
Towards Generally Intelligent Robots

that Simply Work Everywhere

by

Nur Muhammad Shafiullah

A dissertation submitted in partial fulfillment

of the reqirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

August, 2025

Professor Lerrel Pinto

© Nur Muhammad Shafiullah

all rights reserved, 2025

To my grandmother, Shovona Khanom,

and to any who cross big oceans on small boats.

iii

Acknowledgments

My journey did not start with my Ph.D., nor will it end here – and yet it is during my Ph.D. where

I spent five of my most beautiful years in life. My unending gratitude to all the people in my life

who made it so, without whose help reaching this point would be impossible.

First and foremost, I am grateful for my advisor, Lerrel Pinto. Being an amazing research advisor

is the least of his accomplishments. In fact, Lerrel is one of the greatest human beings that I have

met in my life. I had not done any robotics prior to this Ph.D., and yet, he took a chance in me – I

would like to believe he did so because he saw and believed in my potential. And thus, I hope

my work in this thesis honors his faith. I am also incredibly grateful to Lerrel for helping me

survive and thrive during the sluggish COVID years. Starting a Ph.D. is difficult without having it

coincide with a global pandemic, and yet Lerrel’s constant support made it possible. I am proud of

the projects we got to pursue together, and I am proud of the lab I got to help him build.

I must thank the members of my thesis committee: Rob Fergus, Saining Xie, Charlie Kemp, and

Russ Tedrake, who have been my great supporters and mentors throughout the years. Rob’s

encouragement and support throughout my Ph.D. journey specifically made some heavy burdens

light. Saining is a constant source of inspiration in thinking out of the box. Charlie’s contribution

to robots in homes is undeniable – and without his work on Stretch this thesis could not exist.

Finally, Russ has been a guiding light – not just for me but for the entire field – on how we can

keep asking hard scientific questions in this attention economy.

iv

My heartfelt gratitude to my research mentor and collaborators – Soumith Chintala, Chris Paxton,

and Arthur Szlam. Soumith has been almost a second advisor to me – and his advice about

adoption and community driven open sourcing is something I will carry with me for a long time.

I admire Chris’ passion about all things robotic, and I love Arthur’s way of thinking outside the

box about robot memory.

I am grateful for the students I got to mentor and collaborate with during my time at NYU.

Haritheja, Jeff, Peiqi, Anant, Jyo are equal parts my collaborators, mentees, and inspirations. But

even beyond that, Siddhant, Ulyana, Nikhil, Kathy, Irmak, Sridhar, Abitha, Sneha, Jay, Venky,

Aadhi, Enes, Yaswanth, and many many more who are slipping my mind right now have been

incredible friends and peers in this long journey. I hope I have been someone you can look up to.

My thanks also goes to those ahead of me in this journey at NYU – Mark, Aahlad, Raghav, Mimee,

Karl, David, Denis, Ilya, Roberta, Raunaq, and many more. You have been friends, inspirations,

and often, someone I could turn to with questions about life or research.

A special set of thanks go to the heroes behind the scenes – Hong always with administrative

answers, Shenglongwith all my compute cluster questions, or Santiago with the academic planning.

I hope you know how much I appreciate your hard work.

Another special thanks goes to the team of Hello Robot – a large part of my thesis research was

possible because they created such a light and friendly platform for robotics. I would like to

express my gratitude to Aaron, Charlie, Blaine, Binit, and the rest of the team for their pioneering

steps of robots in homes.

I am more than my research – I try to be a complete and well-rounded human being. To get to

where I am, the contributions of the following people have been critical.

My heartiest gratitude to my grandmother, Shovona Khanam. She told me stories of greatness,

bestowed upon me my dreams, and led me to believe that even a kid from a middle-class family in

Bangladesh could someday do something worth remembering. I regret that she passed away on

v

November 18, 2018, before she could see me realize my dreams, but I hope she knows that her

dreams survive within her grandchildren.

Thanks to my parents in Bangladesh, my mother Arifa Parvin Khan, and my father Md Matiur

Rahman Mollah. They acquiesced to their youngest child leaving them for an unknown land seven

thousand and seven hundred miles away, even when it broke their hearts.

Thanks to my brother, Md Mohsinur Rahman Adnan. He holds home in his heart and loves me

through whatever I do from then on out.

Thanks to Pranon Rahman Khan, old friend who is not here anymore. He recommended me more

than two hundred books, and through them made me the person I am today.

Thanks to all of my friends in Next House 3E and MIT Bangladeshi “mafia”, and others too many

to list. They welcomed me with open arms and never let me feel away from home.

Thanks to my friends in Bangladesh, who saw me a lot in my early year, and then not at all, and yet

kept supporting me throughout. Specially Hasan Shahriar Jisan, who has been a friend, confidant,

and a supporter for almost the last 18 years.

Thanks to the entire Olympiad infrastructure in Bangladesh, which brought me outside of

Bangladesh for the first time. Special thanks to Dr. Mahbub A. Majumdar, and my mentors,

Haque Muhammad Ishfaq and Tarik Adnan Moom.

Thanks to my friends who kept me sane through the COVID years – Sanzeed Anwar, Lauren

Huang, and John Gu. I hope you won’t have to do things yourselves because robots will do it

better.

My final heartfelt thanks goes to my partner Alexa Gross. You are the kindest and most genuine

person in my life. Thanks for helping me navigate the most difficult parts of my Ph.D. My thanks

also goes to Alexa’s family, including Steve, Meiyan, and Kodiak Gross, and her mentor Kathy

Caraccio. Your love keeps me afloat.

vi

Abstract

Applications of machine learning have touched the lives of common people in innumerable novel

ways. Robotics today seems poised to make such an impact, too. Yet the current state-of-the-art

in robotics, whether it’s a parkouring humanoid from Boston Dynamics or a T-shirt-folding robot

from Google Deepmind, are specialists of their own environments – either by instrumenting and

extensively modeling the scene, or by collecting weeks or months of data on the exact same setup.

In this thesis, we focus on building generally intelligent robots that simply work everywhere by

studying the interplay of representation, data, and memory in robotics. To create robots that can

address the broad and diverse challenges of operating in messy and unstructured environments

everywhere, this thesis investigates three fundamental directions. We first look into algorithms

that optimize the use of data in robot learning since data, as fuel, plays a critical role in creating

broadly capable ML systems. We not only create efficient, self-supervised representations of the

robots’ perception, but also develop action representations that enables scaling to large, uncurated

demonstration datasets. Then, we take a deep dive on creating systems – bridging algorithms and

hardware – that can create and learn from robot data in the wild. Such systems enable few-shot

and then zero-shot behavior generalization in novel homes in New York City and beyond. Finally,

to enable generally intelligent robot behavior that extends over time and space, we construct

neural data structures called spatio-semantic memory for robots. These memory modules enable

scaling in-the-wild autonomous robot behavior from seconds to hours, and beyond.

vii

Contents

Dedication iii

Acknowledgments iv

Abstract vii

List of Figures xiii

List of Tables xxx

List of Appendices xxxv

1 Introduction 1

1.1 Learning Representations for Scalable Policy Learning 3

1.2 Mechanisms for Generalizable Scaling In-the-wild 4

1.3 Robotic Memory for Long-horizon Intelligent Behavior 6

1.4 Some Words about Evaluation . 8

I Representations for Perception and Control 10

2 Surprising Effectiveness of Representation Learning for Behavior Cloning:

Visual Imitation with Nearest Neighbors 11

2.1 Introduction . 11

viii

2.2 Related Work . 15

2.3 Approach . 17

2.4 Experimental Evaluation . 21

2.5 Limitations . 30

3 Cloning k Behavior Modes with One Model: Behavior Transformers 32

3.1 Introduction . 32

3.2 Behavior Transformers . 35

3.3 Experiments . 40

3.4 Related Work . 48

3.5 Limitations . 51

4 Conditional Behavior Generation from Uncurated Robot Data: Conditional

Behavior Transformers 53

4.1 Introduction . 53

4.2 Background and Preliminaries . 56

4.3 Approach . 58

4.4 C-BeT on Simulated Benchmarks . 61

4.5 C-BeT on Real-World Robotic Manipulation . 66

4.6 Related Work . 69

4.7 Limitations . 71

5 Behavior Generation with Latent Actions: Vector-Quantized Behavior Trans-

formers 73

5.1 Introduction . 73

5.2 Background and Preliminaries . 76

5.3 Vector-Quantized Behavior Transformers . 78

ix

5.4 Experiments . 82

5.5 Related Works . 93

5.6 Limitations . 94

II Mechanisms for Generalizable Scaling 96

6 On Bringing Robots Home with Hardware and Efficient Algorithms 97

6.1 Introduction . 97

6.2 Technical Components and Method . 101

6.3 Experiments . 115

6.4 Open Problems and Future Research . 134

6.5 Reproducibility and Call for Collaboration . 138

7 General Policies for Zero-Shot Deployment in New Environments: Robot Utility

Models 142

7.1 Introduction . 143

7.2 Robot Utility Models . 145

7.3 Capabilities of Robot Utility Models . 152

7.4 Related works . 160

7.5 Limitations . 162

8 Building an Open-source Bimanual Mobile Robot for Generalizable Robotics:

Cone-E 165

8.1 Introduction . 166

8.2 Hardware Design . 167

8.3 Applications of Cone-E . 171

8.4 Limitations . 172

x

III Semantic Memory for Long-horizon Intelligence 173

9 Weakly Supervised Semantic Fields for Robotic Memory: CLIP-Fields 174

9.1 Introduction . 174

9.2 Related work . 177

9.3 Background . 179

9.4 Approach . 181

9.5 Experimental Evaluation . 187

9.6 Limitations . 198

10 Integrating Open-knowledge Models for Robotics: OK-Robot 200

10.1 Introduction . 200

10.2 Technical Components and Method . 204

10.3 Experiments . 212

10.4 Related Works . 220

10.5 Limitations, Open Problems and Requests for Research 223

11 OnlineDynamic Spatio-SemanticMemory forOpenWorldMobileManipulation:

DynaMem 226

11.1 Introduction . 227

11.2 Related Works . 229

11.3 Method . 231

11.4 Experiments . 241

11.5 Limitations . 246

12 Discussion 249

Appendices 254

xi

Bibliography 330

xii

List of Figures

1.1 Interplay of representation, data, and memory in robotics enables robots in arbi-

trary homes and live demo environments. (1) Self-supervised visual representation

learning [Pari et al. 2021] unlocks few-shot skill learning from 5 mins. of data

and 15 mins. of fine-tuning [Shafiullah et al. 2023b]. (2) Multi-modal behavior

cloning [Shafiullah et al. 2022; Cui et al. 2022; Lee et al. 2024] can train policies

on diverse data that generalize to novel scenes and objects zero-shot [Etukuru

et al. 2024]. (3) Semantic memory [Shafiullah et al. 2023a; Liu et al. 2024b] allows

long-horizon, zero-shot operation in arbitrary open-world scenes [Liu et al. 2024c]. 2

2.1 Consider the task of opening doors from visual observations. VINN, our visual

imitation framework first learns visual representations through self-supervised

learning. Given these representations, non-parametric weighted nearest neighbors

from a handful of demonstrations is used to compute actions, which results in

robust door-opening behavior. 12

2.2 Overview of our VINN algorithm. During training, we use offline visual data to

train a BYOL-style self-supervised model as our encoder. During evaluation, we

compare the encoded input against the encodings of our demonstration frames to

find the nearest examples to our query. Then, our model’s predicted action is just

a weighted average of the associated actions from the nearest images. 18

xiii

2.3 Nearest neighbor queries on the encoded demonstration dataset; the query image

is on the first column, and the found nearest neighbors are on the next three

columns. The associated action is shown with a green arrow. The bottom right

set of nearest neighbors demonstrates the advantage of performing a weighted

average over nearest neighbors’ actions instead of copying the nearest neighbor’s

action. 19

2.4 Mean Squared Error for the Pushing, Stacking and Door Opening (left to right)

datasets of different algorithms trained on subsamples of the original dataset. End-

to-end behavior cloning initialized with ImageNet-trained features perform as well

as VINN for larger datasets, but fixed representation based methods outperforms

it largely on small datasets. 21

2.5 Sample frames from the rollouts from our model on the real robot experiments,

with artificial occlusions added to the cabinet to test generalization. Under the

maximum occlusion, our model fails to ever open the cabinet door, while in all

other cases, the robot is able to succeed (Table 2.2.) 25

2.6 Value of 𝑘 in the 𝑘-nearest neighbor weighted regression in VINN vs normalized

MSE loss achieved by the model. 29

3.1 Unconditional rollouts from BeT models trained from multi-modal demonstartions

on the CARLA, Block push, and Franka Kitchen environments. Due to the multi-

modal architecture of BeT, even in the same environment successive rollouts can

achieve different goals or the same goals in different ways. 33

3.2 Comparison between a regular MSE-based BC model and a BeT models that can

capture multi-modal distributions. The MSE-BC model takes 0 action to minimize

MSE. 36

xiv

3.3 Architecture of Behavior Transformer. (A) The continuous action binning using

k-means algorithm that lets BeT split every action into a discrete bin and a contin-

uous offset, and later combine them into one full action. (B) Training BeT using

demonstrations offline; each ground truth action provides a ground truth bin and

residual action, which is used to train the minGPT trunk with its binning and

action offset heads. (C) Rollouts from BeT in test time, where it first chooses a bin

and then picks the corresponding offset to reconstruct a continuous action. 37

3.4 Distribution of most frequent tasks completed in sequence in the Kitchen envi-

ronment. Each task is colored differently, and frequency is shown out of a 1,000

unconditional rollouts from the models. 44

3.5 Comparison between an RBCmodel and two BeTmodels, trained with and without

historical context on a dataset with three distinct modes. BeT with history is better

able to capture the context-dependant behavior in the demonstrations. 47

3.6 Ablating the number of discrete bin centers 𝑘 for BeT. Reward is normalized with

respect to the best performing model. 48

4.1 Multiple conditioned roll-outs of visual robot policies learned on our toy kitchen

with only 4.5 hours of human play interactions. Our model learns purely from

image and proprioception without human labeling or data curation. During evalua-

tion, the policy can be conditioned either on a goal observation or a demonstration.

Note that the last three rows contain distractor objects in the environment that

were never seen during training. 55

4.2 Conditional behavior learning from play demonstrations. Here, a policy condi-

tioned on reaching 1⃝ or 2⃝ has only one possible course of action, but conditioned

on reaching 3⃝ there are two reasonable paths. 58

xv

4.3 End-to-end training and evaluation of C-BeT. (A) Our dataset consists of play

data in an environment, which may contain semi-optimal behavior, multi-modal

demonstrations, and failures, and does not contain any annotations or task labels.

(B) We train our C-BeT model by conditioning on current and future states using

BeT (Section 4.2) (C) During evaluation, our algorithm can be conditioned by target

observations or newly collected demonstrations to generate targeted behavior. . 60

4.4 Visualizations of simulated environments that we evaluate our methods on, from

left to right: CARLA self-driving (top down view and agent POV), BlockPush, and

Franka Kitchen. 64

5.1 Qualitative and quantitative comparison between VQ-BeT and relevant baselines.

On the left, we can see trajectories generated by different algorithms while pushing

a T-block to target, where VQ-BeT generates smooth trajectories covering both

modes. On the right, we show two plots comparing VQ-BeT and relevant baselines

on unconditional and goal-conditional behavior generation. The comparison

axes are (x-axis) relative success represented by average rank on a suite of seven

simulated tasks, and (y-axis) inference time. 74

5.2 Overview of VQ-BeT, broken down into the residual VQ encoder-decoder training

phase and the VQ-BeT training phase. The same architecture works for both

conditional and unconditional cases with an optional goal input. In the bottom

right, we show a detailed view of the hierarchical code prediction method. 78

5.3 Visualization of the environments (simulated and real) where we evaluate VQ-

BeT. Top row contains PushT [Chi et al. 2023], Multimodal Ant [Brockman et al.

2016], BlockPush [Florence et al. 2022], UR3 BlockPush [Kim et al. 2022], Franka

Kitchen [Gupta et al. 2019], and bottom row contains nuScenes self-driving [Caesar

et al. 2020], and our real robot environment. 82

xvi

5.4 A comparison between the behavior entropy of the algorithms, calculated based

on their task completion order, on five of our simulated environments. 86

5.5 Summary of our ablation experiments. The five different axes of ablation is

described in Section 5.4.6. 89

5.6 Visualization of the trajectory VQ-BET generated in a long-horizon real world

environment. Each demo consists of three to four consecutive tasks. Please refer

to Table 5.6 for the success rates for each task. 90

6.1 We present Dobb·E, a simple framework to train robots, which is then field tested

in homes across New York City. In under 30 mins of training per task, Dobb·E

achieves 81% success rates on simple household tasks. 97

6.2 (A) We design a new imitation learning framework, starting with a data collection

tool. (B) Using this data collection tool, users can easily collect demonstrations for

household tasks. (C) Using a similar setup on a robot, (D) we can transfer those

demos using behavior cloning techniques to real homes. 98

6.3 We ran experiments in a total of 10 homes near the New York City area, and

successfully completed 102 out of 109 tasks that we tried. The figure shows a

subset of 60 tasks, 6 tasks from 10 homes each, from our home robot experiments

using Dobb·E. 99

6.4 Photographs of our designed hardware, including the (A) Stick and the (B) identical

iPhone mount for Hello Robot: Stretch wrist. From the iPhone’s point of view, the

grippers look identical between the two setups. 102

6.5 Subsample of 45 frames from Homes of New York dataset, collected using our

Stick in 22 homes. 106

xvii

6.6 Breakdown of Homes of New York dataset by task: on the left, the statistics is

shown by number of demonstrations, and on the right, the breakdown is shown

by minutes of demonstration data collected. 107

6.7 Breakdown of our collected dataset by homes. On the left, the statistics are shown

by number of demonstrations, and on the right, the breakdown is shown by

minutes of demonstration data collected. The Y-axis is marked with the home ID. 108

6.8 Fine-tuning the pretrained HPR model to learn a model that maps from the robot’s

RGB and depth observations into robot actions: 6D relative pose and the gripper

opening. 110

6.9 (a) The data collection grid: the demonstrator generally started data collection

from a 5×5 or 4×6 grid of starting positions to ensure diversity of the collected

demos. (b) To ensure our policies generalize to different starting positions, we

start the robot policy roll-outs from 10 pre-scheduled starting positions. 113

6.10 A small subset of 8 robot rollouts from the 109 tasks that we tried in homes. A

complete set of rollout videos can also be found at our website: https://dobb-e.

com/#videos . 121

6.11 Success rate of our 20 different task groups, with the variance in each group’s

success rate shown in the error bar. 122

6.12 Success rate breakdown by type of actions needed to solve the task. The X-axis

shows the number of successes out of 10 rollouts, and the Y-axis shows number of

tasks with the corresponding number of success. 123

6.13 (a) Distribution of time (in seconds) taken to demonstrate a task on our experiment

setup. The mean time taken to complete one demonstration is 3.82 seconds, and

the median time taken is 3.49 seconds. (b) Correlation analysis between time taken

to demonstrate a task and the success rate of the associated robot policy. 124

xviii

https://dobb-e.com/#videos
https://dobb-e.com/#videos

6.14 First-person POV rollouts of Home 1 Air Fryer Opening comparing (top row) the

original demonstration environment, against robot performance in environments

with (middle row) similar lighting, and (bottom row) altered lighting conditions

with additional shadows. 125

6.15 First person view from the iPhone from the (top row) Stick during demonstration

collection and (bottom row) the robot camera during rollout. Even with strong

shadows during rollout, the policy succeeds in pulling the table. 125

6.16 First person view from the iPhone from the (top row) Stick during demo collec-

tion and (bottom row) robot camera during rollout. The demonstrations were

collected during early afternoon while rollouts happened at night; but because of

the iPhone’s low light photography capabilities, the robot view is similar. 126

6.17 First-person POV rollouts of Home 3 Air Fryer Opening showcasing (top row) a

demonstration of the task and (bottom row) robot execution. 127

6.18 Opening an outward facing window blind (top row) both without depth (second

row) and with depth (third row). The depth values (bottom row) for objects outside

the window are high noisy, which cause the depth-aware behavior model to go

out of distribution. 128

6.19 The robot pulling on a heavy door handle (top row) high up from the ground and

(bottom row) closer the ground. Since the robot is bottom heavy, the first case

starts tipping the robot while the second case succeeds. 129

6.20 First-person POV rollouts of Home 3 Pick and Place comparing (top) a policy

trained on demos where the object is picked and placed onto a red book on a

different shelf and (bottom) a policy trained on demos where the object is picked

and placed onto that same shelf without a red book. In the second case, since there

is no clear signal for when to place the object, the BC policy keeps moving left

and fails to complete the task. 129

xix

6.21 Comparison between different representation models at a set of tasks done in (a)

our lab and (b) in a real home enviroment. As we can see, VC-1 is the representation

model closest to ours in performance, however it has a high variance behavior

where it either performs well or fails to complete the task entirely. The X-axis

shows task completion rate distribution with the error bars showing the 95%

confidence interval. 131

6.22 Success rates for a given number of demonstrations for five different tasks. We

see how the success rate converges as the number of demonstrations increase. . . 132

6.23 Barplot showing the distribution of task success rates in our two setups, one using

depth and another not using depth. In most settings, using depth outperforms not

using depth. However, there are some exceptional cases which are discussed in

Section 6.3.3.2. 133

6.24 Open-loop rollouts from our demonstrations where the robot actions were ex-

tracted using (a) the odometry from iPhone and (b) OpenSfM respectively. 134

6.25 Analysis of our long-horizon tasks by subtasks. We see that Dobb·E can chain

subtasks, although the errors can accumulate and make overall task success rate

low. 135

6.26 Dobb·E completing three temporally extended tasks each made up of five to seven

subtasks. 136

7.1 Robot Utility Models are trained on a diverse set of environments and objects,

and then can be deployed in novel environments with novel objects without any

further data or training. 142

7.2 Stick-v2, our data collection tool (left: real photo, right: render), is built out of an

iPhone Pro and a bill of materials that adds up to $25. The tool is portable, robust,

and makes it easy to start collecting data in a new environment in seconds. 147

xx

7.3 A small sample of environment and objects from our collected dataset. We collect

data for each of our five tasks on a diverse set of environments and objects using

Stick-v2. 149

7.4 Automated retrying with feedback from multimodal LLM critic. We use a multi-

modal LLM (gpt-4o-2024-05-13 in our experiments) to verify the success of a

task given a summary of robot observations. If the mLLM detects a failure, we

automatically reset the robot and retry the task with a new initial robot state until

success or timeout. 150

7.5 Picture of the some robot setups where our Robot Utility Models can be deployed.

We show the Hello Robot: Stretch, and the xArm 7 robot with iPhone Pros on the

wrist. Beyond these, we also deploy on Stretch robots with default D405 wrist

cameras. 151

7.6 Success rate of Robot Utility Models on average over five novel scenes in five

different tasks. The X’s on the figure denote success rates from individual envi-

ronments. 153

7.7 Relative comparison of the success rate (with standard error) of different policy

architectures on our dataset on all five tasks without automated error correction.

We see that the performance of VQ-BeT and Diffusion Policy is generally close,

with VQ-BeT narrowly outperforming Diffusion Policy. 154

7.8 Relative comparison of different policy architectures on our dataset on two tasks

without automated error correction. We see that while the performance of VQ-BeT

and Diffusion Policy is generally neck-to-neck, while the performance of other

algorithms is not far behind. Our experiment implies that the training data is

significantly more important than training algorithm. 155

xxi

7.9 Understanding the performance change of RUMs as the dataset scales up on three

of our tasks, with standard error on error bars. We see better performance from

Diffusion Policy (DP) on smaller datasets, but as we scale up, VQ-BeT outperforms

DP in 900–1,200 demonstrations limit. 156

7.10 Understanding the importance of different qualities of data in training RUMs. On

the left, we see that diverse datasets are more valuable than more uniform datasets,

with strong effects on the reorientation task with many unseen environments

and object. On the right, we see that usually expert data is more valuable than

non-expert or play data while learning behavior on a same sized dataset. Moreover,

we see that co-training with expert data and play data may sometimes reduce the

policy performance, contrary to common knowledge. 157

7.11 Understanding the details of introspection and retrying in RUMs. On the left, we

see that retrying improves the performance of RUMs significantly, with an average

15.6% improvement. In the middle, we see that with retrying, most tasks get solved

quite fast, on average with 1.31 tries. On the right, we see that while the mLLM is

able to help, it can also have false positives (4.8% average over five tasks) which

may let some errors slip past. 158

7.12 Performance of RUMs without corrections on different embodiments as shown

in Figure 7.5: RUMs can transfer to different embodiments with minimal loss in

performance. 159

8.1 Cone-E is an open-source, bimanual mobile manipulator designed as a general-

purpose research platform. 165

8.2 Cone-E is modular and easily customizable with different arms, end-effectors and

sensors. 170

xxii

9.1 Our approach, CLIP-Fields, integrates multiple views of a scene and can capture

3D semantics from relatively few examples. This results in a scalable 3D semantic

representation that can be used to infer information about the world from relatively

few examples and functions as a 3D spatial memory for a mobile robot. 175

9.2 Dataset creation process for CLIP-Fields by processing each frame of a collected

RGB-D video. Models highlighted by dashed lines are off-the-shelf pre-trained

models, showing that we can train a real world CLIP-Fields using no direct human

supervision beyond pre-trained open label object detectors, large language models

(LLMs) and visual language models (VLMs). 183

9.3 Model architecture for CLIP-Fields. We use aMulti-resolutionHash Encoder [Müller

et al. 2022] to learn a low level spatial representation mapping R3 → R𝑑 , which is

then mapped to higher dimensions and trained with contrastive objectives. 184

9.4 Mean average precision in instance segmentation on the Habitat-Matterport 3D

(HM3D) Semantic dataset, (top) calculated over only seen instances, and (bottom)

calculated over all instances. 189

9.5 Mean average precision in semantic segmentation on the Habitat-Matterport 3D

(HM3D) Semantic dataset. Here, the average precision numbers are averaged over

all semantic classes. 190

9.6 Mean average precision in zero-shot semantic segmentation on the Habitat-

Matterport 3D (HM3D) Semantic dataset. 191

9.7 Mean average accuracy on the semantic segmentation task on the HM3D Semantic

dataset with label noise simulating errors in base labelling models. Different lines

show performance of models trained with a different number of labeled training

frames. 192

xxiii

9.8 View localization using a trained CLIP-Fields. We encode the query image on the

bottom left to its CLIP representation, and visualize the locations whose CLIP-

Fields representations have the highest (more red) dot product with the embedded

image. Lower dot products are blue; and below a threshold are uncolored. 193

9.9 Scenes for our real-world semantic navigation experiments. The top scene is a lab

kitchen and the bottom is a library/lounge. 194

9.10 Examples of the robot’s semantic navigation in two different testing environments,

looking at objects given different queries. The images show the robot’s POV given

the associated query, with color coded borders showing approximate correctness.

The rows show different two different scenes, top being in a lab kitchen and the

bottom in our lab’s library/lounge space, shown in detail in figure 9.9. 196

9.11 Running semantic queries against a trained CLIP-Fields. We encode our queries

with language encoders, and compare the encoded representation with the stored

representation in CLIP-Fields to then extract the best matches. 197

10.1 OK-Robot is an Open Knowledge robotic system, which integrates a variety of

learned models trained on publicly available data, to pick and drop objects in real-

world environments. Using Open Knowledge models such as CLIP, Lang-SAM,

AnyGrasp, and OWL-ViT, OK-Robot achieves a 58.5% success rate across 10 unseen,

cluttered home environments, and 82.4% on cleaner, decluttered environments. . . 201

10.2 Open-vocabulary, open knowledge object localization and navigation in the real-

world. We use the VoxelMap [Yenamandra et al. 2023b] for localizing objects with

natural language queries, and use an A* algorithm similar to USANet [Bolte et al.

2023] for path planning. 204

xxiv

10.3 Open-vocabulary grasping in the real world. From left to right, we show the (a)

robot POV image, (b) all suggested grasps from AnyGrasp [Fang et al. 2023c], (c)

object mask given label from LangSam [Medeiros 2023], (d) grasp points filtered

by the mask, and (e) grasp chosen for execution. 209

10.4 All the success and failure cases in our home experiments, aggregated over all three

cleaning phases, and broken down by mode of failure. From left to right, we show

the application of the three components of OK-Robot, and show a breakdown of

the long-tail failure modes of each of the components. 213

10.5 Ablation experiment using different semantic memory and grasping modules,

with the bars showing average performance and the error bars showing standard

deviation over the environments. 215

10.6 Failure modes of our method in novel homes, broken down by the failures of the

three modules and the cleanup levels. 217

10.7 Samples of failed or ambiguous language queries into our semantic memory

module. Since the memory module depends on pretrained large vision language

model, its performance shows susceptibility to particular “incantations” similar to

current LLMs. 218

10.8 Samples of failures of our manipulation module. Most failures stem from using

only a single RGB-D view to generate the grasp and the limiting form-factor of a

large two-fingered parallel jaw gripper. 220

xxv

11.1 An illustration of how DynaMem, our online dynamic spatio-semantic memory

responds to open vocabulary queries in a dynamic environment. During oper-

ation and exploration, DynaMem keeps updating its semantic map in memory.

DynaMem maintains a voxelized pointcloud representation of the environment,

and updates with dynamic changes in the environment by adding and removing

points. 226

11.2 (Left) DynaMem keeps its memory stored in a sparse voxel grid with associated

information at each voxel. (Right) Updating DynaMem by adding new points to it,

alongside the rules used to update the stored information. 232

11.3 A high-level, 2D depiction of how adding and removing voxels from the voxel map

works. New voxels are included which are in the RGB-D cameras view frustum,

and old voxels that should block the view frustum but does not are removed from

the map. 234

11.4 Querying DynaMem with a natural language query. First, we find the voxel with

the highest alighnment to the query. Next, we find the latest image of that voxel,

and query with an open-vocabulary object detector to confirm the object location

or abstain. 236

11.5 The prompting system for querying multimodal LLMs such as GPT-4o or Gemini-

1.5 for the image index for an object query. 237

11.6 Real robot experiments in three different environments: kitchen, game room, and

meeting room. In each environment, we modify the environment thrice and run

10 pick-and-drop queries. 242

xxvi

11.7 Statistics of failure, broken down by failure modes, in our real robot experiments in

the lab and in home environments. Statistics are collected over three environments

and 30 open-vocabulary pick-and-drop queries for the lab experiments, and two

environments and 17 pick-and-drop queries for the home environments, on objects

whose locations change over time. 243

A.1 Hello Robot’s Stretch [Kemp et al. 2022], the robot model used in our experiments 258

A.2 Reacher grabber tool used for our demonstrations. 259

A.3 Modified grip on the robot and the reacher grabber. 259

A.4 The top row contains one rollout of VINN on a visually modified cabinet, under

each image is the top 5 nearest neighbors from our demonstrations with the top

one being the closest . 260

C.1 Sample demonstration trajectories for the real kitchen environment. 279

C.2 Sample demonstration trajectories for the CARLA self driving environment, con-

ditioning on going to the right path. 280

C.3 Sample demonstration trajectories for the multi-modal block pushing environment,

conditioning on pushing the green block to green square and red block to red square. 280

C.4 Sample demonstration trajectories for the Franka Kitchen environment, condi-

tioning on completing the microwave, bottom knob, slide cabinet, hinge cabinet

tasks. 281

D.1 Multi-modal behavior visualization on pushing a T-block to target. On the left, we

can see trajectories generated by different algorithms and their inference time per

single step, where VQ-BeT generate smooth trajectories to complete the task with

both modes with short inference time. On the right, we can see failure cases of

VQ-BeT and related baselines due to high error and mode collapse. 286

xxvii

D.2 Action centroids of primary codes and full combination of the codes. On the left,

we represent centroids of the raw action data obtained by decoding (total of 12)

primary codes learned from Blockpush Multimodal dataset. On the right, we show

the decoded action of the centroids corresponding to all 144 possible combinations

of full the codes. We can see that the primary codes, represented by different colors

in each figure, are responsible for clustering in the coarse range, while full-code

representation provides further finer-grained clusters with secondary codes. . . . 288

D.3 Evaluation of conditional tasks in simulation environments of VQ-BeT and related

baselines. VQ-BeT achieves the best performance in most simulation environments

and comparable performance with the best baseline on BlockPush. 288

D.4 Evaluation of unconditional tasks in simulation environments of VQ-BeT and

related baselines. VQ-BeT achieves the best performance in most simulation

environments and comparable performance with the best baseline on BlockPush

and Image Kitchen. 289

D.5 Overview of VQ-BeT for autonomous driving. 293

E.1 10-run evaluation schedule used to evaluate Robot Utility Models, with robot

starting positions denoted by the pale blue dots in the image. We assume that the

robot is at the task space facing the object, but it can be at different offsets with

respect to the target object. On our object centric tasks (reorientation, bag and

tissue pickup) we also randomize the position of the object itself. 296

E.2 Examples of some failures in real world rollouts. Since RUMs retries on failure

with mLLM feedback, the failure modes tend to be peculiar, some examples of

which are shown here. 297

xxviii

E.3 We can see the corresponding D405 camera image alongside the iPhone Pro image.

While in the long range, the images look similar, in the short range iPhone images

are out of focus because of the different focal lengths of the cameras. 300

E.4 Picture of evaluation environments for the tasks Reorientation, Drawer opening,

and Door opening. 301

E.5 Pictures of the evaluation environments for the task Tissue pick up and Bag pick up. 302

G.1 Sample objects on our home experiments, sampled from each home environment,

which OK-Robot was able to pick and drop successfully. 310

G.2 Sample objects on our home experiments, sampled from each home environment,

which OK-Robot failed to pick up successfully. 311

G.3 Eight out of the tenNewYork home environments inwhichwe evaluated OK-Robot.

In each figure caption, we show the queries that the system is being evaluated on. 312

G.4 Home environments outside of New York where we successfully reproduced

OK-Robot. We ensured that OK-Robot can function in these homes by trying

pick-and-drop on a number of objects in the homes. 313

xxix

List of Tables

2.1 Success rate over 30 trials (10 trials on three cabinets each) on the robotic door

opening task. 26

2.2 Success rate over 10 trials on robotic door opening with visual modifications on

one cabinet door. 27

2.3 Test MSE (×10−1) on predicted actions for a set of baseline methods and ablations.

Standard deviations, when reported, are over three randomly initialized runs. . . 27

3.1 Performance of BeT compared with different baselines in learning from demon-

strations. For CARLA, we measure the probability of the car reaching the goal

successfully. For Block push, we measure the probability of reaching one and two

blocks, and the probabilities of pushing one and two blocks to respective squares.

For Kitchen, we measure the probability of 𝑛 tasks being completed by the model

within the allotted 280 timesteps. Evaluations are over 100 rollouts in CARLA and

1,000 rollouts in Block push and Kitchen environments. 43

3.2 Multimodality learned from the multimodal demonstrations by different algo-

rithms. In CARLA, we consider the probability of turning left vs. right at the

intersection, ignoring OOD rollouts. In Block push, we consider two set of proba-

bilities, (a) which block was reached first, and (b) what was the pushing target for

each block. Finally, in Franka Kitchen, we consider the empirical entropy for the

task sequences, considered as strings, sampled from the model. We highlight the

values closest to the corresponding demonstration values. 45

xxx

3.3 Relative performance of ablated variants of BeT, normalized by average BeT suc-

cesses at the task . 46

4.1 Comparison between existing algorithms to learn from large, uncurated datasets:

GCBC [Lynch et al. 2020], GCSL [Ghosh et al. 2019], Offline GCRL [Ma et al.

2022b], Decision Transformer [Chen et al. 2021] 54

4.2 Results of future-conditioned algorithms on a set of simulated environments.

The numbers reported for CARLA, BlockPush, and Kitchen are out of 1, 1, and

4 respectively, following [Shafiullah et al. 2022]. In CARLA, success counts as

reaching the location corresponding to the observation; for BlockPush, it is pushing

one or both blocks into the target squares; and for Kitchen, success corresponds

to the number of conditioned tasks, out of four, completed successfully. 63

4.3 Comparison between C-BeT with no supervised labels and labels acquired with

human supervision. 65

4.4 Single-task success rate in a real world kitchen with conditional models. We

present the success rate and number of trials on each task, with cumulative results

presented on the last column. 67

4.5 Task success rate in a real world kitchen with conditional models evaluated on a

long-horizon goal. We present the success rate and number of trials on each task,

with cumulative result presented on the last column. 68

5.1 Comparing different algorithms in goal-conditional behavior generation. The

seven simulated robotic manipulation and locomotion environments used here

are described in Section 5.4.1. 83

5.2 Performance of different algorithms in unconditional behavior generation tasks.

We evaluate over seven simulated robotic manipulation and locomotion tasks as

described in Section 5.4.1. 84

xxxi

5.3 Inference times for VQ-BeT and baselines in kitchen environment. For Diffusion-

Policy we rolled-out with 10-iteration diffusion, following their real-world settings.

The methods that only support single-step action prediction are marked with ✗. . 87

5.4 (Lower is better) Trajectory planning performance on the nuScenes environment.

We bold the best partial-informationmodel and underline the best full-information

model. Even with partial information about the environment, VQ-BeT can match

or beat the SOTA models on the 𝐿2 error metric. 88

5.5 Real world robot experiments solving a number of standalone tasks (top) and

two-task sequences (bottom). Here, † denotes that we modified DiffusionPolicy-T

to improve its performance; see Section 5.4.7 paragraph “Practical concerns”. . . . 91

5.6 Long-horizon real world robot experiments (Figure 5.6). Each task consists of

three to four sequences; Task 1 (Open Drawer → Pick and Place Box → Close

Drawer), Task 2 (Pick up Bread → Place in the Bag→ Pick up Bag → Place on

the Table), Task 3 (Can to Fridge → Fridge Closing → Toaster Opening), and

Task 4 (Can to Toaster → Toaster Closing → Fridge Closing). Here, † denotes

that we modified DiffusionPolicy-T to improve its performance as explained in

Section 5.4.7 paragraph “Practical concerns”. 92

5.7 Average inference time for real robot (in milliseconds). The GPU column is calcu-

lated on our workstation while the CPU column is calculated on the Hello Robot’s

onboard computer. 93

6.1 While previous datasets focused on the number of manipulation trajectories, we

instead focus on diverse scenes and environments. As a result, we end up with a

dataset that is much richer in interaction diversity. 110

6.2 A list of all tasks in the home enviroments, along with their categories and success

rates out of 10 trials. 116

xxxii

11.1 Ablating the design choices for our query methods for DynaMem on the offline

DynaBench benchmark. We also present results from five human participants to

ground the performances. 246

B.1 Environment-dependent hyperparameters in BeT. 271

B.2 Shared hyperparameters for BeT training . 271

C.1 Environment-dependent hyperparameters in BeT. 278

C.2 Shared hyperparameters for BeT training . 278

D.1 Quantitative results of VQ-BeT and related baselines on conditional tasks. 285

D.2 Quantitative results of VQ-BeT and related baselines on non-conditional tasks. . 286

D.3 (Lower is better) Trajectory planning performance on the nuScenes [Caesar et al.

2020] self-driving environment. We bold the best performing model. Note that

while Agent-Driver outperforms us in some Collision avoidance benchmarks, it

is because they use a lot more information than what is available to our agent,

namely the road lanes and the shoulders information, without which avoiding

collision is difficult for our model or GPT-Driver [Mao et al. 2023a]. Even with

such partial information about the environment, VQ-BeT can match or beat the

SOTA models in predicting L2 distance from ground truth trajectory. 287

D.4 Quantitative results of running diffusion policy [Chi et al. 2023] with closed-loop vs.

receding horizon control in real-world robot experiments, where 𝑛 is the number

of actions executed at each timestep. We select four single-phase tasks and two

two-phase tasks in which diffusion policy does well with closed-loop control, and

compare with the same policy with receding horizon control by executing multiple

predicted actions at each timestep. We see the diffusion policy with an action

sequence executed per timestep goes out of distribution quite easily and fails to

complete any tasks on this set of experiments. 287

xxxiii

D.5 Evaluation of conditional and unconditional tasks in simulation environments of

VQ-BeT with extended size of Residual VQ codebook. 290

D.6 Hyperparameters for VQ-BeT . 292

E.1 Detailed success statistics of RUMs on our evaluation environments. 298

E.2 Stick-v2 Main Body . 299

E.3 Gripper Tips . 299

E.4 Phone Holder . 300

F.1 Optimization hyperparameters . 303

F.2 Architecture and Instant-NGP hyperparameters 304

F.3 External model configurations . 304

G.1 A list of all tasks in the home enviroments, along with their categories and success

rates out of 10 trials. 314

xxxiv

List of Appendices

A Appendix for Visual Imitation with Nearest Neighbors 254

A.1 VINN Pytorch Pseudocode . 254

A.2 Network Architectures and Training Details . 255

A.3 Robot details . 257

A.4 Demonstration Collection Details . 257

B Appendix for Behavior Transformers 261

B.1 Environment and Dataset Details . 261

B.2 Implementation Details and Hyperparameters . 265

B.3 Ablation studies . 272

C Appendix for Conditional Behavior Transformers 276

C.1 Behavior Transformers . 276

C.2 Implementation Details . 277

C.3 Robot Environment Demonstration Trajectories 279

C.4 Simulated Environment Rollout Trajectories . 280

D Appendix for Vector-Quantized Behavior Transformers 282

D.1 Experimental and Dataset . 282

D.2 Additional Results . 285

D.3 Implementation Details . 292

xxxv

E Appendix for Robot Utility Models 294

E.1 Experiment Details . 294

E.2 Hardware and Physical Setup . 299

F Appendix for CLIP-Fields 303

F.1 Training details . 303

F.2 Real world experiment logs . 304

G Appendix for OK Robot 306

G.1 Description of alternate system components . 306

G.2 Scannet200 text queries . 308

G.3 Sample objects from our trials . 309

G.4 Sample home environments from our trials . 309

G.5 List of home experiments . 314

xxxvi

1 | Introduction

Over the last five years, one of the defining feature of machine learning has been its ability to

touch the everyday lives of people. Today, more than any time in the past, people are using large

language models and image generation models in their chat apps, and seeing self-driving cars in

their street. It is reasonable, therefore, to expect to see a similar breakthrough moment for robotics

– bringing generally intelligent robots that can assist us everywhere and in almost every task.

In such a moment where large ML models are demonstrating remarkable capabilities in digital

domains, from generating mesmerizing scenery to solving calculus problems with near-human

accuracy, it is natural to ask – where are the physical equivalents? The almost-magic spell of

introducing data and learning falls short of bringing us robot butlers in every home, even today,

because of a fundamental assumption core to all machine learning. Assuming that the training and

test domains are congruent underlies each landmark achievements in machine learning, at least in

digital domains, and yet it is not so self-evident in robotics. Therefore, the state-of-the-art robots

from research labs are experts of many tasks but are constrained within that same lab in the same

scene, or they are narrow-domain experts, like roombas or dishwashers. Marrying the two to build

general robots that can navigate unstructured physical tasks in messy environments therefore

requires solutions that can somehow circumvent this common, core assumption of learning.

This thesis focuses on finding practical solutions to this problem, building towards generally

intelligent robots that simply generalize to novel environments and scenes out of the box, by

1

“OK Robot, move the Takis on
the desk to the nightstand”

A

BC

A. Navigate by planning over spatio-semantic memory, 
B. Grasp via pre-trained skill, C. Place with heuristic

purple shampoo to white rack

blue gloves to sink

oil bottle to marble surface

Door opening

Drawer opening

Reorientation

Pick up hat

Open microwave door

Pick up paper towel roll

Place rag in laundry

Open cabinet door

Close cabinet door

Open shower curtain

Pick up trash bag

1 2
3

Figure 1.1: Interplay of representation, data, and memory in robotics enables robots in arbitrary homes
and live demo environments. (1) Self-supervised visual representation learning [Pari et al. 2021] unlocks
few-shot skill learning from 5 mins. of data and 15 mins. of fine-tuning [Shafiullah et al. 2023b]. (2)
Multi-modal behavior cloning [Shafiullah et al. 2022; Cui et al. 2022; Lee et al. 2024] can train policies
on diverse data that generalize to novel scenes and objects zero-shot [Etukuru et al. 2024]. (3) Semantic
memory [Shafiullah et al. 2023a; Liu et al. 2024b] allows long-horizon, zero-shot operation in arbitrary
open-world scenes [Liu et al. 2024c].

addressing a trifecta of roadblocks. The first bottleneck we focus on is the scalability of supervised

robot policy learning through behavior cloning – both on how to enable models to learn from the

most amount of available data, and how to extract the most amount of useful information from

the limited data we may get in the wild. Our solution to this focuses on the representations for

policy learning – creating efficient self-supervised visual representations, and continuous-discrete

hybrid action representations that unlock learning from multi-modal, uncurated behavior data.

The second is the availability of systems that can efficiently generate and use robot behavior

data in the wild. We take a holistic approach to this, designing algorithms and hardware that,

combined together, enable progressively few-shot and zero-shot generalizable behavior in messy

and unstructured environments. The final piece of the puzzle we address is in long-horizon

autonomous robot behavior – how a robot should represent its (unstructured) environment over

long periods of interactions from both itself and other humans or robots. Our answer lies in

spatio-semantic representations that takes advantage of advances in large vision and language

models to build an environment representation zero-shot.

2

Before going into the main contributions of this thesis in more detail, this introductory section

will present some background and motivation for each of the problems mentioned above.

1.1 Learning Representations for Scalable Policy Learning

In this thesis, we are primarily concerned with learning robotic behavior in a supervised fashion,

primarily through behavior cloning. Contrast this with learning robotic behavior in an unsuper-

vised manner using Reinforcement Learning [Sutton and Barto 2018], which we will not cover

here but mention future possibilities in Chapter 12.

To be concrete and rigorous, let us define the problem of behavior cloning from a robotics

perspective. The behavior cloning problem is defined by a dataset D, that contains pairs of

samples (𝑜, 𝑎): an observation 𝑜 ∈ O and an action 𝑎 ∈ A, and the objective is to learn a function

𝜋 : O → A. Typically, the observation 𝑜 contains the sensory information of a robot, which can

include data from robot- or environment-mounted cameras, robot proprioception information, or

other sensory information such as tactile, force, torque information etc. The action 𝑎 typically

denotes some physical change the robot is able to manifest and can be defined in a variety of

spaces – for example by changing its own joint angles, velocities, or torques, or on a higher, more

abstract space, by moving its end-effectors in a certain way in cartesian space. Typically, we

assume that the dataset D is created and curated in a way such that it contains samples from the

behaviors of an “optimal” agent.

Given these, in practice, the problem of behavior cloning or supervised policy learning comes

down to learning the function 𝜋 that also exhibits the same optimal behavior when deployed in

the real world environment. In practice, we use deep neural networks to approximate 𝜋 as 𝜋𝜃 ,

so our challenge comes down to defining a learning algorithm L such that the function 𝜋𝜃 has

the desired properties. There are practical issues of learning online behavior from offline datasets

3

[Ross et al. 2011], but our primary inquiry in this work will be about improving the scalability of

such algorithms. We define scalability of a policy learning algorithm in two major axes:

• Even when D is small, the algorithm L is able to extract useful priors out of it,

• As D grows larger, the algorithm L is able to take advantage of the more and diverse

dataset.

We accomplish the first goal by designing a self-supervised learning algorithm for the robotic

observation (Chapter 2, following Pari et al. [2021]), and the second goal by creating a hybrid

representation for actions (Chapter 3- 5 which follows Shafiullah et al. [2022]; Cui et al. [2022]

and Lee et al. [2024] respectively). Note that each chapter may consider slight variations of these

and related settings, but we will be explicit about the specific setting and notation considered

within each chapter.

1.2 Mechanisms for Generalizable Scaling In-the-wild

While improving policy learning algorithms can help create better robot behavior given a dataset,

often that is not the only bottleneck in creating robust and generalizable behaviors for robots in

the wild. Rather, the primary bottleneck comes down to the assumption of supervised learning:

that there already exists a dataset with the desirable properties of optimal behavior.

Compare this with the reality of deploying robots in the wild. Unlike vision, language, or even

biological models, we do not have existing large scale datasets or a full internet repertoire that

we can simply scrape. First, with teleoperation, the most common method of collecting robot

data today, collecting data at scale is labor-intensive and incredibly expensive – making it nearly

impossible in academic settings. Secondly, even with a large budget, the scaled datasets still

exist within a limited set of environments [Team et al. 2025a,b]. Recall, however, that the core

4

assumption of ML discussed previously requires scaling up data in the wild if the resultant robots

are to be deployed in the wild. Therefore, the key question that we try to answer in this part of

the thesis is:

How can we scale up robot data in the wild that is useful for learning policies without

having to spend an immense amount of resources on it?

Each of the factors mentioned above can be a critical problem and has plagued prior works

attempting in the wild data collection. For example, while Khazatsky et al. [2024] undertook an

impressive, multi-university collaboration to collect data with a robot setup, because of the high

resource demands iteration on the data collection and policy training process was not possible.

Similarly, approaches using Augmented Reality methods for collecting data falls short of capturing

the contact-rich interaction with the physical world. All of these difficulties make the data collected

with such processes relatively less useful for learning large scale, generalizable policies.

In this process, it is important to introduce the concept of robot-free robot data collection. While

classically, teleoperating an entire robot has been the process through which robot datasets have

been collected, it may not be entirely necessary. Robot-free data collection emphasizes collecting

data that matches the observation 𝑜 and the action 𝑎 of the robots, while abstracting away the robot

infrastructure a way that makes it operationally easier – for example, by using a kinematically

equivalent mechanism [Wu et al. 2023] or a handheld tool with a camera [Song et al. 2020].

Compared to teleoperated data collection methods, however, robot free data collection methods

generally tend to be more holistic – since the mapping from the system to the robot is not always

exactly one-to-one, often more algorithmic work is required to close that gap. Therefore, such

methods are usually presented as a system – combined with data collection methods and effective

policy learning algorithms.

In this thesis, we will discuss some works in this direction of scaling robot data with robot-free

data collection by introducing a sequence of systems. In Chapter 6 [Shafiullah et al. 2023b], we

5

will introduce a preliminary system which can start scaling data in the wild and show few-shot

performance with a self-supervised representation learning inspired algorithm. We expand upon

it in Chapter 7 [Etukuru et al. 2024], showing that data collected with these handheld tools, when

pooled and combined with a proper learning algorithms, can perform similar tasks zero-shot in

the wild. Finally, in Chapter 8, we open the way for such work to expand beyond a single arm and

static policies. In all of these works, there will be further details of the physical hardware that is

used to scale the dataset and deploy the policies, as well as the algorithm that is used to train the

policies that generalize in-the-wild.

1.3 Robotic Memory for Long-horizon Intelligent Behavior

Most of what is discussed from a policy learning perspective in today’s robot learning literature

usually concern themselves with a static and almost always tabletop setup. However, the world is

much larger than just tabletops, and even most of mobile robotics today focuses on locomotion and

not manipulation. To address this gap, this section of the thesis will focus on mobile manipulation

and long-horizon challenges.

We generally call a problem mobile manipulation if, in order to complete the manipulation

task, the robot is required move itself from one location to another. There are a few further

assumptions generally made about mobile manipulation that makes it more challenging than

static manipulation. First, the observation sensors e.g. the cameras are all assumed to be installed

on the robot – therefore giving the robot a partial view of the environment. Second, the robot is

expected to not only manipulate but also navigate well – so completing the task while knocking

over task-irrelevant objects may still be considered a failure. Finally, empirically, the robot is

evaluated on more temporally extended objectives compared to static manipulation, which makes

succeeding at the task harder. Due to these assumptions, a few challenges compound. For example,

partial observability means that a purely reactive policy is less likely to succeed in a mobile

6

manipulation setting – the robot needs to synthesize information about the world before acting

on it. Or, because of its temporally extended nature, collecting teleoperated data for a mobile

manipulation task becomes harder, and therefore, end-to-end policies become harder to manage.

In this work, we therefore focus on the problem of creating a robotic spatio-semantic memory

that addresses a lot of these challenges. Our work follows the footsteps of earlier planning-based

robotics work, where a robotic agent creates a map of an environment and then plans its task over

it. We define a robotic spatio-semantic memory as a data structure 𝜔 ∈ Ω, where Ω is the space of

maps, and 𝜏 ∈ T are potential semantic queries, capable of at least the following:

• Ingest (Ω × O → Ω): Given a new observation 𝑜 from the robot, 𝜔 is able to update its

inner representation of the environment into an updated map, 𝜔′.

• Spatio-semantic Query (Ω×T → R3): The map𝜔 should be able to respond to a semantic

query 𝜏 with a relevant (𝑥,𝑦, 𝑧) location in 3-D space.

While the ingestion for semantic maps look similar to most semantic robot memories, there can

be many variations in the query method. Namely, some memory structures may return additional

information, such as a pose as well as a position, or a confidence interval on the response, alongside

the query response. But in its most bare-bone form, the spatio-semantic memory structures should

be able to respond to the basic form of the query.

Such a spatial memory data structure readily responds to a lot of challenges of mobile robotics.

First, the memory handles the need to integrate partial observations of the environment over time

into a consistent representation on which the robot’s behavior policy can operate. The ingestion

mechanism, if designed well, can help the robot deal with long-horizon challenges by operating

on the memory 𝜔 rather than the observation 𝑜 . Second, a properly designed memory is able to

provide further affordance beyond what is required for manipulation – such as a safe navigation

path or a collison avoidant trajectory.

7

In this thesis, we present spatio-semantic memory algorithms created with the explicit goal of

being open-world and open-vocabulary capable. Open-world here means that the model should

not make prior assumptions about the structure of the environment or the existence of fiducial

markers in the scene – it should be able to handle arbitrary everyday environments. Open-

vocabulary means that the memory should be able to respond, or at least extend to, to queries

from an arbitrarily large dictionar – it should not rely on mapping only a closed set of objects or

categories defined prior to runtime. The works presented in this thesis will show how we can

distill pre-trained large vision language models zero shot to create such spatial scene memories in

Chapter 9 [Shafiullah et al. 2023a]. Then, in Chapter 10 [Liu et al. 2024c], we will show how we

can combine pre-trained manipulation policies into this to create mobile manipulation policies

that generalize to novel environments. Finally, Chapter 11 [Liu et al. 2024b] will show how these

memories can be updated online and dynamically as the world changes around the robot due to

its own actions or that of humans.

1.4 Some Words about Evaluation

While creating robot policies and systems that generalize to the world is hard, it is even harder

to properly evaluate such systems. A lot of current approaches are quite ad-hoc, especially in

generalizable robotics, with a Laissez-faire attitude of “you will know it when you see it”. When it

is done properly, the time, money, and labor required to do the necessary evaluations in the real

world can be expensive [Team et al. 2025b] and out of reach for academic researchers.

In all of our experiments in this thesis, we try tomaintain a high bar by evaluating our robot policies

and systems in the real world, and whenever possible, in messy, unstructured environments in the

wild. We make the best possible recommendation given experimental evidences, not only using a

single set of experiments with a hard-to-find statistical soundness, but with intuition built up over

years of deploying real robots in real homes of New York city and other parts of USA. The goal is

8

to create generally intelligent robots that just works everywhere, and this thesis aims to bring

some clarity in understanding what is important towards that end.

9

Part I

Representations for Perception and

Control

10

2 | Surprising Effectiveness of

Representation Learning for

Behavior Cloning: Visual Imitation

with Nearest Neighbors

2.1 Introduction

Imitation learning serves as a powerful framework for getting robots to learn complex skills in

visually rich environments [Zhang et al. 2018b; Stadie et al. 2017; Duan et al. 2017; Zhu et al. 2018;

Young et al. 2020]. Recent works in this area have shown promising results in generalization

to previously unseen environments for robotic tasks such as pick and place, pushing, and rear-

rangement [Young et al. 2020]. However, such generalization is often too narrow to be directly

applied in the diverse real-world application. For instance, policies trained to open one door

rarely generalize to opening different doors [Urakami et al. 2019]. This lack of generalization is

further exacerbated by the plethora of different options to achieve generalization: either needing

hundreds of diverse demonstrations, task-specific priors, or large parametric models. This begs

the question: What really matters for generalization in visual imitation?

11

Self-supervised
encoder

Robot
Observation

Nearest-Neighbor matches

Robot observation

Action prediction

Visual
representation

Robot execution

Figure 2.1: Consider the task of opening doors from visual observations. VINN, our visual imitation
framework first learns visual representations through self-supervised learning. Given these representations,
non-parametric weighted nearest neighbors from a handful of demonstrations is used to compute actions,
which results in robust door-opening behavior.

An obvious answer is visual representation – generalizing to diverse visual environments should

require powerful representation learning. Prior work in computer vision [Grill et al. 2020; Chen

et al. 2020c,d; Caron et al. 2020; Bardes et al. 2021] have shown that better representations

significantly improve downstream performance for tasks such as image classification. However,

in the case of robotics, evaluating the performance of visual representations is quite complicated.

Consider behavior cloning [Torabi et al. 2018], one of the simplest methods of imitation. Standard

approaches in behavior cloning fit convolutional neural networks on a large dataset of expert

12

demonstrations using end-to-end gradient descent. Although powerful, such models conflate two

fundamental problems in visual imitation: (a) representation learning, i.e. inferring information-

preserving low-dimensional embeddings from high-dimensional observations and (b) behavior

learning, i.e. generating actions given representations of the environment state. This joint learning

often results in large dataset requirements for such techniques.

One way to achieve this decoupling is to use representation modules pre-trained through standard

proxy tasks such as image classification, detection, or segmentation [Sax et al. 2019]. However,

this relies on large amounts of labelled human data on datasets that are often significantly out

of distribution to robot data [Chen et al. 2020a]. A more scalable approach is to take inspiration

from recent work in computer vision, where visual encoders are trained using self-supervised

losses [Chen et al. 2020d,c; Grill et al. 2020]. These methods allow the encoders to learn useful

features of the world without requiring human labelling. There has been recent progress in

vision-based Reinforcement Learning (RL) that improves performance by creating this explicit

decoupling [Stooke et al. 2021; Yarats et al. 2021b]. Visual imitation has a significant advantage

over RL settings: learning visual representations in RL is further coupled with challenges in

exploration [Yarats et al. 2021a], which has limited its application in real-world settings due to

poor sample complexity.

In this work we present a new and simple framework for visual imitation that decouples represen-

tation learning from behavior learning. First, given an offline dataset of experience, we train visual

encoders that can embed high-dimensional visual observations to low-dimensional representations.

Next, given a handful of demonstrations, for a new observation, we find its associated nearest

neighbors in the representation space. For our agent’s behavior on that new observation, we

use a weighted average of the nearest neighbors’ actions. This technique is inspired by Locally

Weighted Regression [Atkeson et al. 1997], where instead of operating on state estimates, we

operate on self-supervised visual representations. Intuitively, this allows the behavior to roughly

13

correspond to a Mixture-of-Experts model trained on the visual demonstrations. Since nearest

neighbors is non-parametric, this technique requires no additional training for behavior learning.

We will refer to our framework as Visual Imitation through Nearest Neighbors (VINN).

Our experimental analysis demonstrates that VINN can successfully learn powerful representations

and behaviors across three manipulation tasks: Pushing, Stacking, and Door Opening. Surprisingly,

we find that non-parametric behavior learning on top of learned representations is competitive

with end-to-end behavior cloning methods. On offline MSE metrics, we report results on par with

competitive baselines, while being significantly simpler. To further test the real-world applicability

of VINN, we run robot experiments on opening doors using 71 visual demonstrations. Across a

suite of generalization experiments, VINN succeeds 80% on doors present in the demonstration

dataset and 40% on opening the door in novel scenes. In contrast, our strongest baselines have

success rates of 53.3% and 3.3% respectively.

To summarize, this paper presents the following contributions. First, we present VINN, a novel

yet simple to implement visual imitation framework that derives non-parametric behaviors from

learned visual representations. Second, we show that VINN is competitive to standard parametric

behavior cloning and can outperform it on a suite ofmanipulation tasks. Third, we demonstrate that

VINN can be used on real robots for opening doors and can achieve high generalization performance

on novel doors. Finally, we extensively ablate over and analyze different representations, amount

of training data, and other hyperparameters to demonstrate the robustness of VINN.

14

2.2 Related Work

2.2.1 Imitation via Cloning

Imitation learning is frequently used to learn skills and behaviors from human demonstrations [Pi-

aget 2013; Meltzoff and Moore 1977, 1983; Tomasello et al. 1993]. In the context of manipulation,

such techniques have successfully solved a variety of problems in pushing, stacking, and grasp-

ing [Zhang et al. 2018b; Zhu et al. 2018; Argall et al. 2009; Hussein et al. 2017]. Behavioral Cloning

(BC) [Torabi et al. 2018] is one of the most common techniques. If the agent’s morphology or

viewpoint is different than the demonstrations’, the model needs to involve techniques such as

transfer learning to resolve this domain gap [Stadie et al. 2017; Sermanet et al. 2016]. To close this

unintended domain gap, [Zhang et al. 2018b] has used tele-operation methods, while [Song et al.

2020; Young et al. 2020] have used assistive tools. Using assistive tools provides us the benefit

of being a able to scalably collect diverse demonstrations. In this paper, we follow the DemoAT

[Young et al. 2020] framework to collect expert demonstrations.

2.2.2 Visual Representation Learning

In computer vision, interest in learning a good representation has been longstanding, especially

when labelled data is rare or difficult to collect [Chen et al. 2020c,d; Grill et al. 2020; Caron et al.

2020]. This large class of representation learning techniques aim to extract features that can help

other models improve their performance in some downstream learning tasks, without needing to

explicitly learn a label. In such tasks, first a model is trained on one or more pretext tasks with

this unlabeled dataset to learn a representation. Such tasks generally include instance invariance,

or predicting some image transformation parameters (e.g. rotation and distortion), patches, or

frame sequence [Gidaris et al. 2018; Dosovitskiy et al. 2015; Doersch et al. 2016; Misra et al. 2016;

15

Chen et al. 2020c,d; Wu et al. 2018]. In representation learning, the performance of the model on

the pretext task is usually disregarded. Instead, the focus is on the input domain to representation

mapping that these models have learned. Ideally, to solve such pretext tasks, the pretrained model

may have learned some useful structural meaning and encoded it in the representation. Thus,

intuitively, such a model can be used in downstream tasks where there is not enough data to learn

this structural meaning directly from the available task-relevant data. Unsupervised representation

learning, in works such as [Chen et al. 2020c,d; Grill et al. 2020; Caron et al. 2020; Bardes et al.

2021; Dwibedi et al. 2021], has shown impressive performance gains on difficult benchmarks since

they can harness a large amounts of unlabelled data unavailable in task-specific datasets.

Recently, interest in unsupervised or semi-supervised representation learning technique has grown

within robotics [Manuelli et al. 2020] due to the availability of unlabeled data and its effectiveness

in visual imitation tasks [Young et al. 2021; Zhan et al. 2020]. We follow a BYOL-style [Grill et al.

2020] self-supervised representation learning framework in our experiments.

2.2.3 Non-parametric Control

Non-parametric models are those, which instead of modeling some parameters about the data

distribution, tries to express it in terms of previously observed training data. Non-parametric

models are significantly more expressive, but as a downside to this, they usually require a large

number of training examples to generalize well. A popular and simple example of non-parametric

models is Locally Weighted Learning (LWL) [Atkeson et al. 1997]. LWL is a form of instance-based,

non-parametric learning that refers to algorithms whose response to any query is a weighted

aggregate of similar examples. Simple nearest neighbor models are an example of such learning,

where all weight is put on the closest neighbor to the input point. Nearest neighbor methods

have been successfully used in previous works for control tasks [Mansimov and Cho 2018] More

sophisticated, 𝑘-NN algorithms base their predictions on an aggregate of the nearest 𝑘 points

16

[Aha and Salzberg 1994].

Uses of LWL based methods in supervised learning, robotics, and reinforcement learning is

quite old. In works like [Snell et al. 2017; Wang et al. 2019], effectiveness of LWL algorithms

like k-nearest neighbor has shown competitive success in difficult, high dimensional tasks like

classifying the miniImageNet. LWL has also shown success for robotic control problems [Atkeson

et al. 1997], although it requires an accurate state-estimator to obtain low-dimensional states.

In [Lee and Anderson 2016; Pritzel et al. 2017; Rajeswaran et al. 2018], elements of non-parametric

learning is weaved into the reinforcement learning algorithms to create models which can adjust

their complexity based on the amount of available data. Finally, in works like [Shah and Xie

2018] non-parametric k-Nearest Neighbor regression based Q-functions are shown to give a good

approximation of the true Q function under some theoretical assumptions. Our work, VINN,

draws inspiration from the simplicity of LWL and demonstrates the usefulness of this idea by

using Locally Weighted Regression in challenging visual robotic tasks.

2.3 Approach

In this section, we describe the components of our algorithms and how they fit together to create

VINN. As seen in Fig. 2.2, VINN consists of two parts: (a) training an encoding network on offline

visual data, and (b) querying against the provided demonstrations for a nearest-neighbor based

action prediction.

2.3.1 Visual Representation Learning

Given an offline dataset of visual experience from the robot, we first learn a visual representation

embedding function. In this work, we use two key insights for learning our visual representation:

first, we can learn a good vision prior using existing large but unrelated real world datasets, and

17

Training Process Evaluation and Execution

Offline
Visual
Data

∼ ⋅⋅⋅

Demonstrations

⋅⋅⋅

N
N

 M
at

ch
in

g

Visual encoder

Target encoder

Self-supervised learning with BYOL

Aug. view 1

Aug. view 2

Current observation ot

Locally
Weighted

Regression

Applied action at

a(1)

a(2)

a(k)

Figure 2.2: Overview of our VINN algorithm. During training, we use offline visual data to train a BYOL-
style self-supervised model as our encoder. During evaluation, we compare the encoded input against
the encodings of our demonstration frames to find the nearest examples to our query. Then, our model’s
predicted action is just a weighted average of the associated actions from the nearest images.

then, we can fine-tune starting from that prior using our demonstration dataset, which is small

but relevant to the task at hand.

For the first insight, whenever possible, we initialize our models from an ImageNet-pretrained

model. Such models are provided with the PyTorch [Paszke et al. 2019] library that we use and

can be achieved by simply adding a single parameter to the model initialization function call.

Then, we use self supervised learning and train this visual encoder on the all the frames in our

offline training dataset. In this work, we use Bootstrap Your Own Latent (BYOL) [Grill et al. 2020]

as the self-supervision objective. As illustrated in Fig. 2.2, BYOL uses two versions of the same

encoder network: one normally updating online network, and a slow moving average of the

online network called the target network. The BYOL self-supervised loss function tries to reduce

the discrepancy in the two heads of the network when they are fed with differently augmented

version of the same image. Although we use BYOL in this work, VINN can also work with other

self-supervised representation learning methods [Chen et al. 2020c,d; Caron et al. 2020; Bardes

et al. 2021] (Table 2.3).

In practice, we initialize both the BYOL online and target networks with an ImageNet-pretrained

encoder. Then, using the BYOL objective, we finetune them to better fit our image distribution.

Once the self-supervised training is done, we encode all our training demonstration frames with

18

Query
image

Nearest
neighbor 1

Nearest
neighbor 2

Nearest
neighbor 3

Pu
sh

D

oo
r

Query
image

Nearest
neighbor 1

Nearest
neighbor 2

Nearest
neighbor 3

St
ac

k

Figure 2.3: Nearest neighbor queries on the encoded demonstration dataset; the query image is on the
first column, and the found nearest neighbors are on the next three columns. The associated action is
shown with a green arrow. The bottom right set of nearest neighbors demonstrates the advantage of
performing a weighted average over nearest neighbors’ actions instead of copying the nearest neighbor’s
action.

the encoder to obtain a set of their embeddings, 𝐸.

2.3.2 𝑘-Nearest Neighbors Based Locally Weighted Regression

The set of embeddings 𝐸 given by our encoder holds compact representations of the demonstration

images. Thus, during test time, given an input we search for demonstration frames with similar

features. We find the nearest neighbors of the encoded input 𝑒 from the set of demonstration

embeddings, 𝐸. In Fig. 2.3, we see that these nearest neighbors are visually similar to the query

image. Our algorithm implicitly assumes that a similar observation must result in a similar action.

Thus, once we have found the 𝑘 nearest neighbors of our query, we set the next action as an

weighted average of the actions associated with those 𝑘 nearest neighbors.

Concretely, this is done by performing nearest neighbors search based on the distance between

embeddings: ∥𝑒−𝑒 (𝑖) ∥2, where 𝑒 (𝑖) is the 𝑖𝑡ℎ nearest neighbor. Once we find the 𝑘 nearest neighbors

and their associated actions, namely (𝑒 (1), 𝑎(1)), (𝑒 (2), 𝑎(2)), · · · , (𝑒 (𝑘), 𝑎(𝑘)), we set the action as the

19

Euclidean kernel weighted average [Atkeson et al. 1997] of those examples’ associated actions:

𝑎 =

∑𝑘
𝑖=1 exp

(
−∥𝑒 − 𝑒 (𝑖) ∥2

)
· 𝑎(𝑖)∑𝑘

𝑖=1 exp
(
−∥𝑒 − 𝑒 (𝑖) ∥2

)
In practice, this turns out to be the average of the observations’ associated actions weighted by

the SoftMin of their distance from the query image in the embedding space.

2.3.3 Deployment in real-robot door opening

For our robotic door opening task, we collect demonstrations using the DemoAT [Young et al.

2020] tool. Here, a reacher-grabber is mounted with a GoPro camera to collect a video of each

trajectory. We pass the series of frames into a structure from motion (SfM) method which outputs

the camera’s location in a fixed frame [Ozyesil et al. 2017]. From the sequence of camera poses,

which consist of coordinate and orientation, we extract translational motion which becomes our

action. To extract the gripper state, we train a gripper network that outputs a distribution over

four classes (open, almost open, almost closed, closed), which represent various stages of gripping.

Then, we feed these images and their corresponding actions into our imitation learning method.

To train our visual encoders, we train ImageNet-pretrained BYOL encoders on individual frames in

our demonstration dataset without action information. This same dataset with action information

serves as the demonstration dataset for the 𝑘-NN based action prediction. Note that although we

use task-specific demonstrations for representation learning, our framework is compatible with

using other forms of unlabelled data such offline datasets [Gulcehre et al. 2020; Fu et al. 2020] or

task-agnostic play data [Young et al. 2021].

To execute our door-opening skill on the robot, we run our model on a closed loop manner. After

resetting the robot and the environment, on every step, we retrieve the robot observation and

query the model with it. The model returns a translational action 𝑎 as well as the gripper state

20

𝑔, and the robot moves 𝑐 ⊙ 𝑎 where the vector 𝑐 is a hyper-parameter with each element < 1 to

mitigate our SfM model’s inaccuracies and improve transfer from human demonstrations to robot

execution. In addition, for nearest neighbor based methods, we have hyper-parameters that map

the floating value 𝑔 into a gripper state which was tuned per experiment.

2.4 Experimental Evaluation

3 7 14 21 28 35 42 56 71
Training Dataset Length (# Demonstrations)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
SE

 L
os

s

Comparison of loss vs training dataset length on Push
VINN (BYOL + NN)
ImageNet features + NN
BC on representations
BC end to end

3 7 14 21 28 35 42 56 71
Training Dataset Length (# Demonstrations)

0.25

0.30

0.35

0.40

M
SE

 L
os

s

Comparison of loss vs training dataset length on Stack
VINN (BYOL + NN)
ImageNet features + NN
BC on representations
BC end to end

3 7 14 21 28 35 42 56 71
Training Dataset Length (# Demonstrations)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
SE

 L
os

s

Comparison of loss vs training dataset length on Door Opening
VINN (BYOL + NN)
ImageNet features + NN
BC on representations
BC end to end

Figure 2.4: Mean Squared Error for the Pushing, Stacking and Door Opening (left to right) datasets of
different algorithms trained on subsamples of the original dataset. End-to-end behavior cloning initialized
with ImageNet-trained features perform as well as VINN for larger datasets, but fixed representation based
methods outperforms it largely on small datasets.

In the previous sections we have described our framework for visual imitation, VINN. In this

section, we seek to answer our key question: how well does VINN imitate human demonstrations?

To answer this question, we will evaluate both on offline datasets and in closed-loop real-robot

evaluation settings. Additionally, we will probe into the generalization with few demonstrations

ability of VINN in settings where imitation algorithms usually suffer.

2.4.1 Experimental Setup

We conduct two different set of experiments: the first on the offline datasets for Pushing, Stacking

and Door-Opening and the second on real-robot door opening.

21

Offline Visual Imitation Datasets Data for Pushing and Stacking tasks are taken from [Young

et al. 2020]. The goal in the pushing task is to slide an object on a surface into a red circle. In the

stacking task, the goal is to grasp an object present in the scene and move it on top of another

object also in the scene, and release. To avoid confusion, in the expert demonstrations for stacking,

the closest object is always placed on top of the distant object. The action labels are end-effector

movements, which in this case is the translation vector in between the current frame and the

subsequent one. In each case, there are a diverse set of backgrounds and objects that make up the

scene and the task, making the tasks difficult.

For Door Opening, data is collected by 3 data-collectors in their kitchens. This amounts to a total

of 71 demonstrations for training and 21 demonstrations for testing. We normalize all actions from

the dataset to account for scale ambiguity from SfM. For all three tasks, we calculate the MSE loss

between the ground truth actions and the actions predicted by each of the methods. Note that the

number of demonstrations collected for this Door Opening task is an order of magnitude smaller

than the ones used for Stacking and Pushing, which contain around 750 and 930 demonstrations

respectively. To understand the performance on the various model in low data settings, we create

subsampled Pushing and Stacking datasets containing 71 demonstrations on each for training and

21 for testing. This subsampling makes all three our datasets have the same size.

Closed-loop control We conduct our robot experiments on a loaded cabinet door opening

task (see Fig. 2.1), where the goal of the robot is to grab hold of the cabinet handle and pull open

the cabinet door. We use the Hello-Robot Stretch [Kemp et al. 2022] for this experiment. When

evaluations start, the arm resets to ≈ 0.15 meters away from the cabinet door, with a random

lateral translation within 0.05 meters parallel to the cabinet to evaluate generalization to varying

starting states.

22

2.4.2 Baselines

We run our experiments for baseline comparison using the following methods:

• Random Action: In this baseline, we sample a random action from the action space.

• Open Loop: We find the maximum-likelihood open loop policy given all our demonstration,

which is the average action 𝑎(𝑡) over all actions 𝑎𝑖 (𝑡) seen in the dataset at timestep 𝑡 . In a

Bayesian sense, if standard behavioral cloning is trying to approximate 𝑝 (𝑎 | 𝑠), this model

is trying to approximate 𝑝 (𝑎 | 𝑡).

• Behavioral Cloning (BC) end to end: We train a ResNet-50 model with augmentated demon-

stration frames similar to [Torabi et al. 2018; Young et al. 2020]. We initialize the model with

weights derived from ImageNet pretraining.

• BC on Representations (BC-rep): We use a self-supervised BYOL model to extract the en-

coding of each of our demonstration frames, and perform behavioral cloning on top of the

representations. This baseline is similar to [Young et al. 2021] and performs better than

end-to-end BC on the real robot (Table 2.1).

• Implicit Behavioral Cloning: We train Implicit BC [Florence et al. 2022] models on the tasks,

modifying the official code.

• ImageNet features + NN: Instead of self-supervision, here we use the image representation

generated by a pretrained ImageNet encoder akin to [Chen et al. 2020a]. The difference

between this baseline and our method is simply forgoing the finetuning step on our dataset.

This baseline highlights the importance of self-supervised pre-training on the domain related

dataset.

• Self-supervised learning method + NN: This is our method; we compare three different ways of

learning self-supervised representations features from our dataset – BYOL [Grill et al. 2020],

23

SimCLR [Chen et al. 2020c], and VICReg [Bardes et al. 2021], starting from an ImageNet

pretrained ResNet-50, and then we use locally weighted regression to find the action.

2.4.3 Training Details

Each encoder network used in this paper follows the ResNet-50 architecture [He et al. 2016] with

the final linear layer removed. Unless specified otherwise, we always initialize the weights of

the ResNet-50 encoder with a pretrained model on ImageNet dataset. For VINN, we train our

self-supervised encodings with the BYOL [Grill et al. 2020] loss. For standard end-to-end BC, we

replace the last linear layer with a three-layer MLP and train it with the MSE loss. For BC-rep, we

freeze the encoding network to the weights trained by BYOL on our dataset, and train just the

final layers with the MSE loss. Additionally, for all visual learning, we use random crop, random

color jitter, random grayscale augmentations and random blurring. We trained the self-supervised

finetuning methods for 100 epochs on all three datasets.

