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Abstract

Machine learning algorithms bene�t from large and diverse datasets. However, business needs

and research work�ows are potentially at odds with the ownership of private data. Without shar-

ing private data in their raw forms, current privacy-enhancing solutions tend to, instead, com-

promise on performance (by degrading downstream models) or privacy (by revealing potentially

sensitive information).

This thesis addresses gaps between machine learning and data ownership, through modeling

a system of three parties: model owners, data owners, and overseers. Incentive issues between the

parties are addressed with secure and con�dential computation, consisting of Secure-Multiparty

Computation (S-MPC) and Homomorphic Encryption (FHE). Though lesser-known to machine

learning, these techniques can help support data rights.

1. First, as data used for training tends to be owned by disparate parties, the �rst sub-problem

pertains to whether unshared training data’s utility can be evaluated without sharing it. This the-

sis formulates the Data Appraisal Problem, and attacks it with an e�cient and accurate privacy-

preserving proposal. Speci�cally, our work implemented in�uenced-based appraisal functions

written to be compatible with e�cient S-MPC computation, so that no data needs to be shared

for both the model owner and data owner to approximate the relative value of datasets with

respect to a model owner’s choice of model and test set. It achieves 92.3% correlation with plain-

text ground truth ranking for 100 datasets under induced class imbalance, and 96.0% under label-

�ipping, without the usability challenge of sensitive hyperparameters of training a joint model
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under S-MPC [320].

2. Secondly, is it necessary to trade o� data utility and privacy in low data domains? As hos-

pitals face severe data availability issues for model training, we seek to ease the privacy tension

that thwarts collaborations, speci�cally before making a commitment. This practical framework,

Secure-KL (SKL), only releases the output evaluation score while enabling robust evaluation of

additional data to combine with. Without making any assumptions about the �nal downstream

model, using only the source and target datasets, SKL is a model-based data-divergence approxi-

mation in secure computation, which matches plaintext values by over 90%. For the source hospi-

tal, SKL successfully identi�es bene�cial data partnerships for intensive care unit (ICU) mortality

prediction, improving downstream classi�er performance. It is more robust and reliable than

alternatives of sharing a subset of data (medium leakage), using demographic information (low

leakage), or selecting blind (high variance). SKL allows all parties’ data to remain unshared1,

while entire datasets are utilized, e�ectively eliminating a key roadblock towards orchestrating

broader collaborations in healthcare with limited resources (To appear in AAAI AIES 25’ [106]).

3. Lastly, seeing the trend of deploying proprietary ML models where the input and output to

those models are hidden, can the public audit privately-held data, especially in domains where

encryption is the default? Using FHE for auditing triaging fairness in hospitals’ emergency de-

partment, as an example, this thesis provides a qualitative description of the setup that can be

applied to ease the tension between regulators and private data parties, without the need to de-

crypt private data, utilizing Threshold FHE [78]. (Published as a book chapter [175].)

1More precisely, outside the �nal result both parties intend to compute, no additional data is revealed.
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1 | Introduction

Data sits at the critical junction of large scale model development and society-wide tension: the

development of AI exacerbates and emboldens the loss of individual control over data; yet, at the

same time, it requires vast amounts of new data in order to scale. Utilizing data that is privately

held, from books to images to user behavior, promises better models ahead [134; 155; 46; 280; 331].

While private data can be an important piece in the checks and balances in this future, sup-

porting it – protecting ownership, assigning correct credits, and respecting usage – faces issues.

First, making existing machine learning work�ow con�dential by direct application of exist-

ing general cryptographic – such as training a large model while encrypted – is typically unusable

due to large overheads. Model training today requires researchers in the loop [176; 292; 143; 193;

135], so switching entirely to “private mode” where all details are hidden hinders utility. Second,

private machine learning technologies are not mature for computations that need high precision

and scale [164; 175], without sacri�cing privacy itself [31], thus limiting their prospect for sup-

porting the large models in the current markets. Further, a potentially desirable form of privacy

people want is the right to not share, selectively share, or rectify their data, applied to machine

learning models [52; 51]. Private computations alone cannot solve these issues; for example,

supporting “the right to be forgotten” pertains to optimisation problems [221; 225; 304].

While challenges abound, several solutions exist: secure multi-party computation (S-MPC)

can be �exibly applied to numerical work�ows while allowing the computational methods to be

auditable, striking a desirable balance between secrecy and transparency [115; 101; 75]. Moreover,
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the machine learning-related computations themselves are also subject to rewriting, as to enable

their implementation under homomorphic encryption, or to speed up their S-MPC workloads1.

First, to address privacy within the context of machine learning, this chapter sets up an ab-

straction of the three roles in the data ecosystem. Combining secure computation techniques and

algorithmic optimisation, tasks supportive of a healthy data ecosystem – training data appraisal

(Ch. 4), continuous data auditing (Ch. 6), and private model evaluation (Ch. 5) – become feasible.

Setup As large models are data-hungry, relying on public data – characterized by a haphazard

ecosystem of publicly owned, academically curated data – will not be su�cient [135; 306].

Emerging from the tension over data are three categories of stakeholders:

1) model owners and developers such as Google, Meta, and OpenAI; 2) data curators, owners,

and creators such as Shutterstock, comic artists, or Reddit users, and 3) oversight entities like

governments, corporate oversight boards, medical and other professional associations.

Though data curation and model development can co-exist in tech companies, the activities

tend to be in separate divisions [292]. The three-party model remains valuable for analyzing

incentives.

Incentives misalignment creates friction between the three categories of stakeholders.

Model owner Data owner

Overseer

Training/Fine-tuning
Appraising/pricing training data

Filte
rin

g, cleaning, 

auditin
g data

Testing, monitoring, 

evaluating models

Figure 1.1: Incentives misalignment creates friction between the three categories of stakeholders.

Model makers need to access new data to stay competitive, especially in an economy that
1Rewriting refers to both algorithmic rewriting for the setup and making secure computation-friendly approxi-

mations, such as in Section 2.4.1.
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encourages race-to-market. They typically have resources and talent to train large-scale models,

and are often regulated as commercial entities [246; 135; 292]. Potentially, they want a healthy

market to ensure their technologies are evaluated fairly, and that their less rule-following com-

petitors are punished.

Data curators know their data is valuable for machine learning, and do not wish to share

without being compensated or recognized. This may take the form of payments, equity, or name

recognition [191; 3; 140]. Potentially, they want a healthy market that protects some form of

control over their proprietary data, which may include the right to rectify data that is shared,

and to appropriately detect and discourage stealing data.

Oversight boards are given the mandate to regulate the market or the organization, either

with respect to data or with respect to the model. This may be motivated by privacy, safety,

integrity, law enforcement needs, societal fairness, and so on [94; 182; 249; 121; 75; 45; 101].

Potentially, they want to be able to audit the training data for integrity issues, the decisions for

fairness, or just to keep track of a model’s ability on certain tasks over time.

Various forces impact this system of stakeholders. Under intense market competition, busi-

nesses are unlikely to make compromises such as reducing model accuracy or training visibil-

ity. In addition, the large-scale nature of developing foundational models makes computational

powers, engineering talents, and data for training and evaluations all the more precious. These

pressure points create friction between the often disparate parties.

Currently, the relationship is antagonistic: governments are suing AI companies and, of

course, creators and data platforms suing model owners [122; 230; 296]. This is far from ideal:

if private data is locked down, machine learning training may face a bottleneck, creators may

not negotiate their fair share, and meaningful evaluations become challenging. Amidst this ever-

evolving situation, no one magic solution is clearly in sight.

Nevertheless, despite their complicated relationship, all parties stand to gain from a healthy

data ecosystem, through a privacy thesis put forth in Chapter 2. To that end, my work utilizes
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practical secure technologies (Chapter 3) to ease the tension between these stakeholders by foster-

ing better communication and easing incentive issues towards equitable data sharing (Chapter 4),

demonstrating sensitive data auditing (Chapter 6), and evaluating dataset utility through dataset

divergence (Chapter 5). These method works are illustrated in Figure 1.2

Figure 1.2: Individual works in this thesis, visualized within three-actor system.

4



1.1 Summary and Overview

1.1.1 Summary of Existing Gaps in ML Privacy

Insufficient recognition for model owners’ incentives Privacy-preserving methods that

hinders downstream utility is identifying the wrong root cause of “privacy”. The model owners

do not wish to share their training data (or over-expose their proprietary information), because

they do not wish to compromise on their competitiveness in the market.

Insufficient attention on private facilitation towards data sharing While develop-

ing performant private models is an important pursuit, facilitating the �ow of private data in

their respective contexts — training, auditing, and evaluating — are signi�cantly overlooked in

examining privacy systemically.

Immature private computation technologies for machine learning 1. Just moving exist-

ing machine learning work�ow “incognito” hinders utility and usability and 2. Private machine

learning technologies are not mature for computations that need high precision and scale, thus

limiting their prospect for supporting large models.

1.1.2 Contributions Overview

Focusing machine learning privacy research on the impact of long-term incentives in machine

learning development requires both novel problem de�nition, and e�ective solution ap-

proaches.

The contribution can be summarized along two axes:

1. Introducing the Three-Actor Privacy Thesis for problem de�nition. This novel model of-

fers a notion of privacy as systemic data tension among the model developers, data owners,
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and overseers.

(a) Positing Data Acquisition Problem where data value is uncertain before data shar-

ing, and solve it with two separate methods [320; 106]2.

(b) Describing the need to audit proprietary models in hospitals for its fairness [78].

2. Co-designing secure computation alongside algorithmic problems inmachine learn-

ing for facilitating data sharing.

(a) The E�ectiveness of Secure Computation is presented through the feasibility of

training, auditing, and evaluating private data.

(b) The Shortcomings of Private ML are overcome through both clever algorithmic

design and overcoming di�cult engineering hurdles.

1.1.3 Summary of Chapters

Chapter 2 presents a thesis for framing privacy in machine learning, following through a

thread of data-sharing setup, positing the Data Appraisal Problem. Then, this notion of privacy

is then discussed in tandem with challenges in machine learning privacy and situated with other

de�nitions of privacy. Along the way, necessary background, terms, and notations are introduced.

Chapter 3 includes a primer of secure computation as a preliminary, and contrasts it with

related works of privacy-enhancing techniques in machine learning.

By identifying the gaps in current solutions, it re-states the pressing need to support an ef-

fective ecosystem for data sharing, model evaluations, and third-party auditing.

Chapter 4. First, as data used for training tends to be owned by disparate parties, the �rst sub-

problem pertains to whether unshared training data’s utility can be evaluated without sharing
2I publish under both names: Xinlei Xu and Mimee Xu.
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data. My work implements in�uence-based appraisal functions that are compatible with e�cient

MPC computation, so that no data needs to be shared for both the model owner and data owner

to approximate the relative value of datasets, achieving 92.3% correlation with plain-text ground

truth ranking for 100 datasets under induced class imbalance, and 96.0% under label-�ipping,

without the usability challenge of sensitive hyperparameters of training under MPC (AISTATS,

2022 [320]).

Chapter 5. Second, would secure computation help small organizations make realistic data col-

laboration decisions, despite the unpredictable nuances of real-world samples? In data-limited,

model-agnostic scenario, SecureKL (SKL) e�ciently computes secure dataset-to-dataset diver-

gence between a source entity and a target entity’s respective data, before sharing data. In ICU

mortality prediction, it outperforms blind selection, and data-leaking methods – demographic-

based selection using age, gender, or race, or using a subset of samples – by reliably selecting

positive partners. By utilizing all the data, SKL matches plaintext recommendations by 90% while

maintaining minimal leakage of the underlying data. (Will be published with the proceedings for

AAAI AIES in 2025 [106])

Chapter 6. Third, can the public audit private data, especially in domains where data is kept

private by default? Using HE for auditing triaging fairness in hospitals’ emergency department,

as an example, this thesis provides a qualitative description of the setup that can be applied to

ease the tension between regulators and private data parties, without the need to decrypt private

data, expanded upon work from 2019 [78]. (Published as a book chapter in the seminal work

[175] in 2022)
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2 | The Three-Actor Privacy Thesis

2.1 Chapter Summary

To pinpoint privacy problems in machine learning, we bring forth a shared abstraction, the

Three-Actor Ecosystem of machine learning, which stems from the roles identi�ed in Chap-

ter 1: model developers, data “owner”, and overseer. This chapter is organized along two veins:

1. To identify the emerging incentive issues in machine learning development, which narrow

privacy de�nitions miss. Section 2.2 emphasizes the naturally di�erent roles of ML develop-

ment and their resulting data sharing tension, due to the necessary data scaling for solving the

underpinning optimization problems. To enable modeling general privacy problems from ML

development, Section 2.3 posits the Three-Actor Privacy Thesis.

2. To express the novel technical challenges from simultaneous desires for privacy and utility.

Respecting model owners’ interests to acquire external data, Section 2.4 de�nes data utility, while

Section 2.4.1 tackles this utility computation with in�uence functions and dataset divergence.

Noting that these approaches originate from machine learning, but do not consider privacy. Sec-

tion 2.5 clari�es the seemingly inherent conundrum – the Data Acquisition Problem between

privacy and utility – thereby setting up the novel scienti�c problems throughout this thesis.

Finally, Section 2.6 discusses the implication of our approach, contrasting with other privacy

de�nitions such as contextual integrity. The notations are de�ned in Table 2.1.
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Notation English Description

MO Model Owner

DO Data Owner

OS Overseer

Da Additional Training Data

M Trained Model

x Input Vector (Features)

~ Scalar Output (Label)

! Loss Function

 Number of Data Owners

Dtr Training Data

Dte Test Data

Deval Evaluation Set

* (Da) Dataset Utility

5priv Private Appraisal Function

5audit Auditing Function

F Function

� Encoding Function

� Decoding Function

Table 2.1: Summary of symbols in preliminary.
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2.2 Optimisation Setup

Suppose a learning algorithm outputs model M, parameterized by \ . When trained with the

loss function ! using the principle of Empirical Risk Minimization [259; 81; 304], the optimal

parameters are

\̂ = arg min
\

∑
(x,~)∈Dtr

!(x, ~;\ ) + _‖\ ‖22. (Regularized Empirical Risk Minimization)

Concretely, the model developer usually begins with a training set,Dtr; for L2-regularization

as illustrated [290], they also set _.1. Their testing set, Dte, is then used for evaluation. Our

privacy model centers on a key observation: Model Owners today drive the development of

machine learning, from training to evaluation to deployment. In each stage, the model – as well

as its associated training and testing data – is assumed to be proprietary throughout this thesis.

A Natural Outgrowth: Data Acqisition Becomes Necessary. Since Hestness et al. [134],

empirical works have predetermined data as a key driver to performance gains, via the so-called

“scaling laws” [155; 46]. Yet, dataset size has not always been big; for a given task, they started

out small, then grew bigger [280], more diverse [331], sometimes more compute-optimal [135].

Arguably, across all domains, we are still in the growing phase, searching, on one hand, more

data [203; 46; 236; 253; 266]; on the other, better data combinations [268; 224; 243; 187; 206].

A curious, privacy-relevant dynamic ensues. More data generally bene�ts optimisation, espe-

cially if it is diverse and high quality [134; 155]. Yet, data availability is a problem, as such public

datasets are sparse [292; 193]. The model owner’s data may be insu�cient for their purpose, in-

cluding for training [134], �ne-tuning [146], and evaluations [278]. Thus, it becomes imperative

for them to look beyond their organization in order to acquire more data.

1Unless otherwise stated, this model is optimized with Stochastic Gradient Descent (SGD) [37].
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Figure 2.1: Model Owner ("$) and Data Owner (�$) Relationship: Both can benefit from
Share(MO,DO).

2.3 The Three-Actor Ecosystem for Machine Learning

To meaningfully address the needs of model developing parties, this thesis recognizes – and re-

spects – the incentives which are disparate from the model owners’ economic or other gains.

Following the distinct roles introduced in Chapter 1, this thesis assumes three actors:

1. Data Owners (�$) : A set of entities where the 8-th data owner possesses dataset D [8]a .

2. Model Owner ("$) : The entity that owns trained model \ , train setDtr, and test setDte.

3. Overseer ($() : An entity responsible for audits and evaluations, potentially holding eval-

uation data Deval and a potentially fully-automated auditing algorithm 5audit.

Sharing Data Between "$ And �$ This conceptual framework is motivated through

Share("$,�$): the action of sharing data between a model owner and a data owner (Figure 2.1).

When additional training data, Da, is owned externally with respect to the model owner, a

privacy tension arises: on one hand, "$ and �$ may gain utility from sharing and transacting,

yet when faced with uncertainty in this utility, their collaboration may stall.
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2.3.1 Discussion

Data “Owner” and Overseer Interests The entity of data owners encompasses a multitude

of interests, described as wanting full control over their privately-held data: individuals, creators

and platforms ought to know and decide when and how they share – and not share, or even

retract – data.2 This thesis additionally recognizes that the Overseer will take increasing role

in regulating and governing the machine learning technologies, such as external auditors and

regulators [75]. The interactions of the three actors will be further discussed in Section 2.6.

Notable exceptions to closed weight models. Currently, keeping the model secret is not

universal among all major model owners, as several “open-weight” models have emerged as ex-

ceptions, such as Meta AI’s Llama models [292; 89], Mistral AI’s 8x7B models [148]. As this thesis

is being hectically revised, at least three other “frontier” open models have been released, by

DeepSeek [80], Moonshot [285], and OpenAI [231]. However, we note that as of now, the under-

lying data used for developing these “open” models are still kept private by default. Interestingly

also during revision, Meta suggested reversing course from releasing frontier open-weight mod-

els, in a brand new team formation [336] and in an earnings call [210]. It is also worth noting

that these companies’ best-performing large pre-trained models have remained closed-weight,

perhaps out of a need to maintain a competitive edge while entering their smaller models in the

“open source” arena. This indicates a need for model owners to maintain control of the access

level of their models while retaining proprietary details about the training data – a crucial part

of our thesis.

Abstraction Remark Two abstractions are introduced in this thesis. This chapter focuses on

the three-actor abstraction, summarized in Figure 2.2. Later Chapters will de�ne and follow the
2Our nomenclature centers the externality of data to machine learning development, describing Model Owners

and Data Owners as distinct entities; yet, we use the term “data owner” without implying the legality or ethicality
of “data ownership” [142].
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Figure 2.2: Three-Actor Ecosystem for machine
learning clarifies entities with distinct goals, each
wanting to gain utility while maintaining privacy.
This abstraction forms the foundation of the pri-
vacy notions in this thesis; privacy issues are de-
scribed as data-related tension in this system.

Figure 2.3: Secure Computation on
Disparately-owned Data for Machine Learn-
ing, using secure inference between data and
model as an example. In this thesis, secure
computation is the primary approach towards
respecting both model utility and privacy among
distinct actors.

second abstraction, previewed in Figure 2.3, which is to compute without leaking input3. This

technical approach is aimed to address privacy tensions arising from the descriptive scenarios

within the Three-Actor Ecosystem.

3The underlying technologies of this abstraction will be discussed in Section 3.
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2.4 A Conceptual Framework For Privacy Tensions

Through A Sharing Conundrum

Main Thesis of Three-Actor Ecosystem To meaningfully address the privacy needs of dis-

parate parties: model owners, data owners, and overseers.

Share("$ , �$) Conundrum When �$ has ownership overDa, which"$ wants to include

to train their model, a privacy tension arises: on one hand, both "$ and �$ could gain utility

from sharing and transacting, potentially. Yet, when this utility is unknown, neither actor wants

to share their proprietary data or model to �nd out. The crux lies in reducing the uncertainty in

the utility – denoted as* (Da) – with respect to fairly pricing or evaluating Da.

Data Utility To consider acquiring any given dataset Da, the model maker "$ wishes to

determine the utility gain from updating \̂ to �t Dtr ∪ Da. A natural de�nition denotes the

di�erence in test losses via Dte:

* (Da) =
1
|Dte |

∑
(x,~)∈Dte

!(x, ~; \̂ ) − !(x, ~;\ ∗) (Dataset Utility)

where \ ∗ is the resulting model parameters after including Da.

Naively computing the Dataset Utility assumes the MO to compute the new optimal pa-

rameters \ ∗ upon adding dataset Da, by minimizing the regularized empirical risk on dataset,

Dtr ∪ Da. This requires accessing \ ∗ from re-training, which presumes data sharing.

Alternative to assuming re-training, two general approaches can be used to evaluate dataset

utility. One, using the second-order approximation derived through leave-one-out training, arriv-

ing at the forward application of an in�uence function. The other is through dataset divergence,

without assuming \̂ . We now examine their speci�c procedures.
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2.4.1 Two Approaches: Influence and Divergence

Forward Influence Functions The in�uence function I(x, ~) associates a training sample

with the change in the model parameters under an in�nitesimal up-weighting of that sample in

the risk [72; 165]. We use in�uence functions to approximate the change on the resulting loss

from including the dataset Da. Denoting the empirical Hessian N
\̂
= 1
|Dtr |

∑
(x,~) ∈Dtr ∇2

\
!(x, ~, \̂ ),

the forward in�uence of sample (x, ~) is given by:

I(x, ~) = −N−1
\̂
∇\!(x, ~, \̂ ). (2.1)

This function is a �rst-order approximation of the change in \̂ for each sample (x, ~) ∈ Da. In

turn, we can use Δ\ ≈ I to assess the in�uence of (x, ~) on the test loss of (xte, ~te) via the chain

rule:

!(xte, ~te;\ ∗) − !(xte, ~te; \̂ ) ≈ ∇\!(xte, ~te; \̂ )>I(x, ~). (2.2)

Using these observations, we de�ne the in�uence-based appraisal function to be the sum of each

training sample’s in�uence:

5if(Da) = −
1

|Da | · |Dte |
∑

(xte,~te)∈Dte

∑
(x,~)∈Da

∇\!(xte, ~te; \̂ )>N−1
\̂
∇\!(x, ~; \̂ ). (Forward In�uence Function)

Note our in�uence function applies the approximation forward on unseen data, it is di�erentiated

with Koh and Liang [165]’s in�uence functions which apply to examples that are already seen in

training. Our modi�cations are further explained in Appendix C.

Other de�nitions are not precluded. Without involving the model itself, a measure on existing

and additional training data may be meaningful. This is useful for two separate reasons: one,

the model owner may not be sure yet as to what model to use, therefore lacking a \ needed for
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computing the Dataset Utility. Two, without training a model, the datasets –Da andDtr – may be

weakly predictive of their combined utility in machine learning without modeling assumptions.

Dataset Divergence Recall KL-divergence, also called information gain [170; 245], measures

how much a model probability distribution di�ers from a true probability distribution. If the

model owner’s in-house data forms the true distribution, where Dte ∼ %"$ , the model owner

may ask the proxy question: does the data owner’s distribution conform to my distribution?

Letting the data owner’s additional data be drawn from %�$ , or Da ∼ %�$ , the "$-�$

divergence is ideally estimated as

KL(%"$ | |%�$ ) =
∫
x∈X

log
%"$ (dx)
%�$ (dx)

%"$ (dx) . (Ideal �$-"$ Estimator)

Dataset Utility Without Assuming Downstream Models A practical advantage of this

simpli�cation is that being agnostic toM is more appealing than formulations of Dataset Utility

in high-stakes, data-constrained settings. Surely, when there is not a lot of data, the model to use

may not be pre-determined until more is acquired. Yet, moreover, Shen et al. [267] observes that a

new hospital data’s usefulness can correlate with how similar the two hospitals’ data distributions

are. Holding across various models, hyperparameters, and training conditions, Miller et al. [212]

demonstrates that a model’s in-distribution and out-out-distribution performances are correlated,

regardless of model4. As such, whether an additional dataset D [8]a is useful may be related to its

distribution being close to that of source. However,Da andDtr are datasets, not the distributions

%"$ and %�$ that we need to compute for the Ideal �$-"$ Estimator [226].

Dataset Divergence KLXY One approach is to �t a distribution on the datasets instead. Shen

et al. [267] proposes model-based scores to make this divergence approximation tractable from
4Intuitively, in-distribution quality is paramount in low-data settings. In contrast, data-rich domains like language

modeling more frequently bene�t from diverse, specialized data sources.
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small samples, which we use in [106] for the �rst time in secure computation (Chapter 5). We

adapt the simple heuristic KLXY from [267], where a logistic predictor Score(·) : X,Y → [0, 1]

is �t (privately) in the following procedure: construct a combined dataset (X,Y) : Dtr∪Da
5, and

create the corresponding membership-labels I : {1 ifG ∈ Dtr; 0 otherwise}. The score function

is the probability score from logistic regression on (X,Y) → I.

Then, the logistic regressor Score(·) : X,Y → [0, 1] is averaged over"$ ’s samples, obtaining

KLXY = E(x,~)∼Dtr (Score(x, ~)). (KL-XY Score)

Summary of Utility Approximation We brie�y introduce the two techniques used in the

thesis. Both approximate the Dataset Utilitywithout retraining the model. Their choices pertain

to their respective setups, and are not exhaustive for all techniques.

As hinted in Figure 2.3, they will be used under secure computation in the later chapters.

Later, we will revisit these approximations:

• Section 3.5 will discuss writing forward in�uence functions for secure computation.

• Section 5.6 will extensively analyze dataset divergence measure KLXY ’s empirical perfor-

mance on real-world data and its e�cacy in private.

• Appendix C.1 will cover three technical areas of forward in�uence functions: the mathe-

matical derivation as an approximation of test loss reduction, the underlying assumptions,

and their implications.

• Appendix A.1 includes more nuanced discussion on dataset divergence.

5The labels in the original dataset, i.e., mortality, is included in the data as Y, hence the name KLXY .
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Figure 2.4: Model owner wants to perform pairwise evaluations before commi�ing to a data partnership.

2.5 Problematizing Dataset Acqisition Conundrum

Motivation: More Privacy Conundrum In Equations Dataset Utility as well as its approxi-

mations Forward In�uence Function and KL-XY Score,Dtr (belonging to"$) andDa (belonging

to �$) need to be combined and shu�ed. Additionally, both involve model training on the com-

bined data, to compute !(x, ~; \̂ )>N−1
\̂
∇\!(x, ~; \̂ ), and Score(G,~), respectively.

Recall the goal of dataset utility computation is to let both model training entities and data

owning entities feel comfortable about the bene�ts before sharing. Yet, both de�nitions of utility

entangle datasets that are owned by disparate parties, manufacturing another Catch-22: solving

the data sharing problem requires combining private data from both parties. How then,

do we make this problem tractable?

Problem Statement We suppose each party holds their own data and aims to apply an algo-

rithm such as the Forward In�uence Function or the KL-XY Score. As sketched in Figure 2.4, the

model owner wishes to evaluate datasets from data owners, but without direct access. We ask,

To ascertain among candidate data sources, which one would be sensible to in-

corporate with my existing data (or model)?
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Figure 2.5: Random selection may harm: Real-world data collaborations are inherently uncertain, ne-
cessitating pre-partnership selection. This illustrates the Dataset Combination Problem studied in Chap-
ter 5.
AUC change for a source entity (x-axis), a�er incorporating external data from a di�erent source (y-axis),
across hospitals (le�) and states (right).
Le�: in mortality prediction using eICU data [244], 10 out of 12 hospitals may see their mortality predic-
tion model degrade for some potential hospital partners.
Right: in income prediction using Folktables [83], combining with random state leads to worse prediction
in 7 out of 12 states. (Red indicates bad collaborations.)

Not Solely About Privacy Examining real-world data sharing, we combine di�erent entities’

datasets pairwise before training a joint model. Then the joint model is then tested on the source

entity. Speci�cally, this data-adding scenario is simulated using eICU datasets from 12 real hos-

pitals for mortality prediction [244] and using survey datasets across 12 states for income predic-

tion [83]6, with the model improvements produced in Figure 2.5. Perhaps surprisingly, ostensibly

“in-domain” data may harm model performance. This mysterious phenomenon appears inherent

to optimizing with unseen data (or a part of generalizing under domain shifts), sometimes known

as “the dataset combination problem" (Chapter 5) [209; 13; 284; 222; 167; 308; 40; 267]. This sug-

gests that the “commitment issue" extends beyond privacy; instead, it highlights the inability to

privately assess an external dataset’s utility before partnerships.

This thesis directly address both by enabling parties with “intent” to collaborate to privately
6All experiments on downstream models are trained in the clear without any encryption, as our encrypted com-

putations are performed before data sharing.
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evaluate dataset utility without a pre-commitment. Chapter 3 introduces the underlying private

computation solutions, while Chapter 4 and Chapter 5 concretely tackle the challenge where

private data cannot be seen/revealed.

2.5.1 Baseline Discussion

This problem gives rise to two natural baselines, which we consider in Chapters 4 and 5.

• No privacy guarantee (compute as is, without privacy enhancements). This is to ensure

the correctness: as we implement in secure computation, approximations may be intro-

duced (discussed in Section 3.4).

