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Abstract

Given a behavior of interest, automatically determining the corresponding respon-

sible entity (or say, the root cause) is a task of critical importance in various scientific

fields, especially in the program static analysis. Classical static analysis techniques (e.g.

dependency analysis, taint analysis, slicing, etc.) assist programmers in narrowing down

the scope of responsibility, but none of them can explicitly identify the responsible en-

tity. Meanwhile, the causality analysis is generally not pertinent for analyzing programs,

and the structural equations model (SEM) of actual causality misses some information

inherent in programs (e.g. temporal information, and whether an entity is free to make

choices or not), making the corresponding program analysis imprecise.

In this dissertation, inspired by a classic forest fire example used in defining causal-

ity, a novel definition of responsibility based on the abstraction of trace semantics is

proposed, which is expressive and generic to cope with both program analyses and tasks

in other scientific fields. Briefly speaking, an action aR is responsible for behavior B in

a certain trace, if and only if aR is free to make choices, and such a choice is the first

one that ensures the occurrence of B in that trace. Such a definition makes use of the

information regarding the temporal ordering of actions, as well as whether an action has

free choices or not. In addition, our definition of responsibility takes into account the
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ABSTRACT

cognizance of observer, which, to the best of our knowledge, is a new innovative idea in

program analysis. Compared to current dependency and causality analysis methods, the

responsibility analysis is demonstrated to be more precise in many examples.

Furthermore, this dissertation proposes a sound framework of abstract responsibility

analysis, which allows a balance between cost and precision to solve the undecidable

problem of responsibility. Essentially, the abstract analysis builds a trace partitioning

automaton by an iteration of over-approximating forward reachability analysis with trace

partitioning and under-approximating/over-approximating backward impossible failure

accessibility analysis, and determines the bounds of potentially responsible entities along

paths in the automaton. Unlike the concrete responsibility analysis identifies exactly a

single action as the responsible entity along every concrete trace, the abstract analysis

may lose some precision and find multiple actions potentially responsible along each

automaton path. However, the soundness is preserved, and every responsible entity in

the concrete is guaranteed to be also found responsible in the abstract.
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Introduction

“Everybody is responsible for the fate of the world.”
Gu Yanwu (1613 -1682)

This well-known aphorism from an ancient Chinese philosopher encourages ordinary

people (not only the ruling class) to take the responsibility for the prosperity of society.

Yet, such a positive spirit does not help in solving specific problems in various scientific

fields, since usually what people really want is to narrow down or even exactly specify the

cause of every behavior of interest. For instance, when studying the cause of pollution

in a certain river, environmentalists shall not blame on the natural environment, but

explicitly point out which factory along the river is responsible for the pollution; for a

detective, instead of ascribing a certain crime to the whole society, his job is to determine

the culprit responsible for the crime; similarly, when analyzing the reason of a program

behavior (e.g. an error) during a certain execution, blaming on the whole program or a

large slice of the program is trivially correct but not of practical use, and the programmer

is eager to learn exactly which action (e.g. user input/random number generator/system

setting/variable initialization) is responsible for the behavior of interest.

In this dissertation, we focus on program analyses, and our objective is to give a

generic definition of responsibility and design a comprehensive framework of responsi-
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INTRODUCTION

bility analysis, which could automatically determine the responsible entity (or say, the

root cause) of any behavior of interest. Contrary to accountability mechanisms [32, 16,

28] that track down perpetrators after the fact, we want to detect the responsible entity

and configure its permission before deploying the program, which is of great importance

for the potentially insecure behavior in safety and security critical systems. Due to the

massive scale of modern software, it is virtually impossible to identify responsible enti-

ties manually. The only possible solution is to design a static analysis of responsibility,

which can examine all possible executions of a program without executing them.

The cornerstone of designing such an analysis is to define responsibility in program-

ming languages. It is surprising to notice that, although the concepts of causality and

responsibility have been long studied in various contexts (law sciences [58], artificial in-

telligence [57], statistical and quantum mechanics, biology, social sciences, etc. [1]),

none of these definitions is fully pertinent for programming languages. Take the actual

cause [47, 48] as an example, its structural equations model (SEM) [60] is not suitable

for representing programs: the value of each endogenous variable in the model is fixed

once it is set by the equations or some external action, while the value of program vari-

ables can be assigned for unbounded number of times during the execution. In addition,

the SEM cannot make use of the temporal information or whether an entity is free to

make choices, which plays an indispensable role in determining responsibility.

There do exist techniques analyzing the influence relationships in computer pro-

grams, such as dependency analysis [19, 39, 15], taint analysis [12] and program slicing

[45], which help in narrowing down the scope of possible locations of responsible entities.

However, no matter whether adopting semantic or syntactic methods, these techniques
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INTRODUCTION

are not precise enough to explicitly identify the responsibility.

In order to solve the above problems, this dissertation proposes a novel definition of

responsibility, which is expressive and generic to handle various programming languages.

Roughly speaking, an action aR is responsible for a given behavior B in a certain trace,

if and only if the action aR can make choices at its discretion (e.g. an input action from

external subjects is assumed to have free choices on the input value), and such a choice

is the first one that guarantees the occurrence of B in that trace. Such a definition of

responsibility is an abstract interpretation [3, 4] of the program trace semantics, tak-

ing into account both the temporal ordering of actions and the information regarding

whether an action has free choices or not. Moreover, an innovative idea of cognizance is

adopted in this definition, which allows analyzing responsibility from the perspective of

various observers. Compared to current dependency/causality analysis techniques, our

definition of responsibility is more generic and precise.

Besides defining the responsibility in programming languages, another major chal-

lenge encountered is to design an abstract static analysis of responsibility. Since the

concrete trace semantics used in the definition of responsibility is uncomputable in gen-

eral, it is necessary to have a sound over-approximation of it, and here we propose to

adopt the trace partitioning automaton that is constructed by over-approximating for-

ward reachability analysis with trace partitioning [14, 43]. Together with the under-

approximating/over-approximating backward impossible failure accessibility analysis in-

troduced in this dissertation, we present a sound framework of abstract responsibility

analysis, which determines the possible range of responsible entities along paths in the

automaton. Although the abstract analysis loses precision to some extent, the sound-
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INTRODUCTION

ness is preserved, i.e. it is guaranteed that every action that is found responsible in the

concrete must be also determined responsible in the abstract.

The application of responsibility analysis is pervasive. Although the implementation

of an automatic responsibility analyzer is not provided here, we have demonstrated its

effectiveness by examples including access control, negative balance / buffer overflow,

division by zero / login attack, and information leakage.

To sum up, the main contributions of this dissertation are:

• A completely new definition of responsibility based on the abstract interpretation

of trace semantics is introduced, which is more generic and precise than current

dependency/causality analysis techniques;

• To the best of our knowledge, the observer’s cognizance is adopted in program

analysis for the first time, which allows analyzing the responsibility from the per-

spective of different observers;

• A sound framework of the abstract responsibility analysis is proposed, which essen-

tially consists of an iteration of over-approximating forward reachability analysis

with trace partitioning and under/over-approximating backward impossible failure

accessibility analysis.

Specifically, in this dissertation, part I introduces some preliminary definitions and

techniques, including the syntax and semantics of a transition system (chapter 1), the

over-approximating forward reachability analysis and under/over-approximating back-

ward impossible failure accessibility analysis (chapter 2), the trace partitioning domain

and automata (chapter 3). Part II proposes the responsibility analysis in the concrete, in

which an informal but intuitive characterization of responsibility is given in chapter 4,

4
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the definition of responsibility is formalized in chapter 5, and the applications of respon-

sibility analysis are exemplified in chapter 6. Part III presents the responsibility analysis

in the abstract, including the user specification of behaviors and cognizance in the ab-

stract (chapter 7) and a detailed framework of abstract responsibility analysis (chapter 8),

which utilizes the forward/backward analyses from part I.

For the sake of coherence, it is recommended to read chapter 1 followed by part II

and part III, and refer to chapter 2 or 3 when any unfamiliar notations or techniques are

encountered (e.g. backward impossible failure accessibility analysis, forward reachability

analysis with trace partitioning).

5
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PART I. PRELIMINARIES

In this part, we introduce some definitions and techniques that will be used in the

rest of this dissertation.

Chapter 1 introduces the syntax and semantics of a transition system, which is generic

to model programs written in various languages. This dissertation focuses on numeric

programs, and we specifically consider a very simple programming language that features

assignments, conditionals and while loops. An introductory example of access control

written in this simple language is given, and it is used throughout the whole dissertation

to illustrate the framework of concrete/abstract responsibility analysis.

Chapter 2 recalls some key concepts and notations in the abstract interpretation

framework, and presents an over-approximating forward reachability analysis that au-

tomatically infers program invariants, which is a well studied problem in the program

analysis and verification. In addition, we discuss the dual problem that has been rarely ex-

plored: the backward impossible failure accessibility analysis, which infers sufficient pre-

conditions for a given postcondition (program property) to hold. An under-approximating

backward impossible failure accessibility analysis was proposed by Miné, and similarly we

propose an over-approximating backward impossible failure accessibility analysis.

Chapter 3 discusses the trace partitioning abstract domain proposed by Rival and

Mauborgne, introduces a new partitioning directive based on environment properties,

and proposes the trace partitioning automaton, which improves the precision of forward

reachability analysis and makes determining responsibility in the abstract possible.

It is worth noting that the forward reachability analysis with trace partitioning and

the backward accessibility analysis discussed in this part are the cornerstones of abstract

responsibility analyses in part III.

7



Chapter 1

Program Syntax and Semantics

In this dissertation, programs are modeled as transition systems, providing a language-

independent small-step operational semantics that is generic to handle various program-

ming languages (including the simple language introduced in this chapter, which is

similar to the C language and used by all examples throughout this dissertation).

1.1 Program Syntax

Transition Systems. V is the set of all possible values. X is the set of variables. M

is the set of environments (i.e. stores, or memory states), each of which maps all the

variables to their values at a specific time during the execution of the program. L is the

set of program points (i.e. control states); specially, l i ∈ L is the initial program point

(i.e. the entry control state of the program), and l f ∈ L is the final program point (i.e.

the exit control state of the program). S = L ×M is the set of states, each of which

is a pair of a program point l ∈ L and an environment ρ ∈ M. Specially, Si ∈ ℘(S)

8



CHAPTER 1. PROGRAM SYNTAX AND SEMANTICS

denotes the set of initial states, which can be implemented as Si = {l i}×M in practice;

Sf ∈ ℘(S) denotes the set of final states, which is implemented as Sf = {l f} ×M and

represents correct program termination; and ω denotes the error state, which represents

the incorrect program termination (e.g. division by zero). By abuse of notation, ω also

denotes the error in expression evaluations and the error environment. A is the set of all

actions (i.e. atomic instructions) in the program, e.g. assignments, boolean tests, skip,

external inputs, random number generations, variable initialization, etc.

v ∈ V values
x ∈ X variables
ρ ∈ M ≜ X 7→ V environments (memory states)
l ∈ L program points (control states, labels)
s ∈ S ≜ L×M states
a ∈ A actions (atomic instructions)

Figure 1.1: Transition System Domains

The transition relation can be defined as→∈ ℘(S×A×S), such that 〈s , a, s ′〉 ∈→

(or, s
a−→ s ′) denotes an atomic step from one state s to another state s ′ after executing

the action a. Alternatively, we can omit the action a, and define the transition relation

as → ∈ ℘(S × S), such that an atomic step from s to s ′ is denoted as s −→s ′. In order

to be consistent with the notations used in the trace partitioning abstract domain [43],

here we adopt the latter definition of transition relation, and the omitted actions can be

easily retrieved from the program source code. It is assumed that there is no outgoing

transition from final states or the error state (∀s ∈ Sf ∪ {ω}. ∀s ′ ∈ S. s 6→ s ′).

A transition system (or, program) P = 〈Si, →〉 is defined as a pair of the set of initial

states and the transition relation, which is generic to represent programs written in vari-

9
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ous languages. Moreover, it is worthwhile to note that the above definition of transition

system can also cope with interprocedural programs, if we generalize the control states to

include both the syntactic program point and the calling stack. However, for the sake of

simplicity, this dissertation does not take interprocedural programs into consideration.

A Simple Language. This dissertation focuses on numeric programs. In order to for-

malize the forward reachability analysis and backward accessibility analysis introduced

in chapter 2, here we instantiate the transition system by considering a simple program-

ming language in Fig.1.2, which features assignments, conditional tests, and while loops.

It is similar to the language used in [34], except the ternary operation (or conditional

operation) “bexpr ? expr : expr”, which can be equivalently represented by a conditional

test. More precisely, in this language, X is a finite fixed set of real-valued variables

(i.e. the set of possible values V = R are real numbers, and can be further restricted

to integers), expr denotes numerical expressions, and bexpr denotes boolean expressions.

Besides, an interval [a; b] returns a random number between the left bound a and the

right bound b, which facilitates representing non-determinism directly in the language.

Specially, when a = b, [a; b] denotes the constant number a. In addition, it is assumed

that each atomic statement is associated with a unique program point l from L.

Every program written in this simple language can be modeled by a transition system,

in which each action is either an assignment x := expr or a boolean test bexpr. In

addition, as shown in Fig.1.3, for every (numerical or boolean) expression e, its semantics

JeKρ is defined as the set of all possible (numerical or boolean) values that e may take

in a given environment ρ (t denotes true, while f denotes false); for each action a, we

define an environment transfer function τ{| a |} ∈ ℘(M) 7→ ℘(M ∪ {ω}), which maps a

10



CHAPTER 1. PROGRAM SYNTAX AND SEMANTICS

prog ::= stat program

stat ::= x := expr assignment: x ∈ X
| if (bexpr) {stat} else {stat} conditional test
| while (bexpr) {stat} while loop
| assert (bexpr) assertion
| stat; stat sequential statements

expr ::= [a; b] interval: a, b ∈ R ∪ {−∞,∞}
| x variable x ∈ X
| −expr unary operation
| expr · expr binary operation: · ∈ {+,−,×, /}
| bexpr ? expr : expr ternary operation

bexpr ::= expr ▷◁ expr comparison: ▷◁∈ {<,≤, >,≥,=, 6=}
| bexpr ∨ bexpr logical or operation
| bexpr ∧ bexpr logical and operation
| ¬bexpr logical negation operation

Figure 1.2: The Syntax of a Simple Language

set of environments before a to the set of reachable environments after it, including the

error state ω if the execution of a encounters an error. From these environment transfer

functions, the corresponding transition relation→ can be easily derived: for any atomic

action of the form l a l ′ , the transition relation is {〈l , ρ〉 → 〈l ′, ρ′〉 | ρ, ρ′ ∈ M ∧ ρ′ ∈

τ{| a |}({ρ})} ∪ {〈l , ρ〉 → ω | ρ ∈ M ∧ ω ∈ τ{| a |}({ρ})}; for any program P, its

transition relation is the union of transition relations defined for all its atomic actions.

Consider the following example that is used throughout this dissertation.

Example 1 (Access Control) The program in Fig. 1.4 can be interpreted as an access con-

trol program for an object o (e.g. a confidential file), such that o can be accessed if and only if

11



CHAPTER 1. PROGRAM SYNTAX AND SEMANTICS

τ{|a |} ∈ ℘(M) 7→ ℘(M ∪ {ω}) Environment Transfer Function
τ{|x := e|}M ≜ {ρ[x 7→ v ] | ρ ∈M ∧ v ∈ JeKρ} ∪ {ω | ∃ρ ∈M. ω ∈ JeKρ}

τ{|b|}M ≜ {ρ | ρ ∈M ∧ t ∈ JbKρ} ∪ {ω | ∃ρ ∈M. ω ∈ JbKρ}
JexprK ∈ M 7→ ℘(R ∪ {ω}) Numerical Expression SemanticsJ[a; b]Kρ ≜ {v ∈ R | a ≤ v ≤ b}Jx Kρ ≜ {ρ(x )}J−eKρ ≜ {−v | v ∈ JeKρ}Je1 · e2Kρ ≜ {v1 · v2 | v1 ∈ Je1Kρ ∧ v2 ∈ Je2Kρ ∧ (v2 6= 0 ∨ · 6= /)} ∪

{ω | 0 ∈ Je2K∧· = /}Jb ? e1 : e2Kρ ≜ {v ∈ Je1Kρ | t ∈ JbKρ} ∪ {v ∈ Je2Kρ | f ∈ JbKρ} ∪ {ω | ω ∈ JbKρ}
JbexprK ∈ M 7→ ℘({t, f, ω}) Boolean Expression SemanticsJe1 ▷◁ e2Kρ ≜ {t | ∃v1 ∈ Je1Kρ, v2 ∈ Je2Kρ. v1 ▷◁ v2} ∪

{f | ∃v1 ∈ Je1Kρ, v2 ∈ Je2Kρ. v1 6▷◁ v2} ∪
{ω | ω ∈ Je1Kρ ∪ Je2Kρ}Jb1 ∨ b2Kρ ≜ {t | t ∈ Jb1Kρ ∪ Jb2Kρ} ∪ {f | f ∈ Jb1Kρ ∩ Jb2Kρ} ∪
{ω | ω ∈ Jb1Kρ ∪ Jb2Kρ}Jb1 ∧ b2Kρ ≜ {t | t ∈ Jb1Kρ ∩ Jb2Kρ} ∪ {f | f ∈ Jb1Kρ ∪ Jb2Kρ} ∪
{ω | ω ∈ Jb1Kρ ∪ Jb2Kρ}J¬bKρ ≜ {t | f ∈ JbKρ} ∪ {f | t ∈ JbKρ} ∪ {ω | ω ∈ JbKρ}

Figure 1.3: The Environment Transfer Functions and Expression Semantics

both two administrators approve the access and the permission type of o from system settings is

greater than or equal to “read only”. For the sake of clarity, it is assumed that in this example

the evaluation of an interval returns only integers (hence V = N in this example), and the

analysis is similar to analyzing real numbers. Specifically, in line 2 and 4, the variable i1

and i2 assigned by a non-deterministic integer from [−1; 2] is used to mimic external inputs

that correspond to the decisions of two independent admins, where a positive value (i.e. 1 or 2)

12
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represents approving the access to o, while 0 or a negative value (i.e. −1) represents rejecting

the access; in line 6, the variable typ assigned by a non-deterministic integer from [1; 2] is used

to mimic the action of reading the permission type of o specified in the system settings (e.g. we

can assume that 1 represents “read only”, and 2 represents “read and write”, which is similar

to the file permissions system in Unix); in line 8, the access to o succeeds only when the value of

acs is strictly positive (i.e. 1 or 2), which guarantees that both admins approve the access and

the permission type of o is at least as high as “read only”. □

l1 : apv := 1; //Approval: positive - yes, zero or negative - no
l2 : i1 := [-1; 2]; //Input from 1st admin
l3 : apv := (i1 ≤ 0) ? -1 : apv ;

l4 : i2 := [-1; 2]; //Input from 2nd admin
l5 : apv := (apv ≥ 1 ∧ i2 ≤ 0) ? -1 : apv ;

l6 : typ := [1; 2]; //Input from system settings
l7 : acs := apv × typ;

l8 : //Access the object o here, and it fails when acs ≤ 0

Figure 1.4: Access Control Program Example

To represent the above program as a transition system, we have: the set of program

points L = {l1, l2, l3, l4, l5, l6, l7, l8}; the set of variables X = {apv , i1, i2, typ, acs}; the set

of environmentsM = X 7→ Z, where Z is the set of integers; the set of states S = L×M,

the set of initial states Si = {l1}×M, and the set of final states Sf = {l8}×M. Moreover,

the transition relation is defined as follows:
→ = {〈〈l1, ρ〉, 〈l2, ρ′〉〉 | ρ′ ∈ τ{|apv := 1|}({ρ})} ∪

{〈〈l2, ρ〉, 〈l3, ρ′〉〉 | ρ′ ∈ τ{|i1 := [-1; 2]|}({ρ})} ∪
{〈〈l3, ρ〉, 〈l4, ρ′〉〉 | ρ′ ∈ τ{|apv := (i1 ≤ 0) ? -1 : apv |}({ρ})} ∪
{〈〈l4, ρ〉, 〈l5, ρ′〉〉 | ρ′ ∈ τ{|i2 := [-1; 2]|}({ρ})} ∪

13
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{〈〈l5, ρ〉, 〈l6, ρ′〉〉 | ρ′ ∈ τ{|apv := (apv ≥ 1 ∧ i2 ≤ 0) ? -1 : apv |}({ρ})} ∪
{〈〈l6, ρ〉, 〈l7, ρ′〉〉 | ρ′ ∈ τ{|typ := [1; 2]|}({ρ})} ∪
{〈〈l7, ρ〉, 〈l8, ρ′〉〉 | ρ′ ∈ τ{|acs := apv × typ |}({ρ})}.

1.2 Program Semantics

Traces. For any program (i.e. transition system), an execution is represented by a finite

or infinite sequence of states, which is called as a trace; the program semantics is a set of

such executions, and a trace property is a set of traces that have this property.

In the following, we write σ = s0· · ·sn−1 to denote a finite trace of exactly length n,

where the (i+ 1)th state si = 〈li, ρi〉 ∈ S along the trace is denoted as σ[i]; equivalently,

such a finite trace of length n can be represented as a mapping from natural numbers

in [0, n− 1] to states. Similarly, we write σ = s0· · ·si· · · to denote an infinite trace that

does not terminate, and such a trace can be equivalently represented as a mapping from

all natural numbers to states. Specially, ε denotes the empty trace. In addition, by abuse

of notation, we say a state s belongs to a trace σ (i.e. s ∈ σ), if there exists a natural

number i ∈ N such that σ[i] = s .

σ ∈ S+ ≜
∪
n⩾1

([0, n− 1] 7→ S) finite traces

σ ∈ S∗ ≜ {ε} ∪ S+ empty or finite traces
σ ∈ S∞ ≜ N 7→ S infinite traces
σ ∈ S+∞ ≜ S+ ∪ S∞ finite or infinite traces
σ ∈ S∗∞ ≜ {ε} ∪ S+∞ empty or finite or infinite traces

For any trace σ, its length |σ| is the number of states in σ. Specially, the length of

the empty trace |ε| is 0; for an infinite trace σ, its length |σ| is denoted as∞.

14
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The concatenation of a finite trace σ = s0· · ·sn−1 and a state s is simply defined

by juxtaposition σs such that σs = s0· · ·sn−1s; the concatenation of a finite trace σ =

s0· · ·sn−1 and a transition τ = sn−1
a−→ sn is denoted as στ such that στ = s0· · ·sn−1sn;

the concatenation of a finite traces σ = s0· · ·sn−1 and another (finite or infinite) trace

σ′ = s ′0· · · is denoted as σσ′ such that σσ′ = s0· · ·sn−1s ′0· · ·; the concatenation of an

infinite trace σ and another trace (or a state, or a transition) is the same as σ itself.

A trace σ is said to be � - less than or equal to another trace σ′, if and only if, σ is a

prefix of σ′. Besides, for any set T of traces, we define a function Pref(T ) that returns

the prefixes of traces in T .

σ � σ′ ≜ |σ| ⩽ |σ′| ∧ ∀ 0 ⩽ i < |σ| : σ[i] = σ′[i] ordering of traces
Pref ∈ ℘(S∗∞) 7→ ℘(S∗∞) prefixes of traces

Pref(T ) ≜ {σ′ ∈ S∗∞ | ∃σ ∈ T . σ′ � σ}

Trace semantics. For a program P = 〈Si, →〉, a valid intermediate (partial) trace σ

is a finite or infinite trace, along which every two successive states are bounded by the

transition relation→. The intermediate (partial) trace semantics JPKIt ∈ ℘(S∗∞) is the set

of all valid intermediate traces for P, i.e. JPKIt ≜ {s0· · ·sn−1 ∈ S∗ | ∀i ∈ [0, n− 2]. si →

si+1} ∪ {s0· · ·si· · · ∈ S∞ | ∀i ∈ N. si → si+1}. This semantics is a formal description of

the executions of P, which start from any state, and stop at any time or do not ever stop.

A valid prefix trace σ is a finite or infinite trace, such that it starts from an initial state

s ∈ Si and every two successive states along the trace are related by the transition relation

→. The prefix trace semantics JPKPref ∈ ℘(S∗∞) of P is the set of valid prefix traces, i.e.

JPKPref ≜ {s0· · ·sn−1 ∈ S∗ | s0 ∈ Si ∧ ∀i ∈ [0, n − 2]. si → si+1} ∪ {s0· · ·si· · · ∈ S∞ |

s0 ∈ Si ∧ ∀i ∈ N. si → si+1}. This semantics is a formal description of the executions
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of P, which start from any initial state, and stop at any time or do not ever stop.

A valid maximal trace σ is a finite or infinite trace, such that it starts from an initial

state s ∈ Si, every two successive states along the trace are related by the transition

relation→, and either it terminates at a final state s ′ ∈ Sf or the error state ω, or it does

not ever terminate. The maximal trace semantics JPKMax ∈ ℘(S∗∞) of P is the set of valid

prefix traces, i.e. JPKMax ≜ {s0· · ·sn−1 ∈ S∗ | s0 ∈ Si∧∀i ∈ [0, n−2]. si → si+1∧ sn−1 ∈

Sf ∪{ω}}∪ {s0· · ·si· · · ∈ S∞ | s0 ∈ Si ∧∀i ∈ N. si → si+1}. This semantics is a formal

description of the executions of P, which start from any initial state, and stop only at

final states or crash or last forever. It is not hard to see that JPKMax ⊆ JPKPref ⊆ JPKIt.
In addition, the prefix trace semantics JPKPref is an abstraction of the maximal trace

semantics JPKMax via the function Pref, i.e. JPKPref = Pref(JPKMax).

Specifically, for any program written in the simple language described in Fig. 1.2, its

intermediate/prefix/maximal trace semantics can be defined by structural induction/de-

duction on the program syntax, with the assistance of the environment transfer function

defined for every atomic instruction in Fig. 1.3. Here we omit the structural definitions,

and refer to chapter 16 of [2] for more information.

Example 2 (Access Control, Continued) Consider the access control program in Fig. 1.4

again, it is obvious that there is no valid infinite trace and it is impossible to reach the error

state ω, thus a valid maximal trace must start from the initial point l1 and terminate at

the final point l8. By the definition of → given in Example 1, it is not hard to construct

the corresponding maximal trace semantics: JPKMax = {〈l1, ρ1〉〈l2, ρ2〉〈l3, ρ3〉〈l4, ρ4〉〈l5,

ρ5〉〈l6, ρ6〉〈l7, ρ7〉〈l8, ρ8〉 | (ρ1 ∈M) ∧ (ρ2 = ρ1[apv 7→ 1]) ∧ (ρ3 = ρ2[i1 7→ v1] ∧ v1 ∈

{-1, 0, 1, 2}) ∧ (ρ4 = ρ3[apv 7→ ((ρ3(i1) <= 0)?-1 : ρ3(apv))]) ∧ (ρ5 = ρ4[i2 7→ v2] ∧
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v2 ∈ {-1, 0, 1, 2}) ∧ (ρ6 = ρ5[apv 7→ ((ρ5(apv) >= 1 ∧ ρ5(i2) <= 0)?-1 : ρ5(apv))]) ∧

(ρ7 = ρ6[typ 7→ v3] ∧ v3 ∈ {1, 2}) ∧ (ρ8 = ρ7[acs 7→ ρ7(apv) ∗ ρ7(typ)])}.

Along every valid maximal trace, there are three inputs, where [-1; 2] has four choices of

integer values, and [1; 2] two choices of integer values. Therefore, JPKMax can be represented

by 32 separate paths, each of which denotes a set of valid maximal traces such that they share

the same inputs and the only difference comes from the initial environments.

In addition, the intermediate trace semantics JPKIt and prefix trace semantics JPKPref can
be easily obtained from the transition relation → too, hence are omitted here. Moreover, a

trace property “the access to o fails” can be represented by a set of maximal traces in which the

value of acs is less than or equal to 0 at point l8, i.e. {σ ∈ JPKMax | ∃ρ ∈ M. σ[7] = 〈l8,

ρ〉 ∧ ρ(acs) <= 0}. □
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Chapter 2

Forward Reachability Analysis and

Backward Accessibility Analysis

Abstract interpretation [3, 4, 2] is a mathematical theory to reason on computer

programs, more precisely on the executions of computer programs running on a com-

puter. It formalizes formal methods and allows to discuss the guarantees they provide

such as soundness (the conclusions about programs are always correct under suitable ex-

plicitly stated hypotheses), completeness (all true facts are provable), or incompleteness

(showing the limits of applicability of the formal method). Abstract interpretation is

mainly applied to design semantics, proof methods, and static analysis of programs. The

semantics of programs formally defines all their possible executions at various levels of

abstraction. Proof methods can be used to prove (manually or using theorem provers)

that the semantics of a program satisfy some specification, that is a property of execu-

tions defining what programs are supposed to do. Static analyzers are programs that are

able to automatically extract properties of programs semantics (i.e. of their executions)
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using only the program text, without running the programs they analyze on a computer.

This chapter presents some notations and techniques in the abstract interpretation

framework, which will be referenced in part III. To be more precise, section 2.1 reviews

some key concepts of abstract interpretation, and section 2.2 introduces the abstract

domain of environments and invariants. In section 2.3, we define the classic forward

(possible success) reachability semantics of a program as an abstraction of the trace se-

mantics, and sketch the design of an over-approximating abstract forward reachability

analysis, which can automatically infer program invariants. In section 2.4, the backward

impossible failure accessibility semantics is defined as the adjoint of forward reachability

semantics, which specifies the sufficient precondition for a given postcondition to hold.

Compared with the classic forward reachability analysis, the abstract backward impossi-

ble failure accessibility analysis has not been well studied yet, and there are few literature

on this topic. We summarize the under-approximating abstract backward analysis pro-

posed by Miné [34, 42], and propose a similar over-approximating abstract backward

analysis, both of which will be used to determine responsibility in the abstract. In ad-

dition, for the sake of completeness, in section 2.5 we also briefly discuss the backward

possible success accessibility semantics (which is the conjugate of backward impossible

failure accessibility semantics) and the forward impossible failure reachability semantics

(which is the adjoint of backward possible success accessibility semantics).

2.1 Basic Notations in Abstract Interpretation

Posets. A partially ordered set (i.e. poset) 〈D, v〉 is a setD equipped with a partial order

v that is (1) reflexive: ∀x ∈ D. x v x; (2) antisymmetric: ∀x, y ∈ D. ((x v y) ∧ (y v
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x))⇒ (x = y); and (3) transitive: ∀x, y, z ∈ D. ((x v y) ∧ (y v z))⇒ (x v z). Let

S ∈ ℘(D) be a subset of the poset 〈D, v〉, then the least upper bound (or lub, join) of S

(if any) is denoted as tS such that ∀x ∈ S. x v tS and ∀u ∈ S. (∀x ∈ S. x v u) ⇒

tS v u, and the greatest lower bound (or glb, meet) of S (if any) is denoted as uS such

that ∀x ∈ S. u S v x and ∀l ∈ S. (∀x ∈ S. l v x) ⇒ l v uS. The poset D has a

supremum (or top) > if and only if > = tD ∈ D, and has an infimum (or bottom) ⊥ if

and only if ⊥ = uD ∈ D.

Preorder and Equivalence Relation. A preorder � is a binary relation that is reflexive

and transitive, but not necessarily antisymmetric. Then x ∼ y ≜ x � y ∧ y � x is

a equivalence relation that is reflexive, symmetric (∀x, y ∈ D. x ∼ y ⇒ y ∼ x), and

transitive. For any equivalence relation ∼, the equivalence class of x ∈ D is defined as

[x]∼ ≜ {y ∈ D | y ∼ x}. The quotient set D|∼ of D by the equivalence relation ∼ is the

partition of D into a set of equivalence classes, i.e. D|∼ ≜ {[x]∼ | x ∈ D}. In addition,

the preorder � on D can be extended to a relation �∼ on the quotient set D|∼ such that

[x]∼ �∼ [y]∼ ⇔ ∃x′ ∈ [x]∼, y
′ ∈ [y]∼. x

′ � y′. Thus, if � is a preorder on D, then �∼
is a partial order on the corresponding quotient set D|∼.

CPO and Lattices. A complete partial order (i.e. CPO) is a poset 〈D, v, ⊥, t〉 with

infimum ⊥ such that any denumerable ascending chain {xi ∈ D | i ∈ N} has a least

upper bound ti∈N xi ∈ D. A lattice is a poset 〈D, v, t, u〉 such that every pair of

elements x, y has a least upper bound x t y and a greatest lower bound x u y in D,

thus every finite subset of D has a least upper bound and a greatest lower bound. A

complete lattice 〈D, v, ⊥, >, t, u〉 is a lattice in which any arbitrary (possibly infinite)
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subset S ∈ ℘(D) has a least upper bound tS, hence a complete lattice has a supremum

> = tD and an infimum ⊥ = t∅.

Galois Connections and Abstraction. In the abstract interpretation framework, Galois

connections are used to formalize the correspondence between concrete properties (e.g.

sets of traces) and abstract properties (e.g. sets of reachable states) in case there is always

a most precise abstract property over-approximating any concrete property. Given two

posets 〈D, v〉 (called the concrete domain) and 〈D♯, v♯〉 (called the abstract domain),

the pair 〈α, γ〉 of functions α ∈ D 7→ D♯ (called the abstraction function or lower/left

adjoint) and γ ∈ D♯ 7→ D (called the concretization function or upper/right adjoint)

forms a Galois connection if and only if ∀x ∈ D. ∀y♯ ∈ D♯. α(x) v♯ y♯ ⇔ x v γ(y♯).

Such a Galois connection is denoted as:

〈D, v〉 −−→←−−α
γ
〈D♯, v♯〉.

The above definition of Galois connections is equivalent to have α and γ such that:

(1) α is increasing (monotonic); (2) γ is increasing (monotonic); (3) γ ◦ α is extensive

(i.e. ∀x ∈ D. x v γ(α(x))); (4) α ◦ γ is reductive (i.e. ∀y♯ ∈ D. y♯ v α(γ(y♯))).

The intuition of Galois connections is that the concrete properties in D are ap-

proximated by abstract properties in D♯: α(x) is the best (most precise) sound over-

approximation of x in the abstract domain D, and γ(y♯) is the least precise element of

D that can be over-approximated by y♯. The abstraction of a concrete property x ∈ D is

said to be exact whenever γ(α(x)) = x, which means that the abstraction α(x) of prop-

erty x loses no information at all. In addition, we say that y♯ ∈ D♯ is a sound abstraction

of x ∈ D if and only if x v γ(y♯).
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Fixpoints. For a poset 〈D, v〉, a fixpoint of a function (or transformer) f ∈ D 7→ D

is an element x ∈ D such that f(x) = x. We denote lfp⊑ f as the least fixpoint of f ,

and gfp⊑ f as the greatest fixpoint of f , if they do exist. lfp⊑
a
f is the least fixpoint of

f , which is v - greater than or equal to a ∈ D, if any. Dually, gfp⊑
a
f is the greatest

fixpoint of f , which is v - less than or equal to a ∈ D. When the partial order v is

understood from the context, it can be omitted, and we write lfp f or gfp f .

(Tarski Fixpoint Theorem [59]) An increasing function f ∈ D 7→ D on a complete

lattice 〈D, v, ⊥, >, t, u〉 has a least fixpoint lfp⊑ f = u{x ∈ D | f(x) v x}.

(David Park Coǌugate Fixpoint Theorem [8, 9]) Let S be a set, f ∈ ℘(S) 7→ ℘(S) be

a ⊆-increasing function on the complete lattice 〈℘(S), ⊆, ∅, S, ∪, ∩〉, and ¬X ≜ S\X

be the set complement. If we define f̃ ≜ X 7→ ¬f(¬X), then gfp⊆ f = ¬lfp⊆ f̃ .

Fixpoint Abstraction. All kinds of program semantics can be expressed as fixpoints

of increasing transformers in posets. Given an abstraction 〈D, v〉 −−→←−−α
γ
〈D♯, v♯〉 of a

concrete domain D into an abstract domain D♯ and an increasing concrete transformer

f ∈ D 7→ D, we would like to abstract the semantics expressed as lfp⊑ f in the concrete

domain into a least fixpoint lfp⊑♯

f ♯ in the abstract domain, where f ♯ ∈ D♯ 7→ D♯ is an

abstract transformer. If α(lfp⊑ f) = lfp⊑♯

f ♯, this abstraction is exact; if α(lfp⊑ f) ⊏♯

lfp⊑♯

f ♯, we get an over-approximation of lfp⊑ f , but the abstraction is still sound.

Let the concrete domain 〈D,v,⊥,>,t,u〉 and the abstract domain 〈D♯,v♯,⊥♯,>♯,

t♯, u♯〉 be two complete lattices, 〈D, v〉 −−→←−−α
γ
〈D♯, v♯〉 be a Galois connection between

the two domains, f ∈ D 7→ D and f ♯ ∈ D♯ 7→ D♯ be increasing transformers. If

α◦f ◦γ v̇♯ f ♯ (where v̇♯ is defined pointwise such that f ♯v̇♯g♯ ⇔ ∀x♯ ∈ D♯. f ♯(x♯) v♯

g♯(x♯)), then we have lfp⊑ f v♯ γ(lfp⊑♯

f ♯).
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Fixpoint Approximation by Extrapolation with Widening. In the case where the ab-

stract domain has infinite increasing chains (e.g. in interval domain, polyhedron domain,

octagon domain, etc.), the sequences of abstract iterations are not guaranteed to termi-

nate in finitely many steps. In [3], a widening operator is introduced to replace the

abstract join operator such that the iteration convergence is guaranteed.

A widening is a binary operator ▽ ∈ (D♯ × D♯) 7→ D♯ on the abstract domain D♯

such that: (1) ∀x♯, y♯ ∈ D♯. x♯ v♯ x♯▽y♯ ∧ y♯ v♯ x♯▽y♯; (2) for any sequence (x♯
i)i∈N,

the sequence (y♯i)i∈N defined as y♯0 = x♯
0 and ∀i ∈ N. y♯i+1 = y♯i▽x♯

i+1 converges in finite

time. The following theorem shows that we can compute a sound over-approximation

of concrete semantics expressed by a least fixpoint in a finite number of iterations with

widening operators.

(Cousot and Cousot Upward Iteration with Widening Theorem [3, 5]) Given a con-

cretization function γ ∈ D♯ 7→ D, we assume that the abstract transformer f ♯ ∈ D♯ 7→

D♯ is a sound abstraction of the concrete transformer f ∈ D 7→ D (i.e. f ◦ γ v γ ◦ f ♯).

Let x ∈ D, x♯ ∈ D♯ such that x v γ(x♯). Then, the sequence (y♯i)i∈N defined as y♯0 = x♯

and ∀i ∈ N. y♯i+1 = y♯i▽f ♯(y♯i) is ultimately stationary and its limit lim (y♯i)i∈N is a sound

approximation of lfp
x
f , that is to say, lfp

x
f v γ(lim (y♯i)i∈N).

Fixpoint Approximation by Interpolation with Narrowing. Suppose the limit of the

sequence (y♯i)i∈N is y♯n such that y♯n▽f ♯(y♯n) = y♯n. In many cases, y♯n is a strict post-

fixpoint of the function f ♯ (i.e. f ♯(y♯n) ⊏♯ y♯n), thus the over-approximation y♯n can be

refined by applying f ♯ for a few more times without using the widening ▽, and get a

new sequence (z♯i )i∈N that is defined as z♯0 = y♯n and ∀i ∈ N. z♯i+1 = f ♯(z♯i ). However,

such a sequence may not terminate, since the abstract domain ∈ D♯ could have infinite
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decreasing chains. To guarantee the termination of this refinement, a narrowing operator

is proposed in [3].

A narrowing is a binary operator 4 ∈ (D♯ ×D♯) 7→ D♯ on the abstract domain D♯

such that: (1) ∀x♯, y♯ ∈ D♯. y♯ v♯ x♯ ⇒ y♯ v♯ (x♯4y♯) v♯ x♯; (2) for any sequence

(x♯
i)i∈N, the sequence (y♯i)i∈N defined as y♯0 = x♯

0 and ∀i ∈ N. y♯i+1 = y♯i4x♯
i+1 converges

in finite time. The following theorem shows that we can refine an over-approximation

of a fixpoint by decreasing iterations with narrowing operators.

(Cousot and Cousot Downward Iteration with Narrowing Theorem [3, 5]) Given a

concretization function γ ∈ D♯ 7→ D, we assume that the abstract transformer f ♯ ∈

D♯ 7→ D♯ is a sound abstraction of the concrete transformer f ∈ D 7→ D (i.e. f ◦ γ v

γ ◦ f ♯). Let x ∈ D, y♯ ∈ D♯ such that lfp
x
f v γ(y♯). Then, the sequence (z♯i )i∈N

defined as z♯0 = y♯ and ∀i ∈ N. z♯i+1 = z♯i4f ♯(z♯i ) is ultimately stationary, and its limit

lim (z♯i )i∈N is a sound approximation of lfp
x
f that is more precise than y♯. That is to

say, lfp
x
f v γ(lim (z♯i )i∈N) v γ(y♯).

2.2 Abstract Domains

The concrete trace semantics of transition systems introduced in Section 1.2 is not

computable in general, thus we propose to abstract sets of concrete traces into invariants.

In order to accomplish that, this section introduces the abstract environment domain,

the concrete invariant domain and the abstract invariant domain.
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2.2.1 Abstract Environment Domain

Let 〈D♯
M, v

♯
M, ⊥

♯
M, >

♯
M, t

♯
M, u

♯
M〉 be an abstract environment domain, and γM ∈

D♯
M 7→ ℘(M) be the corresponding concretization function that associates each abstract

element M♯ ∈ D♯
M to the set of concrete environments it represents. In particular, D♯

M

features an infimum⊥♯
M and a supremum>♯

M such that γM(⊥♯
M) = ∅ and γM(>

♯
M) = M,

and an abstract join operator t♯M that soundly approximates the concrete join operator ∪

(more precisely, ∀M,M′ ∈ ℘(M),M♯,M♯′ ∈ D♯
M. (M ⊆ γM(M♯) ∧M′ ⊆ γM(M♯′)) ⇒

M ∪M′ ⊆ γM(M♯ t♯M M♯′)).

This dissertation focuses on the analysis of numerical programs, and takes three

popular abstract domains that can express constraints on program variables as examples.

