
Understanding and Incorporating Mathematical Inductive

Biases in Neural Networks

by

Marc Finzi

A dissertation submitted in partial fulfillment

of the reqirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

May, 2023

Professor Andrew Gordon Wilson

©Marc Finzi

all rights reserved, 2023

Acknowledgments

I would like to express my deepest gratitude to my advisor, Andrew Wilson, for accepting me as a

student and continuously believing in my potential. I am grateful for the numerous thoughtful

discussions and valuable feedback on my work, as well as his guidance to help me become a better

writer. His dedication to cultivating a supportive and nurturing lab environment has been central

to my growth as a researcher, and I am grateful for his effort towards launching my career post

PhD.

A heartfelt thank you to Pavel and Polina for providing moral support during the early stages

of my PhD journey, and making the experience altogether much more enjoyable. Thank you

also to Wesley and Sam for helping to create the positive lab culture that we have, and for being

great collaborators. I am grateful to Nate for our intellectually stimulating conversations and the

enjoyable debates about various topics in machine learning. These discussions have enriched my

understanding of the field and have made my time in the lab both productive and fun.

A thank you to my coauthors Alex, Greg, Sanyam, Sanae, and Micah for their dedication and

hard work brought to our joint projects. A special thank you to Andres enough for his unwavering

persistence and for being a wonderful project partner. His camaraderie has made the otherwise

solitary research process much more enjoyable, as well as his effort in turning me into a gym bro

outside of the lab.

Finally, I want to express gratitude to my parents for their unwavering encouragement and

support throughout my PhD journey, always helping me to figure out how to best achieve whatever

iii

my goals were. Their love and belief in me have provided the motivation and strength necessary

to navigate the challenges and triumphs of this process.

Thank you all (and to those I have not mentioned) for being a part of my PhD journey and for

contributing to the completion of this thesis. I am truly grateful for your guidance, friendship,

and encouragement.

iv

Abstract

To overcome the enormous sample complexity of deep learning models, we can leverage basic

elements of human and scientific knowledge and imbue these elements into our models. By doing

so, we can short-circuit the thousands of years of evolutionary development that has enabled such

rapid learning in humans, and the development of science which provides a framework to fit new

knowledge into. In this work I develop new methods for incorporating mathematical inductive

biases into our models, biasing them towards solutions that reflect our priors and our knowledge.

This work helps to broaden the scope and automation of equivariant model construction across

diverse domains, uncover the role of inductive biases in learning and generalization, and developing

new machine learning models for scientific applications, capturing relevant scientific knowledge.

v

Contents

Acknowledgments iii

Abstract v

List of Figures ix

List of Tables xix

List of Appendices xxii

1 Introduction 1

2 General and Automated Equivariant Model Construction with Equivariant-MLP 4

2.1 Introduction . 5

2.2 Related Work . 6

2.3 Background . 8

2.4 Equivariant Linear Maps . 10

2.4.1 The Equivariance Constraint . 11

2.4.2 General Solution for Symmetric Objects 11

2.4.3 A Unifying Perspective on Equivariance 13

2.5 Efficiently Solving the Constraint . 15

2.5.1 Dividing into Independent Sub-problems 16

2.5.2 Krylov Method for Efficient Nullspaces . 17

vi

2.6 Network Architecture . 19

2.7 Experiments . 21

2.7.1 Synthetic Experiments . 21

2.7.2 Modeling dynamical systems with symmetries 23

2.8 Discussion . 24

3 Residual Pathway Priors for Approximate Equivariance 26

3.1 Introduction . 27

3.2 Related Work . 30

3.3 Background . 32

3.4 Residual Pathway Priors . 33

3.5 How and Why RPPs Work . 37

3.5.1 Dynamical Systems and Levels of Equivariance 37

3.5.2 Posterior Levels of Equivariance . 39

3.5.3 RPPs and Convolutional Structure . 40

3.6 Approximate Symmetries in Reinforcement Learning 40

3.6.1 Approximate Symmetries in Model Free Reinforcement Learning 42

3.6.2 Better Transition Models for Model Based Reinforcement Learning 44

3.7 Limitations . 45

3.8 Conclusion . 45

4 The Lie Derivative for Measuring Learned Equivariance 47

4.1 Introduction . 49

4.2 Background . 51

4.3 Related Work . 54

4.4 Measuring local equivariance error with Lie derivatives 55

4.5 Layerwise equivariance error . 58

vii

4.6 Trends in learned equivariance . 60

4.7 Conclusion . 64

5 Occam’s razor and Understanding the Inductive Biases of Neural Networks 66

5.1 Introduction . 67

5.2 Related Work . 69

5.3 A Primer on PAC-Bayes Bounds . 71

5.4 Tighter Generalization Bounds via Adaptive Subspace Compression 73

5.4.1 Finding Better Random Subspaces . 75

5.4.2 Quantization Scheme and Training . 76

5.4.3 Transfer Learning . 77

5.5 Empirical Non-Vacuous Bounds . 78

5.5.1 Non-Vacuous PAC-Bayes Bounds . 79

5.5.2 Data-Dependent PAC-Bayes Bounds . 79

5.5.3 Non-Vacuous PAC-Bayes Bounds for Transfer Learning 81

5.6 Understanding Generalization through PAC-Bayes Bounds 82

5.7 Discussion . 85

6 Conclusion 86

A Appendices 89

Bibliography 145

viii

List of Figures

2.1 We provide a general and efficient method for solving equivariance constaints. For

particular symmetry groups and type signatures, we recover other well known

equivariant layers while also enabling application to new groups and representations. 5

2.2 Equivariant basis for permutations, translation, 2d translation, and GCNN symme-

tries respectively, each of which are solutions to Equation 2.5 for different groups.

The 𝑟 different solutions in the basis are shown by different colors. 13

2.3 Equivariant basis for various tensor representations 𝑇𝐺
𝑘

where 𝐺 denotes the

symmetry group. The 𝑟 different solutions in the basis are shown by different

colors. For SO(3) the bases cannot be separated into disjoint set of 0 or 1 valued

vectors, and so we choose overlapping colors randomly and add an additional

color for 0. 16

2.4 EMLP layers. G-equivariant linear layers, followed by the bilinear layer and

a shortcut connection, and finally a gated nonlinearity. Stacking these layers

together and choosing some internal representation (shown below), the EMLP

maps some collection of geometric quantities to some other collection. Here we

show the equivariant mappings from scalars and vectors to matrices. 18

ix

2.5 Data efficiency for the synthetic equivariance experiments. Here the EMLP-𝐺

models where𝐺 are relevant symmetry groups strongly outperforms both standard

MLPs and MLPs that have been trained with data augmentation to the given

symmetry group, across the range of dataset sizes. The shaded regions depict 95%

confidence intervals taken over 3 runs. 19

2.6 Left: A double spring pendulum (12s sample trajectory is shown). The system has

an O(2) symmetry about the 𝑧 axis. Middle: Conservation of angular momentum

about the 𝑧-axis (the geometric mean of the relative error is computed over 30𝑠

rollouts and averaged across initial conditions). Errorbars are 95% confidence

interval over 3 runs. Right: The relative error in the state as the trajectory is

rolled out. Shaded regions show 1 standard deviation in log space across the

different trajectories rather than models, showing the variance in the data. 22

3.1 Left: RPPs encode an Occam’s razor approach to modeling. Highly flexible models

like MLPs lack the inductive biases to assign high prior mass to relevant solutions

for a given problem, while models with strict constraints are not flexible enough to

support solutions with only approximate symmetry. For a given problem, we want

to use the most constrained model that is consistent with our observations. Right:

The structure of RPPs. Expanding the layers into a sum of the constrained and

unconstrained solutions, while setting the prior to favor the constrained solution,

leads to the more flexible layer explaining only the residual of what is already

explained by the constrained layer. 28

x

3.2 A comparison of test performance over 10 independent trials using RPP-EMLP

and equivalent EMLP and MLP models on the inertia (top) and double pendulum

(bottom) datasets in which we have three varying levels of symmetries. The boxes

represent the interquartile range, and the whiskers the remainder of the distribu-

tion. Left: perfect symmetries in which EMLP and the equivariant components of

RPP-EMLP exactly capture the symmetries in the data. Center: approximate sym-

metries in which the perfectly symmetric systems have been modified to include

some non-equivariant components. Right: mis-specified symmetries in which

the symmetric components of EMLP and RPP-EMLP do not reflect the symmetries

present in the data. 38

3.3 Example illustrations of symmetries and representations from the Mujoco en-

vironments. Left: left-right symmetry in the Walker2d environment, center:

front-back symmetry in the Swimmer environment, and right: In-out similarity

in the HalfCheetah environment . 41

3.4 Average reward curve of RPP-SAC and SAC trained on Mujoco locomotion en-

vironments (max average reward attained at each step). Mean and one standard

deviation taken over 4 trials shown in the shaded region. Incorporating approxi-

mate symmetries in the environments improves the efficiency of the model free

RL agents. 43

xi

4.1 (Left): The Lie derivative measures the equivariance of a function under continu-

ous transformations, here rotation. (Center): Using the Lie derivative, we quantify

how much each layer contributes to the equivariance error of a model. Our analy-

sis highlights surprisingly large contributions from non-linearities, which affects

both CNNs and ViT architectures. (Right): Translation equivariance as measured

by the Lie derivative correlates with generalization in classification models, across

convolutional and non-convolutional architectures. Although CNNs are often

noted for their intrinsic translation equivariance, ViT and Mixer models are often

more translation equivariant than CNN models after training. 49

4.2 Non-linearities generate new high-frequency harmonics. 53

4.3 Lie derivatives can be computed using automatic differentiation. We show how a

Lie derivative for continuous rotations can be implemented in PyTorch [Paszke et al.

2019]. The implementation in our experiments differs slightly, for computational

efficiency and to pass second-order gradients through grid_sample. 56

xii

4.4 Contributions to equivariance shown cumulatively by layer, in the order the

layers occur in the network. Left: Convolutional architectures. In all the CNNs,

much of the equivariance error comes from downsampling and non-linearities.

Middle-Left: Non-convolutional architectures. The initial patch embedding, a

strided convolution, is the largest contributor for the ViTs and Mixers. The rest

of the error is distributed uniformly across other nonlinear operations. Middle-

Right: ResNet-50 across different transformations as a percentage. Despite being

designed for translation equivariance, the fraction of equivariance error produced

by each layer is almost identical for other affine transformations, suggesting that

aliasing is the primary source of equivariance error. Right: Comparing LEE

with alternative metrics for translation equivariance. Using integer translations

misses key contributors to equivariance errors, such as activations, while using

fractional translations can lead to radically different outcomes depending on choice

of normalization (𝑁 or
√
𝑁). LEE captures aliasing effects and has minimal design

decisions. 59

4.5 Equivariance metrics evaluated on the ImageNet test set. Left: Non-LEE equivari-

ance metrics display similar trends to Figure 4.1, despite using larger, multi-pixel

transformations. Right: Norm of rotation and shear Lie derivatives. Across all ar-

chitectures, models with strong generalization become more equivariant to many

common affine transformations. Marker size indicates model size. Error bars show

one standard error over test set images used in the equivariance calculation. . . . 61

xiii

4.6 Case studies in decreasing translational equivariance error, numbered left-to-

right. 1: Blur-Pool [Zhang 2019], an architectural change to improve equivariance,

decreases the equivariance error but by less than can be accomplished by improving

the training recipe or increasing the scale of model or dataset. 2-3: Increasing the

number of parameters for a fixed model family (here ViTs [El-Nouby et al. 2021]

and EfficientNets [Tan and Le 2019a]). 4: Increasing the training dataset size for

a ResMLP Big [Touvron et al. 2021a] model. 5: Changing the training recipe for

ResNeXt-50 [Xie et al. 2017] with improved augmentations [Wightman et al. 2021]

or SSL pretraining [Yalniz et al. 2019]. Error bars show one standard error over

images in the Lie derivative calculation. 62

4.7 Models are less equivariant on test data and becoming decreasingly equivariant as

the data moves away from the training manifold. As examples of data with similar

distributions, we show equivariance error on the ImageNet train and test sets as

well as CIFAR-100. As examples of out-of-distribution data, we use two medical

datasets (which often use Imagenet pretraining), one for Histology [Kather et al.

2016] and one for Retinopathy [Kaggle and EyePacs 2015]. 64

xiv

5.1 The power of data-independent subspace compression bounds for explain-

ing deep learning phenomena. Bounds for CIFAR-10 except (c)-rotation, which

is rotMNIST. (a) We show that the simple Hoeffding bound computed only on

the data-dependent prior and evaluated on the remainder of the training data

(essentially measuring validation loss) achieves error bounds that are competitive

or even better than data-dependent bounds obtained by previous works, show-

ing that data-dependent PAC-Bayes bounds do not explain generalization any

further than the prior alone. Instead, data-independent bounds are more infor-

mative for understanding generalization (see Section 5.5.2). (b) Training error,

the KL term (compressed model size measured in KB), and our PAC-Bayes bound

as the subspace dimension is varied. For a fixed network, our method provides

an adaptive compression scheme that trades off compressed size with training

error, finding the optimal bound for a given model and dataset. (c)We compute

our data-independent bounds for model trained with and without: transfer learn-

ing, shuffling the pixels, and the rotation-equivariance property. Our bounds

identify the positive impact of transfer learning, how breaking structure in the

data by shuffling pixels hurts the model, and that rotationally equivariant models

improve generalization on rotated data. Each of these interventions impact the

compressibility of the models. See Section 5.6 for more details. 69

xv

5.2 Effective and scalable projection operators. (Left) Different projection oper-

ators 𝑃 (Section 5.4.1) used for transfer learning from Imagenet to CIFAR-10 on

a ResNet-34 across different subspace dimensions 𝑑 . Kronecker product, Sparse,

and Dense perform almost identically (Center) Kronecker product runs with sub-

stantially reduced the runtime cost compared to the Sparse or Fastfood matrices

used by Li et al. [2018]. (Right) Training from scratch on CIFAR-10. The FiLM

projector alone is unable to fit the data when training from scratch, and instead a

sum of FiLM and Kronecker Product projectors perform the best. 75

5.3 Breaking structure in the data and the model. Our PAC-Bayes bound com-

puted using various subspace dimensions for a fixed size CNN and MLP, both with

500k parameters. We train on (left) CIFAR-10, (center) CIFAR-10 with shuffled

pixels, (right) CIFAR-10 with shuffled labels. Structure in the dataset induces

structure in the model. As structure is removed from the dataset, models which fit

the data become much less compressible, hence generalize worse. 83

A.1 Exponential convergence of algorithm 1 shown empirically over a range of groups

and tensor representations for 𝑟max = 20. In each of these cases, 𝑋 converges to

the limits of floating point precision in 300 iterations. 94

A.2 Average reward curves (max over steps) for an RPP-EMLP applied to the policy 𝜋

only, as well as an RPP-EMLP for both the policy 𝜋 and the critic 𝑄 . Mean and

standard deviation taken over 4 trials shown in the shaded region. Only minor

performance gains are achieved if using RPP for the policy only, however this

variant is more stable and can to train on Humanoid-v2 without diverging. 110

xvi

A.3 (Left): Extending Figure 4.5 we show the Lie derivate norm for hyperbolic rotation,

brightening, and stretch transformations. We observe that more accurate models

are also more equivariant to hyperbolic rotations and to brighten transformation,

to a more limited extent. In the case of hyperbolic rotations, this result is surprising,

as nothing has directly encouraged this equivariance. One possible explanation is

decreased aliasing in models with higher accuracy. Marker size indicates model

size. Error bars show one standard error over the images use to evaluate the

Lie derivative. (Right): Cumulative mean and standard error of the estimator

(computed for translations on a ResNet-50). 126

A.4 Data-dependent bounds focus on fitting a good prior. Our bounds using data

dependent priors trained using varying fractions of the training dataset. We see

that when using data dependent priors, lower intrinsic dimensionalities and lower

KL models are favored by the bound. 132

A.5 Rotationally-equivariantmodels provably generalize better on rotationally-

equivariant data. Comparison of rotationally equivariant 𝐶8 WideResNet vs

ordinary WideResNet with the same number of parameters on (a) the rotationally

equivariant RotMNIST dataset [Larochelle et al. 2007] and (b) the ordinary MNIST

dataset. Both models are capable of fitting the data, but the equivariant model

yields a more compressible solution when fitting the rotationally equivariant data

than the non equivariant model, and hence yields a better generalization bound.

(Note the difference in dataset size, RotMNIST has only 12K data points unlike

MNIST) . 136

xvii

A.6 Model size, compressibility, and MDL. Left: Generalization error bound as a

function of model size on the CIFAR10 dataset. The ID subspace dimension that

achieves the best bound is shown by the color. In terms of our bound computation,

the optimal number of parameters of the network is only slightly above the number

of data points. Right: The total compressed size (𝐾 (ℎ |𝑃) + NLL) of the training

dataset using our model as a compression scheme. While the raw labels have size

20.3KB (shown by the black line), the best model compresses the labels down to

8.6KB. Curiously, the compressed dataset size and hence the MDL principle favors

larger models than our generalization bounds. 138

A.7 Our bounds display a double descent as we increase the width. Left: Double

descent (in terms of the test error of the last epoch model) observed when varying

the width of a ResNets-18 model to fit the CIFAR-10 dataset with label noise equal

to 0.2. Right: Our bounds showing a similar double descent behaviour where the

bound starts to worsen only to become better again at a later width. Here we

can fix the intrinsic dimensionality to be equal to 35000 and we choose the best

subspace compression bound for each base width. 138

xviii

List of Tables

2.1 Different ways of combining group representations, shown for dual, direct sum,

tensor product and the corresponding vector space, group representation and Lie

algebra representation. 10

2.2 Geometric mean of rollout errors (relative error) over T=30s for the various EMLP-

𝐺 symmetric HNNs and Neural ODEs (N-ODE) vs ordinary MLP HNNs and N-

ODEs. Errorbars are 1 standard deviation computed over 3 trials, with notation

.012(2) meaning .012 ± .002. 24

3.1 Mean test classification error on CIFAR-10 and MSE on 4 UCI regression tasks,

with one standard deviation errors taken over 10 trials. Similar to Figure 3.2, we

find that whether the constrained convolutional structure is helpful (CIFAR) or

not (UCI), RPP-Conv performs similarly to the model with the correct level of

complexity. 40

3.2 Exact and approximate symmetries of Mujoco locomotion environments of which

we use the subgroups in the bottom row, see subsection A.2.4 for the detailed

action and state representations. 42

3.3 Transition model rollout relative error in percent % averaged over 10, 30, and 100

step rollouts (geometric mean over trajectory). Errorbars are 1 standard deviation

taken over 3 random seeds. Equivariance error is computed from as the geometric

mean averaged over the 100 step rollout. 44

xix

4.1 Our finetuned MAE is competitive with several architectures explicitly engineered

to encode rotation invariance on RotMNIST, where rotation invariance is clearly

crucial to generalization. 63

5.1 Non-vacuous PAC-Bayes bounds obtained on popular image classification

datasets in deep learning. ★ indicates bounds obtained using data-dependent pri-

ors (Section 5.5.2). ✗ indicates that either the method does not support multi-class