2.4.4 How does VINN Perform on Offline Datasets?

For our first evaluation, we compare our method against the baselines on their Mean-Squared Error

loss for the Pushing, Stacking, and Door-Opening tasks in Fig. 2.4. To understand the impact of the

training dataset size on the algorithms, we run the models using multiple subsamples of different

sizes from each dataset. We see that while end-to-end Behavioral Cloning starting from pretrained

ImageNet representations can be better with a large amounts of training demonstrations, Nearest

Neighbor methods are either competitive or better performing in low data settings.

On the Stacking and Door-Opening tasks, VINN is significantly better when the number of training

demonstrations are small (< 20). While on the Pushing task, we notice that the task might be too

difficult to solve with small number of demonstrations. One reason for this is that BYOL might

24

Figure 2.5: Sample frames from the rollouts from our model on the real robot experiments, with artificial
occlusions added to the cabinet to test generalization. Under the maximum occlusion, our model fails to
ever open the cabinet door, while in all other cases, the robot is able to succeed (Table 2.2.)

not be able to extract the most relevant representations for this task. Further experiments in

Table 2.3 show that using other forms of self-supervision such as VICReg can significantly improve

performance on this task. Overall, these experiments supports our hypothesis that provided

with good representations, nearest-neighbor techniques can provide a competitive alternative to

end-to-end behavior cloning.

2.4.5 How does VINN Perform on Robotic Evaluation?

Next, we run VINN and the baselines on our real robot environment. In this setting, our test

environment comprises of the same three cabinets where training demonstrations were collected

presented without any visual modifications. For each of our models, we run 30 rollouts with the

robot in the real world with three different cabinets. On each rollout, the starting position of the

25

robot is randomized as detailed in (Sec. 2.4.1). In Table 2.1, we show the percentage of success from

the 30 rollouts of each model, where we record both the number of time the robot successfully

grasped the handle, as well as the number of time it fully opened the door.

Table 2.1: Success rate over 30 trials (10 trials on three cabinets each) on the robotic door opening task.

Method Handle grasped Door opened

BC (end to end) 0% 0%
BC on representations 56.7% 53.3%
Imagenet features + NN 20% 0%
VINN (BYOL + NN) 80% 80%

As we see from Table 2.1, VINN does better than all BC variants in successfully opening the

cabinet door when there is minimal difference between the test and the train environments.

Noticeably, it shows that depending on self-supervised features on augmented data make the

models much more robust. BC, as an end-to-end parameteric model, does not have a strong prior

on the actions if the robot makes a wrong move causing the visual observations to quickly goes

out-of-distribution [Ross et al. 2011]. On the other hand, VINN can recover up to certain degree of

deviation using the nearest neighbor prior, since the translation actions typically tend to re-center

the robot instead of pushing it further out of distribution.

2.4.6 To What Extent does VINN Generalize to Novel Scenes?

To test generalization of our robot algorithms to novel scenes in the real world, we modified one

of our test cabinets with various levels of occlusion. We show frames from a sample rollouts in

each environment in Fig. 2.5, which also shows the cabinet modifications.

In Table 2.2, we see that VINN only completely fails when all the visual landscape on the cabinet

is occluded. This failure is expected, because without coherent visual markers, the encoder fails to

convey information, and thus the k-NN part also fails. Even then, we see that VINN succeeds at a

higher rate even with significant modifications to the cabinet while BC-rep fails completely.

26

Table 2.2: Success rate over 10 trials on robotic door opening with visual modifications on one cabinet
door.

Modification BC-rep VINN (ours)

Baseline (no modifications) 90% 80%
Covered signs and handle 10% 70%

Covered signs, handle, and one bin 0% 50%
Covered signs, handle, and both bins 0% 0%

Over all the real robot experiments, we find the following phenomenon: while a good MSE loss

is not sufficient for a good performance in the real world, the two are still correlated, and a low

MSE loss seems to be necessary for good real world performance. This observation let us test

hypotheses offline before deploying and testing them in a real robot, which can be time-consuming

and expensive. We hypothesize that this gap between performance on the MSE metric (Table 2.3)

and real world performance (Table 2.1, 2.2) comes from variability in different models’ ability

to perform well in situations off the training manifold, where they may need to correct previous

errors.

Table 2.3: Test MSE (×10−1) on predicted actions for a set of baseline methods and ablations. Standard
deviations, when reported, are over three randomly initialized runs.

No Pretraining With ImageNet Pretraining

Tasks Random Open
Loop

Implicit
BC

BYOL
+ NN BC-Rep VINN

(BYOL + NN)
VICREG
+ NN

SimCLR
+ NN

ImageNet
+ NN

Door Opening 6.34 2.27 1.8 1.52 1.19 ± 0.05 0.92 1.05 0.95 0.98
Stacking 6.13 2.83 7.1 2.82 3.45 ± 0.29 2.58 2.74 2.63 2.85
Pushing 6.15 2.12 5.6 2.43 2.20 ± 0.20 2.43 1.50 2.21 2.35

2.4.7 How Important are the Design Choices Made in VINN for Success?

VINN comprises of two primary components, the visual encoder and the nearest-neighbor based

action modules. In this section, we consider some major design choices that we made for each of

them.

27

Choosing the Right Self-supervision While we use a BYOL-based self-supervised encoding

in our algorithm, there are multiple other self-supervised methods such as SimCLR and VICReg

[Chen et al. 2020c; Bardes et al. 2021]. On a small set of experiments we noticed similar MSE losses

compared to SimCLR [Chen et al. 2020c] and VICReg [Bardes et al. 2021]. From Table 2.3, we see

that BYOL does the best in Door-Opening and Stacking, while VICReg does better in Pushing.

However, we choose BYOL for our robot experiments since it requires less tuning overall.

Ablating Pretraining and Fine-tuning Another large gain in our algorithm is achieved by

initializing our visual encoders with a network trained on ImageNet. In Table 2.3, we also show

MSE losses from models that resulted from ablating this components of VINN. Removing this

component achieves the column BYOL + NN (No Pretraining), which performs much worse than

VINN. Similarly, the success of VINN depends on the self-supervised fine-tuning on our dataset,

ablating which results in the model shown in ImageNet + NN column of Table 2.3. This model

performs only slightly worse than VINN on the MSE metric. However, in Table 2.1, we see that

this model performs poorly on the real world. These ablations show that the performance of our

locally weighted regression based policy depends on the quality of the representation, where a

good representation leads to better nearest neighbors, which in turn lead to a better policy both

offline and online.

Performing Implicit instead of Explicit Imitation Moving away from the explicit forms

of imitation where the models try to predict the actions directly, we run baselines with Implicit

Behavioral Cloning (IBC) [Florence et al. 2022]. As we see on Table 2.3, this baseline fails to learn

behaviors significantly better than the random or open loop baselines. We believe this is caused

by two reasons. First, the implicit models have to model the energy for the full space (action space

× observation space), which requires more data than the few demonstrations that we have in our

datasets. Second, the official implementation of IBC supports [−1, 1]3 as the action space instead

28

of its much smaller subspace of normalized 3d vectors 𝑆2. This much larger action space, over

which IBC tried to model the action, might have resulted in worse performance for IBC. While

VINN makes the implicit assumption that the locally-weighted average of valid actions also yield

a valid action, it can be freely projected to any relevant space without further processing, which

makes it more flexible.

Learning a Parametric Policy on Representations Our Behavioral Cloning on represen-

tations (BC-Rep) baseline in all our experiments (Sec. 2.4) show the performance of a baseline

where we use learned representations to learn a parametric behavioral policy. In the MSE losses

(Table 2.3) and real world experiments (Table 2.1, 2.2.) This is the baseline that achieves the

closest performance to VINN. However, the difference between BC-rep and VINN becomes more

pronounced as the gap between training and test domain or the policy horizon grows. These

experimental results indicate that using a non-parametric policy may be enabling us to be robust

to out-of-distribution samples.

0 10 20 30 40 50
k

1.0

1.2

1.4

1.6

1.8

No
rm

al
ize

d
M

SE
 L

os
s

Normalized MSE Loss vs k value
Handle
Stack
Push

Figure 2.6: Value of 𝑘 in the 𝑘-nearest neighbor weighted regression in VINN vs normalized MSE loss
achieved by the model.

29

Choosing the Right 𝑘 for 𝑘-Nearest Neighbors Finally, in VINN, we study the effect of

different values of 𝑘 for the 𝑘-NN based locally weighted controller. This parameter is important

because with too small of a 𝑘 , the predicted action may stop being smooth. On the other hand,

with too large of a 𝑘 , unrelated examples may start influencing the predicted action. By plotting

our model’s normalized MSE loss in the validation set against the value of 𝑘 in Fig. 2.6, we find that

around 10, 𝑘 seems ideal for achieving low validation loss while averaging over only a few actions.

Beyond 𝑘 = 20, we didn’t notice any significant improvement to our model from increasing 𝑘 .

2.4.8 Computational Considerations

While the datasets we used for our experiments were not large, we recognize that our current

nearest neighbor implementation is a𝑂 (𝑛) algorithm dependant linearly on the size of the training

dataset with a naive algorithm. However, we believe VINN to be practical, since firstly, it was

designed mostly for the small demonstration dataset regime where 𝑂 (𝑛) is quite small, and

secondly, this search can be sped up with a compiled index beyond the naive method using

open-source libraries such as FAISS [Johnson et al. 2017] which were optimized to run nearest

neighbor search on the order of billion examples [Matsui et al. 2018]. Currently, our algorithm

takes ≈ 0.074 seconds to encode an image, and ≈ 0.038 seconds to perform nearest neighbors

regression, which is only a small speed penalty for the robotic tasks we consider.

2.5 Limitations

In this work we proposed VINN, a new visual imitation framework that decouples visual represen-

tation learning from behavior learning. Although this decoupling improves over standard visual

imitation methods, there are several avenues for future work. First, there is still some remaining

hurdles to generalizing to a new scene, as seen in Sec. 2.4.6, where our model fails when all large,

30

recognizable markers are removed from the scene. While our NN-based action estimation lets us

add new demonstrations easily, we cannot easily adapt our representation to such drastic changes

in scene. An incremental representation learning algorithm has great potential to improve upon

that. Second, our self-supervised learning is currently done on task related data, while ideally, if

the dataset is expansive enough, task agnostic pre-training should also give us good performance

[Young et al. 2021]. Finally, although our framework focuses on a single-task setting, we believe

that learning a joint representation for multiple tasks could reduce the overall training overhead

while being just as accurate.

Postscript

VINN is one of the most interesting works in this thesis, not because it provides a strong policy

class lasting a century in the future, but because it shows us a fundamental truth about machine

learning for policy learning – at some level, all algorithms do is nearest neighbor in some latent

representation space. Building this mental model early in my Ph.D. helped me use behavior cloning

judiciously to solve the problems it can solve. Simultaneously, I built a tool-belt of solutions I

could reach for when BC would not be sufficient. This mental model has interesting implications

for future work as well – for interpretability of our large models, for safety and data attribution

works, and finally, for building interesting theoretical foundations for robot learning.

Acknowledgements

This work was co-led with Jyo Pari, co-authored with Sridhar Arunachalam Pandian, and advised

by Lerrel Pinto. We thank Dhiraj Gandhi, Pete Florence, and Soumith Chintala for providing

feedback on an early version of this paper. This work was supported by grants from Honda,

Amazon, and ONR award numbers N00014-21-1-2404 and N00014-21-1-2758.

31

3 | Cloning k Behavior Modes with One

Model: Behavior Transformers

3.1 Introduction

Creating agents that can behave intelligently in complex environments has been a longstanding

problem in machine learning. Although Reinforcement Learning (RL) has made significant ad-

vances in behavior learning, its success comes at the cost of high sample complexity [Mnih et al.

2015; Duan et al. 2016; Akkaya et al. 2019]. Without priors on how to behave, state-of-the-art RL

methods require online interactions on the order of 1-10M ‘reward-labeled’ samples for benchmark

control tasks [Yarats et al. 2021a]. This is in stark contrast to vision and language tasks, where

pretrained models and data-driven priors are the norm [Devlin et al. 2018; Brown et al. 2020; Grill

et al. 2020; Bardes et al. 2021], which allows for efficient downstream task solving.

So how do we learn behavioral priors from pre-collected data? One option is offline RL [Levine

et al. 2020], where offline datasets coupled with conservative policy optimization can learn task-

specific behaviors. However, such methods have yet to tackle domains where task-specific reward

labels are not present. Without explicit reward labels, imitation learning, particularly behavior

cloning, is a more fitting option [Pomerleau 1989; Bojarski et al. 2016; Torabi et al. 2018]. Here,

given behavior data D ≡ {𝑠𝑡 , 𝑎𝑡 }, behavior models can be trained to predict actions 𝑓𝜃 (𝑠𝑡) → 𝑎𝑡

32

Ro
ll
ou
t
1

Start Reach red Push red to red Reach green Push green to green

Start Push red to greenPush green to redReach green Reach red

Ro
ll
ou
t
2

Ro
ll
ou
t
1

Start Microwave Kettle Bottom knob Hinge

Start Kettle Light switch Slide Hinge

Ro
ll
ou
t
2

Start position

Ro
ll
ou
t
1

Ro
ll
ou
t
2

Turn right Turn right Turn right TrajectoryTurn leftStart

Start Turn right Turn left Turn left Turn left Trajectory

CA
RL

A
Bl

oc
k

Pu
sh

Fr
an

ka
 K

it
ch

en

Figure 3.1: Unconditional rollouts from BeT models trained from multi-modal demonstartions on the
CARLA, Block push, and Franka Kitchen environments. Due to the multi-modal architecture of BeT, even
in the same environment successive rollouts can achieve different goals or the same goals in different ways.

33

through supervised learning. When demonstration data is plentiful, such approaches have found

impressive success in a variety of domains from self-driving [Pomerleau 1989; Codevilla et al.

2019] to robotic manipulation [Zhang et al. 2018b; Pari et al. 2021]. Importantly, it requires neither

online interactions nor reward labels.

However, state-of-the-art behavior cloning methods often make a fundamental assumption –

that the data is drawn from a unimodal expert solving a single task. This assumption is often

baked in to the architecture design, such as using a Gaussian prior. On the other hand, natural

pre-collected data is sub-optimal, noisy, and contains multiple modes of behavior, all entangled

in a single dataset. This distributionally multi-modal experience is most prominent in human

demonstrations. Not only do we perform a large variety of behaviors every day, our personal

biases result in significant multi-modality even for the same behavior [Grauman et al. 2021; Lynch

et al. 2020]. Current approach for behavior cloning from such datasets primarily focus on learning

goal-conditioned policies, where each goal implies a single mode of behavior [Hausman et al. 2017;

Gupta et al. 2019; Lynch et al. 2020; Dasari and Gupta 2020]. However, even after goal-conditioning,

an important question remains: How do we train models that can natively “clone” multi-modal

behavior data?

In this work, we present Behavior Transformers (BeT), a new method for learning behaviors from

rich, distributionally multi-modal data. BeT is based of three key insights. First, we leverage the

context based multi-token prediction ability of transformer-based sequence models [Vaswani

et al. 2017] to predict multi-modal actions. Second, since transformer-based sequence models are

naturally suited to predicting discrete classes, we cluster continuous actions into discrete bins using

k-means [MacQueen et al. 1967]. This allows us to model high-dimensional, continuous multi-

modal action distributions as categorical distributions without learning complicated generative

models [Kingma andWelling 2013; Dinh et al. 2016]. Third, to ensure that the actions sampled from

BeT are useful for online rollouts, we concurrently learn a residual action corrector to produce

34

continuous actions for a sampled action bin.

We experimentally evaluate BeT on five datasets ranging from simple diagnostic toy datasets to

complex datasets that include simulated robotic pushing [Florence et al. 2022], sequential task

solving in kitchen environments [Gupta et al. 2019], and self-driving with visual observations

in CARLA [Dosovitskiy et al. 2017]. The two main findings from these experiments can be

summarized as:

1. Onmulti-modal datasets, BeT achieves significantly higher performance during online rollouts

compared to prior behavior modelling methods.

2. Rather than collapsing or latching onto one mode, BeT is able to cover the major modes

present in the training behavior datasets. Unconditional rollouts from this model can be seen

in Fig. 3.1.

All of our datasets, code, and trained models will be made publicly available.

3.2 Behavior Transformers

Given a dataset of continuous observation and action pairs D ≡ {(𝑜, 𝑎)} ⊂ O × A that contains

behaviors we are interested in, our goal is to learn a behavior policy 𝜋 : O ↦→ A that models this

data without any online interactions with the environment or reward labels. This setup follows

the Behavior Cloning formulation, where policies are trained to model demonstrations from expert

rollouts. Often, such policies are chosen from a hypothesis class parametrized by parameter set 𝜃 .

Following this convention, our objective is to find the parameter 𝜃 that maximizes the probability

of the observed data

𝜃 ∗ := arg max
𝜃

∏
𝑡

P(𝑎𝑡 | 𝑜𝑡 ;𝜃) (3.1)

35

When the model class is restricted to unimodal isotropic Gaussians, this maximum likelihood

estimation problem leads to minimizing the Mean Squared Error (MSE),
∑
𝑡 ∥𝑎𝑡 − 𝜋 (𝑜𝑡 ;𝜃)∥2.

1 3 5
0

2

4
Dataset

1 3 5

Unimodal BC

1 3 5

BeT

Figure 3.2: Comparison between a regular MSE-based BC
model and a BeT models that can capture multi-modal distribu-
tions. The MSE-BC model takes 0 action to minimize MSE.

Limitations of traditionalMSE-based

BC: While MSE-based BC has been

able to solve a variety of tasks [Bo-

jarski et al. 2016; Torabi et al. 2018],

it assumes that the data distribution

is unimodal. Clean data from an ex-

pert demonstrator solving a particu-

lar task in a particular way satisfies

this assumption, but pre-collected intelligent behavior often may not [Lynch et al. 2020; Gupta et al.

2019]. While more recent behavior generation models have sought to address this problem, they

often require complex generative models [Singh et al. 2020], an exponential number of bins for

actions [Mandi et al. 2021], complicated training schemes [Pertsch et al. 2021], or time-consuming

test-time optimization [Florence et al. 2022]. An experimental analysis of some of these prior

works is presented in Section 3.3.

Overview of Behavior Transformers (BeT): We address two critical assumptions in regular

BC. First, we relax the assumption that the behavior we are cloning is purely Markovian, and

instead model 𝑃 (𝑎𝑡 | 𝑜𝑡 , 𝑜𝑡−1, · · · , 𝑜𝑡−ℎ+1) for some horizon ℎ. Second, instead of assuming that

actions are generated by a unimodal action distribution, we model our action distribution as a

mixture of gaussians. However, unlike previous efforts similar to Mixture Density Networks

(MDN) to do so, whose limitations have been explored in Florence et al. [2022], we do not explicitly

predict mode centers, which significantly improves our modeling capacity. To operationalize these

two features in a single behavior model, we make use of transformers since (a) they are effective

36

k means

Continuous action

dataset (|A| x a)

Clustering into

k bins

Action offset 
(1 x a)

Continuous
action 
(1 x a)

Categorical action bin 
(1 x k)

Continuous
action 
(1 x a)k means

encoder
k means

decoder

A. Continuous action binning

MinGPT

Observation Sequence

0.4 0.1 0.0 0.5 0.0

Per-class action
offsets (k x a)

Bin probs (1 x k)

Ground truth
action (1 x a)

1
k means

encoder

Ground truth
action bin (1 x k)

Ground truth action
offset (1 x a)

Ground truth class
offset (1 x a)

NLL/

Focal loss

MSE loss

Binning

head

Offset

head

B. Transformer training

0.1 0.2 0.4 0.2 0.1

Action offsets

Bin probabilities

1

Sampled bin

Action offset of
sampled bin

Sampled action

k means

decoderMinGPT

C. Test time rollouts

Observation sequence

Figure 3.3: Architecture of Behavior Transformer. (A) The continuous action binning using k-means
algorithm that lets BeT split every action into a discrete bin and a continuous offset, and later combine
them into one full action. (B) Training BeT using demonstrations offline; each ground truth action provides
a ground truth bin and residual action, which is used to train the minGPT trunk with its binning and
action offset heads. (C) Rollouts from BeT in test time, where it first chooses a bin and then picks the
corresponding offset to reconstruct a continuous action.

in utilizing prior observational history, and (b) they are naturally suited to output multi-modal

tokens through their architecture.

3.2.1 Action discretization for distribution learning

Although transformers have become standard as a backbone for sequence-to-sequence models [De-

vlin et al. 2018; Brown et al. 2020], they are designed to process discrete tokens and not continuous

values. In fact, modeling multi-modal distributions of high-dimensional continuous variables in

a tractable manner is in itself a challenging problem, especially if we want the trained behavior

model to cover the modes present in the dataset. To address this, we propose a new factoring of

the action prediction task by dividing each action in two parts: a categorical variable denoting an

‘action center’, and a corresponding ‘residual action’.

37

To this end, given the actions in our dataset, we first optimize for a set of 𝑘 action centers,

{𝐴1, 𝐴2, · · · , 𝐴𝑘} ⊂ A. We then decompose each action into two parts: a categorical variable

representing the closest action bin, ⌊𝑎⌋ := arg min𝑖 ∥𝑎 − 𝐴𝑖 ∥2, and a continuous residual action

⟨𝑎⟩ := 𝑎 −𝐴⌊𝑎⌋ . If we are given the set of action centers {𝐴𝑖}𝑘𝑖=1, an action bin index ⌊𝑎⌋ and the

residual action ⟨𝑎⟩, we can deterministically reconstruct the true action 𝑎 := 𝐴⌊𝑎⌋ + ⟨𝑎⟩. Once

learned, these k-means based encoder and decoders for this action factorization process are fixed

for the rest of the train and testing phases. The action factorization procedure is illustrated in

Fig. 3.3 (A).

3.2.2 Attention-based behavior mode learning

Once we have the clustering based autoencoder learned from the actions in the dataset, we

model our demonstration trajectories with BeT. We use a transformer decoder model, namely

minGPT [Brown et al. 2020], with minor modifications, as our backbone. The transformer

T takes in a sequence of continuous observations (𝑜𝑖, 𝑜𝑖+1, · · · , 𝑜𝑖+ℎ−1) and learns a sequence-

to-sequence model mapping each observation to a categorical distribution over 𝑘 discrete ac-

tion bins. The predicted probability sequence is then compared with the ground truth labels,

(⌊𝑎𝑖⌋, ⌊𝑎𝑖+1⌋, ⌊𝑎𝑖+2⌋, · · · , ⌊𝑎𝑖+ℎ−1⌋). We use a negative log-likelihood-based Focal loss [Lin et al.

2017] between the predicted categorical distribution probabilities and the ground truth labels

to train the transformer head. Focal loss is a simple modification over the standard cross en-

tropy loss. While the standard cross entropy loss for binary classification can be thought of

L𝑐𝑒 (𝑝𝑡) = − log(𝑝𝑡), Focal loss adds a term (1 − 𝑝𝑡)𝛾 to this, to make the new loss

L𝑓 𝑜𝑐𝑎𝑙 (𝑝𝑡) = −(1 − 𝑝𝑡)𝛾 log(𝑝𝑡)

This loss has the interesting property that its gradient is more steep for smaller values of 𝑝𝑡 , while

flatter for larger values of 𝑝𝑡 . Thus, it penalizes and changes the model more for making errors

38

in the low-probability classes, while is more lenient about making errors in the high probability

classes. The model is illustrated in Fig. 3.3 (B).

3.2.3 Action correction: from coarse to finer-grained predictions

Using a transformer allows us to model multi-modal actions. However, discretizing the continuous

action space in any way invariably causes loss of fidelity [Janner et al. 2021]. Discretization

error may cause online rollouts of the behavior policy to go out of distribution from the original

dataset [Ross et al. 2011], which can in turn cause critical failures. To predict the complete

continuous action, we add an extra head to the transformer decoder that offsets the discretized

action centers based on the observations.

For each observation 𝑜𝑖 in the sequence, the head produces a 𝑘 × dim(𝐴) matrix with 𝑘 proposed

residual action vectors,
(
⟨𝑎(𝑗)
𝑖
⟩
)𝑘
𝑗=1

= (⟨𝑎(1)
𝑖

⟩, ⟨𝑎(2)
𝑖

⟩, ⟨𝑎(3)
𝑖

⟩, · · · , ⟨𝑎(𝑘)
𝑖

⟩), where the residual actions

correspond to bin centers 𝐴1, 𝐴2, 𝐴3, · · · , 𝐴𝑘 . These residual actions are trained with a loss akin to

the masked multi-task loss [Girshick 2015] from object detection. In our case, if the ground truth

action is a, the loss is:

MT-Loss
(
a,
(
⟨𝑎(𝑗)
𝑖
⟩
)𝑘
𝑗=1

)
=

𝑘∑︁
𝑗=1

I[⌊a⌋ = 𝑗] · ∥⟨a⟩ − ⟨𝑎(𝑗)⟩∥2
2 (3.2)

Where I[] denotes the Iverson bracket, ensuring the offset head of BeT only incurs loss from the

ground truth class of action a. This mechanism prevents the model from trying to fit the ground

truth action using the offset at every index.

3.2.4 Test-time sampling from BeT

During test time, at timestep 𝑡 we input the latest ℎ observations (𝑜𝑡 , 𝑜𝑡−1, · · · , 𝑜𝑡−ℎ+1) to the

transformer, combining the present observation 𝑜𝑡 with ℎ − 1 previous observations. Our trained

39

MinGPT model gives us ℎ × 1 × 𝑘 bin center probability vectors, and ℎ × 𝑘 × dim(𝐴) offset matrix.

To sample an action at timestep 𝑡 , we first sample an action center according to the predicted

bin center probabilities on the 𝑡 th index. Once we have chosen an action center 𝐴𝑡, 𝑗 , we add the

corresponding residual action ⟨𝑎(𝑗)𝑡 ⟩ to it to recover a predicted continuous action ât = 𝐴𝑡, 𝑗 + ⟨𝑎(𝑗)𝑡 ⟩.

This sampling procedure is illustrated in Fig. 3.3 (C).

3.3 Experiments

We now study the empirical performance of BeT on a variety of behavior learning tasks. Our

experiments are designed to answer the following questions: (a) Is BeT able to imitate multi-modal

demonstrations? (b) How well does BeT capture the modes present in behavior data? (c) How

important are the individual components of BeT?

3.3.1 Environments and datasets

We experiment with five broad environments. While full descriptions of these environments,

dataset creation procedure, and overall statistics are in Appendix B.1, a brief description of them

are as follows.

(a) Point mass environment #1: Our first set of experiments in Fig. 3.2, used to get a qualitative

understanding of BeT, were performed in a simple Pointmass environment with a 2D obser-

vation and action space with two hundred demonstrations. The pre-collected demonstrations

start at a fixed point, and then make their way to another point while avoiding a block in the

middle. The two primary modes in this dataset are taking a left turn versus a right turn.

(b) Point mass environment #2: The setup is similar to the previous environment with the ex-

ception of one straight line and two complicated prolonged ‘Z’ shapedmodes of demonstration

40

(Fig. 3.5.)

(c) CARLA self-driving environment: CARLA [Dosovitskiy et al. 2017] uses the Unreal Engine

to provide a simulated driving environment in a visually realistic landscape. The agent action

space is 2D (accelerate/brake and left/right steer), while the observation space is (224,224,3)-

dimensional RGB image from the car. A hundred total demonstrations drive around a building

block in two distinct modes. This environment highlights the challenge of behavior learning

from high-dimensional observations as shown in Fig. 3.1 (a). For visual observations with

BeT, we use a frozen ResNet-18 [He et al. 2016] pretrained on ImageNet [Deng et al. 2009] as

an encoder.

(d) Multi-modal block-pushing environment: For more complicated interaction data, we use

the multi-modal block-pushing environment from Implicit Behavioral Cloning (IBC) [Florence

et al. 2022], where an XArm robot needs to push two blocks into two squares in any order.

The blocks and target squares are colored red and green. The positions of the blocks are

randomized at episode start. We collect 1,000 demonstrations using a deterministic controller

with two independent axes of multi-modality: (a) it starts by reaching for either the red or

the green block, with 50% probability, and (b) it pushes the blocks to (red, green) or (green,

red) squares respectively with 50% probability.

(e) Franka kitchen environment: To highlight the complexity of performing long sequences

of actions, we use the Relay Kitchen Environment [Gupta et al. 2019] where a Franka robot

manipulates a virtual kitchen environment. We use the relay policy learning dataset with

566 demonstrations collected by human participants wearing VR headsets. The participants

completed a sequence of four object-interaction tasks in each episode [Gupta et al. 2019].

There are a total of seven interactable objects in the kitchen: a microwave, a kettle, a slide

cabinet, a hinge cabinet, a light switch, and two burner knobs. This dataset contains two

different kinds of multi-modality: one from the inherent noise in human demonstrations, and

41

another from the demonstrators’ intent.

3.3.2 Baseline behavior learning methods

While a full description of our baselines are in Appendix B.2.1, a brief description of them is here:

(a) Multi-layer Perceptron with MSE (RBC): We use MLP networks trained with MSE loss as

our first baseline, since this is the standard way of performing behavioral cloning for a new

task [Torabi et al. 2018]. A comparison with transformer-based behavior cloning is discussed

in Section 3.3.5.

(b) Nearest neighbor (NN):Nearest neighbor based algorithms are easy to implement, and has re-

cently shown to have strong performance on complicated behavioral cloning tasks [Arunacha-

lam et al. 2023b].

(c) Locally Weighted Regression (LWR): This non-parametric approach provides better

regularization compared to NN and is a strong alternative to parametric BC [Atkeson et al.

1997; Pari et al. 2021].

(d) Variational auto-encoders (VAE): Inspired by SPiRL [Pertsch et al. 2021], where behavioral

priors are learned through a VAE [Kingma and Welling 2013], we compare with continuous

actions generated from the VAE and the prior.

(e) Normalizing Flow (Flow): Inspired by PARROT [Singh et al. 2020], where state-conditioned

action priors are learned through a Flow model [Dinh et al. 2016], we compare with actions

generated from the Flow model.

(f) Implicit Behavioral Cloning (IBC): Instead of modeling the conditional distribution

𝑃 (𝑎 | 𝑜), IBC models the joint probability distribution 𝑃 (𝑎, 𝑜) using energy-based models [Flo-

rence et al. 2022]. While IBC is slower than explicit BC models because of their sampling

42

Table 3.1: Performance of BeT compared with different baselines in learning from demonstrations. For
CARLA, we measure the probability of the car reaching the goal successfully. For Block push, we measure
the probability of reaching one and two blocks, and the probabilities of pushing one and two blocks to
respective squares. For Kitchen, we measure the probability of 𝑛 tasks being completed by the model
within the allotted 280 timesteps. Evaluations are over 100 rollouts in CARLA and 1,000 rollouts in Block
push and Kitchen environments.

CARLA Block push Kitchen
Driving Reach Push # Tasks completed

Baselines Success R1 R2 P1 P2 1 2 3 4 5
RBC 0.98 0.67 0 0 0 0 0 0 0 0
1-NN 0.99 0.49 0.05 0.01 0 0.90 0.72 0.44 0.17 0
LWR 1 0.50 0.06 0 0 1 0.83 0.52 0.21 0
VAE 0 0.60 0.05 0 0 1 0 0 0 0
Flow 0.03 0.59 0.02 0 0 0.04 0 0 0 0
IBC 0.25 0.98 0.04 0.01 0 0.99 0.87 0.61 0.24 0
BeT (Ours) 0.98 1 0.99 0.96 0.71 0.99 0.93 0.71 0.44 0.02

requirements, they have been shown to learn well on multi-modal data, and outperform

earlier work such as MLP-MDNs [Bishop 1994].

3.3.3 Is BeT able to imitate multi-modal demonstrations?

The first question we ask is whether BeT can actually clone behaviors given a mixed dataset of

unlabeled, multi-modal behaviors. To examine that, we look at the performance of our model in

CARLA, Block push, and Kitchen environments compared with our baselines in Table 3.1.

We see that BeT outperforms all other methods in all environments except CARLA, where it is

narrowly outperformed by LWR. Since the models are all behavioral cloning algorithms, they

share the failure mode of failing once the observations go out of distribution (OOD). However, they

vary in the tolerance. For example, BeT shines in the Block push environment, where alongside

extreme environment randomness and multi-modality, the models also have to learn significant

long-term behaviors and commit to a single mode over a long period. While all baselines can

somewhat successfully reach one block, they fail to complete the long-horizon, multi-modal task

43

0 1 2 3
Task sequence

m b l s
m t b h
t b h s
m k b s
m b h s
t b l s
k b l s
k b h s
k t b s
m k h s

0 100 200
Frequency

0 1 2 3
Task sequence

k b . .
m . . .
m b . .
m k t .
m b s .
m k . .
k b t .
k . . .
m b t .
k b s .

0 100 200
Frequency

0 1 2 3
Task sequence

k b . .
m b s .
k b s .
k b l .
m . . .
m b . .
k b t s
k . . .
k b t .
m b t .

0 100 200
Frequency

0 1 2 3
Task sequence

k b s h
b t s .
b t s h
b t . .
k b s .
k b . .
k b t s
k b t .
b t l s
b s . .

0 100 200
Frequency

bottom burner hinge cabinet kettle light switch microwave slide cabinet top burner not completed

Demonstration Dataset k-NN + LWR Implicit BC Behavior Transformer

Figure 3.4: Distribution of most frequent tasks completed in sequence in the Kitchen environment. Each
task is colored differently, and frequency is shown out of a 1,000 unconditional rollouts from the models.

of pushing two blocks into two different bins. On the other hand, we observe that BeT’s primary

failure mode is not realizing a block has not completely entered the target yet, while other methods

either go OOD quickly, or keep switching between modes. We also observe that BeT performs well

even in complex observation and action spaces. In the CARLA environment, the model takes in

visual observations, while in the Franka Kitchen environment, the action space corresponds to a

9-DOF torque controlled robot. BeT handles both cases with the same ease as it does environments

with lower-dimensional observation or action spaces.

3.3.4 Does BeT capture the modes present in behavior data?

Next, we examine the question of whether, given a dataset where multi-modal behavior exists, our

model learns behavior that is also multi-modal. Here, we are interested in seeing the variance of

the behavior of the model over different rollouts. In each of our environments, the demonstrations

contain different types of multi-modality. As a result, we show a comprehensive analysis of

multi-modality seen in our agent behaviors.

We see in Table 3.2 that in CARLA and Block push, BeT covers all the modes of the demonstration

44

Table 3.2: Multimodality learned from the multimodal demonstrations by different algorithms. In CARLA,
we consider the probability of turning left vs. right at the intersection, ignoring OOD rollouts. In Block
push, we consider two set of probabilities, (a) which block was reached first, and (b) what was the pushing
target for each block. Finally, in Franka Kitchen, we consider the empirical entropy for the task sequences,
considered as strings, sampled from the model. We highlight the values closest to the corresponding
demonstration values.

CARLA Block: first
block reached

Push: red
block target

Push: green
block target Kitchen

Baselines Left Right Red Green Red Green Red Green Task entropy
RBC 0 0.98 0.41 0.25 0 0 0 0 0
1-NN 0 0.99 0.24 0.25 0 0 0 0.01 2.12
LWR 0 1 0.26 0.26 0.01 0 0.01 0.01 2.29
VAE 0 0 0.27 0.33 0 0 0 0 0.72
Flow 0 0 0.31 0.29 0 0 0 0 0.08
IBC 0.12 0.13 0.48 0.50 0 0 0.01 0.01 2.41
BeT (Ours) 0.34 0.64 0.54 0.46 0.43 0.44 0.41 0.40 2.47
Demonstrations 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 2.96

data, even in the few cases where it does not perfectly match the demonstrated task probabilities.

For the Kitchen environment, we see in Fig. 3.4 that BeT visits certain strings of tasks more

frequently than in the original demonstrations. However, compared to other strong baselines,

BeT generates longer task strings more often while maintaining diversity and not collapsing to a

single mode.

3.3.5 How important are the individual components of BeT?

There are four key differences between BeT architecture and standard BC: (a) binning actions into

discrete clusters, (b) using offsets to faithfully reconstruct actions later, (c) learning sequentially to

use historical context, and (d) using an attention-based MinGPT trunk. In this section, we discuss

the impacts they have in BeT performance.

Impact of discrete binning: Intuitively, having discrete options for bin centers is what enables

BeT to express multi-modal behavior even when starting from an identical starting state. Indeed,

45

Table 3.3: Relative performance of ablated variants of BeT, normalized by average BeT successes at the
task

Ablations CARLA Block push Kitchen
No offsets 0.94 0.95 0.78
No binning 0.94 0.25 0.68
No history 0.65 0.95 0.88

MLP 0.90 0 0.05
Temp. Conv 0.72 0.01 0.26

LSTM 0.03 0.03 0.04
GPT-MDN 0.30 0.83 0.86
Unif. quant. 0.90 0.96 0.90

if there is no binning, we see from Table 3.3 that the performance of BeT drops significantly. More

tellingly, in the Franka Kitchen environment, the model only ever completed a subsequence of

(kettle, top/bottom burner, light switch, slide cabinet) tasks after 100 random rollouts. This result

shows us that having discrete bins helps BeT achieve multi-modality. We also experiment with the

Mixture density networks (MDN) [Bishop 1994] and uniform quantization, as shown in previous

works [Florence et al. 2022; Janner et al. 2021]. We see that they may perform well sometimes but

overall still fall short of our k-means binning approach.

Necessity of action offsets: An important feature of BeT is the residual action offset that

corrects the discrete actions coming from the bins. While the bin centers may be quite expressive,

Table 3.3 shows that the inability to correct them causes a performance degrade. Interestingly, the

largest degradation comes in the Kitchen environment, which also has the highest dimensional

action space. Intuitively, we can understand how in higher dimension the loss of fidelity from

discretizing would be higher, and the relative performance loss across three environments support

that hypothesis.

Importance of historical context: While RL algorithms traditionally assume environments

are Markovian, human behavior in an open-ended environment is rarely so. Thus, using historical

46

0 2 4 6 8

0

2

4

6

8

Dataset

0 2 4 6 8

MLP + MSE BC

0 2 4 6 8

BeT with no history

0 2 4 6 8

BeT with history

Figure 3.5: Comparison between an RBC model and two BeT models, trained with and without historical
context on a dataset with three distinct modes. BeT with history is better able to capture the context-
dependant behavior in the demonstrations.

context helps BeT to perform well. We show a simple experiment in Fig. 3.5 on the second point

mass environment. Here, training and evaluating with some historical context allows BeT to

follow the demonstrations better. We experience the same in the CARLA, Block push, and Kitchen

environments, where training with some historical context raises performance across the board

as seen in Table 3.3.

Importance of transformer architecture: Despite transformers’ success in other fields

of machine learning, it is natural to wonder whether the tasks BeT solves here really requires

one. We ablated BeT by replacing the MinGPT trunk with an MLP, Temporal Convolution, and

LSTMs, and found that they have lower performance while also being difficult to train stably. This

performance reduction remains even if the MLP is given some historical context by stacking ℎ

observations before passing it to the MLP. See Table. 3.3 for results and Appendix B.3.2 for further

details.

Ablating the number of discrete bin centers, 𝑘 : Since BeT is trained with a sum of focal

loss for the binning head and MSE loss for the offset head, the number of cluster centers present a

trade-off in the architecture. Concretely, as the number of bins go up, the log-likelihood loss goes

up but the MSE loss goes down. In Table 3.3, we showed that using only one bin (𝑘 = 1) decreases

47

the performance level of BeT.

Figure 3.6: Ablating the number of discrete bin centers 𝑘 for BeT. Reward is normalized with respect to
the best performing model.

In Fig. 3.6, we present the plot of the variation in performance as 𝑘 value changes. We see that

for BeT it matters somewhat to pick a number of clusters 𝑘 that is in the right neighborhood.

However, the range for near-optimum performance is quite wide. In our experiments, we also

pick a 𝑘 in the right neighborhood and only run a sweep at the very end to find out an optimal

value for 𝑘 .

Computation considerations: While transformers in usual contexts are large models, we

downscale them for our application in BeT (See Appendix B.2.4). Our models contain on the order

of 104–106 parameters, and even with a small batch size trains within an hour for our largest

datasets (Block push) on a single desktop GPU. In contrast, for the same task, our strongest baseline

IBC takes about 14 hours. Evaluation rollouts on the same environment take 1.65 seconds with

BeT, as opposed to 17.70 seconds with IBC.

3.4 Related Work

This paper builds upon a rich literature in imitation learning, offline learning, generative models,

and transformer architectures. The most relevant ones to our work are discussed here.

48

Learning from offline data: Since Pomerleau [1988] showed the possibility of driving an

autonomous vehicle using offline data and a neural network, learning behavior from offline

data has been a continuous topic of research for scalable behavior learning [Argall et al. 2009;

Billard et al. 2008; Schaal 1999]. The approaches can be divided into two broad classes: Offline RL

[Fujimoto et al. 2018; Kumar et al. 2019, 2020; Wu et al. 2019; Levine et al. 2020; Fu et al. 2020],

focusing on learning from datasets of a mixed quality that also have reward labels; and imitation

learning [Osa et al. 2018; Peng et al. 2018, 2021; Ho and Ermon 2016], focusing on learning behavior

from a dataset of expert behavior without reward labels. BeT falls under the second category,

as it is a behavior cloning model. Behavior cloning is a form of imitation learning that tries to

model the action of the expert given the observation which is often used in real-world applications

[Zhang et al. 2018b; Zhu et al. 2018; Zhang et al. 2018b; Rahmatizadeh et al. 2018; Florence et al.

2019; Zeng et al. 2020]. As behavior cloning algorithms are generally solving a fully supervised

learning problem, they tend to be faster and simpler than reinforcement learning or offline RL

algorithms and in some cases show competitive results [Fu et al. 2020; Gulcehre et al. 2020].

Generative models for behavior learning: One approach for imitation learning is Inverse

Reinforcement Learning or IRL [Russell 1998; Ng et al. 2000], where given expert demonstrations,

a model tries to construct the reward function. This reward function is then used to generate

desirable behavior. GAIL [Ho and Ermon 2016], an IRL algorithm, connects generative adversarial

models with imitation learning to construct a model that can generate expert-like behavior. Under

this IRL framework, previous works have tried to predict multi-modal, multi-human trajectories

[Lee and Kitani 2016; Ivanovic et al. 2018]. Similarly, other works have tried Gaussian Processes

[Rasmussen and Nickisch 2010] for creating dynamical models for human motion [Wang et al.

2007]. Another class of algorithms learn a generative action decoder [Pertsch et al. 2021; Lynch

et al. 2020; Singh et al. 2020] from interaction data to make downstream reinforcement learning

faster and easier, which inspired BeT’s action factorization. Finally, a class of algorithms, most

49

notably [Liu et al. 2020; Florence et al. 2022; Kostrikov et al. 2021; Nachum and Yang 2021] do

not directly learn a generative model but instead learn energy based models. These energy based

models can then be sampled to generate desired behavior. Since [Florence et al. 2022] is a BC

model capable of multi-modality, we compare against it as a baseline in Sec. 3.3.

Transformers for control: With the stellar success of transformer models [Vaswani et al.

2017] in natural language processing [Devlin et al. 2018; Brown et al. 2020] and computer vision

[Dosovitskiy et al. 2020], there has been significant interest in using transformer models to

learn behavior and control. Among those, [Chen et al. 2021; Janner et al. 2021] applies them to

Reinforcement Learning and Offline Reinforcement Learning, respectively, while [Clever et al.

2021; Dasari and Gupta 2020; Mandi et al. 2021] use them for imitation learning. [Dasari and Gupta

2020; Mandi et al. 2021] use transformers mostly to summarize historical visual context, while

[Clever et al. 2021] relies on their long-term extrapolation abilities to collect human-in-the-loop

demonstrations more efficiently. BeT is inspired by both of these use cases, as we use a transformer

to summarize historical context while leveraging its generative abilities. Architecturally, BeT is

most closely related to the imitation learning variant of [Janner et al. 2021], with a significant

difference that while [Janner et al. 2021] learns the joint state, action distribution, BeT learns the

conditional distribution of action given state, which allows BeT to tackle much more complicated

state spaces.

Datasets for distributionally multi-modal data: Similar to computer vision [Deng et al.

2009; Lin et al. 2014; Liu et al. 2018] and natural language processing [Bowman et al. 2015;

Rajpurkar et al. 2016], there has been a recent interest in collecting behavior datasets that may

aid in downstream behavior learning. Some of them are labeled with agent goals or rewards for

downstream tasks [Mandlekar et al. 2018; Fu et al. 2020; Mandlekar et al. 2021], while others

are more open ended [Gupta et al. 2019; Lynch et al. 2020; Young et al. 2021] and come without

50

reward or task labels. In our work, we focus towards the latter class. The lack of labeled goal

or reward labels in the second category implies that there is more multi-modality in the action

distributions compared to action distributions of goal or reward conditioned datasets, which is

the same reason a lot of work learning from multi-modal datasets try to learn a goal-conditioned

model [Hausman et al. 2017; Gupta et al. 2019; Lynch et al. 2020; Dasari and Gupta 2020]. Finally,

the lack of labelling requirements mean that the unlabelled datasets are cheaper to obtain, which

should help BeT scale further in the future.

3.5 Limitations

In this work, we introduce Behavior Transformers (BeT), which uses a transformer-decoder based

backbone with a discrete action mode predictor coupled with a continuous action offset corrector

to model continuous actions sequences from open-ended, multi-modal demonstrations. While

BeT shows promise, the truly exciting use of it would be to learn diverse behavior from human

demonstrations or interactions in the real world. In parallel, extracting a particular, unimodal

behavior policy from BeT during online interactions, either by distilling the model or by generating

the right ‘prompts’ [Reynolds and McDonell 2021], would make BeT tremendously useful as a

prior for online Reinforcement Learning.

Postscript

With hindsight worthy of a full thesis, the most important contribution of BeT in literature is

pushing the line of mainstream research into multi-modal behavior cloning further. The earliest

work focusing primarily on this problem was Implicit Behavior Cloning (IBC), and BeT creates a

system that is much more usable in practice without the optimization issues present in earlier

work. Even today, a lot of the benchmarks (Franka Kitchen, BlockPush) and metrics (behavior

51

entropy) used to evaluate multi-modal policy learning originated in this work.

What held BeT back at that time was a lack of strong baselines. At that time, we were elated to

outperform the strongest baseline (IBC or GMM) by a lot, and thus did not know that a much

stronger algorithm is possible with small modifications to the method Chapter 5. Relative to

this, Diffusion Policy had a much stronger baseline to work off of which helped it optimize the

algorithm to its best version. Another limitation, that is yet to be addressed, is the interaction of

the hybrid action representation with reinforcement learning algorithms. After a number of years

using purely BC training on such policy architecture, the natural next step is RL self-improvement,

but the hybrid action space makes it more complex than using only continuous or discrete action

spaces.

52

4 | Conditional Behavior Generation

from Uncurated Robot Data:

Conditional Behavior Transformers

4.1 Introduction

Machine Learning is undergoing a Cambrian explosion in large generative models for applications

across vision [Ramesh et al. 2022] and language [Brown et al. 2020]. A shared property across

these models is that they are trained on large and uncurated data, often scraped from the internet.

Interestingly, although these models are trained without explicit task-specific labels in a self-

supervised manner, they demonstrate a preternatural ability to generalize by simply conditioning

the model on desirable outputs (e.g. “prompts” in text or image generation). Yet, the success of

conditional generation from uncurated data has remained elusive for decision making problems,

particularly in robotic behavior generation.

To address this gap in behavior generation, several works [Lynch et al. 2020; Pertsch et al. 2021]

have studied the use of generative models on play data. Here, play data is a form of offline,

uncurated data that comes from either humans or a set of expert policies interacting with the

environment. However, once trained, many of these generative models require significant amounts

53

Table 4.1: Comparison between existing algorithms to learn from large, uncurated datasets: GCBC [Lynch
et al. 2020], GCSL [Ghosh et al. 2019], Offline GCRL [Ma et al. 2022b], Decision Transformer [Chen et al.
2021]

GCBC GCSL Offline RL Decision Transformer C-BeT (ours)

Reward-free ✓ ✓ ✗ ✗ ✓

Offline ✓ ✗ ✓ ✓ ✓

Multi-modal ✗ ✗ ✗ ✗ ✓

of additional online training with task-specific rewards [Gupta et al. 2019; Singh et al. 2020]. In

order to obtain task-specific policies without online training, a new line of approaches employ

offline RL to learn goal-conditioned policies [Levine et al. 2020; Ma et al. 2022b]. These methods

often require rewards or reward functions to accompany the data, either specified during data

collection or inferred through hand-crafted distance metrics, for compatibility with RL training.

Unfortunately, for many real-world applications, data does not readily come with rewards. This

prompts the question: how do we learn conditional models for behavior generation from reward-free,

play data?

To answer this question, we turn towards transformer-based generative models that are common-

place in text generation. Here, given a prompt, models like GPT-3 [Brown et al. 2020] can generate

text that coherently follow or satisfy the prompt. However, directly applying such models to

behavior generation requires overcoming two significant challenges. First, unlike the discrete

tokens used in text generation, behavior generation will need models that can output continuous

actions while also modeling any multi-modality present in the underlying data. Second, unlike

textual prompts that serve as conditioning for text generation, behavior generation may not have

the condition and the operand be part of the same token set, and may instead require conditioning

on future outcomes.

In this work, we present Conditional Behavior Transformers (C-BeT), a new model for learning

conditional behaviors from offline data. To produce a distribution over continuous actions in-

stead of discrete tokens, C-BeT augments standard text generation transformers with the action

54

Initialization Grasping oven Partially opening Retracting Attempt to reopen Missed grasp

Goal:
Open oven

Result:
Failure

Initialization Grasping pot Moving pot Wedging pot in sink Moved pot Retracting

Goal:
Move pot
to sink

Result:
Success

Initialization Grasping microwave Missed grasp Re-opening microwave Grasping Oven Opening Oven

Initialization Grasping r. knob Turning r. knob Retracting Grasping l. knob Turning l. knob

Goal:
Turn right
knob & left

knob

Result:
Success

Goal:
Open

microwave
& oven

Result:
Success

Grasping microwave Opening microwave Closing microwave Grasping Pot Transporting Pot Placing Pot

Goal:
Open

microwave
& move pot

Result:
Failure

Initialization Turning left knob Retracting Grasping Oven Opening Oven Retracting

Goal:
Turn left

knob
& open oven

Result:
Success

Figure 4.1: Multiple conditioned roll-outs of visual robot policies learned on our toy kitchen with only 4.5
hours of human play interactions. Our model learns purely from image and proprioception without human
labeling or data curation. During evaluation, the policy can be conditioned either on a goal observation or
a demonstration. Note that the last three rows contain distractor objects in the environment that were
never seen during training.

55

discretization introduced in Behavior Transformers (BeT) [Shafiullah et al. 2022]. Conditioning

in C-BeT is done by specifying desired future states as input similar to Play-Goal Conditioned

Behavior Cloning (Play-GCBC) [Lynch et al. 2020]. By combining these two ideas, C-BeT is

able to leverage the multi-modal generation capabilities of transformer models with the future

conditioning capabilities of conditional policy learning. Importantly, C-BeT does not require any

online environment interactions during training, nor the specification of rewards or Q functions

needed in offline RL.

We experimentally evaluate C-BeT on three simulated benchmarks (visual self-driving in CARLA [Doso-

vitskiy et al. 2017], multi-modal block pushing [Florence et al. 2022], and simulated kitchen [Gupta

et al. 2019]), and on a real Franka robot trained with play data collected by human volunteers.

The main findings from these experiments can be summarized as:

1. On future-conditioned tasks, C-BeT achieves significantly higher performance compared to

prior work in learning from play.

2. C-BeT demonstrates that competent visual policies for real-world tasks can be learned from

fully offline multi-modal play data (rollouts visualized in Figure 4.1).

4.2 Background and Preliminaries

Play-like data: Learning fromDemonstrations [Argall et al. 2009] is one of the earliest frameworks

explored for behavior learning algorithms from offline data. Typically, the datasets used in these

frameworks have a built in assumption that the demonstrations are collected from an expert

repeatedly demonstrating a single task in exactly the same way. On the contrary, play datasets

violate many of such assumptions, like those of expertise of the demonstrator, and the unimodality

of the task and the demonstrations. Algorithms that learn from such datasets sometimes assume

that the demonstrations collected are from a rational agent with possibly some latent intent in

56

their behavior [Lynch et al. 2020]. Note that, unlike standard offline-RL datasets [Fu et al. 2020],

play-like behavior datasets neither contain fully random behaviors, nor have rewards associated

with the demonstrations.

Behavior Transformers (BeT): BeT [Shafiullah et al. 2022] is a multi-modal behavior cloning

model designed particularly for tackling play-like behavior datasets. BeT uses a GPT-like trans-

former architecture to model the probability distribution of action given a sequence of states

𝜋 (𝑎𝑡 | 𝑠𝑡−ℎ:𝑡) from a given dataset. However, unlike previous behavior learning algorithms, BeT

does not assume a unimodal prior for the action distribution. Instead, it uses a 𝑘-means discretiza-

tion to bin the actions from the demonstration set into 𝑘 bins, and then uses the bins to decompose

each action into a discrete and continuous component. This support for multi-modal action

distributions make BeT particularly suited for multi-modal, play-like behavior datasets where

unimodal behavior cloning algorithms fail. However, vanilla BeT only supports unconditonal

behavior rollouts, which means that it is not possible to choose a targeted mode of behavior during

BeT policy execution.

Conditional behavior learning: Generally, the problem of behavior learning for an agent is con-

sidered the task of learning a policy 𝜋 : O → A mapping from the environment observations to the

agent’s actions that elicit some desired behavior. Conditional behavior learning is concerned with

learning a policy 𝜋 : O×G → A conditioned additionally on a secondary variable 𝑔 sampled from

a distribution 𝑝 (𝑔). This condition variable could be specific environment states, latents (such as

one-hot vectors), or even image observations. The success of a conditioned policy can be evaluated

either through pre-specified reward functions, distance function between achieved outcome 𝑔′ and

specified outcome 𝑔, or by discounted visitation probability 𝑑𝜋 (·|𝑔) = E𝜏∼𝜋 [
∑∞
𝑡=0 𝛾

𝑡𝛿 (𝜙 (𝑜𝑡) = 𝑔)] if

a mapping 𝜙 between states and achieved outcome is defined [Eysenbach et al. 2022].

Goal Conditioned Behavior Cloning (GCBC): In GCBC [Lynch et al. 2020; Emmons et al. 2021],

the agent is presented with a dataset of (observation, action, goal) tuples (𝑜, 𝑎, 𝑔), or sequences

57

of such tuples, and the objective of the agent is to learn a goal-conditioned behavior policy. The

simplest way to achieve so is by training a policy 𝜋 (· | 𝑜, 𝑔) that maximizes the probability of the

seen data 𝜋∗ = arg max𝜋
∏

(𝑜,𝑎,𝑔) P[𝑎 ∼ 𝜋 (· | 𝑜, 𝑔)]. Assuming a unimodal Gaussian distribution

for 𝜋 (𝑎 | 𝑜, 𝑔) and a model parametrized by 𝜃 , this comes down to finding the parameter 𝜃

minimizing the MSE loss, 𝜃 ∗ = arg min𝜃
∑

(𝑜,𝑎,𝑔) | |𝑎 − 𝜋 (𝑜, 𝑔;𝜃) | |2. To make GCBC compatible with

play data that inherently does not have goal labels, goal relabeling from future states is often

necessary. A common form of data augmentation in training such models, useful when G ⊂ O, is

hindsight data relabeling [Andrychowicz et al. 2017], where the dataset {(𝑜, 𝑎, 𝑔)} is augmented

with {(𝑜𝑡 , 𝑎, 𝑜𝑡 ′) | 𝑡 ′ > 𝑡} by relabeling any reached state in a future timestep as a goal state and

adding it to the dataset.

4.3 Approach

1 2

3

Figure 4.2: Conditional behavior learning from play demonstrations. Here, a policy conditioned on
reaching 1⃝ or 2⃝ has only one possible course of action, but conditioned on reaching 3⃝ there are two
reasonable paths.

Given a dataset {(𝑜, 𝑎)} ∈ O×A of sequences of (observation, action) pairs from a play dataset, our

goal is to learn a behavior generation model that is capable of handling multiple tasks and multiple

58

ways of accomplishing each task. At the same time, we wish to be able to extract desired behavior

from the dataset in the form of a policy through our model, or, in terms of generative models,

“controllably generate” our desired behavior (see Figure 4.2). Finally, in the process of learning this

controllable, conditional generative model, we wish to minimize the amount of additional human

annotation or curation required in preparing the dataset. The method we develop to address these

needs is called Conditional Behavior Transformer.

4.3.1 Conditional Behavior Transformers (C-BeT)

Conditional task formulation: First, we formulate the task of learning from a play dataset

as learning a conditional behavior policy, i.e. given the current state, we need to model the

distribution of actions that can lead to particular future states. For simplicity, our formulation

can be expressed as 𝜋 : O × O → D(A) where, given a current observation 𝑜𝑐 and a future

observation 𝑜𝑔, our policy 𝜋 models the distribution of the possible actions that can take the

agent from 𝑜𝑐 to 𝑜𝑔. Mathematically, given a set of play trajectories 𝑇 , we model the distribution

𝜋 (𝑎 | 𝑜𝑐, 𝑜𝑔) ≜ P𝜏∈𝑇 (𝑎 | 𝑜𝑐 = 𝜏𝑡 , 𝑜𝑔 = 𝜏𝑡 ′, 𝑡
′ > 𝑡). Next, to make our policy more robust since we

operate in the partially observable setting, we replace singular observations with a sequence of

observations; namely replacing 𝑜𝑐 and 𝑜𝑔 with 𝑜𝑐 = 𝑜 (1:𝑁)
𝑐 and 𝑜𝑔 = 𝑜 (1:𝑁)

𝑔 for some integer 𝑁 . Thus,

the final task formulation becomes learning a generative model 𝜋 with:

𝜋

(
𝑎 | 𝑜 (1:𝑁)

𝑐 , 𝑜
(1:𝑁)
𝑔

)
≜ P𝜏∈𝑇

(
𝑎 | 𝑜 (1:𝑁)

𝑐 = 𝜏𝑡 :𝑡+𝑁 , 𝑜
(1:𝑁)
𝑔 = 𝜏𝑡 ′:𝑡 ′+𝑁 , 𝑡

′ > 𝑡
)

(4.1)

Architecture selection: Note that the model for our task described in the previous paragraph

is necessarily multi-modal, since depending on the sequences 𝑜𝑐 and 𝑜𝑔, there could be multiple

plausible sequences of actions with non-zero probability mass. As a result, we choose Behavior

Transformers (BeT) [Shafiullah et al. 2022] as our generative architecture base as it can learn

action generation with multiple modes. We modify the input to the BeT to be a concatenation

59

(
A
)
D
a
t
a
s
e
t

oc:c+h og:g+h′￼

(
B
)
T
r
a
i
n
i
n
g

Behavior  
TransformerCurrent obs Future obs

CAT(), 𝒟(̂a c:c+h)

Estimated 
action 

distribution

ac:c+h

Ground truth 
actions

BeT loss 
(Focal + MT loss)

(
C
)
E
v
a
l
u
a
t
i
o
n

Target frame

or

Target demonstration
oc−h:c og:g+h′￼

Observations Conditional

CAT(),

Behavior  
Transformer

𝒟(̂a c−h:c)

Action 
distribution

∼ ac

Sampled 
action

Figure 4.3: End-to-end training and evaluation of C-BeT. (A) Our dataset consists of play data in an
environment, which may contain semi-optimal behavior, multi-modal demonstrations, and failures, and
does not contain any annotations or task labels. (B) We train our C-BeT model by conditioning on current
and future states using BeT (Section 4.2) (C) During evaluation, our algorithm can be conditioned by target
observations or newly collected demonstrations to generate targeted behavior.

of our future conditional observation sequence and current observation sequence. We choose

to concatenate the inputs instead of stacking them, as this allows us to independently choose

sequence lengths for the current and future conditional observations. Since BeT is a sequence-to-

sequence model, we only consider the actions associated with the current observations as our

actions. We show the detailed architecture of our model in Figure 4.3.

Dataset preparation: To train a C-BeT model on our play dataset {(𝑜, 𝑎)}, we will need to

appropriately prepare the dataset. We first convert the dataset to hold sequences of observa-

tions associated with actions, {(𝑜𝑡 :𝑡+𝑁 , 𝑎𝑡 :𝑡+𝑁)}. Then, during training time, we dynamically

augment each pair with a sequence of future observations, functionally converting our dataset

into {(𝑜𝑡 :𝑡+𝑁 , 𝑎𝑡 :𝑡+𝑁 , 𝑜𝑡 ′:𝑡 ′+𝑁 ′)} for some 𝑡 ′ > 𝑡 , and treat the sequence 𝑜𝑡 ′:𝑡 ′+𝑁 ′ as 𝑜𝑔.

Training objective: We employ the same objective as BeT in training C-BeT. For each of the

current observation and future conditional pair, we compute the BeT loss (see appendix C.1 for

details) between the ground truth actions and the predicted actions. We compute the focal loss [Lin

60

et al. 2017] on the predicted action bins, and the MT-loss [Girshick 2015] on the predicted action

offsets corresponding to the action bins as described in BeT.

Test-time conditioning with C-BeT: During test time, we again concatenate our future condi-

tional sequence with our current observations, and sample actions from our model according to

the BeT framework. While in this work, we primarily condition C-BeT on future observations, we

also study other ways of training and conditioning it, such as binary latent vectors denoting the

modes in a trajectory in our experiments, and compare its performance to observation-conditioned

C-BeT (see Section 4.4.5).

4.4 C-BeT on Simulated Benchmarks

In this section, we discuss our experiments in simulation that are designed to answer the following

key questions: How well does C-BeT learn behaviors from play? How important is multi-modal

action modeling? And finally, how does C-BeT compare to other forms of conditioning?

4.4.1 Baselines

We compare with the following state-of-the-art methods in learning from reward-free offline data:

• Goal Conditioned BC (GCBC): GCBC [Lynch et al. 2020; Emmons et al. 2021] learns a policy

by optimizing the probability of seen actions given current and the end state in a trajectory.

• WeightedGoalConditioned Supervised Learning (WGCSL) [Yang et al. 2022]: GCSL [Ghosh

et al. 2019] is an online algorithm with multiple rounds of collecting online data, relabeling,

and training a policy on that data using GCBC. WGCSL [Yang et al. 2022] improves GCSL by

learning an additional value function used to weight the GCSL loss. We compare against an

single-round, offline variant of WGCSL in this work.

61

• LearningMotor Primitives fromPlay (Play-LMP): Play-LMP [Lynch et al. 2020] is a behavior

generation algorithm that focuses on learning short (∼ 30 timesteps) motor primitives from play

data. Play-LMP does so by using a variational-autoencoder (VAE) to encode action sequences

into motor program latents and decoding actions from them.

• Relay Imitation Learning (RIL): Relay Imitation Learning [Gupta et al. 2019] is a hierarchical

imitation learning with a high level controller that generates short term target state given long

term goals, and a low level controller that generates action given short term target.

• Conditional Implicit Behavioral Cloning (C-IBC): Implicit behavioral cloning [Florence

et al. 2022] learns an energy based model (EBM) 𝐸 (𝑎 | 𝑜) over demos and during test samples

action 𝑎 given an observation 𝑜 . We compare against a conditional IBC by training an EBM

𝐸 (𝑎 | 𝑜, 𝑔).

• Generalization Through Imitation (GTI): GTI [Mandlekar et al. 2020] encodes the goal

condition using a CVAE, and autoregressively rolls out action sequences given observation

and goal-latent. We follow their architecture and forgo collecting new trajectories with an

intermediate model since that does not fit an offline framework.

• Offline Goal-Conditioned RL: While offline RL is generally incompatible with play data

without rewards, recently some offline goal-conditioned RL algorithms achieved success by

optimizing for a proxy reward defined through state occupancy. Our baseline, GoFAR [Ma et al.

2022b], is one such algorithm that learns a goal-conditioned value function and optimizes a

policy to maximize it.

• Behavior Transformers (BeT): We include unconditional BeT (Sec. 4.2) in our baseline to

understand the improvements made by the C-BeT conditioning. In practice, it acts as a “random”

baseline that performs the tasks without regard for the goal.

62

Table 4.2: Results of future-conditioned algorithms on a set of simulated environments. The numbers
reported for CARLA, BlockPush, and Kitchen are out of 1, 1, and 4 respectively, following [Shafiullah et al.
2022]. In CARLA, success counts as reaching the location corresponding to the observation; for BlockPush,
it is pushing one or both blocks into the target squares; and for Kitchen, success corresponds to the number
of conditioned tasks, out of four, completed successfully.

GCBC WGCSL Play-LMP RIL C-IBC GTI GoFAR BeT C-BeT
(unimodal)

C-BeT
(multimodal)

CARLA 0.04 0.02 0.0 0.59 0.65 0.74 0.72 0.31 0.62 0.98
BlockPush 0.06 0.10 0.02 0.07 0.01 0.04 0.04 0.34 0.35 0.90
Kitchen 0.74 1.17 0.04 0.39 0.13 1.61 1.24 1.77 2.74 2.80

• Unimodal C-BeT: We use our method without the multi-modal head introduced in BeT. This

also corresponds to a variant of Decision Transformer conditioning on outcomes instead of

rewards.

Note that neitherWGCSL nor GoFAR are directly compatible with image states and goals, since they

require a proxy reward function 𝑟 : S × G → R. Thus, we had to design a proxy reward function

on the image representations, exp (−(1/4| |𝑔 − 𝑠 | |)2) to apply them on image-based environments.

For a fair comparison, we also upgrade baseline Play-LMP, C-IBC, and GTI architectures by giving

them sequences of observations and retrofitting them with transformers whenever applicable.

4.4.2 Simulated Environments and Datasets

We run our algorithms and baselines on a collection of simulated environments as a benchmark

to select the best algorithms to run on our real robotic setup. The simulated environments are

selected to cover a variety of properties that are necessary for the real world environment, such

as pixel-based observations, diverse modes in the play dataset, and complex action spaces (see

Figure. 4.4).

1. CARLA self-driving: CARLA [Dosovitskiy et al. 2017] is a simulated self-driving environment

created using Unreal Engine. In this environment, the observations are RGB pixel values of

63

CARLA self driving BlockPush Franka Kitchen

Figure 4.4: Visualizations of simulated environments that we evaluate our methods on, from left to right:
CARLA self-driving (top down view and agent POV), BlockPush, and Franka Kitchen.

dimension (224, 224, 3), and actions are two-dimensional (accelerate/brake and steer). We use

an environment with a fork in the road (see Figure 4.2) following two possible routes to the

same goal, collecting 200 demonstrations in total. We condition on one of the two possible

routes to the goal, and at the goal where choosing either of the two modes is valid.

2. Multi-modal block-pushing: We use the multi-modal block-pushing environment from

[Florence et al. 2022] for complicated multi-modal demonstrations. In this environment, an

xArm robot pushes two blocks, red and green, into two square targets colored red and green.

All positions are randomized with some noise at episode start. We use 1,000 demonstrations

collected using a deterministic controller, and condition on just the future block positions on

each baseline.

3. Franka relay kitchen: Originally introduced in [Gupta et al. 2019], Relay Kitchen is a robotic

environment in a simulated kitchen with seven possible tasks. A Franka Panda robot is used to

manipulate the kitchen, and the associated dataset comes with 566 demonstrations collected by

humans with VR controllers performing four of the seven tasks in some sequence.

4.4.3 How well does C-BeT learn behaviors from play?

On each of these environments, we train conditional behavior generation models and evaluate

them on a set of conditions sampled from the dataset. The success is defined by the model

64

performing the same tasks as conditioned by the future outcome. We see from Table. 4.2 that

C-BeT performs significantly better compared to the baselines on all three tasks. BeT, as our

unconditioned “random” baseline, shows the success rate of completing tasks unconditionally, and

see that none of the baselines surpasses it consistently. Out of the MLP-based baselines, WGCSL

performs best in the state-based tasks. However, GoFAR performs best on the CARLA vision

based environment where the other two MLP-based baselines fail almost completely. We note

that Play-LMP performs poorly because our tasks are long-horizon and quite far from its intended

motor primitive regime, which may be challenging for Play-LMP’s short-horizon auto-encoding

architecture.

4.4.4 How important is multi-modal action modeling?

While we use a multi-modal behavior model in this work, it is not immediately obvious that it

may be necessary. Specifically, some previous outcome-conditioned policy learning works [Chen

et al. 2021; Emmons et al. 2021] implicitly assume that policies are unimodal once conditioned on

an outcome. In Table 4.2 the comparison between C-BeT and unimodal C-BeT shows that this

assumption may not be true for all environments, and all else being equal, having an explicitly

multi-modal model helps learning an outcome conditioned policy when there may be multiple

ways to achieve an outcome.

4.4.5 How does C-BeT compare to other forms of conditioning?

Table 4.3: Comparison between C-BeT with no supervised labels and labels acquired with human supervi-
sion.

No labels Labels

CARLA 0.98 1.0
BlockPush 0.90 0.89
Kitchen 2.80 2.75

65

We consider the question of how much comparative advantage there is in getting human labels for

our tasks. We do so by adding manual one-hot (CARLA, BlockPush) or binary (Kitchen) labels to

our tasks, and training and evaluating C-BeT with those labels. As we see on Table 4.3, on the three

simulated environments, C-BeT conditioned on only future observations performs comparably to

conditioning with human labels.

4.5 C-BeT on Real-World Robotic Manipulation

We now discuss our robot experiments, which are geared towards understanding the usefulness

of C-BeT on real-world play data.

4.5.1 Robotic Environment and Dataset

Robot setup: Our environment consists of a Franka Emika Panda robot, similar to the simulated

Franka Kitchen environment, set up with a children’s toy kitchen set (see Figure 4.1). The toy

kitchen has an oven, a microwave, a pot, and two stove knobs that are relevant to our play dataset.

The action space in this environment contains the seven joint angle deltas normalized within the

[−1, 1] range, and a binary gripper control.

Play dataset: We collected 460 sequences totaling to 265 minutes (about 4.5 hours) of play data on

the toy kitchen with volunteers using a Vive VR controller to move the Franka. While collecting

the play data, we did not give the volunteers any explicit instructions about doing any particular

tasks, or number of tasks, beyond specifying the interactable items, and stipulating that the pot

only goes on the left stove or in the sink, to prevent dropping the pot and reaching an unresettable

state. As the observations, we save the RGB observations from two cameras on the left and right

of the setup, as well as the robot’s proprioceptive joint angles. Overall, the dataset contains 45 287

66

Table 4.4: Single-task success rate in a real world kitchen with conditional models. We present the success
rate and number of trials on each task, with cumulative results presented on the last column.

Knobs Oven Microwave Pot Cumulative

GoFAR 0/10 0/5 0/5 0/5 0/25
Unconditional BeT 5/20 6/10 1/10 0/10 12/50
Unimodal C-BeT 1/20 8/10 4/10 0/10 13/50
Multimodal C-BeT 3/20 9/10 7/10 5/10 24/50

frames of play interactions and their associated actions.

Representation learning To simplify the task of learning policies on image space, we decouple

the task of image representation learning from policy learning following [Pari et al. 2021]. For

each camera, we first fine-tune a pretrained ResNet-18 [He et al. 2016] encoder on the acquired

frames with BYOL self-supervision [Grill et al. 2020]. Then, during policy learning and evaluation,

instead of the image from the cameras, we pass the two 512-dimensional BYOL embeddings as

part of the observation. For the proprioceptive part of the observation, we repeat the (sin, cos) of

seven joint states 74 times to get a 1036-dimensional proprioceptive representation, making our

overall observation representation 2060-dimensional.

4.5.2 Conditional Behavior Generation on Real Robot

Behavior generation on single tasks: Our first experiment in the real robot is about extracting

single-task policies from the play dataset. We define our tasks as manipulating the four types of

interactable objects one at a time: opening the oven door, opening the microwave door, moving

the pot from the stove to the sink, and rotating a knob 90 degrees to the right. We use appropriate

conditioning frames from our observation dataset, and start the robot from the neutral state to

complete the four tasks. The result of this experiment is presented in Table 4.4. We see that

on single task conditionals, C-BeT is able to complete all tasks except the knobs consistently,

outperforming all our baselines, showing that C-BeT is able to extract single-task policies out of

67

Table 4.5: Task success rate in a real world kitchen with conditional models evaluated on a long-horizon
goal. We present the success rate and number of trials on each task, with cumulative result presented on
the last column.

Oven→ Pot Microwave→ Oven Pot → Microwave Avg. Tasks/Run

Unconditional BeT (6, 0)/10 (1, 6)/10 (0, 1)/10 0.47
Unimodal C-BeT (1, 1)/10 (2, 0)/10 (8, 0)/10 0.37
Multimodal C-BeT (5, 4)/10 (8, 8)/10 (4, 4)/10 1.1

uncurated, real-world play data. We discuss failures of C-BeT on the knob tasks in Section 4.5.3.

While our GoFAR baseline was able to move towards the task targets, it was unable to successfully

grasp or interact with any of the target objects. We believe it may be the case because unlike the

robot experiment in [Ma et al. 2022b], we do not have the underlying environment state, the tasks

are much more complicated, and our dataset is an order of magnitude smaller (400 K vs 45 K).

Behavior generation for longer horizons: Next, we ask how well our models work for longer-

horizon conditioning with multiple tasks. We choose play sequences from the dataset with multiple

tasks completed and use their associated states as the conditions for our models. In our roll-outs,

we calculate how many tasks completed in the original sequence were also completed in the

conditional roll-outs. We calculate this metric over 3 conditioning sequences, and report the

results in Table 4.5. We see that even without any high level controller, C-BeT is able to stitch

together multiple tasks from play demonstrations to complete long-horizon goals.

Generalization to prompt and environment perturbations: A major requirement from any

robot system deployed in the real world is to generalize to novel scenarios. We evaluate the

generalizability of our learned policies in two different ways. In the first set of experiments, we

collect fresh demonstrations that were not in the training set, and we condition our policies on

such trajectories. We find that across the different tasks, even with unseen conditionings, C-BeT

retains 67% of the single-task performance, with 16/50 task successes in total. In the second set of

experiments, we add environmental distractors in the setup (Figure 4.1, bottom three rows) and

run the single- and multi-task conditions on the modified environments. We see once again that

68

the performance drops to around 67% of original with two distractors on the scene, but if we keep

adding (four or more) distractors, the robot is unable to complete any tasks.

4.5.3 Analysis of Failure Modes

We see a few failure modes in our experiments that may provide additional insights into learning

from real-world play data. We discuss the most salient ones in this section.

Failure in knob operation in the real world: We see that in all of our real world experiments,

the accuracy in operating the knob is consistently lower than all other tasks. This is due to the

failure of the learned representations. Upon inspection of the dataset images’ nearest neighbors

in the representation space, we see that the BYOL-trained representation cannot identify the knob

state better than random chance: the returned nearest neighbor differs in knob status often. Since

the representation cannot identify the knob status properly, conditioning on it naturally fails.

Importance of a multi-modal policy architecture: One of our motivations behind incorporat-

ing the BeT architecture in our work is its ability to learn multi-modal action distributions. In

our experiments, we show that for some single-task conditions such as opening the oven door,

having no multi-modality is sufficient (Table 4.4), but for more complicated tasks and learning

from a more interconnected form of play data, it is always the case that a multi-modal architecture

prevents our policies from collapsing to sub-optimal solutions (Table 4.5).

4.6 Related Work

Outcome-conditioned behavior learning: Behavior learning conditioned on particular out-

comes, such as reward or goals, is a long studied problem [Kaelbling 1993; Schaul et al. 2015;

Veeriah et al. 2018; Zhao et al. 2019]. Compared to standard behavior learning, learning condi-

tioned behavior can generally be more demanding since the same model can be expected to learn

69

a multitude of behaviors depending on the outcome, which can make learning long-term behavior

harder [Levy et al. 2017; Nachum et al. 2018]. As a result, a common line of work in outcome-

conditioned learning is to use some form of relabeling of demonstrations or experience buffer as a

form of data augmentation [Kaelbling 1993; Andrychowicz et al. 2017; Ghosh et al. 2019; Goyal

et al. 2022a] similar to what we do in the paper. As opposed to goal or state conditioned learning,

which we focus on in this paper, recently reward conditioned learning using a transformer [Chen

et al. 2021] was introduced. However, later work found that it may not work as expected in all

environments [Paster et al. 2022; Brandfonbrener et al. 2022] and large transformer models may

not be necessary [Emmons et al. 2021] for reward conditioned learning. In this work, we find that

using transformers is crucial, particularly when dealing with high dimensional visual observation

and multi-modal actions.

Learning from play data: Our work is most closely related to previous works such as Lynch et al.