• Random selection (no information is provided). This is to ensure demonstration of pos-

itive real-world bene�ts, when approximating the Dataset Utility. Additionally, a random

strategy may evade selection biases and help gather diverse data, therefore worthwhile to

compare against. However, blind selection likely su�ers in domains where data quality is

problematic7.

2.5.2 Assumptions

Privacy Model: Semi-honesty We operate under a semi-honest privacy model—also known as

honest-but-curious or passive security—where parties follow protocols but may probe intermediate

values. Parties are “curious”, meaning that they may probe into the intermediate values that they

are supposed to have access to during the protocol execution. Between known parties with some

pre-existing trust, preserving privacy under semi-honesty can incentivize collaboration (such as

MO and DO in Share("$,�$)). In our setup, this means each party authentically wants to share

their data and set up a collaboration.
7For example, even given trust, a hospital’s data may be very noisy simply due to the collection process [76].
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Integrity Issues Participants are assumed not to tamper with the data they send as input. Side-

stepping integrity issues may become increasingly impractical as the number of parties grows, or

when the setup pertains to highly competitive industries with less expected trust. However, our

scenarios in Chapter 4 and Chapter 5 involve only two parties that want to eventually share data.

Chapter 6 also assumes that participating hospitals have consented to the audit, thus simplifying

our security model.

Metadata is Not Protected Existing knowledge is assumed to be known, thus not protected

by our privacy guarantees. This means the pre-existing “metadata” – including the task at hand,

e.g., classi�cation, the size of the additional data, i.e., |Da |, and the rough idea of how the data

comes about, e.g., from hospital emergency room – may be assumed already shared without

compromising privacy.

Setup-specific Assumptions In practice, the speci�c secrecy requirements depend on the setup.

For example, between"$ and �$ , the desirable outcome of performing Share("$,�$) is a fair

exchange of data, where data utility is computed before data sharing. So Da may only be con-

sidered private prior to the transaction, while \ is always private [320] (Chapter 4). When eval-

uating dataset-to-dataset divergence, the source hospital which initiates the collaboration likely

has more data to be kept private and a target model that is yet undetermined (or kept secret)

(Chapter 5). Additionally, when$( audits �$ to perform 5audit(Da), the auditing algorithm 5audit

may not need to be private such as in [78] (Chapter 6), but does need to be fully-automated, i.e.,

without human-in-the-loop.

2.5.3 Evaluation Model

To make di�erent methods comparable in our experiments, we further assume that the model

owner has a �xed budget acquiring a dataset of a �xed size. Because natural data may be of
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variable sizes and prices, evaluating on uniform sized datasets may seem strong. However, we

note that both the Forward In�uence Function and the KL-XY Score are additive measures that

readily scale with dataset size, and are thus applicable to varying sizes.

Applying this assumption does not impact the security properties or the algorithmic applica-

bility of our proposed methods. It is primarily made to streamline our evaluation – to have a uni-

�ed pipeline for downstream model training, and to ensure a fair comparison between methods.

Given that we are primarily concerned with ascertaining the di�erential dataset utility, relax-

ing this evaluation assumption, i.e., allowing for varying dataset sizes, may complicate baseline

comparisons.

For Influence Functions Equation Forward In�uence Function simply divides by the cardi-

nality of candidate dataset, |Da |, requiring no adjustments to compare against varied dataset sizes.

Moreover, evaluating in�uence-based appraisal against varied dataset sizes may result in noisier

outcomes for other metrics, which we had shown to be less robust in in Chapter 4 (Section 4.3).

For Dataset Divergence Equation KL-XY Score also readily scales with dataset size. In Chap-

ter 5, both our method and a baseline method require the training of a model after combiningDa.

Ensuring a fair comparison between them already requires two separate sets of hyperparameters

even when the dataset size is uniform (Section 5.6). Varying dataset size would entail tuning

hyperparameters for each known |Da | in order to ensure best model �t. Additionally, Chapter 5

uses this assumption to directly compare private and non-private approaches, where data leakage

level alone proxies the cost for setting up collaborations – if dataset size varies, the leakage level

of “leaking 1% of all data” will not be as comparable.
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2.6 Significance of The Three Actor Ecosystem

So far, the three-actor privacy thesis identi�ed incentive clashes from model scaling and uncov-

ered privacy challenges from natural desires for both privacy and utility during data sharing, thus

setting the stage for de�ning the Data Acquisition Problem.

Notice this thesis uses the expression “private data” in a broad sense, that is, not only sensitive

data pertaining to individuals, but more generally any data that its creators, producers, or owners

are unwilling to share8. Accordingly, we distil systemic data tension amongst the stakeholders

into an overlooked technical problem of using private data while controlling its dissemination.

This distinction is what makes the three-actor framework unique.

In this section, we expand on the challenges of conceptualizing privacy in machine learning,

and discuss where our thesis �ts in this pursuit.

2.6.1 Systemic Privacy Tension

Large scale machine learning observes an inherent tension with privacy. The historical advance-

ment of technology itself often enhances collection and analyses [228], a trend dramatically more

evident in large models [45; 131].

Indeed, as large models increasingly ingest vast amounts of publicly-available data, their abil-

ity to retrieve and re-surface data can raise novel privacy issues.9 De�ning privacy merely via

the sensitive data framework [229] or as individual freedom [313] are insu�cient to capture the

systemic nature of these challenges [232]. This poses a complication for machine learning pri-

vacy researchers: what problems should computer scientists work on, that can actually mitigate
8We broadly use the term “owner” for the data entity to di�erentiate between model developers and overseers.

It is used without implying a legal ownership model of data.
9For example, as retrieval improves, data that was previously less sensitive may become sensitive over time,

because they become associated with other sensitive information [65; 205]. Moreover, an individual might be willing
to share her image for face recognition but not for inferring her location from the background objects. Similarly,
focusing only on individual impact may lead to public policies that overlooks broader societal impact [131].
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privacy tension [45]?

As a key step towards de�ning concrete problem, the three-actor abstraction clari�es the in-

terconnected nature of private data �ows in machine learning: sharing, auditing, and evaluations

are often negotiated between parties with potentially competing interests and varying levels of

trust. While these roles may shift over time, they are likely fenced o� from each by default. Even

for overlapping organizations, such as technology companies that own data and train models,

the divisions of those functions are nevertheless independently operated. This distinction of the

three actors helps identify privacy challenges in this system, while o�ering unique opportunities

for mitigations that lead to a healthier long-term ecosystem.

2.6.2 Evidence for Existing Tension

Data availability issues have always plagued deep learning [151]. However, it is only recently that

media platforms no longer wish to provide content data for without compensation [208; 217]. In

tandem, as the awareness of algorithmic technologies takes hold, individuals have become more

vigilant about their digital sharing [52; 272; 77]. As scaling continues, Villalobos et al. [305] even

projects that human-generated data will be insu�cient in the next decade for machine learning.

Moreover, the competitive nature among model owners creates an incentive to hoard data.

The AI companies’ race-to-market dynamic raises concerns for the centralization of power, which

can side-step important issues like user privacy [289; 258; 198; 218]. At the same time, the se-

curity perimeter of model developers keeps enlarging. Besides training data that is kept private

by default, data security now includes securing some proprietary models’ weights, sometimes

elevated to the importance of national security [11]. This commercial incentive interacts with

privacy constraints, where no e�ective third-party audits – despite being frequently talked about

– seem to happen [75].

Lastly, oversight pressure has the potential to increase. Data is already being regulated [94;

182] and the public increasingly worry about potential AI issues [52].
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To address these tensions, Chapter 6 shows techniques based on secure computation can

support oversight without regulations succumbing to the urge to over-surveil, even as regulatory

pressure grows. When these tensions grow, Chapter 4 o�ers a path forward to acquire data

while respecting data owners’ rights to their private data for the long term. Chapter 5 studies

data acquisition in data-limited domains. Discussion on policy impact is additionally included in

Appendix B.4.

2.6.3 Limitations of Technical Solutions

It is important to recognize that security engineering such as secure computation (Chapter 3)

is valuable in easing the tension between the di�erent actors, but will not absolve technology

providers from all privacy responsibilities. As centralized data collection has become common-

place, meaningfully limiting data shared while maintaining performance is often not attractive

enough for technology companies to opt in. Therefore, my works serve as feasibility demonstra-

tions, echoing other bene�cial MPC proposals for solving crucial incentives issues, including but

not limited to Blumberg and Eckersley [30]’s 2009 EFF proposal on location data for toll collection

and Frankle et al. [101]’s work on accountability for secret processes. Without policy enforce-

ment, adopting the more sophisticated implementation – even if proven to be performant – often

requires the existing data-collecting parties to voluntarily choose it [125; 22]. Because these re-

lationships are developing, establishing clear "locus of accountability" and minimizing the "need

of trust" in this ecosystem remains challenging [159; 125; 22]. For continuous, cross-displinary

research is needed, the three-actor framework contributes to modeling systemic tension concen-

trated at the boundary of sharing among the di�erent actors.

Discussion The concept of privacy has evolved alongside technological advancements [68; 131;

45]. Rather than o�ering a de�nitive de�nition, this section clari�es key technical considerations

relevant to its future in ubiquitous machine learning. Speci�cally, this thesis frames privacy
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issues in scienti�c terms in anticipation of future questions regarding privacy’s role arising from

the inherent tension of di�erent actors — each of whom may simultaneously seek privacy and

bene�t from machine learning.

2.6.4 Contribution: Expanding Privacy Definitions

We live in a chaotic era regarding privacy de�nitions. A large body of legal scholarship debates

the nature of privacy for individuals [311; 313; 256]. These debates gain vigor with novel tech-

nological advances. After all, it was with the advent of photography in the 19th century that

prompted Warren and Brandeis to write The Right To Privacy [311], which became the basis of

privacy law in America. Even then, they described the "contour" of privacy as unclear. This am-

biguity lends a general feeling of underwhelm, where privacy seems to de�nitionally �uctuate

whenever a new technology emerges [67].

Reminding us that privacy itself evades a singular de�nition [274], Hartzog [131] posits that

methods which tackle privacy ought to recognize its plurality and �uidity. Indeed, this attitude is

crucial for technology developers. As co-designers for the future, one cannot predict or control

it. As science seeks to understand the unknown, technological input is necessitated in many

imaginable scenarios, privacy-relevant or not – and this is where I hope my work contributes.

Situating the Three-Actor Privacy Thesis De�nitional chaos notwithstanding, the perime-

ter of my technical work is de�ned by incentives that a priori respect the strong economic in-

terests in developing machine learning [228; 68; 131]. These commercial interests may at times

clash with the interests of other participants in the same ecosystem.

Most similar to the conceptualization of privacy as “boundary management” in Cohen [68],

role demarcation is a prerequisite to self-determination. Simply put, this thesis does not reac-

tively call for “balance" as mutual compromise between the parties, but rather actively focuses

on existing potential for win-win situations.
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Yet, relying exclusively on the data owners’ self-management leads to fatigue and overwhelm

(even if there were a “win”) [275]. Privacy is thus a design problem that requires a careful, sys-

tematic view to address the so-called privacy paradox [228; 275]. Without technical innovation,

relying exclusively on oversight risks increasing surveillance [68].

In design, secure computation aligns with the principle of “data minimization” [50], albeit

with the opt-in problem noted in Basu et al. [27] and Gürses et al. [125]: centralized technology

developers may not adopt it, due to the associated costs and technical complications.

Lastly, the act of developing data-sharing relationships can be analyzed through Contextual

Integrity (CI) by Nissenbaum [228], a framework for evaluating appropriate information �ows. CI

employs a notion of “appropriate data �ows” as privacy, where a descriptive (pre-existing) setup

can be analyzed and improved upon with a normative (ethical) �ow. We take inspiration from CI

to analyze a system of data-�ows, simpli�ed to those underlying machine learning development,

and focus on grounding concrete technical issues.

This thesis adopts an empowering outlook for machine learning: the language of privacy can

be expressed in the three-actor model such that computer scientists can readily understand and

identify issues created by ML development, and make e�ective progress towards solving them.

2.6.5 Conclusion

This section set forth a privacy conceptualization in machine learning that underpins the thesis,

and o�ers preliminary de�nitions for our problem setup. Observing incentive conundrums that

are systemic and predictable in machine learning development, a three-actor model is described.

Under this isolation, this thesis describes privacy tensions arising between them as a motivation

to model emerging incentive challenges. Lastly, we contrast this novel concept of privacy with

existing de�nitions. Motivated by building a sustainable future of healthy data ecosystems, my

works are embedded in areas where practical secure technologies can be applied to great e�ect:

towards solving incentives issues between data owners, model owners, and overseers.
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3 | PrivacyML: Building Blocks for

Privacy for Machine Learning

3.1 Chapter Overview

This chapter aims to achieve two goals: introducing the concepts, denoted as PrivacyML, for the

machine learning privacy methods used in the following chapters [320; 78; 106]. It also provides

references and discussions of implementation limitations regarding the state of the art of secure

technologies in the context of machine learning.

Previously, Chapter 1 introduced the problem where a system’s inputs, such as training data,

must remain private. Section 3.2 introduces the notion of input-privacy, setting forth methods

on secure computation for machine learning.

As a preliminary, included in this chapter are introductory primers for homomorphic encryp-

tion (Section 3.3) and secure multiparty computation (Section 3.4). Particularly, to engineer secure

computation for machine learning, Section 3.5 walks through speci�c examples. Section 3.6 out-

lines other speci�c techniques towards privacy protection for machine learning. Together, these

methods form the building blocks of PrivacyML. Notations are collected in Table 3.1.
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Notation English Description

F Function

◦ Operation

X Kronecker delta

 Number of Data Owners

D"$ Model Owner’s Data

D�$ Data Owner’s Data

Dtr Training Data

Dte Test Data

Da Additional Training Data

M Trained Model

Enc Encryption Function

Dec Decryption Function

keygen Key Generation

?: Public Key

B: Secret Key

?:∗ Common Public Key

B:∗ Common Secret Key

2C Ciphertext / Cyphertext

?C Plaintext / Clear text

n Privacy Parameter

� Gradient Clipping Threshold

= Approximation Rounds

@(·) Polynomial

N Gaussian Distribution

Table 3.1: Summary of symbols in secure computation primer.
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3.2 Introduction: Privacy for Machine Learning

Imagine an ideal system that takes inputs G from distinct entities �, �, . . . , which computes and

reveals a scalar output F (G�, G�, . . . ), while keeping the input data perfectly secret. If a malicious

actor compromises any of the entities, they would not learn more about other entities’ inputs (any

more than the result itself). In computing on private data for machine learning across model

owner and data owner, a desideratum arises:

F (D"$ ,D�$ ) = F ({Dtr, \,Dte},D [8]a ) (Desideratum for Share(MO,DO))

where F is a data appraisal function to facilitate data sharing between the model owner and the

data owner, illustrated in Figure 3.1. In Equation Desideratum for Share(MO,DO), all the data

should be private throughout the computations, including training data Dtr, testing data Dte,

and model parameters \ for the model owner, as de�ned in Chapter 2.

More generally, an ideal system computes F (G"$ , G�$ , G$( ) for inputs from "$,�$,$( and

would not reveal to any other party the underlying data.

Figure 3.1: A Privacy Desideratum for Machine Learning, Illustrated. Performing joint computation
F on data owned by a model owner (MO) and a data owner (DO), in order to facilitate data sharing
Share("$,�$) in Section 2.3. Ideally, each entity does not reveal their data throughout the computation.

Input- vs. Output- Privacy Prior works identify two privacy protection philosophies [67; 44]:

1. Input Privacy, relating to input security [59], describes preserving privacy through se-
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curing the input to a system, typi�ed by cryptographic methods. This is considered especially

relevant when the input cannot be shared.

2. Output Privacy focuses on the output of a system. “Output-private” methods, such as

di�erential privacy [90], improve the system such that the output does not reveal excessive infor-

mation about the input (e.g. by controlling privacy leakage). Critically, the output is assumed

released.

While the philosophies appear symmetric, their associated methods are not directly compara-

ble. As this chapter will later lay out, secure and con�dential computation (Input Privacy) o�ers

the guarantee that no additional information is leaked outside the intended output throughout the

computation – a cryptographically-protected guarantee – whereas di�erential privacy (Output

Privacy) quanti�es privacy loss.

Yet, these philosophies are not exclusive. Di�erential privacy can strengthen privacy protec-

tion for a federated learning system (Section 3.6.1) [321], or synthesize privacy-preserving inputs

to a learning system (Section 3.6.3) [153; 322]. Conversely, they can also compete: Chapter 6

compares auditing private models with releasing di�erentially private models, �nding the utility

and fairness trade-o� of the latter to be undesirable for medical applications. Table B.1 attempts

a taxonomy, though it should be noted that not all techniques �t cleanly into this dichotomy.

Tackling Collaboration Bottleneck with Input-Privacy Among the two philosophies,

input privacy has clear bene�ts for fostering collaboration: by de�nition, sensitive data is pro-

tected at the source. Where participation may be stalled without the guarantee, this assurance

may lead to better trust towards solving incentive conundrums (See Appendix B.1 for further dis-

cussion). We now introduce input-private methods leveraged in this thesis for machine learning.
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3.2.1 Machine Learning with Secure and Confidential Computation

As an example, consider the appraisal function 5 (·) from Section 2.4, which requires input from

both data owner’s data D�$ = Da and model owner’s data D"$ = {Dtr,Dte, \̂ }. In an ideal

two-party private appraisal, both parties jointly evaluate 5 (·) on their combined data without

revealing that data – including model parameters \ or any intermediate values computed dur-

ing the function evaluation (Desideratum for Share(MO,DO)). Let Enc(·) be a generic encoding

function with its inverse decoding given by Dec(·). The private function 5priv(·) performs 5 (·)

(in private) such that:

5 (D"$ ,D�$ ) = Dec(5priv(Enc(D"$ ), Enc(D�$ ))) .

Secure and Con�dential Computation describes cryptographic techniques that ensure in-

formation to be private during a computation. In a simple two-party setup, this “input-private”

abstraction allows for joint computation, ◦, on disparate inputs � and �. This could be achieved

using an encoding/encrypting scheme, Enc(·), such that

Enc(�) ◦ Enc(�) = Enc(� ◦ �), (Homomorphism)

The inverse function, Enc−1(·), is assumed for the eventual output, so Enc−1(� ◦ �) = � ◦ �.

Given a semi-honest threat model (Section 2.4) where parties are motivated to jointly com-

pute on each party’s privately-held data. Two main approaches �t the requirement: Fully Ho-

momorphic Encryption (FHE) and Multiparty Computation (MPC).

Discussion: Why Not Make Machine Learning “Incognito”? While a fully private

machine learning development with FHE/SMPC can ensure privacy, its practical deployment re-

mains challenging. Optimizing a model in private hinders visibility of the training curve, which
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Figure 3.2: In Secure Machine Learning, Preset Hyperparameters A�ect Utility and Computa-
tional Overhead. When fine-tuning in private to acquire additional data, i.e., re-training a�er folding in
Da, hyperparameters that result in high utility (Beige) tend to be computationally expensive (Red).
Top: data appraisal correlation with ground truth plaintext training, with respect to di�erent pre-set
batch size and epoch (d , higher is be�er). Bo�om: convergence in log-steps (log SGD steps, smaller is
more e�icient). Experiments are run on MNIST under secure SGD using CrypTen [164].

current machine learning work�ows require for close monitoring, often with humans in the loop

making adjustments. As illustrated in Figure 3.2, hyperparameter choice can a�ect not only com-

putational cost, but also the accuracy of private training. Lacking the transparency of plaintext

machine learning, training parameters may be complex to tune, a�ecting downstream behavior.

Our work, in contrast, does not rely on private training to stably produce the �nal machine

learningmodel. Instead, when private training is used (Chapter 4 as a baseline and for our method,

and as an intermediary step in Chapter 5), it is used to more accurately gauge dataset utility with-

out dictating the downstream model behavior. In data-sharing setups, once the data is exchanged,

the training environment is no longer limited to encrypted settings.

General usability problems with using private computation for machine learning are well-

documented [334; 180; 329]. Existing work touch on cryptographic primitive design, managing
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computational overhead, and closing the expertise gap. Our work extends the discussion to tack-

ling the interfacing of ML optimisation and security engineering, when applying existing secure

techniques to novel ML workloads, with concrete engineering challenges and limitations detailed.
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3.3 Homomorphic Encryption

Using con�dential computation for machine learning is an active area of research. Chapter 6 de-

scribes auditing hospital using Homomorphic Encryption (HE) [78], proposing multiple hospitals

to participate via Threshold-FHE [14] in a homomorphically encrypted computation (Desidera-

tum for Share(MO,DO)). Since then, homomorphic encryption has become a prominent approach

for enabling other medical applications, such as for precision medicine [104] and on GWAS

data [29; 66]. However, even today, Threshold FHE is not implemented in common FHE li-

braries [127; 7]. Instead of presenting underlying schemas, this section lays out minimal pre-

liminaries for understanding homomorphic encryption from a machine learning perspective.

State of the Art of Pure FHE for ML FHE can support large models in parameter count,

but needs signi�cant approximation and can incur large computational overhead. For example,

ConcreteML [329], a current leading FHE library that supports large scale machine learning tasks

such as transformer inference, requires signi�cant quantization (16bits). It allows �ne-tuning on

an 8 billion parameter model (LLAMA [292]).1 When tested on a MacBook Pro, training on 4

examples took 1 Hour, 28 Minutes, and 41 Seconds on CPU. 2

Our Contribution : Departing from applying FHE to general ML training or �netuning, our

work in Chapter 6 [78] paves a novel algorithmic use of FHE: for the practical (and compute-

e�cient) external auditing of “machine learning fairness” [24] in hospital data, after a model

in use. On ConcreteML, over 14 hospitals, a reimplementation of our fairness metric takes 79

seconds to complete on an 2022 MacBook Pro, which is practical for real-world uses.
1Note that the weights to update, per LoRA [138], are "in the clear". This means that 0.12% of the weights are not

encrypted.
2For comparison, in 2014, [36] spent milliseconds to a few seconds per inference for hyperplane decision trees

in private. In 2016, cryptonets [112], a single prediction took 250 seconds to complete (however, the same process
can make 4096 predictions simultaneously) on MNIST.
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3.3.1 Homomorphic Encryption, An Informal Primer

Originally formalized by Gentry [108] in 2009, Fully Homomorphic Encryption (FHE) sup-

ports both addition and multiplication on encrypted data. Mature FHE schemes, such as BGV [42;

41] and BFV [96], tend to share similar interfaces. Notably, each scheme includes a keygen pro-

cess that takes user-selected parameters to generate keys, akin to generating a password that

allows certain operations on encrypted data (where the results can be decrypted). The set of keys

is used to encrypt the data.

KeyGen Function In the example computation, BGV/BFV scheme would follow keygen, which

produces public key ?: , secret key B: . It takes in security parameters =, ?, @, noted in Table 3.2.

This following procedure is a simpli�cation:

?:, B: ← keygen(=, ?, @)

Dec((Enc(?:, G1) + Enc(?:, G2)) × Enc(?:, G3)) = (G1 + G2) × G3

(3.1)

Informally, encoding, as opposed to encrypting, includes data transformations performed lo-

cally in plaintext prior to encryption. This “data encoding” is common in FHE literature, which

may include formatting data once = is given. These encoding operations are not cryptographi-

cally secure, yet happen within each party pre-encryption, therefore private to other parties. We

assume that the inputs {x} have been transformed. Outputs are also decoded after decryption.

For single-party scenarios, the keygen step can be symmetric where a secret key is used di-

rectly, or asymmetric like a “public-key encryption” where a secret key generates public keys

[82]. After keygen, data encrypted with these keys now supports homomorphic operations like

addition, subtraction, multiplication, and unitary operations like negation and rotation. A scheme

that allows both addition and multiplication is called fully homomorphic. Additional operations

may be supported, depending on the scheme. To manage deep circuits, an evaluation key is typi-
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cally generated during keygen to keep track of relevant data.

When multiple parties are involved, as described in Desideratum for Share(MO,DO), each

party aims to encrypt its input in FHE and perform computations on their combined data without

revealing the inputs. Yet, key sharing across di�erent parties is clearly not ideal, as it compromises

privacy.

Addition and Multiplication Suppose we want to compute (G1+G2)×G3. Under the principle

of homomorphism, we want to have an encoding that also allows for operations, like addition and

multiplication, to run on encrypted data. We want the homomorphism of

Dec((Enc(G1) + Enc(G2)) × Enc(G3)) = (G1 + G2) × G3 (3.2)

3.3.2 Distributed FHE For Multiple Parties

Threshold FHE emerges as the most suitable solution for this setup. The main intuition by

Asharov et al. [14] is the keygen function (in common setups) being homomorphic under sum-

mation:

(?:∗, B:∗) =
∑
8

(?:8, B:8) (Key Homomorphism (based on BGV))

This enables a design where each party broadcasts its own public-key, ?:8 . If all parties are

honest, the sum can be computed as ?:∗ =
∑
8 ?:8 , yielding a common public key. Observe that

now each party holds their own secret key, which sums up to the common secret key! Moreover,

if each party decrypts a ciphertext 2 under ?:∗ with its own secret key, the partially decrypted

messages sum up to the complete message. If this over-simplistic system worked, we would have

an e�cient distributed key generation!

Necessary Adjustments In practice, distributed key generation requires signi�cant adjust-

ments. "Smudging" with noise ensures security of key generation; otherwise, a few B:8 ’s can
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BFV Parameter Description

n Ciphertext Dimension
p Plaintext Modulus
q (Maximal) Ciphertext Modulus

CKKS Parameter Description

n Ciphertext Dimension
f Fractional Bits
q (Maximal) Ciphertext Modulus

Table 3.2: Security Parameters Overview. Le�, BFV [96]: = roughly relates to the length of the
integer input, ? needs to be large if the input is high precision, and @ needs to be large to accommodate
computation. Right, CKKS [62]: =, @ are the same as BFV’s. 5 corresponds to the desired accuracy of
the computation, and can be adjusted in a “rescaling” procedure; large 5 increases accuracy.

reveal the message. Bootstrapping, an expensive re-evaluation operation in the encrypted set-

ting, is additionally required. In our work engineering an FHE-friendly function in Section 6.4,

bootstrapping is undesirable thus avoided.

3.3.3 Engineering Paths

Notably, engineering FHE for machine learning computation is a nascent �eld. At the time of my

work in [78] described in Chapter 6, however, BGV had not been implemented in SEAL [60]. For-

tunately, relatively mature FHE schemes, including BFV, BGV, and CKKS, are now implemented

in many libraries [60; 7; 64]. However, these schemes require users to assign parameters (BFV and

CKKS in Table 3.2), similar to C++ �ag values or “slurm run” parameters. The security param-

eters decide program suitability for the hardness of the underlying cryptography. Additionally,

performance engineering is crucial due to bit-limits. This section gives guiding principles for

practitioners of machine learning to get started in programming FHE.

Choosing FHE Schemes Scheme selection is challenging by itself, akin to model selection in

machine learning3. It involves science, design, and heuristics. Ciphertext space sensitive to the

depth of the computational circuit [114]. Thus, iterative programs can be memory-intensive, po-

tentially causing issues with small batch sizes without any gradient clipping and normalizations.

CKKS [62] is designed for numerical data with some precision loss, which is bene�cial for ML op-
3That is, before transformer-based architectures ushered us into the era of “foundational models”.
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erations like "0C"D; . Empirically, some data and computation tolerate over�ow and under�ow;

or, some functions can be re-written to avoid precision loss in CKKS by doing fewer iterations

without altering behavior.

Parallel Over Seqential Even for simple plaintext computations, FHE ML programs push

computational limits. Nevertheless, parallelization is “free” in FHE, as it does not increase circuit

depth, meaning it scales according to the expectation of its plaintext computation when paral-

lelized [175]. In Chapter 6, histogram aggregation takes advantage of parallel operations which

scales to multiple hospitals, while decreasing the computation depth of naive implementations,

allowing the fairness computation to be practical (1 minute 19 seconds on a laptop).

Parameter Selection Parameter selection for a given scheme is a systems design problem.

Small choices could change a program’s computability, given bit-limited systems. This is analo-

gous to a model training at its memory limit: small tweaks would over�ow memory, cause the

program to stall or crash, or result in unde�ned behaviors. Oftentimes, without understanding

the scheme, a lookup table is needed [174]. These lookup tables have been recommended, and

henceforth proposed, as part of homomorphic encryption standardization [174; 9]4.

For our 2019 work in Chapter 6, we utilized the “automatic” parameter selection function

available in SEAL (See Section 8 in [60]). For programmer-supplied summaries about the function

and desired security level, it suggested potential sets of parameters for given user-supplied sum-

maries about the function. Even by 2022, this process remained di�cult for enterprise users [261].

Framework Considerations and Future Work Of the many FHE frameworks, HElib [128;

127] and OpenFHE [8] focus on supporting a diverse variety of FHE schemes, while SEAL [60],

and ConcreteML [329] have stronger design goals to support general machine learning with FHE.