problems or that it is completely reliant on data-dependent priors and therefore

cannot result in data-independent bounds. Additionally, we add Binary MNIST

for reference to a benchmark used in earlier works. 71

5.2 Our PAC-Bayesian subspace compression bounds compared to state-of-the-

art (SOTA) bounds. All results are with 95% confidence, i.e. 𝛿 = .05. The sign †

refers to data-independent SOTA numbers that we computed using [Pérez-Ortiz

et al. 2021], which we run on the additional datasets. 79

A.1 Symmetric subspace rank 𝑟 for tensors 𝑇𝑘 of 𝐺 = Z𝑛 98

A.2 Symmetric Subspace rank 𝑟 for tensors 𝑇𝑘 of 𝐺 = S𝑛 99

A.3 Symmetric Subspace rank 𝑟 for tensors 𝑇𝑘 of Rubik’s Cube Group 100

A.4 Symmetric subspace rank 𝑟 for tensors 𝑇𝑘 of 𝐺 = SO(𝑛) 101

A.5 Symmetric subspace rank 𝑟 for tensors 𝑇𝑘 of 𝐺 = O(𝑛) 101

A.6 Symmetric subspace rank 𝑟 for tensors 𝑇(𝑘,0) for the Lorentz groups. 102

A.7 Symmetric subspace rank 𝑟 for tensors 𝑇(𝑘,0) of 𝐺 = Sp(𝑛) 103

A.8 Symmetric subspace rank 𝑟 for tensors 𝑇(𝑞,𝑝) of 𝐺 = SU(𝑛) 104

A.9 Critic moving average speed 𝜏 . 113

A.10 Mujoco Locomotion State and Action Representations used for RPP-EMLP 115

A.11 Hopper-v2 State and Action Spaces . 116

A.12 Swimmer-v2 State and Action Spaces . 116

xx

A.13 HalfCheetah-v2 State and Action Spaces . 117

A.14 Walker2d-v2 State and Action Spaces . 117

A.15 Ant-v2 State and Action Spaces . 141

A.16 Humanoid-v2 Action Space . 141

A.17 Humanoid-v2 State Space . 141

A.18 Using our subspace method rather than pruning yields substantially higher com-

pression ratios and hence tighter generalization bounds. We report our error

bounds (%) and compressed size (KL (KB)), 1 KB = 8192 bits. First, we compress

the model weights using ID, quantizing its values and then storing them through

arithmetic encoding. We then report the bounds obtained by only switching ID

to standard pruning. All results are data-independent and obtained with 95%

confidence, i.e. 𝛿 = .05. 142

A.19 Our PAC-Bayesian Subspace Compression Bounds with data-dependent priors

compared to state-of-the-art PAC-Bayes non-vacous data-dependent bounds. All

results are obtained with 95% confidence, i.e. 𝛿 = .05. 142

A.20 Simple convolutional architecture we use to compute our bounds. 143

A.21 Hyperparameters corresponding to our PAC-Bayesian Subspace Compression

Bounds reported in Table 5.2 as well as SVHN and ImageNet to SVHN transfer

learning with data-independent priors. All bound results are obtained with 95%

confidence, i.e. 𝛿 = .05. 143

A.22 Hyperparameters corresponding to our PAC-Bayes bounds reported in Table 5.2

as well as SVHN and ImageNet with data-dependent priors. The best bounds

are obtained for intrinsic dimensionality equal to 0, therefore no quantization is

performed. All bound results are obtained with 95% confidence, i.e. 𝛿 = .05. 143

A.23 Our PAC-Bayes subspace compression bounds obtained through full-batch (F-B)

training for different configurations and datasets. 144

xxi

Appendices

Appendix for General and Automated Equivariant Model Construction with Equivariant-MLP 89

Appendix for Residual Pathway Priors for Approximate Equivariance 109

Appendix for Lie Derivative for Measuring Learned Equivariance 116

Appendix for Understanding the Inductive Biases of Neural Networks 127

xxii

1 | Introduction

The ability to learn from data and generalize to new, previously unseen situations is a critical

aspect of artificial intelligence. Deep learning models have demonstrated impressive performance

in various domains, ranging from computer vision to natural language processing. However, their

success often comes at the cost of requiring vast amounts of data and computational resources.

This limitation raises a fundamental question: can we imbue our models with basic elements of

human and scientific knowledge to accelerate learning and improve generalization? The answer

to this question is the central focus of this thesis, as we explore new methods for incorporating

mathematical inductive biases into our models, biasing them towards solutions that reflect our

priors and our knowledge.

The rich array of symmetries and equivariances found in nature has long been a source of

inspiration for researchers seeking to build more robust and efficient models. By encoding these

properties directly into ourmodels, we can potentially achieve faster learning, better generalization,

and enhanced interpretability. In this thesis, we start by developing a completely general algorithm

for constructing equivariant layers of matrix groups called Equivariant-MLP, reducing the task of

designing an equivariant network (at least for low dimensional data) into a purely computational

problem. With Equivariant-MLP we help lower the barrier to constructing efficient learners in

diverse domains such as dynamical systems, particle physics, and robotics.

Striking the right balance between flexibility and inductive biases remains an ongoing challenge,

and like other structures, symmetries are often broken by the messy realities of real data. To

1

address this tension, we introduce Residual Pathway Priors (RPPs), a method to convert hard

architectural constraints into soft probabilistic priors. RPP guides models towards structured

solutions while retaining the ability to capture additional complexity, and helps encode our beliefs

in the Bayesian sense. We demonstrate the broad applicability of RPPs across various domains,

including reinforcement learning, where our approach outperforms baseline model-free agents

and improves learned transition models for model-based RL.

To better understand the impact of equivariance across different architectures and training

methods, we introduce the Lie derivative. The lie derivative is a powerful mathematical tool for

measuring equivariance and enables us to identify and isolate failures of equivariance as they

are produced by particular layers in a network. By analyzing hundreds of pretrained models, we

reveal surprising insights into the relationship between model size, accuracy, and equivariance.

Our findings challenge traditional narratives and highlights the impact of better training strategies

on the extent to which equivariance is respected.

Finally, to gain a deeper understanding of why deep learning works, we develop a new method

for proving PAC-Bayes generalization bounds on deep neural networks. This approach yields

state-of-the-art generalization bounds on image tasks, and allows us to better understand the role

of model size, transfer learning, equivariance, and the extent to which structures in the model align

with structures in the data. Our findings reveal that large models can be compressed to a much

greater extent than previously known, supporting Occam’s razor and providing new insights into

the interplay between inductive biases and generalization.

In conclusion, this thesis represents a significant step forward in our understanding of how to

incorporate mathematical inductive biases into deep learning models. By broadening the scope and

automation of equivariant model construction, uncovering the role of inductive biases in learning

and generalization, and developing new machine learning models for scientific applications that

capture relevant scientific knowledge, we hope to not only push the boundaries of what is possible

with deep learning but also inspire new avenues of research in the quest for artificial intelligence

2

that learns rapidly, generalizes effectively, and respects the principles of the natural world.

3

2 | General and Automated Eqivariant

Model Construction with

Eqivariant-MLP

Symmetries and equivariance are fundamental to the generalization of neural networks on domains

such as images, graphs, and point clouds. Existing work has primarily focused on a small number

of groups, such as the translation, rotation, and permutation groups. In this chapter we provide a

completely general algorithm for solving for the equivariant layers of matrix groups. In addition

to recovering solutions from other works as special cases, we construct multilayer perceptrons

equivariant to multiple groups that have never been tackled before, including O(1, 3), O(5),

Sp(𝑛), and the Rubik’s cube group. Our approach outperforms non-equivariant baselines, with

applications including particle physics and dynamical systems. We release our software library to

enable researchers to construct equivariant layers for arbitrary matrix groups.

This chapter is adapted from the paper “A Practical Method for Constructing Equivariant

Multilayer Perceptrons for Arbitrary Matrix Groups”, which originally appeared at ICML 2021

and is joint work with Max Welling, and Andrew Gordon Wilson.

4

ConvolutionT1 → T1

Deep SetT1 → T1

Tk → Tℓ Invariant GN

GCNNT1 → T1

Avg PoolingT1 → T0

Our Constraint
Solving Algorithm

ℤn
2

Sn

O(n) O(1,3)

Sp(n) SU(n)

4⋉ℤ
2

Group Type

=+ +

Equivariant
Linear Layer

E
M
L
P

New
Any

Finite Dimensional
Representations

nD

Figure 2.1: We provide a general and efficient method for solving equivariance constaints. For particular
symmetry groups and type signatures, we recover other well known equivariant layers while also enabling
application to new groups and representations.

2.1 Introduction

As machine learning has expanded to cover more areas, the kinds of structures and data types we

must accommodate grows ever larger. While translation equivariance may have been sufficient for

working with narrowly defined sequences and images, with the expanding scope to sets, graphs,

point clouds, meshes, hierarchies, tables, proteins, RF signals, games, PDEs, dynamical systems,

and particle jets, we require new techniques to exploit the structure and symmetries in the data.

In this work we propose a general formulation for equivariant multilayer perceptrons (EMLP).

Given a set of inputs and outputs which transform according to finite dimensional representations

of a symmetry group, we characterize all linear layers that map from one space to the other, and

provide a polynomial time algorithm for computing them. We release our library, along with

documentation, and examples.

Figure 2.1 illustrates how the convolutional layers of a CNN [LeCun et al. 1989], the permutation

equivariant deep sets [Zaheer et al. 2017], graph layers [Maron et al. 2018], and layers for networks

equivariant to point clouds [Thomas et al. 2018], all arise as special cases of our more general

algorithm.

We summarize our contributions as follows:

• We prove that the conditions for equivariance to matrix groups with arbitrary linear repre-

5

https://github.com/mfinzi/equivariant-MLP
https://emlp.readthedocs.io/en/latest/
https://colab.research.google.com/github/mfinzi/equivariant-MLP/blob/master/docs/notebooks/colabs/all.ipynb

sentations can be reduced to a set of𝑀 + 𝐷 constraints, where𝑀 is the number of discrete

generators and 𝐷 is the dimension of the group.

• We provide a polynomial time algorithm for solving these constraints for finite dimensional

representations, and we show that the approach can be accelerated by exploiting structure

and recasting it as an optimization problem.

• With the addition of a bilinear layer, we develop the Equivariant MultiLayer Perceptron

(EMLP), a general equivariant architecture that can be applied to a new group by specifying

the group generators.

• Demonstrating the generality of our approach, we apply our network to multiple groups

that were previously infeasible, such as the orthogonal group in five dimensions O(5), the

full Lorentz group O(1, 3), the symplectic group Sp(𝑛), the Rubik’s cube group, with the

same underlying architecture, outperforming non equivariant baselines.

2.2 Related Work

While translation equivariance in convolutional neural networks [LeCun et al. 1989] has been

around for many years, more general group equivariant neural networks were introduced in Cohen

and Welling [2016a] for discrete groups with GCNNs. There have been a number of important

works generalizing the approach to make use of the irreducible group representations for the

continuous rotation groups SO(2) [Cohen and Welling 2016b; Esteves et al. 2017; Marcos et al.

2017], O(2) [Weiler and Cesa 2019a], SO(3) [Thomas et al. 2018; Weiler et al. 2018; Anderson et al.

2019], O(3) [Smidt et al. 2020] and their discrete subgroups.The requirements and complexity of

working with irreducible representations has limited the scope of these methods, with only one

example outside of these two rotation groups with the identity component of the Lorentz group

SO+(1, 3) in Bogatskiy et al. [2020].

6

Others have used alternate approaches for equivariance through group FFTs [Cohen et al.

2018b], and regular group convolution [Worrall and Welling 2019; Bekkers 2019; Finzi et al. 2020].

These methods enable greater flexibility; however, achieving equivariance for continuous groups

with the regular representation is fundamentally challenging, since the regular representation is

infinite dimensional.

Meanwhile, the theoretical understanding and practical methods for equivariance to the

permutation group 𝑆𝑛 have advanced considerably for the application to sets [Zaheer et al. 2017],

graphs [Maron et al. 2018], and related objects [Serviansky et al. 2020]. Particular instances of

equivariant networks have been shown to be universal: with a sufficient size these networks can

approximate equivariant functions for the given group with arbitrary accuracy [Maron et al. 2019;

Ravanbakhsh 2020; Dym and Maron 2020].

Despite these developments, there is still no algorithm for constructing equivariant networks

that is completely general to the choice of symmetry group or representation. Furthest in this

direction are the works of Lang and Weiler [2020], Ravanbakhsh et al. [2017], and van der Pol et al.

[2020b] with some of these ideas also appearing in Wood and Shawe-Taylor [1996]. Based on the

Wigner-Eckert theorem, Lang and Weiler [2020] show a general process by which equivariant

convolution kernels can be derived for arbitrary compact groups. However this process still

requires considerable mathematical legwork to carry out for a given group, and is not applicable

beyond compact groups. Ravanbakhsh et al. [2017] show how equivariance can be achieved by

sharing weights over the orbits of the group, but is limited to regular representations of finite

groups. Unlike Lang and Weiler [2020] and Ravanbakhsh et al. [2017], van der Pol et al. [2020b]

present an explicit algorithm for computing equivariant layers. However, the complexity of this

approach scales with the size of the group and quickly becomes too costly for large groups and

impossible for continuous groups like SO(𝑛),O(1, 3), Sp(𝑛), and SU(𝑛).

7

2.3 Background

In order to present our main results, we first review some necessary background on group theory.

Most importantly, symmetry groups can be broken down in terms of discrete and continuous

generators, and these can act on objects through group and Lie algebra representations.

Finite Groups and Discrete Generators. A group 𝐺 is finitely generated if we can write

each element 𝑔 ∈ 𝐺 as a sequence from a discrete set of generators {ℎ1, ℎ2, ...ℎ𝑀 } and their inverses

ℎ−𝑘 = ℎ−1
𝑘
. For example we may have an element 𝑔 = ℎ1ℎ2ℎ2ℎ

−1
1 ℎ3 and can be written more

compactly 𝑔 = Π𝑁𝑖=1ℎ𝑘𝑖 for the integer sequence 𝑘 = [1, 2, 2,−1, 3].

All finite groups, like the cyclic group Z𝑛 , the dihedral group D𝑛 , the permutation group S𝑛 ,

and the Rubik’s cube group can be produced by a finite set of generators. Even for large groups,

the number of generators is much smaller than the size of the group: 1 for Z𝑛 of size 𝑛, 2 for S𝑛 of

size 𝑛!, and 6 for the cube group of size 4 × 1019.

Continuous Groups and Infinitesimal Generators. Similarly, Lie theory provides a way of

analyzing continuous groups in terms of their infinitesimal generators. The Lie Algebra 𝔤 of a Lie

Group 𝐺 (a continuous group that forms a smooth manifold) is the tangent space at the identity

𝔤 := 𝑇id𝐺 ⊆ R𝑛×𝑛, which is a vector space of infinitesimal generators of group transformations

from 𝐺 . The exponential map exp : 𝔤 → 𝐺 maps back to the Lie Group and can be understood

through the series: exp(𝐴) = ∑∞
𝑘=0𝐴

𝑘/𝑘!

A classic example is the rotation group 𝐺 = SO(𝑛) with matrices R𝑛×𝑛 satisfying 𝑅⊤𝑅 = 𝐼

and det(𝑅) = 1. Parametrizing a curve 𝑅(𝑡) with 𝑅(0) = 𝐼 , 𝑅′(0) = 𝐴, one can find the tangent

space by differentiating the constraint at the identity. The Lie Algebra consists of antisymmetric

matrices: 𝔰𝔬(𝑛) = 𝑇idSO(𝑛) = {𝐴 ∈ R𝑛×𝑛 : 𝐴⊤ = −𝐴}.

Given that 𝔤 is a finite dimensional vector space (𝐷 = dim(𝔤) = dim(𝐺)), its elements can be

expanded in a basis {𝐴1, 𝐴2, ..., 𝐴𝐷}. For some Lie Groups like SO(𝑛), the orientation preserving

isometries SE(𝑛), the special unitary group SU(𝑛), the symplectic group Sp(𝑛), the exponential

8

map is surjective meaning all elements 𝑔 ∈ 𝐺 can be written in terms of this exponential 𝑔 =

exp(∑𝑖 𝛼𝑖𝐴𝑖) with a set of real valued coefficients {𝛼𝑖}𝐷𝑖=1. But in general for other Matrix Groups

likeO(𝑛), E(𝑛), andO(1, 3), exp is not surjective and one can instead write𝑔 = exp(∑𝑖 𝛼𝑖𝐴𝑖)Π𝑁𝑖=1ℎ𝑘𝑖

as a product of the exponential map that traverses the identity component and an additional

collection of discrete generators (see subsection A.1.8).

Group Representations. In the machine learning context, a group element is most relevant

in how it acts as a transformation on an input. A (linear finite dimensional) group representation

𝜌 : 𝐺 → GL(𝑚) associates each 𝑔 ∈ 𝐺 to an invertible matrix 𝜌 (𝑔) ∈ R𝑚×𝑚 that acts on R𝑚 . The

representation satisfies ∀𝑔1, 𝑔2 ∈ 𝐺 : 𝜌 (𝑔1𝑔2) = 𝜌 (𝑔1)𝜌 (𝑔2), and therefore also 𝜌 (𝑔−1) = 𝜌 (𝑔)−1.

The representation specifies how objects transform under the group, and can be considered a

specification of the type of an object.

Lie Algebra Representations. Mirroring the group representations, Lie Groups have an

associated representation of their Lie algebra, prescribing how infinitesimal transformations act

on an input. A Lie algebra representation 𝑑𝜌 : 𝔤→ 𝔤𝔩(𝑁) is a linear map from the Lie algebra to

𝑚 ×𝑚 matrices. An important result in Lie Theory relates the representation of a Lie Group to

the representation of its Lie Algebra

∀𝐴 ∈ 𝔤 : 𝜌 (𝑒𝐴) = 𝑒𝑑𝜌 (𝐴) (2.1)

TensorRepresentations. Given some base group representation 𝜌 , Lie Algebra representation

𝑑𝜌 , acting on a vector space 𝑉 , representations of increasing size and complexity can be built

up through the tensor operations dual (∗), direct sum (⊕), and tensor product (⊗), as detailed in

Table 2.1.

Acting on matrices, ⊕ is the direct sum which concatenates the matrices on the diagonal

𝑋 ⊕ 𝑌 =

𝑋 0

0 𝑌

 , and facilitates multiple representations which are acted upon separately. The ⊗

on matrices is the Kronecker product, and ⊕̄ is the Kronecker sum: 𝑋 ⊕̄𝑌 = 𝑋 ⊗ 𝐼 + 𝐼 ⊗ 𝑌 . 𝑉 ∗ is

9

OP 𝜌 𝑑𝜌 𝑉

* 𝜌 (𝑔−1)⊤ −𝑑𝜌 (𝐴)⊤ 𝑉 ∗

⊕ 𝜌1(𝑔) ⊕ 𝜌2(𝑔) 𝑑𝜌1(𝐴) ⊕ 𝑑𝜌2(𝐴) 𝑉1 ⊕ 𝑉2
⊗ 𝜌1(𝑔) ⊗ 𝜌2(𝑔) 𝑑𝜌1(𝐴)⊕̄𝑑𝜌2(𝐴) 𝑉1 ⊗ 𝑉2

Table 2.1: Different ways of combining group representations, shown for dual, direct sum, tensor product
and the corresponding vector space, group representation and Lie algebra representation.

the dual space of 𝑉 . The tensor product and dual are useful in describing linear maps from one

vector space to another. Linear maps from 𝑉1 → 𝑉2 form the vector space 𝑉2 ⊗ 𝑉 ∗1 and have the

corresponding representation 𝜌2 ⊗ 𝜌∗1 .

We will work with the corresponding vector spaces and representations interchangeably with

the understanding that the other is defined through these composition rules. We abbreviate

many copies of the same vector space 𝑉 ⊕ 𝑉 ⊕ ... ⊕ 𝑉︸ ︷︷ ︸
𝑚

as𝑚𝑉 . Similarly we will refer to the vector

space formed from many tensor products 𝑇(𝑝,𝑞) = 𝑉 ⊗𝑝 ⊗ (𝑉 ∗)⊗𝑞 where (·)⊗𝑝 is the tensor product

iterated 𝑝 times. Following the table, these tensors have the group representation 𝜌 (𝑝,𝑞) (𝑔) =

𝜌 (𝑔)⊗𝑝 ⊗ 𝜌∗(𝑔)⊗𝑞 , and the Lie algebra representation 𝑑𝜌 (𝑝,𝑞) (𝐴) = 𝑑𝜌 (𝐴) ⊕̄𝑝 ⊕̄𝑑𝜌∗(𝐴) ⊕̄𝑞 . We will

abbreviate 𝑇𝑝+𝑞 for 𝑇(𝑝,𝑞) when using orthogonal representations (𝜌 = 𝜌∗), as the distinction

between 𝑉 and 𝑉 ∗ becomes unnecessary.