[2020]; Gupta et al. [2019], which also focus on learning from play demonstrations that may not

be strictly optimal and uniformly curated for a single task. Learning policies capable of multiple

tasks from play data allows knowledge sharing, which is why it may be more efficient compared

to learning from demonstrations directly [Zhang et al. 2018b; Rahmatizadeh et al. 2018; Duan et al.

2017; Pari et al. 2021; Young et al. 2021]. [Gupta et al. 2022] attempts reset-free learning with play

data, but requires human annotation and instrumentation in the environment for goal labels.

Generative modeling of behavior: Our method of learning a generative model for behavior

learning follows a long line of work, including Inverse Reinforcement Learning or IRL [Russell

1998; Ng et al. 2000; Ho and Ermon 2016], where given expert demonstrations, a model tries

to construct the reward function, which is then used to generate desirable behavior. Another

class of algorithms learn a generative action decoder [Pertsch et al. 2021; Singh et al. 2020] from

interaction data to make downstream reinforcement learning faster and easier, nominally making

multi-modal action distribution easier. Finally, a class of algorithms, most notably Liu et al. [2020];

70

Florence et al. [2022]; Kostrikov et al. [2021]; Nachum and Yang [2021] do not directly learn a

generative model, but instead learn energy based models that need to be sampled to generate

behavior, although they do not primarily focus on goal-conditioning.

Transformers for behavior learning: Our work follows earlier notable works in using trans-

formers to learn a behavior model from an offline dataset, such as [Chen et al. 2021; Janner et al.

2021; Shafiullah et al. 2022]. Our work is most closely related to [Shafiullah et al. 2022] as we build

on their transformer architecture, while our unimodal baseline is a variant of [Chen et al. 2021]

that learns outcome conditioned instead of reward conditioned policy. Beyond these, [Dasari

and Gupta 2020; Mandi et al. 2021] summarizes historical visual context using transformers, and

[Clever et al. 2021] relies on the long-term extrapolation abilities of transformers as sequence

models. The goal of C-BeT is orthogonal to these use cases, but can be combined with them for

future applications.

4.7 Limitations

In this work, we have presented C-BeT, a new approach for conditional behavior generation that

can learn from offline play data. Across a variety of benchmarks, both simulated and real, we find

that C-BeT significantly improves upon prior state-of-the-art work. However, we have noticed two

limitations in C-BeT, particularly for real-robot behavior learning. First, if the features provided

to C-BeT do not appropriately capture relevant objects in the scene, the robot execution often

fails to interact with that object in its environment. Second, some tasks, like opening the oven

door, have simpler underlying data that is not multimodal, which renders only meager gains with

C-BeT. A more detailed analysis of these limitations are presented in Section 4.5.3. We believe

that future work in visual representation learning can address poor environment features, while

the collection of even larger play datasets will provide more realistic offline data for large-scale

behavior learning models.

71

Postscript

C-BeT extends BeT in an intuitive way – by adding a conditioning head into the transformer. It is

surprising that this method is still the best way of controlling the behavior of a large behavior

model. Recent investigation in such large behavior models are showing that more “advanced”

language conditioning methods are acting as a weak signal to the poorly-controllable policy and

often like a one-hot or multi-hot encoding conditioning rather than true language understanding

and goal directed behavior. One of the potential routes that seem promising in this front is

generating “imagined” intermediate states that can then be used as a condition for the policy.

Acknowledgement

This work was led by Jeff Cui, co-authored with Yibin Wang, and advised by Lerrel Pinto. We

thank Sridhar Arunachalam, David Brandfonbrener, Irmak Guzey, Yixin Lin, Jyo Pari, Abitha

Thankaraj, and Austin Wang for their valuable feedback and discussions. This work was supported

by awards from Honda, Meta, Hyundai, Amazon, and ONR award N000142112758.

72

5 | Behavior Generation with Latent

Actions: Vector-Quantized Behavior

Transformers

5.1 Introduction

The presently dominant paradigm in modeling human outputs, whether in language [Achiam

et al. 2023], image [Podell et al. 2023], audio [Ziv et al. 2024], or video [Bar-Tal et al. 2024], follows

a similar recipe: collect a large in-domain dataset, use a large model that fits the dataset, and

possibly as a cherry on top, improve the model output using some domain-specific feedback

or datasets. However, such a large, successful model for generating human or robot actions in

embodied environments has been absent so far, and the issues are apparent. Action sequences are

semantically diverse but temporally highly correlated, human behavior distributions are massively

multi-modal and noisy, and the hard-and-fast grounding in the laws of physics means that unlike

audio, language or video-generation, even the smallest discrepancies may cause a cascade of

consequences that lead to catastrophic failures in as few as tens of timesteps [Ross et al. 2011;

Rajaraman et al. 2020]. The desiderata for a good model of behaviors and actions thus must contain

the following abilities: to model long- and short-term dependencies, to capture and generate from

73

diverse modes of behavior, and to replicate the learned behaviors precisely [Shafiullah et al. 2022;

Chi et al. 2023].

Avg. rank in unconditional generation Avg. rank in conditional generation

In
fe

re
nc

e
tim

e
(m

s)

VQ-BeT (Us)
VQ-BeT (Us)

DiffusionPolicy-T

DiffusionPolicy-C

BeT
BC

C-BeT

GCBC

CFG-BESO

C-BESO

Better performance

Fa
st

er
 In

fe
re

nc
e

Better performance

Fa
st

er
 In

fe
re

nc
e

BeT DiffPolicy-T

DiffPolicy-C VQ-BeT (Us)

BC

LSTM-GMM

Rollouts on PushT Env.

Figure 5.1: Qualitative and quantitative comparison between VQ-BeT and relevant baselines. On the left,
we can see trajectories generated by different algorithms while pushing a T-block to target, where VQ-BeT
generates smooth trajectories covering both modes. On the right, we show two plots comparing VQ-BeT
and relevant baselines on unconditional and goal-conditional behavior generation. The comparison axes
are (x-axis) relative success represented by average rank on a suite of seven simulated tasks, and (y-axis)
inference time.

Prior work by [Shafiullah et al. 2022] shows how transformers can capture the temporal dependen-

cies well, and to some extent even capture the multi-modality in the data with clever tokenization.

However, that tokenziation relies on k-means clustering, a method typically based on an ℓ2 metric

space that unfortunately does not scale to high-dimensional action spaces or temporally extended

actions with lots of inter-dependencies. More recent works have also used tools from generative

modeling to address the problem of behavior modeling [Pearce et al. 2023; Chi et al. 2023; Zhao et al.

2023b], but issues remain, for example in high computational cost when scaling to long-horizons,

or failing to express multi-modality during rollouts.

In this work, we propose Vector Quantized Behavior Transformer (VQ-BeT), which combines the

long-horizon modeling capabilities of transformers with the expressiveness of vector-quantization

to minimize the compute cost while maintaining high fidelity to the data. We posit that a large part

of the difficulty in behavior modeling comes from representing the continuous-valued, multi-modal

action vectors. A ready answer is learning discrete representations using vector quantization [Van

74

Den Oord et al. 2017] used extensively to handle the output spaces in audio [Dhariwal et al. 2020],

video [Wu et al. 2021], and image [Rombach et al. 2022]. In particular, the performance of VQ-VAEs

for generative tasks has been so strong that a lot of recent models that generate continuous values

simply generate a latent vector in the VQ-space first before decoding or upsampling the result [Ziv

et al. 2024; Bar-Tal et al. 2024; Podell et al. 2023].

VQ-BeT is designed to be versatile, allowing it to be readily used in both conditional and uncondi-

tional generation, while being performative on problems ranging across simulated manipulation,

autonomous driving, and real-robotics. Through extensive experiments across eight benchmark

environments, we present the following experimental insights:

1. VQ-BeT achieves state-of-the-art (SOTA) performance on unconditional behavior generation

outperforming BC, BeT, and diffusion policies in 5/7 environments (Figure 5.1 middle).

Quantitative metrics of entropy and qualitative visualizations indicate that this performance

gain is due to better capture of multiple modes in behavior data (Figure 5.1 left).

2. On conditional behavior generation, by simply specifying goals as input, VQ-BeT achieves

SOTA performance and improves upon GCBC, C-BeT, and BESO in 6/7 environments

(Figure 5.1 right).

3. VQ-BeT directly works on autonomous driving benchmarks such as nuScenes [Caesar et al.

2020], matching and being comparable to task-specific SOTA methods.

4. VQ-BeT is a single-pass model, and hence offers a 5× speedup in simulation and 25× on

real-world robots over multi-pass models that use diffusion models.

5. VQ-BeT scales to real-world robotic manipulation such as pick-and-placing objects and door

closing, improving upon prior work by 73% on long-horizon tasks.

75

5.2 Background and Preliminaries

5.2.1 Behavior cloning

Given a dataset of continuous-valued action and observation pairs D = {(𝑜𝑡 , 𝑎𝑡)}𝑡 , the goal of

behavior cloning is to learn a mapping 𝜋 from observation space O to the action space A. This

map is often learned in a supervised fashion with 𝜋 as a deep neural network minimizing some loss

function L(𝜋 (𝑜), 𝑎) on the observed behavior data pairs (𝑜, 𝑎) ∈ D. Traditionally, L was simply

taken as the MSE loss, but its inability to admit multiple modes of action for an observation led to

different loss formulations [Lynch et al. 2020; Florence et al. 2022; Shafiullah et al. 2022; Chi et al.

2023]. Similarly, understanding that the environment may be partially observable led to modeling

the distribution P(𝑎𝑡 | 𝑜𝑡−ℎ:𝑡) rather than P(𝑎𝑡 | 𝑜𝑡). Finally, understanding that such behavior

datasets are often generated with an explicit or implicit goal, many recent approaches condition

on an (implicit or explicit) goal variable 𝑔 and learn a goal-conditioned behavior P(𝑎 | 𝑜, 𝑔). Note

that such behavior datasets crucially do not contain any “reward” information, which makes this

setup different from reward-conditioned learning as a form of offline RL.

5.2.2 Behavior Transformers

Behavior transformer (BeT) [Shafiullah et al. 2022] and conditional behavior transformer (C-

BeT) [Cui et al. 2022] are respectively two unconditional and goal-conditional behavior cloning

algorithms built on top of GPT-like transformer architectures. In their respective settings, they

have shown the ability to handle temporal correlations in the dataset, as well as the presence of

multiple modes in the behavior. While GPT [Brown et al. 2020] itself maps from discrete to discrete

domains, BeT can handle multi-modal continuous output space by a clever tokenization trick.

Prior to training, BeT learns a k-means based encoder/decoder that can convert continuous actions

76

into one discrete and one continuous component. Then, by learning a categorical distribution

over the discrete component and combining the component mean with a predicted continuous

“offset” variable, BeT can functionally learn multiple modes of the data while each mode remains

continuous. While the tokenizer allows BeT handle multi-modal actions, the use of k-means

means that choosing a good value of 𝑘 is important for such algorithms. In particular, if 𝑘 is too

small then multiple modes of action gets delegated to the same bin, and if 𝑘 is too large one mode

gets split up into multiple bins, both of which may result in a suboptimal policy. Also, when the

action has a large number of (potentially correlated) dimensions, for example when performing

action chunking [Zhao et al. 2023b], non-parametric algorithms like k-means may not capture the

nuances of the data distribution. Such shortcomings of the tokenizer used in BeT and C-BeT is

one of the major inspirations behind our work.

5.2.3 Residual VectorQuantization

In order to tokenize continuous action, we employ Residual Vector Quantization (Residual VQ)

[Zeghidour et al. 2021] as a discretization bottleneck. Vector quantization is a quantization

technique where continuous values are replaced by a finite number of potentially learned codebook

vectors. This process maps the input 𝑥 to an embedding vector 𝑧𝑞 in the codebook {𝑒1, 𝑒2, · · · 𝑒𝑘}

by the nearest neighbor look-up:

𝑧𝑞 = 𝑒𝑐, where 𝑐 = argmin 𝑗 | |𝑥 − 𝑒 𝑗 | |2. (5.1)

Residual VQ is a multi-stage vector quantizer [Vasuki and Vanathi 2006] which replaces each

embedding of vanilla VQ-VAE [Van Den Oord et al. 2017] with the sum of vectors from a finite

layers of codebooks. This approach cascades 𝑁𝑞 layers of vector quantizations residually: the

input vector 𝑥 is passed through the first stage of vector quantization to derive 𝑧1
𝑞 . The residual,

𝑥 − 𝑧1
𝑞 , is then iteratively quantized by a sequence of 𝑁𝑞 − 1 quantizing layers, passing the updated

77

∼

Residual VQ
Encoder, ϕ

Residual VQ layer

Action (Sequence)

in Dataset: 𝑎𝑡:𝑡+𝑛

Stage 1. Action Tokenization

GT Action

Reconstructed

Quantizer +

+

-
1st layer

…

Residual VQ
Decoder, ψ

Stage 2. Learning VQ-BeT

MinGPT

Ground-truth action

Observation sequence

Goal sequence

Optional

Code

Predictor

head

Offset
head

+

Hierarchical code pred.

❄

ϕ

❄

ψ

Sampled

Action

+

Focal Loss
Ground-truth action

L1
Loss

∼

Hierarchical code prediction

Sample primary

code

Sample secondary

code

: Frozen network

+

Figure 5.2: Overview of VQ-BeT, broken down into the residual VQ encoder-decoder training phase and
the VQ-BeT training phase. The same architecture works for both conditional and unconditional cases
with an optional goal input. In the bottom right, we show a detailed view of the hierarchical code prediction
method.

residual 𝑥 −∑𝑝

𝑖=1 𝑧
𝑖
𝑞 to the next layer. The final quantized input vector is then the sum of vectors

from a set of finite codebooks 𝑧𝑞 (𝑥) =
∑𝑁𝑞

𝑖=1 𝑧
𝑖
𝑞 .

5.3 Vector-Quantized Behavior Transformers

In this section, we introduce VQ-BeT, which has capability to solve both conditional and non-

conditional tasks from uncurated behavior dataset. VQ-BeT is composed of two stages: Action

discretization phase (stage 1 in Figure 5.2) and VQ-BeT learning phase (stage 2 in Figure 5.2). Each

stage is explained in Section 5.3.2 and 5.3.3, respectively.

78

5.3.1 Seqential prediction on behavior data

Binning actions to tokenize them and predicting the tokenized class has been successfully applied

for learning multi-modal behavior [Shafiullah et al. 2022; Cui et al. 2022]. However, these k-means

binning approaches face issues while scaling, as disucssed in Section 5.2.2.

As such, we propose instead to learn a discrete latent embedding space for action or action chunks,

and modeling such action latents instead. Note that, such latent models in the form of VQ-VAEs

and latent diffusion models are widely used in multiple generative modeling subfields, including

image, music, and video [Bar-Tal et al. 2024; Ziv et al. 2024; Podell et al. 2023]. With such discrete

tokenziation, our model can directly predict action tokens from observation sequences optionally

conditioned on goal vectors.

5.3.2 Action (chunk) discretization via Residual VQ

We employ Residual VQ-VAE [Zeghidour et al. 2021] to learn a scalable action discretizer and

address the complexity of action spaces encountered in the real world. The quantization process

of an action (or action chunk, where 𝑛 > 1) 𝑎𝑡 :𝑡+𝑛 is learned via learning a pair of encoder and

decoder networks; 𝜙,𝜓 . We start with passing 𝑎𝑡 :𝑡+𝑛 through the encoder 𝜙 . The resulting latent

embedding vector 𝑥 = 𝜙 (𝑎𝑡 :𝑡+𝑛) is then mapped to an embedding vector in the codebook of

the first layer 𝑧1
𝑞 ∈ {𝑒1

1, · · · 𝑒1
𝑘
} by the nearest neighbor look-up, and the residual is recursively

mapped to each codebook of the remaining 𝑁𝑞 − 1 layers 𝑧𝑖𝑞 ∈ {𝑒𝑖1, · · · 𝑒𝑖𝑘}, where 𝑖 = 2, · · · , 𝑁𝑞 .

The latent embedding vector 𝑥 = 𝜙 (𝑎𝑡 :𝑡+𝑛) is represented by the sum of vectors from codebooks

𝑧𝑞 (𝑥) =
∑𝑁𝑞

𝑖=1 𝑧
𝑖
𝑞 , where each vector 𝑧𝑖=1:𝑁𝑞

𝑞 works as the centroid of hierarchical clustering.

Then, the discretized vector 𝑧𝑞 (𝑥) =
∑𝑁𝑞

𝑖=1 𝑧
𝑖
𝑞 is reconstructed as 𝜓 (𝑧𝑞 (𝑥)) by passing through

the decoder 𝜓 . We train Residual VQ-VAE using a loss function, as shown in Eq 5.3. The first

term represents the reconstruction loss, and the second term is the VQ objective that shifts the

79

embedding vector 𝑒 towards the encoded action 𝑥 = 𝜙 (𝑎𝑡 :𝑡+𝑛). To update the embedding vectors

𝑒
1:𝑁𝑞

1:𝑘 , we use moving averages rather than direct gradient updates following [Islam et al. 2022;

Mazzaglia et al. 2022]. In all of our experiments, it was sufficient to use 𝑁𝑞 := 2 VQ-residual layers,

and keep the commitment loss 𝜆commit := 1 constant.

LRecon =

𝑎𝑡 :𝑡+𝑛 −𝜓 (𝑧𝑞 (𝜙 (𝑎𝑡 :𝑡+𝑛)))

1 (5.2)

LRVQ =LRecon + ∥SG[𝜙 (𝑎𝑡 :𝑡+𝑛)] − 𝑒 ∥2
2 (5.3)

+𝜆commit∥𝜙 (𝑎𝑡 :𝑡+𝑛) − SG[𝑒] ∥2
2, (SG : stop gradient)

We indicate the codes of the first quantizer layer as primary code, and the codes of the remaining

layers as secondary codes. Intuitively, the primary codes in Residual VQ performs coarse clustering

over a large range within the dataset, while the secondary codes handle fine-grained actions.

(Decoded centroids are visualized in Appendix Figure D.2.)

5.3.3 Weighted update for code prediction

After training Residual VQ, we train GPT-like transformer architecture to model the probability

distribution of action or action chunks from the sequence of observations. One of the main

differences between BeT and VQ-BeT stems from using a learned latent space. Since our vector

quantization codebooks let us freely translate between an action latent 𝑧𝑞 (𝜙 (𝑎𝑡 :𝑡+𝑛)) =
∑𝑁𝑞

𝑖=1 𝑧
𝑖
𝑞

and the sequence of chosen codes at each codebook, {𝑧𝑖𝑞}
𝑁𝑞

𝑖=1, we use them as a labels in the

code prediction Lcode loss to learn the categorical prediction head 𝜁 𝑖code for given sequence of

observations 𝑜𝑡−ℎ:𝑡 . Following [Shafiullah et al. 2022; Cui et al. 2022], we employ Focal loss [Lin

et al. 2017] to train the code prediction head by comparing the probabilities of the predicted

categorical distribution with the actual labels 𝑧𝑖𝑞 . We adjust the weights between the primary code

80

and secondary code learning losses, leveraging our priors about the latent space.

Lcode = Lfocal(𝜁 𝑖=1
code(𝑜𝑡)) + 𝛽Lfocal(𝜁 𝑖>1

code(𝑜𝑡)) (5.4)

Finally, the quantized behavior is obtained by passing the sum of the predicted residual embeddings

through the decoder as follows.

⌊𝑎𝑡 :𝑡+𝑛⌋ = 𝜓
(∑︁
𝑗,𝑖

𝑒𝑖𝑗 · I[𝜁 𝑖code = 𝑗)]
)

(5.5)

We adopt additional offset head 𝜁offset to maintain full fidelity, adjusting the centers of discretized

actions based on observations. The total VQ-BeT loss is shown in Eq. 5.7.

Loffset =
���𝑎𝑡 :𝑡+𝑛 − (

⌊𝑎𝑡 :𝑡+𝑛⌋ + 𝜁offset (𝑜𝑡)
) ���

1
(5.6)

L VQ−BeT = Lcode + Loffset (5.7)

5.3.4 Conditional and non-conditional task formulation

To provide a general-purpose behavior-learning model that can predict multi-modal continuous

actions in both conditional and unconditional tasks, we introduce conditional and non-conditional

task formulation of VQ-BeT.

Non-conditional formulation: For a given dataset D = {𝑜𝑡 , 𝑎𝑡 }, we consider a problem of

predicting the distribution of possible action sequences 𝑎𝑡 :𝑡+𝑛 conditioned on a sampled sequence

of observations 𝑜𝑡−ℎ:𝑡 . Thus, we formulate the behavior policy as 𝜋 : Oℎ → A𝑛 , where O and A

denotes the observation space and action space, respectively.

81

PushT BlockPush Franka Kitchen

Play Kitchen

Multimodal Ant UR3 BlockPush

nuScenes self driving

Figure 5.3: Visualization of the environments (simulated and real) where we evaluate VQ-BeT. Top row
contains PushT [Chi et al. 2023], Multimodal Ant [Brockman et al. 2016], BlockPush [Florence et al. 2022],
UR3 BlockPush [Kim et al. 2022], Franka Kitchen [Gupta et al. 2019], and bottom row contains nuScenes
self-driving [Caesar et al. 2020], and our real robot environment.

Conditional formulation: For goal-conditional tasks, we extend the formulation above to

take a goal conditioning vector in the form of one or more observations. Given current observation

sequence and future observation sequence, we now consider an extended policymodel that predicts

the distribution of sequential behavior 𝜋 : Oℎ × O𝑔 → A𝑛 , where 𝑜𝑡−ℎ:𝑡 ∈ Oℎ and 𝑜𝑁−𝑔:𝑁 ∈ O𝑔

are current and future observation sequences.

5.4 Experiments

With both conditional and unconditional VQ-BeT, we run experiments to understand how well

they can model behavior on different datasets and environments. We focus on two primary

properties of VQ-BeT’s generated behaviors: quality, as evaluated by how well the generated

behavior achieves some task objective or goal, and the diversity, as evaluated by the entropy of

the distribution of accomplished subtasks or goals. Concretely, through our experiments, we try

82

Environment Metric GCBC C-BeT C-BESO CFG-BESO VQ-BeT

PushT Final IoU
(·/1)

0.02 0.02 0.30 0.25 0.39
Image PushT 0.02 0.01 0.02 0.01 0.10

Kitchen Goals
(·/4)

0.15 3.09 3.75 3.47 3.78
Image Kitchen 0.64 2.41 2.00 1.59 2.60

Multimodal Ant Goals
(·/2)

0.00 1.68 1.14 0.92 1.72
UR3 BlockPush 0.19 1.67 1.94 1.91 1.94

BlockPush Success (·/1) 0.01 0.87 0.93 0.88 0.87

Table 5.1: Comparing different algorithms in goal-conditional behavior generation. The seven simulated
robotic manipulation and locomotion environments used here are described in Section 5.4.1.

to answer the following questions:

1. How well do VQ-BeT policies perform on the respective environments in both conditional

and unconditional behavior generation?

2. How well does VQ-BeT capture the multi-modality present in the dataset?

3. Does VQ-BeT scale beyond simulated tasks?

4. What design choices of VQ-BeT make the most impact in its performance?

5.4.1 Environments, datasets, and baselines

Across our experiments, we use a variety of environments and datasets to evaluate VQ-BeT (Figure

5.3). In simulation, we evaluate the wider applicability of VQ-BeT on eight benchmarks; namely,

six manipulation tasks including two image-based tasks: (a) PushT, (b) Image PushT, (c) Kitchen,

(d) Image Kitchen, (e) UR3 BlockPush, (f) BlockPush; a locomotion task, (g) Multimodal Ant; and

a self-driving benchmark, (h) NuScenes. The environments are visualized in Figure 5.3, and a

detailed descriptions of each task is provided in Appendix D.1.1. We also evaluate on a real-world

environment with twelve tasks (five single-phase, three multi-phase tasks and four long-horizon

tasks) described in Section 5.4.7.

83

Environment Diffusion Policy VQ-BeT

PushT 0.73 0.78
Image PushT 0.66 0.68

Kitchen 3.44 3.66
Image Kitchen 3.11 2.98

Multimodal Ant 3.12 3.22

UR3 BlockPush 1.83 1.84
BlockPush 1.93 1.79

Real kitchen (1 task) 0.9 0.94
Real kitchen (2 tasks) 0.37 0.63

Table 5.2: Performance of different algorithms in unconditional behavior generation tasks. We evaluate
over seven simulated robotic manipulation and locomotion tasks as described in Section 5.4.1.

Baselines: We compare VQ-BeT against the SOTA methods in behavior modeling in both condi-

tional and unconditional categories. In both of these categories, we compare against transformer-

and diffusion-based baselines.

For unconditional behavior generation, we compare against MLP-based behavior cloning, the

original Behavior Transformers (BeT) [Shafiullah et al. 2022] and Diffusion Policy [Chi et al.

2023]. The BeT architecture uses a k-means tokenization as explained in Section 5.2.2. Diffusion

policy [Chi et al. 2023], on the other hand, uses a denoising diffusion head [Ho et al. 2020] to

model multi-modality in the behaviors. We use both the convolutional and transformer variant of

the diffusion policy as baselines for our work since they excel in different cases.

For goal-conditional behaviors, we compare against simple goal conditioned BC, Conditional

Behavior Transformers (C-BeT) [Cui et al. 2022] and BESO [Reuss et al. 2023]. C-BeT uses k-means

tokenization but otherwise has a similar architecture to ours. BESO uses denoising diffusion,

and has a conditioned variant (C-BESO) and a classifier-free guided variant (CFG-BESO) that we

compare against.

84

5.4.2 Performance of behavior generated by VQ-BeT

We evaluate VQ-BeT in a set of goal-conditional tasks in Table 5.1 and a set of unconditional

tasks in Table 5.2. On the PushT environments, we look at final and max coverage, where the

coverage value is the IoU between the T block and the target T position. For the unconditional

Kitchen, BlockPush, and Ant tasks, we look at the total number of tasks completed in expectation,

where the maximum possible number of tasks is 4, 2, and 4 respectively. For the conditional

environments, we report the expected number of successes given a commanded goal sequence,

where the numbers of commanded goals are 4 in Kitchen, 2 in Ant, and 2 in BlockPush. Across all

of these metrics, a higher number designates a better performance.

From Tables 5.1 and 5.2, we see that in both conditional and unconditional tasks, VQ-BeT largely

outperforms or matches the baselines. First, on the conditional tasks, we find that VQ-BeT

outperforms all baselines in all tasks except for BlockPush. In BlockPush, VQ-BeT performs on par

with BeT, while C-BESO and CFG-BESO performs slighly better. Note that BlockPush has one of

the simplest action spaces (2-D Δ𝑥,Δ𝑦) in the dataset while also having the largest demonstration

dataset, and thus the added advantage of having vector quantized actions may not have such

a strong edge. Next, in unconditional tasks, we find that VQ-BeT outperforms all baselines in

Franka Kitchen (state), Ant Multimodal, UR3 Multimodal, and both PushT (state and image)

environments. In BlockPush environment, VQ-BeT is outperformed by DiffusionPolicy-T, while

in Image Kitchen it is outperformed by DiffusionPolicy-C. However, VQ-BeT empirically shows

stable performances on all tasks, while DiffusionPolicy-T struggles in Image PushT environments,

and DiffusionPolicy-C underperforms in Kitchen and BlockPush environments.

85

2

3

4
p4

-E
nt

ro
py 3.07

2.62

3.44
3.66

Kitchen

2.2

2.7

3.2

p4
-E

nt
ro

py

2.48

3.11
3.01 2.98

Image Kitchen

2.6

3.0

3.4

p4
-E

nt
ro

py

2.73

3.12

2.90

3.22

Ant

1.9

1.9

2.0

p2
-E

nt
ro

py 1.95
1.94

1.95

1.99
BlockPush

0.9

0.9

1.0

p2
-E

nt
ro

py

0.99

0.91

0.98
0.99

UR3 BlockPush

BeT DiffusionPolicy-C DiffusionPolicy-T VQ-BeT (Us)

Figure 5.4: A comparison between the behavior entropy of the algorithms, calculated based on their task
completion order, on five of our simulated environments.

5.4.3 How well does VQ-BeT capture multimodality?

One of the primary promises of behavior generation models is to capture the diversity present

in the data, rather than simply copying a single mode of the existing data very well. Thus, for a

quantitative measure we examine the behavior entropy of the models in the unconditional behavior

generation task. Behavior entropy here tries to captures the diversity of a model’s generated

long horizon behaviors. We compare the final-subtask entropy as a balanced metric between

performance and diversity. We see that VQ-BeT outperforms all baselines in all tasks except for

Image Kitchen, where it’s outperformed by DiffusionPolicy-T. However, behavior diversity is hard

to capture properly in a single number, which is why we also present the diversity of generated

behavior on the PushT task in Figure 5.1 (left). There, we can see how VQ-BeT captures both

86

modes of the dataset in rollouts, while also generating overall smooth trajectories.

5.4.4 Inference-time efficiency of VQ-BeT

Unconditional C-BeT C-BESO CFG-BESO VQ-BeT

Single step 22.6ms 25.9ms 41.7ms 22.8ms
Multi step ✗ ✗ ✗ 23.3ms

Conditional BeT DiffusionPolicy-C DiffusionPolicy-T VQ-BeT

Single step 13.2ms 100.5ms 98.6ms 15.1ms
Multi step ✗ 100.7ms 98.6ms 15.2ms

Table 5.3: Inference times for VQ-BeT and baselines in kitchen environment. For DiffusionPolicy we
rolled-out with 10-iteration diffusion, following their real-world settings. The methods that only support
single-step action prediction are marked with ✗.

Denoising diffusion based models such as DiffusionPolicy and BESO require multiple forward

passes from the network to generate a single action or action chunk. In contrast, VQ-BeT can

generate action or action chunks in a single forward pass. As a result, VQ-BeT enjoys much faster

inference times, as shown in Table 5.3. Receding horizon control using action chunking can speed

up some of our baselines, but VQ-BeT can take advantage of the same, speeding up the method

proportionally. Moreover, receding horizon control is not a silver bullet; it can be problematic in

affordable, inaccurate hardware, as we show in Section 5.4.7 in our real world experiments.

5.4.5 Adapting VQ-BeT for autonomous driving

While our previous experiments showed robotic manipulation or locomotion results, learning

from multi-modal behavior datasets has wider applications. We evaluate VQ-BeT in one such case,

in a self-driving trajectory planning task using the nuScenes [Caesar et al. 2020] dataset. In this

task, given a few frames of observations, the model must predict the next six frames of an car’s

location. While nuScenes usually require the trajectory be predicted from the raw images, we

87

Method Access to
information

Avg. 𝐿2
(m) (↓)

Avg. collision
(%) (↓)

FF [Hu et al. 2021]

Full

1.43 0.43
EO [Khurana et al. 2022] 1.6 0.33
UniAD [Hu et al. 2023] 1.03 0.31
Agent-Driver [Mao et al. 2023b] 0.74 0.21

GPT-Driver [Mao et al. 2023a]
Partial

0.84 0.44
Diffusion-based traj. model 0.96 0.49
VQ-BeT 0.73 0.29

Table 5.4: (Lower is better) Trajectory planning performance on the nuScenes environment. We bold
the best partial-information model and underline the best full-information model. Even with partial
information about the environment, VQ-BeT can match or beat the SOTA models on the 𝐿2 error metric.

adapted the GPT-Driver [Mao et al. 2023a] framework which uses pretrained models to extract

vehicle and obstacle locations and velocities. However, this processing also discards road lane and

shoulder informations, which makes collision avoidance hard.

In Table 5.4, we show the performance of VQ-BeT in this task, measured by how closely it followed

the ground truth trajectory in test scenes, as well as how likely the generated trajectory was to

collide with the environment. Note that collision avoidance is especially difficult for agents with

partial information since they do not have any lane information. We find that VQ-BeT outperforms

all other methods in trajectory following, achieving the lowest average 𝐿2 distance between the

ground truth trajectories and generated trajectories. Moreover, VQ-BeT achieves a collision

probability that is better or on-par with older self-driving methods, while not being designed for

self-driving in particular.

5.4.6 Design decisions that matter for VQ-BeT

In this section, we examine how changes in each module of VQ-BeT affect its performance. We

ablate the following components: using residual vs. vanilla VQ, using an offset head, using ac-

tion chunking, predicting the VQ-codes autoregressively, and weighing primary and secondary

codes equally by setting 𝛽 = 1 in Eq. 5.4. We perform these ablation experiments in the condi-

88

tional Kitchen, unconditional Ant, and the nuScenes self-driving task, and the result summary is

presented in Figure 5.5.

2.5

3.0

3.5

Co
m

pl
et

ed
 g

oa
ls 3.22

2.93
2.99

2.91
2.82

3.16

Kitchen

3.0

3.5

4.0

Co
m

pl
et

ed
 g

oa
ls

3.78

3.67 3.65

3.76

0.52

3.11

Ant
0.5

1.0

1.5

L 2
 d

ist
. f

ro
m

 G
T

tra
j. 0.73 0.73 0.74 0.73

1.41

nuScenes

VQ-BeT
= 1

Vanilla VQ
Autoregressive codes

W/o offset
W/ chunking

Figure 5.5: Summary of our ablation experiments. The five different axes of ablation is described in
Section 5.4.6.

We note that performance-wise, not using a residual VQ layer has a significant negative impact,

which we believe is because of the lack of expressivity from a single VQ-layer. A similar drop

in performance shows up when we weigh the two VQ layers equally by setting 𝛽 = 1, in Eq. 5.4.

Both experiments seems to provide evidence that important expressivity is conferred on VQ-BeT

using residual VQs. Next, we note that predicting the VQ-codes autoregressively has a negative

impact on the kitchen environment. This performance drop is anomalous, since in the real world,

we found that the autoregressive (and thus causal) prediction of primary and secondary codes is

important for good performance. In the environments where it is possible, we also tried action

chunking [Zhao et al. 2023b]; however the performance for such models were lacking. Since VQ-

BeT models are small and fast, action chunking isn’t necessary even when running it on a real

robot in real time. Finally, we found that the offset prediction is quite important for VQ-BeT,

which points to how important full action fidelity is for sequential decision making tasks that we

89

Open Drawer Grasp the Box Close DrawerPlace in the DrawerInitial Position

Pick up Bread Place in the Bag Place on the TablePick up backInitial Position

Pick up Can Place in the Fridge Open Oven DoorClose Fridge DoorInitial Position

Demo: Open Drawer ! Pick and Place Box ! Close Drawer

Demo: Pick up Bread ! Place in the Bag ! Pick up Bag ! Place on the Table

Demo: Can to Fridge ! Fridge Closing ! Toaster Opening

Figure 5.6: Visualization of the trajectory VQ-BET generated in a long-horizon real world environment.
Each demo consists of three to four consecutive tasks. Please refer to Table 5.6 for the success rates for
each task.

evaluate on.

5.4.7 Adapting VQ-BeT to real-world robots

While our previous experiments evaluated VQ-BeT in simulated environments, one of the primary

potential applications of it is in learning robot policies from human demonstrations. In this section,

we set up a real robot environment, collect some data, and evaluate policies learned using VQ-BeT.

Environment and dataset: For single-phase and two-phase tasks, we run our experiments in

a kitchen-like environment with a toaster oven, a mini-fridge, and a small can in front of the robot

as shown in Figure 5.3. For long-horizon scenarios consisting of more than three tasks, we also test

on a real kitchen environment as shown in Figure 5.6. We use a similar robot and data collection

90

setup as Dobb·E [Shafiullah et al. 2023b], and use the Hello Robot: Stretch [Kemp et al. 2022] for

policy rollouts. We create a set of single-phase and multi-phase tasks on this environment (See

Table 5.5, or Appendix D.1.2 for details). While the single-phase tasks can only be completed in

one way, some multi-phase tasks have multi-modal solutions in the benchmark and the datasets.

Baselines: In this environment, we use MLP-BC and BC with Depth as our simple baselines, and

DiffusionPolicy-T as our multi-modal baseline. To handle visual inputs, all models are prepended

with the HPR encoder from Shafiullah et al. [2023b] which is then fine-tuned during training.

Method Open Toaster Close Toaster Close Fridge Can to Toaster Can to Fridge Total

VQ-BeT 8/10 10/10 10/10 10/10 9/10 47/50
DiffPol-T† 8/10 9/10 8/10 10/10 10/10 45/50
BC w/ Depth 0/10 7/10 10/10 8/10 2/10 27/50
BC 0/10 8/10 7/10 9/10 5/10 29/50

Method Can to Fridge →
Close Fridge

Can to Toaster →
Close Toaster

Close Fridge
and Toaster Total

VQ-BeT 6/10 8/10 5/10 19/30
DiffPol-T† 4/10 1/10 6/10 11/30
BC w/ Depth 2/10 0/10 2/10 4/30
BC 2/10 1/10 4/10 7/30

Table 5.5: Real world robot experiments solving a number of standalone tasks (top) and two-task sequences
(bottom). Here, † denotes that we modified DiffusionPolicy-T to improve its performance; see Section 5.4.7
paragraph “Practical concerns”.

Results: We present the experiment results from the real world environment in Table 5.5 and

Table 5.6. Table 5.5 is split in two halves for single-phase and two-phase tasks. On the single-phase

tasks, we see that, simple MLP-BC models are able to perform almost all tasks with some success,

which shows that the subtasks are achievable, and the baselines are implemented well. On these

single-phase tasks, VQ-BeT marginally outperforms DiffusionPolicy-T, while both algorithms

achieve a ≥ 90% success rate. However, the more interesting comparison is in the two-phase,

91

longer horizon tasks. Here, VQ-BeT outperforms all baselines, including DiffusionPolicy, by a

relative margin of 73%.

Besides comparisons with baselines, we also notice multimodality in the behavior of VQ-BeT.

Especially in the task “Close Fridge and Toaster”, we note that our model closes the doors in both

possible orders during rollouts rather than collapsing to a single mode of behavior.

Task 1 Approach Handle Grasp Handle Open Drawer Let Handle Go Approach the Box Grasp the Box Move to Drawer Place Box inside Go in front of Drawer Close Drawer

VQ-BeT 8/10 7/10 7/10 7/10 7/10 7/10 7/10 6/10 6/10 6/10
DiffPol-T† 10/10 9/10 9/10 9/10 8/10 3/10 3/10 3/10 3/10 2/10
Task 2 Approach Bread Grasp the Bread Move to the Bag Place Bread inside Approach the Handle Grasp the Handle Lift Bag up Place on the table Let Handle go

VQ-BeT 10/10 10/10 10/10 4/10 3/10 3/10 3/10 3/10 3/10
DiffPol-T† 9/10 9/10 9/10 9/10 2/10 2/10 2/10 1/10 1/10
Task 3 Grasp Can Pick up Can Can into Fridge Let Go of Can Move Left of Fridge Door Close Fridge Door Go in Front of Toaster Grasp Toaster Handle Open Toaster Return to Home Pos.

VQ-BeT 10/10 10/10 10/10 8/10 8/10 8/10 8/10 7/10 7/10 7/10
DiffPol-T† 5/10 5/10 5/10 4/10 2/10 2/10 2/10 2/10 2/10 2/10
Task 4 Grasp Can Pick up Can Can into Toaster Drops Can on Tray Goes Below Toaster Door Close Toaster Door Backs up Move Left of Fridge Door Close Fridge Return to Home Pos.

VQ-BeT 10/10 10/10 8/10 8/10 8/10 6/10 6/10 6/10 6/10 6/10
DiffPol-T† 9/10 9/10 8/10 8/10 8/10 1/10 2/10 2/10 2/10 1/10

Table 5.6: Long-horizon real world robot experiments (Figure 5.6). Each task consists of three to four
sequences; Task 1 (Open Drawer → Pick and Place Box → Close Drawer), Task 2 (Pick up Bread → Place
in the Bag→ Pick up Bag → Place on the Table), Task 3 (Can to Fridge → Fridge Closing → Toaster
Opening), and Task 4 (Can to Toaster → Toaster Closing → Fridge Closing). Here, † denotes that we
modified DiffusionPolicy-T to improve its performance as explained in Section 5.4.7 paragraph “Practical
concerns”.

Additionally, we present results from long-horizon real world experiments consisting of a sequence

of three or more subtasks in Figure 5.6 and Table 5.6. We consider interactions with a wider variety

of environments (communal kitchen and conference room) and objects (bread, box, bag, and

drawer) compared to the single- or two-phase tasks in order to evaluate VQ-BeT in more general

scenes. Overall, we see that VQ-BeT has at least thrice the success rate of DiffusionPolicy at the

end of all four tasks. For Task 1 and 2, we observe that VQ-BeT gains a performance advantage

toward the end of the episode, although VQ-BeT and DiffusionPolicy perform similarly at the

beginning of the episodes. Also note that Task 2 is difficult in our ego-only camera setup, since

the bag is out of the view while grabbing the bread. For Tasks 3 and 4, we observe that VQ-BeT

outperforms DiffusionPolicy in all subtasks and notably, the performance difference is even more

pronounced toward the end of the episode. These long-horizon task results continue to suggest

that VQ-BeT may overfit less and learn more robust behavior policies in longer horizons tasks.

92

RTX A4000 Intel i3 CPU
VQ-BeT 18.06 207.25
Diffusion Policy 573.49 5243.82

Table 5.7: Average inference time for real robot (in milliseconds). The GPU column is calculated on our
workstation while the CPU column is calculated on the Hello Robot’s onboard computer.

Practical concerns: In practice, we noticed that receding-horizon control as used by Chi

et al. [2023] fails completely in our environment (See Appendix Table D.4 for comparison to

closed loop control). Our low-cost mobile manipulator robot lacks precise motion control unlike

more expensive robot arms like Franka Panda. This controller noise causes models to go out of

distribution during even a short period (three timesteps) of open-loop rollout. To resolve this, we

rolled out every policy fully closed-loop, which resulted in a much larger inference time gap (25×)

between VQ-BeT and Diffusion Policy as presented in Table 5.7.

5.5 Related Works

Deep generative models for modeling behavior: VQ-BeT builds on a long line of works that

leveraged tools from generative modeling to learn diverse behaviors. The earliest examples are

in inverse RL literature [Kalakrishnan et al. 2013; Wulfmeier et al. 2015; Finn et al. 2016; Ho and

Ermon 2016], where such tools were used to learn a reward function given example behavior. Using

generative priors for action generationi, such as GMM by Lynch et al. [2020] or EBMs by Florence

et al. [2022], or simply fitting multi-modal action distributions [Singh et al. 2020; Pertsch et al.

2021] became more common with large, human collected behavior datasets [Mandlekar et al. 2018;

Gupta et al. 2019]. Subsequently, a large body of work [Shafiullah et al. 2022; Cui et al. 2022;

Pearce et al. 2023; Chi et al. 2023; Reuss et al. 2023; Chen et al. 2023] used generative modeling

tools for generalized behavior learning from multi-modal datasets.

93

Action reparametrization: While Shafiullah et al. [2022] is the closest analogue to VQ-

BeT, the practice of reparametrizing actions for easier or better control goes back to “bang-

bang” controllers [Bushaw 1952; Bellman et al. 1956] replacing continuous actions with extreme

discrete values. Discretizing each action dimension separately, however, may exponentially

explode the action space, which is generally addressed by assuming each action dimension as

independent [Tavakoli et al. 2018] or causally dependent [Metz et al. 2017]. Without priors on the

action space, each of these assumptions may be limiting, which is why later work opted to learn

the reparametrization [Singh et al. 2020; Dadashi et al. 2021; Luo et al. 2023] similar to VQ-BeT.

On another hand, options [Sutton et al. 1999; Stolle and Precup 2002] abstract actions temporally

but can be challenging to learn from data. Many applications instead hand-craft primitives as a

parametrized action space [Hausknecht and Stone 2015] which may not scale well for different

tasks.

5.6 Limitations

In this work, we introduce VQ-BeT, a model for learning behavior from open-ended, multi-modal

data by tokenizing the action space using a residual VQ-VAE, and then using a transformer model to

predict the action tokens. While we show that VQ-BeT performs well on a plethora of manipulation,

locomotion, and self-driving tasks, an exciting application of such models would be in scaling

them up to large behavior datasets containing orders of magnitude more data, environments, and

behavior modes. Finding a shared latent space of actions between different embodiments may let

us “translate” policies between different robots or even from human to robots. Finally, a learned,

discrete action space may also make real-world RL application faster, which we would like to

explore in the future.

94

Postscripts

VQ-BeT completes the arc of BeT by creating a significantly more mature action representation.

Using a learned action representation was something BeT did, but the learning algorithm matters

a lot as shown in this work. There are natural extensions possible, such as action chunking and

Fourier-space representations, and could easily be integrated to this line of work. However, we

show that finding compact, discrete representation of the actions is critical for learning small and

fast policies.

One of the ways in which the BeT line of work is still underappreciated is their speed and the size

of the models. Even with many experiments, we have not been able to produce similarly small

and fast models using other algorithms, which will be very relevant for future applications in

robots deployed in the fields.

Acknowledgements

This work was led by Seungjae (Jay) Lee, co-authored with Yibin Wang, Haritheja Etukuru, H.

Jin Kim, and co-advised with Lerrel Pinto. NYU authors are supported by grants from Amazon,

Honda, and ONR award numbers N00014-21-1-2404 and N00014-21-1-2758. This work was partly

supported by Institute of Information & communications Technology Planning & Evaluation (IITP)

grant funded by the Korea government (MSIT) [NO.2021-0-01343, Artificial Intelligence Graduate

School Program (Seoul National University)]. NMS is supported by the Apple Scholar in AI/ML

Fellowship. LP is supported by the Packard Fellowship. We thank Jonghae Park for his help in

obtaining the UR3 Multimodal dataset.

95

Part II

Mechanisms for Generalizable Scaling

96

6 | On Bringing Robots Home with

Hardware and Efficient Algorithms

Manhattan

New Jersey
Queens

Brooklyn

Homes

10

Tasks

109

Avg. Success

81%

Pick up hat

Open microwave door

Pick up paper towel roll Place rag in laundry

Open cabinet door

Close cabinet door Open shower curtain

Pick up tissue paper

Pick up trash bag

Figure 6.1: We present Dobb·E, a simple framework to train robots, which is then field tested in homes
across New York City. In under 30 mins of training per task, Dobb·E achieves 81% success rates on simple
household tasks.

6.1 Introduction

Since our transition away from a nomadic lifestyle, homes have been a cornerstone of human

existence. Technological advancements have made domestic life more comfortable, through inno-

vations ranging from simple utilities like water heaters to advanced smart-home systems. However,

a holistic, automated home assistant remains elusive, even with significant representations in

popular culture [Carper 2019].

97

FIGURE 1

A

B

C

D

A

Figure 6.2: (A) We design a new imitation learning framework, starting with a data collection tool. (B)
Using this data collection tool, users can easily collect demonstrations for household tasks. (C) Using a
similar setup on a robot, (D) we can transfer those demos using behavior cloning techniques to real homes.

Our goal is to build robots that perform a wide-range of simple domestic tasks across diverse

real-world households. Such an effort requires a shift from the prevailing paradigm – current

research in robotics is predominantly either conducted in industrial environments or in academic

labs, both containing curated objects, scenes, and even lighting conditions. In fact, even for

the simple task of object picking [Gupta et al. 2018] or point navigation [Gervet et al. 2023a]

performance of robotic algorithms in homes is far below the performance of their lab counterparts.

If we seek to build robotic systems that can solve harder, general-purpose tasks, we will need to

reevaluate many of the foundational assumptions in lab robotics.

In this work we present Dobb·E, a framework for teaching robots in homes by embodying three

core principles: efficiency, safety, and user comfort. For efficiency, we embrace large-scale data

coupled with modern machine learning tools. For safety, when presented with a new task, instead

of trial-and-error learning, our robot learns from a handful of human demonstrations. For user

comfort, we have developed an ergonomic demonstration collection tool, enabling us to gather

task-specific demonstrations in unfamiliar homes without direct robot operation.

98

A. SoHo District, New York B. Upper East Side, New York

C. Midtown East, New York D. Long Island City, Queens

E. East Village, New York F. Union Square, New York

G. Dumbo, Brooklyn H. Chelsea, New York

I. Washington Square Park, New York J. Jersey City, New Jersey

FIGURE 2

Pick up paper towel roll

Pull chair Pick up hand towel Pick up board game

Flush toilet

Pull book from shelf

Pick up trash bag

Close door Pull desk chair Open cabinet door

Pick up kitchen towel

Pull dining chair

Pull book from shelf

Pick up hatOpen cabinet drawerOpen cabinet door

Pick up paper bag

Pull out dining chair

Push toaster button

Pick up tissue roll Put rag in laundry

Pick & place keychain

Pull out book from shelf

Pick up hand towel Close cabinet door Straighten cushion

Pickup paper towel roll

Pick & place lantern

Straighten cushion Pick up tissue paper Pick up paper bag

Close desk drawer

Pull side table

Adjust oven knob

Open microwave door Pick up kitchen towel

Pickup paper towel roll

Pull out dining chair

Open dishwasher door Pick up tissue paper Pick up paper bag

Open freezer door

Pour chocolate almond

Pull out dining stool

Pick & place massager Open dishwasher drawer Close air fryer door

Unplug charger

Open shower curtain

Open vertical window blinds

Pick & place spice Pick up flowers Rotate speaker knob

Open air fryer door

Pick & place plate

Open dresser drawer

Pick up trash bag

Turn on light switch

Pull out DVD from shelf

Open cabinet drawer

Figure 6.3: We ran experiments in a total of 10 homes near the New York City area, and successfully
completed 102 out of 109 tasks that we tried. The figure shows a subset of 60 tasks, 6 tasks from 10 homes
each, from our home robot experiments using Dobb·E.

99

Concretely, the key components of Dobb·E include:

• Hardware: The primary interface is our demonstration collection tool, termed the “Stick.” It

combines an affordable reacher-grabber with 3D printed components and an iPhone. Addi-

tionally, an iPhone mount on the robot facilitates direct data transfer from the Stick without

needing domain adaptation.

• Pretraining Dataset: Leveraging the Stick, we amass a 13 hour dataset called Homes of New

York (HoNY), comprising 5620 demonstrations from 216 environments in 22 New York homes,

bolstering our system’s adaptability. This dataset serves to pretrain representation models for

Dobb·E.

• Models and algorithms: Given the pretraining dataset we train a streamlined vision model,

called Home Pretrained Representations (HPR), employing cutting-edge self-supervised learning

(SSL) techniques. For novel tasks, a mere 24 demonstrations sufficed to finetune this vision

model, incorporating both visual and depth information to account for 3D reasoning.

• Integration: Our holistic system, encapsulating hardware, models, and algorithms, is centered

around a commercially available mobile robot: Hello Robot Stretch [Kemp et al. 2022].

We run Dobb·E across 10 homes spanning 30 days of experimentation, over which it tried 109

tasks and successfully learned 102 tasks with performance ≥ 50% and an overall success rate of

81%. Concurrently, extensive experiments run in our lab reveals the importance of many key

design decisions. Our key experimental findings are:

• Surprising effectiveness of simple methods: Dobb·E follows a simple behavior cloning

recipe for visual imitation learning using a ResNet model [He et al. 2016] for visual represen-

tation extraction and a two-layer neural network [Rosenblatt 1958] for action prediction (see

Section 6.2). On average, only using 91 seconds of data on each task collected over five minutes,

Dobb·E can achieve a 81% success rate in homes (see Section 6.3).

100

• Impact of effective SSL pretraining: Our foundational vision model, HPR trained on home

data improves tasks success rate by at least 23% compared to other foundational vision mod-

els [Xiao et al. 2022; Nair et al. 2022b; Majumdar et al. 2023], which were trained on much larger

internet datasets (see Section 6.3.4.1).

• Odometry, depth, and expertise: The success of Dobb·E is heavily reliant on the Stick

providing highly accurate odometry and actions from the iPhones’ pose and position sensing,

and depth information from the iPhone’s Lidar. Ease of collecting demonsrations also makes

iterating on research problems with the Stick much faster and easier (see Section 6.3.4).

• Remaining challenges: Hardware constraints such as the robot’s force, reach, and battery

life, limit tasks our robot can physically solve (see Section 6.3.3.3), while our policy frame-

work suffers with ambiguous sensing and more complex, temporally-extended tasks (see Sec-

tions 6.3.3.4, 6.4.1).

To encourage and support future work in home robotics, we have open-sourced our code, data,

models, hardware designs, and are committed to supporting reproduction of our results. More

information along with robot videos are available on our project website: https://dobb-e.com.

6.2 Technical Components and Method

To create Dobb·E we partly build new robotic systems from first principles and partly integrate

state-of-the-art techniques. In this section we will describe the key technical components in

Dobb·E. To aid in reproduction of Dobb·E, we have open sourced all of the necessary ingredients

in our work; please see Section 6.5 for more detail.

At a high level, Dobb·E is an behavior cloning framework [Atkeson and Schaal 1997]. Behavior

cloning is a subclass of imitation learning, which is a machine learning approach where a model

101

https://dobb-e.com

(A) The Stick (B) Hello Robot: Stretch setup

iPhone

Gripper tips Gripper tips

iPhone3D printed mount

Reacher grabber Hello Robot: Stretch dex wrist

3D printed mount

Figure 6.4: Photographs of our designed hardware, including the (A) Stick and the (B) identical iPhone
mount for Hello Robot: Stretch wrist. From the iPhone’s point of view, the grippers look identical between
the two setups.

learns to perform a task by observing and imitating the actions and behaviors of humans or other

expert agents. Behavior cloning involves training a model to mimic a demonstrated behavior or

action, often through the use of labeled training data mapping observations to desired actions.

In our approach, we pretrain a lightweight foundational vision model on a dataset of household

demonstrations, and then in a new home, given a new task, we collect a handful of demonstra-

tions and fine-tune our model to solve that task. However, there are many aspects of behavior

cloning that we created from scratch or re-engineered from existing solutions to conform to our

requirements of efficiency, safety, and user comfort.

Our method can be divided into four broad stages: (a) designing a hardware setup that helps

us in the collection of demonstrations and their seamless transfer to the robot embodiment, (b)

collecting data using our hardware setup in diverse households, (c) pretraining foundational

models on this data, and (d) deploying our trained models into homes.

102

6.2.1 Hardware Design

The first step in scaling robotic imitation to arbitrary households requires us to take a closer look

at the standard imitation learning process and its inefficiencies. Two of the primary inefficiencies

in current real-world imitation learning lay in the process of collecting the robotic demonstrations

and transferring them across environments.

6.2.1.1 Collecting robot demonstrations

The standard approach to collect robot demonstrations in a robotic setup is to instrument the robot

to pair it with some sort of remote controller device [Mandlekar et al. 2018; Arunachalam et al.

2023a], a full robotic exoskeleton [Fang et al. 2023a; Falck et al. 2019; Zhao et al. 2023a; Ishiguro

et al. 2020], or simpler data collection tools [Song et al. 2020; Young et al. 2020; Pari et al. 2021].

Many recent works have used a video game controller or a phone [Mandlekar et al. 2018], RGB-D

cameras [Arunachalam et al. 2023b], or virtual reality device [Arunachalam et al. 2023a; Guzey

et al. 2023b,a] to control the robot. Other works [Zhao et al. 2023b] have used two paired robots in

a scene where one of the robots is physically moved by the demonstrator while the other robot is

recorded by the cameras. However, such approaches are hard to scale up to households efficiently.

Physically moving a robot is generally unwieldy, and for a home robotic task would require having

multiple robots present at the site. Similarly, full exoskeleton based setups as shown in [Fang et al.

2023a; Zhao et al. 2023a; Ishiguro et al. 2020] are also unwieldy in a household setting. Generally,

the hardware controller approach suffers from inefficiency because the human demonstrators

have to map the controller input to the robot motion. Using phones or virtual reality devices are

more efficient, since they can map the demonstrators’ movements directly to the robot. However,

augmenting these controllers with force feedback is nearly impossible, often leading users to

inadvertently apply extra force or torque on the robot. Such demonstrations frequently end up

being unsafe, and the generally accepted solution to this problem is to limit the force and torque

103

users can apply; however, this often causes the robot to diverge from the human behavior.

In this project, we take a different approach by trying to combine the versatility of mobile

controllers with the intuitiveness of physically moving the robot. Instead of having the users move

the entire robot, we created a facsimile of the Hello Robot Stretch end-effector using a cheap $25

reacher-grabber stick that can be readily bought online, and augmented it ourselves with a 3D

printed iPhone mount. We call this tool the “Stick,” which is a natural evolution of tools used in

prior work [Young et al. 2021; Pari et al. 2021] (see Figure 6.4).

The Stick helps the user intuitively adapt to the limitations of the robot, for example by making it

difficult to apply large amounts of force. Moreover, the iPhone Pro (version 12 or newer), with

its camera setup and internal gyroscope, allows the Stick to collect RGB image and depth data at

30 frames per second, and its 6D position (translation and rotation). In the rest of the paper, for

brevity, we will refer to the iPhone Pro (12 or later) simply as iPhone.

6.2.1.2 Captured Data Modalities

Our Stick collects the demonstration data via the mounted iPhone using an off-the-shelf app called

Record3D. The Record3D app is able to save the RGB data at 1280×720 pixels recorded from the

camera, the depth data at 256×192 pixels from the lidar sensor, and the 6D relative translation and

rotation data from the iPhone’s internal odometry and gyroscope. We record this data at 30 FPS

onto the phone and later export and process it.

6.2.1.3 Robot Platform

All of our systems are deployed on the Hello Robot Stretch, which is a single-arm mobile manipu-

lator robot already available for purchase on the open market. We use the Stretch RE1 version in

all of our experiments, with the dexterous wrist attachment that confers 6D movement abilities

on the robot. We chose this robot because it is cheap, lightweight–weighing just 51 pounds (23

104

kilograms)–and can run on a battery for up to two hours. Additionally, Stretch RE1 has an Intel

NUC computer on-board which can run a learned policy at 30 Hz.

6.2.1.4 Camera Mounts

We create and use matching mounts on the Stick and the Hello Robot arm to mount our iPhone,

which serves as the camera and the sensor in both cases. One of the main advantages of collecting

our data using this setup is that, from the camera’s point of view, the Stick gripper and the

robot gripper looks identical, and thus the collected data and any trained representations and

policies on such data can be directly transferred from the Stick to the robot. Moreover, since

our setup operates with only one robot mounted camera, we don’t have to worry about having

and calibrating a third-person, environment mounted camera, which makes our setup robust to

general camera calibration issues and mounting-related environmental changes.

6.2.1.5 Gripper Tips

As a minor modification to the standard reacher-grabber as well as the Hello Robot Stretch end-

effector, we replace the padded, suction-cup style tips of the grippers with small, cylindrical tips.

This replacement helps our system manipulate finer objects, such as door and drawer handles,

without getting stuck or blocked. In some preliminary experiments, we find that our cylindrical

tips are better at such manipulations, albeit making pick-and-place like tasks slightly harder.

6.2.2 Pretraining Dataset – Homes of New York

With our hardware setup, collecting demonstrations for various household tasks becomes as

simple as bringing the Stick home, attaching an iPhone to it, and doing whatever the demonstrator

wants to do while recording with the Record3D app. To understand the effectiveness of the Stick

105

Figure 6.5: Subsample of 45 frames from Homes of New York dataset, collected using our Stick in 22
homes.

as a data collection tool and give us a launching pad for our large-scale learning approach, we,

with the help of some volunteers, collected a household tasks dataset that we call Homes of New

York (HoNY).

The HoNY dataset is collected with the help of volunteers across 22 different homes, and it contains

5620 demonstrations in 13 hours of total recording time and totalling almost 1.5 million frames.

We asked the volunteers to focus on eight total defined broad classes of tasks: switching button,

door opening, door closing, drawer opening, drawer closing, pick and place, handle grasping, and

play data. For the play data, we asked the volunteers to collect data from doing anything arbitrary

around their household that they would like to do using the stick. Such playful behavior has in

the past proven promising for representation learning purposes [Young et al. 2021; Guzey et al.

2023b].

We instructed our volunteers to spend roughly 10 minutes to collect demonstrations in each

106

Figure 6.6: Breakdown of Homes of New York dataset by task: on the left, the statistics is shown by
number of demonstrations, and on the right, the breakdown is shown by minutes of demonstration data
collected.

“environment” or scene in their household. However, we did not impose any limits on how many

different tasks they can collect in each home, nor how different each “environment” needs to be

across tasks. Our initial demonstration tasks were chosen to be diverse and moderately challenging

while still being possible for the robot.

In Figure 6.6, we can see a breakdown of the dataset by the number of frames belonging to each

broad class of tasks. As we can see, while there is some imbalance between the number of frames

in each task, they are approximately balanced.

Moreover, our dataset contains a mixture of a diverse number of homes, as shown in Figure 6.7,

with each home containing 67K frames and 255 trajectories on average.

6.2.2.1 Gripper Data

While the iPhone can give us the pose of the end-effector, there is no way to trivially get the

open or closed status of the gripper itself. To address this, we trained a model to track the gripper

107

0 100 200 300 400 500 600
Count

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Ho
m

e

0 20 40 60 80 100 120 140
Length (in minutes)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Ho
m

e

Figure 6.7: Breakdown of our collected dataset by homes. On the left, the statistics are shown by number
of demonstrations, and on the right, the breakdown is shown by minutes of demonstration data collected.
The Y-axis is marked with the home ID.

tips. We extracted 500 random frames from the dataset and marked the two gripper tip positions

in pixel coordinates on those frames. We trained a gripper model on that dataset, which is a

3-layer ConvNet that tries to predict the distance between the gripper tips as a normalized number

between 0 and 1. This model, which gets a 0.035 MSE validation error (on a scale from 0-1) on a

heldout evaluation set, is then used to label the rest of the frames in the dataset with a gripper

value between 0 and 1.

6.2.2.2 Dataset Format

As mentioned in the previous section, we collect the RGB and depth data from the demonstration,

as well as the 6D motion of the stick, at 30 Hz. For use in our models, we scale and reshape our

images and depths into 256×256 pixels. For the actions, we store the absolute 6D poses of the

iPhone at 30 Hz. During model training or fine-tuning, we calculate the relative pose change as

the action at the desired frequency during runtime.

108

6.2.2.3 DatasetQuality Control

We manually reviewed the videos in the dataset to validate them and filter them for any bad

demonstrations, noisy actions, and any identifying or personal information. We filtered out any

videos that were recorded in the wrong orientation, as well as any videos that had anyone’s face

or fingers appearing in them.

6.2.2.4 Related Work

Collecting large robotic manipulation datasets is new. Especially in recent years, there have been

a few significant advances in collecting large datasets for robotics [Brohan et al. 2023a; Jang et al.

2021; Fang et al. 2023b; Mandlekar et al. 2019; Ebert et al. 2022; Walke et al. 2023; Gupta et al. 2018;

Jiang et al. 2011; Pinto and Gupta 2016; Kappler et al. 2015; Mahler et al. 2017a; Depierre et al.

2018; Levine et al. 2018; Kalashnikov et al. 2018; Brahmbhatt et al. 2019; Fang et al. 2020; Eppner

et al. 2021; Bousmalis et al. 2018; Zhu et al. 2023; Yu et al. 2016; Finn and Levine 2017; Ebert et al.

2018; Dasari et al. 2019; Kalashnikov et al. 2021; Ebert et al. 2022; Mandlekar et al. 2021; Zitkovich

et al. 2023; Lynch et al. 2023; Bharadhwaj et al. 2023; Heo et al. 2023]. While our dataset is not

as large as the largest of them, it is is unique in a few different ways. Primarily, our dataset is

focused on household interactions, containing 22 households, while most datasets previously were

collected in laboratory settings. Secondly, we collect first-person robotic interactions, and are thus

inherently more robust to camera calibration issues which affect previous datasets [Sharma et al.

2018; Mandlekar et al. 2018; Cabi et al. 2019; Kalashnikov et al. 2021; Jang et al. 2021; Bharadhwaj

et al. 2023]. Thirdly, using an iPhone gives us an advantage over previous work that used cheap

handheld tools to collect data [Song et al. 2020; Young et al. 2020; Pari et al. 2021] since we can

extract high quality action information quite effortlessly using the onboard gyroscope. Moreover,

we collect and release high quality depth information from our iPhone, which is generally rare

for standard robotic datasets. The primary reason behind collecting our own dataset instead of

109

Table 6.1: While previous datasets focused on the number of manipulation trajectories, we instead focus
on diverse scenes and environments. As a result, we end up with a dataset that is much richer in interaction
diversity.

Dataset # Traj. # Env. # Homes Public Data Public Robot Collection

MIME [Sharma et al. 2018] 8.30k 1 - ✓ ✓ human
RoboTurk [Mandlekar et al. 2018] 2.10k 1 - ✓ ✓ human
Learning in Homes [Gupta et al. 2018] 28k 9 9 ✓ ✓ scripted
MT-Opt [Kalashnikov et al. 2021] 800k 1 - ✗ ✓ scripted & learned
BC-Z [Jang et al. 2021] 26.0k 1 - ✓ ✗ human
RT-1 [Brohan et al. 2023a] 130k 3 - ✓ ✗ human
RH20T [Fang et al. 2023b] 110k 50 10 ✓ ✓ human
RoboSet [Bharadhwaj et al. 2023] 98.5k 11 - ✓ ✓ scripted & human
BridgeData v2 [Walke et al. 2023] 60.1k 24 - ✓ ✓ human & scripted

HoNY (Us) 5.6k 216 22 ✓ ✓ human

Concat 2-layer MLP

Gripper

Rotation

Translation

Action prediction

Action prediction module

Depth image Median filtering Flattening

Depth module

Robot
action

Hello Robot
Stretch

Update gripper
6D pose &
opening

RGB moduleRobot
observation

iPhone 12+ Pro

Record3D

RGB image HPR (ResNet34) Representation

Capture RGB

& depth

Figure 6.8: Fine-tuning the pretrained HPR model to learn a model that maps from the robot’s RGB and
depth observations into robot actions: 6D relative pose and the gripper opening.

using any previous dataset is because we believe in-domain pretraining to be a key ingredient

for generalizable representations, which we empirically verify in section 6.3.4.1 by comparing

with previously released general-purpose robotic manipulation focused representation models. A

line of work that may aid in future versions of this work are collections of first-person non-robot

household videos, such as [Damen et al. 2018; Grauman et al. 2022; Somasundaram et al. 2023],

where they can complement our dataset by augmenting it with off-domain information.

110

6.2.3 Policy Learning with Home Pretrained Representations

With the diverse home dataset, our next step in the process is to train a foundational visual

imitation model that we can easily modify and deploy in homes. To keep our search space small, in

this work we only consider simple visual imitation learning algorithms that only consider a single

step at a time. While this inevitably limits the capabilities of our system, we leave temporally

extended policies as a future direction we want to explore on home robots. Our policy is built of

two simple components: a visual encoder and a policy head.

6.2.3.1 Visual Encoder Learning

We use a ResNet34 architecture as a base for our primary visual encoder. While there are other

novel architectures that were developed since ResNet34, it satisfies our need for being performant

while also being small enough to run on the robot’s onboard computer. We pretrain our visual

encoder on our collected dataset with the MoCo-v3 self-supervised learning algorithm for 60

epochs. We call this model the Home Pretrained Representation (HPR) model, based on which

all of our deployed policies are trained. We compare the effects of using our own visual encoder

vs. a pretrained visual encoder trained on different datasets and algorithms, such as R3M [Nair

et al. 2022b], VC1 [Majumdar et al. 2023], and MVP [Xiao et al. 2022], or even only pretraining on

ImageNet-1K [Deng et al. 2009], in Section 6.3.4.1.

6.2.3.2 Downstream Policy Learning

On every new task, we learn a simple manipulation policy based on our visual encoder and the

captured depth values. For the policy, the input space is an RGB-D image (4 channels) with shape

256×256 pixels, and the output space is a 7-dimensional vector, where the first 3 dimensions are

relative translations, next 3 dimensions are relative rotations (in axis angle representation), and

111

the final dimension is a gripper value between 0 and 1. Our policy is learned to predict an action

at 3.75 Hz, since that is the frequency with which we subsample our trajectories.

The policy architecture simply consists of our visual representation model applied to the RGB

channels in parallel to a median-pooling applied on the depth channel, followed by two fully

connected layers that project the 512 dimensional image representation and 512 dimensional depth

values down to 7 dimensional actions. During this supervised training period where the network

learns to map from observation to actions, we do not freeze any of the parameters, and train them

for 50 epochs with a learning rate of 3 × 10−5. We train our network with a mean-squared error

(MSE) loss, and normalize the actions per axis to have zero mean and unit standard deviation

before calculating the loss.

Our pretrained visual encoders and code for training a new policy on your own data is available

open-source with a permissive license. Please see Section 6.5 for more details.

6.2.3.3 Related Work

While the pretraining-finetuning framework has been quite familiar in other areas of Machine

Learning such as Natural Language [Devlin et al. 2018; Brown et al. 2020] and Computer Vision [He

et al. 2016; Oquab et al. 2023], it has not caught on in robot learning as strongly. Generally,

pretraining has taken the form of either learning a visual representation [Brandfonbrener et al.

2023; Nair et al. 2022b; Majumdar et al. 2023; Xiao et al. 2022; Pari et al. 2021; Young et al. 2021;

Radosavovic et al. 2022; Ma et al. 2022a; Karamcheti et al. 2023; Mu et al. 2023; Bahl et al. 2023]

or learning a Q-function [Kumar et al. 2022; Herzog et al. 2023] which is then used to figure

out the best behavior policy. In this work, we follow the first approach, and pretrain a visual

representation that we fine-tune during deployment. While there are recent large-scale robotic

policy learning approaches [Brohan et al. 2023a; Zitkovich et al. 2023; Padalkar et al. 2023], the

evaluation setup for such policies generally have some overlap with the (pre-)training data. This

112

FIGURE 6

A B

Figure 6.9: (a) The data collection grid: the demonstrator generally started data collection from a 5×5
or 4×6 grid of starting positions to ensure diversity of the collected demos. (b) To ensure our policies
generalize to different starting positions, we start the robot policy roll-outs from 10 pre-scheduled starting
positions.

work, in contrast, focuses on entirely new households which were never seen during pretraining.

6.2.4 Deployment in Homes

Once we have our Stick to collect data, the dataset preparation script, and the algorithm to fine-

tune our pretrained model, the final step is to combine them and deploy them on a real robot in

a home environment. In this work, we focus on solving tasks that mostly involve manipulating

the environment, and thus we assume that the robot has already navigated to the task space and

is starting while facing the task target (which for example could be an appliance to open or an

object to manipulate).

6.2.4.1 Protocol for Solving Home Tasks

In a novel home, to solve a novel task, we start by simply collecting a handful of demonstrations on

the task. We generally collect 24 new demonstrations as a rule of thumb, which our experiments

show is sufficient for simple, five second tasks. In practice, collecting these demos takes us

about five minutes. However, some environments take longer to reset, in which case collecting

demonstrations may also take longer. To confer some spatial generalization abilities to our robot

113

policy, we generally collect the data starting from a variety of positions in front of the task setup,

generally in a small 4×6 or 5×5 grid (Figure 6.9).

6.2.4.2 Policy Training Details

Once the data is collected, it takes about 5 minutes to process the data from R3D files into our

dataset format. From there, for 50 epochs of training it takes about 20 minutes on average on a

modern GPU (RTX A4000). As a result, on average, within 30 minutes from the start of the data

collection, we end up with a policy that we can deploy on the robot.

6.2.4.3 Robot Execution Details

We deploy the policy on the robot by running it on the robot’s onboard Intel NUC computer. We

use the iPhone mounted on the arm and the Record3D app to stream RGB-D images via USB to

the robot computer. We run our policy on the input images and depth to get the predicted action.

We use a PyKDL based inverse kinematics solver to execute the predicted relative action on the

robot end-effector. Since the model predicts the motion in the camera frame, we added a joint in

the robot’s URDF for the attached camera, and so we can directly execute the predicted action

without exactly calculating the transform from the camera frame to the robot end-effector frame.

For the gripper closing, we binarize the predicted gripper value by applying a threshold that can

vary between tasks. We run the policy synchronously on the robot by taking in an observation,

commanding the robot to execute the policy-predicted action, and waiting until robot completes

the action to take in the next observation. For our evaluation experiments we generally use 10

initial starting positions for each robot task (Figure 6.9 (b)). These starting positions vary our

robot gripper’s starting position in the vertical and horizontal directions. Between each of these

10 trials, we manually reset the robot and the environment.

114

6.2.4.4 Related Work

While the primary focus of our work is deploying robots in homes, we are not the first one to

do so. The most popular case would be commercial robots such as Roomba [Jones 2006] from

iRobot or Astro [Dempsey 2023] from Amazon. While impressive as a commercial product, such

closed-source robots are not conducive to scientific inquiry and are difficult to build upon as a

community. Some application of robots in home includes early works such as [Nguyen and Kemp

2014] exploring applications of predefined behaviors in homes, [Bhattacharjee et al. 2016, 2018]

exploring tactile perception in homes, or [Gupta et al. 2018] exploring the divergence between

home and lab data. More recently, ObjectNav, i.e. navigating to objects in the real world [Gervet

et al. 2023a] has been studied by taking robots to six different houses. While [Gervet et al. 2023a]

mostly experimented on short-term rental apartments and houses, we focused on homes that are

currently lived in where cluttered scenes are much more common. There have been other works

such as [Bahl et al. 2022; Shah and Levine 2022] which focus on “in the wild” evaluation. However,

evaluation-wise, such works have been limited to labs and educational institutions [Bahl et al.

2022], or have focused on literal “in the wild” setups such as cross-country navigation [Shah and

Levine 2022].

6.3 Experiments

We experimentally validated our setup by evaluating it across 10 households in the New York and

New Jersey area on a total of 109 tasks. On these 109 tasks, the robot gets an 81% success rate,

and can complete 102 tasks with at least even odds. Alongside these household experiments, we

also set up a “home” area in our lab, with a benchmark suite with 10 tasks that we use to run our

baselines and ablations. Note that none of our experiments overlapped with the environments on

which our HoNY dataset was collected to ensure that the experimental environments are novel.

115

6.3.1 List of Tasks in Homes

In Table 6.2 we provide an overview of the 109 tasks that we attempted in the 10 homes, as well

as the associated success rate on those tasks. Video of all 109 tasks can also be found on our

website: https://dobb-e.com/#videos.

Table 6.2: A list of all tasks in the home enviroments, along with their categories and success rates out of
10 trials.

