then 𝑄CPTδ

maps(
𝜓(r, 0),𝑈 (𝑡), δ𝑡

)
↦→

(
𝜓CPTδ (−r, 0),𝑈 (𝑡), δ𝑡

)
, where

𝜓CPTδ (−r, 0) = 𝜂 𝐶𝑃𝑇𝛹 T(r,−δ𝑡) = 𝜂𝛾5 (𝛹 †)T(−r, δ𝑡) .

We proved in [11] a Time Reflection Theorem stating that when 𝑒1 =

(𝜓(r, 𝑡0),𝑈 (𝑡), δ𝑡) is a QCurve solution to a QFT (under some basic conditions

satisfied by the standard model), then 𝑒2 = 𝑄CPTδ
(𝑒1) is also a solution to such

a QFT. Furthermore, under 𝑄CPTδ
, C, I, O, D are the reflections of C, D, O, I,

respectively. The case when 𝑒1 ∈ D, and therefore 𝑒2 ∈ I, is depicted in Figure 1,

showing a relation between a particle and an antiparticle.
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Entropy Oscillations

Consider a Hamiltonian𝐻′ = 𝐻+𝐻I, where |𝐻I | � |𝐻 |, and the initial eigenstate��𝜓𝐸𝑖 〉 of 𝐻 associated with the eigenvalue 𝐸𝑖 = ℏ𝜔𝑖. The time evolution of
��𝜓𝐸𝑖 〉 is

|𝜓𝑡〉 = e−i (𝐻+𝐻 I)
ℏ

𝑡
��𝜓𝐸𝑖 〉 = 𝑛∑︁

𝑘=1
𝛼𝑘 (𝑡)

��𝜓𝐸𝑘 〉 ,
where 𝑛 is the number of the eigenvectors of 𝐻. Fermi’s golden rule [8, 9] approxi-

mates the coefficients of transition for 𝑘 ≠ 𝑖 and short time intervals by

𝛼𝑘 (𝑡) ≈
𝐻I
𝑖,𝑘

ℏ(𝜔𝑖 − 𝜔𝑘 )

(
−2 sin2

(
(𝜔𝑖 − 𝜔𝑘 )𝑡

2

)
+ i sin ((𝜔𝑖 − 𝜔𝑘 )𝑡)

)
.

Theorem 2 (Entropy Oscillations). Consider the QCurve
( ��𝜓𝐸𝑖 〉 ,𝑈 (𝑡) =

e−i (𝐻+𝐻 I)
ℏ

𝑡 , 𝑇
)

with ℏ𝜔1 the ground state value of 𝐻 and 𝑇 = 2π
|𝜔𝑖−𝜔1 | . Assume that

|𝛼1(𝑡) |2, |𝛼𝑖 (𝑡) |2 � |𝛼𝑘 (𝑡) |2 for 𝑘 ≠ 1, 𝑖 and 𝑡 ∈ [0, 𝑇]. Then the QCurve is in O.

Proof. With the theorem’s assumptions, we can approximate the position and the

momentum probability densities associated with |𝜓𝑡〉 by

𝜌r(r, 𝑡) ≈
���√︁1 − |𝛼1(𝑡) |2

〈
r
��𝜓𝐸𝑖 〉 + 𝛼1(𝑡)

〈
r
��𝜓𝐸1

〉���2 ,
𝜌k(k, 𝑡) ≈

���√︁1 − |𝛼1(𝑡) |2
〈
k
��𝜓𝐸𝑖 〉 + 𝛼1(𝑡)

〈
k
��𝜓𝐸1

〉���2 .
The time coefficients are the same for 𝜌r(r, 𝑡) and 𝜌k(k, 𝑡), and they all return to the

same values simultaneously after a period of 𝑇 , and so the entropy will return to its

previous value too. As the entropy is not a constant, it must be oscillating.