2.4 Eqivariant Linear Maps

In building equivariant models, we need that the layers of the network are equivariant to the

action of the group. Below we characterize all equivariant linear layers𝑊 ∈ R𝑁2×𝑁1 that map

from one vector space 𝑉1 with representation 𝜌1 to another vector space 𝑉2 with representation

𝜌2 for a matrix group 𝐺 . We prove that the infinite set of constraints can be reduced to a finite

collection without loss of generality, and then provide a polynomial-time algorithm for solving

the constraints.

10

2.4.1 The Eqivariance Constraint

Equivariance requires that transforming the input is the same as transforming the output:

∀𝑥 ∈ 𝑉1,∀𝑔 ∈ 𝐺 : 𝜌2(𝑔)𝑊𝑥 =𝑊𝜌1(𝑔)𝑥 .

Since true for all 𝑥 , 𝜌2(𝑔)𝑊𝜌1(𝑔)−1 =𝑊 , or more abstractly:

∀𝑔 ∈ 𝐺 : 𝜌2(𝑔) ⊗ 𝜌1(𝑔−1)⊤vec(𝑊) = vec(𝑊) (2.2)

where vec flattens the matrix into a vector. 𝜌1(𝑔−1)⊤ is the dual representation 𝜌∗1 (𝑔), and so

the whole object 𝜌2(𝑔) ⊗ 𝜌1(𝑔−1)⊤ = (𝜌2 ⊗ 𝜌∗1) (𝑔) = 𝜌21(𝑔) is a representation of how 𝑔 acts on

matrices mapping from 𝑉1 → 𝑉2.

While equation (2.2) is linear, the constraint must be upheld for each of the possibly combina-

torially large or infinite number of group elements in the case of continuous groups. However, in

the following section we show that these constraints can be reduced to a finite and small number.

2.4.2 General Solution for Symmetric Objects

Equation (2.2) above with 𝜌 = (𝜌2 ⊗ 𝜌∗1) is a special case of a more general equation expressing

the symmetry of an object 𝑣 ,

∀𝑔 ∈ 𝐺 : 𝜌 (𝑔)𝑣 = 𝑣 (2.3)

Writing the elements of 𝐺 in terms of their generators: 𝑔 = exp(∑𝐷
𝑖 𝛼𝑖𝐴𝑖)Π𝑁𝑖=1ℎ𝑘𝑖 . For group

elements with 𝑘 = ∅, we have

∀𝛼𝑖 : 𝜌
(
exp(

∑︁
𝑖

𝛼𝑖𝐴𝑖)
)
𝑣 = 𝑣

Using the Lie Algebra - Lie Group representation correspondence (2.1) and the linearity of 𝑑𝜌 (·)

11

we have

∀𝛼𝑖 : exp
(∑︁
𝑖

𝛼𝑖𝑑𝜌 (𝐴𝑖)
)
𝑣 = 𝑣 .

Taking the derivative with respect to 𝛼𝑖 at 𝛼 = 0, we get a constraint for each of the infinitesimal

generators

∀𝑖 = 1, ..., 𝐷 : 𝑑𝜌 (𝐴𝑖)𝑣 = 0 (2.4)

For group elements with all 𝛼𝑖 = 0 and 𝑁 = 1, we get an additional constraint for each of the

discrete generators in the group:

∀𝑘 = 1, ..., 𝑀 : (𝜌 (ℎ𝑘) − 𝐼)𝑣 = 0 . (2.5)

We get a total of𝑂 (𝑀 +𝐷) constraints, one for each of the discrete and infinitesimal generators.

In subsection A.1.2, we prove that these reduced constraints are not just necessary but also

sufficient, and therefore characterize all solutions to the symmetry equation (2.3).

Solving the Constraint: We collect each of the symmetry constraints 𝐶1 = 𝑑𝜌 (𝐴1),𝐶2 =

𝑑𝜌 (𝐴2), ...,𝐶𝐷+1 = 𝜌 (ℎ1) − 𝐼 , ... into a single matrix 𝐶 , which we can breakdown into its nullspace

spanned by the columns of𝑄 ∈ R𝑚×𝑟 and orthogonal complement 𝑃 ∈ R𝑚×(𝑚−𝑟) using the singular

value decomposition:

𝐶𝑣 =

𝑑𝜌 (𝐴1)

𝑑𝜌 (𝐴2)

...

𝜌 (ℎ1) − 𝐼

...

𝑣 = 𝑈

Σ 0

0 0

𝑃⊤

𝑄⊤

 𝑣 = 0. (2.6)

All symmetric solutions for 𝑣 must lie in the nullspace of𝐶 : 𝑣 = 𝑄𝛽 for some coefficients 𝛽 , and

we can then parametrize all symmetric solutions directly in this subspace. Alternatively, defining

12

(a) 𝑆4 (b) Z4 (c) Z2
2 (d) Z4 ⋉ Z

2
2

Figure 2.2: Equivariant basis for permutations, translation, 2d translation, and GCNN symmetries
respectively, each of which are solutions to Equation 2.5 for different groups. The 𝑟 different solutions in
the basis are shown by different colors.

𝛽 = 𝑄⊤𝑣0 we can reuse any standard parametrization and initialization, but simply project onto

the equivariant subspace: 𝑣 = 𝑄𝑄⊤𝑣0.

Thus given any finite dimensional linear representation, we can solve the constraints with a

singular value decomposition.1. If 𝑣 ∈ R𝑚 the runtime of the approach is 𝑂 ((𝑀 + 𝐷)𝑚3).

2.4.3 A Unifying Perspective on Eqivariance

In order to make it more concrete and demonstrate its generality, we now show that standard

convolutional layers [LeCun et al. 1989], deep sets [Zaheer et al. 2017], invariant graph networks

[Maron et al. 2018], and GCNNs [Cohen and Welling 2016a] are examples of the solutions in

equation (2.6) when specifying a specific symmetry group and representation.

Convolutions: To start off with the 1D case with sequences of 𝑛 elements and a single channel,

𝑉 = R𝑛 is acted upon by cyclic translations from the group 𝐺 = Z𝑛 . The group can be generated

by a single element given by the permuation matrix 𝜌 (ℎ) = P[𝑛, 1, 2, ..., 𝑛 − 1]. Equivariant linear

maps from 𝑉 → 𝑉 are of type 𝑇(1,1) . Expressing the representation and solving eq. (2.6) with SVD

gives the 𝑟 = 𝑛 matrices (reshaped from the rows of𝑄) shown by the circulant matrix in Figure 2.2,

which is precisely the way to express convolution as a matrix.
1Equations (2.4) and (2.5) apply also to infinite dimensional representations, where 𝜌 and 𝑑𝜌 are linear operators

acting on functions 𝑣 , but solving these on a computer would be more difficult.

13

In the typical case of 2D arrays with𝑉 = R𝑛
2 elements and multiple channels 𝑐in 𝑐out, there are

𝑀 = 2 generators of the group 𝐺 = Z𝑛 × Z𝑛 = Z2
𝑛 that are 𝜌 (ℎ1) = 𝜌 (ℎ) ⊗ 𝐼 and 𝜌 (ℎ2) = 𝐼 ⊗ 𝜌 (ℎ)

defined in terms of the generator in the 1D case. For multiple channels, the mapping is 𝑐in𝑉 →

𝑐out𝑉 which has type 𝑐in𝑐out𝑇(1,1) which yields the matrix valued 2D convolution (with 𝑐in𝑐out𝑛
2

independent basis elements) that we are accustomed to using for computer vision2.

Deep Sets: We can recover the solutions in Zaheer et al. [2017] by specifying 𝑉 = R𝑛 and

considering 𝑆𝑛 (permutation) equivariant linear maps𝑉 → 𝑉 . 𝑆𝑛 can be generated in several ways

such as with the𝑀 = 2 generators 𝜌 (ℎ1) = P[1, 𝑛 − 1, 2, 3, ...] and 𝜌 (ℎ2) = P[2, 1, 3, 4, ...] [Conrad

2013]. Solving the constraints for 𝑇(1,1) yields the 𝑟 = 2 dimensional basis 𝑄 = [𝐼 ,11⊤] shown in

Figure 2.2.

Equivariant Graph Networks: Equivariant graph networks in Maron et al. [2018] generalize

deep sets to 𝑆𝑛 equivariant maps from 𝑇𝑘 → 𝑇ℓ , such as maps from adjacency matrices 𝑇2 to

themselves. They show these maps satisfy

∀𝑃 ∈ 𝑆𝑛 : 𝑃⊗(𝑘+ℓ)vec(𝑊) = vec(𝑊), (2.7)

and use analytic techniques to find a basis, showing that the size of the basis is upper bounded3

by the Bell numbers 1, 2, 5, 15, Noting that 𝑃 = (𝑃−1)⊤, we can now recognize 𝑃⊗𝑘+ℓ = 𝜌 (𝑘,ℓ) (𝑃)

acting on themaps of type𝑇(𝑘,ℓ) . However we need not solve the combinatorially large Equation 2.7;

our algorithm instead solves it just for the permutation generators 𝜌 (ℎ𝑖), yielding the same

solutions.

GCNNs: The Group Equivariant CNNs in Cohen andWelling [2016a] can be defined abstractly

through fiber bundles and base spaces, but we can also describe them in our tensor notation. The

original GCNNs have the𝐺 = Z4⋉ (Z𝑛 ×Z𝑛) symmetry group consisting of discrete translations of
2Note that the inductive bias of locality restricting from 𝑛 × 𝑛 filters to 3 × 3 filters is not a consequence of

equivariance.
3For small 𝑛, the size of the equivariant basis for 𝑇𝑘 can actually be less than 𝐵𝑘 when 𝑛𝑘 < 𝐵𝑘 .

14

the grid, as well as 90𝑜 rotations where ⋉ is the semi-direct product. 4 In total, the representation

space can be written 𝑉 = R4 ⊗ R𝑛2 . We can now disentangle these two parts to read off the

𝑀 = 3 generators for 𝑥 , 𝑦 translation and rotation. The translation generators are 𝐼 ⊗ 𝜌 (ℎ1) and

𝐼 ⊗ 𝜌 (ℎ2) from the 2D convolution section, as well a generator for rotation 𝑃 [4, 1, 2, 3] ⊗Rot90 with

the Rot90 matrix performing 90𝑜 rotations on the grid. Solving for the constraint on 𝑇(1,1) yields

the 𝐺-convolutional layer embedded in a dense matrix shown in Figure 2.2. Note the diagonal

blocks implement rotated copies of a given filter, equivalent to the orientations in the regular

representation of a GCNN.

Notably, each of these solutions for convolution, deep sets, equivariant graph networks, and

GCNNs are produced as solutions from Equation 2.6 as a direct consequence of specifying the

representation and the group generators. In subsection A.1.5 we calculate the equivariant basis

for tensor representations of these groups Z𝑛, S𝑛 , D𝑛 , as well as unexplored territory with SO(𝑛),

O(𝑛), Sp(𝑛), SO+(1, 3), SO(1, 3), O(1, 3), SU(𝑛), and the Rubiks Cube group. We visualize several

of these equivariant bases in Figure 2.3.

2.5 Efficiently Solving the Constraint

The practical application of our general approach is limited by two factors: the computational

cost of computing the equivariant basis at initialization, and the computational cost of applying

the equivariant maps in the forward pass of a network. In this section we address the scalability

of the first factor, computing the equivariant basis.

The runtime for using SVD directly to compute the equivariant basis is too costly for all but

very small representations𝑚 = dim(𝑉) < 5000. We improve upon the naive algorithm with two

techniques: dividing the problem into a smaller set of independent subproblems and exploiting

structure in the constraint matrices to enable an efficient iterative Krylov subspace approach for
4Cohen and Welling [2016a] also make D4 dihedral equivariant networks that respect reflections, which can be

accomodated by in our framework with 1 additional generator.

15

(a) 𝑇 𝑆6
4 (b) 𝑇 Rubiks

2 (c) 𝑇 SO(3)
4

Figure 2.3: Equivariant basis for various tensor representations 𝑇𝐺
𝑘

where 𝐺 denotes the symmetry group.
The 𝑟 different solutions in the basis are shown by different colors. For SO(3) the bases cannot be separated
into disjoint set of 0 or 1 valued vectors, and so we choose overlapping colors randomly and add an
additional color for 0.

computing the nullspace. These two techniques allow us to compute the bases for high dimensional

representations while not sacrificing the equivariance or completeness of the solution basis. Our

resulting networks run in time similar to a standard MLP.

2.5.1 Dividing into Independent Sub-problems

The feature space𝑈 in a neural network can be considered a combination of objects with different

types and multiplicities. The features in standard CNN or deep set would be 𝑐 copies of rank

one tensors, 𝑈 = 𝑐𝑇1, where 𝑐 is the number of channels. Graph networks include both node

features 𝑇1 as well as edge features 𝑇2 like the adjacency matrix. More general networks could

have a mix of representations, for example 100 scalars, 30 vectors, 10 matrices and 3 higher order

tensors: 𝑈 = 100𝑇0 ⊕ 30𝑇1 ⊕ 10𝑇2 ⊕ 3𝑇3. These composite representations with multiplicity are

built from direct sums of simpler representations. 𝜌𝑈 (𝑔) =
⊕

𝑎∈A 𝜌𝑎 (𝑔) for some collection of

representations A.

Since linear maps𝑈1 → 𝑈2 have the representation 𝜌2 ⊗ 𝜌∗1 , the product can be expanded as

the direct sum

16

𝜌2 ⊗ 𝜌∗1 =
⊕
𝑏∈A2

𝜌𝑏 ⊗
⊕
𝑎∈A1

𝜌∗𝑎 =
⊕

(𝑏,𝑎)∈A2×A1

𝜌𝑏 ⊗ 𝜌∗𝑎 . (2.8)

Since ⊕ for both the group and algebra representations concatenates blocks along the diagonal,

the constraints can be separated into the blocks given by each of the (𝑏, 𝑎) pairs. Each of these

constraints (2.4) and (2.5) can be solved independently for the 𝜌𝑏 ⊗ 𝜌∗𝑎 representation and then

reassembled into the parts of the full matrix.

Unlike Steerable CNNs which use analytic solutions of irreducible representations [Cohen and

Welling 2016b; Weiler and Cesa 2019a], we need not worry about any Clebsch-Gordon coefficients

or otherwise, regardless of the representation used. 5 Note that tensor representations make

things especially simple since 𝑇(𝑝,𝑞) ⊗ 𝑇 ∗(𝑟,𝑠) = 𝑇(𝑝+𝑠,𝑞+𝑟) , but are not required.

2.5.2 Krylov Method for Efficient Nullspaces

We can exploit structure in the matrices 𝜌 and 𝑑𝜌 for a more efficient solution. With this in mind,

we propose to find the nullspace 𝑄 ∈ R𝑛×𝑟 where 𝑟 is the rank of the nullspace with the following

optimization problem:

min ∥𝐶𝑄 ∥2𝐹 𝑠 .𝑡 𝑄⊤𝑄 = 𝐼 . (2.9)

Minimizing using gradient descent, we have a very close relative of QR power iteration [Francis

1961] and Oja’s rule [Garber and Hazan 2015; De Sa et al. 2015; Shamir 2015], that instead finds the

smallest singular vectors. As the nullspace components are preserved by the gradient updates, the

orthogonalization constraint can in fact be removed during the minimization and we list the steps

of the iterative method in algorithm 1. Crucially, gradients require only matrix vector multiplies

(MVMs) with the constraint matrix𝐶 , we never have to form the representation matrices explicitly

and can instead implement an efficient MVM for 𝜌 and 𝑑𝜌 . Through iterative doubling of the max
5For irreducible representations one typically decomposes 𝜌𝑖 ⊗ 𝜌 𝑗 = 𝑄−1 (⊕

𝑘 𝜌𝑘
)
𝑄 with Clebsch-Gordan matrix

𝑄 , but we can leave the rep as 𝜌𝑖 ⊗ 𝜌 𝑗 and solve numerically.

17

Matrix

G-Linear

Bilinear +

Gated Nonlinearity

EMLP
Layer

EMLP
Layer

100T0 ⊕ 30T1 ⊕ 10T2 ⊕ 3T3

5T1

5T0

⊕

Scalars
& Vectors . . .

. . .

. . .

T2

EMLP
EMLP Layer

Figure 2.4: EMLP layers. G-equivariant linear layers, followed by the bilinear layer and a shortcut
connection, and finally a gated nonlinearity. Stacking these layers together and choosing some internal
representation (shown below), the EMLP maps some collection of geometric quantities to some other
collection. Here we show the equivariant mappings from scalars and vectors to matrices.

rank 𝑟 we need not know the true rank beforehand. As we prove in subsection A.1.3 the algorithm

produces an 𝜖 accurate solution in time 𝑂 ((𝑀 + 𝐷)T𝑟 log(1/𝜖) + 𝑟 2𝑛) where T is the time for an

MVM with 𝜌 and 𝑑𝜌 . The method is "exact" in the sense of numerical algorithms in that we can

specify a precision 𝜖 close to machine precision and converge in log(1/𝜖) iterations due to the

exponential convergence rate, which we verify in Figure A.1.

Algorithm 1 Fast Krylov Nullspace
def KrylovNullspace(𝐶):
𝑟max = 𝑟 = 10
while 𝑟 = 𝑟max do

𝑟max ← 2𝑟max
𝑄 = CappedKrylovNullspace(𝐶, 𝑟max)
𝑟 ← rank(𝑄)

end
return 𝑄
def CappedKrylovNullspace(𝐶, 𝑟max):
𝑄 ∼ N(0, 1)𝑛×𝑟max

while 𝐿(𝑄) > 𝜖 do
𝐿(𝑄) = ∥𝐶𝑄 ∥2

𝐹

𝑄 ← 𝑄 − 𝜂∇𝐿
end
𝑄, Σ,𝑉 = SVD(𝑄)
return 𝑄

The pairs of tensor products of representations, 𝜌𝑏 (ℎ) ⊗ 𝜌𝑎 (ℎ−1)⊤ and 𝑑𝜌𝑏 (𝐴)⊕̄(−𝑑𝜌𝑎 (𝐴)⊤)

from Equation 2.8 have Kronecker structure allowing efficentMVMs (𝐴⊗𝐵)vec(𝑊) = vec(𝐴𝑊𝐵⊤).

18

Exploiting this structure alone, solving the constraints for a matrix𝑊 ∈ R𝑐 → R𝑐 takes time

𝑂 ((𝑀 + 𝐷)T𝑟𝑐 + 𝑟 2𝑐2) (2.10)

where T is the time for MVMs with constituent matrices 𝜌𝑎, 𝜌𝑏, 𝑑𝜌𝑎, 𝑑𝜌𝑏 . For some of the groups

this time T is in fact a constant, for example the permutation generators merely swap two entries,

and Lie algebras can often be written in a sparse basis. For high order tensor representations,

one can exploit higher order Kronecker structure. Even for discrete groups the runtime is a strict

improvement over the approach by van der Pol et al. [2020b] which runs in time𝑂 (|𝐺 |T𝑟𝑐 + 𝑟 2𝑐2).

For large discrete groups like 𝑆𝑛 our approach gives an exponential speedup, 𝑂 (𝑛!) → 𝑂 (𝑛).

