
Understanding Inductive Bias in the Era of

Large-Scale Pretraining with Scientific Data

by

Nathaniel Gruver

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May, 2025

Professor Andrew Gordon Wilson

© Nathaniel Gruver

All rights reserved, 2025

Yes, there were times, I’m sure you knew

When I bit off more than I could chew

But through it all, when there was doubt

I ate it up and spit it out

I faced it all, and I stood tall

And did it my way

–Frank Sinatra

Dedication

For my family. You taught me to love learning, and you were always there when I needed you.

iv

Acknowledgements

First, to Andrew, thank you for seeing the potential in me and for pushing me to be

a better researcher. I benefited from your drive to work on fundamental topics and your

passion for clear writing. You maintain a strong culture of collaboration in your lab, and it

was a consistent source of support and inspiration.

To Kyunghyun, thank you for always lending your ear and wisdom in difficult moments.

You are a special blend of magnanimous and pragmatic. Our meetings made me feel energized

about research, especially when they touched on non-autoregressive sequence models, which

you championed before they were fashionable.

Among my peers, I probably spent the most time with, and subsequently learned the most

from, Marc Finzi, Sam Stanton, and Alan Amin. Sam and Marc helped me get unstuck early

in PhD and helped me gain confidence. It would have looked different without them. Marc,

thank you for countless fun conversations and brainstorming sessions. You have an infectious

curiosity about almost everything, and you are a kind and generous person. Sam, the nights

we spent manically messaging over slack were some of the most fun in the PhD. You’re a

deep thinker, a straight-shooter, and a reliable friend. Lastly, to Alan, I’m so grateful you

joined the group for the last two years of my PhD. It wouldn’t have been the same without

all the laughs we shared in your bathroom-adjacent office. You’re laudable for your research

talent but also just for being fun.

During my time at NYU, I also worked with many other great collaborators, includ-

v

ing Greg Benton, Wesley Maddox, Shikai Qiu, Polina Kirichenko, Pavel Izmailov, Sanyam

Kapoor, Micah Goldblum, Lily Li, and Yilun Kuang. Greg, thanks for being my officemate

in my third year. You made that year much more fun and you imparted real wisdom on

several occasions. Wesley, thank you for bringing consistent contributions and upbeat energy

to our projects. Shikai, it would have been fun to work together more. The summer we spent

chatting over dinner at FAIR was one of my favorites during the PhD. Polina, thank you for

offering empathy during difficult moments in my first year in the PhD. Pavel, thank you for

all the pick-up basketball and sage advice. Sanyam, sharing a laugh with you throughout the

PhD was always a relief, especially when we were navigating a rocky start during COVID.

Micah, thank you for always speaking your mind in the group and for your encouragement.

Lily and Yilun, thanks for your consistent hard work and for keeping me company in the

office the last two years. To Sanae Lotfi, Andres Potapcynski, Fred Lu, and Ethan Baron,

I’m sad we didn’t end up writing a paper together, but I’m grateful for a few heart-to-hearts

we shared and I’m glad we crossed paths.

During internships and collaborations with FAIR, Prescient Design and Together, I was

also lucky to collaborate with Nathan Frey, Zack Ulissi, Larry Zitnick, Ben Athiwaratkun,

and Alex Rives. All of you were extremely encouraging of me and my career at one time or

another and it left a positive mark. All of you are talented researchers but also good people.

Outside of research, I wouldn’t have made it through without the support of my friends

and family. Mom and Dad, thank you for always picking up the phone and for always

giving me the tough love I needed. Alex, thank you for loving my demon mode but also for

encouraging my better angels and reminding me to follow my heart. Ben, Avery, and Sabar,

the first two years we lived together were such a joyful introduction to New York. That was

a unique environment driven by curiosity and adventure. Ben, thank you for putting up with

me when we first moved, for countless long conversations, and for being a good influence

in myriad ways. Avery, I’m grateful for our many heart-to-hearts, whether at night in the

vi

New York apartments, in a Kayak in Florida, or over barbecue in Osaka. You’re a unique

mix of chaotic and lawful energy and a wellspring of wisdom in your best moments. Sabar,

our shared studio space was a refuge for me in my second and third year. Thank you for

jumping headlong into that adventure and many others we’ve shared over the years.

I’m also grateful for my Boston friends (Jack, Brian, Ilya, Pete, and Ian), who kept me

company my first summer back on the East Coast and on many trips since, Stanford friends

that kept in touch (Derek W., Mike, Allan, Andrew N., Andrew B., Alvin, Alka, Sarah,

Sherman), and recent friends from MIT (Hannah, Nikos, Derek L., Sharut, and Victor) who

let me tag along in Budapest, Vienna, and Vancouver. Over the years, New York itself was

also a great source of friends, including Annie, Leo, and Nisa. Lastly, I want to thank a few

musicians who formed the theme track for my PhD: Donny Hathaway, Erykah Badu, Jordan

Rakei, Bonnie Raitt, Lianne La Havas, Aphex Twin, Jon Hopkins, Q-Tip, Kendrick Lamar,

Little Simz, J Dilla, Caroline Polachek, Geese, and, of course, Joni Mitchell.

vii

Abstract

Inductive biases are crucial for machine learning in data-scarce settings, but their optimal

role in data-rich regimes remains poorly understood. This thesis challenges the conventional

wisdom that strict architectural constraints are necessary for modeling numerical data, par-

ticularly in physics and chemistry. Through systematic empirical studies, I demonstrate

that data-driven approaches can effectively learn both physical symmetries and broader nu-

merical patterns without explicit architectural constraints. First, I show that transformer

models trained with data augmentation can acquire stronger equivariance properties than

convolutional neural networks, despite lacking built-in symmetry constraints. Building on

this insight, I investigate whether pretrained language models can learn generalizable nu-

merical capabilities from text alone. By studying the behavior of language models in many

settings, I demonstrate that text pretraining induces a preference for simple functions that

serves as a powerful inductive bias across numerical domains. This emergent bias enables

large language models to outperform specialized architectures on benchmark tasks in time

series forecasting and 3D structure prediction, achieving state-of-the-art results with mini-

mal task-specific adaptation. However, these benefits do not extend universally - I identify

molecular property prediction as a key limitation and trace this failure to fundamental con-

straints in discrete token representations. This work provides a comprehensive framework

for understanding when learned biases can replace architectural constraints in numerical

domains, with important implications for model design in scientific machine learning.

viii

Contents

Dedication iv

Acknowledgments v

Abstract viii

List of Figures xvi

List of Tables xxxiii

List of Appendices xxxv

1 Introduction 1

I Distilling Architecture Constraints for Learning Symmetric Func-
tions 4

2 Deconstructing the Inductive Biases of Hamiltonian Neural Networks 6

2.1 Introduction . 6

2.2 Related Work . 8

2.3 Background . 9

2.4 Deconstructing Hamiltonian neural networks 10

2.4.1 Energy conservation . 10

ix

2.4.2 Symplectic vector fields . 12

2.4.3 Second-order structure . 14

2.4.4 Functional complexity . 16

2.5 Distilling the minimal inductive biases . 17

2.6 Conclusion . 20

3 The Lie Derivative for Measuring Learned Equivariance 21

3.1 Introduction . 21

3.2 Background . 22

3.3 Image classification and translational equivariance 23

3.3.1 Continuous signals and aliasing . 23

3.4 Related Work . 25

3.5 The Lie derivative . 26

3.5.1 Mathematical formulation . 26

3.5.2 Efficient implementation . 28

3.5.3 Alternative metrics . 29

3.6 Layer-wise effects on equivariance . 29

3.7 Trends in learned equivariance . 32

3.7.1 Methodology . 32

3.7.2 Equivariance across architectures . 33

3.7.3 Effects of Training and Scale . 34

3.7.4 Equivariance out of distribution . 35

3.7.5 Why aren’t CNNs more equivariant than ViTs? 36

3.7.6 Learning rotation equivariance . 36

3.8 Conclusion . 37

x

II Sequence Modeling for Numerical Data: Transfer Success and
Limitations 40

4 Large Language Models Are Zero-Shot Time Series Forecasters 42

4.1 Introduction . 42

4.2 Background . 44

4.3 Related work . 46

4.4 Continuous densities with autoregressive models 46

4.5 LLMTime: retrofitting LLMs for forecasting 47

4.6 Time series evaluations . 49

4.7 LLMTime evaluation . 51

4.7.1 Deterministic forecasts . 53

4.7.2 Probabilistic forecasts . 54

4.7.3 Temporal holdouts . 55

4.8 Connections with simplicity bias . 57

4.9 Promises of jointly modeling text and numerical data 59

4.10 Heterogeneous scientific data . 63

4.11 Conclusion . 64

5 Fine-Tuned Large Language Models Generate Stable Inorganic Materials as Text 66

5.1 Introduction . 66

5.2 Related work . 67

5.3 Background . 70

5.4 Parameterizing bulk materials . 71

5.5 Fine-tuning approach . 71

5.5.1 Dataset and Augmentations . 71

5.5.2 String encoding and prompts . 73

xi

5.6 Evaluating samples . 75

5.6.1 Energy above hull . 75

5.7 Results . 77

5.7.1 Unconditional generation . 77

5.7.2 Conditional sampling . 79

5.8 Connections with simplicity bias and LLMTime 81

5.9 Conclusion . 83

6 Open Challenges in Applying Language Models to Numerical Data 85

6.1 Introduction . 85

6.2 Related Work . 87

6.3 Preliminaries . 88

6.3.1 Motivating problem setting . 88

6.3.2 Computational chemistry as a test bed 89

6.4 Theoretical limitations . 90

6.5 Practical challenges . 91

6.6 Experimental Setup . 92

6.7 Model Architecture . 95

6.8 Tokenization . 100

6.9 Text Pretraining . 102

6.10 Conclusion . 104

7 Conclusion 106

A Appendix: Deconstructing Learned Symmetries 109

A.1 Appendix Outline . 109

A.2 Mathematical Details . 109

xii

A.2.1 Energy Conservation for Neural ODEs 109

A.2.2 HNN Energy Conservation . 111

A.2.3 Symplecticity . 112

A.3 Mujoco Experiment Details . 112

A.4 Additional Experimental Results . 114

A.4.1 Comparison of loss functions . 114

A.4.2 Additional Systems . 114

A.5 Aliasing Extended Discussion . 115

A.6 Lie Groups, Lie Derivatives, and LEE . 117

A.6.1 Lie Groups and Local/Global Notions of Equivariance 117

A.6.2 Lie Derivative Chain Rule . 118

A.6.3 Stochastic Trace Estimator for Layerwise Metric 118

A.7 LEE Theorems . 119

A.7.1 LEE and consistency regularization 119

A.7.2 Translation LEE and aliasing . 121

A.8 Learned Equivariance Experiments . 123

A.8.1 Layer-wise Equivariance Baselines . 123

A.8.2 Subnetwork Equivariance Analysis 124

A.8.3 Model List . 124

A.8.4 Alternative End-to-End Equivariance Metrics 125

A.8.5 LEE for Additional Transformations 127

A.8.6 Rotated MNIST Finetuning . 127

B Appendix: Transfer from Text to Numerical Data 128

B.1 Detailed method and hyperparameters . 128

B.1.1 Input scaling . 128

xiii

B.1.2 Validation tuning . 128

B.1.3 Likelihood adjustment for GPT Models 129

B.2 Benchmarking details and extended results 130

B.2.1 Darts datasets . 130

B.2.2 Monash datasets . 132

B.2.3 Informer datasets . 134

B.2.4 Synthetic datasets . 135

B.2.5 Darts full probabilistic results . 135

B.2.6 Informer datasets with extended horizon 135

B.2.7 Monash dataset visualizations . 136

B.2.8 Informer dataset visualizations . 136

B.3 Simplicity bias experiments . 136

B.3.1 Full synthetic predictions . 139

B.4 GPT-4 . 140

B.5 Multimodal Text Understanding of Time Series 141

C Appendix: Language Modeling for 3D Crystal Data 156

C.1 Training Details . 156

C.1.1 Numerical Formatting . 156

C.1.2 Training with Stochastic Prompts . 157

C.1.3 Extended Materials Project Dataset 157

C.1.4 Training Hyperparameters and Details 158

C.1.5 Role of Text Pretraining . 158

C.2 Model Evaluation . 160

C.2.1 Evaluation with ML potentials and DFT 160

C.2.2 Stability Checks and Percentages . 161

xiv

C.2.3 Trade-Offs in Sampling . 161

C.2.4 “Hallucination” Examples . 162

C.2.5 Increase in Perplexity under Transformation (IPT) 165

C.2.6 Diversity and Novelty Calculation . 165

C.2.7 Sampling Speed . 166

C.3 Template Method Baseline . 167

D Appendix: Challenges in Applying Language Models to Numerical Data 172

D.1 Conditional vs Unconditional Modeling . 172

D.2 Learning Speedup from Loss Masking . 173

D.3 GNN Training Details . 175

D.4 xVal Ablations . 175

D.5 Scaling Experiment . 175

D.6 Hyperparameter Settings . 176

D.6.1 From-scratch models . 176

D.6.2 Fine-tuned models . 176

D.7 MAE Numbers with Standard Errors . 178

D.8 RASP-L Programs for All Pairwise Distances 179

Bibliography 182

xv

List of Figures

2.1 The common perception in physics-informed machine learning is that in-

creased performance is the result of complex biases. We find, however, that

simpler implicit biases (such as second-order structure) often account for al-

most all of the improvement over baselines. 7

2.2 Left: The degree of energy violation (|Ĥ − H|/|Ĥ||H|) on test rollouts as a

function of rollout relative error (∥ẑ − z∥/∥ẑ∥∥z∥) across different environ-

ments and random seeds. Both HNNs and NeuralODEs are scattered around

the line x = y. Conditioned on the rollout performance, whether or not the

model is Hamiltonian has little impact on the energy violation. Right: En-

ergy violation on test trajectories is plotted as a function of the time T of the

rollout, with the shaded regions showing 1 standard deviation in log space

taken across 5 random seeds and the test trajectories. 12

2.3 Left: Test rollout error as a function of the regularization weighting in the

loss. Even at an optimally chosen symplectic regularization strength, the

benefit to model generalization is negligible. Right: Test rollout error plotted

against the final value of the symplecticity error for the regularized models.

For systems with more than a couple degrees of freedom, symplecticity error

is negatively correlated with the quality of predictions. 14

xvi

2.4 Left: NODEmodel with and without second-order structure (encoding dq/dt =

v). Right: HNN models with and without second-order structure. Models

with the SO bias significantly outperform those that do not. Error bars show

standard error across 5 seeds. 15

2.5 Left: Log rollout error for NODEs with second order bias and HNNs trained

chain pendulums, where the analytic form of the Hamiltonian is simpler than

the vector field. Right: MechanicsNNs and HNNs trained on spring pendu-

lums, which have Hamiltonians and vector fields of similar complexity. HNNs

outperform NODE with second order bias on systems that use non-Cartesian

coordinates. Error bars show standard error across 5 seeds. 16

2.6 Comparing the performance on damped systems. The NODE + SO matches

the performance of a SymODEN with a fraction of the parameters and com-

pute. HNNs without forcing terms encode the wrong inductive biases and

thus fit the data poorly. Error bars denote standard error across 5 seeds. . . 18

2.7 HNNs perform very poorly on complex dynamics like OpenAI Gym Mujoco

control systems. Biasing the model towards Hamiltonian dynamics makes it

difficult to fit the training data. Simply imposing second-order structure on a

NODE is much more effective. Error bars show standard error across 4 seeds. 20

3.1 Non-linearities generate new high-frequency harmonics. 25

xvii

3.2 (Left): The Lie derivative measures the equivariance of a function under con-

tinuous transformations, here rotation. (Center): Using the Lie derivative,

we quantify how much each layer contributes to the equivariance error of

a model. Our analysis highlights surprisingly large contributions from non-

linearities, which affects both CNNs and ViT architectures. (Right): Trans-

lation equivariance as measured by the Lie derivative correlates with gener-

alization in classification models, across convolutional and non-convolutional

architectures. Although CNNs are often noted for their intrinsic translation

equivariance, ViT and Mixer models are often more translation equivariant

than CNN models after training. 27

3.3 Lie derivatives can be computed using automatic differentiation. We show

how a Lie derivative for continuous rotations can be implemented in PyTorch

[173]. The implementation in our experiments differs slightly, for computa-

tional efficiency and to pass second-order gradients through grid_sample. . . 29

xviii

3.4 Contributions to equivariance shown cumulatively by layer, in the order the

layers occur in the network. Left: Convolutional architectures. In all the

CNNs, much of the equivariance error comes from downsampling and non-

linearities. Middle-Left: Non-convolutional architectures. The initial patch

embedding, a strided convolution, is the largest contributor for the ViTs and

Mixers. The rest of the error is distributed uniformly across other nonlinear

operations. Middle-Right: ResNet-50 across different transformations as a

percentage. Despite being designed for translation equivariance, the fraction

of equivariance error produced by each layer is almost identical for other affine

transformations, suggesting that aliasing is the primary source of equivariance

error. Right: Comparing LEE with alternative metrics for translation equiv-

ariance. Using integer translations misses key contributors to equivariance

errors, such as activations, while using fractional translations can lead to rad-

ically different outcomes depending on choice of normalization (N or
√

N).

LEE captures aliasing effects and has minimal design decisions. 31

3.5 Equivariance metrics evaluated on the ImageNet test set. Left: Non-LEE

equivariance metrics display similar trends to Figure 3.2, despite using larger,

multi-pixel transformations. Right: Norm of rotation and shear Lie deriva-

tives. Across all architectures, models with strong generalization become more

equivariant to many common affine transformations. Marker size indicates

model size. Error bars show one standard error over test set images used in

the equivariance calculation. 33

xix

3.6 Case studies in decreasing translational equivariance error, numbered left-to-

right. 1: Blur-Pool [245], an architectural change to improve equivariance,

decreases the equivariance error but by less than can be accomplished by

improving the training recipe or increasing the scale of model or dataset. 2-3:

Increasing the number of parameters for a fixed model family (here ViTs [163]

and EfficientNets [198]). 4: Increasing the training dataset size for a ResMLP

Big [209] model. 5: Changing the training recipe for ResNeXt-50 [231] with

improved augmentations [225] or SSL pretraining [235]. Error bars show one

standard error over images in the Lie derivative calculation. 35

3.7 Models are less equivariant on test data and becoming decreasingly equivari-

ant as the data moves away from the training manifold. As examples of data

with similar distributions, we show equivariance error on the ImageNet train

and test sets as well as CIFAR-100. As examples of out-of-distribution data,

we use two medical datasets (which often use Imagenet pretraining), one for

Histology [127] and one for Retinopathy [123]. 37

4.1 We propose LLMTime, a method for time series forecasting with large language

models (LLMs) by encoding numbers as text and sampling possible extrapola-

tions as text completions. LLMTime can outperform many popular time series

methods without any training on the target dataset (i.e. zero-shot). The

performance of LLMTime also scales with the power of the underlying base

model. Notably, models that undergo alignment (e.g. RLHF) do not follow

the scaling trend. For example, GPT-4 demonstrates inferior performance to

GPT-3. 44

xx

4.2 Left: Autoregressive models over sequences of digits act like hierarchical soft-

max distributions over the corresponding numbers. When combined with

uniform distributions in each discrete bucket, distributions over strings can

become expressive distributions over continuous domains. Right: Using sim-

ple autoregressive models (e.g. RNNs) trained on a string representation of

numbers, we can fit complex distributions that can be challenging for other

methods, such as heavy-tailed or multimodal distributions. A simple au-

toregressive model can match or outperform well-known methods for density

estimation, such as Gaussian mixture models (GMMs) or binning with a fixed

resolution, as measured by Wasserstein distance between samples. 47

4.3 Careful tokenization is important for good forecasting with LLMs. Using the

Australian Wine dataset from Darts [107], with values [151, 167, ..., 267],

we show the tokenization used by GPT-3 [30] and LLaMA-2 [206] and the

corresponding effect on forecasting performance. Added spaces allow GPT-3

to create one token per digit, leading to good performance. LLaMA-2, on the

other hand, tokenizes digits individually, and adding spaces hurts performance. 49

xxi

4.4 Example predictions on exchange rate (left), ETTm2 (a sequence of elec-

tricity transformer temperature readings, center), and weather (right) for

NHiTS [33], Autoformer [230], and last value predictions, as well as the his-

torical standard deviation of the change from the last observed value. On the

exchange [130] and ETTm2 [254] datasets there is minimal structure to be

exploited except on very short horizons, and forecasts tend to under-perform

simple baselines. On semi-structured datasets like weather, models can cap-

ture some overall structure, such as NHiTS accurately predicting the final

values in the forecasting window, but are still only on par with naive predic-

tions. From these plots we see why probabilistic evaluation is necessary and

point estimates are insufficient. 52

4.5 LLMTime with base model GPT-3 or LLaMA-2 70B has the best or second

best aggregated performance on several deterministic time series benchmarks

[81, 107, 254] while being entirely zero-shot. Collectively, these benchmarks

comprise 29 individual datasets with diverse sources, lengths, and noise levels.

For Monash MAE numbers, established results are reported on unnormalized

data, so we normalize values before aggregating (Appendix B.2.2). The in-

former datasets are multivariate, and we predict each covariate independently

with LLMTime (Appendix B.2.3). GPT-3 evaluation on the Informer datasets

was skipped because of the cost of API queries. Error bars show standard

errors over the individual datasets in each benchmark. 53

xxii

4.6 Extended experiments on the Darts datasets. Left: Example probabilistic

forecasts with baseline negative log likelihood per dimension (NLL/D). LLMs

easily extrapolate trends (e.g. AirPassengers) and reproduce local patterns

when data is noisy (e.g. GasRateCO2). Center: When using probabilistic

metrics like NLL and CRPS, LLMTime outperforms all baselines, including

PromptCast [234], a competing LLM method. Error bars show standard

errors over datasets with Darts. Right: LLMTime is much more sample ef-

ficient than competing methods. While the performance of other methods

degrades rapidly when we restrict them to a fraction of the original training

set, LLMTime can assign high likelihood with only a few examples. 55

4.7 Evaluation on a collection of short univariate time series recorded after GPT-

3’s training cutoff date. We compare the performance of our GPT-3 predictor

against popular time series models. Predicted median and 10-90th percentile

intervals are shown for GPT-3 given the context, and we compare test nega-

tive log likelihoods. GPT-3 continues to be competitive with or outperforms

the baselines on all of the tasks, from in-context learning alone. This result

reinforces our belief that GPT-3’s performance is not due to memorization of

the test data. 56

xxiii

4.8 LLMs can find low complexity explanations of the data, enabling them to

zero-shot extrapolate numerical sequences. Left: GPT-3 likelihoods favor so-

lutions from symbolic regression (PySR [50]) that balance training loss and

complexity, leading to good generalization. Right: GPT-3 predicted median

and 10-90th percentile prediction interval are shown given 140 timesteps of

context. On the right of each time series, we show the log likelihoods com-

pared to the ARIMA and TCN time series models. Overall, GPT-3 performs

considerably better than the baselines, though composition and exponential

growth are more challenging for the models (Appendix B.3.1). 59

4.9 Left: Time series forecasting performance (NLL/D and CRPS on Darts [107])

improves with reasoning performance of the underlying model LLM, as judged

by accuracy on the Massive Multitask Language Understanding (MMLU)

benchmark [105]. Displayed results are for all GPT-3, LLaMA [208], and

LLaMA-2 [206] base models. Center: GPT-4 performs worse than GPT-3.

Right: Forecasting performance (NLL/D and CRPS on Darts) appears to

be negatively affected by alignment procedures (e.g. instruction tuning and

RLHF) in general. LLaMA-2 chat models typically perform worse than the

corresponding base model. Error bars show standard errors over individual

datasets. 61

xxiv

4.10 Left: LLMTime can handle missing values without interpolation by denoting

missingness with text (e.g. ‘NaN’). For baseline methods we perform linear

interpolation and then fit the model as usual. LLMTime assigns higher log

likelihood to datasets preprocessed with added ‘NaN’s than baseline methods

assign to interpolated datasets. Forecasting performance, as judged by CRPS,

is competitive between LLMTime and alternative methods that use explicit

interpolation. Filled area shows standard error over individual datasets and 3

random seeds. Right: LLMs can be used to answer questions about time series

data posed as text. We show GPT-4’s accuracy at predicting the function that

generated the time series, obtained using chain-of-thought prompting. 63

5.1 Overview of our approach to materials generation with large language models.

Using string formatted crystals and task-specific prompting, we enable uncon-

ditional stable materials generation, text-condition materials generation, and

structural infilling. Base LLaMA-2 models are fine-tuned on a database of

known inorganic materials [147] using low-rank adapters. 68

5.2 (left) We convert the crystal lattice, atom identities, and atom positions into

strings. The model is trained to generate a structures conditioned on the text

prompt, which might contain additional information about the composition,

properties, or a starting structure to modify. (right) Energy above hull (Ehull)

quantifies the stability of a material. A crystal with Ehull < 0.1 will be

energetically favorable both in its structure and composition. 72

5.3 A sample with “hallucinated” element identities (Ln). 77

xxv

5.4 Stability of LLaMA samples compared to CDVAE [232]. Fine-tuned LLaMA-

2 70B generates a higher rate of metastable (Êhull < 0.1) and stable materials

than CDVAE, using estimates of Êhull from both M3GNet [37] and VASP

[95]. Because of computational cost, we only run VASP on structures pre-

dicted to be stable by M3GNet. Stable materials generated by LLaMA are

also more diverse (as quantified by Matminer featurization [219]) than sta-

ble samples from CDVAE. We include sampled stable structures, shown as

(2,2,2) supercells, which display a high-degree of regularity and understand-

ing of three-dimensional space. 78

5.5 We compare LLaMA-2 models with CDVAE in their ability to generate novel

and diverse samples as well as their overall speed. (left) We calculate diversity

and novelty using a featurization of structure and composition (as in Table

5.1). Diversity is calculated as pairwise distance in feature space, while novelty

quantifies the percentage of inputs that are far from the training set (Appendix

C.2.6). All metrics are calculated only for samples that were already judged

to be metastable. LLaMA-2 models often generate more diverse samples than

CDVAE, and achieve similar overall rates of novelty. Interestingly, structural

novelty is lower in larger models, while compositional novelty is higher. (right)

We compare the time required to generate 10,000 samples from each model.

We run LLaMA-2 models with the largest feasible batch size on one A100

GPU (Appendix C.2.7). While the largest LLaMA model is computationally

expensive, smaller language models are very fast, especially when we consider

both sampling speed and rate of stability. 79

xxvi

5.6 Text-conditional generation and infilling of existing structures with fine-tuned

LLMs. (left) Including composition or property information (sampled from

a hold-out set) in the text prompt leads to a high rate of samples with the

desired composition/property (space group or stability). We bin stability as

Êhull < 0.1 (metastable) and Êhull > 0.1 (unstable) for simplicity. Complex

formulas and space groups challenge the model, but the samples are correct

at a rate that facilitates practical use. We also show the rate of samples that

both satisfy the condition and are predicted to be metastable by M3GNet.

(right) Using the infilling prompt we can select mutations to existing materi-

als. LLaMA-2 70B proposes a distribution over elements, which we constrain

using knowledge of atom radii and charge interactions. We sample mutations

with temperature τ and relax the results structure with M3GNet. When we

apply this mutation procedure, we obtain more stable materials per mutation,

with negligible changes to the overall diversity of the stable materials. 81

5.7 Translation invariance on test data and ability to generate stable materials

increase in proportion. Larger models learn invariances from augmentations

more effectively during training, likely as a result of their preference for ab-

stract and compressible patterns. 82

6.1 To study language models applied to property prediction, we break each

into its constituent parts. We deconstruct property prediction by studying

building block operations from linear algebra and understand language model

performance through the lens of architecture, tokenization, and pretraining. . 86

xxvii

6.2 Encoder-decoder architectures have theoretical advantages over decoder-only

architectures on our numerical tasks, but we find in practice the difference

is minor. In our encoder-decoder models, layers are split equally between

the encoder and decoder. A task name with ‘+’ indicates a holdout of unseen

matrix shape–a harder test of generalization. We include quantized numerical

operations as baselines. 16 bit refers to a quantized operation with an 8-

bit mantissa and 8-bit exponent. 20 bit has a 10 bit mantissa and 10 bit

exponent. We do not provide results for a quantized eigenvalue solver because

PyTorch does not provide an easy mechanism for constructing one. 94

6.3 (Top) Degree of invariance (permutation or rotation error) strongly correlates

with the ability to fit the task (MAE) across several model sizes, tokenization

methods, and training runs. Results are displayed with both axes log-scaled.

For rotation invariance, we only study tasks on 3D structures. Shading is a

95% confidence interval for the regression. 97

6.4 (Left) We train causal transformers with different tokenization schemes and

witness a significant advantage from learning a continuous prediction head.

By contrast, differences between discrete tokenization schemes (digits vs.

chunks) are inconsistent with multi-digit schemes performing better on some

tasks and worse on others. (Center) Using a continuous prediction head leads

to higher invariance at smaller model sizes. For discrete methods, larger mod-

els are required to learn invariance. Numbers are the geometric mean over

tasks, and shading denotes a 95% confidence interval. (Right) We present a

scaling experiment on the matrix product task. We train 5 different model

sizes, for both standard digit tokenization and a continuous prediction head.

Shading denotes parameter count, while FLOPs are a function of parameter

count and gradient steps. Additional details are provided in section D.5. . . 98

xxviii

6.5 We can model numerical data as strings or as vectors of continuous values.

Each approach has unique costs and benefits. 100

6.6 We compare our small language models trained from scratch with finetuned

versions of large text-pretrained models. Text-pretrained models perform

worse on every task except matrix products, which might benefit from the

pretrained model’s additional capacity and ability to model high-dimensional

outputs. 103

A.1 Switching from l2 to l1 loss can improve rollout error slightly, but doesn’t

impact the ordering of the models. The other elements of the experimental

setup are identical to above. Error bars show one standard deviation. . . . 114

A.2 On the additional systems from Finzi, Wang, and Wilson [69], we can observe

the effect of second order structure, compared with NODE and HNN baselines.

As before, second order structure seems to account for much of the difference

between NODE and HNN models. Error bars show one standard deviation. 115

xxix

A.3 LEE calculated over the subnetworks of a ResNet50. Specifically a subnetwork

is constructed between the input and every intermediate representation in the

network’s computation graph. We use batch normalization of the outputs to

make the output scale of different subnetwork comparable. For visual clarity,

layer types are broken across the left and right plots, which share the same

axes. Similar to the pattern observed in Figure 3.4, we see a rapid increase

in equivariance error in the early layers of the network, followed by many

smaller increases later in the network. Unlike in our layerwise decomposition,

comparison across layer types is challenging in this setting because layers

have significantly different outputs. For example, comparing activations with

preactivations is complicated by the ReLUs acting as contractions of the input

and having potentially many zeroed values. 125

A.4 (Left): Extending Figure 3.5 we show the Lie derivate norm for hyperbolic ro-

tation, brightening, and stretch transformations. We observe that more accu-

rate models are also more equivariant to hyperbolic rotations and to brighten

transformation, to a more limited extent. In the case of hyperbolic rotations,

this result is surprising, as nothing has directly encouraged this equivariance.

One possible explanation is decreased aliasing in models with higher accuracy.

Marker size indicates model size. Error bars show one standard error over the

images use to evaluate the Lie derivative. (Right): Cumulative mean and

standard error of the estimator (computed for translations on a ResNet-50). 127

xxx

B.1 Median predictions of LLMTime (GPT-3) and NLLs from LLMTime (GPT-3 and

LLaMA-2 70B) for every dataset within Darts [107]. The shaded area shows

the 10th to 90th quantiles of the distribution over samples. LLMTime con-

sistently obtains better likelihood values than the baselines and often makes

surprisingly accurate forecasts by effectively extrapolating trend and periodic

components. 136

B.2 Aggregated and non-aggregated MAE numbers for LLMTime (LLaMA-2 70B

base model) and baselines on the Informer datasets. Overall LLMTime per-

forms well in aggregate for a zero-shot method, but its performance is highly

variable, being the best method on some datasets and the worst on others.

The relative performance of LLMTime is slightly diminished for a longer predic-

tion horizon, but LLMTime is still very competitive with the best methods in

aggregate. Error bars show two standard deviations in the error over datasets. 137

B.3 LLMTime (GPT-3 base model) median predictions on at most 4 randomly

chosen series per Monash dataset. 138

B.4 LLMTime (LLaMA-2 70B base model) median predictions on 4 randomly cho-

sen series per Informer dataset. 139

B.5 LLMTime median predictions on all synthetic datasets using GPT-3 as a base

model. The hyperparameters used are described in Appendix B.2.4. 140

B.6 GPT-4 extrapolations on synthetic data (10-90th percentiles shaded). GPT-4

is able to identify and extrapolate the pattern for each of the deterministic

time series, but sometimes behaves erratically. 141

B.7 GPT-4 extrapolations on real (DARTS) time series (10-90th percentiles shaded).

The extrapolations are plausible but worse than GPT-3, and the uncertainties

tend to be more poorly calibrated making for a high CRPS. 142

xxxi

C.1 Validity and rate of stability depend on sampling hyper-parameters. Lowering

the temperature or restricting the nucleus size leads to significant improve-

ments in validity/stability but incurs a cost to coverage of a held-out test

set (recall). Fine-tuned LLaMA-2 70B displays the best trade-off between

coverage and stability, generating materials that are both stable and diverse. 162

D.1 (Left) We include ablations on xVal to explore the effect of working with dis-

crete versus continuous inputs and the corresponding loss functions. (Right)

To understand the performance of xVal, we perform an ablation the output

and input with discrete tokens to understand if continuous inputs or contin-

uous outputs (continuous loss) is the origin of improved performance. Both

ablations hurt performance, but continuous inputs appear to be more helpful

than continuous outputs. 176

xxxii

List of Tables

3.1 Our finetuned MAE is competitive with several architectures explicitly engi-

neered to encode rotation invariance on RotMNIST, where rotation invariance

is clearly crucial to generalization. 36

4.1 Multivariate results with varying prediction lengths. Bolded results indicate

the best performing model, and italics the second best. In all cases simple

statistics of the input data to the model are either the first or second best per-

forming models in terms of both MSE and MAE accuracy. Historical Inertia

(HI) [53] was also introduced as a trivial baseline but has worse performance

than our constants. 51

5.1 Following prior work [232], we evaluate fine-tuned LLaMA-2 models using

validity, which captures physical constraints, as well as coverage and property

metrics, which capture alignment between the ground truth and sampling

distribution. We add stability checks, which count the percentage of samples

estimated to be stable by M3GNet [37] and DFT [95] (details in Appendix

C.2.2). LLaMA models generate a high percentage of both valid and stable

materials. 77

6.1 Comparison of popular and state-of-the-art approaches for predicting HOMO

on QM9. 89

xxxiii

6.2 Digit order has a negligible effect on relative error. We report geometric mean

across tasks with standard errors. 97

6.3 GNNs outperform LMs on the energy prediction task (from coordinates) and

benefit from equivariance. 99

D.1 MAE (↓) values for training with and without masking, both from scratch

and finetuning. 172

D.2 Hyperparameter values for model architecture for from-scratch language model

training runs. 176

D.3 Hyperparameter values for from-scratch language model training runs. . . . 177

D.4 Hyperparameter values for fine-tuning language model training runs. 177

D.5 MAE values for different tasks and tokenization methods. Standard errors

are calculated from 200 data points from each task. 177

xxxiv

List of Appendices

A Appendix: Deconstructing Learned Symmetries 109

B Appendix: Transfer from Text to Numerical Data 128

C Appendix: Challenges in Applying Language Models to Numerical Data 172

xxxv

1 | Introduction

The role of inductive bias in deep learning emerged as a central point of tension during my

PhD (2020-2025). Early successes like AlphaFold-2 [122] demonstrated how incorporating do-

main knowledge through architectural constraints—specifically symmetries and invariances

from protein physics—could achieve breakthrough performance. This aligned with the geo-

metric deep learning paradigm [29], which advocated for building domain structure directly

into neural architectures. However, concurrent work in language models, particularly GPT-3

[30], revealed that massive scaling with minimal architectural changes could yield remarkable

capabilities. This trend soon spread to computer vision, where generic architectures like Vi-

sion Transformers [63] and CLIP [176] began outperforming domain-specific approaches. By

the end of my PhD, even protein structure prediction showed signs of this shift: AlphaFold-3

[1] achieved state-of-the-art results by replacing hand-designed geometric constraints with

learned data augmentations. This evolution raises fundamental questions about the nature

of scientific data: Do scientific domains truly require specialized architectural constraints,

or will sufficient data and scale eventually obviate the need for manual inductive biases?

This thesis explores the boundary between learnable and fundamental structural constraints

across different scientific domains.

Inductive bias encompasses the assumptions built into a model before exposure to data.

When searching a hypothesis space (H) for a model (M) that fits the data, these prior as-

sumptions P (M) guide selection between models with similar training performance, typically

1

improving generalization or sample efficiency. In deep learning, these biases often manifest

through architecture design—convolutional neural networks encode translation equivariance,

while transformers process pairwise relationships.

The emergence of larger datasets has shifted attention toward how different architectural

choices scale with data volume. While domain-specific architectures often excel with limited

data, simpler architectures with fewer constraints can match or exceed their performance

given sufficient training examples. This dynamic has practical implications: when different

approaches achieve similar results, considerations like computational efficiency and frame-

work compatibility often favor simpler architectures. The rise of transfer learning has further

complicated this tradeoff, as pretraining on large datasets can implicitly encode useful biases

that previously required careful architecture design.

Large language models (LLMs) exemplify this shift toward data-driven architecture

design. Using a relatively simple framework—transformers trained on next-token predic-

tion—LLMs demonstrate consistent performance improvements with increased training data

across diverse tasks. Their ability to process many data types through text encoding has

reduced the need for domain-specific architectures, shifting research focus from architecture

design toward dataset curation and evaluation. This makes LLMs an ideal case study for

examining when and how large-scale pretraining can replace traditional architectural con-

straints.

This thesis examines the interplay between architectural constraints and data-driven

learning through five investigations. The first two chapters reveal how energy conservation

in Hamiltonian Neural Networks and translation equivariance in CNNs can be achieved

through weaker architectural constraints combined with appropriate training data. The third

and fourth chapters demonstrate how LLMs can tackle scientific tasks—including time series

extrapolation and crystal structure prediction—often surpassing domain-specific approaches.

The final chapter bridges these perspectives, analyzing why LLMs struggle with molecular

2

property prediction and providing insights into the roles of architecture, tokenization, and

pretraining in scientific applications.

3

Part I

Distilling Architecture Constraints for

Learning Symmetric Functions

4

In this section, I present two case studies examining how neural network architecture

design influences symmetry learning. Both studies challenge conventional wisdom about the

relationship between architectural constraints and learned symmetries.

The first study investigates energy conservation in neural networks trained on dynam-

ical systems. While Hamiltonian neural networks (HNNs) are designed to enforce energy

conservation through their architecture, our analysis reveals unexpected findings. Through

systematic ablation studies, we demonstrate that HNNs do not conserve energy in the ways

commonly assumed by practitioners. Furthermore, we show that comparable performance

can be achieved using a simpler, more flexible inductive bias, suggesting that architectural

constraints may be unnecessarily restrictive.

The second study examines how neural networks learn symmetries in image classification

tasks, focusing on equivariance under affine transformations. We introduce a novel metric

called the Local Equivariance Error (LEE), derived from differential geometry’s Lie deriva-

tive. Using this metric, we demonstrate that Vision Transformers (ViTs) trained with data

augmentation can achieve stronger translational equivariance than Convolutional Neural

Networks (CNNs), despite CNNs having translational equivariance embedded in their archi-

tecture. This finding challenges the assumption that architectural constraints are necessary

for learning important symmetries.

This research was conducted in collaboration with Marc Finzi, Sam Stanton, Micah

Goldblum, and Andrew Gordon Wilson, resulting in two publications: "Deconstructing the

Inductive Biases of Hamiltonian Neural Networks" (ICLR 2022) and "The Lie Derivative for

Measuring Learned Equivariance" (ICLR 2023).

5

2 | Deconstructing the Inductive

Biases of Hamiltonian Neural

Networks

2.1 Introduction

The inductive biases of convolutional neural networks, such as translation equivariance,

locality, and parameter sharing, play a key role in their generalization properties. Other

biases have similarly guided the development of deep models for other domains like graphs

and point clouds. Yet since models often encode multiple biases simultaneously, it can be

challenging to identify how each contributes to generalization in isolation. By understand-

ing which inductive biases are essential, and which are merely ancillary, we can simplify our

models, and improve performance. For example, Wu et al. [229] demonstrate that Graph

Convolutional Networks can be radically simplified to mere logistic regression by removing

nonlinearities, leading to dramatic gains in computational efficiency, while retaining compa-

rable accuracy.

Hamiltonian Neural Networks (HNNs) [85] have emerged as a leading approach for mod-

eling dynamical systems. These dynamics models encode physical priors and outperform

alternative Neural ODE approaches [41]. In the spirit of Wu et al. [229], we seek to identify

6

25%

50%

75%

100%

Pe
rfo

rm
an

ce

+ ODE Bias

+ Second-Order
Bias

+ Symplectic
Bias

Hamiltonian
NN

Expectation

25%

50%

75%

100%

Pe
rfo

rm
an

ce

+ ODE Bias

+ Second-Order
Bias

+ Symplectic
Bias

Hamiltonian
NN

Reality

Figure 2.1: The common perception in physics-informed machine learning is that increased performance
is the result of complex biases. We find, however, that simpler implicit biases (such as second-order
structure) often account for almost all of the improvement over baselines.

the critical components of HNNs. Since Lagrangian models (LNNs) [51, 150] share the same

structure and inductive biases as HNNs, we focus on HNNs where energy conservation and

symplecticity are more explicit.

HNNs encode a number of inductive biases that help model physical systems:

1. ODE bias: HNNs model derivatives of the state rather than the states directly.

2. Second-order (SO) bias: HNNs model changes in position through changes in velocity.

3. Energy conservation bias: HNNs conserve their learned energy function.

4. Symplectic bias: HNNs dynamics are symplectic: phase space areas are conserved, and

the vector field has a Hamiltonian structure.

In this chapter we theoretically and empirically examine the role of these biases. In

contrast to conventional wisdom, we find that the generalization benefit of HNNs is not

explained by their symplectic or energy-conserving properties, but rather by their implicit

second-order bias. We highlight these findings in Figure 2.1. Abstracting and extracting out

this second-order bias, we show how to improve the performance of Neural ODEs, empow-

ering applications when HNNs assumptions are violated as is often the case. Code for our

experiments can be found at: https://github.com/ngruver/decon-hnn.

7

https://github.com/ngruver/decon-hnn

2.2 Related Work

Physics-inspired models and energy conservation Since Greydanus, Dzumba, and

Yosinski [85], many researchers have sought to extend the HNN approach to make it more

general or applicable to systems that break energy conservation. Jin et al. [121], Li et al. [141],

Tong et al. [204], and Xiong et al. [233] propose methods for creating neural networks that

preserve symplectic structure directly. Zhong, Dey, and Chakraborty [251], and later Desai

et al. [60], Li et al. [143], and Lee, Trask, and Stinis [138] propose models with additional

capacity for changes to the system energy. In our analysis, we compare against approaches

that add additional capacity for changes in energy, although our approach is fundamentally

different — we attempt to remove unnecessary biases rather than add complexity.

Physics-inspired models for control A large and rapidly expanding body of work

explores how to use physics-based biases in dynamics models with controls or contacts [39,

44, 92, 93, 110, 151, 252, 253] intended for application in model-based planning. Especially

relevant to our evaluations, Alvarez, Roşca, and Fălcuţescu [5] models MuJoCo [202] trajecto-

ries with a numerically integrated neural network but does not explore other physics-inspired

inductive biases.

Analyzing physics-based inductive biases Karniadakis et al. [125] and Liu et al.

[149] propose conceptual frameworks for deep learning with physics-based inductive bi-

ases, but present minimal empirical analysis of common design decisions. Zhong, Dey, and

Chakraborty [250] compare many approaches to physics-inspired deep learning, with results

that parallel some findings here. The contribution of our work, however, is not simply bench-

marking but also an actionable theory of HNNs’ success. In spirit, our work is similar to

Botev et al. [22], which also critically examines the role of physics-based priors in dynamics

8

models, though their focus is on learning latent space dynamics, while we focus on temporal

models in observation space.

2.3 Background

We consider dynamical systems described by ordinary differential equations (ODEs)

which determine how the system evolves over time. Even with high order derivatives, these

systems can be arranged into the form dz
dt

= F (z, t) for z ∈ Rn. If the dynamics F are time-

independent, then the ODE can be understood as a vector field, specifying at each point

where the next state will be.

Neural ODEs (NODEs) [41] parametrize a vector field with a neural network and learn

the dynamics directly from observed trajectories. A NODE dynamics model F̂θ is rolled

out from the initial condition z0 with ODE integration, ẑt = ODESolve(z0, F̂θ, t), and fit to

trajectory data by minimizing an L2 loss L(θ) = ∑T
t=1 ∥ẑt − zt∥2 between the predicted and

observed trajectories, ẑt and zt.

Like NODEs, HNNs also model dynamical systems as a parameterized vector field,

dz

dt
= J∇Ĥθ with J =

 0 I

−I 0

 , (2.1)

where Ĥθ is a neural network with scalar output [85].