The interval domain introduced in [6] bounds the value of numerical variables by minimal

and maximal values between which all reachable values of a variable must stand, and each

abstract element in this domain can be defined as a mapping from program variables

to intervals (e.g. x ∈ [l, h] ∧ y ∈ [l′, h′]). It is a simple but useful domain, and it

has been applied not only to prove the absence of integers or array index overflows but

also to detect unseen inputs of neural networks [49]. However, the interval domain is

not expressive enough to be useful for a relational reachability analysis, in which the

constraints involving more than one variable are needed. One example of relational

abstractions is the polyhedra domain introduced in [7] that can express conjunctions of

affine inequalities on variables. In this domain, an abstract element (i.e. polyhedron) is

defined as a finite set of affine constraints of form a⃗ · x⃗ ≥ b (e.g. 2∗x −3∗y +5∗z ≥ 4),

where x⃗ denotes the vector of all variables, a⃗ denotes a vector of coefficients and b denotes

a constant. In addition, strict inequalities are supported in current polyhedron domain
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[21, 41, 10] . Another example is the octagon domain introduced in [31, 18, 38], which

restricts the affine constraints used in the polyhedron domain to unit binary inequality

constraints of form ±x1 ± x2 ≤ c (e.g. x− y ≤ 0). The above three numerical domains

are similar semantically in that they infer conjunctions of inequality constraints and

represent convex sets, but they are based on different algorithms and achieve different

trade-offs between precision and efficiency. Operators in the interval domain have a linear

cost in the number of variables, while octagon operators have a cubic cost. The cost of

polyhedra is unbounded in theory (since it can construct arbitrarily many constraints),

but it is exponential in practice [56, 42].

It is assumed that, for every concrete environment transfer function F ∈ ℘(M) 7→

℘(M) specified for atomic actions in the program (e.g. τ{| x := expr |} and τ{| bexpr |}

for the simple language described in Fig.1.3), the abstract environment domain D♯
M (e.g.

interval/polyhedron/octagon) provides a sound abstract function F♯ ∈ D♯
M 7→ D

♯
M, such

that the soundness condition ∀M♯ ∈ D♯
M. (F ◦ γM)(M♯) ⊆ (γM ◦ F♯)(M♯) holds.

In addition, it is worth noting that, in some abstract domains, we have an abstraction

function αM ∈ ℘(M) 7→ D♯
M such that αM and γM form a Galois connection 〈℘(M),

⊆〉 −−−→←−−−
αM

γM 〈D♯
M, v

♯
M〉. In this case, every concrete element M ⊆ M (i.e. every set

of concrete environments) has a best abstraction αM(M) ∈ D♯
M, and every function

F ∈ ℘(M) 7→ ℘(M) in the concrete domain has also a best abstraction αM ◦ F ◦ γM ∈

D♯
M 7→ D

♯
M. Specifically, the interval and octagon domain have this desirable property,

while the polyhedron domain does not.

Example 3 (Access Control, Continued) For the access control program in Fig. 1.4, it

is sufficient to use the interval domain as D♯
M to express environment properties such as “the
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access to o fails” (i.e. the value of acs is less than or equal to 0 at point l8), since no relational

constraints on variables are required. To be more precise, the abstract environment element

M♯ = apv ∈ [-∞,∞] ∧ i1 ∈ [-∞,∞] ∧ i2 ∈ [-∞,∞] ∧ typ ∈ [-∞,∞] ∧ acs ∈ [-∞, 0]

represents the set of environments γM(M♯) = {ρ ∈ M | ρ(acs) ≤ 0}, in which the value of

variable acs is less than or equal to 0 while the values of other variables are arbitrary. Similarly,

an environment property “the access to o succeeds” (i.e. the value of acs is greater than or equal

to 1 at point l8) can be over-approximated byM♯′ = apv ∈ [-∞,∞]∧ i1 ∈ [-∞,∞]∧ i2 ∈

[-∞,∞] ∧ typ ∈ [-∞,∞] ∧ acs ∈ [1,∞]. □

2.2.2 Concrete Invariant Domain

For any set T of concrete traces (which can be either the program semantics or a

trace property), we would like to abstract it into an invariant, which collects the set of

environments for each program point that are visited by traces in T . Hence, the concrete

invariant domain DI is defined as 〈L 7→ ℘(M), ⊆̇〉, and there exists a Galois connection

between concrete traces and the concrete invariant domain DI.

〈℘(S∗∞), ⊆〉 −−−→←−−−αI

γI 〈L 7→ ℘(M), ⊆̇〉.

where ⊆̇ is the pointwise inclusion relation, and αI and γI are defined as:

αI ∈ ℘(S∗∞) 7→ (L 7→ ℘(M)) concrete invariant abstraction
αI(T )l ≜ {ρ ∈M | ∃σ ∈ T . 〈l , ρ〉 ∈ σ}

γI ∈ (L 7→ ℘(M)) 7→ ℘(S∗∞) concrete invariant concretization
γI(I) ≜ {σ ∈ S∗∞ | ∀〈l , ρ〉 ∈ σ. ρ ∈ I(l )}

Proof. For any T ∈ ℘(S∗∞) and I ∈ L 7→ ℘(M), we can prove that

αI(T ) ⊆̇ I
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⇔ ∀l ∈ L. αI(T )l ⊆ I(l ) Hdef. ⊆̇I
⇔ ∀l ∈ L. {ρ ∈M | ∃σ ∈ T . 〈l , ρ〉 ∈ σ} ⊆ I(l ) Hdef. αI(S)l I
⇔ ∀l ∈ L. ∀ρ ∈M. (∃σ ∈ T . 〈l , ρ〉 ∈ σ)⇒ ρ ∈ I(l ) Hdef. ⊆I
⇔ ∀l ∈ L. ∀ρ ∈M. ∀σ ∈ S∗∞. (σ ∈ T ∧ 〈l , ρ〉 ∈ σ)⇒ ρ ∈ I(l ) Hdef. ∃I
⇔ ∀σ ∈ T . ∀〈l , ρ〉 ∈ σ. ρ ∈ I(l ) Hdef. ∀ and⇒I
⇔ T ⊆ {σ ∈ S∗∞ | ∀〈l , ρ〉 ∈ σ. ρ ∈ I(l )} Hdef. ⊆I
⇔ T ⊆ γI(I) Hdef. γII

By the above property, we have proved that αI and γI form a Galois connection. □

2.2.3 Abstract Invariant Domain

The concrete invariants introduced above can be further abstracted into abstract in-

variants, in which every set of concrete environments is represented by an abstract ele-

ment inD♯
M. Here we define the abstract invariant domainD♯

I as 〈L 7→ D
♯
M, v̇

♯

M〉, where

the program points are mapped to abstract elements in D♯
M, and v̇

♯

M is the pointwise

ordering induced by v♯
M (i.e. ∀I♯, I♯′ ∈ D♯

I . I
♯v̇♯

MI
♯′ ⇔ (∀l ∈ L. I♯(l ) v♯

M I♯′(l ))). The

corresponding concretization function γ̇M to the concrete invariant domain is:

γ̇M ∈ (L 7→ D♯
M) 7→ (L 7→ ℘(M)) abstract invariant concretization

γ̇M(I
♯)l ≜ γM(I

♯(l ))

Similar to the abstract environment domain, D♯
I features an infimum ⊥♯

I ≜ λl ∈

L. ⊥♯
M and a supremum >♯

I ≜ λl ∈ L. >♯
M such that γ̇M(⊥♯

I) = λl ∈ L. ∅ and

γ̇M(>♯
I) = λl ∈ L. M. When the environment abstraction αM ∈ ℘(M) 7→ D♯

M
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does exist (e.g. in the interval or octagon domain), we can construct the corresponding

pointwise abstraction function α̇M for the abstract invariant domain:

α̇M ∈ (L 7→ ℘(M)) 7→ (L 7→ D♯
M) abstract invariant abstraction

α̇M(I)l ≜ αM(I(l ))

Furthermore, we can build a combination of Galois connections:

〈℘(S∗∞), ⊆〉 −−−→←−−−αI

γI 〈L 7→ ℘(M), ⊆̇〉 −−−→←−−−
α̇M

γ̇M 〈L 7→ D♯
M, v̇

♯

M〉.

such that an abstract invariant I♯ ∈ L 7→ D♯
M over-approximates a set of concrete traces

γI ◦ γ̇M(I♯) = {σ ∈ S∗∞ | ∀〈l , ρ〉 ∈ σ. ρ ∈ γM(I
♯(l ))}. Specially, the bottom ⊥♯

I

represents the empty set of concrete traces (γI ◦ γ̇M(⊥♯
I) = ∅) and the top>♯

I represents

the set of all possible traces (γI ◦ γ̇M(⊥♯
I) = S∗∞).

Example 4 (Access Control, Continued) For the access control program in Fig.1.4, its

maximal trace semantics JPKMax given in Example 2 can be over-approximated by an abstract

invariant I♯ ∈ L 7→ D♯
M such that: I♯(l1) = >♯

M = apv ∈ [-∞,∞] ∧ i1 ∈ [-∞,∞] ∧ i2 ∈

[-∞,∞] ∧ typ ∈ [-∞,∞] ∧ acs ∈ [-∞,∞],

I♯(l2) = apv ∈ [1, 1] ∧ i1 ∈ [-∞,∞] ∧ i2 ∈ [-∞,∞] ∧ typ ∈ [-∞,∞] ∧ acs ∈ [-∞,∞],

I♯(l3) = apv ∈ [1, 1] ∧ i1 ∈ [-1, 2] ∧ i2 ∈ [-∞,∞] ∧ typ ∈ [-∞,∞] ∧ acs ∈ [-∞,∞],

I♯(l4) = apv ∈ [-1, 1] ∧ i1 ∈ [-1, 2] ∧ i2 ∈ [-∞,∞] ∧ typ ∈ [-∞,∞] ∧ acs ∈ [-∞,∞],

I♯(l5) = apv ∈ [-1, 1] ∧ i1 ∈ [-1, 2] ∧ i2 ∈ [-1, 2] ∧ typ ∈ [-∞,∞] ∧ acs ∈ [-∞,∞],

I♯(l6) = apv ∈ [-1, 1] ∧ i1 ∈ [-1, 2] ∧ i2 ∈ [-1, 2] ∧ typ ∈ [-∞,∞] ∧ acs ∈ [-∞,∞],

I♯(l7) = apv ∈ [-1, 1] ∧ i1 ∈ [-1, 2] ∧ i2 ∈ [-1, 2] ∧ typ ∈ [1, 2] ∧ acs ∈ [-∞,∞],

I♯(l8) = apv ∈ [-1, 1] ∧ i1 ∈ [-1, 2] ∧ i2 ∈ [-1, 2] ∧ typ ∈ [1, 2] ∧ acs ∈ [-2, 2].

In addition, the concrete trace property “the access to o fails” is over-approximated by

another abstract invariant I♯′ ∈ L 7→ D♯
M such that its abstract environment element attached
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to every program point is the same as I♯ defined above, except the value bound of acs at point

l8 is refined to [-2, 0]. More precisely, when l = l8, I♯′(l ) = apv ∈ [0, 1]∧ i1 ∈ [0, 1]∧ i2 ∈

[0, 1] ∧ typ ∈ [1, 2] ∧ acs ∈ [-2, 0]; otherwise, I♯′(l ) = I♯(l ). □

2.3 Forward Reachability Analysis

Given a program P, the corresponding forward reachability semantics specifies the

set of states that are possibly reachable at any program point for all executions of the

program. Section 2.3.1 formalizes a variant of the classic forward reachability (invariant)

semantics, which is defined as an abstraction of the program’s intermediate trace seman-

tics. Section 2.3.2 briefly presents an abstract forward reachability analysis that soundly

over-approximates the concrete forward reachability semantics.

2.3.1 Forward Reachability Semantics

Classic Forward Reachability Semantics. In the literature, usually the forward reach-

ability semantics of a program is defined as an abstraction of its prefix trace semantics,

which attaches to each program point a set of environments that are possibly encoun-

tered during any execution from a given set of initial environments. More precisely,

given a set of initial environments Mi ∈ ℘(M), the forward reachability semantics

S−→r JPK(Mi) ∈ L 7→ ℘(M) is defined as a mapping from each program point l to a

set of environments at l that are reachable from Mi. The formal definition is given

as below, where 〈l i, ρi〉σ〈l , ρ〉 denotes the concatenation of an initial state 〈l i, ρi〉, a

(possibly empty) finite trace σ and a state 〈l , ρ〉. Specially, if σ is empty and 〈l , ρ〉 is

30



CHAPTER 2. FORWARD AND BACKWARD ANALYSIS

equal to 〈l i, ρi〉, then 〈l i, ρi〉σ〈l , ρ〉 represents a trace with only one state 〈l i, ρi〉.

S−→r JPK ∈ ℘(M) 7→ (L 7→ ℘(M)) classic forward reachability semantics
S−→r JPK(Mi)l ≜ {ρ ∈M | ∃σ ∈ S∗, ρi ∈Mi. 〈l i, ρi〉σ〈l , ρ〉 ∈ JPKPref}

The classic forward reachability semantics defined above specifies an invariant prop-

erty of the program executions. If the set of initial environments Mi is taken as a

precondition, then S−→r JPK(Mi)l is an invariant at l , which holds if and when the exe-

cution of P starting with an initial state satisfying Mi reaches program point l . Such a

forward reachability semantics is quite useful in verifying program correctness.

Forward (Possible Success) Reachability Semantics In order to build a Galois connec-

tion between the forward reachability semantics and the backward accessibility seman-

tics (defined in Section 2.4) and facilitate the trace partitioning by invariants during the

forward reachability analysis (introduced later in Chapter 3), here we define a variant of

forward reachability semantics, in which the considered execution traces are not required

to start from the initial point l i.

To be more precise, instead of collecting reachable states from a set of initial environ-

ments Mi, here the precondition Ipre ∈ L 7→ ℘(M) is specified by sets of environments

attached to any (not necessarily initial) program point, and the forward (possible suc-

cess) reachability semantics S−→psJPK collects all the reachable states in the intermediate

execution traces, which start from states satisfying the precondition Ipre.

S−→psJPK ∈ (L 7→ ℘(M)) 7→ (L 7→ ℘(M)) forward reachability semantics
S−→psJPK(Ipre)l ′ ≜ {ρ′ ∈M | ∃σ ∈ S∗, l ∈ L, ρ ∈ Ipre(l ). 〈l , ρ〉σ〈l ′, ρ′〉 ∈ JPKIt}

Given a precondition Ipre ∈ L 7→ ℘(M), the forward (possible success) reachability

semantics S−→psJPK(Ipre)l specifies an invariant at each point l , which holds if and when
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an execution of P starting with a state satisfying Ipre reaches the point l .

In order to distinguish from the classic forward reachability semantics and the for-

ward impossible failure reachability semantics introduced in section 2.5, the semantics

S−→psJPK defined above is formally named “forward possible success reachability semantics”.

Nevertheless, in the rest of this dissertation, the notation of forward reachability seman-

tics (where “possible success” or its abbreviation “ps” is omitted) refers to S−→psJPK.
It is easy to see that the classic forward reachability semantics S−→r JPK ∈ ℘(M) 7→

(L 7→ ℘(M)) is an abstraction of our definition S−→psJPK ∈ (L 7→ ℘(M)) 7→ (L 7→ ℘(M)),

and S−→r JPK(Mi) is equal to S−→psJPK(Ipre) if Ipre = λl ∈ L. (l == l i) ? Mi : ∅.

Forward (Possible Success) Reachability Semantics in Fixpoint Form. The forward

reachability semantics S−→psJPK of a program P = 〈Si, →〉 can be defined by structural

induction on the language-specific syntax of the program, or in the fixpoint form with

a concrete forward transfer function F−→psJPK:
S−→psJPK ∈ (L 7→ ℘(M)) 7→ (L 7→ ℘(M)) forward reachability semantics

S−→psJPK(Ipre) ≜ lfp⊆̇
Ipre

F−→psJPK
F−→psJPK ∈ (L 7→ ℘(M)) 7→ (L 7→ ℘(M)) forward transfer function
F−→psJPKI ≜ I ∪̇ λl ′ ∈ L.{ρ′ ∈M | ∃l ∈ L, ρ ∈ I(l ). 〈l , ρ〉 −→〈l ′, ρ′〉}

where ⊆̇ and ∪̇ are pointwise extensions of the standard inclusion relation ⊆ and union

operator ∪, respectively.

Essentially, the monotonic function F−→psJPK described above can be constructed by

combining atomic forward transfer functions, each of which is typically defined for an

atomic action (instruction / computation step) in the program and associates a set of

environments before the action with the set of environments reachable after the action.
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More formally, here we assume that for every pair of program points 〈l , l ′〉 in the

program P, an atomic transfer function Fl→l ′JPK ∈ ℘(M) 7→ ℘(M) is provided such that

for any set M of environments at point l , the function Fl→l ′JPK(M) returns the set of

environments at point l ′ that are reachable from M: (1) if l = l ′, then Fl→l ′JPK(M) =

M; (2) if l 6= l ′ and there is not an atomic action from l to l ′, then Fl→l ′JPK(M) = ∅;

and (3) otherwise, there is an atomic action from l to l ′, then Fl→l ′JPK(M) is the set of

environments after executing the action from M. Take the simple language in Fig.1.2 as

an example, there are only two types of atomic actions: for an assignment l1x := e l2 , the

corresponding atomic transfer function Fl1→l2JPK(M) = τ{|x := e|}M, which is defined

in Fig. 1.3; similarly, for a boolean test l1b l2 , the corresponding atomic transfer function

Fl1→l2JPK(M) = τ{|b|}M.

Therefore, the definition of forward transfer function F−→psJPK can be rephrased into:
F−→psJPK ∈ (L 7→ ℘(M)) 7→ (L 7→ ℘(M)) forward transfer function
F−→psJPKI ≜ λl ′ ∈ L. ∪l ∈L Fl→l ′JPK(I(l ))
Example 5 (Access Control, Continued) Consider the access control program in Fig.1.4

again, the forward transfer function F−→psJPK can be derived by combining the following atomic

transfer functions: τ{| apv := 1 |}, τ{| i1 := [-1; 2] |}, τ{| apv := (i1 ≤ 0) ? -1 : apv |},

τ{| i2 := [-1; 2] |}, τ{| apv := (apv ≥ 1 ∧ i2 ≤ 0) ? -1 : apv |}, τ{| typ := [1; 2] |}, and

τ{|acs := apv × typ |}. Then, from a precondition Ipre ∈ L 7→ ℘(M) such that Ipre(l1) = M

and Ipre(l ) = ∅ for l 6= l1, we can compute the forward reachability semantics S−→psJPK(Ipre)
by the least fixpoint lfp⊆̇

Ipre
F−→psJPK, which is equal to the classic invariant semantics.

To be more precise, the result S−→psJPK(Ipre) is listed in Table 2.1, in which the constraints

on environment like “ρ(apv) = 1” is written as “apv = 1” for short. □
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l S−→psJPK(Ipre)l
l1 M
l2 {ρ ∈M | apv = 1}
l3 {ρ ∈M | apv = 1 ∧ i1 ∈ {-1, 0, 1, 2}}
l4 {ρ ∈M | apv = 1 ∧ i1 ∈ {1, 2}} ∪ {ρ ∈M | apv = -1 ∧ i1 ∈ {-1, 0}}
l5 {ρ ∈M | apv = 1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {-1, 0, 1, 2}}
∪ {ρ ∈M | apv = -1 ∧ i1 ∈ {-1, 0} ∧ i2 ∈ {-1, 0, 1, 2}}

l6 {ρ ∈M | apv = 1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {1, 2}}
∪ {ρ ∈M | apv = -1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {-1, 0}}
∪ {ρ ∈M | apv = -1 ∧ i1 ∈ {-1, 0} ∧ i2 ∈ {-1, 0, 1, 2}}

l7 {ρ ∈M | apv = 1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {1, 2} ∧ typ ∈ {1, 2}}
∪ {ρ ∈M | apv = -1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {-1, 0} ∧ typ ∈ {1, 2}}
∪ {ρ ∈M | apv = -1 ∧ i1 ∈ {-1, 0} ∧ i2 ∈ {-1, 0, 1, 2} ∧ typ ∈ {1, 2}}

l8 {ρ ∈M | apv = 1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {1, 2} ∧ typ = 1 ∧ acs = 1}
∪ {ρ ∈M | apv = 1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {1, 2} ∧ typ = 2 ∧ acs = 2}
∪ {ρ ∈M | apv = -1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {-1, 0} ∧ typ = 1 ∧ acs = -1}
∪ {ρ ∈M | apv = -1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {-1, 0} ∧ typ = 2 ∧ acs = -2}
∪ {ρ ∈M | apv = -1 ∧ i1 ∈ {-1, 0} ∧ i2 ∈ {-1, 0, 1, 2} ∧ typ = 1 ∧ acs = -1}
∪ {ρ ∈M | apv = -1 ∧ i1 ∈ {-1, 0} ∧ i2 ∈ {-1, 0, 1, 2} ∧ typ = 2 ∧ acs = -2}

Table 2.1: Concrete Forward Reachability Semantics for the Access Control Program

2.3.2 Over-approximating Abstract Forward Reachability Analysis

Although the concrete forward reachability semantics S−→psJPK can be easily computed

in the Example 5 (since there is no infinite loops in the access control program and

the variable values are bounded integers), it is not computable in general, and an over-

approximation is necessary.

Over-approximating Abstract Forward Transfer Function. For the forward transfer

function F−→psJPK ∈ (L 7→ ℘(M)) 7→ (L 7→ ℘(M)) on the concrete invariant domain, we

need to construct an abstract forward transfer function F̂♯
−→psJPK ∈ (L 7→ D♯

M) 7→ (L 7→

D♯
M) that over-approximates F−→psJPK, where the symbol ˆ denotes over-approximations.

34



CHAPTER 2. FORWARD AND BACKWARD ANALYSIS

In section 2.2.1, it is assumed that for each transfer function Fl→l ′JPK ∈ ℘(M) 7→

℘(M) defined for atomic actions, the abstract environment domain D♯
M provides an ab-

stract function F̂♯

l→l ′JPK ∈ D♯
M 7→ D

♯
M such that ∀M♯ ∈ D♯

M. (Fl→l ′JPK ◦ γM)(M♯) ⊆

(γM ◦ F̂
♯

l→l ′JPK)(M♯). For instance, the interval/polyhedron/octagon domain provides

the over-approximating abstract transfer versions τ ♯{|x := e|} and τ ♯{|b|} for τ{|x := e|}

and τ{|b|}. Therefore, F̂♯
−→psJPK can be constructed by the join of F̂♯

l→l ′JPK functions:
F̂♯
−→psJPK ∈ (L 7→ D♯

M) 7→ (L 7→ D♯
M) abstract forward transfer function

F̂♯
−→psJPKI♯ ≜ λl ′ ∈ L. t♯

M l ∈L F̂
♯

l→l ′JPK(I♯(l ))
The abstract function F̂♯

−→psJPK is monotonic and obeys the soundness condition:

∀I♯ ∈ L 7→ D♯
M. F−→psJPK ◦ γ̇M(I♯) ⊆̇ γ̇M ◦ F̂

♯
−→psJPK(I♯). (2.1)

Proof. We start with the soundness of abstract atomic transfer function F̂♯

l→l ′JPK:
∀l , l ′ ∈ L. ∀M♯ ∈ D♯

M. Fl→l ′JPK ◦ γM(M♯) ⊆ γM ◦ F̂
♯

l→l ′JPK(M♯)

⇒ ∀l , l ′ ∈ L. ∀I♯ ∈ L 7→ D♯
M. Fl→l ′JPK ◦ γM(I♯(l )) ⊆ γM ◦ F̂

♯

l→l ′JPK(I♯(l ))
Hby replacing M♯ with I♯(l )I

⇒ ∀l ′ ∈ L. ∀I♯ ∈ L 7→ D♯
M. ∪l ∈L Fl→l ′JPK(γM(I♯(l ))) ⊆ γM(t♯Ml ∈L F̂

♯

l→l ′JPK(I♯(l )))
Hjoin on l ∈ L, and t♯M soundly approximates ∪I

⇒ ∀l ′ ∈ L. ∀I♯ ∈ L 7→ D♯
M. (F−→psJPK ◦ γ̇M(I♯))(l ′) ⊆ (γ̇M ◦ F̂

♯
−→psJPK(I♯))(l ′)
Hdef. F−→psJPK and F̂♯

−→psJPKI
⇒ ∀I♯ ∈ L 7→ D♯

M. F−→psJPK ◦ γ̇M(I♯) ⊆̇ γ̇M ◦ F̂
♯
−→psJPK(I♯) Hdef. ⊆̇I □
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By the monotonic property and the soundness condition (2.1) of the abstract forward

transfer function F̂♯
−→psJPK, we know that: for any Ipre ∈ L 7→ ℘(M) and I♯pre ∈ L 7→ D♯

M,

if Ipre ⊆̇ γ̇M(I
♯
pre), then lfp⊆̇

Ipre
F−→psJPK ⊆̇ γ̇M(lfp⊑̇

♯
M

I
♯
pre

F̂♯
−→psJPK). That is to say, the concrete

forward reachability semantics S−→psJPK(Ipre) can be soundly over-approximated by the

least fixpoint of the abstract forward transfer function F̂♯
−→psJPK.

Widening. In most abstract environment domains (e.g. intervals, polyhedra, octagons),

there may exist infinite increasing chains, hence the iteration of F̂♯
−→psJPK may not converge

in finite time. To address this problem, as explained in section 2.1, we need to have a

widening operator ▽I ∈ (L 7→ D♯
M) × (L 7→ D♯

M) 7→ (L 7→ D♯
M) on the abstract

invariant domain, which satisfies the following soundness and termination conditions:

(1) ∀x♯, y♯ ∈ L 7→ D♯
M. γ̇M(x

♯) ∪̇ γ̇M(y
♯) ⊆̇ γ̇M(x

♯ ▽I y
♯);

(2) for any sequence (x♯
i)i∈N, the sequence (y♯i)i∈N defined as y♯0 = x♯

0 and ∀i ∈

N. y♯i+1 = y♯i ▽I x
♯
i+1 converges in finite time.

The implementation of ▽I ∈ (L 7→ D♯
M) × (L 7→ D♯

M) 7→ (L 7→ D♯
M) naturally

follows the widening operator ▽M ∈ D♯
M×D

♯
M 7→ D

♯
M provided by the abstract environ-

ment domain, such that I♯ ▽I I
♯′ ≜ λl ∈ L. I♯(l ) ▽M I♯′(l ). It is easy to prove such a

definition of ▽I obeys the soundness and termination conditions, and we omit it here.

Abstract Forward Reachability Semantics. Given a precondition represented by I♯pre ∈

L 7→ D♯
M, the corresponding concrete reachability semantics S−→psJPK(γ̇M(I♯pre)) is the

least fixpoint of function F−→psJPK which is greater than or equal to γ̇M(I
♯
pre). That is to

say, S−→psJPK(γ̇M(I♯pre)) = lfp⊆̇
γ̇M(I

♯
pre)

F−→psJPK. By Cousot and Cousot’s upward iteration with

36



CHAPTER 2. FORWARD AND BACKWARD ANALYSIS

widening theorem, lfp⊆̇
γ̇M(I

♯
pre)

F−→psJPK can be soundly over-approximated by the limit of a ul-

timately stationary sequence (I♯i)i∈N, where I♯0 = I♯pre and ∀i ∈ N. I♯i+1 = I♯i ▽I F̂
♯
−→psJPK(I♯i).

∀I♯pre ∈ L 7→ D♯
M. lfp

⊆̇

γ̇M(I
♯
pre)

F−→psJPK ⊆̇ γ̇M(limI
♯
pre
λI♯. I♯ ▽I F̂

♯
−→psJPK(I♯)). (2.2)

In the rest of this dissertation, the abstract forward reachability semantics S♯
−→psJPK

refers to the following definition, which gives a sound over-approximation of the concrete

reachability semantics and can be computed in finite time.
S♯
−→psJPK ∈ (L 7→ D♯

M) 7→ (L 7→ D♯
M) abstract forward reachability semantics

S♯
−→psJPK(I♯pre) ≜ lim

I
♯
pre
λI♯. I♯ ▽I F̂

♯
−→psJPK(I♯)

Example 6 (Access Control, Continued) For the access control program in Fig.1.4, we use

the interval domain as the abstract environment domain D♯
M. Given an abstract precondition

I♯pre ∈ L 7→ D♯
M such that I♯pre(l1) = >♯

M and I♯pre(l ) = ⊥
♯
M for l 6= l1, the corresponding

abstract forward reachability semantics S♯
−→psJPK(I♯pre)l is listed in Table 2.2.

l S♯
−→psJPK(I♯pre)l

l1 >♯
M

l2 apv ∈ [1; 1] ∧ i1 ∈ [-∞;∞] ∧ i2 ∈ [-∞;∞] ∧ typ ∈ [-∞;∞] ∧ acs ∈ [-∞;∞]
l3 apv ∈ [1; 1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-∞;∞] ∧ typ ∈ [-∞;∞] ∧ acs ∈ [-∞;∞]
l4 apv ∈ [-1; 1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-∞;∞] ∧ typ ∈ [-∞;∞] ∧ acs ∈ [-∞;∞]
l5 apv ∈ [-1; 1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [-∞;∞] ∧ acs ∈ [-∞;∞]
l6 apv ∈ [-1; 1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [-∞;∞] ∧ acs ∈ [-∞;∞]
l7 apv ∈ [-1; 1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [-∞;∞]
l8 apv ∈ [-1; 1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [-2; 2]

Table 2.2: Abstract Forward Reachability Semantics for the Access Control Program

Compared with the concrete reachability semantics S−→psJPK(Ipre)l in Table 2.1, it is obvious

that S♯
−→psJPK(I♯pre)l is an over-approximation and contains some spurious environments that

are not reachable in the concrete (e.g. the value of acs cannot be 0 at l8 in the concrete). □
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2.4 Backward Accessibilty Analysis

Given a precondition on states, the forward reachability analysis collects states that

are possibly reachable by the executions from states satisfying the precondition. Inversely,

given a postcondition on states, the backward accessibility analysis collects states from

which the executions reach states satisfying the postcondition.

In general, there are two types of backward accessibility analysis: (1) the backward

impossible failure accessibility analysis computes the states, from which the executions can

reach only the states satisfying the given postcondition (i.e. it is impossible to reach

states that fail the postcondition); (2) the backward possible success accessibility analysis

computes the states, from which the executions may reach a state satisfying the given

postcondition (i.e. it is possible to succeed to reach a state satisfying the postcondition).

This section discusses the backward impossible failure accessibility semantics, which is

essentially equivalent to the sufficient condition semantics in [34, 42]. More precisely, we

briefly review the under-approximating abstract analysis introduced by Miné, and pro-

pose a new over-approximating abstract backward impossible failure accessibility analysis.

Meanwhile, the backward possible success accessibility semantics is not utilized in this

dissertation, hence we briefly introduce it in the next section for the sake of completeness,

as well as its adjoint (the forward impossible failure reachability semantics).

2.4.1 Backward Impossible Failure Accessibility Semantics

The forward (possible success) reachability semantics S−→psJPK ∈ (L 7→ ℘(M)) 7→

(L 7→ ℘(M)) is the lower adjoint in a Galois connection, and the corresponding upper ad-

joint is defined as the backward impossible failure accessibility semantics S←−
if

JPK ∈ (L 7→
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℘(M)) 7→ (L 7→ ℘(M)), such that any execution from states satisfying S←−
if

JPK(Ipost) can
reach only the states satisfying the given postcondition Ipost ∈ L 7→ ℘(M):

〈L 7→ ℘(M), ⊆̇〉 −−−−−→←−−−−−
S−→psJPK
S←−
if

JPK
〈L 7→ ℘(M), ⊆̇〉

where the definition of S←−
if

JPK is formalized as

S←−
if

JPK ∈ (L 7→ ℘(M)) 7→ (L 7→ ℘(M))

S←−
if

JPK(Ipost)l ≜ {ρ ∈M | ∀σ ∈ S∗, l ′ ∈ L, ρ′ ∈M. (〈l , ρ〉σ〈l ′, ρ′〉 ∈ JPKIt ⇒
ρ′ ∈ Ipost(l

′))}

Proof. For any Ipre, Ipost ∈ L 7→ ℘(M), we can prove that:

S−→psJPK(Ipre) ⊆̇ Ipost

⇔ ∀l ′ ∈ L. S−→psJPK(Ipre)l ′ ⊆ Ipost(l
′) Hdef. ⊆̇I

⇔ ∀l ′ ∈ L. {ρ′ ∈M | ∃σ ∈ S∗, l ∈ L, ρ ∈ Ipre(l ). 〈l , ρ〉σ〈l ′, ρ′〉 ∈ JPKIt} ⊆ Ipost(l
′)

Hdef. S−→psJPKI
⇔ ∀l ′ ∈ L. {ρ′ ∈ M | ¬(∀σ ∈ S∗, l ∈ L, ρ ∈ Ipre(l ). 〈l , ρ〉σ〈l ′, ρ′〉 /∈ JPKIt)} ⊆
{ρ′ ∈M | ρ′ ∈ Ipost(l

′)} Hdef. ∃ and ∀I
⇔ ∀l ′ ∈ L. {ρ′ ∈ M | ∀σ ∈ S∗, l ∈ L, ρ ∈ Ipre(l ). 〈l , ρ〉σ〈l ′, ρ′〉 /∈ JPKIt} ∪ {ρ′ ∈

M | ρ′ ∈ Ipost(l
′)} = M Hdef. ¬ and ∪I

⇔ ∀l ′ ∈ L. ∀ρ′ ∈ M. (∀σ ∈ S∗, l ∈ L, ρ ∈ Ipre(l ). 〈l , ρ〉σ〈l ′, ρ′〉 /∈ JPKIt) ∨ ρ′ ∈

Ipost(l
′) Hdef. ∨I

⇔ ∀l ∈ L. ∀ρ ∈ Ipre(l ). ∀σ ∈ S∗, l ′ ∈ L, ρ′ ∈ M. 〈l , ρ〉σ〈l ′, ρ′〉 ∈ JPKIt ⇒ ρ′ ∈

Ipost(l
′) Hdef. ⇒I

⇔ ∀l ∈ L. Ipre(l ) ⊆ {ρ ∈ M | ∀σ ∈ S∗, l ′ ∈ L, ρ′ ∈ M. 〈l , ρ〉σ〈l ′, ρ′〉 ∈ JPKIt ⇒
ρ′ ∈ Ipost(l

′)} Hdef. ⊆I
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⇔ ∀l ∈ L. Ipre(l ) ⊆ S←−if JPK(Ipost)l Hdef. S←−
if

JPKI
⇔ Ipre ⊆̇ S←−if JPK(Ipost) Hdef. ⊆̇I

Thus, the forward (possible success) reachability semantics S−→psJPK and the backward
impossible failure accessibility semantics S←−

if
JPK form a Galois connection. □

For any postcondition Ipost ∈ L 7→ ℘(M) that can represent a trace property of

interest γI(Ipost), the backward impossible failure accessibility semantics S←−
if

JPK(Ipost)
computes the states from which all the execution traces must have the property γI(Ipost),

or say, it infers the sufficient preconditions for the postcondition Ipost to hold. It is

of great importance to know that our S←−
if

JPK is essentially equivalent to the sufficient

condition semantics introduced in [34, 42].

Backward Impossible Failure Accessibility Semantics in Fixpoint Form. Similar to

the forward (possible success) reachability semantics S−→psJPK, the backward impossible

failure accessibility semantics S←−
if

JPK of a program P = 〈Si, →〉 can be also defined in

the fixpoint form with a concrete backward transfer function F←−
if

JPK:
S←−
if

JPK ∈ (L 7→ ℘(M)) 7→ (L 7→ ℘(M)) backward IF accessibility semantics
S←−
if

JPK(Ipost) ≜ gfp⊆̇
Ipost

F←−
if

JPK
F←−
if

JPK ∈ (L 7→ ℘(M)) 7→ (L 7→ ℘(M)) backward IF transfer function
F←−
if

JPKI ≜ I ∩̇ λl ∈ L.{ρ ∈M | ∀l ′ ∈ L, ρ′ ∈M. 〈l , ρ〉 −→〈l ′, ρ′〉
⇒ ρ′ ∈ I(l ′)}

where ⊆̇ and ∩̇ are pointwise extensions of the standard set inclusion relation ⊆ and

intersection operator ∩, respectively.

As F−→psJPK is constructed by combining atomic forward transfer functions Fl→l ′JPK,
we can construct F←−

if
JPK by atomic backward transfer functions Fl←l ′JPK ∈ ℘(M) 7→
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℘(M), which are defined for every pair of program points 〈l , l ′〉 in the program such that,

if there exists a single atomic action from l to l ′, then executions from environments

in Fl←l ′JPKM at point l can only reach environments in M at point l ′. To be more

precise: (1) if l = l ′, then Fl←l ′JPK(M) = M; (2) if l 6= l ′ and there is not an atomic

action from l to l ′, then Fl←l ′JPK(M) = M; and (3) otherwise, there is an atomic action

from l to l ′, then Fl←l ′JPK(M) is the set of environments at point l that guarantee the

environments after executing the atomic action belong to M.

Specifically, for the simple language described in Fig. 1.2, there are only two types

of atomic actions, and for each of them we define an atomic backward transfer function.

For an assignment l1x := e l2 , the corresponding atomic backward transfer function

Fl1←l2JPK(M) =←−τ {|x := e|}M, which is defined as:
←−τ {|x := e|}M ≜ {ρ ∈M | ∀v ∈ JeKρ. ρ[x 7→ v ] ∈M}.

Similarly, for a boolean test l1b l2 , the corresponding atomic backward transfer func-

tion Fl1←l2JPK(M) =←−τ {|b|}M, which is defined as:
←−τ {|b|}M ≜ M ∪ {ρ ∈M | JbKρ = {f}}.

Therefore, the definition of backward transfer function F←−
if

JPK can be rephrased into:
F←−
if

JPK ∈ (L 7→ ℘(M)) 7→ (L 7→ ℘(M)) backward IF transfer function
F←−
if

JPKI ≜ λl ∈ L. ∩l ′∈L Fl←l ′JPK(I(l ′))
Example 7 (Access Control, Continued) For the access control program in Fig.1.4, the

transfer function F←−
if

JPK can be constructed by combining the following atomic backward

transfer functions: ←−τ {| apv := 1 |}, ←−τ {| i1 := [-1; 2] |}, ←−τ {| apv := (i1 ≤ 0) ? -1 : apv |},
←−τ {| i2 := [-1; 2] |}, ←−τ {| apv := (apv ≥ 1 ∧ i2 ≤ 0) ? -1 : apv |}, ←−τ {| typ := [1; 2] |}, and
←−τ {|acs := apv × typ |}.
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Suppose we are interested in inferring sufficient preconditions of the trace property “the

access to o fails”, a simple idea is to specify a postcondition Ipost ∈ L 7→ ℘(M) such that

Ipost(l8) = {ρ ∈ M | ρ(acs) <= 0} and Ipost(l ) = M for l 6= l8, and then compute the

corresponding backward accessibility semantics S←−
if

JPK(Ipost). However, such a result is too

imprecise. Take the semantics at the point l7 as an example: S←−
if

JPK(Ipost)l7 = Ipost(l7) ∩

Fl7←l8JPK(Ipost(l8)) = M ∩ ←−τ {| acs := apv × typ |}({ρ ∈ M | ρ(acs) <= 0}) = {ρ ∈

M | (ρ(apv) <= 0 ∧ ρ(typ) >= 0) ∨ (ρ(apv) >= 0 ∧ ρ(typ) <= 0)}. This semantics

does provide correct sufficient preconditions of “the access to o fails”, but it is not precise enough,

since the value of typ is never zero or negative at point l7 in the real executions.

In order to get a more precise result, the specified postcondition Ipost can be refined by the

intersection with the forward reachability semantics S−→psJPK(Ipre) computed in Example 5, i.e.

we define I′post = Ipost ∩̇ S−→psJPK(Ipre), and the semantics S←−
if

JPK(I′post) would be more precise,

whose result is listed in table 2.3, and the constraints on environment like “ρ(apv) = 1” is

written as “apv = 1” for short. It is not hard to see that: at the point l1 or l2, there is no

sufficient precondition that can guarantee the property “the access to o fails”; beginning from

the point l3, the negative or zero value of i1 guarantees “access failure”; and beginning from

the point l5, the negative or zero value of i2 guarantees “access failure”. □

2.4.2 Under-approximating Abstract Backward Impossible Failure

Accessibility Analysis

Similar to the forward reachability semantics, the backward impossible failure acces-

sibility semantics may be not computable in the concrete, hence it is necessary to reason
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l S←−
if

JPK(I′post)l
l1 ∅
l2 ∅
l3 {ρ ∈M | apv = 1 ∧ i1 ∈ {-1, 0}}
l4 {ρ ∈M | apv = -1 ∧ i1 ∈ {-1, 0}}
l5 {ρ ∈M | apv = 1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {-1, 0}}
∪ {ρ ∈M | apv = -1 ∧ i1 ∈ {-1, 0} ∧ i2 ∈ {-1, 0, 1, 2}}

l6 {ρ ∈M | apv = -1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {-1, 0}}
∪ {ρ ∈M | apv = -1 ∧ i1 ∈ {-1, 0} ∧ i2 ∈ {-1, 0, 1, 2}}

l7 {ρ ∈M | apv = -1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {-1, 0} ∧ typ ∈ {1, 2}}
∪ {ρ ∈M | apv = -1 ∧ i1 ∈ {-1, 0} ∧ i2 ∈ {-1, 0, 1, 2} ∧ typ ∈ {1, 2}}

l8 {ρ ∈M | apv = -1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {-1, 0} ∧ typ = 1 ∧ acs = -1}
∪ {ρ ∈M | apv = -1 ∧ i1 ∈ {1, 2} ∧ i2 ∈ {-1, 0} ∧ typ = 2 ∧ acs = -2}
∪ {ρ ∈M | apv = -1 ∧ i1 ∈ {-1, 0} ∧ i2 ∈ {-1, 0, 1, 2} ∧ typ = 1 ∧ acs = -1}
∪ {ρ ∈M | apv = -1 ∧ i1 ∈ {-1, 0} ∧ i2 ∈ {-1, 0, 1, 2} ∧ typ = 2 ∧ acs = -2}

Table 2.3: Concrete Backward Impossible Failure Accessibility Semantics for the Access
Control Program

on the abstract domain instead. Although classic abstract domains come with abstract

transfer functions (operators) for both forward and backward analyses, these functions are

over-approximating and are suitable only for inferring invariants (i.e. reachability seman-

tics) or necessary preconditions (i.e. backward possible success accessibility semantics in

section 2.5), but not for inferring sufficient preconditions. The reason comes from that

an over-approximation of the tightest program invariant (respectively, the strongest nec-

essary precondition) is still an invariant (respectively, a necessary precondition), but an

over-approximation of the weakest sufficient precondition is not a sufficient precondition

anymore (which will be discussed later in section 2.4.3), thus under-approximations are

needed instead to preserve the soundness for inferring sufficient preconditions. To solve

this problem, Miné [34, 42] presents under-approximating abstract operators (including

a dual widening) for the classic interval/octagon/polyhedron domain, which makes au-
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tomatically inferring sufficient preconditions directly by under-approximating backward

analysis possible. Other attempts to infer sufficient preconditions include [52, 22, 44],

but none of them can directly work on the classic numeric abstract domains.