102 103 104

Training Set Size

10 2

10 1

100

101

T
e
st

 M
S
E

MLP
MLP+Aug

EMLP-SO(5)
EMLP-O(5)

(a) O(5) invariant Synthetic

102 103 104

Training Set Size

10 2

10 1

100

101 MLP
MLP+Aug

EMLP-SO(3)
EMLP-O(3)

(b) O(3) equivariant Inertia

102 103 104

Training Set Size

10 4

10 3

10 2

10 1

100

MLP
MLP+Aug
EMLP-SO+ (1,3)
EMLP-SO(1,3)
EMLP-O(1,3)

(c) O(1,3) invariant (𝑒− + 𝜇−)-Scattering

Figure 2.5: Data efficiency for the synthetic equivariance experiments. Here the EMLP-𝐺 models where
𝐺 are relevant symmetry groups strongly outperforms both standard MLPs and MLPs that have been
trained with data augmentation to the given symmetry group, across the range of dataset sizes. The
shaded regions depict 95% confidence intervals taken over 3 runs.

2.6 Network Architecture

While the constraint solving procedure can be applied to any linear representations, we will use

tensor representations to construct our network. The features in each layer are a collection of

tensors of different ranks 𝑣 ∈ 𝑈 =
⊕

𝑎∈A 𝑇(𝑝𝑎,𝑞𝑎) with the individual objects 𝑣𝑎 ∈ 𝑇(𝑝𝑎,𝑞𝑎) . As a

heuristic, we allocate the channels uniformly between tensor ranks for the intermediate layers.

19

For example with 256 channels for an SO(3) equivariant layer with dim(𝑇(𝑝,𝑞)) = 3𝑝+𝑞 , uniformly

allocating channels produces𝑈 = 70𝑇0⊕23𝑇1⊕7𝑇2⊕2𝑇3. The input and output layers are set by the

types of the data. To build a full equivariant multilayer perceptron (EMLP) from the equivariant

linear layer, we also need equivariant nonlinearities.

Gated Nonlinearities: For this purpose we use gated nonlinearities introduced in Weiler

et al. [2018]. Gated nonlinearities act separately for each of the different objects in the features

(that are concatenated through the direct sum 𝑧 = Concat({𝑣𝑎}𝑎∈A)). The nonlinearity takes

values Gated(𝑣𝑎) = 𝑣𝑎𝜎 (𝑠𝑎) where 𝑠𝑎 is a scalar ’gate’ for each of the objects. For scalar objects

𝑣𝑎 ∈ 𝑇0 = R1 and regular representations (which allow pointwise nonlinearities), the gate is

just the object itself and so the nonlinearity is just Swish [Ramachandran et al. 2017]. For other

representations the gate scalars are produced as an additional output of the previous layer.

Universality: The theorem in Maron et al. [2019] shows that tensor networks with pointwise

nonlinearities and 𝐺-equivariant linear layers for 𝐺 ⩽ 𝑆𝑛 are universal. However, this result does

not extend to the gated nonlinearities required for other groups and representations. As we prove

in subsection A.1.4, gated nonlinearities are not sufficient for universality in this general case,

and can be extremely limiting in practice. The problem relates to not being able to express any

kind of contractions between elements with the different objects within a feature layer (like a dot

product).

Cheap Bilinear Layers. To address this limitation we introduce an inexpensive bilinear layer

which performs tensor contractions on pairs of input objects that produce a given output type.

Explicitly, two input objects 𝑣𝑎 ∈ 𝑇(𝑎1,𝑎2) and 𝑣𝑏 ∈ 𝑇(𝑏1,𝑏2) can be contracted to give a type 𝑇(𝑐1,𝑐2) if

and only if (𝑎1, 𝑎2) = (𝑐1 + 𝑏2, 𝑐2 + 𝑏1) or (𝑏1, 𝑏2) = (𝑐1 + 𝑎2, 𝑐2 + 𝑎1). In other words, if 𝑣𝑎 can be

interpreted as a linear map from 𝑇𝑏 → 𝑇𝑐 then we can apply 𝑦𝑐 = Reshape(𝑣𝑎)𝑣𝑏 and vice versa.

We add a learnable parameter weighting each of these contractions (excluding scalars).

We can now assemble the components to build a full equivariant multilayer perceptron (EMLP)

from the equivariant linear layer, the gated nonlinearities, and the additional bilinear layer. We

20

show how these components are assembled in Figure 2.4.

2.7 Experiments

We evaluate EMLP on several synthetic datasets to test its capability on previously unexplored

groups, and apply our model to the task of learning dynamical systems with symmetry.

2.7.1 Synthetic Experiments

O(5) Invariant Task: To start off, we evaluate our model on a synthetic O(5) invariant regression

problem 2𝑇1 → 𝑇0 in 𝑑 = 5 dimensions given by the function 𝑓 (𝑥1, 𝑥2) = sin(∥𝑥1∥) − ∥𝑥2∥3/2 +
𝑥⊤1 𝑥2
∥𝑥1∥∥𝑥2∥ . We evaluate EMLP-SO(5) and EMLP-O(5) which is also equivariant to reflections. We

compare against a standard MLP as well as MLP-Aug that is trained with O(5) data augmentation.

We show the results in Figure 2.5.

O(3) Equivariant Task: Next we evaluate the networks on the equivariant task of predicting

the moment of inertia matrix I =
∑
𝑖𝑚𝑖 (𝑥⊤𝑖 𝑥𝑖𝐼 − 𝑥𝑖𝑥⊤𝑖) from 𝑛 = 5 point masses and positions.

The inputs 𝑋 = {(𝑚𝑖, 𝑥𝑖)}5𝑖=1 are of type 5𝑇0 + 5𝑇1 (5 scalars and vectors) and outputs are of type

𝑇2 (a matrix), both transform under the group. We apply SO(3) and O(3) equivariant models to

this problem. For the baselines, we implement data augmentation for the standard MLP for this

equivariant task by simultaneously transforming the input by a random matrix 𝑅 ∈ O(3) and

transforming the output accordingly by the inverse transformation: 𝑦 = 𝑅⊤MLP({(𝑚𝑖, 𝑅𝑥𝑖}5𝑖=1)𝑅.

This kind of equivariant data augmentation that transforms both the input and the output according

to the symmetry is a strong baseline.

Lorentz Equivariant Particle Scattering: Testing the ability of the model to handle Lorentz

equivariance in tasks relevant to particle physics, we train models to fit the matrix element in

electron muon scattering 𝑒− + 𝜇− → 𝑒− + 𝜇− which is proportional to the scattering cross-section.

21

HNNs Neural ODEs
10 5

10 3

10 1

A
n
g
.
M

o
m

.
R
e
la

ti
ve

 E
rr

o
r

HNNs Neural ODEs
10 5

10 3

10 1

A
n
g
.
M

o
m

.
R
e
la

ti
ve

 E
rr

o
r

D(2) D(6) SO(2) O(2)

HNNs Neural ODEs
10 5

10 3

10 1

A
n
g
.
M

o
m

.
R
e
la

ti
ve

 E
rr

o
r

D(2) D(6) SO(2) O(2)

HNNs Neural ODEs
10 5

10 3

10 1

A
n
g
.
M

o
m

.
R
e
la

ti
ve

 E
rr

o
r

D(2) D(6) SO(2) O(2)

HNNs Neural ODEs
10 5

10 3

10 1

g
D(6) SO(2) O(2) MLP

HNNs Neural ODEs
10 5

10 3

10 1

A
n
g
.
M

o
m

.
R
e
la

ti
ve

 E
rr

o
r

(2) D(6) SO(2) O(2) M

0 10 20 30
Time (s)

10 3

10 2

10 1

S
ta

te
 R

e
la

ti
ve

 E
rr

o
r

N-ODE
HNN
O(2) N-ODE
O(2) HNN

Figure 2.6: Left: A double spring pendulum (12s sample trajectory is shown). The system has an O(2)
symmetry about the 𝑧 axis. Middle: Conservation of angular momentum about the 𝑧-axis (the geometric
mean of the relative error is computed over 30𝑠 rollouts and averaged across initial conditions). Errorbars
are 95% confidence interval over 3 runs. Right: The relative error in the state as the trajectory is rolled out.
Shaded regions show 1 standard deviation in log space across the different trajectories rather than models,
showing the variance in the data.

The scattering matrix element is proportional to |M|2 ∝

[𝑝 (𝜇𝑝𝜈) − (𝑝𝛼𝑝𝛼 − 𝑝𝛼𝑝𝛼)𝜂𝜇𝜈] [𝑞(𝜇𝑞𝜈) − (𝑞𝛼𝑞𝛼 − 𝑞𝛼𝑞𝛼)𝜂𝜇𝜈]

[Martin 2012] where 𝑞𝜇 and 𝑝𝜇 are the four momenta for the ingoing electron and muon

respectively, while 𝑞𝜇 and 𝑝𝜇 are the outgoing momenta, and parentheses (𝜇𝜈) denotes the sym-

metrization of indices and repeated indices are contracted. While simple enough express in closed

form, the scalar output involves contractions, symmetrization, upper and lower indices, and a

metric tensor. Here the inputs are 4𝑇(1,0) and the output is a scalar 𝑇(0,0) . We evaluate EMLP with

equivariance not just to the proper orthochronious Lorentz group SO+(1, 3) from Bogatskiy et al.

[2020], but also the special Lorentz group SO(1, 3), and the full Lorentz group O(1, 3) and compare

a MLP baseline that uses O(1, 3) data augmentation.

As shown in Figure 2.5, our EMLP model with the given equivariance consistently outperform

sthe baseline MLP trained with and without data augmentation across the different dataset sizes

and tasks, often by orders of magnitude.

22

2.7.2 Modeling dynamical systems with symmetries

Finally we turn to the task of modeling dynamical systems. For dynamical systems, the equations

of motion can be written in terms of the state z ∈ R𝑚 and time 𝑡 as 𝑑 z/𝑑𝑡 = 𝐹 (z, 𝑡). Neural ODEs

[Chen et al. 2018] provide a way of learning these dynamics directly from trajectory data. A

neural network parametrizes the function 𝐹𝜃 and the learned dynamics can be rolled out using a

differentiable ODE solver (ẑ1, . . . , ẑ𝑇) = ODESolve(z0, 𝐹𝜃 , (𝑡1, 𝑡2, ..., 𝑡𝑇)) and fit to trajectory data

with the L2 loss 𝐿(𝜃) = 1
𝑇

𝑇∑
𝑡=1
| |ẑ𝑡 − z𝑡 | |22.

Many physically occurring systems have a Hamiltonian structure, meaning that the state can

be split into generalized coordinates and momenta z = (q, p), and the dynamics can be written in

terms of the gradients of a scalarH(𝑧) known as the Hamiltonian, which often coincides with the

total energy. 𝑑 z
𝑑𝑡

= 𝐽∇H with 𝐽 =

0 𝐼

−𝐼 0

 . As shown in Greydanus et al. [2019] with Hamiltonian

Neural Networks (HNNs), one can exploit this Hamiltonian structure by parametrizing Ĥ𝜃 (z)

with a neural network, and then taking derivatives to find the implied Hamiltonian dynamics.

For problems with Hamiltonian structure HNNs often lead to improved performance, and better

energy conservation.

A dynamical system can have symmetries such as the symmetries given by 𝐹 (𝜌 (𝑔) z, 𝑡) =

𝜌 (𝑔)𝐹 (z, 𝑡) for some linear representation, which is equivariance in the first argument. Meanwhile

Hamiltonian dynamics have symmetries according to invariances of the HamiltonianH(𝜌 (𝑔) z) =

H(z). Continuous symmetries of the Hamiltonian are of special significance since they produce

conservation laws such as conservation of linear and angular momentum or conservation of

charge as part of the Noether theorem [Noether 1971].

We apply our EMLPmodel to the task of learning the dynamics of a double pendulum connected

by springs in 3D shown in Figure 2.6. The problem exhibits a O(2) rotational and reflectional

symmetry about the 𝑧-axis as well as Hamiltonian structure. As the state space cannot be traversed

23

O(2) SO(2) D6 MLP

N-ODEs: 0.019(1) 0.051(36) 0.036(25) 0.048
HNNs: 0.012(2) 0.015(3) 0.013(2) 0.028

Table 2.2: Geometric mean of rollout errors (relative error) over T=30s for the various EMLP-𝐺 symmetric
HNNs and Neural ODEs (N-ODE) vs ordinary MLP HNNs and N-ODEs. Errorbars are 1 standard deviation
computed over 3 trials, with notation .012(2) meaning .012 ± .002.

by the group elements alone, it is not a homogeneous space, a setting that has been explored very

little in the equivariance literature [Cohen et al. 2018a].

However, we can readily use EMLP on this problem and we show in Table 2.2 and Figure 2.6

that exploiting the O(2) symmetry (and subgroups SO(2), D6) with EMLP leads to improved

performance for both Neural ODE and HNN models. Furthermore, enforcing the continuous

rotation symmetry in the EMLP-HNN models yields conservation of angular momentum about

the 𝑧-axis, a useful property for learned simulations. Interestingly the dihedral group D6 which is

discrete does not satisfy Noether’s theorem and yet it still yields approximate angular momentum

conservation, but the coarser D2 symmetry does not. As expected, all Neural ODE models do not

conserve angular momentum as Noether’s theorem only applies to the Hamiltonians and not to

the more general ODEs. While conservation laws from learning invariant Hamiltonians was also

explored in Finzi et al. [2020] with LieConv, LieConv models assume permutation equivariance

which is broken by the pivot in this system. Because EMLP is general, we can apply it to this non

permutation symmetric and non transitively acting rotation group that is embedded in the larger

state space.

2.8 Discussion

We presented a construction for equivariant linear layers that is completely general to the choice

of representation and matrix group. Convolutions, deep sets, equivariant graph networks and

GCNNs all fall out of the algorithm naturally as solutions for a given group and representation.

Through an iterative MVM based approach, we can solve for the equivariant bases of very large

24

representations. Translating these capabilities into practice, we build EMLP and apply the model

to problems with symmetry including Lorentz invariant particle scattering and dynamical systems,

showing consistently improved generalization.

Though EMLP is not much slower than a standard MLP, dense matrix multiplies in an MLP and

our EMLP make it slow to train models the size of convnets or large graph networks which have

specialized implementations. With the right techniques, this apparent generality-specialization

tradeoff may be overcome. The flexibility of our approach should lower the costs of experimenta-

tion and allow researchers to more easily test out novel representations. Additionally we hope

that our constraint solver can help launch a variety of new methods for learning symmetries,

modeling heterogeneous data, or capturing prior knowledge.

25

3 | Residual Pathway Priors for

Approximate Eqivariance

There is often a trade-off between building deep learning systems that are expressive enough to

capture the nuances of the reality, and having the right inductive biases for efficient learning. We

introduce Residual Pathway Priors (RPPs) as a method for converting hard architectural constraints

into soft priors, guiding models towards structured solutions, while retaining the ability to capture

additional complexity. Using RPPs, we construct neural network priors with inductive biases for

equivariances, but without limiting flexibility. We show that RPPs are resilient to approximate or

misspecified symmetries, and are as effective as fully constrained models even when symmetries

are exact. We showcase the broad applicability of RPPs with dynamical systems, tabular data, and

reinforcement learning. In Mujoco locomotion tasks, where contact forces and directional rewards

violate strict equivariance assumptions, the RPP outperforms baseline model-free RL agents, and

also improves the learned transition models for model-based RL.

This chapter is adapted from the paper “Residual Pathway Priors for Soft Equivariance Con-

straints”, which originally appeared at NeurIPS 2022 and is joint work with Greg Benton, and

Andrew Gordon Wilson.

26

3.1 Introduction

Central to the expanding application of deep learning to structured data like images, text, audio,

sets, graphs, point clouds, and dynamical systems, has been a search for finding the appropriate

set of inductive biases to match the model to the data. These inductive biases, such as recurrence

[Rumelhart et al. 1985], local connectivity [LeCun et al. 1989], equivariance [Cohen and Welling

2016a], or differential equations [Chen et al. 2018], reduce the set of explored hypotheses and

improve generalization. Equivariance in particular has had a large impact as it allows ruling out a

large class of meaningless shortcut features in many distinct domains, such as the ordering of the

nodes in graphs and sets or the coordinate system chosen for an image.

A disadvantage of hard coding these restrictions is that this prior knowledge may not match

reality. A scene may have long range non-local interactions, rotation equivariance may be

violated by a preferred camera angle, or a dynamical system may occasionally have discontinuous

transitions. In particular, symmetries are delicate. A small perturbation like adding wind breaks

the rotational symmetry of a pendulum, and bumpy or tilted terrain could break the translation

symmetry for locomotion. In these cases we would like to incorporate our prior knowledge in a

way that admits our own ignorance, and allows for the possibility that the world is more complex

than we imagined. We aim to develop an approach that is more general, and can be applied when

symmetries are exact, approximate, or non-existent.

The Bayesian framework provides a mechanism for expressing such knowledge through

priors. In much of the past work on Bayesian neural networks, the relationship between the prior

distribution and the functions preferred by the prior is not transparent. While it is easy to specify

different variances for different channels, or to use heavy tailed distributions, it is hard know

how high level properties meaningfully translate into these low level attributes. Ultimately priors

should represent our prior beliefs, and the beliefs we have are about high level concepts like the
∗Equal Contribution

27

(a) Priors over Equivariant Solutions

Inputs

Restrictive Layer
• Strong inductive

biases
• Constrained

solutions

Outputs

Flexible Layer
• Weak inductive

biases
• Unconstrained

solutions

(b) Structure of RPP Models

Figure 3.1: Left: RPPs encode an Occam’s razor approach to modeling. Highly flexible models like MLPs
lack the inductive biases to assign high prior mass to relevant solutions for a given problem, while models
with strict constraints are not flexible enough to support solutions with only approximate symmetry. For a
given problem, we want to use the most constrained model that is consistent with our observations. Right:
The structure of RPPs. Expanding the layers into a sum of the constrained and unconstrained solutions,
while setting the prior to favor the constrained solution, leads to the more flexible layer explaining only
the residual of what is already explained by the constrained layer.

locality, independence, and symmetries of the data.

To address the need for more interpretable priors we introduce Residual Pathway Priors (RPPs),

a method for converting hard architectural constraints into soft priors. Practically, RPPs allow us

to tackle problems in which perfect symmetry has been violated, but approximate symmetry is

still present, as is the case for most real world physical systems. RPPs have a prior bias towards

equivariant solutions, but are not constrained to them.

We use the schematic in Figure 3.1 (left) as an approach to model construction [Wilson and

Izmailov 2020; MacKay and Mac Kay 2003]. The flexibility of our model is described by what

solutions have non-zero prior probability density. The inductive biases are described by the

distribution of support over solutions. We wish to construct models with inductive biases that

assign significant prior mass for solutions we believe to be a priori likely, but without ruling out

other solutions we believe to be possible. For example, models constrained to exact symmetries

could not fully represent many problems, such as the motion of a pendulum in the presence of

wind. Flexible models with poor inductive biases, spread thinly across possible solutions, could

28

express an approximate symmetry, but such solutions are unlikely to be found because of the low

prior density. In this sense, we wish to embrace a notion of Occam’s razor such that “everything

should be made as simple as possible, but no simpler”.

Aswe findwith problems inwhich symmetries exist, highly flexiblemodels withweak inductive

biases like MLPs fail to concentrate prior mass around solutions that exhibit any symmetry. On

the other hand when symmetries are only approximate, the strong restriction biases of constrained

models like Equivariant Multi-Layer Perceptrons (EMLP) [Finzi et al. 2021] fail to provide support

for the observations. As a middle ground between these two extremes, RPPs combine the inductive

biases of constrained models with the flexibility of MLPs to define a model class which excels

when data show approximate symmetries, as shown in Figure 3.1 (right).