To develop the auditing framework in Chapter 6 [78], we used SEAL in 2019 because it was
4See page 18 in [57] for recommended parameter tables.
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available. At the time, automatic parameter selection was available but encryption schemes like

BGV were not fully available5. In 2025, ConcreteML is additionally used to benchmark the fairness

algorithms, because it readily supports more deep learning operations with code examples, which

we also discuss in Chapter 6. While OpenFHE provides extensive support for cryptographic

primitives, its focus on machine learning is less intense, with only bare-bones support for logistic

regression (i.e., as an educational code example) [7]. Nevertheless, it has the potential to support

more in the future, enabling richer computations for machine learning workloads.

One limitation is that current FHE for ML frameworks can guide parameter selections, yet

not fully automate them. For example, Zama’s ConcreteML chooses parameters based on user-

selected strategies at compile time, which is more streamlined than the programmer choosing

from a menu. Yet, distilling the computation’s properties is not generally realistic to application

programmers without assuming strong algorithmic understanding. Notably, in machine learning,

frameworks like TensorFlow [1] and XLA [257] take care of graph-building and �gure out the

correct compile parameters to support the computation, at the cost of expecting more from the

programmer to understand the concept of “data�ow graphs”. This points to a future design where

computational graphs for FHE are integrated with security settings at the compiler level.

Engineering Maturity Programming FHE still requires signi�cantly domain expertise and

collaboration with cryptographers, as the level of required knowledge exceeds that of most ma-

chine learning researchers [180]. This is starkly contrasted with deep learning, where PyTorch

programs have numerous runnable examples. Existing machine learning code in FHE tends to be

one-o� and research-based [36; 66]. This lack of infrastructure hinders protocol-level program-

ming, as its security is hard to guarantee. Our work relies on framework correctness for security

and privacy, and numerically veri�es input-output consistency between encrypted and plaintext

operations for correctness.
5until HElib itself was integrated into SEAL through a collaborative e�ort [211]
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Why Not Move Machine Learning to FHE? Deploying FHE for machine learning, especially

at scale, is an active area of research (e.g., [180]). Large models often require aggressive quantiza-

tion [329], and potential adversarial scenarios can complicate operations, such as for SEAL [242]

and CKKS [62]. Speci�c to machine learning use cases in SEAL, Li and Micciancio [184] notes that

an adversary obtaining some results may compromise encryption. Nevertheless, FHE’s strong se-

curity guarantee is highly appealing and holds great promise for ML. This thesis contributes to a

use of FHE in ML in Chapter 6 by exclusively examining machine learning model inputs and out-

puts, taking advantage of FHE’s security guarantees without incurring approximations in model

training or inference.

3.3.4 Situating Our Contribution: Hospital Fairness Auditing

Instead of applying FHE to ML training and �netuning, our work in Chapter 6 [78] paves a novel

algorithmic application: leveraging FHE for the practical (and compute-e�cient) external au-

diting of “machine learning fairness” [24] in hospital data, after a machine learning model is

deployed in use. This responded to the anticipated need for oversight of discriminatory practices

in proprietary models [99]. Unlike Kilbertus et al. [161]’s MPC-based machine learning fairness

certi�cation that required private training, our proposal enabled post-deployment, external ML

fairness audits using FHE, which was not available at the time of the proposal.

Our contribution lies in providing conceptual feasibility for FHE to be practical for machine

learning use cases, and for the algorithmic descriptions for continuous and real-time private ML

fairness audits, distinct from the exploratory and aggregate data analyses suggested by contem-

poraneous FHE works [262; 103; 105].

Recently, Park et al. [237] subsumed our working by developing a comprehensive con�dential

computation stacks for fairness auditing,
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3.4 Secure Multi-party Computation (MPC)

Secure Multi-party Computation (S-MPC) or MPC [324; 264; 59] allows two or more parties

to compute a function over private inputs, without revealing information other than the �nal

output. This section frames our contribution and introduces key concepts for understanding

MPC in a machine learning context.

Our Contribution This thesis connects data sharing conundrum to data appraisal problem,

and solves it with secure computation. In doing so, it presents the �rst private implementations of

any in�uence function (Equation Forward In�uence Function) and a dataset divergence measure

KLXY (Equation KL-XY Score) leveraging MPC. Both are novel dataset utility measures that can

be used for assessing the value of additional training data. In data-sensitive domains, our work’s

main impact is the addition of privacy, without which collaborations become stalled. Enabling

dataset utility to be assessed in private fosters collaboration where privacy is highly valued.

3.4.1 Multiparty Computation for Machine Learning

Our Abstraction In this thesis, data is disparately-owned, and we describe overall MPC sys-

tem is described in a simple “two-party” setting, meaning that two parties are involved in one

collaborative computation. As already put forth in Section 2.5.2, both parties are aware of the

scalar function and each side’s data types. The MPC system focuses on machine learning:

1. Preprocessing. Each party preprocesses their data, such as the machine learning model or

training set. This preprocessing may include but not limited to transforming their inputs

to reformat, normalize or scale, “encrypting” the computation [324], or breaking the data

into shares Shamir [264], before sending it externally.

2. Computing. The data is exchanged (after secure transformation) and computed on, but
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never revealed to each party until completion. This guarantees that intermediate exchanges

of data, if any, do not reveal information about the other party’s data throughout the com-

putation. Under the hood, cryptographically-secure protocols are employed, ensuring the

security of the computation, which may include homomorphic encryption (Section 3.3).

3. “Decrypting”. Assuming that the computation successfully completes, then the result –

and only the result – is revealed. Broadly speaking, it includes securely reconstructing

inputs [264; 114]. Thus, no data additional to the output is shared.

While simplistic, this abstraction recognizes the key demarcation between the di�erent play-

ers in machine learning, as put forth in our three-party privacy thesis (Chapter 2.4). The friction

between them, re�ected in data sharing tension, is directly addressed with MPC guarantees.

Necessary for Machine Learning: Approximated Schemes Machine learning operations

that are non-linear are approximated to adapt to MPC while maintaining performance. One ex-

ample is the exponential function used in SoftMax [32]. By default, it is implemented via

4G = lim
=→∞
(1 + G

2=
)2=, (MPC Exponentials)

Reciprocals are also approximated, Knott et al. [164] uses the Newton’s method [327]:

1
G
= lim
=→∞

~= = ~=−1(2 − G~=−1), (MPC Reciprocals)

for ~0 set to 3
√
4/4G + 0.003. As = increases, these operations are more accurate, but less e�cient.

Typically, = = 8 [164] as the default approximation.

Computational Overhead in ML with MPC MPC takes advantage of distributed data but

may incur communication rounds. In cross-silo setups where the participants are geographi-

cally far, communication costs can dominate. One example is ReLU(G) = G · I(G > 0). Typ-
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ically, the comparison “>” requires two roundtrips6. Henceforth, ReLU is often approximated

with GeLU [132] due to ReLU approximation’s unfavorable communication-accuracy tradeo�.

The runtime of an algorithm is also a crucial metric, because the MPC version of a program

runs di�erently than its plaintext version. This is usually traded o� against approximation accu-

racies. For example, in a 12-layer transformer, softmax function and takes up > 50% of runtime

for each inference while GeLUs [132] take up about 23% [164; 186; 199].

Though our experiments do not pertain to transformers, similar performance engineering

principles apply given the shared computational constraints. GeLU optimisation, for example, can

preserve the private model‘s performance with less runtime by reducing the number of rounds of

communication (but cannot improve overall performance). Later, Section 3.5 describes a similar

optimisation, where in�uence approximations bypass expensive round trips from private train-

ing, resulting in runtime improvements at scale, which we will expand on in Chapter 4.

Relationship With Homomorphic Encryption Multiparty computation has a rich history and

is thus the umbrella term for distributed secure computations [324; 264; 115; 114; 14; 17], includ-

ing distributed homomorphic encryption. In MPC, some computation can leverage data that is

local7. Many components under MPC are made with HE protocols, such as matrix multiplication

in transformers [197]; as a result, pure HE researches results often contribute to MPC, such as

improving round-e�ciency [233].

Comparing with the State of the Art As machine learning models scale, MPC technology

is also rapidly improving, albeit with a large computational overhead.

When performing inference on large transformer-based models, a LLAMA 7B [292] model

takes 5 minutes to generate 1 token in 2023, under the goal of not incurring any model accuracy
6Via the "binary share to additive share" conversion, which takes two rounds of communication.
7As a result, when data is already at di�erent parties to begin with, some MPC schemes such as secret-

sharing [264] can be more performant than pure distributed-FHE methods that are not interactive i.e., when the
data is encrypted once and sent for remote computation.
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drop [85]. When a small accuracy drop is allowed, the overhead is much reduced. CrypTen [164]

inference used to take 71 seconds on BERTbase in 2021. By 2023 and 2024, this number decreased

to just 19 seconds [199; 186], with a small drop in model accuracy compared to plaintext models8.

However, arranging a data collaboration to build large models increasingly requires a high budget,

and is often thwarted by the need to maintain data privacy.

Instead of using MPC to perform training or inference, this thesis proposes using privacy as

a direct incentive towards data sharing, similar to Azar et al. [17]; Zheng et al. [333]’s work in

instrumentalizing privacy to enable data collaboration, our approach specialize in solving the

data acquisition problem in modern machine learning. Our specialization paves way to increase

the amount of (agreed upon) data collected while respecting privacy, without the mandate to

scale private training in accordance with non-private state of the art. So although our work does

not focus on serving transformer models, our methods readily accommodate di�erent types of

data machine learning will require.

Our novel use of machine learning optimization in MPC does not engage or compete directly

with private training (or inference). Nevertheless, it stands to bene�t from the performance gains

developed for them (e.g., activation function approximation by Mohassel and Zhang [215] speeds

up the logistic model in Chapter 5’s method), while contributing to better data-sharing ecosystem.

In particular, Chapter 4 uses private training as a baseline, which our method outperforms9, while

Chapter 5 uses private training as an intermediary step which can be sped up.

In summary, as larger and larger models become practical in MPC, so does the appli-

cability of dataset utility measures.

8When run on 3 Tesla V100 servers with a 10GB/s bandwidth On BERTlarge and BERTbase, MPC versions of the
model drops in accuracy by about 5% with due to SoftMax approximations (Table 2, 3 in [199]).

9The performance lag of private training is due to the sequential nature of training, which is likely incorrigible
through faster training.
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3.5 Engineering Secure Computation, In Detail

Influence Functions with MPC Recall the in�uence formulation presented in Section 2.4.

I(Da) = −N−1
\̂

∑
(x,~)∈Da

∇\!(x, ~, \̂ ), (Forward In�uence Functions)

In Chapter 4, it is applied to appraise the value of additional training data, with respect to the

Model Owner’s existing model and data.

5if(Da) = −
1

|Da | · |Dte |
∑

(xte,~te)∈Dte

∑
(x,~)∈Da

∇\!(xte, ~te; \̂ )>N−1
\̂
∇\!(x, ~; \̂ ).

In the summand, separate the di�erent roles

∇\!(xte, ~te; \̂ )>N−1
\̂︸                    ︷︷                    ︸

Model Owners

∇\!( x, ~︸︷︷︸
DO

;

MO︷︸︸︷
\̂ ). (Data Ownership)

Notice that the Hessian inverse is computable entirely on Model Owner’s data. Avoiding pri-

vate computation is signi�cantly cheaper than joint computations in MPC. This insight leads to

rewriting

5if(Da) = −
1

|Da | · |Dte |
∑

(xte,~te)∈Dte

∇\!(xte, ~te; \̂ )>N−1
\̂︸                                  ︷︷                                  ︸

Plaintext Computation (MO)

©­«
∑
(x,~)∈Da

∇\!(x, ~; \̂ )ª®¬︸                      ︷︷                      ︸
Joint Computation︸                                                                 ︷︷                                                                 ︸

Joint Computation

.

This separation limits the secure computation round trips and overhead, and forms the basis of

our runtime gain of in�uence-based appraisals.

Numerically, it is also a lot more stable than computing Hessian inverses in private. This

46



approach is contrasted with naively doing model training in MPC. In private training, each SGD

step requires a joint computation, where the batch data and models are owned by separate parties.

This leads to necessary MPC overhead, seen on the bottom of Figure 3.2. Furthermore, method

accuracy interacts with hyperparameters (See Figure 3.2 top).

3.5.1 Explaining the Efficacy of Influence-Based Appraisal in MPC

In�uence functions are particularly suited for MPC, for two key properties: computational ef-

�ciency and numerical stability. First, it evades the most expensive computation (empirical

Hessian inverse N−1
\̂

), which can be done in plaintext exclusively by one party (Model Owner),

thus ‘saving’ on private computation, as Equation Data Ownership shows. Second, it evades the

numerical instability and high runtime cost of sequential training loops10.

In terms of adverse downstream impact, “adding” privacy to in�uence functions does not trade

o� its accuracy. Equation 3.5 requires only a few private operations that are known to be stable –

primarily encrypting/decrypting, taking the gradient of a model, and performing one matrix mul-

tiplication on an entire batch of data – while side-stepping the thorny issues of hyperparameter

selection by having no extra parameters to tune. In contrast, private training becomes susceptible

to yielding more approximate results under di�erent hyperparameter selections (Figure 3.2).

Direct Comparison with Private Training Though private training more closely mirrors

what we desire in plaintext, merely introducing privacy by emulating model training with private

computation hurts its utility through two veins: 1. by obscuring the training process, thus adding

uncertainty, and 2. by requiring sequentially approximating numerical operations. By being

better-suited for MPC, in�uence-based appraisal consistently outperforms private training-based

appraisal, as Chapter 4 presents in Table 4.1.
10This is required of private training followed by private test loss di�erence in our baseline method called

Finetuning-based Appraisal in Chapter 4.
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Gap and Opportunity Theoretically all computations can be MPC [115], yet, constructing a

performant implementation is nontrivial. No MPC production-scale library in Health ML is dom-

inant — existing frameworks, including ours, are research-based [66]. One engineering hurdle of

using MPC frameworks is the di�culty of secure computation engineering [215; 157; 333], com-

pounded in our works in Chapter 4 and Chapter 5 with machine learning engineering. Yet, engi-

neered MPC programs can be easily deployed. Even small organizations can deploy MPC without

any specialized hardware e.g., secure enclaves. Thus, the algorithms developed and shared in our

works can be readily deployed by small organizations today using a laptop computer.

3.5.2 Choosing CrypTen For Private Data Appraisal

When privacy is paramount, secure computation frameworks guarantee provable security of their

underlying implementations. This leaves algorithmic design and performance engineering as

primary concerns for implementing machine learning tasks. However, compared to standard

machine learning systems like PyTorch [239], multiparty computation frameworks tend to be

slow to develop [215; 56; 254; 277; 157; 164; 333]. Pre-existing MPC frameworks, such as MP-

SPDZ [157] which had just emerged at the time of my work [320], lacked deep learning support11.

Though CrypTen [164] was still under development, it was chosen for its support of machine

learning-related operations, such as gradient descent over �oats, while maintaining closeness

with PyTorch in both interface and implementation structure. This developmental path was key

to its relative ease-of-use, as the coding mimics that of machine learning development itself.

Further, it o�ers an ease of transitioning from training a model (in plain text) to appraising data

with the model (in MPC), as posited in our setup in Chapter 4, because trained plaintext PyTorch

models can be readily encrypted.

My work realized a novel use case for MPC for ML, which uses in�uence functions to appraise
11Deep learning support refers to performing model training (as opposed to just inference), and using GPUs. See

Table 1 in [Knott et al.] for the state of MPC frameworks in 2021.
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the relative bene�ts of unseen data before collaboration. Additionally, it was the �rst forward

in�uence function implementation in MPC. Since then, the CrypTen framework was released as

a pure research library, sparking later works [199]. Following this vein, our more recent work

detailed in Chapter 5, which proposes the �rst dataset-to-dataset divergence-based evaluation in

MPC, is implemented using CrypTen [106].

3.5.3 Machine Learning Engineering Discussions

Engineering Maturity MPC computations require careful engineering, as naive implemen-

tations take days or run out of memory [133; 36]. CrypTen [164], once an early research e�ort

at the time of my work in Chapter 4 [320], has been increasingly leveraged for its basic ML

functionalities e.g., SGD, ReLU approximations. Currently, programs using CrypTen face some

key engineering hurdles: 1. Precision con�gurations and normalizations (to avoid blow-ups and

under�ows), 2. Error control and performance engineering for machine learning in bit-limited

space, and 3. Debugging private computations and hyperparameter tuning. These key challenges

mean engineering machine learning work�ows in private faces di�erent challenges as machine

learning engineering in plaintext. For example, in plaintext, the Forward In�uence Function is

considered expensive and memory-intensive. Yet it gains an advantage in private, as it requires

no hyperparameter tuning, while not requiring many sequential operations. Its memory intensity

stays, but this plaintext component becomes relatively inexpensive.

Approximations and Experimental Design MPC Tensor Encoding [164] introduces �oating

point di�erences between encrypted and plaintext computations, potentially a�ecting results.

For example, the parameters from SGD may be rather di�erent between plaintext and encrypted

models, as it is a separate training process, where each iteration slightly di�ers, even if the batches

of data and their random seeds are �xed. Therefore, any MPC program in machine learning needs

to assure consistency, where the plaintext function and the encrypted function match.
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Research Trends for MPC and Machine Learning Our work uniquely employs machine

learning functionalities in CrypTen for the novel purpose of gauging dataset utility, diverging

from MPC training and inference. We perform private training (logistic regression using SGD)

only as a baseline in Chapter 4, and as an intermediate step in Chapter 5. Since [320], the �eld

of MPC for ML has seen major gains, especially for 2party (2PC) inference [141; 251; 250], with a

focus on transformers such as Iron [130] and Bolt [233].

CrypTen’s relatively mature framework and its associated developmental ecosystem foster

rapid research, as new directions can be easily tested. For example, recent works on engineering

transformer-based models in MPC have optimized [85] and modi�ed [199; 186] speci�c opera-

tions, and incorporated distillation [186], largely relying on CrypTen as the “MPC security en-

gine”. Our most recent work in Chapter 5 follows this rapid iteration on CrypTen’s �exibility

for private dataset divergence measurements, tailored for data-limited sensitive domains. Ap-

pendix B.3 details recent trends in MPC for ML.

3.5.4 Parting Thoughts On Secure Computation for Practical Systems

Cryptographic techniques like hashing and encryption are likely signi�cant, because they can

overturn the underlying asymmetry in the world where small players like the data owners may

not have much leverage to negotiate against bigger players like technology companies.

Within machine learning, con�dential and secure computation generally preserves, rather

than approximates, the output. In contrast, di�erentially private training lowers accuracy (Sec 3.6.2),

while federated learning (Sec 3.6.1) alters the model behavior for enhanced privacy. However,

FHE and SMPC are not magic bullets that solve all con�dentiality problems. Embedding machine

learning in systems that require strong data security assurances, these techniques should be prac-

tised in tandem with complementary privacy-enhancing features, such as di�erential privacy and

federated learning, secure systems solutions like veri�ed hardware and secure enclave, and data

security measures like strong passwords, access control lists, and logging.
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3.5.5 Summary

1. Fully-homomorphic Encryption (FHE) supports addition and multiplication to be com-

puted on encrypted input. While FHE is the gold standard for computing on encrypted data, it

is non-trivial to adapt to modern machine learning due to computational overhead. Work�ow

Challenges. Usual FHE uses lattice-based schemes requires periodic “bootstrapping” (key re-

freshing and re-encrypting with lower noise terms known as “recrypting”), such as using the

CKKS scheme [62]. This adds cryptographic parameters that are di�cult for non-experts to set,

yet nevertheless crucial for e�cient computation. Our work, in contrast, sets up a system that

does not require expert intervention.

2. SecureMulti-partyComputation (S-MPC) [324; 264] allows two or more parties to com-

pute a function over private inputs, without revealing information other than the �nal output.

In practice, the protocol of key exchanges, encryption schemes, and communication ensures that

only encrypted data is transmitted outside its owner’s control. S-MPC grants that once the data

is transformed, it cannot be recovered while computation is happening. Though faster than FHE,

its engineering di�culty and communication overhead may prevent its adoption. Work�ow

Challenges. Traditional private training assumes data is never revealed, hindering model devel-

opment tasks like inspection, monitoring, debugging, and sometimes parameter-tuning, which

often rely on seeing the data. Such a rigid setup for model training is unappealing. Our work, in

contrast, aids model owners with appraisal values computed in private, prior to the exchange of

data, maximizing �exibility (Section 4).
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Figure 3.3: Federated Learning with Data Distribution. Each client owns data, and the server "pools"
their data. Naively, all data is sent to the server. In federated learning, to minimize communication, no
raw data is sent – instead, parameter updates between the server and the clients are sent intermi�ently.
This respects data locality, but still confers information between the parties.

3.6 Privacy-Enhancing Techniqes

To mitigate data-related tension between the three entities, various approaches have been con-

sidered. This section summarizes high-level approaches towards building machine learning with

nontrivial privacy protection, with a deeper focus on discussing Federated Learning (FL) (Sec 3.6.1),

and Di�erential Privacy (DP) (Sec 3.6.2).

3.6.1 Federated Learning (FL).

Since 2016, McMahan et al. [207] sparked a �eld called Federated Learning (FL) [189; 255; 33;

154], which allows siloed data to be computed together in a distributed fashion, often co-designed

with systems facets – communication, speed, bandwidth – as well as optimisation challenges. FL

relates to our work by supporting collaborations, but incurs an optimisation-privacy trade-o�.

For optimisation, [207] belongs to the class of data-pooling methods which entrust each

"client" to compute a local model, whose gradients are updated regularly in a trusted central

server. Though federated learning has the potential to utilize more data, achieving optimal re-

sults through combining local models may be challenging. The obvious drawback, as [189] notes
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and [252] theorizes, is that when the data is very heterogeneous, just pooling more data might

not help with overall optimisation.

Privacy gain is a bit complicated, however. In our setup, consider jointly training a model

on additional data {Da}, a trusted third party T , such as a Google service, would execute the

computation without seeing the raw data. In practice, however, the service provider is often

incidentally the model owner, such as Google, for their own products that gather data, such as

Chrome or YouTube12. This means the party from whom the data owners want to be private may

be implementing and orchestrating the very system.

Meaningful, but not Privacy-Preserving A purported privacy bene�t is that FL bypasses

the sending of raw data to the server. That is, only model parameter-relevant information is sent,

keeping sensitive data on device (Figure 3.3). Yet this is a misnomer: privacy is improved, but

not preserved. While FL avoids sharing raw data, it shares critical information, such as gradient

updates, that is nonetheless sensitive.

Privacy Discussion In practice, federated learning utilizes more data for optimizing a shared

model, which strengthens data governance but harms data propriety – each data owner in the fed-

eration does not share data, as is. Because of that, it is sometimes considered "privacy-preserving"

and the future of digital health [255; 266; 31]. However, the federation by itself is vulnerable

against simple attacks that reverse-engineer information about the data, even if the data is not

fully shared [330; 107; 31; 335; 200; 220].

One reason is the inherent di�culty in securing a system with many actors, where traditional

security measures are no longer su�cient [291; 97]. This problem is made worse in machine learn-

ing, as the information shared across, such as gradients or con�dence, are inherently useful to

model inversion attacks [102; 100]. Moreover, where federated learning is used, the data tends
12Notably despite the suboptimal model performance, federated learning is often deployed by model owners, as

the systems gain is meaningful.
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to be heterogeneous, thus potentially “easier” for classi�er-based attacks to identify [332]. Nev-

ertheless, the abstraction itself still represents a huge step forward from arbitrary sharing and

copying raw client data.

Mitigations: Additional Privacy Privacy incentivizes federation [297]. Speci�cally, preserv-

ing privacy between the parties under federated learning requires secure computation methods

– FHE or MPC [295; 34; 279; 66; 104] – combined with di�erential privacy [321; 297; 16], trusted

execution environments [213] – an approach that is coined "Privacy-in-Depth" in [154]. Cross-

siloed federated learning, on the other hand, approaches privacy by getting rid of the assumption

of a trusted third party (server), and has been proposed for medical domains [315; 66].

Our Contribution Performing data appraisal with MPC can be seen as an extension of data

federation, by adding a separate privacy-preserving component before all parties commit to an

entire federated learning system. It is low-commitment, as privacy is preserved by default, and

there is no requirement to continue in any system; it tackles the incentives’ problem blocking

collaboration. By demonstrating utility, the two parties foster trust.

As a systems component, it is �exible, because it can respect every role’s privacy requirement

while avoiding the thorny trade-o� that alters the downstream model’s behavior [320; 106]. My

works complement the line of ambitious systems that incorporate MPC in potential federated

scenarios where the participants are semi-honest [323; 34; 66].

Future Work Relating to solving incentives problems in federated learning that includes both

input- and output-privacy, Collaborative Machine Learning (CML) [139; 298] emerged as an area

of active research. Notably, because the appraisal stage is a separate component, it is adaptable to-

wards many future pre-commitment setups. Pre-commitment represents a di�erent threat model

than the model training itself, because after trust is fostered, the threat model may shift, and some

prior mistrust may evaporate (or intensify).
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3.6.2 Differential Privacy (DP).

While secure computation in Section 3 protects privacy via input privacy, Di�erential Privacy

preserves privacy of the output. Let privacy budget n, X > 0, local di�erential privacy is de�ned

for an algorithm or modelM, on datasets �1 and �2 which di�er by 1 element.

P[M(�1) ∈ (] ≤ 4nP[M(�2) ∈ (] + X ((n , X)-Di�erential Privacy)

where the higher n is, the less privateM is. Here, ( are subsets ofM’s image.

Originally put forth in 2006 by Dwork [90], Di�erential Privacy has moved from mathematics

to real-world systems and deployment. It is an in�uential method that was used in the Census

collection to limit the information shared and in RAPPOR at Google [92; 93].

DP for machine learning Though this thesis mainly uses secure computation, DP algorithms

have mathematical guarantees regarding its privacy leakage, making them narrowly privacy-

preserving (See Table B.1). Intuitively, a learning algorithm with DP-guarantees can limit the

in�uence of an individual training example on the output. For machine learning, a common

approach to transform a learning algorithm into a di�erentially-private algorithm add noise to

the training example, e.g., perturbing the loss [25; 160]. The most popular method, DP-SGD, was

put forth in 2016 [2]. It injects noise at the mini-batch at optimisation time with the intuition of

bounding the weight in�uence on every batch update.

Discussion Sharing data with di�erential privacy preserves privacy to a certain extent, but

has signi�cant drawback in performance in machine learning contexts [2; 301]. Namely, [98]

suggest that a large model relies on duplicate data to learn, and ignores data that is “long-tail” in

terms of frequency. This so-called “privacy-utility trade-o�” is veri�ed in healthcare scenarios

by Suriyakumar et al. [281], leading additionally to a fairness-privacy trade-o� where minority
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groups are disparately impacted.

An additional problem is more subtle: because DP requires meaningful privacy parameters,

which are set by the data collecting party that also trains the models, its actual privacy is thus

hard to audit. Empirically, the �nal product is often not as private as claimed, as in the case with

MacOS [283]. [301] further showed that private prediction often breaks theoretic privacy as-

sumptions. Despite performance hit and their di�culty in auditing, di�erential privacy generally

enhances privacy in many practical scenarios. Local di�erential privacy is widely used in com-

bination with federated learning for distributed devices, such as cell phones, to not collect raw

data on central servers [269; 74]. Additionally, performance does not degrade much, when only

�ne-tuning data is di�erentially private [190; 328]; however, it also su�ers from linkage attacks,

due to data in training not being protected, which may be overlapping with sensitive data [294].

Situating Contributions My works complement DP-based data sharing for machine learn-

ing, as secure computation methods can enable continuous use of encrypted data without need-

ing any access to the raw data, preserving individual privacy like DP, while enabling audits,

appraisals, and evaluations13. My works showcase the potential for secure techniques to ease

incentives tension between the disparate parties and present auditable and performant use cases,

providing additional enhancements, when di�erential privacy falls short in either privacy pro-

tection or incentives.

3.6.3 Other Privacy-Enhancing Techniqes

K-anonymity and Synthetic data. Transforming data into a similar form that desensitizes

certain attributes can be desirable [260; 86; 137; 227; 118; 282]. For example, Ng et al. [222] e�ec-

tively improves out-of-domain generalization with generating synthetic samples from denoising

existing ones and reconstructing them, before augmenting these generated samples into train-
13Potentially, solving these areas can move towards safe sharing of selective raw data, in encrypted formats,

utilized fully for the purpose of better optimization.
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Privacy Mitigations Limitation

Seminal

methods

Framework

Di�erential Privacy dampens
privacy risks in sensitive data

Performance loss, disparate
impact on underrepresented
groups.

DP-SGD [2] OpenDP
Opacus [326]

Federated Learning improves
data governance and increases data

Governance only, not a for-
mal privacy mechanism. Sus-
ceptible to privacy attacks.