In this section, we briefly summarize the framework of an under-approximating ab-

stract backward impossible failure accessibility analysis, and refer to [34, 42] and the

Banal static analyzer [55] for the details of implementing the under-approximating ab-

stract operators (including a dual widening).

Under-approximating Abstract Backward Transfer Function. For the transfer func-

tion F←−
if

JPK ∈ (L 7→ ℘(M)) 7→ (L 7→ ℘(M)) on the concrete invariant domain, we

need to construct the corresponding abstract backward transfer function F̌♯
←−
if

JPK ∈ (L 7→

D♯
M) 7→ (L 7→ D♯

M) (the symbol ˇ denotes under-approximations), which satisfies the

following soundness condition:

∀I♯ ∈ L 7→ D♯
M. γ̇M ◦ F̌

♯
←−
if

JPK(I♯) ⊆̇ F←−
if

JPK ◦ γ̇M(I♯). (2.3)

Since F←−
if

JPKI is defined by combining atomic backward transfer function Fl←l ′JPK
together (i.e.F←−

if
JPKI ≜ λl ∈ L.∩l ′∈LFl←l ′JPK(I(l ′))), it is necessary to build the under-

approximating versions F̌♯

l←l ′JPK ∈ D♯
M 7→ D

♯
M for atomic backward transfer functions

Fl←l ′JPK ∈ ℘(M) 7→ ℘(M), such that the condition (2.4) hold.

∀M♯ ∈ D♯
M. γM ◦ F̌

♯

l←l ′JPK(M♯) ⊆ Fl←l ′JPK ◦ γM(M♯). (2.4)

In order to satisfy the soundness condition (2.4), we design F̌♯

l←l ′JPK such that: (1)

if l = l ′, then F̌♯

l←l ′JPK(M♯) = M♯; (2) if l 6= l ′ and there is not an atomic action from

l to l ′, then F̌♯

l←l ′JPK(M♯) = >♯
M; and (3) otherwise, there is an atomic action from

l to l ′, then F̌♯

l←l ′JPK(M♯) is an abstract environment element in D♯
M that guarantees
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M♯ to hold after executing the atomic action. It is obvious that the case (3) is the

difficult one, and fortunately for the atomic actions of assignments and boolean tests in

the interval/polyhedron/octagon domain, Miné has proposed the corresponding under-

approximating atomic backward transfer function←−τ ♯{|x := e|}M♯ and←−τ ♯{|b|}M♯, which

satisfies the soundness condition. Details see the section 3.2-3.4 of [42]. Now we can

build the backward transfer function F̌♯
←−
if

JPK by the following definition:
F̌♯
←−
if

JPK ∈ (L 7→ D♯
M) 7→ (L 7→ D♯

M) under-approximating backward IF function
F̌♯
←−
if

JPKI♯ ≜ λl ∈ L. u♯
M l ′∈LF̌

♯

l←l ′JPK(I♯(l ′))
The backward transfer function F̌♯

←−
if

JPK satisfies the soundness condition (2.3), and

its greatest fixpoint would soundly under-approximate the concrete backward impossible

failure accessibility semantics.

∀I♯post ∈ L 7→ D♯
M. γ̇M(gfp

⊆̇

I
♯
post

F̌♯
←−
if

JPK) ⊆̇ gfp⊆̇
γ̇M(I

♯
post)

F←−
if

JPK = S←−
if

JPK(γ̇M(I♯post)).
Dual Widening. The iteration of the above defined F̌♯

←−
if

JPK may not converge in finite

time, since there may exist infinite decreasing chains in the abstract environment domain

(e.g. intervals, polyhedra, octagons). To address this problem, we need a dual widening

operator ▽I ∈ (L 7→ D♯
M)× (L 7→ D♯

M) 7→ (L 7→ D♯
M) on the abstract invariant domain,

which obeys the following soundness and termination conditions:

(1) ∀x♯, y♯ ∈ (L 7→ D♯
M). γ̇M(x

♯ ▽I y
♯) ⊆̇ γ̇M(x

♯) ∩̇ γ̇M(y
♯);

(2) for any sequence (x♯
i)i∈N, the sequence (y♯i)i∈N defined as y♯0 = x♯

0 and ∀i ∈

N. y♯i+1 = y♯i ▽I x
♯
i+1 converges in finite time.

Notice that the above soundness condition is different from the one for classic widen-

ing ▽I in the forward reachability analysis.
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In the section 3.5 of [42], Miné has proposed a so-called “lower widening” operator

▽ ∈ D♯
M × D

♯
M 7→ D

♯
M for the interval/polyhedron/octagon domain. Correspondingly,

we define ▽I as the the pointwise version of ▽ (i.e. I♯ ▽I I
♯′ ≜ λl ∈ L. I♯(l ) ▽ I♯′(l )),

and it can satisfy both the soundness and the termination condition above.

Under-approximating Abstract Backward Accessibility Semantics. Given a postcon-

dition specified as I♯post ∈ L 7→ D♯
M, the corresponding concrete backward impossi-

ble failure accessibility semantics S←−
if

JPK(γ̇M(I♯post)) is the greatest fixpoint of function
F←−
if

JPK which is less than or equal to γ̇M(I
♯
post). That is to say, S←−

if
JPK(γ̇M(I♯post)) =

gfp⊆̇
γ̇M(I

♯
post)

F←−
if

JPK, and it can be soundly under-approximated by the limit of a ultimately

stationary sequence (I♯i)i∈N, where I♯0 = I♯post and ∀i ∈ N. I♯i+1 = I♯i ▽I F̌
♯
←−
if

JPK(I♯i).
∀I♯post ∈ L 7→ D♯

M. γ̇M(limI
♯
post

λI♯. I♯ ▽I F̌
♯
←−
if

JPK(I♯)) ⊆̇ gfp⊆̇
γ̇M(I

♯
post)

F←−
if

JPK. (2.5)

In the rest of this dissertation, the under-approximating abstract backward impossi-

ble failure accessibility semantics Š♯
←−
if

JPK refers to the following definition, which com-

putes a sound under-approximation of the concrete backward impossible failure acces-

sibility semantics, and can automatically infer the sufficient precondition of any given

postcondition in finite time.

Š♯
←−
if

JPK ∈ (L 7→ D♯
M) 7→ (L 7→ D♯

M) under-appro. backward IF semantics

Š♯
←−
if

JPK(I♯post) ≜ lim
I
♯
post

λI♯. I♯ ▽I F̌
♯
←−
if

JPK(I♯)
Example 8 (Access Control, Continued) Consider the access control program in Fig.1.4

again, we are interested in inferring the sufficient preconditions of the trace property “the access

to o fails”. Suppose the abstract environment domain D♯
M is chosen as the interval domain,
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then “the access to o fails” can be expressed by an abstract postcondition I♯post ∈ L 7→ D♯
M such

that I♯post(l8) = acs ∈ [-∞; 0] and I♯post(l ) = >♯
M for l 6= l8.

Like in the example 7, the postcondition I♯post can be refined by the intersection with the

abstract forward reachability semantics S♯
−→psJPK(I♯pre) from the table 2.2, and we get I♯′post =

I♯post u̇
♯
M S

♯
−→psJPK(I♯pre), which is listed in the Table 2.4.

l I♯′post(l )

l1 >♯
M

l2 apv ∈ [1; 1] ∧ i1 ∈ [-∞;∞] ∧ i2 ∈ [-∞;∞] ∧ typ ∈ [-∞;∞] ∧ acs ∈ [-∞;∞]
l3 apv ∈ [1; 1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-∞;∞] ∧ typ ∈ [-∞;∞] ∧ acs ∈ [-∞;∞]
l4 apv ∈ [-1; 1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-∞;∞] ∧ typ ∈ [-∞;∞] ∧ acs ∈ [-∞;∞]
l5 apv ∈ [-1; 1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [-∞;∞] ∧ acs ∈ [-∞;∞]
l6 apv ∈ [-1; 1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [-∞;∞] ∧ acs ∈ [-∞;∞]
l7 apv ∈ [-1; 1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [-∞;∞]
l8 apv ∈ [-1; 1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [-2;0]

Table 2.4: Refined Abstract Postcondition for “the Access to o Fails”

From the above refined abstract postcondition I♯′post, there are two possible results of the back-

ward impossible failure accessibility analysis Š♯
←−
if

JPK(I♯′post), and they are respectively displayed

in the Table 2.5 and Table 2.6 (in which the interesting part is emphasized in a bold font).

The difference between these two possible results comes from the assignment “apv := (apv ≥

1∧ i2 ≤ 0) ? -1 : apv” at the point l5. To guarantee that “apv ≤ 0” at point l6, we have two

possible choices: either “apv ≥ 1 ∧ i2 ≤ 0”, or “apv ≤ 0” at point l5. Since Š♯
←−
if

JPK(I♯′post) is
an under-approximation, we cannot join the two cases together like in the over-approximating

forward reachability analysis. Instead, we would keep one case and discard the other case (e.g.

the Banal analyzer adopts the former choice, and produces results as in Table 2.5).
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l Š♯
←−
if

JPK(I♯′post)l
l1 ⊥♯

M
l2 ⊥♯

M
l3 ⊥♯

M
l4 ⊥♯

M
l5 apv ∈ [1;1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1;0] ∧ typ ∈ [-∞;∞] ∧ acs ∈ [-∞;∞]
l6 apv ∈ [-1;0] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [-∞;∞] ∧ acs ∈ [-∞;∞]
l7 apv ∈ [-1;0] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [-∞;∞]
l8 apv ∈ [-1; 1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [-2;0]

Table 2.5: The Under-approximating Abstract Backward Impossible Failure Accessibility
Semantics (Option 1) for “the Access to o Fails”

l Š♯
←−
if

JPK(I♯′post)l
l1 ⊥♯

M
l2 ⊥♯

M
l3 apv ∈ [1; 1] ∧ i1 ∈ [-1;0] ∧ i2 ∈ [-∞;∞] ∧ typ ∈ [-∞;∞] ∧ acs ∈ [-∞;∞]
l4 apv ∈ [-1;0] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-∞;∞] ∧ typ ∈ [-∞;∞] ∧ acs ∈ [-∞;∞]
l5 apv ∈ [-1;0] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [-∞;∞] ∧ acs ∈ [-∞;∞]
l6 apv ∈ [-1;0] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [-∞;∞] ∧ acs ∈ [-∞;∞]
l7 apv ∈ [-1;0] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [-∞;∞]
l8 apv ∈ [-1; 1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [-2;0]

Table 2.6: The Under-approximating Abstract Backward Impossible Failure Accessibility
Semantics (Option 2) for “the Access to o Fails”

Alternatively, we could use the disjunctive completion [4] and maintain the abstract en-

vironment elements (i.e. sufficient preconditions) from both two tables. In this example, the

disjunctive completion could provide us with the exact backward impossible failure accessibility

semantics and its cost is not too heavy, because we need to keep a disjunction of two abstract

environment elements only at the point l5, while the abstract environment elements at other

points are either the same from two tables or the bottom in one table (which can be omitted).

In order to distinguish from the over-approximating analysis introduced later in section 2.4.3,
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here we adopt the result (from the Banal analyzer) in Table 2.5 as an under-approximation.

Therefore, we have successfully inferred some sufficient preconditions of “the Access to o

Fails”: “acs ∈ [-2; 0]” at l8, “apv ∈ [-1; 0]” at l7 and l6, and “apv ∈ [1; 1] ∧ i2 ∈ [-1; 0]”

at l5, which implies that the zero or negative value of i2 (i.e. the input from 2nd admin)

guarantees the access failure. □

2.4.3 Over-approximating Abstract Backward Impossible Failure

Accessibility Analysis

Besides the under-approximating backward analysis described in the last section, we

would like to design an over-approximating abstract backward impossible failure acces-

sibility analysis as well, which computes an over-approximation of the set of states from

which all the executions must satisfy the given postcondition I♯post.

Such an over-approximation is neither a sufficient precondition for I♯post to hold, nor

a necessary precondition, due to the possible non-determinism of the program. Thus,

it may seem to be not of practical use. However, instead of directly using such an

over-approximating abstract backward impossible failure accessibility semantics in the

responsibility analysis, we intend to utilize its set-complement as partitioning directives

(which will be further discussed in Chapter 8), and it represents a set of states from which

there must exist at least one concrete execution trace that fails the postcondition I♯post.

This may seem to be counter-intuitive at first sight, since most abstract domains (e.g.

intervals, octagons, polyhedra) do not support complements. For instance, the comple-

ment of a polyhedron is a disjunction of affine inequalities, which cannot be expressed by

a single polyhedron. However, it would not be a problem for our responsibility analysis,
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since we do not require to represent the complement set by a single abstract environ-

ment element. Instead, we could keep multiple partitioning directives at every program

point. Take the complement of a polyhedron as an example, each affine inequality (or the

heuristically selected ones when the number of affine inequalities exceeds a threshold)

can be used as a partitioning directive in the responsibility analysis.

In the following, we formalize the framework of over-approximating backward impos-

sible failure accessibility analysis, which essentially corresponds to an over-approximating

version of section 3 of [42] and section 2.4.2 of this dissertation. More precisely, it con-

sists of the over-approximating backward transfer functions (e.g. for the boolean tests

and assignments in our simple programming language) and a narrowing operator that

over-approximates meets and enforces termination.

Over-approximating Abstract Backward Transfer Function. Here we need an over-

approximating abstract backward transfer function F̂♯
←−
if JPK ∈ (L 7→ D♯

M) 7→ (L 7→

D♯
M) (the symbol ˆ denotes over-approximations) that satisfies the following soundness

condition (2.6).

∀I♯ ∈ L 7→ D♯
M. F←−if JPK ◦ γ̇M(I♯) ⊆̇ γ̇M ◦ F̂

♯
←−
if JPK(I♯). (2.6)

Like F̌♯
←−
if

JPK is defined by the combination of F̌♯

l←l ′JPK, the over-approximating ver-

sion F̂♯
←−
if JPK can be defined by combining F̂♯

l←l ′JPK ∈ D♯
M 7→ D

♯
M:

F̂♯
←−
if JPK ∈ (L 7→ D♯

M) 7→ (L 7→ D♯
M) over-approximating backward IF function

F̂♯
←−
if JPKI♯ ≜ λl ∈ L. u♯

M l ′∈LF̂
♯

l←l ′JPK(I♯(l ′))
where the meet u♯M is exact and F̂♯

l←l ′JPK needs to satisfy the condition (2.7).

∀M♯ ∈ D♯
M. Fl←l ′JPK ◦ γM(M♯) ⊆ γM ◦ F̂

♯

l←l ′JPK(M♯). (2.7)
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Similar to the definition of F̌♯

l←l ′JPK, here F̂♯

l←l ′JPK is defined such that: (1) if l = l ′,

then F̂♯

l←l ′JPK(M♯) = M♯; (2) if l 6= l ′ and there is not an atomic action from l to l ′,

then F̂♯

l←l ′JPK(M♯) = >♯
M; and (3) otherwise, there is an atomic action from l to l ′,

then F̂♯

l←l ′JPK(M♯) over-approximates the sufficient precondition that guarantees M♯ to

hold after executing the atomic action.

Among the above three cases, (3) is the difficult one. In the following, we take

the simple programming language in Fig. 1.2 as an example, mimic the section 3 of

[42] and discusses how F̂♯

l←l ′JPK is implemented for atomic actions of form l1a l2 (e.g.

boolean tests l1b l2 , assignments l1x := e l2), where F̂♯

l1←l2
JPK(M♯) ≜ ←̂−τ

♯
{| a |}M♯ such

that ∀M♯ ∈ D♯
M.
←−τ {|a |} ◦ γM(M♯) ⊆ γM ◦ ←̂−τ

♯
{|a |}(M♯).

1) Boolean tests (guards).

Affine guards. First, we consider the polyhedron domain, and the guard is of form

a⃗ · x⃗ ≥ b such that it can be exactly represented by polyhedra. In this case, the concrete

backward transfer function can be rephrased into:
←−τ {|a⃗ · x⃗ ≥ b|}M = M ∪ {ρ ∈M | J⃗a · x⃗ ≥ bKρ = {f}} = M ∪ {ρ ∈M | a⃗ · ρ⃗ < b}

where ρ⃗ denotes the vector of variable values in the environment ρ.

To over-approximate ←−τ {| a⃗ · x⃗ ≥ b |}, we define the corresponding abstract transfer

function ←̂−τ
♯
{|a⃗ · x⃗ ≥ b|} ∈ D♯

M 7→ D
♯
M as:

←̂−τ
♯
{|a⃗ · x⃗ ≥ b|}M♯ ≜ M♯ t♯M a⃗ · x⃗ < b. (2.8)

Since t♯M soundly approximates the concrete join operator ∪, it is easy to see the

soundness condition (2.7) holds. Moreover, if we use the disjunctive completion [4],

then both M♯ and a⃗ · x⃗ < b can be kept without the join, i.e. ←̂−τ
♯
{| a⃗ · x⃗ ≥ b |}M♯ ≜

{M♯, a⃗ · x⃗ < b}, which can greatly improve the precision of analysis. When the number
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of disjunctive elements exceeds a threshold, we can replace them by their join. It is wor-

thy to mention that current polyhedra abstract domain [10] supports strict constraints

like a⃗ · x⃗ < b. For the original polyhedra abstract domain that cannot express strict

constraints, it is sound to replace a⃗ · x⃗ < b by a⃗ · x⃗ ≤ b in (2.8).

For the interval domain, the same technique can be applied to ←̂−τ
♯
{|±x ≥ b|}, since

a box (i.e. a Cartesian products of intervals) is a special case of polyhedron. Similarly,

we can handle ←̂−τ
♯
{|±x ± y ≥ b|} for the octagon domain in the same way.

Extended affine guards. For strict guards and the guards with a non-deterministic

constant, the corresponding abstract transfer function is defined as:
←̂−τ

♯
{|a⃗ · x⃗ > b|}M♯ ≜ M♯ t♯M a⃗ · x⃗ ≤ b (2.9)

←̂−τ
♯
{|a⃗ · x⃗ > [b; c]|}M♯ ≜ M♯ t♯M a⃗ · x⃗ < c

←̂−τ
♯
{|a⃗ · x⃗ = [b; c]|}M♯ ≜ M♯ t♯M a⃗ · x⃗ < b t♯M a⃗ · x⃗ > c.

Boolean operations. For the boolean conjunctions and disjunctions of affine guards,

the section 3.2 of [42] has shown that the concrete transfer function has the following

property:
←−τ {|t1 ∨ t2 |} =←−τ {|t1 |} ∩←−τ {|t2 |} (2.10)
←−τ {|t1 ∧ t2 |} =←−τ {|t1 |} ◦ ←−τ {|t2 |}.

Since the abstract meet u♯M is exact in the interval/octagon/polyhedron domain, we

can define the corresponding abstract transfer functions which are also exact:
←̂−τ

♯
{|t1 ∨ t2 |} = ←̂−τ

♯
{|t1 |} u♯

M
←̂−τ

♯
{|t2 |} (2.11)

←̂−τ
♯
{|t1 ∧ t2 |} = ←̂−τ

♯
{|t1 |} ◦ ←̂−τ

♯
{|t2 |}.

In addition, the boolean negation of affine guards←−τ {|¬(⃗a · x⃗ ≥ b)|} is equivalent to
←−τ {| a⃗ · x⃗ < b |}, and the negation of conjunctions or disjunctions can be eliminated by

De Morgan’ law.
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2) Projection.

In order to reduce the backward transfer function of assignments to the backward

transfer function of guards, [42] introduces a projection action x := [−∞; +∞], which

is a special form of assignment that forgets the value of a variable. Here we do the same,

and reuse the under-approximating abstract backward transfer function for projections

in [42], since it is proved to be exact (i.e. both an over-approximation and an under-

approximation of the concrete transfer function).

←̂−τ
♯
{|x := [−∞; +∞]|}M♯ ≜


M♯ if γM(τ ♯{|x := [−∞; +∞]|}M♯) = γM(M♯)

⊥♯
M otherwise.

(2.12)

The projection is used to model variable addition “add x ” and removal “del x ”, which

are not included in the language syntax but implicitly created to model assignments.

Again, since the under-approximating abstract backward transfer functions for these

two actions in [42] are exact, we can simply reuse them:

←̂−τ
♯
{|del x |} = τ ♯{|add x |} (2.13)

←̂−τ
♯
{|add x |} = τ ♯{|del x |} ◦ ←̂−τ

♯
{|x := [−∞; +∞]|}.

3) Assignments.

Reduction to guards. As shown in section 3.4 of [42], assignments x := e can be

reduced to: add a temporary variable x ′, then pass a guard x ′ = e, remove the variable

x , and rename x ′ as x . Furthermore, the backward transfer function is reduced to:
←−τ {|x := e|} = τ{|del x ′ |} ◦ ←−τ {|x ′ := [−∞; +∞]|} ◦ ←−τ {|x ′ = e|} ◦ τ{|add x |} ◦ [x ′/x ]

where [x ′/x ] represents renaming x as x ′. Correspondingly, the over-approximating

backward transfer function can be defined as:
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←̂−τ
♯
{|x := e|} = τ ♯{|del x ′ |} ◦ ←̂−τ

♯
{|x ′ := [−∞; +∞]|} ◦ ←̂−τ

♯
{|x ′ = e|}

◦ τ ♯{|add x |} ◦ [x ′/x ] (2.14)

in which ←̂−τ
♯
{| x ′ = e |} for the guard x ′ = e is over-approximating, while τ ♯{| del x ′ |},

←̂−τ
♯
{|x ′ := [−∞; +∞]|}, τ ♯{|add x |} and [x ′/x ] are exact.

Special cases of assignments. There are a few special cases such that the above general

definition ←̂−τ
♯
{| x := e |} can be simplified. For the case where the variable x is not

used in the expression e, there is no need to introduce the temporal variable x ′, and the

corresponding ←̂−τ
♯
{|x := e|} is simplified into:

←̂−τ
♯
{|x := e|} = ←̂−τ

♯
{|x := [−∞; +∞]|} ◦ ←̂−τ

♯
{|x = e|}. (2.15)

Moreover, for purely non-deterministic assignments x := [a; b], variable shifts x :=

x + [a; b] and variable copies x := y , the theorem 9 of [42] yields sound and exact

backward transfer function, thus we can reuse them.

Another case is when the assigned expression e is invertible, i.e. there exists an ex-

pression e−1 that allows recovering the initial value of x . For example, in the assignment

x := x +1, the expression x +1 can be inverted by x − 1. In such a case, the backward

transfer function for x := e can be replaced by the forward transfer function for x := e−1,

i.e. ←̂−τ
♯
{|x := e|} = τ ♯{|x := e−1 |}, which provides a sound over-approximation.

4) Expression approximation.

In the above, we have discussed how to handle affine expressions in guards and as-

signments. As for non-affine numeric expressions, [42] proposes to over-approximate

arbitrary expressions by affine ones, and this is accomplished by the linearization tech-

nique [30] that performs interval arithmetic on non-linear expression parts. Similarly,
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here we could convert non-affine expressions into affine expressions with some non-

determinism embedded in a constant interval (or constant coefficients), such that the

original non-affine expressions are under-approximated. Then, by replacing the original

non-affine expressions with affine ones, we can reuse the solution designed for affine

expressions and correspondingly get over-approximating backward transfer functions for

arbitrary guards and assignments.

Narrowing. Up to now, we have discussed the design of over-approximating back-

ward transfer function F̂♯
←−
if JPK. By the soundness condition 2.3, the greatest fixpoint

gfp⊑̇
♯
M

I
♯
post

F̂♯
←−
if JPK would be an over-approximation of the concrete backward impossible fail-

ure accessibility semantics gfp⊆̇
γ̇M(I

♯
post)

F←−
if

JPK. However, it is generally difficult to com-

pute gfp⊑̇
♯
M

I
♯
post

F̂♯
←−
if JPK, since the decreasing iteration may be infinite. In many cases, a (dual)

widening is used to accelerate the convergence, but it does not apply here, since the (dual)

widening makes downwards extrapolation which may jump below the greatest fixpoint.

Therefore, we propose to over-approximate a decreasing iteration by narrowing, because

the narrowing can only do interpolations which prevent jumping below any fixpoint.

The narrowing operator 4I ∈ (L 7→ D♯
M) × (L 7→ D♯

M) 7→ (L 7→ D♯
M) on the

abstract invariant domain satisfies the following soundness and termination conditions:

(1) ∀x♯, y♯ ∈ (L 7→ D♯
M). y

♯ v̇♯

M x♯ ⇒ y♯ v̇♯

M (x♯ 4I y
♯) v̇♯

M x♯;

(2) for any sequence (x♯
i)i∈N, the sequence (y♯i)i∈N defined as y♯0 = x♯

0 and ∀i ∈

N. y♯i+1 = y♯i 4I x
♯
i+1 converges in finite time.

The implementation of 4I naturally follows the narrowing operator 4M ∈ D♯
M ×

D♯
M 7→ D

♯
M provided by the abstract environment domain D♯

M, such that I♯ 4I I♯′ ≜

λl ∈ L. I♯(l ) 4M I♯′(l ).
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Over-approximating Abstract Backward impossible failure Accessibility Semantics.

Given a postcondition specified as I♯post ∈ L 7→ D♯
M, the concrete backward impos-

sible failure accessibility semantics S←−
if

JPK(γ̇M(I♯post)) = gfp⊆̇
γ̇M(I

♯
post)

F←−
if

JPK can be over-

approximated by the limit of a ultimately stationary sequence (I♯i)i∈N, where I♯0 = I♯post

and ∀i ∈ N. I♯i+1 = I♯i 4I F̂
♯
←−
if JPK(I♯i).

∀I♯post ∈ L 7→ D♯
M. gfp

⊆̇

γ̇M(I
♯
post)

F←−
if

JPK ⊆̇ γ̇M(limI
♯
post

λI♯. I♯4I F̂
♯
←−
if JPK(I♯)). (2.16)

In the rest of this dissertation, the over-approximating abstract backward impossible

failure accessibility semantics Ŝ♯
←−
if

JPK refers to the following definition, which gives an

over-approximation of S←−
if

JPK and can be computed in finite time.

Ŝ♯
←−
if

JPK ∈ (L 7→ D♯
M) 7→ (L 7→ D♯

M) over-approximating IF semantics

Ŝ♯
←−
if

JPK(I♯post) ≜ lim
I
♯
post

λI♯. I♯4I F̂
♯
←−
if JPK(I♯)

In practice, the abstract environment domainD♯
M may not have an effective narrowing

operator 4M, which makes the corresponding 4I of no practical use. If this is the case,

like in the forward reachability analysis, we can just omit the narrowing operator, and

iterate the function F̂♯
←−
if JPK until the analysis result is satisfactory (typcially, the number

of iterations needed is quite low).

Example 9 (Access Control, Continued) Using the refined abstract postcondition I♯′post from

Example 8 that represents the trace property “the access to o fails”, an over-approximating back-

ward impossible failure accessibility analysis Ŝ♯
←−
if

JPK(I♯′post) creates the result displayed in Table

2.7. Here we adopt the disjunctive completion to gain precision, i.e. at point l5, the disjunction

of two abstract environment elements are maintained, which gives the most precise backward

impossible failure accessibility semantics. If the disjunctive completion is not used at point l5,
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then we can simply join these two abstract elements together, and get the result same as the

abstract forward reachability semantics S♯
−→psJPK(I♯pre) from the point l5 to the point l1, which is

still sound but imprecise for the further responsibility analysis. □

l Ŝ♯
←−
if

JPK(I♯′post)l
l1 ⊥♯

M
l2 ⊥♯

M
l3 apv ∈ [1; 1] ∧ i1 ∈ [-1;0] ∧ i2 ∈ [-∞;∞] ∧ typ ∈ [-∞;∞] ∧ acs ∈ [-∞;∞]
l4 apv ∈ [-1;0] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-∞;∞] ∧ typ ∈ [-∞;∞] ∧ acs ∈ [-∞;∞]
l5 {apv ∈ [-1;0] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [-∞;∞] ∧ acs ∈ [-∞;∞],

apv ∈ [1;1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1;0] ∧ typ ∈ [-∞;∞] ∧ acs ∈ [-∞;∞]}
l6 apv ∈ [-1;0] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [-∞;∞] ∧ acs ∈ [-∞;∞]
l7 apv ∈ [-1;0] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [-∞;∞]
l8 apv ∈ [-1; 1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [-2;0]

Table 2.7: The Over-approximating Abstract Backward Impossible Failure Accessibility
Semantics for “the Access to o Fails” with Disjunctive Completion

2.5 Other Backward/Forward Semantics

For the sake of completeness, this section briefly introduces two other types of back-

ward accessibility or forward reachability semantics, which are not used in the responsi-

bility analysis.

2.5.1 Backward Possible Success Accessibility Semantics

The backward possible success accessibility semantics is defined as the conjugate of

the backward impossible failure accessibility semantics. More precisely, given a post-

condition Ipost ∈ L 7→ ℘(M), the backward impossible failure accessibility semantics
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S←−
if

JPK(Ipost) specifies a precondition for reaching only the states satisfying Ipost, while

the backward possible success accessibility semantics S←−psJPK(Ipost) specifies a precondi-
tion for the existence of at least one execution reaching a state satisfying Ipost. That is to

say, S←−
if

JPK(Ipost) infers sufficient preconditions of Ipost, and S←−psJPK(Ipost) infers necessary
preconditions of Ipost. It is obvious that the strongest necessary precondition of Ipost is

the complement (or negation) of the weakest sufficient precondition of its complement

¬̇Ipost. Thus, the definition of S←−psJPK(Ipost) is formally given as the following.

S←−psJPK ∈ (L 7→ ℘(M)) 7→ (L 7→ ℘(M)) backward PS accessibility semantics
S←−psJPK(Ipost)l ≜ ¬̇ S←−

if
JPK(¬̇ Ipost)l

= ¬{ρ ∈M | ∀σ ∈ S∗, l ′ ∈ L, ρ′ ∈M. (〈l , ρ〉σ〈l ′, ρ′〉 ∈ JPKIt ⇒
ρ′ /∈ Ipost(l

′))}
= ¬{ρ ∈M | ∀σ ∈ S∗, l ′ ∈ L, ρ′ ∈M. (〈l , ρ〉σ〈l ′, ρ′〉 /∈ JPKIt ∨

ρ′ /∈ Ipost(l
′))}

= {ρ ∈M | ∃σ ∈ S∗, l ′ ∈ L, ρ′ ∈M. (〈l , ρ〉σ〈l ′, ρ′〉 ∈ JPKIt ∧
ρ′ ∈ Ipost(l

′))}

Similar to the fixpoint definition of backward impossible failure accessibility seman-

tics S←−
if

JPK, the backward possible success accessibility semantics S←−psJPK can be defined

as the least fixpoint of a concrete backward transfer function F←−psJPK.
S←−psJPK(Ipost) = lfp⊆̇

Ipost
F←−psJPK

F←−psJPK ∈ (L 7→ ℘(M)) 7→ (L 7→ ℘(M)) backward PS transfer function
F←−psJPKI ≜ I ∪̇ λl ∈ L.{ρ ∈M | ∃l ′ ∈ L, ρ′ ∈ I(l ′). 〈l , ρ〉 −→〈l ′, ρ′〉}

In the abstract, an over-approximating backward possible success accessibility analysis

is used to infer necessary preconditions, since an over-approximation of the strongest

necessary precondition is still a necessary precondition. Usually it is combined with the

forward (possible success) reachability analysis to compute program invariants (e.g. the
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Interproc Analyzer [50]), and the corresponding analysis result would be more precise

than sole forward analyses.

However, it is rare to see an under-approximating backward possible success accessi-

bility analysis in the literature, even though the result of such an analysis would be useful.

For example, let the postcondition Ipost specify error states, then the over-approximating

backward possible success accessibility analysis infers necessary preconditions of reaching

an error state. Meanwhile, the corresponding under-approximating analysis computes a

set of states from which there must exist at least one concrete execution going wrong,

and further inspections on such states can be used to determine the origin of errors.

The keys of designing such an under-approximating abstract backward possible suc-

cess accessibility analysis include: (1) an abstract backward transfer function that under-

approximates the corresponding concrete backward transfer function F←−psJPK; (2) a dual
widening operator that under-approximates joins and guarantees termination. It is a

thorny problem to build such a dual widening operator for classic numerical abstract

domains. Therefore, in this dissertation, we replace the under-approximating back-

ward possible success accessibility analysis by the complement of an over-approximating

backward impossible failure accessibility analysis, whose result fits in our framework of

responsibility analysis.

2.5.2 Forward Impossible Failure Reachability Semantics

It is not hard to find that S←−psJPK is the lower adjoint of a Galois connection, and the
corresponding upper adjoint is called the forward impossible failure reachability semantics

S−→
if

JPK, which computes a set of states that can be reached only from states satisfying
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the given precondition Ipre. More formally, we have:

〈L 7→ ℘(M), ⊆̇〉 −−−−−→←−−−−−
S←−psJPK
S−→
if

JPK
〈L 7→ ℘(M), ⊆̇〉

where S−→
if

JPK is defined as:

S−→
if

JPK ∈ (L 7→ ℘(M)) 7→ (L 7→ ℘(M)) forward IF reachability semantics
S−→
if

JPK(Ipre)l ′ ≜ ¬̇ S−→psJPK(¬̇ Ipre)l
′

= ¬{ρ′ ∈M | ∃σ ∈ S∗, l ∈ L, ρ ∈M\Ipre(l ). 〈l , ρ〉σ〈l ′, ρ′〉 ∈ JPKIt}
= {ρ′ ∈M | ∀σ ∈ S∗, l ∈ L, ρ ∈M\Ipre(l ). 〈l , ρ〉σ〈l ′, ρ′〉 /∈ JPKIt}

Proof. For any Ipre, Ipost ∈ L 7→ ℘(M):

S←−psJPK(Ipost) ⊆̇ Ipre

⇔ ¬̇ S←−
if

JPK(¬̇ Ipost) ⊆̇ Ipre Hdef. S←−psJPK(Ipost)I
⇔ ¬̇ Ipre ⊆̇ S←−if JPK(¬̇ Ipost) Hdef. ¬̇ and ⊆̇I
⇔ S−→psJPK(¬̇ Ipre) ⊆̇ ¬̇ Ipost Hdef. S−→psJPKI
⇔ Ipost ⊆̇ ¬̇ S−→psJPK(¬̇ Ipre) Hdef. ¬̇ and ⊆̇I
⇔ Ipost ⊆̇ S−→if JPK(Ipre) Hdef. S−→

if
JPK(Ipre) ≜ ¬̇ S−→psJPK(¬̇ Ipre)I

□

In the rest of this dissertation, the notation of backward accessibility semantics (or

analysis) refers to the backward impossible failure accessibility semantics (or analysis),

while the notation of forward reachability semantics (or analysis) refers to the forward

possible success reachability semantics (or analysis) by default, unless it is explicitly spec-

ified “impossible failure” or “possible success”.
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Trace Partitioning

The forward reachability analysis discussed in chapter 2 intends to compute an over-

approximation of reachable states of the program, while the information about the ex-

ecution history and concrete flow paths would be lost in such a process, which makes

the correspondingly generated over-approximating reachability semantics in some cases

imprecise to determine if a behavior really occurs or not.

In [14, 43], Mauborgne and Rival propose a trace partitioning domain, which allows

the partitioning of traces based on the history of memory and control states. Essentially,

for any given transition system, they build an extended transition system by augmenting

the program points (i.e. control states, labels) with partitioning tokens, which can distin-

guish traces by the control flow or variable values. This technique has been successfully

implemented in the abstract interpretation-based Astrée analyzer [13, 35], significantly

improving the precision of analysis and reducing the execution time.

This chapter briefly summarizes the key idea of trace partitioning, proposes to rep-

resent elements in the trace partitioning abstract domain as trace partitioning automata,
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and extends the existing types of partitioning directive to include program invariants,

which facilitates determining responsibility in the abstract (see part III). For more details

about the theoretical framework and practical implementation of the trace partitioning

domain, we refer to [43].

3.1 The Trace Partitioning Abstract Domain

This section starts with a simple motivating example from [43], and illustrates how

the trace partitioning improves the precision of forward reachability analysis.

int x , sgn ;

l0 : if (x < 0){
l1 : sgn := -1;
l2 : }else {
l3 : sgn := 1;

l4 : }
l5 : y := x /sgn ;

l6 : . . .

Figure 3.1: Motivating Example for Trace Partitioning

In the above program of Fig. 3.1, it is obvious that the value of sgn is either 1 or

-1 at point l5, and in particular it cannot be 0 in the concrete. Therefore, dividing by

sgn at point l5 is safe, and there is no possible “division by zero” error in the program.

However, if we use the interval domain as the abstract environment domain, then by

the over-approximating forward reachability analysis introduced in 2.3.2, we would get

the reachability semantics (or say, program invariants) S♯
−→psJPK(I♯pre) listed in the table

3.1, where I♯pre ∈ L 7→ D♯
M is defined such that I♯pre(l0) = >♯

M and I♯pre(l ) = ⊥♯
M for
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l 6= l0. Particularly, the value of sgn at point l5 belongs to the interval [-1; 1], which is

not precise enough to exclude the possibility of “division by zero” in the program.

l S♯
−→psJPK(I♯pre)l

l0 >♯
M = x ∈ [-∞;∞] ∧ sgn ∈ [-∞;∞] ∧ y ∈ [-∞;∞]

l1 x ∈ [-∞; -1] ∧ sgn ∈ [-∞;∞] ∧ y ∈ [-∞;∞]
l2 x ∈ [-∞; -1] ∧ sgn ∈ [-1; -1] ∧ y ∈ [-∞;∞]
l3 x ∈ [0;∞] ∧ sgn ∈ [-∞;∞] ∧ y ∈ [-∞;∞]
l4 x ∈ [0;∞] ∧ sgn ∈ [1; 1] ∧ y ∈ [-∞;∞]
l5 x ∈ [-∞;∞] ∧ sgn ∈ [-1; 1] ∧ y ∈ [-∞;∞]
l6 x ∈ [-∞;∞] ∧ sgn ∈ [-1; 1] ∧ y ∈ [-∞;∞]

Table 3.1: Abstract Forward Reachability Semantics of the Motivating Example

An intuitive idea to solve the imprecision problem is to relate the value of sgn to the

way it is computed. In this very example here, if the true branch of the conditional was

taken, then the value of sgn at point l5 is -1; otherwise, it is 1. That is to say, we partition

the set of all possible concrete traces into two parts: in one partition, the true branch

is taken; in the other partition, the false is taken. For each partition, the standard over-

approximating forward reachability analysis can be performed, and the analysis results

together would be more precise.

To generalize the idea of partitioning, Mauborgne and Rival [14, 43] propose a trace

partitioning abstract domain, which is flexible and general to analyze and verify semantic

properties in the same way as other classic abstract domains. In the following, we will

briefly describe how to construct the trace partitioning abstract domain.

Extended Transition Systems. Suppose T is a set of partitioning tokens, which are

used to capture useful information about the history of execution and to guide trace

partitioning. In practice, each partitioning token t ∈ T is defined as a stack of parti-
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tioning directives that have been encountered during the execution, and all the possible

partitioning directives are listed in Fig. 3.2, each of which creates a partition as its name

implies. For example, in the case of a conditional at point l , by the partitioning direc-

tives part〈If, l , t〉 and part〈If, l , f 〉, two partitions are created right after testing the

boolean condition, which respectively correspond to “true branch of the conditional at

point l ” and “false branch of the conditional at point l ” .

d ::= part〈If, l , b〉 traces in the b branch of the conditional at point l

| part〈While, l , n〉 traces with exactly n iterations in the loop at point l

| part〈While, l , > n〉 traces with more than n iterations in the loop at point l

| part〈Val, l , x = n〉 traces such that x = n at point l

| part〈Fun, l , f〉 traces calling function f at point l

| part〈None〉 void directive

t ::= ϵ empty stack, initial partition
| d :: t′ addition of a partitioning directive on top of t′

Figure 3.2: Partitioning Directives d ∈ D and Tokens t ∈ T

Given a set of partitioning tokens T, the extended transition systems are defined as

transition systems over the set of program points (or, control states, labels) extended with

the partitioning tokens T. More formally, let LT ≜ L×T be the set of extended program

points, ST ≜ LT ×M be the set of extended states, Si
T ⊆ ST be the set of extended initial

states, and →T ∈ ℘(ST × ST) be the transition relation among extended states. Then,

we define an extended transition system as a tuple 〈T, Si
T, →T〉. In addition, a forget

function πτ can be defined to remove the partitioning tokens from extended program

points, extended states and transition relations, such that an extended transition system

〈T, Si
T, →T〉 can be transformed back into a standard transition system 〈Si, →〉.
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Trace Partitioning Abstract Domain. An extended transition system PT = 〈T, Si
T,

→T〉 is a covering of the original transition system P = 〈Si,→〉, if and only if every initial

state s ∈ Si has at least one corresponding initial state s ′ ∈ Si
T such that πτ (s

′) = s , and

every transition step in P is simulated (mimicked) by at least one transition step in PT.

Therefore, if PT is a covering of P, then every trace in P is simulated by one or more

traces in PT. For the formal definitions of covering and partition see section 3.2 of [43].