In the following sections we introduce our method and show results across a variety of domains.

We list our contributions and the accompanying sections below:

1. We propose Residual Pathway Priors as a mechanism to imbue models with soft inductive

biases, without constraining flexibility.

2. While our approach is general, we use RPPs to show how to turn hard architectural con-

straints into soft equivariance priors (Section 3.4).

3. We demonstrate that RPPs are robust to varying degrees of symmetry (Section 3.5). RPPs

perform well under exact, approximate, or misspecified symmetries.

4. Using RPP on the approximate symmetries in the complex state spaces of the Mujoco

locomotion tasks, we improve the performance of model free RL agents (Section 3.6).

We provide a PyTorch implementation of residual pathway priors at

https://github.com/mfinzi/residual-pathway-priors.

29

https://github.com/mfinzi/residual-pathway-priors

3.2 Related Work

The challenge of equivariant models not being able to fully fit the data has been identified in a

number of different contexts, and with different application specific adjustments to mitigate the

problem. Liu et al. [2018] observe that convolutional networks can be extremely poor at tasks

that require identifying or outputting spatial locations in an image as a result of the translation

symmetry. The authors solve the problem by concatenating a coordinate grid to the input of the

convolution layer. Constructing translation and rotation equivariant GCNNs, Weiler and Cesa

[2019a] find that in order to get the best performance on CIFAR-10 and STL-10 datasets which

have a preferred camera orientation, they must break the symmetry, which they do by using

equivariance to progressively smaller subgroups in the later layers. Bogatskiy et al. [2020] go to

great lengths to construct Lorentz group equivariant networks for tagging collisions in particle

colliders only to break the symmetry by introducing dummy inputs that identify the collision

axis. van der Wilk et al. [2018] use the marginal likelihood to learn approximate invariances in

Gaussian processes from data. In a related procedure, Benton et al. [2020] learn the extent of

symmetries in neural networks using the reparametrization trick and test time augmentation.

While sharing some commonalities with RPP, this method is not aimed at achieving approximate

equivariance and cannot bake equivariance into the model architecture.

A separate line of work has attempted to combine the extreme flexibility of the Vision Trans-

former (ViT) [Dosovitskiy et al. 2020] with the better sample efficiency of convolutional networks,

by incorporating convolutions at early layers [Xiao et al. 2021] or making the self attention layer

more like a convolution [d’Ascoli et al. 2021; Dai et al. 2021]. Most similar to our work, ConViT

[d’Ascoli et al. 2021] uses a gating mechanism for adding a soft locality bias to the self attention

mechanism in Vision Transformers. ConViT and RPP share the samemotivation, but while ConViT

is designed specifically for biasing towards locality in the self attention layer, RPP is a general

approach that we can apply broadly with other kinds of layers, symmetries, or architectural

30

constraints.

Outside of equivariance, adding model outputs to a much more restrictive base model has been

a fruitful idea employed in multiple contexts. The original ResNet [He et al. 2016a,c] drew on this

motivation, with shortcut connections. Johannink et al. [2019] and Silver et al. [2018] proposed

Residual Reinforcement Learning, whereby the RL problem is split into a user designed controller

using engineering principles and a flexible neural network policy learned with RL. Similarly, in

modeling dynamical systems, one approach is to incorporate a base parametric form informed

by models from physics or biology, and only learn a neural network to fit the delta between the

simple model and reality [Kashinath et al. 2021; Liu et al. 2021b].

There have been several works tackling symmetries and equivariance in RL, such as permuta-

tion equivariance for multi-agent RL [Sukhbaatar et al. 2016; Jiang et al. 2018; Liu et al. 2020], as

well exploring reflection symmetry for continuous control tasks [Abdolhosseini et al. 2019], and

discrete symmetries in the more general framework of MDP homomorphisms [van der Pol et al.

2020b]. However, in each of these applications the symmetries need to be exact, and the complex-

ities of real data often require violating those symmetries. Although not constructed with this

purpose, some methods which use regularizers to enforce equivariance [van der Pol et al. 2020a]

could be used for approximate symmetries. Interestingly, the value of approximate symmetries of

MDPs has been explored in some theoretical work [Ravindran and Barto 2004; Taylor et al. 2008],

but without architectures that can make use of it. Additionally, data augmentation, while not able

to bake in architectural equivariance, has been successfully applied to encouraging equivariance

on image tasks [Kostrikov et al. 2020] and recently even on tabular state vectors [Lin et al. 2020;

Mavalankar 2020].

31

3.3 Background

In order develop our method, we first review the concept of group symmetries, how representations

formalize the way these symmetries act on different objects.

Group Symmetries In the machine learning context, a symmetry group 𝐺 can be understood

as a set of invertible transformations under which an object is the same, such as reflections or

rotations. These symmetries can act on many different kinds of objects. A rotation could act on a

simple vector, a 2d array like an image, a complex collection objects like the state space of a robot,

or more abstractly on an entire classification problem or Markov Decision Process (MDP).

Representations The way that symmetries act on objects is described by a representation. Given

an object in an 𝑛-dimensional vector space 𝑉 , a group representation is a mapping 𝜌 : 𝐺 → R𝑛×𝑛 ,

yielding a matrix which acts on 𝑉 . Vectors 𝑣 ∈ 𝑉 are transformed 𝑣 ↦→ 𝜌 (𝑔)𝑣 . In deep learning,

each of the inputs and outputs to our models can be embedded in some vector space: an𝑚 ×𝑚

sized rgb image exists in R3𝑚2 , and a node valued function on a graph of𝑚 elements exists within

R𝑚 . The representation 𝜌 specifies how each of these objects transform under the symmetry group

𝐺 .

These representations can be composed of multiple simpler subrepresentations, describing how

each object within a collection transforms. For example given the representation 𝜌1 of rotations

acting on a vector in R3, and a representation 𝜌2 of how rotations act on a 3 × 3 matrix, the two

objects concatenated together have a representation given by 𝜌1(𝑔) ⊕ 𝜌2(𝑔) =

𝜌1(𝑔) 0

0 𝜌2(𝑔)

 ,
where the two matrices are concatenated along the diagonal. Practically this means we can

represent intricate and multifaceted structures by breaking them down into their component parts

and defining how each part transforms. For example, we may know that the velocity vector, an

orientation quaternion, a joint angle, and a control torque all transform in different ways under a

32

left-right reflection, and one can accommodate this information into the representation.

Eqivariance Given some data 𝑋 with representation 𝜌in, and 𝑌 with representation 𝜌out, we

may wish to learn some mapping 𝑓 : 𝑋 → 𝑌 . A model 𝑓 is equivariant [Cohen and Welling 2016a],

if applying the symmetry transformation to the input is equivalent to applying it to the output

𝑓 (𝜌in(𝑔)𝑥) = 𝜌out(𝑔) 𝑓 (𝑥).

In other words, it is not the symmetry of 𝑋 or 𝑌 that is relevant, but the symmetry of the function

𝑓 mapping from 𝑋 to 𝑌 . If the true relationship in the data has a symmetry, then constraining the

hypothesis space to functions 𝑓 that also have the symmetry makes learning easier and improves

generalization [Elesedy and Zaidi 2021]. Equivariant models have been developed for a wide

variety of symmetries and data types like images [Cohen and Welling 2016a; Worrall et al. 2017;

Zhou et al. 2017; Weiler and Cesa 2019a], sets [Zaheer et al. 2017; Maron et al. 2020], graphs

[Maron et al. 2018], point clouds [Anderson et al. 2019; Fuchs et al. 2020; Satorras et al. 2021],

dynamical systems [Finzi et al. 2020], jets [Bogatskiy et al. 2020], and other objects [Wang et al.

2020; Finzi et al. 2021].

3.4 Residual Pathway Priors

In this section, we introduce Residual Pathway Priors (RPPs). The core implementation of the

RPP is to expand each layer in model into a sum of both a restrictive layer that encodes the hard

architectural constraints and a generic more flexible layer, but penalize the more flexible path via

a lower prior probability. Through the difference in prior probability, explanations of the data

using only the constrained solutions are prioritized by the model; however, if the data are more

complex the residual between the target and the constrained layer will be explained using the

flexible layer. We can apply this procedure to any restriction priors, such as linearity, locality,

33

Markovian structure, and, of course, equivariance.

Provided we can represent the 𝑟 dimensional orthogonal basis of the 𝑘 weights (𝐴) in a

constrained model as 𝑄 ∈ R𝑘×𝑟 , then we can define a Gaussian prior over the weights in that

basis as 𝐴 ∼ N(0, 𝜎2
𝑎𝑄𝑄

⊤). Since 𝑄 is orthogonal we can define it’s orthogonal complement

as 𝑃 , then a Gaussian prior over unconstrained weights (𝐵) can be written 𝐵 ∼ N(0, 𝜎2
𝑏
𝐼) =

N(0, 𝜎2
𝑏
𝑄𝑄⊤ + 𝜎2

𝑏
𝑃𝑃⊤). Thus the prior over the sum of the weights of the constrained and

unconstrained layers is

𝐴 + 𝐵 ∼ N(0, (𝜎2
𝑎 + 𝜎2

𝑏
)𝑄𝑄𝑇 + 𝜎2

𝑏
𝑃𝑃𝑇). (3.1)

Regardless of the values of the prior variances 𝜎2
𝑎 and 𝜎2

𝑏
, solutions in the constrained subspace

𝑄𝑄⊤ are automatically favored by the model and assigned higher prior probability mass than

those in the subspace 𝑃𝑃⊤ that violate the constraint. Even if 𝜎𝑏 > 𝜎𝑎 , the model still favors

equivariance because the equivariance solutions are contained in the more flexible layer 𝐴. We

show in Section ?? that RPPs are insensitive to the choice of 𝜎𝑎 and 𝜎𝑏 , provided that 𝜎𝑎 is large

enough to be able to fit the data.

The Residual Pathway Prior draws inspiration from the residual connections in ResNets [He

et al. 2016a,c], whereby training stability and generalization improves by providing multiple paths

for gradients to flow through the network that have different properties. One way of interpreting

a residual block and shortcut connection 𝑓 (𝑥) = 𝑥 + ℎ(𝑥) in combination with l2 regularization,

either explicitly from weight decay or implicitly from the training dynamics [Neyshabur et al.

2014], is as a prior that places higher prior likelihood on the much simpler identity mapping than

on the more flexible function ℎ(𝑥). In this way, ℎ(𝑥) need only explain the the difference between

what is explained in the previous layer (passed through by 𝐼) and the target.

Under the prior of Equation 3.2, a MAP optimized model will favor explanations of the data

using the more structured layer 𝐴, and only resort to using layer 𝐵 to explain the difference

between the target and what is already explained by the more structured model 𝐴. Adding these

34

unconstrained residual pathways to each layer of an constrained model, we have a model that

has the same expressivity of a network formed entirely of 𝐵 layers, but with the inductive bias

towards a model formed entirely with the constrained 𝐴 layers. We term this model a Residual

Pathway Prior.

To make the approach concrete, we first consider constructing equivariance priors using the

constraint solving approach known as Equivariant Multi-Layer Perceptrons (EMLP) from Finzi

et al. [2021].

Eqivariant MLPs EMLPs provide a method for automatically constructing exactly equivariant

layers for any given group and representation by solving a set of constraints. The way in which

the vectors are equivariant is given by a formal specification of the types of the input and output

through defining their representations. Given some input vector space 𝑉in with representation

𝜌in and some output space 𝑉out with representation 𝜌out the space of all equivariant linear layers

mapping 𝑉in → 𝑉out satisfies

∀𝑔 ∈ 𝐺 : 𝜌out(𝑔)𝑊 =𝑊𝜌in(𝑔).

These solutions to the constraint form a subspace of matrices R𝑛out×𝑛in which can be solved for

and described by a 𝑟 dimensional orthonormal basis 𝑄 ∈ R𝑛out𝑛in×𝑟 . Linear layers can then be

parametrized in this equivariant basis. The elements of𝑊 can be parametrized vec(𝑊) = 𝑄𝛽 for

𝛽 ∈ R𝑟 for the linear layer 𝑣 ↦→𝑊𝑣 , and symmetric biases can be parametrized similarly.

Eqivariance Priors with EMLP In order to convert the hard equivariance constraints in

EMLP into a soft prior over equivariance that can accommodate approximate symmetries, we

can apply the RPP procedure from above to each these linear layers in the network. Instead of

parametrizing the weights𝑊 directly in the equivariant basis vec(𝑊) = 𝑄𝛽 , we can instead define

𝑊 as the sum𝑊 = 𝐴 + 𝐵 of an equivariant weight matrix vec(𝐴) = 𝑄𝛽 an unconstrained weight

35

matrix 𝐵. Placing Gaussian priors over both 𝐴 and 𝐵 yields the RPP prior in Equation (3.1) with

𝐴 + 𝐵 =𝑊 ∼ N(0, (𝜎2
𝑎 + 𝜎2

𝑏
)𝑄𝑄⊤ + 𝜎2

𝑏
𝑃𝑃⊤).

By replacing each of the equivariant linear layers in an EMLP with a sum of an equivariant

layer and an unconstrained layer and adding in the negative prior likelihood to the loss function,

we produce an RPP-EMLP that can accommodate approximate or incorrectly specified symmetries.

1

RPPs With Other Eqivariant Models While in EMLP equivariant bases are solved for

explicitly, the RPP can be applied to the linear layers in other equivariant networks in precisely

the same way. A good example is the translationally equivariant convolutional neural network

(CNN), which can be viewed as a restricted subset of a fully connected network. Though the layers

are parametrized as convolutions, the convolution operation can be expressed as a Toeplitz matrix

residing within the space of dense matrices. Adding the convolution to a fully connected layer

and choosing a prior variance 𝜎2
𝑎 and 𝜎2

𝑏
over each, we have the same RPP prior

𝑊 ∼ 𝑁 (0, 𝜎2
𝑎𝑄𝑄

⊤ + 𝜎2
𝑏
𝐼) (3.2)

where 𝑄 is the basis of (bi-)Toeplitz matrices corresponding to 3 × 3 filters. This RPP CNN has the

biases of convolution but can readily fit non translationally equivariant data. We can similarly

create priors with the biases of other equivariant models like GCNNs [Cohen and Welling 2016a],

without any hard constraints. We can even apply the RPP principle to the breaking of a given

symmetry group to a subgroup.
1For the EMLP that uses gated nonlinearities which do not always reduce to a standard Swish, we likewise add a

more general Swish weighted by a parameter with prior variance 𝜎2
𝑏
.

36

3.5 How and Why RPPs Work

We explore how and why RPPs work on a variety of domains, applying RPPs where (1) constraints

are known to be helpful, (2) cannot fully describe the problem, and (3) are misspecified.

3.5.1 Dynamical Systems and Levels of Eqivariance

In order to better understand how and why residual pathway priors interact with the symmetries

of the problem we move to settings in which we can directly control both the type of symmetry

and the level to which the symmetries are violated. We examine how RPPs coupled with EMLP

networks (RPP-EMLP) perform on the inertia and double pendulum datasets featured in Finzi et al.

[2021] in 3 experimental settings: (𝑖) the original inertia and double pendulum datasets which

preserve exact symmetries with respect to the to O(3) and O(2) groups respectively; (𝑖𝑖) modified

versions of these datasets with additional factors (such as wind on the double pendulum) that lead

to approximate symmetries; and (𝑖𝑖𝑖) versions with misspecified symmetry groups that break the

symmetries entirely (described in subsection A.2.3).

The results for these 3 settings are given in Figure 3.2. Across all settings RPP-EMLP match the

performance of EMLP when symmetries are exact, perform as well as an MLP when the symmetry

is misspecified and better than both when the symmetry is approximate. For these experiments

we use a prior variance of 𝜎2
𝑎 = 105 on the EMLP weights and 𝜎2

𝑏
= 1 on the MLP weights.

Exact Symmetries As part of the motivation, RPPs should properly allocate prior mass to both

constrained and unconstrained solutions, we test cases in which symmetries are exact, and show

that RPP-EMLP is capable of performing on par with EMLP which only admits solutions with

perfect symmetry. The results in Figure 3.2 (top) show that although the prior over models as

described RPP-EMLP is broader than that of EMLP (as we can admit non-equivariant solutions) in

the presence of perfectly equivariant data RPP-EMLP do not hinder performance, and we are able

37

RPP MLP EMLP10 1

100

M
SE

Inertia

RPP MLP EMLP10 1

100

101

M
SE

Modified Inertia

RPP MLP EMLP100

101

M
SE

Inertia; SL(3)

HalfCheetah-v2 Swimmer-v2 Hopper-v2

RPP MLP EMLP5 10 4

5 100

M
SE

Double Pendulum

RPP MLP EMLP10 4

10 3

M
SE

Windy Double Pendulum

RPP MLP EMLP

10 3

10 2

10 1

M
SE

Pendulum; SO(3)

Walker2d-v2 Ant-v2 Humanoid-v2

Figure 3.2: A comparison of test performance over 10 independent trials using RPP-EMLP and equivalent
EMLP and MLP models on the inertia (top) and double pendulum (bottom) datasets in which we have
three varying levels of symmetries. The boxes represent the interquartile range, and the whiskers the
remainder of the distribution. Left: perfect symmetries in which EMLP and the equivariant components
of RPP-EMLP exactly capture the symmetries in the data. Center: approximate symmetries in which the
perfectly symmetric systems have been modified to include some non-equivariant components. Right:
mis-specified symmetries in which the symmetric components of EMLP and RPP-EMLP do not reflect the
symmetries present in the data.

to generalize nearly as well as the perfectly prescribed EMLP model.

Approximate symmetries To better showcase the ideas of Figure 3.1 we compare RPP-EMLPs to

EMLPs and MLPs on the modified inertia and windy pendulum datasets. In these datasets we can

think about the systems as primarily equivariant but containing non-equivariant contributions.

As shown in 3.2 (bottom) these problems are best suited for RPP-EMLP as MLPs have no bias

towards the approximately symmetry present in the data, and EMLPs are overly constrained in

this setting.

Misspecified symmetries In contrast to working with perfect symmetries and showing that

RPP-EMLPs are competitive with EMLPs, we also show that when symmetries are misspecified

the bias towards equivariant solutions does not hinder the performance of RPP-EMLPs. For the

inertia dataset we substitute the group equivariance in EMLP from O(3) to the overly large group

38

SL(3) consisting of all volume and orientation preserving linear transformations, not just the

orthogonal ones. For the double pendulum dataset, we substitute O(2) symmetry acting on R3

with the larger SO(3) rotation group that contains it but is not a symmetry of the dataset.

By purposefully misspecifying the symmetry in these datasets we intentionally construct

EMLP and RPP-EMLP models with incorrect inductive biases. In this setting EMLP is incapable

of making accurate predictions as it has a hard constraint on an incorrect symmetry. Figure 3.2

shows that even in cases where the model is intentionally mis-specified that RPPs can overcome a

poorly aligned inductive bias and recover solutions that perform as well as standard MLPs, even

where EMLPs fail.

As the prior variances over the equivariant basis𝑄 and the non-equivariant basis 𝑃 describe our

bias towards or away from equivariant solutions we investigate how the choice of prior variance

relates to the level of symmetry present in a given dataset. In the windy pendulum dataset we

have control over the level of wind and thus how far our system is from perfect equivariance.