ID Home Task Description Success ·/10 Task Category

1 1 Door closing: Brown Cabinet 10 Door closing

2 1 Drawer closing: Brown Drawer 10 Drawer closing

3 1 Drawer Opening: Brown Drawer 10 Drawer opening

4 1 Pick up: Plastic Plate 9 Misc object pickup

5 1 Pick up: Flowers 3 Misc object pickup

6 1 Pick and Place: Spices 6 6D pick & place

7 1 Pouring: translucent cup + marshmallows 10 Pouring

8 1 Air Fryer Opening 10 Air-fryer opening

9 1 Air Fryer Closing 10 Air-fryer closing

10 1 Knob Turning 8 Knob turning

11 1 Vertical Blinds Opening 2 Random

12 1 Horizontal Blinds Opening 10 Random

13 2 Sideways washing machine door 8 Door opening

14 2 Dresser drawer 8 Drawer opening

15 2 Placing a rag in laundry 7 6D pick & place

16 2 Picking and placing a keyring 9 6D pick & place

17 2 Pouring: transparent cup 5 Pouring

Continued on the next page

116

https://dobb-e.com/#videos

ID Home Task Description Success ·/10 Task Category

18 2 Trash pickup 9 Bag pickup

19 2 Toilet paper unloading 8 Random

20 2 Toaster button pressing 1 Random

21 3 Dishwasher drawer opening 8 Drawer opening

22 3 Cat massager pick and place (onto book) 7 6D pick & place

23 3 Rattatoullie pick and place 5 6D pick & place

24 3 Air fryer opening 0 Air-fryer opening

25 3 Air fryer closing 10 Air-fryer closing

26 3 Chair pulling 10 Chair pulling

27 3 Light switch new demos 8 Light switch

28 3 Unplugging 10 Unplugging

29 3 Towel pickup 7 Towel pickup

30 3 Kettle switch 0 Random

31 3 Shower curtains 6 Random

32 4 Cabinet door closing 10 Door closing

33 4 Closet door opening 7 Door opening

34 4 Freezer door opening 9 Door opening

35 4 Dishwasher door opening 7 Door opening

36 4 Drawer closing 10 Drawer closing

37 4 Hammerhead shark pick and place 4 6D pick & place

38 4 Oil pouring 5 Pouring

39 4 Almonds pouring 6 Pouring

40 4 Chair pulling 8 Chair pulling

41 4 Book pulling 10 Pulling from shelf

Continued on the next page

117

ID Home Task Description Success ·/10 Task Category

42 4 Tissue pulling 5 Tissue pickup

43 4 Paper bag pickup 8 Bag pickup

44 5 Microwave Door Opening 7 Door opening

45 5 Drawer closing 10 Drawer closing

46 5 Drawer opening 10 Drawer opening

47 5 Chair pulling 10 Chair pulling

48 5 Towel pulling from the fridge 7 Towel pickup

49 5 DVD pulling 10 Pulling from shelf

50 5 Knob turning 5 Knob turning

51 5 Paper towel tube 5 Paper towel replacing

52 6 Door opening kitchen 10 Door opening

53 6 Door opening bathroom 7 Door opening

54 6 Drawer closing 10 Drawer closing

55 6 Mini drawer closing 10 Drawer closing

56 6 Dishwasher drawer opening 8 Drawer opening

57 6 Lantern pick and place 9 6D pick & place

58 6 Chair pulling 10 Chair pulling

59 6 Table pulling 10 Chair pulling

60 6 Rag pull 9 Towel pickup

61 6 Book pulling 8 Pulling from shelf

62 6 Tissue pick up 10 Tissue pickup

63 6 Bag pick up 8 Bag pickup

64 6 Cushion lifting 10 Cushion flipping

65 7 Kitchen door closing 10 Door closing

Continued on the next page

118

ID Home Task Description Success ·/10 Task Category

66 7 Bathroom closet door opening 9 Door opening

67 7 Drawer closing black wardrode 7 Drawer closing

68 7 Drawer closing white wardrode 10 Drawer closing

69 7 Drawer closing desk 8 Drawer closing

70 7 Drawer closing table 8 Drawer closing

71 7 Chair pulling 9 Chair pulling

72 7 Dining table chair pulling 5 Chair pulling

73 7 Rag pulling 8 Towel pickup

74 7 Tissue paper pick up 10 Tissue pickup

75 7 Paper Towel pick up 10 Paper towel replacing

76 7 Trash pickup 8 Bag pickup

77 8 Door opening 8 Door opening

78 8 Air fryer open 9 Air-fryer opening

79 8 Air fryer close 10 Air-fryer closing

80 8 Chair pulling 10 Chair pulling

81 8 Unplugging 6 Unplugging

82 8 Toilet rag pulling 9 Towel pickup

83 8 Book pulling 8 Pulling from shelf

84 8 Codenames pulling 7 Pulling from shelf

85 8 Tissue pick up 7 Tissue pickup

86 8 Paper towel roll pickup 7 Paper towel replacing

87 8 Food bag pick up 8 Bag pickup

88 8 Cushion flip 10 Cushion flipping

89 8 Toilet flushing 9 Random

Continued on the next page

119

ID Home Task Description Success ·/10 Task Category

90 9 Door closing 10 Door closing

91 9 Door opening 7 Door opening

92 9 Bathroom drawer closing 10 Drawer closing

93 9 Kitchen drawer closing 10 Drawer closing

94 9 Kitchen drawer opening 6 Drawer opening

95 9 Hat pickup 9 Misc object pickup

96 9 Chair pulling 9 Chair pulling

97 9 Light switch 6 Light switch

98 9 Rag pulling 10 Towel pickup

99 9 Book pulling 7 Pulling from shelf

100 9 Paper bag pick up 10 Bag pickup

101 10 Door Closing 10 Door closing

102 10 Drawer Closing 10 Drawer closing

103 10 Air fryer opening 10 Air-fryer opening

104 10 Air fryer closing 10 Air-fryer closing

105 10 Light switch 8 Light switch

106 10 Hand towel (rag) pulling 7 Towel pickup

107 10 Book pulling 10 Pulling from shelf

108 10 Paper towel 9 Paper towel replacing

109 10 Cushion straightening 10 Cushion flipping

120

E. Lantern pick and place

B. Shower curtain opening

C. Trash bag pickup

G. Oil pouring

H. Microwave door opening

D. Plush keychain pick and place

F. Window blinds opening

A. Turning on light switch

Figure 6.10: A small subset of 8 robot rollouts from the 109 tasks that we tried in homes. A complete set
of rollout videos can also be found at our website: https://dobb-e.com/#videos

121

https://dobb-e.com/#videos

0 20 40 60 80 100
Success rate (%)

Air-fryer closing
Cushion flipping

Door closing
Drawer closing

Chair pulling
Pulling from shelf

Bag pickup
Drawer opening

Towel pickup
Unplugging

Tissue pickup
Door opening

Paper towel replacing
Light switch

Air-fryer opening
Misc object pickup

6D pick & place
Pouring

Knob turning
Random

Ta
sk

 c
at

eg
or

y

Figure 6.11: Success rate of our 20 different task groups, with the variance in each group’s success rate
shown in the error bar.

6.3.2 Understanding the Performance of Dobb·E

On a broad level, we cluster our tasks into 20 broad categories, 19 task specific and one for the

miscellaneous tasks. There are clear patterns in how easy or difficult different tasks may be,

compared to each other.

6.3.2.1 Breakdown by Task Type

We can see from Figure 6.11 that Air Fryer Closing and Cushion Flipping are the task groups with

the highest average success rate (100%) while the task group with the lowest success rate is 6D pick

122

0

5

10

15

20

25

30

Co
un

t

Rotation? = No Rotation? = Yaw

0 20 40 60 80 100
Success rate (%)

0

5

10

15

20

25

30

Co
un

t

Rotation? = Roll

0 20 40 60 80 100
Success rate (%)

Rotation? = Roll/Pitch/Yaw

Figure 6.12: Success rate breakdown by type of actions needed to solve the task. The X-axis shows the
number of successes out of 10 rollouts, and the Y-axis shows number of tasks with the corresponding
number of success.

& place (56%). We found that 6D pick and place tasks generally fail because they generally require

robot motion in a variety of axes: like translations and rotations at different axes at different parts

of the trajectory, and we believe more data may alleviate the issue. We discuss the failure cases

further in Section 6.3.3.

6.3.2.2 Breakdown by Action Type

We can cluster the tasks into buckets by their difficulty as shown in Figure 6.12. We find that the

type of movement affects the success rate of the tasks. Specifically, the distribution of success

rates for tasks which do not require any wrist rotation is skewed much more positively compared

to tasks where we need either yaw or roll, or a combination of yaw, pitch, and roll. Moreover,

123

2 3 4 5 6 7
Average time (s)

0

5

10

15

20

25

Ta
sk

s

2 3 4 5 6 7
Average time (s)

0

20

40

60

80

100

Su
cc

es
s r

at
e

(%
)

r=-0.24, p=0.012

Figure 6.13: (a) Distribution of time (in seconds) taken to demonstrate a task on our experiment setup.
The mean time taken to complete one demonstration is 3.82 seconds, and the median time taken is 3.49
seconds. (b) Correlation analysis between time taken to demonstrate a task and the success rate of the
associated robot policy.

the distribution of successes for tasks which require 6D motion is the flattest, which shows that

tasks requiring full 6D motions are harder compared to tasks where Dobb·E doesn’t require full

6D motion.

6.3.2.3 Correlation between demo time and difficulty

Here, we try to analyze the relationship between the difficulty of a task group when done by the

robot, and the time required to complete the task by a human. To understand the relationship

between these two variables related to a task, we perform a regression analysis between them.

We see from Figure 6.13 that there is a weak negative correlation (𝑟 = −0.24, with 𝑝 = 0.012 < 0.05)

between the amount of time taken to complete a demo by the human demonstrator and how

successful the robot is at completing the task. This analysis implies that while longer tasks may

be harder for the robot to accomplish, there are other factors that contribute to making a task

easy or difficult.

124

Demo

Robot run:
Without

Shadows

Robot run:
With

Shadows

Frame

Step 0 5 10 15 20 25 30

20 50 70 90 100 110 125

Figure 6.14: First-person POV rollouts of Home 1 Air Fryer Opening comparing (top row) the original
demonstration environment, against robot performance in environments with (middle row) similar lighting,
and (bottom row) altered lighting conditions with additional shadows.

Rollout With
Shadows

Demo Without
Shadows

Figure 6.15: First person view from the iPhone from the (top row) Stick during demonstration collection
and (bottom row) the robot camera during rollout. Even with strong shadows during rollout, the policy
succeeds in pulling the table.

6.3.3 Failure Modes and Analysis

6.3.3.1 Lighting and shadows

In many cases, the demos were collected in different lighting conditions than the policy execution.

Generally, with enough ambient lighting, our policies succeeded regardless of day and night

conditions. However, we found that if there was a strong shadow across the task space during

125

Rollout at
Night

Demo in the
Day

Figure 6.16: First person view from the iPhone from the (top row) Stick during demo collection and
(bottom row) robot camera during rollout. The demonstrations were collected during early afternoon while
rollouts happened at night; but because of the iPhone’s low light photography capabilities, the robot view
is similar.

execution that was not there during data collection, the policy may behave erratically.

The primary example of this is from Home 1 Air Fryer Opening (see Figure 6.14), where the strong

shadow of the robot arm caused our policy to fail. Once we turned on an overhead light for even

lighting, there were no more failures. However, this shadow issue is not consistent, as we can see

in Figure 6.15, where the robot performs the Home 6 table pulling task successfully despite strong

shadows.

In many cases with lighting variations, the low-light photography capabilities of the iPhone

helped us generalize across lighting conditions. For example, in Home 8 cushion straightening

(Figure 6.16), we collected demos during the day and ran the robot during the night. However,

from the robot perspective the difference in light levels is negligible.

6.3.3.2 Sensor limitations

One of the limitations of our system is that we use a lidar-based depth sensor on the iPhone. Lidar

systems are generally brittle at detecting and capturing the depth of shiny and reflective objects.

As a result, around reflective surfaces we may get a lot of out-of-distribution values on our depth

channel and our policies can struggle.

126

Demo

Robot

Frame

Step 0 3 6 9 12 15

5 30 45 60 75 90

Figure 6.17: First-person POV rollouts of Home 3 Air Fryer Opening showcasing (top row) a demonstration
of the task and (bottom row) robot execution.

A secondary problem with reflective surfaces like mirrors is that we collect demonstrations using

the Stick but run the trained policies on the robot. In front of a mirror, the demonstration may

actually end up recording the demo collector in the mirror. Then, once the policy is executed on

the robot, the reflection on the mirror captures the robot instead of the demonstrator, and so the

policy goes out-of-distribution and fails.

One of the primary examples of this is Home 3 Air Fryer Opening (Figure 6.17). There, the air fryer

handle was shiny, and so had both bad depth and captured the demonstration collector reflection

which was different from the robot reflection. As a result, we had 0/10 successes on this task.

Another example is Home 1 vertical window blinds opening, where the camera faced outwards in

the dark and provided many out-of-distribution values for the depth (Figure 6.18). In this task,

depth-free models performed better (10/10 successes) than depth-using models (2/10 successes)

because of such values.

6.3.3.3 Robot hardware limitations

Our robot platform, Hello Robot Stretch RE1, was robust enough that we were able to run all the

home experiments on a single robot with only minor repairs. However, there are certain hardware

127

Rollout With
Depth

Rollout Without
Depth

Depth Image

Demo

Figure 6.18: Opening an outward facing window blind (top row) both without depth (second row) and
with depth (third row). The depth values (bottom row) for objects outside the window are high noisy,
which cause the depth-aware behavior model to go out of distribution.

limitations that caused several of our tasks to fail.

The primary constraint we faced was the robot’s height limit. While the Stretch is tall, the

manipulation space caps out at 1m, and thus a lot of tasks like light switch flicking or picking and

placing from a high position are hard for the robot to do. Another challenge with the robot is that

since the robot is tall and bottom-heavy, putting a lot of pulling or pushing force with the arm

near the top of the robot would tilt the robot rather than moving the arm (Figure 6.19), which was

discussed in [Kemp et al. 2022]. Comparatively, the robot was much more successful at opening

heavy doors and pulling heavy objects when they were closer to the ground than not, as shown in

the same figure. A study of such comparative pulling forces needed can be found in [Jain et al.

2010; Jain and Kemp 2013].

Knob turning, another low performing task, had 65% success rate because of the fine manipulation

128

High Door
Opening

Low Door
Opening

Figure 6.19: The robot pulling on a heavy door handle (top row) high up from the ground and (bottom
row) closer the ground. Since the robot is bottom heavy, the first case starts tipping the robot while the
second case succeeds.

Step 0 5 10 15 20 25 30 35 40

Placing on
Red Book

Placing on
Shelf

Figure 6.20: First-person POV rollouts of Home 3 Pick and Place comparing (top) a policy trained on
demos where the object is picked and placed onto a red book on a different shelf and (bottom) a policy
trained on demos where the object is picked and placed onto that same shelf without a red book. In the
second case, since there is no clear signal for when to place the object, the BC policy keeps moving left
and fails to complete the task.

required: if the robot’s grasp is not perfectly centered on the knob, the robot may easily move the

wrist without moving the knob properly.

6.3.3.4 Temporal dependencies

Finally, while our policy only relies on the last observations, for a lot of tasks, being able to

consider temporal dependency would give us a much more capable policy class. For example,

for a lot of Pick and Place tasks, the camera view right after picking up an object and the view

right before placing the object may look the same. In that case, a policy that is not aware of time

129

or previous observations gets confused and can’t decide between moving forward and moving

backwards. A clear example of this is in Home 3 Pick and Place onto shelf (Figure 6.20), where

the policy is not able to place the object if the pick location and the place location (two shelf

racks) look exactly the same, resulting in 0/10 successes. However, if the policy is trained to pick

and place the exact same object on a different surface (here, a red book on the shelf rack), the

model succeeds 7/10 times. A policy with temporal knowledge [Brohan et al. 2023a; Chi et al.

2023; Shafiullah et al. 2022] could solve this issue.

6.3.4 Ablations

We created a benchmark set of tasks in our lab, with a setup that closely resembles a home, to

be able to easily run a set of ablation experiments for our framework. To compare various parts

of our system, we compare them with alternate choices, and show the relative performance in

different tasks. These ablation experiments evaluate different components of our system and how

they contribute to our performance. The primary elements of our model that we ran ablations over

are the visual representation, number of demonstrations required for our tasks, depth perception,

expertise of the demonstrator, and the need for a parametric policy.

6.3.4.1 Alternate visual representation models

Our alternate visual representation comparison is with other pretrained representation models

such as MVP [Xiao et al. 2022], R3M [Nair et al. 2022b], VC1 [Majumdar et al. 2023], and a

pretrained ImageNet-1k [He et al. 2016; Deng et al. 2009] model. We compare them against our

own pretrained models on the benchmark tasks, and compare the performances.

We see that in our benchmark environments, VC1 is the only representation that comes close to

our trained representation. As a result, we ran some more experiments with VC1 representation

in a household environment. As we can see, while VC1 is closer in performance to our model

130

0 20 40 60 80 100
Success rate (%)

HPR (Us)

VC1

IN-1K

R3M

MVP

M
od

el

(a) Lab tasks

0 20 40 60 80 100
Success rate (%)

HPR (Us)

VC1

M
od

el

(b) Home tasks

Figure 6.21: Comparison between different representation models at a set of tasks done in (a) our lab
and (b) in a real home enviroment. As we can see, VC-1 is the representation model closest to ours in
performance, however it has a high variance behavior where it either performs well or fails to complete
the task entirely. The X-axis shows task completion rate distribution with the error bars showing the 95%
confidence interval.

compared to IN-1K, R3M and MVP, it under-performs our model in household environments.

However, VC-1 shows an interesting pattern of bimodal behavior: in each enviroment it either

performs comparatively to HPR, or fails to complete the task entirely.

6.3.4.2 Number of demonstrations reqired for tasks

While we perform all our tasks with 24 demonstrations each, different tasks may require different

numbers of demonstrations. In this set of experiments, we show how models trained on different

numbers of demonstrations compare to each other.

As we see in Figure 6.22, adding more demonstrations always improves the performance of

our system. Moreover, we see that the performance of the model scales with the number of

demonstrations until it saturates. This shows us that on the average case, if our model can

somewhat solve a task, we can improve the performance of the system by simply adding more

demonstrations.

131

8 16 24 32 40 48
demos

0

20

40

60

80

100

Su
cc

es
s r

at
e

(%
)

Task
Towel pickup
Meeting room door opening
Microwave button
Pouring
Cup at water fountain

Figure 6.22: Success rates for a given number of demonstrations for five different tasks. We see how the
success rate converges as the number of demonstrations increase.

6.3.4.3 Depth Perception

In this work, we use depth information from the iPhone to give our model approximate knowledge

of the 3D structure of the world. Comparing the models trained with and without depth in

Figure 6.23, we can see that adding depth perception to the model helps it perform much better

than the model with RGB-only input.

The failure modes for tasks without depth are generally concentrated around cases where the

robot end-effector (and thus the camera) is very close to some featureless task object, for example

a door or a drawer. Because such scenes do not have many features, it is hard for a purely visual

imitation model without any depth information to know when exactly to close the gripper. On the

other hand, the depth model can judge by the distance between the camera and the task surface

when to open or close the gripper.

132

0 20 40 60 80 100
Success rate (%)

Lab

Home 1

Ho
m

e
Depth (Us) No depth

Figure 6.23: Barplot showing the distribution of task success rates in our two setups, one using depth and
another not using depth. In most settings, using depth outperforms not using depth. However, there are
some exceptional cases which are discussed in Section 6.3.3.2.

6.3.4.4 Demonstrator Expertise

Over the course of our project, we gained experience of how to collect demonstrations with the

Stick. A question still remains of how much expertise is needed to operate the Stick and collect

workable demonstrations with it.

For this experiment, we have two novice demonstrators collect demonstrations for two tasks

in our lab setup. In Task 1, our collected data gave 100% success, while in Task 2, our collected

data gave 70% success. Novice collector 1 collected data for Task 1 first and Task 2 second, while

collector 2 collected data for Task 2 first and Task 1 second. Collector 1’s data had 10% success

rate on Task 1, but had 70% success on Task 2. Collector 2’s data had 0% success on Task 2 but 90%

success on Task 1. From the data, we can see that while it may not be trivial initially to collect

demonstrations and teach the robot new skills, with some practice both of our demonstrators

were able to collect demonstrations that were sufficient.

133

iP
ho
ne

O
pe
nS

fM

Figure 6.24: Open-loop rollouts from our demonstrations where the robot actions were extracted using (a)
the odometry from iPhone and (b) OpenSfM respectively.

6.3.4.5 Odometry

In our system, we used the Stick odometry information based on the iPhone’s odometry estimate.

Previous demonstration collection systems in works like [Young et al. 2021; Pari et al. 2021] used

structure-from-motion based visual odometry methods instead, like COLMAP [Schonberger and

Frahm 2016] and OpenSfM [Adorjan 2016]. In this section, we show the difference between the

iPhone’s hardware-based and OpenSfM’s visual odometry methods, and compare the quality of

the actions extracted from them.

As we can see from the Figure 6.24, OpenSfM-extracted actions are generally okay while the

camera is far away from everything. However, it fails as soon as the camera gets very close to

any surface and loses all visual features. The hardware odometry from the iPhone is much more

robust, and thus the actions extracted from it are also reliable regardless of the camera view.

6.4 Open Problems and Future Research

In this work we have presented an approach to scalable imitation learning that can be applied in

household settings. However, there remains open problems that we must address before truly

being able to bring robots to homes.

134

1
2
3
4
5
6
7
8
9

10

Tr
ia

l

Algorithm = VINN | Task = Drawer Algorithm = VINN | Task = Toaster Algorithm = VINN | Task = Bag

Gras
p d

raw
er

ha
nd

le

Ope
n d

raw
er

Re
ach

 cu
p

Gras
p c

up

Pic
k u

p c
up

Drop
 cu

p

int
o d

raw
er

Clos
e d

raw
er

Subtasks

1
2
3
4
5
6
7
8
9

10

Tr
ia

l
Algorithm = BC | Task = Drawer

Gras
p d

oo
r

ha
nd

le
Ope

n d
oo

r

Gras
p m

uff
in

Pic
k u

p m
uff

in

Brin
g m

uff
in

int
o o

ve
n

Pla
ce

muff
in

Clos
e d

oo
r

Subtasks

Algorithm = BC | Task = Toaster

Gras
p c

an

Pic
k u

p c
an

Drop
 ca

n

int
o b

ag

Gras
p b

ag

ha
nd

les

Pic
k u

p b
ag

Subtasks

Algorithm = BC | Task = Bag

Figure 6.25: Analysis of our long-horizon tasks by subtasks. We see that Dobb·E can chain subtasks,
although the errors can accumulate and make overall task success rate low.

6.4.1 Scaling to Long Horizon Tasks

We primarily focused on short-horizon tasks in this work, but intuitively, our framework should be

easily extensible to longer-horizon, multi-step tasks with algorithmic improvements. To validate

this intuition, we train Dobb·E to perform some multi-step tasks in our lab.

In Figures 6.26(a), 6.26(b), and 6.26(c), we can see that Dobb·E can successfully perform multi-step,

long horizon tasks like putting a cup in a drawer, placing a muffin in a toaster oven, or placing a

can in a recycling bag and lifting it. However, because of the compound nature of these tasks, the

failure cases also tend to compound with our simple methods, as seen in Figure 6.25. For example,

in the muffin-in-toaster task, our model got 1 success out of 10 trials, and in the cup-in-drawer

task, our model got 6 success out of 10 trials. In both cases, the sub-task causing primary failure

was not letting go of the grasped object (cup or muffin). If we can improve on such particular

subtasks, possibly using force-aware methods similar to [Collins et al. 2023b], we believe Dobb·E

can easily scale up to long-horizon tasks. Fast on-line adaptation on top of offline training [Haldar

et al. 2023a,b] has potential to improve such long horizon cases as well. In other cases, the robot

was able to open the door but unable to disengage safely from the handle because some part of

the robot gripper got stuck to the handle. This failure mode points to the need of better designed,

less bare-boned robot grippers for household tasks.

135

1. Start 2. Reach handle 3. Open drawer 4. Reach cup

5. Pick up cup 6. Place cup 7. Close drawer 8. End

1. Start 2. Reach handle 3. Open toaster 4. Reach muffin

5. Pick up muffin 6. Place muffin 7. Close toaster 8. End

(a) The robot opening a drawer, placing a cup inside of it, and closing it afterwards.

1. Start 2. Reach handle 3. Open drawer 4. Reach cup

5. Pick up cup 6. Place cup 7. Close drawer 8. End

1. Start 2. Reach handle 3. Open toaster 4. Reach muffin

5. Pick up muffin 6. Place muffin 7. Close toaster 8. End

(b) The robot opening a toaster oven, placing a muffin inside of it, and closing it.

1. Start 2. Reach handle 3. Open drawer 4. Reach cup

5. Pick up cup 6. Place cup 7. Close drawer 8. End

1. Start 2. Reach handle 3. Open toaster 4. Reach muffin

5. Pick up muffin 6. Place muffin 7. Close toaster 8. End

1. Start 2. Reach can 3. Lift can 4. Reach bag

5. Drop can in bag 6. Reach bag handle 7. Grasp bag handle 8. Lift

(c) The robot picking up a can, placing it in a bag, and then lifting it.

Figure 6.26: Dobb·E completing three temporally extended tasks each made up of five to seven subtasks.

136

6.4.2 Incorporating Memory

Another large challenge in our setup is the problem of robotic scene memory. With a single

first person point of view on the Stick, the robot needs to either see or remember large parts of

the scene to operate on it effectively. However, there is a dearth of algorithms that can act as

standalone memory module for robots. The algorithms that currently exist, such as [Shafiullah

et al. 2023a; Kerr et al. 2023; Rashid et al. 2023; Wang et al. 2023b; Shen et al. 2023; Jatavallabhula

et al. 2023; Bolte et al. 2023; Huang et al. 2023b] also tend to have a rigid representation of the

scene that is hard to change or edit on the fly, which will need to improve for real household

deployments.

6.4.3 Improving Sensors and Sensory Representations

Most of current visual representation learning algorithms focus on learning from third-person

views, since that is the dominant framework in Computer Vision. However, third person cameras

often rely on camera calibration, which generally makes using large robot datasets and transferring

data between robots difficult [Bharadhwaj et al. 2023]. A closer focus on learning from first person

cameras and eye-in-hand cameras would make sharing data from different environments, tasks,

and robots much easier. Finally, one of the modality that our Stick is missing is having tactile and

force sensors on the gripper. In deployment, we have observed the robot sometimes applies too

much or too little force because our framework doesn’t contain such sensors. Better integration

of cheap sensors [Bhirangi et al. 2021] with simple data collection tools like the Stick, or even

more methods like learned visual contact force estimation [Grady et al. 2022; Collins et al. 2023a]

could be crucial in such settings.

137

6.4.4 Robustifying Robot Hardware

A large limitation on any home robotics project is the availability of cheap and versatile robot

platforms. While we are able to teach the Hello Robot Stretch a wide-variety of tasks, there were

many more tasks that we could not attempt given the physical limitations of the robot: its height,

maximum force output, or dexterous capabilities. Some of these tasks may be possible while

teleoperating the robot directly rather than using the Stick, since the demonstrator can be creative

and work around the limits. However, availability of various home-ready robotic platforms and

further development of such demonstration tools would go a long way to accelerate the creation

of household robot algorithms and frameworks.

6.5 Reproducibility and Call for Collaboration

Tomake progress in home robotics it is essential for research projects to contribute back to the pool

of shared knowledge. To this end, we have open-sourced practically every piece of this project,

including hardware designs, code, dataset, and models. Our primary source of documentation for

getting started with Dobb·E can be found at https://docs.dobb-e.com.

• Robot base: Our project uses Hello Robot Stretch as a platform, which is similarly open sourced

and commercially available on the market for US$24,000 as of November 2023.

• Hardware design: We have shared our 3D-printable STL files for the gripper and robot at-

tachment in the GitHub repo: https://github.com/notmahi/dobb-e/tree/main/hardware.

We have also created some tutorial videos on putting the pieces together and shared them on

our website. The reacher-grabber stick can be bought at online retailers, links to which are also

shared on our website https://dobb-e.com/#hardware.

• Dataset: Our collected home dataset is shared on our website. We share two versions, a 814 MB

138

https://docs.dobb-e.com
https://github.com/notmahi/dobb-e/tree/main/hardware
https://dobb-e.com/#hardware

version with the RGB videos and the actions, and an 77 GB version with RGB, depth, and the

actions. They can be downloaded from our website, https://dobb-e.com/#dataset. At the

same time, we share our dataset preprocessing code in GitHub https://github.com/notmahi/

dobb-e/tree/main/stick-data-collection so that anyone can export their collected R3D

files to the same format.

• Pretrained model: We have shared our visual pretraining code as well as checkpoints of our

pretrained visual model in our GitHub https://github.com/notmahi/dobb-e/tree/main/

imitation-in-homes andHuggingfaceHub https://huggingface.co/notmahi/dobb-e. For

this work, we also created a high efficiency video dataloader for robotic workload, which is

also shared under the same GitHub repository.

• Robot deployment: We have shared our pretrained model fine-tuning code in https://

github.com/notmahi/dobb-e/tree/main/imitation-in-homes, and the robot controller

code in https://github.com/notmahi/dobb-e/tree/main/robot-server. We also shared

a step-by-step guide to deploying this system in a household, as well as best practices that we

found during our experiments, in a handbook under https://docs.dobb-e.com.

Beyond these shared resources, we are also happy to help other researchers set up this framework

in their own labs or homes. We have set up a form on our website to schedule 30-minutes online

meetings, and shared some available calendar slots where we would be available to meet online

and help set up this system. We hoping these steps would be beneficial for practitioners to quickly

get started with our framework.

Finally, we believe that our work is an early step towards learned household robots, and thus can

be improved in many possible ways. So, we welcome contributions to our repositories and our

datasets, and invite researchers to contact us with their contributions. We would be happy to

share such contributions with the world with proper credits given to the contributors.

139

https://dobb-e.com/#dataset
https://github.com/notmahi/dobb-e/tree/main/stick-data-collection
https://github.com/notmahi/dobb-e/tree/main/stick-data-collection
https://github.com/notmahi/dobb-e/tree/main/imitation-in-homes
https://github.com/notmahi/dobb-e/tree/main/imitation-in-homes
https://huggingface.co/notmahi/dobb-e
https://github.com/notmahi/dobb-e/tree/main/imitation-in-homes
https://github.com/notmahi/dobb-e/tree/main/imitation-in-homes
https://github.com/notmahi/dobb-e/tree/main/robot-server
https://docs.dobb-e.com

Postscript

Dobb·E is a depth-first inquiry into the application of learning-based robotics into homes, finding

ways in which robots are able to solve problems in real world settings. On the way to this

achievement, we were able to create innovative data collection systems, diverse datasets (more

in Chapter 7), lightweight learning algorithms, and an large array of tasks that are suddenly within

bounds for robots in wild environments.

This work could have been significantly more impressive by focusing on more complex, long-

horizon, and dexterous tasks – although that would make the work a lot more resource intensive.

Another possible shortcoming of this work is simply trying to do too much – we introduce new

hardware for data collection and deployment, new learning algorithms, and a series of diverse

empirical learning. As such, contributions end up overshadowing each other. Finally, the system

is complete – but it focuses too much on a singular robot embodiment which makes it inaccessible

to those without the same robot.

Acknowledgements

This work was co-led with Anant Rai, co-authored with Haritheja Etukuru, Yiqian Liu, Ishan

Misra, Soumith Chintala, and advised by Lerrel Pinto. NYU authors are supported by grants from

Amazon, Honda, and ONR award numbers N00014-21-1-2404 and N00014-21-1-2758. NMS is

supported by the Apple Scholar in AI/ML Fellowship. LP is supported by the Packard Fellowship.

Our utmost gratitude goes to our friends and colleagues who helped us by hosting our experiments

in their homes, and those who helped us collect the pretraining data. We thank Binit Shah and

Blaine Matulevich for support on the Hello Robot Platform and the NYU HPC team, especially

Shenglong Wang, for compute support. We thank Jyo Pari and Anya Zorin for their work on

140

earlier iterations of the Stick. We additionally thank Sandeep Menon and Steve Hai for his help in

the early stages of data collection. We thank Paula Nina and Alexa Gross for their input on the

designs and visuals. We thank Chris Paxton, Ken Goldberg, Aaron Edsinger, and Charlie Kemp

for feedback on early versions of this work. Finally, we thank Zichen Jeff Cui, Siddhant Haldar,

Ulyana Pieterberg, Ben Evans, and Darcy Tang for the valuable conversations that pushed this

work forward.

141

7 | General Policies for Zero-Shot

Deployment in New Environments:

Robot Utility Models

3. Deploy in new environments, zero shot, with mLLM feedback

Object reorientation

Drawer opening Door opening Tissue pick up

Bag pick upRobot Utility Models
train once, deploy zero-shot

1. Collect large, diverse,
task specific dataset.

â

RUM
policy

2. Train multi-modal
behavior generation model

RUM
policy

mLLM
Failure?

<restart> â

E.g. your
home

Figure 7.1: Robot Utility Models are trained on a diverse set of environments and objects, and then can
be deployed in novel environments with novel objects without any further data or training.

142

7.1 Introduction

We have seen rapid progress in training manipulation skills recently [Zhao et al. 2023b; Fu et al.

2024b; Zitkovich et al. 2023; Haldar et al. 2024; Fu et al. 2024a; Lin et al. 2024; Kim et al. 2024], largely

brought about by fitting deep networks on data collected by teleoperating robots [Mandlekar

et al. 2018; Iyer et al. 2024; Arunachalam et al. 2023b; Cheng et al. 2024; Khazatsky et al. 2024].

The mechanism for deploying such skills in new environments mimics the pretrain-then-finetune

strategy first developed by the vision community circa 2014 [Girshick et al. 2014]. There, models

were first pretrained on ImageNet and then finetuned on task-specific data such as detection,

segmentation, and pose estimation [Girshick et al. 2014; Gkioxari et al. 2014]. In the context of

robotics, this strategy involves pretraining on large robot datasets [Padalkar et al. 2023; Khazatsky

et al. 2024; Shafiullah et al. 2023b; Walke et al. 2023] to produce a robot foundation model, which

is then fine-tuned on data collected in new environments or tasks [Shafiullah et al. 2023b; Team

et al. 2024; Kim et al. 2024]. This need to fine-tune the foundation model for each and every new

environment is limiting as it requires humans to collect data in the very environment where the

robot is expected to perform. So while vision and language models have moved on to zero-shot

deployments, i.e. without any environment-specific finetuning data, such a capability eludes

most robot manipulators. This is not to say that there have not been attempts to create zero-shot

manipulation models – several foundational work in grasping and pick-and-place [Fang et al.

2023c; Sundermeyer et al. 2021; Mahler et al. 2017a] have tackled this problem albeit with a

task-specific solution.

So what makes creating a general policy for an arbitrary task that can work zero-shot hard? First

is the concern about sufficient data – the necessary amount of data to train such a general model

could be large. Since collecting robot data is hard, creating a large dataset is also hard and often

expensive since humans are usually tasked to collect robot demonstrations. Second, when a large

143

dataset is collected in the open-world it would necessarily have large diversity and multiple modes

in demonstrator behavior. Fitting a robot models on this diverse data is a challenge. Third, unlike

vision and language, where the native form of data, i.e. images and text are largely standard,

robotics is far from having a standard camera and hardware setup along with physical challenges

of running models in realtime on onboard compute. Creating zero-shot models that can run

with even minor changes to hardware setup between training and deployment requires careful

attention to details. Finally, any model deployed zero shot on a novel environment naturally has a

higher failure rate than a model that has been fine-tuned on that environment. Thus, to deploy a

model zero-shot, it is important to have a mechanism for error detection and recovery.

In this work, we introduce Robot Utility Models (RUMs), a new framework for training focused

and functional utility models to complete helpful tasks that can be deployed zero-shot without

further training or fine-tuning in novel environments. This is done by taking a systems-first

approach. To scale up our datasets without compromising on data quality, we develop a new

tool, building on prior work in untethered data collection [Shafiullah et al. 2023b; Chi et al. 2024].

We train policies on these diverse dataset with state-of-the-art multi-modal behavior learning

algorithms [Lee et al. 2024; Chi et al. 2023] and show how they can absorb and scale with large-

scale demonstration data. Finally, we deploy the policy in multiple different environments out

of the box, with self-critique via mLLMs [Guo et al. 2023] and retrying, showing how the policy

can be robustly executed on cheap, general-purpose hardware. A selection of our trained models

are available on the Hello Robot Stretch without much modifications. Beyond the default Stretch

deployment, we also enable deployment on other robot arms, cameras, and lighting conditions,

showing the generalizability of our approach.

Creating and deploying RUMs led us to several interesting lessons. First, we find that the quantity

and quality of data is crucial for training a utility model, with the choice of model architecture

being less critical. Second, we see that the diversity of the data collected is crucial for the model

144

to generalize to new environments, and more important than the raw quantity of data. Third, we

find that the model can be made more capable in single environments by performing self-critique

on the model performance with an independent model and retrying when appropriate.

To validate RUMs, we run a total of 2,950 robot rollouts in real-world environments including

homes in New York City (NY), Jersey City (NJ), and Pittsburgh (PA). These experiments reveal the

following:

• We show that it is possible to create general Robot Utility Models with a moderate amount of

data in the order of 1,000 demonstrations (Section 7.2). These RUMs achieve a 90% average

success rate on zero-shot deployment in 25 novel environments (Section 7.3.1).

• The success of RUMs relies primarily on two key techniques. First, the use of multi-modal

policies (Section 7.2.3) provides a zero-shot success rate of 74.4% (Section 7.3.2). Second, the

mLLM based self-critique and retrying system (Section 7.2.4) further improves the success rate

by 15.6% (Section 7.3.6).

• While the overall framework for RUMs is straightforward, the devil is in the details, where we

find gains from unexpected sources, e.g. data diversity vs. data quantity (Section 7.3.4 and 7.3.5).

To encourage the development of RUMs for a wider variety of tasks, our code, data, models,

hardware designs, as well as our experiment and deployment videos are open sourced and can be

found on our website: robotutilitymodels.com.

7.2 Robot Utility Models

We take a full-stack approach to create Robot Utility Models. At its core, our system follows the

imitation learning framework. However, to effectively scale imitation learning to the point where

145

https://robotutilitymodels.com

our trained policies are deployable zero-shot, we create new tools and techniques to improve data

collection, model training, inference, and deployment.

7.2.1 Data collection tool

One of the primary requirements of our system is to be able to scale up diverse yet accurate

demonstration data for cheap. To this end, we continue on the evolutionary path of hand-held,

portable data collection tools [Song et al. 2020; Young et al. 2020; Pari et al. 2021; Shafiullah et al.

2023b; Chi et al. 2024] that let us quickly collect precise demonstrations. Following our previous

work [Shafiullah et al. 2023b], we call this tool Stick-v2, which is a hand-held data collection tool

built out of an iPhone Pro and a bill of materials that adds up to $25. We combine inspirations

from the quick deployability of Stick-v1, and the compact, handheld form factor of UMI gripper.

For a detailed build instruction and the bill of materials, we refer the reader to the supplementary

materials (Appendix E.2.1).

Our design decisions are predicated on a few factors: portability, convenience, and set-up speed.

We experimentally found these factors to be important to quickly scale up robot datasets and

training RUMs. As we show with experiments in Section 7.3.3, one of the most crucial aspect

of data collection for RUMs is data diversity, i.e. collecting data from a large number of diverse

environments. Thus, it is crucial to have a portable tool that is easy to mass-print, carry, and deploy

in a new environment. Secondly, it is important for the collected data to be accurate across many

environments with many variations. Finally, it is important to minimize the “per-environment

set-up time”, whether that time is spent setting up the data collection system, calibrating the

camera, or the tool’s SLAM system.

For the above reason, we design our data collection tool, Stick-v2, around the ARKit API from

the widely available and used iPhone Pro (Figure 7.2). Given its technical capabilities, the only

digital component in our Stick-v2 is this iPhone, which makes our tool particularly robust to

146

3D printed chassis with cable-driven trigger

Wrist mounted iPhone Pro

Flexible fingers

Figure 7.2: Stick-v2, our data collection tool (left: real photo, right: render), is built out of an iPhone Pro
and a bill of materials that adds up to $25. The tool is portable, robust, and makes it easy to start collecting
data in a new environment in seconds.

shipping and handling. The iPhone, and therefore Stick-v2, can collect RGB video and depth

data at up to 60 Hz and high precision 6D pose and position information from the ARKit API at

up to 100Hz. To capture the gripper opening information, we trained an RGB-based model that

predicts the gripper aperture from images. Furthermore, this data is automatically synchronized

and timestamped by the iPhone without the need for any calibration. This allows us to collect

data from a wide variety of environments with no set-up time. This is in contrast to other data

collection tools based on visual SLAM systems which has limited precision and are non-robust

around “textureless” scenes such as close to flat walls, ceilings, or corners [Chi et al. 2024; Young

et al. 2020]. Finally, not needing camera calibration makes our system deployable out-of-the-box

in any environment, especially in the real world where the environment is not controlled. This

enables us to, for example, collect data from retail home goods stores with minimal interruptions

to enrich our datasets, which would be hindered if we had to calibrate the camera and odometry

system for each new environment.

147

7.2.2 Collected datasets

We collect data for each of our five tasks, which are as defined below:

• Door opening: Open doors with a long handle, on e.g. cabinets and microwaves. Due to

hardware limitations, our robot cannot open doors with round knobs, so we exclude them from

our dataset.

• Drawer opening: Open a drawer with a handle. We exclude drawers with knobs from our

dataset for similar reasons as above.

• Reorientation: Pick up a cylindrical object (e.g. bottle) lying on a flat surface and place it

upright on the same surface.

• Tissue pickup: Pick up a soft, flexible tissue paper from any tissue paper box.

• Bag pickup: Pick up a kraft paper bag or similar other bags from a flat surface.

For each of our five RUMs, we focused on gathering approximately 1,000 demonstrations on

approximately 40 environments, with about 25 demonstrations per environment on average.

The only exceptions are door opening with 1,200 and drawer opening with 525 demonstrations.

A small collection of such environments are shown in Figure 7.3. For the door opening task,

we seeded this dataset with the Homes of New York dataset [Shafiullah et al. 2023b] as well as

demonstrations collected during the Dobb·E experiments. For the other tasks, our dataset consists

of new demonstrations collected using the Stick-v2 tool on a novel set of environments and objects.

For demonstrations collected from the previous dataset by inexperienced data collectors, we do

a manual quality check and exclude any environment that has a high number of low-quality

demonstrations, such as failed demonstrations. Note that, to keep our experiments unbiased, we

hold out test environments and objects and never collect any data on them. To gain quick insight

148

Object reorientationDrawer opening Bag pick upDoor opening Tissue pick up

Figure 7.3: A small sample of environment and objects from our collected dataset. We collect data for
each of our five tasks on a diverse set of environments and objects using Stick-v2.

on different task data we use for training, we created an interactive data diversity visualization

tool: robotutilitymodels.com/data_diversity/.

7.2.3 Model training

Given that our data is collected by a large set of demonstration collectors, conceptually it is

important for the model to handle any resultant multi-modality in the dataset. In this work, we

train a large set of policy classes on our datasets for each task. Among the policy classes, the best

performing ones are VQ-BeT [Lee et al. 2024] and Diffusion Policy (DP) [Chi et al. 2023]. We also

train ACT [Zhao et al. 2023b] and MLP-BC policies on a limited set of tasks. Each policy class

shares some features, such as a ResNet34-based vision encoder initialized to the HPR encoder

from [Shafiullah et al. 2023b], and a transformer-based policy trunk. We also train each model

for the same 500 epochs. Beyond that, we sweep to find the best hyperparameters for learning

rate, history length, and chunk size, and use the recommended hyperparameters from the original

149

https://robotutilitymodels.com/data_diversity/

papers for each model. Our final VQ-BeT models are trained on data subsampled at 3.75Hz, and

uses 6 most recent frames of history to predict the next action. All of our models predict the

action in relative 6D space for the robot end-effector, and absolute value in the range [0, 1] for the

gripper opening. We discuss the impact of choosing different training algorithms in Section 7.3.2.

Training all of our models took between 24 and 48 hours on 2 Nvidia A100 GPUs on our cluster,

with proportional speed-ups by using more GPUs or using more recent GPUs like H100s.

7.2.4 Retrying with GPT-4o feedback

As the timesteps progress, does the robotic
arm open the door AND is the robot arm
grasping the handle in the LAST timestep?
Please respond with only 'Yes' or ‘No'

As the timesteps progress, does the robotic
arm open the door AND is the robot arm
grasping the handle in the LAST timestep?
Please respond with only 'Yes' or ‘No'

No

<Reset and retry>

Yes

<Terminate>

Robot Utility Model Multimodal LLM (gpt-4o-2024-05-13)

Trial 1 Trial 2

Figure 7.4: Automated retrying with feedback from multimodal LLM critic. We use a multimodal
LLM (gpt-4o-2024-05-13 in our experiments) to verify the success of a task given a summary of robot
observations. If the mLLM detects a failure, we automatically reset the robot and retry the task with a
new initial robot state until success or timeout.

While a pre-trained model can solve the task in a new environment, to achieve the best possible

performance, it is helpful to have additional runtime support for the model. For our deployment,

we use an multimodal LLM (gpt-4o-2024-05-13) as an introspection module for our policies

150

Robot arm with 6D pose & position control

Wrist mounted camera

Flexible fingers

Hello Robot: Stretch UFactory xArm 7
(Default gripper) (Custom gripper)

Figure 7.5: Picture of the some robot setups where our Robot Utility Models can be deployed. We show
the Hello Robot: Stretch, and the xArm 7 robot with iPhone Pros on the wrist. Beyond these, we also
deploy on Stretch robots with default D405 wrist cameras.

for a success detection and retrying mechanism. We define a single verification prompt for each

task, and ask the mLLM to verify the success of the task given a summary of robot observations.

As for the run summary, we give the mLLM every other frame from the robot camera, which is

either from the head or the wrist camera depending on the task. If the mLLM detects a failure

(Figure 7.4), RUM automatically resets the robot to a home position and retries the task with a

new initial robot state.

7.2.5 Deployment Details

Our primary hardware for Robot Utility Models deployment is the Hello Robot: Stretch robots

with an iPhone on the wrist, but we support deploying our models on any robot arm with relative

6D pose and position control (Figure 7.5). We design and release an associated robot end-effector

that can be mounted on standard robot arms, such as the xArm or Franka Panda. Similarly, while

we primarily use the iPhone Pro as the deployment camera, we also show deployment on other

wrist cameras, such as the Intel Realsense D405, which is the default wrist camera on Hello Stretch

151

Edition 3 onwards. Overall, our deployment hardware system really relies on three things: our

end-effector with a flexible two-fingered gripper and gripper tips, a wrist camera with a sufficient

field of view, and an arm with six degrees of freedom to mount our wrist. We release default

integration code for Hello Stretch 3 and an xArm wrist mount that we created, which should serve

as illustrative examples for other arms.

7.3 Capabilities of Robot Utility Models

To understand the capabilities of RUMs, we evaluate each of our models on a diverse set of

environments. At the same time, we try to examine our recipe for training utility models and

answer a set of questions about the trained models by running a set of ablation experiments. The

primary questions that we try to answer are the following:

• How well do Robot Utility Models solve a task in an unseen environment while operating on

unseen objects?

• What is the relative importance of different components of Robot Utility Models, such as training

data, training algorithm, and self-verification?

– What scale of data is needed to train capable RUMs?

– What properties of data are most important for training RUMs?

– How does mLLM-based self-critique affect RUMs, and where does it succeed or fail?

• How well can we deploy RUMs on new robot embodiments?

Evaluation details: We set up 25 novel environments – five for each task – with objects and

props not seen in the training dataset. To create these evaluation environments, we take the robot

to previously unseen kitchens, purchase new furniture online (door and drawer opening), and

152

source new objects manually verified to not be in the training set (reorientation, bag and tissue

pick up). We show sample pictures of each of the environments and objects on our Appendix E.2.3.

We evaluate each system and policy for 10 trials in each of these environments, starting from the

same grid of starting positions facing the task space used by [Shafiullah et al. 2023b] as we show

in Appendix Figure E.1. For the retrying-based experiments, while RUMs take 1.31 tries in average

to succeed (Section 7.3.6), we set a 10-try timeout to avoid getting stuck in infinite retry loops.

7.3.1 Zero-shot evaluation of RUMs on unseen environments

The most important test of capability for a Robot Utility Model is whether such a model is capable

of solving the target task in a new environment operating on new objects. We test for this

capability by running our RUMs on our set of 25 eval environments and objects not seen during

training.
Chart 1

Su
cc

es
s

ra
te

 (%
)

0

20

40

60

80

100

Reorientation Drawer opening Door opening Tissue pick up Bag pick up

8492949486

90
Average

VQ-BeT

Table 1

VQ-BeT VQ-BeT stddev VQ-BeT stderr

Reorientation 86 9 4

Drawer opening 94 9 4

Door opening 94 13 6

Tissue pick up 92 13 6

Bag pick up 84 15 7

X X X X

X

X X X
X
X

X
X
X XX

X

X

X X X

X

X

X
X X

1

Figure 7.6: Success rate of Robot Utility Models on average over five novel scenes in five different tasks.
The X’s on the figure denote success rates from individual environments.

On Figure 7.6, we see that on unseen and novel environments, RUMs perform well, achieving

a 90% success rate overall, and ranging between 84% to 94% on individual tasks. We discuss

some of the failure cases we observe in the Appendix Section E.1.3. Additionally, we show the

performance of RUMs on each test environment on Table E.1, showing that across all of our

evaluation experiments, RUMs achieves some success in every environment. This success implies

153

Su
cc

es
s

ra
te

 (%
)

0

25

50

75

100

Reorientation Drawer opening Door opening Tissue pick up Bag pick up

Diffusion Policy VQ-BeT

Table 1

Diffusion Policy VQ-BeT DP stddev VQ stddev DP stderr VQ stderr

Reorientation 62 68 31.144823 18.16590212 13.92838827503988.12403840258551
Drawer opening 66 76 28.80972058 33.61547263 12.884098725930915.0332963792927
Door opening 62 76 23.87467277 21.67948339 10.67707825085669.69535971542352
Tissue pick up 72 80 38.98717738 12.24744871 17.43559577450445.47722557330042
Bag pick up 82 84 20.49390153 11.40175425 9.165151389053395.09901951314943

1

Figure 7.7: Relative comparison of the success rate (with standard error) of different policy architectures
on our dataset on all five tasks without automated error correction. We see that the performance of VQ-BeT
and Diffusion Policy is generally close, with VQ-BeT narrowly outperforming Diffusion Policy.

that our policies have a general idea of solving the target task; then such policies are further

boosted with post-training methods (Section 7.3.6). On all of our following experiments, we try to

understand these two factors separately: the raw performance of the underlying RUM policies,

and the effect of introspection and retrying on the performance of RUMs.

7.3.2 Effect of policy architecture and training method on RUMs

Once we have verified that RUMs can actually solve tasks in novel environments, we investigate the

relative importance of different components within the training recipe. In particular, we compare

the raw performance of different policy architectures on our dataset without the introspection

component. We train a set of policy classes on our datasets for each task, including VQ-BeT [Lee

et al. 2024], Diffusion Policy (DP) [Chi et al. 2023], and as baselines, ACT [Zhao et al. 2023b]

and MLP-BC on two of the tasks. We show the relative comparison of the base success rates of

different policy architectures, without retrying, in Figure 7.7 and 7.8.

As we see in Figure 7.7, VQ-BeT and DP are the top two algorithms in terms of performance,

154

Chart 1

Reorientation

Tissue pick up

Success rate (%)
0 20 40 60 80 100

MLP-BC ACT Diffusion Policy VQ-BeT

Table 1

Diffusion Policy VQ-BeT MLP-BC ACT

Reorientation 62 68 44 48

Tissue pick up 72 80 64 66

2

Figure 7.8: Relative comparison of different policy architectures on our dataset on two tasks without
automated error correction. We see that while the performance of VQ-BeT and Diffusion Policy is generally
neck-to-neck, while the performance of other algorithms is not far behind. Our experiment implies that
the training data is significantly more important than training algorithm.

with comparable performance in most tasks and overlapping error bars. Moreover, we see from

Figure 7.8 that while ACT and MLP-BC are not exactly on par, they are not far behind either. This

observation implies that with training data of sufficient quality, the choice of algorithm may not

be a make-or-break decision, and more energy should be spent on collecting diverse and accurate

data. While we have similar performances on the test environment, we use VQ-BeT over DP for

our final models due the higher performance and a lower latency on the robot CPU itself during

deployment.

7.3.3 Effect of scaling datasets on RUMs

As our experiments show the importance of training data in creating RUMs, we investigate the

properties of the dataset that a successful RUMs relies on. In particular, we dig into the scale of

dataset at which reliable generalization emerges, and how RUMs’ performance vary with dataset

size. We train our policies on a random subset of environments from the task-specific datasets,

155

Door Opening

Diffusion VQ-BeT

20% 42 8 24 14.35270009
40% 48 10.67707825 22 7.348469228
60% 58 11.13552873 38 9.695359715
80% 58 9.121403401 64 11.22497216

100% 62 13.92838828 76 8.124038405

Su
cc

es
s

ra
te

 (%
)

0
25
50
75

100

Data usage (% of full dataset)

20% 40% 60% 80% 100%

Diffusion VQ-BeT

Door opening

Reorientation

Diffusion VQ-BeT

20% 20 12 7.071067812 2
40% 38 24 7.348469228 5.099019514
60% 52 38 9.695359715 5.830951895
80% 62 64 10.67707825 6.782329983

100% 60 68 10.29563014 9.695359715

0
25
50
75

100

Data usage (% of full dataset)

20% 40% 60% 80% 100%

Diffusion VQ-BeT

Reorientation

Table 2

Diffusion VQ-BeT

25% 46 22 12.08304597 5.830951895
50% 64 24 15.03329638 6.782329983
75% 52 38 20.34698995 11.5758369

100% 76 84 7.483314774 10.09950494

0
25
50
75

100

Data usage (% of full dataset)

25% 50% 75% 100%

Diffusion VQ-BeT

Tissue pick up

1

Figure 7.9: Understanding the performance change of RUMs as the dataset scales up on three of our
tasks, with standard error on error bars. We see better performance from Diffusion Policy (DP) on smaller
datasets, but as we scale up, VQ-BeT outperforms DP in 900–1,200 demonstrations limit.

and evaluate them on our evaluation environments.

In Figure 7.9, we show the performance of VQ-BeT and Diffusion Policy without retrying trained

on such data subsets on our evaluation environments as we scale up the dataset. We see that

while Diffusion Policy performs better on smaller datasets, it saturates on larger datasets where

VQ-BeT outperforms it. This observation implies that while a smaller dataset may be sufficient for

training a capable RUMs, a larger dataset is crucial for achieving the best performance. Even on

our largest datasets, we see that the performance of VQ-BeT continues to improve as the dataset

scales up, implying that more data may improve RUMs even further.

7.3.4 Importance of data diversity in training RUMs

Beyond the scale of the dataset, we also investigate how the diversity of the training data impacts

the performance of RUMs in Figure 7.10 (left). We create two alternate datasets of equal size

for the door opening and the object reorientation tasks. The first datasets are composed of a

large number of diverse environments with roughly 25 demonstrations in each environment. The

second dataset is composed of fewer, between 5 and 6, distinct environments with roughly 200

demonstrations on each environment. We see that on the door opening task, where the scene

diversity is narrower, both diverse and uniform environment trained policies performed well.

156

Su
cc

es
s

ra
te

 (%
)

0

25

50

75

100

Door opening Object reorientation

18

64 68
76

Diverse data 
(25 demo/env)

Uniform data 
(200 demo/env)

Table 1

Diverse data Concentrated data Co-training Drop

Door opening 76 64 76 12

Object reorientation 68 18 34 50

0

25

50

75

100

Door opening Drawer opening

34

76 76

52

32
22

Non-expert data Expert data Co-training

1

Figure 7.10: Understanding the importance of different qualities of data in training RUMs. On the left,
we see that diverse datasets are more valuable than more uniform datasets, with strong effects on the
reorientation task with many unseen environments and object. On the right, we see that usually expert data
is more valuable than non-expert or play data while learning behavior on a same sized dataset. Moreover,
we see that co-training with expert data and play data may sometimes reduce the policy performance,
contrary to common knowledge.

However, in the reorientation task, with many different unseen environments and objects, only

diverse-environment trained RUM policy performs well – the policy trained on more uniform envi-

ronments experiences a 50% performance drop. This result implies that to train an effective RUM,

collecting a diverse dataset is important.

7.3.5 Impact of using expert demonstrations on training policies

While scaling up the dataset size and diversity is important for training RUMs, an important

question to consider is the quality of the training dataset. Namely, while it may be easy to

collect a large number of demonstrations by a large number of demonstrators, the quality of the

demonstrations may vary. In this section, we investigate the value of using expert demonstrations

in training RUMs.

In Figure 7.10 (right) we compare the performance of RUMs trained on roughly 500 demonstrations,

where the data is either sampled from expert or non-expert demonstration collectors. Here,

“expertise” is defined as experience deploying Dobb·E policies on the robot. We see that in general,

expert data is more valuable than non-expert data, with expert data outperforming non-expert

157

data in all tasks. Moreover, we see that co-training with expert and non-expert data can sometimes,

but not always, improve the performance of the policy. This observation implies depending on the

task, data quality can have different levels of suboptimality, and in extreme cases may even hurt

performance in co-training, which goes against a common practice in some earlier works [Zhao

et al. 2023b; Khazatsky et al. 2024].

7.3.6 Effects of introspection and retrying with self-critiqe in RUMs

Table 1

Task Mean tries to success False positive rateImprovement rate

Object reorientation 1.348837209 0% 18

Drawer opening 1.617021277 4% 20

Door opening 1.382978723 2.86% 26

Tissue pick up 1.173913043 7% 10

Bag pick up 1.047619048 10% 4

0.5

1.0

1.5

2.0

Mean tries to success

2.5%

5%

7.5%

10%

False positive rate

Object reorientation Drawer opening Door opening Tissue pick up Bag pick up

+7%

+14%

+21%

+28%

Improvement rate

+15.6%
4.8%

1.31

1

Figure 7.11: Understanding the details of introspection and retrying in RUMs. On the left, we see that
retrying improves the performance of RUMs significantly, with an average 15.6% improvement. In the
middle, we see that with retrying, most tasks get solved quite fast, on average with 1.31 tries. On the right,
we see that while the mLLM is able to help, it can also have false positives (4.8% average over five tasks)
which may let some errors slip past.

In RUMs, we are using a multimodal large language model (mLLM) as a self-critique method to

identify failures. However, a pretrained mLLM in practice is just another layer of fail-safe for

our robot deployment, and not a guarantee of success in itself. Thus, in this section we try to

understand how it helps, and how such introspection method can fail.

In Figure 7.11 (left), we can see the improvement rate of using self-critique over simply using

the RUM policies without any retrying mechanism. On average over our 5 tasks, we see a 15.6%

improvement over simply using RUM policies. While retrying is crucial to a higher success

rate, a system that is stuck retrying for a long time is much less useful. Thankfully, on average,

158

when RUMs succeeds, it does so within 1.31 tries on average, as we see from Figure 7.11 (middle).

Finally, we analyze the primary failure mode of mLLMs, which is predicting false positives:

classifying a trajectory as a success when it’s actually a failure. On average, 4.8% of our trajectories

exhibit such behavior, constituting of half of the total errors, as seen on Figure 7.11 (right).

7.3.7 Transferring RUMs to different embodiments
Chart 1

Su
cc

es
s

ra
te

 (%
)

0

25

50

75

100

Tissue pick up Bag pick up

7670
8480

Hello Robot: Stretch UFactory xArm 7

Table 1

Hello Robot: Stretch UFactory xArm 7

Tissue pick up 80 70

Bag pick up 84 76

1

Figure 7.12: Performance of RUMs without corrections on different embodiments as shown in Figure 7.5:
RUMs can transfer to different embodiments with minimal loss in performance.

Finally, we investigate the ability of RUMs to be transferred to different embodiments and cameras.

We test the performance of two RUMs on the other robot setup shown in Figure 7.5: UFactory

xArm 7, which is different from the Hello Robot Stretch setup we run other experiments on. We

see that RUMs can be transferred to different embodiments and cameras with minimal loss in

performance: roughly 10% drop in performance in both cases without corrective mLLM feedback,

as shown in Figure 7.12. We expect combining RUMs with the mLLM self-critique would result

in similar increase in performance in other embodiments as well; in fact, with an external third

person camera, we expect to see a higher portion of the errors being caught and corrected. This

experiment implies that RUMs can be easily deployed on different robots and cameras with

minimal effort, making it a versatile tool for a wide range of robotic applications.

159

7.4 Related works

Large Scale Data Collection: The data acquisition pipeline represents one of the most critical

element of a data-driven robot learning framework. Previous works has employed a diverse array

of data acquisition techniques, combining many open-sourced datasets across diverse simulation

or real-world data including diverse robot embodiment from many institutions across the globe

[Reed et al. 2022; Padalkar et al. 2023; Zitkovich et al. 2023; Khazatsky et al. 2024].

The most common approaches to robot demonstration collection involves pairing the robot or

end-effector with remote controller devices or kinematically isomorphic equipment. The devices

utilized have a range of complexity and forms: they encompass full robotic exoskeletons [Zhao

et al. 2023a; Ishiguro et al. 2020; Fang et al. 2023a], as well as simpler data collection tools [Zhao

et al. 2023b; Wu et al. 2023; Fu et al. 2024b], and also methods that don’t require physically moving

a robot [Shafiullah et al. 2023b; Song et al. 2020; Pari et al. 2021; Young et al. 2020; Chi et al. 2024].

Additionally, various control methods have also been employed, including the use of video game

controllers [Liu et al. 2024a; Sian et al. 2004], Virtual Reality (VR) devices [Iyer et al. 2024; Cui

et al. 2022; Cheng et al. 2024; Yang et al. 2024b; Park and Agrawal 2024; Arunachalam et al. 2023b,a;

Fu et al. 2024a], and mobile phones [Mandlekar et al. 2018].

While the most intuitive method is to physically move a real robot, it is both difficult to do and

hard to scale to a diverse set of environments. The hardware controller approach can be inefficient

because it requires the demonstrator to mentally map robot behavior to controller inputs. The

opposite, using a device without moving the robot is efficient in that the demonstrator’s movements

can be mapped directly to the robot, but it is challenging to apply force feedback. Studies that

provides perspective on the relative merits of these two direction are [Shafiullah et al. 2023b; Chi

et al. 2024], which combines the versatility of simple controller with the intuitiveness of moving

a physical end-effector. In this work, we employ a device that inherits and improves the device

160

proposed from [Shafiullah et al. 2023b; Chi et al. 2024] for our data collection pipeline.

Pretrained Robot Models: Pre-trained foundation models have demonstrated a wide range of

generalization performance across various domains, with the capability to learn from internet-

scale pre-training data [Devlin et al. 2018; Radford et al. 2021; Dubey et al. 2024; Kirillov et al.

2023]. However, in comparison to these vision and language pre-trained models, learning a

foundation model for robotics has been considered a relatively challenging area, due to the limited

quantity of available datasets [Kappler et al. 2015; Levine et al. 2016; Depierre et al. 2018; Zhu

et al. 2023], the significant discrepancy across the domains [Dasari et al. 2019; Kalashnikov et al.

2021; Padalkar et al. 2023], and the inherently challenging nature of the action datasets in terms

of tokenization [Lee et al. 2024; Zitkovich et al. 2023; Zheng et al. 2024].

To address these issues, recent research is increasingly adopting techniques that introduce modular

and hierarchical systems, incorporate pre-trained language and visual models [Li et al. 2023; Nair

et al. 2022b; Karamcheti et al. 2023; Shafiullah et al. 2023a; Liu et al. 2024c; Gupta et al. 2024], and

collect large scale data with efficient data collection schemes [Khazatsky et al. 2024; Zitkovich

et al. 2023; Walke et al. 2023; Ebert et al. 2022; Fang et al. 2023b]. Consequently, they have enabled

the pre-trained foundation robot models to exhibit enhanced generalization performance, thereby

showcasing that the robotic agents are capable of operating in more than one robot embodiment

and operating environment [Team et al. 2024; Reed et al. 2022; Kim et al. 2024; Doshi et al. 2024]. In

contrast with the aforementioned approaches, which follow a method of training on internet-scale

data and fine-tuning on task-specific data, our approach does not expect that the model will have

access to a dataset in the environments where the robot is expected to operate. Rather, this project

demonstrates the capacity of generalizable performance without a necessity to fine-tune the model

for each novel robot embodiment and environment.

161

Large Models Feedback and Improvement: Due to their capacity to comprehend intricate

semantics and relations, Natural language and Large language models (LLM), have recently been

applied to robotic agents powered by imitation learning [Fried et al. 2018; Kim et al. 2024; Shridhar

et al. 2022; Jang et al. 2021] and reinforcement learning [Du et al. 2023; Goyal et al. 2021].

Among the wide capabilities afforded by language models, those commonly employed in the

context of decision-making include providing feedback in the resolution of uncertain information

[Ren et al. 2023; Mullen Jr and Manocha 2024; Huang et al. 2022b; Liu et al. 2023c; Guo et al. 2023;

Park et al. 2023; Gao et al. 2024], suggesting affordance of what is possible in the environments by

combining with Value functions [Brohan et al. 2023b], and imagination of outcomes [Zhang et al.

2024] or planning and decompose complex tasks into mid-level plans [Song et al. 2023; Huang

et al. 2022a; Zeng et al. 2022; Sharma et al. 2021]. Language models could also be used to improve

the overall performance of autonomous agent systems by improving reward signal [Nair et al.

2022a; Goyal et al. 2021; Ma et al. 2023], leveraging their long-horizon reasoning [Dalal et al.

2024; Zhou et al. 2023a; Blukis et al. 2022], or designing environments [Ma et al. 2024]. In this

project, we employ the mLLM to provide feedback in the form of a reset signal in open-ended

environments, a manner analogous to that of the studies above.

7.5 Limitations

While in this work we create Robot Utility Models that can perform particular tasks zero-shot

in novel environments, there are certain limitations that future versions can improve upon. The

primary limitation that we see are of hardware: for example, two-fingered grippers like our

Stick-v2 are unable to open doors with round doorknobs. Similarly, while flexible fingertips can

be more lenient for the policy, it makes it hard to manipulate heavy objects. We encourage more

research on better gripper and fingertip design to address these issues. Secondly, we assume

navigation to be a separate component, and in this work assume that the robot is in the task space

162

facing the task objective. Combining with modular navigation work such as [Liu et al. 2024c]

should address this issue. Finally, for mLLM introspection and retrying, we assume that the errors

made by our model (a) leaves the task-space somewhat in-distribution, and (b) allows for an easy

reset of the robot to the initial state. Increasing training data with failure recovery behavior in

our dataset should let our robots recover more naturally from such failure cases.

Postscript

Robot Utility Model is the first work that went beyond my nearest neighbor theory of behavior

cloning – if the robot is performing a complex task in an entirely new environment, it must have

to do something beyond nearest neighbor. This method may be discovering a representation that

looks beyond the environment dependent features.

One of the underappreciated features of this work is the potential economic value of being able to

do one narrowly defined task well in a variety of environment and objects. Many large behavior

models currently define their task interface poorly – it is hard to specify what tasks and in what

environments the system would be able to solve. It may be more prudent to instead build up from a

select set of tasks that we can be fairly confident that the model can do under most circumstances,

and think about different permutations of behaviors from the ground up. Finally, RUMs gives

us a recipe to build a “minimal” generalist robot model. This recipe can now be used to study

and understand generalization behaviors for robot models, and hopefully used to discover new

principles that can make such policies more efficient and effective in the real world.

163

Acknowledgements

This work was co-led with Haritheja Etukuru, and co-authored with Norihito Naka, Zijin Hu,

Seungjae Lee, Julian Mehu, Aaron Edsinger, Chris Paxton, Soumith Chintala, and Lerrel Pinto. We

thank Shenglong Wang and the NYU HPC team for helping us with compute, Blaine Matulevic

and Binit Shah for supporting our hardware needs, and Siddhant Haldar and Jeff Cui for providing

feedback on the paper. NYU authors are supported by grants from Honda, Hyundai, NSF award

2339096 and ONR awards N00014-21-1-2758 and N00014-22-1-2773. MS is supported by the Apple

Fellowship. LP is supported by the Packard Fellowship. SL is supported by the Daishin Songchon

Foundation. Hello Robot authors are supported by NIH NIA R43AG072982.

164

8 | Building an Open-source Bimanual

Mobile Robot for Generalizable

Robotics: Cone-E

Figure 8.1: Cone-E is an open-source, bimanual mobile manipulator designed as a general-purpose
research platform.

165

8.1 Introduction

Applications of machine learning in robotics have made tremendous progress in recent years

in robot navigation [Sridhar et al. 2024; Liu et al. 2024b; Yang et al. 2024a; Gervet et al. 2023a;

Shafiullah et al. 2023a], locomotion [Rudin et al. 2022; Agarwal et al. 2023; Cheng et al. 2023; Fu

et al. 2022; Margolis et al. 2022], and manipulation [Zitkovich et al. 2023; Chi et al. 2023; Kim et al.

2024; Haldar et al. 2024; Zhao et al. 2023b; Lin et al. 2024]. Such advances in robotics have been

supported by accessible, low cost hardware such as the Unitree A1 and G1 robots, the Hello Robot:

Stretch, or the Mobile Aloha open-source bimanual manipulator [Fu et al. 2024b]. However, there

is a noticeable gap in the currently available accessible platforms for mobile manipulation, in

particular for bimanual mobile robots. Currently, such available platforms on the market tend to

be inaccessible, hard to build upon, or have limited functionality due to, respectively, high-cost,

closed source design, and hardware limitations.

In this work, we propose a new mobile manipulator design to accelerate generalizable robotics

research – aiming to provide a reliable platform that will fuel indoor mobile manipulation research.

Our most important considerations for this platform are to make it low-cost, and easy to build and

repair with off-the-shelf parts, and easy to control in various ways. We identify some key needs for

a good mobile manipulation research platform: dexterous bimanual arms, an omnidirectional base,

and a vertically extended workspace that reaches both the floor and overhead. Beyond hardware

capabilities, we identify quality-of-life developments for researchers, like having a long battery

life, a small footprint, and a readable, fully open source software stack.

Our proposed mobile manipulator, Cone-E, is low-cost (with a bill of material cost $12-13K USD)

and fully integrated to provide whole-body manipulation. With the publication of this work, we

will open source the hardware design, including a BOM and an assembly guide, the full controller

software stack, and a suite of our general-purpose “utility” policies. We believe our design will

166

propel further research into whole-body and mobile manipulation by providing access to a stable

platform with minimal dynamic constraints.

8.2 Hardware Design

In this section, we discuss how Cone-E achieves the hardware design goals identified in Section 8.1.

8.2.1 Mobile Base

Cone-E has an omnidirectional base to allow flexible navigation, intuitive teleoperation, and

simplified policy learning. Many current commercial robots, such as the Hello Robot: Stretch

[Kemp et al. 2022] or the Rainbow RB-Y1 [Rainbow Robotics 2025], use a differential-drive base

due to its simplicity and lower cost. While cheap, this type of drive is non-holonomic, meaning

the state of the system is dependent on the path taken in order to achieve it.

Differential-drive constraint limits arbitrary position control which is important for closed-loop

learned policies. Therefore, we designed our base as a swerve drivetrain with four wheels. We use

readily available components from the FIRST Robotics Competition (FRC) ecosystem [FIRST (For

Inspiration and Recognition of Science and Technology) 2024], similar to Tidybot++ [Wu et al.

2024]. A frame made of aluminum extrusions carry the four swerve modules, a power distribution

block and the battery.

Unlike TidyBot++, we do not modify the swerve modules to create caster wheels. Our base is non-

holonomic if modeled at the level of infinitesimally small timesteps. However, an abstraction of the

system with discrete timesteps, longer than the steering duration, still renders a holonomic system.

We find the maneuverability of swerve modules is enough for non-dynamic tasks in household

environment while bypassing additional build complexity from machining caster modules.

We further refine our design to give the base a small footprint (34 x 42 cm) allowing navigation

167

in household environments similar to humans. We designed this base to be more compact than

TidyBot++ by simplifying the electrical circuitry and running all digital components from a single

24V 20Ah NMC battery. NMC batteries have higher power density compared to SLA and LiFePO4

batteries, providing long runtime in a compact form factor. Our base motors, the lift motor and the

arms all run on 24V and can be directly powered from the power distribution block. The control

module, an Intel NUC mini PC, runs on 19V and needs a step-down voltage regulator after the

power distribution block. Practical splice connectors like Wago [WAGO Kontakttechnik GmbH &

Co. KG 2025] and power distribution panel with many output channels keep the circuitry easy to

build and customizable. In addition to the circuitry, we use SDS MK4c swerve modules instead of

SDS MK4 due to their smaller footprint and lower chassis mounting.

8.2.2 Telescoping Lift

A core component to increase the vertical reach of mobile manipulators is a lift mechanism that

provides a vertical degree of freedom. Lift mechanisms allow the robot to raise or lower its torso

consisting of arm and sensors and expands its workspace beyond a fixed mounting height. This

added vertical mobility is essential for household tasks like reaching high shelves, picking objects

from the floor, or achieving optimal sensor viewpoints.

Most commercial lift designs are custom built per order and expensive, not readily available

on the market. To keep our design low-cost and easy to build with the off-the-shelf parts, we

re-purpose an adjustable height telescoping table (shown in Figure 8.2) as our robot lift. The table

is a telescoping lead screw mechanism driven manually with a hand crank, which we motorize for

our purposes. Inside, there are three lead screws that nest inside each other. The screws rotate in

sequence. This allows for compact collapsed length and extended height adjustment. The screws

are self-locking, thus, they hold position when unpowered. This makes Cone-E more efficient as

the lift does not need to draw power when stationary. The outside of the lift are three telescoping

168

aluminum columns that are held together by rubber friction pads. We use the thin steel panels on

the top and bottom of the lift to mount the torso and attach the lift onto the base respectively.

We automate this table by motorizing the hand crank drive shaft. We create a timing belt pulley

that fits on the shaft using nylon or metal 3-D printing. Then, using a timing belt and a BLDC

servo motor, we can control the lift height. The lift is 30.5 cm at its lowest and 72 cm at its highest.

We find the 41.5 cm stroke length to be enough for being able to reach the ground and also doing

tabletop manipulation on high surfaces. In addition to providing extended reach, the lift acts as an

extra degree of freedom that we can utilize in our inverse kinematics solver.

We use the integrated encoders inside the motor as a feedback to compute lift position. The lead

screws inside the lift have a 6𝑚𝑚 thread pitch. We use a 60-teeth and 18-teeth pulley on the lift

and motor shaft respectively. To move the lift through its full-range, the motor needs to rotate

approximately 225 rotations. To calibrate, the lift needs to “home” when the robot is turned on.

8.2.3 Arms and the Gripper

We build Cone-E as a bimanual robot that supports two 6DOF arms and custom grippers as

manipulation tools. We choose AgileX Piper arms due to their low-cost (only $2,500) and light

weight (4.2 kg). The arms are mounted onto an extruded aluminium torso with 45-degree shoulders.

We choose this shape to balance the arms’ forward and downward reach. The angled shoulders

also prevent the elbows of the arms from colliding with each other even if their mounting points

are close.

As the end-effector on the arm, we choose the NYU gripper introduced in [Etukuru et al. 2024].

The angular jaw design allows both precise manipulation and large force application. As an

end-effector camera, we use an iPhone following the same work, and for data collection use the

hand-held version of the NYU gripper with the mounted iPhone and the associated app, AnySense.

The app records video, high-quality 𝑆𝐸 (3) pose, and any supplementary information streamed

169

over bluetooth, all at 30fps. We designed this tool to be more ergonomic and compact compared

to other similar tool designs such as [Etukuru et al. 2024; Shafiullah et al. 2023b; Chi et al. 2024].

8.2.3.1 Compliant Controller

A compliant controller is essential to absorb unexpected forces encountered during manipulation

and ensure safety in learned policy deployments. Therefore, we implement a joint stiffness

controller with two layers. The low-level real time controller runs at 200 Hz, while the policy

sets targets for this controller at much lower frequencies. The typical joint stiffness controller

objective is

−𝜏𝑔 (𝑞) + 𝐾𝑝 (𝑞𝑟𝑒 𝑓 − 𝑞) + 𝐾𝑑 (¤𝑞𝑟𝑒 𝑓 − ¤𝑞)

where𝑞 is the measured joint positions and𝑞𝑟𝑒 𝑓 is the target position set by the upstream controller.

The system acts like a spring-damper around the reference position with stiffness coefficient

𝐾𝑝 and damping coefficient 𝐾𝑑 . The feedforward torque gravity compensation allows us to set

stiffness gains lower, resulting in compliant movement.

Telescoping lift

6-DoF Arms

NYU gripper

NMC Battery

Compact Base Frame

Figure 8.2: Cone-E is modular and easily customizable with different arms, end-effectors and sensors.

170

8.3 Applications of Cone-E

8.3.1 Teleoperation

We teleoperate Cone-E using a Quest VR device following [Iyer et al. 2024]. The VR controllers are

re-mapped to robot control in the following way. We re-target the left and right controller poses

to the corresponding arm’s end-effector pose. The left and right joysticks on the controllers are

used to command rotational and translational velocities to the base in the planar 𝑆𝐸 (2) workspace

respectively. The trigger buttons on the joysticks are used to control the lift height. Quest

controller commands are published to the robot mini PC over WiFi. We find 30 Hz to be the ideal

VR command frequency to balance robot responsiveness against network delays.

8.3.2 Policy Learning

Following Etukuru et al. [2024], we used our hand-held data collection tool with an iPhone Pro

to collect demonstrations for a general pick-up task. Our portable hand-held tool enables us to

collect demonstrations in diverse environments. We collected approximately 5,000 demonstrations

to train a general pick-up policy. We use a VQ-BeT [Lee et al. 2024] model with 30M parameters,

which runs entirely on the CPU of Cone-E’s mini PC. The pick-up model predicts the 𝑆𝐸 (3)

relative action in the current end-effector frame and the absolute gripper pose. This end-effector

pose is then fed to our arm differential inverse kinematics controller, which calculates the next

joint positions for the robot.

The policy takes in camera observations and predicts new actions at 2Hz, predicting the desired

end-effector pose. In contrast, our low-level joint stiffness controller runs at 200Hz. To bridge

this frequency gap and ensure smooth motion, we interpolate the joint commands to reach the

target pose within 1 second. The policy issues a new command when the preceding one is halfway

171

completed (every 0.5s), thereby enabling continuous and smooth robot control.

8.4 Limitations

In this work, we introduce Cone-E, an open-source bimanual mobile manipulator robot platform.

While we believe it offers a great balance between cost and functionality, there are certain

affordances, such as a head camera and twisting neck and torso, that are not present in the current

version. By open sourcing our design, we hope that the community can customize the platform to

their needs while iterating on future such platforms in an open and collaborative way.