Thus, when Fermi’s golden rule can be applied, the coefficients of the transition

probabilities of the unitary evolution of a state oscillate, and the entropy associated

with the evolution of such a state will also oscillate with the same period.
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PHYSICAL SCENARIOS WITH PARTICLE CREATION

A Two-Particle Collision

Consider a two-fermions or a two-massive-bosons system

|𝜓𝑡〉 =
1

√
𝐶𝑡

(��𝜓1
𝑡

〉 ��𝜓2
𝑡

〉
∓

��𝜓2
𝑡

〉 ��𝜓1
𝑡

〉)
,

where 𝐶𝑡 is the normalization constant that may evolve over time and the signs “∓”

represent fermions (“−”) and bosons (“+”). When
��𝜓1
𝑡

〉
and

��𝜓2
𝑡

〉
are orthogonal to

each other, 𝐶𝑡 = 2. Projecting on 〈r1 | 〈r2 | and on 〈k1 | 〈k2 |,

𝜓(r1, r2, 𝑡) =
1

√
𝐶𝑡

(𝜓1(r1, 𝑡)𝜓2(r2, 𝑡) ∓ 𝜓1(r2, 𝑡)𝜓2(r1, 𝑡)) ,

𝜓(k1, k2, 𝑡) =
1

√
𝐶𝑡

(𝜙1(k1, 𝑡)𝜙2(k2, 𝑡) ∓ 𝜙1(k2, 𝑡)𝜙2(k1, 𝑡)) .

From [11], the entropy of the two-particle system, discarding the spin-entropy

which is constant throughout the collision, is then

𝑆

(��𝜓1
𝑡

〉
,
��𝜓2
𝑡

〉)
= −

∫
d3r1

∫
d3r2 𝜌r(r1, r2, 𝑡) ln 𝜌r(r1, r2, 𝑡)

−
∫

d3k1

∫
d3k2 𝜌k(k1, k2, 𝑡) ln 𝜌k(k1, k2, 𝑡) .

Consider a collision of two particles, each one described by an initial coherent state

with position variance 𝜎2 centered at 𝑐1 and 𝑐2 and moving towards each other

along the 𝑥-axis with center momenta 𝑝0 = ℏ𝑘0 and −𝑝0. They can be represented
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in position and momentum space as

𝛹1(𝑥, 𝑡) =
e−i𝑘0𝑣𝑝 (𝑘0) 𝑡

𝑍1
N

(
𝑥 | 𝑐1 + 𝑣𝑔 (𝑘0) 𝑡, 𝜎2 + i 𝑡H(𝑘0)

)
ei𝑘0𝑥 ,

𝛹2(𝑥, 𝑡) =
e−i𝑘0𝑣𝑝 (𝑘0) 𝑡

𝑍1
N

(
𝑥 | 𝑐2 − 𝑣𝑔 (𝑘0) 𝑡, 𝜎2 + i 𝑡H(−𝑘0)

)
e−i𝑘0𝑥 ,

𝛷1(𝑘, 𝑡) =
e−i𝑡 𝑣𝑝 (𝑘0)𝑘0

𝑍𝑘0

N
(
𝑘 | 𝑘0, (𝜎2 + i 𝑡H(𝑘0))−1

)
ei(𝑘−𝑘0)(𝑐1+𝑣𝑔 (𝑘0) 𝑡) ,

𝛷2(𝑘, 𝑡) =
e−i𝑡 𝑣𝑝 (𝑘0)𝑘0

𝑍𝑘0

N
(
𝑘 | −𝑘0, (𝜎2 + i 𝑡H(−𝑘0))−1

)
ei(𝑘+𝑘0)(𝑐2−𝑣𝑔 (𝑘0) 𝑡) .(5)

Figure 2 shows that when the two particles are far apart, the entropy of the system

is close to the sum of the two individual entropies, with each one increasing over

time. The spatial entanglement decreases the uncertainty, and therefore the entropy

too. The competition between the increase of the entropy of the individual particles

and the decrease of the entropy due to entanglement results in an oscillation and the

decrease in the total entropy when the two particles are close to each other.