3.5.2 Posterior Levels of Eqivariance

RPPs describe a method for setting a prior over equivariance, and in the presence of new data we

expect the posterior distribution over equivariance to change accordingly. Using samples from a

deep ensemble to query points of high density in the posterior we estimate how the distribution

over equivariance error progresses through training. Recalling that with an equivariant function

𝑓 we have 𝜌2(𝑔) 𝑓 (𝑥) = 𝑓 (𝜌1(𝑔)𝑥), we compute equivariance error as

EquivErr(𝑓 , 𝑥) = RelErr(𝜌2(𝑔) 𝑓 (𝑥), 𝑓 (𝜌1(𝑔)𝑥)) where RelErr(𝑎, 𝑏) = ∥𝑎 − 𝑏∥
∥𝑎∥ + ∥𝑏∥ . (3.3)

We train one deep ensemble on the inertia dataset which exhibits perfect symmetry, and

another on the modified inertia dataset which has only partial symmetry, with each deep ensemble

being comprised of 10 individual models using the same procedure as in Section 3.5.1. In Figure

39

?? (left) we see that throughout training the models trained on the modified inertia concentrate

around solutions with substantially higher equivariance error than models trained on the dataset

with the exact symmetry. This figure demonstrates one of the core desiderata of RPPs: that we are

able to converge to solutions with an appropriate level of equivariance for the data.

3.5.3 RPPs and Convolutional Structure

Using the RPP-Conv specified by the prior in Eqn 3.2 we apply the model to CIFAR-10 classification

and UCI regression tasks where the inputs are reshaped to zero-padded two dimensional arrays

and treated as images. Notably, the model is still an MLP and merely has larger prior variance in

the convolutional subspace. As a result it can perform well on image datasets where the inductive

bias is aligned, as well as on the UCI data despite not being an image dataset as shown in Table

3.1. While retaining the flexibility of an MLP, the RPP performs better than the locally connected

MLPs trained with 𝛽-lasso in Neyshabur [2020] which get 14% error on CIFAR-10. The full details

for the architectures and training procedure are given in Appendix A.2.3.

CIFAR-10 Energy Fertility Pendulum Wine

MLP 37.61 ± 0.56 0.39 ± 0.48 0.049 ± 0.0044 4.65 ± 0.50 0.66 ± 0.058
RPP 12.62 ± 0.34 0.73 ± 0.44 0.060 ± 0.0097 4.25 ± 0.50 0.69 ± 0.031
Conv 12.03 ± 0.46 1.34 ± 0.38 0.076 ± 0.0157 4.63 ± 0.36 0.79 ± 0.092

Table 3.1: Mean test classification error on CIFAR-10 and MSE on 4 UCI regression tasks, with one
standard deviation errors taken over 10 trials. Similar to Figure 3.2, we find that whether the constrained
convolutional structure is helpful (CIFAR) or not (UCI), RPP-Conv performs similarly to the model with
the correct level of complexity.

3.6 Approximate Symmetries in Reinforcement Learning

Both model free and model based reinforcement learning present opportunities to take advantage

of structure in the data for predictive power and data efficiency. On the one hand stands the

40

𝜌(g)-1𝜌(g)

(a) Walker2d Left-Right

𝜌(g)-1𝜌(g)

(b) Swimmer Front-Back

𝜌(g)-1𝜌(g)

+/-

+/-

+/-

+/-

+/-

-/+

-/+

-/+

-/+

-/+

(c) HalfCheetah In-Out

Figure 3.3: Example illustrations of symmetries and representations from the Mujoco environments.
Left: left-right symmetry in the Walker2d environment, center: front-back symmetry in the Swimmer
environment, and right: In-out similarity in the HalfCheetah environment

use of model predictive control in the engineering community where finely specified dynamics

models are constructed by engineers and only a small number of parameters are fit with system

identification to determine mass, inertia, joint stiffness, etc. On the other side of things stands the

hands off approach taken in the RL community, where general and unstructured neural networks

are used for both transition models [Chua et al. 2018; Wang and Ba 2019; Janner et al. 2019]

as well as policies and value functions [Haarnoja et al. 2018a]. The state and action spaces for

these systems are highly complex with many diverse inputs like quaternions, joint angles, forces,

torques that each transform in different ways under a symmetry transformation like a left-right

reflection or a rotation. As a result, most RL methods treat these spaces a black box ignoring all of

this structure, and as a result they tend to require tremendous amounts of training data, making it

difficult to apply to real systems without the use of simulators.

We can make use of this information about what kinds of objects populate the state and action

41

spaces to encode approximate symmetries of the RL environments. As shown in van der Pol

et al. [2020b], exploiting symmetries in MDPs by using equivariant networks can yield substantial

improvements in data efficiency. But symmetries are brittle, and minor effects like rewards for

moving in one direction, gravity, or even perturbations like wind, a minor tilt angle in CartPole,

or other environment imperfections can break otherwise perfectly good symmetries. As shown

in Table 3.2, broadening the scope to approximate symmetries allows for leveraging a lot more

structure in the data which we can exploit with RPP. While Walker2d, Swimmer, Ant, and

Humanoid have exact left/right reflection symmetries, Hopper, HalfCheetah, and Swimmer have

approximate front/back reflection symmetries. Ant and Humanoid have an even more diverse set,

with the D4 dihedral symmetry by reflecting and cyclicly permuting the legs of the ant, as well as

continuous rotations of the Ant and Humanoid within the environment which can be broken by

external forces or rewards. Identifying this structure in the data, we are able to use the generality

of EMLP to construct an equivariant model for this data, and then turn it into a soft prior using

RPP.

Symmetries Walker2d Hopper HalfCheetah Swimmer Ant Humanoid

Exact Z2 ✗ ✗ Z2 Z2 Z2
Approximate Z2 Z2 Z2 Z2 × Z2 D4 × O(2) Z2 × O(2)
This work Z2 Z2 Z2 Z2 × Z2 Z4 SO(2)

Table 3.2: Exact and approximate symmetries of Mujoco locomotion environments of which we use the
subgroups in the bottom row, see subsection A.2.4 for the detailed action and state representations.

3.6.1 Approximate Symmetries in Model Free Reinforcement Learning

We evaluate RPPs on the standard suite of Mujoco continuous control tasks in the context of model-

free reinforcement learning. With the appropriately specified action and state representations

detailed in subsection A.2.4, we construct RPP-EMLPs which we use as a drop-in replacement for

both the policy and Q-function in the Soft Actor Critic (SAC) algorithm [Haarnoja et al. 2018a],

42

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106) 1e6

0

2500

5000

7500

10000

12500

Av
er

ag
e

Re
tu

rn

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106) 1e6

0

50

100

150

Av
er

ag
e

Re
tu

rn

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106) 1e6

0

1000

2000

3000

Av
er

ag
e

Re
tu

rn

HalfCheetah-v2 Swimmer-v2 Hopper-v2

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106) 1e6

0

1000

2000

3000

4000

5000

Av
er

ag
e

Re
tu

rn

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106) 1e6

1000

2000

3000

4000

5000

6000

Av
er

ag
e

Re
tu

rn

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106) 1e6

0

1000

2000

3000

4000

5000

Av
er

ag
e

Re
tu

rn
RPP-SAC
SAC

Walker2d-v2 Ant-v2 Humanoid-v2

Figure 3.4: Average reward curve of RPP-SAC and SAC trained on Mujoco locomotion environments (max
average reward attained at each step). Mean and one standard deviation taken over 4 trials shown in the
shaded region. Incorporating approximate symmetries in the environments improves the efficiency of the
model free RL agents.

43

using the same number of layers and channels. In contrast with van der Pol et al. [2020b] where

equivariance is used just for policies, we find that using RPP-EMLP for the policy function alone

is not very helpful with Actor Critic (see Figure 3.4). With the exception of the Humanoid-v2

environment where the RPP-EMLP destabilizes SAC, we find that incorporating the exact and

approximate equivariance with RPP yields consistent improvements in the data efficiency of the

RL agent as shown in Figure 3.4.

3.6.2 Better Transition Models for Model Based Reinforcement

Learning

Swimmer-v2 Hopper-v2 Ant-v2
Rollout MLP RPP MLP RPP MLP RPP

10 Steps 0.51 ± 0.02 0.40 ± 0.04 1.1 ± 0.1 0.9 ± 0.1 4.2 ± 0.1 5.2 ± 0.3
30 Steps 1.6 ± 0.2 1.26 ± 0.14 3.8 ± 0.3 3.1 ± 0.5 11.3 ± 0.2 13.9 ± 0.7
100 Steps 3.9 ± 1.0 2.75 ± 0.31 9.8 ± 0.5 7.0 ± 0.7 16.0 ± 0.3 20.0 ± 1.1

Equiv Err 46% 19% 98% 32% 36% 31%

Table 3.3: Transition model rollout relative error in percent % averaged over 10, 30, and 100 step rollouts
(geometric mean over trajectory). Errorbars are 1 standard deviation taken over 3 random seeds. Equivari-
ance error is computed from as the geometric mean averaged over the 100 step rollout.

We also investigate whether the equivariance prior of RPP can improve the quality of the

predictions for transition models in the context of model based RL. To evaluate this in a way

decoupled from the complex interactions between policy, model, and value function in MBRL, we

instead construct a static dataset of 50, 000 state transitions sampled uniformly from the replay

buffer of a trained SAC agent. Since the trajectories in the replay buffer come from different times,

they capture the varied dynamics MBRL transition models often encounter during training.

State of the art model based approaches on Mujoco tend to use an ensemble of small MLPs that

predict the state transitions [Chua et al. 2018; Wang and Ba 2019; Janner et al. 2019; Amos et al.

2020], without exploiting any structure of the state space. We evaluate test rollout predictions

44

via the relative error of the state over different length horizons for the RPP model against an

MLP, the method of choice. As shown in Table 3.3, RPP transition models outperform MLPs on

the Swimmer and Hopper environments, especially for long rollouts showing promise for use in

MBRL. On these environments, RPP learns a smaller but non-negligible equivariance error that

still enables it to fit the data.

3.7 Limitations

Using RPP-EMLP for the state and action spaces of the Mujoco environments required identifying

the meaning of each of the components in terms of whether they are scalars, velocity vectors,

joint angles, or orientation quaternions, and also which part of the robot they correspond to. This

can be an error-prone process. While RPPs are fairly robust to such mistakes, the need to identify

components makes using RPP more challenging than standard MLP. Additionally, due to the

bilinear layers within EMLP, the Lipschitz constant of the network is unbounded which can lead

to training instabilities when the inputs are not well normalized. We hypothesize these factors

may contribute to the training instability we experienced using RPP-EMLP on Humanoid-v2.

3.8 Conclusion

In this work we have presented a method for converting restriction priors such as equivariance

constraints into flexible models that have a bias towards structure but are not constrained by it.

Given uncertainty about the nature of the data, RPPs are a safe choice. These RPP models are able

to perform as well as the equivariant models when exact symmetries are present, and as well as

unstructured MLPs when the specified symmetry is absent, and better than both for approximate

symmetries. We have shown that encoding approximate symmetries can be a powerful technique

for improving performance in a variety of settings, particularly for the messy and complex state

45

and action spaces in reinforcement learning.

We hope that RPP enables designingmore expressive priors for neural networks that capture the

kinds of high level assumptions that machine learning researchers actually hold when developing

models, rather than low level characteristics about the parameters that are hard to interpret.

Building better techniques for enforcing high level properties helps lower the cost of incorporating

prior knowledge, and better accommodate the complexities of data, even if they don’t match our

expectations.

46

4 | The Lie Derivative for Measuring

Learned Eqivariance

Equivariance guarantees that a model’s predictions capture key symmetries in data. When an

image is translated or rotated, an equivariant model’s representation of that image will translate

or rotate accordingly. The success of convolutional neural networks has historically been tied

to translation equivariance directly encoded in their architecture. The rising success of vision

transformers, which have no explicit architectural bias towards equivariance, challenges this

narrative and suggests that augmentations and training data might also play a significant role in

their performance. In order to better understand the role of equivariance in recent vision models,

we introduce the Lie derivative, a method for measuring equivariance with strong mathematical

foundations and minimal hyperparameters. Using the Lie derivative, we study the equivariance

properties of hundreds of pretrained models, spanning CNNs, transformers, and Mixer architec-

tures. The scale of our analysis allows us to separate the impact of architecture from other factors

like model size or training method. Surprisingly, we find that many violations of equivariance can

be linked to spatial aliasing in ubiquitous network layers, such as pointwise non-linearities, and

that as models get larger and more accurate they tend to display more equivariance, regardless

of architecture. For example, transformers can be more equivariant than convolutional neural

networks after training.

This chapter is adapted from the paper "The Lie Derivative for Measuring Learned Equivari-

47

ance", which will appear at ICLR 2023 and is joint work with Nate Gruver, Micah Goldblum, and

Andrew Gordon Wilson.

48

ResNet-50
0

20

40

60

80

Cu
m

ul
at

iv
e

Eq
ui

va
ria

nc
e

Er
ro

r

ViT-Small

Activation
Conv
Attention
Norm
Pool

70% 75% 80% 85% 90%

0.05

0.10

0.15 R2 = 0.333 CNN
ViT
Mixer

CNN
ViT
Mixer

Imagenet Test Accuracy

Tr
an

sla
tio

n
Eq

ui
va

ria
nc

e
Er

ro
r

Figure 4.1: (Left): The Lie derivative measures the equivariance of a function under continuous transfor-
mations, here rotation. (Center): Using the Lie derivative, we quantify how much each layer contributes
to the equivariance error of a model. Our analysis highlights surprisingly large contributions from non-
linearities, which affects both CNNs and ViT architectures. (Right): Translation equivariance as measured
by the Lie derivative correlates with generalization in classification models, across convolutional and non-
convolutional architectures. Although CNNs are often noted for their intrinsic translation equivariance,
ViT and Mixer models are often more translation equivariant than CNN models after training.

4.1 Introduction

Symmetries allow machine learning models to generalize properties of one data point to the

properties of an entire class of data points. A model that captures translational symmetry, for

example, will have the same output for an image and a version of the same image shifted a half

pixel to the left or right. If a classification model produces dramatically different predictions as

a result of translation by half a pixel or rotation by a few degrees it is likely misaligned with

physical reality. Equivariance provides a formal notion of consistency under transformation. A

function is equivariant if symmetries in the input space are preserved in the output space.

Baking equivariance into models through architecture design has led to breakthrough per-

formance across many data modalities, including images [Cohen and Welling 2016a; Veeling

et al. 2018], proteins [Jumper et al. 2021] and atom force fields [Batzner et al. 2022; Frey et al.

2022]. In computer vision, translation equivariance has historically been regarded as a particularly

compelling property of convolutional neural networks (CNNs) [LeCun et al. 1995]. Imposing

49

equivariance restricts the size of the hypothesis space, reducing the complexity of the learning

problem and improving generalization [Goodfellow et al. 2016].

In most neural networks classifiers, however, true equivariance has been challenging to achieve,

and many works have shown that model outputs can change dramatically for small changes in

the input space [Azulay and Weiss 2018; Engstrom et al. 2018; Vasconcelos et al. 2021; Ribeiro and

Schön 2021]. Several authors have significantly improved the equivariance properties of CNNs

with architectural changes inspired by careful signal processing [Zhang 2019; Karras et al. 2021],

but non-architectural mechanisms for encouraging equivariance, such as data augmentations,

continue to be necessary for good generalization performance [Wightman et al. 2021].

The increased prominence of non-convolutional architectures, such as vision transformers

(ViTs) and mixer models, simultaneously demonstrates that explicitly encoding architectural

biases for equivariance is not necessary for good generalization in image classification, as ViT

models perform on-par with or better than their convolutional counterparts with sufficient data

and well-chosen augmentations [Dosovitskiy et al. 2020; Tolstikhin et al. 2021]. Given the success

of large flexible architectures and data augmentations, it is unclear what clear practical advantages

are provided by explicit architectural constraints over learning equivariances from the data and

augmentations. Resolving these questions systemically requires a unified equivariance metric and

large-scale evaluation.

In what follows, we introduce the Lie derivative as a tool for measuring the equivariance of

neural networks under continuous transformations. The local equivariance error (LEE), constructed

with the Lie derivative, makes it possible to compare equivariance across models and to analyze

the contribution of each layer of a model to its overall equivariance. Using LEE, we conduct a

large-scale analysis of hundreds of image classification models. The breadth of this study allows us

to uncover a novel connection between equivariance and model generalization, and the surprising

result that ViTs are often more equivariant than their convolutional counterparts after training.

To explain this result, we use the layer-wise decomposition of LEE to demonstrate how common

50

building block layers shared across ViTs and CNNs, such as pointwise non-linearities, frequently

give rise to aliasing and violations of equivariance.

We make our code publicly available at https://github.com/ngruver/lie-deriv.

4.2 Background

Groups and eqivariance Equivariance provides a formal notion of consistency under trans-

formation. A function 𝑓 : 𝑉1 → 𝑉2 is equivariant to transformations from a symmetry group 𝐺 if

applying the symmetry to the input of 𝑓 is the same as applying it to the output

∀𝑔 ∈ 𝐺 : 𝑓 (𝜌1(𝑔)𝑥) = 𝜌2(𝑔) 𝑓 (𝑥), (4.1)

where 𝜌 (𝑔) is the representation of the group element, which is a linear map 𝑉 → 𝑉 .

The most common example of equivariance in deep learning is the translation equivariance of

convolutional layers: if we translate the input image by an integer number of pixels in 𝑥 and 𝑦,

the output is also translated by the same amount, ignoring the regions close to the boundary of

the image. Here 𝑥 ∈ 𝑉1 = 𝑉2 is an image and the representation 𝜌1 = 𝜌2 expresses translations

of the image. The translation invariance of certain neural networks is also an expression of the

equivariance property, but where the output vector space𝑉2 has the trivial 𝜌2(𝑔) = 𝐼 representation,

such that model outputs are unaffected by translations of the inputs. Equivariance is therefore a

much richer framework, in which we can reason about representations at the input and the output

of a function.

Continuous signals The inputs to classification models are discrete images sampled from a

continuous reality. Although discrete representations are necessary for computers, the goal of

classification models should be learning functions that generalize in the real world. It is therefore

useful to consider an image as a function ℎ : R2 → R3 rather than a discrete set of pixel values

51

https://github.com/ngruver/lie-deriv

and broaden the symmetry groups we might consider, such as translations of an image by vector

∈ R2, rather than an integer number of pixels.

Fourier analysis is a powerful tool for understanding the relationship between continuous sig-

nals and discrete samples by way of frequency decompositions. Any𝑀 ×𝑀 image, ℎ(), can be con-

structed from its frequency components,𝐻𝑛𝑚 , using a 2𝑑 Fourier series, ℎ() = 1
2𝜋

∑
𝑛,𝑚 𝐻𝑛𝑚𝑒

2𝜋𝑖 ·[𝑛,𝑚]

where ∈ [0, 1]2 and 𝑛,𝑚 ∈ [-𝑀/2, -𝑀/2 + 1, ..., 𝑀/2], the bandlimit defined by the image size.

Aliasing Aliasing occurs when sampling at a limited frequency 𝑓𝑠 , for example the size of an

image in pixels, causes high frequency content (above the Nyquist frequency 𝑓𝑠/2) to be converted

into spurious low frequency content. Content with frequency 𝑛 is observed as a lower frequency

contribution at frequency

Alias(𝑛) =

𝑛 mod 𝑓𝑠 if (𝑛 mod 𝑓𝑠) < 𝑓𝑠/2

(𝑛 mod 𝑓𝑠) − 𝑓𝑠 if (𝑛 mod 𝑓𝑠) > 𝑓𝑠/2

 . (4.2)

If a discretely sampled signal such as an image is assumed to have no frequency content higher

than 𝑓𝑠 , then the continuous signal can be uniquely reconstructed using the Fourier series and

have a consistent continuous representation. But if the signal contains higher frequency content

which gets aliased down by the sampling, then there is an ambiguity and exact reconstruction is

not possible.

Aliasing and eqivariance Aliasing is critically important to our study because it breaks

equivariance to continuous transformations like translation and rotation. When a continuous

image is translated its Fourier components pick up a phase:

ℎ() ↦→ ℎ(−) =⇒ 𝐻𝑛𝑚 ↦→ 𝐻𝑛𝑚𝑒
−2𝜋𝑖 ·[𝑛,𝑚] .