The trace partitioning abstract domain D♯ is the set of tuples 〈PT, Φ
♯〉, where T is

a set of partitioning tokens, PT = 〈T, Si
T, →T〉 is a covering of the original transition

system P = 〈Si, →〉, and Φ♯ ∈ LT 7→ D♯
M is a function mapping each extended program

point 〈l , t〉 of PT into an abstract environment element in D♯
M that approximates the set

of environments observed at point 〈l , t〉.

Take the program in Fig. 3.1 as an example, if we use partitioning directives designed

for the conditional, then the forward reachability analysis with trace partitioning would

construct the corresponding Φ♯ function, which is listed in the table 3.2.

〈l , t〉 Φ♯(〈l , t〉)
〈l0, ϵ〉 x ∈ [-∞;∞] ∧ sgn ∈ [-∞;∞] ∧ y ∈ [-∞;∞]
〈l1, part〈If, l0, t〉〉 x ∈ [-∞; -1] ∧ sgn ∈ [-∞;∞] ∧ y ∈ [-∞;∞]
〈l2, part〈If, l0, t〉〉 x ∈ [-∞; -1] ∧ sgn ∈ [-1; -1] ∧ y ∈ [-∞;∞]
〈l3, part〈If, l0, f 〉〉 x ∈ [0;∞] ∧ sgn ∈ [-∞;∞] ∧ y ∈ [-∞;∞]
〈l4, part〈If, l0, f 〉〉 x ∈ [0;∞] ∧ sgn ∈ [1; 1] ∧ y ∈ [-∞;∞]
〈l5, part〈If, l0, t〉〉 x ∈ [-∞; -1] ∧ sgn ∈ [-1; -1] ∧ y ∈ [-∞;∞]
〈l5, part〈If, l0, f 〉〉 x ∈ [0;∞] ∧ sgn ∈ [1; 1] ∧ y ∈ [-∞;∞]
〈l6, part〈If, l0, t〉〉 x ∈ [-∞; -1] ∧ sgn ∈ [-1; -1] ∧ y ∈ [1;∞]
〈l6, part〈If, l0, f 〉〉 x ∈ [0;∞] ∧ sgn ∈ [1; 1] ∧ y ∈ [0;∞]

Table 3.2: Partitioned Forward Reachability Semantics of the Motivating Example

From the above table, we can see that there are two extended program points for l5:
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〈l5, part〈If, l0, t〉〉 and 〈l5, part〈If, l0, f 〉〉, and the corresponding abstract environments

indicates the value of sgn is either −1 or 1, which is exactly the desired result.

However, if we have successive creations of partitions in the extended transition

system, the cost would be prohibitive in practice. For instance, the partitioning of a

conditional multiplies by 2 the number of partitions in the current flow, thus a series of

n conditionals would lead to 2n partitions, which brings an exponential cost. To solve

this issue, we can merge partitions together when they are no longer necessary, which

is implemented by popping (or removing) partitioning directives from the token. For

example, at point l6 of the program in Fig. 3.1, the partitions based on “which branch

of the conditional was taken” are not expected to lead to improvement in the precision

of further analysis, so we can merge those two partitions, and replace the last two rows

of table 3.2 by Φ♯(〈l6, ϵ〉) = x ∈ [-∞;∞] ∧ sgn ∈ [-1; 1] ∧ y ∈ [0;∞], which is still

more precise than the standard forward reachability analysis.

3.2 The Trace Partitioning Automata

In order to facilitate determining abstract responsibility on graph structures (in part

III), this section proposes to represent the result of forward reachability analysis with

trace partitioning as automata, which are called trace partitioning automata.

More formally, each element 〈PT = 〈T, Si
T, →T〉, Φ♯〉 in the trace partitioning

abstract domain D♯ can be represented as an automaton A = 〈Qi, δ〉, where:

• The set of initial nodes (extended initial abstract states) Qi = {〈l i, t, M♯〉 ∈

LT × D♯
M | ∃ρ ∈ M. 〈l i, t, ρ〉 ∈ Si

T ∧M♯ = Φ♯(〈l i, t〉)} such that every initial

state 〈l i, t, ρ〉 in PT is represented by an initial node, which is associated with
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an abstract environment element M♯ = Φ♯(〈l i, t〉). By the property of Φ♯ in the

trace partitioning abstract domain, it is guaranteed that ρ ∈ γM(M♯).

• The set of edges (extended abstract transition relations) δ = {〈l , t, M♯〉 → 〈l ′, t′,

M♯′〉 ∈ (LT ×D♯
M)× (LT ×D♯

M) | ∃ρ, ρ′ ∈M. 〈l , t, ρ〉 →T 〈l ′, t′, ρ′〉 ∧ M♯ =

Φ♯(〈l , t〉)∧M♯′ = Φ♯(〈l ′, t′〉)} such that every concrete transition relation in PT

has a corresponding edge in the automaton.

Again, consider the program in Fig. 3.1, its partitioned forward reachability analysis

result from table 3.2 can be represented as a trace partitioning automaton, which is de-

picted as in Fig. 3.3. For the sake of concision, instead of explicitly drawing partitioning

tokens inside the nodes, we comment some edges with “push d ” such that every node

after the edge has the partitioning directive d pushed into its stack of directives (i.e. its

partitioning token). For instance, in Fig. 3.3, all the nodes after the edge commented

with “push part〈If, l0, t〉” has part〈If, l0, t〉 in their partitioning tokens.

l0

l3 l4 l5 l6

l1 l2 l5 l6

push part < If, l0
, t >

push part < If, l0 , f >

x ∈ [-∞; -1]

x ∈ [0; ∞]

x∈ [-∞; -1]
sgn∈[-1; -1]

x∈ [0; ∞]
sgn∈ [1; 1]

x∈ [-∞; -1]
sgn∈[-1; -1]

x∈ [0; ∞]
sgn∈ [1; 1]

x∈ [0; ∞]
sgn∈ [1; 1]
y∈ [0; ∞]

x∈ [-∞; -1]
sgn∈[-1; -1]

y∈ [1; ∞]

Figure 3.3: Trace Partitioning Automaton for the Motivating Example without Merge

In addition, in order to represent the merge of partitions, we comment some edges

with “pop d ” such that the partitioning directive d is popped from the stack of directives
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of every node after the edge. For instance, Fig. 3.4 depicts the trace partitioning automa-

ton for the program in Fig. 3.1 with partitions merged at point l6, so the partitioning

token in the node l6 is ϵ (i.e. its stack of partitioning directives is empty).

l0

l3 l4 l5

l1 l2 l5

l6
push part < If, l0

, t >

push part < If, l0 , f >

pop part < If, l0 , t >

pop part < If, l0,
 f >

x∈ [-∞; ∞]
sgn∈[-1; 1]
y∈ [0; ∞]

x∈ [-∞; -1]
sgn∈[-1; -1]

x∈ [-∞; -1]
sgn∈[-1; -1]

x∈ [0; ∞]
sgn∈[1; 1]

x∈ [0; ∞]
sgn∈[1; 1]

x∈ [-∞; -1]

x∈ [0; ∞]

Figure 3.4: Trace Partitioning Automaton for the Motivating Example with Merge

3.3 The Extension of Partitioning Directives

As illustrated in [43], partitioning directives are inserted in the source code as special

comments in a preprocessing phase. Specifically, among the six types of partitioning

directives described in Fig. 3.2, five of them partition traces based on the control flow,

and only part〈Val, l , x = n〉 introduces a partition guided by the value of a variable

x at some point l . Although these partitioning directives have successfully handled a

broad range of cases, there are still many cases that cannot be well coped with, and we

would like to introduce a new partitioning directive to partition traces by environment

properties (which are represented by abstract environment elements).

For example, in order to improve the precision of forward reachability analysis for

the access control program in Fig. 1.4, it is intuitive to partition traces by some environ-
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ment properties that can be easily expressed by abstract environment elements inD♯
M (i.e.

i1 ∈ [−∞, 0] and i1 ∈ [1;∞] at point l3; apv ∈ [1,∞] ∧ i2 ∈ [−∞, 0], apv ∈ [−∞, 0]

and i2 ∈ [1,∞] at point l5), and such properties (e.g. apv ∈ [1,∞] ∧ i2 ∈ [−∞, 0])

may not be expressed by directives of form part〈Val, l , x = n〉 when more than one

variables are used in partitioning. Of course, the access control program can be equiv-

alently transformed into a program with conditionals (by replacing ternary operators

with conditionals), then the problem of partitioning guided by environment properties

is transformed to partitioning based on the branch of conditionals. However, this is not

always the case. For example, consider a simple program “l1 : z := x − y ; l2 :”, suppose

we are interested in whether the value of z is positive or negative at point l2, then it is

of value to create partitions guided by x ≥ y and x < y at point l1. Such partitions can

be expressed by abstract environment elements in the polyhedra/octagons domain, but

not by the existing partitioning directives.

Therefore, here we propose a new partitioning directive of the form: part〈Inv, l ,M♯〉

(where M♯ is an abstract environment element in D♯
M), which generates a new partition

of traces such that M♯ is satisfied at point l . In practice, the trace partitioning introduced

by a directive part〈Inv, l , M♯〉 can be simply implemented by creating a new node, such

that its partitioning token (i.e. the stack of partitioning directives) has this directive on

the top, and the corresponding abstract environment element is the meet of M♯ and the

standard forward reachability semantics S♯
−→psJPK(I♯pre)l at point l .

Example 10 (Access Control, Continued) In example 6, we have discussed the standard

abstract forward reachability semantics of the access control program, in which the abstract en-

vironment domainD♯
M is the interval domain. Now we can gain more precision by introducing
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five partitioning directives: d3 : part〈Inv, l3, i1 ∈ [-∞, 0]〉, d′3 : part〈Inv, l3, i1 ∈ [1,∞]〉,

d5 : part〈Inv, l5, apv ∈ [1,∞] ∧ i2 ∈ [-∞, 0]〉, d′5 : part〈Inv, l5, apv ∈ [∞, 0]〉 and

d′′5 : part〈Inv, l5, i2 ∈ [1,∞]〉, and the corresponding partitioned forward reachability se-

mantics is listed in table 3.3. For the sake of conciseness, trivial elements like “acs ∈ [-∞;∞]”

are omitted, and the forward reachability analysis stops at invalid extended program points

that are associated with ⊥♯
M.

〈l , t〉 Φ♯(〈l , t〉)
〈l1, ϵ〉 >♯

M
〈l2, ϵ〉 apv ∈ [1; 1]
〈l3, d3〉 apv ∈ [1; 1] ∧ i1 ∈ [-1; 0]
〈l3, d′3〉 apv ∈ [1; 1] ∧ i1 ∈ [1; 2]
〈l4, d3〉 apv ∈ [-1; -1] ∧ i1 ∈ [-1; 0]
〈l4, d′3〉 apv ∈ [1; 1] ∧ i1 ∈ [1; 2]

〈l5, d5 :: d3〉 ⊥♯
M

〈l5, d′5 :: d3〉 apv ∈ [-1; -1] ∧ i1 ∈ [-1; 0] ∧ i2 ∈ [-1; 2]
〈l5, d′′5 :: d3〉 apv ∈ [-1; -1] ∧ i1 ∈ [-1; 0] ∧ i2 ∈ [1; 2]
〈l5, d5 :: d′3〉 apv ∈ [1; 1] ∧ i1 ∈ [1; 2] ∧ i2 ∈ [-1; 0]
〈l5, d′5 :: d′3〉 ⊥♯

M
〈l5, d′′5 :: d′3〉 apv ∈ [1; 1] ∧ i1 ∈ [1; 2] ∧ i2 ∈ [1; 2]
〈l6, d′5 :: d3〉 apv ∈ [-1; -1] ∧ i1 ∈ [-1; 0] ∧ i2 ∈ [-1; 2]
〈l6, d′′5 :: d3〉 apv ∈ [-1; -1] ∧ i1 ∈ [-1; 0] ∧ i2 ∈ [1; 2]
〈l6, d5 :: d′3〉 apv ∈ [-1; -1] ∧ i1 ∈ [1; 2] ∧ i2 ∈ [-1; 0]
〈l6, d′′5 :: d′3〉 apv ∈ [1; 1] ∧ i1 ∈ [1; 2] ∧ i2 ∈ [1; 2]
〈l7, d′5 :: d3〉 apv ∈ [-1; -1] ∧ i1 ∈ [-1; 0] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [1; 2]
〈l7, d′′5 :: d3〉 apv ∈ [-1; -1] ∧ i1 ∈ [-1; 0] ∧ i2 ∈ [1; 2] ∧ typ ∈ [1; 2]
〈l7, d5 :: d′3〉 apv ∈ [-1; -1] ∧ i1 ∈ [1; 2] ∧ i2 ∈ [-1; 0] ∧ typ ∈ [1; 2]
〈l7, d′′5 :: d′3〉 apv ∈ [1; 1] ∧ i1 ∈ [1; 2] ∧ i2 ∈ [1; 2] ∧ typ ∈ [1; 2]
〈l8, d′5 :: d3〉 apv ∈ [-1; -1] ∧ i1 ∈ [-1; 0] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [-2; -1]
〈l8, d′′5 :: d3〉 apv ∈ [-1; -1] ∧ i1 ∈ [-1; 0] ∧ i2 ∈ [1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [-2; -1]
〈l8, d5 :: d′3〉 apv ∈ [-1; -1] ∧ i1 ∈ [1; 2] ∧ i2 ∈ [-1; 0] ∧ typ ∈ [1; 2] ∧ acs ∈ [-2; -1]
〈l8, d′′5 :: d′3〉 apv ∈ [1; 1] ∧ i1 ∈ [1; 2] ∧ i2 ∈ [1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [1; 2]

Table 3.3: Partitioned Forward Reachability Semantics for the Access Control Program
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Compared with the standard forward reachability semantics S♯
−→psJPK(I♯pre)l in example

6, the partitioned forward reachability semantics is much more precise, revealing the relation

between acs and other variables, which is of significance in determining responsibility later.

Furthermore, the partitioned forward reachability semantics can be represented by a trace

partitioning automaton in Fig. 3.5. It is worthy to mention that, as what we have done in

Fig. 3.4, the partitions can be merged after the access check to acs finishes at point l8, such

that all the partitioning directives pushed at point l3 or l5 can be popped from the partitioning

tokens at point l8.

l2l1

l3 l4 l5

l5 l6 l7 l8

l5 l6 l7 l8

l3 l4 l5

l5 l6 l7 l8

l5 l6 l7 l8

pu
sh

 d 3

push d'3

apv∈ [1; 1]

i1∈[-1; 0]

i1∈[1; 2]

apv∈ [-1; -1]

apv∈ [1; 1]

push d' 5

push d''5

push d5
⊥

i2∈ [-1; 2]

i2∈ [1; 2]

push d 5

push d'5
push d''5

i2∈ [-1; 0]

i2∈ [1; 2]

⊥

apv∈ [-1; -1]

apv∈ [1; 1]

apv∈ [-1; -1]

apv∈ [-1; -1]

typ∈ [1; 2]

typ∈ [1; 2]

typ∈ [1; 2]

typ∈ [1; 2]

acs∈ [-2; -1]

acs∈ [-2; -1]

acs∈ [-2; -1]

acs∈ [1; 2]

Figure 3.5: Trace Partitioning Automaton for the Access Control Program

□
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The problem of responsibility analysis is pervasive in various scientific fields. For any

behavior of interest, no matter it is a forest fire in the realistic life or an error in program

executions, the corresponding responsibility analysis aims at identifying entities that have

the primary control over that behavior, which are called responsible entities.

This dissertation focuses on detecting responsible entities, while the possible way of

exploiting the detected responsible entities varies on a case-by-case basis, and is beyond

the scope of this dissertation. For instance, in the scenario of a forest fire, if an action of

dropping a lit match in the forest is found responsible for the fire, then we could make use

of such information by bringing the arsonist who conducted this action to a trial; yet, if a

lightening is found responsible for the forest fire, then no further operation is necessary

in this case. Similarly, when we complete the responsibility analysis of certain behaviors

in the program, the procedure afterwards can only be decided manually depending on

specific cases, and typically it is time for the user to configure the permissions granted to

the responsible entity at her/his discretion. More specifically, if the behavior of interest is

always desired (e.g. program non-termination, passing a safety check) or the responsible

entity is authorized to take control over the behavior of interest, then the permissions

granted to the responsible entity can be kept or even expanded; on the contrary, if the

behavior of interest is always undesired (e.g. a division-by-zero error, a buffer overflow

error) or it is against the policy for the responsible entity to control the behavior of

interest, the permissions granted to the responsible entity shall be restricted.

In this part, the objective is to give a formal definition of responsibility in the con-

crete, which is originally proposed in [24, 33] and generic to cope with miscellaneous

scenarios. To start with, chapter 4 introduces a simple but thought-provoking exam-

73



PART II. CONCRETE RESPONSIBILITY ANALYSIS

ple of forest fire, which characterizes the difference of responsibility with dependency,

causality and other techniques in detecting causes. Inspired by this forest fire example,

we suggest an informal definition of responsibility, which is quite intuitive and applica-

ble to analyzing various program behaviors. Moreover, chapter 5 designs a framework of

concrete responsibility analysis, formalizes the definition of responsibility as an abstrac-

tion of the program trace semantics, and takes the access failure behavior in the access

control program from part I as an example to illustrate the process of concrete respon-

sibility analysis. Chapter 6 gives several examples of the application of responsibility

analysis, which include negative balance / buffer overflow, division by zero / login attack,

and information leakage.
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Chapter 4

The Characteristics of Responsibility

In order to give an informal introduction to responsibility, as well as its main distinc-

tions with dependency, causality and other techniques in detecting causes, this chapter

starts with a classic example of forest fire used in the definition of actual cause [47, 48],

and further characterizes three indispensable elements in defining responsibility.

4.1 Discussion of the Forest Fire Example

Example 11 (Forest Fire) Consider the example of forest fire taken from [47, 48]. Suppose

that two arsonists drop lit matches in different parts of a dry forest, and both cause trees to start

burning. Here it is assumed that one arsonist named A drops the lit match before the other

arsonist B, and there are two scenarios. In the first scenario, called the disjunctive scenario,

either match by itself suffices to burn down the whole forest. That is to say, even if only one

match were lit, the forest would burn down. In the second scenario, called the conjunctive

scenario, two lit matches are necessary to burn down the whole forest; if only one match were
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lit, some trees would be burnt, but the fire dies down before the whole forest is destroyed. □

It is quite natural to bring up this question: who shall be responsible for burning

down the whole forest? The literature has several possible answers. A simple but popular

solution is to use the dependency analysis that determines how entities (e.g. values of

variables) depend upon other entities. Suppose we use variables to represent all the

entities in the forest fire example (e.g. the decisions of two arsonist, the status of matches,

the fire condition of the forest, the weather), then the real life example of forest fire can

be viewed as an equivalent computer program. By the definition of dependency [19, 51,

39, 15, 23], in both scenarios the forest fire depends on each of those two arsonists, as

well as many other non-decisive factors, such as the wind which influences the spreading

speed of forest fire. Such a result is correct in some sense, but far from precise. The

reason is that, although the wind does affect the forest fire, it is not decisive (i.e. the

wind could not either enforce or prevent the fire), and it is against the intuition to mix

arsonists with the wind as the responsible entity of a forest fire. Thus, the responsibility

analysis shall have the ability to distinguish decisive factors from non-decisive factors.

A “naive” definition of causality [53, 54] based on counterfactual dependency could

exclude non-decisive factors (e.g. the wind in this example) from the analysis result.

This definition proposed by Lewis adopts an alternative world semantics and determines

causality relations according to a criterion: an event e is a cause of the occurrence of

another event e′ if and only if, were e not to occur, e′ would not happen. The testing

of this condition hinges upon the availability of alternative worlds. For instance, in the

conjunctive scenario of this forest fire example, we can infer that the forest would not be

burnt down in an alternative world where the arsonist A does not drop a lit match, thus
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the arsonist A is causal for the forest fire; yet, in the alternative world where there is no

wind, the forest would still be burnt down, hence the wind is not a cause of the forest

fire. However, the counterfactual causality may be too strict in some circumstances such

that no cause could be found. Take the disjunctive scenario of forest fire as an example,

in the alternative world where one arsonist A (respectively, B) does not drop a lit match,

the forest would still have been burnt down due to the other arsonist B (respectively,

A), hence neither of these two arsonists would be determined as the cause of forest fire.

Thus, it may be inappropriate to directly adopt the idea of counterfactual dependency in

the responsibility analysis.

The actual cause proposed by Halpern and Pearl [47, 48, 57] is based on the structural

equations model (SEM) [60], and extends Lewis’s notion of counterfactual dependency

to allow “contingent dependency”. More precisely, events are represented by variable

values in the SEM, and contingencies can be viewed as possible alternative worlds where

a variable value is changed. An event e is an actual cause of another event e′, if there

exists a contingency (where the values for other variables may be changed) such that e′

counterfactually depends on e. Take the disjunctive scenario of forest fire as an example,

the arsonist A is determined as an actual cause of the forest fire, since the forest fire coun-

terfactually depends on A’s action of dropping a lit match under the contingency (i.e. in

an alternative world) where the other arsonist B does not drop a lit match; similarly, the

arsonist B is also an actual cause of the forest fire, since the forest fire counterfactually

depends on B under the contingency where A does not drop a lit match. Such a struc-

tural model method has allowed for a great progress in causality analysis, solving many

problems of previous approaches. In addition, it has been extended to reason about com-
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putational models and applied to bounded model checking [20, 29, 27]. However, as an

abstraction of the concrete semantics, the structural equations model would unnecessar-

ily miss some information that are indispensable in determinating responsible entities

accurately, including the following three important points.

(P1) Time (or say, the temporal ordering of events/actions) should be taken into account.

For instance, in the forest fire example, the structural equations model approach

cannot tell the difference whether A or B drops a lit match first, hence determines

both arsonists as the cause of forest fire. Such a result may not seem to be absurd,

but imagine the case that the forest has already been burnt down by the match

dropped by A before B lit her/his match in the disjunctive scenario. In such a

case, it is against intuition to put B as a cause of the forest fire. To deal with this

problem, Halpern and Pearl’s solution is to modify the structural equations model

and introduce some new variable [17] to distinguish whether the forest was actually

destroyed by A or B, which is difficult to accomplish in practice for programs. In

contrast, a much simpler method is to keep the temporal sequence of events/actions,

such that only the first action that guarantees the behavior of interest is counted as

the responsible entity. For instance, in the disjunctive scenario of forest fire, the

action of dropping a lit match by A ensures burning down the whole forest even

before B makes his choice, thus only A is responsible for the forest fire.

(P2) The responsible entity must be free to make choices. In the forest fire example, suppose

that the match is taken as a separate entity, and its value (i.e. lit or not-lit) solely

depends on the corresponding arsonist. In the structural equations model of actual

cause, both the arsonist and the match are represented by endogenous variables
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and further determined as actual causes of burning down the forest. However,

it is common sense that the match itself does not have a choice to light or not,

and it is inappropriate to identify matches as responsible entities for the forest fire.

Hence, only the action that can make choices at its own discretion can possibly

be responsible for a behavior. Specifically, in computer programs, such actions

include but are not limited to user inputs, system settings, files read, parameters of

procedures or modules, returned values of external functions, variable initialization,

random number generations and the parallelism. To be more accurate, it is the

external subject (who does the input, configures the system settings, etc.) that

is free to make choices, but we say that actions like user inputs are free to make

choices, as an abuse of language.

(P3) It is necessary to explicitly specify “to whose cognizance” when analyzing the responsibility.

All the above reasoning on causality is implicitly based on the cognizance/knowl-

edge of an omniscient observer who knows everything about the whole system, yet

it is non-trivial to consider the cognizance of a non-omniscient observer. For in-

stance, consider the forest fire example again, and here we can adopt the cognizance

of the second arsonist B. In the disjunctive scenario, if B is aware that A has already

dropped a lit match in the forest, then B is not responsible for the forest fire to

his/her cognizance, since B knows that the forest is guaranteed to burn down no

matter whether she/he drops a lit match or not; otherwise, if B does not know a

lit match has been dropped in the forest, then B is responsible for the forest fire

to her/his cognizance, although she/he is not responsible to the cognizance of an

omniscient observer. Similarly, in the conjunctive scenario, if B is aware that A has
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already dropped a lit match in the forest, then B understands that it is her/his own

action that ensures burning down the whole forest, hence she/he shall take the

responsibility to her/his cognizance; otherwise, if B does not know that a lit match

has been dropped, then she/he does not expect the whole forest to be burnt down,

hence to her/his own cognizance B is only responsible for burning some trees, but

not the whole forest. It is worthy noting that, in most cases, the cognizance of an

omniscient observer will be adopted, but not always.

4.2 An Informal Definition of Responsibility

In the last section, with the assistance of an intuitive example of forest fire, we

have characterized three essential points in responsibility analysis: temporal ordering,

free choices and the cognizance. In the rest of this dissertation, we focus on analyzing

the responsibility in computer programs, and an informal definition of responsibility is

presented as follows, which takes the above three points into account and allows for

building an expressive framework of responsibility analysis.

Definition 1 (Responsibility, informally) To the cognizance of an observer, an action

aR is responsible for the behavior B of interest in a given execution, if and only if, according

to the observer’s observation, aR is free to make choices, and such a choice is the first one

that guarantees the occurrence of B in that execution.

It is necessary to point out that, for the whole system whose concrete semantics

is a set of executions, there may exist more than one action that is responsible for B.

Nevertheless, in every single execution where B occurs, there is only one action that is
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responsible for B. To decide which action in an execution is responsible, the execution

alone is not sufficient, and it is required to reason on the whole semantics to exhibit the

action’s “free choices” and guarantee of B. Thus, responsibility is not a trace property

(neither safety nor liveness property), but a hyper-property [11], which is a property of

sets of execution traces.

In the following, we consider the access control program example in Fig. 1.4 again,

and discuss the advantage of the responsibility analysis over the classic dependency /

causality analysis in an informal way, while the responsibility analysis procedure of this

access control program will be formalized in chapter 5.

Example 12 (Access Control, Continued) For the access control program in Fig. 1.4, the

question that we are interested in is: when the access to o fails in the program execution (referred

as “Access Failure”, i.e. acs ≤ 0 at point l8), which action (actions) shall be responsible?

First, we consider the dependency analysis and corresponding slicing techniques. No matter

whether we adopt the syntactic dependency or semantic dependency, it is not hard to see that

the value of acs at point l8 depends on the value of apv and typ at point l7, which further

depend on the inputs from the two admins and system settings. That is to say, the behavior

“access failure” depends on all variables in the program, thus program slicing techniques (both

syntactic slicing [45] and semantic slicing [25]) would take the whole program as the slice

related with access failure. Although the slicing technique intends to rule out parts of the

program that are completely irrelevant with the behavior of interest, it is too imprecise to be

practically useful in this example. For instance, the computed slice include the actions such

as apv := 1, apv := (i1 ≤ 0) ? -1 : apv and acs := apv × typ, which have no free

choices: they are completely deterministic and act merely as the intermediary between causes
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and effects, thus shall not be treated as responsible entities. Moreover, similar to the wind

in the forest fire example, the action typ := [1; 2] representing the input from system settings

is a non-decisive factor for the access failure behavior (i.e. no matter whether typ is 1 or 2,

it cannot either enforce or prevent the access failure), although it does affect the value of acs

at point l8. Therefore, the dependency analysis and slicing are not precise enough to identify

responsible entities.

Second, using the counterfactual causality proposed by Lewis, we can exclude non-decisive

factors (i.e. the action typ := [1; 2] in this example), but it fails to find any cause of the access

failure behavior in the executions where the inputs from both two admins are negative or zero.

For example, in the execution where i1 = 0 and i2 = 0, neither of these two admin inputs

would be determined as the cause of access failure, because the behavior of access failure does

not counterfactually depend on either of them. More precisely, if the input from one admin

(either i1 or i2) is changed to a strictly positive value (i.e. 1 or 2), the access failure would still

occur due to the input 0 from the other admin.

Third, we consider the definition of actual cause proposed by Halpern and Pearl, and

represent the access control program by a structural equations model (SEM): three non-

deterministic inputs from admins and system settings (i.e. [-1; 2] and [1; 2]) are represented by

exogenous variables, and each program variable is presented by an endogenous variable, whose

value is deterministically decided by the values of other (exogenous or endogenous) variables.

Similar to the counterfactual causality by Lewis, non-decisive factors (i.e. the assignment to

typ) would not be counted as actual causes. Yet, the actual cause allows reasoning counterfac-

tual dependency under a contingency, such that it can identify causes in the executions where

the inputs from both admins are negative or zero. For example, in the execution where the
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inputs from two admins are 0, both i1 = 0 and i2 = 0 are determined as actual causes of access

failure, because the access failure counterfactually depends on i1 = 0 (respectively, i2 = 0) un-

der the contingency where the value of i2 (respectively, i1) is changed to 1 or 2. Besides, similar

to the dependency analysis, the intermediate events between causes and effects (e.g. apv = -1

and acs = -1) are also determined as actual causes of access failure.

Lastly, compared with the above dependency/causality analysis, the responsibility analysis

according to the Definition 1 would be much more precise, and it can accurately identify the

responsible entities of access failure in various cases. Here we list the entire desired responsibility

analysis results, while the detailed procedure of producing such results is formalized in the next

chapter. (1) To the cognizance of an omniscient observer: for any execution, if the input

from the 1st admin is negative or zero, then no matter what the other two inputs are, only

the action i1 := [-1; 2] (which represents the input from the 1st admin) is responsible for the

access failure behavior, because it guarantees the access failure even before the 2nd admin inputs

her/his decision; if the input from the 1st admin is positive and the input from the 2nd admin

is negative or zero, then only the action i2 := [-1; 2] (which represents the input from the

2nd admin) is responsible for the access failure behavior, because the positive input from the

1st admin does not either enforce or prevent the access failure, while the negative or zero input

from the 2nd admin is the first action that guarantees the access failure; otherwise, if the inputs

from both admins are positive, then the access failure behavior does not occur, thus there is no

responsible entity. (2) To the cognizance of a non-omniscient observer who does not know the

input from the 1st admin: for any execution, if the input from the 2nd admin is negative or

zero, then no matter what the input from the 1st admin is, only the action i2 := [-1; 2] (which

represents the input from the 2nd admin) is responsible for the access failure behavior, because
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from the knowledge of the non-omniscient observer, the access failure behavior is ensured only

after the 2nd admin inputs a negative value or zero; otherwise, if the input from the 2nd

admin is positive, then whether the access failure occurs or not is uncertain from the perspective

of non-omniscient observer, thus no entity is responsible for the access failure.

After finishing the responsibility analysis, it is time for the user to configure permissions

granted to each responsible entity at her/his discretion. In this example, suppose the cognizance

of an omniscient observer is adopted, then we find that only the inputs from two admins are

possibly responsible for the access failure behavior. If the two admins are authorized to control

the access, their permissions to input negative values or zero can be kept; otherwise, if those

two admins have no authorization to decline the access to o, then their permissions to input

negative values or zero shall be removed. □
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Chapter 5

Formal Definition of Responsibility

In order to put the informal definition of responsibility (Definition 1) into effect,

here we design a framework of concrete responsibility analysis as illustrated in Fig.5.1,

which essentially consists of three components: (1) Program semantics, i.e. the set of all

possible executions, each of which can be analyzed individually. (2) A lattice of system

behaviors of interest, which is ordered such that the stronger a behavior is, the lower is

its position in the lattice. (3) An observation function for each observer, which maps every

(probably unfinished) execution to a behavior in the lattice that is guaranteed to occur,

even though such a behavior may not have occurred yet. These three components are

formally defined in this chapter, and their abstractions are presented in part III.

In this framework of concrete analysis, if an observer’s observation finds that the

guaranteed behavior grows stronger after extending an execution by an action, then the

extended part of execution (i.e. the action) must be responsible for ensuring the oc-

currence of the stronger behavior. Consider the example in Fig. 5.1 that sketches the

analysis for a certain execution of the access control program, where the inputs from
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Program Semantics Lattice of System Behaviors
of Interest

Observation

(Omniscient)

(Non-omniscient)

⊤Max = ⟦P⟧Max

AS

AF

⊥Max= Ø

RO RW

l1

apv = 1

i1 = 0

apv = -1

i2 = 0

apv = -1

typ = 1

acs = -1

l2

l3

l4

l5

l6

l7

l8

Behaviors
AF: Access Failure
AS: Access Success
RO: Read Only
RW: Read and Write

Figure 5.1: Framework of Concrete Responsibility Analysis for Access Control Example

both admins are zeros while the input from system settings is one. Suppose in the

lattice of system behaviors, the top >Max represents the behavior “not sure if the ac-

cess to o fails or not”, AF represents the behavior of access failure, and AS represents

the behavior of access success, whose formal definitions are given in section 5.2. The

solid arrow from executions to the lattice stands for the observation of an omniscient

observer who knows everything, while the dashed arrow stands for the observation of a

non-omniscient observer who is unaware of the input from 1st admin.

As illustrated in Fig. 5.1, the omniscient observer finds that the execution from point

l1 to point l2 can guarantee only >Max (i.e. before the 1st admin inputs her/his decision,

whether the access to o fails or succeeds is undecided), while the stronger behavior AF

is guaranteed when the execution reaches point l3 (i.e. after the 1st admin inputs zero,

it is ensured that the access to o will fail, even though it has not occurred yet). Thus,

to the cognizance of the omniscient observer, the action between point l2 and l3 (i.e.

i1 := [-1; 2] representing the input from 1st admin) is responsible for the access failure
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behavior. In contrast, the non-omniscient observer finds that all the executions upto

point l4 guarantee >Max (i.e. the non-omniscient observer does not know the 1st admin

already inputs 0, thus believes that the access failure behavior is not guaranteed yet), and

AF is guaranteed only after point l5 is reached (i.e. only after the 2nd admin inputs zero,

the non-omniscient observer knows that the access failure is ensured to occur). Hence,

to the cognizance of the non-omniscient observer, the action between point l4 and point

l5 (i.e. i2 := [-1; 2] representing the input from 2nd admin) is responsible for the access

failure. It is easy to see that such analysis results are consistent with Example 12.

More formally, this chapter presents the program trace semantics, builds a lattice of

system behaviors by trace properties, proposes an observation function that derives from

the observer’s cognizance and an inquiry function on system behaviors. Furthermore, this

section formally defines responsibility as an abstraction of program semantics, using the

observation function. To strengthen the intuition of responsibility analysis, the analysis

of the access control program example will be illustrated step by step.

5.1 Program Semantics

Generally speaking, no matter what type of program we are concerned with and

no matter which programming language is used to implement that program, the corre-

sponding program semantics can be represented as a set of execution traces.

As introduced in chapter 1, every program can be modeled as a transition system

of the form P = 〈Si, →〉, and its execution traces are represented as finite or infinite

sequences of states. Furthermore, the intermediate trace semantics JPKIt is defined as

the set of traces such that every two successive states are related by →; the prefix trace
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semantics JPKPref is defined as the set of intermediate traces that start from initial states;

and the maximal trace semantics JPKMax is the set of prefix traces that either terminate

at final states or the error state ω, or do not ever terminate. A trace σ is said to be valid

for a program P, if and only if σ ∈ JPKPref . Obviously, the intermediate/prefix/maximal

trace semantics do preserve the temporal ordering of actions, which is missed by the

structural equations model (SEM) used by actual causes [47, 48, 57].

Specifically, for the access control program example in Fig. 1.4, its definition of

maximal trace semantics refers to Example 2. For the sake of simplicity, it is assumed

that the initial environment is fixed (e.g. the value of each variable is assumed to be 0 at

the initial point l1), hence its maximal trace semantics JPKMax consists of 32 traces that

correspond to different input values from two admins and the system settings.

5.2 Lattice of System Behaviors of Interest

5.2.1 Trace Property

A trace property is a set of traces. For any given system, many behaviors can be

represented as a maximal trace property T ∈ ℘(JPKMax).

Example 13 (Access Control, Continued) For the access control program example in Fig.

1.4, the behavior “Access Success” AS (i.e. the access to o succeeds) is represented by a set of

maximal traces such that the value of acs is strictly positive at point l8, i.e. AS = {σ ∈

JPKMax | ∃ρ ∈ M. σ[7] = 〈l8, ρ〉 ∧ ρ(acs) > 0}. More precisely, along every trace in

AS, each input from the 2 admins or the system settings is either 1 or 2. Since the initial

environment is assumed to be fixed, AS consists of 8 different traces.
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The behavior “Access Failure” AF (i.e. the access to o fails) is represented as a set of maximal

traces such that the value of acs is less than or equal to zero at point l8, which is the complement

of AS, i.e. AF = JPKMax\AS = {σ ∈ JPKMax | ∃ρ ∈M. σ[7] = 〈l8, ρ〉 ∧ ρ(acs) <= 0}. It

is not hard to see that, along every trace in AF, at least one input from the two admin is -1 or

0, while the input from system settings is 1 or 2. Hence, AF consists of 24 different traces.

Furthermore, the behavior AS can be split into two parts: RO = {σ ∈ JPKMax | ∃ρ ∈

M. σ[7] = 〈l8, ρ〉∧ ρ(acs) = 1} represents a stronger behavior “Read Only access is granted”,

which consists of 4 traces; and RW = {σ ∈ JPKMax | ∃ρ ∈M. σ[7] = 〈l8, ρ〉 ∧ ρ(acs) = 2}

represents another behavior “Read and Write access is granted”, which also consists of 4 traces.

□

5.2.2 Lattice of System Behaviors of Interest

Here we build a complete lattice of maximal trace properties, each of which represents

a behavior of interest. Typically, such a lattice is of the form 〈LMax, ⊆, >Max, ⊥Max, ·∪,
·∩〉, where

– LMax ∈ ℘(℘(JPKMax)) is a set of behaviors of interest, each of which is represented by

a maximal trace property;

– >Max = JPKMax, i.e. the top of the lattice is the weakest maximal trace property which

holds in every valid maximal trace;

– ⊥Max = ∅, i.e. the bottom of the lattice is the strongest property such that no valid

trace has this property, hence it is used to represent the property of invalidity;

– ⊆ is the standard set inclusion operation;
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– ·∪ and ·∩ are join and meet operations, which might not be the standard ∪ and ∩, since

LMax is a subset of ℘(JPKMax) but not necessarily a sublattice.

For any given system, there is possibly more than one way to build the complete

lattice of maximal trace properties, depending on which behaviors are of interest. A

special case of lattice is the power set of maximal trace semantics, i.e. LMax = ℘(JPKMax),

which can be used to examine the responsibility for every possible behavior in the system.

However, in most cases, a single behavior is of interest, and it is sufficient to adopt a lattice

with only four elements: B representing the behavior of interest, JPKMax\B representing

the complement of the behavior of interest, as well as the top JPKMax and bottom ∅.

Particularly, if B is equal to JPKMax, i.e. every valid maximal trace in the system has this

behavior of interest, then a trivial lattice with only the top and bottom is built, from

which no responsibility can be found, making the corresponding analysis futile.

Example 14 (Access Control, Continued) For the access control program, there are two

possible ways to build the lattice of maximal trace properties. To start with, we consider the

lattice displayed in Fig. 5.1, which consists of 6 elements. Regarding whether the access to o

fails or not, the top >Max = JPKMax is split into two properties “Access Failure” AF and “Access

Success” AS, which are formally defined in Example 13 such that AF ·∪AS = JPKMax and

AF ·∩AS = ∅. Furthermore, regarding whether the write access is granted or not, AS is split

into “Read Only access is granted” RO and “Read and Write access is granted” RW, such

that RO ·∪RW = AS and RO ·∩RW = ∅. With the assistance of such a lattice of system

behaviors, we can determine not only the responsible entity for access failure/success, but also

the entity in charge of the write access.
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Meanwhile, if we are interested in only one behavior (e.g. “Access Failure” AF), then RO

and RW can be simply removed from the lattice and we can get a lattice with 4 elements. □

5.2.3 Prediction Abstraction

Although the maximal trace property is well-suited to represent system behaviors, it

does not reveal the point along the maximal trace from which a property is guaranteed to

hold later in the execution. Thus, we propose to abstract every maximal trace property

X ∈ LMax isomorphically into a set Y of prefixes of maximal traces in X , excluding

those whose maximal prolongation may not satisfy the property X . This abstraction is

called prediction abstraction, and Y is called the prediction trace property corresponding to

X . It is easy to see that Y is a superset of X , and is not necessarily prefix-closed.

αPred(JPKMax) ∈ ℘(S∗∞) 7→ ℘(S∗∞) prediction abstraction
αPred(JPKMax)X ≜ {σ ∈ Pref(X ) | ∀σ′ ∈ JPKMax. σ � σ′ ⇒ σ′ ∈ X}
γPred(JPKMax) ∈ ℘(S∗∞) 7→ ℘(S∗∞) prediction concretization

γPred(JPKMax)Y ≜ {σ ∈ Y | σ ∈ JPKMax} = Y ∩ JPKMax

By the above definition, for any program P, every valid maximal trace σ′ that is greater

than or equal to a prefix trace σ in αPred(JPKMax)X is guaranteed to have the maximal

trace property X (i.e. σ′ ∈ X ). Hence, the prefix traces in αPred(JPKMax)X gives a hint

on the point along the maximal trace from which the property X is guaranteed to hold.

More formally, we have the following lemma:

Lemma 1 For any maximal trace property X ∈ ℘(JPKMax), if a prefix trace σ belongs to

αPred(JPKMax)X , then σ guarantees the satisfaction of property X (i.e. every valid maximal

trace that is greater than or equal to σ is guaranteed to have property X ).
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Moreover, we have a Galois isomorphism between maximal trace properties and pre-

diction trace properties:

〈℘(JPKMax), ⊆〉 −−−−−−−−−→−→←←−−−−−−−−−−
αPred(JPKMax)

γPred(JPKMax)
〈ᾱPred{JPKMax}(℘(JPKMax)), ⊆〉 (5.1)

where the abstract domain is obtained by a function ᾱPred{JPKMax} ∈ ℘(℘(S∗∞)) 7→

℘(℘(S∗∞)) such that ᾱPred{JPKMax}(X) ≜ {αPred(JPKMax)X | X ∈ X}.

Proof. First, we prove that αPred(JPKMax) and γPred(JPKMax) are increasing.