FedAvg [207] OpenFL, Flower

Fully-homomorphic Encryp-

tion enables outsourced secure
computation

Compute overhead. Usability.
Bitwidth-limited → Gradient
under�ow.

CKKS [62]
SEAL [60]
ConcreteML [329]

Multi-party Computation al-
lows model and data owners to
work together securely

Communications and com-
pute overhead. Often limited
subset of operations.

secret
sharing
schemes [264]

CrypTen [164]

Trusted Execution Environ-

ment supports isolated secure
computation through hardware +
software

Side channel-attack risks.
Trusting the hardware maker
/ provider.

Con�dential-
VM [188]

OBLV Deploy

Machine Unlearning recti�es
private data from trained model

Conceptually complex; brit-
tle. Risk is a lower bound
(membership inference).

Membership
Inference [270]

Cleverhans[39]
academic
code [225]

Table 3.3: Summary of privacy mitigations for machine learning.
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ing, potentially side-stepping having to collect extensive private data. Yet, to still preserve the

utility of the dataset transformed for analytics or learning tasks is challenging by itself [152].

Additionally, outside the scope of sensitive data that is transformed, little privacy guarantee is

available, leading to re-identi�cation risks [219; 152]. Our works in contrast, allows for sharing

real data, without sacri�cing either privacy or optimization. Additionally, secure computation

can be combined with synthetic data augmentation techniques, where the dataset to be shared is

synthetically generated (but still protected, as it is based on real data), and only gets shared if it

is e�ective for optimization (Chapter 4).

Learning under data encryption. Simply encrypting data for machine learning tasks is in-

su�cient14. Model training often requires human intervention, hindering fully private “black

box” approaches. Additionally, current private computation methods struggle with the complex-

ity and scale of modern models [178].

Data valuation. Though my work can be used to “set a price” on data, it does not formally

deal with pricing as an explicit goal. Many other works aim to price part of training data for

its e�ect to the resulting model [192; 147; 111]. While data valuation can enable equitable data

sharing, Shapley value-based sharing is more suited for data federations where multiple parties

have already contributed – presuming, e�ectively, an existing agreement to collaborate. This does

not necessarily solve sharing incentives where data owners do not want to share before sharing.

My work [320], which uses in�uence functions in the forward direction, estimates the value of

data before sharing occurs.

Data marketplaces describe holistic solutions to data ecosystem issues through a market-

driven approach. This �eld takes into account applicable technologies such as homomorphic
14Traditional data encryption limits the utility of data and locks it down. Here, data encryption refers to the

encryption used in FHE and MPC.
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encryption, multi-party computation, federated learning, and various techniques for incentive-

compatible optimisations [19; 18; 171]. Incentives and markets are indeed related. While it in-

cludes my work on data appraisal under encrypted computation, and is an important application

to the problems we address, it is ultimately out-of-scope for this thesis as we focus on privacy

tensions without prescribing market solutions as necessarily constructive for resolving the ten-

sion.

Reducing memorization through Machine Unlearning. Unlearning undesirable traits from

training data after training is related to �ne-tuning with a data-driven focus [39; 221; 225]. In these

concept unlearning scenarios, the category of sensitive data serves as a guide to the steering of

the model as to what to avoid when sampling [195]. A narrower de�nition of machine unlearning,

which we coin as “exact unlearning” in Xu et al. [317], gives mathematically-sound guarantees on

the privacy of withdrawn training data, while keeping the full utilization of the resulting model,

to be as good as a retrained baseline without the withdrawn data. This type of forgetting is an-

other direction towards mitigating privacy incentives, especially between individual data owners

and model training entities.
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3.7 Conclusion

Section 3 introduced Secure and Con�dential Computation, as used in this thesis. We especially

focused on engineering FHE and MPC for machine learning, contrasted with the state of the art

in these emerging �elds. These trade-o�s are made crucial when additionally walked through

the example of implementing the in�uence functions in private in Section 3.5.

To contextualize our techniques alongside other privacy-preserving methods, we contrasted

input privacy with output privacy, where we center on achieving provable input-privacy through

secure and con�dential computation. Section 3.6 surveys privacy-enhancing techniques related

through their use for machine learning, notably Di�erential Privacy and Federated Learning

which do not have input-security guarantees.

Yet, these methods address vastly di�erent needs within machine learning privacy. To better

illustrate the practical considerations for choosing di�erent privacy mitigations, Table 3.3 sum-

marized privacy mitigations, their usage, and corresponding implementations as of this writing.

Lastly, our appendices expanded on PrivacyML discussions in contrasting techniques (Ta-

ble B.1) and their application to policy (Appendix B.4).
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4 | Data Appraisal Without Data

Sharing

One of the most e�ective approaches to improving the performance of a machine learning model

is to procure additional training data. A model owner seeking relevant data from a data owner

needs to appraise the data before acquiring it. However, without a formal agreement, the data

owner does not want to share data. The resulting Catch-22 prevents e�cient data markets from

forming, as illustrated in Figure 4.1.

model owner 🔒
data owner 🔒

Train Data
Ɗtr

Test Data
Ɗte

Model
Weights

𝜃
Candidate Data

Ɗa
(p)

Utility 
U(Ɗa )

Ɗa
(p - 1)

Ɗa
(p + 1)

Figure 4.1: Incentive deadlock. By default, model owner’s parameters, \ ,Dte andDtr, and data owners’
{Da}’s are kept private. While both may gain from exchanging data, utility is not realized due to privacy.

To alleviate the paralysis without sharing data, this chapter proposes adding a data appraisal

stage (Figure 4.2) that “unlocks” potential data sharing, equitably. Speci�cally, multi-party com-

putation (Section 3) is used to implement an appraisal function computed on private data. The

appraised value 5 (Da,M) proxies utility U(Da), which guides data selection and transaction1.

1Code for all the experiments: https://github.com/NorthStar/PrivateDataAppraisal
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4.1 Problem Setup

Two-Party Private Appraisal. S-MPC enables two or more parties to jointly evaluate a func-

tion on their combined data without revealing that data (which includes model parameters \ ) or

any intermediate values computed during the function evaluation. The appraisal function 5 (·)

requires as input the data owner’s data Da and model owner’s dataM = {Dtr,Dte, \̂ }. Let the

� be the encryption function with decryption given by � . The private function 5priv(·) performs

5 (·) with MPC such that:

5 (Da,M) = � (5priv(� (Da), � (M))).

As Figure 4.2 shows, sensitive data does not leave any party’s machine without encryption. This

lets the appraisal be public and auditable, eliminating the need to trust secure hardware or rely on

an intermediate escrow service. Additionally, though every private appraisal is a two-party MPC

between a model owner and a data owner, the appraisal methods linearly scales to multiple data

owners without repeating the shared computations. In following sections, assume each dataset

Da ∈ {D (?)a } is benchmarked in a private two-party MPC against a �xed modelM. In notation,

we abbreviate 5 (Da,M) to 5 (Da).

model owner 🔑
data owner 🔑

Train Data
🔐 Ɗtr

Test Data
🔐 Ɗte 

Model
Weights

🔐 𝜃 
Candidate Data
🔐Ɗa

(p)

Ɗa
(p - 1) 

Ɗa
(p + 1)

Appraisal
🔐 (Ɗa )

Figure 4.2: Secure MPC. Data appraisal without data sharing. model owner and data owner encrypt
their respective data. The appraisal function is performed privately, and its result is revealed to both
parties.
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4.2 Private Data Appraisal Functions

Gradient Norm. While gradient information sits at the core of in�uence and �ne-tuning, the

norm of the gradient itself is a poor approximation for utility. To demonstrate, consider

5gn(Da) =







 ∑
(x,~)∈Da

∇\!
(
x, ~; \̂

)






2

, (4.1)

which measures how surprising Da is to a model trained on Dtr. Indeed, the gradient norm can

be large when the prior distribution of classes inDa di�ers from that ofDtr, as desired whenDtr

is class-imbalanced. Yet, the gradient norm can also be large when Da contains unfamiliar but

useless or even harmful data. Under a simple formulation of label noise, 5gn inverts the desired

ranking, as shown in Figure 4.4. More information is needed to reveal relative utility.

Model Fine-tuning. To approximate data utility arbitrarily well, �ne-tune a model onDa∪Dtr:

5�(Da) =
∑

(x,~)∈Dte

!(x, ~; \̂ ) − !(x, ~; \̂�), (4.2)

where \̂� are the parameters after a �xed number of SGD updates onDa∪Dtr seeded with \̂ . De-

spite its success in optimization in plain text, �ne-tuning via SGD in private has novel challenges:

it can be rather computationally intensive when implemented via MPC, because the number of

sequential passes can be large. Moreover, since inspecting the training loss is not possible with-

out leaking additional information, successful SGD optimization in secure MPC requires careful

pre-tuning of hyperparameters.

Forward Influence Functions. Here, we use in�uence functions to approximate the change

on the resulting loss from including the dataset Da. As put forth in Section 2.4.1, the in�uence

function I(x, ~) associates a training sample with the change in the model parameters under an
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in�nitesimal up-weighting of that sample in the risk [72; 165].

Equation Forward In�uence Function de�nes the in�uence-based appraisal function to be the

sum of each training sample’s in�uence:

5if(Da) = −
1

|Da | · |Dte |
∑

(xte,~te)∈Dte

∑
(x,~)∈Da

∇\!(xte, ~te; \̂ )>N−1
\̂
∇\!(x, ~; \̂ ). (4.3)

For interested readers, Appendix C includes a set of key derivations.

4.2.1 Forward Influence in Multi-party Computation.

Computing 5if(Da) requires computing and inverting empirical Hessian, usually a costly oper-

ation. For \ ∈ R3 this requires $ (33) operations. Prior works suggest employing approxima-

tions for Hessian inverse vector product [5; 165; 124]. However, to evaluate multiple candidate

datasets for a given model, the inverse Hessian need only be computed once. In this way, the cost

of computing and inverting N
\̂

can be amortized over many evaluations. Furthermore, this can

be done in the clear by the model owner as it requires only \̂ and Dtr. Computing the gradient

of the loss on the test set can also be done in the clear, as no new data is required. Hence, the

term 1
=te

∑
(x,~) ∈Dte ∇\!(x, ~; \̂ )>N−1

\̂
may be precomputed by the model owner once in the clear

and then encrypted. This leaves only a private computation of the loss gradient for each Da

followed by an inner-product in R3 . Because private computation tends to dominate the over-

all runtime, this yields considerable computational savings compared to private �ne-tuning, as

shown in Figure 4.5.
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4.3 Experimental Results

We aim to answer the following research questions:

1. In terms of runtime and usability in secure MPC, how do forward in�uence functions com-

pare with �ne-tuning and alternative data appraisal methods?

2. How robust is in�uence function-based appraisal under data corruption and class imbal-

ance?

3. How e�ective is a greedy dataset selection strategy in which a model owner sequentially

chooses to acquire the dataset with the highest in�uence function value?

We train and evaluate the model on classi�cation problems using the MNIST [177] and CIFAR-

10 [169] datasets: on MNIST, we classify ten digits, and on CIFAR-10, we distinguish planes from

cars. Additionally, we verify our �ndings using Wisconsin diagnostic dataset for breast cancer

(WDBC) [87]. The examples consist of features computed from images of breast mass biopsies

along with the target benign or malignant cancer diagnosis. The classi�cation problem is solvable

when 70% of the data is used for training [4].

The ground truth ranking comes from re-training in the clear, both �ne-tuning and in�uence

appraisals are studied using secure MPC implementations in CrypTen. As mentioned in Sec-

tion 3.5, the numerical precision is set to 24 bits, and in�uence multiplication is scaled by 1e5 for

stability. (Details in Section 4.6.)

In each of the experiments, we �x the initial training model, including Dtr, Dte, and \̂ , and

only intervene on the quality of the datasets to construct {D (?)a }, such that their ranking is salient.

Prior to evaluating the appraisal functions onDa, we train the model on the seed training setDtr

until convergence to obtain \̂ .

We study three types of alterations on the datasets to simulate variations that are likely to

arise in an open data market: (1) label noise in which the correct label of an example is changed
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with some non-zero probability; (2) class imbalance in which the marginal frequency of the labels

varies between candidate datasets; and (3) missing features in which the candidate datasets vary

in terms of which features they provide.

To simulate needing additional data, the initial model is trained on 1-10% of the available

dataset, further seeded with a 9:1 imbalance in binary classi�cations. The models are L2-regularized

logistic regressors. To best approximate the optimal classi�er, the baseline weights are obtained

via L-BFGS [194]. For ranking statistics, Spearman’s Correlation Coe�cient is used, denoted as

d [84].

Finetuning In�uence

learning rate 1× 4× 16× 1 epoch

0.001 0.61 0.58 0.72
0.960.01 0.95 1.0 1.0

10 0.96 0.59 0.88

Table 4.1: Correlation d of appraised values and data utility with varying amounts of label noise. Fine-
tuning runtimes are limited to 1×, 4× and 16× of influence runtime, each benchmarked on the best per-
formances under three learning rates: 0.001, 0.1, and 10. Hyperparameter tuning runtime for fine-tuning
is excluded.

4.3.1 In MPC, Forward Influence Functions Are More Usable Than

Finetuning

Influence Reqires No Additional Hyperparameters. Although �netuning can approxi-

mate the test loss arbitrarily well, discovering the hyperparameters that achieve low error re-

quires careful pre-tuning in the clear. In MNIST, small batch sizes and large epochs, as recom-

mended for �netuning, often have high computational runtime (Table 4.1). Figure 4.3 summarizes

the e�ect of �netuning hyperparameters on the correlation of appraisal with utility (top) and run-

time (bottom). The hyperparameter selections in green result in few passes, but picking them will

lead to sensitive rank correlation, thus requiring extensive tuning or scheduling. Meanwhile, safe
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Figure 4.3: Finetuning-based Appraisal Trades O� E�iciency and Accuracy Due to Hyperpa-
rameters.Correlation of appraisal with utility (top; purple is lower) and runtime (bo�om; blue is faster)
for finetuning hyperparameters batch size configuration (x-axis) and epochs (y-axis; logarithmic). This
reproduces Figure 3.2.

hyperparameter settings tend to result in relatively large number of SGD passes. Both strategies

incur signi�cant computational cost. Lastly, even using the best batch size con�gurations, �ne-

tuning on noisy MNIST can fail to be competitive (Table 4.1).

Influence Has Minimal Private Runtime. For any dataset, private in�uence performs a full-

batch gradient step and a vector multiplication of dimension 3 for \ ∈ R3 . Thus, computing

in�uence in private is comparable to that of �netuning with one SGD pass – the minimal with-

out subsampling. In secure MPC, private runtimes tend to dominate as the number of evaluation

grows. For a reasonable hyperparameter setting of 16 steps of full-batch gradient descent for �ne-

tuning, Figure 4.5 presents the total runtime of each appraisal function, separating the encrypted

from the plaintext runtimes under plane-to-car setup. Due to in�uence functions’ e�cient setup

with no additional hyperparameter, it trades a high one-time overhead for a convenient imple-
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mentation that scales well in private.

4.3.2 Forward Influence Recovers Ranking Under Noise and Imbalance

We evaluate the e�cacy of our data appraisals in two scenarios: (1) in which the utility of the

data varies because of label noise in that data and (2) in which the utility varies because the data

distribution does not match the distribution that the model owner is interested in.

Gradient Norm Is Insufficient. Despite their conceptual similarity, label noise and class im-

balance are distinct corruptions that challenge naive, gradient-based methods. When gradient

norm is used for appraisal, both datasets of poor balance (undesirable) and datasets of low noise

(desirable) would obtain similarly low numerical values. As shown in Figure 4.4, the gradient

norm appraisal value (~-axis; note that the units vary per method) is monotonic over datasets

under our two sets of experiments: label noise (G-axis) on MNIST (top) and data imbalance on

CIFAR-10. The gradient norm curve (purple) aligns with risk reduction (yellow) under data im-
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balance, but crosses it under labels noise. Using only the norm of the gradient, though fast to

compute, is an unreliable predictor for data value.

Label Noise. In our �rst scenario, we vary the utility of the dataset Da by introducing label

noise. In particular, we use 1% of the MNIST training data as Dtr. The remaining training data is

split into 10 candidate datasets D (?)a with ? = 1, . . . , 10. For each of the candidate sets D (?)a , we

randomly �ip labels 1 and 7 with probability ?/10. We evaluate models on Dte. Table 4.1 presents

the correlation d of the label-noise probabilities with the appraisal value, including under three

�netuning learning rates: 0.001, 0.1, and 10. The correlations are high for the model �netuning

and in�uence function methods, suggesting that in�uence-based appraisal captures data utility.
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Figure 4.6: Le� a-b: Rank of influence-based appraisal 5if (Da) (~-axis) as a function of the rank of the
utility (a; d = 0.923) and the test accuracy (b; d =−0.927) on CIFAR-10’s plane-to-car dataset. Right c-d:
Rank of 5if (Da) as a function of the rank of the utility on CIFAR-10 dataset for which the rate of cars is
in the range [0, 0.45] (c; d = 0.908) and [0.55, 1.0] (d; d = 0.247). Each dot is a sampled dataset, colored
according to the ratio of the under-sampled class in Da.

Distribution Mismatch. In our second scenario, we focus on in�uence-based appraisal and

study its e�cacy under distribution mismatch. We simulate the mismatch between: (1) Dtr and

Dte and (2) the candidate datasetsD (?)a by varying the prior over classes. To do so, we construct a

training set from CIFAR-10 with a 10:1 ratio of plane-to-car and a balanced test set with a 1:1 ratio

of plane-to-car. We then construct 20 candidate datasetsD (?)a of which exactly (5 ·?)% are planes

and the remainder are cars, with ? = 1, . . . , 20. The candidate datasets are of size |D (?)a | = 440.
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We repeat this process �ve times, sampling the datasets randomly each time.

Figure 4.6 shows scatter plots of: (a) the rank of the in�uence-based appraisal value, 5if (Da), of

each of the 5×20 candidate datasets and (b) the rank of the utility or test accuracy of those datasets

(see caption for details). The experimental results show that the in�uence-based appraisal value

correlates well with gains in utility. Speci�cally, 5if (Da) allows the model owner to select a

candidate dataset that closely resembles their desired distributions in most situations. However,

zooming in on di�erent ranges of class ratios (c-d), in�uence-based appraisal value 5if (Da) is

becomes less informative when the class ratio deviates far from that of both the training and

testing datasets.

4.3.3 Applying Influence Appraisal On Corrupted Cancer Patient Data

Real world applications often use passively gathered data of varying quality. Though the samples

are not created for machine learning, they may be included for training. We simulate such a

scenario with breast cancer detection from hospital screenings. We corrupt datasets by adding

noise or removing features, and then apply in�uence-based appraisal to rank the datasets.

The �rst set of experiments concerns the rank correlation of datasets between forward in-

�uence functions and the ground truth losses, which trains Dtr ∪ D (?)a for all ? to convergence.

The same data is then corrupted. To simulate missing features, 10 columns are dropped (out of

30). Furthermore, we simulate label noise in candidate set, D (?)a , benign (positive) and malig-

nant (negative) diagnoses are �ipped under a binomial distribution of parameter ?/500 and ?/200

for ? = 1, . . . , 100.

In�uence-based appraisal is able to inform the model owner the relative value in very noisy

datasets. Figure 4.7 shows scatterplots of 100 datasets’ evaluation (a) when all columns are re-

tained. (b) when 10 feature columns are dropped, and (c-d) when labels are �ipped with prob-

ability ?/500 and ?/200 for D (?)a . Table 4.2 shows rank correlation consistently above 80%. When

all columns are preserved, the trained model can be used to identify helpful datasets. When 10
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Corruption Rank Correlation

None 0.880 ±0.081
Noise (Up to 1/5) 0.863 ±0.064
Noise (Up to 1/2) 0.844 ±0.106
Missing Features 0.810 ±0.213

Table 4.2: Influence Appraisal Correlation d± f With Data Utility on WDBC Over 10 Runs.
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Figure 4.7: Influence-based appraisal makes reasonable appraisal ranking compared to ground
truth utility (WDBC). The rank of appraised values (y-axis) as a function of the rank data utility (x-axis)
with varying data corruptions. The noiseless datasets (a-b) are benchmarked under 30 features and 20
features. The noisy datasets (c-d) are colored with noise level as a fraction of each dataset’s label flips
between “Benign“ and “Malignant“, and retain all features.

columns are missing, performance varies greatly; as the training set has less information about

the problem, its second order landscape at convergence is less informative. Nevertheless, in�u-

ence functions show robust ranking in the presence of missing features and noise.

In the second set of experiments we examine the loss dynamic from repeatedly using in�uence

functions for data selection. Raj et al. [248] proposes a strategy of data inclusion by selecting

samples of the highest in�uence among a set of available candidates. In contrast to their setup

where the candidates are existing training sets, samples in an open data markets that we simulate

are often farther from the data distribution. Given a base model and 100 candidate datasets, two

strategies are used in 15 iterations to select a dataset at a time, without replacement. Figure 4.8

shows the loss in varying noise, with 10 columns randomly dropped at each run. Despite the

diverse seed models, the loss curves for greedy strategy based on in�uence (purple) often drops

sooner than that of a random approach to selecting data. As more noise is injected to the candidate
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Figure 4.8: Influence excels random strategy at high noise levels, when applied sequentially select
datasets without replacement for breast cancer diagnostics data. The change in test loss (y-axis) as a
function of repeated rounds of data inclusion under varying noise levels. Random: choose a random
dataset at each round. Influence: choose the dataset with the highest influence-based appraisal. For
each graph, test loss change is normalized by the maxmimum test reduction in the control group. Averages
and variances are taken over 5 runs.

labels (c-d), in�uence consistently outperforms random selection, which is a strong baseline.
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4.4 Related Work

We present two most similar lines of work from the time of [320], and expand on a recent devel-

opment.

Data Pricing in Federated Markets. E�cient private appraisals can especially aid feder-

ated learning settings where 1. privacy requirements are salient, and 2. the compute resources

available pre-transaction are limited. In di�erential privacy and federated learning literature, Li

et al. [185]; Song et al. [276] and Wang et al. [307, 310] privately assess sets of data after the

model is trained on them, while our solution does not require private training. Nevertheless,

our approach to craft appraisal functions to suit privacy constraints complements recent works

on acquisition strategies and Nash equilibrium in emerging data markets [18; 241]. Also un-

der game-theoretic lens is computing Shapley values [265] to assess training data for machine

learning [111; 147; 18; 20]. A primary motivation for using Shapley values is to enable equitable

concurrent data assessment, while we focus on a limited scale where datasets are acquired one

at a time. Indeed, in sequential acquisition, a dataset acquired at a later stage of research may

see its appraisal value lowered, if other datasets had reduced test loss. As a result, our appraisal

incentivizes small-scale data owners to join the appraisal as early as possible.

Influence Functions. Measuring the e�ect of the data under leave-one-out training is known

as Cook’s distance in linear regression or the in�uence curve in regression residuals [71; 72].

Many contemporary works employ in�uence functions to explain existing training examples

aposteri, applied to interpretability [166; 124], cross-validation [113], poisoning attacks [145],

and training data removal [123; 168]. As a result, in�uence functions are usually 1. de�ned with

respect to the trained model, 2. used to approximate parameter change under data removal. In

contrast, we 1. use forward in�uence functions where the model has not seen the new data,
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concurrent to Raj et al. [248]’s subsampling experiment for model selection and 2. applied to

privately recover relative ranking. Incidentally, with the addition of MPC, we demonstrate a use

case predicted by Giordano et al. [113], where in�uence is chosen for our application where the

Hessian inverse computation is a worthwhile tradeo�.

Data Valuation Most recently, the �eld Data Attribution and Data Valuation have emerged

as their own �elds of research, including but not limited to [144; 238; 172; 149], and an ICML

benchmark [309], an LLM benchmark for in�uence functions [150]. While they are still mainly

motivated by explaining model behavior (including test performance) back to training data, it

is often implicitly for acquiring new data. In the age of large scale models, such interpretation

usually feeds forward to knowing what kind of data the model owner ought to commission or

purchase. Indeed, [120] evenly explicitly constructs an alternative in�uence function for this

purpose while a 2024 ICML tutorial calls for data attribution with a “predictive” (i.e., predicting

forward) emphasis [202]. These developments validate our motivation, and echos our use of

in�uence functions for evaluating future data. However, in those works, the privacy issue is yet

left open. This o�ers fertile ground for future work to incorporate privacy-preserving methods

for appraising data.
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4.5 Limitations

Our procedure shows an appealing trade-o� between computation and privacy, with several av-

enues for future work.

Reconstruction Over Many �eries. While setting a threshold on appraisal scores can limit

the information leak to 1 bit, in theory, a strong adversary may reconstruct the data (or model)

by observing appraisal values.

Discrimination of Arbitrary Data. Though 5if can discriminate quality di�erences despite

corruptions, the choice of the model andDa dictates a fundamental limit, e.g., in Figure 4.6, when

the class imbalance ofDtr andDa cancels out. Moreover, 5if is de�ned on a limited class of models:

twice di�erentiable and convex in \ . Whether convexity can be relaxed in in�uence functions is

its own active area of research [26; 27]. However, our approach to value data in private bene�ts

from research on data attribution and data valuation, setting the stage for more e�cient, accurate,

and robust data appraisals without data sharing.
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4.6 Engineering Contributions

Previously, Section 3.5 set forth the high level overview of engineering considerations of secure

computation. We now summarize the technical challenges in completing our work, including

when implementing our baselines.

Implementing Private Training (Ground Truth Baseline) While CrypTen supports private

training out-of-the-box, it lacks native support for optimizers like L-BFGS, thus SGD was used

in our experiments. Moreover, while the private training-based algorithm (�netuning-based ap-

praisal in Section 4.2) mirrors that of its non-secure counterpart, the numerical approximations

at each iteration can cause divergence in model weights. This poses our primary engineering

challenge: achieving an appropriate private model �t in private. Because hyperparameters

are assumed pre-set, comparing private training entails choosing parameters that would achieve

a reasonably good model performance. To do so, we swept SGD hyperparameters in plaintext for

the speci�c task, and transferred the best �t as initialization to the private �ne-tuning algorithm.2

Implementing Private Influence-based Appraisal (Our Method) As illustrated in Section 3.5,

in�uence-based appraisal functions result from a careful co-design of optimization and MPC

engineering. The main algorithmic bene�t lies in avoiding the costly computation, numerical

instability, and hyperparameter challenges associated with private training.

As mentioned in Section 3.5, in�uence-based appraisal requires fewer sequential steps. How-

ever, my �rst implementation was not ideal – the matrix multiplication within in�uence-based

appraisal is high-dimensional, where each resulting �oating point may be numerically unsta-

ble, causing the sum of the in�uence functions to be erroneous. Despite CrypTen’s support for

private training, automatic rescaling is not natively supported. Notably, over�ows and under-

2Later work in Chapter 5 used SGD with moment and learning schedule, and swept the hyperparameters in both
plaintext and in encrypted setting.
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�ows are frequent for previously untested workloads such as ours, yet di�cult to debug due

to them occurring “silently” in the encrypted setting, as Knott et al. [164] notes as a CrypTen

design limitation.

Three general approaches were considered 1. Higher precision (more bits) for private com-

putation, which was much slower, 2. Normalizing and rescaling inputs that are likely to cause

over�ows and under�ows, which involved more guesswork 3. Jittering the hessian matrix be-

fore inverting, which was hard to justify theoretically, as it would slightly modify the plaintext

algorithm. Eventually, I arrived at setting 24 bits for CrypTensor initialization while nor-

malizing the inverse hessian sum by 1E-6 before encrypting. Through extensive testing,

I found these to be su�cient for ensuring a stable output that is correct when compared with

plaintext results.

Limitations of Using CrypTen The arithmetic secure sharing implementation can “wrap around”

silently (when the numbers resulting from a computation over/under�ows), which are hard to de-

bug. The default precision (16-bit) is “not enough bits” for modern machine learning — a limita-

tion not su�ciently foreseen at the time of CrypTen development. Working around these design

choices can thus be challenging, as they are built into the framework.

Our work uncovers signi�cant room for improvements in the future for MPC for ML frame-

works, especially improved co-design betweenMPCwith high-precision numerical work-

loads, including eliminating the guesswork involved for making an algorithm private.
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4.7 Summary

We crafted e�cient algorithms leveraging secure MPC techniques and forward in�uence func-

tions to avoid private training. Our implementation is an appealing high quality appraisal with

scalable, e�cient computation, with few hyperparameters, while being robust to label noise, class

imbalance, and missing data. Our empirical results suggest that appraising data using in�uence

function leads to accurate valuations in many scenarios, while requiring limited computation and

no hyper-parameter optimization, notably outperforming private �ne-tuning.