This differential equation expresses Hamiltonian dynamics where p and q are the canonical

positions and momenta,

z =

q

p

 and d

dt

q

p

 =

 ∂Ĥ
∂p

−∂Ĥ
∂q

.

 . (2.2)

It is common practice to also explicitly define H = T + V , where T and V are the kinetic

and potential energy [69, 92, 253]. The assumption that the Hamiltonian is separable holds

9

for mechanical systems and allows for further simplification,

Ĥθ(q, p) = 1
2pT M−1

θ (q)p + Vθ(q) , (2.3)

where positive definite mass matrix M and scalar V are outputs of the neural network.

2.4 Deconstructing Hamiltonian neural networks

In the following section we investigate to what extent commonly held beliefs about HNN

properties actually explain the ability of HNNs to generalize. To separate out the different

properties of these models, we select synthetic environments from Finzi, Wang, and Wilson

[69] and Finzi, Welling, and Wilson [70] that are derived from a time independent Hamil-

tonian, where energy is preserved exactly. We use kChainPendulum, a k link pendulum in

angular coordinates, and kSpringPendulum, a pendulum connected with k spring links in

Cartesian coordinates.

We compute relative error between predicted states, ẑ, and ground truth, z, as ∥ẑ −

z∥2/∥ẑ∥2∥z∥2 and between the predicted and ground truth Hamiltonian as |Ĥ − H|/|Ĥ||H|.

Following Finzi, Wang, and Wilson [69], we evaluate the performance of the model by com-

puting the geometric mean of the relative error of the state over rollouts of length 20 times

the size used at training, which more faithfully predicts downstream performance compared

to other metrics like MSE [69]. The geometric mean of a function f over time T is given by

exp(1
T

∫ T
t=0 log f(t)dt).

2.4.1 Energy conservation

HNNs are commonly believed to be superior for energy conservation than comparable

models [51, 85]. While there is some empirical evidence to support this claim, a precise

10

mathematical explanation for why this should be the case has not been established. Surpris-

ingly, we find that conditioned on the trajectory reconstruction error, HNNs are no better

at conserving the true energy of the system than unconstrained NeuralODE models.

Up to the numerical accuracy of an ODE solver, HNNs do conserve their own learned

energy function Ĥ (different from the true energy of the system H), due to basic properties

of Hamiltonian mechanics,

dĤ(ẑ)
dt

= ∇Ĥ⊤ dẑ

dt
= ∇Ĥ⊤J∇Ĥ = 0 , (2.4)

where the last equality follows from the antisymmetry of J . If the HNN has fit the data

well, we might expect Ĥ to be close to the true Hamiltonian H, and so if Ĥ is conserved

then it seems that H should be too. As we show in Appendix A.2.2, the problem with this

argument is that we have no guarantees that Ĥ and H are close even if we have fit the

data well with low error in the rollouts or the dynamics. Since the dynamics error and the

training rollout error depend only on gradients ∇Ĥ, while the gradients may be close, the

differences between the two scalar functions can grow arbitrarily large.

In Figure 2.2 (left) we show that the degree of energy conservation is highly correlated

with the rollout error of the model, regardless of the choice of architecture. While HNNs

have better rollout performance than NeuralODEs, they are on the same regression line with

Rollout Error ∝ Energy Violation. The differences in energy violation are best predicted by

the rollout error and not the architecture.

In Appendix A.2.1, we derive a bound that helps explain this behaviour. Given that the

trajectories are in a bounded region of the phase space and that there is a fixed amount

of error in the dynamics model, the energy violation grows at most linearly in time and

the dynamics error. In Figure 2.2 (right) we demonstrate empirically that energy is not

11

10 4 10 2 100

Rollout Error

10 4

10 2

100

En
er

gy
 V

io
lat

io
n

HNN NODE + SO NODE

10 4

10 2

100

2 link 3 link 4 link

10 1

10 4

10 2

100

10 1 10 1

HNN
NODE

Ch
ai

n
Sp

rin
gEn

er
gy

 E
rro

r

Rollout Time T

Figure 2.2: Left: The degree of energy violation (|Ĥ − H|/|Ĥ||H|) on test rollouts as a function of
rollout relative error (∥ẑ − z∥/∥ẑ∥∥z∥) across different environments and random seeds. Both HNNs
and NeuralODEs are scattered around the line x = y. Conditioned on the rollout performance, whether
or not the model is Hamiltonian has little impact on the energy violation. Right: Energy violation on
test trajectories is plotted as a function of the time T of the rollout, with the shaded regions showing
1 standard deviation in log space taken across 5 random seeds and the test trajectories.

conserved as time progresses for HNNs.1 In fact, the energy error of both NODE and

HNN models grow linearly as our bound suggests. Although energy conservation may be

helpful for generalization, the evidence does not indicate that HNNs are inherently better at

conserving energy than NODEs, suggesting that the superior generalization of HNNs cannot

be attributed to superior energy conservation.

2.4.2 Symplectic vector fields

A defining property of Hamiltonian mechanics is the fact that the dynamics are sym-

plectic. If energy conservation does not explain the effectiveness of HNNs, the symplectic

property of HNN dynamics may be the cause. Informally, one of the consequences of sym-

plectic dynamics is that every part of the state space is equally attractive and repulsive.

There are no sources where all nearby trajectories flow out from, or sinks where all nearby

trajectories flow into, only saddle points and centers where the inflow and outflow is bal-

anced. Symplectic integrators [139] make use of this property for more stable integration of
1The energy violation is considerably larger than merely the numerical error associated with the solver.

12

Hamiltonian systems over very long timespans, and it is intuitive that enforcing this property

in learned dynamics would have benefits also, at the very least for reducing the size of the

hypothesis space.

More formally, symplecticity is the property that the J matrix (the symplectic form) is

preserved by the dynamics (Equation 2.1). This condition can be expressed as a constraint on

the Jacobian DF of the vector field F (z) = dz
dt

(here the derivative D maps from a function to

its Jacobian). In terms of the Jacobian, symplecticity is the condition DF ⊤J + JDF = 0 or

equivalently (JDF)T = JDF since J⊤ = −J . The significance of this condition is that areas

occupied by states in phase space (which have units of energy) are preserved by symplectic

transformations. One consequence is that a volume of solutions in phase space will continue

to occupy the same volume over time and will not be compressed or expanded. In other

words, the vector field has 0 divergence: Tr(DF) = 0, which one can derive from the above

expression.

On Rn, it can be shown that all symplectic vector fields can be expressed as the dynamics

of some Hamiltonian system, and vice versa:

F = J∇H ⇔ (JDF)T = JDF (2.5)

To show the forward direction, one can simply substitute in Hamiltonian dynamics. It is

clear that the symplecticity property is satisfied: using J2 = −I, JDF = JD(J∇H) =

J2∇2H = −∇2H, and −∇2H is a symmetric matrix. The reverse direction is less obvious;

however, by Poincaré’s lemma if a vector field F satisfies (JDF)T = JDF on Rn, then there

exists a Hamiltonian function H such that F = J∇H, which is shown in subsection A.2.3.

The equivalence of Hamiltonian dynamics and symplecticity allows us separate the unique

properties of HNNs from other inductive biases that result indirectly from modeling F

through H. Following Ghosh et al. [80], we can create a regularizer SymplecticError(F) =

13

Chain 1 Chain 2 Chain 3 Spring 1 Spring 2 Spring 3

10 4

10 3

10 2

10 1

Ro
llo

ut
 E

rro
r

=
0.001 0.01 0.1 1.0 10.0 100.0

1e-10 1e-08 1e-060.0001 0.01 1 100
Symplectic Error

0.0001

0.001

0.01

0.1

1

Ro
llo

ut
 E

rro
r Chain 1

Chain 2
Chain 3
Spring 1
Spring 2
Spring 3

Figure 2.3: Left: Test rollout error as a function of the regularization weighting in the loss. Even at
an optimally chosen symplectic regularization strength, the benefit to model generalization is negligible.
Right: Test rollout error plotted against the final value of the symplecticity error for the regularized
models. For systems with more than a couple degrees of freedom, symplecticity error is negatively
correlated with the quality of predictions.

∥(JDF)T − JDF∥2 that directly measures the degree to which the symplectic property is

violated. By parametrizing a NeuralODE and regularizing the symplectic error, we can en-

force Hamiltonian structure while still directly modeling dz
dt

= F rather than H. Alongside

an unregularized NeuralODE, we can isolate and evaluate the benefit of this Hamiltonian

structure bias with a direct comparison.

Surprisingly, we find that the Hamiltonian structure bias, as enforced by the symplectic

regularizer, provides no real benefit to the model’s ability to generalize over the long test

rollouts (Figure 2.3 left). The achieved symplectic error Figure 2.3 (right) is not positively

correlated with the final test rollout error of the model, and in some cases is even negatively

correlated. Even when the symplectic error is very low and the symplecticity condition is

enforced, there is no consistent improvement on the rollout generalization.

2.4.3 Second-order structure

If the superior performance of HNNs over NeuralODEs does not come from their better

energy conservation properties, nor from the symplectic structure of the predicted vector

field, what is the true cause?

14

Chain 2 Chain 3 Chain 4 Spring 2 Spring 3 Spring 4

10 2

10 1

Ro
llo

ut
 E

rro
r

NODE Models

Chain 2 Chain 3 Chain 4 Spring 2 Spring 3 Spring 4

HNN Models

Without SO bias With SO bias

Figure 2.4: Left: NODE model with and without second-order structure (encoding dq/dt = v). Right:
HNN models with and without second-order structure. Models with the SO bias significantly outperform
those that do not. Error bars show standard error across 5 seeds.

In previous work, authors have used slightly different implementations of HNNs. One

subtle improvement over the original work [85] comes from explicitly splitting the Hamilto-

nian as Ĥ = T + V = p⊤M(q)−1p/2 + V (q) and modeling the mass matrix M(q) and the

potential V (q) with separate neural networks rather than using a single neural network for

Ĥ [253]. This splitting enforces a strong assumption about the functional form of the Hamil-

tonian that applies to mechanical systems that makes it easier to learn and extrapolate.

Through Hamiltons equations F̂ = J∇Ĥ, this splitting is in fact specifying the relationship

between position and momentum dq
dt

= ∂H
∂p

= M−1(q)p, and that forces can only affect dp
dt
.

In fact, we can see that this assumption essentially leads to the second-order differential

equation

dq
dt

dp
dt

 =

M−1(q)p

−dV
dq

 =⇒ d2q

dt2 =
(

d

dt
M−1(q)

)
M(q)dq

dt
− M−1(q)dV

dq
= A(q,

dq

dt
) (2.6)

This second-order (SO) structure,

dq
dt

dv
dt

 =

 v

A(q, v)

, is a direct by-product of the separable

Hamiltonian inductive bias, but is more general, applying to both conservative and non-

conservative physical systems.

We can isolate the effect of this bias by directly observing its effect on both HNNs

15

Chain 1 Chain 2 Chain 3 Chain 4

10 3

10 1

101

Ro
llo

ut
 E

rro
r

Complex Coordinates

Spring 1 Spring 2 Spring 3 Spring 4

10 3

10 1

Ro
llo

ut
 E

rro
r

Simple Coordinates

NODE + SO HNN

Figure 2.5: Left: Log rollout error for NODEs with second order bias and HNNs trained chain pendu-
lums, where the analytic form of the Hamiltonian is simpler than the vector field. Right: MechanicsNNs
and HNNs trained on spring pendulums, which have Hamiltonians and vector fields of similar complexity.
HNNs outperform NODE with second order bias on systems that use non-Cartesian coordinates. Error
bars show standard error across 5 seeds.

and NODEs. For HNNs the bias is made explicit in separable Hamiltonians, but not in

the general case, when H(q, p) is the direct output of the network instead of V (q). We can

design a NODE with second-order structure (NODE + SO) by setting z = [q, p] with p = Mv

and dq
dt

= v, dp
dt

= Ãθ(q, p), or equivalently just the second order equation d2q
dt2 = Aθ(q, dq

dt
).

Figure 2.4 shows the effect of second order structure on the test predictions of NODEs and

HNNs. It is clear that this bias explains the superior performance of HNNs much more than

other biases that are frequently given more credit. In fact, when we add this bias to NODE

models, we see that their performance more closely matches HNNs than vanilla NODEs

without creating a conservative or symplectic vector.

2.4.4 Functional complexity

Adding second order structure to NODEs is always helpful, and matches the HNN per-

formance for many of the systems. However, we see that there is still a gap for some systems,

and curiously in each of these cases the system is described in a non-Cartesian coordinate

system, such as with joint angles and Euler angles. Recall that with the symplecticity bias,

we only found no benefit for enforcing that there exists a function Ĥ such that F̂ = J∇Ĥ

bias while parametrizing F̂ ; however, for HNNs this function not only exists, it is directly

16

parametrized by the neural net. If the function Ĥ happens to be a simpler function to

express and learn than ∇H, then representing the solution in this way can be beneficial.

For systems expressed in Cartesian coordinates like the spring pendulum, the mass matrix

M(q) = M is a constant, and so the gradients of H = p⊤Mp+V (q) are simple to express and

learn. However, for systems with constraints such as the Chain pendulum, where states are

typically expressed in angular coordinates, the mass matrix M(q) will have a complicated

form and that complexity will be magnified when taking the derivative. As an example,

consider the Hamiltonian that an HNN must learn for the 2 link chain pendulum versus the

vector field that a NODE + SO model must learn for this system (derived in Finzi, Wang,

and Wilson [69], Appendix F.2). For the spring pendulum the functional complexity of the

Hamiltonian and vector fields is comparable, while for the chain pendulum, the vector field

contains many more terms.

Parameterizing such a system via its Hamiltonian simplifies the learning problem, and

enables a neural network to converge more rapidly towards a plausible solution. This obser-

vation aligns with the insight in Finzi, Wang, and Wilson [69], which shows that changing the

coordinate system to Cartesian dramatically simplifies the learning problem, at the expense

of needing to enforce the constraints to the configuration space more directly.

Figure 2.5 shows the relative performance of the NODE+SO across the chain pendu-

lum and spring pendulum environments. As we would now expect, the gap between the

NODE+SO and HNN vanishes (and even favors NODE+SO) when complexity of the Hamil-

tonian and vector field are comparable.

2.5 Distilling the minimal inductive biases

Perfectly energy-conserving systems are useful for analyzing the limiting behaviour of

physics-informed networks, but in the vast majority of real world applications, we do not

17

Chain 1 Chain 2 Chain 3 Spring 1 Spring 2 Spring 3

10 3

10 2

Ro
llo

ut
 E

rro
r

NODE NODE + SO HNN SymODEN

Figure 2.6: Comparing the performance on damped systems. The NODE + SO matches the perfor-
mance of a SymODEN with a fraction of the parameters and compute. HNNs without forcing terms
encode the wrong inductive biases and thus fit the data poorly. Error bars denote standard error across
5 seeds.

model closed systems. Energy is changed through contact with the environment (as in

friction or drag) or an actor applying controls. In these cases, HNNs can be generalized by

adding a forcing term
dq
dt

dp
dt

 =

 ∂H
∂p

−∂H
∂q

+

 0

g(q, p)

u (2.7)

as in SymODEN [251, 253] and Desai et al. [60], where u is the control input, which can be

fixed as constant in systems with drag or friction.

Though SymODEN can accommodate controls and damping, we show that simply using

the bias of second-order dynamics is sufficient to achieve nearly the same performance with

much less complexity. We demonstrate the matching performance on our n-body pendulum

systems, augmented with drag, dp
dt

= −∂H
∂q

− λv (Figure 2.6).

HNNs are typically evaluated on relatively simple systems, like those considered in the

previous sections. In principle, we would expect these results to extend to more complex

systems that are governed by similar physical laws. In practice, however, there is little

evidence to suggest that applying HNN methods to complex systems is easy or effective.

The MuJoCo physics simulator [202] is one such complex system that we would expect to

benefit from HNN inductive biases. Gym Mujoco systems are heavily used in model-based

18

reinforcement learning (MBRL) literature, but the dynamics models commonly used are

surprisingly simple (often just MLPs trained to predict the next change in state) [48, 217].

Given how much benefit other applications of deep learning have derived from specialized

architectures, such as CNNs for computer vision [136], RNNs for NLP [158], or WaveNets

for audio [168], we would expect analogous improvements to be possible in MBRL. Algo-

rithms for MBRL are infamously sensitive to choice of prediction horizon, and one possible

explanation is poor generalization caused by weak inductive biases [6, 119, 172]. Improving

model design for mechanical systems has the potential to improve both the sample efficiency

of MBRL algorithms and their robustness.

We train NODEs and HNNs on trajectories from several OpenAI Gym Mujoco environ-

ments [28]. Crucially, we compare NODEs endowed with second-order structure (NODE +

SO) against pre-existing NODE and HNN models. Note that with fixed step size integrators,

NODEs are equivalent to discrete transition models that predict the next state or delta di-

rectly with an MLP, and therefore our NODE baseline is representative of models commonly

used in MBRL. See section A.3 for implementation details.

In Figure 2.7 we show that NODE + SO significantly outperforms baseline methods. Sur-

prisingly HNNs underperform NODEs on all the systems we consider. Although the HNN

could in principle learn the dynamics, in practice the bias towards Hamiltonian dynamics

makes fitting the training data very difficult and provides no tangible benefit to generaliza-

tion. This outcome is notably different from what we observe in toy tasks, where HNNs can

fit non-conservative systems (e.g., pendulums with drag) with little difficulty.

In spirit, our results parallel the findings of Wu et al. [229] in the different setting of graph

CNNs. We are able to distill the inductive biases of HNNs into a NODE + SO without losing

performance on systems that HNNs perform well on, and, even more importantly, these

reduced systems are much more capable of scaling to complex systems and larger datasets.

19

HalfCheetah Hopper Swimmer

10 1

100

Ro
llo

ut
 E

rr
Test

HalfCheetah Hopper Swimmer

10 2

10 1

Ro
llo

ut
 E

rr

Train

NODE NODE + SO SymODEN

Figure 2.7: HNNs perform very poorly on complex dynamics like OpenAI Gym Mujoco control systems.
Biasing the model towards Hamiltonian dynamics makes it difficult to fit the training data. Simply
imposing second-order structure on a NODE is much more effective. Error bars show standard error
across 4 seeds.

2.6 Conclusion

In this chapter, we deconstructed the inductive biases of highly performing HNN models

into their component parts, a NeuralODE, symplecticity, conservation of the learned energy

function, and second order structure. Contrary to conventional wisdom, the success of HNNs

is not from their energy conservation or symplecticity, but rather from the assumption that

the system can be expressed as a single second order differential equation. Stripping away the

other components of an HNN, we are left with a model that is simpler, more computationally

efficient, and less restrictive in that it can be directly applied to non-Hamiltonian systems.

As a consequence, we are able to apply the resulting model to constructing transition models

for the challenging Mujoco locomotion environments, with promising performance.

20

3 | The Lie Derivative for

Measuring Learned

Equivariance

3.1 Introduction

Symmetries allow machine learning models to generalize properties of one data point to

the properties of an entire class of data points. A model that captures translational symme-

try, for example, will have the same output for an image and a version of the same image

shifted a half pixel to the left or right. If a classification model produces dramatically differ-

ent predictions as a result of translation by half a pixel or rotation by a few degrees it is likely

misaligned with physical reality. Equivariance provides a formal notion of consistency under

transformation. A function is equivariant if symmetries in the input space are preserved in

the output space.

Baking equivariance into models through architecture design has led to breakthrough per-

formance across many data modalities, including images [49, 214], proteins [122] and atom

force fields [18, 74]. In computer vision, translation equivariance has historically been re-

garded as a particularly compelling property of convolutional neural networks (CNNs) [135].

Imposing equivariance restricts the size of the hypothesis space, reducing the complexity of

21

the learning problem and improving generalization [84].

In most neural networks classifiers, however, true equivariance has been challenging to

achieve, and many works have shown that model outputs can change dramatically for small

changes in the input space [15, 67, 181, 213]. Several authors have significantly improved

the equivariance properties of CNNs with architectural changes inspired by careful signal

processing [126, 245], but non-architectural mechanisms for encouraging equivariance, such

as data augmentations, continue to be necessary for good generalization performance [225].

The increased prominence of non-convolutional architectures, such as vision transformers

(ViTs) and mixer models, simultaneously demonstrates that explicitly encoding architectural

biases for equivariance is not necessary for good generalization in image classification, as ViT

models perform on-par with or better than their convolutional counterparts with sufficient

data and well-chosen augmentations [63, 203]. Given the success of large flexible architec-

tures and data augmentations, it is unclear what clear practical advantages are provided

by explicit architectural constraints over learning equivariances from the data and augmen-

tations. Resolving these questions systemically requires a unified equivariance metric and

large-scale evaluation.

3.2 Background

Equivariance provides a formal notion of consistency under transformation. A function

f : V1 → V2 is equivariant to transformations from a symmetry group G if applying the

symmetry to the input of f is the same as applying it to the output

∀g ∈ G : f(ρ1(g)x) = ρ2(g)f(x), (3.1)

where ρ(g) is the representation of the group element, which is a linear map V → V .

22

The most common example of equivariance in deep learning is the translation equivariance

of convolutional layers: if we translate the input image by an integer number of pixels in

x and y, the output is also translated by the same amount, ignoring the regions close to

the boundary of the image. Here x ∈ V1 = V2 is an image and the representation ρ1 = ρ2

expresses translations of the image. The translation invariance of certain neural networks

is also an expression of the equivariance property, but where the output vector space V2 has

the trivial ρ2(g) = I representation, such that model outputs are unaffected by translations

of the inputs. Equivariance is therefore a much richer framework, in which we can reason

about representations at the input and the output of a function.

3.3 Image classification and translational

equivariance

3.3.1 Continuous signals and aliasing

Continuous signals The inputs to classification models are discrete images sampled

from a continuous reality. Although discrete representations are necessary for computers,

the goal of classification models should be learning functions that generalize in the real world.

It is therefore useful to consider an image as a function h : R2 → R3 rather than a discrete

set of pixel values and broaden the symmetry groups we might consider, such as translations

of an image by vector b ∈ R2, rather than an integer number of pixels.

Fourier analysis is a powerful tool for understanding the relationship between continuous

signals and discrete samples by way of frequency decompositions. Any M × M image,

h(x), can be constructed from its frequency components, Hnm, using a 2d Fourier series,

h(x) = 1
2π

∑
n,m Hnme2πix·[n,m] where x ∈ [0, 1]2 and n, m ∈ [-M/2, -M/2 + 1, ..., M/2], the

bandlimit defined by the image size.

23

Aliasing Aliasing occurs when sampling at a limited frequency fs, for example the size

of an image in pixels, causes high frequency content (above the Nyquist frequency fs/2) to

be converted into spurious low frequency content. Content with frequency n is observed as

a lower frequency contribution at frequency

Alias(n) =

n mod fs if (n mod fs) < fs/2

(n mod fs) − fs if (n mod fs) > fs/2

 . (3.2)

If a discretely sampled signal such as an image is assumed to have no frequency content

higher than fs, then the continuous signal can be uniquely reconstructed using the Fourier

series and have a consistent continuous representation. But if the signal contains higher

frequency content which gets aliased down by the sampling, then there is an ambiguity and

exact reconstruction is not possible.

Aliasing and equivariance Aliasing is critically important to our study because it

breaks equivariance to continuous transformations like translation and rotation. When a

continuous image is translated its Fourier components pick up a phase:

h(x) 7→ h(x − b) =⇒ Hnm 7→ Hnme−2πib·[n,m].

However, when an aliased signal is translated, the aliasing operation A introduces a scaling

factor:

Hnm 7→ Hnme−2πi(b0Alias(n)+b1Alias(m))

In other words, aliasing causes a translation by the wrong amount: the frequency component

Hnm will effectively be translated by [(Alias(n)/n)b0, (Alias(m)/m)b1] which may point in a

different direction than b, and potentially even the opposite direction. Applying shifts to

an aliased image will yield the correct shifts for true frequencies less than the Nyquist but

24

incorrect shifts for frequencies higher than the Nyquist. Other continuous transformations,

like rotation, create similar asymmetries.

Many common operations in CNNs can lead to aliasing in subtle ways, breaking equiv-

ariance in turn. Zhang [245], for example, demonstrates that downsampling layers causes

CNNs to have inconsistent outputs for translated images. The underlying cause of the in-

variance is aliasing, which occurs when downsampling alters the high frequency content of

the network activations. The M × M activations at a given layer of a convolutional network

have spatial Nyquist frequencies fs = M/2. Downsampling halves the size of the activations

and corresponding Nyquist frequencies. The result is aliasing of all nonzero content with

n ∈ [M/4, M/2]. To prevent this aliasing, Zhang [245] uses a local low pass filter (Blur-Pool)

to directly remove the problematic frequency regions from the spectrum.

1
0
1

1
0
1

Swish

1
0
1

ReLU

0 500
10 7

10 5

10 3

10 1
Fo

ur
ie

r S
pe

ct
ru

m

0 500
Frequency

10 7

10 5

10 3

10 1

0 500
10 5

10 3

10 1

Figure 3.1: Non-linearities generate new
high-frequency harmonics.

While studying generative image models, Karras

et al. [126] unearth a similar phenomenon in the point-

wise nonlinearities of CNNs. Imagine an image at a

single frequency h(x) = sin(2πx · [n, m]). Applying

a nonlinear transformation to h creates new high fre-

quencies in the Fourier series, as illustrated in Fig-

ure 3.1. These high frequencies may fall outside of the bandlimit, leading to aliasing. To

counteract this effect, Karras et al. [126] opt for smoother non-linearities and perform up-

sampling before calculating the activations.

3.4 Related Work

While many papers propose architectural changes to improve the equivariance of CNNs

[126, 222, 245], others focus purely on measuring and understanding how equivariance can

emerge through learning from the training data [140]. Olah et al. [165], for example, studies

25

learned equivariance in CNNs using model inversions techniques. While they uncover several

fascinating properties, such as rotation equivariance that emerges naturally without archi-

tectural priors, their method is limited by requiring manual inspection of neuron activations.

Most relevant to our work, Bouchacourt, Ibrahim, and Morcos [23] measure equivariance

in CNNs and ViTs by sampling group transformations. Parallel to our findings, they con-

clude that data and data augmentation play a larger role than architecture in the ultimate

equivariance of a model. Because their study is limited to just a single ResNet and ViT

architecture, however, they do not uncover the broader relationship between equivariance

and generalization that we show here.

Many papers introduce consistency metrics based on sampling group transformations

[23, 126, 245], but most come with significant drawbacks. When translations are sampled

with an integer number of pixels [23, 245], aliasing effects will be completely overlooked.

As a remedy, [126] propose a subpixel translation equivariance metric (EQ-Tfrac) that ap-

propriately captures aliasing effects. While this metric is a major improvement, it requires

many design decisions not required by LEE, which has relatively few hyperparameters and

seamlessly breaks down equivariance across layers. Relative to these other approaches, LEE

offers a unifying perspective, with significant theoretical and practical benefits.

3.5 The Lie derivative

3.5.1 Mathematical formulation

The Lie derivative gives a general way of evaluating the degree to which a function f

violates a symmetry. To define the Lie derivative, we first consider how a symmetry group

element can transform a function by rearranging Equation 3.1:

ρ21(g)[f](x) = ρ2(g)−1f(ρ1(g)x) .

26

ResNet-50
0

20

40

60

80

Cu
m

ul
at

iv
e

Eq
ui

va
ria

nc
e

Er
ro

r

ViT-Small

Activation
Conv
Attention
Norm
Pool

70% 75% 80% 85% 90%

0.05

0.10

0.15 R2 = 0.333 CNN
ViT
Mixer

CNN
ViT
Mixer

Imagenet Test Accuracy

Tr
an

sla
tio

n
Eq

ui
va

ria
nc

e
Er

ro
r

Figure 3.2: (Left): The Lie derivative measures the equivariance of a function under continuous
transformations, here rotation. (Center): Using the Lie derivative, we quantify how much each layer
contributes to the equivariance error of a model. Our analysis highlights surprisingly large contributions
from non-linearities, which affects both CNNs and ViT architectures. (Right): Translation equivari-
ance as measured by the Lie derivative correlates with generalization in classification models, across
convolutional and non-convolutional architectures. Although CNNs are often noted for their intrinsic
translation equivariance, ViT and Mixer models are often more translation equivariant than CNN models
after training.

The resulting linear operator, ρ21(g)[·], acts on the vector space of functions, and ρ21(g)[f] =

f if the function is equivariant. Every continuous symmetry group (Lie group), G, has a

corresponding vector space (Lie algebra) g = Span({Xi}d
i=1), with basis elements Xi that can

be interpreted as vector fields Rn → Rn. For images, these vector fields encode infinitesimal

transformations R2 → R2 over the domain of continuous image signals f : R2 → Rk. One

can represent group elements g ∈ G (which lie in the connected component of the identity)

as the flow along a particular vector field Φt
Y , where Y = ∑

i aiXi is a linear combination of

basis elements. The flow Φt
Y (x0) of a point x0 along a vector field Y by value t is defined as

the solution to the ODE dx
dt

= Y (x) at time t with initial value x0. The flow Φt
Y smoothly

parameterizes the group elements by t so that the operator ρ21(Φt
Y)[·] connects changes in

the space of group elements to changes in symmetry behavior of a function.

The Lie derivative of the function f is the derivative of the operator ρ21(g) at g =

27

Identity = Φ0 along a particular vector field Y ,

LY (f) = lim
t→0

1
t
(ρ21(Φt

Y)[f] − f) = d

dt

∣∣∣∣∣
t=0

ρ21(Φt
Y)[f]. (3.3)

Intuitively, the Lie derivative measures the sensitivity of a function to infinitesimal sym-

metry transformations. This local definition of equivariance error is related to the typical

global notion of equivariance error. As we derive in Appendix A.6.1, if ∀i = 1, ..., d : LXi
(f) =

0 (and the exponential map is surjective) then ∀g ∈ G : f(ρ1(g)x) = ρ2(g)f(x) and for all x

in the domain, and vice versa. In practice, the Lie derivative is only a proxy for strict global

equivariance. We note global equivariance includes radical transformations like translation

by 75% of an image, which is not necessarily desirable. In section 3.7 we show that our

local formulation of the Lie derivative can capture the effects of many practically relevant

transformations.

The Lie derivative of a function with multiple outputs will also have multiple outputs, so

if we want to summarize the equivariance error with a single number, we can compute the

norm of the Lie derivative scaled by the size of the output. Taking the average of the Lie

derivative over the data distribution, we define Local Equivariance Error (LEE),

LEE(f) = Ex∼D∥LXf(x)∥2/dim(V2). (3.4)

Mathematically, LEE also has an appealing connection to consistency regularization [13],

which we discuss in Appendix A.7.1.

3.5.2 Efficient implementation

We provide a Python implementation of the Lie derivative calculation for rotations in

Figure 3.3 as an example.

28

Under review as a conference paper at ICLR 2023

1 import torch.nn.functional as F
2 from torch.autograd.functional import jvp
3

4 def rotate(imgs, theta):
5 """ Rotate images by angle theta and interpolate"""
6 m = [[torch.cos(theta), torch.sin(theta), 0],
7 [-torch.sin(theta), torch.cos(theta), 0]]
8 m = torch.tensor(m)[None].expand(imgs.shape[0], -1, -1)
9 return F.grid_sample(imgs, F.affine_grid(m, imgs.size(), True))

10

11 def rotation_lie_deriv(model,imgs):
12 """ Lie deriv. of model w.r.t. rotation, can be scalar/image"""
13 def rotated_model(theta):
14 z = model(rotate(imgs,theta))
15 img_like = (len(z.shape) == 4) # more complex for ViT/Mixer
16 return rotate(z,-theta) if img_like else z
17 return jvp(rotated_model, torch.zeros(1,requires_grad=True))[-1]
18

19 def e_lee(model,imgs):
20 """ Expected equiv. error (E[|Lf|^2]/d_out) w.r.t. rotation"""
21 return rotation_lie_deriv(model, imgs).pow(2).mean()

Figure 3: Lie derivatives can be computed using automatic differentiation. We show how a Lie
derivative for continuous rotations can be implemented in PyTorch Paszke et al. (2019). The
implementation in our experiments differs slightly, for computational efficiency and in order to pass
second-order gradients through grid_sample.

derivative scaled by the size of the output. Taking the average of the Lie derivative over the data
distribution, we define the Local Equivariance Error (LEE),

LEE(f) = Ex⇠DkLXf(x)k2/dim(V2). (4)

We provide a python implementation of the Lie derivative calculation for rotations in Figure 3 as an
example.

Layerwise Decomposition of Lie Derivative Unlike alternative equivariance metrics, the Lie
derivative decomposes naturally over the layers of a neural network. This modularity results naturally
from the Lie derivative satisfying the chain rule. As we show in Appendix A.2, the Lie derivative of
the composition of two functions h : V1 ! V2 and f : V2 ! V3 satisfies

LX(f � h)(x) = (LXf)(h(x)) + df |h(x)(LXh)(x), (5)

where df |h(x) is the Jacobian of f at h(x) which we will abbreviate as df . Note that this decomposition
captures the fact that intermediate layers of the network may transform in their own way:

f(h(x)) 7!⇢31(g)[f � g](x) = ⇢3(g)�1f(⇢2(g)⇢2(g)�1h(⇢1(g)x)) = ⇢32(g)[f] � ⇢21(g)[h](x)

and the Lie derivatives split up accordingly.

Applying this property to an entire model as a composition of layers NN(x) = fN :1(x) :=
fN (fN�1(...(f1(x)))), we can identify the contribution that each layer fi makes to the equivariance
error of the whole. Unrolling Equation 5, we have

LX(NN) =
NX

i=1

dfN :i+1LXfi. (6)

Intuitively, the equivariance error of a sequence of layers is determined by the sum of the equivariance
error for each layer multiplied by the degree to which that error is attenuated or magnified by the other
layers (as measured by the Jacobian). We evaluate the norm of each of the contributions dfN :i+1LXfi

to the (vector) equivariance error LX(NN) which we compute using autograd and stochastic trace
estimation as we describe in Appendix A.3. Importantly, the sum of norms may differ from the norm
of the sum, but this analysis allows us to identify patterns across layers and pinpoint operations that
contribute most to equivariance error.

5

Figure 3.3: Lie derivatives can be computed using automatic differentiation. We show how a Lie
derivative for continuous rotations can be implemented in PyTorch [173]. The implementation in our
experiments differs slightly, for computational efficiency and to pass second-order gradients through
grid_sample.

3.5.3 Alternative metrics

3.6 Layer-wise effects on equivariance

Unlike alternative equivariance metrics, the Lie derivative decomposes naturally over the

layers of a neural network, since it satisfies the chain rule. As we show in Appendix A.6.2,

the Lie derivative of the composition of two functions h : V1 → V2 and f : V2 → V3 satisfies

LX(f ◦ h)(x) = (LXf)(h(x)) + df |h(x)(LXh)(x), (3.5)

where df |h(x) is the Jacobian of f at h(x) which we will abbreviate as df . Note that this

decomposition captures the fact that intermediate layers of the network may transform in

29

their own way:

f(h(x)) 7→ρ31(g)[f ◦ g](x) = ρ3(g)−1f(ρ2(g)ρ2(g)−1h(ρ1(g)x)) = ρ32(g)[f] ◦ ρ21(g)[h](x)

and the Lie derivatives split up accordingly.

Applying this property to an entire model as a composition of layers NN(x) = fN :1(x) :=

fN(fN−1(...(f1(x)))), we can identify the contribution that each layer fi makes to the equiv-

ariance error of the whole. Unrolling Equation 3.5, we have

LX(NN) =
N∑

i=1
dfN :i+1LXfi. (3.6)

Intuitively, the equivariance error of a sequence of layers is determined by the sum of the

equivariance error for each layer multiplied by the degree to which that error is attenuated

or magnified by the other layers (as measured by the Jacobian). We evaluate the norm

of each of the contributions dfN :i+1LXfi to the (vector) equivariance error LX(NN) which

we compute using autograd and stochastic trace estimation, as we describe in Appendix

A.6.3. Importantly, the sum of norms may differ from the norm of the sum, but this analysis

allows us to identify patterns across layers and pinpoint operations that contribute most to

equivariance error.

Subtle architectural details often prevent models from being perfectly equivariant. Alias-

ing can result from careless downsampling or from an activation function with a wide spec-

trum. In this section, we explore how the Lie derivative uncovers these types of effects

automatically, across several popular architectures. We evaluate the equivariance of pre-

trained models on 100 images from the ImageNet [59] test set.

Using the layerwise analysis, we can dissect the sources of translation equivariance error

in convolutional and non-convolutional networks as shown in Figure 3.4 (left) and (middle-

left). For the Vision Transformer and Mixer models, we see that the initial conversion from

30

Inception-v2
0

20

40

60

80

100

120
Cu

m
ul

at
iv

e
Eq

ui
va

ria
nc

e
Er

ro
r

VGG13

EfficientNet-B1
ResNet-50

WideResNet-50

Activation
Conv2d

Pool
SqueezeExcite

ViT
0

10

20

30

40

50

Cu
m

ul
at

iv
e

Eq
ui

va
ria

nc
e

Er
ro

r

ConViT
Res-MLP

Attention
GPSA
LayerNorm
Mlp
PatchEmbed

Translation
0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Eq

ui
va

ria
nc

e
Er

ro
r

Rotation Scaling
Hyperbolic Rot.

Activ. Conv2d Pool

Integer0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Eq

ui
va

ria
nc

e
Er

ro
r

Fractional
(Mean) Fractional

(Sqrt)
LEE

Activation
Conv2d

Pool
Downsample

Figure 3.4: Contributions to equivariance shown cumulatively by layer, in the order the layers occur
in the network. Left: Convolutional architectures. In all the CNNs, much of the equivariance error
comes from downsampling and non-linearities. Middle-Left: Non-convolutional architectures. The
initial patch embedding, a strided convolution, is the largest contributor for the ViTs and Mixers. The
rest of the error is distributed uniformly across other nonlinear operations. Middle-Right: ResNet-50
across different transformations as a percentage. Despite being designed for translation equivariance, the
fraction of equivariance error produced by each layer is almost identical for other affine transformations,
suggesting that aliasing is the primary source of equivariance error. Right: Comparing LEE with
alternative metrics for translation equivariance. Using integer translations misses key contributors to
equivariance errors, such as activations, while using fractional translations can lead to radically different
outcomes depending on choice of normalization (N or

√
N). LEE captures aliasing effects and has

minimal design decisions.

image to patches produces a significant portion of the error, and the remaining error is

split uniformly between the other nonlinear layers: LayerNorm, tokenwise MLP, and self-

attention. The contribution from these nonlinear layers is seldom recognized and potentially

counterintuitive, until we fully grasp the deep connection between equivariance and aliasing.

In Figure 3.4 (middle-right), we show that this breakdown is strikingly similar for other

image transformations like rotation, scaling, and hyperbolic rotations, providing evidence

that the cause of equivariance error is not specific to translations but is instead a general

culprit across a whole host of continuous transformations that can lead to aliasing.

We can make the relationship between aliasing and equivariance error precise by consid-

ering the aliasing operation Alias defined in Equation 3.2.

Theorem 3.1. For translations along the vector v = [vx, vy], the aliasing operation A intro-

31

duces a translation equivariance error of

∥Lv(A)(h)∥2 = (2π)2 ∑
n,m

H2
nm

(
v2

x(Alias(n) − n)2 + v2
y(Alias(m) − m)2

)
,

where h(x) = 1
2π

∑
n,m Hnme2πix·[n,m] is the Fourier series for the input image h.

We provide the proof in Appendix A.7.2. The connection between aliasing and LEE

is important because aliasing is often challenging to identify despite being ubiquitous [126,

245]. Aliasing in non-linear layers impacts all vision models and is thus a key factor in any

fair comparison of equivariance.

As alternative equivariance metrics exist, it is natural to wonder whether they can also

be used for layerwise analysis. In Figure 3.4 (right), we show how two equivariance metrics

from Karras et al. [126] compare with LEE, highlighting notable drawbacks. (1) Integer

translation equivariance completely ignores aliasing effects, which are captured by both LEE

and fractional translations. (2) Though fractional translation metrics (EQ-Tfrac) correctly

capture aliasing, comparing the equivariance of layers with different resolutions (C ×H ×W)

requires an arbitrary choice of normalization. This choice can lead to radically different out-

comes in the perceived contribution of each layer and is not required when using LEE, which

decomposes across layers. We provide a detailed description of the baselines in Appendix

A.8.1.

3.7 Trends in learned equivariance

3.7.1 Methodology

We evaluate the Lie derivative of many popular classification models under transforma-

tions including 2d translation, rotation, and shearing. We define continuous transformations

on images using bilinear interpolation with reflection padding. In total, we evaluate 410

32

70% 75% 80% 85% 90%

0.00

0.05

0.10

0.15 R2 = 0.588

Discrete Consistency Metric

70% 75% 80% 85% 90%

1e-4

2e-4

3e-4

4e-4

5e-4 R2 = 0.205

Group Sample Metric

Imagenet Test Accuracy

Eq
ui

va
ria

nc
e

Er
ro

r

Imagenet Test Accuracy

Eq
ui

va
ria

nc
e

Er
ro

r

70% 75% 80% 85% 90%

0.02

0.04

R2 = 0.360

Rotation

70% 75% 80% 85% 90%

0.02

0.04

0.06

0.08
R2 = 0.367

Shear

Imagenet Test Accuracy

Eq
ui

va
ria

nc
e

Er
ro

r

70% 75% 80% 85% 90%

0.05

0.10

0.15 R2 = 0.338

Translation

70% 75% 80% 85% 90%

0.02

0.04

R2 = 0.362

Rotation

70% 75% 80% 85% 90%

0.1

0.2

R2 = 0.004

Stretch

CNN ViT MixerCNN ViT Mixer

Imagenet Test Accuracy

Eq
ui

va
ria

nc
e

Er
ro

r

70% 75% 80% 85% 90%

0.05

0.10

0.15 R2 = 0.338

Translation

70% 75% 80% 85% 90%

0.02

0.04

R2 = 0.362

Rotation

70% 75% 80% 85% 90%

0.1

0.2

R2 = 0.004

Stretch

CNN ViT MixerCNN ViT Mixer

Imagenet Test Accuracy

Eq
ui

va
ria

nc
e

Er
ro

r

Figure 3.5: Equivariance metrics evaluated on the ImageNet test set. Left: Non-LEE equivariance
metrics display similar trends to Figure 3.2, despite using larger, multi-pixel transformations. Right:
Norm of rotation and shear Lie derivatives. Across all architectures, models with strong generalization
become more equivariant to many common affine transformations. Marker size indicates model size.
Error bars show one standard error over test set images used in the equivariance calculation.

classification models, a collection comprising popular CNNs, vision transformers, and MLP-

based architectures [224]. Beyond diversity in architectures, there is also substantial diversity

in model size, training recipe, and the amount of data used for training or pretraining. This

collection of models therefore covers many of the relevant axes of variance one is likely to

consider in designing a system for classification. We include an exhaustive list of models in

the Appendix A.8.3.

3.7.2 Equivariance across architectures

As shown in Figure 3.2 (right), the translation equivariance error (Lie derivative norm)

is strongly correlated with the ultimate test accuracy that the model achieves. Surpris-

ingly, despite convolutional architectures being motivated and designed for their translation

equivariance, we find no significant difference in the equivariance achieved by convolutional

architectures and the equivariance of their more flexible ViT and Mixer counterparts when

conditioning on test accuracy. This trend also extends to rotation and shearing transfor-

mations, which are common in data augmentation pipelines [52] (in Figure 3.5 (right)).

Additional transformation results included in Appendix A.8.5.

For comparison, we also evaluate the same set of models using two alternative equiv-

33

ariance metrics: prediction consistency under discrete translation [245] and expected equiv-

ariance under group samples [71, 116], which is similar in spirit to EQ-Tfrac [126] (exact

calculations in Appendix A.8.4). Crucially, these metrics are slightly less local than LEE, as

they evaluate equivariance under transformations of up to 10 pixels at a time. The fact that

we obtain similar trends highlights LEE’s relevance beyond subpixel transformations.

3.7.3 Effects of Training and Scale

There are many architectural design choices that have been used to improve the equivari-

ance of vision models, for example Zhang [245]’s Blur-Pool low-pass filter. We now investigate

how equivariance error can be reduced with non-architectural design decisions, such as in-

creasing model size, dataset size, or training method. Surprisingly, we show that equivariance

error can often be significantly reduced without any changes in architecture.

In Figure 3.6, we show slices of the data from Figure 3.2 along a shared axis for equiv-

ariance error. As a point of comparison, in Figure 3.6 (left), we show the impact of the

Blur-Pool operation discussed above on a ResNet-50 [245]. In the accompanying four plots,

we show the effects of increasing model scale (for both ViTs and CNNs), increasing dataset

size, and finally different training procedures. Although Zhang [245]’s architectural adjust-

ment does have a noticeable effect, factors such as dataset size, model scale, and use of

modern training methods, have a much greater impact on learned equivariance.