The Hydrogen Atom and Photon Emission

The QED Hamiltonian for the hydrogen atom is

𝐻 (𝑝, 𝑟, 𝑞) =
3∑︁
𝑖=1

(
𝑝𝑖 − e

𝑐
𝐴𝑖 (𝑞)

)2

2𝑚
− e2

𝑟
+

2∑︁
𝜆=1

ℏ𝜔𝑞 𝑎
†
𝜆
(𝑞) 𝑎𝜆 (𝑞) ,

where the photon’s helicity 𝜆 is 1 or 2, 𝜔𝑞 = |𝑞 |𝑐, the creation and the annihilation

operators of photons satisfy [𝑎𝜆 (𝑝), 𝑎†𝜆′ (𝑞)] = δ𝜆,𝜆′δ(𝑝−𝑞), and the electromagnetic

vector potential is

𝐴̃𝑖 (𝑞) =
√︁

2πℏ𝑐2
2∑︁
𝜆=1

1
√
𝜔𝑞

(
𝜖 𝑖𝜆 (𝑞) 𝑎𝜆 (𝑞) + 𝜖

∗i
𝜆 (𝑞) 𝑎

†
𝜆
(𝑞)

)
,
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(a) ℏ
𝑚
= 1 : Entropy vs. time; 𝜌𝑥 (𝑥1, 𝑥2, 𝑡) overlaid over time

(b) ℏ
𝑚
= 0.5 : Entropy vs. time; 𝜌𝑥 (𝑥1, 𝑥2, 𝑡) overlaid over time

Figure 2. Collision of two fermions with individual amplitudes (5), parameters 𝑘0 = 1,
𝑐2 = −𝑐1 = 300, speed of light 𝑐 = 1, a grid of 1 000 points for 𝑥1, 𝑥2, 𝑘1, 𝑘2. The left
column shows entropy vs. time. The right column shows snapshots of the density at
initial time, final time, and intervals of 100 time units, overlaid on single plots. The 𝑧-axis
represents the density, and the 𝑥-𝑦 axes represent the 𝑥1-𝑥2 values. As the particles approach
each other, their individual densities disperse, the maximum values are reduced, and the
entropy increases. Only when the particles are close to each other, the interference reduces
the total entropy.

and in the Coulomb Gauge (∇·𝐴 = 0), for 𝑞 = |𝑞 | (sin 𝜃𝑞 cos 𝜙𝑞, sin 𝜃𝑞 sin 𝜙𝑞, cos 𝜃𝑞),
the polarizations satisfy 𝜖1(𝑞) = (cos 𝜃𝑞 cos 𝜙𝑞, cos 𝜃𝑞 sin 𝜙𝑞, sin 𝜃𝑞) and

𝜖2(𝑞) = (− sin 𝜙𝑞, cos 𝜙𝑞, 0).

The state of the atom can be described by |𝑛, 𝑙, 𝑚〉e− |𝑞, 𝜆〉γ, where 𝑛, 𝑙, 𝑚

are the quantum numbers of the electron e−, and 𝑞 and 𝜆 are the momentum

and the helicity of the photon γ. We next consider the Lyman-alpha transition,

|𝑛 = 2, 𝑙 = 1, 𝑚 = 0〉 |0〉 → |𝑛 = 1, 𝑙 = 0, 𝑚 = 0〉 |𝑞, 𝜆〉 with the emission of a pho-
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ton with wavelength 𝜆 ≈ 121.567 × 10−9 m.

We first evaluate the electron’s entropy at both states |𝑛 = 2, 𝑙 = 1, 𝑚 = 0〉 and

|𝑛 = 1, 𝑙 = 0, 𝑚 = 0〉. For simplicity, we consider the Schrödinger approximation to

describe the electron state with the energy change in this transition of ∆𝐸𝑛=2→𝑛=1 ≈
−

(
1
22 − 1

)
× 13.6 eV = 10.2 eV. We now compute the difference between the final

and the initial state entropy following three steps.

(i) The position probability amplitudes described in [3] and the associated en-

tropies are

𝜓2,1,0(𝜌, 𝜃, 𝜙) =
1

√
32π

(
1
𝑎0

) 3
2

𝜌e−
𝜌

2 cos(𝜃) → Sr(𝜓2,1,0) ≈ 6.120 + lnπ + 3 ln 𝑎0 ,

𝜓1,0,0(𝜌, 𝜃, 𝜙) =
1
√
π

(
1
𝑎0

) 3
2

e−𝜌 → Sr(𝜓1,0,0) ≈ 3.000 + lnπ + 3 ln 𝑎0 ,

where 𝑎0 ≈ 5.292 × 10−11 m is the Bohr radius, and 𝜌 = 𝑟/𝑎0.