Lastly, we demonstrated the practical e�ectiveness of in�uence-based appraisal in a breast

cancer detection task with greedy, sequential data acquisition, which outperforms random selec-

tion under data corruptions. Future work focuses on broadening the applications of private data

appraisal, including extending private data appraisal to more complex non-linear models with

e�cient inverse Hessian product approximations.
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5 | Dataset-to-Dataset Evaluation

Before Data Sharing

Privacy concerns and competitive interests impede data access for machine learning, due to the

inability to privately assess external data’s utility. This dynamic disadvantages smaller organi-

zations that lack resources to aggressively pursue data-sharing agreements. Particularly in data-

limited scenarios, not all external data is bene�cial [69; 267], further a�ecting early partnerships.

Given these inherent risks, collaborations particularly su�er in heavily-regulated domains: met-

rics that aim to assess external data given a source e.g., approximating their KL-divergence [267],

require accessing samples from both entities pre-collaboration, hence violating privacy. This co-

nundrum disempowers legitimate data-sharing, leading to a false “privacy-utility trade-o�". To

resolve privacy and uncertainty tensions simultaneously, we introduce SecureKL, the �rst secure

protocol for dataset-to-dataset evaluations with no additional leakage outside its score output, to

be applied preceding data sharing. SecureKL evaluates a source dataset against candidates, per-

forming dataset divergence metrics internally with private computations, all without assuming

downstream models. On real-world data, SecureKL achieves high consistency (> 90% correlation

with non-secure version’s resulting partnership ranking) and successfully identi�es bene�cial

data collaborations in highly-heterogeneous domains (ICU mortality prediction across hospitals

and income prediction across states). Our results highlight that secure computation maximizes

data utilization, outperforming privacy-agnostic utility assessments that leak information.
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Figure 5.1: Privacy can dis-incentivize data collaborations. Without seeing external data, an or-
ganization has two strategies: i. blind default c0: randomly selecting partnerships causes hesitation
and hinders partnerships. ii. Our method c? : securely assessing datasets by leveraging MPC before
commitment.

5.1 Introduction

As brought up in Section 2.2, empirical works have predetermined data as a key driver to per-

formance gains [134; 155; 46]. Yet, accessing and combining datasets is persistently challenging.

As datasets have evolved from small to larger [280], more diverse [331], and more compute-

optimal [135], the �eld of machine learning continues to seek more data [203; 46; 236; 253; 266]

and better ways to combine it [268; 224; 243; 187; 206].

Strategically combining data from di�erent sources promises enhanced models, but disem-

powers smaller organizations. While diverse, high quality data often improves performance,

robustness, and fairness [212], access to such data signi�cantly varies across entities and do-

mains [287; 201]. As domain-speci�c data becomes increasingly valuable [10; 126; 179], data-

owning entities are more reluctant to share it for free, opting instead to sell it in emerging data

markets [3; 140; 191]. This dynamic disproportionately handicaps smaller organizations who lack

both the resources to purchase data and the leverage to negotiate favorable sharing agreements.

In particular, organizations may hesitate to commit to a potential partnership when unsure
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about the bene�ts. As Figure 5.1 illustrates, this “commitment issue" is not solely a privacy issue;

it’s the inability to privately assess an external dataset’s utility before partnerships. This evalu-

ation is, however, nontrivial without examining the data. Surprisingly, in-domain data does not

necessarily result in more performant models. Due to the precarious nature of domain shifts, ma-

chine learning models may behave unpredictably to untested additional training data, especially

when the source dataset is small (e.g., a single hospital’s data) – a phenomenon known as “the

dataset combination problem" [167; 308; 284; 40; 209; 267].

Ideally, all underlying data should be considered to reduce uncertainty in costly data collab-

orations. Yet, datasets owned by separate entities cannot be directly and fully accessed,

signi�cantly limiting the practicality of non-private dataset measures [267; 144].

Our work directly addresses this crux by recognizing both privacy and competitive incentives.

First, before committing to acquiring unseen data, we enable organizations to privately gauge the

relative utility of candidate datasets. Second, we provide strong privacy guarantees required

of entities operating under stringent regulations – e.g. healthcare providers – to navigate data

acquisition. This allows organizations to tackle data availability issues by prioritizing the most

relevant potential partnerships, without seeing their data.

Developers are often uncertain about the most e�ective model before more data becomes

available. This renders a secure data appraisal stage introduced in Chapter 4 not applicable,

because it requires model parameters to be known ahead [320]. In this more opportunistic setting

where the model is not yet developed, we ask:

Can we ascertain the di�erential utility of prospective datasets, without knowing the

�nal model?

This chapter introduces SecureKL, the �rst private dataset measure with minimal leak-

age, by leveraging dataset-to-dataset divergences. Our key insight is that private, model-agnostic

divergence computations via secure multiparty computation (MPC, previously introduced in Sec-
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tion 3.4) are more data-e�cient than sharing samples, while being just as accurate as sharing full

samples without privacy. SecureKL privately computes dataset divergence measures, presenting

a compelling guarantee: for both parties, privacy is fully protected while data utilization

is maximized.

Contributions A novel secure dataset-to-dataset evaluation protocol SecureKL (SKL) that re-

duces uncertainty in data utility under limited data and budget, producing privacy-preserving

measures while using the maximum available samples. SKL achieves a > 90% correlation with

privacy-violating counterparts across two real-world heterogeneous domains. Empirically, on

ICU mortality prediction, SKL reliably chooses bene�cial hospital(s) to partner with, outperform-

ing data-leaking alternatives, including using demographic summaries or sharing data subsets.1

Impact We provide a practical solution for organizations seeking to leverage collective data

resources while maintaining privacy and competitive advantages. Our major advantage lies in

reliability, especially when small organizations cannot a�ord to invest in detrimental partner-

ships. These results demonstrate the potential for wider data collaboration to advance machine

learning applications in high-stakes domains while promoting more equitable access to data. Our

code is available, and can be readily deployed to demonstrate potential data value preceding col-

laborations.

1Our code: https://github.com/kere-nel/secure-data-eval
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5.2 Context and Contributions

The dataset combination problem faces multiple challenges that privacy-preserving dataset eval-

uation can mitigate. This section contextualizes the appropriate background.
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Figure 5.2: Real-world data collaborations are inherently uncertain, necessitating pre-
partnership selection (a reproduction of Figure 2.5). AUC change for a source entity (x-axis), a�er incor-
porating external data from a di�erent source (y-axis), across hospitals (le�) and states (right).
Le�: in mortality prediction using eICU data [244], 10 out of 12 hospitals may see their mortality predic-
tion model degrade for some potential hospital partners.
Right: in income prediction using Folktables [83], combining with random state leads to worse prediction
in 7 out of 13 states. (Red is bad).

Dataset Combination Problem In high-stakes domains, additional datasets may degrade the

model. In healthcare scenarios, both Compton et al. [69] and Shen et al. [267] showed that blindly

acquiring new datasets can degrade model performance, especially initially. We confer to �ndings

in [267; 69] and re-run on pairs of hospitals’ datatsets and pairs of states’ survey data to produce

Figure 5.2. Indeed, in both highly heterogeneous domains, opportunistically acquiring unseen

datasets may even be harmful. This non-monotonic behavior in the Dataset Utility on real-world

data means that these risks of “bad data deals” may thwart collaborations, highlighting the need

to evaluate data before embarking on a full-�edged collaboration. In these scenarios, SecureKL

validates partnerships robustly and safely before any data is exchanged.
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Figure 5.3: Abstraction of non-private evaluation strategies, following the privacy-preserving meth-
ods in Figure 5.1 iii. subset sampling cB : a subset of the target’s data is shared. iv. demographic-based
summaries c3 : the target entity discloses distributions by protected a�ributes, i.e., age, gender, or race.
In these scenarios, some data is leaked by the target partner (yellow) to assuage the source entity (blue)’s
uncertainties about the target data’s value, trading o� sample utility for limited privacy.

Data-leaking Measures Are Inefficient Before an agreement, informed negotiations be-

come impossible when entities do not expose data. Data owners frequently resort to tiny sam-

ples or summary statistics (e.g., race, gender, age) for making decisions, illustrated in abstract

in Figure 5.3 [54]. Yet, in data-limited settings, model performance is highly sensitive to new

input. These heuristics are �ckle, as sparse traits or limited samples often fail to capture the en-

tire dataset’s nuance and complexity, especially in heterogeneous domains, creating a perceived

privacy-utility trade-o�. SecureKL avoids this by using secure computation to enable measure-

ments over entire datasets, which we show to be more reliable in deciding on hospital collabora-

tions.

Our Method: Private While Flexible This data acquisition scenario needs to ensure privacy:

the source data and the data to acquire are kept separate by default, like in Chapter 4. However,

Chapter 4 uses the Forward In�uence Function, computing on the model parameters \ , which

may not be determined. Moreover, empirical Hessian of the Forward In�uence Function is not
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Figure 5.4: Our Method SecureKL(D> ,D8). Each side encrypts their data. Without assuming the down-
stream model, a dataset comparison model is trained on their joint data, typically a membership inference
model using logistic regression (Section 5.3), which enables computing KL-based measures in private. Then
their divergence is assessed, and the final result is revealed a�er both parties participate in decryption.

always readily available, and large models do not “�t” well in MPC. 2 A far more �exible approach

– Dataset-to-dataset evaluation – represents a novel paradigm that gauges the dataset’s utility

by comparing just the dataset at the source with the dataset at target, securely, without making

assumptions about the �nal model (Figure 5.4).

Summary of Contributions Our method presents an appealing trade-o� of privacy and util-

ity: SecureKL (Figure 5.4) preserves privacy at the input for both parties, maintains the accuracy

of the nonsecure dataset measure for the source entity, while maximizing utility of the samples.

Speci�cally, we present

1. The �rst MPC implementation of KL-XY, the �rst divergence-based dataset measure

without leaking data outside the score output. Computing KL-XY score [267] in this secure

multiparty protocol maintains strong privacy guarantees. By utilizing the complete under-

lying datasets, it achieves > 90% correlation with plaintext computations in downstream

dataset ranking.

2. A methodology to directly compare private vs. non-private methods to evaluate

potential partnerships. We categorize existing approaches by their privacy leakage risks
2As remarked in Section 3.4, current state-of-the-art MPC transformer generates one token in �ve minutes on

an 8B-parameter model [85].
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(Section 5.4) and provides a systematic way to assess the trade-o�s between data utility

and privacy preservation.

3. An empirically-tested measure for bene�cial data-sharing collaborations in low-

data, high-stakes settings. Our method successfully identi�es bene�cial data partnerships

for intensive care unit (ICU) mortality prediction; it reliably improves classi�er perfor-

mance for the source hospital, over multiple runs for all hospitals (Section 5.6)3. Detailed

bene�t analysis advocates for using private dataset combination SKL, as it avoids privacy

leakage without utility downside.

Position On Communicating Secure Computation Security researchers tend to misunder-

stand the lack of adoption of privacy-preserving methods. Surely, when the apparent bene�t is

the addition of privacy, people must not care su�ciently about privacy (Sec 2.6.3) [275; 218; 22].

Yet, the resistance does not stem from a lack of care; instead, it stems from a breakdown of trust.

Precisely because data leakage is by far not the source of the problem, privacy cannot be the only

bene�t. While this thesis derives its privacy arguments from identifying the key players of ma-

chine learning (Section 2.3), as Balsa et al. [22] aptly puts, cryptographic assumptions are mere

“shorthand” for presupposed adherence.

Therefore, communicating to decision makers – the real humans behind each entity that holds

data, trains models, or performs oversight – of the bene�t from using a technology entails more

than presenting a “privacy solution”. To that end, this chapter proposes a direct comparison

between private, data-e�cient but approximate methods and plaintext sharing, demonstrating

that secure computation’s value extends beyond privacy.

3Our measure is not symmetrical, meaning that we assume the source hospital purchases and bene�ts from the
hospital providing extra data, but not necessarily the other way around.

86



5.3 Setup

Consider a binary prediction task for ICU patient mortality based on electronic medical records.

A source hospital �> has historical patient data D> containing static past patient characteristics,

prior medical records, and ICU outcomes. Other hospitals {�8} each has their patient data: {D8 |

8 ∈ [1..# ]}.

For this binary prediction task, hospitals typically optimize for performance metrics, for ex-

ample the area under the receiver-operating characteristic curve (AUC). Using only their data,

�> can train a modelM with parameters \ to achieve:

AUC> = max
5 (\ )

AUC(M,D>) (Baseline AUC)

where 5 is their chosen algorithm with parameter \ .

When �> has exhausted their own internal data, they may bene�t from incorporating addi-

tional target data sources ) ⊂ [1..# ]. By combining datasets, i.e., D) = {D8 | 8 ∈ ) } ∪ D> , �>

can potentially achieve better results:

AUC) = max
5 (\ )

AUC(M,D) ). (Combined AUC)

We de�ne the potential improvement from data addition as X) = X (>,) ) = AUC) − AUC> . To add

a single additional data source by setting) = {8}, the improvement is X8 = X (>,8) = AUC8 −AUC> .

This leads to our central question:

Without seeing target data, howdoes ahospital ascertain potential data sources

to combine with?

Formally, given = ≤ # , we seek a strategy c that selects = target datasets ) = c (D> , =) to
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maximize model utility:

c∗(D> , =) = arg max
)⊂( [1...# ]= )

AUC) (Ideal Combination)

Practical Considerations. Computing every subset ) ⊂
([1...# ]

=

)
’s associated X) is exponen-

tial in=. To make this problem tractable, we make two key assumptions. First, we apply strategies

greedily, selecting top-ranked target datasets. With the ultimate objective of improving the source

hospital’s prediction task, we �x �> ; to compare the trade-o�s between strategies in Section 5.4,

we apply each c greedily to select top-= institution(s) for �> without replacement. Second, in

data-constrained settings where combining datasets only result in small AUC improvements, we

may simply aim for more likely occurrences of positive improvement: %�>∼H(X) > 0).

Kullback–Leibler Divergence. Our approach uses Kullback-Leibler (KL)-divergence-based

methods to gauge data utility, building on prior work [267]. KL divergence [170], also called

information gain [245], describes a measure of how much a model probability distribution & is

di�erent from a true probability distribution % :

KL(% | |&) =
∫
G∈X

log
% (dG)
& (dG)% (dG) (KL-Divergence)

Because computing KL-divergence on datasets D> and D8 is non-trivial due to the high dimen-

sionality of the data, Shen et al. [267] proposes groups of scores to approximately di�erenti-

ate hospital dataset divergences. Speci�cally, �xing D> and D8 , score KLXY �rst trains a logis-

tic regression model on D> ∪ D8 – where the labels are folded into the covariates — with the

goal of inferring dataset membership. Then, the resulting model’s probability score function

Score(·) : X,Y → [0, 1] is averaged over a dataset in �> , obtaining

KLXY = E(G,~)∼D> (Score(G,~)) . ( !-. Score)
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Dataset Data Addition c Pearson d p-value

eICU

SecureKLXY (Our Secure Method) -0.182 3.65e-02

SecureKLX (Our Secure Baseline Method) -0.162 6.27e-02
KLXY -0.184 3.47e-02

KLX -0.162 7.13e-02
Gender 0.097 2.65e-01
Race 0.018 8.29e-01
Age 0.053 5.33e-01

Folktables

SecureKLXY (Our Secure Method) -0.181 3.13e-10

SecureKLX (Our Secure Baseline Method) 0.016 5.62e-01
KLXY -0.198 4.58e-12

KLX -0.107 2.00e-04

Gender 0.0002 9.94e-01
Race 0.026 3.75e-01
Age 0.012 6.71e-01

Table 5.1: Dataset divergence is predictive of utility for downstream models.
Pearson correlation (d) and p-values between each data addition strategy (c ) and the source model’s
performance a�er adding selected dataset (AUC drop, X8 ), reported separately for two real-world datasets
(eICU [244] and Folktables [83]).
The non-secure strategies, including KLXY , are detailed in Section 5.4.4 and in Section 5.4.
Statistically significant ?-values (? < 0.05) are bolded.

Note: As discussed in Section 2.4.1, ideally the source hospital can compute their KLXY scores

with respect to every 8 ∈ [1...# ], and chooses, but it is not private. Additionally, dataset diver-

gence heuristics may hinge on model �t (over/under�tting can render the score less e�ective).

Yet it re�ects the insight that parametrized distribution estimations are more e�cient on �nite,

unknown data [226; 299].

Privacy Model As brought forth in Section 2.5.2, we operate under a semi-honest privacy

model. Unlike non-private dataset measures such as [267] and [144], which would require data

sharing to participate, this threat model incentivizes collaboration by ensuring data privacy from

each other.
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Dataset Divergence and Downstream Utility Building on the �nding of Miller et al. [212]

where a model’s in-distribution performance is related to its out-of-distribution performance

(across all model choices), we infer that dataset divergence does predict downstream model’s

performance after combining the data and con�rm it in Table 5.1 using metrics introduced in

Shen et al. [267]. Intuitively, in-distribution quality is paramount in low-data settings, where

dataset divergence can capture greater complexity and nuance than accessing a few traits. In

contrast, data-rich domains like language modeling more frequently bene�t from diverse, spe-

cialized data sources. Yet, privacy is unresolved: divergence measures entail accessing both enti-

ties’ data [267; 144], posing signi�cant risks for heavily-regulated entities who are liable for any

data exposure [53; 109].

Secure Multiparty Computation (MPC) Our divergence computation is cryptographically

secured at the input using Secure Multiparty Computation (MPC) [324; 264]. As Chapter 4.4

mentioned, MPC lets two or more parties to compute a function over private inputs, revealing

only the �nal output [115]. For both parties, privacy is guaranteed at the input, while the samples

are maximally utilized.

Despite their non-trivial engineering, MPC programs enjoy strong security guarantees and

relative ease of deployment (Section 3). Even small organizations can deploy MPC without any

specialized hardware. Thus, the algorithms developed and shared in SecureKL readily enable

dataset-to-dataset evaluations before sharing data.
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Strategy Description Sub-strategies Leakage

c0 Blind (baseline) n/a zero
c? Private (SecureKL) n/a minimal
c3 Demographics sex, gender, race distance moderate
cB Sub-Sampling 1%, 10%, 100% shared high

Table 5.2: Partnership selection strategies, di�erentiated by leakage (privacy cost). A strategy c
returns a chosen set of targets ) from all candidates. Section 5.4.1 describes the strategies in detail.

5.4 Data Acqisition Strategies, in Detail

5.4.1 Baseline Strategies Categorized

As depicted by the strategies in Figures 5.1 and 5.3, the potential cost of data acquisition is linked

to leakage risks. Therefore, we de�ne three categories of risks and formalize their corresponding

strategies, which are summarized in Table 5.2.

A, high leakage, sharing raw data. cB (=, :) supposes each hospital to share a dataset of size

: ; a default setting of 1% is commonplace practice in some contracts, as a pre-requisite to being

considered [54]. Though leakage can be controlled through : , the data is inherently sensitive.

B, moderate leakage, sharing summary statistics. c3 (=) uses demographic metadata to

guide data selection. This is implemented through ratio distance between source and target dis-

tributions, which may be considered aggregates therefore potentially not sensitive, such as when

the underlying aggregation function q is di�erentially private.

C, minimal leakage, sharing no additional information besides what is assumed public.

There are two methods: a. Blind selection baseline: c0(=) randomly selects = disjoint data

sources, until data purchasing budget runs out. Prior works suggest that when = = 1, randomly

selecting a source in hospital ICU may be risky and ine�cient. b. Ourmethod c? (=) selects data

sources based on privacy-preserving measure for data combination, speci�cally Private KL-XY.
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5.4.2 Trivially Private Baseline: Blind Selection

Blind selection refers to the process when no information is provided. This random strategy,

c0(=), may evade selection biases and help gather diverse data. Yet, prior work [267] suggests that

c0(1) – randomly selecting one source – for ICU is risky and ine�cient for mortality prediction.

5.4.3 Sharing Summary Statistics

A relaxation to sharing no sensitive data is to share “metadata”. While demographic traits are of-

ten causal and available, their exact cause in relation to the task is not a priori established (without

a highly e�ective model), therefore their success in distributional-matching is not guaranteed to

be strong. Additionally, in practice, the most e�ective model that results from data combination

may or may not be causally-sound. Nevertheless, we posit alternative strategy c3 (=) to �nd the

demographically close candidates to guide data selection: Let q : D → R< be an<-dimensional

summary statistic of a demographic feature i.e. the racial distribution of patients. Then, we use

the distributional distance between D> and D8 , characterized by their !2-distance through q :

c3 (= = 1) = arg min
8∈[1..# ]

!2(q (D>) | |q (D8)) . (Demographic-based Strategy)

Note: Though alternative features and norms can be considered, our goal is not to feature-

engineer (or to compare with the results from the best feature-engineering). Instead, we hope to

use this strategy to approximate what hospitals resort to in practice today – using demographic

summaries when the dataset cannot be seen (a baseline from [267]).

5.4.4 KL-based Methods, Without Privacy

In sub-sampling strategy cB (=, :), each of the candidate entities will leak a set of raw data. cB

is implemented with KL-based measures similar to Shen et al. [267]’s proposal. Recall from
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Section 2.4.1, a binary predictor is �t on this combined dataset, predicting I from (X,Y) using

logistic regression. The model’s output ? (G,~), also called the probability score, is Score(G,~).

A score of 0.5 or less means the datasets are not distinguishable, making the data potentially

useful for being “in-distribution”; besides our own �ndings, we point out other prior empirical

insights: Shen et al. [267] established the insight that in data-limited domains of heterogeneous

data sources, domain shifts of the covariates are useful for predicting whether the additional data

helps the original task, similar to [212] We note again that even though this model is trained

on both parties’ data, the �nal algorithm that the hospital uses to train on combined data is not

restricted.

Then, the resulting model’s probability score function Score(·) : X,Y → [0, 1] is averaged

over a dataset in �> , obtaining

KLXY = E(G,~)∼D> (Score(G,~)) . (KL-XY)

Let the score function 6KL be the approximation of KL(D> | |D8) (speci�cally KLXY). The

strategy selects the most likely hospital with the closest distance under the measure:

cB (= = 1, : =  ) = arg min
8∈[1..# ]

6KL(D> ,D8). (KL-based Strategy, in plaintext)

As mentioned, we reran the strategies on our setups that con�rmed [267]’s results that KLXY is

predictive of downstream change in AUC in hospital setting (Table 5.1).

When only a subset is available, this function is adjusted by swappingD8 forD′8 ⊆ D8 where

|D′8 | = : . We denote the full dataset size as  = |D8 |. Note while : controls privacy leakage, we

acknowledge that the raw data is inherently sensitive (even if only 1%, and anonymized, trans-

ferring raw data has security risks), therefore associate cB with a high privacy risk in Table 5.2.
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5.4.5 SecureKL: Private KL-based Method

Using MPC (Section 3), we extend on KLXY to require no information sharing (besides what was

already assumed public), which is considered minimal in privacy risk in Table 5.2. As illustrated

in Figure 5.4, the logistic regression as well as the scoring need to be implemented in private.

This infrastructure may be hosted on both sides’ machines [164].

Denote the private encoding of G as [G].

SecureKLXY = E(G,~)∼D> (Score( [G,~])). (Secure KLXY)

Let the score function 6SKL be the secure approximation of KL(D> | |D8). The strategy selects

the most likely hospital with the closest distance under the measure:

c? (= = 1) = arg min
8∈[1..# ]

6SKL(D> ,D8). (SecureKL Strategy, encrypted)

Notably, any KL-based measure 6SKL can be adapted to our setup, while we primarily use

SecureKLXY . Additionally, even though our implementation measures distance of data between

one source and one target party, the setup readily extends to accommodating multiple parties.

Section 5.7.2 discusses potential deployment challenges.

Assumptions Consider high stakes domains where disparate data may have additive bene�ts

to the existing data. We reiterate assumptions laid out in Section 2.5.2 speci�c to our work.

1. Existing knowledge is not private. The hospitals are aware of each other having such

data to begin with. The hospitals may know of the available underlying dataset size and

format, which is assumed to be uniform across the hospitals in the setup to simulate unit-

cost. Hospitals frequently know of each other’s resources, such as the scale of their ICU

units.
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2. Uniformity of |D8 |. Though each hospital gets to price their data and set their own budget

in practice, pricing is not our primary consideration in this work. For generality in inves-

tigating the dataset combination problem, we make two simpli�cations: 1. every unknown

record is “priced” the same (�xed unit-cost), 2. each candidate hospital would supply the

same sized dataset (�xed |D8 | across all potential partnerships). This uniformity assump-

tion allows us to use the number of additional data sources = as the main "budget proxy"

across di�erent strategies for a source hospital.

3. Legal risks of sharing any data are omnipresent in high stakes domains. The risks with

sharing sensitive data in data-leaking strategies, which we coin as c3 (demographic dis-

tance) and cB (small sample), are not made explicit, but assumed to be "moderate" and "high"

respectively. This abstraction side-steps legal discussion, which would go beyond the scope

of our paper.

4. No malice is assumed on any of the parties involved, as each hospital wants to authenti-

cally sell their data and set up a potential collaboration. This assumption becomes stronger

when the number of parties grows or when the setup changes to potentially more compet-

itive industries with less trust.
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5.5 Experimental Setup

5.5.1 Experimental �estions

1. Consistency: Does MPC degrade the original measure’s e�ectiveness? As MPC imple-

mentations introduce approximations, we validate SKL’s implementation. The correla-

tion of private scores vs. plaintext scores (with full data access) needs to be examined.

Additionally, consistency of choosing encryption in the hospital domains means examin-

ing plaintext and encrypted versions’ correlation with downstream ground truth ranking

across hospitals.

2. Positivity: Does our method pick entities that reliably improve performance? If source

dataset �> can only add data from = more sources, does our measure lead to eventual AUC

improvements? Speci�cally, in multi-dataset combination, we examine whether using SKL

can improve the source hospital’s downstream outcome. When selecting a single (or a few)

additional data source, how many hospitals improve with our method? Additionally, we

compare our method with alternative, privacy-leaking strategies.

3. Error analysis: When our privacy-preserving method is not the most bene�cial strategy

against alternatives, such as when our method selects a harmful data partnership for a

source hospital, what may be the reason? As we know, small and uncertain improvements

for downstream tasks underscore the inherent di�culty of evaluating data utility with-

out seeing the full data. We are especially interested in analyzing (a) hospitals with low

SecureKLXY and KLXY correlations, and (b) hospitals lagging AUC improvements using

the random strategy c0 or limited-sample strategy cB .
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5.5.2 MPC implementation.

SecureKLXY includes training logistic regression model in private, following MPC engineering

practices in Section 3. We implement measures based on dataset divergence by building a cus-

tom logistic regression model over encrypted data leveraging CrypTen. The model parameters

and input are encoded as 16-bit MPCTensors, ensuring that all computations, including forward

passes, sigmoid activations, and gradient descent updates, are performed in private.

Additional baseline details We additionally run our experiments on plaintext methods used

in Shen et al. [267], including the KLX measure, which is similar to KLXY without using each

data souce’s labels:

KLX = E(G)∼D> (Score(G)) . (KL-X)

To compared against KLX for baseline, we additionally implemented its encrypted version,

SecureKLX , as a 6SKL candidate.

SecureKLX = E(G)∼D> (Score( [G])). (Secure KL-X)

Optimizers Because L-BFGS – the optimizer prior work [267]used in plaintext-only with Scikit-

learn [240] – is not available as an encrypted version, our MPC experiments are facilitated with

SGD optimizer. A fair comparison between the scores obtained through plaintext and encrypted

settings necessitates re-implementing plaintext scores, Score(- ) and Score(-,. ), using logistic re-

gression with SGD in PyTorch [239]. The hyperparameter tuning for SGD in private and plain text

are performed independently, as they do not transfer. Section 5.8 will discuss hyperparameter-

tuning in detail.
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5.5.3 Data and Model Setup

eICU dataset. The downstream task is 24-hour mortality prediction from ICU data using the

eICU Collaborative Research Dataset [244]. This dataset contain > 200, 000 real-world admission

records from 208 hospitals across the United States.

A note on data �ltering. Because medical research is inherently complex, ensuring repro-

ducibility on statistical methods can be signi�cantly challenging. Water et al. [312] proposes that

the research community follow a shared set of tasks with �xed preprocessing pipelines that are

clinically informed – essentially a machine learning training and evaluation protocol on eICU –

in order to facilitate method veri�cation on the same benchmark. Therefore, our work follows

their data cleaning criteria and the evaluation protocol. Additionally, we use the hospital exclu-

sion criteria in [267] to obtain top 12 hospitals, where the most patient visits are collected (each

with > 2000 patients).

Downstream model and baselines for eICU. Recall that each strategy uses the same  

number of records per hospital – in our experiment,  = 3000. For cB which leaks a subset : of

all samples, a default : = b1/100|D8 |c randomly drawn samples are shared. In ICU data, we run

experiments on {0.1%, 1%, 10%, 100%}.

Following holistic benchmarking tools in [312], our strategy comparisons take 1500 samples

and the downstream model performance – AUC> , AUC) – uses 400 samples (unless otherwise

noted). Speci�cally, the AUC change, X8 or X) , comes from 1. combining 1500 random samples

from each selected dataset and 2. combining it with 1500 samples from D> , and 3. subtracting

the baseline model’s AUC4.