Postscript

One of the primary limitation in the current era of robot learning is not about learning – it is that

we do not have good, unified platforms to run our experiments. Being involved in the Cone-E

project highlighted all the consideration that goes into designing a robot specifically for learning

purposes. Similarly, Cone-E is a study in understanding the trade-off in robot building while on a

budget, and hopefully will inspire future works in the same vein building open-source hardware

that makes open robot learning research more expedient.

Acknowledgements

This work was led by Enes Erciyes, co-authored with Haritheja Etukuru and Soumith Chintala,

and advised by Lerrel Pinto.

172

Part III

Semantic Memory for Long-horizon

Intelligence

173

9 | Weakly Supervised Semantic Fields

for Robotic Memory: CLIP-Fields

9.1 Introduction

In order to perform a variety of complex tasks in human environments, robots often rely on a

spatial semantic memory [Blukis et al. 2022; Min et al. 2021; Gervet et al. 2023a]. Ideally, this

spatial memory should not be restricted to particular labels or semantic concepts, would not rely

on human annotation for each scene, and would be easily learnable from commodity sensors

like RGB-D cameras and IMUs. However, existing representations are coarse, often relying on a

preset list of classes and capturing minimal semantics [Blukis et al. 2022; Gervet et al. 2023a]. As a

solution, we propose CLIP-Fields, which builds an implicit spatial semantic memory using web-

scale pretrained models as weak supervision. Recently, representations of 3D scenes via neural

implicit mappings have become practical [Sucar et al. 2021; Sitzmann et al. 2019]. Neural Radiance

Fields (NeRFs) [Mildenhall et al. 2020], and implicit neural representations more generally [Ortiz

et al. 2022] can serve as differentiable databases of spatio-temporal information that can be used

by robots for scene understanding, SLAM, and planning [Li et al. 2022; Simeonov et al. 2022; Chen

et al. 2022b; Driess et al. 2022; Ortiz et al. 2022].

Concurrently, web-scale weakly-supervised vision-language models like CLIP [Radford et al.

174

Web-pretrained Model Supervision

Implicit CLIP Field

Warm up
my lunch

Query Robot memory retrievalSemantic

Representation

Figure 9.1: Our approach, CLIP-Fields, integrates multiple views of a scene and can capture 3D semantics
from relatively few examples. This results in a scalable 3D semantic representation that can be used to
infer information about the world from relatively few examples and functions as a 3D spatial memory for
a mobile robot.

2021] have shown that the ability to capture powerful semantic abstractions from individual

2D images. These have proven useful for a range of robotics applications, including object

175

understanding [Thomason et al. 2022] and multi-task learning from demonstration [Shridhar et al.

2022]. Their applications have been limited, however, by the fact that these trained representations

assume a single 2D image as input; it is an open question how to use these together with 3D

reasoning.

In this work, we introduce a method for building weakly supervised semantic neural fields, called

CLIP-Fields, which combines the advantages of both of these lines of work. CLIP-Fields is intended

to serve as a queryable 3D scene representation, capable of acting as a spatial-semantic memory

for a mobile robot. We show that CLIP-Fields is capable of open-vocabulary segmentation and

object navigation in a 3D scene using only pretrained models as supervision.

Our key idea is to build a mapping from locations in space 𝑔(𝑥,𝑦, 𝑧) : R3 → R𝑑 that serves as a

generic differentiable spatial database. This dataset is trained to predict features from a set of

off-the-shelf vision-language models trained on web-scale data, which give us weak supervision.

This map is trained on RGB-D data using a contrastive loss which encourages similarity between

features predicted at specific spatial locations.

Thus, from the point of view of a robot using CLIP-Fields as a spatial database for scene-

understanding, training 𝑔 itself can be entirely self-supervised: the full pipeline, including training

the underlying image models, need not use any explicit supervision. On the other hand, as we show

in our experiments, even without any explicit supervision, the spatial database 𝑔 can naturally

capture scene-specific information.

We demonstrate our method on tasks such as instance segmentation and identification. Fur-

thermore, we give qualitative examples of image-view localization, where we need to find the

spatial coordinates corresponding to an image and localizing text descriptions in space. Finally,

we demonstrate CLIP-Fields on a real robot by having the robot move to look at various objects

in 3D given natural language commands. These experiments show how CLIP-Fields could be

used to power a range of real-world applications by capturing rich 3D semantic information in an

176

accessible way.

9.2 Related work

Vision-Language Navigation. Much recent progress on vision-language navigation problems

such as ALFRED [Shridhar et al. 2020] or RXR [Ku et al. 2020] has used spatial representations

or structured memory as a key component to solving the problem [Min et al. 2021; Blukis et al.

2022; Wang et al. 2021; Gadre et al. 2022]. HLSM [Blukis et al. 2022] and FiLM [Min et al. 2021]

are built as the agent moves through the environment, and rely on a fixed set of classes and

a discretization of the world that is inherently limiting. By contrast, CLIP-Fields creates an

embedding-dependant implicit representation of a scene, removing dependency on a fixed set of

labels and hyperparameters related to environment discretization. Other representations [Wang

et al. 2021] do not allow for 3D spatial queries, or rely on dense annotations, or accurate object

detection and segmentation [Gadre et al. 2022; Chen et al. 2020b; Azuma et al. 2022].

Concurrently with our work, NLMap-SayCan [Chen et al. 2022a] and VLMaps [Huang et al. 2023b]

proposed two approaches for real-world vision-language navigation. NLMap-SayCan uses a 2D

grid-based map and a discrete set of objects predicted by a region-proposal network [Chen et al.

2022a], while CLIP-Fields can make predictions at different granularities. VLMaps [Huang et al.

2023b] use a 2D grid-based representation and operate on a specific, pre-selected set of object

classes. By contrast, CLIP-Fields can operate on 3D data, allowing the agent to look up or down

to find objects. All three methods assume the environment has been explored, but both [Chen

et al. 2022a] and [Huang et al. 2023b] look at predicting action sequences, while we focus on the

problem of building an open-vocabulary, queryable 3D scene representation.

Pretrained Representations. Effective use of pretrained representations like CLIP [Radford et al.

2021] seems crucial to deploying robots with semantic knowledge in the real world. Recent works

177

have shown that it is possible to use supervised web image data for self-supervised learning of

spatial representations. Our work is closely related to [Chaplot et al. 2021], where the authors

show that a web-trained detection model, along with spatial consistency heuristics, can be used to

annotate a 3D voxel map. That voxel map can then be used to propagate labels from one image to

another. Other works, for example [Datta et al. 2022], use models specifically trained on indoor

semantic segmentation to build semantic scene data-structures.

Cohen et al. [Cohen et al. 2022] looks at personalizing CLIP for specific users and rare queries, but

does not build 3D spatial representations conducive to robotics applications, and instead functions

on the level of individual images.

Implicit Representations. There is a recent trend towards using NeRF-inspired representations

as the spatial knowledge base for robotic manipulation problems [Simeonov et al. 2022; Driess

et al. 2022], but so far this has not been applied to open-vocabulary object search. As in [Zhi et al.

2021; Sucar et al. 2021; Vora et al. 2021; Kobayashi et al. 2022; Tschernezki et al. 2022], we use a

mapping (parameterized by a neural network) that associates to an (𝑥,𝑦, 𝑧) point in space a vector

with semantic information. In those works, the labels are given as explicit (but perhaps sparse)

human annotation, whereas, in this work, the annotation for the semantic vector are derived from

weakly-supervised web image data.

Language-based Robotics. Several works [Shridhar et al. 2022; Thomason et al. 2022] have

shown how features from weakly-supervised web-image trained models like CLIP [Radford et al.

2021] can be used for robotic scene understanding. Most closely related to this work is [Ha and

Song 2022], which uses CLIP embeddings to label points in a single-view 3D space via back-

projection. In that work, text descriptions are associated with locations in space in a two step

process. In the first step, using an ViT-CLIP attention-based relevancy extractor, a given text

description is localized in a region on an image; and that region is back-projected to locations

in space (via depth information). In the second step, a separately trained model decoupled from

178

the semantics converts the back-projected points into an occupancy map. In contrast, in our

work, CLIP embeddings are used to directly train an implicit map that outputs a semantic vector

corresponding to each point in space. One notable consequence is that our approach integrates

semantic information from multiple views into the spatial memory; for example in Figure 9.6 we

see that more views of the scene lead to better zero-shot detections.

9.3 Background

In this section, we provide descriptions of the recent advances in machine learning that makes

CLIP-Fields possible.

Contrastive Image-Language Pretraining This pretraining method, colloquially known as

CLIP [Radford et al. 2021], is based on training a pair of image and language embedding networks

such that an image and text strings describing that image have similar embeddings. The CLIP

model in [Radford et al. 2021] is trained with a large corpus of paired image and text captions

with a contrastive loss objective predicting which caption goes with which image. The resultant

pair of models are able to embed images and texts into the same latent space with a meaningful

cosine similarity metric between the embeddings. We use CLIP models and embeddings heavily

in this work because they can work as a shared representation between an object’s visual features

and its possible language labels.

Open-label Object Detection and Image Segmentation Traditionally, the objective of object

detection and semantic segmentation tasks has been to assign a label to each detected object or

pixels. Generally, these labels are chosen out of a set of predefined labels fixed during training or

fine-tuning. Recently, the advent of open-label models have taken this task to a step further by

allowing the user to define the set of labels during run-time with no extra training or fine-tuning.

179

Such models instead generally predict a CLIP embedding for each detected object or pixel, which

is then compared against the label-embeddings to assign labels. In our work, we use Detic [Zhou

et al. 2022] pretrained on ImageNet-20k as our open-label object detector. We take advantage of

the fact that besides the proposed labels, Detic also reports the CLIP image embedding for each

proposed region in the image.

Sentence Embedding Networks for Text Similarity CLIP models are pretrained with image-

text pairs, but not with image-image or text-text pairs. As a result, sometimes CLIP embeddings

can be ambiguous when comparing similarities between two images or pieces of texts. To improve

CLIP-Fields’ performance on language queries, we also utilize language model pretrained for

semantic-similarity tasks such as Sentence-BERT [Reimers and Gurevych 2019]. Such models are

pretrained on a large number of question-answer datasets. Thus, they are also good candidates

for generating embeddings that are relevant to answering imperative queries.

Neural Fields Generally, Neural Fields refer to a class of methods using coordinate based neural

networks which parametrize physical properties of scenes or objects across space and time [Xie

et al. 2022]. Namely, they build a map from space (and potentially time) coordinates to some

physical properties, such as RGB color and density in the case of neural radiance fields [Mildenhall

et al. 2020], or a signed distance in the case of instant signed distance fields [Ortiz et al. 2022].

While there are many popular architectures for learning a neural field, in this paper we used

Instant-NGP [Müller et al. 2022] as in preliminary experiments we found it to be an order of

magnitude faster than the original architecture in [Mildenhall et al. 2020].

Note that a major focus of our work is using models pretrained on large datasets as-is – to make

sure CLIP-Fields can take advantage of the latest advances in the diverse fields it draws from. At

the same time, while in our setup we haven’t found a need to fine-tune any of the pretrained

models mentioned here, we do not believe there is any barrier to do so if such is necessary.

180

9.4 Approach

In this section, we describe our concrete problem statement, the components of our semantic

scene model, and how those components connect with each other.

9.4.1 Problem Statement

We aim to build a system that can connect points of a 3D scene with their visual and semantic

meaning. Concretely, we design CLIP-Fields to provide an interface with a pair of scene-dependent

implicit functions 𝑓 , ℎ : R3 → R𝑛 such that for the coordinates of any point 𝑃 in our scene, 𝑓 (𝑃)

is a vector representing its semantic features, and ℎ(𝑃) is another vector representing its visual

features. For ease of decoding, we constrain the output spaces of 𝑓 , ℎ to match the embedding

space of pre-trained language and vision-language models, respectively. For the rest of this paper,

we refer to such functions as “spatial memory” or “geometric database” since they connect the

scene coordinates with scene information.

Given such a pair of functions, we can solve multiple downstream problems in the following way:

• Segmentation: For a pixel in a scene, find the corresponding point 𝑃𝑖 in space. Use the

alignment between a label embedding and 𝑓 (𝑃𝑖) to find the label with the highest probability

for that pixel. Segment a scene image by doing so for each pixel.

• Object navigation: For a given semantic query 𝑞𝑠 (or a visual query 𝑞𝑣) find the associated

embeddings from our pretrained models, 𝑒𝑠 (respectively, 𝑒𝑣), and find the point in space

that maximizes 𝑒𝑠 · 𝑓 (𝑃∗) (or 𝑒𝑣 · ℎ(𝑃∗)). Navigate to 𝑃∗ using classic navigation stack.

• View localization: Given a view 𝑣 from the scene, find the image embedding 𝑒𝑣 of 𝑣 using

the same vision-language model. Find the set of points with highest alignment 𝑒𝑣 · ℎ(𝑃) in

the scene.

181

While such a pair of scene-dependent functions 𝑓 , ℎ would be straightforward to construct if

we were given a dataset {(𝑃, 𝑓 (𝑃), ℎ(𝑃) | 𝑃 ∈ scene}, to make it broadly applicable, we create

CLIP-Fields to be able to construct 𝑓 , ℎ from easily collectable RGB-D videos and odometry data.

9.4.2 Dataset Creation

We assume that we have a series of RGB-D images of a scene alongside odometry information, i.e.

the approximate 6D camera poses while capturing the images. As described in 9.5.2, we captured

such a dataset using accessible consumer devices such as an iPhone Pro or iPads. To train our

model, we first preprocess this set of RGB-D frames into a scene dataset (Fig. 9.2). We convert each

of our depth images to pointclouds in world coordinates using the camera’s intrinsic and extrinsic

matrices. Next, we label each of the points 𝑃 in the pointcloud with their possible representation

vectors, 𝑓 (𝑃), ℎ(𝑃). When no human annotations are available, we use web-image trained object

detection models on our RGB images. We choose Detic [Zhou et al. 2022] as our detection model

since it can perform object detection with an open label set. However, this model can freely be

swapped out for any other pretrained detection or segmentation model. When available, we can

also use human annotations for semantic or instance segmentations.

In both cases, we derive a set of detected objects with language labels in the image, along with

their label masks and confidence scores. We back-project the pixels included in the the label

mask to the world coordinates using our point cloud. We label each back-projected point in the

world with the associated language label and label confidence score. Additionally, we label each

back-projected point with the CLIP embedding of the view it was back-projected from as well

as the distance between camera and the point in that particular point. Note that each point can

appear multiple times in the dataset from different training images.

Thereby, we get a dataset with two sets of labels from our collected RGB-D frames and odometry

information. One set of label captures primarily semantic information, 𝐷label = {(𝑃, label𝑃 , conf𝑃)}

182

3D point cloud

(x, y, z)
Spatial locations Semantic label 

representation
CLIP visual

representation

Detic

Odometry

Camera 
Projection

LabelsBounding boxes

Sentence 
BERT

CLIP image 
encoder

Figure 9.2: Dataset creation process for CLIP-Fields by processing each frame of a collected RGB-D video.
Models highlighted by dashed lines are off-the-shelf pre-trained models, showing that we can train a real
world CLIP-Fields using no direct human supervision beyond pre-trained open label object detectors, large
language models (LLMs) and visual language models (VLMs).

183

(x, y, z)

Spatial 
locations

Multiresolution

hash encoding

Location 
vector

Objective 
mapping head

Semantic label representation

CLIP visual representation

One-hot instance ID

Semantic 
representations

Figure 9.3: Model architecture for CLIP-Fields. We use a Multi-resolution Hash Encoder [Müller et al.
2022] to learn a low level spatial representation mapping R3 → R𝑑 , which is then mapped to higher
dimensions and trained with contrastive objectives.

where label𝑃 and conf𝑃 are just detector-given label and the confidence score to such label for each

point. The second set of labels captures primarily visual information, 𝐷image = {(𝑃, clip𝑃 , dist𝑃)},

where clip𝑃 is the CLIP embedding of the image point 𝑃 was back-projected from, and dist𝑃 is

the distance between 𝑃 and the camera in that image. We then train CLIP-Fields to efficiently

combine the representations, encoding the points’ semantic and visual properties in 𝑔.

9.4.3 Model Architecture

CLIP-Fields can be divided into two components: a trunk 𝑔 : R3 → R𝑑 , which maps each location

(𝑥,𝑦, 𝑧) to a representation vector, and individual heads, one for each one of our objectives, like

language or visual representation retrieval. See Figure 9.3 for an overview.

We can parameterize 𝑔 with any neural field architecture; in CLIP-Fields we use multi-resolution

hash encoding (MHE) as introduced in Instant-NGP [Müller et al. 2022], with 𝑑 = 144. MHEs

build an implicit representation over coordinates with a feature-pyramid like structure, which can

flexibly maintain both local and global information, unlike purely voxel-based encodings which

focuses on local structures only. We primarily use theMHE over other implicit field representations

184

because we found that they train significantly faster in our datasets. The objective-specific heads

are simple two-layer MLPs with ReLU nonlinearities that map the 144 dimensional outputs of

𝑔 into higher dimensions which depend on the associated objective. These include head𝑠 that

outputs a vector that matches a natural language description of what is at the point in space, and

head𝑣 that matches the visual appearance of the object occupying that point in space. Optionally,

we can include an instance identification head if we have the appropriate labels to train it.

9.4.4 Objectives

The functions 𝑓 , ℎ in our implicit scene model can be simultaneously trained with multiple

objectives. Each objective trains an implicit function that maps from real world locations in R3

to the objective space. CLIP-Fields are trained on a specific scene with a contrastive loss, similar

to CLIP [Radford et al. 2021]. While training the contrastive loss objective, we also take into

consideration the associated label weights. For the contrastive loss calculation, the loss is weighted

by the label confidence (for semantic labels, like label embeddings from SentenceBERT [Reimers

and Gurevych 2019]), or negative exponential of distance from camera to point (for visual labels

from CLIP [Radford et al. 2021] embeddings). Additionally, as is standard practice, we scale the

dot product of the predicted and the ground truth embeddings by a learned temperature value.

We use the following training objectives:

Semantic Label Embedding: This objective trains the function encoding the semantic infor-

mation of a 3D point as a 𝑛-dimensional representation vector. We train this using the assigned

natural language labels to each point. We first convert each label to a semantic vector using a

pre-trained language model trained to compare semantic similarity, such as CLIP [Radford et al.

2021] or Sentence-BERT [Reimers and Gurevych 2019]. In this paper we used Sentence-BERT for

these language features with 𝑛 = 768.

Mathematically, let us assume that 𝑃 is the point where we are calculating the loss, 𝑃− are points

185

with a different semantic label, 𝑓 = head𝑠 ◦ 𝑔 is the associated semantic encoding function, F is a

pre-trained semantic language encoder, 𝑐 is the confidence associated with the label at 𝑃 , and 𝜏 is

a temperature term, then the semantic label loss is:

LL (𝑃, 𝑓 (𝑃)) = −c log
exp

(
𝑓 (𝑃)𝑇F (label𝑃)/𝜏

)∑
𝑃− exp

(
𝑓 (𝑃)𝑇F (label𝑃−)/𝜏

)
Visual Feature Embedding: This objective trains the embedding of the language-aligned visual

context of each scene point into a single vector, akin to CLIP [Radford et al. 2021]. We define the

visual context of each point as a composite of the CLIP embedding of each RGB frame this point

was included in, weighted by the distance from camera to the point in that frame. If it is possible

to do so from the given annotation, we limit the image embedding to only encode what is in the

associated object’s bounding box. Detic [Zhou et al. 2022], for example, produces embeddings for

region proposals for each detected objects, which we use. In this paper’s experiments, we use the

CLIP ViT-B/32 model embeddings, giving the visual features 512 dimensions.

Similar to the previous objective, given CLIP visual embedding 𝐶s associated with the points, the

mapping ℎ = head𝑣 ◦ 𝑔, the distance between camera and the positive point 𝑑𝑃 , and temperature

term 𝜏 , the visual context loss LC, is:

LC(𝑃,ℎ(𝑃)) = −𝑒−𝑑𝑃 log
exp

(
ℎ(𝑃)𝑇C𝑃/𝜏

)∑
𝑃− exp

(
ℎ(𝑃)𝑇C𝑃−/𝜏

) ,
Auxilary objectives like Instance Identification: This optional head projects the point rep-

resentation to a one-hot vector identifying its instance. We use this projection head only in the

cases where we have human labeled instance identification data from the scene, and the projec-

tion dimension is number of identified instances, plus one for unidentified instances. Instance

identification one-hot vectors are trained with a simple cross-entropy loss 𝐿𝐼 .

186

Then, the final loss for CLIP-Fields becomes

𝐿 = LL + LC + 𝛼𝐿𝐼

where 𝛼 is a normalizing hyper-parameter to bring the cross-entropy loss to a comparable scale of

the contrastive losses.

9.4.5 Training

Our models are trained with the datasets described in Sec. 9.4.2. We train the implicit maps

simultaneously with the contrastive losses described in Sec. 9.4.4. Under this loss, each embedding

is pushed closer to positive labels and further away from negative labels. For the label embedding

head, the positive example is the semantic embedding of the label associated with that point, while

negative examples are semantic embeddings of any other labels. For the visual context embedding

head, the positive examples are the embeddings of all images and image patches that contain the

point under consideration, while the negative examples are embeddings of images that do not

contain that point. Similar to CLIP [Radford et al. 2021], we also note that a larger batch size helps

reduce the variance in the contrastive loss function. We use a batch size of 12, 544 everywhere

since that is the maximum batch size we could fit in our VRAM of an NVIDIA Quadro GP100 GPU.

9.5 Experimental Evaluation

We evaluate CLIP-Fields in terms of instance and semantic segmentation in images first – to show

that given ground truth data, it can learn meaningful scene representations. Then, we show that,

only using weak web-model supervision, CLIP-Fields can be used as a robot’s spatial memory

with semantic information. Our visual segmentation experiments are performed on a subset of

187

Habitat-Matterport 3D Semantic (HM3D semantics) [Yadav et al. 2023] dataset, while our robot

experiments were performed on a Hello Robot Stretch using Hector SLAM [Kohlbrecher et al.

2011]. We chose HM3D semantics as our sim testing ground because in this dataset, each scene

comes with a different set of labels derived from free-form annotations.

9.5.1 Instance and semantic segmentation in scene images

The first task that we evaluate our model on is learning instance and semantic segmentation of

3D environments. We assume that we have access to a scene, a collection of RGB-D images in it

from different viewpoints, and a limited number of them are annotated either by humans, or by a

model. We consider two cases in this scenario: one where there are some human annotation data

available, and in another where we are completely reliant on large, web-image trained models.

Baselines

In our semantic and instance segmentation tasks, we use 2D RGB based segmentation models

as our baselines. In all of the few-shot segmentation experiments, we take a Mask-RCNN model

with a ResNet50 FPN backbone, and a DeepLabV3 model with a ResNet50 backbone. All baseline

models were pre-trained on ImageNet-1K and then the COCO dataset. We fine-tune the final

layers of these pretrained models on each of our limited datasets, and then evaluate them on

the held-out set. For the RN50 FPN model, we report the mAP at [0.5-0.95] IoU range. Detic is

absent from the first two evaluations since it is a detection model and thus cannot be fine-tuned

on segmentation labels.

188

0.0

0.2

0.4

0.6

Un
no

rm
al

ize
d

m
AP

CLIP-Fields
ResNet50 FPN
DeepNetV3

1 3 6 12 24 48 96
Number of labeled images

0.0

0.1

0.2

0.3

No
rm

al
ize

d
m

AP

Figure 9.4: Mean average precision in instance segmentation on the Habitat-Matterport 3D (HM3D)
Semantic dataset, (top) calculated over only seen instances, and (bottom) calculated over all instances.

Evaluating CLIP-Fields

Since CLIP-Fields defines a function that maps from 3D coordinates, rather than from pixels,

to representation vectors, to evaluate this model’s learned representations we also have to use

the depth and odometry information associated with the image. To get semantic or instance

segmentation, we take the depth image, using the camera matrix and odometry project it back to

world coordinates, and then query the associated points in world coordinate from CLIP-Fields to

retrieve the associated representations with the points. These representations can once again be

projected back into the camera frame to reconstruct the segmentation map predicted by CLIP-

Fields. Back-projecting to 3D world coordinates also lets CLIP-Fields correctly identify visually

occluded and obstructed instances in images, which is not easy for RGB-only models.

189

1 3 5 12 24 48 96 144
Number of labeled images

0.0

0.2

0.4

0.6

Av
er

ag
e

Pr
ec

isi
on CLIP-Fields

ResNet50 FPN
DeepLabV3

Figure 9.5: Mean average precision in semantic segmentation on the Habitat-Matterport 3D (HM3D)
Semantic dataset. Here, the average precision numbers are averaged over all semantic classes.

9.5.1.1 Low-shot instance identification

In this setting, we assume that we have access to a few images densely annotated with an instance

segmentation with associated instance IDs. Such annotations are difficult for a human to provide,

and thus it is crucial in this setting to perform well with very few (1-5) examples.

On this setting, we train CLIP-Fields with the provided instance segmented RGB-D images and the

associated odometry data, and compare with the baseline pretrained 2D RGB models fine-tuned

on the same data.

As we can see in Figure 9.4, the average precision of the predictions retrieved from CLIP-Fields

largely outperforms the RGB-models. This statement holds true whether we normalize by the

number of seen instances in the training set or by the total number of instances in the scene.

9.5.1.2 Low-shot semantic segmentation

Next, we focus on a similar setting on semantically segmenting the views from the scene from a

few annotations.

In Figure 9.5, we see once again that CLIP-Fields outperforms the RGB-based models significantly,

to the point where even with three labelled views, CLIP-Fields has a higher AP than any of the

190

6 12 24 48 96 144
Number of zero-shot model labeled images

0.00
0.05
0.10
0.15
0.20
0.25
0.30

Av
er

ag
e

Pr
ec

isi
on Zero-shot Detic + CLIP-Fields

Zero-shot Detic

Figure 9.6: Mean average precision in zero-shot semantic segmentation on the Habitat-Matterport 3D
(HM3D) Semantic dataset.

baseline RGB models.

9.5.1.3 Zero-shot semantic segmentation

To examine the benefits derived purely from imposing multi-view consistency and a 3D structure

over 2D model predictions, we experiment with CLIP-Fields trained solely with labels from large

web-image trained models in a zero-shot settings. In this experiment, we train CLIP-Fields only

with labels given to us by such large web models, namely Detic [Zhou et al. 2022]. We get the

labels by using Detic on the unlabeled training images, and then train CLIP-Fields on it. Besides

text labels from Detic, we also use the CLIP visual representations to augment the implicit model,

as described in Section 9.4.4.

As a baseline, we compare the trained CLIP-Fields with performance of the same Detic model

used to label the scene images. Both CLIP-Fields and the baseline had access to the list of semantic

labels in each scene with no extra annotations. We see in Figure 9.6 that enforcing 3D structure

and multi-view consistency in our segmentation predictions improves the test-time predictions

considerably.

In all our visual segmentation experiments, we see that enforcing 3D consistency and structure

191

0.5 0.6 0.7 0.8 0.9 1.0
Base accuracy

0.4

0.5

0.6

0.7

0.8

0.9

CL
IP

-F
ie

ld
s a

cc
ur

ac
y # images

12
24
48
96

Figure 9.7: Mean average accuracy on the semantic segmentation task on the HM3D Semantic dataset
with label noise simulating errors in base labelling models. Different lines show performance of models
trained with a different number of labeled training frames.

using CLIP-Fields helps identifying scene properties from images. Back-projecting the rays can

also help CLIP-Fields correctly identify objects which are occluded and partially visible. This

property can be extremely helpful in a busy indoor setting where not every object can be visible

from every angle. Ability to work with occluded views and partial information can be a strong

advantage for any embodied intelligent agent.

9.5.1.4 CLIP-Fields’s robustness to label errors

In real-world applications, CLIP-Fields relies on labels given by large-scale web-data trained

models, which rarely (if ever) have perfect accuracy. In this section, we examine the robustness of

CLIP-Fields to such label errors. In this experiment, we simulate label errors by taking ground

truth semantic labels in simulation, and for each frame and each object in that frame, flipping that

object’s label to another random label with probability 𝑝 . By doing so, we simulate labelling our

training data by a model whose mean accuracy is 1 − 𝑝 .

We see from Figure 9.7 that as the base model’s semantic label prediction accuracy increases,

192

Image localizationImage query through

CLIP embedding

Trained CLIP-Field

Figure 9.8: View localization using a trained CLIP-Fields. We encode the query image on the bottom left
to its CLIP representation, and visualize the locations whose CLIP-Fields representations have the highest
(more red) dot product with the embedded image. Lower dot products are blue; and below a threshold are
uncolored.

CLIP-Fields’s label prediction accuracy increases almost linearly. Importantly, there is no dramatic

accuracy decrease when the base model accuracy goes below 1. Thus, we can see that CLIP-Fields

maintain reasonable accuracy as long as the base models are also reasonably accurate, which is

the case for the state-of-the-art detection and segmentation models. As the base models naturally

improve over time with continuous efforts in the computer vision and natural language processing

fields, we expect CLIP-Fields’s performance to improve correspondingly.

9.5.1.5 View Localization

Since CLIP-Fields is trained with CLIP embeddings at each coordinate, we can use such embeddings

to localize an arbitrary view from the scene. To do so, we simply find the CLIP embedding of the

193

Ki
tc
he

n
Li
br
ar
y

Figure 9.9: Scenes for our real-world semantic navigation experiments. The top scene is a lab kitchen and
the bottom is a library/lounge.

query image. Then, we query the visual representation of the points in the scene, and take the dot

product between the query representation and the point representations. Due to the contrastive

loss that CLIP was trained with, points that have similar embeddings to the query embedding

will have the highest dot product. We can use this principle to localize any view in the scene, as

shown in Figure 9.8.

9.5.2 Semantic Navigation on Robot with CLIP-Fields as

Semantic-Spatial Memory

Training a CLIP-Fields with available data, whether they are labeled by humans or pretrained

models, gives us a mapping from real world coordinates to a vector representation trained to

194

contain their semantic and visual properties (Section 9.4.4). In this section, we evaluate the

quality of the learned representations by using the learned model for downstream robot semantic

navigation tasks.

9.5.2.1 Task setup

We define our robot task in a 3D environment as a “Go and look at X” task, where X is a natural

language query defined by the user. To test CLIP-Fields’s semantic understanding capabilities, we

formulate the queries from three different categories:

• Literal queries: At this level, we choose X to be the literal and unambiguous name of an

object present in the scene, such as “the refrigerator” or “the typewriter”.

• Visual queries: At this level, we add references to objects by their visual properties, such as

“the red fruit bowl” or “the blue book with a house on the cover”.

• Semantic queries: At this level, we add references to objects by their semantic properties,

such as “warm my lunch” (microwave), or “something to read” (a book).

9.5.2.2 Data collection and training

We ran our robot experiment in two different scenes, one in the lab kitchen, and another in

the lab library (Figure 9.9). For each of the scenes, we collected the RGB-D and odometry data

with an iPhone 13 Pro with LiDAR sensors. The iPhone recording gave us a sequence of RGB-D

images as well as the approximate camera poses in real world coordinate. On each of these

scenes, we labelled a subset of the collected RGB images with Detic [Zhou et al. 2022] model using

ScanNet200 [Rozenberszki et al. 2022] labels. Then, we created a training dataset with 3D world

coordinates and their associated semantic and visual embeddings using the method described

195

“Blue book w/ house on cover”“Table”“Bookshelf”

“Make me a coffee”“Throw away my trash”“Warm up my lunch”“Plant w/ black pot”“Stack of plates”“Sink”
Ki
tc
he
n

“Sit down and relax”“New Yorker” “Write a novel” “Put down my novel”

Li
br
ar
y

“Red coffee machine”
Semantic queriesVisual queriesLiteral queries

Figure 9.10: Examples of the robot’s semantic navigation in two different testing environments, looking
at objects given different queries. The images show the robot’s POV given the associated query, with color
coded borders showing approximate correctness. The rows show different two different scenes, top being
in a lab kitchen and the bottom in our lab’s library/lounge space, shown in detail in figure 9.9.

in Section 9.4.2. On this dataset, we trained a CLIP-Fields to synthesize all the views and their

associated labels.

9.5.2.3 Robot execution

Next, on our robot, we load the CLIP-Field to help with the localization and navigation of the

robot. When the robot gets a new text query, we first convert it to a representation vector. We use

Sentence-BERT to retrieve the semantic part of the query representation and CLIP text model to

retrieve the vision-aligned part of the query representation. Then, we find the coordinates of the

point 𝑃 in space that has the highest alignment with the query representations, as described in

Section 9.4.1 and Figure 9.11. We use the robot’s Hector SLAM [Kohlbrecher et al. 2011] navigation

stack to navigate to that region, and point the robot camera to an XYZ coordinate where the dot

product was highest. We consider the navigation task successful if the robot can navigate to and

point the camera at an object that satisfies the query. We run twenty queries in the kitchen and

fifteen queries in the library environment.

196

Natural language

semantic and visual queries

CLIP-Field

The shelf

The brown couch

Place for burning wood

Figure 9.11: Running semantic queries against a trained CLIP-Fields. We encode our queries with language
encoders, and compare the encoded representation with the stored representation in CLIP-Fields to then
extract the best matches.

9.5.2.4 Experiment results

In our experiments (Figure 9.10), we see that CLIP-Fields let the robot navigate to different points

in the environment from semantic natural language queries. We generally observe that if an

object was correctly identified by the web-image models during data preparation, when queried

literally CLIP-Fields can easily understand and navigate to it, even with intentional misspellings

in the query. However, if an object was misidentified during data preparation, CLIP-Fields fails

to correctly identify it as well. For example, in row two, column two of Figure 9.10, the part

of the floor that is identified as a “table" was identified as a “table" by our web-image model

earlier. This observation lines up with our simulated experiments in Section 9.5.1.4 where we saw

that CLIP-Fields performance has a linear relationship with the base models’ performance. For

semantic queries, CLIP-Fields sometimes confuses two related concepts; for example, it retrieves

the dishwasher for both “place to wash my hand" and “place to wash my dishes". Finally, the visual

197

queries sometimes put a higher weight on the semantic match rather than visual match, such as

retrieving a white fruit bowl for "red fruit bowl" instead of the red bowl in the scene. However,

the right object is retrieved if we query for "red plastic bowl".

We have presented detailed logs of running CLIP-Fields on the robot in the kitchen environment

in Appendix F.2 detailing all the queries and the resulting robot behavior.

9.6 Limitations

We showed that CLIP-Fields can learn 3D semantic scene representations from little or no labeled

data, relying on weakly-supervised web-data trained models, and that we can use these model

to perform a simple “look-at” task in the real world. CLIP-Fields allow us to answer queries of

varying levels of complexity. We expect this kind of 3D representation to be generally useful for

robotics. For example, it may be enriched with affordances for planning; the geometric database

can be combined with end-to-end differentiable planners. In future work, we hope to explore

models that share parameters across scenes, and can handle dynamic scenes and objects.

Postscript

With a few year’s worth of hindsight, it is amazing the kind of new capabilities that has been un-

locked in the near term by spatio-semantic memories – including the ability to chain small-spatial

scale policies into mobile manipulation systems. However, the limitation of CLIP-fields was in its

implicit memory representation – particularly, that neural fields were not the best representations

for a system that needs to perform frequent, small scale local updates to the memory. These

practical considerations were answered in later iterations in Chapter 10 and Chapter 11. Finally, we

need to understand and resolve the balance between implicit and explicit memory going forward.

198

Acknowledgements

This work was co-authored with Chris Paxton, Lerrel Pinto, Soumith Chintala, and advised by

Arthur Szlam during an internship at Meta Fundamental AI Research (FAIR) in 2022.

199

10 | Integrating Open-knowledge

Models for Robotics: OK-Robot

10.1 Introduction

Creating a general-purpose robot has been a longstanding dream of the robotics community.

With the increase in data-driven approaches and large robot models, impressive progress is being

made [Pinto and Gupta 2016; Levine et al. 2018; Brohan et al. 2023b; Shafiullah et al. 2023b].

However, current systems are brittle, closed, and fail when encountering unseen scenarios. Even

the largest robotics models can often only be deployed in previously seen environments [Brohan

et al. 2023a; Zitkovich et al. 2023]. The brittleness of these systems is further exacerbated in

settings where little robotic data is available, such as in unstructured home environments.

The poor generalization of robotic systems lies in stark contrast to large vision models [Zhou

et al. 2022; Minderer et al. 2022; Radford et al. 2021; Marino et al. 2019], which show capabilities

of semantic understanding [Alayrac et al. 2022; Liu et al. 2023b,a], detection [Zhou et al. 2022;

Minderer et al. 2022], and connecting visual representations to language [Radford et al. 2019,

2021; Marino et al. 2019] At the same time, base robotic skills for navigation [Gervet et al. 2023a],

grasping [Sundermeyer et al. 2021; Mahler et al. 2017b; Fang et al. 2020, 2023c], and rearrange-

ment [Goyal et al. 2022b; Liu et al. 2022] are fairly mature. Hence, it is perplexing that robotic

200

1
23

“OK Robot, move the Takis on the desk to the nightstand”

1. VoxelMap

NavigationPlan

(“Takis on the desk”)

1. VoxelMap
NavigationPlan

(“Takis on the desk”)

1. VoxelMap

NavigationPlan

(“Takis on the desk”)

3. Drop
Primitive

Drop(<RGBD>, “nightstand”)

“Move the soda can to
the box”

1

2

3

“Move the purple
shampoo to the red bag”

12 3

“Move the white meds
box to the trash bin”

12

3

1. VoxelMap

NavigationPlan

(“Takis on the desk”)

2. Lang-SAM +
AnyGrasp

Grasp(<RGBD>, “Takis”)

Figure 10.1: OK-Robot is an Open Knowledge robotic system, which integrates a variety of learned models
trained on publicly available data, to pick and drop objects in real-world environments. Using Open
Knowledge models such as CLIP, Lang-SAM, AnyGrasp, and OWL-ViT, OK-Robot achieves a 58.5% success
rate across 10 unseen, cluttered home environments, and 82.4% on cleaner, decluttered environments.

201

systems that combine modern vision models with robot-specific primitives perform so poorly. To

highlight the difficulty of this problem, the recent NeurIPS 2023 challenge for open-vocabulary

mobile manipulation (OVMM) [Yenamandra et al. 2023a] registered a success rate of 33% for the

winning solution [Melnik et al. 2023].

So what makes open-vocabulary robotics so hard? Unfortunately, there isn’t a single challenge that

makes this problem hard. Instead, inaccuracies in different components compound and together

results in an overall drop. For example, the quality of open-vocabulary retrievals of objects in

homes is dependent on the quality of query strings, navigation targets determined by VLMs

may not be reachable to the robot, and the choice of different grasping models may lead to large

differences in grasping performance. Hence, making progress on this problem requires a careful

and nuanced framework that both integrates VLMs and robotics primitives, while being flexible

enough to incorporate newer models as they are developed by the VLM and robotics community.

We present OK-Robot, an Open Knowledge Robot that integrates state-of-the-art VLMs with

powerful robotics primitives for navigation and grasping to enable pick-and-drop. Here, Open

Knowledge refers to learned models trained on large, publicly available datasets. When placed

in a new home environment, OK-Robot is seeded with a scan taken from an iPhone. Given this

scan, dense vision-language representations are computed using LangSam [Medeiros 2023] and

CLIP [Radford et al. 2021] and stored in a semantic memory. Then, when a language-query for an

object to be picked comes in, semantic memory is queried with the language embedding to find

that object. After this, navigation and picking primitives are applied sequentially to move to the

desired object and pick it up. A similar process can be carried out for dropping the object.

To study OK-Robot, we tested it in 10 real world home environments. Through our experiments, we

found that on a unseen natural home environment, a zero-shot deployment of our system achieves

58.5% success on average. However, this success rate is largely dependant on the “naturalness"

of the environment, as we show that with improving the queries, decluttering the space, and

202

excluding objects that are clearly adversarial (too large, too translucent, too slippery), this success

rate reaches 82.4%. Overall, through our experiments, we make the following observations:

• Pre-trained VLMs are highly effective for open-vocabulary navigation: Current open-

vocabulary vision-language models such as CLIP [Radford et al. 2021] or OWL-ViT [Minderer

et al. 2022] offer strong performance in identifing arbitrary objects in the real world, and enable

navigating to them in a zero-shot manner (see Section 10.2.1.)

• Pre-trained grasping models can be directly applied to mobile manipulation: Similar to

VLMs, special purpose robot models pre-trained on large amounts of data can be applied out of

the box to approach open-vocabulary grasping in homes. These robot models do not require

any additional training or fine-tuning (see Section 10.2.2.)

• How components are combined is crucial: Given the pretrained models, we find that they

can be combined with no training using a simple state-machine model. We also find that using

heuristics to counteract the robot’s physical limitations can lead to a better success rate in the

real world (see Section 10.2.4.)

• Several challenges still remain: While, given the immense challenge of operating zero-shot

in arbitrary homes, OK-Robot improves upon prior work, by analyzing the failure modes we

find that there are significant improvements that can be made on the VLMs, robot models, and

robot morphology, that will directly increase performance of open-knowledge manipulation

agents (see Section 10.3.4).

To encourage and support future work in open-knowledge robotics, we will share the code

and modules for OK-Robot, and are committed to supporting reproduction of our results. More

information along with robot videos are available on our project website: https://ok-robot.

github.io/.

203

https://ok-robot.github.io/
https://ok-robot.github.io/

(a) Open-vocabulary object localization
using VoxelMap

(b) Open-vocabulary navigation planning
using VoxelMap and heuristics weighted A*

Umbrella

Brown hat

Bed

Brown bag

Orange
laundry bag

Pink powder
bottle

Red body
spray

Plant

Start point
Brown hat

Figure 10.2: Open-vocabulary, open knowledge object localization and navigation in the real-world. We
use the VoxelMap [Yenamandra et al. 2023b] for localizing objects with natural language queries, and use
an A* algorithm similar to USANet [Bolte et al. 2023] for path planning.

10.2 Technical Components and Method

Our method, on a high level, solves the problem described by the query: “Pick up A (from B) and

drop it on/in C”, where A is an object and B and C are places in a real-world environment such

as homes. The system we introduce is a combination of three primary subsystems combined on

a Hello Robot: Stretch. Namely, these are the open-vocabulary object navigation module, the

open-vocabulary RGB-D grasping module, and the dropping heuristic. In this section, we describe

each of these components in more details.

10.2.1 Open-home, open-vocabulary object navigation

The first component of our method is an open-home, open-vocabulary object navigation model

that we use to map a home and subsequently navigate to any object of interest designated by a

natural language query.

204

10.2.1.1 Scanning the home

For open vocabulary object navigation, we follow the approach from CLIP-Fields [Shafiullah et al.

2023a] and assume a pre-mapping phase where the home is “scanned” manually using an iPhone.

This manual scan simply consists of taking a video of the home using the Record3D app on the

iPhone, which results in a sequence of posed RGB-D images and takes less than one minute for

a new room. Once collected, the RGB-D images, along with the camera pose and positions, are

exported to our library for map-building. To ensure our semantic memory contains both the

objects of interest as well as the navigable surface and any obstacles, we capture the floor surface

alongside the objects and receptacles in the environment.

10.2.1.2 Detecting objects

On each frame of the scan, we run an open-vocabulary object detector. We chose OWL-ViT [Min-

derer et al. 2022] over Detic [Zhou et al. 2022] as the object detector since we found OWL-ViT to

perform better in preliminary queries. We apply the detector on every frame, and extract each

of the object bounding box, CLIP-embedding, detector confidence, and pass these information

onto the object memory module. We further refine the bounding boxes into object masks with

Segment Anything (SAM) [Kirillov et al. 2023]. Note that, in many cases, open-vocabulary object

detectors require a set of natural language object queries to be detected. We supply a large set of

such object queries, derived from the original Scannet200 labels [Rozenberszki et al. 2022] and

presented in Appendix G.2, to help the detector captures most common objects in the scene.

10.2.1.3 Object-centric semantic memory

We use an object-centric memory similar to Clip-Fields [Shafiullah et al. 2023a] and OVMM [Yena-

mandra et al. 2023b] that we call the VoxelMap. VoxelMap is built by back-projecting the object

205

masks in real-world coordinates using the depth image and the pose collected by the camera. This

process giving us a point cloud where each point has an associated CLIP semantic vector. Then, we

voxelize the point cloud to a 5 cm resolution. For each voxel, we calculate the detector-confidence

weighted average for the CLIP embeddings that belong to that voxel. This VoxelMap builds

the base of our object memory module. Note that the representation created this way remains

static after the first scan, and cannot be adapted during the robot’s operation. This inability to

dynamically create a map is discussed in our limitations section (Section 10.5).

10.2.1.4 Querying the memory module

Our semantic object memory gives us a static world representation represented as possibly non-

empty voxels in the world, and a semantic vector in CLIP space associated with each voxel. Given a

language query, we first convert it to a semantic vector using the CLIP language encoder. Then, we

find the voxel where the dot product between the encoded embedding and the voxel’s associated

embedding is maximized. Since each voxel is associated with a real location in the home, this lets

us find the location where a queried object is most likely to be found, similar to Figure 10.2(a).

We also implement querying for “A on B” by interpreting it as “A near B”. We do so by selecting

top-10 points for query A and top-50 points for query B. Then, we calculate the 10 × 50 pairwise

𝐿2 distances and pick the A-point associated with the shortest (A, B) distance. Note that during

the object navigation phase we use this query only to navigate to the object approximately, and

not for manipulation. This approach gives us two advantages: our map can be as lower resolution

than those in prior work [Shafiullah et al. 2023a; Bolte et al. 2023; Kerr et al. 2023], and we can

deal with small movements in object’s location after building the map.

206

10.2.1.5 Navigating to objects in the real world

Once our navigation model gives us a 3D location coordinate in the real world, we use that as

a navigation target for our robot to initialize our manipulation phase. Going and looking at an

object [Shafiullah et al. 2023a; Gervet et al. 2023a; Chang et al. 2023] can be done while remaining

at a safe distance from the object itself. In contrast, our navigation module must place the robot at

an arms length so that the robot can manipulate the target object afterwards. Thus, our navigation

method has to balance the following objectives:

1. The robot needs to be close enough to the object to manipulate it,

2. The robot needs some space to move its gripper, so there needs to be a small but non-

negligible space between the robot and the object, and,

3. The robot needs to avoid collision during manipulation, and thus needs to keep its distance

from all obstacles.

We use three different navigation score functions, each associated with one of the above points,

and evaluate them on each point of the space to find the best position to place the robot.

Let a random point be −→𝑥 , the closest obstacle point as −→𝑥 𝑜𝑏𝑠 , and the target object as −→𝑥𝑜 . We define

the following three functions 𝑠1, 𝑠2, 𝑠3 to capture our three criterion. We define 𝑠 as their weighted

sum. The ideal navigation point −→𝑥 ∗ is the point in space that minimizes 𝑠 (−→𝑥), and the ideal

207

direction is given by the vector from
−→
𝑥∗ to −→𝑥𝑜 .

𝑠1(−→𝑥) = | |−→𝑥 − −→𝑥𝑜 | |

𝑠2(−→𝑥) = 40 − min(| |−→𝑥 − −→𝑥𝑜 | |, 40)

𝑠3(−→𝑥) =


1/| |−→𝑥 − −→𝑥 𝑜𝑏𝑠 | |, if | |−→𝑥 − −→𝑥 𝑜𝑏𝑠 | |0 ≤ 30

0, otherwise

𝑠 (−→𝑥) = 𝑠1(−→𝑥) + 8𝑠2(−→𝑥) + 8𝑠3(−→𝑥)

To navigate to this target point safely from any other point in space, we follow a similar approach

to [Bolte et al. 2023; Huang et al. 2023a] by building an obstacle map from our captured posed

RGB-D images. We build a 2D, 10cm×10cm grid of obstacles over which we navigate using the A*

algorithm. To convert our VoxelMap to an obstacle map, we first set a floor and ceiling height.

Presence of occupied voxels in between them implies the grid cell is occupied, while presence of

neither ceiling nor floor voxels mean that the grid cell is unexplored. We mark both occupied or

unexplored cells as not navigable. Around each occupied point, we mark any point within a 20

cm radius as also non-navigable to account for the robot’s radius and a turn radius. During A*

search, we use the 𝑠3 as a heuristic function on the node costs to navigate further away from any

obstacles, which makes our generated paths similar to ideal Voronoi paths [Garrido et al. 2006] in

our experiments.

10.2.2 Open-vocabulary grasping in the real world

Grasping or physically interacting with arbitrary objects in the real world is much more complex

than open-vocabulary navigation. We opt for using a pre-trained grasping model to generate

grasp poses in the real world, and filter them with language-conditioning using a modern VLM.

208

Robot view AnyGrasp proposals LangSam mask Grasp filtering Final grasp

Figure 10.3: Open-vocabulary grasping in the real world. From left to right, we show the (a) robot
POV image, (b) all suggested grasps from AnyGrasp [Fang et al. 2023c], (c) object mask given label from
LangSam [Medeiros 2023], (d) grasp points filtered by the mask, and (e) grasp chosen for execution.

10.2.2.1 Grasp perception

Once the robot reaches the object location using the navigation method outlined in Section 10.2.1,

we use a pre-trained grasping model, AnyGrasp [Fang et al. 2023c], to generate a grasp for the

robot. We point the robot’s RGB-D head camera towards the object’s 3D location, given to us

by the semantic memory, and capture an RGB-D image from it (Figure 10.3, column 1). We

backproject and convert the depth image to a pointcloud and pass this information to the grasp

generation model. Our grasp generation model, AnyGrasp, generates all collision free grasps

(Figure 10.3 column 2) for a parallel jaw gripper in a scene given a single RGB image and a

pointcloud. AnyGrasp provides us with grasp point, width, height, depth, and a “graspness score”,

indicating uncalibrated model confidence in each grasp.

209

10.2.2.2 Filtering grasps using language qeries

Once we get all proposed grasps from AnyGrasp, we filter them using LangSam [Medeiros 2023].

LangSam [Medeiros 2023] segments the captured image and finds the desired object mask with a

language query (Figure 10.3 column 3). We project all the proposed grasp points onto the image and

find the grasps that fall into the object mask (Figure 10.3 column 4). We pick the best grasp using

a heuristic. Given a grasp score S and the angle between the grasp normal and floor normal 𝜃 , the

new heuristic score is S − (𝜃4/10). This heuristic balances high graspness scores with finding flat,

horizontal grasps. We prefer horizontal grasps because they are robust to small calibration errors

on the robot, while vertical grasps needs better hand-eye calibration to be successful. Robustness

to hand-eye calibration errors lead to higher success as we transport the robot to different homes

during our experiments.

10.2.2.3 Grasp execution

Once we identify the best grasp (Figure 10.3 column 5), we use a simple pre-grasp approach [Dasari

et al. 2023] to grasp our intended object. If −→𝑝 is the grasp point and −→𝑎 is the approach vector

given by the grasping model, our robot gripper follows the following trajectory:

⟨−→𝑝 − 0.2−→𝑎 , −→𝑝 − 0.08−→𝑎 , −→𝑝 − 0.04−→𝑎 , −→𝑝 ⟩

Put simply, our method approaches the object from a pre-grasp position in a line with progressively

smaller motions. Moving slower as we approach the object helps the robot not knock over light

objects. Once we reach the predicted grasp point, we close the gripper in a close loop fashion to

get a solid grip on the object without crushing it. After grasping the object, we lift up the robot

arm, retract it fully, and rotate the wrist to have the object tucked over the body. This behavior

maintains the robot footprint while ensuring the object is held securely by the robot and doesn’t

210

fall while navigating to the drop location.

10.2.3 Dropping heuristic

After picking up an object, we find and navigatte to the drop location using the same methods

described in Section 10.2.1. Unlike in HomeRobot’s baseline implementation [Yenamandra et al.

2023b] that assumes that the drop-off location is a flat surface, we extend our heuristic to cover

concave objects such as sink, bins, boxes, and bags. First, we segment the point cloud 𝑃 captured by

the robot’s head camera using LangSam [Medeiros 2023] similar to Section 10.2.2.2 using the drop

language query. Then, we align that segmented point cloud such that X-axis is aligned with the way

the robot is facing, Y-axis is to its left and right, and the Z-axis of the point cloud is aligned with the

floor normal. Then, we normalize the point cloud so that the robot’s (𝑥,𝑦) coordinate is (0, 0), and

the floor plane is at 𝑧 = 0. We call this pointcloud 𝑃𝑎 . On the aligned, segmented point cloud, we

consider the (𝑥,𝑦) coordinates for each point, and find the median values 𝑥𝑚 and 𝑦𝑚 on each axis.

Finally, we find a drop height using 𝑧max = 0.2+max{𝑧 | (𝑥,𝑦, 𝑧) ∈ 𝑃𝑎; 0 ⩽ 𝑥 ⩽ 𝑥𝑚; |𝑦 −𝑦𝑚 | < 0.1}

on the segmented, aligned pointcloud. We add a small buffer of 0.2 to the height to avoid collisions

between the robot and the drop location. Finally, we move the robot gripper above the drop point,

and open the gripper to drop the object. While this heuristic doesn’t explicitly reason about clutter,

in our experiments it performs well on average.

10.2.4 Deployment in homes

Our navigation, pick, and drop primitives are combined to create our robot method that can be

applied in any novel home. For a new home environment, we “scan” the room in under a minute.

Then, it takes less than five minutes to process the scan into our VoxelMap. Once that is done, the

robot can be immediately placed at the base and start operating. From arriving into a completely

novel environment to start operating autonomously in it, our system takes under 10 minutes on

211

average to complete the first pick-and-drop task.

10.2.4.1 Transitioning between modules

The transition between different modules is predefined and happens automatically once a user

specifies the object to pick and where to drop it. Since we do not implement error detection or

correction, our state machine model is a simple linear chain of steps leading from navigating to

object, to grasping, to navigating to goal, and to dropping the object at the goal to finish the task.

10.2.4.2 Protocol for home experiments

To run our experiment in a novel home, we move the robot to a previously unobserved room.

We record the scene and create our VoxelMap. Concurrently, we pick between 10-20 objects

arbitrarily in each scene that can fit in the robot gripper. These are objects found in the scene,

and are not chosen ahead of time. We come up with a language query for each chosen object

using GPT-4V [OpenAI 2023] to keep the queries consistent and free of experimenter bias. We

query our navigation module to filter out all the navigation failures; i.e. objects that our semantic

memory module could not locate properly. Then, we execute pick-and-drop on remaining objects

sequentially without resets between trials.

10.3 Experiments

We evaluate our method in two set of experiments. On the first set of experiments, we evaluate

between multiple alternatives for each of our navigation and manipulation modules. These

experiments give us insights about which modules to use and evaluate in a home environment as

a part of our method. On the next set of experiments, we took our robots to 10 homes and ran 171

pick-and-drop experiments to empirically evaluate how our method performs in completely novel

212

Figure 10.4: All the success and failure cases in our home experiments, aggregated over all three cleaning
phases, and broken down by mode of failure. From left to right, we show the application of the three
components of OK-Robot, and show a breakdown of the long-tail failure modes of each of the components.

homes, and to understand the failure modes of our system.

Through these experiments, we look to answer a series of questions regarding the capabilities and

limits of current Open Knowledge robotic systems, as embodied by OK-Robot. Namely, we ask

the following:

1. How well can such a system tackle the challenge of pick and drop in arbitrary homes?

2. Howwell do alternate primitives for navigation and grasping compare to the recipe presented

here for building an Open Knowledge robotic system?

3. How well can our current systems handle unique challenges that make homes particularly

difficult, such as clutter, ambiguity, and affordance challenges?

4. What are the failure modes of such a system and its individual components in real home

213

environments?

10.3.1 Results of home experiments

Over the 10 home environment, OK-Robot achieved a 58.5% success rates in completing full

pick-and-drops. Notably, this success rate is over novel objects sourced from each home with

our zero-shot algorithm. As a result, each success and failure of the robot tells us something

interesting about applying open-knowledge models in robotics, which we analyze over the next

sections. In Appendix G.5, we provide the details of all our home experiments and results from

the same. In Appendix G.3 we show a subset of the target objects and in Appendix G.4 we show

snapshots of homes where OK-Robotwas deployed. Snippets of our experiments are in Figure 10.1,

and full videos are presented on our project website.

10.3.1.1 Reproduction of our system

Beyond the home experiment results presented here, we also reproduced OK-Robot in two homes

in Pittsburgh, PA, and Fremont, CA. These homes were larger and more complex: a cluttered,

actively-used home kitchen environment, and a large, controlled test apartment used in prior

work [Yenamandra et al. 2023b,a]. In Appendix Figure G.4, we show the robot performing pick-

and-drop in these two environments. These homes were different from our initial ten experiments

in a few ways. Both were larger compared to the average NY homes, requiring more robot motion

to navigate to different goals. The PA environment (Figure G.4 top) notably had much more clutter.

However, given only a scan, OK-Robot was able to successfully pick and drop objects like stuffed

lion, plush cactus, toy drill, or green water bottle in both environments.

214

VoxelMap

Clip fields

USA Net

Semantic memory module

0 20 40 60 80 100

AnyGrasp
AnyGrasp

Open Source
Top down

Grasping module

Figure 10.5: Ablation experiment using different semantic memory and grasping modules, with the bars
showing average performance and the error bars showing standard deviation over the environments.

10.3.2 Ablations over system components

Apart from the navigation and manipulation strategies used in OK-Robot, we also evaluated a

number of alternative open vocabulary navigation and grasping modules. We compared them by

evaluating them in three different environments in our lab. Apart from VoxelMap [Yenamandra

et al. 2023b], we evaluate CLIP-Fields [Shafiullah et al. 2023a], and USA-Net [Bolte et al. 2023] for

semantic navigation. For grasping module, we consider AnyGrasp and its open-source baseline,

Open Graspness [Fang et al. 2023c], Contact-GraspNet [Sundermeyer et al. 2021], and Top-Down

grasp heuristic from home-robot [Yenamandra et al. 2023b]. More details about them are provided

in Appendix Section G.1.

In Figure 10.5, we see their comparative performance in three lab environments. For semantic

memory modules, we see that VoxelMap, used in OK-Robot and described in Sec. 10.2.1.3, out-

performs other semantic memory modules by a small margin. It also has much lower variance

compared to the alternatives, meaning it is more reliable. As for grasping modules, AnyGrasp

clearly outperforms other grasping methods, performing almost 50% better in a relative scale

over the next best candidate, top-down grasp. However, the fact that a heuristic-based algorithm,

215

top-down grasp from HomeRobot [Yenamandra et al. 2023b] beats the open-source AnyGrasp

baseline and Contact-GraspNet shows that building a truly general-purpose grasping model

remains difficult.

10.3.3 Impact of clutter, object ambiguity, and affordance

What makes home environments especially difficult compared to lab experiments is the presence

of physical clutter, language-to-object mapping ambiguity, and hard-to-reach positions. To gain a

clear understanding of how such factors play into our experiments, we go through two “clean-up”

processes in each environment. During the clean-up, we pick a subset of objects that are free from

ambiguity from the previous rounds, clean the clutter around objects, and generally relocated

them in an accessible locations. The two clean-up rounds at each environment gives us insights

about the performance gap caused by the natural difficulties of a home-like environment.

We show a complete analysis of the tasks listed section 10.3.1 which failed in various stages in

Figure 10.6. As we can see from this breakdown, as we clean up the environment and remove the

ambiguous objects, the navigation accuracy goes up, and the total error rate goes down from 15%

to 12% and finally all the way down to 4%. Similarly, as we clean up clutters from the environment,

we find that the manipulation accuracy also improves and the error rates decrease from 25% to 16%

and finally 13%. Finally, since the drop-module is agnostic of the label ambiguity or manipulation

difficulty arising from clutter, the failure rate of the dropping primitive stays roughly constant

through the three phases of cleanup.

10.3.4 Understanding the performance of OK-Robot

While our method can show zero-shot generalization in completely new environments, we probe

OK-Robot to better understand its failure modes. Primarily, we elaborate on how our model

216

0 20 40 60 80 100
Percentage of trials

high

low

none
Cl

ea
nu

p
le

ve
l

82

71

58

4

12

15

13

16

25

Success
Navigation failure

Manipulation failure
Placing failure

Figure 10.6: Failure modes of our method in novel homes, broken down by the failures of the three
modules and the cleanup levels.

performed in novel homes, what were the biggest challenges, and discuss potential solutions to

them.

We first show a coarse-level breakdown of the failures, only considering the three high level

modules of our method in Figure 10.6. We see that generally, the leading cause of failure is our

manipulation failure, which intuitively is the most difficult as well. However, at a closer look, we

notice a long tail of failure causes presented in figure 10.4.

The three leading causes of failures are failing to retrieve the right object to navigate to from the

semantic memory (9.3%), getting a difficult pose from the manipulation module (8.0%), and robot

hardware difficulties (7.5%). In this section, we go over the analysis of the failure modes presented

in Figure 10.4 and discuss the most frequent cases.

10.3.4.1 Natural language qeries for objects

One of the primary reasons our OK-Robot can fail is when a natural language query given by the

user doesn’t retrieve the intended object from the semantic memory. In Figure 10.7 we show how

some queries may fail while semantically very similar but slightly modified wording of the same

query might succeed.

217

Figure 10.7: Samples of failed or ambiguous language queries into our semantic memory module. Since the
memory module depends on pretrained large vision language model, its performance shows susceptibility
to particular “incantations” similar to current LLMs.

Generally, this has been the case for scenes where there are multiple visually or semantically

similar objects, as shown in the figure. There are other cases where some queries may pass while

other very similar queries may fail. An interactive system that gets confirmation from the user as

it retrieves an object from memory would avoid such issues.

10.3.4.2 Grasping module limitations

One failure mode of our manipulation module comes from executing grasps from a pre-trained

manipulation model’s output based on a single RGB-D image. Moreover, this model wasn’t even

designed for the Hello Robot: Stretch gripper. As a result, sometimes the proposed grasps are

218

unreliable or unrealistic (Figure 10.8).

Sometimes, the grasp is infeasible given the robot joint limits, or is simply too far from the robot

body. Developing better grasp perception models or heuristics will let us sample better grasps for

a given object.

In other cases, the model generates a good grasp pose, but as the robot is executing the grasping

primitive, it collides with some minor environment obstacle. Since we apply the same grasp

trajectory in every case instead of planning the grasp trajectory, some such failures are inevitable.

Grasping models that generates a grasp trajectory as well as a pose may solve such issues.

Finally, our grasping module categorically struggles with flat objects, like chocolate bars and

books, since it’s difficult to grasp them off a surface with a two-fingered gripper.

10.3.4.3 Robot hardware limitations

While our robot of choice, a Hello Robot: Stretch, is able to pick-and-drop a variety of objects,

certain hardware limitations also dictate what our system can and cannot manipulate. For example,

the fully extended robot arm has a 1 kg payload limit, and thus our method is unable to pick

objects like a full dish soap bottle. Similarly, objects that are far from navigable floor space, i.e. in

the middle of a bed, or on high places, are difficult for the robot to reach because of the reach limits

of the arm. The robot hardware or the RealSense camera can occasionally get miscalibrated over

time, especially during continuous home operations. This miscalibration can lead to manipulation

errors since that module requires hand-eye coordination in the robot. The robot base wheels have

small diameters and in some cases struggle to move smoothly between carpet and floor.

219

Object is transparent, so
pointcloud is imperfect,

so grasp is imperfect

Top-down grasp on tall
counter is unreachable

Diagonal grasp on a
cylindrical object is

unstable

Fine grasps on small
objects are vulnerable to

calibration errors

Grasps on round objects
are unstable when not
perfectly diametrical

Grasps on flat objects
collide with env if not

perfectly executed

Figure 10.8: Samples of failures of our manipulation module. Most failures stem from using only a single
RGB-D view to generate the grasp and the limiting form-factor of a large two-fingered parallel jaw gripper.

10.4 Related Works

10.4.1 Vision-Language models for robotic navigation

Early applications of pre-trained open-knowledge models in robotics has been in open-vocabulary

navigation. Navigating to various objects is an important task which has been looked at in a wide

range of previous works [Mousavian et al. 2019b; Yenamandra et al. 2023b; Chang et al. 2023], as

well as in the context of longer pick-and-place tasks [Blukis et al. 2022; Min et al. 2021]. However,

220

these methods have generally been applied to relatively small numbers of objects [Deitke et al.

2022]. Recently, Objaverse [Deitke et al. 2023] has shown navigation to thousands of object

types, for example, but much of this work has been restricted to simulated or highly controlled

environments.

The early work addressing this problem builds upon representations derived from pre-trained

vision language models, such as SemAbs [Ha and Song 2022], CLIP-Fields [Shafiullah et al. 2023a],

VLMaps [Huang et al. 2023b], NLMap-SayCan [Chen et al. 2022a], and later, ConceptFusion [Jataval-

labhula et al. 2023] and LERF [Kerr et al. 2023]. Most of these models show object localization

in pre-mapped scenes, while CLIP-Fields, VLMaps, and NLMap-SayCan show integration with

real robots for indoor navigation tasks. USA-Nets [Bolte et al. 2023] extends this task to include

an affordance model, navigating with open-vocabulary queries while doing object avoidance.

ViNT [Shah et al. 2023] proposes a foundation model for robotic navigation which can be applied

to vision-language navigation problems. More recently, GOAT [Chang et al. 2023] was proposed

as a modular system for “going to anything” and navigating to any object in any environment

given either language or image queries. ConceptGraphs [Gu et al. 2023] proposed an open scene

graph representation capable of handling complex queries using LLMs. Any such open-vocabulary

embodied model has the potential to improve modular systems like OK-Robot.

10.4.2 Pretrained robot manipulation models

While humans can frequently look at objects and immediately know how to grasp it, such grasping

knowledge is not easily accessible to robots. Over the years, there has been many works that

has focused on creating such a general robot grasp generation model [Pinto and Gupta 2016;

Gupta et al. 2018; Mahler et al. 2017a, 2018; Kalashnikov et al. 2018; Qin et al. 2019; Mousavian

et al. 2019a] for arbitrary objects and potentially cluttered scenes via learning methods. Our work

focuses on more recent iterations of such methods [Sundermeyer et al. 2021; Fang et al. 2023c] that

221

are trained on large grasping datasets [Eppner et al. 2021; Fang et al. 2020]. While these models

only perform one task, namely grasping, they predict grasps across a large object surface and thus

enable downstream complex, long-horizon manipulation tasks [Goyal et al. 2022b; Singh et al.

2023; Liu et al. 2022].

More recently, there is a set of general-purpose manipulation models moving beyond just grasp-

ing [Shridhar et al. 2023; Parashar et al. 2023; Shafiullah et al. 2022; Cui et al. 2022; Gervet et al.

2023b]. Some of these works perform general language-conditioned manipulation tasks, but are

largely limited to a small set of scenes and objects. HACMan [Zhou et al. 2023b] demonstrates a

larger range of object manipulation capabilities, focused on pushing and prodding. In the future,

such models could expand the reach of our system.

10.4.3 Open vocabulary robot systems

Many recent works have worked on language-enabled tasks for complex robot systems. Some

examples include language conditioned policy learning [Shridhar et al. 2022, 2023; Lynch et al.

2020; Lynch and Sermanet 2021], learning goal-conditioned value functions [Brohan et al. 2023b;

Huang et al. 2023c], and using large language models to generate code [Liang et al. 2023; Wang

et al. 2023a; Singh et al. 2023]. However, a fundamental difference remains between systems which

aim to operate on arbitrary objects in an open-vocab manner, and systems where one can specify

one among a limited number of goals or options using language. Consequently, Open-Vocabulary

Mobile Manipulation has been proposed as a key challenge for robotic manipulation [Yenamandra

et al. 2023b]. There has previously been efforts to build such a system [Yokoyama et al. 2023;

Stone et al. 2023]. However, unlike such previous work, we try to build everything on an open

platform and ensure our method can work without having to re-train anything for a novel home.

Recently, UniTeam [Melnik et al. 2023] won the 2023 HomeRobot OVMM Challenge [Yenamandra

et al. 2023a] with a modular system doing pick-and-place to arbitrary objects, with a zero-shot

222

generalization requirement similar to ours.

In parallel, recently, there have been a number of papers doing open-vocabularymanipulation using

GPT or especially GPT4 [OpenAI 2023]. GPT4V can be included in robot task planning frameworks

and used to execute long-horizon robot tasks, including ones from human demonstrations [Wake

et al. 2023]. ConceptGraphs [Gu et al. 2023] is a good recent example, showing complex object

search, planning, and pick-and-place capabilities to open-vocabulary objects. SayPlan [Rana et al.

2023] also shows how these can use used together with a scene graph to handle very large, complex

environments, and multi-step tasks; this work is complementary to ours, as it doesn’t handle how

to implement pick and place.

10.5 Limitations, Open Problems and Reqests for Research

While our method shows significant success in completely novel home environments, it also

shows many places where such methods can improve. In this section, we discuss a few of such

potential improvement in the future.

10.5.1 Live semantic memory and obstacle maps

All the current semantic memory modules and obstacle map builders build a static representation

of the world, without a good way of keeping it up-to-date as the world changes. However, homes

are dynamic environments, with many small changes over the day every day. Future research that

can build a dynamic semantic memory and obstacle map would unlock potential for continuous

application of such pick-and-drop methods in a novel home out of the box.

223

10.5.2 Grasp plans instead of proposals

Currently, the grasping module proposes generic grasps without taking the robot’s body and

dynamics into account. Similarly, given a grasp pose, often the open loop grasping trajectory

collides with environmental obstacles, which can be easily improved by using a module to generate

grasp plans rather than grasp poses only.

10.5.3 Improving interactivity between robot and user

One of the major causes of failure in our method is in navigation: where the semantic query is

ambiguous and the intended object is not retrieved from the semantic memory. In such ambiguous

cases, interaction with the user would go a long way to disambiguate the query and help the robot

succeed more often.

10.5.4 Detecting and recovering from failure

Currently, we observe a multiplicative error accumulation between our modules: if any of our

independent components fail, the entire process fails. As a result, even if our modules each perform

independently at or above 80% success rate, our final success rate can still be below 60%. However,

with better error detection and retrying algorithms, we can recover from much more single-stage

errors, and similarly improve our overall success rate [Melnik et al. 2023].

10.5.5 Robustifying robot hardware

While Hello Robot - Stretch [Kemp et al. 2022] is an affordable and portable platform on which

we can implement such an open-home system for arbitrary homes, we also acknowledge that

with robust hardware such methods may have vastly enhanced capacity. Such robust hardware

224

may enable us to reach high and low places, and pick up heavier objects. Finally, improved robot

odometry will enable us to execute much more finer grasps than is possible today.

Postscript

OK-Robot as a method can be read as a response to contemporary end-to-end approaches to

mobile manipulation that were necessarily limited in the environments where they could operate.

Showing that a modular design can readily deploy to many diverse environments without having

to train or fine-tune a single parameter was a boast. At the same time understanding the ways in

which such elaborate, modular systems fail due to the the many corner cases and incompatibility

between modules was a necessary step to establish the science of mobile manipulation. In the

long run, we as the field need to run a lot more longitudinal study of a similar nature if we are

to bring general robots into our everyday environments to understand all the different, long-tail

ways our robots may fail as soon as the rubber hits the road.

Acknowledgments

This work was co-led by Peiqi Liu and Yaswanth Orru, co-authored with Jay Vakil and Chris

Paxton, and co-advised with Lerrel Pinto. NYU authors are supported by grants from Amazon,

Honda, and ONR award numbers N00014-21-1-2404 and N00014-21-1-2758. NMS is supported

by the Apple Scholar in AI/ML Fellowship. LP is supported by the Packard Fellowship. Our

utmost gratitude goes to our friends and colleagues who helped us by hosting our experiments in

their homes. Finally, we thank Siddhant Haldar, Paula Pascual and Ulyana Piterbarg for valuable

feedback and conversations.

225

11 | Online Dynamic Spatio-Semantic

Memory for Open World Mobile

Manipulation: DynaMem

Pick up the blue cup from the
table and put it in the sink

DynaMem

Dynamic semantic memory

Search

Navigate

Value based exploration

Found?

Obstacle map

Yes

No

Δ

Manipulate
...

Timestep
t=163

Dynamic objects

Dynamic obstacles

Timestep
t=78

R
G

B
im

ag
e

D
ep

th
 im

ag
e

Detected change
diff(depth[118], voxelmap)

(In t=118 camera frame)

(In t=16 camera frame)

In
-m

em
or

y
V

ox
el

M
ap

 re
nd

er

Timestep t=16 Timestep t=118

Figure 11.1: An illustration of how DynaMem, our online dynamic spatio-semantic memory responds to
open vocabulary queries in a dynamic environment. During operation and exploration, DynaMem keeps
updating its semantic map in memory. DynaMem maintains a voxelized pointcloud representation of the
environment, and updates with dynamic changes in the environment by adding and removing points.

226

11.1 Introduction

Recent advances in robotics have made it possible to deploy robots in real world settings to tackle

the open vocabulary mobile manipulation (OVMM) problem [Yenamandra et al. 2023b]. Here,

the robots are tasked with navigating in unknown environments and interacting with objects

following open vocabulary language instructions, such as “Pick upX from Y and put it in Z”, where

X, Y, and Z could be any object name or location. The two most common approaches to tackling

OVMM are using policies trained in simulation and deploying them in the real world [Ehsani et al.

2023; Ramrakhya et al. 2023; Zeng et al. 2024], or training modular systems that combine open

vocabulary navigation (OVN) [Shafiullah et al. 2023a; Gu et al. 2024; Maggio et al. 2024; Kerr et al.

2023] with different robot manipulation skills [Liu et al. 2024c; Qiu et al. 2024; Bolte et al. 2023;

Chang et al. 2023; Werby et al. 2024]. Modular systems enjoy greater efficiency and success in

real-world deployment [Gervet et al. 2023a] as they can directly leverage advances in vision and

language models [Liu et al. 2024c; Chang et al. 2023], and are able to handle more diverse and

out-of-domain environments with no additional training.

However, as recent analysis has shown, the primary challenge in deploying modular OVMM is

that limitations of a module propagate to the entire system [Liu et al. 2024c]. One key module in

any OVMM system is the open vocabulary navigation (OVN) module responsible for navigating

to goals in the environment. While many such OVN systems have been proposed in the litera-

ture [Yenamandra et al. 2023b; Kerr et al. 2023; Shafiullah et al. 2023a; Bolte et al. 2023; Qiu et al.

2024; Liu et al. 2024c; Gu et al. 2024; Maggio et al. 2024; Chang et al. 2023; Werby et al. 2024], they

share a common limitation: they assume static, unchanging environments. Contrast this with

the real world, where environments change and objects are moved by either robots or humans.

Making such a restrictive assumption thus limits these systems’ applicability in real-world settings.

The primary reason behind this assumption is the lack of an effective dynamic spatio-semantic

227

memory that can adapt to both addition and removal of objects and obstacles in the environment

online.

In this work, we propose a novel spatio-semantic memory architecture, Dynamic 3D Voxel

Memory (DynaMem), that can adapt online to changes in the environment. DynaMem maintains a

voxelized pointcloud representation of an environment and adds or removes points as it observes

the environment change. Additionally, it supports two different ways to query the memory with

natural language: a vision-language model (VLM) featurized pointcloud, and a multimodal-LLM

(mLLM) QA system. Finally, DynaMem enables efficient exploration in changing environments by

offering a dynamic obstacle map and a value-based exploration map that can guide the robot to

explore unseen, outdated, or query-relevant parts of the world.

We evaluate DynaMem as a part of full open-vocabulary mobile manipulation stack in three real

world environments with multiple rounds of changes and manipulating multiple non-stationary

objects, improving the static baseline by more than 2× (70% vs. 30%). Additionally, we identify an

obstacle in efficiently developing dynamic spatio-semantic memory, namely the lack of dynamic

benchmarks, since many OVN systems use static simulated environments [Chen et al. 2020b; Dai

et al. 2017] or static datasets [Yadav et al. 2023; Baruch et al. 2021]. We address this by developing a

new dynamic benchmark, DynaBench. It consists of 9 different environments, each changing over

time. We ablate our design choices in this benchmark. To the best of our knowledge, DynaMem is

the first spatio-semantic memory structure supporting both adding and removing objects.

228

11.2 Related Works

11.2.1 Open Vocabulary Mobile Manipulation (OVMM)

Navigating to arbitrary goals in open ended environments and manipulating them has become a

key challenge in robotic manipulation [Yenamandra et al. 2023a; Yokoyama et al. 2023]. This line

of query follows Open-Vocabulary Navigation systems [Shafiullah et al. 2023a; Huang et al. 2023b],

which builds upon prior object and point goal navigation literature [Gervet et al. 2023a; Majumdar

et al. 2020; Krantz et al. 2022; Hahn et al. 2021; Chaplot et al. 2020; Yokoyama et al. 2021; Zhao

et al. 2021; Batra et al. 2020; Chang et al. 2023] which attempted navigation to points, or fixed set

of objects and object categories. OVMM is a naturally harder challenge as it requires an ability to

handle arbitrary queries, and “navigation to manipulation” transfer – which means unlike pure

navigation, the robot needs to get close to the environment objective and obstacles. In the OVMM

challenge [Yenamandra et al. 2023a], modular solutions such as [Yenamandra et al. 2023b; Melnik

et al. 2023; Werby et al. 2024] outperformed the competition. More recently, OK-Robot [Liu et al.