(ii) The momentum probability amplitudes described in [3] and the associated

entropies are

𝛷2,1,0(𝑝, 𝜃𝑝, 𝜙𝑝) =
√︄

1282

2π𝑝3
0

𝑝

𝑝0

(
1 +

(
2
𝑝

𝑝0

)2
)−3

cos
(
𝜃𝑝

)
,

→ S𝑝 (𝛷2,1,0) ≈ 0.042 + 3 ln 𝑝0 ,

𝛷1,0,0(𝑝, 𝜃𝑝, 𝜙𝑝) =
√︄

32
π 𝑝3

0

(
1 +

(
𝑝

𝑝0

)2
)−2

,

→ S𝑝 (𝛷1,0,0) ≈ 2.422 + 3 ln 𝑝0 ,

where 𝑝0 = ℏ/𝑎0.

(iii) Therefore, ∆S2,1,0→1,0,0 = Sr(𝜓1,0,0) + S𝑝 (𝛷1,0,0) − Sr(𝜓2,1,0) − S𝑝 (𝛷2,1,0) ≈
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−0.740 .

Thus, the entropy of the electron is reduced by approximately 0.740 during the

transition |𝑛 = 2, 𝑙 = 1, 𝑚 = 0〉 → |𝑛 = 1, 𝑙 = 0, 𝑚 = 0〉.

We next evaluate the entropy associated with the randomness in the emission of

the photon. Due to energy conservation, the energy must satisfy |𝑞 |𝑐 ≈ 10.2 eV,

where 𝑐 is the speed of light. The associated energy uncertainty is very small.

The main randomness for the photon is in specifying the direction of the emission.

The angular momentum of the electron along 𝑧 (𝑚 = 0) does not change between

|𝑛 = 2, 𝑙 = 1, 𝑚 = 0〉 and |𝑛 = 1, 𝑙 = 0, 𝑚 = 0〉. The spin 1 of the photon is along its

motion, and conserves the total angular momentum of the system. Thus, to conserve

angular momentum along 𝑧, the photon must be moving perpendicularly to the 𝑧

axis, that is, 𝜃𝑞 = π
2 , and so the polarization vectors must be 𝜖1(𝑞) = (0, 0, 1) and

𝜖2(𝑞) = (− sin 𝜙𝑞, cos 𝜙𝑞, 0). The angle 𝜙𝑞 is completely unknown, with the entropy

ln 2π. Then we observe that the entropy increases, as

∆S|𝑛=2,𝑙=1,𝑚=0〉|0〉→ |𝑛=1,𝑙=0,𝑚=0〉|𝑞,𝜆〉 ≈ ln 2π − 0.740 = 1.098 .

Consider now an apparent time-reversing scenario in which an apparatus emitted

photons with energy 𝐸γ = ℏ|𝜔𝑛=2,𝑙=1,𝑚=0 − 𝜔𝑛=1,𝑙=0,𝑚=0 | to strike a hydrogen atom

with its electron in the ground state. The photon had to follow a precise direction

towards the atom, and a very small uncertainty in the direction implies low photon

entropy. Once the atom absorbs the photon, the energy of the electron in the ground

state suffices for a jump into an excited state. The entropy increases again, as the

entropy of the excited state is greater than the entropy of the ground state (accounting

for the low photon entropy).
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AN ENTROPY LAW AND A TIME ARROW

In classical statistical mechanics, the entropy provides a time arrow through the

second law of thermodynamics [5]. We have shown that due to the dispersion

property of the fermionic Hamiltonian, some states, such as coherent states, evolve

with an increasing entropy. However, current quantum physics is time reversible,

and we have just studied in the previous section several scenarios where the entropy

oscillates. This study lead us to think that entropy oscillations do not in fact occur in

nature, and instead and inspired by the second law of thermodynamics, we conjecture

Law (The Entropy Law). The entropy of a quantum system is an increasing function

of time.