Folktables dataset Though we primarily focus on hospital domain, we additionally validate

using Folktables [83], predicting across 35 states an individual’s annual income exceeds $50,000.

The details of our processing, which diverges from that of eICU, is included in Appendix D.6.

4The samples are �xed across all experiments, the sample numbers are chosen to match the setup in [267].
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5.6 Results and Analysis

Our goal is to investigate whether using multiparty implementation sacri�ce the original KLXY ‘s

e�cacy (consistency; Section 5.6.1), whether our method reliably picks hospitals that improve

performance (positivity; Section 5.6.2), and where our method may fail (error analysis and

limitations; Section 5.6.3).

5.6.1 Consistency Between Plaintext and Encrypted Computations

Because our encrypted computation is the �rst implementation of dataset divergence in MPC, we

ought to show that SecureKLXY and SecureKLX lead to highly comparable behaviors as KLXY

and KLX .

Spearman’s Rank Correlation Coefficient for Underlying Scores For each source hospi-

tal�> , use all full samples forD8 . Between KLXY and SecureKLXY onD> andD8 for all remaining

hospitals �8 , E�>∼H [d] = 0.908 with a range of [0.691, 1.0], obtaining ? < 0.02 across all hospi-

tals. Between SecureKLX and KLX , E�>∼H [d] = 0.9303 with a range of [0.455, 0.991], with 11 of 12

hospitals achieving p-values below 0.05. After applying Hochberg false discovery rate correction

[28], our p-values remain signi�cant. This range may be an artifact of sweeping hyperparameters

independently in plaintext and encrypted optimisations, because sharing the same SGD hyper-

parameters would result in a tighter range. For all 12 hospitals, see appended Appendix D.4 for

details.

Impact of Adding Security on AUC Correlation We further examine the e�ect by adding

encryption through its impact on the downstream AUC, using how AUC improvements are

ranked. This rank is compared with how secure measures (i.e., SecureKLXY) and plaintext mea-

sures (i.e. KLXY) rank hospitals. This comparison investigates the extent of the shift in the full
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Figure 5.5: AUC change X) over all strategies
in eICU prediction (higher is be�er). Our pri-
vate dataset evaluation strategy c? outperforms
demographic-based strategy c3 (le�), and sub-
sampling strategy cB for : = 300 (10%) and : = 30
(1%) (right), a�er combining source data with the
top 3 candidates.
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Figure 5.6: AUC change X) over all strate-
gies in Folktables dataset prediction (higher
is be�er). All strategies exhibit comparable dis-
tributions, a�er combining data from top 3 can-
didates. In a noisy domain, our method is stable:
it neither excels nor penalizes against non-private
strategies.

hospital ranking, when we switch from a plaintext setup to encrypted. For �> ∼ H, we measure

X8 that results from adding D8 to D> for all 8 . This correlates all target hospitals {�8} with their

ground truths {X8} in the case of picking a single target hospital. We �nd the linear coe�cient

for encrypted SecureKLXY to be −0.182 and plaintext KLXY to be −0.184 (99% matching). Both

SecureKLX and KLX have a linear coe�cient of −0.164 with X8 . For all strategies’ correlations

with ground truth at = = 1, see Appendix D.2.

5.6.2 Positivity in Realistic Setup

Overall Positivity. We apply SecureKL in a pragmatic multi-source data combination prob-

lem, where each strategy acquires = datasets for = ∈ {1, 2, 3}. For = = 1, we �nd that c? improves

AUC in 10 out of the 12 hospitals. When = = 2 and = = 3, we �nd that using c? consistently im-

proves AUC for all hospitals. Overall, 34 out of the 36 dataset combinations we evaluate on have

an AUC improvement X) > 0, suggesting that c? is a reasonable strategy for selecting hospital

dataset combinations with a high expected return E[%�>∼H(X) > 0)] for the source hospital from

using our strategy.
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Comparing With Alternative Strategies Other strategies – c0, c3 , and cB – can also arrive

at “positive” datasets. Comparing private method to other strategies at = = 3, i.e, c? (= = 3), we

describe our results in Figure 5.5

1. c? (our method based on SecureKLXY) has a median X) of 0.020, and a standard deviation

of 0.015. Our results indicate that for 50% of the hospitals, c? gives a X) >= .02. Compared

to other strategies, c? has the highest median, the lowest standard deviation, and it is one

of two strategies that improves performance for all hospitals.

2. Demographic-based strategies underperform compared to c? on average. However, we

observe that c3-gender can be highly e�ective for a subset of hospitals, as it achieves the

highest 75th percentile (Q3) of 0.033 among all strategies. This indicates that for 25% of

hospitals, X) ≥ 0.033. Despite this, c3-gender has a lower median value of 0.012 compared

to c? , exhibits a high standard deviation (0.022), and degrades the performance for certain

hospitals. Similarly, c3-age has a median of 0.014, and c3-race has a median of 0.008, both

lower than c? ’s median.

3. Plaintext small-sample strategies, cB , outperform all demographic-based methods but slightly

underperform relative to c? . For instance, cB (: = 300) has a median X) of 0.0178, and al-

though it achieves X) > 0 across all hospitals, it performs worse on average compared to

c? and exhibits a higher standard deviation (0.017). cB (: = 30) has a median X) of 0.0165.

Compared to other strategies, it has the largest standard deviation (0.024), and it degrades

the performance for some hospitals.

In summary, our method c? achieves the highest AUC improvement on average with the

lowest standard deviation, demonstrating more consistent improvements for all hospitals.

While the average improvement of c? is small, demographic-based and plaintext small-sample

strategies exhibit greater variability, with some strategies improving performance for speci�c

subsets of hospitals but underperforming or degrading results in others.
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= c3-gender c3-age c3-race cB (: = 300) cB (: = 30) c? SecureKLXY
eICU

1 0.020 ± 0.023 0.012 ± 0.016 0.014 ± 0.015 0.012 ± 0.014 0.010 ± 0.017 0.011 ± 0.018
2 0.016 ± 0.016 0.017 ± 0.017 0.015 ± 0.013 0.024 ± 0.020 0.017 ± 0.019 0.027 ± 0.022
3 0.020 ± 0.023 0.016 ± 0.019 0.011 ± 0.021 0.021 ± 0.017 0.021 ± 0.024 0.024 ± 0.015

Folktables
1 0.009 ± 0.011 0.011 ± 0.008 0.011 ± 0.011 0.011 ± 0.008 0.008 ± 0.009 0.008 ± 0.009
2 0.014 ± 0.011 0.015 ± 0.011 0.014 ± 0.012 0.014 ± 0.011 0.012 ± 0.011 0.011 ± 0.011
3 0.015 ± 0.011 0.016 ± 0.010 0.017 ± 0.012 0.017 ± 0.012 0.015 ± 0.010 0.015 ± 0.010

Table 5.3: AUC improvements in mean and standard deviation, across all source regions for each
strategy c , for eICU and Folktables setups. = denotes the number of candidate datasets added to the
source dataset. The small gains and high variance from adding selected datasets highlight the precarious
nature of assessing data value in the real world. Bold indicates highest AUC improvement per =. Note:
Only c? SecureKLXY is private.

5.6.3 SecureKL Error Analysis

Underlying Data Limitations In high-stakes domains, data partnerships are expensive, but

potentially detrimental – this forms a challenging landscape for evaluating methods on real-world

data. Indeed, as shown in Table 5.3, the AUC gain is small across all strategies, and the variance

is high. This suggests that 3 hospitals’ data is likely still too small for the general task to the

robust explains limited AUC gains, highlighting the need to maximize samples for informative

decisions. The key distinction, however, is that privacy-leaking methods (demographic, small

sample) and blind baseline risk performance declines in many hospitals while SKL consistently

improves downstream tasks more reliably than alternatives, across all hospitals, over multiple

runs.

Underlying Score Limitations Data addition algorithms underpin the e�ectiveness of our

method. Even if D> obtains access to all the plaintext data, there is no guarantee that c? can

correctly predict whether the data is useful. As seen in Figure 5.7, Hospital 243’s utility when

acquiring another data set is badly correlated with plaintext and encrypted KL-XY scores. This

leads to its bad strategy for acquiring the top 3 hospitals, as seen in the middle pane of Figure 5.8.
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Figure 5.8: Le�: SecureKLXY outperforms cB (: = 30) and c0. Middle: All strategies perform similarly.
Right: cB (: = 300) outperforms SecureKLXY . (Bars represent standard deviations)

Interestingly, for this hospital, no other informational strategy excels, either, so choosing a ran-

dom 3 may be preferred.

This behavior stems from the underlying measure, not from adding secure computation: in

Figure 5.7 and Figure 5.8, the encrypted performance closely follows that of plaintext perfor-

mance, for both good and bad downstream correlations.

Sometimes, Not All Underlying Data Is Needed Relatedly, when seeing a few samples can

successfully identify useful candidate hospitals, cB (which is on small samples) outperforms c?

(which is on full samples).
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In the right panel of Figure 5.8, hospital 199, the smaller sample sizes achieve a score that

better re�ects ground truth as a data addition strategy. In that case, the hospital may not need

the full sample to know which target hospitals to collaborate with.

This behavior is speci�c to the interaction of the data and the underlying score, and does not

a�ect the general insight that adding private computation preserves privacy (and eases privacy-

related risks that hinder data sharing). We further note that our method still clearly applies to

encrypted computation on a smaller data set under data minimization.
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5.7 Discussion

5.7.1 SecureKL Contribution

After establishing that c? with SecureKLXY is a robust strategy in practical downstream perfor-

mance, we hereby summarize the bene�ts of SecureKL and elaborate on their practical implica-

tions.

Matching Plaintext Performance in Downstream Tasks. Our major contribution is to

match plaintext performance with no data sharing. Using MPC provides input privacy, meaning

that if both hospitals only want to know the resulting score, the computation can be done without

leaking original data. This strong guarantee can signi�cantly ease the tension related to privacy

and compliance in setting up a collaboration, leading to a practical "data appraisal stage" in data-

limited high stakes domains.

Gain from Data Availability. In contrast to limited-sample approaches, a key advantage

for our method c? is that it takes advantage of all the underlying data – generally impossible

with non-secure methods for private data in heavily regulated domains. The general intuition

is that data is localized; therefore, once a good target hospital is identi�ed, we would prefer to

acquire all of the data. It may be tempting to assert that we prefer the highest : for data addition

algorithms as well. In our experiments, while this is generally true, the smaller : sometimes out-

perform larger : in plaintext strategy cB , which we investigate in Section 5.6.3 and in Figure 5.8.

This occasionally non-monotonic behavior mirrors the challenge of data combination itself: even

within one source dataset for the same estimator, more data is not necessarily better. This sug-

gests the potential for a hospital-speci�c alternative to sharing a large amount of data for some

source hospital, and points to future directions to using secure computation on a minimal-sized

sample dataset for minimal performance overhead while remaining private.

Potential Improvements to SecureKL In the case where that output can be sensitive, i.e.,
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when a source hospital queries a target hospital multiple times and accrues information through

the score function, the output can also be made privacy-preserving through di�erentially private

data releases, such as using randomized response [92].

5.7.2 Potential Challenges to Broader Adoption

Our code is readily usable by small organizations. While our approach generalizes to model-

based measures (by substituting 6SKL) and scales to multiple parties, our work also uncovered

deployment limitations.

1. Operational: engineering personnel limitations. While our implementation requires little

cryptographic knowledge to deploy, it still needs technically-trained sta� at each partic-

ipating hospital to collaborate and maintain. This skill is similar to using pre-packaged

software, cleaning data, and setting up network calls.

2. Engineering Extensions: Extending any MPC protocol is non-trivial, as security engi-

neering is a specialized skill. While SecureKL applies broadly to other underlying scores

in multi-party setups, validating a new MPC algorithm requires software engineering –

prototyping, tuning, debugging – and numerical veri�cation – akin to data analytics and

research - likely requiring technical talents who can be especially costly for hospitals to

retain in-house.

3. Framework Limitation: While CrypTen is designed to accommodate PyTorch, it is a re-

search tool where not all plain text functionalities are implemented. As mentioned in Sec-

tion 5.8, for example, writing optimizers – such as L-BFGS – and custom operators that are

not readily available requires both machine learning and cryptography knowledge. More-

over, the protocol incurs additional computational overhead, especially if hyper-parameters

become more complex to sweep5. This will likely improve with time, as new frameworks
5For our work, the performance metrics are provided in Appendix D.5 for reference
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can address design shortcomings e�ciently.

4. Inherent to SecureComputation: When the method requires signi�cant hyper-parameter

tuning, such as using SGD on small batch data with learning rate schedules, plaintext tun-

ing may not transfer perfectly. As detailed in Appendix D.3, our hyperparameters for SGD

di�er in encrypted and plaintext settings. Thus, as encrypted computation hides loss curves

and training details by default, development is expected to be complex. This is because both

hospitals want to ensure model �t with secure evaluation, but may not want to expend the

computational cost of private hyperparameter sweeping.
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5.8 Engineering Contribution

Similar to Chapter 4, SecureKL is limited to using CrypTen with SGD for private training, which

can lead to model �tting challenges discussed in Section 4.6 under “Implementing Private Train-

ing (Ground Truth Baseline)”. Key to SecureKL’s contributions is reliably training in private for

method validation. This entails fairly comparing SecureKL with non-secure KLXY with extensive

experimentation.

Hyperparameter Tuning in Private became a signi�cant bottleneck for our research. For

both secure and non-secure performance comparisons, we tuned separate sets of hyperpa-

rameters with and without encryption
6. Our baseline KLXY design had applied SGD with

momentum and learning rate schedule for small batch data with early stopping, requiring six

parameters to tune7. While straightforward in plaintext, hyperparameter tuning was complex in

the encrypted setting. Because each encrypted run needed to complete, this process was clearly

computationally-intensive. The sweep was often rerun when we had to debug issues in the en-

crypted setting (i.e., bad model �ts).

Framework Improvements Acknowledging the need for both numerical stability and training

�t when developing MPC-for-ML, we identify two improvement areas for future frameworks:

1. Support more private operations. As put forth in Section 3.5 and Section 4.6, CrypTen

does not support all PyTorch functionalities. In particular, writing custom operators — including

optimizers such as L-BFGS used in [267] —- is inaccessible without understanding both deep

learning and secure engineering.

2. Make hidden curves more visible. As encrypted computation hides loss curves and

training details by default in CrypTen, algorithmic MPC development is expected to be complex.
6This design decision is further validated in practice, as we found that plaintext tuning indeed does not transfer

in the secure setting. For the hyperparameter comparison, see Table D.3 in the Appendix.
7In comparison, the baseline method in Chapter 4 used vanilla SGD with �xed learning rate and weight decay.
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Model-based algorithms that involve joint training like ours especially su�er — when encrypted

hyperparameter tuning is not part of the budget, requiring debugging over obscured data can

hinder adoption. This indicates the potential for adjustable, privacy-preserving training statuses

for MPC-for-ML frameworks to make visible.
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5.9 Alternative Approaches

To achieve data combination has explored several approaches to 1. mitigate data sharing con-

straints while maintaining model performance, or 2. achieve secure data combination among

multiple parties. We brie�y discuss our survey and thinking along these two directions speci�-

cally for the medical domain. This section is adapted from [106].

Augmenting existing data with synthetic data in medical domains Synthetic data gen-

eration has emerged as a promising approach to expand training datasets while preserving pri-

vacy. Generative adversarial networks (GANs) have shown success in generating realistic cancer

incidence data [117], medical imaging data [288], and electronic health records [23]. These meth-

ods can preserve statistical properties of the original data while providing di�erential privacy

guarantees. Transforming data into a similar form that desensitizes certain attributes can be de-

sirable [86; 137; 227; 118; 282]. Yet, to still preserve the utility of the dataset transformed for

analytics or learning tasks is challenging by itself [152]. Additionally, outside the scope of sen-

sitive data that is transformed, little privacy guarantee is available, leading to re-identi�cation

risks [219; 152].

In addition, evaluation of synthetic medical data reveals challenges in capturing rare con-

ditions and maintaining consistent relationships between multiple health variables [117]. For

tabular data, methods like CTGAN and TVAE [316] have demonstrated ability to learn complex

distributions while preserving correlations between features. However, these approaches often

struggle with high-dimensional data and can introduce subtle biases that impact downstream

model performance [15]. Recent work has also explored combining synthetic data with di�er-

ential privacy to provide formal privacy guarantees [153]. While these methods o�er stronger

privacy protection, they often face signi�cant utility loss, particularly for rare but important cases

in the original dataset [322].
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Secure Data Combination Recent work has explored methods for securely combining datasets

while preserving privacy and improving model performance. Early approaches focused on using

secure multi-party computation to enable multiple parties to jointly train models without shar-

ing raw data [12]. However, these methods often struggled with computational overhead and

communication costs when dealing with large-scale datasets [207]. More recent techniques have

introduced frameworks for evaluating potential data partnerships before commitment. These

approaches use privacy-preserving protocols to estimate the compatibility and complementar-

ity of di�erent datasets [183; 55]. Some methods focus speci�cally on measuring distribution

shifts between datasets without revealing sensitive information [88]. Others trained the down-

stream model in private, but limited to LASSO [303]. Several systems have been developed to

facilitate secure data combination in speci�c domains. In healthcare, methods have been pro-

posed for securely combining patient records across institutions while maintaining HIPAA com-

pliance [247; 303]. Financial institutions have explored similar approaches for combining trans-

action data while preserving client con�dentiality [196].

Federated Learning. Cross-silo federated, decentralized, and collaborative machine learning

[207; 189; 33; 154] focus on acquiring more data through improved data governance and e�cient

system design. Healthcare machine learning is considered especially suitable, as health records

are often isolated [255; 315; 223]. Yet, even though no raw data is shared, model parameters

or gradients �ow through the system. As the federated computing paradigm o�er no privacy

guarantee, the system is vulnerable to model inversion [107] and gradients leakage attacks [31;

335]. A subtle but urgent concern is that privacy risks discourage the very formation of the

federation when optimisation is traded o� with privacy [200; 252]. Building on the insight that

useful data is often disparately owned, we tackle the speci�c incentive problem between pairs

of data players where one side trains the model, instead of scaling up a federation (number of

parties) to address data access issues. We thus focus on making this exchange e�cient, accurate,
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and private.

Compared to vanilla Federated Learning, an MPC system [264; 324; 34; 164] provides stronger

guarantee in terms of input security. Model owners and data owners can potentially federate their

proprietary data, including model weights, training, and testing data, can work together under

stringent privacy requirements. Our work extends the line of works [320; 323; 34] that demon-

strates the potential of incorporating MPC in various federated scenarios. On the practical side,

unlike mobile-based networks for secure federated learning protocols [33], our system assumes

a smaller number of participants, where communication cost and runtime are not dominant con-

cerns.

Differential Privacy for Data Sharing Di�erential privacy (DP) [90] o�ers formal privacy

guarantees for sharing data and training machine learning models. While DP mechanisms can

protect individual privacy when releasing model outputs or aggregated statistics, they face signif-

icant limitations for interorganizational data sharing. The primary challenge is that DP operates

on already-pooled data, but organizations are often unwilling to share their raw data in the �rst

place [92]. Even when organizations are willing to share data, the privacy guarantees of DP come

at a substantial cost to utility, particularly in machine learning applications. DP-SGD, the stan-

dard approach for training deep neural networks with di�erential privacy, signi�cantly degrades

model performance compared to non-private training [2]. This performance impact is especially

pronounced in data-constrained settings, where recent work has shown that large models rely

heavily on memorization of rare examples that DP mechanisms tend to obscure [98]. The privacy-

utility trade-o� becomes even more challenging when dealing with high-dimensional data or

complex learning tasks. Studies have demonstrated that achieving meaningful privacy guaran-

tees while maintaining acceptable model performance requires prohibitively large datasets [21].

This limitation is particularly problematic in specialized domains like healthcare, where data is in-

herently limited and performance requirements are stringent [110]. Recent work has attempted to
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improve the privacy-utility trade-o� through advanced composition theorems and adaptive pri-

vacy budget allocation [235]. However, these approaches still struggle to match the performance

of non-private training, especially when working with modern deep learning architectures [293].

While di�erential privacy o�ers important theoretical guarantees, our work focuses on the prac-

tical challenge of enabling data owners to evaluate potential partnerships before sharing any data,

addressing a key barrier to collaboration that DP alone cannot solve.
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5.10 Conclusion

Our work demonstrates that privacy-preserving data valuation can help organizations identify

bene�cial data partnerships while maintaining data sovereignty. Through SecureKL, we showed

that entities can make informed decisions about data sharing without compromising privacy or

requiring complete dataset access. As the AI community continues to grapple with data access

challenges, particularly in regulated domains like healthcare, methods that balance privacy and

utility will become increasingly critical for responsible advancement of the �eld. As noted in

Section 5.6.3, our approach has several limitations, including the fact that, despite impressive

aggregate results, our method is less e�ective for individual hospitals; this �nding is fertile ground

for future work. Additionally, our work present opportunities for follow-up research. Our method

assumes static datasets and may not generalize well to scenarios where data distributions evolve

rapidly over time. A sequential version of our framework may more closely model dynamic data

collaborations. Future work should explore extending these techniques to handle more complex

data types and dynamic distribution shifts while maintaining strong privacy guarantees.

Lastly, extending our setup to other data-evaluation measures, any data combination method

(if Turing-complete) can be made private [115]; yet, in practice, balancing the right trade-o� of

utility and privacy is non-trivial. Barring engineering di�culties, not all algorithms readily adapt

e�ciently in private. Previously, Chapter 4 [320], which assumed the trained model and test data,

achieved relatively exact results; however, complex methods would exacerbate the operational

challenges discussed in Section 5.7.2, as the source hospital now needs to prepare more data and

development. Future work should explore the practical mileage of bridging MPC deployments to

the stakeholders without extensive resources.
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6 | HEalth: Privately Computing

on Shared Healthcare Data

While machine learning models can operate on sensitive data in private, auditing these models,

such as for decision fairness [263], becomes exceedingly challenging when the data is encrypted.

For example, when a patient arrives at the emergency room in a hospital, they may get ad-

mitted, turned away, or put in the waiting room — a sorting and organizing procedure known

as triaging. Using ML for triaging can save cost, reduce emergency department overcrowding,

thus allocating scarce healthcare resources to save the most lives; however, it is crucial that this

potentially life-or-death decision process — automated or not — is fair and non-discriminative.

In this future powered by machine learning advances, auditing tools nevertheless lag behind.

At the center of the challenge is data privacy: health regulations ensure that digital records are

encrypted by default, so hospital decisions – automated or not – rely on protected attributes of

patient data; yet, auditing requires fairness evaluations on those exact attributes. In the setup,

sketched in Figure 6.1, we ask

Can existing homomorphic encryption help overseers audit private model decisions?

This chapter qualitatively describes a solution with novel protocol HEalth: Privately Com-

puting on Shared Healthcare Data, included in [78]. It was an early document on applying

Fully-Homomorphic Encryption (FHE) (Section 3.3) to machine learning.
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Figure 6.1: Setup: Hospital systems will deploy machine learning-based decision models, the outcome
of which should be audited.
The Overseers from Section 2.4 take on the role of regulatory auditors, who would need to access the
input and the decisions made by these models, which are kept private by default at the hospital level.

In 2019, we demonstrated through auditing triaging fairness that FHE can be feasible as a

privacy-preserving oversight solution. Our setup and algorithm allow for e�ciently auditing at-

tributes of decisions, without decrypting the data-sensitive outputs of machine learning models.

By 2025, besides enhancing the writing with background and contexts, we have additionally

made diagrams and clari�ed algorithmic descriptions, and contextualize our work to prior publi-

cation. Additionally, the overall system is compared with auditing di�erentially private models.

Contributions We posit the hospital fairness problem for external regulators to audit hos-

pitals’ proprietary ML models, which can be solved e�ciently. This enables novel use cases of

homomorphic encryption for machine learning. Speci�cally, we present

1. A multi-stakeholder, incentive-compatible key exchange, which allows for continuous up-

loads of healthcare records without frequent key refreshes.

2. Descriptions of secure fairness auditing algorithms that are practical for existing computa-

tional systems, without relying on expensive non-linearities.

3. Descriptions of a system that, once set up, does not require expert intervention.

State of the Art (2025) The framework proposed in [237] in 2022 directly subsumed the

original 2019 contribution that was published in [175]: it achieves private fairness auditing in
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a holistic system, while our work focuses on algorithmic feasibility in FHE. It “builds a chain of

trust through enclave attestation primitives, combined with public scrutiny and state-of-the-art

software-based security techniques, enabling fair ML models to be securely certi�ed and clients

to verify a certi�ed one.”

Notes The security protocol proposed is a combination of pre-existing ideas that were theoret-

ically explored for, but not applied to, healthcare use cases. Threshold cryptography has yet to

be standardized, and it is unclear if it can be adeptly governed [43]. Through the early demon-

stration of fairness auditing in hospital data, this work presents a potential future where public

key infrastructure underlying the modern internet can extend to machine learning-related tasks.

The notations are presented in Table 6.1.
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Notation English Description

F Function

P Probability

N Natural Numbers

.̂ Prediction

& (·) Quantization

� Protected Attributes

# Feature(/Bin) Cardinality

 Hospital Cardinality

? Class Cardinality

2 Feature Category Cardinality

M Trained Model

�=2 Encryption Function

�42 Decrypt Function

H Aggregate Histogram

�8 8-th Hospital(/Week)’s Local Histogram

�8 [ 9] 9-th Bin of Histogram �8

keygen Key Generation

?: Public Key

B: Secret Key

?:∗ Common Public Key

B:∗ Common Secret Key

2C Ciphertext / Cyphertext

?C Plaintext / Clear text

@(·) Polynomial

@B Scaling Factor

T Integer Threshold

: Threshold, (Threshold-FHE)

Table 6.1: Summary of symbols in private computation on healthcare data.
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6.1 Motivation and Background

As the work was originally completed in 2019, we give a historical context as motivation for our

conceptual work.

Fairness and Machine Learning. Testing and modifying machine learning to be fair was a

burgeoning �eld under the umbrella term ML Fairness [24; 48]. Our work is based on one example

of statistical fairness criteria, "group fairness", which is also called the Equal Outcome Criteria or

independence. Rooted in the pre-existing legal theory of disparate treatment [70], group fairness

is formulated as

P(.̂ = 1|� = 0) = P(.̂ = 1|� = 1) ∀0, 1, (Equal Outcome)

where .̂ is the predicted label and � is a Protected Attribute. When � refers to race, gender, or

age1, the criteria aims to have each subgroup under this attribute receive a positive outcome at

equal rates (demographic disparity).

Privacy Challenges for Auditing Healthcare Data. While regulatory agencies mandate

fairness, hospital machine learning requires protected attributes, which are inherently sensitive.

If auditing requires data to be presented in clear text (without encryption), privacy may be un-

dermined. Appendix E.1 includes detailed write-ups.

Fairness RisksWith Switching to Di�erentially PrivateModels. The regulator-hospital

privacy issue can be resolved if the model can be safely shared, such as when the model is trained

in with di�erential privacy [90] (DP, Section 3.6.2). However, under DP, fairness su�ers.

While releasing models trained with DP can protect the privacy of the individual records,

[281]’s extensive testing found that DP-SGD [2] in particular gives unfair in�uence to majority

members. Speci�cally, when a model is trained under DP-SGD, a member of the population
1In our original work � is one-dimensional i.e. � is race, and 0 is Caucasian. We can extend � to accommodate

a collection of di�erent features.
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majority (under �) would have a higher impact on the di�erentially private models’ decisions.

This phenomenon, aptly coined as the Privacy-Fairness trade-o� [281], can be problematic for

auditing: when the very goal of auditing is to encourage fairer machine learning models, auditing

di�erentially private models may lead to hospitals training less fair models.

This trade-o� may relate to learning under imbalanced groups; heavy-tail data tends to neg-

atively impact classi�cation, as studied theoretically by Chaudhuri et al. [58], and in practice

by Suriyakumar et al. [281] — both inspired by healthcare domains. To test this out with real hos-

pital data, we present Figure 6.2. Our fairness analysis uses models trained DP-SGD for mortality

prediction from ICU data. We con�rmed that model fairness (using "worst group fairness") is

negatively a�ected when privacy protection is meaningfully strong (n = 1). For further analysis,

see Section 6.5.

Homomorphic Encryption-FriendlyAudits. If fairness functions can be rewrittenwithout

expensive non-linearities, then auditors could assess “secret” black box models via homomorphic

encryption.

Need-to-Know Audits. Proposing FHE for auditing can improve e�ciency on data that is

already encrypted – auditing automated decisions that are done in bulk can also be achieved in

real time, without relying on hyperparameter choices or needing backdoors. Thus, our solution

improves upon decrypting private data to enable auditing (Figure 6.7, also argued in Raisaro

et al. [247] for general medical audits). While generic FHE schemes are not ad hoc, ours scales

to multiple audits per encryption, so regulators can make modify audits without needing key

refreshes.