52

However, when an aliased signal is translated, the aliasing operation A introduces a scaling factor:

𝐻𝑛𝑚 ↦→ 𝐻𝑛𝑚𝑒
−2𝜋𝑖 (𝑏0Alias(𝑛)+𝑏1Alias(𝑚))

In other words, aliasing causes a translation by the wrong amount: the frequency component 𝐻𝑛𝑚

will effectively be translated by [(Alias(𝑛)/𝑛)𝑏0, (Alias(𝑚)/𝑚)𝑏1] which may point in a different

direction than , and potentially even the opposite direction. Applying shifts to an aliased image

will yield the correct shifts for true frequencies less than the Nyquist but incorrect shifts for

frequencies higher than the Nyquist. Other continuous transformations, like rotation, create

similar asymmetries.

Many common operations in CNNs can lead to aliasing in subtle ways, breaking equivariance

in turn. Zhang [2019], for example, demonstrates that downsampling layers causes CNNs to have

inconsistent outputs for translated images. The underlying cause of the invariance is aliasing,

which occurs when downsampling alters the high frequency content of the network activations.

The𝑀×𝑀 activations at a given layer of a convolutional network have spatial Nyquist frequencies

𝑓𝑠 = 𝑀/2. Downsampling halves the size of the activations and corresponding Nyquist frequencies.

The result is aliasing of all nonzero content with 𝑛 ∈ [𝑀/4, 𝑀/2]. To prevent this aliasing, Zhang

[2019] uses a local low pass filter (Blur-Pool) to directly remove the problematic frequency regions

from the spectrum.

1
0
1

1
0
1

Swish

1
0
1

ReLU

0 500
10 7

10 5

10 3

10 1

Fo
ur

ie
r S

pe
ct

ru
m

0 500
Frequency

10 7

10 5

10 3

10 1

0 500
10 5

10 3

10 1

Figure 4.2: Non-linearities generate new
high-frequency harmonics.

While studying generative image models, Karras et al.

[2021] unearth a similar phenomenon in the pointwise

nonlinearities of CNNs. Imagine an image at a single

frequency ℎ() = sin(2𝜋 · [𝑛,𝑚]). Applying a nonlinear

transformation to ℎ creates new high frequencies in the

Fourier series, as illustrated in Figure 4.2. These high

frequencies may fall outside of the bandlimit, leading to aliasing. To counteract this effect, Karras

53

et al. [2021] opt for smoother non-linearities and perform upsampling before calculating the

activations.

4.3 Related Work

While many papers propose architectural changes to improve the equivariance of CNNs [Zhang

2019; Karras et al. 2021; Weiler and Cesa 2019b], others focus purely on measuring and understand-

ing how equivariance can emerge through learning from the training data [Lenc and Vedaldi 2015].

Olah et al. [2020], for example, studies learned equivariance in CNNs using model inversions

techniques. While they uncover several fascinating properties, such as rotation equivariance

that emerges naturally without architectural priors, their method is limited by requiring manual

inspection of neuron activations. Most relevant to our work, Bouchacourt et al. [2021] measure

equivariance in CNNs and ViTs by sampling group transformations. Parallel to our findings, they

conclude that data and data augmentation play a larger role than architecture in the ultimate

equivariance of a model. Because their study is limited to just a single ResNet and ViT architecture,

however, they do not uncover the broader relationship between equivariance and generalization

that we show here.

Many papers introduce consistency metrics based on sampling group transformations [Zhang

2019; Karras et al. 2021; Bouchacourt et al. 2021], but most come with significant drawbacks. When

translations are sampled with an integer number of pixels [Zhang 2019; Bouchacourt et al. 2021],

aliasing effects will be completely overlooked. As a remedy, [Karras et al. 2021] propose a subpixel

translation equivariance metric (EQ-Tfrac) that appropriately captures aliasing effects. While this

metric is a major improvement, it requires many design decisions not required by LEE, which has

relatively few hyperparameters and seamlessly breaks down equivariance across layers. Relative

to these other approaches, LEE offers a unifying perspective, with significant theoretical and

practical benefits.

54

4.4 Measuring local eqivariance error with Lie

derivatives

Lie Derivatives The Lie derivative gives a general way of evaluating the degree to which a

function 𝑓 violates a symmetry. To define the Lie derivative, we first consider how a symmetry

group element can transform a function by rearranging Equation 4.1:

𝜌21(𝑔) [𝑓] (𝑥) = 𝜌2(𝑔)−1𝑓 (𝜌1(𝑔)𝑥) .

The resulting linear operator, 𝜌21(𝑔) [·], acts on the vector space of functions, and 𝜌21(𝑔) [𝑓] = 𝑓 if

the function is equivariant. Every continuous symmetry group (Lie group),𝐺 , has a corresponding

vector space (Lie algebra) 𝔤 = Span({𝑋𝑖}𝑑𝑖=1), with basis elements 𝑋𝑖 that can be interpreted as

vector fields R𝑛 → R𝑛. For images, these vector fields encode infinitesimal transformations

R2 → R2 over the domain of continuous image signals 𝑓 : R2 → R𝑘 . One can represent group

elements𝑔 ∈ 𝐺 (which lie in the connected component of the identity) as the flow along a particular

vector field Φ𝑡
𝑌
, where 𝑌 =

∑
𝑖 𝑎𝑖𝑋𝑖 is a linear combination of basis elements. The flow Φ𝑡

𝑌
(𝑥0) of a

point 𝑥0 along a vector field 𝑌 by value 𝑡 is defined as the solution to the ODE 𝑑𝑥
𝑑𝑡

= 𝑌 (𝑥) at time 𝑡

with initial value 𝑥0. The flow Φ𝑡
𝑌
smoothly parameterizes the group elements by 𝑡 so that the

operator 𝜌21(Φ𝑡𝑌) [·] connects changes in the space of group elements to changes in symmetry

behavior of a function.

The Lie derivative of the function 𝑓 is the derivative of the operator 𝜌21(𝑔) at 𝑔 = Identity = Φ0

along a particular vector field 𝑌 ,

L𝑌 (𝑓) = lim
𝑡→0

1
𝑡
(𝜌21(Φ𝑡𝑌) [𝑓] − 𝑓) =

𝑑

𝑑𝑡

����
𝑡=0
𝜌21(Φ𝑡𝑌) [𝑓] . (4.3)

Intuitively, the Lie derivative measures the sensitivity of a function to infinitesimal symmetry

55

Under review as a conference paper at ICLR 2023

1 import torch.nn.functional as F
2 from torch.autograd.functional import jvp
3

4 def rotate(imgs, theta):
5 """ Rotate images by angle theta and interpolate"""
6 m = [[torch.cos(theta), torch.sin(theta), 0],
7 [-torch.sin(theta), torch.cos(theta), 0]]
8 m = torch.tensor(m)[None].expand(imgs.shape[0], -1, -1)
9 return F.grid_sample(imgs, F.affine_grid(m, imgs.size(), True))

10

11 def rotation_lie_deriv(model,imgs):
12 """ Lie deriv. of model w.r.t. rotation, can be scalar/image"""
13 def rotated_model(theta):
14 z = model(rotate(imgs,theta))
15 img_like = (len(z.shape) == 4) # more complex for ViT/Mixer
16 return rotate(z,-theta) if img_like else z
17 return jvp(rotated_model, torch.zeros(1,requires_grad=True))[-1]
18

19 def e_lee(model,imgs):
20 """ Expected equiv. error (E[|Lf|^2]/d_out) w.r.t. rotation"""
21 return rotation_lie_deriv(model, imgs).pow(2).mean()

Figure 3: Lie derivatives can be computed using automatic differentiation. We show how a Lie
derivative for continuous rotations can be implemented in PyTorch Paszke et al. (2019). The
implementation in our experiments differs slightly, for computational efficiency and in order to pass
second-order gradients through grid_sample.

derivative scaled by the size of the output. Taking the average of the Lie derivative over the data
distribution, we define the Local Equivariance Error (LEE),

LEE(f) = Ex⇠DkLXf(x)k2/dim(V2). (4)

We provide a python implementation of the Lie derivative calculation for rotations in Figure 3 as an
example.

Layerwise Decomposition of Lie Derivative Unlike alternative equivariance metrics, the Lie
derivative decomposes naturally over the layers of a neural network. This modularity results naturally
from the Lie derivative satisfying the chain rule. As we show in Appendix A.2, the Lie derivative of
the composition of two functions h : V1 ! V2 and f : V2 ! V3 satisfies

LX(f � h)(x) = (LXf)(h(x)) + df |h(x)(LXh)(x), (5)

where df |h(x) is the Jacobian of f at h(x) which we will abbreviate as df . Note that this decomposition
captures the fact that intermediate layers of the network may transform in their own way:

f(h(x)) 7!⇢31(g)[f � g](x) = ⇢3(g)�1f(⇢2(g)⇢2(g)�1h(⇢1(g)x)) = ⇢32(g)[f] � ⇢21(g)[h](x)

and the Lie derivatives split up accordingly.

Applying this property to an entire model as a composition of layers NN(x) = fN :1(x) :=
fN (fN�1(...(f1(x)))), we can identify the contribution that each layer fi makes to the equivariance
error of the whole. Unrolling Equation 5, we have

LX(NN) =
NX

i=1

dfN :i+1LXfi. (6)

Intuitively, the equivariance error of a sequence of layers is determined by the sum of the equivariance
error for each layer multiplied by the degree to which that error is attenuated or magnified by the other
layers (as measured by the Jacobian). We evaluate the norm of each of the contributions dfN :i+1LXfi

to the (vector) equivariance error LX(NN) which we compute using autograd and stochastic trace
estimation as we describe in Appendix A.3. Importantly, the sum of norms may differ from the norm
of the sum, but this analysis allows us to identify patterns across layers and pinpoint operations that
contribute most to equivariance error.

5

Figure 4.3: Lie derivatives can be computed using automatic differentiation. We show how a Lie derivative
for continuous rotations can be implemented in PyTorch [Paszke et al. 2019]. The implementation in
our experiments differs slightly, for computational efficiency and to pass second-order gradients through
grid_sample.

transformations. This local definition of equivariance error is related to the typical global notion

of equivariance error. As we derive in Appendix A.3.1.1, if ∀𝑖 = 1, ..., 𝑑 : L𝑋𝑖
(𝑓) = 0 (and the

exponential map is surjective) then ∀𝑔 ∈ 𝐺 : 𝑓 (𝜌1(𝑔)𝑥) = 𝜌2(𝑔) 𝑓 (𝑥) and for all 𝑥 in the domain,

and vice versa. In practice, the Lie derivative is only a proxy for strict global equivariance. We

note global equivariance includes radical transformations like translation by 75% of an image,

which is not necessarily desirable. In section 4.6 we show that our local formulation of the Lie

derivative can capture the effects of many practically relevant transformations.

The Lie derivative of a function with multiple outputs will also have multiple outputs, so if we

want to summarize the equivariance error with a single number, we can compute the norm of the

Lie derivative scaled by the size of the output. Taking the average of the Lie derivative over the

56

data distribution, we define Local Equivariance Error (LEE),

LEE(𝑓) = E𝑥∼D ∥L𝑋 𝑓 (𝑥)∥2/dim(𝑉2). (4.4)

We provide a Python implementation of the Lie derivative calculation for rotations in Figure 4.3 as

an example. Mathematically, LEE also has an appealing connection to consistency regularization

[Athiwaratkun et al. 2018], which we discuss in Appendix A.3.2.1.

Layerwise Decomposition of Lie Derivative Unlike alternative equivariance metrics, the Lie

derivative decomposes naturally over the layers of a neural network, since it satisfies the chain

rule. As we show in Appendix A.3.1.2, the Lie derivative of the composition of two functions

ℎ : 𝑉1 → 𝑉2 and 𝑓 : 𝑉2 → 𝑉3 satisfies

L𝑋 (𝑓 ◦ ℎ) (𝑥) = (L𝑋 𝑓) (ℎ(𝑥)) + 𝑑 𝑓 |ℎ(𝑥) (L𝑋ℎ) (𝑥), (4.5)

where 𝑑 𝑓 |ℎ(𝑥) is the Jacobian of 𝑓 at ℎ(𝑥) which we will abbreviate as 𝑑 𝑓 . Note that this decom-

position captures the fact that intermediate layers of the network may transform in their own

way:

𝑓 (ℎ(𝑥)) ↦→𝜌31(𝑔) [𝑓 ◦ 𝑔] (𝑥) = 𝜌3(𝑔)−1𝑓 (𝜌2(𝑔)𝜌2(𝑔)−1ℎ(𝜌1(𝑔)𝑥)) = 𝜌32(𝑔) [𝑓] ◦ 𝜌21(𝑔) [ℎ] (𝑥)

and the Lie derivatives split up accordingly.

Applying this property to an entire model as a composition of layers NN(𝑥) = 𝑓𝑁 :1(𝑥) :=

𝑓𝑁 (𝑓𝑁−1(...(𝑓1(𝑥)))), we can identify the contribution that each layer 𝑓𝑖 makes to the equivariance

error of the whole. Unrolling Equation 4.5, we have

L𝑋 (NN) =
𝑁∑︁
𝑖=1

𝑑 𝑓𝑁 :𝑖+1L𝑋 𝑓𝑖 . (4.6)

57

Intuitively, the equivariance error of a sequence of layers is determined by the sum of the equivari-

ance error for each layer multiplied by the degree to which that error is attenuated or magnified by

the other layers (as measured by the Jacobian). We evaluate the norm of each of the contributions

𝑑 𝑓𝑁 :𝑖+1L𝑋 𝑓𝑖 to the (vector) equivariance error L𝑋 (NN) which we compute using autograd and

stochastic trace estimation, as we describe in Appendix A.3.1.3. Importantly, the sum of norms

may differ from the norm of the sum, but this analysis allows us to identify patterns across layers

and pinpoint operations that contribute most to equivariance error.

4.5 Layerwise eqivariance error

As described in section 5.2, subtle architectural details often prevent models from being perfectly

equivariant. Aliasing can result from careless downsampling or from an activation function with

a wide spectrum. In this section, we explore how the Lie derivative uncovers these types of effects

automatically, across several popular architectures. We evaluate the equivariance of pretrained

models on 100 images from the ImageNet [Deng et al. 2009] test set.

Using the layerwise analysis, we can dissect the sources of translation equivariance error in

convolutional and non-convolutional networks as shown in Figure 4.4 (left) and (middle-left). For

the Vision Transformer and Mixer models, we see that the initial conversion from image to patches

produces a significant portion of the error, and the remaining error is split uniformly between the

other nonlinear layers: LayerNorm, tokenwise MLP, and self-attention. The contribution from

these nonlinear layers is seldom recognized and potentially counterintuitive, until we fully grasp

the deep connection between equivariance and aliasing. In Figure 4.4 (middle-right), we show

that this breakdown is strikingly similar for other image transformations like rotation, scaling,

and hyperbolic rotations, providing evidence that the cause of equivariance error is not specific to

translations but is instead a general culprit across a whole host of continuous transformations

that can lead to aliasing.

58

Inception-v2
0

20

40

60

80

100

120
Cu

m
ul

at
iv

e
Eq

ui
va

ria
nc

e
Er

ro
r

VGG13

EfficientNet-B1
ResNet-50

WideResNet-50

Activation
Conv2d

Pool
SqueezeExcite

ViT
0

10

20

30

40

50

Cu
m

ul
at

iv
e

Eq
ui

va
ria

nc
e

Er
ro

r

ConViT
Res-MLP

Attention
GPSA
LayerNorm
Mlp
PatchEmbed

Translation
0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Eq

ui
va

ria
nc

e
Er

ro
r

Rotation Scaling
Hyperbolic Rot.

Activ. Conv2d Pool

Integer0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
ize

d
Eq

ui
va

ria
nc

e
Er

ro
r

Fractional
(Mean) Fractional

(Sqrt)
LEE

Activation
Conv2d

Pool
Downsample

Figure 4.4: Contributions to equivariance shown cumulatively by layer, in the order the layers occur in
the network. Left: Convolutional architectures. In all the CNNs, much of the equivariance error comes
from downsampling and non-linearities. Middle-Left: Non-convolutional architectures. The initial patch
embedding, a strided convolution, is the largest contributor for the ViTs and Mixers. The rest of the error
is distributed uniformly across other nonlinear operations. Middle-Right: ResNet-50 across different
transformations as a percentage. Despite being designed for translation equivariance, the fraction of
equivariance error produced by each layer is almost identical for other affine transformations, suggesting
that aliasing is the primary source of equivariance error. Right: Comparing LEE with alternative metrics
for translation equivariance. Using integer translations misses key contributors to equivariance errors,
such as activations, while using fractional translations can lead to radically different outcomes depending
on choice of normalization (𝑁 or

√
𝑁). LEE captures aliasing effects and has minimal design decisions.

We can make the relationship between aliasing and equivariance error precise by considering

the aliasing operation Alias defined in Equation 4.2.

Theorem 4.1. For translations along the vector 𝑣 = [𝑣𝑥 , 𝑣𝑦], the aliasing operation 𝐴 introduces a

translation equivariance error of

∥L𝑣 (𝐴) (ℎ)∥2 = (2𝜋)2
∑︁
𝑛,𝑚

𝐻 2
𝑛𝑚

(
𝑣2
𝑥 (Alias(𝑛) − 𝑛)2 + 𝑣2

𝑦 (Alias(𝑚) −𝑚)2
)
,

where ℎ() = 1
2𝜋

∑
𝑛,𝑚 𝐻𝑛𝑚𝑒

2𝜋𝑖 ·[𝑛,𝑚] is the Fourier series for the input image ℎ.

We provide the proof in Appendix A.3.2.2. The connection between aliasing and LEE is

important because aliasing is often challenging to identify despite being ubiquitous [Zhang 2019;

Karras et al. 2021]. Aliasing in non-linear layers impacts all vision models and is thus a key factor

in any fair comparison of equivariance.

As alternative equivariance metrics exist, it is natural to wonder whether they can also be

59

used for layerwise analysis. In Figure 4.4 (right), we show how two equivariance metrics from

Karras et al. [2021] compare with LEE, highlighting notable drawbacks. (1) Integer translation

equivariance completely ignores aliasing effects, which are captured by both LEE and fractional

translations. (2) Though fractional translation metrics (EQ-Tfrac) correctly capture aliasing, com-

paring the equivariance of layers with different resolutions (𝐶 × 𝐻 ×𝑊) requires an arbitrary

choice of normalization. This choice can lead to radically different outcomes in the perceived

contribution of each layer and is not required when using LEE, which decomposes across layers

as described in section 4.4. We provide a detailed description of the baselines in Appendix A.3.3.1.

4.6 Trends in learned eqivariance

Methodology We evaluate the Lie derivative of many popular classification models under

transformations including 2𝑑 translation, rotation, and shearing. We define continuous transfor-

mations on images using bilinear interpolation with reflection padding. In total, we evaluate 410

classification models, a collection comprising popular CNNs, vision transformers, and MLP-based

architectures [Wightman 2019]. Beyond diversity in architectures, there is also substantial di-

versity in model size, training recipe, and the amount of data used for training or pretraining.

This collection of models therefore covers many of the relevant axes of variance one is likely to

consider in designing a system for classification. We include an exhaustive list of models in the

Appendix A.3.3.2.