2024c] performed extensive real-world evaluations of the challenges in OVMM and demonstrated

a system that achieves 58.5% success rate in static home environments. We extend this work by

enabling manipulation in changing environments.

11.2.2 Spatio-semantic Memory

Early works in spatio-semantic memory [Henry et al. 2012; Bowman et al. 2017; Zhang et al.

2018a; Ma et al. 2017; Chaplot et al. 2020] created semantic maps for limited categories based

on mostly ad-hoc deep neural networks. Later work builds upon representations derived from

pre-trained vision language models, such as [Ha and Song 2022; Shafiullah et al. 2023a; Huang

et al. 2023b; Chen et al. 2022a; Jatavallabhula et al. 2023; Kerr et al. 2023; Gu et al. 2024; Maggio

229

et al. 2024]. These works use a voxel map or neural feature field as their map representation. Some

recent models [Ji et al. 2024; Shorinwa et al. 2024] have used Gaussian splats [Kerbl et al. 2023]

to represent semantic memory for manipulation. Most of these models show object localization

in pre-mapped scenes, while CLIP-Fields [Shafiullah et al. 2023a], huang2023visual [Huang et al.

2023b], and NLMap-SayCan [Chen et al. 2022a] show integration with real robots for indoor

navigation tasks. Some recent works [Bolte et al. 2023; Wang et al. 2023b; Qiu et al. 2024] extend

this task to include an affordance model or manipulation primitives. Our work builds upon the

voxel map based spatio-semantic memory literature and extends them to dynamic environments

where both objects and obstacles can change over time. Concurrent to our work, DovSG [Yan

et al. 2024b] looks at dynamic semantic scene graphs. As scene graphs deal with an object level

abstraction, DovSG needs to handle object merging, association, and deduplication explicitly,

which are all handled implicitly in DynaMem.

11.2.3 Mapping and Navigating Dynamic Environments

For robot navigation, Simultaneous Localization and Mapping (SLAM) [Durrant-Whyte and Bailey

2006] methods are crucial. However, practical SLAM instances based on voxels [Song et al. 2024;

Shi et al. 2021], objects [McCormac et al. 2018; Krishna et al. 2023], landmark [Bowman et al. 2017;

Michael et al. 2022], NeRF [Maggio et al. 2023; Rosinol et al. 2023], and Gaussian splats [Matsuki

et al. 2024; Yan et al. 2024a] tend to make the simplifying assumption that the world is static. Some

sparse SLAM methods improve on dynamic environments by estimating underlying state [Qiu

et al. 2022; Cui and Ma 2019; Brasch et al. 2018; Yu et al. 2018; Song et al. 2022; Yu et al. 2021;

Bescos et al. 2018; Schmid et al. 2024; Virgolino Soares et al. 2023] or explicitly modeling moving

objects [Bescos et al. 2021; Henein et al. 2020; Henning et al. 2022]. Some methods also forego a

map and rely on reactive policies to navigate dynamic environments [Haviland et al. 2022; Brohan

et al. 2023b; Du et al. 2022; Wong et al. 2022; Uppal et al. 2024], although they generally tackle

230

local movement and not global navigation. Our work relies on SLAM systems that are stable

under environment dynamics, and focuses on building a dynamic semantic memory based off of

online exploration and observations.

11.3 Method

In this section, we define our problem setup, and then describe our online, dynamic spatio-semantic

memory for open world, open vocabulary mobile manipulation.

11.3.1 Problem Statement

We create our algorithm, DynaMem, to solve open vocabulary mobile manipulation (OVMM)

problems in an open, constantly changing world. The goal in OVMM is for a mobile robot to

execute a series of manipulation commands given arbitrary language goals. We assume the

following requirements for the memory module for dynamic, online operation:

• Observations: The mobile robot is equipped with an on-board RGB-D camera, and unlike prior

work [Liu et al. 2024c], doesn’t start with a map of the environment. Rather, the robot explores

the world and use the online observed sequence of posed RGB-D images to build its map.

• Environment dynamism: The environment can change without the knowledge of the robot.

• Localization queries: Given a natural language query (i.e. "teddy bear"), the memory module

has to return the 3D location of the object or determine that the object doesn’t exist in the scene

observed thus far.

• Obstacle queries: The memory module must determine whether a point in space is occupied

by an obstacle. Both the location of the objects and obstacles can move, previous observations

often contradict each other and must be resolved by the memory.

231

DynaMem voxel grid

New points
assigned to
same voxel

Update rule

Adding to DynaMem

Location(x, y, z) ∈ ℝ3

Observation countC ∈ ℕ
Source image IDI ∈ ℕ
Point semantic featuresf ∈ ℝd

Voxel

Latest observation timet ∈ ℝ

DynaMem memory structure

Location(x, y, z) ∈ ℝ3

Observation countC ∈ ℕ Source image IDI ∈ ℕ
Point semantic featuresf ∈ ℝd

Latest observation timet ∈ ℝ

DynaMem memory structure

Voxel

Adding to DynaMem

DynaMem voxel grid

 new
points

assigned
to voxel

N

Update rule

DynaMem voxel grid

New points
assigned to
same voxel

Update rule

Adding to DynaMem

Location(x, y, z) ∈ ℝ3

Observation countC ∈ ℕ
Source image IDI ∈ ℕ
Point semantic featuresf ∈ ℝd

Voxel

Latest observation timet ∈ ℝ

DynaMem memory structure

Location(x, y, z) ∈ ℝ3

Observation countC ∈ ℕ Source image IDI ∈ ℕ
Point semantic featuresf ∈ ℝd

Latest observation timet ∈ ℝ

DynaMem memory structure

Voxel

Adding to DynaMem

DynaMem voxel grid

 new
points

assigned
to voxel

N

Update rule

Figure 11.2: (Left) DynaMem keeps its memory stored in a sparse voxel grid with associated information
at each voxel. (Right) Updating DynaMem by adding new points to it, alongside the rules used to update
the stored information.

Note the significant upgrade in challenge in multiple facets compared to prior work [Yenamandra

et al. 2023b; Kerr et al. 2023; Shafiullah et al. 2023a; Bolte et al. 2023; Qiu et al. 2024; Liu et al.

2024c; Gu et al. 2024; Maggio et al. 2024; Chang et al. 2023; Werby et al. 2024]: almost no prior

work dealing with open-vocabulary queries support dynamic environments with both addition

and deletion, some assumes access to prior map data, and many don’t handle negative results, i.e.

objects not found in memory, and instead return the best match.

11.3.2 Dynamic 3D Voxel Map

Our answer to the challenge posed in the Section 11.3.1 is DynaMem. DynaMem is an evolving

sparse voxel map with associated information stored at each voxel, as shown in Figure 11.2. In each

non-empty voxel, alongside its 3D location (𝑥,𝑦, 𝑧), we also store the observation count 𝐶 (how

many times that voxel was observed), source image ID 𝐼 (which image the voxel was backprojected

from), a high-dimensional semantic feature vector 𝑓 coming from a VLM like CLIP [Radford et al.

2021] or SigLIP [Zhai et al. 2023], and the latest observation time, 𝑡 , in seconds.

To make this data structure dynamic, we describe the process with which we add and update with

new observations and remove outdated objects and associated voxels.

232

11.3.2.1 Adding Points

When the robot receives a new set of observations, i.e. RGB-D images with global poses, we

convert them to 3D coordinates in a global reference frame, and generate a semantic feature

vector for each point. The global coordinates are calculated from the global camera pose and the

backprojected depth image using the known camera transformation matrix. We calculate the

point-wise image feature by first converting the images to object patches by using a segmentation

model such as SAM-v2 [Ravi et al. 2024], and then aggregating each patch feature over the output

of a vision-language models like CLIP [Radford et al. 2021] or SigLIP [Zhai et al. 2023]. For more

details about image-to-feature vector mapping, we refer to earlier works [Shafiullah et al. 2023a;

Liu et al. 2024c; Kerr et al. 2023]. Once we have calculated the points and associated features, we

cluster the new points and assign them to the nearest voxel grids. In Figure 11.2, we show how

each voxel’s metadata is updated. The count keeps track of the total number of assigned points to

each voxel grid, and the feature vector keeps track of the weighted average of all feature vectors

assigned to that voxel. Finally, the observation time and image ID are updated to keep track of the

latest observation contributing to a particular voxel. If a voxel was empty before assignment, we

assume its count 𝐶 = 0 and feature vector 𝑓 =
−→0 .

11.3.2.2 Removing Points

When an object is moved or removed, its associated voxels in DynaMem may get removed. We

use ray-casting to find the outdated voxels. The operation follows a simple principle: if a voxel

falls within the frustum between the camera plane and the associated view point cloud, that voxel

must be unoccupied. To reduce the impact of the depth noise at long range, we don’t consider any

pixel whose associated depth value is over 2m. We illustrate a simplified 2D representation of this

algorithm in Figure 11.3. In practice, to speed up the intersection between the sparse voxelmap

and the view frustum, we project each existing voxel to the camera plane and calculate the camera

233

������

��
��
��
��

��
��
��
��
��

������
����� �
	��
����
����� ����
���
�����

������ ������

�������������
������
�� ������
�
�������
�� �����
�����
�
����
��

Figure 11.3: A high-level, 2D depiction of how adding and removing voxels from the voxel map works.
New voxels are included which are in the RGB-D cameras view frustum, and old voxels that should block
the view frustum but does not are removed from the map.

234

distance. If the image height and width are (𝐻,𝑊), the depth image is D, and a certain voxel

is projected to points (ℎ,𝑤) in the camera plane with depth 𝑑 , it gets removed if both Eq. 11.1

and 11.2 hold.

(ℎ,𝑤) ∈ [0, 𝐻] × [0,𝑊] (11.1)

𝑑 ∈
(
0,min(2,D

[
ℎ,𝑤

]
+ 𝜖)

)
(11.2)

Where Eq. 11.1 ensures that the point falls within the camera view, and Eq 11.2 ensures that (a)

the depth 𝑑 > 0, or the object is in front of camera, (b) 𝑑 < 2m, or the voxel isn’t too far away

from the camera, and (c) 𝑑 < D[ℎ,𝑤] denoting the voxel is between the camera and the currently

visible object.

11.3.3 Querying DynaMem for Object Localization

As described in Section 11.3.1, we define the object localization or 3D visual grounding problem as

a function mapping a text query and posed RGBD images to either the 3D coordinate of the query

object, or ∅ if the object is not in the scene. Unlike previous work, we abstain from returning

a location when an object is not found. To enable this, we factor this grounding problem into

two sub-problems. The first is finding the latest image where the queried object could have

appeared. The second is identifying whether the object is actually present in that image. For

the first sub-problem, we introduce two alternate approaches of visual grounding: one using the

intrinsic semantic features of DynaMem, and another using state-of-the-art multimodal LLMs

such as GPT-4o [Team 2024] and Gemini 1.5 Pro [Google 2024].

235

Image 235Image 118

Query: “green blanket”

Top voxel match: ￼V′￼

Latest image index ￼ : ￼V′￼I I118
OwlV2 query: “green blanket”

Not found = moved ❌

Q2

Query: “toy banana”

Top voxel match: ￼V

Latest image index ￼ : ￼VI I235
OwlV2 query: “toy banana”

Found ✅

Q1

Figure 11.4: Querying DynaMem with a natural language query. First, we find the voxel with the highest
alighnment to the query. Next, we find the latest image of that voxel, and query with an open-vocabulary
object detector to confirm the object location or abstain.

11.3.3.1 Embedded Vision Language Features

Vision Language Models (VLMs) such as CLIP [Radford et al. 2021] and SigLIP [Zhai et al. 2023]

possess an ability to embed both images and languages into the same latent space, where the

similarity between an image and a text object can be calculated by simply taking the dot product

between the two latent representation vectors. We use this property of the embedding vectors to

query our voxel map with open-vocabulary text queries. As described in Section 11.3.2, we convert

the incoming images to point-wise image features, and embed them into our voxels. When we

have a new language query, we calculate its latent embedding using the VLM text encoder, and

find the voxel whose feature has the highest dot product with the text embedding. Once we find

the right voxel, we simply retrieve its associated latest image from our data structure as shown in

Figure 11.4.

236

For object query I give, you need to find timestamps of images that the object is shown,
without any unnecessary explanation or space. If the object never exist, please output the
object name and the word "None" for timestamps.

Brown teddy bear: 244

DynaMem Multimodal LLM (gemini-1.5-pro)

…

The object you need to find is “brown teddy bear”

245244218216 217

Figure 11.5: The prompting system for querying multimodal LLMs such as GPT-4o or Gemini-1.5 for the
image index for an object query.

As a bonus feature, our VoxelMap can also return 𝑘 > 1 possible objects and associated images for

a single query. We do this by using a DBSCAN clustering of voxels similar to [Yang et al. 2023],

and returning the images associated with the most aligned voxel in top-𝑘 clusters.

11.3.3.2 Multimodal Large Language Models (mLLMs)

For this approach, we note that the problem of finding the latest image where an object may

appear is similar to the problem of visual question-answer (VQA) [Antol et al. 2015]. Since we

fully rely on pretrained models to build our map, we pose this multi-image VQA problem as an

mLLM QA problem similar to OpenEQA [Majumdar et al. 2024].

We show in Figure 11.5 how we query the mLLMs to solve the visual grounding query. We

give the model a sequence of our latest environment observations images and ask the model

for the index of the last image where the queried object was observed. We additionally instruct

237

the model to respond “None” if the object was not observed in any image. Note that, unlike

OpenEQA [Majumdar et al. 2024], we only pass the RGB images to the mLLM, and not the depth

or camera pose. Similarly, we only ask for an image index, and not a full textual answer.

One important hyperparameter for this mLLM query method is the maximum number of images

included in the prompt. Longer context needs longer processing time and potentially includes

outdated information, while short context might not include all information and thus will miss

objects. We optimize the context by excluding completely outdated images: all images 𝐼 with

no voxel pointing to them are deleted. This filtering increases mLLM context utilization. We set

Gemini as our base model and 60 as our query image limit since Gemini context can fit 60 images,

which is twice as large as GPT-4o’s context size.

11.3.3.3 Combining the Approaches

From the discussion above, and from our real-world experiments as shown in Section 11.4, we see

that the downsides of these two methods in practice are somewhat complementary. The VoxelMap

can easily process a large number of observation images over time, but it struggles to disambiguate

between multiple similar but not quite same objects. On the other hand, mLLM based methods can

distinguish between fine differences in query objects, but can only handle few images at a time.

As a result, we come up with a hybrid approach – taking advantage of the best of both methods.

For this approach, we build and process the VoxelMap as usual. For the hybrid querying,

parametrized by an integer 𝑘 , we retrieve top 𝑘 candidate images from the VoxelMap for the given

query. Then, we pass those 𝑘 images into the mLLM, and query them as usual for the mLLM

approach. The mLLM answers with the latest image where the query object may appear, which

we then use for the downstream processing. Note that, this approach generalizes both of our

individual approaches: when 𝑘 = 1, it converges to the VLM-feature-only approach, and when

𝑘 → ∞ it converges to the mLLM-only approach.

238

11.3.3.4 Handling Absence ofQueried Object

Several previous methods [Shafiullah et al. 2023a; Kerr et al. 2023; Liu et al. 2024c] assume that the

queried object is always present in the scene, and always responds with the object that is the best

match to the query. However, this often results in high false-positive failure cases. For example,

in a scene with no red cups and a blue cup, the method may respond with the location of the blue

cup in response to the query “red cup”.

For this reason, we locate objects in two stages. First, we find the best candidate image where

the object may have been seen (Section 11.3.3.1). Then, we use an open-vocabulary object

detector model such as OWL-v2 [Minderer et al. 2024] to search that image for the queried object

(Figure 11.4). If we don’t find the queried object, we assume that the object has either moved, or

the response from the voxelmap or mLLM was inaccurate, and respond with “object not found”. If

the open-vocabulary object detector returns an object bounding box, we find the median pixel

from the object mask and return its 3D location.

11.3.4 Robot Navigation and Exploration

To navigate in a real-world environment, robots use an obstacle map in conjunction with a

navigation algorithm like A* in [Huang et al. 2023b; Liu et al. 2024c]. We use a simple voxel-

projection strategy to build an obstacle map. Due to the depth observation noise, we simply

set a threshold for the ground (0.2m for our experiments), and project all the voxels above that

𝑧-threshold as the obstacles in our map. The voxels below the threshold are projected into the

2D obstacle map as navigable points. Finally, the points in the map that are not marked as either

obstacle or navigable are marked as explorable points.

239

11.3.4.1 Exploration Primitives

Since our robot does not start with an environment map, it explores the environment with frontier

based methods to build the map. We can further accelerate this process by providing exploration

guidance. Based on the current status of the map, DynaMem provides an exploration value

function to accelerate the exploration process both for building and updating the map.

We provide two value-based exploration maps: one time-based, and one semantic-similarity-

based [Yokoyama et al. 2024]. The time-based value map prioritizes the least-recently seen points.

If the current time is𝑇 , and the last-seen time of voxel (𝑥,𝑦, 𝑧) is 𝑡𝑥,𝑦,𝑧 , the temporal value map V𝑇

is expressed as:

T∗ [𝑥,𝑦] = max
𝑧

(𝑇 − 𝑡𝑥,𝑦,𝑧)

V𝑇 [𝑥,𝑦] = 𝜎
(
−𝛽𝑇

(
T∗ [𝑥,𝑦] − 𝜇𝑇

))
where 𝛽𝑇 , 𝜇𝑇 are hyper-parameters and 𝜎 is the sigmoid function. Similarly, if the VLM feature at

voxel (𝑥,𝑦, 𝑧) is 𝑓𝑥,𝑦,𝑧 , and the VLM feature for the language query is 𝑓𝑞 , then the similarity-based

value map V𝑆 is be expressed as:

S∗ [𝑥,𝑦] = max
𝑧

(𝑓𝑞 · 𝑓𝑥,𝑦,𝑧)

V𝑆 [𝑥,𝑦] = 𝜎
(
−𝛽𝑆

(
S∗ [𝑥,𝑦] − 𝜇𝑆

))
where once again 𝛽𝑆 , 𝜇𝑆 are hyperparameters. We may also linearly combine V𝑇 ,V𝑆 to balance

our exploration between last seen time and semantic similarity.

Finally, since the environment may be dynamic, we convert our navigation algorithm from open-

loop to closed-loop. The robot, instead of executing the entire navigation plan generated by

A*, stops after the first seven waypoints (approx. 0.7 to 1 meters). Then, the robot scans the

240

environment, updates the map, and moves according to a new plan. The robot repeats these steps

until its distance to the target is lower than a predefined threshold.

11.4 Experiments

We evaluate our method, DynaMem, on a Hello Robot: Stretch SE3 in real world environments,

and perform a series of ablation experiments in an offline benchmark.

11.4.1 Real-world Experiments

We evaluate DynaMem and its impact on open-vocabulary mobile manipulation in three real-world

dynamic environments (Figure 11.6). In each environment, we set up multiple objects as potential

manipulation targets, change the environment in three rounds, and execute 10 pick-and-drop

queries over the rounds We use the Hello Stretch SE3 as our mobile robot platform, and use its

head-mounted Intel RealSense D435 RGB-D camera to collect the input data.

To build a complete pick-and-drop system around DynaMem, we follow the system architecture

in OK-Robot [Liu et al. 2024c]. In particular, we use the AnyGrasp [Fang et al. 2023c] based

open-vocabulary grasp system and use the heuristic based dropping system. However, we use Dy-

naMem’s exploration primitives let the robot build the map of the environment and allow the

robot to explore when an object is not found in the memory.

As a baseline, we compare with OK-Robot [Liu et al. 2024c], a state-of-the-art method for OVMM.

OK-Robot uses a static voxelmap as its memory representation, and thus it highlights the impor-

tance of dynamic memory for OVMM in a changing environment. For DynaMem, we run two

variations of the algorithm in the real world: one with VLM-feature based queries and one with

mLLM-QA based queries.

241

Kitchen

Game room

Meeting room

Figure 11.6: Real robot experiments in three different environments: kitchen, game room, and meeting
room. In each environment, we modify the environment thrice and run 10 pick-and-drop queries.

11.4.1.1 Results

Our experiments in three dynamic environments andwith 30 queries is summarized in Figure 11.7(a

& b). We find that DynaMem with both VLM-feature based and mLLM-QA based queries have a

242

�-%���$

����� ��*+(��

�-%���$

�$�������

����&�&*

�

	�

�

��

��

�

��

��

�
�
"#
+
(
�
�(

�
*
�
��

�
�

��"#+(��)*�*")*"�)

�*�*"��%�,"!�*"&%� �"#+(�

�-%�$"��%�,"!�*"&%� �"#+(�

�&�#�%�,"!�*"&%� �"#+(�

��%"'+#�*"&%� �"#+(�

(a) Failure modes on trials with differing query methods, VoxelMap (left) and multimodal LLM (right) in lab environments.

(c) Failure modes in real home environments(b) Comparison with a static baseline  
in lab environments

Figure 11.7: Statistics of failure, broken down by failure modes, in our real robot experiments in the
lab and in home environments. Statistics are collected over three environments and 30 open-vocabulary
pick-and-drop queries for the lab experiments, and two environments and 17 pick-and-drop queries for the
home environments, on objects whose locations change over time.

total success rate of 70%. This is a significant improvement over the OK-Robot system, which has

a total success rate of 30%. Notably, DynaMem is particularly adept at handling dynamic objects

in the environment: only 6.7% of the trials failed due to our system not being able to navigate to

such dynamic objects in the scene. This is in contrast to the OK-Robot system, where 53.3% of

the trials failed because it could not find an object that moved in the environment. In contrast,

navigating to static goals fails in only 10% of the cases for DynaMem with VLM-feature, 13.3% for

OK-Robot and 20% for DynaMem with mLLM-QA.

We observe that a common localization failure for VLM-feature based queries is that those features

often act like a bag-of-words model; for example they may find a blue bowl when queried for

243

a red bowl. On the other hand, mLLM-QA based queries often fail because the objects are not

present in the short context window, or the images in the context window are outdated. Since

their failure modes are complementary, we hope to combine the two methods in future work to

improve the overall performance.

11.4.2 Deployment in Home Environments

To understand the applicability of our system beyond lab environments that emulate real living

space, we deployed DynaMem to two apartments in New York City. We ran experiments with Dy-

naMem on a one one-room and one two-room environment. We ran a total of 17 long-horizon

trials to understand the possible failure modes when deployed on a real scene. Since we observe

complementary cases of failure from the two querying methods (Section 11.3.3.3) in our lab exper-

iments in Section 11.4.1.1, we run these experiments with the hybrid querying method, setting the

number of images returned by VoxelMap to be processed by mLLMs to be 𝑘 = 3.

We found a total of 9 successes in our 17 real home trials, but it is significantly more interesting

for us to understand how these systems may fail in real environments, as shown in Figure 11.7(c).

We first observe that out of the 8 failures, 4 happened due to poor navigation, 3 happened due to

our manipulation skills failing, and 1 was an error in placing the object at the target. Out of the

navigation failures, half happened because of the target object was not found or was confused

with another object, and the other half happened due to navigating to a suboptimal location for

manipulation.

11.4.3 Ablations on an Offline Benchmark

Running real robot OVMM experiments can be expensive and time-consuming. So, we developed

an offline benchmark called DynaBench to easily evaluate dynamic 3D visual grounding algorithms

244

on dynamic environments and perform algorithmic ablations. The benchmark isolates the query-

response part of the dynamic semantic memory without robot navigation, exploration, and

manipulation.

11.4.3.1 Data Collection

In the real world, the robot collects its own map-building data by exploring the environments.

Following this, we collect the robot’s runtime sensor data from three environments. To further

enrich our benchmark, we simulate this process by taking posed RGB-D images on an iPhone Pro

in six more environments. In all cases, we emulate environment dynamics by moving objects and

obstacle locations in three successive rounds.

11.4.3.2 Data Labeling and Evaluation

We manually annotate queries and responses in the dataset. Each query has an associated natural

language label 𝑞, object location ®𝑋 = (𝑥,𝑦, 𝑧), and an object radius 𝜖 . Since the environment is

dynamic, each query also has an associated time 𝑡 . For evaluation, at time 𝑡 (i.e. after the memory

algorithm has observed all the input data points with timestamp < 𝑡), we query the model with

𝑞. If it predicts an object location ®𝑋 ′ = (𝑥′, 𝑦′, 𝑧′), it’s a success if | |𝑋 − 𝑋 ′| |2 ⩽ 𝜖 and a failure

otherwise. Since the robot may also encounter queries for objects it has not observed yet, we

emulate negative queries by adding queries for objects (a) that have not been observed yet, or

(b) that have been observed but were subsequently removed. For both of these query types, the

model must respond with not found; otherwise it’s counted as a failure.

11.4.3.3 Evaluation Results

Using our offline benchmark, we ablate design decisions of DynaMem as discussed in Section 11.3.

Among these design decisions, the primary are: using feature embedding-based vs. mLLM-QA

245

Table 11.1: Ablating the design choices for our query methods for DynaMem on the offline DynaBench
benchmark. We also present results from five human participants to ground the performances.

Query type Variant Success rate

Human (average over five participants) 81.9%

VLM-feature default (adding and removing points) 70.6%
only adding points 67.8%
no OWL-v2 cross-check 59.2%
no similarity thresholding 66.8%

mLLM-QA default (Gemini Pro 1.5) 67.3%
Gemini Pro 1.5, no voxelmap filtering 66.8%
Gemini Flash 1.5 63.5%

Hybrid VLM-feature→ mLLM (𝑘 = 3) 74.5%

based language grounding, ablating components such as point removal or abstentiation from the

algorithm, and trying different mLLMs. Due to API costs, we only evaluate Gemini models on the

benchmark. We present our results in Table 11.1.

We see that performance of VLM-features and mLLM-QA follows the same order in the real

world in the benchmark, corroborating the benchmark design. The best design choices are to

both add and remove points, and to cross check with OWL-v2 on top of similarity thresholding

for VLM-feature based grounding. For mLLM-QA based grounding, Gemini Pro outperforms

Gemini Flash, and voxelmap based image filtering benefits the method. Moreover, we see that the

hybrid method that uses VoxelMap feature filtering and then sends the top 3 images to the mLLM

performs better than either method individually.

11.5 Limitations

In this work, we introduced DynaMem, a spatio-semantic memory for open-vocabulary mobile

manipulation that can handle changes to the environment during operation. We showed in three

real world environments that DynaMem can navigate to, pick, and drop objects even while object

246

and obstacle locations are changing. In the future, we could improve DynaMem performance by

merging the VLM-feature queries and mLLM-QA queries, as they show complementary failure

cases. Similarly, reasoning over both object and voxel level abstraction could speed up environment

update when objects move. Our current system experiences a large number of manipulation

failures: using mLLMs to detect and recover from failures [Etukuru et al. 2024] may increase the

performance of the overall system. Finally, integrating with more skills, such as searching in

cabinets or drawers, would improve the applicability of such OVMM systems in the real world.

Postscript

DynaMem closes a long-standing gap in the spatio-semantic memory architectures by creating a

system that can update online in real time as the world around it changes. While critical, this is an

incredibly hard system to manage – since there are many corner cases that can pop up in practice.

Looking forward, there should be possible upgrades in how this system behaves – primarily by

eliminating the hand-crafted heuristics like ray-casting and object clustering that we rely on when

we update the state of the world. End-to-end learned systems may sound promising, but the

truth is we still do not have the right kind of datasets that are needed to create the long-horizon

intelligence critical for tackling real homes for days or weeks. The second important factor is

making sure to study homes and environments that are truly lived in – diverse factors show

up that make any of these environments dramatically different than what we can generate and

simulate while sitting in a lab. Therefore, we also need to build systems that are holistic and can

survive contact with the real world. Finally, running experiments like these can be costly – so

there should be more research into minimal reproduction that are still able to distinguish between

what methods work and don’t work in the real world. Such a test bed would be invaluable pushing

long-horizon mobile manipulation research forward.

247

Acknowledgements

This work was led by Peiqi Liu, co-authored with Zhanqiu Guo, Mohit Warke, Soumith Chintala,

and Chris Paxton, and co-advised with Lerrel Pinto.

248

12 | Discussion

This thesis has presented a body of work focused on developing general robot intelligent that

can solve a variety of problems in arbitrary human environments right out of the box. In Part I,

we showed how we can learn representations for both the perceptions and the actions to make

policy learning algorithms that are more scalable than their predecessors. Particularly, Chapter 2

showed the advantage of using self-supervised methods for pre-training a visual representation

for a robot policy, a practice that we carried for the rest of this thesis. Then, in Chapters 3 to 5, we

discussed two primary ideas: using a sequence of observations, rather than a single one, to get

around non-markovian behavior of environments, and figuring out a hybrid discrete-continuous

representation for actions that allows us to learn multi-modal behavior distributions. While these

algorithms have their own limitations, especially in reconstructing the original precise actions in

its full fidelity, they also properties of scalability that comes in handy in later chapters and will be

helpful for future practitioners.

In Part II, we start taking a holistic view of robot learning in the wild and start building integrated

systems, encompassing everything from physical hardware to datasets and learning algorithms.

The benefit of taking a holistic view is that such approaches let us build, from scratch, robot

systems that can solve novel tasks in novel home environments with few or zero shot approaches.

In Chapter 6, we started by creating a hand-held data collection tool, a home pretraining dataset,

and a learning algorithm that can learn new short horizon tasks in new environments with only 5

249

minutes of data and 15 minutes of fine-tuning a pre-trained model. Continuing on this path, we

show in Chapter 7 that pooling or collecting in the wild data from a diversity of environments is

then able to generalize to completely new environments and new object instances right out of the

box, even on a completely new robot. With this system, for the first time we were able to create

an end to end policy that one can simply download and run on a new robot in a new environment

out of the box. As we were able to solve simpler problems, to create a path towards more complex

challenges within the limits of academia, we created an open source bimanual mobile manipulator

in Chapter 8. Once again, the systems we created are limited in the extent of long-horizon or

dexterous behavior they can exhibit, but they pave the way towards building robot policies that

can generalize to any human environment without having to fine-tune further on new data.

While the previous parts of this thesis focus on learning a short-horizon behavior policy for one-off

behaviors, in Part III, we focus on creating robots capable of long-horizon mobile manipulation.

In Chapter 9, we show how we can create a neural data structure for spatio-semantic robot

memories by using representations from pre-trained large vision and language models that can

resolve queries given in natural language in completely new environments zero shot. Armed with

such amemory representation, Chapter 10 showed that we can decompose multi-stepmanipulation

problems, and then combine the memory representation with pre-trained manipulation policies

or heuristic to perform long-horizon mobile manipulation in novel home environments. However,

one clear limitation of this method was its reliance on static environment, and we rid ourselves

of it in Chapter 11 by creating an online, dynamic memory representation that can update with

the environment changing over time. Despite the lengthened processing time of a query due

to the prevalence of outdated memory, this method is able to perform long horizon mobile

manipulation in a changing world due to the actions of the robot or a co-existing human. Despite

their limitation on how quickly they can update their memory, or how quickly the robot can

explore its environment to build the memory for the first time, they unlock many potential avenues

for creating long-horizon autonomous behaviors in unstructured environments.

250

We are starting to barely scratch the surface of the complex problem of creating general intelligence

for robots that can take over our tedious chores in homes, bodegas, fast-food restaurants, and

factories. The work presented in this thesis is merely a prelude to that goal. The primary gap

between what we have achieved here, and what we need to achieve to get to fully autonomous

robot butler, lies in three primary direction: robust, error correcting behaviors; complex, dexterous

task completion, and finally, autonomous, long horizon behavior on a much longer scale.

We have started our efforts in training general policies that work in arbitrary environments, but

today the success probability of a single trial of such methods range between 80% [Shafiullah et al.

2023b] and 90% [Etukuru et al. 2024]. Even with only 10 such subtasks running in a sequence to

accomplish a larger task, the success rate falls down to a measly 34%. Therefore, if we are to truly

deploy such learned systems in the real world, our robots must have sub-task success rates which

are much higher than what they are today, and have build in robust recovery behavior that will

help them correct their own errors. There are many ways to build upon the work presented in

this thesis to create such robust recovery behavior. The primary way would be to use some sort

of reinforcement learning based fine-tuning of the pre-trained policies [DeepSeek-AI et al. 2025;

Lambert et al. 2025] in the real world. Especially in the large language modeling world, it has

been shown that models that already have a desired behavior can be “sharpened” to exhibit such

behaviors more consistently. Therefore, the most important property for such a general model

would be to have a non-zero success rate for the target task in any potential environment, and

bootstrap the desired behavior from there using RL. Another potential direction for error detection

and recovery behavior lies in world modeling – models that can foresee potential failures can also

use planning to avoid such failures, or at least fail gracefully and ask for help. However, due to

the intrinsic difficulty of world modeling, this path is harder to follow. We believe collecting rich

and diverse data in the wild en masse with cheap setups as presented in Part II can give us a way

forward to learn such diverse yet robust world models.

251

To achieve the level of dexterity of even a schoolchild seems incredibly far away for our robots.

However, we believe the situation is set to improve soon due a new generation of cheap, precise,

and dexterous robot hardware resulting from current wave of interest in robotics. With this

new generation of robot hardware, it will be much easier to develop algorithms and policies

that exhibit precise real world behavior, and improve the behavior precision by using hardware-

intensive approaches such as real-world RL. With robust and reasonably cheap hardware, dexterity,

especially of the multi-fingered variety, can walk the same path previously laid out by quadrupedal

locomotion policies. To achieve fluid and reactive behavior that is characteristic of humans,

however, we will need more than cheap, small, and precise motors – namely good sensors that fit

everywhere and work robustly over time. Additionally, we will need to develop robot policies

that rely less on vision, which is a cheap and ubiquitous sensing module, and rely more on other

perception modules such as touch. Recent work in developing cheap and reproducible tactile

sensors such as [Pattabiraman et al. 2025; Bhirangi et al. 2024] is a step forward in achieving this

goal. The open question, however, remains of how to train dexterous policies that generalize

outside of their training environments – since it is currently almost impossible to simulate diverse

environments matching real world diversity, and data collection approaches in diverse real world

setups may not scale directly to the multi-fingered hand case. Given this dilemma, we may have

to invent additional frameworks that bridge the data collection and data generation mindsets from

imitation learning and reinforcement learning.

However impressive demonstrations are possible today with end-to-end learning of robot policies,

the question of how to enable them to act autonomously to complete a variety of general tasks

over hours, days, or months still remains open. It is clear to see that teleoperating the robots

over a very long period is prohibitively expensive, and so to bootstrap we may need a modular

approach. The jury is still out, however, in finding out how to modularize them. This thesis,

in Part III shows one way of doing so: with a flexible memory data structure that relies on certain

heuristics to update. But should we instead be using end-to-end models for this? At what scale

252

would they become more useful, and what priors should we include in them? Memory is an hard

and under-explored problem, not just in robotics, but in entirety of artificial intelligence, but there

is a lot of nice regularizing properties of robotic memory that makes it a suitably concise subject

of study. Another directions that can be built upon the work presented here is to find a more

organic way of decomposing larger tasks into subtasks that does not depend on the intermediary

of language and can operate on a lower level of abstraction. Finally, finding ways of incorporating

human priors into robotic memory could be an interesting and largely beneficial topic of study –

when a robot’s environment changes, it does not happen adversarially or even randomly. Rather,

there is a very strong prior over the distribution of new world states conditioned on the agents,

both human and robotic, present in that scene. Therefore, by learning human patterns, robotic

memories can become much more efficient at both responding to queries and updating its internal

representation.

Beyond every proposed topic above, we must remember that the study of robotics, especially in

human environments, should be in service of humanity. As we build better, stronger, and more

capable robots, we must check in with ourselves to ensure that our robots are able to provide

the value for humans that they promise. With the increase in capacity of robots, now is a great

time to invest in understanding the interaction of robots and humanity to maximize the potential

positive outcomes while minimizing the chance for intentional or unintentional harm.

This thesis has presented some work that start to pave the path towards generally intelligent robots

that work in our service, out of the box, everywhere, but there is still a lot of work that remains.

Towards that end, the methods and systems created in work will be helpful – and achieving that

goal eventually will be their ultimate sign of success.

253

APPENDIX A

Appendix for Visual Imitation with

Nearest Neighbors

A.1 VINN Pytorch Pseudocode

de f d i s t _m e t r i c (x , y) :

r e t u r n (t o r ch . norm (x−y) . i t em ())

d e f c a l c u l a t e _ a c t i o n (d i s t _ l i s t , k) :

a c t i o n = t o r ch . t e n s o r ([0 . 0 , 0 . 0 , 0 . 0])

t op_k_we igh t s = t o r ch . z e r o s ((k ,))

f o r i i n range (k) :

t op_k_we igh t s [i] = d i s t _ l i s t [i] [0]

top_k_we igh t s = so f tmax (−1 ∗ top_k_we igh t s)

f o r i i n range (k) :

a c t i o n = t o r ch . add (top_k_we igh t s [i]

∗ d i s t _ l i s t [i] [1] , a c t i o n)

254

r e t u r n (a c t i o n)

de f c a l c u l a t e _ n e a r e s t _ n e i g h b o r s (query_img , d a t a s e t , k) :

query_embedding = encoder (query_img)

f o r d a t a s e t _ i n d e x in range (l en (d a t a s e t)) :

da ta se t_embedd ing , d a t a s e t _ t r a n s l a t i o n = \

d a t a s e t [d a t a s e t _ i n d e x]

d i s t a n c e = d i s t _m e t r i c (

query_embedding ,

da t a s e t _embedd ing

)

d i s t _ l i s t . append (

(d i s t a n c e , d a t a s e t _ t r a n s l a t i o n , d a t a s e t _ p a t h)

)

d i s t _ l i s t = s o r t e d (d i s t _ l i s t , key = lambda tup : tup [0])

p r e d _ a c t i o n = c a l c u l a t e _ a c t i o n (d i s t _ l i s t , k)

r e t u r n p r e d _ a c t i o n

A.2 Network Architectures and Training Details

In this section, we will go over our implementation, network architectures, and training details

for our various baselines.

Random Action We sampled a 3-d vector from [−1, 1]3, normalized it, and used it as our action

for this baseline.

255

Open Loop We computed the average action at frame 𝑡 over all demonstrations from our dataset

for this baseline for each frame number 𝑡 .

Behavioral Cloning (end to end or from representations) For our parameterized model

experiments, our encoding network is always a ResNet50, and our translation neural network is a

three-layer MLP whose layer dimensions are 2048, 1024, 3. Our gripper model is a linear layer that

predicts four gripper states from the encoder network output. We train BC-rep’s MLPfor 8000

epochs with a learning rate of 0.001 using the Adam optimizer, and we train BC end-to-end for

100 epochs. On an RTX8000, given the learned representations, it takes 12 minutes on the Door

Opening dataset to train both MLPs for BC from representations. For training the BC end to end

model until convergence, it takes us three hours in total.

Implicit Behavioral Cloning (IBC) We used the official Github repo for Implicit Behavioral

Cloning [Florence et al. 2022] offline experiments. We modified their Push from Pixels task to fit

3-d vectors bounded within [−1, 1]3. Unfortunately, we could not use the space of normal vectors

since the current published version of the IBC code does not support constrained action spaces.

We trained the standard Dense ResNet model provided with the IBC repo for encoders, and

IBC-with-DFO framework for sampling actions. It took us about 6 hours to train the models

end-to-end on our datasets on an RTX 8000 GPU for 10,000 steps. For every hyperparameter, we

use the defaults for the learning to push from pixels task that is included in the IBC repository.

We computed the MSE loss from this model by first sampling 256 actions with DFO optimization,

as it’s done in IBC, and choosing the action with the highest assigned value out of it.

VINN For our BYOL-trained encoding network, we use a ResNet50 architecture, with the final

linear for ImageNet classification replaced with an identity layer. We use the representation

vector of size 2048. We fine-tune this network using BYOL for a 100 epochs on our demonstration

256

datasets with the ADAM optimizer and a 3 × 10−4 learning rate. To train this BYOL on the Door

Opening dataset for 100 epochs it took approximately 3.5 hours on a workstation with one Nvidia

RTX8000.

A.3 Robot details

We run all of our robots in the Hello Robot’s Stretch [Kemp et al. 2022]. This robot has a dexterous

wrist with 3 DoF, a telescopic 1 DoF arm on which it is mounted, and an 1-DoF lift on which the

arm is mounted. The base of the robot is also capable of rotation and lateral motion, which gives

the robot’s end-effector a full 6-DoF capability.

On each step, the translation model predicts Δ(𝑥,𝑦, 𝑧) for the gripper, which is converted to

the movement in the robot’s joints with an inverse kinematics model. This model takes into

account simpler objectives like avoiding self-collisions, but does not model avoiding issues like

environment collisions.

For the robot observations, we use a standard webcam mounted on top of the robot wrist using a

custom 3-d printed mount. The image captured by the robot is streamed over the network to a

machine running the VINN algorithm, which responds with the predicted robot action.

A.4 Demonstration Collection Details

We use the DemoAT [Young et al. 2020] framework for collecting our demonstrations. We use a

simple reacher-grabber tool availabe at hardware shops or online, fitted with a GoPro camera to

do capture our observation frames. An image of this is shown in Fig. A.2,

We replaced the pads at the end of the robot gripper with simple 3-d printed nubs for easy resets

of the robot, and we do the same on the reacher-grabber tool, as seen in Fig. A.3.

257

Figure A.1: Hello Robot’s Stretch [Kemp et al. 2022], the robot model used in our experiments

To get visual observations, we mount a GoPro on top of the reacher grabber tool with a custom

3-d printed mount. We linearize the GoPro video in post-processing using ffmpeg to get rid of the

wide-angle distortions, and extract the frames at one frame per second speed. Finally, using the

extracted frames and the OpenSfM library, we reconstruct the 3-d movements between frames.

We take the delta position changes between consecutive frames, and normalize them to get our

258

Figure A.2: Reacher grabber tool used for our demonstrations.

Figure A.3: Modified grip on the robot and the reacher grabber.

actions.

259

Figure A.4: The top row contains one rollout of VINN on a visually modified cabinet, under each image is
the top 5 nearest neighbors from our demonstrations with the top one being the closest

260

APPENDIX B

Appendix for Behavior Transformers

Appendix

Diverse, multi-modal behaviors generated by our models on different environment are best

experienced and understood in a video. We invite you to visit https://mahis.life/bet to see

BeT models in action.

B.1 Environment and Dataset Details

Point mass environments: In the point mass environment, we have a simple point-mass agent

with two-dimensional observation and action spaces. The observation of the agent denotes the

(𝑥,𝑦) position of the agent, while the action sets the immediate (Δ𝑥,Δ𝑦) displacement of the

agent in the next timestep.

To show the effects of unimodal and multimodal behavioral cloning algorithms more cleanly, we

also add a “snapping" effect to the environment which moves the agent close to the nearest integer

coordinates after each step.

261

https://mahis.life/bet

We generate random trajectories for each of our Multipath experiment datasets.

1. In the first one (Fig. 3.2), our dataset has two modes, which are colored differently in the

figure based on the path taken at the fork.

(a) In the first set of demonstrations, the pointmass follows the trajectory (1, 2), (2, 2), (2, 3),

(2, 4), (3, 4), (4, 4), (4, 3), (4, 2), (5, 2).

(b) In the second set of demonstrations, the point mass follows (1, 2), (2, 2), (2, 1), (2, 0),

(3, 0), (4, 0), (4, 1), (4, 2), (5, 2) .

2. For the second Multipath environment (Fig. 3.5), there are three modes of demonstration,

which are colored in the figure according to their first step direction.

(a) In the first set of demonstration, the point mass follows 𝑥 = 𝑦 from (0, 0) to (8, 8) with
√

2 size step increments.

(b) In the second set of demonstration, the point mass follows straight lines from (0, 0) →

(0, 4) → (4, 4) → (8, 4) → (8, 8) with step size 1.

(c) In the third set of demonstration, the point mass follows straight lines from (0, 0) →

(4, 0) → (4, 4) → (4, 8) → (8, 8) with step size 1.

CARLA environment: We use the CARLA [Dosovitskiy et al. 2017] self-driving environment

to examine BeT performance in environments with high-dimensional observation spaces. CARLA

uses the Unreal Engine to provide a photo-realistic driving simulation. We create our environment

on the Town04 map in CARLA 0.9.13. The observation space is 224× 224× 3 RGB images from the

vehicle, which are processed by an ImageNet-pretrained, frozen ResNet-18 to a 512-dimensional

real-valued vector. The action space is [−1, 1]2 with an accelerator-brake axis and a steering axis.

The dataset on this environment is collected with the built-in PID agent with minor tuning. We

fix waypoints in the trajectory that the demonstration agent needs to follow. The waypoints

262

fork around two central blocks: one set of trajectories thus go to the left, while another set of

demonstration trajectories go to the right. While collecting the demonstrations, we add some

noise in the environment before executing an action so that there is some variation in the set of

100 total demonstrations that we collect in the environment.

We do not introduce any traffic participants in this environment intentionally as we intend to

show the effects of cleanly bi-modal distributions on the learning algorithms in an environment

more complicated than the point-mass environments.

Block-push environment: We use a simulated environment similar to Multimodal Push envi-

ronment described in [Florence et al. 2022]. We take the environment implementation directly

from the PyBullet [Coumans and Bai 2016] based implementation provided by Florence et al.

[2022] in https://github.com/google-research/ibc/tree/master/environments.

In our environment, an XArm robot is situated in front of two blocks in a 0.75 × 1 plane. On the

plane there are also two square targets. The goal of the agent is to push the blocks inside of the

squares. However, the exact order of the block being pushed, or the combination of which block

is pushed in which square doesn’t matter. A block is considered successfully pushed if the center

of the block is less than 0.05 away from a square.

On initialization, the blocks’ positions are randomly shifted within a rectangle of side lengths

(0.2, 0.3), while the squares are randomly shifted within a rectangle of size (0.01, 0.015). Addi-

tionally, the blocks were rotated at an uniformly arbitrary angle, while the target squares were

rotated at an angle between (𝜋6 ,−
𝜋
6).

The demonstrations in this environments were collected with a hard-coded controller. There are

two modes of multimodality inherent in the controller generated demonstartions. The controller:

1. Selects a block to start pushing first,

263

https://github.com/google-research/ibc/tree/master/environments

2. At the same time, independently chooses a target for the block to be pushed into.

3. Once the first block is pushed to a target, it pushes the second block to the remaining target.

Thus combinatorially, the controller is capable of four different modes of behavior. There are

additional stochasticity in the controller behavior since there are many ways of pushing the same

block into the same target.

The controller pushes the blocks to their targets following specific behavior primitives, such as

moving to origin position, moving to a place collinear with a block and its target, and making a

straight motion from that position towards the target unless the block rotates too much from its

starting position.

Our models were trained on 1,000 demonstrations, all generated from the controller under the

above randomized modes.

Franka kitchen environment: For the final set of experiments, we use the Franka Kitchen

environment originally introduced in the Relay Policy Learning [Gupta et al. 2019] paper. In

that paper, the authors introduce a virtual kitchen environment where human participants in VR

manipulated seven different objects in the kitchen: one kettle, one microwave, one sliding door,

one hinged door, one light switch, and two burners. In total, we use 566 demonstrations collected

by the researchers in that paper, where in each demonstration episode, each participant performed

four manipulation task specified by the researchers in advanced.

The manipulator agent in simulator is a Franka Emika Panda robot, which is controlled through

a 9-dimensional action space controlling the robot’s joint and end-effector position. The 60-

dimensional observation space is split into two parts, the first 30 dimension contains information

about the current position of the interesting factors in the environment, while the last 30 di-

mensions contain information about the goal of the demonstrator or the agent. Note that in our

demonstrations and our environments, we zero out the last 30 dimensions in all cases since we

264

assume goal is not labelled in the demonstrations and is not specified in the unconditioned rollouts

of the model.

One thing to note that, while the D4RL [Fu et al. 2020] paper also has three versions of the dataset,

we chose to use the original version of the collected data from the Relay Policy Learning [Gupta

et al. 2019] paper. That is because the relay policy learning dataset is not labeled with intended

tasks of the participants or rewards, while the D4RL dataset is geared towards that.

B.2 Implementation Details and Hyperparameters

B.2.1 Baselines

Multi-layer Perceptron with MSE For our MLP with MSE baselines, we trained fully con-

nected neural networks with optionally BatchNorm layers. In each of our environment, we varied

the depth and the width of the MLPs to fit them best according to the bias-variance trade-off,

while training them on 95% of the dataset and testing on the remaining 5% on the dataset in terms

of MSE loss.

Nearest Neighbor Nearest Neighbor is conceptually the simplest baseline we show in this

paper. During training, our Nearest Neighbor model simply stores all the (𝑜, 𝑎) pairs. During test

time, given a query observation, 𝑜 , we find the observation 𝑜′with the minimum Euclidean distance

to that in the representation space, and execute the associated action 𝑎′ in the environment.

While it is a simple baseline, we show that it has a surprisingly high effectiveness in simple

environments like CARLA, or dense environments like Kitchen where there is less of a chance in

going OOD simply by executing seen actions. On the other hand, in environments like Block-push

where the model needs to interpolate or extrapolate more, the NN model fails more.

265

k-Nearest Neighbor with Locally Weighted Regression A slightly more robust version of

NN for regression problems, k-NN with locally weighted regression or LWR, is the next baseline

we use. In this baseline, we take the k-nearest neighbors (in all our cases, 5) in the observation

representation space, and take a weighted average of their associated actions. The weighting is

based on the negative exponent of the distance, or namely, exp−||𝑜 − 𝑜′| |, as seen in [Pari et al.

2021]. This model is better than simple Nearest Neighbors in interpolations, and thus we see a

higher success in the Kitchen environment.

Continuous Generative Model: VAE with Gaussian Prior Following prior works[Pertsch

et al. 2021], we use variational auto-encoders (VAE) for encoding and decoding sequences of

actions into a smaller latent space. The VAE here learns to compress a sequence of 𝑇 = 10 actions

into a single latent variable 𝑧 of 10 dimensions. The hyperparameters for training the VAE has

been taken directly from Pertsch et al. [2021].

Concurrently with training the VAE, we train a state-conditioned latent prior model that tries

to predict 𝑃 (𝑧 | 𝑜). This latent generator produces a vector of 𝜇 and 𝜎 which is sampled to find

latent 𝑧, and we feed a Gaussian distributed variable 𝑧 back into the decoder network where the

action sequence is reconstructed. For the current observation 𝑜𝑡 , sequence of reconstructed actions

𝑎𝑡 , · · · , 𝑎𝑡+9 are performed in a simulated environment.

The design choices of this algorithm has been heavily inspired by [Pertsch et al. 2021]. Although

this model shows promise in theory, we found in practice that unconditional rollout from this

model is not very successful. We believe the shortcoming is a result of random sampling from the

𝑧 space that does not take into account the recently executed actions, and using a single-mode

Gaussian as the state prior similar to [Pertsch et al. 2021], and thus this baseline is only slightly

better than the MLP-MSE model.

266

Continuous Generative Models: Normalizing Flow with and without Prior Similar to

Singh et al. [2020], we use a Normalizing Flow [Dinh et al. 2016] based generative model. We

follow the architectural choices and the hyperparameters from [Singh et al. 2020] in our baseline

implementation.

Our observation-conditioned Flow model is trained on the distribution 𝑃 (𝑎 | 𝑜) to continuously

transform it into an identity Gaussian distribution of the same dimensions as 𝑎. To find a better

prior than simply an identity Gaussian, we also trained a prior model that generates 𝜇, 𝜎 of a

Gaussian distribution given the observation 𝑜 . We found that the prior improves the quality of

the rollouts, however slightly.

We believe the under-performance of these continuous generative approaches were based on

two major problems. One is that they fail to take historical context in concern, and by being a

continuous distribution, returned less likely actions that led to more rollouts going OOD. Second,

they were designed with a focus of making RL approachable by compressing the action space,

which requires having a prior that is not so strict. However, most of BeT’s performance comes from

having a strong prior over the actions, which is only augmented by the action offset prediction.

Implicit Behavioral Cloning Implicit Behavioral Cloning (IBC) [Florence et al. 2022] takes

a different approach in behavioral cloning, where instead of learning a model 𝑓 (𝑜) := 𝑎, we

learn an energy based model 𝐸 (𝑜, 𝑎) where the intended action 𝑎 at any observation is defined

as arg min𝑎 𝐸 (𝑜, 𝑎). While this suffers from all the classic issues of training an EBM, like higher

sample complexity and higher complexity in sampling, IBC models have been shown to have

higher success in learning multi-modal and discontinuous actions.

As a baseline, we use the official implementation provided in https://github.com/google-research/

ibc For the CARLA environment, we use equivalent hyperparameters from the “pushing from

pixels” hyperparameters. For the Block-pushing environment, we use the “pushing from states”

267

https://github.com/google-research/ibc
https://github.com/google-research/ibc

hyperparameters. Finally, for the Kitchen environment, we use the “D4RL kitchen” hyperparame-

ters.

While IBC is our strongest baseline, in our experience it is also one that is quite easy to overfit

to our datasets. As a result, we monitored test performance over the training and had to employ

early stopping for both the CARLA and the Block-pushing tasks.

Trajectory Transformers Trajectory Transformers [Janner et al. 2021], especially the variant

that is trained without any rewards only on states and actions from demonstrations, seem similar

to our approach, there are a few crucial differences. While we agree that BeT and Trajectory

Transformer based behavior cloning both use some type of discretization to fit demonstration

datasets with a minGPT, we believe that is where the similarities end. The primary differences

between the algorithms is in our design choices: namely what distributions they model, and

consequently how they treat the observations. The differences are explained more thoroughly

below.

• Modeled distribution: From a provided set of demonstrations, trajectory transformers

model the joint distribution P(action, observations). On the other hand, BeT models the

conditional distribution P(action | observations). Modeling the joint distribution requires

MinGPT to model the forward dynamics of the environment, which can be arbitrarily

difficult based on the environment.

• Observation discretization: Because trajectory transformers have to model the observa-

tions as well, it needs to discretize the observation space. As a result, TT cannot extend

to high dimensional observational spaces, such as visual observations. This limitation is

also acknowledged by the authors of Trajectory Transformers. BeT, on the other hand,

does not model the observations and thus does not need to discretize them. Thus BeT can

scale to arbitrarily high dimensional observations, as we show in the CARLA environment

268

experiments, where BeT learns behaviors from high dimensional visual observations.

• Efficient historical encoding: Trajectory transformer encodes each (state, action) pair into

a total of |𝑆 | + |𝐴| input/output tokens, while BeT encodes them into one input/output token.

On a base MinGPT implementation that means a 𝑂 ((|𝑆 | + |𝐴|)2) efficiency gain for BeT, or

for example 4761x less compute for the same historic context in the Kitchen environment.

As a baseline, we trained and rolled out Trajectory Transformer on the Kitchen environment.

It failed to complete any tasks for unconditioned, greedy, or beam search rollouts. We would

like to note that the Kitchen environment is more complicated than the MuJoCo environments

(HalfCheetah, Hopper, Walker2d, and Ant) that the paper experimented on. At the same time,

this environment has an order of magnitude fewer samples on the training set (106 vs. approx-

imately 120k). We tried both our own implementation and the implementation from https:

//github.com/Howuhh/faster-trajectory-transformer with the recommended parameters

for the AntMaze environment, which is the largest environment used by the authors.

B.2.2 Algorithm Details

Loss function details: In this paper, we use two loss functions that are inspired by practices

in computer vision, in particular object detection. The first of them is the Focal loss [Lin et al.

2017], and the second one is the Multi-task loss [Girshick 2015].

The Focal loss is a simple modification over the cross entropy loss. While the normal cross entropy

loss for binary classification can be thought of L𝑐𝑒 (𝑝𝑡) = − log(𝑝𝑡), the Focal loss adds a term

(1 − 𝑝𝑡)𝛾 to this, to make the new loss

L𝑓 𝑜𝑐𝑎𝑙 (𝑝𝑡) = −(1 − 𝑝𝑡)𝛾 log(𝑝𝑡)

This loss has the interesting property that its gradient is more steep for smaller values of 𝑝𝑡 , while

269

https://github.com/Howuhh/faster-trajectory-transformer
https://github.com/Howuhh/faster-trajectory-transformer

flatter for larger values of 𝑝𝑡 . Thus, it penalizes and changes the model more for making errors

in the low-probability classes, while is more lenient about making errors in the high probability

classes. Using this error in the object detection world has helped with class imbalance between

different classes, and here it helps BeT learn to predict different 𝑘-means from the dataset even if

their appearance in the dataset is not completely balanced.

For the multi-task loss, we use the formulation

MT-Loss
(
a,
(
⟨𝑎(𝑗)
𝑖
⟩
)𝑘
𝑗=1

)
=

𝑘∑︁
𝑗=1

I[⌊a⌋ = 𝑗] · ∥⟨a⟩ − ⟨𝑎(𝑗)⟩∥2
2

This helps us penalize only the offset for the ground truth class, thus making sure the MinGPT is

not trying to predict the right action offset through all classes and instead only trying to predict

the action offset through the right class.

In practice, we optimize the combined loss, L𝑓 𝑜𝑐𝑎𝑙 + 𝛼L𝑚𝑡 while 𝛼 is a hyperparameter that just

makes sure at initialization the two losses are of the same order of magnitude.

Compute details: All of our code was run in a single NVIDIA RTX 3080 GPU for state-based

environments and RTX 8000 for image-based environments.

Performance measurement details: We measured the performance reported in the Sec-

tion 3.3.5 in an NVIDIA RTX 3080 machine with AMD Threadripper 5950x CPUs. We took the

average over three runs to minimize inter-run variances, and measured wall-clock time to report

in the paper.

In terms of raw computation time to determine one action from the observations, in the Kitchen

environment, BeT took 2.8 ms, while IBC took 52 ms and MLP, as the fastest point of comparison,

took 0.5 ms. On the same environment, a single step of Trajectory Transformer took 867.86 ms,

on an implementation that used more advanced tricks such as attention caching.

270

Hyperparameters list: We present the BeT hyperparameters in Table B.1 below:

Table B.1: Environment-dependent hyperparameters in BeT.

Hyperparameter Point-mass CARLA Block-push Kitchen
Layers 1 3 4 6
Attention heads 2 4 4 6
Embedding width 20 256 72 120
Dropout probability 0.1 0.6 0.1 0.1
Context size 2 10 5 10
Training epochs 10 40 350 50
Batch size 64 128 64 64
Number of bins 𝑘 2; 3 32 24 64

However, we have found that as long as the model does not overfit, a wide range of parameters all

yield favorable results for BeT; thus, this table should be taken as reference values for reproducing

our results rather than the only parameter sets that work.

Apart from that, we have some hyperparameters that are shared across all BeT experiments. They

are reproduced in Table B.2.

Table B.2: Shared hyperparameters for BeT training

Name Value
Optimizer Adam
Learning rate 1e-4
Weight decay 0.1
Betas (0.9, 0.95)
Gradient clip norm 1.0

B.2.3 Pseudocode

See the pseudocode described on Algorithm 1.

271

B.2.4 Architecture and Implementation

For our implementation, we used the MinGPT [Karpathy 2020] repository almost as-is. We

modified the input token conversion layer to a linear projection layer to handle our continuous,

instead of discrete, inputs. Apart from that, we followed the MinGPT architecture quite exclusively,

with successive attention layers with a number of attention head and embedding dimensions.

Between the layers, we used dropout regularization same as [Karpathy 2020].

For the smallest tasks, like point-mass environments, we used models with approximately 104

parameters, which went up to around 106 for Kitchen environments.

B.3 Ablation studies

In this section, we provide more details about the ablation studies presented in the main paper, as

well as present detailed plots of our ablation studies that compare different versions of the BeT

architecture.

B.3.1 Ablating historical context

One of the reasons why we used transformer-based generative networks in our work is because of

our hypothesis that having historical context helps our model learn better behavioral cloning. Our

experiments are performed by using the same model and simply providing sequences of length

one on training and test time. As we can see on Sec. 3.3.5, having some historical context helps

our model learn much better.

272

B.3.2 Ablating the core model in the architecture

To ablate the core MinGPT transformer model in the architecture, we run three ablations, where we

replace it respectively with a fully-connected multi-layer perceptron (MLP) network, a temporal

convolution network, and an LSTM-based recurrent neural network.

Multi-Layer Perceptrons: Since generally MLP networks are not capable of taking in historical

context in consideration, we instead stack the last 𝑡 frames of observation to pass into the MLP

network. Near the beginning of a trajectory, the stack of observation is zero-padded to 𝑡 frames.

For the intermediate layers in the MLP, we keep the same width and the number of layers as the

corresponding MinGPT.

Temporal Convolution: Convolutions over the sequence length has been used in numerous

prior works [Oord et al. 2016; Kalchbrenner et al. 2016; Dauphin et al. 2017; Gehring et al. 2017;

Bai et al. 2018] for sequence modeling. As a baseline, we implement such temporal convolutional

network to replace our MinGPT-based trunk. We perform a temporal convolution over the same

period of history that is provided to our transformer models. We found that the performance of

the temporal convolution models are constantly lower than our MinGPT based models. However,

temporal convolutional networks are easier to fit on our data compared to RNNs.

LSTM-based RNN: Recurrent neural networks (RNNs) were the previous state-of-the-art for

sequence modeling before transformer-based models. In this work, we compare against an Long-

short term memory (LSTM) [Gers et al. 2000] based RNN instead of a transformer based trunk.

We find that even with sufficient model capacity, the RNN based model took significantly longer

than our MinGPT model to fit the same dataset. Moreover, the quality of fit was worse, both in

training and test time. Finally, in open-ended rollouts, this performance downgrade is reflected in

273

a far lower success rate for completing tasks in the environment (Table. 3.3).

274

Algorithm 1: Learning Behavior Transformer from a dataset of behavior sequences.
Input: Dataset (𝑜𝑡,𝑖, 𝑎𝑡,𝑖)𝑡,𝑖 for 0 ⩽ 𝑖 ⩽ number of demonstrations, 0 ⩽ 𝑡 ⩽ maximum episode
lengths, intended number of clusters 𝑘 and context history length ℎ.
Initialize: 𝜃𝑀 the parameters for MinGPT, {𝐴𝑖}𝑘𝑖=1 cluster centers randomly in the action space.

Learn k-means encoder/decoder:
Using all possible 𝑎𝑡,𝑖 , learn the 𝑘 cluster centers using the 𝑘 means algorithm.
Set {𝐴𝑖}𝑘𝑖=1 as the learned cluster centers.
Define functions:
⌊𝑎⌋ := arg min𝑘𝑖=1 | |𝑎 −𝐴𝑖 | |
⟨𝑎⟩ := 𝑎 − ⌊𝑎⌋
Enc(𝑎) := (⌊𝑎⌋, ⟨𝑎⟩)
Dec(⌊𝑎⌋, ⟨𝑎⟩) := 𝐴⌊𝑎⌋ + ⟨𝑎⟩
Train MinGPT trunk of BeT:
while Not converged do
Sample trajectory subsequence (𝑜𝑡 , 𝑎𝑡), · · · , (𝑜𝑡+ℎ−1, 𝑎𝑡+ℎ−1) from the dataset.
Feed in the observations (𝑜𝑡 , 𝑜𝑡+1, · · · , 𝑜𝑡+ℎ−1) into the MinGPT.
Get categorical distribution probabilities 𝑝𝜏,𝑐 for 𝑡 ⩽ 𝜏 ⩽ 𝑡 + ℎ − 1, 1 ⩽ 𝑐 ⩽ 𝑘 .
Compute focal loss L𝑐𝑒 of 𝑝𝜏,𝑐 against ground truth class ⌊𝑎𝜏⌋, for all 𝜏, 𝑐 .
Get the residual action offset per class, ⟨𝑎𝜏,𝑐⟩, for all 𝜏, 𝑐 from MinGPT.
Calculate the multi-task loss, L𝑚𝑡 , against true class predicted offset,

∑
𝜏 | |⟨𝑎𝜏,⌊𝑎𝜏 ⌋⟩ − ⟨𝑎𝜏⟩| |22

Backprop using the normalized loss, L𝑐𝑒 + 𝛼L𝑚𝑡 where 𝛼 makes the losses of equal
magnitude.

end while
Running on the environment:
while Episode not completed do
Stack the last ℎ observations in the environment, (𝑜𝑡 , 𝑜𝑡+1, · · · , 𝑜𝑡+ℎ−1) and feed into MinGPT.
Get categorical probabilities 𝑝𝜏,𝑐 for 𝑡 ⩽ 𝜏 ⩽ 𝑡 + ℎ − 1, 1 ⩽ 𝑐 ⩽ 𝑘 from the MinGPT.
Sample a class 𝑐 from 𝑝𝑡+ℎ−1,𝑐 for 1 ⩽ 𝑐 ⩽ 𝑘 .
Get the associated action offset, ⟨𝑎𝑡+ℎ−1,𝑐⟩ from the MinGPT.
Decode into full continuous action, 𝑎𝑡+ℎ−1 := Dec(𝑐, ⟨𝑎𝑡+ℎ−1,𝑐⟩)
Execute decoded action 𝑎𝑡+ℎ−1 into environment.

end while

275

APPENDIX C

Appendix for Conditional Behavior

Transformers

Appendix

C.1 Behavior Transformers

We use Behavior Transformers from [Shafiullah et al. 2022] as our backbone architecture, building

our conditional algorithm on top of it. In this section, we describe the BeT architecture and the

training objective to help the readers understand the details of our algorithm.

C.1.1 BeT training objective

Given an observation 𝑜 and its associated ground truth action 𝑎, we will now present the simplified

version of how the BeT loss is calculated.

Let us assume the BeT model prediction is 𝜋 (𝑜)𝑑 ∈ R𝑘 , 𝜋 (𝑜)𝑐 ∈ R𝑘×|𝐴| for the discrete and the

continuous parts of the predictions. Let us also assume that ⌊𝑎⌋ is the discrete bin out of the 𝑘

276

bins that 𝑎 belongs to, and ⟨𝑎⟩ = 𝑎 − BinCenter(⌊𝑎⌋). Then, the BeT loss becomes

LBeT = 𝐿𝑓 𝑜𝑐𝑎𝑙 (𝜋 (𝑜)𝑑 , ⌊𝑎⌋) + 𝜆 · 𝐿𝑀𝑇 (⟨𝑎⟩, 𝜋 (𝑜)𝑐)

Where 𝐿𝑓 𝑜𝑐𝑎𝑙 is the Focal loss [Lin et al. 2017], a special case of the negative log likelihood loss

defined as

L𝑓 𝑜𝑐𝑎𝑙 (𝑝𝑡) = −(1 − 𝑝𝑡)𝛾 log(𝑝𝑡)

and 𝐿𝑀𝑇 is the multi-task loss [Girshick 2015] defined as

MT-Loss
(
a,
(
⟨𝑎(𝑗)
𝑖
⟩
)𝑘
𝑗=1

)
=

𝑘∑︁
𝑗=1

I[⌊a⌋ = 𝑗] · ∥⟨a⟩ − ⟨𝑎(𝑗)⟩∥2
2

C.2 Implementation Details

C.2.1 Implementation used

In our work, we base our C-BeT implementation off of the official repo published at https:

//github.com/notmahi/bet. For the GCBC, WGCSL, and GoFAR baselines, we use the official

repo released by the GoFAR authors https://github.com/JasonMa2016/GoFAR/.

C.2.2 Hyperparameters list:

We present the C-BeT hyperparameters in Table C.1 below, which were mostly using the default

hyperparameters in the original [Shafiullah et al. 2022] paper:

The shared hyperparameters are in Table C.2.

277

https://github.com/notmahi/bet
https://github.com/notmahi/bet
https://github.com/JasonMa2016/GoFAR/

Table C.1: Environment-dependent hyperparameters in BeT.

Hyperparameter CARLA Block-push Kitchen
Layers 3 4 6
Attention heads 4 4 6
Embedding width 256 72 120
Dropout probability 0.6 0.1 0.1
Context size 10 5 10
Training epochs 40 350 50
Batch size 128 64 64
Number of bins 𝑘 32 24 64
Future conditional frames 10 3 10

Table C.2: Shared hyperparameters for BeT training

Name Value
Optimizer Adam
Learning rate 1e-4
Weight decay 0.1
Betas (0.9, 0.95)
Gradient clip norm 1.0

278

C.3 Robot Environment Demonstration Trajectories

Figure C.1: Sample demonstration trajectories for the real kitchen environment.

279

C.4 Simulated Environment Rollout Trajectories
G
o
F
A
R

W
G
C
S
L

G
C
B
C

C
-
B
e
T

Figure C.2: Sample demonstration trajectories for the CARLA self driving environment, conditioning on
going to the right path.

G
o
F
A
R

W
G
C
S
L

G
C
B
C

C
-
B
e
T

Figure C.3: Sample demonstration trajectories for the multi-modal block pushing environment, condition-
ing on pushing the green block to green square and red block to red square.

280

G
o
F
A
R

W
G
C
S
L

G
C
B
C

C
-
B
e
T

Figure C.4: Sample demonstration trajectories for the Franka Kitchen environment, conditioning on
completing the microwave, bottom knob, slide cabinet, hinge cabinet tasks.

281

APPENDIX D

Appendix for Vector-Quantized Behavior

Transformers

D.1 Experimental and Dataset

D.1.1 Simulated environments

Across our experiments, we use a variety of environments and datasets to evaluate VQ-BeT. We

give a short descriptions of them here, and depiction of them in Figure 5.3:

• Franka Kitchen: We use the Franka Kitchen robotic manipulation environment introduced

in [Gupta et al. 2019] with a Franka Panda arm with a 7 dimensional action space and 566

human collected demonstrations. This environment has seven possible tasks, and each trajectory

completes a collection of four tasks in some order. While the original environment is state-based,

we create an image-based variant of it by rendering the states with the MuJoCo renderer as an

112 by 112 image. In the conditional variant of the environment, the model is conditioned with

future states or image goals (Image Kitchen).

282

• PushT:We adopt the PushT environment introduced in [Chi et al. 2023] where the goal is to

push a T-shaped block on a table to a target position. The action space here is two-dimensional

end-effector velocity control. Similar to the previous environment, we create an image based

variant of the environment by rendering it, and a goal conditioned variant of the environment

by conditioning the model with a final position. This dataset has 206 demonstrations collected

by humans.

• BlockPush: The BlockPush environment was introduced by Florence et al. [2022] where

the goal of the robot is to push two red and green blocks into two (red and green) target

squares in either order. The conditional variant is conditioned by the target positions of the

two blocks. The training dataset here consists of 1,000 trajectories, with an equal split between

all four possibilities of (block target, push order) combinations, collected by a pre-programmed

primitive.

• UR3 BlockPush: In this task, an UR3 robot tries to move two blocks to two goal circles on the

other side of the table [Kim et al. 2022]. Each demonstration is multimodality, since either block

can move first. In the non-conditional setting, we evaluate whether each block reaches the goal,

while in the conditional setting, we evaluate in which order the blocks get to the given target

point.

• Multimodal Ant: We adopt a locomotion task that requires the MuJoCo Ant [Brockman et al.

2016] robot to reach goals located at each corner of the map. The demonstration contains trajec-

tories that reach the four goals in different orders. In the conditional setting, the performance is

evaluated by reaching two goals given by the environment, while in the unconditional setting,

the agent tries to reach all four goals.

• nuScenes self-driving: Finally, to evaluate VQ-BeT on environments beyond robotics, we use

the nuScenes [Caesar et al. 2020] self-driving environment as a test setup. We use the prepro-

cessed, object-centric dataset from Mao et al. [2023a] with 684 demonstration scenes where

283

the policy must predict the next six timesteps of the driving trajectory. In this environment,

the trajectories are all goal-directed, where the goal of which direction to drive is given to the

policy at rollout time. In Appendix Section D.3.2, we detail how we process the GPT-Driver Mao

et al. [2023a] dataset for use in our method.

D.1.2 Real-world environments

We run our experiments on a kitchen-like environment, with a toaster oven, a mini-fridge, and a

small can in front of them, as seen in Fig. 5.3. In this environment, we define the tasks as opening

or closing the fridge or toaster, and moving the can from the table to the fridge or toaster and

vice versa. During data collection and evaluation, the starting position for the gripper and the

position of the cans are randomized within a predefined area, while the location of the fridge and

the toaster stays fixed. We use a similar robot and data collection setup as Dobb·E [Shafiullah et al.

2023b], using the Stick to collect 45 demonstrations for each task, using 80% of them for training

and 20% for validation, and using the Hello Robot: Stretch [Kemp et al. 2022] for policy rollouts.

While some of the single tasks can only be completed in one way, the we also test the model on

sequences of two tasks, for example closing oven and fridge, which can be completed in multiple

ways. This task multi-modality is also captured in the dataset: tasks that can be completed in

multiple ways have multi-modal demonstration data.

284

D.2 Additional Results

C-BeT C-BESO CFG-BESO VQ-BeT

Kitchen
Full 3.09 3.75 3.47 3.78
1/4 2.77 2.62 3.07 3.46
1/10 2.59 2.67 2.73 2.95

Image Kitchen Full 2.41 2.00 1.59 2.60

Ant Multimodal
Full 1.68 1.14 0.92 1.72
1/4 0.85 0.58 0.52 1.23
1/10 0.35 0.39 0.40 1.06

BlockPush Multimodal
Full 0.87 0.93 0.88 0.87
1/4 0.48 0.52 0.47 0.62
1/10 0.10 0.29 0.17 0.13

UR3 Multimodal
−ℓ1 -0.129 -0.090 -0.091 -0.085
p1 1.00 0.98 0.97 1.00
p2 0.67 0.96 0.94 0.94

PushT Final Coverage 0.02 0.30 0.25 0.39
Max Coverage 0.11 0.41 0.38 0.49

Image PushT Final Coverage 0.01 0.02 0.01 0.10
Max Coverage 0.02 0.02 0.02 0.12

Table D.1: Quantitative results of VQ-BeT and related baselines on conditional tasks.

285

BeT DiffusionPolicy-C DiffusionPolicy-T VQ-BeT

PushT Final Coverage 0.39 0.73 0.74 0.78
Max Coverage 0.73 0.86 0.83 0.80

Image PushT Final Coverage 0.01 0.66 0.45 0.68
Max Coverage 0.01 0.82 0.71 0.73

Kitchen

p1 0.99 0.94 0.99 1.00
p2 0.93 0.86 0.98 0.98
p3 0.71 0.56 0.87 0.91
p4 0.44 0.26 0.60 0.77

p3-Entropy 3.44 3.18 3.38 3.42
p4-Entropy 4.01 3.62 3.89 4.07

Image Kitchen

p1 0.97 0.99 0.97 1.00
p2 0.73 0.95 0.90 0.93
p3 0.51 0.73 0.75 0.67
p4 0.27 0.44 0.39 0.38

p3-Entropy 3.03 2.36 3.01 3.20
p4-Entropy 2.77 2.93 3.55 3.32

Ant Multimodal

p1 0.91 0.96 0.87 0.94
p2 0.79 0.81 0.78 0.83
p3 0.67 0.73 0.69 0.75
p4 0.36 0.62 0.56 0.70

p3-Entropy 3.89 4.26 4.27 4.19
p4-Entropy 3.55 4.18 4.11 4.20

BlockPush Multimodal
p1 0.96 0.36 0.99 0.96
p2 0.71 0.11 0.94 0.83

p2-Entropy 1.95 1.94 1.95 1.99

UR3 Multimodal
p1 0.84 1.00 1.00 1.00
p2 0.75 0.83 0.82 0.84

p2-Entropy 0.99 0.91 0.98 0.99

Table D.2: Quantitative results of VQ-BeT and related baselines on non-conditional tasks.

BeT DiffusionPolicy-C VQ-BeTDiffusionPolicy-T

3.04ms 103.08ms 77.53ms 3.17ms

BC LSTM-GMM

0.13ms 2.45ms

Success
Traj.

Method

Infer. time

Fa
ilu

re
 c

as
es

:
H

ig
h

er
r.

Fa
ilu

re
 c

as
es

:
M

od
e

C
ol

la
ps

e

BeT

DiffusionPolicy-T

VQ-BeT

VQ-BeT

Figure D.1: Multi-modal behavior visualization on pushing a T-block to target. On the left, we can see
trajectories generated by different algorithms and their inference time per single step, where VQ-BeT
generate smooth trajectories to complete the task with both modes with short inference time. On the
right, we can see failure cases of VQ-BeT and related baselines due to high error and mode collapse.