X ⊆ X ′

⇒ ∀σ′ ∈ JPKMax. (σ′ ∈ X )⇒ (σ′ ∈ X ′) Hdef. ⊆I
⇒ ∀σ ∈ S∗∞, σ′ ∈ JPKMax. (¬(σ � σ′) ∨ (σ′ ∈ X ))⇒ (¬(σ � σ′) ∨ (σ′ ∈ X ′))

Hdef. ∨I
⇒ {σ ∈ S∗∞ | ∀σ′ ∈ JPKMax. ¬(σ � σ′) ∨ (σ′ ∈ X )} ⊆

{σ ∈ S∗∞ | ∀σ′ ∈ JPKMax. ¬(σ � σ′) ∨ (σ′ ∈ X ′)} Hdef. ⊆I
⇒ {σ ∈ S∗∞ | ∀σ′ ∈ JPKMax. σ � σ′ ⇒ σ′ ∈ X} ⊆

{σ ∈ S∗∞ | ∀σ′ ∈ JPKMax. σ � σ′ ⇒ σ′ ∈ X ′} Hdef.⇒I
⇒ (Pref(X ) ∩ {σ | ∀σ′ ∈ JPKMax. σ � σ′ ⇒ σ′ ∈ X}) ⊆

(Pref(X ′) ∩ {σ | ∀σ′ ∈ JPKMax. σ � σ′ ⇒ σ′ ∈ X ′}) Hdef. ∩ and Pref is increasingI
⇒ {σ ∈ Pref(X ) | ∀σ′ ∈ JPKMax. σ � σ′ ⇒ σ′ ∈ X} ⊆

{σ ∈ Pref(X ′) | ∀σ′ ∈ JPKMax. σ � σ′ ⇒ σ′ ∈ X ′} Hdef. ∩I
⇒ αPred(JPKMax)X ⊆ αPred(JPKMax)X ′ Hdef. αPred(JPKMax)I
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Y ⊆ Y ′

⇒ (Y ∩ JPKMax) ⊆ (Y ′ ∩ JPKMax) Hdef. ∩I
⇒ γPred(JPKMax)Y ⊆ γPred(JPKMax)Y ′ Hdef. γPred(JPKMax)I

Then, we prove that γPred(JPKMax)◦αPred(JPKMax) and αPred(JPKMax)◦γPred(JPKMax)

are identity functions.

γPred(JPKMax) ◦ αPred(JPKMax)X

= γPred(JPKMax)({σ ∈ Pref(X ) | ∀σ′ ∈ JPKMax. σ � σ′ ⇒ σ′ ∈ X}) Hdef. αPredI
= γPred(JPKMax)(X ∪ {σ ∈ Pref(X )\JPKMax | ∀σ′ ∈ JPKMax. σ � σ′ ⇒ σ′ ∈ X})

HX = Pref(X ) ∩ JPKMax since X ∈ ℘(JPKMax)I
= JPKMax ∩ (X ∪ {σ ∈ Pref(X )\JPKMax | ∀σ′ ∈ JPKMax. σ � σ′ ⇒ σ′ ∈ X})

Hdef. γPredI
= JPKMax ∩ X HJPKMax ∩ (Pref(X )\JPKMax) = ∅I
= X HX ∈ ℘(JPKMax)I

αPred(JPKMax) ◦ γPred(JPKMax)Y

= αPred(JPKMax) ◦ γPred(JPKMax) ◦ αPred(JPKMax)X ′

HY ∈ ᾱPred{JPKMax}(℘(JPKMax)), thus ∃X ′. Y = αPred(JPKMax)X ′I
= αPred(JPKMax)X ′ HγPred(JPKMax) ◦ αPred(JPKMax)X ′ = X ′I
= Y Hby the assumption Y = αPred(JPKMax)X ′I
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By the four properties proved above, αPred(JPKMax) and γPred(JPKMax) form a Galois

isomorphism. □

Corollary 1 Given the semantics JPKMax and lattice LMax of system behaviors, for any max-

imal trace property T ∈ LMax, if a trace σ belongs to the prediction trace property that

corresponds to T , then every valid trace greater than σ belongs to that prediction trace prop-

erty too. I.e. ∀T ∈ LMax. ∀σ, σ′ ∈ JPKPref . (σ ∈ αPred(JPKMax)T ∧ σ � σ′) ⇒ σ′ ∈

αPred(JPKMax)T .

Proof. Proof by contradiction. Here we assume ∃T ∈ LMax. ∃σ, σ′ ∈ JPKPref . σ ∈
αPred(JPKMax)T ∧ σ � σ′ ∧ σ′ 6∈ αPred(JPKMax)T . By the definition of prediction

abstraction, αPred(JPKMax)T = {σ ∈ Pref(T ) | ∀σ′ ∈ JPKMax. σ � σ′ ⇒ σ′ ∈ T }.

There are two possibilities for σ′ 6∈ αPred(JPKMax)T :

1) σ′ 6∈ Pref(T ), hence every maximal trace greater than σ′ does not belong to T ;

2) ∃σ′′ ∈ JPKMax. σ′ � σ′′ ∧ σ′′ 6∈ T .

Both cases imply that there is a maximal trace σ′′ ∈ JPKMax such that σ � σ′ �

σ′′ ∧ σ′′ 6∈ T , which contradicts with the assumption of σ ∈ αPred(JPKMax)T . □

Corollary 2 Given the semantics JPKMax and the lattice LMax of system behaviors, for any

maximal trace property T ∈ LMax and any valid prefix trace π that is not maximal, if every

valid prefix trace πs which concatenates π with a new event s belongs to the prediction trace

property αPred(JPKMax)T , then π belongs to αPred(JPKMax)T too.

More formally, ∀T ∈ LMax. ∀π ∈ JPKPref\JPKMax. (∀s ∈ S. πs ∈ JPKPref ⇒ πs ∈

αPred(JPKMax)T )⇒ π ∈ αPred(JPKMax)T .
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Proof. Prove by contradiction, and here we assume that ∃T ∈ LMax. ∃π ∈ JPKPref\JPKMax.

(∀s ∈ S. πs ∈ JPKPref ⇒ πs ∈ αPred(JPKMax)T )∧π 6∈ αPred(JPKMax)T . According to the

definition that αPred(JPKMax)T = {σ ∈ Pref(T ) | ∀σ′ ∈ JPKMax. σ � σ′ ⇒ σ′ ∈ T },

there are two possibilities to have π 6∈ αPred(JPKMax)T :

1) π 6∈ Pref(T ). This implies that ∀s ∈ S. πs ∈ JPKPref ⇒ πs 6∈ Pref(T ), which

further implies that ∀s ∈ S. πs ∈ JPKPref ⇒ πs 6∈ αPred(JPKMax)T . Since π ∈ JPKPref\
JPKMax, there must exist at least one s such that πs ∈ JPKPref ∧ πs 6∈ αPred(JPKMax)T .

2) There is a maximal trace σ′ ∈ JPKMax such that π ≺ σ′ ∧ σ′ 6∈ T . Take s =

σ′[|π|], then πs ∈ JPKPref∧ πs � σ′ ∧ σ′ 6∈ T holds, which implies πs ∈ JPKPref∧
πs 6∈ αPred(JPKMax)T .

Both two cases find that ∃s ∈ S. πs ∈ JPKPref ∧ πs 6∈ αPred(JPKMax)T , which

contradicts with the assumption ∀s ∈ S. πs ∈ JPKPref ⇒ πs ∈ αPred(JPKMax)T . □

Example 15 (Access Control, Continued) By the function αPred(JPKMax), each behavior

in the lattice LMax of Example 14 can be abstracted into a prediction trace property:
– αPred(JPKMax)>Max = JPKPref , i.e. every valid prefix trace in JPKPref guarantees >Max.

– αPred(JPKMax)AF = {σ ∈ JPKPref | ∃ρ1 ∈ M, v ∈ {-1, 0}, v ′ ∈ {1, 2}. 〈l1, ρ1〉〈l2,

ρ2 = ρ1[apv 7→ 1]〉〈l3, ρ3 = ρ2[i1 7→ v ]〉 � σ ∨ 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv 7→ 1]〉〈l3,

ρ3 = ρ2[i1 7→ v ′]〉〈l4, ρ4 = ρ3〉〈l5, ρ5 = ρ4[i2 7→ v ]〉 � σ}. For any valid prefix trace

σ, if at least one input from the two admins is -1 or 0, then the behavior “Access Failure”

AF is guaranteed to occur in all the maximal traces that are greater than or equal to σ.

– αPred(JPKMax)AS = {σ ∈ JPKPref | ∃ρ1 ∈ M, v ∈ {1, 2}. 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv 7→

1]〉〈l3, ρ3 = ρ2[i1 7→ v ]〉〈l4, ρ4 = ρ3〉〈l5, ρ5 = ρ4[i2 7→ v ]〉 � σ}. For any valid prefix

trace σ, if the inputs from both admins are 1 or 2, “Access Success” AS is guaranteed.
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– αPred(JPKMax)RO = {σ ∈ JPKPref | ∃ρ1 ∈ M, v ∈ {1, 2}. 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv 7→

1]〉〈l3, ρ3 = ρ2[i1 7→ v ]〉〈l4, ρ4 = ρ3〉〈l5, ρ5 = ρ4[i2 7→ v ]〉〈l6, ρ6 = ρ5〉〈l7, ρ7 =

ρ6[typ 7→ 1]〉 � σ}. For any valid trace, if the inputs from both admins are 1 or 2 and

the input from system settings is 1, then it guarantees “Read Only access is granted” RO.

– αPred(JPKMax)RW = {σ ∈ JPKPref | ∃ρ1 ∈ M, v ∈ {1, 2}. 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv 7→

1]〉〈l3, ρ3 = ρ2[i1 7→ v ]〉〈l4, ρ4 = ρ3〉〈l5, ρ5 = ρ4[i2 7→ v ]〉〈l6, ρ6 = ρ5〉〈l7, ρ7 =

ρ6[typ 7→ 2]〉 � σ}. For any valid trace, if the inputs from both admins are 1 or 2 and the

input from system settings is 2, then it guarantees “Read and Write access is granted” RW.

– αPred(JPKMax)⊥Max = ∅, i.e. no valid trace can guarantee the bottom ⊥Max. □

5.3 Observation of System Behaviors

Let JPKMax be the maximal trace semantics and LMax be the lattice of system behav-

iors designed as in Section 5.2. Given any prefix trace σ ∈ S∗∞, an observer can learn

some information from it, more precisely, a maximal trace property T ∈ LMax that is

guaranteed by σ from the observer’s perspective. In this section, an observation function

O is proposed to represent such a “property learning process” of the observer, which is

formally defined in the following three steps.

5.3.1 Inquiry Function

First, an inquiry function I is defined to map every trace σ ∈ S∗∞ to the strongest

maximal trace property in LMax that σ can guarantee.
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I ∈ ℘(S∗∞) 7→ ℘(℘(S∗∞)) 7→ S∗∞ 7→ ℘(S∗∞) inquiry (5.2)
I(JPKMax,LMax, σ) ≜

let αPred(S)T = {σ ∈ Pref(T ) | ∀σ′ ∈ S. σ � σ′ ⇒ σ′ ∈ T } in
·∩{T ∈ LMax | σ ∈ αPred(JPKMax)T }

Specially, for every invalid trace σ 6∈ JPKPref , there does not exist any T ∈ LMax such

that σ ∈ αPred(JPKMax)T , thus I(JPKMax,LMax, σ) = ∅ = ⊥Max. In contrast, for any valid

trace σ ∈ JPKPref , it is ensured that σ ∈ αPred(JPKMax)>Max, hence I(JPKMax,LMax, σ) 6=

⊥Max. Therefore, I(JPKMax,LMax, σ) = ⊥Max if and only if σ is invalid.

Example 16 (Access Control, Continued) Using the maximal trace semantics JPKMax from

Example 2 and the lattice of system behaviors LMax from Example 14, here we define the in-

quiry function I for the access control program such that for any initial environment ρ1 ∈M:

– I(JPKMax,LMax, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv 7→ 1]〉) = >Max, i.e. every prefix trace that ter-

minates at point l2 (before the admins input their decisions) can guarantee only >Max.

– I(JPKMax,LMax, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv 7→ 1]〉〈l3, ρ3 = ρ2[i1 7→ 0]〉) = AF, i.e. after

the 1st admin inputs 0, the behavior “Access Failure” AF is guaranteed.

– I(JPKMax,LMax, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv 7→ 1]〉〈l3, ρ3 = ρ2[i1 7→ 1]〉) = I(JPKMax,

LMax, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv 7→ 1]〉〈l3, ρ3 = ρ2[i1 7→ 1]〉〈l4, ρ4 = ρ3〉) = >Max, i.e.

if the first admin inputs 1, only the top >Max can be guaranteed before the second admin

inputs her/his decision.

– I(JPKMax,LMax, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv 7→ 1]〉〈l3, ρ3 = ρ2[i1 7→ 1]〉〈l4, ρ4 = ρ3〉〈l5,

ρ5 = ρ4[i2 7→ 0]〉) = AF, i.e. after the second admin inputs 0, the behavior “Access Failure”

AF is guaranteed.
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– I(JPKMax,LMax, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv 7→ 1]〉〈l3, ρ3 = ρ2[i1 7→ 1]〉〈l4, ρ4 = ρ3〉〈l5,

ρ5 = ρ4[i2 7→ 1]〉) = AS, i.e. if both two admin inputs 1, “Access Success” AS is guaranteed.

– I(JPKMax,LMax, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv 7→ 1]〉〈l3, ρ3 = ρ2[i1 7→ 1]〉〈l4, ρ4 = ρ3〉〈l5,

ρ5 = ρ4[i2 7→ 1]〉〈l6, ρ6 = ρ5〉〈l7, ρ7 = ρ6[typ 7→ 1]〉) = RO, i.e. if both two admin

input 1, then after the input from system settings is set as 1, a stronger property “Read Only

access is granted” RO is guaranteed.

– I(JPKMax,LMax, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv 7→ 1]〉〈l3, ρ3 = ρ2[i1 7→ 1]〉〈l4, ρ4 = ρ3〉〈l5,

ρ5 = ρ4[i2 7→ 1]〉〈l6, ρ6 = ρ5〉〈l7, ρ7 = ρ6[typ 7→ 2]〉) = RW, i.e. if both two admin

input 1, then after the input from system settings is set as 2, a stronger property “Read and

Write access is granted” RW is guaranteed. □

Corollary 3 Given the semantics JPKMax and lattice LMax of system behaviors, if the inquiry

function I maps a trace σ to a maximal trace property T ∈ LMax, then σ guarantees the

satisfaction of T (i.e. every valid maximal trace that is greater than or equal to σ is guaranteed

to have property T ).

Proof. The proof immediately follows Lemma 1 and the definition (5.2) of inquiry. □

Lemma 2 Given the semantics JPKMax and lattice LMax of system behaviors, the inquiry

function I(JPKMax,LMax) is decreasing on the inquired trace σ: the greater (longer) σ is, the

stronger property it can guarantee. I.e. ∀σ, σ′ ∈ S∗∞. σ � σ′ ⇒ I(JPKMax,LMax, σ) ⊇

I(JPKMax,LMax, σ′).

Proof. First, if σ is invalid (i.e. σ 6∈ JPKPref), then every trace σ′ that is greater than

σ must also be invalid (i.e. σ′ 6∈ JPKPref), hence it is obvious that I(JPKMax,LMax, σ) =

I(JPKMax,LMax, σ′) = ⊥Max.
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Second, if σ′ is invalid (σ′ 6∈ JPKPref), then we have I(JPKMax,LMax, σ′) = ⊥Max,

hence I(JPKMax,LMax, σ) ⊇ ⊥Max = I(JPKMax,LMax, σ′).

Last, if both σ and σ′ are valid( σ, σ′ ∈ JPKPref), then we have

σ � σ′

⇒ ∀T ∈ LMax. σ ∈ αPred(JPKMax)T ⇒ σ′ ∈ αPred(JPKMax)T Hcorollary 1I
⇒ {T ∈ LMax | σ ∈ αPred(JPKMax)T } ⊆ {T ∈ LMax | σ′ ∈ αPred(JPKMax)T }

Hdef. ⇒I
⇒ ·∩{T ∈ LMax | σ ∈ αPred(JPKMax)T } ⊇ ·∩{T ∈ LMax | σ′ ∈ αPred(JPKMax)T }

Hdef. ·∩I
⇒ I(JPKMax,LMax, σ) ⊇ I(JPKMax,LMax, σ′) Hdef. II

To sum up the three cases above, we prove that I(JPKMax,LMax) is decreasing. □

Corollary 4 Given the semantics JPKMax and latticeLMax of behaviors, ∀σ ∈ JPKPref\JPKMax.

I(JPKMax,LMax, σ) = ·∪
s∈S

I(JPKMax,LMax, σs) = ·∪
σs∈JPKPrefI(JPKMax,LMax, σs).

Proof. First, ·∪{I(JPKMax,LMax, σs) | s ∈ S} = ( ·∪{I(JPKMax,LMax, σs) | σs ∈ JPKPref})
·∪( ·∪{I(JPKMax,LMax, σs) | σs 6∈ JPKPref}) = ( ·∪{I(JPKMax,LMax, σs) | σs ∈ JPKPref}) ·∪
⊥Max = ·∪{I(JPKMax,LMax, σs) | σs ∈ JPKPref}.

Second, we prove ·∪{I(JPKMax,LMax, σs) | σs ∈ JPKPref} = I(JPKMax,LMax, σ) in

two steps: 1) by lemma 2, it is proved that ∀σ, σs ∈ S∗∞. I(JPKMax,LMax, σ) ⊇

I(JPKMax,LMax, σs), thus I(JPKMax,LMax, σ) ⊇ ·∪{I(JPKMax,LMax, σs) | σs ∈ JPKPref}.
2) assume I(JPKMax,LMax, σ) ⊋ ·∪{I(JPKMax,LMax, σs) | σs ∈ JPKPref} = T . By
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the definition of I in (5.2), we know that σ 6∈ αPred(JPKMax)T and ∀σs ∈ JPKPref .
σs ∈ αPred(JPKMax)T , which is impossible by corollary 2. Thus, by contradiction,

I(JPKMax,LMax, σ) = ·∪{I(JPKMax,LMax, σs) | σs ∈ JPKPref}. □

5.3.2 Cognizance Function

As discussed in (P3) of section 4.1, it is necessary to take the observer’s cognizance

into account. Specifically, in program security, the cognizance can represent attackers’

capabilities, e.g. what they can learn from program executions (see section 6.2 for more

details). Given a trace σ (not necessarily valid), if the observer cannot distinguish σ from

some other traces, then she/he does not have an omniscient cognizance of σ, and the

cognizance function C(σ) is defined to include all traces indistinguishable from σ.

C ∈ S∗∞ 7→ ℘(S∗∞) cognizance (5.3)
C(σ) ≜ {σ′ ∈ S∗∞ | the observer cannot distinguish σ′ from σ}

Such a cognizance function is extensive, i.e. ∀σ ∈ S∗∞. σ ∈ C(σ). In particular,

there is an omniscient observer and its corresponding cognizance function is denoted as

Co such that ∀σ ∈ S∗∞. Co(σ) = {σ}, which means that every trace is unambiguous

to the omniscient observer.

To facilitate the proof of some desired properties for the observation function defined

later, two assumptions are made here without loss of generality:

(A1) The cognizance of a trace σσ′ is the concatenation of cognizances of σ and σ′. I.e.

∀σ, σ′ ∈ S∗∞. C(σσ′) = {ππ′ | π ∈ C(σ) ∧ π′ ∈ C(σ′)}. Specially, we require

that C(ε) = {ε}, such that for any non-empty finite trace σ, C(σ) = C(σε) =

{ππ′ | π ∈ C(σ) ∧ π′ ∈ C(ε)} would not include infinite traces.
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(A2) Given an invalid trace, the cognizance function would not return a valid trace. I.e.

∀σ ∈ S∗∞. σ 6∈ JPKPref ⇒ C(σ) ∩ JPKPref = ∅.
In practice, we can define an equivalence relation on traces that satisfy the above two

assumptions, thus it is assumed that the observer cannot distinguish two traces if and

only if they are equivalent. That is to say, for any trace σ, C(σ) is a class of traces that

are equivalent to σ, and {〈σ, σ′〉 | σ′ ∈ C(σ)} is an equivalence relation.

Corollary 5 For any cognizance function C, we have ·∪
s∈S

C(s) ⊇ S.

Proof. This corollary follows immediately from the fact that the cognizance function C

is extensive. □

Example 17 (Access Control, Continued) For the access control program, consider the cog-

nizance function for two different observers.

(i) For an omniscient observer: ∀σ ∈ S∗∞. Co(σ) = {σ}.

(ii) For an observer who is unaware of the input from 1st admin: C(〈l1, ρ1〉〈l2, ρ2 =

ρ1[apv 7→ 1]〉〈l3, ρ3 = ρ2[i1 7→ 0]〉) = {〈l1, ρ1〉〈l2, ρ2 = ρ1[apv 7→ 1]〉〈l3, ρ3 = ρ2[i1 7→

-1]〉, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv 7→ 1]〉〈l3, ρ3 = ρ2[i1 7→ 0]〉, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv 7→

1]〉〈l3, ρ3 = ρ2[i1 7→ 1]〉, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv 7→ 1]〉〈l3, ρ3 = ρ2[i1 7→ 2]〉}, i.e. this

observer cannot distinguish whether the input from 1st admin is -1 or 0 or 1 or 2.

Similarly, for a prefix trace in which the inputs from both two admins are zeros, C(〈l1,

ρ1〉〈l2, ρ2 = ρ1[apv 7→ 1]〉〈l3, ρ3 = ρ2[i1 7→ 0]〉〈l4, ρ4 = ρ3〉〈l5, ρ5 = ρ4[i2 7→

0]〉) = {〈l1, ρ1〉〈l2, ρ2 = ρ1[apv 7→ 1]〉〈l3, ρ3 = ρ2[i1 7→ -1]〉〈l4, ρ4 = ρ3〉〈l5, ρ5 =

ρ4[i2 7→ 0]〉, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv 7→ 1]〉〈l3, ρ3 = ρ2[i1 7→ 0]〉〈l4, ρ4 = ρ3〉〈l5,

ρ5 = ρ4[i2 7→ 0]〉, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv 7→ 1]〉〈l3, ρ3 = ρ2[i1 7→ 1]〉〈l4, ρ4 = ρ3〉〈l5,
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ρ5 = ρ4[i2 7→ 0]〉, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv 7→ 1]〉〈l3, ρ3 = ρ2[i1 7→ 2]〉〈l4, ρ4 = ρ3〉〈l5,

ρ5 = ρ4[i2 7→ 0]〉} consists of 4 traces, such that the value of i1 is not distinguishable while the

value of i2 is. In the same way, the cognizance on other traces can be defined. □

5.3.3 Observation Function

For an observer with cognizance function C, given a single trace σ, the observer

cannot distinguish σ with other traces in C(σ). In order to formalize the information

that the observer can learn from σ, we apply the inquiry function I on each trace in

C(σ), and get a set of maximal trace properties. By joining them together, we get the

strongest property in LMax that σ can guarantee from the observer’s perspective. Such a

process is defined as the observation function O(JPKMax,LMax,C, σ).

O ∈ ℘(S∗∞) 7→ ℘(℘(S∗∞)) 7→ (S∗∞ 7→ ℘(S∗∞)) 7→ S∗∞ 7→ ℘(S∗∞)
O(JPKMax,LMax,C, σ) ≜ observation (5.4)

let αPred(S)T = {σ ∈ Pref(T ) | ∀σ′ ∈ S. σ � σ′ ⇒ σ′ ∈ T } in
let I(S,L, σ) = ·∩{T ∈ L | σ ∈ αPred(S)T } in
·∪{I(JPKMax,LMax, σ′) | σ′ ∈ C(σ)}.

From the above definition, it is easy to see that, for every invalid trace σ 6∈ JPKPref , we
have O(JPKMax,LMax,C, σ) = ⊥Max, since every trace σ′ in C(σ) is invalid by (A2) and

I(JPKMax,LMax, σ′) = ⊥Max. In addition, for an omniscient observer with cognizance

function Co, its observation O(JPKMax,LMax,Co, σ) = I(JPKMax,LMax, σ).

Corollary 6 Given the semantics JPKMax and latticeLMax of system behaviors, for any observer

with cognizance C, if the corresponding observation function maps a trace σ to a maximal

trace property T ∈ LMax, then σ guarantees the satisfaction of property T (i.e. every valid

maximal trace that is greater than or equal to σ is guaranteed to have property T ).
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Proof. Suppose I(JPKMax,LMax, σ) = T ′. By the corollary 3, σ guarantees the property

T ′, i.e. every valid maximal trace that is greater than or equal to σ belongs to T ′.

In addition, since the cognizance is extensive (i.e. σ ∈ C(σ)), then from the def-

inition of observation function in (5.4), we know that T = O(JPKMax,LMax,C, σ) =

·∪{I(JPKMax,LMax, σ′) | σ′ ∈ C(σ)} ⊇ I(JPKMax,LMax, σ) = T ′. Therefore, every valid

maximal trace that is greater than or equal to σ belongs to T . That is to say, σ guarantees

the satisfaction of property T . □

Corollary 7 Given the semantics JPKMax, the lattice LMax of system behaviors and the cog-

nizance function C, we have: ∀σ ∈ JPKPref\JPKMax. O(JPKMax,LMax,C, σ)

= ·∪
s∈S

O(JPKMax,LMax,C, σs) = ·∪
σs∈JPKPrefO(JPKMax,LMax,C, σs).

Proof. We start the proof from the right side.
·∪

σs∈JPKPrefO(JPKMax,LMax,C, σs)

= ( ·∪
σs∈JPKPrefO(JPKMax,LMax,C, σs)) ·∪⊥Max Hdef.⊥MaxI

= ·∪
σs∈JPKPrefO(JPKMax,LMax,C, σs) ·∪ ·∪

σs ̸∈JPKPrefO(JPKMax,LMax,C, σs) Hdef. OI
= ·∪

s∈S
O(JPKMax,LMax,C, σs) Hmerge two casesI

= ·∪{I(JPKMax,LMax, π) | π ∈ C(σs) ∧ s ∈ S} Hdef. OI
= ·∪{I(JPKMax,LMax, σ′σ′′) | σ′σ′′ ∈ C(σs) ∧ s ∈ S} Hreplace π with σ′σ′′I
= ·∪{I(JPKMax,LMax, σ′σ′′) | σ′ ∈ C(σ) ∧ σ′′ ∈ C(s) ∧ s ∈ S} Hassumption (A1)I
= ( ·∪{I(JPKMax,LMax, σ′σ′′) | σ′ ∈ C(σ) ∧ σ′′ ∈ C(s) ∧ s ∈ S ∧ |σ′′| =

1}) ·∪ ( ·∪{I(JPKMax,LMax, σ′σ′′) | σ′ ∈ C(σ) ∧ σ′′ ∈ C(s) ∧ s ∈ S ∧ |σ′′| =

0}) ·∪ ( ·∪{I(JPKMax,LMax, σ′σ′′) | σ′ ∈ C(σ) ∧ σ′′ ∈ C(s) ∧ s ∈ S ∧ |σ′′| > 1})
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In the above, the formula is split into 3 cases by the length of σ′′. The first case:

·∪{I(JPKMax,LMax, σ′σ′′) | σ′ ∈ C(σ) ∧ σ′′ ∈ C(s) ∧ s ∈ S ∧ |σ′′| = 1}

= ·∪{I(JPKMax,LMax, σ′s) | σ′ ∈ C(σ) ∧ s ∈ S} Hcorollary 5I
= ·∪{I(JPKMax,LMax, σ′) | σ′ ∈ C(σ)} Hcorollary 4I
= O(JPKMax,LMax,C, σ) Hdef. OI

The second case: if there is s ∈ S such that ε ∈ C(s), then ·∪{I(JPKMax,LMax, σ′σ′′)

| σ′ ∈ C(σ) ∧ σ′′ ∈ C(s) ∧ s ∈ S ∧ |σ′′| = 0} = ·∪{I(JPKMax,LMax, σ′) | σ′ ∈ C(σ)} =

O(JPKMax,LMax,C, σ). Otherwise, it is an empty set.

The third case:

·∪{I(JPKMax,LMax, σ′σ′′) | σ′ ∈ C(σ) ∧ σ′′ ∈ C(s) ∧ s ∈ S ∧ |σ′′| > 1}

⊆ ·∪{I(JPKMax,LMax, σ′) | σ′ ∈ C(σ) ∧ σ′′ ∈ C(s) ∧ s ∈ S ∧ |σ′′| > 1} Hlemma 2I
⊆ ·∪{I(JPKMax,LMax, σ′) | σ′ ∈ C(σ)} Hdef. ·∪I
= O(JPKMax,LMax,C, σ) Hdef. OI

Joining the above three cases together, we have proved that

·∪
σs∈JPKPrefO(JPKMax,LMax,C, σs) = O(JPKMax,LMax,C, σ). □

Lemma 3 Given the semantics JPKMax, lattice LMax of system behaviors and cognizance func-

tion C, the observation function O(JPKMax,LMax,C) is decreasing on the observed trace σ:

the greater (longer) σ is, the stronger property it can observe. I.e. ∀σ, σ′ ∈ S∗∞. σ � σ′ ⇒

O(JPKMax,LMax,C, σ) ⊇ O(JPKMax,LMax,C, σ′).
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Proof. We only need to consider the case where σ ≺ σ′. First, if σ is invalid (i.e. σ 6∈

JPKPref), then every trace σ′ that is greater than σ must also be invalid (i.e. σ′ 6∈ JPKPref),
hence it is easy to find that O(JPKMax,LMax,C, σ) = O(JPKMax,LMax,C, σ′) = ⊥Max.

Second, if σ′ 6∈ JPKPref , then we have O(JPKMax,LMax,C, σ′) = ⊥Max. Hence, it is

trivial to find O(JPKMax,LMax,C, σ) ⊇ ⊥Max = O(JPKMax,LMax,C, σ′).

Last, if σ, σ′ ∈ JPKPref , then σ must be a valid non-maximal trace, i.e. σ ∈

JPKPref\JPKMax. From corollary 7, it is easy to see ∀s ∈ S. O(JPKMax,LMax,C, σ) ⊇

O(JPKMax,LMax,C, σs). Since σ′ is greater than σ(or say, σ′ is a prolongation of σ with

states), then by the transitivity of ⊇, it is not hard to see that O(JPKMax,LMax,C, σ) ⊇

O(JPKMax,LMax,C, σ′). □

Example 18 (Access Control, Continued) For an omniscient observer, the observation func-

tion is identical to the inquiry function in Example 16. If the cognizance of a non-omniscient

observer defined in Example 17 is adopted, we get an observation function that works exactly

the same as the dashed arrows in Fig. 5.1:

– O(JPKMax,LMax,C, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv 7→ 1]〉〈l3, ρ3 = ρ2[i1 7→ 0]〉) =

·∪{I(JPKMax,LMax, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv 7→ 1]〉〈l3, ρ3 = ρ2[i1 7→ v ]〉) | v ∈ {-1, 0,

1, 2}} = AF ·∪AF ·∪>Max ·∪>Max = >Max, i.e. even if the 1st admin already inputs 0,

only >Max can be guaranteed from the perspective of the non-omniscient observer.

– O(JPKMax,LMax,C, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv 7→ 1]〉〈l3, ρ3 = ρ2[i1 7→ 0]〉〈l4, ρ4 =

ρ3〉〈l5, ρ5 = ρ4[i2 7→ 0]〉) = ·∪{I(JPKMax,LMax, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv 7→ 1]〉〈l3,

ρ3 = ρ2[i1 7→ v ]〉〈l4, ρ4 = ρ3〉〈l5, ρ5 = ρ4[i2 7→ 0]〉) | v ∈ {-1, 0, 1, 2}} =

AF ·∪AF ·∪AF ·∪AF = AF, i.e. only after the 2nd admin inputs 0 (or -1), “Access Failure”

AF can be guaranteed from the perspective of the non-omniscient observer.
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– O(JPKMax,LMax,C, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv 7→ 1]〉〈l3, ρ3 = ρ2[i1 7→ 0]〉〈l4, ρ4 =

ρ3〉〈l5, ρ5 = ρ4[i2 7→ 1]〉) = ·∪{I(JPKMax,LMax, 〈l1, ρ1〉〈l2, ρ2 = ρ1[apv 7→ 1]〉〈l3,

ρ3 = ρ2[i1 7→ v ]〉〈l4, ρ4 = ρ3〉〈l5, ρ5 = ρ4[i2 7→ 1]〉) | v ∈ {-1, 0, 1, 2}} =

AF ·∪AF ·∪>Max ·∪>Max = >Max, i.e. if the 2nd admin inputs 1 (or 2), only the top

>Max can be guaranteed from the perspective of the non-omniscient observer, even if the 1st

admin already inputs 0 or -1. □

5.4 Formal Definition of Responsibility

Using the three components of responsibility analysis introduced above, responsibil-

ity is formally defined as the responsibility abstraction αR in (5.5). Specifically, the first

parameter is the maximal trace semantics JPKMax, the second parameter is the lattice

LMax of system behaviors, the third parameter is the cognizance function of a given ob-

server, the fourth parameter is the behavior B whose responsibility is of interest, and the

last parameter is the analyzed traces T .

For every trace σ ∈ T to be analyzed, we split it into three parts such that σ =

σHτRσF, where σH = s0· · ·sr−1 ∈ S∗ represents the History part of trace σ, the transition

τR = sr−1
aR−−→ sr represents the Responsible part of trace σ (which is a transition between

two states, and the corresponding action aR can be retrieved from the source code), and

σF = sr· · · ∈ S∗∞ represents the Future part of trace σ.

If ∅ ⊊ O(JPKMax,LMax,C, σHτR) ⊆ B ∧ O(JPKMax,LMax,C, σH) 6⊆ B holds, then

σH does not guarantee the behavior B, while σHτR guarantees a behavior which is at least

as strong as B and is not the invalid trace property represented by ⊥Max = ∅. Therefore,
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to the cognizance C of a given observer, the transition τR = sr−1
aR−−→ sr (or say, the

action aR) is said to be responsible for the behavior B in the trace σHτRσF.

Responsibility Abstraction αR

αR ∈ ℘(S∗∞) 7→ ℘(℘(S∗∞)) 7→ (S∗∞ 7→ ℘(S∗∞)) 7→ ℘(S∗∞) 7→ ℘(S∗∞)
7→ ℘(S∗ × (S× S)× S∗∞) (5.5)

αR(JPKMax,LMax,C,B, T ) ≜
let αPred(S)T = {σ ∈ Pref(T ) | ∀σ′ ∈ S. σ � σ′ ⇒ σ′ ∈ T } in

let I(S,L, σ) = ·∩{T ∈ L | σ ∈ αPred(S)T } in
let O(S,L,C, σ) = ·∪{I(S,L, σ′) | σ′ ∈ C(σ)} in
{〈σH, τR, σF〉 | σHτRσF ∈ T ∧ ∅ ⊊ O(JPKMax,LMax,C, σHτR) ⊆ B ∧

O(JPKMax,LMax,C, σH) 6⊆ B}

Since αR(JPKMax,LMax,C,B) preserves joins on analyzed traces T , we have a Galois

connection: 〈℘(S∗∞), ⊆〉 −−−−−−−−−−−−−−→←−−−−−−−−−−−−−−
αR(JPKMax,LMax,C,B)

γR(JPKMax,LMax,C,B)
〈℘(S∗ × (S× S)× S∗∞), ⊆〉.

It is worthy noting that, compared with our original definition of responsibility ab-

straction αR in [24, 33] (which adopts the condition ∅⊊O(JPKMax,LMax,C, σHτR) ⊆

B ⊊ O(JPKMax,LMax,C, σH)), the definition 5.5 proposed in this dissertation is more

generic: when the lattice of system behavior LMax is of complex structure (i.e. it con-

sists of more than four elements), the observation O(JPKMax,LMax,C, σH) may return

a behavior that is incomparable with B; as long as ∅ ⊊ O(JPKMax,LMax,C, σHτR) ⊆ B

holds after extending σH with τR, we know the transition τR shall be responsible for B.

Theorem 1 If τR is said to be responsible for a behavior B in a valid trace σHτRσF, then

σHτR guarantees the occurrence of behavior B, and there must exist another valid prefix trace

σHτ
′
R such that the behavior B is not guaranteed.

Proof. First, from the definition of responsibility, we knowO(SMax,LMax,C, σHτR)⊆ B.
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By corollary 6, σHτR guarantees the satisfaction of O(SMax,LMax,C, σHτR), which is at

least as strong as B. Thus, the occurrence of behavior B is guaranteed.

Second, we prove by contradiction. Assume that every valid trace σHτ ′R guarantees

the occurrence of behavior B (i.e. ∀σHτ ′R ∈ SPref . O(SMax,LMax,C, σHτ ′R) ⊆ B). By

corollary 7, we can prove that O(SMax,LMax,C, σH) ⊆ B, which contradicts with the

condition O(JPKMax,LMax,C, σH) 6⊆ B for τR to be responsible for the behavior B. □

Now recall the three essential characteristics for defining responsibility (i.e. the

temporal ordering of actions, free choices and the observer’s cognizance) in section 4.1.

It is obvious that the responsibility abstraction αR has taken both the temporal ordering

of actions and the observer’s cognizance into account. As for the free choices, from

theorem 1 it is easy to find that, if the transition τR is completely determined by its

history trace σH and is not free to make choices (i.e. ∀σHτR, σHτ ′R ∈ JPKPref . τR = τ ′R),

then τR cannot be responsible for any behavior in the trace σHτRσF.

5.5 Concrete Responsibility Analysis

To sum up, the responsibility analysis in the concrete typically consists of four steps:

I) collect the system’s trace semantics JPKMax (in Section 1.2 and 5.1); II) build the lattice

of system behaviors of interest LMax (in Section 5.2.2); III) derive an inquiry function

I from LMax (in Section 5.3.1), define a cognizance function C for each observer (in

Section 5.3.2), and create the corresponding observation function O (in Section 5.3.3);

IV) specify the behaviorB ∈ LMax of interest and the analyzed traces T ∈ ℘(JPKMax), and

apply the responsibility abstraction αR(JPKMax,LMax,C,B, T ) to get the analysis result

(in Section 5.4). Hence, the responsibility analysis is essentially an abstract interpretation
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of the program trace semantics.

Moreover, in the definition 5.5 of responsibility, the sets of traces involved in the trace

semantics, system behaviors and the cognizance function are concrete. For the simple

access control program example, such concrete traces are explicitly displayed for the sake

of clarity. However, they are uncomputable in general, and we cannot require the user

to directly provide concrete traces in the implementation of responsibility analysis. To

solve this problem, an abstract responsibility analysis that can soundly over-approximate

the concrete responsibility analysis results is proposed in part III.

Example 19 (Access Control, Continued) Using the observation functions in example 18,

the abstraction αR can analyze the responsibility of any behavior B in the specified set T of

traces. If we would like to analyze “Access Failure” in every possible execution, then B is set as

AF, and T includes all valid maximal traces, i.e. T = JPKMax. Thus, by the responsibility

abstraction αR(JPKMax,LMax,C,AF, JPKMax), we could compute the responsibility analysis

result, which is essential the same as desired in Example 12 and omitted here.

In addition, if we would like to analyze the responsibility of “Read and Write access is

granted”, then the behavior of interest B shall be replaced by RW instead, and we can get the

following result. To the cognizance of an omniscient observer, in every execution that both

two admins input 1 or 2, the input from system settings (i.e. typ := [1; 2]) is responsible for

RW. Meanwhile, to the cognizance of the non-omniscient observer who is unaware of the

input from 1st admin, no one would be found responsible for RW, because whether the write

access is granted or not is always uncertain due to the unknown input from 1st admin. □
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Applications of Responsibility Analysis

Responsibility is a broad concept, and our definition of responsibility based on the

abstraction of trace semantics is applicable in various scientific fields. We have examined

every example supplied in actual cause [47, 48] and found that our definition of respon-

sibility can handle them well, in which events like “drop a lit match in the forest” or

“throw a rock at the bottle” are treated as actions along the trace.

In this chapter, we focus on analyzing computer programs, and illustrate the applica-

tion of responsibility analysis by three more examples: (i) the “negative balance” problem

of a withdrawal transaction, which can be equivalently viewed as the “buffer overflow”

problem; (ii) a program with “division by zero” error, which can be also interpreted as a

scenario of “login attack”; and (iii) the “information leakage” problem. It is worthy not-

ing that, for any behavior B of interest, our responsibility analysis is designed to analyze

the programs where the behavior B does not always occur, i.e. B ⊊ JPKMax. Yet, for the

programs where every trace has the behavior B, we need to admit that the responsibility

analysis cannot identify any responsible entity, unless “launching the program” is treated
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as a separate action and it would be found responsible for B.

6.1 Example of Negative Balance / Buffer Overflow

Consider a withdrawal transaction scenario, which is simplified into a program with

only three lines of code as in Fig. 6.1 for the sake of clarity. At point l1, we read

the bank account balance before the withdrawal transaction, which is assumed to be a

positive integer or zero; in practice, this read action is typically implemented by a query

in the database system. At point l2, the user inputs the withdrawal amount, which is

assumed to be a strictly positive integer. At point l3, we update the bank account balance

after the withdrawal transaction by subtracting num from balance. When the withdrawal

transaction completes at point l4, if the account balance is negative (i.e. balance < 0),

then it is an error and we would like to detect the responsible entity for it.

l1 : balance := [0; INT_MAX]; //Account balance before the transaction
l2 : num := [1; INT_MAX]; //Withdrawal amount
l3 : balance := balance − num ; //Account balance after the transaction
l4 : //Error if balance < 0

Figure 6.1: The Withdrawal Transaction Program with Negative Balance Problem

It is not hard to see that, the “negative balance” problem can be transformed into an

equivalent “buffer overflow” problem, where a memory of size balance is allocated, the

index at num − 1 is visited, and a buffer overflow error occurs when balance ≤ num − 1

holds. Although this problem has been well studied, it suffices to demonstrate the

advantages of responsibility analysis over dependency/causality analysis.
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In this example, we consider only the cognizance of the omniscient observer, and the

responsibility analysis consists of four steps as discussed in section 5.5:

(1) Collect the trace semantics JPKMax. In the withdrawal transaction program, each

maximal trace is of length 4, and JPKMax = {〈l1, ρ1〉〈l2, ρ2〉〈l3, ρ3〉〈l4, ρ4〉 | (ρ1 ∈

M) ∧ (ρ2 = ρ1[balance 7→ v ] ∧ v ∈ [0; INT_MAX]) ∧ (ρ3 = ρ2[num 7→ v ′] ∧

v ′ ∈ [1; INT_MAX]) ∧ (ρ4 = ρ3[balance 7→ ρ3(balance)− ρ3(num)])} consists of

a very large number of traces. For example, 〈l1, ρ1〉〈l2, ρ2 = ρ1[balance 7→ 0]〉〈l3,

ρ3 = ρ2[num 7→ 1]〉〈l4, ρ4 = ρ3[balance 7→ -1]〉 denotes a maximal trace such that the

balance before the transaction is 0 and the withdrawal amount is 1; and 〈l1, ρ1〉〈l2,

ρ2 = ρ1[balance 7→ 5]〉〈l3, ρ3 = ρ2[num 7→ 9]〉〈l4, ρ4 = ρ3[balance 7→ -4]〉 denotes a

maximal trace such that the balance before the transaction is 5 and the withdrawal

amount is 9. Both the above two traces have the negative balance problem.