As a prime example, in Figure 3.6 (right), we show a comparison of three training strate-

gies for ResNeXt-50 – an architecture almost identical to ResNet-50. We use Wightman,

Touvron, and Jégou [225]’s pretrained model to illustrate the role of an improved training

recipe and Mahajan et al. [153]’s semi-supervised model as an example of scaling training

data. Notably, for a fixed architecture and model size, these changes lead to decreases in

equivariance error on par with architectural interventions (BlurPool). This result is surpris-

ing when we consider that Wightman, Touvron, and Jégou [225]’s improved training recipe

34

80% 82%
0.04

0.06

0.08

0.10

Eq
ui

va
ria

nc
e

Er
ro

r
BlurPool

(ResNet-50)

Standard
BlurPool

75% 80% 85% 90%

Model Scale
(ViTs)

Parameters
3e+06
2e+08

75% 80% 85%

Model Scale
(EfficientNets)

Parameters
5e+06
2e+07

83% 84% 85%

Dataset Size
(ResMLP Big)

Imagenet 1k
Imagenet 22k

75% 80% 85%

Training Method
(ResNext-50)

CNN ViT Mixer

Torchvision
Improved Recipe
SSL Pretraining

Imagenet Test Accuracy

Figure 3.6: Case studies in decreasing translational equivariance error, numbered left-to-right. 1: Blur-
Pool [245], an architectural change to improve equivariance, decreases the equivariance error but by less
than can be accomplished by improving the training recipe or increasing the scale of model or dataset.
2-3: Increasing the number of parameters for a fixed model family (here ViTs [163] and EfficientNets
[198]). 4: Increasing the training dataset size for a ResMLP Big [209] model. 5: Changing the training
recipe for ResNeXt-50 [231] with improved augmentations [225] or SSL pretraining [235]. Error bars
show one standard error over images in the Lie derivative calculation.

benefits significantly from Mixup [244] and CutMix [240], which have no obvious connection

to equivariance. Similarly, Mahajan et al. [153]’s semi-supervised method has no explicit

incentive for equivariance.

3.7.4 Equivariance out of distribution

From our analysis above, large models appear to learn equivariances that rival archi-

tecture engineering in the classification setting. When learning equivariances through data

augmentation, however, there is no guarantee that the equivariance will generalize to data

that is far from the training distribution. Indeed, Engstrom et al. [68] shows that carefully

chosen translations or rotations can be as devastating to model performance as adversarial

examples. We find that vision models do indeed have an equivariance gap: models are less

equivariant on test data than train, and this gap grows for OOD inputs as shown in Figure

3.7. Notably, however, architectural biases do not have a strong effect on the equivariance

gap, as both CNN and ViT models have comparable gaps for OOD inputs.

35

3.7.5 Why aren’t CNNs more equivariant than ViTs?

Given the deep historical connection between CNNs and equivariance, the results in

Figure 3.5 and Figure 3.7 might appear counterintuitive. ViTs, CNNs, and Mixer have

quite different inductive biases and therefore often learn very different representations of

data [178]. Despite their differences, however, all of these architectures are fundamentally

constructed from similar building blocks–such as convolutions, normalization layers, and

non-linear activations which can all contribute to aliasing and equivariance error. Given this

shared foundation, vision models with high capacity and effective training recipes are more

capable of fitting equivariances already present in augmented training data.

3.7.6 Learning rotation equivariance

Model Test Error (%)

G-CNN [49] 2.28

H-NET [228] 1.69

ORN [257] 1.54

TI-Pooling [133] 1.2

Finetuned MAE 1.14

RotEqNet [154] 1.09

E(2)-CNN [222] 0.68

Table 3.1: Our finetuned MAE is competitive
with several architectures explicitly engineered
to encode rotation invariance on RotMNIST,
where rotation invariance is clearly crucial to
generalization.

We finally consider the extent to which large-

scale pretraining can match strong architectural

priors in a case where equivariance is obviously

desirable. We fine-tune a state-of-the-art vi-

sion transformer model pretrained with masked

autoencoding [102] for 100 epochs on rotated

MNIST [222] (details in Appendix A.8.6). This

dataset, which contains MNIST digits rotated

uniformly between -180 and 180 degrees, is a

common benchmark for papers that design equiv-

ariant architectures. In Table 3.1 we show the

test errors for many popular architectures with

strict equivariance constrainets alongside the er-

ror for our finetuned model. Surprisingly, the finetuned model achieves competitive test

36

70% 75% 80% 85% 90%
0.0

0.1

0.2

0.3
Eq

ui
va

ria
nc

e
Er

ro
r

Imagenet Train

70% 75% 80% 85% 90%

Imagenet Test

70% 75% 80% 85% 90%

CIFAR-100

70% 75% 80% 85% 90%

Histology

70% 75% 80% 85% 90%

Retinopathy

CNN ViT MixerCNN ViT Mixer Imagenet Test Accuracy

Figure 3.7: Models are less equivariant on test data and becoming decreasingly equivariant as the
data moves away from the training manifold. As examples of data with similar distributions, we show
equivariance error on the ImageNet train and test sets as well as CIFAR-100. As examples of out-of-
distribution data, we use two medical datasets (which often use Imagenet pretraining), one for Histology
[127] and one for Retinopathy [123].

accuracy, in this case a strong proxy for rotation invariance. Despite having relatively weak

architectural biases, transformers are capable of learning and generalizing on well on sym-

metric data.

3.8 Conclusion

We introduced a new metric for measuring equivariance which enables a nuanced inves-

tigation of how architecture design and training procedures affect representations discovered

by neural networks. Using this metric we are able to pinpoint equivariance violation to indi-

vidual layers, finding that pointwise nonlinearities contribute substantially even in networks

that have been designed for equivariance. We argue that aliasing is the primary mechanism

for how equivariance to continuous transformations are broken, which we support theoret-

ically and empirically. We use our measure to study equivariance learned from data and

augmentations, showing model scale, data scale, or training recipe can have a greater effect

on the ability to learn equivariances than architecture.

Many of these results are contrary to the conventional wisdom. For example, transform-

ers can be more equivariant than convolutional neural networks after training, and can learn

37

equivariances needed to match the performance of specially designed architectures on bench-

marks like rotated MNIST, despite a lack of explicit architectural constraints. These results

suggest we can be more judicious in deciding when explicit interventions for equivariance are

required, especially in many real world problems where we only desire approximate and local

equivariances.On the other hand, explicit constraints will continue to have immense value

when exact equivariances and extrapolation are required — such as rotation invariance for

molecules. Moreover, despite the ability to learn equivariances on training data, we find that

there is an equivariance gap on test and OOD data which persists regardless of the model

class. Thus other ways of combating aliasing outside of architectural interventions may be

the path forward for improving the equivariance and invariance properties of models.

Discussion: Deconstruction Biases

In Chapters 2 and 3, we demonstrated how models can learn symmetries from data

and how models with less architectural constraints can perform better than models with

less architectural constraints, even when the constraints encourage a known symmetry in

the problem. Extrapolating from these results, should we then abandon architecture-based

symmetry constraints entirely?

Probably not. In some cases it is beneficial to trade the complexity and limitations

of symmetric architectures for the simplicity and generality of architectures with weaker

inductive biases. In problems with abundant data, I predict that this will become more

common. But in data-scarce settings, or in settings where marginal performance gains

are game changing, the superior scaling laws of constrained architectures [26] justify their

increased complexity. Notably, in some cases, the final wall clock time of training constrained

architectures can be larger than that of unconstrained alternatives because of worse hardware

utilization, as models like transformers have seen multiple waves of optimization for GPUs.

38

The intended take-away of this section is that often surprising design decisions that have

the largest impact on the final symmetry properties of a model. For example, the energy

conservation of HNNs is often misunderstood, and the invariance of CNNs is highly related

to aliasing in the model, not just the theoretical properties of convolutions. In many cases,

pinpointing the critical biases allows us to learn the property we care about more easily while

also simplifying systems. Our mission is therefore not to eliminate inductive bias in some

sense but to identify the critical and minimal set of inductive biases. In the next part of the

thesis we take this mission a step further and probe how far we can go with just language

models and large-scale text pretraining.

39

Part II

Sequence Modeling for Numerical Data:

Transfer Success and Limitations

40

This section explores how language models, despite being trained exclusively on text

data, can successfully transfer to numerical and scientific tasks. We focus on three distinct

applications: time series forecasting, crystal structure prediction, and molecular property

prediction. The first two cases reveal surprising capabilities that emerge from language

models’ pretraining on discrete sequences, despite these tasks being absent from their training

data. In both time series forecasting and crystal structure prediction, we attribute the

models’ success to their inherent preference for simple functional relationships and their

sophisticated probability estimation capabilities.

The applications demonstrate unexpected advantages of language models in scientific

computing. Their sequence-based architecture enables seamless integration of textual infor-

mation with numerical data, allowing researchers to frame traditionally distinct computa-

tional tasks within a unified modeling approach. However, these capabilities have limitations,

as shown in our analysis of molecular property prediction, where we systematically exam-

ine how architectural choices, tokenization strategies, and pretraining methods affect model

performance.

This research was conducted in collaboration with Marc Finzi, Shikai Qiu, Anuroop

Sriram, Andrea Madotto, Dylan Sam, Larry Zitnick, Zachary Ulissi, and Andrew Gordon

Wilson, resulting in publications at NeurIPS 2023 ("Large Language Models Are Zero-Shot

Time Series Forecasters") and ICLR 2024 ("Fine-Tuned Large Language Models Generate

Stable Inorganic Materials As Text"), with additional work currently under review.

41

4 | Large Language Models Are

Zero-Shot Time Series

Forecasters

4.1 Introduction

Despite similarities with other sequence modeling problems, such as text, audio, or video,

time series has two particularly challenging properties. Unlike video or audio, which typically

have consistent input scales and sampling rates, aggregated time series datasets often com-

prise sequences from radically different sources, sometimes with missing values. Moreover,

common applications of time series forecasting, such as weather or financial data, require

extrapolating from observations that contain a tiny fraction of the possible information,

making accurate point predictions nearly impossible and uncertainty estimation especially

important. While large-scale pretraining has become a key element of training large neural

networks in vision and text, enabling performance to scale directly with data availabil-

ity, pretraining is not typically used for time series modeling, where there is no consensus

unsupervised objective and large, cohesive pretraining datasets are not readily available.

Consequently, simple time series methods (e.g. ARIMA [24], and linear models [241]) often

outperform deep learning methods on popular benchmarks [108].

42

In this chapter, we demonstrate how large language models (LLM) can naturally bridge

the gap between the simple biases of traditional methods and the complex representational

learning and generative abilities of modern deep learning. In particular, we introduce an

exceedingly simple method, LLMTime1, to apply pretrained LLMs for continuous time series

prediction problems, illustrated at a high level in Figure 4.1. At its core, this method rep-

resents the time series as a string of numerical digits, and views time series forecasting as

next-token prediction in text, unlocking the use of powerful pretrained models and proba-

bilistic capacities, such as likelihood evaluation and sampling. To enable strong performance,

we propose techniques to (1) effectively encode time series as a string of numerical digits

and (2) adapt the discrete distributions of LLMs to continuous densities capable of modeling

sophisticated multimodal distributions. Using these techniques, we find LLMTime can exceed

or match purpose-built time series methods over a range of different problems in a zero-shot

fashion, meaning that LLMTime can be used without any fine-tuning on the downstream data

used by other models.

The zero-shot nature of LLMTime carries several natural advantages: (1) it facilitates

the straightforward application of LLMs, eliminating the necessity for specialized knowledge

of fine-tuning procedures and the substantial computational resources required for these

procedures, as well as side-stepping access issues surrounding proprietary source code or

APIs for LLM training or fine-tuning; (2) it is naturally suited to scenarios with limited data

availability, where there is little information for training or fine-tuning; (3) by leveraging the

broad pattern extrapolation capabilities of extensively pre-trained LLMs, it circumvents the

extensive time, effort, and domain-specific expertise typically required for crafting dedicated

time series models.

To understand the origins of LLMTime’s impressive performance, we investigate how LLMs

express preferences for simple or repetitive sequences [82] and show that these biases are in
1https://github.com/ngruver/llmtime

43

https://github.com/ngruver/llmtime

LLM

Prompt Samples

"and fell asleep"
"The dog jumped up on the bed"

"631, 656, 650, ..., 487, 485, 487" "479, ..., 371, 364"

"492, ..., 499, 501"

"and bit my leg"

Figure 4.1: We propose LLMTime, a method for time series forecasting with large language models
(LLMs) by encoding numbers as text and sampling possible extrapolations as text completions. LLMTime
can outperform many popular time series methods without any training on the target dataset (i.e. zero-
shot). The performance of LLMTime also scales with the power of the underlying base model. Notably,
models that undergo alignment (e.g. RLHF) do not follow the scaling trend. For example, GPT-4
demonstrates inferior performance to GPT-3.

fact compatible with the salient structure of time series, such as seasonality. Aside from

these biases, LLMs also can naturally acccommodate missing data, and express multimodal

distributions, which is particularly useful for time series. We also show how LLMs enable

appealing functionality, such as the ability to provide additional side information through

prompting, and query the LLM to explain its predictions.

Finally, in addition to broadly compelling forecasting performance, we find performance

tends to improve with scale, and the quality of point predictions also improves with the

quality of the uncertainty representation. However, we also find GPT-4 has worse uncertainty

calibration than GPT-3, likely due to interventions such as reinforcement learning by human

feedback (RLHF).

4.2 Background

Language modeling Language models are trained on a collection of sequences, U =

{U1, U2, . . . Ui, . . . , UN}, where Ui = (u1, u2, . . . , uj, . . . , uni
) and each token, ui, belongs to

44

a vocabulary V . Large language models typically encode an autoregressive distribution, in

which the probability of each token is only dependent on the previous tokens in the sequence,

pθ (Ui) = ∏ni
j=1 pθ (uj | u0:j−1). The parameters, θ, are learned by maximizing the probability

of the entire dataset pθ(U) = ∏N
i=1 pθ(Ui). Every language model has an associated tokenizer,

which breaks an input string into a sequence of tokens, each belonging to V . Proper tok-

enization is extremely important, and small details can have surprisingly significant effects.

The most common tokenization method for autoregressive language models is byte-pair en-

coding (BPE), which treats inputs like bit strings and assigns tokens based on the rate of

occurrence in the training corpus, optimizing for shorter sequences of tokens on average.

Sampling from a language model typically starts with a prompt, u0:k, and proceeds sequen-

tially using pθ (uj | u0:j−1), which is often preprocessed, for example through temperature

scaling or nucleus sampling [111].

Large language models Brown et al. [30] showed that increasing a language model’s

parameter count and training data size leads to new capabilities such as zero-shot gener-

alization, in which a model can perform a text-formatted task without training the model

parameters on any task-specific data. Large language models, for example GPT-3 [30] or

LLaMA-2 [206], accomplish this form of generalization through in-context learning, which

identifies patterns in the language model’s prompt and extrapolates them through next-

token prediction. Many authors have speculated that in-context learning emerges from a

language model’s extensive compression of the input data [58, 82, 196]. Compression favors

learning algorithms that operate over the input data with programmatic abstractions, for

example, context-free grammars [4] or induction heads [166], which can implement copy-

and-paste type operations for generating samples with highly structured syntax. In this

work, we show that the zero-shot generalization abilities of LLMs and their preference for

compressible patterns extend well beyond language understanding and can be used for time

45

series forecasting.

Zero-shot generalization has made LLMs significantly more useful as assistants, leading to

the create of methods to align LLMs with human preferences and instructions, for example

reinforcement learning from human feedback (RLHF) [171] and instruction tuning [221].

While key to modern LLMs products, alignment methods can also significantly affect the

abilities and calibration of the underlying model [31, 169]. Here we show these methods can

also affect forecasting ability.

4.3 Related work

4.4 Continuous densities with autoregressive

models

The fact that LLMs can express flexible distributions over numbers is key for time se-

ries data. Uncertainty quantification is essential to forecasting, and typical approaches to

representing uncertainty in time series can be limited by misspecification. For example, one

common method for creating a probabilistic forecast is to fit a Gaussian or Laplace observa-

tion model. When the underlying data distribution is multimodal, both of these models will

perform poorly. Methods like Gaussian mixture models (GMMs) solve the issue of multi-

modality but introduce additional challenges to optimization and model selection. We show

that a language model is an underrated solution by training a small autoregressive model

on a variety of one-dimensional distributions shown in Figure 4.2 (right). These distribu-

tions come from an exponential random variable, a mixture of a uniform and a student-t

distribution, and the heavy-tailed distribution of time series prediction residuals from an

ARIMA model on the MonthlyMilk dataset [107]. We evaluate these fits quantitatively

by computing Wasserstein distances, and compare to a Laplace observation model, a GMM

46

P(uj | u0:j-1)

P("3"|"5")

P("3"|"5") P("7"|"53")

P("7"|"53")

P("5")

P("5")

["5","3","7"]
P(0.537)

P(0.537) =

Tokenizer

0.537

"537"

Encoder

Language Model

.
.

Exponential

0.00

0.25

Laplace
GMM

Fixed Bins
Decimal AR

D
en

si
ty

Square + Student t

0.0

0.2

W
asserstein D

istance

ARIMA Residuals

0.00

0.25

Figure 4.2: Left: Autoregressive models over sequences of digits act like hierarchical softmax distri-
butions over the corresponding numbers. When combined with uniform distributions in each discrete
bucket, distributions over strings can become expressive distributions over continuous domains. Right:
Using simple autoregressive models (e.g. RNNs) trained on a string representation of numbers, we can
fit complex distributions that can be challenging for other methods, such as heavy-tailed or multimodal
distributions. A simple autoregressive model can match or outperform well-known methods for density
estimation, such as Gaussian mixture models (GMMs) or binning with a fixed resolution, as measured
by Wasserstein distance between samples.

trained with expectation-maximization, and logistic regression over a flat binning of the data

(with a tuned bin size). Each model is trained with only 200 samples from the distribution.

The results show that the decimal autoregressive language model (“Decimal AR”) performs

extremely well, handling asymmetric, multimodal, and heavy-tailed distributions, which are

among the diverse types characteristic of time series data.

4.5 LLMTime: retrofitting LLMs for forecasting

Forecasting with LLMTime has relatively few steps. Once the numerical values are pro-

cessed into strings, making predictions with the language model follows standard sampling

procedures. As we show next, however, correct pre-processing is not always intuitive but is

extremely important, and incorrect handling can lead to unusable predictions.

Tokenization Tokenization is particularly important because it directly influences how

patterns form within tokenized sequences and the types of operations that language models

47

can learn. Unfortunately, common tokenization methods like BPE tend to break a single

number into tokens that don’t align with the digits, which can make arithmetic considerably

more difficult [146]. For example, the number 42235630 gets tokenized as [422, 35, 630] by

the GPT-3 tokenizer, and changes by even a single digit can result in an entirely different

tokenization. By contrast, in many new open-source LLMs (e.g. LLaMA [208]), numbers are

tokenized into individual digits by default. To remedy the tokenization of GPT models, we

separate the digits with spaces to force a separate tokenization of each digit and use a comma

(" ,") to separate each time step in a time series. Because decimal points are redundant given

a fixed precision, we drop them in the encoding to save on context length. Thus, with e.g. 2

digits of precision, we pre-process a time series as follows before feeding into the tokenizer:

0.123, 1.23, 12.3, 123.0 → " 1 2 , 1 2 3 , 1 2 3 0 , 1 2 3 0 0".

In Figure 4.3, we show that the added spaces of this encoding are helpful for GPT models,

preventing the model from getting derailed by outputting an unusual token during sampling.

For LLaMA models, with their unique tokenization of numbers, added spaces have the

opposite effect. Each digit and space is already assigned its own token, and space tokens

become nuisance inputs, adding to the sequence length without simplifying the sequence’s

structure and potentially making the sequence out-of-distribution to the model.

Rescaling To avoid wasting tokens when the inputs are very large, we scale values down

so that the α-percentile of rescaled time series values is 1. We avoid scaling by the maximum

value so that the LLM can see some fraction of examples (1 − α) where the number of digits

changes and reproduce this behavior in its outputs to produce larger values than it has seen.

We also experiment with an offset β based calculate as a percentile of the input data, and

we tune these two parameters on validation log likelihoods (details in section B.1).

48

Figure 4.3: Careful tokenization is important for good forecasting with LLMs. Using the Australian
Wine dataset from Darts [107], with values [151, 167, ..., 267], we show the tokenization used by
GPT-3 [30] and LLaMA-2 [206] and the corresponding effect on forecasting performance. Added spaces
allow GPT-3 to create one token per digit, leading to good performance. LLaMA-2, on the other hand,
tokenizes digits individually, and adding spaces hurts performance.

Sampling / Forecasting To forecast, draw many samples (e.g. 20) from the LLM

and use the statistics of the samples at each time step to construct a point estimate (e.g.

as the median) or probabilistic forecast (e.g. as quantiles). To control sampling, we use

temperature scaling, logit bias, and nucleus sampling (Appendix B.2).

4.6 Time series evaluations

Time series data Time series data typically takes the exact same form as language mod-

eling data, as a collection of sequences {Ui = (u1, . . . , uj, . . . , uni
)}, but in time series uj is

numerical. Because language models are built to represent complex probability distributions

over sequences, they are theoretically well-suited for time series modeling. In practice, how-

ever, language models are held back by the details of tokenizing numbers. BPE compresses

numbers based on frequency of occurrence in the training data, so numbers can be bro-

ken down into awkward chunks that make learning basic numerical operations challenging.

Touvron et al. [208] therefore designed the LLaMA tokenizer to map numbers to individ-

ual digits, which can lead to significant improvements in mathematical abilities, with small

LLaMA models outperforming GPT-4 [146].

The other challenge of applying language models to time series data is proper evaluation.

49

Mean absolute error (MAE) is commonly used but ignores uncertainty in the forecast which

is highly limiting for stochastic data [20, 108]. While demonstrating steady improvements,

research on deep learning for point prediction frequently ignores a key but simple fact: the

real world is complex and predicting the future accurately from past observations alone

is often impossible. In highly structured time series, such as observed traffic, with strong

periodicity from both daily and weekly cycles, we may be able to forecast point predictions

with a high degree of accuracy. However, in stochastic time series which display only modest

structure (e.g. periodicity or seasonality), such as precipitation or wind speed patterns, we

cannot hope to produce accurate predictions of specific future outcomes using only historic

observations.

Researchers working in architecture design for timeseries frequently overlook intrinsic

stochasticity in benchmark datasets. In Figure 4.4 we show how even sophisticated methods

struggle to forecast accurately on data with a low signal-to-noise ratio. In Table 4.1 we take

this observation further and show that, shockingly, naive constant predictors outperform two

state-of-the-art time series models [130, 254] on several widely reported MSE evaluations.

The numbers shown are taken directly from Challu et al. [33], Wu et al. [230], and Zhou

et al. [254], but include new columns showing the performance of simply predicting either the

mean or the last value of the observations. Notably, these datasets span many domains of

practical interest (finance, energy, and climatology), and contain varying levels of structure

and periodicity.

Continuous ranked probability score (CRPS) better captures distributional qualities and

can compare models that generate samples without likelihoods. For a single prediction,

the CRPS score is defined against the estimated cumulative distribution function (CDF),

F̂ as CRPS(F̂ , y) =
∫
R

(
F̂ (z) − I(z−y)>0

)2
dz, where F̂ (z) is the empirical CDF produced

by sampling forecasts and I is the indicator function. While CRPS is an improvement over

MAE, it also ignores key structures in the data, such as correlations between time steps.

50

Table 4.1: Multivariate results with varying prediction lengths. Bolded results indicate the best per-
forming model, and italics the second best. In all cases simple statistics of the input data to the model
are either the first or second best performing models in terms of both MSE and MAE accuracy. His-
torical Inertia (HI) [53] was also introduced as a trivial baseline but has worse performance than our
constants.

Models Mean Last Value N-HiTS Autoformer Informer ARIMA HI

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Ex
ch

an
. 96 0.139 0.269 0.081 0.196 0.092 0.211 0.197 0.323 0.847 0.752 0.296 0.214 0.112 0.251

336 0.384 0.454 0.305 0.396 0.371 0.443 0.509 0.524 1.672 1.036 2.298 0.467 0.434 0.517
720 0.938 0.736 0.823 0.681 0.888 0.723 1.447 0.941 2.478 1.310 20.666 0.864 0.955 0.772

ET
T

m
2 96 0.150 0.272 0.203 0.312 0.176 0.255 0.255 0.339 0.365 0.4536 0.225 0.301 0.158 0.261

336 0.205 0.313 0.270 0.361 0.295 0.346 0.339 0.372 1.363 0.887 0.370 0.386 0.379 0.438
720 0.261 0.350 0.335 0.401 0.401 0.426 0.422 0.419 3.379 1.388 0.478 0.445 0.446 0.477

W
ea

th
er 96 0.216 0.271 0.259 0.254 0.158 0.195 0.266 0.336 0.300 0.384 0.217 0.258 0.345 0.339

336 0.313 0.336 0.377 0.338 0.274 0.300 0.359 0.395 0.578 0.523 0.330 0.347 0.529 0.440
720 0.380 0.377 0.465 0.394 0.351 0.353 0.419 0.428 1.059 0.741 0.425 0.405 0.545 0.439

Fortunately, language models can assign likelihoods to full sequences of time series data, and

we show how a small modification to an LLM’s discrete likelihood can yield a continuous

density that is useful for model comparison.

4.7 LLMTime evaluation

We evaluate the zero-shot forecasting ability of LLMs by comparing LLMTime with GPT-3

and LLaMA-2 70B to many popular time series baselines on a variety of benchmark time

series datasets. Not only is LLMTime able to generate plausible completions of the real and

synthetic time series, it achieves higher likelihoods and CRPS values in zero-shot evaluation

than the dedicated time series models like ARIMA, TCNs, and N-HiTS. When evaluated

on deterministic metrics like MAE, LLMs also perform well, obtain the best or second best

MAE values on each benchmark. As we are using LLMs with undisclosed datasets, data

leakage is an important concern that we address directly in subsection 4.7.3. Beyond strong

performance on standard benchmarks, which are the most useful for comparison, we find

that LLMTime also performs well on datasets that could not have been present in the base

51

0 50 100 150 200

1.4

1.6

1.8

2.0
St

an
da

rd
ize

d
Y

Exchange

0 50 100 150 200
Time

1.00

0.75

0.50

0.25

0.00
ETTm2

Data
Autoformer
NHiTS
Last Value
Empirical std.

0 50 100 150 200
1.0

0.8

0.6

0.4

0.2
Weather

Figure 4.4: Example predictions on exchange rate (left), ETTm2 (a sequence of electricity transformer
temperature readings, center), and weather (right) for NHiTS [33], Autoformer [230], and last value
predictions, as well as the historical standard deviation of the change from the last observed value. On
the exchange [130] and ETTm2 [254] datasets there is minimal structure to be exploited except on
very short horizons, and forecasts tend to under-perform simple baselines. On semi-structured datasets
like weather, models can capture some overall structure, such as NHiTS accurately predicting the final
values in the forecasting window, but are still only on par with naive predictions. From these plots we
see why probabilistic evaluation is necessary and point estimates are insufficient.

model’s training data. The full set of hyperparameters used for LLMTime and the baseline

methods are detailed in Appendix B.2.1. For some of the longer time series, not all of the

history can be fit into the context window, and hence hyperparameters implicitly capture

the trade-off between higher precision and capturing a larger temporal history.

Datasets We use three benchmark datasets that are common within deep learning re-

search and many baseline methods that accompany the benchmark datasets.

• Darts [107]: A collection of 8 real univariate time series datasets. For Darts, we use

several methods that are implemented directly in the package, including neural network

models (TCN [134], N-BEATS [170], N-HiTS [33]) and simple moving average models

(ARIMA [24]). Darts enables learning observation models with tractable likelihoods and

is therefore especially useful for benchmarking the probabilistic predictions of LLMTime.

We also include Spectral Mixture Gaussian Process (SM-GP) [226], a Bayesian nonpara-

metric method (details in Appendix B.2.1).

• Monash [81]: The Monash forecasting archive contains 30 publicly available datasets

along with baseline numbers for 12 forecasting models, including simple exponential

smooth (e.g. ETS [117]), gradient boosting (e.g. CatBoost [175]) and deep learning

52

N-BE
AT

S
SM

-G
P

TC
N

N-H
iTS

LL
aM

A-2
GPT

-3
AR

IM
A

0.0

0.2

M
AE

Darts

Wav
eN

et

Tra
ns

for
mer SE

S
Th

eta

(D
HR-)

AR
IM

A
Dee

pA
R PR

GPT
-3

FF
NN

N-BE
AT

S
Ca

tBo
os

t
ET

S
TB

AT
S

LL
aM

A-2

0

1

2

Sc
al

ed
 M

AE

Monash

Inf
orm

er
Re

for
mer

Tra
ns

for
mer

Au
tof

orm
er

LL
aM

A-2
FE

Dfor
mer

0.0

0.2

0.4

M
AE

Informer

Figure 4.5: LLMTime with base model GPT-3 or LLaMA-2 70B has the best or second best aggregated
performance on several deterministic time series benchmarks [81, 107, 254] while being entirely zero-
shot. Collectively, these benchmarks comprise 29 individual datasets with diverse sources, lengths, and
noise levels. For Monash MAE numbers, established results are reported on unnormalized data, so we
normalize values before aggregating (Appendix B.2.2). The informer datasets are multivariate, and
we predict each covariate independently with LLMTime (Appendix B.2.3). GPT-3 evaluation on the
Informer datasets was skipped because of the cost of API queries. Error bars show standard errors over
the individual datasets in each benchmark.

models (e.g. DeepAR [184], WaveNet [168]). The Monash archive comprises over 400,000

individual time series, making it infeasible to use in its entirety with the largest available

LLMs. To reduce the computational burden, we evaluate GPT-3’s zero-shot performance

on 19 datasets described in Appendix B.2.2.

• Informer [254]: We evaluated on multivariate datasets widely used for benchmarking ef-

ficient transformer models [64, 254]. In order to predict multivariate data with LLMTime,

we forecast each covariate independently. We baseline against numbers obtained by run-

ning public implementations from the Autoformer [230] and FEDFormer [256] codebases

(Appendix B.2.3).

4.7.1 Deterministic forecasts

To compute MAE values for LLMTime we use the pointwise median of 20 samples from the

base model (GPT-2 or LLaMA-2 70B). Figure 4.5 shows that deterministic predictions from

LLMTime are ranked best or second best on all the considered benchmarks while having no

53

trainable parameters. We provide visualizations of the forecasts in Appendix B.2.5, B.2.7,

and B.2.8.

4.7.2 Probabilistic forecasts

In Figure 4.6, we show several probabilistic evaluations on the Darts datasets, including

aggregated NLL and CRPS numbers, as well as analysis of how each model reacts to de-

creasing the input data size. Evaluated on log likelihood and CRPS, LLMTime considerably

outperforms the baselines in aggregate and on almost every individual dataset (results per

dataset included in Appendix B.2.5). Given our analysis of language model-derived densi-

ties, it is unsurprising that language models excel in probabilistic evaluations, outperforming

the baselines even more dramatically. In Figure 4.6 (left) we show two informative examples

that capture the performance of LLMTime. When extrapolating the AirPassengers dataset,

LLMTime successfully identifies and continues trend and period components, with uncertainty

that grows as predictions get further from the input data. On GasRateCO2, LLMTime repli-

cates local structure when there is relatively little global structure. In Figure 4.6 (right) we

show that LLMTime not only performs better than baselines with access to the full training

data but also when restricted to small fractions of the training data. As time series is fre-

quently characterized by relative data scarcity and challenges in transfer learning, the data

efficiency of LLMs is especially attractive.

Comparison with PromptCast Though included in the results described above, we

want to explicitly highlight that LLMTime significantly outperforms PromptCast [234] when

applied to both GPT-3 and LLaMA-2 70B, according to CRPS and MAE aggregated over

the Darts datasets. This performance gap highlights important differences between the

two approaches. Unlike our method, PromptCast formulates forecasting as a conventional

question-answering task in NLP by prompting pre-trained language models with an explicit

54

Figure 4.6: Extended experiments on the Darts datasets. Left: Example probabilistic forecasts with
baseline negative log likelihood per dimension (NLL/D). LLMs easily extrapolate trends (e.g. AirPas-
sengers) and reproduce local patterns when data is noisy (e.g. GasRateCO2). Center: When using
probabilistic metrics like NLL and CRPS, LLMTime outperforms all baselines, including PromptCast
[234], a competing LLM method. Error bars show standard errors over datasets with Darts. Right:
LLMTime is much more sample efficient than competing methods. While the performance of other
methods degrades rapidly when we restrict them to a fraction of the original training set, LLMTime can
assign high likelihood with only a few examples.

question about future values in a time series. For example, PromptCast feeds in the prompt

“The values in the WoolyDataset for the past 95 time steps are 6172, 6709, 6633, . . . , 6077.

What will the values for the next 5 time steps be? The values for the next 5 time steps will

be", to extract predictions from an LLM. PromptCast also does not apply our tokenization

and data rescaling strategy, which we show is crucial for good performance.

4.7.3 Temporal holdouts

Evaluating the performance of black box APIs, like those provided by OpenAI, can be

challenging when training data for the underlying models is unknown. In our time series

setting, it is natural to wonder if the common benchmark datasets we use are included in

the GPT-3 training data. LLMs are known to memorize large amounts of their training

data verbatim, including common benchmark text datasets and copyrighted material [21,

34]. Beyond outright memorization, more benign data leakage of closely related data is also

55

Istanbul Traffic

0

1

2

3

4

5

6
TSMC Stock

0

1

2

3

4

5
Turkey Power

0

2

4

6

8

10

N
LL/D

Ground Truth
GPT-3 Median

SM-GP
N-BEATS

TCN
N-HiTS

ARIMA
GPT-3

Figure 4.7: Evaluation on a collection of short univariate time series recorded after GPT-3’s training
cutoff date. We compare the performance of our GPT-3 predictor against popular time series models.
Predicted median and 10-90th percentile intervals are shown for GPT-3 given the context, and we
compare test negative log likelihoods. GPT-3 continues to be competitive with or outperforms the
baselines on all of the tasks, from in-context learning alone. This result reinforces our belief that GPT-
3’s performance is not due to memorization of the test data.

possible, leading to overestimation of the generalization performance.

Even if our evaluation datasets are present in the GPT-3 training data, it’s unlikely that

GPT-3’s good performance is the result of memorization for at least two reasons a priori.

First of all, our idiosyncratic formatting is unlikely to be present in the training dataset, even

if the numerical values and their order are the same. Second, the time series datasets are

unlikely to appear in GPT-3’s training data sufficiently frequently to lead to memorization,

as memorization increases in proportion with redundancy [137].

To further address the memorization concern, we also perform a direct experiment to

show GPT-3 also demonstrates strong performance when evaluated on time series recorded

after its training data cutoff date, September 2021. We use the following 3 time series:

• Istanbul Traffic (source: https://www.kaggle.com/datasets/leonardo00/istan

bul-traffic-index): This dataset provides minute-by-minute Traffic Index data for

Istanbul from October 2022 to May 2023. We select the "TI" column and downsample

the series to an hourly frequency for the period from May 5th, 2023 to May 18th, 2023,

resulting in a total of 267 observations.

• TSMC Stock (source: https://www.kaggle.com/datasets/yeemeitsang/tsmc-sto

56

https://www.kaggle.com/datasets/leonardo00/istanbul-traffic-index
https://www.kaggle.com/datasets/leonardo00/istanbul-traffic-index
https://www.kaggle.com/datasets/yeemeitsang/tsmc-stock-exchange-2022
https://www.kaggle.com/datasets/yeemeitsang/tsmc-stock-exchange-2022

ck-exchange-2022): This dataset contains daily stock market trading data for Taiwan

Semiconductor Manufacturing Company Limited for the year 2022. We use the closing

price column, which consists of a total of 246 observations.

• Turkey Power (source: https://www.kaggle.com/datasets/dharanikra/electri

cal-power-demand-in-turkey): This dataset includes hourly electricity generation

and consumption data for Turkey from January 1st, 2020 to December 31st, 2022. We

choose the "Total" column and downsample to daily data for the year 2022, resulting in

366 observations.

For each time series, we reserve the last 30 observations as test data and perform hyper-

parameter tuning for each method over the same grid as in Appendix B.2.1. As displayed in

Figure 4.7, GPT-3 not only predicts plausible continuations of each time series but also com-

petes with or even surpasses the performance of the baseline models in all the tasks, solely

based on in-context learning. This result reinforces our belief that GPT-3’s performance is

not due to memorization of the test data.

4.8 Connections with simplicity bias

To understand why LLMs can extrapolate time series in a zero-shot manner, let’s take

a step back and consider simple numerical sequences, for example [1, 4, 9, 16, . . .] or [0, 0,

1, 0, 1, 2, 0, 1, 2, 3, . . .]. For any input sequence, there are arbitrarily many generation

rules that are consistent with the input (e.g. f (x) = x2 for x ∈ [1, 2, 3, 4, ...]), but some

generation rules are overly complex and will generalize poorly. LLMs can forecast effectively

because they prefer completions derived from simple rules, adopting a form of Occam’s

razor prior [58, 82, 196]. To explicitly demonstrate this phenomenon, we create a synthetic

example using the function f(x) = x + cos(x) with additive Gaussian noise. We fit symbolic

expressions to the first 70% of timesteps using PySR [50] with symbols [“+”, “·”, “-”, “/”,

57

https://www.kaggle.com/datasets/yeemeitsang/tsmc-stock-exchange-2022
https://www.kaggle.com/datasets/yeemeitsang/tsmc-stock-exchange-2022
https://www.kaggle.com/datasets/yeemeitsang/tsmc-stock-exchange-2022
https://www.kaggle.com/datasets/dharanikra/electrical-power-demand-in-turkey
https://www.kaggle.com/datasets/dharanikra/electrical-power-demand-in-turkey

“sin”, “cos”, “exp”,“square”] to identify generating rules with known complexity, quantified

by the number of symbols in the regressed expression (Appendix B.3). Figure 4.8 (left) shows

the likelihood that GPT-3 assigns the highest likelihood to symbolic regression generating

rules that balance consistency with complexity.

In Figure 4.8 (right) we show how program induction in LLMs leads to good zero-shot

prediction for many deterministic patterns common in time series data. Along with samples,

we also show likelihoods, comparing against standard time series models, which often struggle

to extrapolate these simple patterns because they cannot identify a programmatic genera-

tion rule to make predictions unlike those seen in the observed history. While the generic

simplicity bias is helpful for identifying and extrapolating patterns in the input, a number

of patterns common in time series models also translate directly to known capabilities of

language models, for example

• Repetition bias and periodicity: LLMs’ bias towards repetitive sequences [111] (often

unwanted in NLP) corresponds precisely to the ability to identify and extrapolate peri-

odic structure in the input. 4.2, 8.6, 1.0, 4.2, 8.6 will lead to a 1.0 as a likely next output

without any time series or arithmetic knowledge (xt = xt−T).

• Arithmetic and trend components: LLMs’ ability to perform addition and multiplica-

tion [146, 239] maps on to extrapolating linear and exponential trends. For example,

predicting the next element of 0.2, 1.6, 3., 4.4 the LLM needs only to add 1.4 to the

last element (xt+1 = xt + c). Similarly, exponential trends have the generating rule

xt+1 = c · xt and sigmoid trends have the generating rule xt+1 = xt + cxt (1 − xt).

Combining multiple patterns together presents a more difficult challenge, as it requires both

identifying the composite pattern and being able to perform the multiple operations within

the same token budget. Supposing that a model can perform copying in a single forward pass

and addition in a single forward pass, that does not necessarily mean that it can do both

58

.

Figure 4.8: LLMs can find low complexity explanations of the data, enabling them to zero-shot ex-
trapolate numerical sequences. Left: GPT-3 likelihoods favor solutions from symbolic regression (PySR
[50]) that balance training loss and complexity, leading to good generalization. Right: GPT-3 predicted
median and 10-90th percentile prediction interval are shown given 140 timesteps of context. On the
right of each time series, we show the log likelihoods compared to the ARIMA and TCN time series
models. Overall, GPT-3 performs considerably better than the baselines, though composition and ex-
ponential growth are more challenging for the models (Appendix B.3.1).

simultaneously. We find that GPT-3 is only sometimes able to perform these compositions,

though GPT-4 does so more consistently as shown in section B.4. It is likely that the

limitations on compute and tokens spent may make this composition unnecessarily hard, and

that additional recursive structure, for example from a scratchpad [164], Chain of Thought

(CoT) prompting [220], or adaptive computation [7, 189], would make this task easier.

4.9 Promises of jointly modeling text and

numerical data

So far we’ve shown that LLMs are effective forecasters across a variety of datasets and

that their forecasting ability arises from biases created by generative pretraining. LLMTime

offers a mechanism for large-scale pre-training that is uncommon in machine learning for time

series. LLMs lessen the amount of time series data that must be aggregated for pretraining,

substituting text pretraining in its place, and enable more powerful scaling results. Beyond

59

escaping the limits of task-specific data, text pretraining also has many test-time benefits

that stem from the base model’s ability to process and generate natural language. As we show

in the following section, LLMs can leverage their abilities in order to seamlessly incorporate

missing data or answer questions about time series.

Base models and forecasting performance Given the rapid growth and improve-

ment in open-source LLMs [206, 208], the relationship between LLMTime forecasting perfor-

mance and the performance of the underlying base model is particular important and has

broad implications. Steady increases in LLM benchmark performance can directly translate

to steady improvements in forecasting ability. In Figure 4.9 (right), we show a study with

OpenAI models (davinci, babbage, curie, ada), variants of LLaMA [208] (7B, 13B, 33B, 65B)

and LLaMA-2 [206] models (7B, 13B, 70B) measuring accuracy on the Massive Multitask

Language Understanding (MMLU) benchmark and probabilistic forecasting error. As we

might hope, when reasoning (MMLU) performance increases forecasts also improve.

Chat models Though convenient scaling relationships appear to hold for base models, the

correlation begins to break down when we consider models that have been post-processed for

chatbot applications. GPT-4 [169], for example, demonstrates considerably more intelligence

than GPT-3 and LLaMA models in natural language tasks, but effectively applying it to time

series is challenging. In Figure 4.9 (center), we show that GPT-4 has a forecasting error

(CRPS) significantly larger than GPT-3’s on the Darts datasets. The performance drop is

the result of several small details in GPT-4’s method. Due to the altered tokenization, GPT-

4 cannot be easily forced to tokenize individual digits into an unbroken stream of numbers.

Due to the restrictions on the API, likelihood evaluations are also not permitted, which is

why we present results for only CRPS. While GPT-4 can perform well on synthetic examples

(shown in section B.4), we find that the GPT-4 calibration is much worse than GPT-3’s on

stochastic data, likely as a result of the preprocessing details above and the fact that the

60

0.4 0.6
MMLU Accuracy

4.2

4.4

4.6

4.8

5.0
N

LL
/D

0.4 0.6
MMLU Accuracy

0.10

0.12

0.14

0.16

C
R

PS

OpenAI
LLaMA

GPT-3
GPT-4

0.0

0.1

0.2

C
R

PS

7B 13B 70B
LLaMA Size

0

2

4

N
LL

/D

7B 13B 70B
LLaMA Size

0.0

0.1

0.2

C
R

PS

Base Chat

Figure 4.9: Left: Time series forecasting performance (NLL/D and CRPS on Darts [107]) improves with
reasoning performance of the underlying model LLM, as judged by accuracy on the Massive Multitask
Language Understanding (MMLU) benchmark [105]. Displayed results are for all GPT-3, LLaMA [208],
and LLaMA-2 [206] base models. Center: GPT-4 performs worse than GPT-3. Right: Forecasting
performance (NLL/D and CRPS on Darts) appears to be negatively affected by alignment procedures
(e.g. instruction tuning and RLHF) in general. LLaMA-2 chat models typically perform worse than the
corresponding base model. Error bars show standard errors over individual datasets.

model has been treated with RLHF [46] which is known to degrade calibration on question-

answering tasks [169]. GPT-4 is not the only example of degraded performance in models

designed for chat functionality. We observed the same phenomenon in LLaMA-2 models,

which have corresponding chat versions for every model size. Figure 4.9 (right) shows that

chat versions tend to have markedly worse forecasting error than their non-chat counterparts,

though still maintain trends in size and reasoning ability.

Missing data A major advantage of treating forecasting as a text completion task and

using LLMs is that we can easily feed in any input that can be encoded as text. Often in

time series, the time series will be incomplete and certain observations are missing. Simple

imputation methods, such as nearest neighbor, are still core pre-processing steps in common

data science workflows [161], and the choice of imputation method is especially relevant to

clinical data, which often contains irregularly sampled measurements and where missingness

can be meaningful signal in itself [128]. Much like humans reading partial reports, LLMs

can handle missing values without imputation by adopting special symbols, for instance,

[64, , , 49, , 16,] → "64, NaN, NaN, 49, NaN, 16, NaN"

61

. In Figure 4.10 we compare likelihoods and CRPS value for forecasts from traditional time

series methods and LLaMA-2 70B on data that has been corrupted with missing values

and then processed with linear interpolation and the above string formatting. While the

likelihoods of traditional methods rapidly deteriorate with corruptions, we find that LLaMA-

2 70B is more resilient, and when comparing CRPS values, LLaMA-2 70B is competitive

with methods that use interpolation.

Connecting time series and textual understanding Because LLMs are designed

for natural language and code, we can augment the numerical time series with useful text.