286

L2 (↓) Collision (%) (↓)
1s 2s 3s Avg. 1s 2s 3s Avg.

ST-P3 metrics

ST-P3 [Hu et al. 2022] 1.33 2.11 2.90 2.11 0.23 0.62 1.27 0.71
VAD [Jiang et al. 2023] 0.17 0.34 0.60 0.37 0.07 0.10 0.24 0.14

GPT-Driver [Mao et al. 2023a] 0.20 0.40 0.70 0.44 0.04 0.12 0.36 0.17
Agent-Driver [Mao et al. 2023b] 0.16 0.34 0.61 0.37 0.02 0.07 0.18 0.09
Diffusion-based Traj. Prediction 0.21 0.43 0.80 0.48 0.01 0.07 0.35 0.14

VQ-BeT 0.17 0.33 0.60 0.37 0.02 0.11 0.34 0.16

UniAD metrics

NMP [Zeng et al. 2019] - - 2.31 - - - 1.92 -
SA-NMP [Wei et al. 2021] - - 2.05 - - - 1.59 -

FF [Hu et al. 2021] 0.55 1.20 2.54 1.43 0.06 0.17 1.07 0.43
EO [Khurana et al. 2022] 0.67 1.36 2.78 1.60 0.04 0.09 0.88 0.33
UniAD [Hu et al. 2023] 0.48 0.96 1.65 1.03 0.05 0.17 0.71 0.31

GPT-Driver [Mao et al. 2023a] 0.27 0.74 1.52 0.84 0.07 0.15 1.10 0.44
Agent-Driver [Mao et al. 2023b] 0.22 0.65 1.34 0.74 0.02 0.13 0.48 0.21
Diffusion-based Traj. Prediction 0.27 0.78 1.83 0.96 0.00 0.27 1.21 0.49

VQ-BeT 0.22 0.62 1.34 0.73 0.02 0.16 0.70 0.29

Table D.3: (Lower is better) Trajectory planning performance on the nuScenes [Caesar et al. 2020] self-
driving environment. We bold the best performing model. Note that while Agent-Driver outperforms us in
some Collision avoidance benchmarks, it is because they use a lot more information than what is available
to our agent, namely the road lanes and the shoulders information, without which avoiding collision is
difficult for our model or GPT-Driver [Mao et al. 2023a]. Even with such partial information about the
environment, VQ-BeT can match or beat the SOTA models in predicting L2 distance from ground truth
trajectory.

Control method Close Toaster Close Fridge Can to Toaster Can to Fridge Can to Fridge →
Close Fridge

Close Fridge
and Toaster Total

Closed loop (𝑛 = 1) 9/10 8/10 10/10 10/10 4/10 6/10 47/60
Receding horizon (𝑛 = 3) 0/5 0/5 0/5 0/5 0/5 0/5 0/30

Table D.4: Quantitative results of running diffusion policy [Chi et al. 2023] with closed-loop vs. receding
horizon control in real-world robot experiments, where 𝑛 is the number of actions executed at each
timestep. We select four single-phase tasks and two two-phase tasks in which diffusion policy does well
with closed-loop control, and compare with the same policy with receding horizon control by executing
multiple predicted actions at each timestep. We see the diffusion policy with an action sequence executed
per timestep goes out of distribution quite easily and fails to complete any tasks on this set of experiments.

287

Ac
tio

n[
0]

Action[1] Action[1]

Decoded primary code of RVQ Decoded full code of RVQ

Figure D.2: Action centroids of primary codes and full combination of the codes. On the left, we represent
centroids of the raw action data obtained by decoding (total of 12) primary codes learned from Blockpush
Multimodal dataset. On the right, we show the decoded action of the centroids corresponding to all 144
possible combinations of full the codes. We can see that the primary codes, represented by different colors
in each figure, are responsible for clustering in the coarse range, while full-code representation provides
further finer-grained clusters with secondary codes.

0

0

0

Fin
al

 c
ov

er
ag

e

0.02 0.02

0.30
0.25

0.39

PushT

0

0

0

Fin
al

 c
ov

er
ag

e

0.02
0.01

0.02
0.01

0.10

Image PushT

2

3

4

Co
m

pl
et

ed
 g

oa
ls

0.15

3.09

3.75

3.47

3.78

Kitchen

1

2

3

Co
m

pl
et

ed
 g

oa
ls

0.64

2.41

2.00

1.59

2.60

Image Kitchen

0

1

2

Co
m

pl
et

ed
 g

oa
ls

0.00

1.68

1.14

0.92

1.72

Ant Multimodal

0

1.00

2.00

Co
m

pl
et

ed
 g

oa
ls

0.19

1.67

1.94 1.91 1.94
UR3 Multimodal

0

0.50

1.00

Su
cc

es
s r

at
e

0.01

0.87
0.93

0.88 0.87

BlockPush Multimodal

GCBC C-BeT C-BESO CFG-BESO VQ-BeT

Figure D.3: Evaluation of conditional tasks in simulation environments of VQ-BeT and related baselines.
VQ-BeT achieves the best performance in most simulation environments and comparable performance
with the best baseline on BlockPush.

288

0

0

1

Fin
al

 C
ov

er
ag

e 0.65

0.39

0.73 0.74 0.78

PushT

0

0

1

Fin
al

 C
ov

er
ag

e

0.13

0.01

0.66

0.45

0.68

Image PushT

2

3

4

Co
m

pl
et

ed
 g

oa
ls

0.18

3.07

2.62

3.44

3.66

Kitchen

2

3

4

Co
m

pl
et

ed
 g

oa
ls

0.75

2.48

3.11
3.01 2.98

Image Kitchen

2

3

4

Co
m

pl
et

ed
 g

oa
ls

0.01

2.73

3.12

2.90

3.22

Ant

0

1

2

Co
m

pl
et

ed
 g

oa
ls

0.11

1.59

1.83 1.82 1.84

UR3 BlockPush

0

1.0

2

Co
m

pl
et

ed
 g

oa
ls

0.01

1.67

0.47

1.93
1.79

BlockPush

BC BeT DiffusionPolicy-C DiffusionPolicy-T VQ-BeT (Us)

Figure D.4: Evaluation of unconditional tasks in simulation environments of VQ-BeT and related baselines.
VQ-BeT achieves the best performance in most simulation environments and comparable performance
with the best baseline on BlockPush and Image Kitchen.

289

D.2.1 VQ-BeT with larger Residual VQ Codebook

Original codebook Extended Codebook Extended Codebook
(Vanilla VQ-BeT) (Vanilla VQ-BeT) (VQ-BeT + Deadcode Masking)

Ant Multimodal (Unconditional)

Codebook Size 10 32 32
of Code Combinations 100 1024 1024

(·/4) 3.22 3.01 3.11
p3-Entropy 4.19 4.23 4.33
p4-Entropy 4.20 4.24 4.32

Ant Multimodal (Conditional)
Codebook Size 10 48 48

of Code Combinations 100 2304 2304
(·/2) 1.72 1.75 1.81

Kitchen (Unconditional)

Codebook Size 16 64 64
of Code Combinations 256 4096 4096

(·/4) 3.66 3.75 3.7
p3-Entropy 3.42 3.01 3.10
p4-Entropy 4.07 3.57 3.74

PushT (UnConditional)
Codebook Size 16 64 64

of Code Combinations 256 4096 4096
Final Coverage 0.78 0.77 0.79
Max Coverage 0.80 0.80 0.82

Kitchen (Conditional)
Codebook Size 16 256 256

of Code Combinations 256 65536 65536
(·/4) 3.78 3.61 3.56

Table D.5: Evaluation of conditional and unconditional tasks in simulation environments of VQ-BeT with
extended size of Residual VQ codebook.

In this section, we present additional results to evaluate the performance of VQ-BeT with larger

residual VQ codebooks. While the results of VQ-BeT across the manuscript were obtained using 8

to 16-sized codebooks, resulting in 64 to 256 code combinations (Table D.6), here, VQ-BET was

trained on codebooks with 10 to 250 times more combinations, as detailed in Table D.5. First, we

evaluate VQ-BeT with extended codebook size without any modifications (‘Vanilla VQ-BeT’). Next,

we test VQ-BeT with an additional technique where the code combinations that do not appear in

the dataset are masked with a probability of zero at sampling time to eliminate the possibility of

these combinations.

As shown in Table D.5, we find that increasing the number of combinations (×10 ∼ ×250) had little

impact on performance in most environments. In environments Ant Multimodal (Conditional)

and PushT (Unconditional), overall performance slightly increased as the size of the VQ codebook

increased. In environments Ant Multimodal (Unconditional) and Kitchen (Unconditional), we

290

see that there is a performance and entropy trade-off as the size of the codebook increases. The

only environment where the performance of VQ-BeT decreased with the extended size of the

codebook was Kitchen (Conditional). Also, we see that there is no consistent evidence on whether

using masking the deadcode (code combinations that do not appear in the dataset) is better: in

Ant and PushT environments, masking led to similar or better performance, while in the Kitchen

environment, we find similar or slightly worse performance with masking.

Overall, we conclude that VQ-BeT has robust performance to the size of the codebook if it is

enough to capture the major modes in the dataset. We conjecture that this robustness is due

to VQ-BeT assigning appropriate roles between primary and secondary codes as the codebook

size increases. For example, in the Kitchen (Conditional) environment where we have increased

the number of possible combinations by 256, the code prediction accuracy rate has decreased

by only ×0.08 of its original accuracy rate, while the primary code prediction retained ×0.8 of

its original accuracy rate. Interestingly, Despite this large difference, the performance difference

between the two is small, around 4.5% (3.78 vs 3.61). These results suggest that VQ-BeT could

rely on the resolution of the primary code in large VQ codebook size, while using less weight

on the secondary code to handle the excessive number of code combinations, leading to robust

performance to the size of the codebook.

291

D.3 Implementation Details

D.3.1 Model Design Choises

Hyperparameter Kitchen Ant BlockPush UR3 PushT NuScenes Real-world
Obs window size 10 100 3 10 5 1 6

Goal window size (Conditional Task) 10 10 3 10 5 1 -
Predicted act sequence length 1 1 1 10 5 6 1
Autoregressive code pred. False False False False False True True

𝛽 (Eq. 5.4) 0.1 0.6 0.1 0.1 0.1 0.1 0.5
Training Epoch 1000 300 1500 300 2000 1000 600
Learning rate 5.5e-5 5.5e-5 1e-4 5.5e-5 5.5e-5 5.5e-5 3e-4

MinGPT layer num 6 6 4 6 6 6 6
MinGPT head num 6 6 4 6 6 6 6
MinGPT embed dims 120 120 72 120 120 120 120
VQ-VAE latent dims 512 512 256 512 512 512 512

VQ-VAE codebook size 16 10 8 16 16 10 8/10/16
Encoder (Image env) ResNet18 - - - ResNet18 - HPR

Table D.6: Hyperparameters for VQ-BeT

D.3.2 VQ-BeT for Driving Dataset

While all the other environments reported in this paper have a fixed observation dimension at

one timestep, NuScenes driving dataset, as processed in the GPT-Driver paper [Mao et al. 2023a],

could contain the different number of detected objects in each scene. Thus, we make modification

to the input types of VQ-BeT to train VQ-BeT with NuScenes driving dataset in response to this

change in dimensionality of the obeservation data. The tokens we pass to VQ-BeT are as shown

below:

• Mission Token indicates the mission that the agent should follow: go forward / turn left /

turn right

• Ego-state Token contains velocity, angular velocity, acceleration, heading speed, and

steering angle.

292

• Trajectory History Token contains ego historical trajectories of last 2 seconds, and ego

historical velocities of last 2 seconds.

• Object Tokens contains perception and prediction outputs corresponding to current posi-

tion, predicted future position, and one-hot encoded class indicator of each object. There

are total of 15 classes. (‘pushable-pullable’, ‘car’, ‘pedestrian’, ‘bicycle’, ‘truck’, ‘traffic-

cone’, ‘motorcycle’, ‘barrier’, ‘bus’, ‘bicycle-rack’, ‘trailer’, ‘construction’, ‘debris’, ‘animal’,

‘emergency’)

MinGPT

…Mission Ego-
states

forward/ left/ right

Trajectory
History

Object 1
Slot

Object N
Slot

Order of the dist. From the agent
If num of object < N (max=51): Use zero masks

current pos (2dim)
future trajectory (2dim)
obj class (15dim one-hot)

current pos (2dim)
future trajectory (2dim)
obj class (15dim one-hot)

or torch.zeros(19)

Code Prediction
head Offset head

Trajectory Prediction

Figure D.5: Overview of VQ-BeT for autonomous driving.

293

APPENDIX E

Appendix for Robot Utility Models

E.1 Experiment Details

E.1.1 Multimodal Large Language Model Prompts for Success

Verification

Here, we present the prompt that we use to verify RUMs success with mLLMs.

Door Opening

As the timesteps progress, does the robotic arm open the door AND is

the robot arm grasping the handle in the LAST timestep?

Please respond with only ’Yes’ or ’No’.

Drawer Opening

As the timesteps progress, does the robotic arm grasp the drawer handle

and open it AND is the drawer open in the last timestep?

Please respond with only ’Yes’ or ’No’.

294

Reorientation

As the timesteps progress, does the robotic arm/gripper reorient the

object upright AND is the object upright in the LAST frame?

Please respond with only ’Yes’ or ’No’.

Tissue Pick-Up

As the timesteps progress, does the robotic arm/gripper grasp the tissue

AND is the gripper grasping the tissue in the LAST timestep?

Please respond with only ’Yes’ or ’No’.

Bag Pick-Up

As the timesteps progress, does the robotic arm/gripper grasp the bag

AND is the gripper grasping the bag in the LAST timestep?

Please respond with only ’Yes’ or ’No’.

E.1.2 Evaluation Schedule

In Figure E.1, we show the starting position of the robot for our 10-run evaluations to understand

the positional generalization capabilities of Robot Utility Models.

E.1.3 Failure Modes

As we mention in the main paper, with mLLM guided retries, our failures tend to be more peculiar

than simply “robot failed to complete task”. In this section, we try to shine some light on what

kind of failures we experience in our system.

295

Figure E.1: 10-run evaluation schedule used to evaluate Robot Utility Models, with robot starting positions
denoted by the pale blue dots in the image. We assume that the robot is at the task space facing the object,
but it can be at different offsets with respect to the target object. On our object centric tasks (reorientation,
bag and tissue pickup) we also randomize the position of the object itself.

• Reorientation: Primary failure modes for this task are when retry becomes impossible because

of environmental issues, such as the target bottle rolling away on the table, being dropped off

the surface (an example of which is shown on the Figure E.2), pushing it too far into the table (to

a position too far for our robot arm), or being rotated sideways by the gripper before grasping.

In out-of-distribution surfaces, it can be hard to estimate how large the surface is visually and

thus placing the object after reorientation may miss the surface or the robot may run into the

surface.

• Drawer opening: Beyond the most direct failure mode of missing the drawer handle, we

experienced some failure modes where the model does not know when to stop pulling on cloth

drawers and thus pulls out the entire drawer. Without force feedback, it can be hard to tell

visually when the drawer starts sagging. Force feedback on the fingertips would help the robot

correct for it.

• Door opening: Here, the primary failure mode we experience are on unusual doors, such as

296

Reorientation failure: dropped bottle o! the table, retry impossible

Tissue pick up failure: picked up tissue, pulled box o! the table

Tissue pick up failure: picked up tissue AND the box

Figure E.2: Examples of some failures in real world rollouts. Since RUMs retries on failure with mLLM
feedback, the failure modes tend to be peculiar, some examples of which are shown here.

the trash cabinet door with a hole in it. There, GPT sometimes classifies the door as “open” even

when it is closed. In some rare cases, when door handles are close together, the robot may grasp

around both handles and fail to reset as it gets stuck when retracting.

• Tissue pick up: The tissue box itself being light and easy to move means that sometimes the

box moves with the tissue as its being picked up. As a result, the box may get picked up with

the tissue, or get pushed off from its table by the robot (Figure E.2.)

• Bag pick up: The case of bag picking up is interesting because it has one of the highest success

rates from the raw RUM policy but also sees the smallest improvement (4%) from GPT feedback.

This failure from mLLM feedback happens usually because from the robot wrist or head camera,

297

it can be hard to tell whether the bag has been picked up. As a result, GPT tends to have a high

number of false positives for this task. Having a better third-person view of the workspace

should help address this issue.

E.1.4 Detailed Results from Experiments with Self-critiqe and

Retrying

Task Environment/Object Success ·/10

Door Opening Kitchen Trash Door 7
Kitchen Cabinet Door 10
Brown Cabinet Door 10
Metal Cabinet Door 10
White File Cabinet Door 10

Drawer Opening Kitchen Drawer 10
Cloth Drawer 9
White File Cabinet Drawer 10
Small File Cabinet Drawer 10
Dresser Drawer 8

Bag Pick Up Hollister Bag 9
American Eagle Bag 10
Qdoba Bag 8
Journey’s Bag 9
Yellow Bag 6

Tissue Pick Up White Tall Box 10
White Short Box 10
Black Square Box 9
Red Square Box 10
Kleenex Box 7

Object Reorientation Pink Bottle 9
White Board Cleaner 8
Spices Container 8
Coke Can 8
Compressed Air 10

Table E.1: Detailed success statistics of RUMs on our evaluation environments.

298

E.2 Hardware and Physical Setup

E.2.1 Bill of Materials

Here, we present the bill of materials for our hardware components, assuming that the interested

researcher or user owns an iPhone Pro already. The total cost comes out to be slightly below $25

for the entire setup.

Item Price Unit Price Qty

Reacher Grabber Tool 26.99 13.50 1
Brass Tapered Heat-Set Inserts 21.82 0.22 3
Thread-Forming Screws 7.75 0.31 3
Button Head Screw - M4 x 0.70 - 8mm 12.91 0.13 1
Button Head Screw - M4 x 0.70 - 5mm 8.64 0.09 2
Button Head Screw - M4 x 0.70 - 35mm 16.77 0.34 2
Nylon-Insert Locknut 5.57 0.06 2
Dowel Pin 16.09 0.32 3
Nylon Unthreaded Spacer 18.41 0.18 2
Kevlar Cord 20.99 20.99 1/100
Heat Shrink Tubing 10.79 10.79 1/30
Black 3D Printer Filament 25.99 25.99 3/20

Total 21.99

Table E.2: Stick-v2 Main Body

Item Price Unit Price Qty

Socket Head Screw - M3 x 0.5mm - 8mm 12.52 0.13 2
Steel Hex Nut - M3 x 0.5mm 2.62 0.03 2
M3 Steel Washer 2.19 0.02 2
Red 3D Printer Filament 25.99 25.99 3/1000
Oomoo 25 Silicone Rubber 33.99 33.99 1/200

Total 0.61

Table E.3: Gripper Tips

299

Item Price Unit Price Qty

Socket Head Screw - M5 x 0.8mm - 20mm 17.10 0.17 1
Socket Head Screw - M5 x 0.8mm - 50mm 4.26 0.85 1
Steel Hex Nut - M5 x 0.8mm 5.24 0.05 2
Button Head Screw - M4 x 0.70 - 8mm 12.91 0.13 1
Black 3D Printer Filament 25.99 25.99 3/20

Total 2.03

Table E.4: Phone Holder

E.2.2 Deploying on Stretch’s Default D405 Camera

Deploying our Robot Utility Models on the standard Hello Robot Stretch SE3 requires normalizing

the image coming out of the default Intel Realsense D405 wrist camera. We created an affine

transformation that maps the D405 image to the same pixel coordinates as the iPhone camera.

iPhone Pro Intel Realsense D405 
(with affine transform) iPhone Pro Intel Realsense D405 

(with affine transform)

Long range Short range

Figure E.3: We can see the corresponding D405 camera image alongside the iPhone Pro image. While in
the long range, the images look similar, in the short range iPhone images are out of focus because of the
different focal lengths of the cameras.

As we can see from Figure E.3, applying the affine transform to the D405 camera maps it to pretty

similar viewpoint as the wrist mounted iPhone. While we can run RUMs directly with this camera

transform, we see a performance drop which we hypothesize happens because of the especially

apparent difference in close-range. This difference is caused by the different focal lengths of the

two cameras, and may be solved in the future with image augmentations.

300

E.2.3 Evaluation Environments

Reorientation environments

Drawer opening environments

Door opening environments

Figure E.4: Picture of evaluation environments for the tasks Reorientation, Drawer opening, and Door
opening.

301

Tissue pick up environments

Bag pick up environments

Figure E.5: Pictures of the evaluation environments for the task Tissue pick up and Bag pick up.

302

APPENDIX F

Appendix for CLIP-Fields

F.1 Training details

We release our open source code at the Github repo https://github.com/clip-fields/clip-fields.

github.iowith full details about how to train a new CLIP-Fields on any environment. The code is

also shared in the attached supplementary information zip file. While the published code should be

sufficient to reproduce our work and experiments, we are describing the most important training

details and hyperparameters here for reproducibility purposes.

Table F.1: Optimization hyperparameters

Parameter Value

Optimizer Adam
Learning rate 10−4

Weight decay 3 × 10−3

𝛽 (0.9, 0.999)
Learning rate schedule None
Epochs 100
Per epoch iters 3 × 106

Batch size 12, 544
𝛼 (Sec. 9.4.4, when applicable) 100.0

303

https://github.com/clip-fields/clip-fields.github.io
https://github.com/clip-fields/clip-fields.github.io

Table F.2: Architecture and Instant-NGP hyperparameters

Parameter Value

Intermediate representation dimension 144
NGP grid levels 18
NGP per-level scale 2
NGP level dimension 8
NGP log2 hash map size 20
MLP number of hidden layers 1
MLP hidden layer size 600

Table F.3: External model configurations

Task Model Instance

Object detector Detic CLIP + SwinB
Vision-language model CLIP ViT-B/32
Language model Sentence-BERT all-mpnet-base-v2

F.2 Real world experiment logs

In this section, we reproduce the exact real-world qualitative observations that we made by

running our robot on the Kitchen scenario. We present this for the readers to get a full picture of

what the robot queries looked like, and how the CLIP-Fields responded to each of the queries.

1. Literal queries:

(a) Stack of plates: success, found the dishwashing rack with plates in it.

(b) Microwave: success, found the microwave oven in the lab kitchen.

(c) The fridghe (misspelling intentional): success, found the large standing fridge in the

corner.

(d) Coffee machine (ambiguous query): success, found the silver coffee maker.

(e) Sink: success, found the sink.

(f) Toaster oven: failure, found the microwave oven instead of the toaster oven.

304

2. Visual queries:

(a) White ceramic bowl: success, found the bowl by the dishwashing rack.

(b) Red plastic bowl: success, found the red bowl above the trash cabinets.

(c) Red fruit bowl: failure, found the white bowl by the dishwashing rack.

(d) Espresso machine: success, found the nespresso machine by the coffee machine.

(e) Blue gargabe bin: success, found one of the two blue recycling bins in the kitchen.

(f) Potted plant in a black pot: success, ambiguous, found the potted plants in a shelf.

Isolating the black flower pot was ambiguous since the robot doesn’t get too close to

scene objects.

(g) Purple poster: success, found the poster above the sink.

3. Semantic queries:

(a) Wash my dishes: success, finds the dishwasher as intended.

(b) Wash my hand: failure, finds the dishwasher instead of the sink.

(c) Throwmy trash: success, finds the recycling bins (although not entirely climate friendly

behavior.)

(d) Put away my leftovers: failure, pointed the camera at the trash cabinet instead of the

fridge or the cabinets. Potentially because the trash cabinets got identified as “cabinets"

by our detectors.

(e) Fill out my water bottle: success, finds the glass bottles at the corner of the kitchen.

While the original intention was to find the water cooler, the response is reasonable.

(f) Make some coffee: success, found the coffee maker and grinders.

(g) Warm up my lunch: success, found the microwave oven.

305

APPENDIX G

Appendix for OK Robot

G.1 Description of alternate system components

In this section, we provide more details about the alternate system components that we evaluated

in Section 10.3.2.

G.1.1 Alternate semantic navigation strategies

We evaluate the following semantic memory modules:

• VoxelMap [Yenamandra et al. 2023b]: VoxelMap converts every detected object to a semantic

vector and stores such info into an associated voxel. Occupied voxels serve as an obstacle map.

• CLIP-Fields [Shafiullah et al. 2023a]: CLIP-Fields converts a sequence of posed RGB-D

images to a semantic vector field by using open-label object detectors and semantic language

embedding models. The result associates each point in the space with two semantic vectors, one

generated via a VLM [Radford et al. 2021], and another generated via a language model [Reimers

and Gurevych 2019], which is then embedded into a neural field [Mildenhall et al. 2020].

306

• USA-Net [Bolte et al. 2023]: USA-Net generates multi-scale CLIP features and embeds them

in a neural field that also doubles as a signed distance field. As a result, a single model can

support both object retrieval and navigation.

We compare them in the same three environments with a fixed set of queries, the results of which

are shown in Figure 10.5.

G.1.2 Alternate grasping strategies

Similarly, we compare multiple grasping strategies to find out the best grasping strategy for our

method.

• AnyGrasp [Fang et al. 2023c]: AnyGrasp is a single view RGB-D based grasping model. It is

trained on the GraspNet dataset which contains 1B grasp labels.

• Open Graspness [Fang et al. 2023c]: Since the AnyGrasp model is free but not open source,

we use an open licensed baseline trained on the same dataset.

• Contact-GraspNet [Sundermeyer et al. 2021]: We use Contact-GraspNet as a prior work

baseline, which is trained on the Acronym [Eppner et al. 2021] dataset. One limitation of

Contact-GraspNet is that it was trained on a fixed camera view for a tabletop setting. As a

result, in our application with a moving camera and arbitrary locations, it failed to give us

meaningful grasps.

• Top-down grasp [Yenamandra et al. 2023b]: As a heuristic based baseline, we compare with

the top-down heuristic grasp provided in the HomeRobot project.

307

G.2 Scannet200 text qeries

To detect objects in a given home environment using OWL-ViT, we use the Scannet200 la-

bels. The full label set is here: [’shower head’, ’spray’, ’inhaler’, ’guitar case’,

’plunger’, ’range hood’, ’toilet paper dispenser’, ’adapter’, ’soy sauce’,

’pipe’, ’bottle’, ’door’, ’scale’, ’paper towel’, ’paper towel roll’, ’stove’,

’mailbox’, ’scissors’, ’tape’, ’bathroom stall’, ’chopsticks’, ’case of water

bottles’, ’hand sanitizer’, ’laptop’, ’alcohol disinfection’, ’keyboard’, ’coffee

maker’, ’light’, ’toaster’, ’stuffed animal’, ’divider’, ’clothes dryer’, ’toilet

seat cover dispenser’, ’file cabinet’, ’curtain’, ’ironing board’, ’fire extinguisher’,

’fruit’, ’object’, ’blinds’, ’container’, ’bag’, ’oven’, ’body wash’, ’bucket’,

’cd case’, ’tv’, ’tray’, ’bowl’, ’cabinet’, ’speaker’, ’crate’, ’projector’,

’book’, ’school bag’, ’laundry detergent’, ’mattress’, ’bathtub’, ’clothes’,

’candle’, ’basket’, ’glass’, ’face wash’, ’notebook’, ’purse’, ’shower’, ’power

outlet’, ’trash bin’, ’paper bag’, ’water dispenser’, ’package’, ’bulletin

board’, ’printer’, ’windowsill’, ’disinfecting wipes’, ’bookshelf’, ’recycling

bin’, ’headphones’, ’dresser’, ’mouse’, ’shower gel’, ’dustpan’, ’cup’, ’storage

organizer’, ’vacuum cleaner’, ’fireplace’, ’dish rack’, ’coffee kettle’, ’fire

alarm’, ’plants’, ’rag’, ’can’, ’piano’, ’bathroom cabinet’, ’shelf’, ’cushion’,

’monitor’, ’fan’, ’tube’, ’box’, ’blackboard’, ’ball’, ’bicycle’, ’guitar’,

’trash can’, ’hand sanitizers’, ’paper towel dispenser’, ’whiteboard’, ’bin’,

’potted plant’, ’tennis’, ’soap dish’, ’structure’, ’calendar’, ’dumbbell’,

’fish oil’, ’paper cutter’, ’ottoman’, ’stool’, ’hand wash’, ’lamp’, ’toaster

oven’, ’music stand’, ’water bottle’, ’clock’, ’charger’, ’picture’, ’bascketball’,

’sink’, ’microwave’, ’screwdriver’, ’kitchen counter’, ’rack’, ’apple’, ’washing

machine’, ’suitcase’, ’ladder’, ’ping pong ball’, ’window’, ’dishwasher’, ’storage

308

container’, ’toilet paper holder’, ’coat rack’, ’soap dispenser’, ’refrigerator’,

’banana’, ’counter’, ’toilet paper’, ’mug’, ’marker pen’, ’hat’, ’aerosol’,

’luggage’, ’poster’, ’bed’, ’cart’, ’light switch’, ’backpack’, ’power strip’,

’baseball’, ’mustard’, ’bathroom vanity’, ’water pitcher’, ’closet’, ’couch’,

’beverage’, ’toy’, ’salt’, ’plant’, ’pillow’, ’broom’, ’pepper’, ’muffins’,

’multivitamin’, ’towel’, ’storage bin’, ’nightstand’, ’radiator’, ’telephone’,

’pillar’, ’tissue box’, ’vent’, ’hair dryer’, ’ledge’, ’mirror’, ’sign’, ’plate’,

’tripod’, ’chair’, ’kitchen cabinet’, ’column’, ’water cooler’, ’plastic bag’,

’umbrella’, ’doorframe’, ’paper’, ’laundry hamper’, ’food’, ’jacket’, ’closet

door’, ’computer tower’, ’stairs’, ’keyboard piano’, ’person’, ’table’, ’machine’,

’projector screen’, ’shoe’].

G.3 Sample objects from our trials

During our experiments, we tried to sample objects that can plausibly be manipulated by the

Hello Robot: Stretch gripper from the home environments. As a result, OK-Robot encountered a

large variety of objects with different shapes and visual features. A subsample of such objects are

presented in the Figures G.1, G.2.

G.4 Sample home environments from our trials

We show snapshots from a subset of home environments where we evaluated our method in

Figures G.3. Additionally, in Figure G.4 we show the two home environments in Pittsburgh, PA,

and Fremont, CA, where we reproduced the OK-Robot system.

309

Arm smartphone holder Gray toy dragon Toy plant

Tangled earphones

White pretzel

Playing cards Blue gloves Toy cactus

Toy grapes Medicine bottles Grey rag Blue hair oil bottle

Blue pretzel pack Toothpaste

White shirt

Blue body wash

Figure G.1: Sample objects on our home experiments, sampled from each home environment, which
OK-Robot was able to pick and drop successfully.

310

Purple strap

Brown trail mix bag White Apple bag

Steel wool

Blue eyeglass case Flu!y headbands Yogurt drinks Lotion pump

Translucent grey cup

Blue bag

Gold wrapped chocolate Black head band

Blue hair gel tube

Yellow ginger paste packet

Black face wash

Small hand sanitizer

Figure G.2: Sample objects on our home experiments, sampled from each home environment, which
OK-Robot failed to pick up successfully.

311

“purple lightbulb box to sofa chair”

“cooking oil bottle to marble surface”

“power adapter to chair” “blue gloves to sink”

“purple shampoo to white rack”

“milk bottle to chair”

“herbal tea can to box” “McDonalds paper bag to stove”

Figure G.3: Eight out of the ten New York home environments in which we evaluated OK-Robot. In each
figure caption, we show the queries that the system is being evaluated on.

312

Reproducibility experiments in Pittsburgh, PA

Reproducibility experiments Fremont, CA

Figure G.4: Home environments outside of New York where we successfully reproduced OK-Robot. We
ensured that OK-Robot can function in these homes by trying pick-and-drop on a number of objects in the
homes.

313

G.5 List of home experiments

A full list of experiments in homes can be found in Table G.1.

Table G.1: A list of all tasks in the home enviroments, along with their categories and success rates out of
10 trials.

Pick object Place location Result

Home 1

Cleanup level: none

silver cup white table Success

blue eye glass case chair Success

printed paper cup, coffee cup [white table] ____ Manipulation failure

small red and white medication Chair Success

power adapter Grey Bed Success

wrapped paper ____ Navigation failure

blue body wash study table Success

blue air spray white table Success

black face wash ____ Manipulation failure

yellow face wash chair Success

body spray ____ Navigation failure

small hand sanitizer ____ Manipulation failure

blue inhaler device(window) white table Success

inhaler box(window) dust bin Success

multivitamin container ____ Navigation failure

red towel white cloth bin (air conditioner) Success

white shirt white cloth bin (air conditioner) Success

Cleanup level: low

silver cup white table Success

blue eye glass case ____ Navigation failure

Continued on the next page

314

Pick object Place location Result

printed paper cup, coffee cup [white table] dust bin Success

small red and white medication Chair Success

power adapter ____ Navigation failure

blue body wash white table Success

blue air spray white table Success

yellow face wash white table Success

small hand sanitizer study table Success

blue inhaler device(window) ____ Manipulation failure

inhaler box(window) dust bin Success

red towel white cloth bin(air conditioner) Success

white shirt white cloth bin(air conditioner) Success

Cleanup level: high

silver cup white table Success

printed paper cup, coffee cup [white table] dust bin Success

blue body wash white table Success

blue air spray white table Success

yellow face wash ____ Manipulation failure

small hand sanitizer ____ Manipulation failure

inhaler box(window) dust bin Success

white shirt white cloth bin(air conditioner) Success

Home 2

Cleanup level: None

fanta can dust bin Success

tennis ball small red shopping bag Success

black head band [bed] ____ Manipulation failure

purple shampoo bottle white rack Success

toothpaste small red shopping bag Success

Continued on the next page

315

Pick object Place location Result

orange packaging dust bin Success

green hair cream jar [white rack] ____ Navigation failure

green detergent pack [white rack] white table Success

blue moisturizer [white rack] ____ Navigation failure

green plastic cover ____ Navigation failure

storage container ____ Manipulation failure

blue hair oil bottle white rack Success

blue pretzels pack white rack Success

blue hair gel tube ____ Manipulation failure

red bottle [white rack] brown desk Success

blue bottle [air conditioner] white cloth bin(air conditioner) Success

wallet ____ Manipulation failure

Cleanup level: low

fanta can black trash can Success

tennis ball red target bag Success

black head band [bed] red target bag Success

purple shampoo bottle red target bag Success

toothpaste red target bag Success

orange packaging black trash can Success

green detergent pack [white rack] ____ Manipulation failure

blue moisturizer [white rack] ____ Navigation failure

blue hair oil bottle white rack Success

blue pretzels pack white rack Success

wallet ____ Manipulation failure

Cleanup level: high

fanta can black trash can Success

purple shampoo bottle small red shopping bag Success

Continued on the next page

316

Pick object Place location Result

orange packaging black trash can Success

blue moisturizer [white rack] white rack Success

blue hair oil bottle ____ Manipulation failure

blue hair gel tube dust bin Success

red bottle [white rack] target bag Placing failure

blue bottle [air conditioner] white cloth bin(air conditioner) Success

Home 3

Cleanup level: none

apple white plate Success

ice cream white and green bag Success

green lime juice bottle red basket Success

yellow packet ____ Manipulation failure

red packet ____ Manipulation failure

orange can card board box Success

cooking oil bottle ____ Manipulation failure

pasta sauce ____ Manipulation failure

orange box [stove] ____ Manipulation failure

green bowl sink Success

washing gloves green bag [card board box] Success

small oregano bottle red basket Success

yellow noodles packet [stove] red basket Success

blue dish wash bottle card board box Success

scrubber ____ Navigation failure

dressing salad bottle ____ Navigation failure

Cleanup level: low

apple white plate Success

ice cream red basket Success

Continued on the next page

317

Pick object Place location Result

green lime juice bottle red basket Success

yellow packet green bag Success

red packet ____ Manipulation failure

orange can card board box Success

cooking oil bottle marble surface [red basket] Success

green bowl ____ Manipulation failure

washing gloves sink Success

small oregano bottle red basket Success

yellow noodles packet [stove] ____ Manipulation failure

blue dish wash bottle card board box Success

Cleanup level: high

apple white plate Success

ice cream red basket Success

green lime juice bottle red basket Success

orange can card board box Success

cooking oil bottle ____ Manipulation failure

washing gloves sink Success

small oregano bottle red basket Success

yellow noodles packet [stove] red basket Success

blue dish wash bottle card board box Success

Home 4

Cleanup level: none

pepsi black chair Success

birdie cloth bin Success

black hat ____ Navigation failure

owl like wood carving bed Success

red inhaler ____ Manipulation failure

Continued on the next page

318

Pick object Place location Result

black sesame seeds ____ Manipulation failure

banana ____ Manipulation failure

loose-leaf herbal tea jar black chair Success

red pencil sharpener ____ Navigation failure

fast-food French fries container blue shopping bag [metal drying rack] Placing failure

milk plastic storage drawer unit Success

socks[bed] ____ Navigation failure

purple gloves ____ Manipulation failure

target bag cloth bin Success

muffin grey bed Success

tissue paper table Success

grey eyeglass box ____ Manipulation failure

Cleanup level: low

pepsi basket Success

birdie white drawer Success

owl like wood carving ____ Navigation failure

red inhaler plastic storage drawer unit Success

black sesame seeds bed Success

loose-leaf herbal tea jar table Success

fast-food French fries container chair Success

milk chair Success

purple gloves basket Success

target bag basket Placing failure

muffin table Success

tissue paper ____ Manipulation failure

grey eyeglass box ____ Navigation failure

Cleanup level: high

Continued on the next page

319

Pick object Place location Result

pepsi basket Success

birdie bed Success

red inhaler plastic storage drawer unit Success

black sesame seeds desk Success

banana ____ Manipulation failure

loose-leaf herbal tea jar ____ Manipulation failure

milk chair Success

purple gloves basket Success

target bag basket Success

muffin bed Success

Home 5

Cleanup level: none

tiger balm topical ointment ____ Navigation failure

pink shampoo trader joes shapping bag Success

aveeno sunscreen protective lotion trader joes shapping bag Success

small yellow nozzle spray ____ Manipulation failure

black hair care spray ____ Manipulation failure

green hand sanitizer ____ Manipulation failure

white hand sanitizer ____ Navigation failure

white bowl [ketchup] black sofa chair Success

blue bowl ____ Manipulation failure

blue sponge trader joes shapping bag Success

ketchup ____ Manipulation failure

white salt ____ Manipulation failure

black pepper black drawer Success

blue bottle ____ Navigation failure

purple light bulb box trader joes shopping bag Success

white plastic bag bed Success

Continued on the next page

320

Pick object Place location Result

rag white rack Success

Cleanup level: low

pink shampoo ____ Navigation failure

aveeno sunscreen protective lotion _____ Manipulation failure

small yellow nozzle spray _____ Manipulation failure

white bowl [ketchup] black sofa chair Success

blue sponge bed Success

ketchup trader joes shopping bag Success

white salt trader joes shopping bag Success

black pepper ____ Navigation failure

blue bottle black sofa chair Success

purple light bulb box _____ Manipulation failure

rag white rack Success

Cleanup level: high

pink shampoo trader joes shopping bag Success

green hand sanitizer black sofa chair Success

white bowl [ketchup] _____ Manipulation failure

blue sponge bed Success

ketchup black drawer Success

white salt white drawer Success

purple light bulb box trader joes shopping bag Success

rag black sofa chair Success

Home 6

Cleanup level: none

translucent grey cup ____ Manipulation failure

green mouth spray box stove Success

Continued on the next page

321

Pick object Place location Result

green eyeglass container chair Success

blue bag ____ Manipulation failure

black burn ointment box _____ Navigation failure

white vitamin bottle ____ Navigation failure

McDonald’s paper bag stove Success

purple medicine packaging chair Success

grey rag sink Success

sparkling water can [sink] countertop Success

gold wrapped chocolate ____ Manipulation failure

lemon tea carton table Success

metallic golden beverage can table Success

red bottle table Success

tea milk bottle ____ Navigation failure

nyu water bottle [sink] table Success

white hand wash _____ Navigation failure

Cleanup level: low

translucent grey cup ____ Navigation failure

green mouth spray box ____ Manipulation failure

blue bag brown box Success

black burn ointment box brown box Success

McDonald’s paper bag ____ Navigation failure

grey rag sink Success

sparkling water can [sink] chair Success

lemon tea carton stove Success

metallic golden beverage can ____ Navigation failure

red bottle brown box Success

nyu water bottle [sink] table Success

white hand wash sink Success

Continued on the next page

322

Pick object Place location Result

Cleanup level: high

blue bag brown box Success

black burn ointment box ____ Manipulation failure

grey rag sink Success

sparkling water can [sink] chair Success

lemon tea carton table Success

metallic golden beverage can stove Success

red bottle ____ Navigation failure

nyu water bottle [sink] ____ Manipulation failure

white hand wash ____ Manipulation failure

Home 7

Cleanup level: none

blue plastic bag roll _____ Navigation failure

green bag basket[window] Success

toy cactus desk Success

toy van chair Success

brown medical bandage chair Success

power adapter _____ Navigation failure

red herbal tea brown cardboard box Success

apple juice box brown cardboard box Success

paper towel blue cardboard box Success

toy bear bed blanket Success

yellow ball bed blanket Success

black pants basket[window] Success

purple water bottle desk Success

blue eyeglass case _____ Manipulation failure

brown toy monkey _____ Navigation failure

Continued on the next page

323

Pick object Place location Result

blue hardware box [table] blue cardboard box Success

green zandu balm container blue cardboard box Success

Cleanup level: low

green bag basket Success

toy cactus basket Success

toy van chair Success

brown medical bandage _____ Manipulation failure

red herbal tea brown box Success

apple juice box brown box Success

paper towel basket Success

toy bear desk Success

purple water bottle desk Success

blue eyeglass case _____ Manipulation failure

green zandu balm container blue cardboard box Success

Cleanup level: high

green bag stool [window] Success

toy cactus table Success

toy van white basket Success

red herbal tea brown cardboard box Success

apple juice box brown cardboard box Success

paper towel blue cardboard box Success

toy bear white basket Success

yellow ball bed Success

purple water bottle black tote bag Success

green zandu balm container blue cardboard box Success

Home 8

Continued on the next page

324

Pick object Place location Result

Cleanup level: none

cyan air spray brown shelf [sink] Success

blue gloves kitchen sink Success

blue peanut butter black stove Success

nutella table Success

green bag brown shelf [sink] Success

green bandage box trash can Success

green detergent kitchen sink Success

black ‘red pepper sauce’ ____ Manipulation failure

red bag chair Success

black bag chair Success

red spray [brown shelf] kitchen countertop Success

steel wool _____ Manipulation failure

white aerosol trash can Success

white pretzel black stove Success

purple crisp kitchen countertop Success

plastic bowl ______ Manipulation failure

playing card microwave Success

Cleanup level: low

cyan air apray chair Success

blue gloves sink Success

blue peanut butter ____ Navigation failure

green bag brown shelf Success

green bandage box brown shopping bag Success

green detergent microwave Success

red bag ____ Manipulation failure

black bag chair Success

white aerosol trash can Success

Continued on the next page

325

Pick object Place location Result

white pretzel black stove Success

purple crisp kitchen countertop Success

plastic bowl ______ Manipulation failure

playing card microwave Success

Cleanup level: high

cyan air apray brown shelf [sink] Success

blue gloves stove Success

blue peanut butter black stove Success

green bag brown shelf [sink] Success

green bandage box microwave Success

green detergent ____ Manipulation failure

black bag chair Success

white aerosol table Success

purple crisp chair Success

playing card microwave Success

Home 9

Cleanup level: none

toy grapes black laundry bag Success

purple strap _____ Manipulation failure

red foggy body spray _____ Manipulation failure

arm smartphone holder bed Success

medicine bottle _____ Manipulation failure

yogurt beverage _____ Navigation failure

blue shaving cream can ____ Navigation failure

blue cup table Success

purple tape _____ Manipulation failure

black shoe brush _____ Navigation failure

Continued on the next page

326

Pick object Place location Result

fluffy headband _____ Manipulation failure

black water bottle brown shopping bag Placing failure

yellow eyeglass case black chair Success

paper cup _____ Manipulation failure

lotion pump _____ Manipulation failure

nasal spray _____ Manipulation failure

plastic bag trash basket Success

Cleanup level: low

toy grapes _____ Manipulation failure

red foggy body spray brown paper bag Success

arm smartphone holder brown paper bag Success

yogurt beverage desk Success

blue shaving cream can black bag Success

blue cup black chair Success

black shoe brush _____ Manipulation failure

fluffy headband _____ Navigation failure

black water bottle folded chair Success

nasal spray _____ Navigation failure

plastic bag trash basket Success

Cleanup level: high

red foggy body spray brown paper bag Success

arm smartphone holder _____ Manipulation failure

yogurt beverage desk Success

blue shaving cream can black bag Success

blue cup black chair Success

black water bottle white bed Success

nasal spray folded chair Success

Continued on the next page

327

Pick object Place location Result

plastic bag trash basket Success

Home 10

Cleanup level: none

grey toy dragon bed Success

purple body spray ____ Manipulation failure

hand sanitizer shelf Success

toy plant bed [shelf] Success

brown trail mix bag ____ Manipulation failure

hanging blue shirt cloth bin Success

white apple bag ____ Manipulation failure

white and pink powder bottle table Success

cough syrup bottle shelf Success

tangled ear phones office chair Success

red deodrant stick[table] chair Success

black body spray chair Success

hair treatment medicine bottle ____ Manipulation failure

green tea package chair Success

portable speaker [green tea package] office chair Success

wooden workout gripper _____ Navigation failure

brown box _____ Navigation failure

blue bulb adapter office chair Success

game controller office chair Success

Cleanup level: low

grey toy dragon orange bag Success

purple body spray table Success

hand sanitizer _____ Navigation failure

toy plant bed Success

Continued on the next page

328

Pick object Place location Result

brown trail mix bag ____ Manipulation failure

white and pink powder bottle black chair [bed] Success

cough syrup bottle shelf [bed] Success

red deodrant stick[table] bed [rack] Success

black body spray rack [bed] Placing failure

green tea package orange bag Success

brown box black chair [bed] Success

blue bulb adapter _____ Manipulation failure

Cleanup level: high

purple body spray orange bag Success

toy plant bed Success

white and pink powder bottle _____ Navigation failure

cough syrup bottle shelf [bed] Success

red deodrant stick[table] _____ Navigation failure

black body spray black chair Success

green tea package table Success

blue bulb adapter shelf Success

329

Bibliography

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt,

J., Altman, S., Anadkat, S., et al. (2023). Gpt-4 technical report. arXiv preprint arXiv:2303.08774.

Adorjan, M. (2016). OpenSfM: A Collaborative Structure-From-Motion System. PhD thesis, Wien.

Agarwal, A., Kumar, A., Malik, J., and Pathak, D. (2023). Legged locomotion in challenging terrains

using egocentric vision. In Liu, K., Kulic, D., and Ichnowski, J., editors, Proceedings of The 6th

Conference on Robot Learning, volume 205 of Proceedings of Machine Learning Research, pages

403–415. PMLR.

Aha, D. W. and Salzberg, S. L. (1994). Learning to catch: Applying nearest neighbor algorithms

to dynamic control tasks. In Cheeseman, P. and Oldford, R. W., editors, Selecting Models from

Data, pages 321–328, New York, NY. Springer New York.

Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M., McGrew, B., Petron, A., Paino, A., Plappert,

M., Powell, G., Ribas, R., et al. (2019). Solving rubik’s cube with a robot hand. arXiv preprint

arXiv:1910.07113.

Alayrac, J.-B., Donahue, J., Luc, P., Miech, A., Barr, I., Hasson, Y., Lenc, K., Mensch, A., Millican, K.,

Reynolds, M., Ring, R., Rutherford, E., Cabi, S., Han, T., Gong, Z., Samangooei, S., Monteiro, M.,

Menick, J., Borgeaud, S., Brock, A., Nematzadeh, A., Sharifzadeh, S., Binkowski, M., Barreira,

330

R., Vinyals, O., Zisserman, A., and Simonyan, K. (2022). Flamingo: a visual language model for

few-shot learning.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew, B., Tobin, J.,

Abbeel, P., and Zaremba, W. (2017). Hindsight experience replay. NIPS, 30:5048–5058.

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C. L., and Parikh, D. (2015). Vqa:

Visual question answering. In Proceedings of the IEEE international conference on computer vision,

pages 2425–2433.

Argall, B. D., Chernova, S., Veloso, M., and Browning, B. (2009). A survey of robot learning from

demonstration. Robotics and autonomous systems, 57(5):469–483.

Arunachalam, S. P., Güzey, I., Chintala, S., and Pinto, L. (2023a). Holo-dex: Teaching dexterity

with immersive mixed reality. In 2023 IEEE International Conference on Robotics and Automation

(ICRA), pages 5962–5969. IEEE.

Arunachalam, S. P., Silwal, S., Evans, B., and Pinto, L. (2023b). Dexterous imitation made easy:

A learning-based framework for efficient dexterous manipulation. In 2023 ieee international

conference on robotics and automation (icra), pages 5954–5961. IEEE.

Atkeson, C. G., Moore, A. W., and Schaal, S. (1997). Locally weighted learning. Lazy learning,

pages 11–73.

Atkeson, C. G. and Schaal, S. (1997). Robot learning from demonstration. In ICML, volume 97,

pages 12–20. Citeseer.

Azuma, D., Miyanishi, T., Kurita, S., and Kawanabe, M. (2022). Scanqa: 3d question answering for

spatial scene understanding. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR).

331

Bahl, S., Gupta, A., and Pathak, D. (2022). Human-to-robot imitation in the wild. Robotics: Science

and Systems (RSS).

Bahl, S., Mendonca, R., Chen, L., Jain, U., and Pathak, D. (2023). Affordances from human videos as

a versatile representation for robotics. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 13778–13790.

Bai, S., Kolter, J. Z., and Koltun, V. (2018). An empirical evaluation of generic convolutional and

recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271.

Bar-Tal, O., Chefer, H., Tov, O., Herrmann, C., Paiss, R., Zada, S., Ephrat, A., Hur, J., Li, Y., Michaeli,

T., et al. (2024). Lumiere: A space-time diffusion model for video generation. arXiv preprint

arXiv:2401.12945.

Bardes, A., Ponce, J., and LeCun, Y. (2021). Vicreg: Variance-invariance-covariance regularization

for self-supervised learning. arXiv preprint arXiv:2105.04906.

Baruch, G., Chen, Z., Dehghan, A., Dimry, T., Feigin, Y., Fu, P., Gebauer, T., Joffe, B., Kurz, D.,

Schwartz, A., et al. (2021). Arkitscenes: A diverse real-world dataset for 3d indoor scene

understanding using mobile rgb-d data. arXiv preprint arXiv:2111.08897.

Batra, D., Gokaslan, A., Kembhavi, A., Maksymets, O., Mottaghi, R., Savva, M., Toshev, A., and

Wijmans, E. (2020). Objectnav revisited: On evaluation of embodied agents navigating to objects.

CoRR, abs/2006.13171.

Bellman, R., Glicksberg, I., and Gross, O. (1956). On the “bang-bang” control problem. Quarterly of

Applied Mathematics, 14(1):11–18.

Bescos, B., Campos, C., Tardós, J. D., and Neira, J. (2021). Dynaslam ii: Tightly-coupled multi-object

tracking and slam. IEEE robotics and automation letters, 6(3):5191–5198.

332

Bescos, B., Fácil, J. M., Civera, J., and Neira, J. (2018). Dynaslam: Tracking, mapping, and inpainting

in dynamic scenes. IEEE Robotics and Automation Letters, 3(4):4076–4083.

Bharadhwaj, H., Vakil, J., Sharma, M., Gupta, A., Tulsiani, S., and Kumar, V. (2023). Roboagent:

Generalization and efficiency in robot manipulation via semantic augmentations and action

chunking. arXiv preprint arXiv:2309.01918.

Bhattacharjee, T., Clever, H. M., Wade, J., and Kemp, C. C. (2018). Multimodal tactile perception of

objects in a real home. IEEE Robotics and Automation Letters, 3(3):2523–2530.

Bhattacharjee, T., Wade, J., Chitalia, Y., and Kemp, C. C. (2016). Data-driven thermal recognition

of contact with people and objects. In 2016 IEEE Haptics Symposium (HAPTICS), pages 297–304.

IEEE.

Bhirangi, R., Hellebrekers, T., Majidi, C., and Gupta, A. (2021). Reskin: versatile, replaceable,

lasting tactile skins. arXiv preprint arXiv:2111.00071.

Bhirangi, R., Pattabiraman, V., Erciyes, E., Cao, Y., Hellebrekers, T., and Pinto, L. (2024). Anyskin:

Plug-and-play skin sensing for robotic touch.

Billard, A., Calinon, S., Dillmann, R., and Schaal, S. (2008). Survey: Robot programming by

demonstration. Handbook of robotics, 59(BOOK_CHAP).

Bishop, C. M. (1994). Mixture density networks. Neural Computing Research Group Report.

Blukis, V., Paxton, C., Fox, D., Garg, A., and Artzi, Y. (2022). A persistent spatial semantic

representation for high-level natural language instruction execution. In Conference on Robot

Learning, pages 706–717. PMLR.

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L. D., Monfort,

M., Muller, U., Zhang, J., et al. (2016). End to end learning for self-driving cars. arXiv preprint

arXiv:1604.07316.

333

Bolte, B., Wang, A., Yang, J., Mukadam, M., Kalakrishnan, M., and Paxton, C. (2023). Usa-net: Uni-

fied semantic and affordance representations for robot memory. arXiv preprint arXiv:2304.12164.

Bousmalis, K., Irpan, A., Wohlhart, P., Bai, Y., Kelcey, M., Kalakrishnan, M., Downs, L., Ibarz, J.,

Pastor, P., Konolige, K., Levine, S., and Vanhoucke, V. (2018). Using simulation and domain

adaptation to improve efficiency of deep robotic grasping. In ICRA, pages 4243–4250.

Bowman, S. L., Atanasov, N., Daniilidis, K., and Pappas, G. J. (2017). Probabilistic data association

for semantic slam. In 2017 IEEE international conference on robotics and automation (ICRA),

pages 1722–1729. IEEE.

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D. (2015). A large annotated corpus for

learning natural language inference. arXiv preprint arXiv:1508.05326.

Brahmbhatt, S., Ham, C., Kemp, C., and Hays, J. (2019). Contactdb: Analyzing and predicting grasp

contact via thermal imaging.

Brandfonbrener, D., Bietti, A., Buckman, J., Laroche, R., and Bruna, J. (2022). When does return-

conditioned supervised learning work for offline reinforcement learning? arXiv preprint arXiv:

Arxiv-2206.01079.

Brandfonbrener, D., Nachum, O., and Bruna, J. (2023). Inverse dynamics pretraining learns good

representations for multitask imitation. arXiv preprint arXiv:2305.16985.

Brasch, N., Bozic, A., Lallemand, J., and Tombari, F. (2018). Semantic monocular slam for highly

dynamic environments. In 2018 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pages 393–400. IEEE.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W.

(2016). Openai gym. arXiv preprint arXiv:1606.01540.

334

Brohan, A., Brown, N., Carbajal, J., Chebotar, Y., Dabis, J., Finn, C., Gopalakrishnan, K., Hausman,

K., Herzog, A., Hsu, J., Ibarz, J., Ichter, B., Irpan, A., Jackson, T., Jesmonth, S., Joshi, N. J., Julian,

R., Kalashnikov, D., Kuang, Y., Leal, I., Lee, K.-H., Levine, S., Lu, Y., Malla, U., Manjunath, D.,

Mordatch, I., Nachum, O., Parada, C., Peralta, J., Perez, E., Pertsch, K., Quiambao, J., Rao, K.,

Ryoo, M., Salazar, G., Sanketi, P., Sayed, K., Singh, J., Sontakke, S., Stone, A., Tan, C., Tran,

H., Vanhoucke, V., Vega, S., Vuong, Q., Xia, F., Xiao, T., Xu, P., Xu, S., Yu, T., and Zitkovich, B.

(2023a). Rt-1: Robotics transformer for real-world control at scale.

Brohan, A., Chebotar, Y., Finn, C., Hausman, K., Herzog, A., Ho, D., Ibarz, J., Irpan, A., Jang, E.,

Julian, R., et al. (2023b). Do as I can, not as I say: Grounding language in robotic affordances. In

CoRL, pages 287–318. PMLR.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam,

P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R.,

Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S.,

Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. (2020).

Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 33:1877–1901.

Bushaw, D.W. (1952). Differential equations with a discontinuous forcing term. PhD thesis, Princeton

University.

Cabi, S., Colmenarejo, S. G., Novikov, A., Konyushkova, K., Reed, S., Jeong, R., Zolna, K., Aytar, Y.,

Budden, D., Vecerik, M., et al. (2019). Scaling data-driven robotics with reward sketching and

batch reinforcement learning. arXiv preprint arXiv:1909.12200.

Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E., Xu, Q., Krishnan, A., Pan, Y., Baldan, G.,

and Beijbom, O. (2020). nuscenes: A multimodal dataset for autonomous driving. In Proceedings

of the IEEE/CVF conference on computer vision and pattern recognition, pages 11621–11631.

335

Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., and Joulin, A. (2020). Unsupervised

learning of visual features by contrasting cluster assignments. arXiv preprint arXiv:2006.09882.

Carper, S. (2019). Robots in American popular culture. McFarland.

Chang, M., Gervet, T., Khanna, M., Yenamandra, S., Shah, D., Min, S. Y., Shah, K., Paxton, C., Gupta,

S., Batra, D., Mottaghi, R., Malik, J., and Chaplot, D. S. (2023). Goat: Go to any thing.

Chaplot, D. S., Dalal, M., Gupta, S., Malik, J., and Salakhutdinov, R. R. (2021). Seal: Self-supervised

embodied active learning using exploration and 3d consistency. Advances in Neural Information

Processing Systems, 34:13086–13098.

Chaplot, D. S., Gandhi, D., Gupta, A., and Salakhutdinov, R. (2020). Object goal navigation using

goal-oriented semantic exploration. In In Neural Information Processing Systems (NeurIPS),

volume 33, pages 4247–4258.

Chen, B., Sax, A., Lewis, G., Armeni, I., Savarese, S., Zamir, A., Malik, J., and Pinto, L. (2020a).

Robust policies via mid-level visual representations: An experimental study in manipulation

and navigation. arXiv preprint arXiv:2011.06698.

Chen, B., Xia, F., Ichter, B., Rao, K., Gopalakrishnan, K., Ryoo, M. S., Stone, A., and Kappler, D.

(2022a). Open-vocabulary queryable scene representations for real world planning. In arXiv

preprint arXiv:2209.09874.

Chen, D. Z., Chang, A. X., and Nießner, M. (2020b). Scanrefer: 3d object localization in rgb-d scans

using natural language. 16th European Conference on Computer Vision (ECCV).

Chen, L., Bahl, S., and Pathak, D. (2023). Playfusion: Skill acquisition via diffusion from language-

annotated play. In Conference on Robot Learning, pages 2012–2029. PMLR.

336

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., Abbeel, P., Srinivas, A., and

Mordatch, I. (2021). Decision transformer: Reinforcement learning via sequence modeling.

Advances in neural information processing systems, 34:15084–15097.

Chen, T., Kornblith, S., Swersky, K., Norouzi, M., and Hinton, G. (2020c). Big self-supervised

models are strong semi-supervised learners. arXiv preprint arXiv:2006.10029.

Chen, X., Fan, H., Girshick, R., and He, K. (2020d). Improved baselines with momentum contrastive

learning. arXiv preprint arXiv:2003.04297.

Chen, Y.-C., Murali, A., Sundaralingam, B., Yang, W., Garg, A., and Fox, D. (2022b). Neural motion

fields: Encoding grasp trajectories as implicit value functions. arXiv preprint arXiv:2206.14854.

Cheng, X., Li, J., Yang, S., Yang, G., and Wang, X. (2024). Open-television: Teleoperation with

immersive active visual feedback.

Cheng, X., Shi, K., Agarwal, A., and Pathak, D. (2023). Extreme parkour with legged robots. 2024

IEEE International Conference on Robotics and Automation (ICRA), pages 11443–11450.

Chi, C., Feng, S., Du, Y., Xu, Z., Cousineau, E., Burchfiel, B., and Song, S. (2023). Diffusion policy:

Visuomotor policy learning via action diffusion. In RSS.

Chi, C., Xu, Z., Pan, C., Cousineau, E., Burchfiel, B., Feng, S., Tedrake, R., and Song, S. (2024).

Universal manipulation interface: In-the-wild robot teaching without in-the-wild robots.

Clever, H. M., Handa, A., Mazhar, H., Parker, K., Shapira, O., Wan, Q., Narang, Y., Akinola, I.,

Cakmak, M., and Fox, D. (2021). Assistive tele-op: Leveraging transformers to collect robotic

task demonstrations. arXiv preprint arXiv:2112.05129.

Codevilla, F., Santana, E., López, A. M., and Gaidon, A. (2019). Exploring the limitations of behavior

cloning for autonomous driving. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 9329–9338.

337

Cohen, N., Gal, R., Meirom, E. A., Chechik, G., and Atzmon, Y. (2022). " this is my unicorn, fluffy":

Personalizing frozen vision-language representations. arXiv preprint arXiv:2204.01694.

Collins, J. A., Houff, C., Grady, P., and Kemp, C. C. (2023a). Visual contact pressure estimation for

grippers in the wild. arXiv preprint arXiv:2303.07344.

Collins, J. A., Houff, C., Tan, Y. L., and Kemp, C. C. (2023b). Forcesight: Text-guided mobile

manipulation with visual-force goals. arXiv preprint arXiv:2309.12312.

Coumans, E. and Bai, Y. (2016). Pybullet, a python module for physics simulation for games,

robotics and machine learning. GitHub Repository.

Cui, L. and Ma, C. (2019). Sof-slam: A semantic visual slam for dynamic environments. IEEE access,

7:166528–166539.

Cui, Z. J., Wang, Y., Shafiullah, N. M. M., and Pinto, L. (2022). From play to policy: Conditional

behavior generation from uncurated robot data.

Dadashi, R., Hussenot, L., Vincent, D., Girgin, S., Raichuk, A., Geist, M., and Pietquin, O. (2021). Con-

tinuous control with action quantization from demonstrations. arXiv preprint arXiv:2110.10149.

Dai, A., Chang, A. X., Savva, M., Halber, M., Funkhouser, T., and Nießner, M. (2017). Scannet:

Richly-annotated 3d reconstructions of indoor scenes.

Dalal, M., Chiruvolu, T., Chaplot, D., and Salakhutdinov, R. (2024). Plan-seq-learn: Language

model guided rl for solving long horizon robotics tasks. arXiv preprint arXiv:2405.01534.

Damen, D., Doughty, H., Farinella, G. M., Fidler, S., Furnari, A., Kazakos, E., Moltisanti, D., Munro,

J., Perrett, T., Price, W., et al. (2018). Scaling egocentric vision: The epic-kitchens dataset. In

Proceedings of the European conference on computer vision (ECCV), pages 720–736.

338

Dasari, S., Ebert, F., Tian, S., Nair, S., Bucher, B., Schmeckpeper, K., Singh, S., Levine, S., and Finn,

C. (2019). RoboNet: Large-scale multi-robot learning. In Conference on Robot Learning (CoRL),

volume 100, pages 885–897. PMLR.

Dasari, S. and Gupta, A. (2020). Transformers for one-shot visual imitation. arXiv preprint

arXiv:2011.05970.

Dasari, S., Gupta, A., and Kumar, V. (2023). Learning dexterous manipulation from exemplar object

trajectories and pre-grasps.

Datta, S., Dharur, S., Cartillier, V., Desai, R., Khanna, M., Batra, D., and Parikh, D. (2022). Episodic

memory question answering. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 19119–19128.

Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D. (2017). Language modeling with gated convolu-

tional networks. In International conference on machine learning, pages 933–941. PMLR.

DeepSeek-AI, Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P., Bi,

X., Zhang, X., Yu, X., Wu, Y., Wu, Z. F., Gou, Z., Shao, Z., Li, Z., Gao, Z., Liu, A., Xue, B., Wang,

B., Wu, B., Feng, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan, C., Dai, D., Chen, D., Ji, D., Li, E.,

Lin, F., Dai, F., Luo, F., Hao, G., Chen, G., Li, G., Zhang, H., Bao, H., Xu, H., Wang, H., Ding, H.,

Xin, H., Gao, H., Qu, H., Li, H., Guo, J., Li, J., Wang, J., Chen, J., Yuan, J., Qiu, J., Li, J., Cai, J. L.,

Ni, J., Liang, J., Chen, J., Dong, K., Hu, K., Gao, K., Guan, K., Huang, K., Yu, K., Wang, L., Zhang,

L., Zhao, L., Wang, L., Zhang, L., Xu, L., Xia, L., Zhang, M., Zhang, M., Tang, M., Li, M., Wang,

M., Li, M., Tian, N., Huang, P., Zhang, P., Wang, Q., Chen, Q., Du, Q., Ge, R., Zhang, R., Pan, R.,

Wang, R., Chen, R. J., Jin, R. L., Chen, R., Lu, S., Zhou, S., Chen, S., Ye, S., Wang, S., Yu, S., Zhou,

S., Pan, S., Li, S. S., Zhou, S., Wu, S., Ye, S., Yun, T., Pei, T., Sun, T., Wang, T., Zeng, W., Zhao, W.,

Liu, W., Liang, W., Gao, W., Yu, W., Zhang, W., Xiao, W. L., An, W., Liu, X., Wang, X., Chen, X.,

Nie, X., Cheng, X., Liu, X., Xie, X., Liu, X., Yang, X., Li, X., Su, X., Lin, X., Li, X. Q., Jin, X., Shen,

339

X., Chen, X., Sun, X., Wang, X., Song, X., Zhou, X., Wang, X., Shan, X., Li, Y. K., Wang, Y. Q.,

Wei, Y. X., Zhang, Y., Xu, Y., Li, Y., Zhao, Y., Sun, Y., Wang, Y., Yu, Y., Zhang, Y., Shi, Y., Xiong,

Y., He, Y., Piao, Y., Wang, Y., Tan, Y., Ma, Y., Liu, Y., Guo, Y., Ou, Y., Wang, Y., Gong, Y., Zou, Y.,

He, Y., Xiong, Y., Luo, Y., You, Y., Liu, Y., Zhou, Y., Zhu, Y. X., Xu, Y., Huang, Y., Li, Y., Zheng,

Y., Zhu, Y., Ma, Y., Tang, Y., Zha, Y., Yan, Y., Ren, Z. Z., Ren, Z., Sha, Z., Fu, Z., Xu, Z., Xie, Z.,

Zhang, Z., Hao, Z., Ma, Z., Yan, Z., Wu, Z., Gu, Z., Zhu, Z., Liu, Z., Li, Z., Xie, Z., Song, Z., Pan,

Z., Huang, Z., Xu, Z., Zhang, Z., and Zhang, Z. (2025). Deepseek-r1: Incentivizing reasoning

capability in llms via reinforcement learning.

Deitke, M., Batra, D., Bisk, Y., Campari, T., Chang, A. X., Chaplot, D. S., Chen, C., D’Arpino, C. P.,

Ehsani, K., Farhadi, A., et al. (2022). Retrospectives on the embodied ai workshop. arXiv preprint

arXiv:2210.06849.

Deitke, M., Schwenk, D., Salvador, J., Weihs, L., Michel, O., VanderBilt, E., Schmidt, L., Ehsani,

K., Kembhavi, A., and Farhadi, A. (2023). Objaverse: A universe of annotated 3d objects. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

13142–13153.

Dempsey, P. (2023). Reviews-consumer technology. the teardown-amazon astro consumer robot.

Engineering & Technology, 18(2):70–71.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-scale

hierarchical image database. IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 248–255.

Depierre, A., Dellandréa, E., and Chen, L. (2018). Jacquard: A large scale dataset for robotic grasp

detection. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pages 3511–3516. IEEE.

340

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint arXiv:1810.04805, pages 4171–4186.

Dhariwal, P., Jun, H., Payne, C., Kim, J. W., Radford, A., and Sutskever, I. (2020). Jukebox: A

generative model for music. arXiv preprint arXiv:2005.00341.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2016). Density estimation using real nvp. arXiv preprint

arXiv:1605.08803.

Doersch, C., Gupta, A., and Efros, A. A. (2016). Unsupervised visual representation learning by

context prediction.

Doshi, R., Walke, H., Mees, O., Dasari, S., and Levine, S. (2024). Scaling cross-embodied

learning: One policy for manipulation, navigation, locomotion and aviation. arXiv preprint

arXiv:2408.11812.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M.,

Minderer, M., Heigold, G., Gelly, S., et al. (2020). An image is worth 16x16 words: Transformers

for image recognition at scale. arXiv preprint arXiv:2010.11929.

Dosovitskiy, A., Fischer, P., Springenberg, J. T., Riedmiller, M., and Brox, T. (2015). Discriminative

unsupervised feature learning with exemplar convolutional neural networks.

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., and Koltun, V. (2017). Carla: An open urban

driving simulator. In Conference on robot learning, pages 1–16. PMLR.

Driess, D., Huang, Z., Li, Y., Tedrake, R., and Toussaint, M. (2022). Learning multi-object dynamics

with compositional neural radiance fields. arXiv preprint arXiv:2202.11855.

Du, Y., Ho, D., Alemi, A., Jang, E., and Khansari, M. (2022). Bayesian imitation learning for end-to-

end mobile manipulation. In International Conference on Machine Learning, pages 5531–5546.

PMLR.

341

Du, Y., Watkins, O., Wang, Z., Colas, C., Darrell, T., Abbeel, P., Gupta, A., and Andreas, J. (2023).

Guiding pretraining in reinforcement learning with large language models. In International

Conference on Machine Learning, pages 8657–8677. PMLR.

Duan, Y., Andrychowicz, M., Stadie, B., Ho, O. J., Schneider, J., Sutskever, I., Abbeel, P., and

Zaremba, W. (2017). One-shot imitation learning. In Advances in neural information processing

systems, volume 30, pages 1087–1098.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and Abbeel, P. (2016). Benchmarking deep

reinforcement learning for continuous control. In International Conference on Machine Learning,

volume 48 of JMLR Workshop and Conference Proceedings, pages 1329–1338. JMLR.org.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,

Yang, A., Fan, A., et al. (2024). The llama 3 herd of models. arXiv preprint arXiv:2407.21783.

Durrant-Whyte, H. and Bailey, T. (2006). Simultaneous localization and mapping: part i. IEEE

robotics & automation magazine, 13(2):99–110.

Dwibedi, D., Aytar, Y., Tompson, J., Sermanet, P., and Zisserman, A. (2021). With a little help from

my friends: Nearest-neighbor contrastive learning of visual representations. arXiv preprint

arXiv:2104.14548.

Ebert, F., Finn, C., Dasari, S., Xie, A., Lee, A., and Levine, S. (2018). Visual foresight: Model-based

deep reinforcement learning for vision-based robotic control. arXiv preprint arXiv:1812.00568.

Ebert, F., Yang, Y., Schmeckpeper, K., Bucher, B., Georgakis, G., Daniilidis, K., Finn, C., and Levine,

S. (2022). Bridge data: Boosting generalization of robotic skills with cross-domain datasets. In

Robotics: Science and Systems (RSS) XVIII.

Ehsani, K., Gupta, T., Hendrix, R., Salvador, J., Weihs, L., Zeng, K.-H., Singh, K. P., Kim, Y., Han,

342

W., Herrasti, A., et al. (2023). Imitating shortest paths in simulation enables effective navigation

and manipulation in the real world. arXiv preprint arXiv:2312.02976.

Emmons, S., Eysenbach, B., Kostrikov, I., and Levine, S. (2021). Rvs: What is essential for offline rl

via supervised learning? arXiv preprint arXiv:2112.10751.

Eppner, C., Mousavian, A., and Fox, D. (2021). Acronym: A large-scale grasp dataset based on

simulation. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages

6222–6227. IEEE.

Etukuru, H., Naka, N., Hu, Z., Lee, S., Mehu, J., Edsinger, A., Paxton, C., Chintala, S., Pinto, L., and

Shafiullah, N. M. M. (2024). Robot utility models: General policies for zero-shot deployment in

new environments. arXiv preprint arXiv:2409.05865.

Eysenbach, B., Zhang, T., Salakhutdinov, R., and Levine, S. (2022). Contrastive learning as goal-

conditioned reinforcement learning. arXiv preprint arXiv: Arxiv-2206.07568.

Falck, F., Larppichet, K., and Kormushev, P. (2019). De vito: A dual-arm, high degree-of-freedom,

lightweight, inexpensive, passive upper-limb exoskeleton for robot teleoperation. In Towards

Autonomous Robotic Systems: 20th Annual Conference, TAROS 2019, London, UK, July 3–5, 2019,

Proceedings, Part I 20, pages 78–89. Springer.

Fang, H., Fang, H.-S., Wang, Y., Ren, J., Chen, J., Zhang, R., Wang, W., and Lu, C. (2023a). Low-cost

exoskeletons for learning whole-arm manipulation in the wild. arXiv preprint arXiv:2309.14975.

Fang, H.-S., Fang, H., Tang, Z., Liu, J., Wang, J., Zhu, H., and Lu, C. (2023b). RH20T: A robotic

dataset for learning diverse skills in one-shot. In RSS 2023 Workshop on Learning for Task and

Motion Planning.

Fang, H.-S., Wang, C., Fang, H., Gou, M., Liu, J., Yan, H., Liu,W., Xie, Y., and Lu, C. (2023c). Anygrasp:

343

Robust and efficient grasp perception in spatial and temporal domains. IEEE Transactions on

Robotics.

Fang, H.-S., Wang, C., Gou, M., and Lu, C. (2020). Graspnet-1billion: a large-scale benchmark

for general object grasping. In Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition, pages 11444–11453.

Finn, C. and Levine, S. (2017). Deep visual foresight for planning robot motion. In 2017 IEEE

International Conference on Robotics and Automation (ICRA), pages 2786–2793. IEEE.

Finn, C., Levine, S., and Abbeel, P. (2016). Guided cost learning: Deep inverse optimal control via

policy optimization. In International conference on machine learning, pages 49–58. PMLR.

FIRST (For Inspiration and Recognition of Science and Technology) (2024). FIRST robotics compe-

tition. Retrieved May 24, 2025, from https://www.firstinspires.org/robotics/frc.

Florence, P., Lynch, C., Zeng, A., Ramirez, O. A., Wahid, A., Downs, L., Wong, A., Lee, J., Mordatch,

I., and Tompson, J. (2022). Implicit behavioral cloning. In Conference on Robot Learning, pages

158–168. PMLR.

Florence, P., Manuelli, L., and Tedrake, R. (2019). Self-supervised correspondence in visuomotor

policy learning. IEEE Robotics and Automation Letters, 5(2):492–499.

Fried, D., Hu, R., Cirik, V., Rohrbach, A., Andreas, J., Morency, L., Berg-Kirkpatrick, T., Saenko, K.,

Klein, D., and Darrell, T. (2018). Speaker-follower models for vision-and-language navigation. In

Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information

Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 3318–3329.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine, S. (2020). D4rl: Datasets for deep data-driven

reinforcement learning. arXiv preprint arXiv:2004.07219.

344

https://www.firstinspires.org/robotics/frc

Fu, Z., Cheng, X., and Pathak, D. (2022). Deep whole-body control: Learning a unified policy for

manipulation and locomotion. ArXiv, abs/2210.10044.

Fu, Z., Zhao, Q., Wu, Q., Wetzstein, G., and Finn, C. (2024a). Humanplus: Humanoid shadowing

and imitation from humans. arXiv preprint arXiv:2406.10454.

Fu, Z., Zhao, T. Z., and Finn, C. (2024b). Mobile aloha: Learning bimanual mobile manipulation

with low-cost whole-body teleoperation. In arXiv.

Fujimoto, S., Hoof, H., and Meger, D. (2018). Addressing function approximation error in actor-

critic methods. In International Conference on Machine Learning, volume 80 of Proceedings of

Machine Learning Research, pages 1587–1596. PMLR, PMLR.

Gadre, S. Y., Ehsani, K., Song, S., and Mottaghi, R. (2022). Continuous scene representations

for embodied ai. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 14849–14859.

Gao, J., Sarkar, B., Xia, F., Xiao, T., Wu, J., Ichter, B., Majumdar, A., and Sadigh, D. (2024). Physically

grounded vision-languagemodels for robotic manipulation. In 2024 IEEE International Conference

on Robotics and Automation (ICRA), pages 12462–12469. IEEE.

Garrido, S., Moreno, L., Abderrahim, M., and Martin, F. (2006). Path planning for mobile robot

navigation using voronoi diagram and fast marching. In 2006 IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 2376–2381. IEEE.

Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin, Y. N. (2017). Convolutional sequence

to sequence learning. In International conference on machine learning, pages 1243–1252. PMLR.

Gers, F. A., Schmidhuber, J., and Cummins, F. (2000). Learning to forget: Continual prediction

with lstm. Neural computation, 12(10):2451–2471.

345

Gervet, T., Chintala, S., Batra, D., Malik, J., and Chaplot, D. S. (2023a). Navigating to objects in the

real world. Science Robotics, 8(79):eadf6991.

Gervet, T., Xian, Z., Gkanatsios, N., and Fragkiadaki, K. (2023b). Act3d: 3d feature field transformers

for multi-task robotic manipulation. In Conference on Robot Learning, pages 3949–3965. PMLR.

Ghosh, D., Gupta, A., Reddy, A., Fu, J., Devin, C., Eysenbach, B., and Levine, S. (2019). Learning to

reach goals via iterated supervised learning. arXiv e-prints, pages arXiv–1912.

Gidaris, S., Singh, P., and Komodakis, N. (2018). Unsupervised representation learning by predicting

image rotations.

Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer

vision, pages 1440–1448.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies for accurate

object detection and semantic segmentation. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 580–587.

Gkioxari, G., Hariharan, B., Girshick, R. B., and Malik, J. (2014). R-cnns for pose estimation and

action detection. CoRR, abs/1406.5212.

Google, G. T. (2024). Gemini 1.5: Unlocking multimodal understanding across millions of tokens

of context.

Goyal, A., Friesen, A., Banino, A., Weber, T., Ke, N. R., Badia, A. P., Guez, A., Mirza, M., Humphreys,

P. C., Konyushova, K., et al. (2022a). Retrieval-augmented reinforcement learning. In Interna-

tional Conference on Machine Learning, pages 7740–7765. PMLR.

Goyal, A., Mousavian, A., Paxton, C., Chao, Y.-W., Okorn, B., Deng, J., and Fox, D. (2022b). Ifor:

Iterative flow minimization for robotic object rearrangement. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 14787–14797.

346

Goyal, P., Niekum, S., and Mooney, R. (2021). Pixl2r: Guiding reinforcement learning using natural

language by mapping pixels to rewards. In Conference on Robot Learning, pages 485–497. PMLR.

Grady, P., Collins, J. A., Brahmbhatt, S., Twigg, C. D., Tang, C., Hays, J., and Kemp, C. C. (2022).

Visual pressure estimation and control for soft robotic grippers. In 2022 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 3628–3635. IEEE.

Grauman, K., Westbury, A., Byrne, E., Chavis, Z., Furnari, A., Girdhar, R., Hamburger, J., Jiang, H.,

Liu, M., Liu, X., et al. (2021). Ego4d: Around the world in 3,000 hours of egocentric video. arXiv

preprint arXiv:2110.07058, 3.

Grauman, K., Westbury, A., Byrne, E., Chavis, Z., Furnari, A., Girdhar, R., Hamburger, J., Jiang,

H., Liu, M., Liu, X., et al. (2022). Ego4d: Around the world in 3,000 hours of egocentric video.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

18995–19012.

Grill, J.-B., Strub, F., Altche, F., Tallec, C., Richemond, P. H., Buchatskaya, E., Doersch, C., Pires,

B. A., Guo, Z. D., Azar, M. G., et al. (2020). Bootstrap your own latent: A new approach to

self-supervised learning. arXiv preprint arXiv:2006.07733, 33:21271–21284.

Gu, Q., Kuwajerwala, A., Morin, S., Jatavallabhula, K. M., Sen, B., Agarwal, A., Rivera, C., Paul,

W., Ellis, K., Chellappa, R., et al. (2023). Conceptgraphs: Open-vocabulary 3d scene graphs for

perception and planning. arXiv preprint arXiv:2309.16650.

Gu, Q., Kuwajerwala, A., Morin, S., Jatavallabhula, K. M., Sen, B., Agarwal, A., Rivera, C., Paul,

W., Ellis, K., Chellappa, R., et al. (2024). Conceptgraphs: Open-vocabulary 3d scene graphs for

perception and planning. In 2024 IEEE International Conference on Robotics and Automation

(ICRA), pages 5021–5028. IEEE.

Gulcehre, C., Wang, Z., Novikov, A., Le Paine, T., Gomez Colmenarejo, S., Zolna, K., Agarwal,

347

R., Merel, J., Mankowitz, D., Paduraru, C., et al. (2020). Rl unplugged: Benchmarks for offline

reinforcement learning. arXiv e-prints, pages arXiv–2006.

Guo, Y., Wang, Y.-J., Zha, L., Jiang, Z., and Chen, J. (2023). Doremi: Grounding language model by

detecting and recovering from plan-execution misalignment. arXiv preprint arXiv:2307.00329.

Gupta, A., Kumar, V., Lynch, C., Levine, S., and Hausman, K. (2019). Relay policy learning: Solving

long-horizon tasks via imitation and reinforcement learning. arXiv preprint arXiv:1910.11956.

Gupta, A., Lynch, C., Kinman, B., Peake, G., Levine, S., and Hausman, K. (2022). Bootstrapped

autonomous practicing via multi-task reinforcement learning. arXiv preprint arXiv:2203.15755.

Gupta, A., Murali, A., Gandhi, D. P., and Pinto, L. (2018). Robot learning in homes: Improving

generalization and reducing dataset bias. In Advances in Neural Information Processing Systems,

volume 31, pages 9094–9104.

Gupta, A., Zhang, M., Sathua, R., and Gupta, S. (2024). Opening cabinets and drawers in the real

world using a commodity mobile manipulator. arXiv preprint arXiv:2402.17767.

Guzey, I., Dai, Y., Evans, B., Chintala, S., and Pinto, L. (2023a). See to touch: Learning tactile

dexterity through visual incentives. arXiv preprint arXiv:2309.12300.

Guzey, I., Evans, B., Chintala, S., and Pinto, L. (2023b). Dexterity from touch: Self-supervised

pre-training of tactile representations with robotic play. arXiv preprint arXiv:2303.12076.

Ha, H. and Song, S. (2022). Semantic abstraction: Open-world 3d scene understanding from 2d

vision-language models. arXiv preprint arXiv:2207.11514.

Hahn, M., Chaplot, D. S., Tulsiani, S., Mukadam, M., Rehg, J. M., and Gupta, A. (2021). No rl, no

simulation: Learning to navigate without navigating. Advances in Neural Information Processing

Systems, 34:26661–26673.

348

Haldar, S., Mathur, V., Yarats, D., and Pinto, L. (2023a). Watch and match: Supercharging imitation

with regularized optimal transport. In Conference on Robot Learning, pages 32–43. PMLR.

Haldar, S., Pari, J., Rai, A., and Pinto, L. (2023b). Teach a robot to fish: Versatile imitation from one

minute of demonstrations. arXiv preprint arXiv:2303.01497.

Haldar, S., Peng, Z., and Pinto, L. (2024). Baku: An efficient transformer for multi-task policy

learning.

Hausknecht, M. and Stone, P. (2015). Deep recurrent q-learning for partially observable mdps.

arXiv preprint arXiv:1507.06527.

Hausman, K., Chebotar, Y., Schaal, S., Sukhatme, G., and Lim, J. J. (2017). Multi-modal imitation

learning from unstructured demonstrations using generative adversarial nets. Advances in

neural information processing systems, 30.

Haviland, J., Sünderhauf, N., and Corke, P. (2022). A holistic approach to reactive mobile manipu-

lation. IEEE Robotics and Automation Letters, 7(2):3122–3129.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778.

Henein, M., Zhang, J., Mahony, R., and Ila, V. (2020). Dynamic slam: The need for speed. In 2020

IEEE International Conference on Robotics and Automation (ICRA), pages 2123–2129. IEEE.

Henning, D. F., Laidlow, T., and Leutenegger, S. (2022). Bodyslam: Joint camera localisation,

mapping, and human motion tracking. In European Conference on Computer Vision, pages

656–673. Springer.

Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D. (2012). Rgb-d mapping: Using kinect-style

depth cameras for dense 3d modeling of indoor environments. International Journal of Robotic

Research - IJRR, 31:647–663.

349

Heo, M., Lee, Y., Lee, D., and Lim, J. J. (2023). Furniturebench: Reproducible real-world benchmark

for long-horizon complex manipulation. In Robotics: Science and Systems.

Herzog, A., Rao, K., Hausman, K., Lu, Y., Wohlhart, P., Yan, M., Lin, J., Arenas, M. G., Xiao, T.,

Kappler, D., et al. (2023). Deep rl at scale: Sorting waste in office buildings with a fleet of mobile

manipulators. arXiv preprint arXiv:2305.03270.

Ho, J. and Ermon, S. (2016). Generative adversarial imitation learning. In Advances in neural

information processing systems, volume 29, pages 4565–4573.

Ho, J., Jain, A., and Abbeel, P. (2020). Denoising diffusion probabilistic models. In NeurIPS,

volume 33, pages 6840–6851.

Hu, P., Huang, A., Dolan, J., Held, D., and Ramanan, D. (2021). Safe local motion planning with

self-supervised freespace forecasting. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 12732–12741.

Hu, S., Chen, L., Wu, P., Li, H., Yan, J., and Tao, D. (2022). St-p3: End-to-end vision-based

autonomous driving via spatial-temporal feature learning. In European Conference on Computer

Vision, pages 533–549. Springer.

Hu, Y., Yang, J., Chen, L., Li, K., Sima, C., Zhu, X., Chai, S., Du, S., Lin, T., Wang, W., et al. (2023).

Planning-oriented autonomous driving. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 17853–17862.

Huang, C., Mees, O., Zeng, A., and Burgard, W. (2023a). Audio visual language maps for robot

navigation. arXiv preprint arXiv:2303.07522.

Huang, C., Mees, O., Zeng, A., and Burgard, W. (2023b). Visual language maps for robot navigation.

In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages 10608–10615.

IEEE.

350

Huang, W., Abbeel, P., Pathak, D., and Mordatch, I. (2022a). Language models as zero-shot planners:

Extracting actionable knowledge for embodied agents. In ICML, pages 9118–9147. PMLR.

Huang, W., Wang, C., Zhang, R., Li, Y., Wu, J., and Fei-Fei, L. (2023c). VoxPoser: Composable 3D

value maps for robotic manipulation with language models. In CoRL.

Huang, W., Xia, F., Xiao, T., Chan, H., Liang, J., Florence, P., Zeng, A., Tompson, J., Mordatch, I.,

Chebotar, Y., Sermanet, P., Brown, N., Jackson, T., Luu, L., Levine, S., Hausman, K., and Ichter, B.

(2022b). Inner monologue: Embodied reasoning through planning with language models. In

arXiv preprint arXiv:2207.05608.

Hussein, A., Gaber, M. M., Elyan, E., and Jayne, C. (2017). Imitation learning: A survey of learning

methods. ACM Computing Surveys (CSUR), 50(2):1–35.

Ishiguro, Y., Makabe, T., Nagamatsu, Y., Kojio, Y., Kojima, K., Sugai, F., Kakiuchi, Y., Okada, K.,

and Inaba, M. (2020). Bilateral humanoid teleoperation system using whole-body exoskeleton

cockpit tablis. IEEE Robotics and Automation Letters, 5(4):6419–6426.

Islam, R., Zang, H., Goyal, A., Lamb, A., Kawaguchi, K., Li, X., Laroche, R., Bengio, Y., and

Combes, R. T. D. (2022). Discrete factorial representations as an abstraction for goal conditioned

reinforcement learning. arXiv preprint arXiv:2211.00247.

Ivanovic, B., Schmerling, E., Leung, K., and Pavone, M. (2018). Generative modeling of multimodal

multi-human behavior. In 2018 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pages 3088–3095. IEEE.

Iyer, A., Peng, Z., Dai, Y., Guzey, I., Haldar, S., Chintala, S., and Pinto, L. (2024). Open teach: A

versatile teleoperation system for robotic manipulation. arXiv preprint arXiv:2403.07870.

Jain, A. and Kemp, C. C. (2013). Improving robot manipulation with data-driven object-centric

models of everyday forces. Autonomous Robots, 35:143–159.

351

Jain, A., Nguyen, H., Rath, M., Okerman, J., and Kemp, C. C. (2010). The complex structure of

simple devices: A survey of trajectories and forces that open doors and drawers. In 2010 3rd

IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pages

184–190. IEEE.

Jang, E., Irpan, A., Khansari, M., Kappler, D., Ebert, F., Lynch, C., Levine, S., and Finn, C. (2021).

BC-Z: Zero-shot task generalization with robotic imitation learning. In Conference on Robot

Learning (CoRL), pages 991–1002. PMLR.

Janner, M., Li, Q., and Levine, S. (2021). Offline reinforcement learning as one big sequence

modeling problem. Advances in neural information processing systems, 34.

Jatavallabhula, K. M., Kuwajerwala, A., Gu, Q., Omama, M., Chen, T., Li, S., Iyer, G., Saryazdi, S.,

Keetha, N., Tewari, A., et al. (2023). Conceptfusion: Open-set multimodal 3d mapping. arXiv

preprint arXiv:2302.07241.

Ji, M., Qiu, R.-Z., Zou, X., and Wang, X. (2024). Graspsplats: Efficient manipulation with 3d feature

splatting. arXiv preprint arXiv:2409.02084.

Jiang, B., Chen, S., Xu, Q., Liao, B., Chen, J., Zhou, H., Zhang, Q., Liu, W., Huang, C., and Wang, X.

(2023). Vad: Vectorized scene representation for efficient autonomous driving. arXiv preprint

arXiv:2303.12077.

Jiang, Y., Moseson, S., and Saxena, A. (2011). Efficient grasping from RGBD images: Learning using

a new rectangle representation. In 2011 IEEE International conference on robotics and automation,

pages 3304–3311. IEEE.

Johnson, J., Douze, M., and Jégou, H. (2017). Billion-scale similarity search with gpus. arXiv

preprint arXiv:1702.08734.

352

Jones, J. L. (2006). Robots at the tipping point: the road to irobot roomba. IEEE Robotics &

Automation Magazine, 13(1):76–78.

Kaelbling, L. P. (1993). Learning to achieve goals. In IN PROC. OF IJCAI-93, pages 1094–1098.

Morgan Kaufmann.

Kalakrishnan, M., Pastor, P., Righetti, L., and Schaal, S. (2013). Learning objective functions

for manipulation. In 2013 IEEE International Conference on Robotics and Automation, pages

1331–1336. IEEE.

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., Quillen, D., Holly, E., Kalakr-

ishnan, M., Vanhoucke, V., et al. (2018). Qt-opt: Scalable deep reinforcement learning for

vision-based robotic manipulation. arXiv preprint arXiv:1806.10293.

Kalashnikov, D., Varley, J., Chebotar, Y., Swanson, B., Jonschkowski, R., Finn, C., Levine, S., and

Hausman, K. (2021). Mt-opt: Continuous multi-task robotic reinforcement learning at scale.

arXiv preprint arXiv:2104.08212.

Kalchbrenner, N., Espeholt, L., Simonyan, K., Oord, A. v. d., Graves, A., and Kavukcuoglu, K. (2016).

Neural machine translation in linear time. arXiv preprint arXiv:1610.10099.

Kappler, D., Bohg, J., and Schaal, S. (2015). Leveraging big data for grasp planning. In ICRA, pages

4304–4311.

Karamcheti, S., Nair, S., Chen, A. S., Kollar, T., Finn, C., Sadigh, D., and Liang, P. (2023). Language-

driven representation learning for robotics. Robotics: Science and Systems (RSS).

Karpathy, A. (2020). GitHub - karpathy/minGPT: A minimal PyTorch re-implementation of the

OpenAI GPT (Generative Pretrained Transformer) training.

353

Kemp, C. C., Edsinger, A., Clever, H. M., and Matulevich, B. (2022). The design of stretch: A

compact, lightweight mobile manipulator for indoor human environments. In 2022 International

Conference on Robotics and Automation (ICRA), pages 3150–3157. IEEE.

Kerbl, B., Kopanas, G., Leimkühler, T., and Drettakis, G. (2023). 3d gaussian splatting for real-time

radiance field rendering. ACM Transactions on Graphics, 42(4).

Kerr, J., Kim, C. M., Goldberg, K., Kanazawa, A., and Tancik, M. (2023). Lerf: Language embedded

radiance fields. In Proceedings of the IEEE/CVF International Conference on Computer Vision,

pages 19729–19739.

Khazatsky, A., Pertsch, K., Nair, S., Balakrishna, A., Dasari, S., Karamcheti, S., Nasiriany, S., Srirama,

M. K., Chen, L. Y., Ellis, K., et al. (2024). Droid: A large-scale in-the-wild robot manipulation

dataset. arXiv preprint arXiv:2403.12945.

Khurana, T., Hu, P., Dave, A., Ziglar, J., Held, D., and Ramanan, D. (2022). Differentiable raycasting

for self-supervised occupancy forecasting. In European Conference on Computer Vision, pages

353–369. Springer.

Kim, J., hyeon Park, J., Cho, D., and Kim, H. J. (2022). Automating reinforcement learning with

example-based resets. IEEE Robotics and Automation Letters, 7(3):6606–6613.

Kim, M. J., Pertsch, K., Karamcheti, S., Xiao, T., Balakrishna, A., Nair, S., Rafailov, R., Foster, E.,

Lam, G., Sanketi, P., et al. (2024). Openvla: An open-source vision-language-action model. arXiv

preprint arXiv:2406.09246.

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114.

Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg,

A. C., Lo, W.-Y., Dollar, P., and Girshick, R. (2023). Segment anything. In ICCV, pages 4015–4026.

354

Kobayashi, S., Matsumoto, E., and Sitzmann, V. (2022). Decomposing nerf for editing via feature

field distillation. arXiv preprint arXiv:2205.15585.

Kohlbrecher, S., Meyer, J., von Stryk, O., and Klingauf, U. (2011). A flexible and scalable slam

system with full 3d motion estimation. In Proc. IEEE International Symposium on Safety, Security

and Rescue Robotics (SSRR). IEEE.

Kostrikov, I., Tompson, J., Fergus, R., and Nachum, O. (2021). Offline reinforcement learning with

fisher divergence critic regularization. arXiv preprint arXiv:2103.08050.

Krantz, J., Lee, S., Malik, J., Batra, D., and Chaplot, D. S. (2022). Instance-specific image goal

navigation: Training embodied agents to find object instances. arXiv preprint arXiv:2211.15876.

Krishna, G. S., Supriya, K., and Baidya, S. (2023). 3ds-slam: A 3d object detection based semantic

slam towards dynamic indoor environments. arXiv preprint arXiv:2310.06385.

Ku, A., Anderson, P., Patel, R., Ie, E., and Baldridge, J. (2020). Room-across-room: Multilingual

vision-and-language navigation with dense spatiotemporal grounding. In Proceedings of the 2020

Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4392–4412,

Online. Association for Computational Linguistics.

Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S. (2019). Stabilizing off-policy q-learning via

bootstrapping error reduction. Advances in Neural Information Processing Systems, 32:11761–

11771.

Kumar, A., Singh, A., Ebert, F., Nakamoto, M., Yang, Y., Finn, C., and Levine, S. (2022). Pre-

training for robots: Offline rl enables learning new tasks from a handful of trials. arXiv preprint

arXiv:2210.05178.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. (2020). Conservative q-learning for offline

reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191.

355

Lambert, N., Morrison, J., Pyatkin, V., Huang, S., Ivison, H., Brahman, F., Miranda, L. J. V., Liu,

A., Dziri, N., Lyu, S., Gu, Y., Malik, S., Graf, V., Hwang, J. D., Yang, J., Bras, R. L., Tafjord, O.,

Wilhelm, C., Soldaini, L., Smith, N. A., Wang, Y., Dasigi, P., and Hajishirzi, H. (2025). Tulu 3:

Pushing frontiers in open language model post-training.

Lee, M. and Anderson, C. W. (2016). Robust reinforcement learning with relevance vector machines.

Robot Learning and Planning (RLP 2016), page 5.

Lee, N. and Kitani, K. M. (2016). Predicting wide receiver trajectories in american football. In 2016

IEEE Winter Conference on Applications of Computer Vision (WACV), pages 1–9. IEEE.

Lee, S., Wang, Y., Etukuru, H., Kim, H. J., Shafiullah, N. M. M., and Pinto, L. (2024). Behavior

generation with latent actions. arXiv preprint arXiv:2403.03181.

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end training of deep visuomotor

policies. JMLR, 17(1):1334–1373.

Levine, S., Kumar, A., Tucker, G., and Fu, J. (2020). Offline reinforcement learning: Tutorial, review,

and perspectives on open problems. arXiv preprint arXiv:2005.01643.

Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., and Quillen, D. (2018). Learning hand-eye coordina-

tion for robotic grasping with deep learning and large-scale data collection. The International

Journal of Robotics Research, 37(4-5):421–436.

Levy, A., Konidaris, G., Platt, R., and Saenko, K. (2017). Learning multi-level hierarchies with

hindsight. arXiv preprint arXiv:1712.00948.

Li, X., Liu, M., Zhang, H., Yu, C., Xu, J., Wu, H., Cheang, C., Jing, Y., Zhang, W., Liu, H., et al. (2023).

Vision-language foundation models as effective robot imitators. arXiv preprint arXiv:2311.01378.

Li, Y., Li, S., Sitzmann, V., Agrawal, P., and Torralba, A. (2022). 3d neural scene representations for

visuomotor control. In Conference on Robot Learning, pages 112–123. PMLR.

356

Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter, B., Florence, P., and Zeng, A. (2023). Code

as Policies: Language model programs for embodied control. In icra, pages 9493–9500. IEEE.

Lin, T., Zhang, Y., Li, Q., Qi, H., Yi, B., Levine, S., and Malik, J. (2024). Learning visuotactile skills

with two multifingered hands. arXiv preprint arXiv:2404.16823.

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017). Focal loss for dense object detection.

In Proceedings of the IEEE international conference on computer vision, pages 2980–2988.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. L.

(2014). Microsoft coco: Common objects in context. In European conference on computer vision,

pages 740–755. Springer.

Liu, B., Zhu, Y., Gao, C., Feng, Y., Liu, Q., Zhu, Y., and Stone, P. (2024a). Libero: Benchmarking

knowledge transfer for lifelong robot learning. Advances in Neural Information Processing

Systems, 36.

Liu, H., Li, C., Wu, Q., and Lee, Y. J. (2023a). Visual instruction tuning.

Liu, M., He, T., Xu, M., and Zhang, W. (2020). Energy-based imitation learning. arXiv preprint

arXiv:2004.09395, 33.

Liu, P., Guo, Z., Warke, M., Chintala, S., Paxton, C., Shafiullah, N. M. M., and Pinto, L. (2024b).

Dynamem: Online dynamic spatio-semantic memory for open world mobile manipulation.

Liu, P., Orru, Y., Vakil, J., Paxton, C., Shafiullah, N., and Pinto, L. (2024c). Demonstrating ok-robot:

What really matters in integrating open-knowledge models for robotics. In Robotics: Science

and Systems XX, RSS2024. Robotics: Science and Systems Foundation.

Liu, S., Zeng, Z., Ren, T., Li, F., Zhang, H., Yang, J., Li, C., Yang, J., Su, H., Zhu, J., and Zhang,

L. (2023b). Grounding dino: Marrying dino with grounded pre-training for open-set object

detection.

357

Liu, W., Hermans, T., Chernova, S., and Paxton, C. (2022). Structdiffusion: Object-centric diffusion

for semantic rearrangement of novel objects. arXiv preprint arXiv:2211.04604.

Liu, Z., Bahety, A., and Song, S. (2023c). Reflect: Summarizing robot experiences for failure

explanation and correction. arXiv preprint arXiv:2306.15724.

Liu, Z., Luo, P., Wang, X., and Tang, X. (2018). Large-scale celebfaces attributes (celeba) dataset.

Retrieved August, 15(2018):11.

Luo, J., Dong, P., Wu, J., Kumar, A., Geng, X., and Levine, S. (2023). Action-quantized offline

reinforcement learning for robotic skill learning. In Conference on Robot Learning, pages

1348–1361. PMLR.

Lynch, C., Khansari, M., Xiao, T., Kumar, V., Tompson, J., Levine, S., and Sermanet, P. (2020).

Learning latent plans from play. In Conference on Robot Learning, pages 1113–1132. PMLR.

Lynch, C. and Sermanet, P. (2021). Language conditioned imitation learning over unstructured

data. Robotics: Science and Systems.

Lynch, C., Wahid, A., Tompson, J., Ding, T., Betker, J., Baruch, R., Armstrong, T., and Florence,

P. (2023). Interactive language: Talking to robots in real time. IEEE Robotics and Automation

Letters.

Ma, L., Stückler, J., Kerl, C., and Cremers, D. (2017). Multi-view deep learning for consistent

semantic mapping with rgb-d cameras. In 2017 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 598–605. IEEE.

Ma, Y. J., Liang, W., Wang, G., Huang, D.-A., Bastani, O., Jayaraman, D., Zhu, Y., Fan, L., and

Anandkumar, A. (2023). Eureka: Human-level reward design via coding large language models.

arXiv preprint arXiv:2310.12931.

358

Ma, Y. J., Liang, W., Wang, H.-J., Wang, S., Zhu, Y., Fan, L., Bastani, O., and Jayaraman, D. (2024).

Dreureka: Language model guided sim-to-real transfer. arXiv preprint arXiv:2406.01967.

Ma, Y. J., Sodhani, S., Jayaraman, D., Bastani, O., Kumar, V., and Zhang, A. (2022a). Vip: Towards

universal visual reward and representation via value-implicit pre-training. arXiv preprint

arXiv:2210.00030.

Ma, Y. J., Yan, J., Jayaraman, D., and Bastani, O. (2022b). How far i’ll go: Offline goal-conditioned

reinforcement learning via 𝑓 -advantage regression. arXiv preprint arXiv:2206.03023.

MacQueen, J. et al. (1967). Somemethods for classification and analysis of multivariate observations.

In Proceedings of the fifth Berkeley symposium onmathematical statistics and probability, volume 1,

pages 281–297. Oakland, CA, USA.

Maggio, D., Abate, M., Shi, J., Mario, C., and Carlone, L. (2023). Loc-nerf: Monte carlo localization

using neural radiance fields. In 2023 IEEE International Conference on Robotics and Automation

(ICRA), pages 4018–4025. IEEE.

Maggio, D., Chang, Y., Hughes, N., Trang, M., Griffith, D., Dougherty, C., Cristofalo, E., Schmid, L.,

and Carlone, L. (2024). Clio: Real-time task-driven open-set 3d scene graphs. arXiv preprint

arXiv:2404.13696.

Mahler, J., Liang, J., Niyaz, S., Laskey, M., Doan, R., Liu, X., Ojea, J. A., and Goldberg, K. (2017a).

Dex-Net 2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp

metrics. In Robotics: Science and Systems (RSS).

Mahler, J., Liang, J., Niyaz, S., Laskey, M., Doan, R., Liu, X., Ojea, J. A., and Goldberg, K. (2017b).

Dex-net 2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp

metrics. arXiv preprint arXiv:1703.09312.

359

Mahler, J., Matl, M., Liu, X., Li, A., Gealy, D., and Goldberg, K. (2018). Dex-net 3.0: Computing

robust robot vacuum suction grasp targets in point clouds using a new analytic model and deep

learning.

Majumdar, A., Ajay, A., Zhang, X., Putta, P., Yenamandra, S., Henaff, M., Silwal, S., Mcvay, P.,

Maksymets, O., Arnaud, S., et al. (2024). Openeqa: Embodied question answering in the era of

foundation models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 16488–16498.

Majumdar, A., Shrivastava, A., Lee, S., Anderson, P., Parikh, D., and Batra, D. (2020). Improving

vision-and-language navigation with image-text pairs from the web. In ECCV, pages 259–274.

Springer.

Majumdar, A., Yadav, K., Arnaud, S., Ma, Y. J., Chen, C., Silwal, S., Jain, A., Berges, V.-P., Abbeel, P.,

Malik, J., et al. (2023). Where are we in the search for an artificial visual cortex for embodied

intelligence? arXiv preprint arXiv:2303.18240.

Mandi, Z., Liu, F., Lee, K., and Abbeel, P. (2021). Towards more generalizable one-shot visual

imitation learning. arXiv preprint arXiv:2110.13423.

Mandlekar, A., Booher, J., Spero, M., Tung, A., Gupta, A., Zhu, Y., Garg, A., Savarese, S., and Fei-Fei,

L. (2019). Scaling robot supervision to hundreds of hours with RoboTurk: Robotic manipulation

dataset through human reasoning and dexterity. In 2019 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 1048–1055. IEEE.

Mandlekar, A., Xu, D., Martín-Martín, R., Savarese, S., and Fei-Fei, L. (2020). Learning to Generalize

Across Long-Horizon Tasks from Human Demonstrations. arXiv e-prints, page arXiv:2003.06085.

Mandlekar, A., Xu, D., Wong, J., Nasiriany, S., Wang, C., Kulkarni, R., Fei-Fei, L., Savarese, S., Zhu,

Y., and Martín-Martín, R. (2021). What matters in learning from offline human demonstrations

for robot manipulation. In arXiv preprint arXiv:2108.03298.

360

Mandlekar, A., Zhu, Y., Garg, A., Booher, J., Spero, M., Tung, A., Gao, J., Emmons, J., Gupta, A.,

Orbay, E., et al. (2018). Roboturk: A crowdsourcing platform for robotic skill learning through

imitation. In Conference on Robot Learning, pages 879–893. PMLR.

Mansimov, E. and Cho, K. (2018). Simple nearest neighbor policy method for continuous control

tasks.

Manuelli, L., Li, Y., Florence, P., and Tedrake, R. (2020). Keypoints into the future: Self-supervised

correspondence in model-based reinforcement learning. arXiv preprint arXiv:2009.05085.

Mao, J., Qian, Y., Zhao, H., and Wang, Y. (2023a). Gpt-driver: Learning to drive with gpt. arXiv

preprint arXiv:2310.01415.

Mao, J., Ye, J., Qian, Y., Pavone, M., and Wang, Y. (2023b). A language agent for autonomous

driving. arXiv preprint arXiv:2311.10813.

Margolis, G., Yang, G., Paigwar, K., Chen, T., and Agrawal, P. (2022). Rapid locomotion via

reinforcement learning. The International Journal of Robotics Research, 43:572 – 587.

Marino, K., Rastegari, M., Farhadi, A., andMottaghi, R. (2019). Ok-vqa: A visual question answering

benchmark requiring external knowledge. In Proceedings of the IEEE/cvf conference on computer

vision and pattern recognition, pages 3195–3204.

Matsui, Y., Uchida, Y., Jégou, H., and Satoh, S. (2018). A survey of product quantization. ITE

Transactions on Media Technology and Applications, 6(1):2–10.

Matsuki, H., Murai, R., Kelly, P. H., and Davison, A. J. (2024). Gaussian splatting slam. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 18039–18048.

Mazzaglia, P., Verbelen, T., Dhoedt, B., Lacoste, A., and Rajeswar, S. (2022). Choreographer:

Learning and adapting skills in imagination. arXiv preprint arXiv:2211.13350.

361

McCormac, J., Clark, R., Bloesch, M., Davison, A., and Leutenegger, S. (2018). Fusion++: Volumetric

object-level slam. In 2018 international conference on 3D vision (3DV), pages 32–41. IEEE.

Medeiros, L. (2023). Lang segment anything. https://github.com/luca-medeiros/

lang-segment-anything.

Melnik, A., Büttner, M., Harz, L., Brown, L., Nandi, G. C., PS, A., Yadav, G. K., Kala, R., and Haschke,

R. (2023). Uniteam: Open vocabulary mobile manipulation challenge.

Meltzoff, A. N. and Moore, K. (1983). Newborn infants imitate adult facial gestures. Child

development.

Meltzoff, A. N. andMoore, M. K. (1977). Imitation of facial and manual gestures by human neonates.

Science.

Metz, L., Ibarz, J., Jaitly, N., and Davidson, J. (2017). Discrete sequential prediction of continuous

actions for deep rl. arXiv preprint arXiv:1705.05035.

Michael, E., Summers, T., Wood, T. A., Manzie, C., and Shames, I. (2022). Probabilistic data

association for semantic slam at scale. In 2022 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 4359–4364. IEEE.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R., and Ng, R. (2020).

Nerf: Representing scenes as neural radiance fields for view synthesis. European Conference on

Computer Vision (ECCV), 65(1):99–106.

Min, S. Y., Chaplot, D. S., Ravikumar, P., Bisk, Y., and Salakhutdinov, R. (2021). Film: Following

instructions in language with modular methods. arXiv preprint arXiv:2110.07342.

Minderer, M., Gritsenko, A., and Houlsby, N. (2024). Scaling open-vocabulary object detection.

362

https://github.com/luca-medeiros/lang-segment-anything
https://github.com/luca-medeiros/lang-segment-anything

Minderer, M., Gritsenko, A., Stone, A., Neumann, M., Weissenborn, D., Dosovitskiy, A., Mahendran,

A., Arnab, A., Dehghani, M., Shen, Z., Wang, X., Zhai, X., Kipf, T., and Houlsby, N. (2022). Simple

open-vocabulary object detection with vision transformers. In European Conference on Computer

Vision, pages 728–755. Springer.

Misra, I., Zitnick, C. L., and Hebert, M. (2016). Shuffle and learn: Unsupervised learning using

temporal order verification.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller,

M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep reinforcement

learning. Nature, 518(7540):529.

Mousavian, A., Eppner, C., and Fox, D. (2019a). 6-dof graspnet: Variational grasp generation for

object manipulation.

Mousavian, A., Toshev, A., Fišer, M., Košecká, J., Wahid, A., and Davidson, J. (2019b). Visual

representations for semantic target driven navigation. In 2019 International Conference on

Robotics and Automation (ICRA), pages 8846–8852. IEEE.

Mu, Y., Yao, S., Ding, M., Luo, P., and Gan, C. (2023). EC2: Emergent communication for embodied

control. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 6704–6714.

Mullen Jr, J. F. andManocha, D. (2024). Towards robots that knowwhen they need help: Affordance-

based uncertainty for large language model planners. arXiv preprint arXiv:2403.13198.

Müller, T., Evans, A., Schied, C., and Keller, A. (2022). Instant neural graphics primitives with a

multiresolution hash encoding. ACM Trans. Graph., 41(4):102:1–102:15.

Nachum, O., Gu, S., Lee, H., and Levine, S. (2018). Data-efficient hierarchical reinforcement

learning. In Advances in Neural Information Processing Systems 31: Annual Conference on

363

Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada,

volume 31, pages 3307–3317.

Nachum, O. and Yang, M. (2021). Provable representation learning for imitation with contrastive

fourier features. arXiv preprint arXiv:2105.12272, 34:30100–30112.

Nair, S., Mitchell, E., Chen, K., Savarese, S., Finn, C., et al. (2022a). Learning language-conditioned

robot behavior from offline data and crowd-sourced annotation. In Conference on Robot Learning,

pages 1303–1315. PMLR.

Nair, S., Rajeswaran, A., Kumar, V., Finn, C., and Gupta, A. (2022b). R3m: A universal visual

representation for robot manipulation. arXiv preprint arXiv: Arxiv-2203.12601.

Ng, A. Y., Russell, S. J., et al. (2000). Algorithms for inverse reinforcement learning. In Icml,

volume 1, pages 663–670.

Nguyen, H. and Kemp, C. C. (2014). Autonomously learning to visually detect where manipulation

will succeed. Autonomous Robots, 36:137–152.

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior,

A., and Kavukcuoglu, K. (2016). Wavenet: A generative model for raw audio. arXiv preprint

arXiv:1609.03499.

OpenAI (2023). GPT-4 technical report.

Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V., Fernandez, P., Haziza,

D., Massa, F., El-Nouby, A., et al. (2023). Dinov2: Learning robust visual features without

supervision. arXiv preprint arXiv:2304.07193.

Ortiz, J., Clegg, A., Dong, J., Sucar, E., Novotny, D., Zollhoefer, M., and Mukadam, M. (2022). isdf:

Real-time neural signed distance fields for robot perception. arXiv preprint arXiv:2204.02296.

364

Osa, T., Pajarinen, J., Neumann, G., Bagnell, J. A., Abbeel, P., and Peters, J. (2018). An algorithmic

perspective on imitation learning. arXiv preprint arXiv:1811.06711.

Ozyesil, O., Voroninski, V., Basri, R., and Singer, A. (2017). A survey of structure from motion.

Padalkar, A., Pooley, A., Jain, A., Bewley, A., Herzog, A., Irpan, A., Khazatsky, A., Rai, A., Singh,

A., Brohan, A., et al. (2023). Open x-embodiment: Robotic learning datasets and rt-x models.

arXiv preprint arXiv:2310.08864.

Parashar, P., Vakil, J., Powers, S., and Paxton, C. (2023). Spatial-language attention policies for

efficient robot learning. arXiv preprint arXiv:2304.11235.

Pari, J., Muhammad, N., Arunachalam, S. P., Pinto, L., et al. (2021). The surprising effectiveness of

representation learning for visual imitation. arXiv preprint arXiv:2112.01511.

Park, J., Lim, S., Lee, J., Park, S., Chang, M., Yu, Y., and Choi, S. (2023). Clara: classifying

and disambiguating user commands for reliable interactive robotic agents. IEEE Robotics and

Automation Letters.

Park, Y. and Agrawal, P. (2024). Using apple vision pro to train and control robots.

Paster, K., McIlraith, S., and Ba, J. (2022). You can’t count on luck: Why decision transformers fail

in stochastic environments. arXiv preprint arXiv: Arxiv-2205.15967.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,

N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance deep learning

library. Advances in neural information processing systems, 32:8026–8037.

Pattabiraman, V., Huang, Z., Panozzo, D., Zorin, D., Pinto, L., and Bhirangi, R. (2025). eflesh:

Highly customizable magnetic touch sensing using cut-cell microstructures.

365

Pearce, T., Rashid, T., Kanervisto, A., Bignell, D., Sun, M., Georgescu, R., Macua, S. V., Tan, S. Z.,

Momennejad, I., Hofmann, K., et al. (2023). Imitating human behaviour with diffusion models.

arXiv preprint arXiv:2301.10677.

Peng, X. B., Abbeel, P., Levine, S., and van de Panne, M. (2018). Deepmimic: Example-guided deep

reinforcement learning of physics-based character skills. ACM Transactions on Graphics (TOG),

37(4):1–14.

Peng, X. B., Ma, Z., Abbeel, P., Levine, S., and Kanazawa, A. (2021). Amp: Adversarial motion priors

for stylized physics-based character control. ACM Transactions on Graphics (TOG), 40(4):1–20.

Pertsch, K., Lee, Y., and Lim, J. (2021). Accelerating reinforcement learning with learned skill

priors. In Conference on robot learning, pages 188–204. PMLR.

Piaget, J. (2013). Play, dreams and imitation in childhood, volume 25. Routledge.

Pinto, L. and Gupta, A. (2016). Supersizing self-supervision: Learning to grasp from 50k tries and

700 robot hours. ICRA, pages 3406–3413.

Podell, D., English, Z., Lacey, K., Blattmann, A., Dockhorn, T., Müller, J., Penna, J., and Rombach,

R. (2023). Sdxl: Improving latent diffusion models for high-resolution image synthesis. arXiv

preprint arXiv:2307.01952.

Pomerleau, D. A. (1988). Alvinn: An autonomous land vehicle in a neural network. Advances in

neural information processing systems, 1.

Pomerleau, D. A. (1989). Alvinn: An autonomous land vehicle in a neural network. In Advances in

neural information processing systems, pages 305–313.

Pritzel, A., Uria, B., Srinivasan, S., Puigdomènech, A., Vinyals, O., Hassabis, D., Wierstra, D., and

Blundell, C. (2017). Neural episodic control.

366

Qin, Y., Chen, R., Zhu, H., Song, M., Xu, J., and Su, H. (2019). S4g: Amodal single-view single-shot

se(3) grasp detection in cluttered scenes.

Qiu, R.-Z., Hu, Y., Song, Y., Yang, G., Fu, Y., Ye, J., Mu, J., Yang, R., Atanasov, N., Scherer, S.,

et al. (2024). Learning generalizable feature fields for mobile manipulation. arXiv preprint

arXiv:2403.07563.

Qiu, Y., Wang, C., Wang, W., Henein, M., and Scherer, S. (2022). Airdos: Dynamic slam benefits

from articulated objects. In 2022 International Conference on Robotics and Automation (ICRA),

pages 8047–8053. IEEE.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A.,

Mishkin, P., Clark, J., Krueger, G., and Sutskever, I. (2021). Learning transferable visual models

from natural language supervision. In Meila, M. and Zhang, T., editors, ICML, volume 139 of

Proceedings of Machine Learning Research, pages 8748–8763. PMLR.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language models are

unsupervised multitask learners. OpenAI Blog, 1(8):9.

Radosavovic, I., Xiao, T., James, S., Abbeel, P., Malik, J., and Darrell, T. (2022). Real-world robot

learning with masked visual pre-training. In Conference on Robot Learning.

Rahmatizadeh, R., Abolghasemi, P., Bölöni, L., and Levine, S. (2018). Vision-based multi-task

manipulation for inexpensive robots using end-to-end learning from demonstration. In 2018

IEEE international conference on robotics and automation (ICRA), pages 3758–3765. IEEE.

Rainbow Robotics (2025). Rb-y1 mobile manipulator. Retrieved May 24, 2025, from https:

//rainbowrobotics.github.io/rby1-dev/.

Rajaraman, N., Yang, L., Jiao, J., and Ramchandran, K. (2020). Toward the fundamental limits of

imitation learning. Advances in Neural Information Processing Systems, 33:2914–2924.

367

https://rainbowrobotics.github.io/rby1-dev/
https://rainbowrobotics.github.io/rby1-dev/

Rajeswaran, A., Lowrey, K., Todorov, E., and Kakade, S. (2018). Towards generalization and

simplicity in continuous control.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. (2016). Squad: 100,000+ questions for machine

comprehension of text. arXiv preprint arXiv:1606.05250.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M. (2022). Hierarchical text-conditional

image generation with clip latents. arXiv preprint arXiv:2204.06125.

Ramrakhya, R., Batra, D., Wijmans, E., and Das, A. (2023). Pirlnav: Pretraining with imitation and

rl finetuning for objectnav. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pages 17896–17906.

Rana, K., Haviland, J., Garg, S., Abou-Chakra, J., Reid, I., and Suenderhauf, N. (2023). Sayplan:

Grounding large language models using 3d scene graphs for scalable task planning. arXiv

preprint arXiv:2307.06135.

Rashid, A., Sharma, S., Kim, C. M., Kerr, J., Chen, L. Y., Kanazawa, A., and Goldberg, K. (2023). Lan-

guage embedded radiance fields for zero-shot task-oriented grasping. In 7th Annual Conference

on Robot Learning.

Rasmussen, C. E. and Nickisch, H. (2010). Gaussian processes for machine learning (gpml) toolbox.

The Journal of Machine Learning Research, 11:3011–3015.

Ravi, N., Gabeur, V., Hu, Y.-T., Hu, R., Ryali, C., Ma, T., Khedr, H., Rädle, R., Rolland, C., Gustafson, L.,

Mintun, E., Pan, J., Alwala, K. V., Carion, N., Wu, C.-Y., Girshick, R., Dollár, P., and Feichtenhofer,

C. (2024). Sam 2: Segment anything in images and videos. arXiv preprint arXiv:2408.00714.

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G., Novikov, A., Barth-maron, G., Giménez, M.,

Sulsky, Y., Kay, J., Springenberg, J. T., Eccles, T., Bruce, J., Razavi, A., Edwards, A., Heess, N.,

368

Chen, Y., Hadsell, R., Vinyals, O., Bordbar, M., and de Freitas, N. (2022). A generalist agent.

Transactions on Machine Learning Research.

Reimers, N. and Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-

networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language

Processing. Association for Computational Linguistics.

Ren, A. Z., Dixit, A., Bodrova, A., Singh, S., Tu, S., Brown, N., Xu, P., Takayama, L., Xia, F., Varley, J.,

et al. (2023). Robots that ask for help: Uncertainty alignment for large language model planners.

arXiv preprint arXiv:2307.01928.

Reuss, M., Li, M., Jia, X., and Lioutikov, R. (2023). Goal-conditioned imitation learning using

score-based diffusion policies. arXiv preprint arXiv:2304.02532.

Reynolds, L. and McDonell, K. (2021). Prompt programming for large language models: Beyond

the few-shot paradigm. In Extended Abstracts of the 2021 CHI Conference on Human Factors in

Computing Systems, pages 1–7.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. (2022). High-resolution image

synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pages 10684–10695.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organiza-

tion in the brain. Psychological review, 65(6):386.

Rosinol, A., Leonard, J. J., and Carlone, L. (2023). Nerf-slam: Real-time dense monocular slam

with neural radiance fields. In 2023 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pages 3437–3444. IEEE.

Ross, S., Gordon, G., and Bagnell, D. (2011). A reduction of imitation learning and structured

369

prediction to no-regret online learning. In Proceedings of the fourteenth international conference on

artificial intelligence and statistics, pages 627–635. JMLR Workshop and Conference Proceedings.

Rozenberszki, D., Litany, O., and Dai, A. (2022). Language-grounded indoor 3d semantic segmen-

tation in the wild.

Rudin, N., Hoeller, D., Reist, P., and Hutter, M. (2022). Learning to walk in minutes using massively

parallel deep reinforcement learning. In Faust, A., Hsu, D., and Neumann, G., editors, Proceedings

of the 5th Conference on Robot Learning, volume 164 of Proceedings of Machine Learning Research,

pages 91–100. PMLR.

Russell, S. (1998). Learning agents for uncertain environments. In Proceedings of the eleventh

annual conference on Computational learning theory, pages 101–103.

Sax, A., Zhang, J. O., Emi, B., Zamir, A., Savarese, S., Guibas, L., and Malik, J. (2019). Learning to

navigate using mid-level visual priors. arXiv preprint arXiv:1912.11121.

Schaal, S. (1999). Is imitation learning the route to humanoid robots? Trends in cognitive sciences,

3(6):233–242.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. (2015). Universal value function approximators.

In Bach, F. and Blei, D., editors, Proceedings of the 32nd International Conference on Machine

Learning, volume 37 of Proceedings of Machine Learning Research, pages 1312–1320, Lille, France.

PMLR.

Schmid, L., Abate, M., Chang, Y., and Carlone, L. (2024). Khronos: A unified approach for spatio-

temporal metric-semantic slam in dynamic environments. In Proc. of Robotics: Science and

Systems.

Schonberger, J. L. and Frahm, J.-M. (2016). Structure-from-motion revisited. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 4104–4113.

370

Sermanet, P., Xu, K., and Levine, S. (2016). Unsupervised perceptual rewards for imitation learning.

arXiv preprint arXiv:1612.06699.

Shafiullah, N. M., Cui, Z., Altanzaya, A. A., and Pinto, L. (2022). Behavior transformers: Cloning 𝑘

modes with one stone. Advances in neural information processing systems, 35:22955–22968.

Shafiullah, N. M., Paxton, C., Pinto, L., Chintala, S., and Szlam, A. (2023a). Clip-fields: Weakly

supervised semantic fields for robotic memory. In Robotics: Science and Systems XIX. Robotics:

Science and Systems Foundation.

Shafiullah, N. M. M., Rai, A., Etukuru, H., Liu, Y., Misra, I., Chintala, S., and Pinto, L. (2023b). On

bringing robots home.

Shah, D. and Levine, S. (2022). Viking: Vision-based kilometer-scale navigation with geographic

hints. arXiv preprint arXiv:2202.11271.

Shah, D., Sridhar, A., Dashora, N., Stachowicz, K., Black, K., Hirose, N., and Levine, S. (2023). ViNT:

A Foundation Model for Visual Navigation. In 7th Annual Conference on Robot Learning (CoRL).

Shah, D. and Xie, Q. (2018). Q-learning with nearest neighbors.

Sharma, P., Mohan, L., Pinto, L., and Gupta, A. (2018). Multiple interactions made easy (mime):

Large scale demonstrations data for imitation. arXiv preprint arXiv:1810.07121, pages 906–915.

Sharma, P., Torralba, A., and Andreas, J. (2021). Skill induction and planning with latent language.

arXiv preprint arXiv:2110.01517.

Shen, W., Yang, G., Yu, A., Wong, J., Kaelbling, L. P., and Isola, P. (2023). Distilled feature fields

enable few-shot language-guided manipulation. arXiv preprint arXiv:2308.07931.

Shi, W., Xu, J., Zhu, D., Zhang, G., Wang, X., Li, J., and Zhang, X. (2021). Rgb-d semantic

segmentation and label-oriented voxelgrid fusion for accurate 3d semantic mapping. IEEE

transactions on circuits and systems for video technology, 32(1):183–197.

371

Shorinwa, O., Tucker, J., Smith, A., Swann, A., Chen, T., Firoozi, R., Kennedy, M. D., and Schwager,

M. (2024). Splat-mover: Multi-stage, open-vocabulary robotic manipulation via editable gaussian

splatting. In 8th Annual Conference on Robot Learning.

Shridhar, M., Manuelli, L., and Fox, D. (2022). Cliport: What and where pathways for robotic

manipulation. In Conference on Robot Learning, pages 894–906. PMLR.

Shridhar, M., Manuelli, L., and Fox, D. (2023). Perceiver-Actor: A multi-task transformer for robotic

manipulation. In CoRL, pages 785–799. PMLR.

Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han, W., Mottaghi, R., Zettlemoyer, L., and Fox,

D. (2020). Alfred: A benchmark for interpreting grounded instructions for everyday tasks.

In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages

10740–10749.

Sian, N. E., Yokoi, K., Kajita, S., Kanehiro, F., and Tanie, K. (2004). Whole body teleoperation of a

humanoid robot development of a simple master device using joysticks. Journal of the Robotics

Society of Japan, 22(4):519–527.

Simeonov, A., Du, Y., Tagliasacchi, A., Tenenbaum, J. B., Rodriguez, A., Agrawal, P., and Sitzmann,

V. (2022). Neural descriptor fields: Se (3)-equivariant object representations for manipulation.

In 2022 International Conference on Robotics and Automation (ICRA), pages 6394–6400. IEEE.

Singh, A., Liu, H., Zhou, G., Yu, A., Rhinehart, N., and Levine, S. (2020). Parrot: Data-driven

behavioral priors for reinforcement learning. arXiv preprint arXiv:2011.10024.

Singh, I., Blukis, V., Mousavian, A., Goyal, A., Xu, D., Tremblay, J., and Fox, D. (2023). Progprompt:

Generating situated robot task plans using large language models. In 2023 IEEE International

Conference on Robotics and Automation (ICRA), page 11523.

372

Sitzmann, V., Zollhöfer, M., and Wetzstein, G. (2019). Scene representation networks: Continuous

3d-structure-aware neural scene representations. Advances in Neural Information Processing

Systems, 32.

Snell, J., Swersky, K., and Zemel, R. S. (2017). Prototypical networks for few-shot learning.

Somasundaram, K., Dong, J., Tang, H., Straub, J., Yan, M., Goesele, M., Engel, J. J., De Nardi, R., and

Newcombe, R. (2023). Project aria: A new tool for egocentric multi-modal ai research. arXiv

preprint arXiv:2308.13561.

Song, C. H., Wu, J., Washington, C., Sadler, B. M., Chao, W.-L., and Su, Y. (2023). Llm-planner:

Few-shot grounded planning for embodied agents with large language models. In Proceedings

of the IEEE/CVF International Conference on Computer Vision, pages 2998–3009.

Song, S., Lim, H., Lee, A. J., and Myung, H. (2022). Dynavins: a visual-inertial slam for dynamic

environments. IEEE Robotics and Automation Letters, 7(4):11523–11530.

Song, S., Zeng, A., Lee, J., and Funkhouser, T. (2020). Grasping in the wild: Learning 6dof

closed-loop grasping from low-cost demonstrations. IEEE Robotics and Automation Letters,

5(3):4978–4985.

Song, Z., Zhang, G., Xie, J., Liu, L., Jia, C., Xu, S., and Wang, Z. (2024). Voxelnextfusion: A simple,

unified and effective voxel fusion framework for multi-modal 3d object detection. arXiv preprint

arXiv:2401.02702.

Sridhar, A., Shah, D., Glossop, C., and Levine, S. (2024). Nomad: Goal masked diffusion policies for

navigation and exploration. In 2024 IEEE International Conference on Robotics and Automation

(ICRA), pages 63–70. IEEE.

Stadie, B. C., Abbeel, P., and Sutskever, I. (2017). Third-person imitation learning. ICLR.

373

Stolle, M. and Precup, D. (2002). Learning options in reinforcement learning. In International

Symposium on abstraction, reformulation, and approximation, pages 212–223. Springer.

Stone, A., Xiao, T., Lu, Y., Gopalakrishnan, K., Lee, K.-H., Vuong, Q., Wohlhart, P., Kirmani, S.,

Zitkovich, B., Xia, F., Finn, C., and Hausman, K. (2023). Open-world object manipulation using

pre-trained vision-language model. In arXiv preprint.

Stooke, A., Lee, K., Abbeel, P., and Laskin, M. (2021). Decoupling representation learning from

reinforcement learning. In International Conference on Machine Learning, pages 9870–9879.

PMLR.

Sucar, E., Liu, S., Ortiz, J., and Davison, A. J. (2021). imap: Implicit mapping and positioning in

real-time. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages

6229–6238.

Sundermeyer, M., Mousavian, A., Triebel, R., and Fox, D. (2021). Contact-graspnet: Efficient 6-dof

grasp generation in cluttered scenes. In 2021 IEEE International Conference on Robotics and

Automation (ICRA), pages 13438–13444. IEEE.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Sutton, R. S., Precup, D., and Singh, S. (1999). Between mdps and semi-mdps: A framework for

temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211.

Tavakoli, A., Pardo, F., and Kormushev, P. (2018). Action branching architectures for deep

reinforcement learning. In Proceedings of the aaai conference on artificial intelligence, volume 32.

Team, G. R., Abeyruwan, S., Ainslie, J., Alayrac, J.-B., Arenas, M. G., Armstrong, T., Balakrishna, A.,

Baruch, R., Bauza, M., Blokzijl, M., et al. (2025a). Gemini robotics: Bringing ai into the physical

world. arXiv preprint arXiv:2503.20020.

Team, O. (2024). Gpt-4 technical report.

374

Team, O. M., Ghosh, D., Walke, H., Pertsch, K., Black, K., Mees, O., Dasari, S., Hejna, J., Kreiman, T.,

Xu, C., et al. (2024). Octo: An open-source generalist robot policy. arXiv preprint arXiv:2405.12213.

Team, T. L., Barreiros, J., Beaulieu, A., Bhat, A., Cory, R., Cousineau, E., Dai, H., Fang, C.-H.,

Hashimoto, K., Irshad, M. Z., Itkina, M., Kuppuswamy, N., Lee, K.-H., Liu, K., McConachie, D.,

McMahon, I., Nishimura, H., Phillips-Grafflin, C., Richter, C., Shah, P., Srinivasan, K., Wulfe,

B., Xu, C., Zhang, M., Alspach, A., Angeles, M., Arora, K., Guizilini, V. C., Castro, A., Chen, D.,

Chu, T.-S., Creasey, S., Curtis, S., Denitto, R., Dixon, E., Dusel, E., Ferreira, M., Goncalves, A.,

Gould, G., Guoy, D., Gupta, S., Han, X., Hatch, K., Hathaway, B., Henry, A., Hochsztein, H.,

Horgan, P., Iwase, S., Jackson, D., Karamcheti, S., Keh, S., Masterjohn, J., Mercat, J., Miller, P.,

Mitiguy, P., Nguyen, T., Nimmer, J., Noguchi, Y., Ong, R., Onol, A., Pfannenstiehl, O., Poyner, R.,

Rocha, L. P. M., Richardson, G., Rodriguez, C., Seale, D., Sherman, M., Smith-Jones, M., Tago,

D., Tokmakov, P., Tran, M., Hoorick, B. V., Vasiljevic, I., Zakharov, S., Zolotas, M., Ambrus, R.,

Fetzer-Borelli, K., Burchfiel, B., Kress-Gazit, H., Feng, S., Ford, S., and Tedrake, R. (2025b). A

careful examination of large behavior models for multitask dexterous manipulation.

Thomason, J., Shridhar, M., Bisk, Y., Paxton, C., and Zettlemoyer, L. (2022). Language grounding

with 3d objects. In Conference on Robot Learning, pages 1691–1701. PMLR.

Tomasello, M., Savage-Rumbaugh, S., and Kruger, A. C. (1993). Imitative learning of actions on

objects by children, chimpanzees, and enculturated chimpanzees. Child development, 64(6):1688–

1705.

Torabi, F., Warnell, G., and Stone, P. (2018). Behavioral cloning from observation. arXiv preprint

arXiv:1805.01954.

Tschernezki, V., Laina, I., Larlus, D., and Vedaldi, A. (2022). Neural feature fusion fields: 3d

distillation of self-supervised 2d image representations. arXiv preprint arXiv:2209.03494, pages

443–453.

375

Uppal, S., Agarwal, A., Xiong, H., Shaw, K., and Pathak, D. (2024). Spin: Simultaneous perception,

interaction and navigation.

Urakami, Y., Hodgkinson, A., Carlin, C., Leu, R., Rigazio, L., and Abbeel, P. (2019). Doorgym: A

scalable door opening environment and baseline agent. CoRR, abs/1908.01887.

Van Den Oord, A., Vinyals, O., et al. (2017). Neural discrete representation learning. Advances in

neural information processing systems, 30.

Vasuki, A. and Vanathi, P. (2006). A review of vector quantization techniques. IEEE Potentials,

25(4):39–47.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin,

I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems 30:

Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long

Beach, CA, USA, volume 30, pages 5998–6008.

Veeriah, V., Oh, J., and Singh, S. (2018). Many-goals reinforcement learning. arXiv preprint

arXiv:1806.09605.

Virgolino Soares, J. C., Medeiros, V. S., Abati, G. F., Becker, M., Caurin, G., Gattass, M., and Meggi-

olaro, M. A. (2023). Visual localization and mapping in dynamic and changing environments.

Journal of Intelligent & Robotic Systems, 109(4):95.

Vora, S., Radwan, N., Greff, K., Meyer, H., Genova, K., Sajjadi, M. S., Pot, E., Tagliasacchi, A., and

Duckworth, D. (2021). Nesf: Neural semantic fields for generalizable semantic segmentation of

3d scenes. arXiv preprint arXiv:2111.13260.

WAGO Kontakttechnik GmbH & Co. KG (2025). Wago — electrical interconnection and automation

technology. Retrieved May 24, 2025, from https://www.wago.com.

376

https://www.wago.com

Wake, N., Kanehira, A., Sasabuchi, K., Takamatsu, J., and Ikeuchi, K. (2023). Gpt-4v(ision) for

robotics: Multimodal task planning from human demonstration. arXiv preprint arXiv:2311.12015.

Walke, H., Black, K., Lee, A., Kim, M. J., Du, M., Zheng, C., Zhao, T., Hansen-Estruch, P., Vuong,

Q., He, A., Myers, V., Fang, K., Finn, C., and Levine, S. (2023). Bridgedata v2: A dataset for robot

learning at scale.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu, Y., Fan, L., and Anandkumar, A. (2023a).

Voyager: An open-ended embodied agent with large language models. arXiv preprint arXiv:

Arxiv-2305.16291.

Wang, H., Wang, W., Liang, W., Xiong, C., and Shen, J. (2021). Structured scene memory for

vision-language navigation. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 8455–8464.

Wang, J. M., Fleet, D. J., and Hertzmann, A. (2007). Gaussian process dynamical models for human

motion. IEEE transactions on pattern analysis and machine intelligence, 30(2):283–298.

Wang, Y., Chao, W.-L., Weinberger, K. Q., and van der Maaten, L. (2019). Simpleshot: Revisiting

nearest-neighbor classification for few-shot learning.

Wang, Y., Li, Z., Zhang, M., Driggs-Campbell, K., Wu, J., Fei-Fei, L., and Li, Y. (2023b). D3 fields:

Dynamic 3d descriptor fields for zero-shot generalizable robotic manipulation. arXiv preprint

arXiv:2309.16118.

Wei, B., Ren, M., Zeng, W., Liang, M., Yang, B., and Urtasun, R. (2021). Perceive, attend, and drive:

Learning spatial attention for safe self-driving. In 2021 IEEE International Conference on Robotics

and Automation (ICRA), pages 4875–4881. IEEE.

Werby, A., Huang, C., Büchner, M., Valada, A., and Burgard, W. (2024). Hierarchical

377

open-vocabulary 3d scene graphs for language-grounded robot navigation. arXiv preprint

arXiv:2403.17846.

Wong, J., Tung, A., Kurenkov, A., Mandlekar, A., Fei-Fei, L., Savarese, S., and Martín-Martín, R.

(2022). Error-aware imitation learning from teleoperation data for mobile manipulation. In

Conference on Robot Learning, pages 1367–1378. PMLR.

Wu, C., Huang, L., Zhang, Q., Li, B., Ji, L., Yang, F., Sapiro, G., and Duan, N. (2021). Godiva:

Generating open-domain videos from natural descriptions. arXiv preprint arXiv:2104.14806.

Wu, J., Chong, W., Holmberg, R., Prasad, A., Gao, Y., Khatib, O., Song, S., Rusinkiewicz, S., and

Bohg, J. (2024). Tidybot++: An open-source holonomic mobile manipulator for robot learning.

In Conference on Robot Learning.

Wu, P., Shentu, Y., Yi, Z., Lin, X., and Abbeel, P. (2023). Gello: A general, low-cost, and intuitive

teleoperation framework for robot manipulators. arXiv preprint arXiv:2309.13037.

Wu, Y., Tucker, G., and Nachum, O. (2019). Behavior regularized offline reinforcement learning.

arXiv preprint arXiv:1911.11361.

Wu, Z., Xiong, Y., Yu, S., and Lin, D. (2018). Unsupervised feature learning via non-parametric

instance-level discrimination.

Wulfmeier, M., Ondruska, P., and Posner, I. (2015). Maximum entropy deep inverse reinforcement

learning. arXiv preprint arXiv:1507.04888.

Xiao, T., Radosavovic, I., Darrell, T., and Malik, J. (2022). Masked visual pre-training for motor

control. arXiv preprint arXiv:2203.06173.

Xie, Y., Takikawa, T., Saito, S., Litany, O., Yan, S., Khan, N., Tombari, F., Tompkin, J., Sitzmann, V.,

and Sridhar, S. (2022). Neural fields in visual computing and beyond. In Computer Graphics

Forum, volume 41, pages 641–676. Wiley Online Library.

378

Yadav, K., Ramrakhya, R., Ramakrishnan, S. K., Gervet, T., Turner, J., Gokaslan, A., Maestre,

N., Chang, A. X., Batra, D., Savva, M., et al. (2023). Habitat-matterport 3d semantics dataset.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

4927–4936.

Yan, C., Qu, D., Xu, D., Zhao, B., Wang, Z., Wang, D., and Li, X. (2024a). Gs-slam: Dense visual

slam with 3d gaussian splatting. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 19595–19604.

Yan, Z., Li, S., Wang, Z., Wu, L., Wang, H., Zhu, J., Chen, L., and Liu, J. (2024b). Dynamic open-

vocabulary 3d scene graphs for long-term language-guided mobile manipulation. arXiv preprint

arXiv:2410.11989.

Yang, J., Chen, X., Qian, S., Madaan, N., Iyengar, M., Fouhey, D. F., and Chai, J. (2023). Llm-grounder:

Open-vocabulary 3d visual grounding with large language model as an agent.

Yang, J., Glossop, C., Bhorkar, A., Shah, D., Vuong, Q., Finn, C., Sadigh, D., and Levine, S. (2024a).

Pushing the limits of cross-embodiment learning for manipulation and navigation.

Yang, R., Lu, Y., Li, W., Sun, H., Fang, M., Du, Y., Li, X., Han, L., and Zhang, C. (2022). Rethinking

goal-conditioned supervised learning and its connection to offline rl. Iclr.

Yang, S., Liu, M., Qin, Y., Ding, R., Li, J., Cheng, X., Yang, R., Yi, S., and Wang, X. (2024b). Ace: A

cross-platform visual-exoskeletons system for low-cost dexterous teleoperation.

Yarats, D., Fergus, R., Lazaric, A., and Pinto, L. (2021a). Mastering visual continuous control:

Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645.

Yarats, D., Fergus, R., Lazaric, A., and Pinto, L. (2021b). Reinforcement learning with prototypical

representations. arXiv preprint arXiv:2102.11271.

379

Yenamandra, S., Ramachandran, A., Khanna, M., Yadav, K., Chaplot, D. S., Chhablani, G., Clegg, A.,

Gervet, T., Jain, V., Partsey, R., Ramrakhya, R., Szot, A., Yang, T.-Y., Edsinger, A., Kemp, C., Shah,

B., Kira, Z., Batra, D., Mottaghi, R., Bisk, Y., and Paxton, C. (2023a). The homerobot open vocab

mobile manipulation challenge. In Thirty-seventh Conference on Neural Information Processing

Systems: Competition Track.

Yenamandra, S., Ramachandran, A., Yadav, K., Wang, A., Khanna, M., Gervet, T., Yang, T.-Y., Jain,

V., Clegg, A. W., Turner, J., et al. (2023b). Homerobot: Open-vocabulary mobile manipulation.

arXiv preprint arXiv:2306.11565.

Yokoyama, N., Clegg, A., Truong, J., Undersander, E., Yang, T.-Y., Arnaud, S., Ha, S., Batra, D., and

Rai, A. (2023). ASC: Adaptive skill coordination for robotic mobile manipulation. arXiv preprint

arXiv:2304.00410.

Yokoyama, N., Ha, S., and Batra, D. (2021). Success weighted by completion time: A dynamics-

aware evaluation criteria for embodied navigation. In 2021 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 1562–1569.

Yokoyama, N., Ha, S., Batra, D., Wang, J., and Bucher, B. (2024). Vlfm: Vision-language frontier

maps for zero-shot semantic navigation. In 2024 IEEE International Conference on Robotics and

Automation (ICRA), pages 42–48. IEEE.

Young, S., Gandhi, D., Tulsiani, S., Gupta, A., Abbeel, P., and Pinto, L. (2020). Visual imitation

made easy. arXiv e-prints, pages arXiv–2008.

Young, S., Pari, J., Abbeel, P., and Pinto, L. (2021). Playful interactions for representation learning.

arXiv preprint arXiv:2107.09046.

Yu, C., Liu, Z., Liu, X.-J., Xie, F., Yang, Y., Wei, Q., and Fei, Q. (2018). Ds-slam: A semantic visual

slam towards dynamic environments. In 2018 IEEE/RSJ international conference on intelligent

robots and systems (IROS), pages 1168–1174. IEEE.

380

Yu, K.-T., Bauza, M., Fazeli, N., and Rodriguez, A. (2016). More than a million ways to be pushed. a

high-fidelity experimental dataset of planar pushing. In 2016 IEEE/RSJ international conference

on intelligent robots and systems (IROS), pages 30–37. IEEE.

Yu, P., Guo, C., Liu, y., and Zhang, H. (2021). Fusing semantic segmentation and object detection

for visual slam in dynamic scenes. In Proceedings of the 27th ACM Symposium on Virtual Reality

Software and Technology, pages 1–7.

Zeghidour, N., Luebs, A., Omran, A., Skoglund, J., and Tagliasacchi, M. (2021). Soundstream:

An end-to-end neural audio codec. IEEE/ACM Transactions on Audio, Speech, and Language

Processing, 30:495–507.

Zeng, A., Attarian, M., Ichter, B., Choromanski, K., Wong, A., Welker, S., Tombari, F., Purohit,

A., Ryoo, M., Sindhwani, V., et al. (2022). Socratic models: Composing zero-shot multimodal

reasoning with language. arXiv preprint arXiv:2204.00598.

Zeng, A., Florence, P., Tompson, J., Welker, S., Chien, J., Attarian, M., Armstrong, T., Krasin, I.,

Duong, D., Sindhwani, V., et al. (2020). Transporter networks: Rearranging the visual world for

robotic manipulation. In Conference on Robot Learning.

Zeng, K.-H., Zhang, Z., Ehsani, K., Hendrix, R., Salvador, J., Herrasti, A., Girshick, R., Kembhavi,

A., and Weihs, L. (2024). Poliformer: Scaling on-policy rl with transformers results in masterful

navigators. arXiv preprint arXiv:2406.20083.

Zeng, W., Luo, W., Suo, S., Sadat, A., Yang, B., Casas, S., and Urtasun, R. (2019). End-to-end

interpretable neural motion planner. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 8660–8669.

Zhai, X., Mustafa, B., Kolesnikov, A., and Beyer, L. (2023). Sigmoid loss for language image

pre-training.

381

Zhan, A., Zhao, P., Pinto, L., Abbeel, P., and Laskin, M. (2020). A framework for efficient robotic

manipulation. arXiv preprint arXiv:2012.07975.

Zhang, C., Meng, X., Qi, D., and Chirikjian, G. S. (2024). Rail: Robot affordance imagination with

large language models. arXiv preprint arXiv:2403.19369.

Zhang, L., Wei, L., Shen, P., Wei, W., Zhu, G., and Song, J. (2018a). Semantic slam based on object

detection and improved octomap. IEEE Access, 6:75545–75559.

Zhang, T., McCarthy, Z., Jow, O., Lee, D., Chen, X., Goldberg, K., and Abbeel, P. (2018b). Deep

imitation learning for complex manipulation tasks from virtual reality teleoperation. In ICRA,

pages 5628–5635. IEEE.

Zhao, L., Yang, T., Yang, Y., and Yu, P. (2023a). A wearable upper limb exoskeleton for intuitive

teleoperation of anthropomorphic manipulators. Machines, 11(4):441.

Zhao, R., Sun, X., and Tresp, V. (2019). Maximum entropy-regularized multi-goal reinforcement

learning. In Proceedings of the 36th International Conference on Machine Learning, ICML 2019,

9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning

Research, pages 7553–7562. PMLR, PMLR.

Zhao, T. Z., Kumar, V., Levine, S., and Finn, C. (2023b). Learning Fine-Grained Bimanual Manipula-

tion with Low-Cost Hardware. In Proceedings of Robotics: Science and Systems, Daegu, Republic

of Korea.

Zhao, X., Agrawal, H., Batra, D., and Schwing, A. G. (2021). The surprising effectiveness of

visual odometry techniques for embodied pointgoal navigation. In Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV), pages 16127–16136.

Zheng, R., Cheng, C.-A., Daumé III, H., Huang, F., and Kolobov, A. (2024). Prise: Llm-style sequence

382

compression for learning temporal action abstractions in control. In Forty-first International

Conference on Machine Learning.

Zhi, S., Sucar, E., Mouton, A., Haughton, I., Laidlow, T., and Davison, A. J. (2021). ilabel: Interactive

neural scene labelling. arXiv preprint arXiv:2111.14637.

Zhou, H., Ding, M., Peng, W., Tomizuka, M., Shao, L., and Gan, C. (2023a). Generalizable long-

horizon manipulations with large language models. arXiv preprint arXiv:2310.02264.

Zhou, W., Jiang, B., Yang, F., Paxton, C., and Held, D. (2023b). Learning hybrid actor-critic maps

for 6d non-prehensile manipulation. arXiv preprint arXiv:2305.03942.

Zhou, X., Girdhar, R., Joulin, A., Krähenbühl, P., and Misra, I. (2022). Detecting twenty-thousand

classes using image-level supervision. arXiv preprint arXiv:2201.02605, pages 350–368.

Zhu, X., Tian, R., Xu, C., Huo, M., Zhan, W., Tomizuka, M., and Ding, M. (2023). Fanucmanipulation:

A dataset for learning-based manipulation with fanuc mate 200iD robot. https://sites.

google.com/berkeley.edu/fanuc-manipulation.

Zhu, Y., Wang, Z., Merel, J., Rusu, A. A., Erez, T., Cabi, S., Tunyasuvunakool, S., Kramár, J., Hadsell,

R., de Freitas, N., and Heess, N. (2018). Reinforcement and imitation learning for diverse

visuomotor skills. CoRR, abs/1802.09564.

Zitkovich, B., Yu, T., Xu, S., Xu, P., Xiao, T., Xia, F., Wu, J., Wohlhart, P., Welker, S., Wahid, A.,

Vuong, Q., Vanhoucke, V., Tran, H., Soricut, R., Singh, A., Singh, J., Sermanet, P., Sanketi, P. R.,

Salazar, G., Ryoo, M. S., Reymann, K., Rao, K., Pertsch, K., Mordatch, I., Michalewski, H., Lu, Y.,

Levine, S., Lee, L., Lee, T.-W. E., Leal, I., Kuang, Y., Kalashnikov, D., Julian, R., Joshi, N. J., Irpan,

A., brian ichter, Hsu, J., Herzog, A., Hausman, K., Gopalakrishnan, K., Fu, C., Florence, P., Finn,

C., Dubey, K. A., Driess, D., Ding, T., Choromanski, K. M., Chen, X., Chebotar, Y., Carbajal, J.,

Brown, N., Brohan, A., Arenas, M. G., and Han, K. (2023). Rt-2: Vision-language-action models

transfer web knowledge to robotic control. In CoRL.

383

https://sites.google.com/berkeley.edu/fanuc-manipulation
https://sites.google.com/berkeley.edu/fanuc-manipulation

Ziv, A., Gat, I., Lan, G. L., Remez, T., Kreuk, F., Défossez, A., Copet, J., Synnaeve, G., and Adi, Y.

(2024). Masked audio generation using a single non-autoregressive transformer. arXiv preprint

arXiv:2401.04577.

384

	Dedication
	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	List of Appendices
	Introduction
	Learning Representations for Scalable Policy Learning
	Mechanisms for Generalizable Scaling In-the-wild
	Robotic Memory for Long-horizon Intelligent Behavior
	Some Words about Evaluation

	I Representations for Perception and Control
	Surprising Effectiveness of Representation Learning for Behavior Cloning: Visual Imitation with Nearest Neighbors
	Introduction
	Related Work
	Approach
	Experimental Evaluation
	Limitations

	Cloning k Behavior Modes with One Model: Behavior Transformers
	Introduction
	Behavior Transformers
	Experiments
	Related Work
	Limitations

	Conditional Behavior Generation from Uncurated Robot Data: Conditional Behavior Transformers
	Introduction
	Background and Preliminaries
	Approach
	C-BeT on Simulated Benchmarks
	C-BeT on Real-World Robotic Manipulation
	Related Work
	Limitations

	Behavior Generation with Latent Actions: Vector-Quantized Behavior Transformers
	Introduction
	Background and Preliminaries
	Vector-Quantized Behavior Transformers
	Experiments
	Related Works
	Limitations

	II Mechanisms for Generalizable Scaling
	On Bringing Robots Home with Hardware and Efficient Algorithms
	Introduction
	Technical Components and Method
	Experiments
	Open Problems and Future Research
	Reproducibility and Call for Collaboration

	General Policies for Zero-Shot Deployment in New Environments: Robot Utility Models
	Introduction
	Robot Utility Models
	Capabilities of Robot Utility Models
	Related works
	Limitations

	Building an Open-source Bimanual Mobile Robot for Generalizable Robotics: Cone-E
	Introduction
	Hardware Design
	Applications of Cone-E
	Limitations

	III Semantic Memory for Long-horizon Intelligence
	Weakly Supervised Semantic Fields for Robotic Memory: CLIP-Fields
	Introduction
	Related work
	Background
	Approach
	Experimental Evaluation
	Limitations

	Integrating Open-knowledge Models for Robotics: OK-Robot
	Introduction
	Technical Components and Method
	Experiments
	Related Works
	Limitations, Open Problems and Requests for Research

	Online Dynamic Spatio-Semantic Memory for Open World Mobile Manipulation: DynaMem
	Introduction
	Related Works
	Method
	Experiments
	Limitations

	Discussion
	Appendices
	Appendix for Visual Imitation with Nearest Neighbors
	VINN Pytorch Pseudocode
	Network Architectures and Training Details
	Robot details
	Demonstration Collection Details

	Appendix for Behavior Transformers
	Environment and Dataset Details
	Implementation Details and Hyperparameters
	Ablation studies

	Appendix for Conditional Behavior Transformers
	Behavior Transformers
	Implementation Details
	Robot Environment Demonstration Trajectories
	Simulated Environment Rollout Trajectories

	Appendix for Vector-Quantized Behavior Transformers
	Experimental and Dataset
	Additional Results
	Implementation Details

	Appendix for Robot Utility Models
	Experiment Details
	Hardware and Physical Setup

	Appendix for CLIP-Fields
	Training details
	Real world experiment logs

	Appendix for OK Robot
	Description of alternate system components
	Scannet200 text queries
	Sample objects from our trials
	Sample home environments from our trials
	List of home experiments

	Bibliography