(2) Build the lattice of system behaviors of interest. Since “negative balance” is the only

behavior that we are interested here, we can build the lattice LMax with only four

elements as in Fig. 6.2, where NB is the set of valid maximal traces where the value

of balance is negative at point l4 (i.e. NB = {σ ∈ JPKMax | ∃ρ ∈ M. σ[3] = 〈l4,

ρ〉∧ρ(balance) < 0}), and ¬NB is its complement (i.e. ¬NB = JPKMax\NB = {σ ∈

JPKMax | ∃ρ ∈M. σ[3] = 〈l4, ρ〉 ∧ ρ(balance) ≥ 0}).

⊥Max = ∅

NB ¬NB

>Max = JPKMax

Behaviors:
NB : Negative Balance
¬NB : Not Negative Balance

Figure 6.2: Lattice of System Behaviors regarding Negative Balance
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(3) Create the observation function. Using the omniscient observer’s cognizance Co

such that Co(σ) = {σ}, the observation function O can be easily derived from the

lattice LMax of system behaviors, such that:
– O(JPKMax,LMax,Co, 〈l1, ρ1〉) = >Max, i.e. at the initial point l1, only the top

behavior >Max can be guaranteed.

– O(JPKMax,LMax,Co, 〈l1, ρ1〉〈l2, ρ2 = ρ1[balance 7→ 0]〉) = NB, i.e. if the balance

before the transaction is 0, the occurrence of “negative balance” is guaranteed even

before the withdrawal amount num is entered;

– O(JPKMax,LMax,Co, 〈l1, ρ1〉〈l2, ρ2 = ρ1[balance 7→ v ]〉) = >Max where v > 0, i.e.

if the balance before the transaction is strictly positive, whether “negative balance”

occurs or not is uncertain at point l2;

– O(JPKMax,LMax,Co, 〈l1, ρ1〉〈l2, ρ2 = ρ1[balance 7→ v ]〉〈l3, ρ3 = ρ2[num 7→ v ′]〉) =

NB where v > 0 and v ′ > v , i.e. “negative balance” is guaranteed to occur imme-

diately after the value of num is set strictly greater than balance;

– O(JPKMax,LMax,Co, 〈l1, ρ1〉〈l2, ρ2 = ρ1[balance 7→ v ]〉〈l3, ρ3 = ρ2[num 7→ v ′]〉) =

¬NB where v > 0 and v ′ ≤ v , i.e. “negative balance” is guaranteed not to occur

immediately after the value of num is set less than or equal to balance.

(4) Lastly, by setting the behavior B = NB and the analyzed traces T = JPKMax, the

abstraction αR(JPKMax,LMax,Co,B, T ) can find: if the balance before the trans-

action is 0 (e.g. 〈l1, ρ1〉〈l2, ρ2 = ρ1[balance 7→ 0]〉〈l3, ρ3 = ρ2[num 7→ 1]〉〈l4,

ρ4 = ρ3[balance 7→ -1]〉), no matter what the withdrawal amount is, the action

balance := [0; INT_MAX] is responsible for “negative balance”; otherwise, if the

balance before the transaction is strictly positive (e.g. 〈l1, ρ1〉〈l2, ρ2 = ρ1[balance 7→

113



CHAPTER 6. APPLICATIONS OF RESPONSIBILITY ANALYSIS

5]〉〈l3, ρ3 = ρ2[num 7→ 9]〉〈l4, ρ4 = ρ3[balance 7→ -4]〉), then the action num :=

[1; INT_MAX] shall take the responsibility.

Using the responsibility analysis result above, we could prevent the “negative balance”

behavior by configuring the program (e.g. a test guard for the withdrawal operation),

such that the balance before the withdrawal transaction is ensured to be strictly positive,

and the withdrawal amount is ensured to be less than or equal to the balance.

6.2 Example of Division by Zero / Login Attack

Consider the program in Fig. 6.3, in which there is obviously a potential division-

by-zero error at point l5. Alternatively, the division-by-zero error can be interpreted

as a behavior of “login attack success” by interpreting the program as a simplified login

scenario of some complex system for a malicious user (e.g. an attacker attempts to login

the account of a normal user in a website).

l1 : pwd := [1; INT_MAX]; //The password stored in the system
l2 : i1 := [1; INT_MAX]; //The first input from attacker
l3 : i2 := [INT_MIN; 0]; //The second input from attacker
l4 : res := (pwd − i1) ∗ i2; //The attack result: 0 - success, otherwise - failure
l5 : check := 1/res ; //Error if res = 0

l6 :

Figure 6.3: The Program with Division by Zero / Login Attack Problem

More precisely, at point l1, the program reads the real password of a normal user that

is stored in the system, and saves it in the variable pwd . Typically, in practice a password
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of valid format consists of letters/numbers and meets the requirement of length, while

a password of invalid format contains special characters or does not meet the length

requirement. For the sake of simplicity, it is assumed that the passwords of valid format

are represented by positive integers in this simplified program, while the passwords of

invalid format are represented by zero or negative integers. At point l2, the input i1

is used to mimic the attacker’s attempt of entering a guessed password that is of valid

format (i.e. a positive integer). If the guessed password coincides with the real password

pwd , then the attacker succeeds to log into the normal user’s account. Further, at point

l3, the input i2 is used to mimic the attacker’s attempt of entering a password that is of

invalid format (i.e. zero or a negative integer). Specially, the value zero represents a piece

of malicious code (e.g. SQL statements) that could bypass the authentication. Thus, the

attacker succeeds to log into the normal user’s account, if the guessed password coincides

with the real password (i.e. pwd = i1) or the attacker injects malicious code (i.e. i2 = 0).

Such an attack is represented by the computation of res at point l4, and the division by

zero error at point l5 represents the behavior of login attack success.

Now the question is: which action is responsible for “login attack success” (or say,

“division by zero”)? In the following, we illustrate the four steps of responsibility analysis

for “login attack success”. Different from the analysis of “negative balance” in section

6.1, in this example we shall take the cognizance of an non-omniscient observer.

(1) Collect the trace semantics JPKMax. For the program in Fig. 6.3, each maximal trace

is of length 6, and JPKMax = {〈l1, ρ1〉〈l2, ρ2〉〈l3, ρ3〉〈l4, ρ4〉〈l5, ρ5〉〈l6, ρ6〉 | (ρ1 ∈

M) ∧ (ρ2 = ρ1[pwd 7→ v ] ∧ v ∈ [1; INT_MAX]) ∧ (ρ3 = ρ2[i1 7→ v ′] ∧ v ′ ∈

[1; INT_MAX]) ∧ (ρ4 = ρ3[i1 7→ v ′′] ∧ v ′′ ∈ [INT_MIN; 0]) ∧ (ρ5 = ρ4[res 7→
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(ρ4(pwd )− ρ4(i1)) ∗ ρ4(i2)]) ∧ (ρ6 = ρ5[check 7→ 1\ρ5(res)])} consists of a large

number of traces. For example, 〈l1, ρ1〉〈l2, ρ2 = ρ1[pwd 7→ 911]〉〈l3, ρ3 = ρ2[i1 7→

911]〉〈l4, ρ4 = ρ3[i2 7→ -5]〉〈l5, ρ5 = ρ4[res 7→ 0]〉〈l6, ω〉 denotes a maximal trace

such that the guessed password (i1) coincides with the real password (pwd ), and

the execution ends with an error state representing “login attack success”; and 〈l1,

ρ1〉〈l2, ρ2 = ρ1[pwd 7→ 911]〉〈l3, ρ3 = ρ2[i1 7→ 123]〉〈l4, ρ4 = ρ3[i2 7→ 0]〉〈l5,

ρ5 = ρ4[res 7→ 0]〉〈l6, ω〉 denotes a maximal trace such that the attacker enters a

piece of malicious code that bypasses the authentication (i.e. i2 = 0). Both the

above two traces have the behavior of “login attack success”.

(2) Build the lattice of system behaviors of interest. Here “login attack success” is the

only behavior that we are interested in, and the corresponding lattice LMax consists

of only four elements as in Fig. 6.4, where AS (login Attack Success) is the set

of valid maximal traces where the value of res is zero at point l5 (i.e. AS = {σ ∈

JPKMax | ∃ρ ∈ M. σ[4] = 〈l5, ρ〉 ∧ ρ(res) = 0}), and ¬AS (login Attack Failure)

is its complement (i.e. ¬AS = JPKMax\AS = {σ ∈ JPKMax | ∃ρ ∈ M. σ[4] = 〈l4,

ρ〉 ∧ ρ(res) 6= 0}).

⊥Max = ∅

AS ¬AS

>Max = JPKMax

Behaviors:
AS : Login Attack Success
¬AS : Login Attack Failure

Figure 6.4: Lattice of System Behaviors regarding Login Attack

(3) Create the observation function. In this case, it is intuitive to adopt the cognizance of

the attacker, and it is assumed that the attacker does not know the real password of
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the normal user (otherwise there is no way to prevent the login attack). Hence, a non-

omniscient cognizance shall be designed such that it cannot distinguish the value of

pwd , e.g. 〈l1, ρ1〉〈l2, ρ2 = ρ1[pwd 7→ 123]〉 ∈ C(〈l1, ρ1〉〈l2, ρ2 = ρ1[pwd 7→ 911]〉)

denotes that the attacker does not know whether the real password is 123 or 911.

Then, the observation function O can be derived from the lattice LMax of system

behaviors and the cognizance function C, such that:

– O(JPKMax,LMax,C, ε) = O(JPKMax,LMax,C, 〈l1, ρ1〉) = O(JPKMax,LMax,C, 〈l1,

ρ1〉〈l2, ρ2 = ρ1[pwd 7→ 911]〉) = >Max, i.e. before the attacker takes any action

at point l2, only the top behavior >Max can be guaranteed.

– O(JPKMax,LMax,C, 〈l1, ρ1〉〈l2, ρ2 = ρ1[pwd 7→ 911]〉〈l3, ρ3 = ρ2[i1 7→ 911]〉) =

O(JPKMax,LMax,C, 〈l1, ρ1〉〈l2, ρ2 = ρ1[pwd 7→ 911]〉〈l3, ρ3 = ρ2[i1 7→ 123]〉) =

>Max, i.e. after the attacker enters the guessed password, no matter the guessed

password coincides with the real password or not, only the top behavior >Max can

be guaranteed to the cognizance of the attacker. The reason is that the attacker

does not know the value of pwd , thus cannot ensure her/his guessed password

is the same as the real password. More formally, O(JPKMax,LMax,C, 〈l1, ρ1〉〈l2,

ρ2 = ρ1[pwd 7→ 911]〉〈l3, ρ3 = ρ2[i1 7→ 911]〉) = I(JPKMax,LMax, 〈l2, ρ2 =

ρ1[pwd 7→ 911]〉〈l3, ρ3 = ρ2[i1 7→ 911]〉) ·∪ I(JPKMax,LMax, 〈l2, ρ2 = ρ1[pwd 7→

123]〉〈l3, ρ3 = ρ2[i1 7→ 911]〉) ·∪ . . . = AS ·∪>Max = >Max.

– O(JPKMax,LMax,C, 〈l1, ρ1〉〈l2, ρ2 = ρ1[pwd 7→ 911]〉〈l3, ρ3 = ρ2[i1 7→ 911]〉〈l4,

ρ4 = ρ3[i2 7→ -5]〉) = >Max, i.e. if the second input i2 from the attacker is not

zero, then to the cognizance of the attacker, the behavior of login attack success

cannot be guaranteed, even if she/he guesses the correct password in reality.
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– O(JPKMax,LMax,C, 〈l1, ρ1〉〈l2, ρ2 = ρ1[pwd 7→ 911]〉〈l3, ρ3 = ρ2[i1 7→ 123]〉〈l4,

ρ4 = ρ3[i2 7→ 0]〉) = AS, i.e. only after the attacker enters zero as the second

input (or say, succeeds to inject malicious code), then to the cognizance of the

attacker, the behavior of login attack success is guaranteed.

(4) Lastly, by setting the behavior B = AS and the analyzed traces T = JPKMax, the

abstraction αR(JPKMax,LMax,C,B, T ) can find: only the action i2 := [INT_MIN; 0]

representing entering passwords of invalid format is responsible for the behavior

“login attack success”, and the action i1 := [1; INT_MAX] representing entering

passwords of valid format is not responsible.

Meanwhile, if we take ¬AS as the behavior of interest B, then the corresponding

responsibility analysis would find that there is no responsible action for ¬AS. That

is to say, we cannot take any action to prevent the attacker from succeeding to login

the system, since there is always a possibility (although it is low) that the attacker

succeeds to guess the correct password.

Using the responsibility analysis result above, we could configure the program to

exclude the value of zero from the range of second input (or say, we forbid the attacker

to enter malicious code like SQL statements), so the attacker can never ensure to login

the account of a normal user in the system.

6.3 Example of Information Leakage

From the example of access control in chapter 5 as well as the two examples in section

6.1 and 6.2, it is not hard to see that the responsibility analysis process is essentially the
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same for all behaviors, and the only significant distinction among these examples is on

defining the behaviors of interest and the cognizance function.

Non-interference. In this section, we consider the responsibility analysis of the behav-

ior “information leakage”, which is represented by the notion of non-interference [26].

More precisely, the inputs and outputs in the analyzed program are classified as either

Low (public, low sensitivity) or High (private, high sensitivity). For any valid maximal

trace σ ∈ JPKMax, if there is another valid maximal trace σ′ ∈ JPKMax such that they have

the same low inputs but different low outputs, then the trace σ is said to leak private

information, and the analyzed program is possibly insecure. If there is no valid maximal

trace in the analyzed program that leaks private information (i.e. every two valid maxi-

mal traces with the same low inputs must have the same low outputs, regardless of the

high inputs), then the program has the “non-interference” property, hence it is secure.

l1 : input_h := [1; INT_MAX]; //High (private) input
l2 : input_l := [0; 1]; //Low (public) input
l3 : output_l := [0; 0]; //Initialization of low (public) output
l4 : while (input_l > 0 ∧ input_h > 0) {
l5 : output_l := output_l + 1;

l6 : input_h := input_h − 1; }
l7 : //Here we output output_l in public

Figure 6.5: The Program with Potential Information Leakage

Here we take the simple program in Fig. 6.5 as an example, which does not have the

desired “non-interference” property. At point l1, a high (private) input of positive integer

is read and saved in the variable input_h . Similarly, at point l2, a low (public) input is
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stored in the variable input_l , which is assumed to be either zero or one. At point l3,

a variable output_l is initialized as zero. After the execution of the while loop between

points l4 and l7, the value of output_l is output as low (public). It is not hard to find

that, although there is no direct data flow from input_h to output_l (e.g. an assignment

output_l := input_h) in the program, the low output output_l at point l7 is equal to

the high input, if the value of low input input_l is 1 at point l3. Therefore, there is a

potential behavior of information leakage from input_h to output_l in this program.

Similar to previous examples, the responsibility analysis of information leakage con-

sists of four steps, and we adopt the cognizance of omniscient observer.

(1) Collect the trace semantics JPKMax. For the program in Fig. 6.5, JPKMax consists of

2× INT_MAX maximal traces, and here we take two of them as examples:

i) σ = 〈l1, ρ1〉〈l2, ρ2 = ρ1[input_h 7→ 2]〉〈l3, ρ3 = ρ2[input_l 7→ 1]〉〈l4, ρ4 =

ρ3[output_l 7→ 0]〉〈l5, ρ5 = ρ4〉〈l6, ρ6 = ρ5[output_l 7→ 1]〉〈l4, ρ′4 = ρ6[input_h 7→

1]〉〈l5, ρ′5 = ρ′4〉〈l6, ρ′6 = ρ′5[output_l 7→ 2]〉〈l4, ρ′′4 = ρ′6[input_h 7→ 0]〉〈l7, ρ7 = ρ′′4〉.

In this trace, the high input is 2, and the low input is 1. After two iterations of the

while loop, the value of output_l is assigned to 2, which is equal to the high input.

ii) σ′ = 〈l1, ρ1〉〈l2, ρ2 = ρ1[input_h 7→ 2]〉〈l3, ρ3 = ρ2[input_l 7→ 0]〉〈l4, ρ4 =

ρ3[output_l 7→ 0]〉〈l7, ρ7 = ρ4〉. Different from the previous trace σ, the low input

in this trace is 0, such that the while loop is never entered, and the value of output_l

remains as 0 at point l7.

(2) Build the lattice of system behaviors of interest. In general, for the responsibility

analysis of information leakage, the corresponding lattice LMax of system behaviors

120



CHAPTER 6. APPLICATIONS OF RESPONSIBILITY ANALYSIS

consists of four elements as shown in Fig. 6.6.

⊥Max = ∅

IL ¬IL

>Max = JPKMax

Behaviors:
IL : Information Leakage
¬IL : No information Leakage

Figure 6.6: Lattice of Behaviors regarding Information Leakage

More specifically, the behavior of “Information Leakage” IL is represented as the set

of valid maximal traces that leak private information, i.e. IL = {σ ∈ JPKMax | ∃σ′ ∈

JPKMax. low_inputs(σ) = low_inputs(σ′) ∧ low_outputs(σ) 6= low_outputs(σ′)},

where the functions low_inputs (respectively, low_outputs) collects the list of low

inputs (respectively, low outputs) along the trace σ. In contrast, the behavior of

“No information Leakage” ¬IL is the complement of IL, which is the set of valid

maximal traces that do not leak private information, i.e. ¬IL = JPKMax\IL = {σ ∈

JPKMax | ∀σ′ ∈ JPKMax. low_inputs(σ) = low_inputs(σ′) ⇒ low_outputs(σ) =

low_outputs(σ′)}.

For the program in Fig. 6.5, IL = {σ ∈ JPKMax | ∃ρ, ρ′ ∈ M. σ[1] = 〈l2, ρ〉 ∧

σ[|σ|−1] = 〈l7, ρ′〉 ∧ ρ(input_h) = ρ′(output_l )} = {σ ∈ JPKMax | ∃ρ. σ[2] = 〈l3,

ρ〉 ∧ ρ(input_l ) = 1} (i.e. IL is the set of valid maximal traces where the value of

output_l at l7 is equal to the high input, which is also the set of valid maximal traces

where the value of input_l is 1 at l3); ¬IL = {σ ∈ JPKMax | ∃ρ ∈ M. σ[|σ|−1] = 〈l7,

ρ〉 ∧ ρ(output_l ) = 0} = {σ ∈ JPKMax | ∃ρ. σ[2] = 〈l3, ρ〉 ∧ ρ(input_l ) = 0} (i.e.

¬IL is the set of valid maximal traces where the value of output_l is 0 at l7, which

is also the set of valid maximal traces where the value of input_l is 0 at l3).
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(3) Create the observation function. Using the omniscient observer’s cognizance Co, the

observation function O can be easily derived from LMax such that:

– O(JPKMax,LMax,Co, 〈l1, ρ1〉) = >Max, i.e. at the initial point l1, it is uncertain if

the information leakage occurs or not, hence only >Max is guaranteed.

– O(JPKMax,LMax,Co, 〈l1, ρ1〉〈l2, ρ2 = ρ1[input_h 7→ v ]〉) = >Max, i.e. after the

high input input_h is entered, no matter what value it is, only the top behavior

>Max can be guaranteed before the low input input_l is entered.

– O(JPKMax,LMax,Co, 〈l1, ρ1〉〈l2, ρ2 = ρ1[input_h 7→ v ]〉)〈l3, ρ3 = ρ2[input_l 7→

1]〉 = IL, i.e. the behavior of information leakage is guaranteed to occur immedi-

ately after the low input input_l is set as 1.

– O(JPKMax,LMax,Co, 〈l1, ρ1〉〈l2, ρ2 = ρ1[input_h 7→ v ]〉)〈l3, ρ3 = ρ2[input_l 7→

0]〉 = ¬IL, i.e. the behavior of information leakage is guaranteed not to occur

immediately after the low input input_l is set as 0.

(4) Lastly, by setting the behavior B = IL and the analyzed traces T = JPKMax, the

abstraction αR(JPKMax,LMax,Co,B, T ) can find that only the action input_l :=

[0; 1] representing a low input is responsible for the information leakage, while the

action input_h := [1; INT_MAX] representing a high input is not responsible.

After the responsibility analysis of information leakage completes, it is of interest to

discuss the procedure of configuring the analyzed program, especially for the programs

where the information leakage is acceptable or even desirable under certain circumstances.

For instance, imagine a more complex analyzed program that is a social network, where

every user can enter some public information (e.g. name, gender) as well as some private
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information (e.g. birth date, photos). If the private information of any user called A

flows to another user called B (e.g. the user B accesses a photo uploaded by A), then it

can be viewed as a behavior “information leakage” IL defined above, and we would like

to analyze the corresponding responsibility. After the responsibility analysis is finished,

if the responsible entity is determined as an action of A who is the owner of the private

information (e.g. A sets her/his own photos public, or A adds B as a friend) or an action

of the system administrator, then this information leakage is safe and the corresponding

responsible actions can be kept. In contrast, if the responsible entity is determined as an

action of B or other unauthorized users (e.g. B exploits a bug of the system such that

she/he can access the private information of any other user without authorization), then

such an information leakage behavior is undesired, and the corresponding responsible

actions shall be eliminated to fix the system.
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In general, the concrete trace semantics is not computable, thus the concrete respon-

sibility analysis αR(JPKMax,LMax,C,B, T ) proposed in part II is undecidable, and we

need to propose an abstract responsibility analysis to over-approximate the result of con-

crete responsibility analysis. In order to do so, the concrete trace semantics is abstracted

by trace partitioning automata introduced in the chapter 3, and the behaviors of interest

and the cognizance function are specified by abstract invariants as shown in chapter 7.

Furthermore, chapter 8 proposes a detailed framework of abstract responsibility analysis,

which is based on an iteration of over-approximating forward (possible success) reachabil-

ity analysis with trace partitioning and under-approximating/over-approximating back-

ward impossible failure accessibility analysis (defined in chapter 2). It is proved that

every responsible entity in the concrete must be also found responsible by the abstract

responsibility analysis, and the entities that are not found responsible in the abstract

cannot be responsible in the concrete.

In practice, in order to improve the efficiency of responsibility analysis, we can pre-

process the analyzed program of large size with classic dependency analysis [19, 51, 39,

15] / program slicing techniques [45, 25], and perform the responsibility analysis on the

correspondingly generated program slice of smaller size.
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Chapter 7

User Specification of Behaviors and

Cognizance

In chapter 5, the responsibility is defined as an abstraction αR(JPKMax,LMax,C,B, T ),

where JPKMax ∈ ℘(S∗∞) is the concrete maximal trace semantics, LMax ∈ ℘(℘(S∗∞)) is a

lattice of system behaviors (i.e. trace properties), C ∈ S∗∞ 7→ ℘(S∗∞) is the cognizance

function of a given observer, B ∈ LMax is the behavior whose responsibility is of interest,

and T ∈ ℘(JPKMax) is the set of valid traces to be analyzed.

Among these parameters, the maximal trace semantics JPKMax is inherent in the given

program P, which can be soundly over-approximated by the abstract trace partitioning

automata introduced in chapter 3. Meanwhile, all the other parameters indicate the

objective of responsibility analysis and can be specified only by users. However, it is

difficult, if not impossible, to require users to explicitly specify system behaviors and

the cognizance function in the concrete. Therefore, in order to implement the static

responsibility analysis, the very first step is to specify LMax, C, B and T in the abstract.
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For the sake of simplicity, here it is assumed that we would like to analyze all the

maximal traces of P, thus T = JPKMax and there is no need for the users to explicitly

designate the traces to be analyzed. As for the behavior B of interest, the lattice LMax

of behaviors and the cognizance function C, this chapter discusses how to specify them

with the abstract invariant domain D♯
I = 〈L 7→ D

♯
M, v̇

♯

M〉 introduced in section 2.2.3.

7.1 User Specification of Behaviors

7.1.1 The Abstract Behavior of Interest

The behavior of interest is specified by an abstract invariant B♯ ∈ L 7→ D♯
M, which

associate every program point with an abstract environment element. The corresponding

behavior B in the concrete is JPKMax ∩ γI ◦ γ̇M(B♯) = {σ ∈ JPKMax | ∀〈l , ρ〉 ∈ σ. ρ ∈

γM(B♯(l ))}, i.e. the set of concrete valid maximal traces such that every state satisfies

the abstract environment assigned by B♯ at the corresponding program point.

In practice, the user can explicitly designate the chosen program points with some

non-trivial abstract environment elements from D♯
M, while all the other program points

are implicitly associated with >♯
M.

Example 20 (Access Control, Continued) Let us consider the access control program in

Fig.1.4 again, there are a few behaviors that the user may be interested in: (1) If the user is

interested in “the access to o fails”, like the abstract postcondition I♯post defined in example 8,

the abstract behavior B♯ ∈ L 7→ D♯
M can be defined such that B♯(l8) is explicitly designated

as “acs ∈ [-∞; 0]”, while B♯(l ) is implicitly assigned to >♯
M for other program points l 6= l8.

(2) As we have discussed in part II, the responsibility for the complement behavior “the access
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to o succeeds” is different from the one for “the access to o fails”. Thus, if the user is interested

in “the access to o succeeds” instead, the abstract behavior shall be specified such that B♯(l8) is

“acs ∈ [1;∞]”, while B♯(l ) is >♯
M for other program points l 6= l8. (3) Similarly, in order

to analyze “the read and write access to o is granted” that requires the value of acs is greater

than or equal to 2 at point l8, the corresponding abstract behavior B♯ shall be specified such

that B♯(l8) is “acs ∈ [2;∞]”, while B♯(l ) = >♯
M for l 6= l8. □

It is worthy mentioning that, although in the above example there is only one pro-

gram point that is assigned with non-trivial abstract environment elements, in general

the user can express behaviors that are related to multiple program points. However,

we have to admit that the expressiveness of abstract behaviors depends on the abstract

environment domain D♯
M, and not every concrete behavior (i.e. a set of concrete traces)

can be expressed by an abstract behavior. For instance, we cannot express the relation of

variables by the interval domain, and it is impossible to express behaviors like “the value

of x is increasing along the execution” by the numerical invariance abstract domains.

In addition, the user specified behavior B♯ is not directly used in the following back-

ward accessibility analysis. Instead, as what we have done for I♯post in example 8, the

abstract behavior will be refined by the intersection with the abstract forward reachabil-

ity semantics, which will be further illustrated in chapter 8.

7.1.2 The Lattice of System Behaviors

For the sake of conciseness, it is assumed that the user is interested in analyzing the

responsibility of only one behavior, and the corresponding lattice of behaviors in the

concrete consists of four elements: the top, the bottom, the behavior of interest, and the
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corresponding complement behavior. However, for an abstract behavior B♯ ∈ L 7→ D♯
M,

its complement may not be expressible by the abstract invariant domain L 7→ D♯
M, since

most abstract environment domains (e.g. intervals, octagons, polyhedra) do not support

complements. For instance, in general the complement of an interval (e.g. x ∈ [0; 9]) is

a disjunction of two intervals; the complement of a polyhedron is a disjunction of affine

inequalities, which cannot be expressed by a polyhedron. Therefore, for any lattice of

behaviors in the concrete, it may be impossible to construct the corresponding lattice of

abstract behaviors, and we cannot require the user to specify such a lattice.

Fortunately, the abstract responsibility analysis introduced latter in chapter 8 does not

directly use the lattice of abstract behaviors, and it is sufficient to provide only the abstract

behavior B♯ of interest to the analyzer. Nevertheless, in order to prove the soundness of

abstract responsibility analysis for a given abstract behavior B♯, the corresponding lattice

LMax of behaviors in the concrete can be easily built as in Fig. 7.1.

⊥Max = ∅

B ¬B

>Max = JPKMax

Figure 7.1: The Lattice LMax of Behaviors in the Concrete

More precisely, the lattice LMax of concrete behaviors consists of four elements: the

top >Max is the maximal trace semantics JPKMax, the bottom ⊥Max is the empty set, the

behavior B = JPKMax ∩ γI ◦ γ̇M(B♯) = {σ ∈ JPKMax | ∀〈l , ρ〉 ∈ σ. ρ ∈ γM(B♯(l ))},

and the complement behavior ¬B = JPKMax\B = {σ ∈ JPKMax | ∃〈l , ρ〉 ∈ σ. ρ /∈

γM(B♯(l ))} is the set of valid maximal traces, in each of which there exist at least one

state that do not satisfy the abstract environment assigned by B♯.
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Example 21 (Access Control, Continued) For the access control program, its maximal

trace semantics JPKMax is given in example 2. If the behavior of interest is “the access to o fails”

(i.e. B♯ is specified such that B♯(l8) = acs ∈ [-∞; 0]” and B♯(l ) = >♯
M for l 6= l8), then the

corresponding concrete behavior B = {σ ∈ JPKMax | ∃ρ ∈M. σ[7] = 〈l8, ρ〉 ∧ ρ(acs) ≤ 0},

and the complement behavior ¬B = {σ ∈ JPKMax | ∃ρ ∈ M. σ[7] = 〈l8, ρ〉 ∧ ρ(acs) > 0}.

Together with the empty set, the four elements form the lattice of behaviors in the concrete. □

7.2 User Specification of the Cognizance

In the concrete, the cognizance function C ∈ S∗∞ 7→ ℘(S∗∞) of an observer essen-

tially maps a trace σ to an equivalence classC(σ) of traces such that every trace in C(σ) is

equivalent (or say, indistinguishable) to σ according to the cognizance of that observer.

Specially, for an omniscient observer, every trace is distinguishable from other traces,

thus the equivalence class for each trace is a singleton (i.e. ∀σ ∈ S∗∞. Co(σ) = {σ}).

However, it is infeasible to require users to directly provide a cognizance function or

an equivalence relation on concrete traces, hence the cognizance function needs to be

specified in the abstract instead.

7.2.1 The Abstract Cognizance Function

Formally, the abstract cognizance function C♯ ∈ L 7→ ℘(D♯
M) is defined as a func-

tion mapping the program point to a set of cognizance directives dc, each of which is an

element of the numerical abstract domain D♯
M. It is important to note that, although

both the abstract environment element M♯ and the cognizance directive dc are from the
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same abstract domain D♯
M (e.g. intervals, octagons, polyhedra), their meanings in the

concrete are completely different: M♯ represents a set of concrete environments that

satisfy a certain property, while dc essentially defines an equivalence relation on concrete

environments, which is further used to define an equivalence relation on concrete traces.

To start with, we give several examples of the abstract cognizance functions and

explain their concrete meanings in an informal but intuitive way, while its formal con-

cretization back to the concrete cognizance function is defined in the next paragraphs.

i) Consider an abstract cognizance function C♯ such that C♯(l ) = {x ∈ [-∞;∞]}.

When x ∈ [-∞;∞] is treated as an abstract environment M♯, then it represents a set

of concrete environments, i.e. γM(M♯) = M, which does not provide any non-trivial

information. In contrary, if we take x ∈ [-∞;∞] as a cognizance directive, then it

actually defines an equivalence relation on environments, such that two environments are

equivalent even if their values of x are different, as long as the values of any other variable

(e.g. z) are the same in those two environments. Thus, such an abstract cognizance

function C♯ indicates that the observer does not know the value of x at the program

point l , but the value of any other variable.

ii) For another abstract cognizance function such that C♯(l ) = {x ∈ [-∞;−1], x ∈

[0;∞]}, there are two cognizance directives assigned to point l . Take x ∈ [0;∞] as an

example, it does not mean the value of x is positive or zero at point l . Instead, it means

that any two environments ρ and ρ′ at point l are equivalent (or indistinguishable), if

and only if, the value of x in both ρ and ρ′ are positive or zero (e.g. ρ(x ) = 0 and

ρ′(x ) = 5), and the values of any other variable are the same. Similarly, x ∈ [-∞;−1],

as a cognizance directive, means that two environments ρ and ρ′ at l are equivalent, as
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long as their values of x are negative (e.g. ρ(x ) = -2 and ρ′(x ) = -5) and the values of

any other variable are the same. Together, the abstract cognizance function C♯ indicates

that the observer does not know the exact value of x at point l , but only the sign of x

(i.e. positive or zero, or negative), as well as the exact value of other variables.

iii) The numerical abstract domain used in the previous two examples is the interval

domain, and now we consider another example with the octagon/polyhedron domain.

Suppose the abstract cognizance function C♯ is specified such that C♯(l ) = {x ≤ y , y <

x }, then the cognizance directive x ≤ y (respectively, y < x ) means that two environ-

ments ρ and ρ′ are equivalent, if and only if ρ(x ) ≤ ρ(y) and ρ′(x ) ≤ ρ′(y) (respectively,

ρ(y) < ρ(x ) and ρ′(y) < ρ′(x )) hold, and the values of any other variable in ρ and ρ′

are the same. That is to say, the observer does not know the exact value of x and y at

point l , but the relation between x and y , as well as the exact value of other variables.

In the following, we formalize the equivalence relations introduced by the abstract

cognizance function, and define the concretization from the abstract cognizance C♯ ∈

L 7→ ℘(D♯
M) back to the corresponding concrete cognizance C ∈ S∗∞ 7→ ℘(S∗∞).

Equivalence Relation on Environments. Suppose D♯
M is a numerical abstract domain

(e.g. intervals, octagons, polyhedra). For any cognizance directive dc ∈ D♯
M, let vars(dc)

be the set of variables used in dc. For instance, vars(x ∈ [-∞;∞]) = {x }, and vars(x ≤

y) = {x , y}. Then, for every cognizance directive dc ∈ D♯
M, we can define an equivalence

relation dc∼ on concrete environments as follows:
dc∼ ∈ ℘(M×M) equivalence relation on environments

ρ
dc∼ ρ′ ⇔ ρ = ρ′ ∨ (ρ ∈ γM(dc) ∧ ρ′ ∈ γM(dc) ∧ ∀x ∈ X\vars(dc). ρ(x ) = ρ′(x )).

That is to say, two environments are equivalent (indistinguishable) according to a
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cognizance directive dc, if and only if, either they are equal to each other, or both of

them belong to γM(dc) and the values of any variable not used in dc are the same.

For example, suppose the set of all variables in a program is X = {x , y}, and the

cognizance directive dc is x ∈ [0;∞] from the interval domain such that vars(dc) = {x }.

Let [x 7→ v , y 7→ v ′] be an environment such that the value of x is v and the value of

y is v ′. Then, it is not hard to see that [x 7→ 0, y 7→ 1]
dc∼ [x 7→ 5, y 7→ 1], since the

values of x in both environments are positive or zero, and the values of y are the same in

those two environments. Besides, we have [x 7→ -1, y 7→ 1]
dc
6∼ [x 7→ 5, y 7→ 1], since the

value of x is negative in the first environment; and [x 7→ 0, y 7→ 1]
dc
6∼ [x 7→ 5, y 7→ 2],

because the values of y in those two environments are different.

Specially, for the cognizance directive ⊥♯
M ∈ D

♯
M, the set of used variables vars(⊥♯

M)

is empty, thus two environments cannot be equivalent unless they are equal to each

other. That is to say, the special cognizance directive ⊥♯
M indicates that every concrete

environment is distinguishable from each other.

Equivalence Relation on Traces. Given an abstract cognizance function C♯ ∈ L 7→

℘(D♯
M), an equivalence relation C♯

∼ on concrete traces can be defined as follows (where

|σ| denotes the length of σ, and it is∞ when the trace σ is infinite):

C♯

∼ ∈ ℘(S∗∞ × S∗∞) equivalence relation on traces
σ

C♯

∼ σ′ ⇔ |σ| = |σ′| ∧ ∀i ∈ [0, |σ|). (σ[i] = 〈l , ρ〉 ∧ σ′[i] = 〈l ′, ρ′〉)

⇒ (l = l ′ ∧ (∃dc ∈ C♯(l ). ρ
dc∼ ρ′)).

That is to say, two concrete traces are equivalent (indistinguishable) according to

the abstract cognizance C♯, if and only if, they are of the same length and have the same
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control flow, and the environments at the same location are equivalent according to some

cognizance directive assigned to that point.

For instance, suppose the set of all variables in a program is X = {x , y}, and the

abstract cognizance function C♯ is defined such that C♯(l1) = {⊥♯
M} and C♯(l2) = {x ∈

[0;∞]}. Then, a trace 〈l1, [x 7→ -1, y 7→ 1]〉 → 〈l2, [x 7→ 0, y 7→ 1]〉 is equivalent to

another trace 〈l1, [x 7→ -1, y 7→ 1]〉 → 〈l2, [x 7→ 5, y 7→ 1]〉, because the two traces

have the same control flow, the two environments at point l1 are equal, and the two

environments at point l2 are equivalent according to the cognizance directive x ∈ [0;∞].

Concretization to the Concrete Cognizance Function. Using the equivalence relation
C♯

∼ introduced by the abstraction C♯, we can define the concretization function:

γC ∈ (L 7→ ℘(D♯
M)) 7→ (S∗∞ 7→ ℘(S∗∞)) cognizance concretization

γC(C♯) ≜ λσ ∈ S∗∞. [σ]C♯∼
= λσ ∈ S∗∞. {σ′ ∈ S∗∞ | σ C♯

∼ σ′}.

According to the above definition, for any abstract cognizance function C♯, the cor-

responding concrete cognizance function maps a trace σ to its equivalence class [σ]C♯∼ , i.e.

the set of traces that are C♯

∼ equivalent to σ.

Here we have to admit that, compared with the concrete cognizance function that

could map a trace to an arbitrary set of traces, the expressiveness of our abstract cog-

nizance function is restricted: only traces with the same control flow can be specified

as equivalent in the abstract, but it is expressive enough to cover many interesting cases.

An alternative way to specify the abstract cognizance function is to use abstract relational

invariants, which could express relational properties about two executions of a single

program on different inputs [40, 37].
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7.2.2 Validating Partitioning Directives with Cognizance

As discussed in chapter 3, the program’s trace semantics is soundly over-approximated

by trace partitioning automata, which can be computed by the abstract forward (possible

success) reachability analysis with trace partitioning. Hence, every valid maximal trace

is represented by at least one (and possibly more than one) paths in the automaton, and

every path in the automaton represents a set of concrete traces, which may include invalid

concrete trace due to the over-approximation.

In order to implement the cognizance function C♯ in the abstract responsibility anal-

ysis, the key is to guarantee that: for any two concrete traces σ and σ′ that are equivalent

(indistinguishable) to each other according to C♯ (i.e. σ C♯

∼ σ′), they must be represented

by the same path in the trace partitioning automaton.

Since the structure of trace partitioning automata is decided by the partitioning di-

rectives, we need to make sure that during the execution of any two equivalent traces,

every time when a partitioning directive dp is encountered, the two traces must belong

to the same partition (i.e. both of them are in the partition generated by dp, or neither

of them are in the partition generated by dp). If such a property holds, then the parti-

tioning directive dp is said to be valid with respect to the cognizance C♯ and will be used to

generate trace partitioning automata; otherwise, it is invalid, and will be either removed

or revised before it is used in generating trace partitioning automata.

By the definition of C♯

∼, it is assumed that two equivalent traces must have the same

control flow. Thus, for all partitioning directives related with the control states (e.g. a

partitioning directive part〈If, l , b〉 that partitions traces by the branch of a conditional),

every two equivalent traces are ensured to belong to the same partition. That is to say,
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for any cognizance function, all the control state related partitioning directives are valid.

Therefore, when implementing the cognizance function in the abstract responsibility

analysis, we only need to check the validity of partitioning directives related with memory

states (i.e. environments) that is of the form “part〈Inv, l , M♯〉”, while the directive of

the form “part〈Val, l , x = n〉” can be treated as a special case of “part〈Inv, l , M♯〉”.

In this section, we give a formal definition of the validity of a partitioning directive

dp with respect to a given cognizance directive dc, and propose a sound approach to check

the validity in the abstract.

7.2.2.1 The Definition of Validity of Partitioning Directives

As explained above, all the control state related partitioning directives in Fig. 3.2 are

always valid, here we only need to consider the validity of partitioning directives that are

related with environments. Intuitively, a partitioning directive dp = part〈Inv, l , M♯
p〉

creates a partition at point l such that the environment property M♯
p holds, and this

partition is valid if and only if it does not partition any equivalence class of environments

into two separate parts. That is to say, every equivalence class of environments must be

either a subset of γM(M♯
p) or completely disjoint from γM(M♯

p).

Definition 2 A partitioning directive dp = part〈Inv, l , M♯
p〉 is valid with respect to a cog-

nizance directive dc ∈ D♯
M if and only if

∀ρ ∈M. [ρ]dc∼
⊆ γM(M♯

p) ∨ [ρ]dc∼
∩ γM(M♯

p) = ∅ (7.1)

where [ρ]dc∼
= {ρ′ ∈ M | ρ dc∼ ρ′} and ρ

dc∼ ρ′ ⇔ ρ = ρ′ ∨ (ρ ∈ γM(dc) ∧ ρ′ ∈

γM(dc) ∧ ∀x ∈ X\vars(dc). ρ(x ) = ρ′(x )).
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For example, for a cognizance directive dc = x ∈ [0;∞], the partitioning directives

part〈Inv, l , x ∈ [-1;∞]〉, part〈Inv, l , x ∈ [-∞; -2]〉 and part〈Inv, l , y ∈ [1;∞]〉 are

valid, since none of these partitioning directives would partition any equivalence class

incurred by dc∼. Meanwhile, partitioning directives part〈Inv, l , x ∈ [1;∞]〉 and part〈Inv,

l , x ∈ [-9; 9]〉 are invalid: for example, [x 7→ 0, y 7→ 1] is equivalent to [x 7→ 5, y 7→ 1]

according to dc∼, but [x 7→ 5, y 7→ 1] belongs to the partition generated by part〈Inv, l ,

x ∈ [1;∞]〉 while [x 7→ 0, y 7→ 1] does not belong to it.