We can do so either by providing textual side information as inputs, or by producing textual

outputs from a given time series. An interesting question is whether GPT-4 can explain in

text its understanding of a given time series. We probe this quality by providing GPT-4 the

code to generate our synthetic time series, provide the values of one these time series, and

then ask it to infer which of the functions produced the data in a zero-shot manner. The

prediction accuracies are shown in Figure 4.10, with the three remaining rows all being 0.

With CoT [220] prompting the model performs much better than random chance; however,

its ability to identify patterns better when directly extrapolating the numerical data, sug-

gesting that its numerical understanding is not fully connected to its textual understanding.

In making predictions, the model often explains properties of the time series in order to

select the right candidate from the list, and we show several of these sample explanations

in section B.5. We also show how this task is encapsulated in a simple (unprompted) next

token prediction problem on cells of a Jupyter notebook, illustrating why we expect such

capabilities to emerge with a sufficiently powerful language model.

62

0% 50%
% Missing

4

6

8

N
LL

/D

TCN
ARIMA
N-HiTS
LLaMA
(NaNs)

0% 50%
% Missing

0.10

0.15

0.20

CR
PS

0% 20% 40% 60%
Accuracy

Linear
Square

Exp
Gauss Wave

Linear Cos
Log
Sin

Sigmoid Random

Figure 4.10: Left: LLMTime can handle missing values without interpolation by denoting missingness
with text (e.g. ‘NaN’). For baseline methods we perform linear interpolation and then fit the model as
usual. LLMTime assigns higher log likelihood to datasets preprocessed with added ‘NaN’s than baseline
methods assign to interpolated datasets. Forecasting performance, as judged by CRPS, is competitive
between LLMTime and alternative methods that use explicit interpolation. Filled area shows standard
error over individual datasets and 3 random seeds. Right: LLMs can be used to answer questions about
time series data posed as text. We show GPT-4’s accuracy at predicting the function that generated
the time series, obtained using chain-of-thought prompting.

4.10 Heterogeneous scientific data

Scientific data from chemistry or biology experiments is inherently multimodal, compris-

ing a rich tapestry of heterogeneous data types. For instance, experimental datasets may

include categorical features—such as sample labels, experimental conditions, or molecular

identifiers—as well as numerical measurements like concentration values, reaction rates, or

gene expression levels. In addition, these data often incorporate unstructured text descrip-

tions (e.g., experimental protocols or expert observations) and may even include images

or spectroscopic profiles that provide further context. This blend of discrete and continu-

ous modalities presents unique challenges for deep generative models, which must learn to

capture complex interdependencies and jointly represent diverse data distributions.

Language models, however, offer a sensible unifying paradigm for scientific data by har-

nessing the universality and expressiveness of text. By converting all modalities into a

text-based representation—translating numerical data into descriptive language, summariz-

ing categorical labels, or captioning images and spectra with rich contextual details—we can

63

consolidate disparate data types into a common format. This unified textual representation

leverages the remarkable ability of language models to understand context, semantics, and

intricate relationships, thereby simplifying integration, analysis, and generation of scientific

data. In effect, language models not only overcome the hurdles posed by multimodal data

but also provide a flexible and interpretable framework that aligns well with the diverse

nature of scientific inquiry.

4.11 Conclusion

We have demonstrated that large language models can be used as pretrained time se-

ries forecasters by encoding numerical values as text. As with other “foundation” models,

pretraining confers useful biases toward generalizable patterns that would otherwise be en-

gineered into the model through architecture design [90], and enables natural scaling of

performance with improvements in the base pretrained model. Because LLM forecasters are

trained on language, they also confer unconventional capabilities, such as question answering.

More broadly, framing time series forecasting as natural language generation can be seen as

another step towards unifying more capabilities within a single large and powerful model,

in which understanding can be shared between many tasks and modalities. Moreover, zero-

shot forecasting can enable broadly compelling performance without requiring significant

computational resources, domain expertise, or many downstream training data points.

While LLM forecasters benefit from the strengths of pretrained transformers, they also

inherit their weaknesses, which can include a limited context window. While many uni-

variate time series problems can fit comfortably within increasingly large context windows,

multivariate problems pose a more significant challenge. There have been several recent ad-

vances extending LLM context windows to 10-100K tokens [2, 8, 10, 169]. Combining these

advances with time series forecasting is a particularly exciting direction for future research.

64

Another potential challenge of using current LLMs architectures could be their weakness in

arithmetic and performing recursive and compositional operations, which could be a limi-

tation on particularly challenging time series. On the other hand, many time series do not

require precise arithmetic. Understanding the extent to which this is the case, and relaxing

this limitation, is also a promising avenue for future research. Separately from any limita-

tion, it would also be promising to investigate effective procedures for fine-tuning LLMs on

time series. We hope that bridging LLM research with time series forecasting brings benefits

to both communities.

65

5 | Fine-Tuned Large Language

Models Generate Stable

Inorganic Materials as Text

5.1 Introduction

Large language models (LLMs) are trained to compress large text datasets, but can also

act as strong foundations for non-text data [58]. As compressors, LLMs extract common

patterns and find simple programs that can produce them [82, 196], regardless of the data’s

origin. From text pretraining alone, LLMs can compress or extrapolate data as diverse

as images [58], tabular data [82], time series [87], or robotic trajectories [159]. Alongside

generality, LLM pre-training also gives rise to sample efficiency, as in-context learning and

fine-tuning require far fewer training examples to identify salient patterns than training a

model from scratch [30].

The generality and sample efficiency of LLMs make them particular promising for scien-

tific problems, where data are often limited, collected from diverse sources, or challenging

for non-experts to interpret. In materials science, for example, the number of known stable

materials is relatively small, and the data describing each material are diverse, including

composition, structure, and complex properties. LLMs can learn generalizable rules from a

66

small number of examples [258], combine modalities into a single model [160], and provide

users with a text-based interface. A text interface, in particular, has the potential to im-

prove access to scientific discovery [223]; LLMs can use text to describe new observations,

or, in design applications (e.g. materials design, drug discovery), LLMs can ingest text that

specifies desired properties or constraints [25].

In this work, we show that fine-tuned LLMs can generate the three-dimensional structure

of stable crystals as text (Figure 5.1). Our method is simple: first, encode crystals as new-

line separated strings and combine with text instructions, then perform parameter efficient

fine tuning (PEFT) on a base LLM (LLaMA-2) with a multitask curriculum and transla-

tion augmentations. We evaluate our method with Materials Project data [118], comparing

against an invariant diffusion model and a sequence model trained from scratch. Using both

learned ML potentials and gold-standard DFT calculations, we show that our method can

generate materials predicted to be stable at higher rates than baseline methods. To under-

stand the success of our fine-tuning approach, we probe the learned symmetry properties

of our model, proposing a new metric for language models trained on atomistic data and

examining the effect of model scale on learned invariance. Going beyond unconditional gen-

eration, we also show that our LLMs have other useful abilities within materials design, such

as text-conditional generation and infilling, which can be used to optimize the properties of

existing materials.1

5.2 Related work

There are two central challenges in applying generative models to crystals and related

atomistic data. The first challenge is that atoms are intrinsically both discrete and continuous

objects, as each atom has both an element identity and a position in three dimensional
1https://github.com/facebookresearch/crystal-llm

67

https://github.com/facebookresearch/crystal-llm

Figure 5.1: Overview of our approach to materials generation with large language models. Using string
formatted crystals and task-specific prompting, we enable unconditional stable materials generation,
text-condition materials generation, and structural infilling. Base LLaMA-2 models are fine-tuned on a
database of known inorganic materials [147] using low-rank adapters.

space. Approaches to generative modeling often differ between for discrete and continuous

data, and modeling both simultaneously can be significantly more complex than modeling

either individually. The second key challenge is the prevalence of symmetries in atomistic

data. The unit cell, a repeated pattern tiled infinitely in every direction, is the common

representation for crystals because it easily captures translation invariance, the fact that

atoms can be shifted and wrapped around the unit cell while still representing the same

underlying structure. Symmetries can pose challenges to deep learning models because they

entail constraints on the functions that neural networks can learn.

Diffusion models Xie et al. [232] introduced crystal diffusion variational autoencoder

(CDVAE) to directly deal with both of these challenges. CDVAE uses several individual

generative models for discrete and continuous components that share a continuous (VAE)

latent space. The chemical composition is reconstructed from this latent space using a lan-

guage modeling head, while atom positions are generated with a denoising diffusion model

[109]. Since CDVAE, several works have extended diffusion processes to capture all param-

eters of the crystal, not just the atomic coordinates. Both Jiao et al. [120] and Zeni et al.

[242] accomplish this by creating diffusions for the lattice parameters and atom identities,

while Yang et al. [236] design a new continuous representation that unifies atom identities

68

and positions in a single high-dimensional tensor. In most cases, these diffusion models were

designed with a careful eye towards symmetries and are built on top of graph neural net-

works with strict invariance/equivariance properties [120, 232, 242]. The approach of Yang

et al. [236] is more similar to ours, as they apply a general-purpose architecture (3D U-net)

and modeling approach (Gaussian diffusion) to a new representation, without guarantee-

ing symmetries. Discrete atom identities and variable length (number of atoms), however,

require special considerations in diffusion models, unlike standard language models, which

were originally designed for modeling discrete sequences.

Language models Flam-Shepherd and Aspuru-Guzik [72] demonstrate an alternative to

continuous denoising models and architectural invariances. Instead of treating discrete and

continuous modalities separately, as in CDVAE, Flam-Shepherd and Aspuru-Guzik [72] uses

sequences of discrete tokens to represent everything, including the digits of atomic coor-

dinates. With all data encoded as tokens, standard language modeling methods designed

for text can be applied with little to no modification. The simplicity of this method also

makes it simple to adapt to many different kinds of molecular structures, including small

molecules, protein binding pockets, and, of course, crystals. In lieu of architectural symme-

tries, augmentations of the training data are used to encourage learning known invariances.

Flam-Shepherd and Aspuru-Guzik [72] demonstrates that language models trained from

scratch on many common molecular datasets actually outperform popular domain-specific

models, including CDVAE, in their ability to capture valid element compositions and high-

level statistics of the training data. Similarly, Antunes, Butler, and Grau-Crespo [11] also

use language models to generate crystal structures as discrete sequences by training from

scratch on millions of CIF strings.

Our work In this work, we show that pretrained LLMs are also useful for understand-

ing and generating 3-dimensional atomic structures. By using a pre-trained LLM, we can

69

achieve high rates of validity without crystal-specific tokenization [72] or millions of auxiliary

structures [11]. Unlike many methods designed specifically for crystal structures and sym-

metries, our method can also be easily extended to multiple crystal generation tasks and,

in the future, to other atomistic modalities without any changes to the underlying model or

training procedure. Building on the basic observations made by Flam-Shepherd and Aspuru-

Guzik [72], we show that larger models, which are often more effective compressors of data,

demonstrate improved ability to learn symmetries from the training data and augmentation.

5.3 Background

Language Modeling LLMs perform next-token prediction over sequences. The model is

a categorical distribution, p(wt+1|w0:t), where w0:t is the prompt, a sequence of input tokens,

and wt+1 is the predicted next token. To generate sequences from the model, the condi-

tional distribution is sampled sequentially, but samples are rarely drawn from the original,

unmodified categorical distributions. Instead the sampling procedure is typically modulated

with temperature (τ) and nucleus size (p) hyperparameters. Temperature serves to flatten

the conditional distributions to uniform (high temperature) or collapse them around their

maximal probabilities (low temperature). Nucleus size limits which tokens can be sampled

based on the cumulative distribution function, clipping out values that contribute very little

mass. A nucleus of p (0 < p ≤ 1) corresponds to keeping tokens to cumulatively contribute

p% of the total probability, and discarding the rest.

Tokenization To train language models on text datasets, strings are converted into se-

quences of tokens. Most modern LLMs rely on byte pair encoding (BPE) [76], a compression

method that assigns tokens to common substrings, making overall sequence lengths shorter.

One downside of BPE tokenization is the default tokenization of numbers. BPE typically

70

breaks numbers into irregular substrings instead of individual digits. While breaking numbers

into multi-digit tokens creates shorter sequences, it also complicates learning basic arithmetic

operations, which typically operate at the level of individual digits. Luckily, Touvron et al.

[206] introduce tokenizers for LLaMA-2 models that break numbers into a sequence of digits,

which has been shown to dramatically improve performance on arithmetic tasks [146]. We

use LLaMA models in our work because they have a natural representation of 3D coordinates

and can therefore learn simple functions over those coordinates that obey domain-specific

symmetries.

5.4 Parameterizing bulk materials

Periodic materials are defined by a unit cell repeated infinitely along all three dimensions

(Figure 5.2). The unit cell comprises a lattice (parallelepiped) with side lengths (l1, l2, l3)

and angles (θ1, θ2, θ3). Within the lattice, there are N atoms, each specified by an element

identity, ei, and set of 3d coordinates (xi, yi, zi) which can be absolute or fractional (specified

as a percentage of the unit cell side lengths). Therefore a bulk material can be fully described

by the tuple

C = (l1, l2, l3, θ1, θ2, θ3, e1, x1, y1, z1, ..., eN , xN , yN , zN) . (5.1)

5.5 Fine-tuning approach

5.5.1 Dataset and Augmentations

Datasets For consistency with prior work [73, 232] we used MP-20 [118], a dataset of

45231 materials, when training for unconditional generation. All structures in MP-20 are

stable, and therefore an effective generative model trained on MP-20 should tend to propose

71

Figure 5.2: (left) We convert the crystal lattice, atom identities, and atom positions into strings. The
model is trained to generate a structures conditioned on the text prompt, which might contain additional
information about the composition, properties, or a starting structure to modify. (right) Energy above
hull (Ehull) quantifies the stability of a material. A crystal with Ehull < 0.1 will be energetically favorable
both in its structure and composition.

new crystals that are at least metastable. For text-conditioned generation, we train with all

forms of prompting on a collection of 120,000 crystals from Materials Project (Appendix

C.1.3). The collection includes basic property information, such as the space group number,

band gap, Ehull and the chemical formula.

Augmentations Crystals structures are symmetric under translational. All atomic coor-

dinates can be shifted modulo the lattice boundaries without changing the resulting material

structure. Similarly, the ordering of atoms within the lattice is irrelevant to the underly-

ing material (permutation invariance). Prior work on diffusion generative models guarantee

these symmetries as invariance or equivariance constraints on the model architecture [120,

232]. To encourage translation invariance in our language models, we apply random uniform

translations to the fractional coordinates. We chose not to augment the ordering of atoms

because these variables often contained valuable information, for example grouping set of

elements together for placement in the lattice (discussion in Appendix C.1.1).

72

5.5.2 String encoding and prompts

Our approach to generating stable materials is pleasingly simple. We take a pre-trained

LLM, which has useful biases towards generalizable patterns, and fine-tune it on crystal

string representations. Because language models can also ingest text, we can condition the

model’s generations on text descriptions. The flexibility of language models also allows us

to solve other tasks, such as infilling, through small modifications to the input formatting.

Though we focus solely on crystal structures in this work, our method itself is general purpose

and could be easily extended to proteins, nucleic acids, or small molecules. We include a

more detailed discussion of how general text-pretraining impacts our method in Appendix

C.1.5.

String formatting and tokenization We convert the crystal tuple C (Equation 5.1)

using fixed precision numbers. An example of crystal string formatting is shown in Figure

5.2. We represent lattice lengths with one decimal place (2-3 digits) and lattice angles as

integers (1-3 digits). Fractional coordinates are always represented with two digits. 3D

coordinates are combined with spaces and all other crystal components are combined with

newlines. We deliberately chose LLaMA-2 models because they are both state-of-the-art

in overall performance among open-source models and because they tokenize numbers as

individual digits by default. Notably, it is therefore impossible to create one token per full

number, as Flam-Shepherd and Aspuru-Guzik [72] do in their best performing model (further

discussion in Appendix C.1.1). Instead, we rely on the extensive pretraining of LLaMA-2

models to instill useful biases over numerical operations [146].

Prompt design To train a model that can be used for many tasks, including uncondi-

tional generation, text-conditional generation, and infilling, we use task-specific prompts.

The input to the model is a prompt followed by the string-formatted crystal (Figure 5.2).

73

In the most basic case, the prompt indicates that the model should generate bulk materials

represented as a lattice and atoms. The prompt can also be expanded to include a desired

composition or material properties, or to include a starting structure, in the case of infill-

ing. For infilling, the prompt includes the string-formatted crystal with every instance of a

randomly chosen element replaced with [MASK], and the model is trained to generate the

identity of the masked element at the end of the sequence. During training all three tasks

are included through random sampling, with two thirds generation and one third infilling

(details in Appendix C.1.2). As in instruction tuning, the prompt is given as input to the

model but does not contribute to the generative loss function. The model is only penalized

for its predictions on the crystal string or masked element.

Generation Prompt Infill Prompt

<s>Below is a description of a

bulk material. [The chemical

formula is Pm2ZnRh].

Generate a description of the

lengths and angles of the lattice

vectors and then the element

type and coordinates for each

atom within the lattice:

[Crystal string]</s>

<s>Below is a partial description of a bulk material where

one element has been replaced with the string “[MASK]”:

[Crystal string with [MASK]s]

Generate an element that could replace [MASK] in the

bulk material:

[Masked element]</s>

Blue text is optional and included to enable conditional generation. Purple text stands in for string encodings of atoms.

All of our experiments were conducted with LLaMA-2 models (7B 13B, and 70B) [206,

207] through the Transformers library [227] and PyTorch [174]. In order to train on small

number of GPUs we use 4-bit quantization [61] and Low-Rank Adapters (LoRA) [112]. We

provide the full hyperparameters and training details in Appendix C.1.4.

74

5.6 Evaluating samples

For basic evaluation of the LLM samples, we use the validity and diversity metrics in-

troduced by Xie et al. [232]. Structural validity is determined by non-overlapping atomic

radii (overlapping taken to be both atoms within half a radius of each other), while compo-

sitional validity captures the net charge of the structure (only structures with net neutral

total charge are valid). Diversity is computed as pairwise distance between samples under

featurizations of the structure and composition from Matminer [219, 232].

While useful for sanity checking models, simple validity metrics only reflect a subset of our

real-world priorities in generating novel materials. Arguably the most important property

that we hope to assess in samples is their predicted stability, which we can approximate by

predicting the energy of relaxed structures. Using known materials and energy calculations

from Materials Project we construct the ground truth energy convex hull and then calculate

the approximate energy above hull, Êhull.

5.6.1 Energy above hull

For a given set of environmental conditions, every crystal has a corresponding energy

that describes how likely it will occur in a particular configuration. Configuration with

unfavorable electrostatic interactions from unlike atomic positions, such as highly overlap-

ping atoms, are typically high energy. The gold standard for energy prediction is density

functional theory (DFT), which provides tractable approximations to governing quantum

mechanical equations that describe the energy and time evolution of a system. DFT, how-

ever, can be prohibitively expensive, often scaling O(n3) with the system size, which has

motivated development of deep learning potentials to approximate DFT solutions [132].

75

Stability of hypothetical materials (Ehull) The composition of a crystal also im-

pacts its energy, as different elements have different geometries and charge properties. Cer-

tain stoichiometries, or ratios of elements, are naturally favored, and a composition of el-

ements A and B with constituent parts AxBy can dissociate into the composition AcBd if

it is energetically favorable. Because of the effect of composition, the energy of a crystal

is typically a two dimensional concept captured by the energy hull, which is the minimum

observed configuration energy for a given composition. For a crystal to be low-energy and

stable, and therefore give rise to a practically useful material, it must have a small energy

above hull (Ehull), the distance from the energy hull for the crystals elemental composition

(Figure 5.2). Crystals with Ehull < 0 are considered stable and by definition have lower

energy than the known minimum (which has Ehull = 0). Crystals with Ehull < 0.1 eV/atom

are often metastable and likely to be practical useful [195].

We chose two methods to estimate material stability:

• ML potential: M3GNet [37] provides energy, force, and stress approximations for

crystal unit cells. For each sample we first run a relaxation using force and stress

approximations then use the energy of the final structure.

• DFT: We run a relaxation using the Density Functional Theory code VASP [95] with

INCAR settings chosen by Pymatgen [167]. DFT is the more accurate, but also much

more computationally intense, of the two options.

In both cases, results are compatible with Materials Project values [118] (Appendix C.2.1).

Because DFT is prohibitively expensive for many use cases (often hours per calculation),

we only use it to double-check results obtained with ML potentials, and we only run VASP

calculations on materials that have already been predicted as metastable by M3GNet (<0.1

eV/atom Êhull). The use of a M3GNet surrogate model is not perfect as many structures in

Figure 5.4 (right) have energies above the expected 0.1 eV/atom threshold, but the structures

76

Table 5.1: Following prior work [232], we evaluate fine-tuned LLaMA-2 models using validity, which
captures physical constraints, as well as coverage and property metrics, which capture alignment between
the ground truth and sampling distribution. We add stability checks, which count the percentage of
samples estimated to be stable by M3GNet [37] and DFT [95] (details in Appendix C.2.2). LLaMA
models generate a high percentage of both valid and stable materials.

Method Validity Check Coverage Property Distribution Metastable Stable
Structural↑ Composition↑ Recall↑ Precision↑ wdist (ρ)↓ wdist (Nel)↓ M3GNet ↑ DFT† ↑

CDVAE 1.00 0.867 0.991 0.995 0.688 1.43 28.8% 5.4%
LM-CH 0.848 0.835 0.9925 0.9789 0.864 0.13 n/a n/a
LM-AC 0.958 0.889 0.996 0.9855 0.696 0.09 n/a n/a

LLaMA-2
7B (τ =1.0) 0.918 0.879 0.969 0.960 3.85 0.96 35.1% 6.7%
7B (τ =0.7) 0.964 0.933 0.911 0.949 3.61 1.06 35.0% 6.2%
13B (τ =1.0) 0.933 0.900 0.946 0.988 2.20 0.05 33.4% 8.7%
13B (τ =0.7) 0.955 0.924 0.889 0.979 2.13 0.10 38.0% 14.4%
70B (τ =1.0) 0.965 0.863 0.968 0.983 1.72 0.55 35.4% 10.0%
70B (τ =0.7) 0.996 0.954 0.858 0.989 0.81 0.44 49.8% 10.6%

† Fraction of structures that are first predicted by M3GNet to have EM3GNet
hull < 0.1 eV/atom, and then verified with DFT to have EDFT

hull < 0.0

eV/atom.

are largely close to the hull compared to the broader distribution of materials generated.

5.7 Results

5.7.1 Unconditional generation

Figure 5.3: A sample
with “hallucinated” el-
ement identities (Ln).

We sample 10,000 structures from each fine-tuned LLaMA model,

parsing a CIF from the generated string. We reject the sample and

draw another if a CIF cannot be parsed from the sampled string,

which guarantees all samples can be interpreted as crystals but does

not guarantee validity of the resulting crystal. We show the validity

and predicted stability [232] of the resulting structures in Table 5.1,

which shows that LLMs can achieve near-perfect rates of structural

and compositional validity. Hyper-parameters like temperature and

nucleus size can be used to trade-off validity and stability of samples

77

Figure 5.4: Stability of LLaMA samples compared to CDVAE [232]. Fine-tuned LLaMA-2 70B generates
a higher rate of metastable (Êhull < 0.1) and stable materials than CDVAE, using estimates of Êhull from
both M3GNet [37] and VASP [95]. Because of computational cost, we only run VASP on structures
predicted to be stable by M3GNet. Stable materials generated by LLaMA are also more diverse (as
quantified by Matminer featurization [219]) than stable samples from CDVAE. We include sampled stable
structures, shown as (2,2,2) supercells, which display a high-degree of regularity and understanding of
three-dimensional space.

with their coverage (Appendix C.2.3). LLaMA-2 70B strikes an effective balance, generating

high rates of stable materials with good coverage and diversity (Figure 5.4). By default,

generation is completely unconstrained and therefore the model can hallucinates imaginary

elements, for example “Ln,” a common abbreviation for Lanthanide (Figure 5.3), but the

problem can be easily avoided by constraining the tokens for element identities [227].

Diversity, novelty, and sampling speed When using generative models to discover

new stable materials, there are several properties beyond the rate of stability that are prac-

tically significant. Novel and diverse samples encourage sufficient exploration of unknown

material space, and sampling speed dictates how expensive it is to search within that space.

We compare these properties for LLaMA-2 models and CDVAE in Figure 5.5. To calculate

diversity and novelty, we use the same featurizations as in Table 5.1, calculating pairwise

distances for diversity and distance to the closest neighbor in the training set for novelty

(details in Appendix C.2.6). All metrics are computed over crystals judged metastable by

M3GNet, so that all novelty and diversity are relevant and not an artifact of invalid genera-

tions. LLaMA-2 samples match or exceed the diversity of CDVAE samples and also obtain

78

Structure
Diversity

Composition
Diversity

Structure
Novelty

Composition
Novelty

Either
Novelty

0.0

0.5

1.0

1.5

Sc
or

e
(N

or
m

ed
 to

 Te
st

 S
et

)

10,000
Samples

10,000
Metastable

0

1

2

3

Ho
ur

s

7B (= 1.0)
7B (= 0.7)

13B (= 1.0)
13B (= 0.7)

70B (= 1.0)
70B (= 0.7)

CDVAE

Figure 5.5: We compare LLaMA-2 models with CDVAE in their ability to generate novel and diverse
samples as well as their overall speed. (left) We calculate diversity and novelty using a featurization
of structure and composition (as in Table 5.1). Diversity is calculated as pairwise distance in feature
space, while novelty quantifies the percentage of inputs that are far from the training set (Appendix
C.2.6). All metrics are calculated only for samples that were already judged to be metastable. LLaMA-2
models often generate more diverse samples than CDVAE, and achieve similar overall rates of novelty.
Interestingly, structural novelty is lower in larger models, while compositional novelty is higher. (right)
We compare the time required to generate 10,000 samples from each model. We run LLaMA-2 models
with the largest feasible batch size on one A100 GPU (Appendix C.2.7). While the largest LLaMA
model is computationally expensive, smaller language models are very fast, especially when we consider
both sampling speed and rate of stability.

high rates of novelty when we consider both composition and structure. Interestingly, larger

LLaMA models display less novel structures but more novel compositions. It’s worth noting,

however, that both CDVAE and LLaMA-2 7B far exceed the structural novelty of a held out

test set, while 13B and 70B are just slightly lower. To judge sampling speed, we calculate

the time required for 10,000 samples, using the largest possible batch size on one A100 GPU

(Appendix C.2.7). In Figure 5.5, we compare the sampling speed with CDVAE and find that

smaller models are often significantly faster when generating metastable samples.

5.7.2 Conditional sampling

Text-conditioned generation Extending our method to text-conditional generation

is as simple as including additional information in the prompt, with a small amount of

additional text. We explore conditioning on spacegroup number, composition, and Ehull,

79

as these properties are easy to verify (at least approximately) in silico. We assess the

model’s ability to perform conditional generation by comparing the intended condition with

labels obtained from an in-silico oracle for the constraint. For the chemical formula, we

simply parse the composition from the generated CIF. For space group determination, we

use pymatgen’s SpacegroupAnalyzer with a precision of 0.2 angstroms [167]. For stability,

we use M3GNet to estimate Ehull as before. Using the oracle’s labels, we then compute

the percentage of cases in which the condition was properly met (Figure 5.6). The model

is able to generate a material with the correct composition the majority of the time but

becomes less reliable as the number of atoms in the chemical formula increases. Space

group conditioning is more challenging, as it requires precise control and understanding of

3D structure, but the observed 24% is impressive when considering the 230 possible space

groups. Generating stable/unstable structures as a binary task is the most challenging, likely

because the training dataset is predominantly stable compounds and stability is defined

only in reference to existing compounds. Stability is most easily controlled by modulating

sampling hyperparameters.

Infilling Existing Materials In many practical settings, sampling and filtering ma-

terials from scratch is unnecessary. Good starting materials are often known, and manufac-

turing processes are easier to adapt to related compositions than develop completely from

scratch by making small edits to their composition–often referred to as template methods

[129, 182]. To emulate a typical template method, we construct a lookup table that maps

each element to elements that have a similar atom radius when in the same oxidation state

(code in Appendix C.3). We choose an element uniformly at random and swap it with a ran-

dom element chosen from the table. The resulting structure is then relaxed using M3GNet.

To improve this strategy using our fine-tuned LLM, we used the infilling prompt to ob-

tain a distribution over elements (modulated with temperature τ) which we use instead of

80

formula is PrAlO3

space group is 221

E above hull is 0.011

Below is a

Generate ...
Generate ...

Below is a partial
description ...

[MASK]

S Se
P(element)

...
0.92 0.34 0.75

constrain

description ...

Figure 5.6: Text-conditional generation and infilling of existing structures with fine-tuned LLMs. (left)
Including composition or property information (sampled from a hold-out set) in the text prompt leads
to a high rate of samples with the desired composition/property (space group or stability). We bin
stability as Êhull < 0.1 (metastable) and Êhull > 0.1 (unstable) for simplicity. Complex formulas and
space groups challenge the model, but the samples are correct at a rate that facilitates practical use.
We also show the rate of samples that both satisfy the condition and are predicted to be metastable by
M3GNet. (right) Using the infilling prompt we can select mutations to existing materials. LLaMA-2
70B proposes a distribution over elements, which we constrain using knowledge of atom radii and charge
interactions. We sample mutations with temperature τ and relax the results structure with M3GNet.
When we apply this mutation procedure, we obtain more stable materials per mutation, with negligible
changes to the overall diversity of the stable materials.

a uniform distribution over swaps. To evaluate our mutation procedure, we sample 3000

structures randomly from the test set and generate perform one mutation-relaxation step for

each, using both uniform and language model-guided sampling. In Figure, 5.6 we show the

percentage of stable compounds and diversity in the stable compounds for the uniform base-

line and LLaMA-2 70B with different temperature values. LLaMA-2 70B proposes elements

that lead to stable structures at a higher rate than the baseline template method without

sacrificing diversity.

5.8 Connections with simplicity bias and LLMTime

As crystal structures have translational symmetry, ideally our model’s likelihood should

be invariant to translations. We propose Increase in Perplexity under Transformation (IPT)

as metric for assessing the invariance of language models to continuous group transforma-

81

tions. For a transformation group G with group elements g and group action t, we define IPT

Figure 5.7: Translation invariance
on test data and ability to gener-
ate stable materials increase in pro-
portion. Larger models learn invari-
ances from augmentations more ef-
fectively during training, likely as a
result of their preference for abstract
and compressible patterns.

for an input s,

IPT (s) = Eg∈G [PPL (tg (s)) − PPL (tg∗ (s))]

where

g∗ = arg minPPL (tg∗ (s))

and PPL is the perplexity of the sequence, the exponent

of the length-normalized cross entropy loss, PPL(s) =

2 CE(s)/n. In our case G is the group of translation, where

each g is a distance to translate by, and tg is the mapping

that decode the string, translates the coordinates (wrap-

ping them around the boundary), and re-encodes the string. IPT captures the degree to

which transformations change a language model’s compression ability. Good understanding

of group transformations and invariance in the data should lead to minimal change in the

perplexity of a transformed sequence. We can approximate IPT by sampling many values of

g (e.g. 20), picking g∗ as the minimum among those values, and computing a sample mean.

Figure 5.7 shows the mean IPT of 500 random crystals from the test set, for each of the three

LLaMA model sizes. We include additional details about our IPT calculation in Appendix

C.2.5.

There are also natural connections between the hierarchical softmax distribution laid out

in LLMTime [87] and our text encoding of crystals. In LLMTime, it was easy to define a

continuous distribution over a bounded interval of the real number line by assigning a uniform

distribution within the bucket corresponding a sequence of digits. Here we can likewise derive

a continuous distribution for each atom location within the lattice (as defined by relative

coordinates) by assigning a uniform distribution to each voxel defined by a sequence of

82

(x,y,z) digits. Though we did not run the experiment, it could be interesting to compare the

resulting likelihoods to ELBOs derived from competing diffusion models.

5.9 Conclusion

By generating a high rate of plausible stable materials (verified by DFT), we have demon-

strated LLMs can be state-of-the-art generative models for atomistic domains with direct

application of parameter-efficient instruction tuning and minimal task-specific modeling

choices. This approach to generative modeling opens the door to multitask capabilities

within a single sampling paradigm and multimodal training on atoms and text (e.g. to

extract knowledge from a large corpus of scientific papers). We also advocate for the use

of evaluation metrics (e.g. Ehull) for generative models that are more closely tied to the

downstream task of generating stable or metastable materials. The space of all hypothetical

materials is combinatorially large (consider all the ways to pack 20 arbitrary elements into

a box), but only a small subset of materials will actually be stable or metastable. Models

that can directly generate near-stable structures make all downstream tasks far easier, and

increases the likelihood the generative models may be useful for day-to-day tasks in materials

discovery.

Limitations Our method shares the limitations of the underlying generative models.

LLMs can be sensitive to precise details of the chosen prompt and the tokenization strategies,

particularly in how tokenization effects processing of numbers. Hallucination of unphysical

chemical elements or structures has been observed, though fortunately is easy to check and

filter. Text-conditioning has the potential to tap latent conceptual understanding in the

underlying LLM, but training LLMs that successfully leverage scientific and chemistry lit-

erature is a major outstanding challenge. Lastly, training the largest of our LLMs can be

83

prohibitively expensive for some computational budgets. Despite this, inference from all

LLMs is often highly tractable when compared to baseline methods (Appendix C.2.7).

Future directions There is substantial room for improvement in conditional generation,

which could be used to directly generate materials with desired properties. While we did

not pursue alternative sampling strategies in depth, approaches like classifier-free guidance

[185] or variants of PPLM [57] might be useful in combination with fine-tuned LLMs to

improve conditional generation. These methods could also be combined with primitives

from Bayesian optimization for sample-efficient and uncertainty-aware design [89, 193].

84

6 | Open Challenges in Applying

Language Models to Numerical

Data

6.1 Introduction

Language modeling—training an autoregressive model on discrete tokens—is a surpris-

ingly general paradigm, so far succeeding on text [30], images [238], videos [218], speech [40],

time-series [9], and molecular structures [72, 86], as well as jointly on multiple modalities

[42, 180]. For those working with scientific data, multimodality is particularly appealing be-

cause scientific systems (e.g. networks of interacting molecules) tend to have heterogeneous

measurements and representations. A molecule, for example, is often associated with a set of

atoms, with numerical positions and categorical identities (e.g., N or C), as well as assorted

numerical and categorical properties, and potentially even extensive text descriptions. For

this reason, significant interest has recently turned towards constructing models of molecules

that can operate jointly over all data modalities [36, 55, 65, 100].

Despite these advances, it is easy to observe with simple experiments that language

models still lag far behind other methods in modeling the properties of 3D structures. To

fully realize the benefits of language models in these domains, we must therefore derive a

85

Linear Algebra

Language
ModelsQuantum Mechanics

Property Prediction

Task Breakdown

Pretraining

Tokenization / Loss

Architecture

Key Challenges

Figure 6.1: To study language models applied to property prediction, we break each into its
constituent parts. We deconstruct property prediction by studying building block operations from linear
algebra and understand language model performance through the lens of architecture, tokenization, and
pretraining.

better understanding of the core challenges of this modality. While prior work has devel-

oped frameworks for thinking about language models applied to simple numerical tasks, like

arithmetic and addition, little work has extended these theories to complex problems like

property prediction.

To bridge this gap, we identify a few key building blocks of common property prediction

methods, e.g. basic operations for linear algebra, and analyze how key modeling decisions

affect when language models can learn these basic operations (Figure 6.1). From our ex-

periments involving training thousands of language models to solve operations from linear

algebra and simple physical modeling tasks, we draw the following conclusions:

• Contrary to work on arithmetic with transformers, we find that causal masking is not a

fundamental bottleneck to current progress on 3D molecular data.

• When sweeping over many model choices, a model’s invariance to a problem’s symme-

tries is strongly correlated with predictive performance, showing that invariance is an

important consideration.

• Discrete tokens incur a loss of predictive performance and exhibit poor scaling compared

to alternative continuous losses.

86

• We observed limited transfer from text to property prediction. Large models pretrained

on text often underperform small language models trained from scratch.

6.2 Related Work

Learning simple arithmetic operations with language models is longstanding problem.

Although addition and multiplication of integers or matrices are in the complexity class of

algorithms that can be learned exactly by a transformer-based language model [157], they

can still be difficult to learn in practice. Zhou et al. [255] speculate that some numerical

operations are challenging to learn because they lack a simple program that can be expressed

by a causal transformer. For example, addition of two multi-digit integers can be challenging

when digits are ordered from most significant to least significant because causal attention has

trouble building a representation for a carry operation. McLeish et al. [155] draw on similar

observations to design an improved language model with expanded generalization abilities on

addition and multiplication, by reversing number digits and providing special information

about each digit’s location. While these studies provide useful frameworks for reasoning

about the challenges of language models, they do not study high-dimensional objects, which

have much more practical relevance. We show that in many cases the same intuitions do not

naturally extend to our settings and different challenges dominate.

Going beyond integer inputs, Charton [35] shows that language models can learn basic

operations from linear algebra like matrix addition, matrix multiplication, and eigenvalue

computations. While we use some of Charton [35]’s tasks in our study and draw inspiration

from their numerical string encodings, our analysis differs in fundamental ways because of

our underlying motivation to approximate calculations from quantum chemistry. To this end,

we focus much more on the invariance properties of learned models and introduce simple

building blocks of physical models that are not studied by Charton [35]. In this way, our work

87

is more closely related to the work of Flam-Shepherd and Aspuru-Guzik [72], which shows

that language models with standard training and simple tokenization methods can be used as

strong generative models of 3D structures. However, like Alampara, Miret, and Jablonka [3],

we also find that predictive tasks display different dynamics compared to generative modeling

and that language models are not competitive with best-in-class predictive methods.

Because we apply language models to numerical data and closely study their interactions

with choices in tokenization, we also draw on the work of Golkar et al. [83], which introduces

a continuous alternative to discrete tokenization in language models (xVal) on mixed cate-

gorical and numerical data. xVal models all numbers with a single token and uses a single

weight and bias vector for inputs and outputs, instead of an embedding matrix for many

numerical tokens. xVal is thus akin to transformers applied directly on continuous inputs or

to graph neural network methods applied to numerical prediction problems. We find that

xVal does lead to improvements in many settings and therefore provides valuable perspective

on what facets of language modeling are most challenging when learning on geometric data.

As we are also interested in how text pretraining can act as a useful inductive bias, our

work also intersects with work that applies text-pretrained models to zero-shot prediction

on other modalities [86, 104]. Although text pretraining holds the potential to help models

learn general-purpose circuits over discrete sequences, we find that it is ultimately unhelpful

in our considered numerical tasks.

6.3 Preliminaries

6.3.1 Motivating problem setting

In Table 6.1, we show how a basic language model architecture [208] trained from scratch

compares to popular and state-of-the-art methods on a popular molecular property bench-

88

mark, predicting the highest occupied molecular orbital (HOMO) of organic compounds in

the QM9 dataset [179]. It is easy to see that language models are an order of magnitude

worse than competing models, and in the following sections, we will try to articulate a few

possible reasons for this large performance gap.

Table 6.1: Comparison of popular and state-of-the-art approaches for predicting HOMO on QM9.

Method MAE (↓)
LLaMA (from scratch) 212 meV
Non-equivariant GNN 71.4 meV
Equivariant GNN [187] 51.9 meV

JMP-L [191] 8.8 meV

6.3.2 Computational chemistry as a test bed

To develop a better mechanistic understanding of the challenges of applying language

models to tasks like property prediction, let’s break down this goal problem into its con-

stituent parts and see where language models run into trouble. One core task in quantum

chemistry is calculating the energy of a configuration of many atoms. Low energy configura-

tions are stable and practically useful, for example in novel materials or the binding interface

of therapeutic drugs. Atomic nuclei can be modeled as point charges,

Enuc =
∑
i<j

qiqj/Dij (6.1)

where D is the distance matrix between nuclei and q is the charge of each nucleus. To model

electrons, however, more complex methods are needed, for example, Hartree-Fock, which

iteratively solves1

F (C) C = Cϵ (6.2)
1We show the Roothaan equations using an orthonormalised basis set

89

where F is the Fock matrix, C are the orbital coefficients and ϵ is a diagonal matrix of

molecular energies. At each step, C and ϵ are obtained by solving a generalized eigenvalue

problem using F constructed from the last approximation of C, and, upon convergence, the

electron energy is

Eelec = Tr(ϵ) + Tr(C†HC)

where H is the system’s Hamiltonian (constructed using the position and charge of the atomic

nuclei). From this basic calculation, it’s clear there are at least a two key components:

• Calculating and working with distances on coordinates.

• Linear algebraic operations, such as matrix addition and multiplication, as well as more

complicated procedures like solving for eigenvalues.

Ultimately these are the building blocks that we will study in depth.

Of course, one of the strengths of neural networks is their ability to approximate expensive

procedures with a fixed computation budget (one forward pass during training), so we do

not necessarily expect language models to recapitulate tools from mathematics and physics.

We can, however, use existing methods for approximating physical observations as a way of

debugging current limitations of language models, if not to perfectly understand their internal

mechanisms. If language models struggle to learn matrix multiplication but not matrix

addition, for example, we can speculate that the scalar multiplication of many operands

might be a roadblock, and we can work on this limitation directly.

6.4 Theoretical limitations

In a single forward pass of a neural network, there are fundamental limits on both (1) the

number of serial operations and (2) the amount of memory for intermediate results. When

the number of steps that must be performed serially exceeds the depth of the network, the

90

network will not be able to learn the exact function. Therefore, one forward pass of a network

with fixed depth will inevitably fail on problems that require a number of sequential steps

that grows with the input. Notably, this limitation is not relevant for the many functions

that can be parallelized, like matrix multiplication, which is in TC0 and therefore should be

possible to learn with a single forward pass [157].

Like serial computation, memory can also be a bottleneck, as functions involving the

matrix product AT A where A is m × n with n >> m. Storage of the intermediate result

requries O(n2) memory, but the input size only scales like O(n). When n is greater than

the depth of the network, there can be challenges in storing all intermediate computations

in the network’s activations.

6.5 Practical challenges

In practice, reasoning about what solutions tend to be learned by a particular architec-

ture is often more important than fundamental constraints. Even when a function can be

represented in the function class, the statistical nature of the problem and questions of ap-

proaching the solution via approximations can play a larger role. Aside from not being able

to represent the exact algorithm, why would autoregressive language models be limited in

solving these numerical problems? We formulate 3 hypotheses and in the following sections

provide evidence for and against each of these hypotheses.

1. Model architecture (section 6.7): Features in autoregressive models are unidirectional

(causal masking), which makes learning some numerical operations challenging. For

example, when digits are passed from left to right into a language model, it is challenging

to express the addition of two numbers using a carry bit. Structured numerical data

also often obey constraints that are easy to express analytically (e.g. invariance to

rotations). Incorporating these constraints can make learning more sample-efficient or

91

improve generalization [75], but language models are typically unconstrained. In both

cases, architecture decisions might have a significant affect on test performance.

2. Tokenization of numbers (section 6.8): Tokenization can lead to strange artifacts in text-

pretrained language models [30, 215] and hinder their application to numerical inputs

[88]. While language models trained on numerical data often explore multiple tokeniza-

tion schemes [35, 72, 83], they are often presented as ablations rather than analyzed in

their own right.

3. Too little data or pretraining (section 6.9): Data for some numerical tasks can be rela-

tively limited or extremely noisy, making language models less likely to succeed compared

to models with more domain-specific assumptions. Other works show that text pretrain-

ing can serve as a surrogate for domain-specific pretraining or inductive biases [86].

6.6 Experimental Setup

To test our hypotheses, we train thousands of language models that vary in model archi-

tecture, model size, tokenization method, loss function, and pretraining method.

String-encoding and tokenization To turn numbers into tokens, we convert all num-

bers to a fixed precision and then convert these numbers to variable length strings by ignoring

any leading zeros. These strings are then tokenized using a vocabulary of all numbers up

to a certain chunk length, for example, {“1”, “2”, ..., “998”, “999”} for a chunk length of 3.

We greedily select the largest subsequence from right to left. For negative numbers, each

negative number is prepended with “-". These strategies are similar to P10, P1000, and

FP15 in Charton [35], but, in our case, we choose to drop the exponent term used by Char-

ton in favor of variable length because our inputs do not contain many different orders of

magnitude. In addition to standard tokenization with an embedding matrix, we also explore

92

Abacus embeddings [155] and xVal [83], which are tokenization methods specifically designed

for processing numbers.

Models We present results for both language models trained from scratch and frontier

language models pretrained on text. Pretrained models can reuse general computational

circuits and features developed on the pretraining text data, but may not be as well suited for

numerical data in the given format. When training models from scratch, we use the LLaMA-

2 [206] architecture with between 4 and 8 layers and hidden size 512, which translates to

between 20 million and 50 million parameters. We train models with a learning rate of 0.0001

or 0.0005 and a cosine schedule. When studying pretrained models, we use LLaMA3.1-8B

[66], and the default LLaMA-3 tokenization, which, on numerical inputs, is identical to our

3-digit chunking method. We fine-tune the LLaMA3.1 models using LoRA with rank 8

and alpha 32 for one epoch. To make predictions with the models, we draw 10 samples at

temperature 1 and calculate the median at each dimension of the output.