Opportunities in PrivacyML Incentives. At the time of the project, traditional private

ML assumed training-related workloads [36; 112; 162]. In incorporating encryption technologies

to machine learning, one class of problems was overlooked: the incentives pertaining to using

con�dential computation to build trust with stakeholders, as discussed in Chapter 3. Our work

tackles the auditing of ML: apply practical private FHE to help with regulatory duties associated
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Figure 6.2: Fairness-Privacy Trade-o�: per hospital group fairness performance under di�er-
entially private models with increasing privacy relaxations. The fairness metric, worst group per-
formance (higher is be�er), under di�erent privacy parameter n = 0.1, 1, 10 (smaller is more privacy-
preserving) setups. n = ∞ refers to no privacy protection (ground truth) numbers. Models are trained
with logistic regression under DP-SGD (Sec 3.6.2). Group fairness shown for intersectional groups [48].
Note: This experiment is run in 2025 on eICU data for the 24 -hour mortality prediction task in [244]; our
data processing is detailed in Appendix D.1.

with future machine learning models, without leaking data.

Proof-of-Concept for Using FHE/HE for ML As brought up in Section 3.3, homomorphic

encryption has been applied for single-stakeholder tasks, with signi�cant computational over-

head, and need extensive expertise to write and con�gure. Moreover, many costly operations

become strenuous in FHE, seemingly incompatible with current machine learning paradigms.

The original publication of [175] therefore focused on the conceptual validation of using FHE for

a useful ML workload, and had only presented the qualitative descriptions.
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6.2 Summary of Engineering Contribution

The original publication [175] focused on the potentiality of FHE for ML and presented the

project’s qualitative descriptions only. In 2025, we supplement this thesis with an expansive al-

gorithmic description and new diagrams that clarify how expensive non-linearities are avoided.

We also computed group fairness (by trait) on 3000 data points in 79 seconds on an 2019 MacBook

Pro without further optimisation2. We hereby summarize the engineering hurdles experienced

in both the initial development in 2019 [175], and our enhanced implementation in 2025.

Challenges in 2019 In 2019, an experimental prototype of the work was written in SEAL [60]

to demonstrate the feasibility of the FHE use case; however, some core functionalities, such as

BGV [42], were not fully available within the framework [211]. Moreover, parameter selection

was a known challenge (Section 3.3.3), as SEAL’s parameter setting defaults required both cryp-

tography knowledge and a close understanding of the computation.3 Lastly, for pure conceptual

feasibility, our tests were written largely with converting made-up data arrays into integer arrays,

not linked to real hospital data; as a result, real-world numerical stability was not tested.

Challenges in 2025 Our updated implementation leveraged Zama’s FHE library, which in-

cludes ConcreteML [329]. We found the learning curve of using the FHE library to have greatly

decreased compared to 2019, with engineering focusing more on utilizing existing library fea-

tures.4 The remaining engineering hurdles, which are largely functional, pertain to runtime opti-

misation (performance) and integer encoding normalization (correctness and numerical stability).

Notably, Zama still requires integer arrays as the default input. Lastly, our new implementation

uses real hospitals’ datasets (eICU [244]) — a signi�cant step forward from previous simulations.
2For comparison, this is the amount of data a typical hospital system’s ICU unit generates in a year.
3Unfortunately, our code artifact, including our security parameters, was not carefully preserved.
4For example, the max operator for “worst-group” performance was not part of the original algorithm we sup-

ported, but can now be enabled out-of-the-box by Zama, albeit with a performance penalty (a non-linear approxi-
mation).
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Limitations FHE libraries o�er support for speci�c operations, including documenting sample

code for a variety of e�cient algorithms. While these operations can support general computa-

tions, not all machine learning tasks are supported out of the box. To complete our work, which

is a novel ML workload on FHE, we are essentially writing tokenizers, quantization, as well as

kernels for machine learning.

Frameworks can potentially do more – for example, categorical data that has many categories

can be encoded as a one-hot vector, or it can be represented as a hashmap. These choices are thus

similar to tokenization in natural language processing [273; 116]. Moreover, the pre-processing

step has the liberty to transform data not only into an FHE-friendly format, but also to aid later

computations on the encrypted data. Quantization can be automated in FHE frameworks, but

only on low-level data types such as �oats or strings, whereas modern machine learning oper-

ates at a much higher level on more generic data. This suggests the potential for private ML

frameworks to co-design machine learning tasks with homomorphic encryption.
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6.3 Problem Setup

Who To Trust Following semi-honesty in Section 2.5.2, willing participation is assumed in

this setup. Concretely, we assume that all hospitals involved wish to be audited through our

system, and that the regulatory auditors are trusted. Also mentioned in Section 2.5.2 is that all

parties know what is being audited. As such, the data formats and preprocessing steps are

not secret. The setup for hospitals is expanded on in Section 6.6.1.

6.3.1 Auditing Setups

Figure 6.3: Existing: Hospital self-reports final
metric. The hospital computes fairness function
F from raw data, and reports the number to the
auditor.

Figure 6.4: “Backdoor”: Auditor decrypts en-
crypted data. The hospital sends encrypted data
as well and the key to fully decrypt the data, in-
cluding sensitive patient data. The auditor then
computes F from raw data.

Existing approach: self-reporting. As illustrated in Figure 6.3, hospitals computing their

own metrics does not constitute as a third party audit.

Our approach: FHE-friendly fairness audits. As illustrated in Figure 6.5, the hospital

preprocesses and encrypts data. Then, the encrypted data is sent to the auditor, who cannot

decrypt the raw data. The auditor, potentially with hospital agreement, decrypts only the auditing

results. The raw data is never exposed.

Alternative approach: encrypt, but pass the key. Encrypting and decrypting all raw data

by sending the auditor the encrypted data as well as the secret key introduces novel security

risks, illustrated in Figure 6.4; under multiple hospitals, the algorithmic auditor now holds the
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only 
fairness 
results

FHE

Figure 6.5: Our Method: Homomorphic Encryption-enabled Fairness Audit. First, the hospital
encrypts data (with a special key). The encrypted data is sent to the auditor, who cannot decrypt the data
except for the fairness results.

keys to all participating hospitals’ raw data (Figure 6.6), and becomes a risky central repository

of everyone’s raw data.

Undermining encryption is costly, socially The level of data access in Figure 6.4 far ex-

ceeds what is necessary for fairness auditing. This approach also has a social cost: undermining

encryption by bypassing regulations gives regulators a backdoor to [53], disempowering individ-

ual patient’s privacy over their health records [65]. Our approach, on the other hand, limits the

data access of the regulator to what is necessary for fairness metrics to be computed on the en-

crypted data. At decryption time, only aggregate results are decrypted (Figure 6.7 under multiple

hospitals). Appendix E.4 discusses more auditing setups.
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6.4 Algorithms

Shared Knowledge Assumptions Because common to all parties is the knowledge what is

being audited and how the record arises, such as using intake form data for emergency room

triaging or using ICU patient data for mortality prediction. Thus, the associated known informa-

tion is not private, as all parties are aware of the type of data.

This shared knowledge includes the number of predictive classes ? , the number of features

# 5. Additionally, all hospitals’ records are assumed to contain all protected attributes, and

each attribute �’s cardinality is known, e.g., how many values can race take.

Binning, �antization, and Normalization We additionally assume a pre-determined

data format, including quantization and normalization schemes.

Because each trait of the data needs to be converted into integer arrays for most protocols,

we assume binning (for continuous data) and quantization, denoted as & (·) : R→ N< . Namely,

when the data type associated with data �eld � is too large to �t in one bit-limited integer, this

function allocates< ints instead. As a result, each trait�may be associated with multiple indices.

Moreover, we also assume that appropriate normalization Normalize(·) is applied to adjust the

input for the speci�c formats each FHE encryption function take.

Multiple Hospital Assumption In our initial work in 2019, the hospitals’ data is aggregated

for one fairness metric. This is due to several considerations: 1. there is mandate to know the

industry-wide statistic, so a joint statistic makes sense for all hospitals deploying the same model,

as pictured in Figure 6.7. 2. there is more data when multiple hospitals upload to the system.

Because hospital data can be sparse, this joint operation may be more realistic for real-time mon-

itoring. As a result, the histogram description is for the aggregation of disparate hospitals.
5In our original work, a “trait” was used instead of a feature.
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Figure 6.6: Regulatory mandates at odds with
privacy compliance. Per HIPAA [53], patient
data samples, {�8}, should be stored and trans-
ported with industrial-grade encryption. Regula-
tory bodies need to ensure fair access to medical
resources via auditing the decisions and outputs
(methodologies 5audit, 5eval, · · · ), but can only do so
via a backdoor (key), undermining encryption.
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Figure 6.7: Secure MPC via Threshold FHE
for Auditing. The hospitals’ data �8 , each en-
crypted with a unique set of keys, is continuously
audited for fairness. The regulator does not hold
any of the hospitals’ keys, and data is destroyed
if a private key is destroyed. The results and only
the results, are revealed when an auditor calls for
a decryption event (not pictured).

However, the algorithm readily adjusts to parallel operation, where fairness metrics in each

hospital is computed at once. More assumptions are addressed in Section 6.6.1.

Figure 6.8: Preprocessing and Secure Aggre-
gation Overview. Each hospital preprocesses
their data with the same binning and quantiza-
tion function& (·), and encrypts their resulting his-
togram�8 to the server. The server performs aggre-
gation of the histograms, outlined in Section 6.4, to
obtain aggregate histogramH through Aggregat-
ing Hospital Histograms. Note that �8 ’s are en-
crypted before entering auditing compute, so no
unencrypted data is shared.

Figure 6.9: Fairness Audit Request Overview.
A�er data has been aggregated, hospitals and
overseers get together to answer to a request-to-
decrypt that is specific to the fairness function
in question, such as group fairness di�erence be-
tween races, as outlined in Section 6.4. Note that
appropriate decoding, such as rescaling, is needed
a�er decryption. For our protocol, all parties need
to agree to decrypt the results.
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Encoding and Summing Histograms With Binning and �antization Bin all the data into

# bins. Let �8 [ 9] represent hospital 8’s 9-th bin. This histogram’s representation is discrete, and

each value �8 [ 9] is bounded by T ∈ N.

Representing each local histogram as �8 ∈ N# , we have aggregate histogram H , summed

over respective indices across hospitals6:

H( ) =
=∑
8=0

�8 =

 ∑
8=0

©­­­­­­­­«

�81

�82
...

�8#

ª®®®®®®®®¬
=

©­­­­­­­­«

∑ 
8=0�8 [1]∑ 
8=0�8 [2]
...∑ 

8=0�8 [# ]

ª®®®®®®®®¬
. (Aggregating Hospital Histograms)

The overview of the process is illustrated in Figure 6.8. Most FHE operations require integer

inputs, such as an array of ints7. For data of known range, indexing or binning would su�ce.

For data spanning extreme values, such as blood test results, additional pre-processing may be

required, by applying a quantization layer & (G). This quantization function is known, and uni-

formly applied, to all hospitals. Then each hospital computes their local histogram over an ap-

propriate period of time8. The overseer can utilize the aggregate histogram for auditing needs,

on a need-only basis. This aggregation is provided in all HE schemes.

Encoding Labels Because the outcomes are the features to audit, for each outcome . = ~, we

have a corresponding histogramH(. = ~). They are assumed to be a few classes (such as admit,

wait, turn away). This class information is not private.

Aggregative Property of Histograms Equation Aggregating Hospital Histograms, H( +

1) = H( ) + � +1. This means the data can be continuously uploaded in the form of local
6Omitted: Normalize(·) is applied at the end toH to adjust for FHE-friendly input.
7This is usually not automatically done. For instance, the FHE compiler Concrete [329] asks for quantized values

instead of taking �oats, though some quantization operations are provided in the library.
8For triaging, this frequency would be approximately a week; for ICU mortality, approximately a month.
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histograms. In a single hospital setting, �8 represents data from di�erent times, such as every

week.

Fairness Function Within H , consider a protected attribute � represented with histogram

indices ��, meaning that �8 [ 9] for all 9 ∈ �� represents � in Hospital 8 . (Due to quantizing

or binning, one attribute’s value may be spread over multiple indices.) Let �. be the collection

of indices that represent model prediction .̂ in the data. Without loss of generality, overload

H[ 9 = 0] = ∑
0∈��H[0]

Given group fairness notion Equal Outcome, suppose ~ ∈ {0, 1, 2}, we can compute H~’s

corresponding outcome by attribute.

�0 [ 9 = 0] = �0 [ 9 = 1] turned away;

�1 [ 9 = 0] = �1 [ 9 = 1] told to wait;

�2 [ 9 = 0] = �2 [ 9 = 1] ∀0, 1 ∈ � admitted.

(Equal Outcome)

A metric of interest is the admission gap between the highest and lowest admitted groups, such

as by race [99]. Given the limited number of groups, and that parallelization is “free” in FHE,

we can simply compute them through adding up pair-wise di�erences. We arrive at the set of

fairness values

� = {�~ [ 9 = 0] − �~ [ 9 = 1] | ∀0, 1 ∈ �,∀~ ∈ . }. (Fairness Values)

These additions and subtractions are also supported by most FHE schemes.

Reqest to Decrypt While � can be returned as is, it may be too much data. Alternatively,

a max operation can be applied, and the indices can be return as “the most unfair groups for a

label”. However, computing max (or arg max) e�ciently remains an open problem in FHE [63].

Nevertheless, in fairness audits, the questions are known a priori. A pressing concern may be: Are
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black patients turned away more often than Caucasian patients? To which the auditor submits a

Request toDecrypt in the form of retrieving the decrypted value of the corresponding di�erence

in � . Because the metadata is assumed to be public, the indices are not private, yet the encryption

of � enforces a request.

Scaling Intermediates The auditing function is now written without using any non-linearities,

thus bounding the error and ciphertext length without needless bootstrapping. With hospitals,

# traits, and 2 classes i.e., how many values for race, a predictor for ? outcomes would give us

$ (?2# ) number of values to compute. This memory growth is manageable, and does not scale

with the number of users. On the other hand, time wise, most operations can be parallelized;

while the key refreshes are not needed, the operations are e�cient.

6.4.1 Proposed Applications

We propose a holistic monitoring system for transparent audit, anomaly detection, and insight

discovery that bene�t hospitals and regulatory bodies.

Fairness over any population feature. Select one particular statistic: e.g. admission rates of

groups by protected traits (gender, race). The goal of the computation is to compute an industry-

wide aggregate statistics of admission rates by class with the goal of providing an accurate bench-

mark and identify outliers. This involves careful assumptions that we specify in our document.

Anomaly detection and pandemic discovery. Surface anomalous traits such as patient his-

tory, location, and patient traits in regard to their health (e.g., age). This helps detect and prevent

breakouts of epidemics by discovering trends on time, and has the potential to generate insights

for rare diseases and chronic illnesses. These tasks serve public interest, but are very hard for

doctors to do by themselves in a regional hospital.
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6.5 Comparing with Differentially Private Model Releases

Fairness suffers under DP. As mentioned in Section 6.1, DP-SGD gives unfair in�uence to

majority members in medical data, which can be hard to detect with standard measures of group

fairness [281], suggesting that DP releases may undermine the coverage of auditing. Figure 6.2

shows our analysis using di�erential privacy for mortality prediction from ICU data from real

hospitals [244], based on data cleaning procedures outlined in Appendix D.1.

While released DP models protect the privacy of the individual records (Section 3.6.2), model

fairness is negatively a�ected when privacy protection is strict. Moreover, each hospital would

need di�erent parameter settings to achieve better fairness, introducing another operational cost

to audit9. Auditing the model e�ectively still requires anonymizing patient data, which is known

to degrade representation of minority statistics [158]. Additionally, DP-treated data disclosures

do not give the data parties a chance to re-negotiate against what is computed on their data. In

our full-party protocol, if the audit function is not agreed upon, depending on the threshold, any

party can refuse to participate in the decryption, thus nullifying the request.

Comparing DP and FHE for Fairness Algorithms Though the histogram statistic in Sec-

tion 6.4 is an aggregate one, reminiscent of DP-based aggregation like RAPPOR [93], doing so

with FHE is very di�erent. Coarsely speaking, DP algorithms for model releases are less accu-

rate than non-private models. Even though the leakage to patient data is bounded, releasing a

hospital model (even if just to share with the auditing agency) is still more public; thus, as a

system for the sole goal of enabling auditing, DP-releases risk privacy loss, and tends to degrade

utility [281].
9For reference, typically, in training private models on patient-level data like ours, a privacy parameter n is set

between 1 and 10 [298].
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Utility degradation. In healthcare domains, worsened model performance is the primary

reason to not deploy DP-models, as hospitals prioritize model utility. The undesirable trade-o�s

under DP, for both fairness and utility, is extensively documented in [281].

Nevertheless, as argued in Section 3.2, both input- and output-privacy are crucial considera-

tions in designing new systems. In fairness audits, in particular, our method does not require any

model release (privacy) and does not require in model degradation (utility).
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6.6 Overview of the Protocol Setup

6.6.1 Setup Assumptions for Hospitals

Hospital preprocessing assumptions. Data is assumed to be uploaded using the key ?: corre-

sponding to each hospital, taking the same tabular format ({features}→ decisions), encapsulating

the doctors’ observations (which often include the protected attributes), as well as the resulting

decision. Figure E.1 includes a snippet of example data. We assume known data ranges for real

number representation and tokenization before encryption e.g., having 1e2 �elds, each taking

up 1e3 values. Encoding Basic Statistics. Averages can be computed locally, such as average

age for each visit (binned by timestamp). The weighted average is the overall average, surfac-

ing "average hospital occupancy". Fairness Analysis. Each hospital constructs histogram data

on encrypted data regarding a speci�c feature, e.g. admission rate by gender, uploads it to the

server, which aggregates them, computing the mean and standard deviation, then return the out-

lier identi�cation for joint decryption.

Procedure Multiple Hospitals With one hospital, the protocol is two-party with hospital and

auditor as the two parties. The secret key is used to decrypt the result, with the auditor requesting

the hospital through a formal request. Before decryption, the hospital passively uploads data that

is encrypted with their public key.

When multiple hospitals are involved, the key exchange is Threshold FHE [14], an idealized

version of multiparty extension of FHE. The hospitals are required to be in sync: at the key

generating stage, they are all “online” at the same time. As a default, we require full-party in

order to decrypt, to adhere to the Need-to-Know principle that is in accordance with classi�ed

data access, where a justi�cation and a clearance are both needed [67].
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Privacy Model The system is built under the assumption of an honest-but-curious threat model

(Section 3). When both the hospitals and the regulators are motivated to participate in the audit,

the hospitals serve as trusted clients. A third party, such as a secure cloud provider, an overseer,

or a leader hospital, serves as the server (the protocol adjusts for these variants).

The parties jointly generate public and private keys, which they use to upload data, perform

computation, which are done continuously. Eventually – or periodically, in the case of monitoring

or regular compliance checks – all parties jointly decrypt the result, thus concluding an auditing

event. A simpli�ed diagram is shown in Figure 6.7, with additional notes in Appendix E.2.

Long-term Benefits A particular bene�t of our approach is that as long as the hospitals keep

their keys, the centralized auditing party can potentially keep developing (aggregative and linear)

algorithms to compute collective statistics, including implementing causal discovery algorithms

on historical data without revealing secrets.

When computational resources allow, we can take combinations of multiple traits, and output

anomalies continuously. This can be made interactive where the threshold changes, but there is

no need to rehash keys when the computation changes.

Multiparty Key Exchange Limitations This work assume hospitals storing their data in the

same format, when in reality any data uni�cation is non-trivial. Deployment across the country

is clearly challenging, yet the method supports a regulatory body to start from a small trial, such

as from hospitals in the same region. The limitation of the protocol is that error is slightly bigger

compared to the regular BFV, which requires larger parameters to accommodate.

134



6.7 Conclusion

Con�dential computation mitigates incentives problems. This chapter demonstrates that the

triaging fairness – an auditing workload – can be e�ciently and accurately implemented us-

ing FHE, contributing to better trust in proprietary machine learning models by operating on

encrypted data.

Heavily regulated domains may especially bene�t from our method, because it does not re-

quire a risky decryption of sensitive data in order to enable auditing. Additionally, the system

points to a paradigm of encrypted medical records, which may be used to enable automated de-

cisions, to also be auditable real-time.

Since the drafting of [78], e�cient implementations of homomorphic encryption has ex-

ploded rapidly. BGV [42], leveled homomorphic encryption, became a main feature of SEAL

in 2022 [211]. Set intersections, chest x-ray classi�cation for pneumonia risks, and many other

ML operations are now computable in FHE settings [128; 38; 216].

On the other hand, usability and trustworthiness remain a challenge for their adoption in

healthcare domains. Supporting auditing on invisible data and hard-to-grasp models can alleviate

the privacy fears regulators may have with respect to private machine learning.
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7 | Towards ML-Privacy Co-design, A

Paradigm Shift

Machine learning and privacy are both experiencing their real-world moments, where academic

advances have the potential to be particularly in�uential very fast. How we frame privacy as a

community impacts how we grow as a �eld. Future work on private ML needs a mindset change,

where model optimization and privacy engineering are not designated to their mutually exclusive

lanes. One direction of future work thus pertains to aligning the goal of machine learning with

that of privacy and vice versa. Speci�cally, I argue for a co-design that refers to developing

optimization algorithms to be more privacy-friendly, such as for secure technologies, akin to

how we have been developing deep learning for speci�c hardware [136].
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7.1 Adapting Data Valuation Techniqes for Unseen Data

In optimization, evaluating training data – existing [120; 172] or potential [202; 150] – has become

increasingly relevant for large scale language modeling tasks. These are sometimes explicitly for-

mulated as in�uence functions like Koh and Liang [165]’s, where a scalar value is associated with

training examples. Novel in�uence functions for data can potentially be better suited for LLMs

through optimizers [314], speed [124], and scale [120], with potential room for improvement in

terms of robustness [26]. These optimization techniques may be adapted for acquiring new data

using methods outlined in our work (Chapter 4), so that data appraisal can apply without data

sharing on unseen data.

Potentially, a well-crafted benchmark suite on data appraisal without data sharing can encour-

age scalable, e�cient computation, with few hyperparameters, in order to proxy their usefulness

in the real world. To that end, existing tutorials and competition on data valuation [202; 150]

can be extended to acquiring unseen real-world data where the distribution may not match such

as for domain generalization [167]. Adding private computation can encourage visibility of sys-

tems parameters – computational cost, throughput, and execution speed – while ensuring high

accuracy across the privacy-optimization stack.
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7.2 Gap and Opportunity for MPC for ML

Early e�orts in supporting machine learning in private point to massive potential for building to-

wards mature robust systems. Knowing that privacy is a complex problem, we propose maturing

privacy techniques as standard tool-kits for general machine learning computation.

Even if absolutely minimizing the downside to model performance and privacy feels impos-

sible, the battle is far from “lost”. When machine learning systems faced similar blockers, the

interdisciplinary community came through and tackled them, from frameworks [239; 1] to their

compilers [61; 173; 257], or even designing completely new programming languages [214; 6].

This thesis identi�ed a few gaps in the existing landscape with machine learning used in

secure computation, summarized below.

1. Algorithmic developmentConstructing a performant implementation of a machine learn-

ing computation is nontrivial.

2. Framework readiness The lack of production-scale library for MPC (de�ned as being

more mature than CrypTen [164]).

3. Communicating tomachine learning researchThe lack of awareness in machine learn-

ing community and accessible information, such as runnable examples and engineering

documentation.

4. Missing shared engineering practices Secure engineering and machine learning engi-

neering are disparate mini-communities.

5. Selling MPC for the real world Stakeholders, especially those in data-sensitive domains,

have limited conceptual knowledge on secure computation, such as its ease of deployment

for small organizations without needing specialized hardware.
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7.3 Supporting Optimization–Privacy Co-Design

Akin to “hardware-software co-design” [79; 286], privacy and optimization also have a symbiotic

relation where progress in one can feed into, and improve upon the other, in a virtuous cycle. A

broad de�nition of co-design already includes works that formulate a relationship between utility

and privacy. We are far more optimistic, however.

We dream up a landscape of co-design that puts both goals as paramount, where trade-o�s

that matter are avoided. This section introduces some concrete thoughts towards this �eld, in

method, experimentation, benchmarks, and communication.

Designing Optimization Methods to Minimize Privacy Trade-off The design of optimiza-

tion techniques, which has been key to advancing modern machine learning [37], can branch o�

towards more explicit privacy goals. DP-SGD [2] (introduced in Section 3.6.2) has become a

popular method for ensuring di�erential privacy in machine learning. It successfully optimizes

deep learning models in an SGD-like interface while bounding privacy budget. In a similar ap-

proach, I changed the optimization process in recommendation models to enable machine un-

learning [317]. It aims to “exactly unlearn” recommendation data without degrading the recom-

mendation model, while also avoiding the cost of re-training [317].

The requirements of privacy and utility can be preserved through the consistency of the re-

sulting loss function, which matches that of retraining without the removal data. This framing

lets privacy participate in optimization. Besides machine unlearning, such a requirement can be

extended to include di�erent models, and to include myriad privacy goals.

Understanding Optimization Trade-offs In Privacy Design Knowing that privacy is a

complex problem, securing inputs [115], bounding the output’s leakage [91; 326], learning on-

device [302; 119], or using secure hardware [237; 213] are not necessarily competing solutions –
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we will likely need many of them. While the early e�orts in supporting machine learning in pri-

vate may be limited in adoption, they nevertheless point to potential for building towards mature,

robust systems (such as FL, as introduced in Section 3.6.1).

Benchmarking privacy with respect to other trade-o�s can appeal to communities that already

care deeply about privacy, such as clinical healthcare. Suriyakumar et al. [281] benchmarked pri-

vacy, utility, and fairness on real-world trade-o�s, which our work in Chapter 6 extends to prac-

tical audit setups. Expanding on them can clarify the narrative, empowering these communities

to advance the symbiosis of privacy and optimization.

Mastering Interdisciplinary Communication. The engineering hurdles notwithstanding, a

pressing “people issue” lies in communication between di�erent communities that lack a common

language. Speci�cally, secure ML solutions lie between those who can use Secure ML to solve

real-world problems they face and those who can contribute algorithmically.

In our work we found that abstraction-mismatch prevents e�ective communication between

disciplines, and the lack of shared tooling makes practical collaboration strenuous. To that end, I

have co-led a NeurIPS tutorial on PrivacyML: Meaningful Privacy-Preserving Machine Learning

and How To Evaluate AI Privacy [318]. This tutorial marked a �rst stab at addressing the knowl-

edge gap between secure ML engineering and machine learning safety. Moreover, we published

in interdisciplinary channels that spoke to model owners’ interest [320], to societal needs for

healthcare data sharing [106], and to cryptographic techniques’ applications [78]. Though these

e�orts may not result in near term citations, they nevertheless build up momentum for projects

that blur the line of each discipline to solve problems they respectively see.

Just like the integration of systems and machine learning, bridging the communication chain

“closer” involves reaching communities where they are. In the past six years, I have been fortunate

to organize Machine Learning for Systems, a workshop at NeurIPS [319]. This thesis marks the

beginning of similar e�orts to foster a healthy community of e�ective in-person discussions,
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grounded in scienti�c methods and evaluations.
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8 | Conclusion

8.1 Incentive-aligned Privacy for Machine Learning

This thesis introduces the Three-Actor Ecosystem that captures the complex incentive tensions

between model developers, data owners, and overseers in machine learning. Rather than re-

stricting machine learning progress with privacy constraints, the thesis reframes “privacy issues”

as emerging incentive problems, which computer scientists can pinpoint and mitigate, perhaps

through thoughtfully engineered secure systems. In doing so, we may progress towards a more

sustainable future – better machine learning that is also more privacy-respecting.

As machine learning scales, so does the applicability of this thesis. Key to our work is the

feasibility of respecting both privacy and utility1. As the world adapts to AI technologies, we

will face many similar growing pains, as though progress and agency must con�ict; regardless

whether these issues explicitly take on the word “privacy”, understanding and addressing the

underlying incentives can substantially move us towards healthy progress.

Though privacy and utility cannot always be without trade-o�, we nevertheless argue they

can be co-designed. Speci�cally, this thesis concludes that demonstrating utility outside privacy,

such as resulting in more performant models, will be crucial for convincing stakeholders to adopt

privacy-preserving methods. We presented the �rst fast and equitable data appraisal (and dataset
1In the narrow domain of this document, utility pertained to model performance, while privacy referred to the

data owning parties’ control over their private data.
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evaluation) without data sharing, where a model owner can appraise another party’s data without

requiring any data (or model) sharing between the two parties.

For secure and con�dential technologies, in particular, we demonstrate their capacity to ease

incentive issues by virtue of utilizing all the underlying data. Our engineering insights uncover

several shortcomings with present secure ML technologies, which we had overcome to enable

data appraisal, fairness auditing, and dataset-to-dataset evaluations. Despite the di�culty in en-

gineering secure systems for ML workloads, we hope to gain much more from relentlessly trying:

once engineered, these systems can be readily deployed (just like machine learning [176]!).