In practice, it is difficult or even impossible to directly check if the condition (7.1)

holds or not, since the number of equivalence classes (or say, the size of quotient set

of M by the equivalence relation dc∼) is huge, making the cost of directly checking the

condition (7.1) prohibitive. In the following, we try to transfer (7.1) into equivalent

forms, which are easier to check in practice.

By the definition of dc∼, it is trivial that: for every environment ρ ∈ M\γM(dc),

its equivalence class [ρ]dc∼ = {ρ}. Since a singleton is either a subset of another set or

completely disjoint from that set, the condition “[ρ]dc∼ ⊆ γM(M♯
p) ∨ [ρ]dc∼

∩γM(M♯
p) = ∅”

trivially holds for every partitioning directive part〈Inv, l , M♯
p〉 where M♯

p ∈ D
♯
M.

Therefore, the condition (7.1) is equivalent to the the following simplified one:
∀ρ ∈ γM(dc). [ρ]dc∼ ⊆ γM(M♯

p) ∨ [ρ]dc∼
∩ γM(M♯

p) = ∅ (7.2)

Compared with checking the condition (7.1), the cost of checking the condition (7.2)

is lower: instead of checking the quotient set of M by dc∼, now we need to check only

the quotient set of γM(dc) by dc∼, whose size is reduced.

Further Refinement on the Definition. First, it is not hard to find that, for any abstract

environment element M♯
p ∈ D

♯
M, we have:
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∀ρ ∈M. (∀x ∈ vars(M♯
p). ρ(x ) = ρ′(x ))⇒ (ρ ∈ γM(M♯

p)⇔ ρ′ ∈ γM(M♯
p)) (7.3)

The intuition is that, whether an environment belongs to γM(M♯
p) or not (or say,

whether an environment property M♯
p holds or not) is not affected by the value of vari-

ables that are not used in M♯
p. For example, suppose M♯

p = x ∈ [0;∞] (where trivial

constraints like “y ∈ [-∞;∞]” are assumed to be omitted in the abstract environment el-

ement), then whether an environment belongs to γM(M♯
p) or not is solely decided by the

value of x . Hence, if two environments have the same value of x and may have different

values of other variables, then both of them or neither of them belong to γM(M♯
p).

Second, given a cognizance directive dc ∈ D♯
M and a partitioning directive dp =

part〈Inv, l , M♯
p〉 where M♯

p ∈ D
♯
M, we define a new equivalence relation ∼M♯

p\dc on

environments:
∼M♯

p\dc ∈ ℘(M×M) equivalence relation on environments
ρ ∼M♯

p\dc ρ
′ ⇔ ρ = ρ′ ∨ (ρ ∈ γM(dc) ∧ ρ′ ∈ γM(dc) ∧

∀x ∈ vars(M♯
p)\vars(dc). ρ(x ) = ρ′(x )).

It is obvious that the size of each equivalence class by ∼M♯
p\dc is greater than

dc∼:

∀ρ ∈M. [ρ]dc∼
⊆ [ρ]∼

M♯
p\dc

(7.4)

where [ρ]dc∼ = {ρ′ ∈M | ρ dc∼ ρ′} and [ρ]∼
M♯
p\dc

= {ρ′ ∈M | ρ ∼M♯
p\dc ρ

′}.

Corollary 8 ∀ρ ∈M. ∀ρ′ ∈ [ρ]∼
M♯
p\dc

. ∃ρ′′ ∈ [ρ]dc∼
. ∀x ∈ vars(M♯

p). ρ
′(x ) = ρ′′(x ).

Proof. The key is to prove there exists an environment ρ′′ in [ρ]dc∼
which satisfies all

the requirements. Here we construct ρ′′ = ρ[∀x ∈ vars(M♯
p) ∪ vars(dc). x 7→ ρ′(x )]

such that (i) ∀x ∈ vars(M♯
p) ∪ vars(dc). ρ′(x ) = ρ′′(x ) and (ii) ∀x ∈ X\(vars(M♯

p) ∪
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vars(dc)). ρ(x ) = ρ′′(x ). Thus, the constructed environment ρ′′ satisfies the requirement

∀x ∈ vars(M♯
p). ρ

′(x ) = ρ′′(x ).

Now we only need to prove that ρ′′ ∈ [ρ]dc∼
. Since ρ′ ∈ [ρ]∼

M♯
p\dc

, by the definition

of ∼M♯
p\dc , we know that there are two possible cases: the first case is ρ = ρ′, then ρ′′

is also equal to ρ, which makes ρ′′ ∈ [ρ]dc∼
trivial; the second case is ρ ∈ γM(dc) ∧ ρ′ ∈

γM(dc) and (iii) ∀x ∈ vars(M♯
p)\vars(dc). ρ(x ) = ρ′(x ). Since ∀x ∈ vars(dc). ρ′(x ) =

ρ′′(x ), by (7.3) we can prove that ρ′′ ∈ γM(dc) holds. Moreover, combining (i) and (iii)

together, we get ∀x ∈ vars(M♯
p)\vars(dc). ρ(x ) = ρ′′(x ), which further implies that

∀x ∈ X\vars(dc). ρ(x ) = ρ′′(x ). By the definition of dc∼, we have proved that ρ′′ ∈ [ρ]dc∼
.

□

Last, using the corollary 8 and (7.3), we can prove that the condition (7.2) is equiv-

alent to the condition (7.5), and get the following lemma.

Lemma 4 A partitioning directive dp = part〈Inv, l ,M♯
p〉 is valid with respect to a cognizance

directive dc ∈ D♯
M if and only if

∀ρ ∈ γM(dc). [ρ]∼
M♯
p\dc
⊆ γM(M♯

p) ∨ [ρ]∼
M♯
p\dc
∩ γM(M♯

p) = ∅ (7.5)

where [ρ]∼
M♯
p\dc

= {ρ′ ∈M | ρ ∼M♯
p\dc ρ

′} and ρ ∼M♯
p\dc ρ

′ ⇔ ρ = ρ′∨(ρ ∈ γM(dc)∧ρ′ ∈

γM(dc) ∧ ∀x ∈ vars(M♯
p)\vars(dc). ρ(x ) = ρ′(x )).

Proof. To prove that the condition (7.2) is equivalent to the condition (7.5), we first need

to show that: ∀dc,M♯
p ∈ D

♯
M. ∀ρ ∈ M. [ρ]dc∼

⊆ γM(M♯
p) ⇔ [ρ]∼

M♯
p\dc
⊆ γM(M♯

p). The

proof of this statement from right to left is trivial, since [ρ]dc∼
⊆ [ρ]∼

M♯
p\dc

(7.4). Here

we consider the opposite direction: [ρ]dc∼
⊆ γM(M♯

p) ⇒ [ρ]∼
M♯
p\dc
⊆ γM(M♯

p). By the

corollary (8), we have ∀ρ′ ∈ [ρ]∼
M♯
p\dc

. ∃ρ′′ ∈ [ρ]dc∼
. ∀x ∈ vars(M♯

p). ρ
′(x ) = ρ′′(x ). Since
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the assumption [ρ]dc∼
⊆ γM(M♯

p) implies that ρ′′ ∈ γM(M♯
p), then by (7.3), we prove that

ρ′ ∈ γM(M♯
p), which implies that [ρ]∼

M♯
p\dc
⊆ γM(M♯

p).

Similarly, we can prove that [ρ]dc∼ ∩ γM(M♯
p) = ∅ ⇔ [ρ]∼

M♯
p\dc
∩ γM(M♯

p) = ∅.

Together, we have proved that ∀dc,M♯
p ∈ D

♯
M. ∀ρ ∈ M. ([ρ]dc∼

⊆ γM(M♯
p) ∨ [ρ]dc∼

∩

γM(M♯
p) = ∅)⇔ ([ρ]∼

M♯
p\dc
⊆ γM(M♯

p) ∨ [ρ]∼
M♯
p\dc
∩ γM(M♯

p) = ∅). □

Intuitively, compared with checking the condition (7.2), the cost of checking (7.5)

is further reduced. Essentially, for both conditions, we need to partition the set of

environments γM(dc) into equivalence classes, and check if there exists any equivalence

class that overlaps with γM(M♯
p). Since the definition of ∼M♯

p\dc is looser than
dc∼, the

size of each equivalence class created by ∼M♯
p\dc is larger, thus the number of equivalence

classes that need to be checked is smaller.

7.2.2.2 Checking the Validity of Partitioning Directives in the Abstract

In the last section, we have formally defined the validity of a partitioning directive

dp = part〈Inv, l , M♯
p〉 with respect to a cognizance directive dc ∈ D♯

M. However, it is

impractical to directly use those definitions to check the validity of partitioning directives,

since it requires to compare sets of environments in the concrete. The objective of this

section is to propose a sound checking approach, which guarantees that if a partitioning

directive is determined as valid in the abstract, then it is indeed valid in the concrete.

To begin with, we consider the abstract environment domains D♯
M that have a Galois

connection with the concrete environment domain, i.e. 〈℘(M), ⊆〉 −−−→←−−−
αM

γM 〈D♯
M, v

♯
M〉.

Such abstract domains include but are not limited to the interval domain and the octagon

domain. In this case, we have: αM([ρ]∼
M♯
p\dc

) v♯
M M♯

p ⇔ [ρ]∼
M♯
p\dc
⊆ γM(M♯

p) and
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αM([ρ]∼
M♯
p\dc

) u♯M M♯
p = ⊥♯

M ⇒ [ρ]∼
M♯
p\dc
∩ γM(M♯

p) = ∅. Therefore, we can infer a

sufficient condition for (7.5) to hold:

∀ρ ∈ γM(dc). αM([ρ]∼
M♯
p\dc

) v♯
M M♯

p ∨ αM([ρ]∼
M♯
p\dc

) u♯M M♯
p = ⊥

♯
M (7.6)

More generally, for abstract domains (e.g. the polyhedron domain) that do not have

a corresponding abstraction function αM ∈ ℘(M) 7→ D♯
M, we can use the following

condition instead as a sufficient condition to check (7.5):

∀ρ ∈ γM(dc). ∃d′c ∈ D♯
M. [ρ]∼M♯

p\dc
⊆ γM(d′c) ∧ (d′c v♯

M M♯
p ∨ d′c u♯M M♯

p = ⊥
♯
M) (7.7)

Now the question is: how to find d′c ∈ D♯
M such that [ρ]∼

M♯
p\dc
⊆ γM(d′c)? Sup-

pose D♯
M is a classic numerical domain (including intervals, octagons, and polyhedra),

vars(M♯
p)\vars(dc) = {x1, . . . , xn} that are denoted as x⃗ . Then, for any environment

ρ ∈ γM(dc), its equivalence class [ρ]∼
M♯
p\dc

can be soundly over-approximated by d′c =

dcu♯M (x⃗ = v⃗), where v⃗ is the values of x⃗ in ρ. Therefore, we can infer another sufficient

condition for (7.5) to hold, which is more convenient to check.

Lemma 5 A partitioning directive dp = part〈Inv, l ,M♯
p〉 is valid with respect to a cognizance

directive dc ∈ D♯
M if

∀v⃗ ∈ Vn. d′c = (dc u♯M x⃗ = v⃗) ∧ (d′c v♯
M M♯

p ∨ d′c u♯M M♯
p = ⊥

♯
M) (7.8)

where x⃗ = vars(M♯
p)\vars(dc) = {x1, . . . , xn}.

More specifically, x⃗ = v⃗ is expressed as “x1 ∈ [v1; v1] ∧ . . . ∧ xn ∈ [vn; vn]” in the

interval domain, and as “x1 ≤ v1 ∧ -x1 ≤ -v1 ∧ . . . ∧ xn ≤ vn ∧ -xn ≤ -vn” in the

octagon/polyhedron domain.

However, directly checking the condition (7.8) is still costly, thus we discuss a few

special cases that are common and easy to check in practice:
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(S1) If vars(M♯
p) ∩ vars(dc) = ∅ (or say, M♯

p and dc do not have commonly used

variables, e.g. M♯
p = x ≤ 1 and dc = y ≤ 0): in this case, x⃗ = vars(M♯

p)\vars(dc) =

vars(M♯
p) includes all the variables used in M♯

p, hence we have ∀v⃗ ∈ Vn. (x⃗ = v⃗ v♯
M

M♯
p)∨(x⃗ = v⃗u♯MM♯

p = ⊥
♯
M). Since (dcu

♯
M x⃗ = v⃗) v♯

M x⃗ = v⃗ , the condition (7.8) always

holds. Thus, if vars(M♯
p) ∩ vars(dc) = ∅, then the partitioning directive dp = part〈Inv,

l , M♯
p〉 is valid with respect to the cognizance directive dc ∈ D♯

M.

(S2) If vars(M♯
p)\vars(dc) = ∅ (or say, every variable used in M♯

p is also used in dc,

e.g. M♯
p = x ≤ 1 and dc = x ≤ 0 ∧ y ≤ 0): in this case, x⃗ = vars(M♯

p)\vars(dc) = ∅,

hence d′c = dc in the condition (7.8). It is obvious that, the condition (7.8) is equivalent

to dc v♯
M M♯

p ∨ dc u♯M M♯
p = ⊥

♯
M. Thus, when vars(M♯

p)\vars(dc) = ∅, the partitioning

directive dp = part〈Inv, l , M♯
p〉 is valid with respect to the cognizance directive dc ∈ D♯

M,

if and only if, dc v♯
M M♯

p ∨ dc u♯M M♯
p = ⊥

♯
M holds.

(S3) If dc v♯
M M♯

p ∨ dc u♯M M♯
p = ⊥♯

M holds: since d′c = (dc u♯M x⃗ = v⃗) v♯
M dc, we

always have d′c v♯
M M♯

p ∨ d′c u♯M M♯
p = ⊥

♯
M. Thus, If dc v

♯
M M♯

p ∨ dc u♯M M♯
p = ⊥

♯
M, then

the partitioning directive dp = part〈Inv, l , M♯
p〉 is valid with respect to the cognizance

directive dc ∈ D♯
M.

To sum up the lemma 5 and special cases (S1-S3), here we propose a sound approach

to check if a partitioning directive dp = part〈Inv, l , M♯
p〉 is valid with respect to the

cognizance directive dc ∈ D♯
M, and formalize it as a function isValidd ∈ D♯

M 7→ (D♯
M 7→ B)

such that isValidd(dc,M♯
p) returns whether the partitioning directive is valid or not.

bool isValidd(dc,M♯
p) {

If (vars(M♯
p) ∩ vars(dc) = ∅) return true; // Case (S1)

If (dc v♯
M M♯

p ∨ dc u♯M M♯
p = ⊥

♯
M) return true; // Case (S3)
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If (vars(M♯
p)\vars(dc) = ∅) return false; // Case (S2)

Check (7.8) and return the result. // Lemma 5

}

By the proof of lemma 5 and the explanation of (S1-S3), we know that the above

approach is sound. More precisely, if the function isValidd(dc,M♯
p) returns true, then the

partitioning directive dp = part〈Inv, l , M♯
p〉must be valid with respect to the cognizance

directive dc ∈ D♯
M in the concrete (def. 2).

Special Case of the Interval Domain. Specially, the implementation of isValidd(dc,M♯
p)

can be further simplified, if the abstract environment domain D♯
M is the interval domain.

Since the interval domain cannot express the relation among variables and every ele-

ment in the interval domain is simply a conjunction of interval constraints on a set

of variables, for any M♯
p, dc ∈ D♯

M, the constraints in M♯
p can be split into two parts:

M♯
p|vars(M♯

p)\vars(dc) denotes the constraints on the variables in vars(M♯
p)\vars(dc), and

M♯
p|vars(M♯

p)∩vars(dc) denotes the constraints on the variables in vars(M♯
p)∩ vars(dc). When

the set vars(M♯
p)\vars(dc) (respectively, vars(M♯

p) ∩ vars(dc)) is empty, M♯
p|vars(M♯

p)\vars(dc)

(respectively, M♯
p|vars(M♯

p)∩vars(dc)) denotes >
♯
M. Then, the condition (7.8) is equivalent

to: ∀v⃗ ∈ Vn. (dc v♯
M M♯

p|vars(M♯
p)∩vars(dc) ∧ x⃗ = v⃗ v♯

M M♯
p|vars(M♯

p)\vars(dc)) ∨ (dc u♯M
M♯

p|vars(M♯
p)∩vars(dc) = ⊥

♯
M ∧ x⃗ = v⃗ u♯M M♯

p|vars(M♯
p)\vars(dc) = ⊥

♯
M).

Since (x⃗ = v⃗ v♯
M M♯

p|vars(M♯
p)\vars(dc)) ∨ (x⃗ = v⃗ u♯M M♯

p|vars(M♯
p)\vars(dc) = ⊥

♯
M) always

hold in the above condition, the condition (7.8) is equivalent to:
dc v♯

M M♯
p|vars(M♯

p)∩vars(dc) ∨ dc u♯M M♯
p|vars(M♯

p)∩vars(dc) = ⊥
♯
M (7.9)

and the implementation of isValidd(dc,M♯
p) for the interval domain could be simplified

into checking if the condition (7.9) holds.
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For example, if dc = x ∈ [0;∞]∧y ∈ [0;∞] and dp = part〈Inv, l ,M♯
p = y ∈ [-5; 5]∧

z ∈ [-5; 5]〉, then M♯
p|vars(M♯

p)∩vars(dc) = y ∈ [-5; 5], since vars(M♯
p) ∩ vars(dc) = {y}. It is

not hard to see that dc 6v♯
M y ∈ [-5; 5] and dc u♯M y ∈ [-5; 5] = x ∈ [0;∞]∧ y ∈ [0; 5] 6=

⊥♯
M, thus the condition (7.9) does not hold, and dp is invalid with respect to dc.

Example 22 (Checking the Validity of Partitioning Directives) Here we give some exam-

ples of checking the validity of partitioning directive dp with respect to some cognizance directive

dc by the approach proposed in this section.

(1) dc = x ≤ -1 and dp = part〈Inv, l , M♯
p = y ≤ 0〉: dc indicates that the observer

does not know the exact value of x if it is negative, and dp would like to generate a partition

such that the value of y is less than 0. Since vars(M♯
p) ∩ vars(dc) = ∅ (Case (S1)) holds, the

partitioning directive dp is valid with respect to dc.

(2) dc = x ≤ -1 and dp = part〈Inv, l , M♯
p = x ≤ 0〉: dc indicates that the observer

does not know the exact value of x if it is negative, and dp would like to generate a partition

such that the value of x is less than 0. It is obvious that dc v♯
M M♯

p, thus this is the case (S3),

and the partitioning directive dp is valid.

(3) dc = x ≤ 0 and dp = part〈Inv, l , M♯
p = x ≤ -1〉: dc indicates that the observer

does not know the exact value of x if it is negative or zero, and dp would like to generate a

partition such that the value of x is negative. In this example, vars(M♯
p)\vars(dc) = ∅, and

It is easy to see that dc 6v♯
M M♯

p and dc u♯M M♯
p 6= ⊥

♯
M, thus this is the case (S2), and the

partitioning directive dp is invalid with respect to dc.

(4) dc = x ≤ y and dp = part〈Inv, l , M♯
p = x ≤ z〉: dc indicates that the observer

does not know the exact value of x and y when x ≤ y , but knows the relation between x and

y; and dp would like to generate a partition such that x ≤ z. It is not hard to see that none
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of (S1-S3) holds in this example, thus we need to directly check the condition (7.8), which is

∀v ∈ V. d′c = (x ≤ y ∧ z = v) ∧ (d′c v♯
M x ≤ z ∨ d′c u♯M x ≤ z = ⊥♯

M). Such a

condition does not hold: for example, if v = 0, then d′c = (x ≤ y ∧ z = 0), hence we have

dc 6v♯
M x ≤ z and dc u♯M x ≤ z = (x ≤ y ∧ z = 0 ∧ x ≤ 0) 6= ⊥♯

M. Therefore, the

partitioning directive dp is invalid with respect to dc.

(5) dc = x ≤ y ∧ y ≤ z and dp = part〈Inv, l , M♯
p = z < x ∧ w ≤ 0〉: in this

example, vars(M♯
p)\vars(dc) = {w}, and none of (S1-S3) holds in this example, thus we

need to directly check the condition (7.8), which is always true because ∀v ∈ V. (x ≤ y ∧ y ≤

z ∧ w = v) u♯M (z < x ∧ w ≤ 0) = ⊥♯
M. Therefore, the partitioning directive dp is valid

with respect to dc. □

7.2.2.3 Checking the Validity of a Partition Function in the Abstract

Up to now, we have discussed how to check if a single partitioning directive is valid

with respect to a cognizance directive. For a program, the user specifies an abstract cog-

nizance function C♯ ∈ L 7→ ℘(D♯
M), and there are typically more than one partitioning

directive of the form part〈Inv, l , M♯
p〉, hence we need to check the validity of all these

partitioning directives with respect to the whole cognizance function. For the sake of

clarity, here we rephrase the set of partitioning directives of the form part〈Inv, l , M♯
p〉

as a partition function P♯ ∈ L 7→ ℘(D♯
M), such that ∀l ∈ L. ∀M♯

p ∈ P♯(l ). part〈Inv, l ,

M♯
p〉 is a partitioning directive in the program.

Formally, here we define a function isValidP that checks if a partition function P♯ is

valid with respect to a cognizance function C♯:

isValidP ∈ (L 7→ ℘(D♯
M)) 7→ ((L 7→ ℘(D♯

M)) 7→ B) Validity of Partition
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isValidP(C♯,P♯) ≜


true if ∀l ∈ L. ∀dc ∈ C♯(l ),M♯

p ∈ P♯(l ). isValidd(dc,M♯
p)

false otherwise.

That is to say, a partition function P♯ is valid with respect to an abstract cognizance

function C♯, if and only if, at each program point l , every partitioning directive specified

by P♯ is valid with respect to every cognizance directive assigned by C♯.

Recall that the partitioning directives are designed to create new partitions when

constructing trace partitioning automata, and the sole purpose of checking if a partition

function P♯ is valid with respect to an abstract cognizance function C♯ is to ensure that

any two indistinguishable traces would not be partitioned into different partitions, thus

are always represented by the same path in the constructed trace partitioning automaton.

Theorem 2 If the partition function P♯ is valid with respect to the cognizance function C♯,

then every two indistinguishable traces σ C♯

∼ σ′ must belong to the same partition created by

P♯ at every program point along the execution.

Formally, ∀C♯,P♯ ∈ L 7→ ℘(D♯
M). isValidP(C♯,P♯)⇒ (∀σ, σ′ ∈ S∗∞. σ C♯

∼ σ′ ⇒

(∀i ∈ [0, |σ|). ∃l ∈ L, ρ, ρ′ ∈ M. σ[i] = 〈l , ρ〉 ∧ σ′[i] = 〈l , ρ′〉 ∧ ∀M♯
p ∈ P♯(l ). ρ ∈

γM(M♯
p)⇔ ρ′ ∈ γM(M♯

p))).

Proof. The contraposition of this theorem states that, suppose P♯ is valid with respect to

C♯, if two traces do not belong to the same partition created by P♯ at some program point

along the execution, then these two traces cannot be equivalent according to C♯. More

formally, ∀C♯,P♯ ∈ L 7→ ℘(D♯
M). isValidP(C♯,P♯)⇒ (∀σ, σ′ ∈ S∗∞. (∃i ∈ [0, |σ|), l ∈

L, ρ, ρ′ ∈M,M♯
p ∈ P♯(l ). σ[i] = 〈l , ρ〉∧σ′[i] = 〈l , ρ′〉∧ρ ∈ γM(M♯

p)∧ρ′ 6∈ γM(M♯
p))⇒

σ
C♯

6∼ σ′).
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Here we prove by contradiction. Assume that there exist two traces σ C♯

∼ σ′ such that

they do not belong to the same partition at some location i, i.e. M♯
p ∈ P♯(l )∧σ[i] = 〈l ,

ρ〉 ∧ σ′[i] = 〈l , ρ′〉 ∧ ρ ∈ γM(M♯
p) ∧ ρ′ 6∈ γM(M♯

p).

Since σ C♯

∼ σ′, there must exists some dc ∈ C♯(l ) such that ρ dc∼ ρ′. By the definition

of dc∼, there are two possible cases:

(1) ρ = ρ′. In this case, it is impossible to have ρ ∈ γM(M♯
p) ∧ ρ′ 6∈ γM(M♯

p), which

simply introduces a contradiction.

(2) ρ ∈ γM(dc)∧ρ′ ∈ γM(dc)∧∀x ∈ X\vars(dc). ρ(x ) = ρ′(x ). Since isValidP(C♯,P♯)

is true, we know isValidd(dc,M♯
p) must hold, which further implies [ρ]dc∼ ⊆ γM(M♯

p) ∨

[ρ]dc∼
∩ γM(M♯

p) = ∅ (7.1). By the assumption ρ ∈ γM(M♯
p) and the fact that ρ ∈ [ρ]dc∼

,

we know [ρ]dc∼
∩ γM(M♯

p) 6= ∅, thus [ρ]dc∼ ⊆ γM(M♯
p) must hold. Since ρ

dc∼ ρ′, we have

ρ′ ∈ [ρ]dc∼
, thus ρ′ ∈ γM(M♯

p), which contradicts with the assumption ρ′ 6∈ γM(M♯
p). □

7.2.2.4 Revising Partitioning Directives to be Valid

In the previous sections, we have introduced the method to check the validity of

partitioning directives (or say, the partition function), while the approach of creating

partitioning directives will be discussed in chapter 8. Intuitively, we could create parti-

tioning directives based on the information provided by the cognizance function, such

that the created partitioning directives are always valid. For example, if the cognizance

function C♯(l ) = {x < 0, x ≥ 0} indicates that the observer knows the sign of x at

point l , but not the exact value of x . It is intuitive to create two partitions according to

the sign of x at point l : part〈Inv, l , x < 0〉 and part〈Inv, l , x ≥ 0〉, both of which can

be simply proved to be valid with respect to C♯. However, this is not always the case,
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and we may want to create partitioning directives based on some other criteria, which

may bring us invalid partitioning directives. Thus, a missing part here is: what shall we

do if a certain partitioning directive dp = part〈Inv, l , M♯
p〉 (or M♯

p for short) is found

invalid with respect to a cognizance directive dc at point l (i.e. isValidd(dc,M♯
p) = false)?

Obviously, we can simply discard the partitioning directive dp, and the correspond-

ingly constructed trace partitioning automaton is still guaranteed to be sound. However,

this may incur the loss of precision in the forward reachability analysis, which further

affects the result of abstract responsibility analysis.

Alternatively, we can retrieve the validity by revising M♯
p. By the definition of

isValidd(dc,M♯
p), we know that dc v♯

M M♯
p ∨ dc u♯M M♯

p = ⊥♯
M does not hold. That

is to say, dc 6v♯
M M♯

p and dc u♯M M♯
p 6= ⊥

♯
M, thus there are two possible cases:

1. M♯
p ⊏♯

M dc: M♯
p is strictly less than dc, or γM(M♯

p) ⊊ γM(dc). In this case, we can

just use dc as a new partitioning directive to replace M♯
p, i.e. we define M♯′

p = dc,

and M♯′
p is obviously valid with respect to dc. For example, dp = part〈Inv, l ,

M♯
p = x < 0〉 is invalid with respect to dc = x ≤ 0, and we can replace it by a

new partitioning directive part〈Inv, l , M♯
p = x ≤ 0〉 which is trivially valid.

2. M♯
p 6v

♯
M dc ∧ dc 6v♯

M M♯
p ∧ dc u♯M M♯

p 6= ⊥
♯
M: M♯

p overlaps with dc, and they are

incomparable. In this case, there are two possible ways to create new partitioning

directives to replace M♯
p:

a) Define a new partitioning directive M♯′
p = M♯

p t
♯
M dc.

Obviously, M♯′
p is valid with respect to dc since dc v♯

M M♯′
p . For example,

dp = part〈Inv, l , M♯
p = x ∈ [1;∞]〉 is invalid with respect to the cognizance
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directive dc = x ∈ [0; 1] that indicates the observer cannot distinguish the

value 0 and 1 of x , then we can replace it by a new partitioning directive

part〈Inv, l ,M♯
p = x ∈ [0;∞]〉. It is worthy mentioning that, convex abstract

domains (such as the polyhedra domain) cannot exactly represent unions,

which must be over-approximated (e.g. the convex hull for polyhedra). If

the incurred loss of precision is unacceptable and we need the exact union, we

could use the disjunctive completion as a new partitioning directive, although

it may be costly and does not scale well.

b) Or, we split M♯
pt

♯
M dc by defining two new partitioning directives: M♯′

p = dc

and M♯′′
p = M♯

p u
♯
M ¬dc.

It is not hard to see that dc v♯
M M♯′

p and dc u♯M M♯′′
p = ⊥♯

M, thus these

two new partitioning directives are valid. Specially, M♯′′
p under-approximates

M♯
p, thus the correspondingly created partition preserves the desired prop-

erty of partitioning by M♯
p. However, the classic numerical domains (such

as intervals, octagons, polyhedra) do not support the complement operation

¬, e.g. the complement of a polyhedron is a disjunction of affine inequal-

ities, thus M♯
p u

♯
M ¬dc may not be expressed by a single element in D♯

M.

If this happens, instead of defining a single partitioning directive to repre-

sent M♯
p u

♯
M ¬dc, we define a list of partitioning directives, each of which

is a conjunction of M♯
p and an affine inequality from ¬dc. For example,

dp = part〈Inv, l , M♯
p = x ≤ 10〉 is invalid with respect to the cognizance

directive dc = x ≥ 0 ∧ y > 0. The complement of dc is the disjunction

of x < 0 and y ≤ 0. Thus, we create three new partitioning directives:
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M♯′
p = dc = x ≥ 0 ∧ y > 0, M♯′′

p = M♯
p u

♯
M x < 0 = x < 0, and

M♯′′′
p = M♯

p u
♯
M y ≤ 0 = x ≤ 10 ∧ y ≤ 0. In addition, when the num-

ber of affine inequality from ¬dc is large, we could heuristically select part

of them to create new partitioning directives, reducing the cost incurred by

trace partitioning without harm to the soundness.

To sum up, in this chapter, we have discussed the user specification of system behav-

iors and cognizance in the abstract, proposed a sound approach to check if the partition-

ing directives are valid with respect to the user specified cognizance, and sketched some

possible methods to retrieve the validity for invalid partitioning directives.
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Chapter 8

Abstract Responsibility Analysis

The concrete responsibility analysis αR(JPKMax,LMax,C,B, T ) proposed in chapter

5 is undecidable, and an implementation of it has to abstract sets of finite or infinite traces

involved in JPKMax, LMax, C, B, and T . Up to now, we have discussed the abstraction

of maximal trace semantics JPKMax by trace partitioning automata that are constructed

by over-approximating forward reachability analysis (section 2.3) with trace partitioning

(chapter 3), the abstraction of system behaviors B by abstract invariants (section 7.1), and

the abstraction of cognizance C by abstract cognizance function (section 7.2). Moreover,

it is assumed that the lattice of behaviors LMax consists of only B and its complement

(besides the top and bottom), and the set of traces to be analyzed T is the whole maximal

trace semantics, thus all the components in responsibility analysis have been abstracted.

In this chapter, we propose the framework of responsibility analysis in the abstract,

which essentially consists of an iteration of forward (possible success) reachability analysis

with trace partitioning and backward impossible failure accessibility analysis. In addition,

this abstract responsibility analysis is proved to be sound.
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8.1 The Framework of Abstract Responsibility Analysis

As shown in Fig.8.1, given a program P with the user specified behavior of interest

B♯ ∈ L 7→ D♯
M and abstract cognizance C♯ ∈ L 7→ ℘(D♯

M), the abstract responsibility

analysis can determine the responsible entities in P that are potentially responsible for

B♯ to the cognizance of C♯.

Forward Reachability
Analysis

Program
& Behavior

& Cognizance

Refined Behavior

Refine Behavior

Accessibility Semantics

Under-approximating
Backward IF

Accessibility Analysis

Accessibility Semantics

Over-approximating
Backward IF

Accessibility Analysis

Partitioning Automaton

Forward Reachability
Analysis with Trace

Partitioning

Determine
Responsibility

Yes

No

Satisfy or 
Time OutAnalysis Result

Complement

Partitioning Directives

Partitioning Directives
Generation with
Validity Check

Abstract Responsibility Analyzer

Reachability Semantics

Figure 8.1: Trace Framework of Abstract Responsibility Analysis
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More precisely, the abstract responsibility analysis starts with a forward reachability

analysis S♯
−→psJPK, which produces an over-approximation of the program’s reachability

semantics. Then, after refining the behavior of interest B♯ by the intersection with the

computed reachability semantics, we perform in parallel both an under-approximating

backward impossible failure accessibility analysis Š♯
←−
if

JPK(B♯) and an over-approximating

backward impossible failure accessibility analysis Ŝ♯
←−
if

JPK(B♯), and the correspondingly

computed accessibility semantics (or its complement) are transformed into partitioning

directives of form “dp = part〈Inv, l ,M♯
p〉”. Further, using the partitioning directives that

are valid with respect to C♯, a new round of forward reachability analysis is conducted,

which computes a refined reachability semantics and a trace partitioning automaton. In

such an automaton, nodes created by partitioning directives from the complement of

Ŝ♯
←−
if

JPK(B♯) are marked as left bounds, while nodes created by partitioning directives

from Š♯
←−
if

JPK(B♯) are marked as right bounds. It follows that, along each path in the

automaton, the responsible entities must be located after the left bounds (if any) and

before the right bounds (if any). Thus, at this point we can determine responsible

entities in the trace partitioning automaton, and stop if we are satisfied with the results

or the time cost exceeds the pre-specified threshold. Otherwise, we start a new round

of backward-forward analysis with the behavior B♯ that is refined again by the new

reachability semantics, which may improve the precision of responsibility analysis result.

It is not hard to see that, most components in this framework of abstract responsi-

bility analysis have been discussed in previous chapters. In the rest of this chapter, we

summarize these components and illustrate how they collaborate to determine responsi-

bility in the abstract, with the example of the access control program in Fig. 1.4.
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8.1.1 The Preprocessing Phase

The abstract responsibility analysis starts with a preprocessing phase, in which the

user specifies the behavior of interest and the observer’s cognizance, and a preliminary

forward reachability analysis is conducted to compute the reachability semantics.

The abstract behavior B♯ and the abstract cognizance C♯ have been elaborated in

chapter 7, and the over-approximating forward reachability analysis S♯
−→psJPK(I♯pre) has been

formalized in section 2.3, thus here we reuse them and supplement with some practical

tips that could facilitate the coming analysis phrases.

For any program P to be analyzed, we insert a dummy initial program point l0 fol-

lowed by a dummy action that does not affect the program execution (e.g. skip) in front

of P, such that the variable initialization action at the beginning of program execution

is explicitly mimicked by this dummy action. Therefore, when the dummy initial action

is determined as responsible for a behavior B♯, it means that whether B♯ occurs or not

may be decided by the variable initialization.

In addition, for the over-approximating forward reachability analysis S♯
−→psJPK(I♯pre),

the abstract precondition I♯pre ∈ L 7→ D♯
M is always defined such that the abstract envi-

ronment element for the dummy initial point is the top (i.e. I♯pre(l0) = >♯
M) and it is the

bottom for all other program points (i.e. I♯pre(l ) = ⊥♯
M for l 6= l0). Moreover, the preci-

sion of this forward reachability analysis can be improved by trace partitioning, which is

optional. Although until this step we have not obtained any partitioning directives that

are related with memory states and of form “part〈Inv, l , M♯
p〉”, we can still conduct the

trace partitioning by partitioning directives related with the control flow (e.g. part〈If, l ,

b〉 and part〈While, l , n〉), which can be derived as in the preprocessing phase of [43].
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Example 23 (Access Control, Continued) For the access control program in Fig.1.4, we

insert a dummy initial point l0 as well as a dummy action before the point l1, which has no affect

on the result of forward reachability analysis in this phase. Suppose the user is interested in the

behavior “the access to o fails”, then the user can specify the abstract behavior B♯ ∈ L 7→ D♯
M

such that B♯(l8) = acs ∈ [-∞; 0], while B♯(l ) = >♯
M for other program points l 6= l8.

Here we consider two types of observers: an omniscient observer, whose abstract cognizance

function C♯
o ∈ L 7→ ℘(D♯

M) is specified such that C♯
o(l ) = {⊥

♯
M} for every program point

l ∈ L; and an observer that does not know the input of the 1st admin, and the corresponding

abstract cognizance function C♯ ∈ L 7→ ℘(D♯
M) is defined such that, if l ∈ {l0, l1, l2}, then

C♯(l ) = {⊥♯
M}, otherwise C♯(l ) = {i1 ∈ [−1; 2]}.

Since there is no conditional or while loop in the access control program, we do the forward

reachability analysis without trace partitioning, and the corresponding forward reachability

semantics S♯
−→psJPK(I♯pre) is listed in table 8.1 (which is almost the same as the table 2.2). For the

sake of clarity and to be consistent with the analysis result from the Interproc analyzer [50],

the trivial constraints like acs ∈ [-∞;∞] are omitted in the table. □

l S♯
−→psJPK(I♯pre)l

l0 >♯
M

l1 >♯
M

l2 apv ∈ [1; 1]
l3 apv ∈ [1; 1] ∧ i1 ∈ [-1; 2]
l4 apv ∈ [-1; 1] ∧ i1 ∈ [-1; 2]
l5 apv ∈ [-1; 1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2]
l6 apv ∈ [-1; 1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2]
l7 apv ∈ [-1; 1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [1; 2]
l8 apv ∈ [-1; 1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [-2; 2]

Table 8.1: Abstract Forward Reachability Semantics for the Access Control Program
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8.1.2 The Backward Analysis Phase

The objective of this backward analysis phase is to create partitioning directives of

the form “part〈Inv, l , M♯
p〉” that can either guarantee that the behavior B♯ always hold

or guarantee the existence of at least one execution trace that fails behavior B♯.

8.1.2.1 Behavior Refinement with Reachability Semantics

After completing a forward reachability analysis, the first step is to refine the behavior

B♯ of interest by the intersection with the computed reachability semantics S♯
−→psJPK(I♯pre).

If the reachability semantics is computed without trace partitioning, the intersection

of S♯
−→psJPK(I♯pre) ∈ L 7→ D♯

M with B♯ ∈ L 7→ D♯
M is simply the pointwise meet u♯M of

abstract environments, and the refined behavior is S♯
−→psJPK(I♯pre) u̇♯M B♯. However, if the

trace partitioning is involved in the forward reachability analysis, then S♯
−→psJPK(I♯pre) ∈

LT 7→ D♯
M ≜ L × T 7→ D♯

M (where T is the set of partitioning tokens) has to be

transformed into the form L 7→ D♯
M before the intersection with B♯ can be performed.

There are possibly several ways to do so: (1) A naive method is to apply to S♯
−→psJPK(I♯pre)

the forget function πτ , which is defined in the trace partitioning abstract domain (section

3.1) to remove partitioning tokens from extended program points, such that abstract en-

vironments at the same point with different partitioning tokens are joined together. For-

mally, we construct I♯ ∈ L 7→ D♯
M such that ∀l ∈ L. I♯(l ) = t♯M{S

♯
−→psJPK(I♯pre)〈l , t〉 | t ∈

T}, and the refined behavior would be I♯ u̇♯M B♯. (2) The naive method can be improved

if we do the intersection with B♯ before joining the abstract environments together. For-

mally, the refined behavior isB♯′ ∈ L 7→ D♯
M such thatB♯′(l ) = t♯M{S

♯
−→psJPK(I♯pre)〈l , t〉 u♯

M

B(l ) | t ∈ T}. (3) Another alternative method is to use multiple behaviors to represent
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the intersection of B♯ with S♯
−→psJPK(I♯pre). More specifically, S♯

−→psJPK(I♯pre) can be equiva-

lently viewed as a trace partitioning automaton, thus for each path in this automaton

we can do an intersection with B♯, and construct a new behavior if the path is still valid

(i.e. no node is attached with ⊥♯
M). This method is the most precise one for refining

the behavior of interest, but the cost of introducing multiple behaviors to the following

backward analysis is prohibitive, hence it is not adopted in this dissertation.

Example 24 (Access Control, Continued) Following the example 23, the trace partition-

ing is not used in the forward reachability analysis, hence the abstract behavior B♯ can be

refined simply by the pointwise meet u̇♯M with S♯
−→psJPK(I♯pre) from table 8.1. For the sake of

conciseness, the refined behavior is still called B♯, thus we have: B♯(l8) = apv ∈ [-1; 1]∧ i1 ∈

[-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [-2; 0], and B♯(l ) = S♯
−→psJPK(I♯pre)l for program

points l other than l8. □

8.1.2.2 Under-approximating/Over-approximating Backward Impossible Failure

Accessibility Analysis

Using the under-approximating backward impossible failure accessibility analysis for-

mally defined in section 2.4.2, we get Š♯
←−
if

JPK(B♯) ∈ L 7→ D♯
M such that, for every

program point l , Š♯
←−
if

JPK(B♯)l is an under-approximation of the weakest sufficient pre-

condition for B♯. Since an under-approximation of the weakest sufficient precondition

is still a sufficient condition, every concrete valid trace that begins from a state 〈l , ρ〉

such that ρ ∈ γM(Š♯
←−
if

JPK(B♯)l ) must satisfy the behavior B♯.