Datasets Our datasets are chosen to represent building blocks of common functions on

numerical data. They have varying degrees of difficulty, with some being computable exactly

by transformers while others can only be approximated. We explore two categories of tasks:

• Linear algebra: Following [35], we create n × n matrices with n ∈ [2, 10] and evaluate

(a) matrix addition (b) matrix multiplication, and (c) calculating real eigenvalues. We

train on matrices of mixed sizes, with a distribution of n weighted n, so that we train

on more large matrices. The input matrices have coefficients sampled uniformly from

[−10, 10], and resulting eigenvalues having a center distribution with standard deviation

σ = 10
√

n/3.

These tasks have significant variations in difficulty. While matrix sum and product are

computable in theory by a language model, computing an eigenspectrum is not and is more

93

Sum Sum+ Product Product+ Eigen Eigen+ Distances Energy
(D)

Energy
(C)

10
2

10
0

M
A

E

Decoder
Enc-Dec

16 Bit
20 Bit

Figure 6.2: Encoder-decoder architectures have theoretical advantages over decoder-only architectures
on our numerical tasks, but we find in practice the difference is minor. In our encoder-decoder models,
layers are split equally between the encoder and decoder. A task name with ‘+’ indicates a holdout
of unseen matrix shape–a harder test of generalization. We include quantized numerical operations as
baselines. 16 bit refers to a quantized operation with an 8-bit mantissa and 8-bit exponent. 20 bit
has a 10 bit mantissa and 10 bit exponent. We do not provide results for a quantized eigenvalue solver
because PyTorch does not provide an easy mechanism for constructing one.

intrinsically serial than sum and product, making it more challenging for transformers.

In addition to testing on matrices drawn from the same distribution as the train data,

we also include a special generalization setting (marked with ‘+’) in which we train on

n ∈ [2, 10] \ {8} and evaluate on n = 8. While past research often tests generalization by

evaluating on problems strictly larger than the problems in the training datasets [255], we

opt for an interpolative setting because it is less confounded by the inherent limitations

of position embeddings and reflects other facets of generalization on numerical data.

• 3D structures: Using the data from QM9 [179], we evaluate on the highest occupied

molecular orbital (HOMO) regression task. We also evaluate on a set of simpler functions

on QM9 coordinates, including (a) calculating a distance matrix on coordinates and (b)

calculating a simple potential energy over the atomic nuclei. For the potential energy task,

we test on either pre-computed distances or directly on coordinates, which disentangles

the challenge of computing distances internally within the neural network, a task that

can involve storing an intractable number of intermediate variables. Alongside the linear

algebra tasks, these problems encompass many of the fundamental operations of quantum

chemistry. It might be difficult to approximate current computation methods without

being able to express reasonable approximations to these simpler problems.

For linear algebra tasks, we use 500,000 training examples, and for 3D structures, we use

94

100,000 examples. We use 400 fixed test points for all evaluations.

Baseline methods Our first baseline is low-precision quantization of the floating point

numbers used in the correct computation within the synthetically generated tasks. We know

that transformers struggle with performing exact arithmetic, even for integers, therefore we

should expect that arithmetic will at best be performed approximately within the trans-

former. This quantization baseline evaluates the impact of using a correct algorithm but

with only limited precision. We use QPyTorch [246] and allocate an equal number of bits

to the exponent and mantissa. Our two quantization baselines use 16 and 20 total bits, and

this sets a reasonable ceiling on model performance.

Our other baselines are equivariant graph neural networks (EGNNs) [187], which learn

functions that are equivariant to permutations, rotations, and translations. EGGNs are

therefore particularly useful in understanding how symmetries affect performance on our

tasks. Following the original EGNN experiments on QM9, we use networks with 7 layers

and hidden dimensions of size 128. Training details are included in Appendix D.3.

6.7 Model Architecture

Causal masking In addition to whether or not the input x is featured in the loss or is

masked out, the decoder-only autoregressive structure of the language model has an impact

on which operations are easy to express. For example, as identified by Zhou et al. [255],

the carry used in adding two numbers is a useful intermediary for the task, but if the

numbers are ordered most significant digit first then its computation is nontrivial. In the

structured numerical data context, an analogous challenge might arise when outputting

scalar values which depend on aggregating information from input set data. For example,

with an input X = {x1, x2, . . . , xn}, computing y = ∑
i,j K(xi, xj). As a quadratic time

95

operation that depends on all pairs of inputs, it might seem difficult for a causally constrained

model to perform this computation within the linear space allotted to the model. When

additional space is provided, such as by having the model output all pairs of K(xi, xj)

in token form as an intermediate result, then the computation can be performed easily

within the layers of a causally masked transformer. We demonstrate that this is the case in

section D.8, providing a RASP-L program [255] which computes all pairs distance (RASP-L

is a restricted programming model designed to match the readily learnable operations within

a transformer). Reasoning models could plausibly learn to break up the problem in this way

to circumvent these challenges, but it is unlikely that they do so presently.

To test the hypothesis about the added difficulty from the causal masking, in Figure 6.2

we compare the performance of a decoder-only model with loss masking to an encoder-

decoder approach where only y is modeled autoregressively and X can be attended to bidi-

rectionally by the encoder. We find that, contrary to intuitions, encoder-decoder models

do not perform significantly better than models with only causal masking. To enable an

apples-to-apples comparison in these experiments, we use the same number of parameters

in each architecture for each of three fixed parameter counts. In causal models, every layer

is causal, whereas in encoder-decoder models, half the layers are in a bidirectional encoder

and half the layers in a causal decoder. For tasks with a complex and high-dimensional

output, it is possible that having a limited number of decoder layers could have a negative

impact on the coherence of the output relative to a decoder-only architecture. This is one

possible explanation for encoder-decoder architecture’s significantly worse performance on

calculating distances, where the output is a flattened upper triangular.

As a small additional experiment, we also explore McLeish et al. [155]’s approach to

tokenizing numbers, which involves reversing the digits in number allowing for simpler al-

gorithms implementing arithmetic operations Zhou et al. [255]. In addition to reversing the

digit, a special embedding is added to identify each digit position within a number. Un-

96

Figure 6.3: (Top) Degree of invariance (permutation or rotation error) strongly correlates with the
ability to fit the task (MAE) across several model sizes, tokenization methods, and training runs. Results
are displayed with both axes log-scaled. For rotation invariance, we only study tasks on 3D structures.
Shading is a 95% confidence interval for the regression.

like the original paper, however, we use a plain decoder-only transformer model without

parameter-sharing or skip connection to the input. In Table 6.2, we show that this inter-

vention has a negligible or slightly negative effect overall. Although McLeish et al. [155]

designed their approach with large multi-digit numbers in mind, it is surprising that there

is no positive effect on learning operations that depend on addition and multiplication as a

subroutine. Together, these two results (comparing architectures and input orderings) sug-

gest that artifacts of causal masking are likely not the largest bottleneck to language model

success on our tasks.

Table 6.2: Digit order has a negligible effect on relative error. We report geometric mean across tasks
with standard errors.

Method MAE (↓)
Base 0.237 ± 0.12

Reversed 0.309 ± 0.14

Symmetries Symmetries can be hard-coded into a model’s architecture, but this process

is not common in language modeling applications and is challenging when operating on

tokenized strings. In this section, we explore how language models learn invariances or

equivariances on our numerical tasks and quantify how correlated learning symmetries is

with predictive performance. In our linear algebra tasks, the most relevant symmetry is

over the symmetric group, i.e., permutations of the rows or columns. For any permutation

97

Sum Product Eigen Distances Energy (D) Energy (C)

10
2

10
1

10
0

10
1

M
A

E
Digits 3-Digit Chunks Continuous

S M L

10
2

10
1

10
0

P
er

m
ut

at
io

n
E

rr
or

S M L

10
2

10
1

R
ot

at
io

n
E

rr
or

10
17

10
18

FLOPs

10
0

2 × 10
0

Te
st

 M
A

E

Figure 6.4: (Left) We train causal transformers with different tokenization schemes and witness a
significant advantage from learning a continuous prediction head. By contrast, differences between
discrete tokenization schemes (digits vs. chunks) are inconsistent with multi-digit schemes performing
better on some tasks and worse on others. (Center) Using a continuous prediction head leads to higher
invariance at smaller model sizes. For discrete methods, larger models are required to learn invariance.
Numbers are the geometric mean over tasks, and shading denotes a 95% confidence interval. (Right)
We present a scaling experiment on the matrix product task. We train 5 different model sizes, for
both standard digit tokenization and a continuous prediction head. Shading denotes parameter count,
while FLOPs are a function of parameter count and gradient steps. Additional details are provided in
section D.5.

matrix P and square matrices A, B, equivariant matrix operations like addition or matrix

multiplication produce a permuted result: (PAP −1)(PBP −1) = P (AB)P −1, whereas as

other operations like computing the eigenvalues are invariant to permutations: λi(PAP −1) =

λi(A). These symmetry transformations are merely linear transformations of the input

matrix, and can be explicitly written as such: vec
(
PAP −1

)
= P ⊗ Pvec(A), where vec

flattens the elements of the matrix into a vector and ⊗ is the Kronecker product.

Our 3D structure tasks are equivariant or invariant to permutations (over the atom in-

dices) as well as rotations, and translations on the coordinates of the atoms. We quantify

invariance by calculating the predictions of the model for 10 examples transformed with ran-

dom permutations or rotations. The invariance error is measured as the standard deviation

per dimension normalized by the absolute value of the ground truth values and averaged over

all dimensions: Err = 1
D

∑D
i=1

√
VarM∼µ[fi(Mx)]

|f∗
i (x)| . Here, µ represents the uniform distribution

over the group (formally the Haar measure), M is a matrix (of the relevant representation)

for the group, and f ∗ is the function we are trying to fit. Following standard practice, we

train our 3D structure models with rotation augmentations, and we also add permutation

augmentations. For linear algebra tasks, we do not apply augmentations.

98

In Figure 6.3 (top), we show the correlation between predictive performance (relative

error) and invariance to permutation or rotations. The points displayed are models that

vary in size, architecture, and training hyperparameters. Across almost all tasks, there is

a strong correlation, indicating that good models also tend to be invariant models. The

notable exception is solving for eigenvalues, which displays the opposite trend, likely due to

a spurious correlation between the matrix ordering and eigenvalue spectra in the training

dataset. In many cases, the best models can approach perfect invariance, with invariance

errors on the order of 10−6. Yet, even when models are nearly invariant, small changes in

invariance appear to be correlated with improvements in performance.

To further explore the impact of equivariance, we compare decoder-only language models

trained on digit tokens against GNNs with and without rotation equivariance in Table 6.3.

GNN indicates permutation equivariance, while EGNN indicates permutation, translation,

and rotation equivariance. The evaluation tasks are energy (from coordinates) and HOMO,

both of which have permutation and rotation symmetry. In the results, invariance/equivari-

ance again has a strong connection with predictive performance. Combined with the results

above, we can conclude that invariance has a clear connection with performance on our nu-

merical tasks. Surprisingly, language models can achieve high levels of invariance, but these

high levels do not appear to saturate predictive performance.

Table 6.3: GNNs outperform LMs on the energy prediction task (from coordinates) and benefit from
equivariance.

Method MAE (↓)
LM 0.209
GNN 0.079
EGNN 0.041

99

2 3 4

Language Model

,

FiLM

2.34

3 4 , 8

2 3 4

Language Model

8.59

,

Continuous Input Continuous Output

Network

2.34

Network

5.17

'2' '3' '4' ',' '5' '1' '7'

Network

2.34

Network

5.17'2' '3' '4' ',' '5' '1' '7'

Discrete Continuous

Figure 6.5: We can model numerical data as strings or as vectors of continuous values. Each approach
has unique costs and benefits.

6.8 Tokenization

Besides architecture and training loss, tokenization is the other key design decision in

constructing language models (Figure 6.5). When training on text, most language models

employ tokenizers that compress commonly occurring sequences of bytes (e.g. byte-pair

encoding). However, naively applying these same tokenization methods to numbers can

lead to problems, because small changes to the value of the number can lead to large and

hard to model changes in the tokenization of the number string [88]. Character-level or n-

gram tokens, therefore, are popular choices when modeling numbers, but while many papers

employ these methods [72, 249], there is little understanding of how tokenization affects the

model’s ability to learn basic numerical operations.

We might also ask why it is even desirable to work with discrete tokens in the first place,

as molecular structures and properties are typically represented with continuous vectors. To

this end, we consider a few a-priori trade-offs and show that there are reasons for supporting

either approach.

Continuous sequences: Each number is a floating point value, typically at the same

precision as the weights of the neural network.

• Pros: (a) domain-specific properties (e.g. invariance/equivariance) have simple relation-

ships with the model parameters. (b) order information is preserved in the input and in

100

loss functions. (c) it is not necessary to learn an embedding matrix, or associated linear

layers, which might be very large.

• Cons: (a) information contained in the scale of the numbers can be destroyed by normal-

ization used to improve numerical stability. (b) modeling numbers of radically different

scales can lead to numerical instability in the input. Transforming with log and exp can

stabilize the input but have poor gradient behavior. (c) multimodality (mixed categorical

and continuous variables) in the output space can be hard to represent.

Discrete sequences: Each number is converted to a string and then to a sequence of

tokens, i.e. [“1”, “.”, “5”, “6”], and corresponding integers.

• Pros: (a) distributions on sequences are densities over numbers without strong dis-

tributional assumptions or complicated losses. (b) input numbers do not need to be

normalized. Numbers can in principle be large or small without causing fundamental

problems, though length generalization is not guaranteed.

• Cons: (a) learning basic operations on numbers might require many samples because of a

large vocabulary and complicated algorithms for operating on strings. (b) hallucination

of non-number outputs.

To test the empirical effects of tokenization, we compare a few approaches, including both

discrete and continuous losses. In the discrete setting, we try both tokenizing individual

digits and tokenizing in 3-digit chunks. When using chunks, we always tokenize from right

to left to maintain a consistent token meaning for strings of different lengths. In principle,

the primary trade-off between these approaches is between vocabulary size and sequence

length, as chunked sequences are shorter but might require a larger training dataset to cover

the space of 10k tokens, for chunk size k, some of which might occur rarely. In addition

to these two discrete approaches to processes numbers, we also run experiments with xVal

[83], which replaces discrete vocabularies and their associated embedding with a single linear

101

projection that turns scalar inputs to vectors the same dimension as token embeddings and

which projects final output layers. Instead of the cross-entropy loss, xVal uses an L2 loss

on its continuous prediction. xVal is a useful counterpoint to purely discrete approaches

because it sidesteps several key challenges of tokens, for example learning large vocabularies,

long sequences, and potential challenges in learning symmetries.

In Figure 6.4 (left & center), we show the effect of tokenization on predictive performance

and symmetry learning. Overall we see that adopting a continuous approach leads to lower

errors and more invariant predictors. By contrast, the difference between character-level

(digit) and n-gram (3-digit chunk) schemes is inconsistent in terms of errors and nearly

equivalent in terms of invariance. The latter result is surprising given our relatively large

datasets, which provide reasonable coverage of the tokens in the vocabulary. The relationship

between invariance and model size in xVal hints that maybe using any discrete representation

incurs significant overhead to learn the appropriate structure, as xVal appears to acquire

much higher levels of invariance for all model sizes. In Figure 6.4 (right) we also show that

xVal exhibits an improved scaling law on the matrix product tasks (details in section D.5).

6.9 Text Pretraining

As we’ve seen so far, language models typically require large model sizes in order to

capture invariances and make good predictions. For sufficiently large datasets, this allows

language models to perform on par with hand-crafted methods, but in other cases these

extra parameters lead to poor generalization or slower convergence for fixed compute. The

typical solution for this problem is extensive unsupervised pretraining, which can unlock

the benefits of language modeling, while matching performance on narrow tasks. Prior

work shows that text pretraining can serve this role in some cases. For example, Delétang

et al. [58] and Goldblum et al. [82] show that text-pretrained models are general-purpose

102

Sum Product Eigen Distances Energy
(D)

Energy
(C)

10
2

10
1

10
0

10
1

M
A

E

From Scratch LLaMA3.1-8B

Figure 6.6: We compare our small language models trained from scratch with finetuned versions
of large text-pretrained models. Text-pretrained models perform worse on every task except matrix
products, which might benefit from the pretrained model’s additional capacity and ability to model
high-dimensional outputs.

compression engines that can match domain-specific compression on non-text modalities. In

practical applications, results Gruver et al. [86] find that text-pretrained models are useful

initialization for generating 3D crystal structures, but in some cases, authors have also found

negative transfer from text-pretraining [3].

To explore pretrained models, we compare our small from-scratch models with LLaMA3.1

-8B, which we fine-tune for one epoch. Although there are fewer gradient steps in the case of

finetuning, the compute requirements are roughly equal because of the much larger parameter

count in the pretrained model. As with models trained from scratch, we make predictions

by drawing 10 samples and taking the median per dimension. Figure 6.6 (right) shows the

resulting errors, for which pretrained models have worse performance in all tasks but matrix

multiplication. We posit two possible explanations for this discrepancy: (a) matrix product

requires the most capacity to learn effectively (b) matrix product has very high-dimensional

outputs consisting of matrices containing large numbers, and text-pretraining is primarily

helpful in modeling patterns in long sequences. If this were true, however, we might also

expect some benefit on matrix addition and computing distance matrices.

103

6.10 Conclusion

In this chapter, we explored several explanations for the subpar performance of language

models on 3D property prediction tasks. Through interventions like modifications of the

architecture and loss function, we see that some of the explanations are not supported by

the data, while others, such as the importance of invariances, hold up to scrutiny. Our exper-

iments suggest that language models converge to increasingly accurate and nearly invariant

solutions when given sufficient model capacity and yet still have a large gap when compared

to a method like xVal. One exciting avenue for future work is to expand upon the xVal

approach to support multimodal generation, for example with score matching.

Discussion: Language Models for Numerical Data

In Chapters 4, 5, and 6, we explored successes and failures in applying language models

to numerical data. We showed that text pretraining often induces a bias for simple functions

that can encourage sample-efficient learning and good generalization. We also showed that

autoregressive models on sequences of digits can be expressive distributions over both 1D and

3D data, and, by extension, over high-dimensional data expressed as sequences of floating

point numbers or 3D coordinates. We showed in two practical cases that these strengths of

language models can lead them to perform competitively against domain-specific models in

zero-shot of finetuning settings. Finally, we also showed that text-pretrained language mod-

els are not a panacea and can lag behind domain-specific models dramatically in some cases,

such as molecular property prediction. We speculated on the origin of this performance gap

and identified the use of discrete tokens as one possible explanation, due to its empirical rela-

tionship with symmetry learning and the empirical relationship between symmetry learning

and generalization. This work, however, is ongoing, and more research into the failure modes

104

of language models and their origins would significantly benefit the community.

Language models have the potential to be general-purpose foundations for not just text

but also numerical data, enabling data-efficient learning, generalization across data sources,

and enabling new capabilities, such as generation conditioning on text or reasoning chains.

Some fraction of machine learning research in the near term will thus concern how close we

are to reaching this potential, or whether the role of language models will consist instead

in solely imitating the text-based work-flows of humans, such as in agents that write or

train their own models. Our work suggests that there is some promise in using LLMs as

foundations for other modalities, but that it is far from being the definitive solution.

105

7 | Conclusion

This thesis has demonstrated how pretraining can generate useful inductive biases that

reduce our reliance on domain-specific architectural constraints, enabling general frameworks

like autoregressive sequence modeling to tackle diverse numerical problems. At the same

time, our analysis of Hamiltonian neural networks and convolutional neural networks reveals

that while inductive biases are often misunderstood, they remain crucial for model scaling

and generalization. The path forward likely requires balancing simplified architectures with

carefully chosen constraints - we cannot yet reduce all modeling tasks to fine-tuning a single

pretrained model. These results provide insight into the transition from specialized deep

learning approaches toward large-scale pretraining, highlighting both the opportunities and

limitations of more general architectures.

Future work

Agentic Systems and Multimodal Foundation Models

The landscape of artificial intelligence is evolving beyond narrowly defined tasks toward

systems that can emulate complex human behaviors. This evolution raises interesting ques-

tions about the relationship between model designers and the models themselves, as these

systems increasingly demonstrate the ability to utilize computational resources and execute

sophisticated sub-tasks autonomously.

106

Our work on language models in time series forecasting initially focused on their abil-

ity to incorporate textual information into predictions. However, this capability hints at

broader potential: future language models might autonomously construct and deploy tradi-

tional statistical tools like seasonal ARIMA models, design custom Gaussian process kernels,

or develop neural network architectures based on contextual understanding. These systems

might even mirror a data scientist’s workflow, fitting multiple models, analyzing their pre-

dictions, and forming intuitive judgments based on the results.

This trajectory raises fundamental questions about the future of machine learning sys-

tem design. We must carefully consider which problems are best solved through traditional

differentiable function approximation from input to output, and which require more complex

approaches using reinforcement learning to develop sequences of actions. While related, these

approaches offer different trade-offs and capabilities. Similarly, we must examine whether

architectural properties like invariance and equivariance will remain optimal for certain prob-

lems, particularly those where exact symmetries are fundamental to valid solutions. Even

in a future dominated by general AI systems, these specialized architectural designs might

persist as crucial subsystems for specific tasks.

Autoregression or Denoising for Foundation Models

In the work covered in this thesis, we primarily covered the use of autoregressive language

models as general-purpose foundations, but there are alternative paradigms with different

trade-offs. For example, diffusion, flow-matching, and consistency models have thus far been

more successful for image data and can generate high-quality samples with only 10-100 for-

ward passes of the model. Non-autoregressive models are also not constrained to one ordering

and therefore might not incur the downsides of causal masking discussed above. Diffusion

language models are increasingly popular and are closing the gap that once existed between

their performance and traditional autoregressive models [12, 183]. Diffusion language models

107

promise to be significantly faster than autoregressive models and might enable multimodal

modeling with diffusion losses on each modality, as has emerged in generative modeling of

protein sequence and structure [32, 99]. While non-autoregressive models offer fast sampling

and historically better sample quality on non-text modalities, they might also be funda-

mentally weaker in terms of sample-efficiency than language models because of strengths of

causal masking combined with teaching forcing, which allows autoregressive models to learn

on all noise levels for each example at each training step. It’s possible that this strength

combined with the future image/video tokenizers will be sufficient to make autoregressive

models the dominant paradigm, but only time will tell.

Exploration with Language Models

In the scientific community, there is increasing excitement about using language models

to propose and test hypotheses, including promising initial results [115, 144]. Most attempts

thus far do not account for risk and resource allocation, which are critical aspects of sci-

entific research that slow progress. In other instances of sequential decision making under

uncertainty, these challenges are handled by strategically balancing exploration (to increase

understanding of the environment) and exploitation (to make progress with existing knowl-

edge). It’s unclear if language models learn to recapitulate human strategy for exploration,

and there is some evidence that they do not [162]. Much of the work in my PhD was fo-

cused on applications of Bayesian optimization to protein design, though this work did not

end up in this thesis, and in Bayesian optimization exploration is encourage through mod-

eling epistemic uncertainty. There is some indication that language models can model their

own uncertainty, though it does not emerge for free from pre-training [124]. It would be

very interesting to gauge whether these uncertainties can be used for efficient exploration or

decision making, particularly in scientific applications.

108

A | Appendix: Deconstructing

Learned Symmetries

A.1 Appendix Outline

This appendix is organized as follows. In Section B, we present proofs for the energy

conservation properties of HNNs and Neural ODEs, as well as a more detailed description

of symplecticity. In Section C, we described the details of our experiments on Mujuco,

including our data preprocessing, training, and architectural decisions. Lastly, in Section D,

we provide additional experimental results requested by reviewers of our original submission.

These include a comparison of alternative loss functions and a comparison on additional rigid

body systems.

A.2 Mathematical Details

A.2.1 Energy Conservation for Neural ODEs

Let F = J∇H be the ground truth dynamics of a time independent Hamiltonian, and F̂

be the dynamics learned by a neural network through an learned Hamiltonian Ĥ for HNNs

or otherwise. Given some initial condition z0, let ẑT denote the solution to ż = F̂ (z) at time

109

T starting from z0 and zT be the solution to the ground truth dynamics from z0.

Suppose the error in the dynamics model e(z) = F̂ (z) − F (z) is bounded ∀z : ∥e(z)∥ < δ

and that we are only considering a bounded region of the state space (such as the states of

a pendulum with bounded energy).

Since energy is conserved H(zt) = H(z0) = H(ẑ0), we can write the the energy error

H(ẑT) − H(zT) = H(ẑT) − H(ẑ0) =
∫ ẑT

ẑ0
∇H(z)⊤dz

Since the value is independent of the path, we may consider the path given by the approxi-

mated dynamics ẑt. Noting that dẑ/dt = F̂ (ẑt) = J∇H(ẑt) + e(ẑt), we have

H(ẑT) − H(zT) =
∫ T

0
∇H(z)⊤ dẑ

dt
dt =

∫ T

0
∇H(ẑt)⊤F̂ (ẑt)dt

=
∫ T

0
[∇H(ẑt)⊤J∇H(ẑt) + ∇H(ẑt)⊤e(ẑt)]dt

=
∫ T

0
∇H(ẑt)⊤e(ẑt)dt.

Bounding the maximum value of the integrand along the path, we have that

|H(ẑT) − H(zT)| < Tδ sup ∥∇H∥, (A.1)

which grows only linearly with time.

This linear bound on the energy error is in stark contrast with the state error which

could grow exponentially according to the Lyapunov exponents, even if the dynamics error

is arbitrarily small. Advancing the ground truth and learned dynamics forward to some

small time t = ϵ, ẑϵ = z0 + ϵF̂ (z0) yields error ∥ẑϵ − zϵ∥ = ∥ϵF̂ (z0) − ϵF (z0)∥ = ϵ∥e(z)∥ < ϵδ.

And yet, this error even if propagated by the ground truth dynamics will grow exponentially

∥ẑT − zT ∥ ≈ eλT ∥ẑϵ − zϵ∥ = eλT ϵ∥e(z)∥

110

A.2.2 HNN Energy Conservation

A simple but erroneous argument for why HNNs approximately conserve the true energy

goes as follows:

We would like to know if HNNs achieve better energy conservation given the same levels

of error in the predicted dynamics. For HNNs, F̂ = J∇Ĥ, and we can see that the dynamics

error e(z) can also be written as e(z) = J∇(Ĥ − H).

If we could convert a bound on the derivatives ∥e∥ = ∥∇(Ĥ − H)∥ < δ (since J is an

orthogonal matrix) into a bound on the learned Hamiltonian itself E(z) := Ĥ(z) − H(z) − c

and |E| < ∆ holding globally for some constant c, then we would have a constraint on

the energy error that doesn’t grow with time. Expanding the difference in initial and final

energy, the constant c cancels out and we have

H(ẑT) − H(ẑ0) = Ĥ(ẑT) − Ĥ(ẑ0) − E(ẑT) + E(ẑ0)

= −E(ẑT) + E(ẑ0),

using the fact that the learned energy function Ĥ is conserved over the model rollout ẑt. If

there was a constraint |E| < ∆ then

|H(ẑT) − H(ẑ0)| < 2∆.

Unfortunately, even if the gradients are close and δ is small, that does not imply that

∆ is small. Small differences in gradient can add up to very large differences in the values

of the two functions. While the dynamics may well approximate the data, and achieve low

rollout error, there is no reason to believe that at a given point in phase space the learned

Hamiltonian should have a value that is close to the true Hamiltonian.

111

A.2.3 Symplecticity

Symplecticity is the requirement that the dynamics satisfy (JDF)⊤ = JDF . Defining

G = JF , the requirement is simply that the antisymmetric part of the jacobian is 0, DG⊤ −

DG = 0.

Unpacking Poincare’s lemma requires some familiarity with differential geometry concepts

such as differential forms and exterior derivatives, and so we will assume them but for this

section only. Poincare’s lemma states that on a contractible domain (such as Rn) if a

differential k-form ω is closed dω = 0 (the exterior derivative of ω is 0) then it is also exact

ω = dν (it is the exterior derivative of another differential (k−1)-form ν). While F is a vector

field, G = JF is a differential 1-form (dual to a vector field). If DG is symmetric, then it is

also closed: dG = ∑
i ∂iGjdxi ∧dxj = 2∑i(∂iGj −∂jGi)dxi ∧dxj = 0 since (∂iGj −∂jGi) = 0

is just another way of expressing DG⊤ − DG = 0. Therefore by Poincare’s lemma, G = dϕ

for some 0-form (scalar function) ϕ. Therefore F = J−1dϕ = Jd(−ϕ) since J−1 = −J . As

the exterior derivative of scalar function is just the gradient, we can define H = −ϕ and see

that there exists a scalar function H such that F = J∇H.

A.3 Mujoco Experiment Details

Data collection: for each control task we trained a standard soft actor-critic RL agent to

convergence [94]. Note that we had to use modified versions of the Gym environments since

the standard environments preprocess observations in ad-hoc ways. For example, Hopper

clips the velocity observations to [−10, 10]d and truncates part of the position.1 Our versions

of the environments simply return [q, v] as the observation. Then we randomly split the

episodes in the replay buffer into train and test. The training data was 40K 3-step trajectories

(i.e. two transitions) randomly sampled from the training episodes. The test data was 200
1https://github.com/openai/gym/blob/master/gym/envs/mujoco/hopper.py#L31

112

https://github.com/openai/gym/blob/master/gym/envs/mujoco/hopper.py#L31

200-step trajectories randomly sampled from the test episodes. This data-collection strategy

is important to the experiment because random controls typically do not cause the agent to

cover the entire state-action space. Similarly many control policies are highly cyclical, so it

is important to separate train and test splits at the episode level.

Training: we trained each model for 256 epochs using Adam with a batch size of 200 and

weight decay (λ = 1e-4). We used a cosine annealing learning rate schedule, with ηmax =

2e-4, ηmin = 1e-6.

Model Architecture Each network was parameterized as a 2-layer MLP with 128 hidden

units. Each model used the Euler integration rule with 8 integration steps per transition step.

The step size was determined by the integration step size of the underlying environment,

h = ∆t/8.

NODE + SO: given the state z and controls u, a standard NODE takes dz/dt = f(z, u, θ).

However, if z = [q, v] (that is, if both position and velocity are observed), then we already

have a good estimate of dq/dt in the observation itself, namely v. Hence we propose only

using the network to model acceleration dv/dt = f(z, u, θ), and to model dq/dt implicitly. It

is important to note that we cannot take dq/dt = v because v is observed before the control

u is applied. Instead we take dq/dt = v/2 + (v + h × dv/dt)/2, averaging the velocity at time

t (before the control is applied) and the predicted velocity at time t + 1 (after the control is

applied), given an Euler integration step of size h on v.

This integration rule can be viewed as an approximate RK2 step on qt, where vt+1 is

approximated via a learned Euler step on vt. This approach has two benefits. In the

first place it constrains the predicted velocity and acceleration to be consistent across time.

Second the model is able to take an approximate RK2 step on q at the cost of a single forward

pass (instead of 2). The latter is important because integration error can accumulate over

long rollouts, even if the model fits the dynamics very well.

113

A.4 Additional Experimental Results

A.4.1 Comparison of loss functions

In the experimental results presented in the body of the paper were obtained training on

l2 loss between integrated and ground truth trajectories. As noted in feedback the an early

version of the paper, this practice goes contrary to prior work using l1 loss for stability [69].

In Figure A.1 we show the result of changing the loss.

Chain (l1 loss) Chain (l2 loss) Spring (l1 loss) Spring (l2 loss)

10 2

Ro
llo

ut
 E

rro
r

NODE NODE + SO HNN

Figure A.1: Switching from l2 to l1 loss can improve rollout error slightly, but doesn’t impact the
ordering of the models. The other elements of the experimental setup are identical to above. Error bars
show one standard deviation.

A.4.2 Additional Systems

To extend the comparison of NODE and HNN models, we trained models on three ad-

ditional systems presented by Finzi, Wang, and Wilson [69]. Figure A.2 shows the rollout

error of NODE, NODE + SO, and HNN models. One the gyroscope system, we observe

a similar result to the one above. In the magnet pendulum and rotor systems, the results

are slightly more counterintuitive, with the NODE model outperforming the more sophisti-

cated alternatives. We suspect the small difference in performance in the models is due to

the challenge of stably training HNNs in complex systems (with magnet pendulum having

complex dynamics and rotor having a complex coordinate system).

114

Gyroscope Magnet Rotor

10 4

10 3
Ro

llo
ut

 E
rro

r

NODE NODE + SO HNN
Gyroscope Magnet Rotor

10 4

10 3

Ro
llo

ut
 E

rro
r

NODE NODE + SO HNN

Figure A.2: On the additional systems from Finzi, Wang, and Wilson [69], we can observe the effect
of second order structure, compared with NODE and HNN baselines. As before, second order structure
seems to account for much of the difference between NODE and HNN models. Error bars show one
standard deviation.

A.5 Aliasing Extended Discussion

When working with signal f we can write the fourier series

f(k) =
∞∑

n=−∞
F (n)ei2πkn/N

where F (n) are the frequency components and the values n are called harmonics. Take

the f to be discretely sampled at uniformly spaced points in a bounded interval [−1, −1 +

∆, ..., 1 − ∆, 1], with ∆ = 1/K. Because the sampling rate is limited, it is impossible to

correctly measure components F (n) where n > K/2. Evaluated only at the grid points, such

content could have identical values to components with lower frequencies, causing funda-

mental ambiguities:

sin(2π(k + nK)t + ϕ) =

+ sin(2π(k + nK)t + ϕ) k + nK ≥ 0

− sin(2π|k + nK|t + ϕ) k + nK < 0

The default mechanism for resolving these ambiguities in the reconstruction is to choose

the lowest frequency component for the corresponding observations, leading to the aliasing

115

operation given in Equation 3.2.

This operation can also be considered a translation in the frequency domain. Crucially,

operations in frequency domain have corresponding operations in the spatial domain, and

thus aliasing can give rise to recognizable patterns in images with poorly chosen resolutions,

for example moire patterns. This relationship also means aliasing’s effects on translations in

frequency space, for example, can effect translational spatial symmetries.

To make this relationship explicit, let us consider the translational symmetries of the

first set of feature maps in a CNN in two scenarios. In both scenarios the transformation

is downward translation of the input by 10% of its height. First, let us consider the case

where this transformation happens to result in a translation by a discrete numbers of pixels,

p in the feature maps. Obviously the pixels at the bottom of the image become lost to the

boundary and thus cannot be recovered from the corresponding feature maps, as would be

required for equivariance, as illustrated in Figure 3.2. As the amount of this translation gets

smaller and smaller, however, the effect of the boundary should decrease, and yet the ability

to recover the image can still be strongly affected by innate signal processing properties.

Consider the case where the CNN has a stride of 2. The feature maps will have half the

width of the original image. Therefore the Nyquist frequency will also be half that of the

Nyquist frequency of the image, and there will be aliasing of all the frequencies in between

the original Nyquist frequency and the new value. When we try to reverse the transformation

by translating p pixels upwards, the resulting translation will no longer be the inverse of the

translation on the image. Therefore we cannot achieve perfect equivariance.

As another important subcase, let’s also consider the non-linear activation in the CNN

layer by itself. If we apply the non-linearity to a translated input, we can simply use the

fact the result was a discrete translation in the output space to map the values at the grid

points to values at different grid points under the reverse transformation. In this case there

is clearly no issue introduced from the frequency domain properties of non-linearities on their

116

own.

Now let’s consider a translation of 1/p pixels. In this case, reconstructing the image

after the translation is non-trivial, and we need to perform interpolation to calculate the

values of the corresponding continuous image at the points that will become translated to

the evaluation points. In order to perform this interpolation we must actually consider

the full frequency spectrum of the image. Now the effects of pointwise non-linearities can

become apparent. Because non-linearities can introduce high frequency content, these high

frequencies become important when reconstructing the signal using interpolation. Aliasing

makes this reconstruction fundamentally challenging and thus equivariance is impossible to

achieve.

A.6 Lie Groups, Lie Derivatives, and LEE

A.6.1 Lie Groups and Local/Global Notions of Equivariance

The key to understanding why the local - global equivalence holds is that (exp(X)−1) =∑∞
k=1 Xk/k! has the same nullspace as X (here repeated application of X on a function f

is just the repeated directional derivative, and this is the definition of a vector field used in

differential geometry). Since they have the same nullspace, the space of functions for which

exp(X)f = f is the same as the space Xf = 0. The same principle holds for ρ(exp(X))f = f

and dρ(X)f = 0 since ρ(exp(X)) = exp(dρ(X)) (a basic result in representation theory,

which can be found in [96]) where dρ is the corresponding Lie algebra representation of ρ,

which for vector fields is the Lie derivative dρ(X) = LX . Hence carrying over the constraint

for each element ∀X ∈ g : LXf = 0 is equivalent to ∀X ∈ g : ρ(exp(X))f = f which is the

same as ∀g ∈ G : ρ(g)f = f . Unpacking the representation ρ12 of f , this is just the global

equivariance constraint ∀g ∈ G : ρ2(g)−1f(ρ1(g)x) = f(x).

117

A.6.2 Lie Derivative Chain Rule

Suppose we have two functions h : V1 → V2 and f : V2 → V3, and corresponding

representations ρ1, ρ2, ρ3 for the vector spaces V1, V2, V3. Expanding out the definition of ρ31,

ρ31(g)[f ◦ h](x) = ρ3(g)−1f(h(ρ1(g)x))

= ρ3(g)−1f(ρ2(g)ρ2(g)−1h(ρ1(g)x))

= ρ32(g)[f] ◦ ρ21(g)[h](x).

From the definition of the Lie derivative, and using the chain rule that holds for the

derivative with respect to the scalar t, and noting that g0 = Id so ρ(g0) = Id, we have

LX(f ◦ h)(x) = d

dt

(
ρ31(gt)[f ◦ h](x)

)∣∣∣∣∣
0

= d

dt

(
ρ32(gt)[f] ◦ ρ21(gt)[h](x)

)∣∣∣∣∣
0

=
(

d

dt
ρ32(gt)[f]

∣∣∣
t=0

)
◦ ρ21(g0)[h](x) +

[
d(ρ32(g0)[f])

∣∣∣∣∣
h(x)

](
d

dt
ρ21(gt)[h]

∣∣∣
t=0

)
(x)

=
(

d

dt
ρ32(gt)[f]

∣∣∣
t=0

)
◦ h(x) + df |h(x)

(
d

dt
ρ21(gt)[h]

∣∣∣
t=0

)
(x)

= (LXf) ◦ h(x) + df |h(x)(LXh)(x),

where df |h(x) is the Jacobian of f at h(x) and df |h(x)(LXh)(x) is understood to be the

Jacobian vector product of df |h(x) with (LXh)(x), equivalent to the directional derivative of

f along (LXh)(x). Therefore the Lie derivative satisfies a chain rule

A.6.3 Stochastic Trace Estimator for Layerwise Metric

Unrolling this chain rule for a sequence of layers NN(x) = fN :1(x) := fN(fN−1(...(f1(x)))),

or even an autograd DAG, we can identify the contribution that each layer fi makes to the

118

equivariance error of the whole as the sum of terms Ci = dfN :i+1LXfi, LX(NN) = ∑N
i=1 Ci.

Each of these Ci, like LX(NN) measure the equivariance error for all of the outputs (which

we define to be the softmax probabilities), and are hence vectors of size K where K is the

number of classes. In order to summarize the Ci as a single number for plotting, we compute

their norm ∥Ci∥ which satisfy ∥LX(NN)∥ ⩽
∑

i ∥Ci∥.

To compute dfN :i+1LXfi, one can use autograd to perform Jacobian vector products (as

opposed to typical vector Jacobian products) and build up dfN :i+1 in a backwards pass.

Unfortunately doing so is quite cumbersome in the PyTorch framework where the large

number of available models are implemented and pretrained. A trick which can be used to

speed up this computation is to use stochastic trace estimation [14]. Since vector Jacobian

products are cheap and easy, we can compute ∥Ci∥2 = E[Â] as the expectation of the esti-

mator Â = (1/N)∑N
n (z⊤

n Ci)2 = (1/N)∑N
n (z⊤

n dfN :i+1LXfi)2 with iid. Normal probe vectors

zn ∼ N (0, I), and the quantity z⊤
n dfN :i+1 which is a standard vector Jacobian product.

One can see that E[Â] = C⊤
i E[zz⊤]Ci = C⊤

i ICi = ∥Ci∥2. We can then measure the

variance of this estimator to control for the error and increase N until this error is at an

acceptable tolerance (we use N = 100 probes). The convergence of this trace estimator is

shown in Figure A.4 (right) for several different layers of a ResNet-50. In producing the final

layerwise attribution plots, we average the computed quantity ∥Ci∥ over 20 images from the

ImageNet test set.

A.7 LEE Theorems

A.7.1 LEE and consistency regularization

As shown in Athiwaratkun et al. [13], consistency regularization with Gaussian input

perturbations can be viewed as an estimator for the norm of the Jacobian of the network,

119

but in fact when the perturbations are not Gaussian but from small spatial transforma-

tions, consistency regularization actually penalizes the Lie derivative norm. In the Π-model

[131] (the most basic form of consistency regularization), the consistency regularization min-

imizes the norm of the difference of the outputs of the network when two randomly sampled

transformations T a and T b are applied to the input,

Lcons = ∥f(T a(x)) − f(T b(x))∥2. (A.2)

Suppose that the two transformations are representations of a given symmetry group and

can be written as T a = ρ(ga) and T b = ρ(gb), and the group elements can be expressed as

the flow generated by a linear combination of the vector fields which form the Lie Algebra:

ga = Φ∑
i

aiXi
for some coefficients {ai}d

i=1 and likewise for gb. We can define the log map,

mapping group elements top their generator values in this basis: log(ga) = a. Then, assuming

ai are small (and therefore the transformations are small), Taylor expansion yields Lcons =

∥f(x) + ∑
i aiLXi

f(x) + O(a2) − [f(x) + ∑
j bjLXj

f(x) + O(b2)]∥2. Therefore, taking the

expectation over the distribution which a and b are sampled over (which is assumed to be

centered with E[ai] = E[bi] = 0 as well as the input distribution x, we get that

Ea,b,x[Lcons] = 2E[∥
∑

i

LXi
f(x)∥2

Σ] + higher order terms, (A.3)

where ∥∥2
Σ denotes the norm with respect to the covariance matrix Σ = Cov(a) = Cov(b).

When the transformations are not parameter space perturbations such as dropout, but

input space perturbations like translations (which have been found to be far more important

to the overall performance of the method [13]), we can show that consistency regularization

coincides with minimizing the expected Lie derivative norm. In this sense, consistency regu-

larization can be viewed as an intervention for reducing the equivariance error on unlabeled

data.

120

A.7.2 Translation LEE and aliasing

Below we show that spatial aliasing directly introduces translation equivariance error as

measured by the Lie derivative, where the aliasing operation A[·] is given by Equation 3.2.

The Fourier series representation of an image h(x, y) with pixel locations (x, y) is Hnm with

spatial frequencies (n, m), where the band limited reconstruction

h(x, y) = 1
2π

∑
nm

Hnme2πi(xn+ym) = F −1[H]

and F −1 is the inverse Fourier transform, and the sums range over frequencies of −M/2 to

+M/2 for both n and m where M is the image height and width (assumed to be square for

convenience).

Applying a continuous translation by tv along vector v = (vx, vy) to the input means

resampling the translated band limited continuous reconstruction h(x, y) at the grid points.

Ttv[h](x, y) = h(x − tvx, y − tvy) = 1
2π

M/2∑
n,m=−M/2

Hnme2πi[(x−tvx)n+(y−tvy)m]

To simplify the notation, we will consider translations along only x and suppress the m index

of Hnm, effectively deriving the result for the translations of a 1d sequence, but that extends

straightforwardly to the 2 dimensional case.

Ttv[h](x) = h(x − tvx) = 1
2π

M/2∑
n=−M/2

[Hne−2πitvxn]e2πixn

Applying the aliasing operation, sampling the image to a new size M ′ (with Nyquist

121

frequency M ′/2), we have

A[Ttv[h]](x) = 1
2π

M/2∑
n=−M/2

[Hne−2πitvxn]e2πixAlias(n)

= 1
2π

M ′/2∑
n′=−M ′/2

[∑
n=Alias−1(n′)

Hne−2πitvxn

]
e2πixn′

where the last line follows from applying a change of variables n′ = Alias(n).

Applying the final inverse translation (which acts on the M ′ sampling rate band limited

continuous reconstruction), we have

T−tv[A[Ttv[h]]](x) = 1
2π

M ′/2∑
n′=−M ′/2

[∑
n=Alias−1(n′)

Hne−2πitvx(n−n′)
]
e2πixn′

.

Taking the derivative with respect to t, we have

Lv(A)(h) = d
dt

∣∣∣
0
T−tv[A[Ttv[h]]]

= 1
2π

M ′/2∑
n′=−M ′/2

[∑
n=Alias−1(n′)

2πivx(n′ − n)Hn

]
e2πixn′

.

Notably, for aliasing when the frequency is reduced by a factor of 2 from downsampling,

there are only two values of n that satisfy Alias(n) = n′: the value n = n′ and the one that

gets aliased down, therefore when multiplied by n − n′ the sum

[∑
n=Alias−1(n′)

2πivx(n′ − n)Hn

]

consists only of a single term.

According to Parseval’s theorem, the Fourier transform F is unitary, and therefore the

norm of the function as a vector evaluated at the discrete sampling points x = 1/M ′, 2/M ′, ...