Lastly, privacy is not the villain of our story. When it appears like an obstacle, we argue it

is, perhaps, simply a sign of maturity in our relationship with data. This thesis advocates for a

private data economy where individuals retain control, where data collaborations can be equi-

table and fair, and where proprietary models are governable without over-surveillance. Through

demonstrating secure, incentive-respecting methods, we seek to inspire an open market that in-

centivizes e�cient, equitable exchange of data, which, in turn, fuels AI development. But those

are not the only sustainable futures we can build; if we can re�ect on privacy pains to discover a

better and less restricted machine learning, machine learning can better grow as a �eld, too.

8.1.1 Alternative Views

AI Privacy framing. Framed under AI privacy, my work speci�cally develops secure tech-

niques to preserve data rights: to share it equitably, to rectify it after sharing, and to be able to

examine models with respect to privacy and security.

Healthy data ecosystem. My research explores the concept of a private data economy, where

individuals retain control over their data, while fostering a healthy market environment. By

empowering individuals with the right to be forgotten and other data rights, we can establish

sustainable AI oversight for the future.
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8.2 Key Contributions

I. De�nitional. Privacy is not about preventing data sharing – rather, it is about respecting

each player’s simultaneous desires for privacy and utility.

(a) Formulated the Three-Actor Privacy Model that characterizes long term incentives

between the stakeholders of machine learning development. Crucially, this frame-

work acknowledges the model owners’ interests to keep their models and data pro-

prietary.

(b) Introduced the Data Appraisal Problem of enabling model owners to evaluate po-

tential data partnerships before any data is shared — a key barrier to collaboration,

underserved by preexisting Privacy ML techniques.

II. Engineering. We presented secure and con�dential computations that avoided the current

major pitfalls of supporting ML workloads in private, while serving to mitigate growing

tension that arise from AI progress.

(a) Novel, empirically-tested measures for data partnerships. We presented the �rst MPC-

based In�uence Function, the �rst MPC-based dataset divergence. They are accurate,

practical, with minimal leakage (no data is leaked except for the score/price output).

(b) Novel FHE-based ML fairness audit for models. We encrypted algorithms to audit the

fairness of proprietary ML deployments in hospitals.

III. Methodological. Co-designing privacy and optimization can build a deeper relationship

between private computation and machine learning, with the potential for a virtuous cycle.

We demonstrated privacy advancing utility, compared private methods directly with non-

private methods, and argued that secure computation is e�ective through its utilization of

all the underlying data – just like machine learning.
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A | Three-Actor Privacy

A.1 Dataset Divergence Technical Discussion

KLXY Discussion One key assumption that is satis�ed by the hospital setup is that the in-

distribution data is non-overlapping across hospitals. Suppose Da = Dtr, KLXY would pro-

duce dangerously small numbers, as the logistic regression would struggle to distinguish the two

datasets. This turn this would fool the source hospital into acquiring Da, only to realize it adds

nothing. When the datasets are very di�erent, the �t of Score(G,~) would matter, too, because

an over�t model would produce high scores consistently, rendering the measure not useful. For

that reason, we reimplemented the original [267]’s implementation to induce more reliable early

stop.

In our experiments KLXY is �exible and stable, though not directly predictive of downstream

model loss. We tested it for guiding dataset combinations in ICU data across 13 hospitals. Initially

inspired by the ratio %"$ (dG)
%�$ (dG) , this heuristic score outperforms ratio-approximations where the

score is substituted1. Though not a direct estimation of KL-divergence, it is an MLE-based method

for “estimating the unseen” where data is limited, and the underlying domain is “broad” [300; 234];

certainly, more research is needed to carefully set up the assumptions needed.

1A major reason is that the ratio substitutions render the KL approximation sensitive to noise in low-data regimes.
See later results for its unstable p-values from ratio scores on hospital ICU data.
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B | PrivacyML

B.1 Input-Output Privacy

Chicken-and-Egg Problem: Output-Privacy Discussion Output private techniques may not

be ideal. As a philosophy, output privacy emphasizes that, once a collaboration took place, the

resulting product, such as a machine learning modelM or the output of F , would not leak too

much input information. While potentially assuring, its privacy guarantees presuppose a known

system that both parties would have committed to. Privacy implicitly depends on data sharing or

model release agreements in the �rst place. In prevalent economic theory on technology adoption

in the early stages, [156] suggests that when the participants are not well-incentivized, adoption

stalls. While not speci�c to PrivacyML as a technology to adopt, it is nevertheless useful to con-

sider. Relying solely on the natural adoption of output private technologies, such as di�erential

privacy (Section 3.6.2), will be insu�cient for entities that are still exploring intent, as it is prone

to this chicken-and-egg causality conundrum, particularly used for modeling establishing early

partnerships [49] as well as infrastructural technical adoption [47].

Notes: Our Usage of Input-Private Methods In this thesis, the privacy setup, by design,

protects model owner, i.e., without sharing Dtr,Dte, \ . Therefore, purely output-private setups,

where model weights \ are shared externally, fall out-of-scope. However, recognizing that models

eventually make their way into the world through a service or a product, without protecting

147



Input Privacy Output Privacy

Privacy goal The input to a process is not ob-

served.

The output of a computation does

not reveal the input.

Scenario Joint training, post-training, and valida-
tion of models. Data appraisal, audit, and
evaluation (Chapters 4, 6, and 5).

Open-weight (closed data) releases. ML-
as-a-service such as chatbots, APIs, and
embeddings.

Challenge Distinct entities, such as model and data
owners, do not want to share data with
each other.

The released model, M, may reveal de-
tails about training data Dtr

1.

Privacy-
preserving
mitigations

Secure Computations: SMPC (Sec 3.4),
FHE (Sec 3.3), and TEEs [188].

Di�erential Privacy (Sec 3.6),
Exact Machine Unlearning [317]

Empirical
mitigations

Federated learning2 (Sec 3.6.1),
using synthetic data (Sec 3.6.3).

Approximate unlearning [195],
k-anonymity [260]

Related ideas Data marketplaces,
data governance [159]

Memorization and copyright [73],
robustness and replicability

Table B.1: A useful dichotomy for machine learning privacy is input- vs. output-private methods. While
not mutually exclusive in all scenarios, they typify two philosophies towards privacy protection for a
system, leading to separate approaches. Section 3.2 argues that purely output-private methods may not
ameliorate the privacy conundrum pre-partnership, where data or model releases are not predetermined.

both input- and output-privacy, trust in data sharing for machine learning nevertheless erodes.

For example, output-private methods lend nicely to the release of the results from private data

appraisal functions.
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B.2 Contextual Integrity Relation

This thesis argues that privacy issues in machine learning often represent breaches of contextual

integrity: if common implementations of these sharing are not privacy-preserving, each party‘s

normative privacy expectations are violated. My works therefore propose alternative implemen-

tations to achieve the same goal that better respect these expectations.
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B.3 Further Readings on ML MPC SOTA

Notably, SecretFlow [85] has emerged as a promising production-supported framework, though

e�cient private functionalities are still in beta. On the other hand, modifying transformers’ mod-

ules may result in huge e�ciency gain, but risks some drop in accuracy. This empirical trade-

o� is, however, distinct from bit-limits in FHE, or optimisation limits like di�erentially private

training (see Section 3.6.2). Knowledge distillation for the feed-forward layers is introduced in

MPCFormer [186] in 2023, upon which SecFormer [199] improved in 2024 with faster and more

accurate GeLU and layer norm approximations.

Quadratic approximations for GeLU and their subsequent Fourier approximations drove re-

cent developments in improving secure transformer inference, consisting of Cheetah [141] in

2022, MPCFormer [186], PUMA [85] and MPCFormer [186] in 2023, Bolt [233] and SecFormer [199]

in 2024.
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B.4 Policy Implications for Machine Learning Privacy

Practical considerations of machine learning a�ect both existing and emerging policies [256].

This section discusses policy applications of the technical contribution.

Existing privacy laws for high-stakes domains. Many aforementioned privacy-enhancing

techniques are motivated by existing legislations [95; 94; 182] and standards regarding high-

stake domains like healthcare [53]. However, enforcing these policies responsibly is tricky, as

critical tasks often require accessing sensitive data [325; 35]. To that end, Chapter 4 o�ers a data-

compliant way to e�ciently allocate high-stakes resources without trading o� privacy and utility,

and Chapter 6 o�ers the governing bodies a feasible approach to securely uphold accountability

without introducing unwanted trade-o�s.

Copyright in relation to privacy. Copyright law has emerged as a pressure point between

model owners and data platforms [122]. While copyright does not directly address privacy policy,

the supply chain of generative AI [181] surfaces policy directions to regulate large scale machine

learning development such as data auditing [271], hardware, hosting, scraping, and deployment;

oftentimes, privacy is a major, related consideration. Additionally, copyright’s applicability to

machine learning models relates to the extent to which the model ‘memorizes’ or reproduces

training data, which relates to Chapter 5 where privacy evaluation is supported.

Independent, Third-party Audits for data and models can broaden data access and uphold

public good values [159; 249]. Mandates such as bias auditing in New York City [121] highlight

its potential for regulating AI.

Secure computation can lower the risks for data access across the board for audits, not only

when data is a bottleneck. For instance, the legal liability of the auditing party [121] may be

reduced, as the analysis can still be performed without accessing data or model [78].
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Contributions This thesis demonstrates to policy stakeholders that auditing data is not neces-

sarily a compromise to data propriety (Chapter 6), and evaluating models does not need to come

at the cost of scienti�c soundness (Chapter 5). Secure computation o�ers an attractive alternative

to all-in, all-closed, or complex data sharing contracts [325], allowing more e�ective governance

for high stakes data and application.
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C | Data Appraisal

C.1 Forward Influence Details

Influence Setup. Recall that the data is owned by two disparate parties: a model owner, who

is developing the model, and a data owner, who possesses the dataset Da to be appraised. The

model owner begins with a test set Dte and their initial training set Dtr. Before acquiring the

data Da, the model owner wants a peek at the utility gain from updating \ to �t Dtr ∪ Da. The

initial model parameters \̂ are obtained by minimizing the regularized empirical risk on Dtr:

\̂ = arg min
\

∑
(x,~)∈Dtr

!(x, ~;\ ) + _‖\ ‖22. (C.1)

If the dataset Da were included, new parameters \ ∗ would be obtained by minimizing risk on

dataset Dtr ∪ Da instead. The value of concern is the utility of Da, as evaluated on test loss:

* (Da) :=
1
|Dte |

∑
(x,~)∈Dte

!(x, ~; \̂ ) − !(x, ~;\ ∗). (C.2)

Influence Derivation. Given Equation Dataset Utility, we make a linear extrapolation by sup-

posing that the resulting parameters (from an in�nitesimal upweighing of a set of existing data)
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are very close to the original:

* (Da) ≈
1
|Dte |

∑
(x,~)∈Dte

∇\!(x, ~; \̂ ) · (\̂ − \ ∗). (C.3)

The model owner can compute the gradient of the model on the test set in plaintext. Because !(·)

is twice di�erentiable, we have the empirical Hessian matrix associated with the training samples

N
\̂

:=
1
|Dtr |

∑
(x,~)∈Dtr

∇2
\
!(x, ~, \̂ ). (C.4)

This Hessian and its associative inverse can also be computed in plaintext.

Suppose we upweigh a sample, (x0, ~0), by an in�nitesimal amount n , and study the e�ect of

this perturbation on the resulting model parameters. The associated loss is thus formulated as

n!(x0, ~0, \ ) +
∑
(x,~) ∈Dtr !((x, ~, \ ). Training the new model till convergence to get new parameter \ ∗, we

can assume that the gradient of its loss is 0, or

n∇\!(x0, ~0, \
∗) +

∑
(x,~) ∈Dtr

∇\!(x, ~, \ ∗) = 0. (C.5)

We write the left hand side as an function of the new parameters, where

5 (\ ∗) := n∇\!(x0, ~0, \
∗) +

∑
(x,~) ∈Dtr

∇\!(x, ~, \ ∗) . (C.6)

We wish to �nd a relation between the parameters before and after the perturbation. To that end, denote the

parameter di�erence Δ\ := \ ∗ − \̂ . The goal is to �nd a closed expression for Δ\ , given the approximation

that 5 (\ ∗) ≈ 0.

As n → 0, the new training set is just the original training data, or D → Dtr. The resulting model

(from the non-perturbation), as we know, is optimal at \̂ . Therefore, the �rst two terms in the Taylor

expansion of 5 (\ ∗) around Δ\ = 0 is 5 (\ ∗) ≈ 5 (\̂ ) + 5 ′(\̂ ) · Δ\ . We write

0 = 5 (\ ∗) ≈ 5 (\̂ ) + 5 ′(\̂ ) · Δ\
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Additionally, Equation C.6 gives us

5 (\̂ ) := n∇\!(x0, ~0, \̂ ) +
∑

(x,~) ∈Dtr

∇\!(x, ~, \̂ ) .

We thus obtain the approximation

∑
(x,~) ∈Dtr

∇\!(x, ~, \̂ ) +
∑

(x,~) ∈Dtr

∇2
\
!(x, ~, \̂ ) · Δ\ + n∇\!(x0, ~0, \̂ ) + n∇2

\
!(x0, ~0, \̂ ) · Δ\ ≈ 0. (C.7)

Recall that on the original seed dataset Dtr, parameter \̂ is optimal, so
∑
(x,~) ∈Dtr ∇\!((x, ~, \̂ ) = 0. This

allows for a simpli�cation:

∑
(x,~) ∈Dtr

∇2
\
!(x, ~, \̂ ) · Δ\ + n∇\!(x0, ~0, \̂ ) + n∇2

\
!(x0, ~0, \̂ ) · Δ\ ≈ 0. (C.8)

Solving for Δ\ approximately requires taking the inverse of the empirical Hessian (see discussion below).

(
|Dtr |N\̂ + n∇

2
\
!(x0, ~0, \̂ )

)
· Δ\ = −n∇\!(x0, ~0, \̂ ) . (C.9)

Multiply both sides with the scaled Hessian inverse

(
1 + n

|Dtr |
N−1
\̂
∇2
\
!(x0, ~0, \̂ )

)
· Δ\ = − n

|Dtr |
N−1
\̂
∇\!(x0, ~, \̂ ) . (C.10)

Drop the term n∇2
\
!(x0, ~0, \̂ ) (see discussion notes), and take the derivate of both sides with respect to n

and write
XΔ\
Xn

= − 1
|Dtr |

N−1
\̂
∇\!(x0, ~0, \̂ ) . (C.11)

We thus obtain our in�uence formulation or I(x, ~) = −N−1
\̂
∇\!(x, ~, \̂ ). Forward in�uence refers to its

application on unseen data (see discussion for more). Applying it to evaluate the change of loss given a
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particular dataset Da gives us the key appraisal component:

I(Da) = −N−1
\̂

∑
(x,~) ∈Da

∇\!(x, ~, \̂ ), (C.12)

before scaling (by the cardinality of the datasets) to approximate (\̂ − \ ∗) in Equation C.3.

Influence Discussion First, strong convexity is usually assumed [165], so that the Hessian matrix is

positive de�nite. This is a stronger assumption than necessary, as only the empirical Hessian with respect

to the combined dataset needs to be positive-de�nite. In practice, we assume convexity and use regulariza-

tion when inverting the Hessian 1, so the method can be potentially applied to problems when the Hessian

is not positive de�nite.

Machine learning literature typically assumes (x0, ~0) to be part of the training data when applying

in�uence functions. Here we are using the numerical form of the result, but applying the extrapolation to

new data Da, hence it is referred to as a forward in�uence. A mismatched data construction is standard

technique in the construction of in�uence functions [129; 113]. The impact of this mismatch is studied in

our experiments.

Thirdly, the Taylor Expansions’ validity likely matters little in application, but it is worth mentioning

that the loss function is preferred to be second-order smooth. The truncation error is studied in Basu et al.

[27] for its interaction with non-convexity.

Additionally, dropping the term n∇2!(x0, ~, \̂ ) from the �rst order expansion is e�ectively approxi-

mating the gradient on the new data point with the gradient of the previous model, which may not be

bounded. This approximation is also present in the usual in�uence de�nition.

1Alternatively, a pracitioner may implement the numerical function to avoid inverting the Hessian altogether.
See Gauss-Newton approximation [204].
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D | Dataset-to-Dataset Evaluations
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D.1 Methodological Details

Datasets We use two datasets: 1. eICU Collaborative Research Dataset [244] contains over 200, 000 ad-

missions from 208 hospitals across the United States. Following the data cleaning and exclusion criteria

outlined by [312] and [267], We select 12 hospitals with the highest number of patient visits (each with at

least 2000 patients) as our entire set of hospitals H.

In Chapter 5, each strategy would compute with a max  = 3000 records, as the total available data

per hospital.

2. To evaluate broader applicability, we replicate a portion of our experiments on the Folktables [83]

dataset on income prediction is additionally used, which provides rich demographic and socioeconomic

information on individuals across U.S. states. We predict whether an individual’s annual income exceeds

$50,000.

Data Treatment For each strategy, the same records available per hospital are used, with  = 3000.

Performance – AUC> , AUC) – uses 400 samples (unless otherwise noted) 1 The AUC change, X8 or X) ,

comes from 1. combining 1500 random samples from each selected dataset and 2. combine it with 1500

samples from D> , and 3. subtracting the baseline model’s AUC2. The downstream task is the 24-hour

mortality prediction.Strategy comparisons take 1500 samples. We simulate the problem setup for each

hospital with the 24-hour mortality prediction task. Unless otherwise speci�ed, all experiments follow the

training and evaluation protocol in Yet Another ICU Benchmark [312], using 1, 500 training samples and

400 test samples per hospital. For the data combination experiments that compute AUC change X8 or X) , to

match [267], we take 1500 random samples from each selected dataset and combine it with 1500 samples

fromD> . To match [267], each hospital experiment was carried out using 5-fold cross-validation, repeated

5 times with di�erent random seeds. AUC results are averaged �rst across folds, then across repetitions.

The strategy comparisons described are implemented using 1500 samples for our training set and 400

samples for our test set per hospital for all of our experiments unless otherwise noted. This follows training

and evaluation protocols in Yet Another ICU Benchmark [312].

1This follows training and evaluation protocols in Yet Another ICU Benchmark [312].
2The samples are �xed across all experiments, the sample numbers are chosen to match the setup in [267].
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k d p-value

3 -0.063 4.70e-01
30 -0.082 3.47e-01
300 -0.059 5.00e-01
3000 -0.184 3.47e-02

k d p-value

3 -0.158 7.02e-02
30 0.167 5.60e-02
300 -0.097 2.70e-01
3000 -0.284 9.47e-04

Table D.1: d and p-value between AUC drop and plaintext KL using k samples using SGD (le�) and
LBFGS (right).

D.2 Correlation with downstream performance

On Table D.1, we report the Pearson correlations between cB (: =  ) for : ∈ {3, 30, 300, 3000} and X8 . On

Table 5.1, we report the Pearson correlations between di�erent strategies and X8 .
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D.3 Hyperparameter Tuning

We obtain Score(X,Y) by training a Logistic Regression model using SGD. We �nd that SGD requires hyper-

parameter tuning in order to perform well when evaluated on Brier Score Loss. Optuna is used to perform

hyperparameters search. The hyperparameters we use for plaintext scores are:

1. learning rate: 0.0795

2. patience: 2

3. tolerance: 0.000117

4. momentum: 0.886

5. weight decay: 1.81e-9

6. dampening: .0545

The hyperparameters for the encrypted model:

1. learning rate: 0.0974

2. patience: 5

3. tolerance: 0.000132

4. momentum: 0.907

5. weight decay: 8.14e-7

6. dampening: .0545
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Hospital d (KLX, SecureKLX) p-value d (KLXY, SecureKLXY) p-value

73 0.945 1.118e-05 1.000 0.0
264 0.973 5.142e-07 0.945 1.118e-05
420 0.982 8.403e-08 0.991 3.763e-09
243 0.973 5.142e-07 0.909 1.056e-04
338 0.973 5.142e-07 0.982 8.403e-08
443 0.964 1.852e-06 0.882 3.302e-04
199 0.991 3.763e-09 0.973 5.142e-07
458 0.873 4.546e-04 0.964 1.852e-06
300 0.455 1.601e-01 0.691 1.857e-02
188 0.718 1.280e-02 0.864 6.117e-04
252 0.873 4.546e-04 0.809 2.559e-03
167 0.764 6.233e-03 0.891 2.335e-04

Table D.2: Spearman Correlations d for encrypted (in CrypTen) and plaintext (in PyTorch) KL-based
methods

D.4 Correlations between Encrypted Scores and

Plaintext Scores

On Table D.2, we measure the Spearman correlations between KLX and SecureKLX , and between KLXY

and SecureKLXY for all hospitals. We �nd that all hospitals have statistically signi�cant correlations with

the exception of hospital 300’s d(KLX ,SecureKLX)
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D.5 Performance

Computing SecureKLXY scores for 144 hospital pairs, each with at most 3000 samples, took 317 seconds,

which is 6.6X longer than KLXY .
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Figure D.1: In Folktables [83], combining with random state leads to worse income prediction in 23 out
of 35 states.

D.6 Folktables Experiments

Dataset We use the Folktables dataset, a benchmark derived from the U.S. Census American Community

Survey (ACS), which provides rich demographic and socioeconomic information on individuals across U.S.

states. We focus on income prediction, which classi�es whether an individual’s annual income exceeds

50, 000 based on 10 features. We focus on states with 12, 000 individuals, for a total of 35 states.

For our baseline, we train a XGB model on 4, 000 training samples and 400 test samples per state. For

the data combination experiments, we combine 4000 randomly selected samples from each selected dataset

to combine with the 4000 samples in �> .

For eICU data, used Score(·) to estimate data density due to its high dimensionality. In contrast, Folk-

tables only contains 10 features, allowing us to compute KL divergence directly using kernel density esti-

mation. We apply a Gaussian kernel to the top 3 scaled principal components.
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Figure D.2: SecureKL: Overall Correctness. Rank correlation between SecureKL output and ground
truth AUC change, X8 , from acquiring 1 additional dataset for a given source hospital �> . We propose se-
lecting data partner ranked by our secure system under SecureKLXY score to reliably reduce downstream
AUC downstream task. (|H| = 12 hospitals; colored by source.)
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E | HEalth

E.1 Privacy Challenges for Auditing Healthcare Data

Regulatory Agencies Mandate Fairness. The Agency for Healthcare Research and Quality (AHRQ)

is working to produce evidence to make healthcare safer, more accessible and more a�ordable. One of

their goals is to make sure that the evidence is understood and used. The Health Resources and Services

Administration (HRSA) provides health care to people who are geographically isolated, economically or

medically vulnerable.

Hospital Decisions Require Protected Attributes, Inherently Sensitive. US federal law protects

9 characteristics: race, religion, national origin, age, sex (incl. sexual orientation and gender identity),

pregnancy, familial status, disability status, veteran status, genetic information. Not all of this information

is collected by hospitals, nor would all hospitals have the same categorizations. However, most record

some sensitive information that is critical for decision-making. For example, race, age, sex, pregnancy.

This makes the records of which the agencies need to audit inherently sensitive.

Auditing inNon-encrypted FormsUndermines Privacy. In theory, using synthetic or anonymized

data, or di�erentially-aggregated data, can be alternatives to encryption. Yet privacy wise, they are prone

to linkage attacks that connect the obscured data with clear data, in order to de- or re-anonymize individu-

als. In the medical domain, decrypting at set intervals for trusted regulatory bodies (or otherwise curating

data) brings about signi�cant operational overhead, not to mention signi�cant social cost for degrading

encryption (Figure 6.6).
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E.2 Protocol Details

The KeyGen function assumes a full-party variant of Threshold FHE, where each party can destroy

data by destroying their key. An alternative implementation would use a threshold, where only some

parties are needed to decrypt.

Employing a variant of BFS (star topology) with a full-party threshold.

The scheme comes with a @B (scaling factor b@B/Cc). Plain text modulus C << @B .

For hospital 8 , generate a fresh B , 4 , and construct a public key.

pk8 = (0, 0B8 + 48)

where

B8 , 48 ∼ j (®0, f2)f = 3.2

To generate a shared public key, we assume that all parties have a

1. Shared random polynomial is broadcasted→ 0 2. Each has a secret key, which have to go together,

B8 ’s. This is equivalent to BFV with B ← ∑
B8 , and 4 ← ∑

48 .

Rq = Z@ [- ]/(G= + 1)

3. Validation Phase (optional): sum of all ?:’s. Everyone broadcasts it back to everyone else. 4. De-

cryption

Ciphertext ct = (0, 0B + Δ< + 4)mod'@where Δ = b@B/Cc,< ∈ 'C

We want to apply BFV’s Decoding

(ct,
∑

B8)
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Each hospital outputs decryption share

38 = ct[1] − : (0B8 + 4̃8)

The sum is therefore

∑
38 = : (ct[1]) − : (0

∑
B8 +

∑
4̃8) ≈ :< + 2: (4̄)

The rest follows rotation key and multiplication key generation.
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E.3 Data Model Snippet

{
patient_id: 0
timestamp: 0
age: 37
gender: M
race: Caucasian
medical_history:

'severe abdominal pain'
occupancy_at_admission: 70%
reason_for_visit: high fever
.
.
.
decision : admit

}

Figure E.1: A Clear-text Example for Hospital Records.
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E.4 Comparing Alternative Auditing Setups

We discuss other setups to achieve auditing fairness at hospitals. Existing Practice. In Figure E.2, the

hospital would compute Ffairness on its premise, and report the relevant statistics to the regulators. This is

currently part of the existing paradigm for algorithmic fairness. Our solution allows a third party, such as

the government regulator, to compute Ffairness independently of the hospital, and from raw data.

Output-private Audits Are Approximate. In Figure E.3, auditors use released data or model to

construct their auditing, typically approximating F from “fuzzy” versions of the patient data or model

predictions used in practice, meaning that auditors are approximating the metric to audit. This limits the

precision of external auditing, which is crucial for independent veri�cation.

We summarize challenges with output-private techniques, already laid out in Section 3.6.2 and Sec-

tion 3.2. 1) compromising data accuracy reduces its usefulness, 2) re-identi�cation risks from released data

and models, when outside information is used, and 3) meaningfully setting up the infrastructure, including

meaningful privacy parameter selection is nontrivial, making the method in practice di�cult to adopt for

small organizations.

We clarify data usefulness challenge in the fairness auditing setup. [281] �nds that the more privacy-

preserving the models are, the less useful the data becomes, which disempowers auditing.

Yet, ensuring hospitals to use the same model as they released is detrimental to patient outcome, as

protecting privacy from the output often changes the original model’s behavior; in healthcare domain,

di�erentially private models exhibit degraded performance, in the so-called Privacy-Utility Trade-o� [281].

Our solution does not make this trade-o�, as data is kept private by default, and the audit uses exact raw

data, thus matching the fairness output as Setup E.2.

The second challenge of privacy is also notable. When the approximation is on the raw data, data

anonymization techniques like k-anonymity [282] risk re-identi�cation. In contrast, an input-private

method like encryption, does not have re-identi�cation risk, as no individual data is released in the �rst

place.

Undermining encryption is undesirable for all. When a hospital invites the auditor inside the
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Figure E.2: Hospital self-reports final metric.
This does not constitute as a third party auditing.

Figure E.3: Hospital uses privacy-preserving
data or model releases. From the de-
sensitized data, the auditor approximates F .
This presupposes the release of data.

Figure E.4: Auditor computes F from raw data, including sensitive patient data. This level of data
access exceeds what is necessary for the sole purpose of fairness metrics. Le�: Auditor goes inside the
hospital to audit. Frequent auditor visits may result in added operational costs for the hospital. Right:
The hospital sends encrypted data and a key to decrypt. Auditor decrypts encrypted data. This
setup introduces novel security risks. Security of key transmission and the data security at the auditing
site becomes a concern. When auditing multiple hospitals, the auditor also becomes a central repository
of sensitive data (and keys).

compound, and allows the auditor to see all raw data. As illustrated in Figure ??, a fairness audit is feasible

without violating data privacy regulations, assuming the government auditor can be trusted. However,

accommodating auditors adds operational friction to hospitals.

If the data is sent encrypted, and then a key is also sent to the auditor, the auditor can then decrypt all

raw data on their side, avoiding transporting unencrypted data. Yet this approach centralizes data security

risks to the auditor, who may now hold many keys to many hospitals’ raw data.

Nevertheless, neither setup considers what the audit ought to access [228]. We ask, should algorithmic

fairness audit require access to all the hospital records? While most group fairness metrics necessitates

protected attributes as input, having the auditing party access all raw data violates the data minimiza-

tion principle of privacy-by-design. Undermining encryption is also against the spirit of data protection

regulations.
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