Similarly, using the over-approximating backward impossible failure accessibility

analysis formalized in section 2.4.3, we get Ŝ♯
←−
if

JPK(I♯′post) ∈ L 7→ D♯
M such that, for
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every program point l , Ŝ♯
←−
if

JPK(B♯)l over-approximates the weakest sufficient precondi-

tion for B♯. Since an over-approximation of the weakest sufficient precondition is not

necessarily a sufficient condition, Ŝ♯
←−
if

JPK(B♯)l does not guarantee that the occurrence

of behavior B♯. However, it is guaranteed that, if all the concrete valid traces that begin

from a state 〈l , ρ〉 have the behavior B♯, then ρ must satisfy the environment property

Ŝ♯
←−
if

JPK(B♯)l (i.e. ρ ∈ γM(Ŝ♯
←−
if

JPK(B♯)l )). That is to say, from a state 〈l , ρ〉 such that ρ

does not satisfy Ŝ♯
←−
if

JPK(B♯)l (i.e. ρ 6∈ γM(Ŝ♯
←−
if

JPK(B♯)l )), there must exist at least one

concrete valid trace that fails the behavior B♯.

In order to make use of the environments that do not satisfy Ŝ♯
←−
if

JPK(B♯)l , we want

to compute the complement of Ŝ♯
←−
if

JPK(B♯), or even better, S♯
−→psJPK(I♯pre)\Ŝ♯

←−
if

JPK(B♯) (i.e.

S♯
−→psJPK(I♯pre)u̇♯M(¬̇Ŝ♯

←−
if

JPK(B♯))), such that invalid environments can be excluded before

entering the next step. Yet, most abstract environment domains do not directly support

the complement operation, including the classic numerical domains (such as the interval,

octagon and polyhedron domain). For example, the complement of a polyhedron is a

disjunction of affine inequalities. Nevertheless, similar to the disjunctive completion,

we can define the complement of Ŝ♯
←−
if

JPK(B♯) ∈ L 7→ D♯
M as ¬̇Ŝ♯

←−
if

JPK(B♯) ∈ L 7→

℘(D♯
M), such that each abstract environment element in ¬̇Ŝ♯

←−
if

JPK(B♯)l represents an

affine inequality in the disjunction at the point l .

It is worthy to mention that, the number of affine inequalities in the complement

of some abstract environment element from D♯
M may be large, especially for polyhedra.

However, it is safe to remove part of these affine inequalities and keep only the heuristi-

cally selected ones, without any harm to the soundness of abstract responsibility analysis.

Example 25 (Access Control, Continued) Following the example 24, we conduct an under-
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approximating backward impossible failure accessibility analysis on B♯, and the corresponding

result Š♯
←−
if

JPK(B♯) is listed in table 8.2. Similarly, the result of the over-approximating back-

ward impossible failure accessibility analysis on B♯ is listed in table 8.3. Notice that we have

adopted the disjunctive completion in Š♯
←−
if

JPK(B♯)l5 to gain the precision, otherwise it would

be apv ∈ [-1; 1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] instead, which is equal to S♯
−→psJPK(I♯pre)l .

l Š♯
←−
if

JPK(B♯)l

l0 ⊥♯
M

l1 ⊥♯
M

l2 ⊥♯
M

l3 ⊥♯
M

l4 ⊥♯
M

l5 apv ∈ [1;1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1;0]
l6 apv ∈ [-1;0] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2]
l7 apv ∈ [-1;0] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [1; 2]
l8 apv ∈ [-1; 1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [-2;0]

Table 8.2: The Under-approximating Backward IF Accessibility Semantics for B♯

l Ŝ♯
←−
if

JPK(B♯)l

l0 ⊥♯
M

l1 ⊥♯
M

l2 ⊥♯
M

l3 apv ∈ [1; 1] ∧ i1 ∈ [-1;0]
l4 apv ∈ [-1;0] ∧ i1 ∈ [-1; 2]
l5 {apv ∈ [-1;0] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2],

apv ∈ [1;1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1;0]}
l6 apv ∈ [-1;0] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2]
l7 apv ∈ [-1;0] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [1; 2]
l8 apv ∈ [-1; 1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [-2;0]

Table 8.3: The Over-approximating Backward IF Accessibility Semantics for B♯ with
Disjunctive Completion

159



CHAPTER 8. ABSTRACT RESPONSIBILITY ANALYSIS

Furthermore, the complement of Ŝ♯
←−
if

JPK(B♯) is listed in table 8.4. Notice that, instead of

simply using the direct complement of Ŝ♯
←−
if

JPK(B♯), here we adopt S♯
−→psJPK(I♯pre)\Ŝ♯

←−
if

JPK(B♯),

or say, S♯
−→psJPK(I♯pre)u̇♯M(¬̇Ŝ♯

←−
if

JPK(B♯)), such that invalid environments would not be included.

For example, at point l2, the direct complement of Ŝ♯
←−
if

JPK(B♯)l2 = ⊥♯
M is >♯

M. After the meet

u♯M with the reachability semantics S♯
−→psJPK(I♯pre)l2, we can get the more precise apv ∈ [1; 1].

Similarly, at point l3, the direct complement of Ŝ♯
←−
if

JPK(B♯)l3 = apv ∈ [1; 1]∧ i1 ∈ [-1; 0] is

the disjunction of {apv ∈ [-∞; 0], apv ∈ [2;∞], i1 ∈ [-∞; -2], i1 ∈ [1;∞]}, most of which

are invalid (or say, unreachable in the concrete). After the meet with the reachability semantics

S♯
−→psJPK(I♯pre)l3 = apv ∈ [1; 1] ∧ i1 ∈ [-1; 2], it is refined to {apv ∈ [1; 1] ∧ i1 ∈ [1; 2]},

which is much more precise than direct complement. □

l S♯
−→psJPK(I♯pre)l \Ŝ♯

←−
if

JPK(B♯)l

l0 {>♯
M}

l1 {>♯
M}

l2 {apv ∈ [1; 1]}
l3 {apv ∈ [1; 1] ∧ i1 ∈ [1;2]}
l4 {apv ∈ [1;1] ∧ i1 ∈ [-1; 2]}
l5 {apv ∈ [1;1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [1;2]}
l6 {apv ∈ [1;1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2]}
l7 {apv ∈ [1;1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [1; 2]}
l8 {apv ∈ [-1; 1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] ∧ typ ∈ [1; 2] ∧ acs ∈ [1;2]}

Table 8.4: The Complement of Over-approximating Backward IF Accessibility Semantics
for B♯ with Disjunctive Completion

8.1.2.3 Partitioning Directives Generation with Validity Check

Using the under-approximating backward impossible failure accessibility semantics

Š♯
←−
if

JPK(B♯) and the complement of over-approximating backward impossible failure ac-
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cessibility semantics S♯
−→psJPK(I♯pre)\Ŝ♯

←−
if

JPK(B♯), this step aims at constructing a partition

function P♯ ∈ L 7→ ℘(D♯
M), such that ∀l ∈ L. ∀M♯

p ∈ P♯(l ). part〈Inv, l , M♯
p〉 is a

partitioning directive that is valid with respect to the specified cognizance function C♯

and will be used in the next round of forward reachability analysis. Sometimes, a par-

titioning directive dp = part〈Inv, l , M♯
p〉 is called as M♯

p for short, when the program

point l is known from the context.

More specifically, here we design 4 types of partitioning directives that are based on

the environments, and accordingly the partition function P♯ can be splitted into 4 parts:

(1) Right-bound partitioning directives. For any point l , Š♯
←−
if

JPK(B♯)l is a right-

bound partitioning directive, if it is not ⊥♯
M and is valid with respect to all cognizance

directives assigned to l . Formally, we define the right-bound partition function P♯
R:

P♯
R ∈ L 7→ ℘(D♯

M) right-bound partition function
P♯
R(l ) ≜ {M♯

p |M♯
p = Š

♯
←−
if

JPK(B♯)l ∧M♯
p 6= ⊥

♯
M ∧ ∀dc ∈ C♯(l ). isValidd(dc,M♯

p)}

By the definition of Š♯
←−
if

JPK(B♯), it is easy to see that the partitions generated by

right-bound partitioning directives during the next forward reachability analysis would

guarantee the occurrence of B♯.

In addition, the time cost of forward reachability analysis with trace partitioning

greatly depends on the number of created partitions, while typically Š♯
←−
if

JPK(B♯) con-

tains redundant elements in consecutive program points, thus adopting every element

in Š♯
←−
if

JPK(B♯) as partitioning directives may bring unnecessary burden to the forward

reachability analysis without benefits in improving the precision. Therefore, in practice,

we can keep the partitioning directives only for the program points of importance (e.g.

the points immediately after external inputs) and discard the rest of them.
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(2) Left-bound partitioning directives. Similar to the generation of right-bound par-

titioning directives from Š♯
←−
if

JPK(B♯), the left-bound partitioning directives are derived

from the complement of Ŝ♯
←−
if

JPK(B♯) (i.e. S♯
−→psJPK(I♯pre)\Ŝ♯

←−
if

JPK(B♯)). Specifically, for any

point l , every element in S♯
−→psJPK(I♯pre)l \Ŝ♯

←−
if

JPK(B♯)l is a left-bound partitioning direc-

tive, if it is not ⊥♯
M and is valid with respect to all cognizance directives assigned to l .

The formal definition of left-bound partition function P♯
L is:

P♯
L ∈ L 7→ ℘(D♯

M) left-bound partition function
P♯
L(l ) ≜ {M♯

p |M♯
p ∈ S

♯
−→psJPK(I♯pre)l \Ŝ♯

←−
if

JPK(B♯)l ∧M♯
p 6= ⊥

♯
M

∧ ∀dc ∈ C♯(l ). isValidd(dc,M♯
p)}

By the definition of Ŝ♯
←−
if

JPK(B♯), we know that from every partition generated by

the left-bound partitioning directive, there must exist at least one concrete valid trace

that fails the behavior B♯. Moreover, similar to the right-bound partitioning directives,

it is of practical use to keep the left-bound partitioning directives only for the selected

program points of importance and discard the rest of them.

(3) Dual-right-bound partitioning directives. Intuitively, the left-bound partition-

ing directives can determine the points from which there is still possibility to fail B♯,

and the right-bound partitioning directives are used to determine the points at which

B♯ is guaranteed and the responsibility analysis could stop. Besides these two types of

partitioning directive, the responsibility analysis would benefit from another type of par-

titioning directive, which are used to determine the points at which the behavior B♯ is

guaranteed to fail and the responsibility analysis can also stop. Such partitioning direc-

tives are called dual-right-bound partitioning directives, which marks the finishing point

for responsibility analysis on the traces failing B♯; without such partitioning directives,

the responsibility analysis may last much longer than necessary.
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Theoretically, the dual-right-bound partitioning directives can be derived from back-

ward impossible failure accessibility analyses for the complements of B, but the cost of

doing so would be prohibitive and the analysis results overlaps with the left-bound par-

titioning directives. In practice, to mark the finishing point of responsibility analysis

on the traces failing B♯, we can simply use the complements of B♯, or more precisely,

S♯
−→psJPK(I♯pre)\B♯. Specifically, for every point l of interest where the original behavior

(before the refinement) B♯(l ) 6= >♯
M, we compute the complement of B♯(l ) which is

represented by the disjunctive completion (e.g. a disjunction of affine inequalities for the

polyhedron domain), do the meet with S♯
−→psJPK(I♯pre) for every element in the disjunction,

and collect the valid ones in the dual-right-bound partition function P♯

R̃
. Usually, there

are not many dual-right-bound partitioning directives, since the original behavior B♯ is

specified >♯
M at most program points.

P♯

R̃
∈ L 7→ ℘(D♯

M) dual-right-bound partition function
P♯

R̃
(l ) ≜ {M♯

p |M♯
p ∈ S

♯
−→psJPK(I♯pre)l \B♯(l ) ∧M♯

p 6= ⊥
♯
M

∧ ∀dc ∈ C♯(l ). isValidd(dc,M♯
p)}

(4) No-bound partitioning directives. In order to make sure that the trace parti-

tioning automaton (or say, the extended transition system in [43]) constructed by the

partitioning directives introduced above is a covering of the original transition system (i.e.

every transition in the original transition system is simulated by at least one transition

in the trace partitioning automaton), we introduce some complementary partitioning

directives to ensure every reachable state is covered by at least one partition. Such parti-

tioning directives are called no-bound partitioning directives, and we define a no-bound

partition function P♯
o ∈ L 7→ ℘(D♯

M).
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Formally, it is required that: ∀l ∈ L. ∪ {γM(M♯
p) |M♯

p ∈ P♯
R(l )∪P

♯
L(l )∪P

♯

R̃
(l )∪

P♯
o(l )} ⊇ γM(S♯

−→psJPK(I♯pre)l ), where S♯
−→psJPK(I♯pre)l over-approximates the set of all reach-

able concrete environments at point l . Ideally, the no-bound partitioning directives

P♯
o(l ) can be computed by the subtraction of P♯

R(l )∪P
♯
L(l )∪P

♯

R̃
(l ) from S♯

−→psJPK(I♯pre)l .
However, in some cases it may be difficult to do such a subtraction operation. If this

happens, it is always safe to define P♯
o(l ) = S

♯
−→psJPK(I♯pre)l , or even, P♯

o(l ) = >
♯
M, which

are guaranteed to be valid with respect to any cognizance function.

Combining the above four types of partitioning directives together, we can get a

partition function P♯ ∈ L 7→ ℘(D♯
M) such that P♯(l ) ≜ P♯

R(l )∪P
♯
L(l )∪P

♯

R̃
(l )∪P♯

o(l ).

For every program point l , every partitioning directive in P♯(l ) is valid with respect to

every cognizance directive dc in C♯(l ), thus by the definition of isValidP, the partition

function P♯ is valid with respect to the cognizance function C♯. Besides, it is assumed

that P♯(l0) = ∅ for the dummy initial point l0, such that the correspondingly constructed

trace partitioning automaton has only one initial node.

Example 26 (Access Control, Continued) Using the backward analysis result Š♯
←−
if

JPK(B♯)

and S♯
−→psJPK(I♯pre)\Ŝ♯

←−
if

JPK(B♯) from the example 25, here we generate partitioning directives

for two different cognizance functions that are specified in the example 23.

1) Consider the omniscient cognizance function C♯
o such that C♯

o(l ) = {⊥♯
M} for every

point l ∈ L. In this case, every partitioning directive is trivially valid with respect to C♯
o,

and the corresponding partition function P♯ is displayed in table 8.5. As mentioned before,

the partition function P♯ may keep the partitioning directives only for the selected program

points of importance, and in this example such program points include: l1 that is immediately

after the variable initialization action (i.e. the dummy initial action); l3, l5 and l7 that are
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immediately after external inputs; and l8 that is specified with the behavior B♯ of interest.

Meanwhile, the partitioning directives at other points (l2, l4 and l6) are optional and would

not affect the final result of abstract responsibility analysis, thus are omitted here.

l P♯
R(l ) P♯

L(l ) P♯

R̃
(l ) P♯

o(l )

l0 ∅ ∅ ∅ ∅
l1 ∅ {>♯

M} ∅ ∅
l2 ∅ ∅ ∅ ∅
l3 ∅ {apv ∈ [1; 1]∧ i1 ∈ [1;2]} ∅ {apv ∈ [1; 1]

∧i1 ∈ [-1;0]}
l4 ∅ ∅ ∅ ∅
l5 {apv ∈ [1;1]∧ i1 ∈ [-1; 2]
∧i2 ∈ [-1;0]}

{apv ∈ [1;1]∧ i1 ∈ [-1; 2]
∧i2 ∈ [1;2]}

∅ {apv ∈ [-1;0]
∧i1 ∈ [-1; 2]
∧i2 ∈ [-1;2]}

l6 ∅ ∅ ∅ ∅
l7 apv ∈ [-1;0] ∧ i1 ∈ [-1; 2]
∧i2 ∈ [-1; 2] ∧ typ ∈ [1; 2]

{apv ∈ [1;1]∧ i1 ∈ [-1; 2]
∧i2 ∈ [-1; 2]∧typ ∈ [1; 2]}

∅ ∅

l8 {apv ∈ [-1; 1]∧i1 ∈ [-1; 2]
∧i2 ∈ [-1; 2] ∧ typ ∈ [1; 2]
∧acs ∈ [-2;0]}

{apv ∈ [-1; 1]∧i1 ∈ [-1; 2]
∧i2 ∈ [-1; 2] ∧ typ ∈ [1; 2]
∧acs ∈ [1;2]}

P♯
L(l8) ∅

Table 8.5: The Partition Function for the Omnisicent Cognizance

Take the point l5 as an example, the forward reachability semantics S♯
−→psJPK(I♯pre)l5 =

apv ∈ [-1; 1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] is partitioned into three parts: the right-bound

partitioning directives P♯
R(l5) = {apv ∈ [1; 1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 0]} that guarantee

“the access to o fails”; the left-bound partitioning directives P♯
L(l5) = {apv ∈ [1; 1] ∧ i1 ∈

[-1; 2]∧ i2 ∈ [1; 2]}, which ensures there exists at least one valid concrete trace such that “the

access to o succeeds”; the no-bound partitioning directives P♯
o(l5) = {apv ∈ [-1; 0] ∧i1 ∈

[-1; 2]∧ i2 ∈ [-1; 2]} are complementary to the two other types of partitioning directives such

that every reachable environment at point l5 is covered. Although P♯
o(l5) actually guarantee
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“the access to o fails” in this very example, we cannot take advantage of this information, since

typically the no-bound partitioning directives cannot guarantee anything.

2) Consider a non-omniscient cognizance function C♯ such that, if l ∈ {l0, l1, l2}, then

C♯(l ) = {⊥♯
M}, otherwise C♯(l ) = {i1 ∈ [−1; 2]}. In this case, every partitioning directive

from the table 8.5 needs to be checked with respect to the cognizance. Since the abstract

environment domain is the interval domain, checking the validity of partitioning directives

is quite easy by the condition (7.9), and we can find that only the partitioning directives at

point l3 are invalid. Take M♯
p = apv ∈ [1; 1]∧ i1 ∈ [1; 2] ∈ P♯

L(l3) as an example, the only

cognizance directive at l3 is dc = i1 ∈ [−1; 2] ∈ C♯(l3), thusM♯
p|vars(M♯

p)∩vars(dc) = i1 ∈ [1; 2],

and it is obvious the condition (7.9) does not hold. Similarly, the partitioning directive in

P♯
o(l3) is found invalid. Therefore, after removing the invalid partitioning directives at l3, we

get the partition function as in table 8.6, which is valid with respect to C♯.

l P♯
R(l ) P♯

L(l ) P♯

R̃
(l ) P♯

o(l )

l0 ∅ ∅ ∅ ∅
l1 ∅ {>♯

M} ∅ ∅
l2 ∅ ∅ ∅ ∅
l3 ∅ ∅ ∅ ∅
l4 ∅ ∅ ∅ ∅
l5 {apv ∈ [1;1]∧ i1 ∈ [-1; 2]
∧i2 ∈ [-1;0]}

{apv ∈ [1;1]∧ i1 ∈ [-1; 2]
∧i2 ∈ [1;2]}

∅ {apv ∈ [-1;0]
∧i1 ∈ [-1; 2]
∧i2 ∈ [-1;2]}

l6 ∅ ∅ ∅ ∅
l7 apv ∈ [-1;0] ∧ i1 ∈ [-1; 2]
∧i2 ∈ [-1; 2] ∧ typ ∈ [1; 2]

{apv ∈ [1;1]∧ i1 ∈ [-1; 2]
∧i2 ∈ [-1; 2]∧typ ∈ [1; 2]}

∅ ∅

l8 {apv ∈ [-1; 1]∧i1 ∈ [-1; 2]
∧i2 ∈ [-1; 2] ∧ typ ∈ [1; 2]
∧acs ∈ [-2;0]}

{apv ∈ [-1; 1]∧i1 ∈ [-1; 2]
∧i2 ∈ [-1; 2] ∧ typ ∈ [1; 2]
∧acs ∈ [1;2]}

P♯
L(l8) ∅

Table 8.6: The Partition Function for the Non-omnisicent Cognizance
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8.1.3 The Forward Analysis Phase

The objective of this forward analysis phase is to construct a trace partitioning au-

tomaton with the partitioning directives from the last phase, mark left bounds and right

bounds of responsibility in the automaton, and determine responsible entities.

Trace Partitioning Automaton Generation. Using the partitioning directives gener-

ated in the last backward analysis phase (i.e. {part〈Inv, l , M♯
p〉 | l ∈ L ∧M♯

p ∈ P♯(l )})

and optionally the partitioning directives based on the control flow (e.g. part〈If, l , b〉),

we perform an over-approximating forward reachability analysis with trace partitioning

(chapter 3), compute the refined forward reachability semantics and construct a trace par-

titioning automaton. Specially, the nodes generated by left-bound partitioning directives

are marked as “left-bound nodes” in the automaton, the nodes generated by right-bound

partitioning directives are marked as “right-bound nodes”, and the nodes generated by

dual-right-bound partitioning directives are marked as “dual-right-bound nodes”.

Furthermore, after the forward reachability analysis with trace partitioning completes,

we can improve the constructed automaton by propagating the right-bounds or dual-

right-bounds: for any node in the automaton which is not marked as any bound, if all its

successors are marked as right-bound nodes (respectively, dual-right-bound nodes), we

mark this node as a right-bound node (respectively, a dual-right-bound node) as well.

Determining Responsible Entities. Now, we can determine the responsibility in the

generated trace partitioning automaton. The intuition is: every path in the automaton

represents a set of concrete traces; if a path contains a dual-right-bound node, then the

path does not have the behavior B♯, hence there is no responsible entity along this path;
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otherwise, the responsible entities are the edges (i.e. actions), which are located after

the left-bound nodes (if any) and before the right-bound nodes (if any) along the path.

That is to say, for any path that does not contain a dual-right-bound node, all the actions

between the rightmost left-bound node (if any) and the leftmost right-bound node (if

any) are potentially responsible for the behavior B♯. Specially, if there is neither a left-

bound node nor a right-bound node along a certain path, then the analysis is not precise

enough and every action along that path would be determined as potentially responsible.

Since only the actions with free choices can be possibly responsible for a behavior,

we can further restrict the potentially responsible entities to the actions such as external

inputs, random number generation, and variable initialization (which is mimicked as the

dummy initial action).

In addition, we do not only find potentially responsible entities, but also get some

hints on when these entities are actually responsible, and this is the so called “responsible

under the condition”. Suppose an edge 〈l , t, M♯〉 → 〈l ′, dp :: t, M♯′〉 in the automaton

is found potentially responsible, it means that the action a from l to l ′ (which can be

retrieved from the program source code) is potentially responsible under the condition

that the partitioning token t holds at point l and the action a satisfies the partitioning

directive dp. For example, for the access control program in Fig. 1.4, the edge 〈l4, t,

M♯〉 → 〈l5, dp :: t, M♯′〉 is determined responsible, where t = apv ∈ [1; 1] ∧ i1 ∈ [1; 2]

and dp = apv ∈ [1; 1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 0]. Instead of claiming that the action

i2 := [-1; 2] is responsible for “the access to o fails” in all executions, we state that

i2 := [-1; 2] is responsible under the condition that: the partitioning token apv ∈

[1; 1] ∧ i1 ∈ [1; 2] holds at l4, and the action i2 := [-1; 2] satisfies the new partitioning
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directive apv ∈ [1; 1]∧i1 ∈ [-1; 2]∧i2 ∈ [-1; 0]. That is to say, the input from 2nd admin

is responsible for the behavior “the access to o fails” if the input from 1st admin is positive

and the input from 2nd admin is negative or zero, which is much more informative than

simply claiming the input from 2nd admin is responsible.

Termination or a New Round of Analysis. Up until this step, we have already suc-

cessfully inferred some information about the responsible entities. If such an analysis

result is satisfactory or the time and cost exceeds the prespecified threshold, we could

terminate the analyzer and return the found responsible entities to the user. Otherwise,

if the precision of forward reachability semantics S♯
−→psJPK(I♯pre) is improved in the last for-

ward analysis phase, then we could start a new round of backward accessibility analysis

(section 8.1.2) followed by the forward reachability analysis (section 8.1.3) to seek for

more precise responsibility analysis results.

Intuitively, in the new round of analysis, using the refined behavior of interest (possi-

bly with the disjunctive completion), the backward impossible failure accessibility analy-

sis is expected to be more precise, which creates more partitioning directives to construct

a refined automaton, and further improves the responsibility analysis result. The extreme

case is that we create as many partitioning directives as possible and construct the most

precise trace partitioning automaton, such that every path in the automaton represents a

single concrete valid trace. From such a trace partitioning automaton, we can get exactly

the same analysis result as the concrete responsibility analysis (part II), yet the time cost

is in general prohibitive.

Example 27 (Access Control, Continued) Following the example 26, we conduct a for-
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ward reachability analysis with trace partitioning, construct the trace partitioning automaton

and determine responsible entities. Since the partition function varies for different cognizance

functions, the corresponding constructed trace partitioning automata are different.

1) First, consider the omniscient cognizance function C♯
o. In this case, we adopt the parti-

tioning directives from the partition function defined in the table 8.5, and the correspondingly

constructed trace partitioning automaton is displayed in Fig. 8.2, in which various types of

nodes are represented by different circles.

l5

l2l1

l3 l4 l5

l5

l5

l6

l7

l7 l8

l3 l4 l5

l6

l7

l5 l6

l7

l8

d L(
l3)

d
o(l3)

apv∈
[1; 1]

i1 ∈
[1; 2]

i1∈
[-1; 0]

apv∈
[1; 1]

apv∈
[-1; -1]

dR(l5
)

dL(l5)

do(l5)
⊥

i2 ∈
[-1; 0]

i2∈ [1; 2]

i2∈ [-1; 2]

⊥

apv ∈ 
[-1; -1]

apv∈
[1; 1]

apv∈
[-1; -1]

typ∈
[1; 2]

typ∈
[1; 2]

acs∈
[-2; -1]

acs∈
[-2; -1]

l0
dL(l1)

l7 ⊥
dL(l7)

dR(l7
)

l8 ⊥

dR(l8
)

dL(l8)

l7 l8

typ∈ [1; 2] acs∈ [1; 2]

dR(l7
)

⊥

dL(l7)

d R(l
5)

do(l5)
dL(l5)

⊥

dR(l7
)

dL(l7) ⊥

l8 ⊥

l8 ⊥

dR(l8
)

dL(l8)

dR(l8)

dL(l8)

⊤⊤

l1 l8Left-bound

l5 Right-bound

Dual-right-bound

l8 Invalid node

Figure 8.2: Trace Partitioning Automaton for the Omniscient Cognizance

Since there is at most one element in P♯
L(l ) for every program point l , we simply use the

notation dL(l ) for short to refer the partitioning directive part〈Inv, l , M♯〉, where M♯ is the

only element in P♯
L(l ). For instance, dL(l3) refers to the partitioning directive part〈Inv, l ,
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apv ∈ [1; 1] ∧ i1 ∈ [1;2]〉, where apv ∈ [1; 1] ∧ i1 ∈ [1;2] ∈ P♯
L(l3). Similarly, we use

the notations dR(l ), dR̃(l ) and do(l ) to refer the partitioning directives from P♯
R(l ), P

♯

R̃
(l ),

and P♯
o(l ). Besides, for the sake of conciseness, instead of explicitly drawing partitioning tokens

inside the nodes of the automaton, we comment some edges with a partitioning directive d such

that every node after the edge has the partitioning directive d pushed into its stack of directives

(i.e. the partitioning token). For instance, for the node at point l3 with double dashed circles

in upper path of the automaton, its partitioning token is “dL(l3) :: dL(l1)”.

Furthermore, the automaton in Fig. 8.2 can be refined by removing the invalid node whose

associated abstract environment element is ⊥♯
M (i.e. it is unreachable) and propagating right-

bound nodes, and we get a simpler trace partitioning automaton as in Fig. 8.3. For example,

the node at point l5 created by do(l5) in the upper path is invalid and can be removed; the node

at point l6 in the lower path has only one valid successor that is marked as a right-bound node,

thus we mark the node at point l6 also as a right-bound node, as well as its predecessors.

l5
l2l1

l3 l4 l5 l6 l7 l8

l3 l4

l6

l5 l6 l7 l8

d L(
l3)

do(l3)

apv∈
[1; 1]

i1 ∈
[1; 2]

i1∈
[-1; 0]

apv∈
[1; 1]

apv∈
[-1; -1]

dR(l5
)

dL(l5)

i2 ∈
[-1; 0]

i2∈ [1; 2]

i2∈ [-1; 2]

apv ∈ 
[-1; -1]

apv∈
[1; 1]

apv∈
[-1; -1]

typ∈
[1; 2]

typ∈
[1; 2]

acs∈
[-2; -1]

acs∈
[-2; -1]

l0
dL(l1)

dR(l7) dR(l8)

l7 l8

typ∈ [1; 2]
acs∈
[1; 2]

dL(l7)

do(l5) dR(l7)

dL(l8)

dR(l8)

⊤⊤

l1 l8Left-bound

l5 Right-bound

Dual-right-bound

Figure 8.3: The Refined Trace Partitioning Automaton for the Omniscient Cognizance
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From the above automaton, we can clearly see that there are three maximal paths from l0

to l8 in the automaton, which over-approximate all the concrete valid traces of the program.

For the upper path, the rightmost left-bound node is at l3 and the leftmost right-bound

node is at l5, thus the responsible entities must be located between l3 and l5. Since the action

“apv := (i1 ≤ 0) ? -1 : apv” has no free choice, only the action “i2 := [-1; 2]” is determined

responsible under the condition: apv ∈ [1; 1] ∧ i1 ∈ [1; 2] hold at point l4, and the action

“i2 := [-1; 2]” satisfies apv ∈ [1; 1] ∧ i1 ∈ [-1; 2] ∧i2 ∈ [1; 2]. It indicates that, the input

from 2nd admin is responsible if the input from 1st admin is positive and the input from 2nd

admin is negative or zero.

For the path in the middle, the node at l8 is marked as a dual-right-bound node, which

means that every concrete trace represented by this path does not have the behavior “the access

to o fails”. Thus, there is no responsible entity along this path.

For the lower path, the rightmost left-bound node is at l1 and the leftmost right-bound node

is at l3. Since the action “apv := 1” from l1 to l2 has no free choice, only the action i1 := [-1; 2]

from l2 to l3 is determined responsible, under the condition that apv ∈ [1; 1] ∧ i1 ∈ [− 1; 0]

holds at point l3. That is to say, the input from 1st admin is responsible if it is -1 or 0.

To sum up, for the omniscient cognizance in the access control program example, the

abstract responsibility analysis finds that the input from 1st admin or 2nd admin is potentially

responsible for “the access to o fails” under certain conditions, while other actions with free

choice (e.g. the variable initialization, and the input from system settings) are not responsible.

This analysis result is almost as precise as the concrete responsibility analysis, thus there is no

need to conduct a new round of analysis and we can terminate the analysis here.

2) Second, consider the trace partitioning automaton constructed for the non-omniscient
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cognizance function C♯ such that the observer does not know the input of 1st admin (i.e. the

observer cannot distinguish the value of i1 in the interval [−1; 2]). In this case, we adopt the

partitioning directives from the partition function defined in table 8.6, and the correspondingly

constructed trace partitioning automaton is in Fig. 8.4, in which we represent various types of

nodes by different circles as in Fig. 8.2.
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Figure 8.4: The Trace Partitioning Automaton for a Non-omniscient Cognizance

Compared with the trace partitioning automaton for the omniscient cognizance, we do

not have the partitioning directives at point l3, while the partitioning directives at other points

are still valid and preserved. After removing the invalid nodes and propagating right-bound

nodes, the refined trace partitioning automaton is in Fig.8.5.

Similar to the automaton in Fig.8.3, there are three maximal paths in the refined automa-
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Figure 8.5: The Refined Trace Partitioning Automaton for a Non-omniscient Cog-
nizance

ton for the non-omniscient cognizance, which over-approximate the concrete valid traces.

For the lower path, the node at l8 is marked as a dual-right-bound node, which means

that the behavior of interest does not hold, thus there is no responsible entity along the path.

In contrast, along both the upper path and the middle path, the rightmost left-bound node is

at point l1 and the leftmost right-bound node is at point l5, thus the responsible entities must be

located between l1 and l5. After filtering out the actions without free choices, we would determine

both “i1 := [-1; 2]” and “i2 := [-1; 2]” potentially responsible for the behavior. More precisely,

“i1 := [-1; 2]” is responsible under no condition, while “i2 := [-1; 2]” is responsible under

the condition that the partitioning directive apv ∈ [1; 1] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 0] or

apv ∈ [-1; 0] ∧ i1 ∈ [-1; 2] ∧ i2 ∈ [-1; 2] holds at point l5.

To sum up, for the non-omniscient cognizance such that the observer does not know the

input from 1st admin, the abstract responsibility analysis find both the input from 1st admin

and the input from 2nd admin are potentially responsible for the behavior “the access to o
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fails” in every execution where the behavior occurs. Compared with the concrete responsibility

analysis that determines only the input from 2nd admin responsible, this abstract analysis result

is less precise, but it is still sound, since every entity that is responsible in the concrete is also

found responsible in the abstract. □

8.2 The Soundness of Abstract Responsibility Analysis

In this section, we prove that the abstract responsibility analysis introduced in section

8.1 is sound with respect to the concrete responsibility analysis defined in section 5.4.

Theorem 3 Every entity that is responsible in the concrete must be found responsible in the

abstract responsibility analysis.

Proof. Given a program P along with the user specified behavior of interest B♯ ∈ L 7→

D♯
M and cognizance function C♯ ∈ L 7→ ℘(D♯

M), the corresponding concrete behavior of

interest B and lattice of concrete behaviors LMax are formalized in section 7.1, as well as

the concrete cognizance function C in section 7.2. Suppose that the behavior B holds in

a valid concrete trace σ of P, and a concrete transition τ = 〈l , ρ〉 a−→ 〈l ′, ρ′〉 (in which a

may be omitted and can be retrieved from the source code) in σ is found responsible for

B by the definition 5.5 of concrete responsibility analysis (i.e. the trace σ is splitted into

σ = σHτσF such that ∅ ⊊ O(JPKMax,LMax,C, σHτ) ⊆ B ∧ O(JPKMax,LMax,C, σH) 6⊆

B), then we would like to prove that the action a must be found responsible in the

abstract responsibility analysis.

Since the trace partitioning automaton constructed in the abstract responsibility

analysis is a covering of the concrete trace semantics of P, every valid concrete trace
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is simulated by at least one path in the automaton. Let σ♯ be a path in the trace par-

titioning automaton that simulates the concrete trace σ, and τ ♯ = 〈l , t, M♯〉 a−→ 〈l ′,

t′, M♯′〉 ∈ (LT × D♯
M) × (LT × D♯

M) be the edge on the path σ♯ that represents the

transition τ . Thus, we need to prove that τ ♯ must be found responsible in the abstract

responsibility analysis.

To start with, we prove that there is no dual-right-bound node along the abstract path

σ♯ by contradiction. Assume there is a dual-right-bound node at point lR̃ on σ♯, which is

created by a dual-right-bound partitioning directive part〈Inv, lR̃, M
♯

R̃
〉. By the definition

of dual-right-bound partition function, we know that M♯

R̃
guarantees the complement

of B♯ (i.e. M♯

R̃
∈ S♯

−→psJPK(I♯pre)lR̃\B♯(lR̃)), thus all the concrete traces represented by

σ♯ must fail the behavior B at point lR̃. This contradicts with our assumption that σ is

simulated by σ♯ and the behavior B holds in σ. Thus, along the path σ♯, there is no dual-

right-bound node, and all the edges between the rightmost left-bound-node (if any) and

the leftmost right-bound-node are determined potentially responsible by the abstract

responsibility analysis. Specially, if there is no left-bound-node or right-bound-node

along σ♯, every edge is determined potentially responsible, which obviously includes τ ♯.

Furthermore, we prove that if there is a left-bound node along σ♯, then τ ♯ must

be located after that node. Assume that there is a left-bound node along σ♯, which is

created by a left-bound partitioning directive part〈Inv, lL, M♯
L〉, and a concrete state

sL = 〈lL, ρL〉 on σ is represented by the left-bound node. By the definition of the

left-bound partition function, the abstract environment M♯
L is from the complement of

the over-approximating backward impossible failure semantics for the behavior B♯ (i.e.

M♯
L ∈ S

♯
−→psJPK(I♯pre)lL\Ŝ♯

←−
if

JPK(B♯)lL). That is to say, from every concrete state that is
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represented by the left-bound node, there must exist at least one valid concrete trace

that fails the behavior B. If we split σ into σ′ and σ′′ such that σ′ ends with sL while

σ′′ begins with sL, then it is obvious that σ′ cannot guarantee the occurrence of B, thus

I(JPKMax,LMax, σ′) 6⊆ B. Since I(JPKMax,LMax, σ′) ⊆ O(JPKMax,LMax,C, σ′), we have

O(JPKMax,LMax,C, σ′) 6⊆ B. As O(JPKMax,LMax,C, σHτ) ⊆ B and the observation

function O is decreasing (lemma 3), we find that σHτ must be greater (longer) than σ′.

Therefore, the responsible transition τ must be located after the state sL, and accordingly

the edge τ ♯ must be located after the left-bound node.

Last, we prove that if there is a right-bound node along σ♯, then τ ♯ must be located

before that node. Assume that there is a right-bound node along σ♯, which is created

by a right-bound partitioning directive part〈Inv, lR, M♯
R〉, and a concrete state sR =

〈lR, ρR〉 on σ is represented by the right-bound node. By the definition of the right-

bound partition function, the abstract environmentM♯
R is from the under-approximating

backward impossible failure semantics for the behavior B♯ (i.e. M♯
R = Š♯

←−
if

JPK(B♯)lR).

That is to say, every concrete trace starting from the states represented by the right-bound

node is guaranteed to have the behavior B. If we split σ into σ′ and σ′′ such that σ′ ends

with sR while σ′′ begins with sR, then it is easy to know B holds in σ′ (since B holds in

the whole trace σ), and every trace with the prefix σ′ is guaranteed to have the behavior B.

Hence, we get I(JPKMax,LMax, σ′) ⊆ B. Now we consider the traces that are equivalent

to σ′ according to the cognizance C♯. For any trace σ′e such that σ′e
C♯

∼ σ′, the behavior

B must hold during the execution of σ′e (since O(JPKMax,LMax,C, σHτ) ⊆ B). By the

theorem 2, σ′e must be represented by the same path as σ′ in the automaton, thus the last

state in σ′e is also represented by the same right-bound node in the automaton. Thus,
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every trace with the prefix σ′e is guaranteed to have the behavior B, which implies that

I(JPKMax,LMax, σ′e) ⊆ B. By the definition of O, we get O(JPKMax,LMax,C, σ′) ⊆ B.

Since the observation functionO is decreasing (lemma 3) andO(JPKMax,LMax,C, σH) 6⊆

B, it is easy to see that σ′ is strictly greater (longer) than σH. Therefore, the responsible

transition τ must be located before the state sR, and accordingly the edge τ ♯ must be

located before the right-bound node.

To sum up, we have proved that for every concrete trace σ with a responsible entity

which is a transition τ = 〈l , ρ〉 a−→ 〈l ′, ρ′〉, there exists an abstract path σ♯ with an

edge τ ♯ = 〈l , t, M♯〉 a−→ 〈l ′, t′, M♯′〉 in the corresponding trace partitioning automaton,

and the edge τ ♯ must be located after all the left-bound nodes (if any) and before all the

right-bound nodes (if any) on the path σ♯. Thus, by the abstract responsibility analysis

designed in section 8.1, the edge τ ♯ must be determined responsible for B♯. □
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Conclusion

This dissertation formally defines responsibility as an abstraction of trace semantics.

Typically, the responsibility analysis consists of four steps: collect the trace semantics,

build a lattice of system behaviors of interest, create an observation function for each ob-

server, and apply the responsibility abstraction on analyzed traces. Compared to current

dependency and causality analysis methods, the responsibility analysis is demonstrated

to be more generic and precise in several examples. In addition, a sound framework

of abstract responsibility analysis is proposed, which is based on trace partitioning au-

tomata constructed by the iteration of over-approximating forward reachability analysis

with trace partitioning and under-approximating/over-approximating backward impos-

sible failure accessibility analysis. It is guaranteed that actions that are not found respon-

sible in the abstract analysis are definitely not responsible in the concrete.

We hope this dissertation has successfully demonstrated that the responsibility analy-

sis constitutes a worthy avenue of research. In the future, there are a number of directions

that deserve further exploration.
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Analysis of Probabilistic Programs. The definition of responsibility proposed in this

dissertation can be extended to probabilistic programming languages such that the de-

gree of responsibility of each responsible entity can be quantified, which is similar to

the degree of blame designed to quantify actual causality [36]. More precisely, instead

of identifying a single responsible entity for each specific trace as in (5.5), we can collect

all the potentially responsible entities for the whole system, and assign to each of them

with a probability of being responsible for the behavior of interest.

Generalization of Abstract Analysis. The framework of abstract responsibility analysis

can be applied to new abstract domains other than the classic numeric domains dis-

cussed in this dissertation, such that we can analyze the responsibility of more behaviors

(which cannot be expressed by intervals, octagons or polyhedra). The main challenges

are expected to come from designing a sound under-approximating backward impossible

failure accessibility analysis for the new abstract domain. In addition, we suggest speci-

fying the abstract cognizance function by abstract relational invariants [40, 37] that can

directly express relational properties about two executions of the program, such that we

don’t have the restrictions that two equivalent traces must be of the same length and

have the same control flow.

Alternative Definitions of Responsibility. In the philosophy literature, there is a pro-

tracted controversy concerning the meaning of responsibility. Just like the law varies

from one nation to another, there cannot exist a perfect universal rule of defining respon-

sibility [46] that deals well with all scenarios. In our current definition (5.5), whether

a transition τR (or say, the corresponding action aR) is responsible or not in the trace

σHτRσF solely depends on its history σH, while its future σF has no impact on deciding
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the responsibility. For instance, in the forest fire example, whether an arsonist A is

responsible or not solely depends on if there is another arsonist that already drop a lit

before A or not. This definition of responsibility is quite intuitive and works in many

scenarios, but not necessarily all scenarios. In some scenarios, the future part σF may

also need to be taken into account for determining responsibility. We wish to design

a lattice of responsibility definitions, each of which adopts a distinct rule of defining

responsibility, and for every specific scenario there is at least one definition from the

lattice that can handle it well.
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