122

is the same as as the norm of the Fourier transform:

∥Lv(A)(h)∥2 = ∥F [Lv(A)(h)]∥2

∥Lv(A)(h)∥2 =
M ′/2∑

n′=−M ′/2

∣∣∣∣∣ ∑
n=Alias−1(n′)

2πivx(n′ − n)Hn

∣∣∣∣∣
2

∥Lv(A)(h)∥2 =
M/2∑

n=−M/2
(2π)2v2

x(Alias(n) − n)2H2
n,

using the fact that only one element is nonzero in the sum. Finally, generalizing to the 2d

case, we have

∥Lv(A)(h)∥2 = (2π)2∑
nm

H2
nm

(
v2

x(Alias(n) − n)2 + v2
y(Alias(m) − m)2

)
, (A.4)

showing how the translation Lie derivative norm is determined by the higher frequency

components which are aliased down.

A.8 Learned Equivariance Experiments

A.8.1 Layer-wise Equivariance Baselines

We use EQ-T and EQ-Tfrac [126] to calculate layer-wise equivariance by caching inter-

mediate representations from the forward pass of the model. For image-shaped intermediate

representations, EQ-T samples integer translations in pixels between -12.5% and 12.5% of

the image dimensions in pixels. EQ-Tfrac is identical but with continuous translation vectors.

The individual layer is applied to the transformed input and then the inverse group action

is applied to the output, which is compared with the original cached output. Many differ-

ent normalization could be chosen to compare equivariance errors across layers. The most

obvious are 1
N
, 1√

N
, and 1

1 (no normalization), where N = C × H × W . The normalization

123

method can have a large effect of the relative contribution of a layer, despite the decision

being relatively arbitrary (in contrast to LEE, which removes the need for doing so as the

scale is automatically measured relative to the contribution to the output).

A.8.2 Subnetwork Equivariance Analysis

Another way one might use LEE to study the effects of different layers that make up a

network is to break the network in question down into its constituent subnetworks (networks

starting at the input and ending at every intermediate representation in the network) and

calculate the LEE of the corresponding function. We show the result of this calculation on

a ResNet50 in Figure A.3.

As an alternative to our layerwise analysis, this method has a significant drawback that

makes analysis challenging: the functions under consideration have different outputs. In our

calculation, we applied batch normalization over the outputs in order to make their scales

comparable. Despite this rescaling, comparing activations and preactivations, for example,

remains challenging. By contrast, our layerwise breakdown specifically targets a layer’s

contribution to a shared output.

A.8.3 Model List

The models included in Figure 1 are

• Early CNNs: ResNets [101], ResNeXts [231], VGG [192], Inception [197], Xception [45],

DenseNet [114], MobileNet [186], Blur-Pool Resnets and Densenets [245], ResNeXt-IG

[152], SeResNe*ts [113], ResNet-D [103], Gluon ResNets [91, 243, 247], SKResNets

[142], DPNs [43]

• Modern CNNs: EfficientNet [198, 199], ConvMixer [212], RegNets [177], ResNet-RS,

[19], ResNets with new training recipes [225], ResNeSts [243], RexNet [97], Res2Net

124

0 50 100 150 200
Subnetwork Index

50

100

150

200

LE
E

of
 B

at
ch

 N
or

m
al

ize
d

Ou
tp

ut

Conv
Pool
Downsample
Flatten
FC

0 50 100 150 200
Subnetwork Index

Act
Norm
Add

Figure A.3: LEE calculated over the subnetworks of a ResNet50. Specifically a subnetwork is con-
structed between the input and every intermediate representation in the network’s computation graph.
We use batch normalization of the outputs to make the output scale of different subnetwork compa-
rable. For visual clarity, layer types are broken across the left and right plots, which share the same
axes. Similar to the pattern observed in Figure 3.4, we see a rapid increase in equivariance error in
the early layers of the network, followed by many smaller increases later in the network. Unlike in our
layerwise decomposition, comparison across layer types is challenging in this setting because layers have
significantly different outputs. For example, comparing activations with preactivations is complicated
by the ReLUs acting as contractions of the input and having potentially many zeroed values.

[77], RepVGG [62], NFNets [27], XNect [156], MixNets [200], ResNeXts with SSL

pretraining [235], DLA [237], CSPNets [216], ECA NFNets and ResNets [27], HRNet

[194], MnasNet [201]

• Vision transformers: ViT [63], CoaT [56], SwinViT [148], [17], CaiT [205], ConViT [54],

CrossViT [38], TwinsViT [47], TnT [98], XCiT [163], PiT [106], Nested Transformers

[248]

• MLP-based architectures: MLPMixer [210], ResMLP [209], gMLP [145], MLP-Mixers

with (Si)GLU [224]

A.8.4 Alternative End-to-End Equivariance Metrics

Discrete Consistency We adopt the consistency metric from Zhang [245], which simply

measures the fraction of top-1 predictions that match after applying an integer translation

125

to the input (in our case by 10 pixels). Instead of reporting consistency numbers, we report

(1 −% matching), so that consistency because a measure of equivariance error. Equivariant

models should exhibit end-to-end invariance, high consistency, and low equivariance error.

Expected Group Sample Equivariance Inspired by work in equivariant architecture

design [71, 116], we provide an additional equivariance metric for comparison against the Lie

derivative. Following [116], we sample k group elements in the neighborhood of the identity

group element, with sampling distribution D(G), and calculate the sample equivariance

error for model f as 1
k
||ρ−1

2 (g)f(ρ1(g)x) − f(x)||. For translations we take D(G) to be

Uniform(−5, 5) in pixels.

Versus LEE There are several reasons why the continuous lie derivative metric is prefer-

able over discrete and group sample metrics. Firstly, it allows us to break down the equiv-

ariance error layerwise enabling more fine grained analysis in a way not possible with the

discrete analog. Secondly, the metric is less dependent on architectural details like the input

resolution of the network. For example, for discrete translations by 1 pixel, these trans-

lations have a different meaning depending on the resolution of the input, whereas our lie

derivatives are defined as the derivative of translations as a fraction of the input size, which

is consistently defined regardless of the resolution. Working with the vector space forming

the Lie algebra rather than the group also removes some unnecessary freedom in how one

constructs the metric. Rather than having to choose an arbitrary distribution over group el-

ements, if we compute the Lie derivatives for a set of basis vectors of the lie algebra, we have

completely characterized the space, and all lie derivatives are simply linear combinations of

the computed values. Finally, paying attention to continuous transformations reveals the

problems caused by aliasing which are far less apparent when considering discrete transfor-

mations, and ultimately the relevant transformations are continuous and we should study

them directly.

126

A.8.5 LEE for Additional Transformations

Beyond the 3 continuous transformations that we study with Lie derivatives above, there

are many more that might reveal important properties of the network. Here we include an

three additional transformations–hyperbolic rotation, brightening, and stretch.

Figure A.4 (left) shows that, perhaps surprisingly, models with high accuracy become

more equivariant to hyperbolic rotations. We suspect this surprisingly general equivariance

to diverse set of continuous transformations is probably the result of improved anti-aliasing

learned implicitly by more accurate models. LEE does not identify any significant correlation

between brightening or stretch transformations and generalization ability.

Hyperbolic Rot. Brighten Stretch Trace Estimator

0.70 0.75 0.80 0.85 0.90
Imagenet Test Accuracy

0.02

0.04

0.06

Eq
ui

va
ria

nc
e

Er
ro

r

R2 = 0.360

CNN ViT MixerCNN ViT Mixer

0.70 0.75 0.80 0.85 0.90
Imagenet Test Accuracy

0.0000

0.0005

0.0010

Eq
ui

va
ria

nc
e

Er
ro

r

R2 = 0.121

CNN ViT MixerCNN ViT Mixer

0.70 0.75 0.80 0.85 0.90
Imagenet Test Accuracy

0.0

0.1

0.2

0.3

Eq
ui

va
ria

nc
e

Er
ro

r

R2 = 0.014

CNN ViT MixerCNN ViT Mixer
0 20 40 60 80 100

Number of Probes

10 1

100

101

102

|L
f i|

2 E
st

im
at

e
Layer type

Activation
Conv2d
Pool

Figure A.4: (Left): Extending Figure 3.5 we show the Lie derivate norm for hyperbolic rotation, bright-
ening, and stretch transformations. We observe that more accurate models are also more equivariant to
hyperbolic rotations and to brighten transformation, to a more limited extent. In the case of hyperbolic
rotations, this result is surprising, as nothing has directly encouraged this equivariance. One possible
explanation is decreased aliasing in models with higher accuracy. Marker size indicates model size. Error
bars show one standard error over the images use to evaluate the Lie derivative. (Right): Cumulative
mean and standard error of the estimator (computed for translations on a ResNet-50).

A.8.6 Rotated MNIST Finetuning

In order to test the ability of SOTA imagenet pre-trained models to learn equivariance

competitive with specialized architectures, we adapted the example rotated MNIST notebook

available in E2CNN repository [222]. We use the base model and default finetuning procedure

from [102], finetuning for 100 epochs, halving the learning rate on loss plateaus.

127

https://github.com/QUVA-Lab/e2cnn/blob/master/examples/model.ipynb
https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_base.pth
https://github.com/facebookresearch/mae/blob/main/FINETUNE.md

B | Appendix: Transfer from Text

to Numerical Data

B.1 Detailed method and hyperparameters

B.1.1 Input scaling

For all baseline methods, we use the MinMaxScaler from sklearn. For GPT-3, since

it can handle inputs spanning multiple orders of magnitudes by using varying number of

digits, we apply an affine transformation to each element xt of a time series (x1, ..., xT):

xt 7→ (xt − b)/a, where b = mint xt − β(maxt xt − mint xt), and a is the α-percentile of the

shifted series (x1 − b, ..., xT − b). We also consider a basic scaler that only applies scaling

and not shifting, with a clipped to a maximum of 0.01 when the series only has tiny values.

Here α and β are hyperparameters controlling the thresholds at which the number of digits

used by the language model changes.

B.1.2 Validation tuning

We construct a validation time series from the last T observations in the training series,

where T is the length of the test series. When the training series is shorter than 2T, we take

the last half of the training series as the validation series. The likelihood of generating the

128

validation conditioned on the remaining training series is used to select the hyperparameters.

Since LLMTime is zero-shot, the likelihood is computed without training. For other methods

such as ARIMA, the likelihood is computed after training on the remaining training series.

B.1.3 Likelihood adjustment for GPT Models

In order to convert token probabilities assigned by language models into continuous den-

sities, we must convert the distribution over all possible tokens into the distribution over

only tokens used in the numerical encoding scheme. When we have access to the language

model’s logits, performing this adjustment is easy. We can simply set the probability of

any non-essential tokens to zero and renormalize the distribution. When using black-box

APIs (e.g. the OpenAI API), however, we need to approximate this procedure, becauase it

frequently impossible to obtain the full discrete distribution over tokens. For example, in the

OpenAI API, only the top 5 log probabilities are returned for every step in the generation

process. As we cannot properly renormalize the distribution, we have to make adjustments

that get us as close as possible to the true renormalized distribution, as we show in the

following calculations. We take p to be the raw probabilities assigned by a language model

and p̃ to be the adjusted probabilities, with

pk = elog pk∑
i elog pi

, p̃k = elog pk

(∑i elog pi) − el0

where l0 is the probability that mass assigned to tokens that are not part of the numerical

encoding scheme. When access to log probabilities is limited, l0 can be approximated as the

sum of the log probabilities for non-numerical tokens in the top k. From the definition of p̃

129

we can derive

1
p̃

= el0 + 1
p

=⇒

p̃ =
(

1
p

− el0

)−1

=⇒

log p̃ = log p − log(1 − el0)

B.2 Benchmarking details and extended results

B.2.1 Darts datasets

For the Darts datasets, we use the GPyTorch library [78] for Gaussian Process imple-

mentation and the Darts libary [107] for ARIMA, TCN, N-BEATS, N-HiTS. We use default

values for hyperparameters not described below. The test set is the last 20% of each series.

We use several baseline methods implemented directly in Darts [107]:

• ARIMA: ARIMA [24], short for AutoRegressive Integrated Moving Average, has been

a popular choice for time series forecasting for many decades. ARIMA in Darts wraps

code from [79].

• TCN: Temporal Convolutional Network (TCN) [134] is residual network with dilated

1D convolutions.

• N-BEATS: N-BEATS [170] is a deep learning model tailored for time series forecasting.

It employs a deep architecture with backward and forward residual links and stacked

fully-connected layers.

• N-HiTS: N-HiTS [33] is a deep learning model that incorporates hierarchical interpola-

tion and multi-rate data sampling techniques in order to create forecasts that emphasize

different frequencies and scales of the input signal.

130

We also include Spectral Mixture Gaussian Process (SM-GP) [226] as a Bayesian nonpara-

metric approach to time series modeling.

We include the exact hyperparameters for each method below:

GPT-3 We perform a grid search over α ∈ [0.5, .7, 0.9, 0.99], β ∈ [0, .15, 0.3, .5], precision

(number of decimals) ∈ [2, 3], and temperature = 0.7.

GPT-4 Since likelihood evaluation is not available for GPT-4, we fix its hyperparameters

for all datasets as follows: we use the basic scaler with α = 0.3 and temperature = 1.0

with top p = 0.8. We do not insert spaces between digits for GPT-4 since it uses a different

tokenizer than GPT-3 for which this strategy is not effective.

LLaMA For models LLaMA-1 (7B/13B/30B/70B) and LLaMA-2 (7B/7B-chat/13B/13B-

chat), we perform a grid search over temperature ∈ [0.2, 0.4, 0.6, 0.8] and use α = 0.99, β =

0.3, precision = 3, nucleus = 0.9. For LLaMA-2 70B and LLaMA-2 70B-chat we use

temperature = 1.0, α = 0.99, β = 0.3, precision = 3, nucleus = 0.9.

Spectral Mixture Gaussian Process (SM-GP) We use a GP with a kernel formed

by the sum of a spectral mixture kernel with 12 mixture components and a RBF kernel. We

tune the learning rate from [5e-3, 1e-2, 5e-2, 1e-1].

ARIMA We perform a grid search over p ∈ [12, 20, 30], d ∈ [1, 2], and q ∈ [0, 1, 2].

TCN We perform a grid search over

• input_chunk_length ∈ [10, 100, 400]

• output_chunk_length ∈ [1, 10]

• kernel_size ∈ [3, 5]

131

• num_filters ∈ [1, 3]

• likelihood ∈ [Laplace, Gaussian]

N-BEATS We perform a grid search over

• input_chunk_length ∈ [10, 100, 400]

• output_chunk_length∈ [1, 10]

• layer_widths ∈ [64, 16]

• num_layers ∈ [1, 2]

• likelihood ∈ [Laplace, Gaussian]

N-HiTS We perform a grid search over

• input_chunk_length ∈ [10, 100, 400]

• output_chunck_length ∈ [1, 10]

• layer_widths ∈ [64, 16]

• num_layers ∈ [1, 2]

• likelihood ∈ [Laplace, Gaussian]

B.2.2 Monash datasets

We evaluate on 19 datasets in Monash that satisfy two criteria:

1. The total number of individual series cannot be prohibitively large, so that the ex-

periments can be run in time without access to an enormous cluster and without a

gratuitous API expenses.

132

2. The length of the forecasting horizon cannot extend to a length that makes it impossible

to fit both the forecast and the history into the context window of the language model.

When we applied these criteria, we obtained the following 19 datasets were selected: covid

deaths, solar weekly, tourism monthly, australian electricity demand, pedestrian counts,

traffic hourly, hospital, fred md, tourism yearly, tourism quarterly, us births, nn5 weekly,

nn5 daily, traffic weekly, saugeenday, cif 2016, bitcoin, sunspot.

To aggregate across datasets, we normalized the mean absolute error by the MAE

achieved by simply predicting the last observed value before the test series (a naive baseline).

This normalization places high weight on datasets for which methods perform significantly

better or worse than the naive predictor.

Several of the baseline methods in the archive are shared with Darts, and all descriptions

and code can be found in [81]. A few notable addition include

• CatBoost: CatBoost [175] is gradient-boosting framework for continuous or categorical

data.

• FFNN: A feed-forward neural network with a fixed window of input and output, inspired

by Goodfellow, Bengio, and Courville [84].

• PR: A linear pooled regression (PR) model proposed by Trapero, Kourentzes, and Fildes

[211].

We include visualizations of GPT-3’s prediction on these datasets in Appendix B.2.7.

GPT-3 hyperparameters We use the following hyperparameters for GPT-3: α =

0.9, β = 0, temperature = 0.7. To avoid exceeding the context window, we truncate the

history to at most 500 most recent observations. For the baselines, we report their perfor-

mance as presented in [81]. The normalized MAE values shown in Figure 4.5 (center) are

obtained by normalizing by the lowest baseline MAE on each dataset before aggregating.

133

LLaMA-2 70B hyperparameters We use the following hyperparameters for LLaMA-2

70B: α = 0.99, β = 0.3, temperature = 1.0, nucleus = 0.9. To avoid exceeding the context

window, we truncate the history to fit in the LLaMA-2 context window (4096 tokens).

B.2.3 Informer datasets

There are 6 datasets used by Zhou et al. [254] that have become standard benchmarks for

evaluating efficient transformers. We evaluate on the 5 datasets that are typically used with

a prediction horizon of 96 or 192: “ETTm2”, “exchange_rate”, “electricity”, “traffic”, and

“weather”. The results provided in the main text are for a prediction horizon of 96, and we

include results for prediction horizon 192 in Appendix B.2.6. To make evaluation tractable

with LLMTime, we use a smaller evaluation set for each dataset, taking the last 96 or 192

timesteps of each series within each dataset as the test set. As there are many individual

series in each multivariate dataset, the number of individual timesteps in the test sets is still

substantial. To forecast multivariate series with LLMTime we simply forecast over each series

independently, combine the results, and evaluate as in prior work. Our efficient transformer

baselines include

• Informer: Informer [254] is an efficient transformer model with sparse attention designed

for long sequences.

• Reformer: Reformer [254] uses a locality-sensitive hashing mechanism to improve the

memory use of attention.

• Autoformer: Autoformer [230] is a model design for long time series that replaces stan-

dard attention with a mechanism in Fourier space.

• FEDformer: Like Autoformer, FEDformer [256] uses frequency-based decompositions

to construct an efficient alternative to attention.

134

LLaMA-2 70B hyperparameters We use LLaMA-2 70B with α = 0.99, β = 0.3,

temperature = 1.0, nucleus = 0.9, precision = 3. The series in the Informer datasets are very

long and we put as much as possible in the LLaMA-2 context window (4096).

B.2.4 Synthetic datasets

For the baselines, we use the same hyperparameter grid in Section B.2.1. For GPT-3, we

didn’t find it useful to perform validation tuning. We use the basic scaler with α = 0.1 and

temperature = 0.7.

B.2.5 Darts full probabilistic results

In Figure B.1 we show the predicted NLLs and forecasts from LLMTime using GPT-3

and LLaMA-2 70B as base models. LLMTime typically obtains much better likelihoods than

baselines and successfully identifies trend and seasonal components in the time series. We

attribute this strong performance in part to the fact that the time series are relatively short.

With the tokenization of the input, only about 300 of the observations can fit into the context

window, and among the datasets only Sunspots and HeartRate exceed this amount (with

705 and 900 observations respectively).

B.2.6 Informer datasets with extended horizon

Figure B.2 shows MAE results per dataset and in aggregate for the Informer datasets we

used in the paper. Extending the results in the main text, we also include MAE numbers

for a prediction horizon of 192. We observed a similar trend overall, though the relative

performance of LLMTime is slightly diminished, largely due to the “electricity” and “traffic”

datasets.

135

AirPassengers

0.0

2.5

5.0

AusBeer

0

2

4

GasRateCO2

1

0

1
MonthlyMilk

0

2

4

N
LL

Sunspots

0.0

2.5

5.0

Wine

0

5

10
Wooly

0

5

HeartRate

0

2 N
LL

Ground Truth GPT3 Median SM-GP N-BEATS TCN N-HiTS ARIMA LLaMA-2 70B GPT-3

Figure B.1: Median predictions of LLMTime (GPT-3) and NLLs from LLMTime (GPT-3 and LLaMA-2
70B) for every dataset within Darts [107]. The shaded area shows the 10th to 90th quantiles of the
distribution over samples. LLMTime consistently obtains better likelihood values than the baselines and
often makes surprisingly accurate forecasts by effectively extrapolating trend and periodic components.

B.2.7 Monash dataset visualizations

Figure B.3 shows visualizations of the LLMTime’s median predictions (GPT-3 base model)

on a subset of the Monash datasets.

B.2.8 Informer dataset visualizations

Figure B.4 shows visualizations of the LLMTime’s median predictions (LLaMA-2 70B base

model) on the Informer datasets, for a subset of the each set of multivariate series.

B.3 Simplicity bias experiments

We generate data from the function f(x) = cos(x) + x and add Gaussian noise with zero

mean and variance 0.05. We fit symbolic expressions to the first 140 timesteps using PySR

[50] with symbols ["+", "·", "-", "/", "sin", "cos", "exp","square"] and maxsize = 70, maxdepth =

10, population_size = 50, loss = abs(prediction − target), model_selection = accuracy and

niterations = 100. The solutions are saved and ranked by complexity, which is simply the

number of terms in the symbolic regression function. The five solutions shown in Figure 4.8

136

ETTm2

exchange_rate

electric
ity traffic

weather

Dataset

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
M

AE
By Dataset (horizon = 96)

FEDformer
Autoformer
Informer

Reformer
Transformer
LLaMA-2 70B

FEDformer

Autoformer
Informer

Reformer

Transformer

LLaMA-2 70B

Method

0.0

0.1

0.2

0.3

0.4

0.5

M
AE

Aggregated (horizon = 96)

ETTm2

exchange_rate

electric
ity traffic

weather

Dataset

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
AE

By Dataset (horizon = 192)

FEDformer
Autoformer
Informer

Reformer
Transformer
LLaMA-2 70B

FEDformer

Autoformer
Informer

Reformer

Transformer

LLaMA-2 70B

Method

0.0

0.1

0.2

0.3

0.4

0.5

M
AE

Aggregated (horizon = 192)

Figure B.2: Aggregated and non-aggregated MAE numbers for LLMTime (LLaMA-2 70B base model)
and baselines on the Informer datasets. Overall LLMTime performs well in aggregate for a zero-shot
method, but its performance is highly variable, being the best method on some datasets and the worst
on others. The relative performance of LLMTime is slightly diminished for a longer prediction horizon,
but LLMTime is still very competitive with the best methods in aggregate. Error bars show two standard
deviations in the error over datasets.

are

1. (x0 + 0.3652524)

2. cos(cos(x0/ − 0.031412385) ∗ (−1.5252972 + x0))

3. (sin(cos(cos(x0/0.031470172) ∗ −1.4668792)) + (cos(0.81965065) ∗ x0))

4. (sin(cos(cos((x0/ sin(−0.03127001)) + 0.07646165) ∗ −1.4539052)) + (sin(sin(cos(cos(

exp(cos(−0.03127001) + x0))))) ∗ x0))

5. (cos((cos((x0/−0.03127001)+0.07646165)/−0.957405)/ sin(sin(cos(x0−x0))∗exp(cos(

sin(x0/−0.983214)))))/(cos(sin(sin(sin(sin(x0))− (x0 ∗ (−0.47036648− (x0/0.5857117)

))))) − −0.10476875))

To obtain likelihoods we run GPT-3 (‘text-davinci-003’) with alpha = 0.99, beta =

0.3, basic = True, precision = 1, signed = True.

137

 Covid Deaths

 Pedestrian Counts

 Australian Electricity Demand

 Tourism Monthly

 Solar Weekly

 Traffic Hourly

 US Births

 Tourism Quarterly

 Tourism Yearly

 Fred Md

Ground Truth GPT-3 Median

Figure B.3: LLMTime (GPT-3 base model) median predictions on at most 4 randomly chosen series
per Monash dataset.

138

 Traffic

 Electricity

 Ettm2

 Weather

 Exchange Rate

Ground Truth GPT-3 Median

Figure B.4: LLMTime (LLaMA-2 70B base model) median predictions on 4 randomly chosen series per
Informer dataset.

B.3.1 Full synthetic predictions

Figure B.5 shows likelihoods and forecasts from LLMTime with GPT-3 on the full set of

synthetic datasets. We see that some compositional tasks like Linear + Cosine are chal-

lenging, while others (Linear * Sine or X * Sine) are well within the abilities of the model.

As shown above, GPT-3 demonstrates good understanding of Linear + Cosine through its

likelihoods, but has more trouble in sampling. This discrepancy could be the result of good

solutions being high likelihood while not being typical.

139

0

10
Linear

0

10
Exponential

0

10
Sigmoid

0

10

Lo
g

Li
ke

lih
oo

d Sine

0

10
Beat Interference

0

10
Linear * Sine

0

10
Linear + Cosine

0

10
Quadratic

0

10
X * Sine

Ground Truth GPT-3 Median TCN ARIMA GPT-3

Figure B.5: LLMTime median predictions on all synthetic datasets using GPT-3 as a base model. The
hyperparameters used are described in Appendix B.2.4.

B.4 GPT-4

We investigated using GPT-4 for time series prediction. Due to the limitations of the to-

kenizer, we used the naive tokenization strategy of feeding in the numbers without additional

spaces. In addition, due to the enforced separation between system and user in the interface

(through additional tokens we cannot modify), inputting the time series input alone leads

GPT-4 to talk about the time series or provide analysis, rather than simply continuing the

stream of numbers. In order to coax GPT-4 to produce numerical predictions which can

be decoded, we added the additional commands System: "You are a helpful assistant that

performs time series predictions. The user will provide a sequence and you will predict the

remaining sequence. The sequence is represented by decimal strings separated by commas."

User: "Please continue the following sequence without producing any additional text. Do

not say anything like ’the next terms in the sequence are’, just return the numbers. Se-

quence:". We found that doing so was sufficient to be able to consistently decode the output

numerically for GPT-4, but not for GPT-3.5-turbo.

140

Linear Exponential Sigmoid Quadratic Sine

Beat Interference Linear + Cosine Linear * Sine Sinc x*sin(x)

Figure B.6: GPT-4 extrapolations on synthetic data (10-90th percentiles shaded). GPT-4 is able to
identify and extrapolate the pattern for each of the deterministic time series, but sometimes behaves
erratically.

We show predictions on the synthetic benchmarks (from Figure 4.8) in Figure B.6. As

one can observe, GPT-4 is considerably better performing on these synthetic benchmarks,

although numerical decoding of the model sometimes fails before the full output. With non-

deterministic time series problems such as with the DARTS datasets, the predictions are

slightly worse than GPT-3, but the uncertainties are much less well calibrated as shown in

Figure B.7.

B.5 Multimodal Text Understanding of Time

Series

We evaluate the ability of the language model to reason about the input time series

through text in a zero-shot fashion. To test this, we devise a simple experiment where we

generate a synthetic time series from one of several candidate functions. We provide the

generation code and the numerical values to GPT-4 (Listing 1), but because of the random-

ness, GPT-4 must infer which of the functions generated the values. We note that as this

code could easily be found within a Jupyter notebook on the internet without intentionally

141

AirPassengers AusBeer GasRateCO2 MonthlyMilk

Sunspots Wine Wooly HeartRate

Figure B.7: GPT-4 extrapolations on real (DARTS) time series (10-90th percentiles shaded). The
extrapolations are plausible but worse than GPT-3, and the uncertainties tend to be more poorly cali-
brated making for a high CRPS.

being designed as an experiment for LLMs, we should expect that this textual time series

identification task will fall within the data distribution, and in principle should be solved

given sufficient capabilities of the language model.

To make the problem slightly easier, we add an additional guiding prompt before and

after the text in Listing 1. We prepend

“The following is code that was run to generate a synthetic time series. From

the input and output you will be asked to identify which of the time series was

picked to generate the data.”

to the code, and after the time series we append either

“Which name gave rise to this series? Put your answer in the form ‘Answer:

gaussian_wave’ ”

or

“Carefully analyze the time series. Think step by step, make observations about

the time series that you see and then use your observations to identify which of

142

the functions is most likely to have generated it. Reason your way to a solution

and at the end give give a name as your answer such as ‘Answer: gaussian_wave’.”

for chain-of-thought prompting.

The prediction accuracies computed over 20 trials are shown in Figure 4.10, with

x_times_sine, beat, and sinc not shown in the table because GPT-4 predicted these

incorrectly 100% of the time. With the CoT prompting, this prediction task elicits some in-

teresting textual analysis of the time series. Several (non cherry-picked) examples are shown

below. Notably, this task elicits the model to analyze the time series in text, reasoning about

the trend and periodicity. However, the model sometimes makes incorrect deductions about

the behavior of the data it has seen, or the expected behavior of the candidate functions.

Listing B.1: Self-contained code presented to the model for the multimodal time series identification
task. When the code is run one of the listed functions is randomly chosen to generate the time series.
In order to simply predict the next token after observing this text (which could be found in the cells of
a Jupyter notebook) the model must infer which of the functions produced the series.

import numpy as np

mapping = {

' gaussian_wave ' : lambda t : np . exp(−5∗(t − .6) ∗∗2) ∗np . s i n (20∗ (t−6)) ,

' exp ' : lambda t : np . exp (2∗ t) ,

' l i n ea r_cos ' : lambda t : 0.3+ 0 .5∗ t +.2∗np . cos (25∗ t+3) ,

' l i n e a r ' : lambda t : 0.3+ 0 .5∗ t ,

' s i n e ' : lambda t : np . s i n (40∗ t+3) ,

' s i n c ' : lambda t : np . s i n (10∗ t) / t /10 ,

' beat ' : lambda t : np . s i n (3∗ t) ∗np . s i n (25∗ t) ,

' s igmoid ' : lambda t : 1/(1+np . exp(−4∗ t)) ,

' l og ' : lambda t : np . l og (1+t) ,

' x_times_sine ' : lambda t : 4∗(t+1)∗np . s i n (10∗ (t+1)+4) ,

' square ' : lambda t : 3∗(t − .6) ∗∗2 ,

143

}

name = np . random . cho i c e (l i s t (mapping . keys ()))

t = np . l i n s p a c e (−1 ,1 ,200)+.1∗np . random . randn (1)

x = mapping [name] (t)

np . s e t_pr in top t i on s (

fo rmatte r={ ' f l o a t ' : lambda x : " { 0 : 0 . 3 f } " . format (x) }

)

pr int (" S e r i e s : ␣ " , x)

pr int (" ␣ " ,name)

S e r i e s :

[−0.000 −0.033 −0.070 −0.111 −0.153 −0.197 −0.240 −0.281

−0.320 −0.355 −0.385 −0.408 −0.425 −0.433 −0.432 −0.422

−0.402 −0.371 −0.330 −0.279 −0.217 −0.145 −0.064 0 .026

0 .124 0 .229 0 .339 0 .453 0 .570 0 .688 0 .806 0 .922 1 .033

1 .140 1 .238 1 .328 1 .407 1 .474 1 .527 1 .564 1 .586 1 .590

1 .576 1 .543 1 .491 1 .420 1 .329 1 .219 1 .091 0 .945 0 .782

0 .604 0 .413 0 .209 −0.005 −0.227 −0.455 −0.686 −0.917

−1.147 −1.373 −1.591 −1.799 −1.995 −2.175 −2.338 −2.481

−2.602 −2.698 −2.769 −2.812 −2.826 −2.811 −2.766 −2.689

−2.583 −2.446 −2.279 −2.084 −1.863 −1.615 −1.345 −1.053

−0.743 −0.418 −0.081 0 .265 0 .617 0 .970 1 .322 1 .667 2 .003

2 .325 2 .630 2 .915 3 .175 3 .407 3 .609 3 .778 3 .910 4 .005

4 .060 4 .074 4 .046 3 .975 3 .862 3 .706 3 .509 3 .272 2 .997

2 .686 2 .341 1 .965 1 .563 1 .137 0 .692 0 .232 −0.239 −0.715

−1.192 −1.665 −2.128 −2.577 −3.008 −3.414 −3.791 −4.136

144

−4.443 −4.710 −4.932 −5.108 −5.233 −5.306 −5.326 −5.291

−5.202 −5.058 −4.859 −4.608 −4.306 −3.955 −3.558 −3.120

−2.643 −2.132 −1.592 −1.029 −0.447 0 .148 0 .749 1 .350

1 .946 2 .530 3 .095 3 .637 4 .148 4 .623 5 .057 5 .445 5 .782

6 .064 6 .288 6 .450 6 .548 6 .580 6 .546 6 .444 6 .275 6 .039

5 .740 5 .378 4 .956 4 .479 3 .951 3 .376 2 .760 2 .109 1 .429

0 .726 0 .009 −0.717 −1.444 −2.164 −2.870 −3.555 −4.210

−4.830 −5.408 −5.936 −6.409 −6.822 −7.170 −7.448 −7.653

−7.783 −7.834 −7.806 −7.698 −7.511 −7.245]

145

Listing B.2: Sample output for Linear time series (correctly classified)

Fir s t , l e t ' s ana lyze the time s e r i e s and make some obs e rva t i on s :

1 . The time s e r i e s s t a r t s at a negat ive value , i n c r e a s e s

↪→ l i n e a r l y , and ends at a p o s i t i v e va lue .

2 . There i s no apparent p e r i o d i c i t y or o s c i l l a t i o n in the time

↪→ s e r i e s .

3 . There are no sudden jumps or changes in the time s e r i e s ,

↪→ i n d i c a t i n g a smooth func t i on .

Now, l e t ' s go through the func t i on s in the mapping and see which

↪→ one matches our ob s e rva t i on s :

− ' gaussian_wave ' : This func t i on has a p e r i o d i c o s c i l l a t i o n ,

↪→ which doesn ' t match our obs e rva t i on s .

− ' exp ' : This func t i on i n c r e a s e s exponent i a l l y , which doesn ' t

↪→ match the l i n e a r i n c r e a s e in our ob s e rva t i on s .

− ' l inear_cos ' : This func t i on has a p e r i o d i c o s c i l l a t i o n , which

↪→ doesn ' t match our obs e rva t i on s .

− ' l i n e a r ' : This func t i on i n c r e a s e s l i n e a r l y , which matches our

↪→ obse rva t i on s .

− ' s ine ' : This func t i on has a p e r i o d i c o s c i l l a t i o n , which doesn ' t

↪→ match our obs e rva t i on s .

− ' s inc ' : This func t i on has a p e r i o d i c o s c i l l a t i o n , which doesn ' t

↪→ match our obs e rva t i on s .

− ' beat ' : This func t i on has a p e r i o d i c o s c i l l a t i o n , which doesn ' t

146

↪→ match our obs e rva t i on s .

− ' sigmoid ' : This func t i on has a s igmoid shape , which doesn ' t

↪→ match our obs e rva t i on s .

− ' log ' : This func t i on i n c r e a s e s l o g a r i t hm i c a l l y , which doesn ' t

↪→ match the l i n e a r i n c r e a s e in our ob s e rva t i on s .

− ' x_times_sine ' : This func t i on has a p e r i o d i c o s c i l l a t i o n , which

↪→ doesn ' t match our obs e rva t i on s .

− ' square ' : This func t i on has a pa rabo l i c shape , which doesn ' t

↪→ match our obs e rva t i on s .

Based on our obs e rva t i on s and ana ly s i s , the func t i on that most

↪→ l i k e l y generated the time s e r i e s i s ' l i n e a r ' .

Answer : l i n e a r

147

Listing B.3: Sample output for Exp time series (correctly classified)

Fir s t , l e t ' s ana lyze the time s e r i e s .

The time s e r i e s s t a r t s with a value o f 0 .148 and ends with a

↪→ value o f 8 . 0 6 3 . This i n d i c a t e s that the s e r i e s i s

↪→ monotonica l ly i n c r e a s i n g .

Now, l e t ' s look at the d i f f e r e n c e s between cons e cu t i v e va lue s .

↪→ The d i f f e r e n c e s are smal l and seem to be i n c r e a s i n g as the

↪→ s e r i e s p r o g r e s s e s . This sugge s t s that the s e r i e s i s not

↪→ only i n c r e a s i n g but a l s o a c c e l e r a t i n g .

With these observat ions , l e t ' s ana lyze the g iven func t i on s :

1 . gaussian_wave : This func t i on r ep r e s en t s a wave that i s

↪→ l o c a l i z e d around a s p e c i f i c po int . I t does not match the

↪→ c h a r a c t e r i s t i c s o f the time s e r i e s .

2 . exp : This func t i on r ep r e s en t s an exponent i a l growth , which

↪→ matches the i n c r e a s i n g and a c c e l e r a t i n g c h a r a c t e r i s t i c s o f

↪→ the time s e r i e s .

3 . l i n ea r_cos : This func t i on r ep r e s en t s a l i n e a r func t i on with an

↪→ added co s i n e term . I t does not match the a c c e l e r a t i n g

↪→ c h a r a c t e r i s t i c o f the time s e r i e s .

4 . l i n e a r : This func t i on r ep r e s en t s a l i n e a r growth , which does

↪→ not match the a c c e l e r a t i n g c h a r a c t e r i s t i c o f the time

↪→ s e r i e s .

148

5 . s i n e : This func t i on r ep r e s en t s a s i n u s o i d a l wave , which does

↪→ not match the c h a r a c t e r i s t i c s o f the time s e r i e s .

6 . s i n c : This func t i on r ep r e s en t s a s i n c funct ion , which does not

↪→ match the c h a r a c t e r i s t i c s o f the time s e r i e s .

7 . beat : This func t i on r ep r e s en t s a beat pattern , which does not

↪→ match the c h a r a c t e r i s t i c s o f the time s e r i e s .

8 . s igmoid : This func t i on r ep r e s en t s a s igmoid curve , which does

↪→ not match the c h a r a c t e r i s t i c s o f the time s e r i e s .

9 . l og : This func t i on r ep r e s en t s a l oga r i thmi c growth , which does

↪→ not match the a c c e l e r a t i n g c h a r a c t e r i s t i c o f the time

↪→ s e r i e s .

10 . x_times_sine : This func t i on r ep r e s en t s a product o f a l i n e a r

↪→ f unc t i on and a s i n u s o i d a l funct ion , which does not match

↪→ the c h a r a c t e r i s t i c s o f the time s e r i e s .

11 . square : This func t i on r ep r e s en t s a quadrat i c growth , which

↪→ does not match the c h a r a c t e r i s t i c s o f the time s e r i e s .

Based on our ana ly s i s , the exp func t i on i s the most l i k e l y

↪→ candidate to have generated the time s e r i e s .

Answer : exp

149

Listing B.4: Sample output for Square time series (correctly classified)

Observat ions about the time s e r i e s :

1 . The va lue s are p o s i t i v e and cont inuous .

2 . The va lue s s t a r t from a high value and gradua l l y dec r ea se

↪→ un t i l they reach a minimum value near the middle o f the

↪→ s e r i e s .

3 . After the minimum value , the va lue s g radua l l y i n c r e a s e again

↪→ un t i l they reach a high value near the end o f the s e r i e s .

4 . The o v e r a l l trend o f the time s e r i e s seems to be symmetric .

Now, l e t ' s ana lyze the g iven func t i on s and t h e i r c h a r a c t e r i s t i c s :

1 . gaussian_wave : Symmetric , b e l l−shaped curve , va lue s are

↪→ p o s i t i v e and cont inuous .

2 . exp : Exponent ia l growth , not symmetric .

3 . l i n ea r_cos : Linear trend with o s c i l l a t i o n s , not symmetric .

4 . l i n e a r : L inear growth , not symmetric .

5 . s i n e : O s c i l l a t i n g funct ion , not symmetric .

6 . s i n c : Symmetric , s i n c func t i on has a peak at the cen te r and

↪→ o s c i l l a t e s on both s i d e s .

7 . beat : Combination o f two s i n e waves with d i f f e r e n t

↪→ f r e quenc i e s , not symmetric .

8 . s igmoid : S−shaped curve , not symmetric .

9 . l og : Logar ithmic growth , not symmetric .

10 . x_times_sine : Product o f a l i n e a r func t i on and s i n e funct ion ,

↪→ not symmetric .

150

11 . square : Quadratic funct ion , symmetric , pa r abo l i c shape .

Based on our obse rvat ions , the most l i k e l y func t i on to have

↪→ generated t h i s time s e r i e s i s the ' square ' f unc t i on . I t i s

↪→ symmetric , has a pa rabo l i c shape , and the va lue s are

↪→ p o s i t i v e and cont inuous .

Answer : square

151

Listing B.5: Sample output for Gaussian_wave time series (misclassified)

We can s t a r t by ana lyz ing the time s e r i e s and making obs e rva t i on s

↪→ about i t s c h a r a c t e r i s t i c s :

1 . The time s e r i e s s t a r t s and ends at 0 , with va lue s c l o s e to 0

↪→ in the beg inning and end .

2 . The time s e r i e s has a s i n g l e peak and a s i n g l e va l l ey ,

↪→ r each ing a maximum value around 0 .85 and a minimum value

↪→ around −1.

3 . The time s e r i e s i s not pe r i od i c , as i t doesn ' t repeat i t s

↪→ pattern .

Now, l e t ' s go through the func t i on s one by one and see which one

↪→ matches these ob s e rva t i on s :

− ' gaussian_wave ' : This func t i on i s a product o f a Gaussian and a

↪→ s i n u s o i d a l funct ion , which could g ive us a s i n g l e peak and

↪→ va l l e y . However , i t i s p e r i od i c , so i t doesn ' t match

↪→ obse rvat i on 3 .

− ' exp ' : This func t i on i s an exponent i a l funct ion , which doesn ' t

↪→ match the obs e rva t i on s as i t doesn ' t have a peak and va l l e y .

− ' l inear_cos ' : This func t i on i s a l i n e a r func t i on combined with

↪→ a co s i n e funct ion , which could g ive a s i n g l e peak and

↪→ va l l e y . However , i t i s a l s o pe r i od i c , so i t doesn ' t match

↪→ obse rvat i on 3 .

− ' l i n e a r ' : This func t i on i s a l i n e a r funct ion , which doesn ' t

152

↪→ have a peak and va l l ey , so i t doesn ' t match obse rvat i on 2 .

− ' s ine ' : This func t i on i s a s i n u s o i d a l funct ion , which i s

↪→ p e r i o d i c and doesn ' t match obse rvat i on 3 .

− ' s inc ' : This func t i on i s a s i n c funct ion , which has mu l t ip l e

↪→ peaks and va l l e y s , so i t doesn ' t match obse rvat i on 2 .

− ' beat ' : This func t i on i s a product o f two s i n u s o i d a l func t i ons ,

↪→ which could g ive a s i n g l e peak and va l l e y . However , i t i s

↪→ a l s o pe r i od i c , so i t doesn ' t match obse rvat i on 3 .

− ' sigmoid ' : This func t i on i s a s igmoid funct ion , which matches

↪→ a l l the ob s e rva t i on s . I t s t a r t s and ends at 0 , has a s i n g l e

↪→ peak and va l l ey , and i s not p e r i o d i c .

− ' log ' : This func t i on i s a l oga r i thmi c funct ion , which doesn ' t

↪→ have a peak and va l l ey , so i t doesn ' t match obse rvat i on 2 .

− ' x_times_sine ' : This func t i on i s a product o f a l i n e a r func t i on

↪→ and a s i n u s o i d a l funct ion , which could g ive a s i n g l e peak

↪→ and va l l e y . However , i t i s a l s o pe r i od i c , so i t doesn ' t

↪→ match obse rvat i on 3 .

− ' square ' : This func t i on i s a quadrat i c funct ion , which doesn ' t

↪→ have a peak and va l l ey , so i t doesn ' t match obse rvat i on 2 .

Based on these obse rvat ions , the most l i k e l y func t i on to have

↪→ generated the time s e r i e s i s ' sigmoid ' .

Answer : s igmoid

153

Listing B.6: Sample output for Linear_Cos time series (misclassified)

Let ' s ana lyze the time s e r i e s s tep by step :

1 . The time s e r i e s s t a r t s at a negat ive value , i n c r e a s e s to a

↪→ p o s i t i v e value , and then dec r ea s e s back to a negat ive

↪→ value . This sugge s t s that the func t i on might have a

↪→ symmetric or p e r i o d i c behavior .

2 . The time s e r i e s has a peak in the middle , which i n d i c a t e s that

↪→ the func t i on might have a s i n g l e maximum or minimum point .

3 . The time s e r i e s does not show an exponent i a l growth or decay ,

↪→ which r u l e s out ' exp ' , ' log ' , and ' sigmoid ' f un c t i on s .

4 . The time s e r i e s does not have a l i n e a r pattern , which r u l e s

↪→ out the ' l i n e a r ' f unc t i on .

5 . The time s e r i e s does not show a c l e a r p e r i o d i c pattern , which

↪→ r u l e s out ' s ine ' , ' l inear_cos ' , and ' beat ' f un c t i on s .

6 . The time s e r i e s does not show a s i n c pattern , which r u l e s out

↪→ the ' s inc ' f unc t i on .

7 . The time s e r i e s does not show a c l e a r x_times_sine pattern ,

↪→ which r u l e s out the ' x_times_sine ' f unc t i on .

154

8 . The time s e r i e s does not show a c l e a r pa rabo l i c pattern , which

↪→ r u l e s out the ' square ' f unc t i on .