Let us review some of the physical scenarios where oscillations may not take

place:

1. A high-speed collision e+ + e− → 2γ may produce new particles instead of

allowing the entropy to decrease (see Figure 2).

2. According to QED, and due to photon fluctuations of the vacuum, the state

of an electron in an excited state of the hydrogen atom is in a superposition

with the ground state, and by Theorem 2 the entropy would decrease within a

time interval 2π/|𝜔𝑛=2,𝑙=1,𝑚=0 − 𝜔𝑛=1,𝑙=0,𝑚=0 |. Instead, the electron jumps to

the ground state and a photon is created/emitted, increasing the entropy.

3. We speculate that the QCurve of a neutral K meson (kaon K0) [4], 𝑒0 =

(𝜓0(r),𝑈 (𝑡), 2π
∆𝑤 ), is in O. Then, a K0 particle in state 𝜓0(r) evolves with

increasing entropy until, say at time 𝑇 , it enters the remaining segment of

QCurve 𝑒𝑇 = (𝜓𝑇 (r),𝑈 (𝑡), [𝑇, 2π
∆𝑤 ]) in D. To block such a decrease (forbid-

den by the entropy law), a transformation takes place, with quarks exchanging

bosons to transform K0 ↦→ K̄0 to create an antiparticle’s QCurve 𝑒1 in I.
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We conjecture that the entropy law is the trigger for those particles’ creation. In [11]

we studied the spin-entropy in more depth, and this law would impact on the issue

of which spin state evolutions would be physically allowed.

CONCLUSIONS

Capturing all the information of a quantum state requires the specifying of the

parameters associated with the DOFs of a quantum state as well as as the intrinsic

randomness of the quantum state. We proposed an entropy defined in the quantum

phase spaces. We defined quantum phases spaces to be the space of all possible states

projected in the position and spatial frequency basis. This definition of the entropy

and quantum phase spaces possesses desirable properties, including invariance in

special relativity, and invariance under CPT transformations. We argued that it is

necessary to consider both projections in order to capture all the randomness of the

observables.

We characterized the behaviors of all quantum states according to their entropy

evolution. To this end, we introduced a QCurve structure, a triple representing

the initial state, the unitary evolution operator, and a time interval. We partitioned

the set of all the QCurves into four blocks, characterized by the entropy during an

evolution. A QCurve is in C if the entropy is a constant, in I if it is increasing, in D

if it is decreasing, and in O if it is oscillating.

We showed that due to the dispersion property of a fermionic Hamiltonian,

QCurves of initially coherent states are in I. We extended the CPT transformation

to allow for Time Reflection, consequently mapping C, I, O, D, to C, D, O, I,

respectively. Then we revisited Fermi’s golden rule, discussing its relation to

QCurves in O. We showed that the entropy increases when an electron in an excited

state of the hydrogen atom falls to the ground state emitting a photon. We studied

the collision of two particles, each in a coherent state. The entropy of each particle
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alone is increasing, but as they approach each other, an entropy oscillation can occur

in the two-particle system due to their entanglement.

We observe that many interesting particle- or atomic-physics phenomena seem

to be described by scenarios where QCurves are in O, such as (i) decay of atoms

(Fermi’s golden rule), (ii) electrons in excited states of atoms that transition to the

ground state causing emission of radiation, (iii) particle oscillations (e.g., neutrinos

and neutral kaons), and (iv) collision of particles that lead to annihilation of particles

and creation of new particles.

We conjectured an entropy law that would trigger the formation of the states with

particle creation or annihilation. We considered states whose evolution is described

by Fermi’s golden rule, and so such QCurves are inO. Fermi’s golden rule describes

a unitary evolution of a state that at any time is in a superposition of states that do

create or anhilate particles with the ones that do not create nor anhilate particles,

albeit in the case that we are considering with larger coefficients for formers states.

Our proposed entropy law determines that the event of particle creation happens,

and offers causality, time irreversibility, and deterministic reasoning for the state

transition and the creation of particles.
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