Based on the above obse rvat ions , the only remaining func t i on i s

↪→ ' gaussian_wave ' . Therefore , the most l i k e l y func t i on to

↪→ have generated the time s e r i e s i s :

Answer : gaussian_wave

155

C | Appendix: Language Modeling

for 3D Crystal Data

C.1 Training Details

C.1.1 Numerical Formatting

Notably, our approach to tokenization is distinctly different from prior work on modeling

atomic structures with language models. Instead of using a special vocabulary and training

models from scratch, we use LLaMA-2’s existing tokenizer. This choice allows us to easily

process both encoded crystals and text data. In early experiments, we tried out many other

approaches, including fine-tuning LLaMA-2 models with additional tokens specific to crystal

data. These methods were more challenging to train and didn’t lead to any improvements

over using a shared tokenizer. We include a set of example training losses below:

Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5

Special Crystal Tokens 0.783 0.693 0.623 0.611 0.588

Shared Tokenization 0.457 0.432 0.424 0.401 0.385

There are many important decisions involved both in text formatting (e.g the choice of

fractional or absolute coordinates) and augmentation of the input data (e.g. translation

or permutation augmentations on coordinates). As a simple example, we provide average

156

validity numbers (using low temperature sampling) from earlier experiments on LLaMA-2

7B models trained with different formatting styles

Setting Structural Validity Compositional Validity

Fractional coords 91.4% 83.2%

Absolute coords 90.8% 80.5%

No permutations 92.5% 82.9%

With permutations 89.2% 81.7%

C.1.2 Training with Stochastic Prompts

In order to enable multi-task use of the fine-tuned LLMs, we train on a stochastically

generated prompt. Two thirds of the time we provide the model with a generation task, in

which the prompt consists of a basic instruction to generate a bulk material as a lattice and

atom positions. We randomly sample a set of properties from the available descriptors of

a given crystal and add any chosen ones (if any) to the prompt, using a small amount of

wrapper text. The remaining one third of the time, we provide use the sampled crystal to

construct and infilling task. We choose on element randomly from the set of elements in the

composition and we construct a prompt that contain the string encoding of the crystal with

this element replaced with [MASK]. The model then generates the replaced element as text

following the prompt.

C.1.3 Extended Materials Project Dataset

To facilitate text-conditional generation, we extend the original CDVAE training dataset

with materials from Materials Project [118] as of April 2023. We filter out crystal with more

than 30 atoms in the unit cell, which slow down training with minimal benefit to model

performance, leaving a training set that contains 127609 crystal structures. The original

157

validation and test splits are left unchanged and all test/validation points are removed from

the new training set.

C.1.4 Training Hyperparameters and Details

We provide the training details per model:

• LLaMA-2 7B: Batch size of 256 for 65 epochs with a cosine annealed learning rate of

0.0005. LoRA rank 8 and alpha 32.

• LLaMA-2 13B: Batch size of 256 for 44 epochs with a cosine annealed learning rate of

0.0005. LoRA rank 8 and alpha 32.

• LLaMA-2 70B: Batch size of 32 for 21 epochs with a cosine annealed learning rate of

0.0005. LoRA rank 8 and alpha 32.

Limitations around available compute lead to our use of differing batch sizes and total number

of epochs for each model. Ideally, we would train all models with the largest batch sized used

among all models and would train all models for the same number of epochs (the maximum

used by any model). At the same time, we wanted to properly demonstrate the full potential

of all model sizes and therefore chose to present results for the best model we were able to

train at each model size.

C.1.5 Role of Text Pretraining

Text pretraining is essential to our method for two reasons.

1. It would be impractically expensive or computationally infeasible to train models with

up to 70B parameters from scratch on our data. Using a pretrained model with LoRA

[112] offers the benefits of model scale while maintaining tractability and limiting

overfitting, as the actual number of trainable parameters can be relatively small.

158

2. Pretraining on text data yields a model that can be conditioned on text for free, and

text conditioning opens up a huge new realm of exciting possibilities, like conditioning

samples on desired properties. It would be challenging to achieve a similar result from

scratch without significantly expanding the size of the dataset (to improve general text

understanding) and without essentially training a general-purpose language model in

the process.

To better understand the first point, let’s quickly review the exact details of the finetuning

procedure. We are using low-rank adapters (LoRA), as opposed to end-to-end finetuning,

and this means we are adding a small number of additional parameters to an existing, frozen

model. The easiest way to see the difference between this approach and training a model

from scratch–as in [72]–is to compare the training loss over the first few epochs of training.

Model Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5

GPT-2 (from scratch) 0.946 0.878 0.807 0.757 0.740

LLaMA-13B (LoRA) 0.457 0.432 0.424 0.401 0.385

LLaMA-70B (LoRA) 0.402 0.344 0.325 0.305 0.296

If we attempt to run LoRA finetuning with randomly initialized parameters for the

LLaMA-2 7B model we observe an immediate and significant difference in the training losses:

Model 1 Iter 0.33 Epochs 0.66 Epochs 1 Epoch

Random 13.46 1.53 0.81 0.78

Pre-trained 1.57 0.47 0.41 0.39

While LoRA finetuning is tractable because 99.95% of the model is frozen, finetuning a

LLaMA-2 model end-to-end in half-precision would require at least 4 times as many GPUs,

making it infeasible for all but a handful of researchers. When using LoRA, even though the

base models are large the number of trainable parameters is very small. In fact, the LLamA-

2 7B model has less trainable parameters than one of the baseline methods we compared

159

(CDVAE) [232]. The number of trainable parameters for each of our models and the baseline

models is shown below:

Model Trainable parameters (millions) Percentage of total

CDVAE 4.5 100%

LM-CH/AC 1-100 100%

LLaMA-2 7B 3.5 0.05%

LLaMA-2 13B 6.5 0.05%

LLaMA-2 70B 35 0.05%

C.2 Model Evaluation

C.2.1 Evaluation with ML potentials and DFT

Approximating Ehull from the energies of known materials in Materials Project requires

a consistent correction scheme. We touch on some of the details here.

M3GNet Importantly, M3GNet was trained on the total energy of VASP calculations

in the Materials Project dataset, so the results were expected to be consistent with the

correction schemes and absolute energies in the experiments section.

VASP To be consistent with the Materials Project settings (e.g. the PBE functional,

DFT/DFT+U as appropriate, consistent pseudopotentials, etc). We did a single relaxation

for every candidate structure using the default parameters in MPRelaxSet [167]. VASP

relaxations were run using the GPU-accelerated VASP6 code.

In both situations, the total energies were corrected using the MP2020 compatibility

scheme, which was important to maintain consistency when calculating formation energies,

and allow the use of varying functionals (DFT/DFT+U) for different materials.

160

C.2.2 Stability Checks and Percentages

To calculate the percentage of metastable compounds, we take all samples and remove

samples that are invalid under the basic structure and composition checks. We then run

relaxations with M3GNet and obtain the final relaxation energies. The final percentage takes

into account both the rate of validity (used to perform the initial filtering), and the rate of

compounds with Êhull < 0.1, as determined by the convex hull calculation using the M3GNet

relaxation energy. To calculate the VASP percentage, we select materials determined to be

metastable M3GNet and run VASP with default setting. We then report the percentage of

the materials with Êhull < 0.0.

C.2.3 Trade-Offs in Sampling

We note that modulating stability with sampling parameters like temperature and nucleus

size has a significant effect on the coverage properties of the resulting samples. We illustrate

the trade-offs between stability and coverage in Figure C.1. Coverage most likely decreases

because nucleus size and temperature collapse the distribution around samples with high

likelihood, which are also more likely to be valid or stable. Notably, LLaMA-2 70B appears

to demonstrate the best trade-offs, possibly indicating a likelihood model that corresponds

better to both the underlying properties of stability and the full, diverse distribution of

structures.

161

0.7 0.8 0.9
Validity

0.90
0.95

Re
ca

ll
(a

ll)

0.3 0.4 0.5
Stability Rate

0.85

0.90

0.95

Re
ca

ll
(s

ta
bl

e)

LLaMA-2 7B LLaMA-2 13B LLaMA-2 70B CDVAE

Figure C.1: Validity and rate of stability depend on sampling hyper-parameters. Lowering the tem-
perature or restricting the nucleus size leads to significant improvements in validity/stability but incurs
a cost to coverage of a held-out test set (recall). Fine-tuned LLaMA-2 70B displays the best trade-off
between coverage and stability, generating materials that are both stable and diverse.

C.2.4 “Hallucination” Examples

LLaMA-2 7B:
g e n e r a t e d u s i n g pymatgen
data_Met8 (Cu2N) 5
_symmetry_space_group_name_H−M 'P 1 '
_cell_length_a 5 . 0 0 0 0
_cell_length_b 5 . 0 0 0 0
_ c e l l _ l e n g t h _ c 5 . 0 0 0 0
c ell angl e_al pha 9 0 . 0 0 0 0
_c e ll _a ng le _b et a 9 0 . 0 0 0 0
_cell_angle_gamma 9 0 . 0 0 0 0
_symmetry_Int_Tables_number 1
_ c h e m i c a l _ f o r m u l a _ s t r u c t u r a l Met8 (Cu2N) 5
_chemical_formula_sum ' Met8 Cu10 N5 '
_cell_volume 1 2 5 . 0 0 0 0
_cell_formula_units_Z 1
loop_

_symmetry_equiv_pos_site_id
_symmetry_equiv_pos_as_xyz

1 ' x , y , z '
loop_

_atom_site_type_symbol
_atom_site_label
_atom_site_symmetry_multiplicity
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_occupancy

Cu Cu0 1 1 . 8 3 0 0 0 . 3 9 0 0 1 . 0 0 0 0 1
Cu Cu1 1 0 . 8 3 0 0 0 . 4 9 0 0 1 . 0 0 0 0 1
Cu Cu2 1 0 . 8 3 0 0 0 . 9 9 0 0 0 . 5 0 0 0 1
Cu Cu3 1 0 . 6 3 0 0 0 . 1 9 0 0 0 . 2 0 0 0 1
Cu Cu4 1 0 . 2 3 0 0 0 . 7 9 0 0 0 . 2 0 0 0 1
Cu Cu5 1 0 . 6 3 0 0 0 . 7 0 0 0 0 . 3 1 0 0 1
Cu Cu6 1 0 . 2 3 0 0 0 . 1 9 0 0 0 . 3 0 0 0 1
Cu Cu7 1 1 . 0 0 0 0 0 . 8 9 0 0 0 . 7 0 0 0 1
Cu Cu8 1 1 . 0 0 0 0 0 . 3 9 0 0 0 . 2 0 0 0 1
Cu Cu9 1 0 . 4 9 0 0 0 . 8 9 0 0 0 . 7 0 0 0 1
Met0+ Met10 1 0 . 6 3 0 0 0 . 6 0 0 0 1 . 0 0 0 0 1
Met0+ Met11 1 0 . 4 0 0 0 0 . 4 7 0 0 0 . 4 7 0 0 1
Met0+ Met12 1 0 . 4 0 0 0 1 . 0 0 0 0 0 . 9 8 0 0 1
Met0+ Met13 1 1 . 0 0 0 0 0 . 2 2 0 0 0 . 9 7 0 0 1
Met0+ Met14 1 1 . 0 0 0 0 0 . 6 3 0 0 0 . 5 0 0 0 1
Met0+ Met15 1 0 . 2 3 0 0 0 . 2 2 0 0 0 . 6 0 0 0 1
Met0+ Met16 1 1 . 0 0 0 0 0 . 0 0 0 0 0 . 6 1 0 0 1
Met0+ Met17 1 0 . 6 3 0 0 0 . 1 0 0 0 0 . 5 0 0 0 1
N N18 1 0 . 1 2 0 0 0 . 7 0 0 0 0 . 8 0 0 0 1
N N19 1 0 . 2 3 0 0 0 . 5 9 0 0 0 . 2 0 0 0 1
N N20 1 0 . 2 3 0 0 0 . 1 9 0 0 0 . 7 0 0 0 1
N N21 1 0 . 4 9 0 0 0 . 2 1 0 0 0 . 1 0 0 0 1
N N22 1 0 . 4 8 0 0 0 . 6 1 0 0 0 . 6 0 0 0 1

‘

data_L3Li
_symmetry_space_group_name_H−M 'P 1 '
_cell_length_a 5 . 1 0 0 0
_cell_length_b 7 . 1 0 0 0
_ c e l l _ l e n g t h _ c 7 . 4 0 0 0
c ell angl e_a lpha 8 4 . 0 0 0 0
_ ce ll _a ng le _b et a 6 8 . 0 0 0 0
_cell_angle_gamma 6 8 . 0 0 0 0
_symmetry_Int_Tables_number 1
_ c h e m i c a l _ f o r m u l a _ s t r u c t u r a l L3Li
_chemical_formula_sum ' L12 Li4 '
_cell_volume 2 3 0 . 1 5 2 1 4 3 6 9
_cell_formula_units_Z 4
loop_

_symmetry_equiv_pos_site_id
_symmetry_equiv_pos_as_xyz

1 ' x , y , z '
loop_

_atom_site_type_symbol
_atom_site_label
_atom_site_symmetry_multiplicity
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_occupancy

Li Li0 1 0 . 7 1 0 0 0 . 4 0 0 0 0 . 8 3 0 0 1
Li Li1 1 0 . 2 2 0 0 0 . 3 7 0 0 0 . 3 6 0 0 1
Li Li2 1 0 . 7 1 0 0 0 . 8 9 0 0 0 . 3 3 0 0 1
Li Li3 1 0 . 2 1 0 0 0 . 8 7 0 0 0 . 8 6 0 0 1
L0+ L4 1 1 . 0 0 0 0 0 . 6 3 0 0 0 . 6 9 0 0 1
L0+ L5 1 0 . 5 1 0 0 0 . 1 4 0 0 0 . 6 6 0 0 1
L0+ L6 1 0 . 9 6 0 0 0 . 5 7 0 0 0 . 1 7 0 0 1
L0+ L7 1 0 . 4 7 0 0 0 . 0 7 0 0 0 . 1 7 0 0 1
L0+ L8 1 0 . 9 8 0 0 0 . 6 1 0 0 0 . 1 4 0 0 1
L0+ L9 1 0 . 4 9 0 0 0 . 1 1 0 0 0 . 1 4 0 0 1
L0+ L10 1 1 . 0 0 0 0 0 . 1 0 0 0 0 . 6 8 0 0 1
L0+ L11 1 1 . 0 0 0 0 0 . 1 1 0 0 0 . 1 5 0 0 1
L0+ L12 1 0 . 4 7 0 0 0 . 5 5 0 0 0 . 1 8 0 0 1
L0+ L13 1 1 . 0 0 0 0 0 . 5 8 0 0 0 . 6 8 0 0 1
L0+ L14 1 0 . 4 7 0 0 0 . 0 6 0 0 0 . 6 7 0 0 1
L0+ L15 1 1 . 0 0 0 0 0 . 1 3 0 0 0 . 1 7 0 0 1

162

LLaMA-2 13B:
data_LeB7 (NO3) 2
_symmetry_space_group_name_H−M 'P 1 '
_cell_length_a 5 . 9 0 0 0
_cell_length_b 5 . 9 0 0 0
_ c e l l _ l e n g t h _ c 5 . 9 0 0 0
c ell angl e_al pha 5 9 . 0 0 0 0
_c e ll _a ng le _b et a 5 9 . 0 0 0 0
_cell_angle_gamma 5 9 . 0 0 0 0
_symmetry_Int_Tables_number 1
_ c h e m i c a l _ f o r m u l a _ s t r u c t u r a l LeB7 (NO3) 2
_chemical_formula_sum ' Le1 B7 N2 O6 '
_cell_volume 1 4 1 . 9 1 2 2 3 5 8 2
_cell_formula_units_Z 1
loop_

_symmetry_equiv_pos_site_id
_symmetry_equiv_pos_as_xyz

1 ' x , y , z '
loop_

_atom_site_type_symbol
_atom_site_label
_atom_site_symmetry_multiplicity
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_occupancy

Le0+ Le0 1 0 . 7 1 0 0 0 . 5 0 0 0 0 . 1 7 0 0 1
B B1 1 0 . 3 8 0 0 0 . 1 6 0 0 0 . 0 2 0 0 1
B B2 1 0 . 4 6 0 0 0 . 1 6 0 0 0 . 5 7 0 0 1
B B3 1 0 . 4 6 0 0 0 . 7 2 0 0 0 . 5 7 0 0 1
B B4 1 0 . 0 4 0 0 0 . 7 9 0 0 0 . 6 5 0 0 1
B B5 1 1 . 0 0 0 0 0 . 2 5 0 0 0 . 6 5 0 0 1
B B6 1 0 . 0 0 0 0 0 . 7 9 0 0 0 . 0 9 0 0 1
B B7 1 0 . 0 0 0 0 0 . 1 6 0 0 0 . 6 5 0 0 1
N N8 1 0 . 6 2 0 0 0 . 5 7 0 0 0 . 9 8 0 0 1
N N9 1 0 . 0 6 0 0 0 . 3 3 0 0 0 . 2 5 0 0 1
O O10 1 0 . 5 5 0 0 0 . 7 6 0 0 0 . 7 1 0 0 1
O O11 1 0 . 1 8 0 0 0 . 5 4 0 0 0 . 6 1 0 0 1
O O12 1 0 . 4 3 0 0 0 . 9 5 0 0 0 . 5 4 0 0 1
O O13 1 0 . 9 4 0 0 0 . 1 1 0 0 0 . 9 6 0 0 1
O O14 1 0 . 6 4 0 0 0 . 7 7 0 0 0 . 2 9 0 0 1
O O15 1 0 . 3 0 0 0 0 . 3 8 0 0 0 . 1 3 0 0 1

‘

data_MandeGd2O4
_symmetry_space_group_name_H−M 'P 1 '
_cell_length_a 3 . 6 0 0 0
_cell_length_b 3 . 6 0 0 0
_ c e l l _ l e n g t h _ c 5 . 9 0 0 0
c ell angl e_a lpha 9 0 . 0 0 0 0
_ ce ll _a ng le _b et a 9 0 . 0 0 0 0
_cell_angle_gamma 9 0 . 0 0 0 0
_symmetry_Int_Tables_number 1
_ c h e m i c a l _ f o r m u l a _ s t r u c t u r a l MandeGd2O4
_chemical_formula_sum ' Mande1 Gd2 O4 '
_cell_volume 7 6 . 4 6 4 0 0 0 0 0
_cell_formula_units_Z 1
loop_

_symmetry_equiv_pos_site_id
_symmetry_equiv_pos_as_xyz

1 ' x , y , z '
loop_

_atom_site_type_symbol
_atom_site_label
_atom_site_symmetry_multiplicity
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_occupancy

Gd Gd0 1 0 . 8 2 0 0 0 . 2 3 0 0 0 . 1 5 0 0 1
Gd Gd1 1 0 . 8 2 0 0 0 . 2 3 0 0 0 . 6 3 0 0 1
Mande0+ Mande2 1 0 . 3 2 0 0 0 . 7 3 0 0 0 . 8 9 0 0 1
O O3 1 0 . 8 2 0 0 0 . 7 3 0 0 0 . 4 1 0 0 1
O O4 1 0 . 3 2 0 0 0 . 7 3 0 0 0 . 1 0 0 0 1
O O5 1 0 . 3 2 0 0 0 . 2 3 0 0 0 . 3 9 0 0 1
O O6 1 0 . 8 2 0 0 0 . 7 3 0 0 0 . 7 9 0 0 1

163

LLaMA-2 70B:

data_Ln3BO4
_symmetry_space_group_name_H−M 'P 1 '
_cell_length_a 5 . 3 0 0 0
_cell_length_b 5 . 9 0 0 0
_ c e l l _ l e n g t h _ c 5 . 3 0 0 0
c ell angl e_al pha 6 2 . 0 0 0 0
_c e ll _a ng le _b et a 9 0 . 0 0 0 0
_cell_angle_gamma 9 0 . 0 0 0 0
_symmetry_Int_Tables_number 1
_ c h e m i c a l _ f o r m u l a _ s t r u c t u r a l Ln3BO4
_chemical_formula_sum ' Ln3 B1 O4 '
_cell_volume 1 4 6 . 3 3 1 7 8 7 5 1
_cell_formula_units_Z 1
loop_

_symmetry_equiv_pos_site_id
_symmetry_equiv_pos_as_xyz

1 ' x , y , z '
loop_

_atom_site_type_symbol
_atom_site_label
_atom_site_symmetry_multiplicity
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_occupancy

Ln0+ Ln0 1 0 . 1 8 0 0 0 . 0 6 0 0 0 . 9 9 0 0 1
Ln0+ Ln1 1 0 . 6 8 0 0 0 . 5 6 0 0 0 . 9 9 0 0 1
Ln0+ Ln2 1 0 . 1 8 0 0 0 . 5 6 0 0 0 . 4 9 0 0 1
B B3 1 0 . 6 8 0 0 0 . 0 6 0 0 0 . 4 9 0 0 1
O O4 1 0 . 6 8 0 0 0 . 3 3 0 0 0 . 1 5 0 0 1
O O5 1 0 . 1 8 0 0 0 . 2 8 0 0 0 . 1 8 0 0 1
O O6 1 0 . 6 8 0 0 0 . 7 8 0 0 0 . 8 0 0 0 1
O O7 1 0 . 1 8 0 0 0 . 8 3 0 0 0 . 8 5 0 0 1

‘

data_Gro15Nd4
_symmetry_space_group_name_H−M 'P 1 '
_cell_length_a 7 . 0 0 0 0
_cell_length_b 7 . 0 0 0 0
_ c e l l _ l e n g t h _ c 6 . 9 0 0 0
c ell angl e_a lpha 7 1 . 0 0 0 0
_ ce ll _a ng le _b et a 7 1 . 0 0 0 0
_cell_angle_gamma 6 9 . 0 0 0 0
_symmetry_Int_Tables_number 1
_ c h e m i c a l _ f o r m u l a _ s t r u c t u r a l Gro15Nd4
_chemical_formula_sum ' Gro15 Nd4 '
_cell_volume 2 8 9 . 9 6 9 4 5 3 5 8
_cell_formula_units_Z 1
loop_

_symmetry_equiv_pos_site_id
_symmetry_equiv_pos_as_xyz

1 ' x , y , z '
loop_

_atom_site_type_symbol
_atom_site_label
_atom_site_symmetry_multiplicity
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_occupancy

Nd Nd0 1 0 . 5 6 0 0 0 . 5 7 0 0 0 . 7 8 0 0 1
Nd Nd1 1 0 . 7 5 0 0 0 . 7 5 0 0 0 . 5 6 0 0 1
Nd Nd2 1 0 . 1 7 0 0 0 . 1 7 0 0 0 . 1 4 0 0 1
Nd Nd3 1 0 . 9 5 0 0 0 . 9 5 0 0 0 . 3 8 0 0 1
Gro0+ Gro4 1 0 . 7 6 0 0 0 . 2 3 0 0 0 . 3 0 0 0 1
Gro0+ Gro5 1 0 . 1 2 0 0 0 . 4 8 0 0 1 . 0 0 0 0 1
Gro0+ Gro6 1 0 . 3 8 0 0 0 . 8 7 0 0 0 . 1 0 0 0 1
Gro0+ Gro7 1 0 . 0 3 0 0 0 . 6 6 0 0 0 . 8 4 0 0 1
Gro0+ Gro8 1 0 . 6 5 0 0 0 . 1 7 0 0 0 . 6 4 0 0 1
Gro0+ Gro9 1 0 . 5 6 0 0 0 . 0 6 0 0 0 . 7 4 0 0 1
Gro0+ Gro10 1 0 . 9 2 0 0 0 . 5 0 0 0 0 . 1 6 0 0 1
Gro0+ Gro11 1 0 . 4 9 0 0 0 . 7 4 0 0 0 . 2 2 0 0 1
Gro0+ Gro12 1 0 . 2 4 0 0 0 . 1 0 0 0 0 . 5 8 0 0 1
Gro0+ Gro13 1 0 . 9 1 0 0 0 . 2 7 0 0 0 . 6 2 0 0 1
Gro0+ Gro14 1 0 . 4 0 0 0 0 . 6 1 0 0 0 . 4 6 0 0 1
Gro0+ Gro15 1 0 . 2 9 0 0 0 . 2 9 0 0 0 . 4 2 0 0 1
Gro0+ Gro16 1 0 . 4 5 0 0 0 . 9 2 0 0 0 . 9 4 0 0 1
Gro0+ Gro17 1 0 . 9 9 0 0 0 . 1 3 0 0 0 . 0 2 0 0 1
Gro0+ Gro18 1 0 . 8 4 0 0 0 . 5 1 0 0 0 . 8 2 0 0 1

164

C.2.5 Increase in Perplexity under Transformation (IPT)

Although there are existing metrics for invariance and equivariance in neural networks,

language models pose unique challenges because of their discrete tokens, which do not change

smoothly under continuous transformations. Though it might be possible to compute a

meaningful analogue of the Lie derivative [90], or similar metrics, through interpolation of

word embeddings, we decide to adopt a simpler metric (IPT), which still highlights significant

differences between base models. We calculate IPT for each model using 500 test datapoints

and 20 randomly translation sampled as fraction coordinates from a uniform distribution

per dimension. The translations themselves are implemented in PyMatgen and respect pe-

riodic boundary conditions [167]. In order to combine the IPT values in a meaningful way

across different datapoints, we normalize their values by the mean perplexity over transfor-

mations. Thus datapoints which happen to have large perplexity, and therefore naturally

large potential changes in perplexity, do not drown out points with small perplexity.

C.2.6 Diversity and Novelty Calculation

Following [232], we calculate diversity as the pairwise distance between samples using

a featurization of structure and composition. To calculate novelty, we also featurize the

training dataset and calculate the distance to the nearest element of the training set for

each sample. A sample is considered novel if the nearest element in the training set is

above a threshold. We use a structural distance cutoff of 0.1 and composition distance

cutoff of 2. In addition to novelty of structure and composition individual, we also consider

the overall novelty of a crystal, where overall novelty is determined by having either a new

structure or a new composition. All metrics are calculated on filtered samples that M3GNet

qualifies as metastable. We report metrics on metastable samples because these numbers are

more practically relevant and because the samples are more likely to contribute meaningful

165

variation, instead of being different from the training set and each other simply because they

are wildly invalid. We normalize all diversity and novelty values by corresponding value for

the test set to provide a sense for the underlying data distribution.

C.2.7 Sampling Speed

Although LLMs might seem like computational overkill at face value, batching for large-

scale sampling allows LLaMA models to have comparable computational overhead to com-

peting approaches. Making exact comparisons between LLaMA models and CDVAE are

slightly challenging because of available hardware and differences in compatibility. We ran

experiments primarily on A100 GPUs, while the publicly available code for CDVAE cannot

be run on an A100 and reports results on a RTX2080 Ti.

We provide two analyses for the sampling rate of LLaMA models, one from experiments

we ran on a single A100 and alternative using third-party numbers for LLaMA models

deployed on AWS instances.

Local analysis We obtain benchmark LLaMA-2 sampling times by running 5 batched

generations and computingn the average time to completion. We then use these numbers to

calculate the equivalent time to sample 10,000 structures. In practice, we used distributed

sampling on a cluster, so reporting our direct times to compute 10,000 samples would be

less informative. We use the maximum batch size that we can fit on an A100 GPU with

each model without causing out-of-memory (OOM) errors during sampling. The batch sizes

were {7B: 512, 13B: 256, 70B: 128}. To compare CDVAE with our results we perform a

rough, but generous, conversion of their results to an A100 GPU. We multiply their rate

of sampling by 16, to account for the 2x faster rate of operations [16] and approximately 8

times larger GPU memory (allowing for large batch sizes and utilization rates). We report

the intermediate numbers and calculations below. The final rates for metastable samples are

166

shown in Figure 5.5.

Model Batch size Seconds / batch Samples / hour Hours / 10,000 crystals

CDVAE 512 n/a n/a 1.260

LLaMA-2 7B 512 27.18 67814 0.147

LLaMA-2 13B 256 38.24 24100 0.414

LLaMA-2 70B 128 52.52 8774 1.139

AWS analysis Considering AWS as the deployment environment, we can build on a

recent benchmark on a cloud instance with 8 A100 GPUs (ml.p4d.12xlarge) [188], which

found that LLaMA-2 13B achieved 0.416 hr/1M tokens and LLaMA-2 70B achieved 0.864

hr/1M tokens. One crystal is around 100 tokens on average, so the throughput for 10,000

crystals is the same as for 1M tokens. For comparison, we use CDVAE and its recorded

runtimes for generating 10,000 crystals on a single RTX2080 Ti GPU [232]. To obtain the

final numbers, we adjust for the number of GPUs (8) and a 2x improvement from RTX2080

Ti to A100 GPUs [16].

Model Hours / 10,000 crystals Hours / 10,000 metastable (M3GNet) crystals

CDVAE 0.363 1.260

LLaMA-2 13B 0.416 1.094

LLaMA-2 70B 0.864 1.728

We see that LLaMA-2 13B actually has a comparable computational overhead to prior

work, and LLaMA-2 70B is only slightly higher. When considering the rate of stable materials

generated by each method, we see that LLaMA-2 13B actually has a higher throughput than

CDVAE.

C.3 Template Method Baseline

We provide code in Listing 1 implementing construction of the physically-inspired ele-

ment swap table. This table is used by both the template method and the LLM-guided

167

sampling method to constrain search to elements that are physically plausible. Listing 2

shows our implementation of a basic template method with uniform sampling. The LLM-

guided procedure is mostly identical, except with uniform sampling of the swap element

changed for sampling from a distribution obtained from the LLM with an infilling prompt

(and modulated with temperature parameter τ)

Listing C.1: Self contained code to construct the template method table which can be used to proposed
mutations for local optimization around an existing material. The same table can be used in tandem
with a language model to provide sampling constraints (i.e. eliminate elements which are very physically
unlikely).

import os

import random

import pandas as pd

import numpy as np

from pymatgen . core import Element

from pymatgen . core . s t r u c tu r e import St ruc ture

from m3gnet . models import Relaxer

de f f ind_s imi lar_e lements (target_element , elements ,

↪→ t o l e r an c e =0.1) :

s imi la r_e lements = []

f o r s ta te , r ad iu s in target_element . i o n i c_ r ad i i . i tems () :

f o r e l in e lements :

i f s t a t e in e l . i o n i c_ r ad i i :

r ad i u s_d i f f = abs (rad iu s − e l . i o n i c_ r ad i i [s t a t e])

i f r ad i u s_d i f f < to l e r an c e and e l . symbol !=

↪→ target_element . symbol :

168

s imi la r_e lements . append ((e l . symbol , s ta te ,

↪→ r ad i u s_d i f f))

r e turn so r t ed (s imi lar_elements , key=lambda x : x [2])

de f make_swap_table () :

e lements = [Element (e l) f o r e l in Element]

swap_table = {}

f o r e l in e lements :

swap_table [e l . symbol] = [

x [0] f o r x in f ind_s imi lar_e lements (e l , e lements)

]

r e turn swap_table

Listing C.2: Self contained code implementing a template method with uniform sampling. Our language
model procedure is essentially the same but replaces uniform sampling with logits from a prompted
language model. This language model can use the context from the rest of the crystal structure to
propose a mutation instead of choosing a mutation completely at random.

de f propose_new_structures (c i f_s t r , swap_table , max_swaps=1) :

s t r u c t = Structure . from_str (c i f_s t r , fmt=" c i f ")

e lements = [e l . symbol f o r e l in s t r u c t . s p e c i e s]

swappable_elements = [

e l f o r e l in e lements i f e l in swap_table and

↪→ l en (swap_table [e l]) > 0

]

169

num_possible_swaps = sum ([l en (swap_table [e l]) f o r e l in

↪→ swappable_elements])

num_swaps = min (num_possible_swaps , max_swaps)

r e l a x e r = Relaxer ()

new_bulks = []

f o r _ in range (num_swaps) :

o ld_el = random . cho i c e (swappable_elements)

possible_new = swap_table [o ld_el]

new_el = random . cho i c e (possible_new)

new_bulk = s t r u c t . copy ()

new_bulk . r ep l a c e_spe c i e s ({ o ld_el : new_el })

r e l a x_r e su l t s = r e l a x e r . r e l a x (new_bulk)

f i n a l_ s t r u c t u r e = r e l a x_r e su l t s [' f i n a l_s t ru c tu r e ']

f ina l_re laxed_energy =

↪→ r e l a x_r e su l t s [' t r a j e c t o r y '] . e n e r g i e s [−1]

new_bulks . append (d i c t (

c i f=f i n a l_ s t r u c t u r e . to (fmt=" c i f ") ,

energy=f ina l_re laxed_energy

))

new_bulks = pd . DataFrame (new_bulks)

170

r e turn new_bulks

171

D | Appendix: Challenges in

Applying Language Models to

Numerical Data

D.1 Conditional vs Unconditional Modeling

In standard language modeling and in the supervised finetuning of language models, the

joint distribution of the data is modeled, enforced by minimizing the NLL − log p(x) =∑
i − log p(xi|x<i). For many of the problems we consider on structured numerical data,

there is an explicit input-output structure, and we are only interested in the conditional

distribution p(y|x) for e.g. numerical outputs computed from a point cloud. Posed as

sequence modeling we could also state p(y|x) as p(x>i|x≤i). While learning the joint dis-

tribution also implies learning the conditional distribution in the abstract, high complexity

Table D.1: MAE (↓) values for
training with and without masking,
both from scratch and finetuning.

Type w w/out

Scratch 0.168 0.154

Finetune 0.456 0.508

and variance in p(x) can mean that signal in y gets drowned

out in the unnecessary task of modeling x. In many cases,

the entropy of the output H(y|x) is much lower than H(x),

and thus the model prioritizes x. For example, learning the

distribution of all rotations of a molecule might be much

more complicated than just learning to distinguish high

172

and low energy configurations. When learning jointly on

p(x>i|x≤i) and p(x≤i), the gradient signals of each term compete, leading to slower learning

of p(x>i|x≤i) than in models that are explicitly conditional. Even if p(x≤i) is modeled per-

fectly, the random variation in x≤i introduces unecessary noise in the gradients, which slows

down learning as we show in Appendix D.2.

To test this effect, we train models, both from scratch and fine-tuning text pretrained

models, on the energy (from coordinates) task with loss masking to optimize only p(x>i|x≤i).

The results are displayed in Table D.1. While masking helps fine-tuning which has relatively

few gradient steps (1 epoch), masking does not help when training from scratch (100 epochs).

D.2 Learning Speedup from Loss Masking

When learning p(y|x), the training convergence can be substantially slowed down when

including the p(x) loss contribution.

Consider the loss for a single data point with a random label:

L = −y⊤ log σ(fθ(x))

where f(x) is the mapping to the log softmax of the logits of the model, σ is the softmax

function, and y is the one-hot random label vector (among the V classes).

The gradient is

∇θL = y⊤[I − ⊮σ⊤]J

where J is the Jacobian of the network outputs with respect to θ. E[y] = ⊮/V giving an

expectation of

E[∇θL] = (1/V)⊮⊤[I − ⊮σ⊤]J.

The gradient is 0 when the model predicts a uniform distribution σ = ⊮/V , and we will

173

consider perturbations around this point.

From E[yy⊤] = I/V covariance is given by

E[∇L∇L⊤] = (1/V)J⊤[I − ⊮σ⊤]⊤[I − ⊮σ⊤]J.

Letting σ = ⊮/V ,the gradient norm is

E[∥∇L∥2] = (1/V)Tr
(
PJJ⊤

)
,

for P = [I − ⊮⊮⊤/V].

The convergence of SGD on convex problems can be written in terms of the expectation

of the norm of the gradient. Over T timesteps with learning rate η and batch size B, the

convergence can written (see e.g. Shalev-Shwartz and Ben-David [190]) as

1
T

T∑
t=1

E[∥∇L(θt)∥2] ⩽ 2L(θ0) − L(θ∗)
ηT

+ (ησ2/B), (D.1)

where σ2 = supθ E[∥∇L(θ, y) − E[∇L(θ, y)]∥2] with expectations taken over the distribution

of y. The convergence of SGD is limited by this noisy ball term (ησ2/B), and for a fixed

learning rate cannot improve upon that limit as T → ∞.

If E[∥∇L(θ∗, y) − E[∇L(θ∗, y)]∥2] = E[∥∇L(θ∗, y)∥2] = (1/V)Tr
(
PJJ⊤

)
, then σ2 ⩾

(1/V)Tr
(
PJJ⊤

)
, therefore increasing the size of he noisy ball and loss value that SGD

converges to.

For the p(y, X) vs p(y|X) scenario, p(y, X) contains the additional random content of X

even if y is a deterministic function of X. This random content when mixed in to the negative

log likelihood objective increases the size of the noisy ball, slowing down convergence.

174

D.3 GNN Training Details

We use a batch size of 96 and a learning rate of 0.001 for 200 epochs on the HOMO

prediction task and for 50 epochs on the synthetic energy prediction task from coordinates

only. We use a learning rate of 0.0005 for 100 epochs on the energy prediction task from

distances. In all tasks, we use weight decay of 10−16 and a cosine decay on the learning rate.

We do not use any normalization on the target function, and we add in an additional tanh

activation function for stability.

D.4 xVal Ablations

In an attempt to understand the dominance of the continuous approach, we perform

two additional ablations on the input and output of xVal by replacing them with their

discrete counterpart, as shown in Figure D.1. Continuous Input ablates the benefit of

passing numbers directly into the model, without needing to parse inputs from a sequence

of tokens, while Continuous Output ablates the benefit of using a continuous loss function,

while still using discrete inputs. Figure 6.6 (left) shows the result on the hardest numerical

tasks, which indicates that neither design choice explains the strong performance of xVal in

isolation, though continuous variants still outperform discrete approaches on 3D structure

tasks.

D.5 Scaling Experiment

We train models with the following hyperparameter values:

To compute FLOPs we use the following formula:

FLOPs = 6 ∗ (P ∗ 106) ∗ (256 ∗ 1000 ∗ S)

175

2 3 4

Language Model

,

FiLM

2.34

3 4 , 8

2 3 4

Language Model

8.59

,

Continuous Input Continuous Output

Network

2.34

Network

5.17

'2' '3' '4' ',' '5' '1' '7'

Product Eigen Energy
(D)

Energy
(C)

10
2

10
1

10
0

10
1

M
A

E

Digits
Continuous

Cont. Input
Cont. Output

Figure D.1: (Left) We include ablations on xVal to explore the effect of working with discrete versus
continuous inputs and the corresponding loss functions. (Right) To understand the performance of xVal,
we perform an ablation the output and input with discrete tokens to understand if continuous inputs
or continuous outputs (continuous loss) is the origin of improved performance. Both ablations hurt
performance, but continuous inputs appear to be more helpful than continuous outputs.

Approx. # parameters (millions) Hidden size Intermediate size Attention heads Hidden layers
7 128 512 4 3
14 224 896 7 4
20 288 1152 7 5
38 448 1792 7 6
52 512 2048 8 8
66 576 2304 9 9

Table D.2: Hyperparameter values for model architecture for from-scratch language model training
runs.

where P is the parameter count in millions and S is the number of gradient steps.

D.6 Hyperparameter Settings

D.6.1 From-scratch models

For our language model training from-scratch, we use the following hyperparameter val-

ues:

D.6.2 Fine-tuned models

For our language model fine-tuning, we use the following hyperparameter values:

176

Hyperparameter Values
Model Size {10M, 20M, 50M}

Model Dimension/Layers {128/2, 512/4, 512/8 }
Learning Rate {5e-4, 1e-4, 5e-5}

Tokenizer {“1 Digit”, “3 Digits”, “Continuous”}

Table D.3: Hyperparameter values for from-scratch language model training runs.

Hyperparameter Values
Learning Rate {5e-4, 1e-4, 5e-5}
LoRA Rank {8, 16, 32}
Batch Size {8, 16}

Table D.4: Hyperparameter values for fine-tuning language model training runs.

Task Tokenization MAE Standard Error
Distances 1 Digit 0.007583 0.001822
Distances 3 Digits 0.007587 0.001873
Distances Continuous 0.002345 0.000049
Eigen 1 Digit 0.843819 0.051417
Eigen 3 Digits 0.949008 0.056988
Eigen Continuous 0.731731 0.044416

Energy (C) 1 Digit 0.305043 0.016945
Energy (C) 3 Digits 0.541269 0.029265
Energy (C) Continuous 0.167922 0.009055
Energy (D) 1 Digit 0.029822 0.005926
Energy (D) 3 Digits 0.039592 0.006085
Energy (D) Continuous 0.006789 0.001359
Product 1 Digit 1.824334 0.131004
Product 3 Digits 0.636723 0.055891
Product Continuous 0.186717 0.006272
Sum 1 Digit 0.003840 0.000149
Sum 3 Digits 0.024948 0.006033
Sum Continuous 0.005297 0.000159

Table D.5: MAE values for different tasks and tokenization methods. Standard errors are calculated
from 200 data points from each task.

177

D.7 MAE Numbers with Standard Errors

Table D.5 shows a full table of MAE values for each task and tokenization method,

including standard errors calculated over 200 different examples from each task.

178

D.8 RASP-L Programs for All Pairwise Distances

In the following, we provide RASP-L code for outputting a pairwise distance matrix from

a sequence of points in 3D. For simplicity, we restrict input numbers to single tokens and

we also provide negative integers to index where each element is in both the input and the

output. We use the NumPy RASP-L [255] and make use of basic RASP-L functions like

induct_kqv and where. Notably, when there is output space to perform computations for

all pairs and produce the results, the solution can be implemented very straightforwardly.

1 # Constants representing special markers

2 COMMA = 255

3 START = 254

4 def distance (x):

5 """

6 Compute all pairs of distances autoregressively for a sequence of

↪→ points in 3d (with negative indices separating the different

↪→ elements , and negative indices used to specify matrix elements

↪→ in the output).

7 Ex: input =[-1 2 3 4 -2 11 8 4 -3 4 6 6 254]

8 output =[-1 -2 106 255 -1 -3 17 255 -2 -1 106 255 -2 -2

↪→ 0 255 -2 -3

9 57...]

10 """

11 past0 = has_seen (x, full(x, START)) # Determine whether past the

↪→ start marker or not

12

13 # in the output sequence (-i,-j), induct on those values to find the

↪→ (-i, x_i ,y_i ,z_i)

14 # and (-j, x_j ,y_j ,z_j) points to compare

15 x1 = induct_kqv (x, x, x, 1)

179

16 x2 = induct_kqv (x, x, x, 2)

17 x3 = induct_kqv (x, x, x, 3)

18

19 y1 = x1 - shift_right (x1 , 1)

20 y2 = x2 - shift_right (x2 , 1)

21 y3 = x3 - shift_right (x3 , 1)

22

23 # Compute the squared Euclidean distance

24 d = y1 **2 + y2 **2 + y3 **2

25

26 prev = shift_right (x, 1)

27

28 # Determine readiness to produce a comma

29 rdynext = (past0 & (x >= 0) & (prev < 0))

30

31 # we need to get the index a and index b that were most recently used

32 start_a = -1

33 start_b = -1

34 # if we have already seen one full entry , then we grab those values

35 # otherwise we grab the first two values

36 # Find the last occurrence of COMMA

37 idlast = lasts(x, full(x, COMMA), default =-1)

38

39 # Select indices based on the last COMMA position

40 aselected = index_select (x, idlast - 3, default =0)

41 a = alast = where ((idlast == -1) | (aselected == 0), full(x,

↪→ start_a), aselected)

42

43 bselected = index_select (x, idlast - 2, default =0)

44 b = blast = where ((idlast == -1) | (bselected == 0), full(x,

↪→ start_b), bselected)

180

45 b -= 1

46

47 imax = minimum (x)

48

49 # Adjust indices based on the minimum value condition

50 a = where(b < imax , a - 1, a)

51 b = where(b < imax , full(x, -1), b)

52

53 out = d

54 # Determine readiness to produce the next negative index

55 rdynextnext = (x < 0) & (prev >= 0)

56 out = where(rdynextnext , b, out)

57 out = where(rdynext , full(x, COMMA), out)

58

59 out = where ((x == COMMA) | (x == START), a, out)

60

61 return out

Listing D.1: Python code to compute all pairs of distances for a sequence of points

181

Bibliography

[1] Josh Abramson et al. “Accurate structure prediction of biomolecular interactions with

AlphaFold 3”. In: Nature (2024), pp. 1–3.

[2] Joshua Ainslie et al. “Colt5: Faster long-range transformers with conditional compu-

tation”. In: arXiv preprint arXiv:2303.09752 (2023).

[3] Nawaf Alampara, Santiago Miret, and Kevin Maik Jablonka. “MatText: Do Language

Models Need More than Text & Scale for Materials Modeling?” In: arXiv preprint

arXiv:2406.17295 (2024).

[4] Zeyuan Allen-Zhu and Yuanzhi Li. “Physics of Language Models: Part 1, Context-Free

Grammar”. In: arXiv preprint arXiv:2305.13673 (2023).

[5] Victor M Martinez Alvarez, Rareş Roşca, and Cristian G Fălcuţescu. “DyNODE:

Neural ordinary differential equations for dynamics modeling in continuous control”.

In: arXiv preprint arXiv:2009.04278 (2020).

[6] Brandon Amos et al. “On the model-based stochastic value gradient for continuous

reinforcement learning”. In: Learning for Dynamics and Control. PMLR. 2021, pp. 6–

20.

[7] Cem Anil et al. “Path Independent Equilibrium Models Can Better Exploit Test-Time

Computation”. In: Advances in Neural Information Processing Systems 35 (2022),

pp. 7796–7809.

182

[8] Rohan Anil et al. “Palm 2 technical report”. In: arXiv preprint arXiv:2305.10403

(2023).

[9] Abdul Fatir Ansari et al. “Chronos: Learning the language of time series”. In: arXiv

preprint arXiv:2403.07815 (2024).

[10] Anthropic. “Introducing 100K Context Windows”. Anthropic blog. 2023.

[11] Luis M Antunes, Keith T Butler, and Ricardo Grau-Crespo. “Crystal Structure Gen-

eration with Autoregressive Large Language Modeling”. In: arXiv preprint arXiv:2307.04340

(2023).

[12] Marianne Arriola et al. “Block Diffusion: Interpolating Between Autoregressive and

Diffusion Language Models”. In: arXiv preprint arXiv:2503.09573 (2025).

[13] Ben Athiwaratkun et al. “There are many consistent explanations of unlabeled data:

Why you should average”. In: arXiv preprint arXiv:1806.05594 (2018).

[14] Haim Avron and Sivan Toledo. “Randomized algorithms for estimating the trace of an

implicit symmetric positive semi-definite matrix”. In: Journal of the ACM (JACM)

58.2 (2011), pp. 1–34.

[15] Aharon Azulay and Yair Weiss. “Why do deep convolutional networks generalize so

poorly to small image transformations?” In: arXiv preprint arXiv:1805.12177 (2018).

[16] Stephen Balaban. “NVIDIA A100 GPU Benchmarks for Deep Learning”. Lambda

Labs Blog. 2020.

[17] Hangbo Bao, Li Dong, and Furu Wei. “BEiT: BERT Pre-Training of Image Trans-

formers”. In: arXiv preprint arXiv:2106.08254 (2021).

[18] Simon Batzner et al. “E (3)-equivariant graph neural networks for data-efficient and

accurate interatomic potentials”. In: Nature communications 13.1 (2022), pp. 1–11.

183

[19] Irwan Bello et al. “Revisiting resnets: Improved training and scaling strategies”. In:

arXiv preprint arXiv:2103.07579 (2021).

[20] Gregory Benton et al. “Deep Probabilistic Time Series Forecasting over Long Hori-

zons”. In: openreview preprint (2022).

[21] Stella Biderman et al. “Emergent and Predictable Memorization in Large Language

Models”. In: arXiv preprint arXiv:2304.11158 (2023).

[22] Aleksandar Botev et al. “Which priors matter? Benchmarking models for learning

latent dynamics”. In: (2021).

[23] Diane Bouchacourt, Mark Ibrahim, and Ari Morcos. “Grounding inductive biases in

natural images: invariance stems from variations in data”. In: Advances in Neural

Information Processing Systems 34 (2021), pp. 19566–19579.

[24] George EP Box and Gwilym M Jenkins. “Some recent advances in forecasting and

control”. In: Journal of the Royal Statistical Society. Series C (Applied Statistics) 17.2

(1968), pp. 91–109.

[25] Andres M Bran et al. “ChemCrow: Augmenting large-language models with chemistry

tools”. In: arXiv preprint arXiv:2304.05376 (2023).

[26] Johann Brehmer et al. “Does equivariance matter at scale?” In: arXiv preprint arXiv:2410.23179

(2024).

[27] Andrew Brock et al. “High-performance large-scale image recognition without nor-

malization”. In: arXiv preprint arXiv:2102.06171 (2021).

[28] Greg Brockman et al. “Openai gym”. In: arXiv preprint arXiv:1606.01540 (2016).

[29] Michael M Bronstein et al. “Geometric deep learning: going beyond euclidean data”.

In: IEEE Signal Processing Magazine 34.4 (2017), pp. 18–42.

184

[30] Tom Brown et al. “Language models are few-shot learners”. In: Advances in neural

information processing systems 33 (2020), pp. 1877–1901.

[31] Sébastien Bubeck et al. “Sparks of artificial general intelligence: Early experiments

with gpt-4”. In: arXiv preprint arXiv:2303.12712 (2023).

[32] Andrew Campbell et al. “Generative flows on discrete state-spaces: Enabling multi-

modal flows with applications to protein co-design”. In: arXiv preprint arXiv:2402.04997

(2024).

[33] Cristian Challu et al. “N-HiTS: Neural Hierarchical Interpolation for Time Series

Forecasting”. In: arXiv preprint arXiv:2201.12886 (2022).

[34] Kent K Chang et al. “Speak, memory: An archaeology of books known to chatgpt/gpt-

4”. In: arXiv preprint arXiv:2305.00118 (2023).

[35] François Charton. “Linear algebra with transformers”. In: arXiv preprint arXiv:2112.01898

(2021).

[36] Juan Manuel Zambrano Chaves et al. “Tx-LLM: A Large Language Model for Ther-

apeutics”. In: arXiv preprint arXiv:2406.06316 (2024).

[37] Chi Chen and Shyue Ping Ong. “A universal graph deep learning interatomic potential

for the periodic table”. In: Nature Computational Science 2.11 (2022), pp. 718–728.

[38] Chun-Fu Chen, Quanfu Fan, and Rameswar Panda. “Crossvit: Cross-attention multi-

scale vision transformer for image classification”. In: arXiv preprint arXiv:2103.14899

(2021).

[39] Ricky TQ Chen, Brandon Amos, and Maximilian Nickel. “Learning neural event func-

tions for ordinary differential equations”. In: arXiv preprint arXiv:2011.03902 (2020).

[40] Sanyuan Chen et al. “VALL-E 2: Neural Codec Language Models are Human Parity

Zero-Shot Text to Speech Synthesizers”. In: arXiv preprint arXiv:2406.05370 (2024).

185

[41] Tian Qi Chen et al. “Neural ordinary differential equations”. In: Advances in neural

information processing systems. 2018, pp. 6571–6583.

[42] Xiaokang Chen et al. Janus-Pro: Unified Multimodal Understanding and Generation

with Data and Model Scaling. 2025.

[43] Yunpeng Chen et al. Dual Path Networks. 2017.

[44] Zhengdao Chen et al. “Symplectic recurrent neural networks”. In: arXiv preprint

arXiv:1909.13334 (2019).

[45] François Chollet. “Xception: Deep learning with depthwise separable convolutions”.

In: Proceedings of the IEEE conference on computer vision and pattern recognition.

2017, pp. 1251–1258.

[46] Paul F Christiano et al. “Deep reinforcement learning from human preferences”. In:

Advances in neural information processing systems 30 (2017).

[47] Xiangxiang Chu et al. “Twins: Revisiting the design of spatial attention in vision

transformers”. In: arXiv preprint arXiv:2104.13840 (2021).

[48] Kurtland Chua et al. “Deep reinforcement learning in a handful of trials using prob-

abilistic dynamics models”. In: arXiv preprint arXiv:1805.12114 (2018).

[49] Taco Cohen and Max Welling. “Group equivariant convolutional networks”. In: In-

ternational conference on machine learning. PMLR. 2016, pp. 2990–2999.

[50] Miles Cranmer. “Interpretable machine learning for science with PySR and Symboli-

cRegression. jl”. In: arXiv preprint arXiv:2305.01582 (2023).

[51] Miles Cranmer et al. “Lagrangian neural networks”. In: arXiv preprint arXiv:2003.04630

(2020).

186

[52] Ekin D Cubuk et al. “Randaugment: Practical automated data augmentation with

a reduced search space”. In: Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition Workshops. 2020, pp. 702–703.

[53] Yue Cui, Jiandong Xie, and Kai Zheng. “Historical inertia: A neglected but powerful

baseline for long sequence time-series forecasting”. In: Proceedings of the 30th ACM

International Conference on Information & Knowledge Management. 2021, pp. 2965–

2969.

[54] Stéphane d’Ascoli et al. “Convit: Improving vision transformers with soft convolu-

tional inductive biases”. In: arXiv preprint arXiv:2103.10697 (2021).

[55] Fengyuan Dai et al. “Toward de novo protein design from natural language”. In:

bioRxiv (2024), pp. 2024–08.

[56] Zihang Dai et al. “CoAtNet: Marrying Convolution and Attention for All Data Sizes”.

In: arXiv preprint arXiv:2106.04803 (2021).

[57] Sumanth Dathathri et al. “Plug and play language models: A simple approach to

controlled text generation”. In: arXiv preprint arXiv:1912.02164 (2019).

[58] Grégoire Delétang et al. “Language Modeling Is Compression”. In: arXiv preprint

arXiv:2309.10668 (2023).

[59] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”. In: 2009 IEEE

conference on computer vision and pattern recognition. Ieee. 2009, pp. 248–255.

[60] Shaan Desai et al. “Port-Hamiltonian Neural Networks for Learning Explicit Time-

Dependent Dynamical Systems”. In: arXiv preprint arXiv:2107.08024 (2021).

[61] Tim Dettmers et al. “8-bit Optimizers via Block-wise Quantization”. In: 9th Interna-

tional Conference on Learning Representations, ICLR (2022).

187

[62] Xiaohan Ding et al. “Repvgg: Making vgg-style convnets great again”. In: Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021,

pp. 13733–13742.

[63] Alexey Dosovitskiy et al. “An image is worth 16x16 words: Transformers for image

recognition at scale”. In: arXiv preprint arXiv:2010.11929 (2020).

[64] Dazhao Du, Bing Su, and Zhewei Wei. “Preformer: Predictive Transformer with Multi-

Scale Segment-wise Correlations for Long-Term Time Series Forecasting”. In: arXiv

preprint arXiv:2202.11356 (2022).

[65] Haonan Duan et al. “Boosting the Predictive Power of Protein Representations with

a Corpus of Text Annotations”. In: bioRxiv (2024), pp. 2024–07.

[66] Abhimanyu Dubey et al. “The llama 3 herd of models”. In: arXiv preprint arXiv:2407.21783

(2024).

[67] Logan Engstrom et al. A rotation and a translation suffice: Fooling cnns with simple

transformations. 2018.

[68] Logan Engstrom et al. “Exploring the landscape of spatial robustness”. In: Interna-

tional conference on machine learning. PMLR. 2019, pp. 1802–1811.

[69] Marc Finzi, Ke Alexander Wang, and Andrew Gordon Wilson. “Simplifying hamil-

tonian and lagrangian neural networks via explicit constraints”. In: arXiv preprint

arXiv:2010.13581 (2020).

[70] Marc Finzi, Max Welling, and Andrew Gordon Wilson. “A Practical Method for

Constructing Equivariant Multilayer Perceptrons for Arbitrary Matrix Groups”. In:

arXiv preprint arXiv:2104.09459 (2021).

188

[71] Marc Finzi et al. “Generalizing convolutional neural networks for equivariance to

lie groups on arbitrary continuous data”. In: International Conference on Machine

Learning. PMLR. 2020, pp. 3165–3176.

[72] Daniel Flam-Shepherd and Alán Aspuru-Guzik. “Language models can generate molecules,

materials, and protein binding sites directly in three dimensions as XYZ, CIF, and

PDB files”. In: arXiv preprint arXiv:2305.05708 (2023).

[73] Daniel Flam-Shepherd, Kevin Zhu, and Alán Aspuru-Guzik. “Atom-by-atom protein

generation and beyond with language models”. In: arXiv preprint arXiv:2308.09482

(2023).

[74] Nathan Frey et al. Neural Scaling of Deep Chemical Models. 2022.

[75] Nathan C Frey et al. “Neural scaling of deep chemical models”. In: Nature Machine

Intelligence 5.11 (2023), pp. 1297–1305.

[76] Philip Gage. “A new algorithm for data compression”. In: The C Users Journal archive

12 (1994), pp. 23–38.

[77] Shanghua Gao et al. “Res2net: A new multi-scale backbone architecture”. In: IEEE

transactions on pattern analysis and machine intelligence (2019).

[78] Jacob R Gardner et al. “GPyTorch: Blackbox Matrix-Matrix Gaussian Process In-

ference with GPU Acceleration”. In: Advances in Neural Information Processing Sys-

tems. 2018.

[79] Federico Garza et al. “StatsForecast: Lightning fast forecasting with statistical and

econometric models”. In: PyCon: Salt Lake City, UT, USA (2022).

[80] Arnab Ghosh et al. “Steer: Simple temporal regularization for neural odes”. In: arXiv

preprint arXiv:2006.10711 (2020).

189

[81] Rakshitha Godahewa et al. “Monash time series forecasting archive”. In: arXiv preprint

arXiv:2105.06643 (2021).

[82] Micah Goldblum et al. “The No Free Lunch Theorem, Kolmogorov Complexity, and

the Role of Inductive Biases in Machine Learning”. In: arXiv preprint arXiv:2304.05366

(2023).

[83] Siavash Golkar et al. “xval: A continuous number encoding for large language models”.

In: arXiv preprint arXiv:2310.02989 (2023).

[84] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[85] Samuel J Greydanus, Misko Dzumba, and Jason Yosinski. “Hamiltonian neural net-

works”. In: (2019).

[86] Nate Gruver et al. “Fine-Tuned Language Models Generate Stable Inorganic Materials

as Text”. In: arXiv preprint arXiv:2402.04379 (2024).

[87] Nate Gruver et al. “Large Language Models Are Zero-Shot Time Series Forecasters”.

In: Thirty-seventh Conference on Neural Information Processing Systems. 2023.

[88] Nate Gruver et al. “Large language models are zero-shot time series forecasters”. In:

Advances in Neural Information Processing Systems 36 (2024).

[89] Nate Gruver et al. “Protein Design with Guided Discrete Diffusion”. In: arXiv preprint

arXiv:2305.20009 (2023).

[90] Nate Gruver et al. “The lie derivative for measuring learned equivariance”. In: arXiv

preprint arXiv:2210.02984 (2022).

[91] Jian Guo et al. “GluonCV and GluonNLP: Deep Learning in Computer Vision and

Natural Language Processing”. In: Journal of Machine Learning Research 21.23 (2020),

pp. 1–7.

190

[92] Jayesh K Gupta et al. “A general framework for structured learning of mechanical

systems”. In: arXiv preprint arXiv:1902.08705 (2019).

[93] Jayesh K Gupta et al. “Structured mechanical models for robot learning and control”.

In: Learning for Dynamics and Control. PMLR. 2020, pp. 328–337.

[94] Tuomas Haarnoja et al. “Soft actor-critic algorithms and applications”. In: arXiv

preprint arXiv:1812.05905 (2018).

[95] Jürgen Hafner. “Ab-initio simulations of materials using VASP: Density-functional

theory and beyond”. In: Journal of computational chemistry 29.13 (2008), pp. 2044–

2078.

[96] Brian C Hall. “Lie groups, Lie algebras, and representations”. In: Quantum Theory

for Mathematicians. Springer, 2013, pp. 333–366.

[97] Dongyoon Han et al. “Rethinking Channel Dimensions for Efficient Model Design”.

In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition. 2021, pp. 732–741.

[98] Kai Han et al. “Transformer in transformer”. In: arXiv preprint arXiv:2103.00112

(2021).

[99] Thomas Hayes et al. “Simulating 500 million years of evolution with a language

model”. In: Science (2025), eads0018.

[100] Tomas Hayes et al. “Simulating 500 million years of evolution with a language model”.

In: bioRxiv (2024), pp. 2024–07.

[101] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015.

[102] Kaiming He et al. “Masked Autoencoders Are Scalable Vision Learners”. In: arXiv:2111.06377

(2021).

191

[103] Tong He et al. “Bag of Tricks for Image Classification with Convolutional Neural

Networks”. In: arXiv preprint arXiv:1812.01187 (2018).

[104] Stefan Hegselmann et al. “Tabllm: Few-shot classification of tabular data with large

language models”. In: International Conference on Artificial Intelligence and Statis-

tics. PMLR. 2023, pp. 5549–5581.

[105] Dan Hendrycks et al. “Measuring massive multitask language understanding”. In:

arXiv preprint arXiv:2009.03300 (2020).

[106] Byeongho Heo et al. “Rethinking spatial dimensions of vision transformers”. In: arXiv

preprint arXiv:2103.16302 (2021).

[107] Julien Herzen et al. “Darts: User-friendly modern machine learning for time series”.

In: The Journal of Machine Learning Research 23.1 (2022), pp. 5442–5447.

[108] Hansika Hewamalage, Klaus Ackermann, and Christoph Bergmeir. “Forecast evalu-

ation for data scientists: common pitfalls and best practices”. In: Data Mining and

Knowledge Discovery 37.2 (2023), pp. 788–832.

[109] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising diffusion probabilistic mod-

els”. In: Advances in neural information processing systems 33 (2020), pp. 6840–6851.

[110] Andreas Hochlehnert et al. “Learning contact dynamics using physically structured

neural networks”. In: International Conference on Artificial Intelligence and Statis-

tics. PMLR. 2021, pp. 2152–2160.

[111] Ari Holtzman et al. “The curious case of neural text degeneration”. In: arXiv preprint

arXiv:1904.09751 (2019).

[112] J. Edward Hu et al. “LoRA: Low-Rank Adaptation of Large Language Models”. In:

ArXiv abs/2106.09685 (2021).

192

[113] Jie Hu, Li Shen, and Gang Sun. “Squeeze-and-excitation networks”. In: Proceedings

of the IEEE conference on computer vision and pattern recognition. 2018, pp. 7132–

7141.

[114] Gao Huang et al. “Densely connected convolutional networks”. In: Proceedings of the

IEEE conference on computer vision and pattern recognition. 2017, pp. 4700–4708.

[115] Kexin Huang et al. “Automated Hypothesis Validation with Agentic Sequential Fal-

sifications”. In: arXiv preprint arXiv:2502.09858 (2025).

[116] Michael J Hutchinson et al. “Lietransformer: Equivariant self-attention for lie groups”.

In: International Conference on Machine Learning. PMLR. 2021, pp. 4533–4543.

[117] Rob J Hyndman et al. Forecasting with exponential smoothing: the state space ap-

proach. Springer Science & Business Media, 2008.

[118] Anubhav Jain et al. “Commentary: The Materials Project: A materials genome ap-

proach to accelerating materials innovation”. In: APL materials 1.1 (2013).

[119] Michael Janner et al. “When to trust your model: Model-based policy optimization”.

In: arXiv preprint arXiv:1906.08253 (2019).

[120] Rui Jiao et al. “Crystal Structure Prediction by Joint Equivariant Diffusion on Lat-

tices and Fractional Coordinates”. In: Workshop on”Machine Learning for Materi-

als”ICLR 2023. 2023.

[121] Pengzhan Jin et al. “SympNets: Intrinsic structure-preserving symplectic networks

for identifying Hamiltonian systems”. In: Neural Networks 132 (2020), pp. 166–179.

[122] John Jumper et al. “Highly accurate protein structure prediction with AlphaFold”.

In: Nature 596.7873 (2021), pp. 583–589.

[123] Kaggle and EyePacs. Kaggle Diabetic Retinopathy Detection. 2015.

193

[124] Sanyam Kapoor et al. “Large Language Models Must Be Taught to Know What They

Don’t Know”. In: arXiv preprint arXiv:2406.08391 (2024).

[125] George Em Karniadakis et al. “Physics-informed machine learning”. In: Nature Re-

views Physics 3.6 (2021), pp. 422–440.

[126] Tero Karras et al. “Alias-free generative adversarial networks”. In: Advances in Neural

Information Processing Systems 34 (2021).

[127] Jakob Nikolas Kather et al. “Multi-class texture analysis in colorectal cancer histol-

ogy”. In: Scientific reports 6 (2016), p. 27988.

[128] Shruti Kaushik et al. “AI in healthcare: time-series forecasting using statistical, neu-

ral, and ensemble architectures”. In: Frontiers in big data 3 (2020), p. 4.

[129] Scott Kirklin et al. “The Open Quantum Materials Database (OQMD): assessing the

accuracy of DFT formation energies”. In: npj Computational Materials 1.1 (2015),

pp. 1–15.

[130] Guokun Lai et al. “Modeling long-and short-term temporal patterns with deep neu-

ral networks”. In: The 41st International ACM SIGIR Conference on Research &

Development in Information Retrieval. 2018, pp. 95–104.

[131] Samuli Laine and Timo Aila. “Temporal ensembling for semi-supervised learning”.

In: arXiv preprint arXiv:1610.02242 (2016).

[132] Janice Lan et al. “AdsorbML: Accelerating Adsorption Energy Calculations with Ma-

chine Learning”. In: arXiv preprint arXiv:2211.16486 (2022).

[133] Dmitry Laptev et al. “Ti-pooling: transformation-invariant pooling for feature learn-

ing in convolutional neural networks”. In: Proceedings of the IEEE conference on

computer vision and pattern recognition. 2016, pp. 289–297.

194

[134] Colin Lea et al. “Temporal convolutional networks: A unified approach to action seg-

mentation”. In: Computer Vision–ECCV 2016 Workshops: Amsterdam, The Nether-

lands, October 8-10 and 15-16, 2016, Proceedings, Part III 14. Springer. 2016, pp. 47–

54.

[135] Yann LeCun, Yoshua Bengio, et al. “Convolutional networks for images, speech, and

time series”. In: The handbook of brain theory and neural networks 3361.10 (1995),

p. 1995.

[136] Yann LeCun et al. “Handwritten digit recognition with a back-propagation network”.

In: Advances in neural information processing systems 2 (1989).

[137] Katherine Lee et al. “Deduplicating training data makes language models better”. In:

arXiv preprint arXiv:2107.06499 (2021).

[138] Kookjin Lee, Nathaniel Trask, and Panos Stinis. “Machine learning structure preserv-

ing brackets for forecasting irreversible processes”. In: Advances in Neural Information

Processing Systems 34 (2021).

[139] Benedict J Leimkuhler and Robert D Skeel. “Symplectic numerical integrators in con-

strained Hamiltonian systems”. In: Journal of Computational Physics 112.1 (1994),

pp. 117–125.

[140] Karel Lenc and Andrea Vedaldi. “Understanding image representations by measur-

ing their equivariance and equivalence”. In: Proceedings of the IEEE conference on

computer vision and pattern recognition. 2015, pp. 991–999.

[141] Shuo-Hui Li et al. “Neural canonical transformation with symplectic flows”. In: Phys-

ical Review X 10.2 (2020), p. 021020.

[142] Xiang Li et al. “Selective kernel networks”. In: Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition. 2019, pp. 510–519.

195

[143] Ziming Li et al. “Machine-Learning Non-Conservative Dynamics for New-Physics De-

tection”. In: arXiv preprint arXiv:2106.00026 (2021).

[144] Weixin Liang et al. “Can large language models provide useful feedback on research

papers? A large-scale empirical analysis”. In: NEJM AI 1.8 (2024), AIoa2400196.

[145] Hanxiao Liu et al. “Pay Attention to MLPs”. In: arXiv preprint arXiv:2105.08050

(2021).

[146] Tiedong Liu and Bryan Kian Hsiang Low. “Goat: Fine-tuned LLaMA Outperforms

GPT-4 on Arithmetic Tasks”. In: arXiv preprint arXiv:2305.14201 (2023).

[147] Yinhan Liu et al. “Multilingual Denoising Pre-training for Neural Machine Trans-

lation”. In: Transactions of the Association for Computational Linguistics 8 (2020),

pp. 726–742.

[148] Ze Liu et al. “Swin transformer: Hierarchical vision transformer using shifted win-

dows”. In: arXiv preprint arXiv:2103.14030 (2021).

[149] Ziming Liu et al. “Physics-Augmented Learning: A New Paradigm Beyond Physics-

Informed Learning”. In: arXiv preprint arXiv:2109.13901 (2021).

[150] Michael Lutter, Christian Ritter, and Jan Peters. “Deep lagrangian networks: Using

physics as model prior for deep learning”. In: arXiv preprint arXiv:1907.04490 (2019).

[151] Michael Lutter, Christian Ritter, and Jan Peters. “Deep lagrangian networks: Using

physics as model prior for deep learning”. In: arXiv preprint arXiv:1907.04490 (2019).

[152] Dhruv Mahajan et al. “Exploring the limits of weakly supervised pretraining”. In:

Proceedings of the European conference on computer vision (ECCV). 2018, pp. 181–

196.

[153] Dhruv Kumar Mahajan et al. “Exploring the Limits of Weakly Supervised Pretrain-

ing”. In: ECCV. 2018.

196

[154] Diego Marcos et al. “Rotation equivariant vector field networks”. In: Proceedings of

the IEEE International Conference on Computer Vision. 2017, pp. 5048–5057.

[155] Sean McLeish et al. “Transformers Can Do Arithmetic with the Right Embeddings”.

In: arXiv preprint arXiv:2405.17399 (2024).

[156] Dushyant Mehta et al. “XNect”. In: ACM Transactions on Graphics 39.4 (2020). issn:

1557-7368. doi: 10.1145/3386569.3392410.

[157] William Merrill and Ashish Sabharwal. “The parallelism tradeoff: Limitations of log-

precision transformers”. In: Transactions of the Association for Computational Lin-

guistics 11 (2023), pp. 531–545.

[158] Tomas Mikolov et al. “Recurrent neural network based language model.” In: Inter-

speech. Vol. 2. 3. Makuhari. 2010, pp. 1045–1048.

[159] Suvir Mirchandani et al. “Large language models as general pattern machines”. In:

arXiv preprint arXiv:2307.04721 (2023).

[160] Seungwhan Moon et al. “Anymal: An efficient and scalable any-modality augmented

language model”. In: arXiv preprint arXiv:2309.16058 (2023).

[161] Steffen Moritz and Thomas Bartz-Beielstein. “imputeTS: time series missing value

imputation in R.” In: R J. 9.1 (2017), p. 207.

[162] Allen Nie et al. “EVOLvE: Evaluating and Optimizing LLMs For Exploration”. In:

arXiv preprint arXiv:2410.06238 (2024).

[163] Alaaeldin El-Nouby et al. “XCiT: Cross-Covariance Image Transformers”. In: arXiv

preprint arXiv:2106.09681 (2021).

[164] Maxwell Nye et al. “Show your work: Scratchpads for intermediate computation with

language models”. In: arXiv preprint arXiv:2112.00114 (2021).

197

https://doi.org/10.1145/3386569.3392410

[165] Chris Olah et al. “Naturally occurring equivariance in neural networks”. In: Distill

5.12 (2020), e00024–004.

[166] Catherine Olsson et al. “In-context Learning and Induction Heads”. In: Transformer

Circuits Thread (2022). https://transformer-circuits.pub/2022/in-context-learning-and-

induction-heads/index.html.

[167] Shyue Ping Ong et al. “Python Materials Genomics (pymatgen): A robust, open-

source python library for materials analysis”. In: Computational Materials Science 68

(2013), pp. 314–319.

[168] Aaron van den Oord et al. “Wavenet: A generative model for raw audio”. In: arXiv

preprint arXiv:1609.03499 (2016).

[169] OpenAI. “GPT-4 technical report”. In: arXiv (2023).

[170] Boris N Oreshkin et al. “N-BEATS: Neural basis expansion analysis for interpretable

time series forecasting”. In: Journal of Machine Learning Research 21.111 (2020),

pp. 1–63.

[171] Long Ouyang et al. “Training language models to follow instructions with human feed-

back”. In: Advances in Neural Information Processing Systems 35 (2022), pp. 27730–

27744.

[172] Feiyang Pan et al. “Trust the Model When It Is Confident: Masked Model-based

Actor-Critic”. In: arXiv preprint arXiv:2010.04893 (2020).

[173] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learn-

ing Library”. In: Advances in Neural Information Processing Systems 32. Ed. by H.

Wallach et al. Curran Associates, Inc., 2019, pp. 8024–8035.

[174] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning

Library”. In: Neural Information Processing Systems. 2019.

198

[175] Liudmila Prokhorenkova et al. “CatBoost: unbiased boosting with categorical fea-

tures”. In: Advances in Neural Information Processing Systems. Vol. 31. NeurIPS.

2018, pp. 6638–6648.

[176] Alec Radford et al. “Learning transferable visual models from natural language su-

pervision”. In: International conference on machine learning. PMLR. 2021, pp. 8748–

8763.

[177] Ilija Radosavovic et al. “Designing network design spaces”. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, pp. 10428–

10436.

[178] Maithra Raghu et al. Do Vision Transformers See Like Convolutional Neural Net-

works? 2021.

[179] Raghunathan Ramakrishnan et al. “Quantum chemistry structures and properties of

134 kilo molecules”. In: Scientific data 1.1 (2014), pp. 1–7.

[180] Scott Reed et al. “A generalist agent”. In: arXiv preprint arXiv:2205.06175 (2022).

[181] Antônio H Ribeiro and Thomas B Schön. “How convolutional neural networks deal

with aliasing”. In: ICASSP 2021-2021 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). IEEE. 2021, pp. 2755–2759.

[182] James E Saal et al. “Materials design and discovery with high-throughput density

functional theory: the open quantum materials database (OQMD)”. In: Jom 65

(2013), pp. 1501–1509.

[183] Subham Sahoo et al. “Simple and effective masked diffusion language models”. In:

Advances in Neural Information Processing Systems 37 (2024), pp. 130136–130184.

[184] David Salinas et al. “DeepAR: Probabilistic forecasting with autoregressive recurrent

networks”. In: International Journal of Forecasting 36.3 (2020), pp. 1181–1191.

199

[185] Guillaume Sanchez et al. “Stay on topic with Classifier-Free Guidance”. In: arXiv

preprint arXiv:2306.17806 (2023).

[186] Mark Sandler et al. “Mobilenetv2: Inverted residuals and linear bottlenecks”. In:

Proceedings of the IEEE conference on computer vision and pattern recognition. 2018,

pp. 4510–4520.

[187] Victor Garcia Satorras, Emiel Hoogeboom, and MaxWelling. “E (n) equivariant graph

neural networks”. In: arXiv preprint arXiv:2102.09844 (2021).

[188] Philipp Schmid. LLaMA 2 on Amazon Sagemaker, a Benchmark. https://huggingface.

co/blog/llama-sagemaker-benchmark. 2023.

[189] Avi Schwarzschild et al. “Can you learn an algorithm? generalizing from easy to hard

problems with recurrent networks”. In: Advances in Neural Information Processing

Systems 34 (2021), pp. 6695–6706.

[190] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From

theory to algorithms. Cambridge university press, 2014.

[191] Nima Shoghi et al. “From molecules to materials: Pre-training large generalizable

models for atomic property prediction”. In: arXiv preprint arXiv:2310.16802 (2023).

[192] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for large-

scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

[193] Samuel Stanton et al. “Accelerating bayesian optimization for biological sequence de-

sign with denoising autoencoders”. In: International Conference on Machine Learning.

PMLR. 2022, pp. 20459–20478.

[194] Ke Sun et al. High-Resolution Representations for Labeling Pixels and Regions. 2019.

[195] Wenhao Sun et al. “The thermodynamic scale of inorganic crystalline metastability”.

In: Science advances 2.11 (2016), e1600225.

200

https://huggingface.co/blog/llama-sagemaker-benchmark
https://huggingface.co/blog/llama-sagemaker-benchmark

[196] Ilya Sutskever. “An observation on Generalization”. Workshop on Large Language

Models and Transformers. 2023.

[197] Christian Szegedy et al. Inception-v4, Inception-ResNet and the Impact of Residual

Connections on Learning. 2016.

[198] Mingxing Tan and Quoc Le. “Efficientnet: Rethinking model scaling for convolutional

neural networks”. In: International Conference on Machine Learning. PMLR. 2019,

pp. 6105–6114.

[199] Mingxing Tan and Quoc V Le. “Efficientnetv2: Smaller models and faster training”.

In: arXiv preprint arXiv:2104.00298 (2021).

[200] Mingxing Tan and Quoc V. Le. MixConv: Mixed Depthwise Convolutional Kernels.

2019.

[201] Mingxing Tan et al. MnasNet: Platform-Aware Neural Architecture Search for Mobile.

2019.

[202] Emanuel Todorov, Tom Erez, and Yuval Tassa. “Mujoco: A physics engine for model-

based control”. In: 2012 IEEE/RSJ International Conference on Intelligent Robots

and Systems. IEEE. 2012, pp. 5026–5033.

[203] Ilya Tolstikhin et al. “Mlp-mixer: An all-mlp architecture for vision”. In: arXiv preprint

arXiv:2105.01601 (2021).

[204] Yunjin Tong et al. “Symplectic neural networks in Taylor series form for Hamiltonian

systems”. In: Journal of Computational Physics 437 (2021), p. 110325.

[205] Hugo Touvron et al. “Going deeper with image transformers”. In: arXiv preprint

arXiv:2103.17239 (2021).

[206] Hugo Touvron et al. “Llama 2: Open Foundation and Fine-Tuned Chat Models”. In:

ArXiv abs/2307.09288 (2023).

201

[207] Hugo Touvron et al. “LLaMA: Open and Efficient Foundation Language Models”. In:

ArXiv abs/2302.13971 (2023).

[208] Hugo Touvron et al. “Llama: Open and efficient foundation language models”. In:

arXiv preprint arXiv:2302.13971 (2023).

[209] Hugo Touvron et al. “Resmlp: Feedforward networks for image classification with

data-efficient training”. In: arXiv preprint arXiv:2105.03404 (2021).

[210] Hugo Touvron et al. “Training data-efficient image transformers & distillation through

attention”. In: International Conference on Machine Learning. PMLR. 2021, pp. 10347–

10357.

[211] Juan R Trapero, Nikolaos Kourentzes, and Robert Fildes. “On the identification of

sales forecasting models in the presence of promotions”. In: Journal of the operational

Research Society 66.2 (2015), pp. 299–307.

[212] Asher Trockman and J Zico Kolter. “Patches are all you need?” In: arXiv preprint

arXiv:2201.09792 (2022).

[213] Cristina Vasconcelos et al. “Impact of aliasing on generalization in deep convolutional

networks”. In: Proceedings of the IEEE/CVF International Conference on Computer

Vision. 2021, pp. 10529–10538.

[214] Bastiaan S Veeling et al. “Rotation equivariant cnns for digital pathology”. In: Inter-

national Conference on Medical image computing and computer-assisted intervention.

Springer. 2018, pp. 210–218.

[215] Eric Wallace et al. “Universal adversarial triggers for attacking and analyzing NLP”.

In: arXiv preprint arXiv:1908.07125 (2019).

[216] Chien-Yao Wang et al. CSPNet: A New Backbone that can Enhance Learning Capa-

bility of CNN. 2019.

202

[217] Tingwu Wang and Jimmy Ba. “Exploring model-based planning with policy net-

works”. In: arXiv preprint arXiv:1906.08649 (2019).

[218] Xinlong Wang et al. Emu3: Next-Token Prediction is All You Need. 2024.

[219] Logan Ward et al. “Matminer: An open source toolkit for materials data mining”. In:

Computational Materials Science 152 (2018), pp. 60–69.

[220] Jason Wei et al. “Chain of thought prompting elicits reasoning in large language

models”. In: arXiv preprint arXiv:2201.11903 (2022).

[221] JasonWei et al. “Finetuned language models are zero-shot learners”. In: arXiv preprint

arXiv:2109.01652 (2021).

[222] Maurice Weiler and Gabriele Cesa. “General E(2)-Equivariant Steerable CNNs”. In:

Conference on Neural Information Processing Systems (NeurIPS). 2019.

[223] Andrew D White. “The future of chemistry is language”. In: Nature Reviews Chem-

istry (2023), pp. 1–2.

[224] Ross Wightman. PyTorch Image Models. https://github.com/rwightman/pytorch-

image-models. 2019. doi: 10.5281/zenodo.4414861.

[225] Ross Wightman, Hugo Touvron, and Hervé Jégou. “Resnet strikes back: An improved

training procedure in timm”. In: arXiv preprint arXiv:2110.00476 (2021).

[226] Andrew Wilson and Ryan Adams. “Gaussian process kernels for pattern discovery

and extrapolation”. In: International conference on machine learning. PMLR. 2013,

pp. 1067–1075.

[227] Thomas Wolf et al. “Transformers: State-of-the-Art Natural Language Processing”.

In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language

Processing: System Demonstrations. Online: Association for Computational Linguis-

tics, Oct. 2020, pp. 38–45.

203

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://doi.org/10.5281/zenodo.4414861

[228] Daniel E Worrall et al. “Harmonic networks: Deep translation and rotation equiv-

ariance”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2017, pp. 5028–5037.

[229] Felix Wu et al. “Simplifying graph convolutional networks”. In: International confer-

ence on machine learning. PMLR. 2019, pp. 6861–6871.

[230] Haixu Wu et al. “Autoformer: Decomposition transformers with auto-correlation for

long-term series forecasting”. In: Advances in Neural Information Processing Systems

34 (2021).

[231] Saining Xie et al. “Aggregated residual transformations for deep neural networks”.

In: Proceedings of the IEEE conference on computer vision and pattern recognition.

2017, pp. 1492–1500.

[232] Tian Xie et al. “Crystal diffusion variational autoencoder for periodic material gen-

eration”. In: arXiv preprint arXiv:2110.06197 (2021).

[233] Shiying Xiong et al. “Nonseparable symplectic neural networks”. In: arXiv preprint

arXiv:2010.12636 (2020).

[234] Hao Xue and Flora D. Salim. PromptCast: A New Prompt-based Learning Paradigm

for Time Series Forecasting. 2023.

[235] I. Zeki Yalniz et al. “Billion-scale semi-supervised learning for image classification”.

In: CoRR abs/1905.00546 (2019).

[236] Mengjiao Yang et al. “Scalable Diffusion for Materials Generation”. In: arXiv preprint

arXiv:2311.09235 (2023).

[237] Fisher Yu et al. Deep Layer Aggregation. 2019.

[238] Lijun Yu et al. “Language Model Beats Diffusion–Tokenizer is Key to Visual Gener-

ation”. In: arXiv preprint arXiv:2310.05737 (2023).

204

[239] Zheng Yuan et al. “How well do Large Language Models perform in Arithmetic tasks?”

In: arXiv preprint arXiv:2304.02015 (2023).

[240] Sangdoo Yun et al. “Cutmix: Regularization strategy to train strong classifiers with

localizable features”. In: Proceedings of the IEEE/CVF international conference on

computer vision. 2019, pp. 6023–6032.

[241] Ailing Zeng et al. “Are transformers effective for time series forecasting?” In: arXiv

preprint arXiv:2205.13504 (2022).

[242] Claudio Zeni et al. “MatterGen: a generative model for inorganic materials design”.

In: arXiv preprint arXiv:2312.03687 (2023).

[243] Hang Zhang et al. “ResNeSt: Split-Attention Networks”. In: arXiv preprint arXiv:2004.08955

(2020).

[244] Hongyi Zhang et al. “mixup: Beyond empirical risk minimization”. In: arXiv preprint

arXiv:1710.09412 (2017).

[245] Richard Zhang. “Making convolutional networks shift-invariant again”. In: Interna-

tional conference on machine learning. PMLR. 2019, pp. 7324–7334.

[246] Tianyi Zhang et al. QPyTorch: A Low-Precision Arithmetic Simulation Framework.

2019.

[247] Zhi Zhang et al. “Bag of Freebies for Training Object Detection Neural Networks”.

In: arXiv preprint arXiv:1902.04103 (2019).

[248] Zizhao Zhang et al. “Nested hierarchical transformer: Towards accurate, data-efficient

and interpretable visual understanding”. In: Proceedings of the AAAI Conference on

Artificial Intelligence. Vol. 36. 2022, pp. 3417–3425.

205

[249] Artem Zholus et al. “BindGPT: A Scalable Framework for 3D Molecular Design via

Language Modeling and Reinforcement Learning”. In: arXiv preprint arXiv:2406.03686

(2024).

[250] Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. “Benchmarking

Energy-Conserving Neural Networks for Learning Dynamics from Data”. In: Learning

for Dynamics and Control. PMLR. 2021, pp. 1218–1229.

[251] Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. “Dissipative symoden:

Encoding hamiltonian dynamics with dissipation and control into deep learning”. In:

arXiv preprint arXiv:2002.08860 (2020).

[252] Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. “Extending La-

grangian and Hamiltonian Neural Networks with Differentiable Contact Models”. In:

Advances in Neural Information Processing Systems 34 (2021).

[253] Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty. “Symplectic ode-

net: Learning hamiltonian dynamics with control”. In: arXiv preprint arXiv:1909.12077

(2019).

[254] Haoyi Zhou et al. “Informer: Beyond efficient transformer for long sequence time-series

forecasting”. In: Proceedings of AAAI. 2021.

[255] Hattie Zhou et al. “What algorithms can transformers learn? a study in length gen-

eralization”. In: arXiv preprint arXiv:2310.16028 (2023).

[256] Tian Zhou et al. “FEDformer: Frequency enhanced decomposed transformer for long-

term series forecasting”. In: Proc. 39th International Conference on Machine Learning

(ICML 2022). Baltimore, Maryland, 2022.

[257] Yanzhao Zhou et al. “Oriented response networks”. In: Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition. 2017, pp. 519–528.

206

[258] Zhaocheng Zhu et al. “Large language models can learn rules”. In: arXiv preprint

arXiv:2310.07064 (2023).

207

	Dedication
	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	List of Appendices
	Introduction
	I Distilling Architecture Constraints for Learning Symmetric Functions
	Deconstructing the Inductive Biases of Hamiltonian Neural Networks
	Introduction
	Related Work
	Background
	Deconstructing Hamiltonian neural networks
	Energy conservation
	Symplectic vector fields
	Second-order structure
	Functional complexity

	Distilling the minimal inductive biases
	Conclusion

	The Lie Derivative for Measuring Learned Equivariance
	Introduction
	Background
	Image classification and translational equivariance
	Continuous signals and aliasing

	Related Work
	The Lie derivative
	Mathematical formulation
	Efficient implementation
	Alternative metrics

	Layer-wise effects on equivariance
	Trends in learned equivariance
	Methodology
	Equivariance across architectures
	Effects of Training and Scale
	Equivariance out of distribution
	Why aren't CNNs more equivariant than ViTs?
	Learning rotation equivariance

	Conclusion

	II Sequence Modeling for Numerical Data: Transfer Success and Limitations
	Large Language Models Are Zero-Shot Time Series Forecasters
	Introduction
	Background
	Related work
	Continuous densities with autoregressive models
	LLMTime: retrofitting LLMs for forecasting
	Time series evaluations
	LLMTime evaluation
	Deterministic forecasts
	Probabilistic forecasts
	Temporal holdouts

	Connections with simplicity bias
	Promises of jointly modeling text and numerical data
	Heterogeneous scientific data
	Conclusion

	Fine-Tuned Large Language Models Generate Stable Inorganic Materials as Text
	Introduction
	Related work
	Background
	Parameterizing bulk materials
	Fine-tuning approach
	Dataset and Augmentations
	String encoding and prompts

	Evaluating samples
	Energy above hull

	Results
	Unconditional generation
	Conditional sampling

	Connections with simplicity bias and LLMTime
	Conclusion

	Open Challenges in Applying Language Models to Numerical Data
	Introduction
	Related Work
	Preliminaries
	Motivating problem setting
	Computational chemistry as a test bed

	Theoretical limitations
	Practical challenges
	Experimental Setup
	Model Architecture
	Tokenization
	Text Pretraining
	Conclusion

	Conclusion
	Appendix: Deconstructing Learned Symmetries
	Appendix Outline
	Mathematical Details
	Energy Conservation for Neural ODEs
	HNN Energy Conservation
	Symplecticity

	Mujoco Experiment Details
	Additional Experimental Results
	Comparison of loss functions
	Additional Systems

	Aliasing Extended Discussion
	Lie Groups, Lie Derivatives, and LEE
	Lie Groups and Local/Global Notions of Equivariance
	Lie Derivative Chain Rule
	Stochastic Trace Estimator for Layerwise Metric

	LEE Theorems
	LEE and consistency regularization
	Translation LEE and aliasing

	Learned Equivariance Experiments
	Layer-wise Equivariance Baselines
	Subnetwork Equivariance Analysis
	Model List
	Alternative End-to-End Equivariance Metrics
	LEE for Additional Transformations
	Rotated MNIST Finetuning

	Appendix: Transfer from Text to Numerical Data
	Detailed method and hyperparameters
	Input scaling
	Validation tuning
	Likelihood adjustment for GPT Models

	Benchmarking details and extended results
	Darts datasets
	Monash datasets
	Informer datasets
	Synthetic datasets
	Darts full probabilistic results
	Informer datasets with extended horizon
	Monash dataset visualizations
	Informer dataset visualizations

	Simplicity bias experiments
	Full synthetic predictions

	GPT-4
	Multimodal Text Understanding of Time Series

	Appendix: Language Modeling for 3D Crystal Data
	Training Details
	Numerical Formatting
	Training with Stochastic Prompts
	Extended Materials Project Dataset
	Training Hyperparameters and Details
	Role of Text Pretraining

	Model Evaluation
	Evaluation with ML potentials and DFT
	Stability Checks and Percentages
	Trade-Offs in Sampling
	``Hallucination'' Examples
	Increase in Perplexity under Transformation (IPT)
	Diversity and Novelty Calculation
	Sampling Speed

	Template Method Baseline

	Appendix: Challenges in Applying Language Models to Numerical Data
	Conditional vs Unconditional Modeling
	Learning Speedup from Loss Masking
	GNN Training Details
	xVal Ablations
	Scaling Experiment
	Hyperparameter Settings
	From-scratch models
	Fine-tuned models

	MAE Numbers with Standard Errors
	RASP-L Programs for All Pairwise Distances

	Bibliography