Eqivariance across architectures As shown in Figure 4.1 (right), the translation equivari-

ance error (Lie derivative norm) is strongly correlated with the ultimate test accuracy that the

model achieves. Surprisingly, despite convolutional architectures being motivated and designed

for their translation equivariance, we find no significant difference in the equivariance achieved by

convolutional architectures and the equivariance of their more flexible ViT and Mixer counterparts

60

70% 75% 80% 85% 90%

0.00

0.05

0.10

0.15 R2 = 0.588

Discrete Consistency Metric

70% 75% 80% 85% 90%

1e-4

2e-4

3e-4

4e-4

5e-4 R2 = 0.205

Group Sample Metric

Imagenet Test Accuracy

Eq
ui

va
ria

nc
e

Er
ro

r

Imagenet Test Accuracy

Eq
ui

va
ria

nc
e

Er
ro

r

70% 75% 80% 85% 90%

0.02

0.04

R2 = 0.360

Rotation

70% 75% 80% 85% 90%

0.02

0.04

0.06

0.08
R2 = 0.367

Shear

Imagenet Test Accuracy

Eq
ui

va
ria

nc
e

Er
ro

r

70% 75% 80% 85% 90%

0.05

0.10

0.15 R2 = 0.338

Translation

70% 75% 80% 85% 90%

0.02

0.04

R2 = 0.362

Rotation

70% 75% 80% 85% 90%

0.1

0.2

R2 = 0.004

Stretch

CNN ViT MixerCNN ViT Mixer

Imagenet Test Accuracy

Eq
ui

va
ria

nc
e

Er
ro

r

70% 75% 80% 85% 90%

0.05

0.10

0.15 R2 = 0.338

Translation

70% 75% 80% 85% 90%

0.02

0.04

R2 = 0.362

Rotation

70% 75% 80% 85% 90%

0.1

0.2

R2 = 0.004

Stretch

CNN ViT MixerCNN ViT Mixer

Imagenet Test Accuracy

Eq
ui

va
ria

nc
e

Er
ro

r

Figure 4.5: Equivariance metrics evaluated on the ImageNet test set. Left: Non-LEE equivariance metrics
display similar trends to Figure 4.1, despite using larger, multi-pixel transformations. Right: Norm of
rotation and shear Lie derivatives. Across all architectures, models with strong generalization become
more equivariant to many common affine transformations. Marker size indicates model size. Error bars
show one standard error over test set images used in the equivariance calculation.

when conditioning on test accuracy. This trend also extends to rotation and shearing transforma-

tions, which are common in data augmentation pipelines [Cubuk et al. 2020] (in Figure 4.5 (right)).

Additional transformation results included in Appendix A.3.3.4.

For comparison, we also evaluate the same set of models using two alternative equivariance

metrics: prediction consistency under discrete translation [Zhang 2019] and expected equivariance

under group samples [Finzi et al. 2020; Hutchinson et al. 2021], which is similar in spirit to EQ-Tfrac

[Karras et al. 2021] (exact calculations in Appendix A.3.3.3). Crucially, these metrics are slightly

less local than LEE, as they evaluate equivariance under transformations of up to 10 pixels at a time.

The fact that we obtain similar trends highlights LEE’s relevance beyond subpixel transformations.

Effects of Training and Scale In section 5.2 we described many architectural design choices

that have been used to improve the equivariance of vision models, for example Zhang [2019]’s

Blur-Pool low-pass filter. We now investigate how equivariance error can be reduced with non-

architectural design decisions, such as increasing model size, dataset size, or training method.

Surprisingly, we show that equivariance error can often be significantly reduced without any

changes in architecture.

In Figure 4.6, we show slices of the data from Figure 4.1 along a shared axis for equivariance

error. As a point of comparison, in Figure 4.6 (left), we show the impact of the Blur-Pool operation

61

80% 82%
0.04

0.06

0.08

0.10

Eq
ui

va
ria

nc
e

Er
ro

r
BlurPool

(ResNet-50)

Standard
BlurPool

75% 80% 85% 90%

Model Scale
(ViTs)

Parameters
3e+06
2e+08

75% 80% 85%

Model Scale
(EfficientNets)

Parameters
5e+06
2e+07

83% 84% 85%

Dataset Size
(ResMLP Big)

Imagenet 1k
Imagenet 22k

75% 80% 85%

Training Method
(ResNext-50)

CNN ViT Mixer

Torchvision
Improved Recipe
SSL Pretraining

Imagenet Test Accuracy

Figure 4.6: Case studies in decreasing translational equivariance error, numbered left-to-right. 1: Blur-Pool
[Zhang 2019], an architectural change to improve equivariance, decreases the equivariance error but by
less than can be accomplished by improving the training recipe or increasing the scale of model or dataset.
2-3: Increasing the number of parameters for a fixed model family (here ViTs [El-Nouby et al. 2021] and
EfficientNets [Tan and Le 2019a]). 4: Increasing the training dataset size for a ResMLP Big [Touvron
et al. 2021a] model. 5: Changing the training recipe for ResNeXt-50 [Xie et al. 2017] with improved
augmentations [Wightman et al. 2021] or SSL pretraining [Yalniz et al. 2019]. Error bars show one standard
error over images in the Lie derivative calculation.

discussed above on a ResNet-50 [Zhang 2019]. In the accompanying four plots, we show the effects

of increasing model scale (for both ViTs and CNNs), increasing dataset size, and finally different

training procedures. Although Zhang [2019]’s architectural adjustment does have a noticeable

effect, factors such as dataset size, model scale, and use of modern training methods, have a much

greater impact on learned equivariance.

As a prime example, in Figure 4.6 (right), we show a comparison of three training strategies

for ResNeXt-50 – an architecture almost identical to ResNet-50. We use Wightman et al. [2021]’s

pretrained model to illustrate the role of an improved training recipe and Mahajan et al. [2018b]’s

semi-supervised model as an example of scaling training data. Notably, for a fixed architecture

and model size, these changes lead to decreases in equivariance error on par with architectural

interventions (BlurPool). This result is surprising when we consider that Wightman et al. [2021]’s

improved training recipe benefits significantly from Mixup [Zhang et al. 2017] and CutMix [Yun

et al. 2019], which have no obvious connection to equivariance. Similarly, Mahajan et al. [2018b]’s

semi-supervised method has no explicit incentive for equivariance.

62

Eqivariance out of distribution From our analysis above, large models appear to learn

equivariances that rival architecture engineering in the classification setting. When learning

equivariances through data augmentation, however, there is no guarantee that the equivariance

will generalize to data that is far from the training distribution. Indeed, Engstrom et al. [2019]

shows that carefully chosen translations or rotations can be as devastating to model performance

as adversarial examples. We find that vision models do indeed have an equivariance gap: models

are less equivariant on test data than train, and this gap grows for OOD inputs as shown in Figure

4.7. Notably, however, architectural biases do not have a strong effect on the equivariance gap, as

both CNN and ViT models have comparable gaps for OOD inputs.

Model Test Error (%)

G-CNN [36] 2.28

H-NET [216] 1.69

ORN [234] 1.54

TI-Pooling [119] 1.2

Finetuned MAE 1.14

RotEqNet [140] 1.09

E(2)-CNN [207] 0.68

Table 4.1: Our finetuned MAE is compet-
itive with several architectures explicitly
engineered to encode rotation invariance
on RotMNIST, where rotation invariance is
clearly crucial to generalization.

Why aren’t CNNs more eqivariant than ViTs?

Given the deep historical connection between CNNs

and equivariance, the results in Figure 4.5 and Figure 4.7

might appear counterintuitive. ViTs, CNNs, and Mixer

have quite different inductive biases and therefore often

learn very different representations of data [Raghu et al.

2021]. Despite their differences, however, all of these ar-

chitectures are fundamentally constructed from similar

building blocks–such as convolutions, normalization lay-

ers, and non-linear activations which can all contribute to

aliasing and equivariance error. Given this shared foun-

dation, vision models with high capacity and effective

training recipes are more capable of fitting equivariances

already present in augmented training data.

Learning rotation eqivariance We finally consider the extent to which large-scale pretrain-

ing can match strong architectural priors in a case where equivariance is obviously desirable. We

63

70% 75% 80% 85% 90%
0.0

0.1

0.2

0.3
Eq

ui
va

ria
nc

e
Er

ro
r

Imagenet Train

70% 75% 80% 85% 90%

Imagenet Test

70% 75% 80% 85% 90%

CIFAR-100

70% 75% 80% 85% 90%

Histology

70% 75% 80% 85% 90%

Retinopathy

CNN ViT MixerCNN ViT Mixer Imagenet Test Accuracy

Figure 4.7: Models are less equivariant on test data and becoming decreasingly equivariant as the
data moves away from the training manifold. As examples of data with similar distributions, we show
equivariance error on the ImageNet train and test sets as well as CIFAR-100. As examples of out-of-
distribution data, we use two medical datasets (which often use Imagenet pretraining), one for Histology
[Kather et al. 2016] and one for Retinopathy [Kaggle and EyePacs 2015].

fine-tune a state-of-the-art vision transformer model pretrained with masked autoencoding [He

et al. 2021] for 100 epochs on rotated MNIST [Weiler and Cesa 2019b] (details in Appendix A.3.3.5).

This dataset, which contains MNIST digits rotated uniformly between -180 and 180 degrees, is a

common benchmark for papers that design equivariant architectures. In Table 4.1 we show the

test errors for many popular architectures with strict equivariance constrainets alongside the error

for our finetuned model. Surprisingly, the finetuned model achieves competitive test accuracy,

in this case a strong proxy for rotation invariance. Despite having relatively weak architectural

biases, transformers are capable of learning and generalizing on well on symmetric data.

4.7 Conclusion

We introduced a new metric for measuring equivariance which enables a nuanced investigation

of how architecture design and training procedures affect representations discovered by neural

networks. Using this metric we are able to pinpoint equivariance violation to individual layers,

finding that pointwise nonlinearities contribute substantially even in networks that have been

designed for equivariance. We argue that aliasing is the primary mechanism for how equivariance

to continuous transformations are broken, which we support theoretically and empirically. We

64

use our measure to study equivariance learned from data and augmentations, showing model

scale, data scale, or training recipe can have a greater effect on the ability to learn equivariances

than architecture.

Many of these results are contrary to the conventional wisdom. For example, transformers can

be more equivariant than convolutional neural networks after training, and can learn equivariances

needed to match the performance of specially designed architectures on benchmarks like rotated

MNIST, despite a lack of explicit architectural constraints. These results suggest we can be more

judicious in deciding when explicit interventions for equivariance are required, especially in many

real world problems where we only desire approximate and local equivariances.On the other

hand, explicit constraints will continue to have immense value when exact equivariances and

extrapolation are required — such as rotation invariance for molecules. Moreover, despite the

ability to learn equivariances on training data, we find that there is an equivariance gap on test

and OOD data which persists regardless of the model class. Thus other ways of combating aliasing

outside of architectural interventions may be the path forward for improving the equivariance

and invariance properties of models.

65

5 | Occam’s razor and Understanding

the Inductive Biases of Neural

Networks

While there has been progress in developing non-vacuous generalization bounds for deep neural

networks, these bounds tend to be uninformative about why deep learning works. In this chapter,

we develop a compression approach based on quantizing neural network parameters in a linear

subspace, profoundly improving on previous results to provide state-of-the-art generalization

bounds on a variety of tasks, including transfer learning. We use these tight bounds to better

understand the role of model size, equivariance, and the implicit biases of optimization, for

generalization in deep learning. Notably, we find large models can be compressed to a much

greater extent than previously known, encapsulating Occam’s razor. We also argue for data-

independent bounds in explaining generalization.

This chapter is adapted from the paper "PAC-Bayes Compression Bounds So Tight That They

Can Explain Generalization", which originally appeared at NeurIPS 2022 and is joint work with

Sanae Lotfi, Sanyam Kapoor, Andres Potap, Micah Goldblum, and Andrew Gordon Wilson.

66

5.1 Introduction

Despite many more parameters than the number of training datapoints, deep learning models

generalize extremely well and can even fit random labels [Zhang et al. 2021]. These observations

are not explained through classical statistical learning theory such as VC-dimension or Rademacher

complexity which focus on uniform convergence over the hypothesis class [Nagarajan and Kolter

2019b]. The PAC-Bayes framework, by contrast, provides a convenient way of constructing

generalization bounds where the generalization gap depends on the deep learning model found by

training rather than the hypothesis set as a whole. Using this framework, many different potential

explanations have been proposed drawing on properties of a deep learning model that are induced

by the training dataset, such as low spectral norm [Neyshabur et al. 2018], noise stability [Arora

et al. 2018b], flat minima [Hochreiter and Schmidhuber 1997], derandomization [Negrea et al.

2020], robustness, and compression [Arora et al. 2018b; Zhou et al. 2019].

In this work, we show that neural networks, when paired with structured training datasets,

are substantially more compressible than previously known. Constructing tighter generalization

bounds than have been previously achieved, we show that this compression alone is sufficient to

explain many generalization properties of neural networks.

In particular:

1. We develop a new approach for training compressed neural networks that adapt the com-

pressed size to the difficulty of the problem. We train in a random linear subspace of the

parameters [Li et al. 2018] and perform learned quantization. Consequently, we achieve

extremely low compressed sizes for neural networks at a given accuracy level, which is

essential for our tight bounds. (See Section 5.4).

2. Using a prior encoding Occam’s razor and our compression scheme, we construct the

best generalization bounds to date on image datasets, both with data-dependent and data-

67

independent priors. We also show how transfer learning improves compression and thus

our generalization bounds, explaining the practical performance benefits of pre-training.

(See Section 5.5).

3. PAC-Bayes bounds only constrain the adaptation of the prior to the posterior. For bounds

constructed with data-dependent priors, we show that the prior alone achieves performance

comparable to the generalization bound. Therefore we argue that bounds constructed

from data-independent priors are more informative for understanding generalization. (See

Section 5.5.2).

4. Through the lens of compressibility, we are able to help explain why deep learning models

generalize on structured datasets like CIFAR-10, but not when structure is broken such as by

shuffling the pixels or shuffling the labels. Similarly, we describe the benefits of equivariant

models, e.g. why CNNs outperform MLPs. Finally, we investigate double descent and

whether the implicit regularization of SGD is necessary for generalization. (See Section 5.6).

We emphasize that while we achieve state-of-the-art results in both data-dependent bounds

and data-independent bounds through our newly developed compression approach, our goal is to

leverage these tighter bounds to understand generalization in neural networks. Among others,

Figure 5.1 highlights some of our observations regarding (a) data-dependent bounds, (b) how our

method trades-off between data fit and model compression in relation to generalization, and (c)

the explanation of several deep learning phenomena through model compressibility using our

bounds.

All code to reproduce results is available here.

68

https://github.com/activatedgeek/tight-pac-bayes

0.2 0.4 0.6 0.8
Fraction of the data

15

20

25

30

35
Er

ro
r B

ou
nd

s
(%

)

Dziugaite et al. [19]

Perez-Ortiz et al. [57]

Perez-Ortiz et al. [57]

Dziugaite et al. [19]
Hoeffding Bound on
Data-Dependent Priors
Data-Dependent
PAC-Bayes Bounds

103 104

Subspace Dimension (d)

20

40

60

80

Cl
as

sif
ica

tio
n

Er
ro

r

0

1

2

3

4

Co
m

pr
es

se
d

Si
ze

 (K
B)

Train Error
KL
Bound

Transfer
Learning

Shuffle
Pixels

Rotation
Equivariance

0

20

40

60

80

Er
ro

r B
ou

nd

with
without

(a) Pitfalls of data-dependent bounds (b) Adaptive compression (c) Deep learning phenomena

Figure 5.1: The power of data-independent subspace compression bounds for explaining deep
learning phenomena. Bounds for CIFAR-10 except (c)-rotation, which is rotMNIST. (a)We show that the
simple Hoeffding bound computed only on the data-dependent prior and evaluated on the remainder of
the training data (essentially measuring validation loss) achieves error bounds that are competitive or even
better than data-dependent bounds obtained by previous works, showing that data-dependent PAC-Bayes
bounds do not explain generalization any further than the prior alone. Instead, data-independent bounds
are more informative for understanding generalization (see Section 5.5.2). (b) Training error, the KL term
(compressed model size measured in KB), and our PAC-Bayes bound as the subspace dimension is varied.
For a fixed network, our method provides an adaptive compression scheme that trades off compressed
size with training error, finding the optimal bound for a given model and dataset. (c) We compute our
data-independent bounds for model trained with and without : transfer learning, shuffling the pixels, and
the rotation-equivariance property. Our bounds identify the positive impact of transfer learning, how
breaking structure in the data by shuffling pixels hurts the model, and that rotationally equivariant models
improve generalization on rotated data. Each of these interventions impact the compressibility of the
models. See Section 5.6 for more details.

5.2 Related Work

Optimizing the PAC-Bayes Bound. Dziugaite and Roy [2017] obtained the first non-vacuous

generalization bounds for deep stochastic neural networks on binary MNIST. The authors con-

structed a relaxation of the Langford and Seeger [2001] bound and optimized it to find a posterior

distribution that covers a large volume of low-loss solutions around a local minimum obtained

using SGD. Rivasplata et al. [2019] further extended the idea by developing novel relaxations of

PAC-Bayes bounds based on Blundell et al. [2015].

Model Compression and PAC-Bayes Bounds. Noting the robustness of neural networks to

small perturbations [Hinton and Van Camp 1993; Hochreiter and Schmidhuber 1997; Langford

and Caruana 2001; Langford 2002; Keskar et al. 2017; Neyshabur et al. 2018; Chaudhari et al.

69

2017], Arora et al. [2018b] developed a compression-based approach that uses noise stability.

Additionally, they used the ability to reconstruct weight matrices with random projections to

study generalization of neural networks. Subsequently, Zhou et al. [2019] developed a PAC-Bayes

bound that uses the representation of a compressed model in bits, and added noise stability through

the use of Gaussian posteriors and Gaussian mixture priors. Furthermore, they achieved even

smaller model representations through pruning and quantization [Han et al. 2016; Cheng et al.

2018]. Our compression framing is similar to Zhou et al. [2019] but with key improvements. First,

we train in a lower dimensional subspace using intrinsic dimensionality [Li et al. 2018] and FiLM

subspaces [Perez et al. 2018] which proves to be more effective and adaptable than pruning. Second,

we develop a more aggressive quantization scheme with variable length code and quantization

aware training. Finally, we exploit the increased compression provided by transfer learning and

data-dependent priors.

Data-Dependent Priors. Dziugaite et al. [2021] demonstrated that for linear PAC-Bayes

bounds such as Thiemann et al. [2017], a tighter bound can be achieved by choosing the prior

distribution to be data-dependent, i.e., the prior is trained to concentrate around low loss regions

on held-out data. More precisely, the authors show that the optimal data-dependent prior is the

conditional expectation of the posterior given a subset of the training data. They approximate

this data-dependent prior by solving a variational problem over Gaussian distributions. They

evaluate the bounds for SGD-trained networks on data-dependent priors obtaining tight bounds

on MNIST, Fashion MNIST, and CIFAR-10. In a similar vein, Pérez-Ortiz et al. [2021] combine

data-dependent priors [Dziugaite et al. 2021] with the PAC-Bayes with Backprop (PBB) [Rivasplata

et al. 2019] to obtain state-of-the-art PAC-Bayes non-vacuous bounds for MNIST and CIFAR-10

using data-dependent priors.

Downstream Transferability. Ding et al. [2022] investigate different correlates of generaliza-

tion derived from PAC-Bayes bounds to predict the transferability of various upstream models;

however, because of this different aim they do not actually compute the full bounds.

70

Table 5.1: Non-vacuous PAC-Bayes bounds obtained on popular image classification datasets in
deep learning. ★ indicates bounds obtained using data-dependent priors (Section 5.5.2). ✗ indicates that
either the method does not support multi-class problems or that it is completely reliant on data-dependent
priors and therefore cannot result in data-independent bounds. Additionally, we add Binary MNIST for
reference to a benchmark used in earlier works.

Non-vacuous PAC-Bayes bounds (%)
Reference Binary MNIST MNIST FMNIST CIFAR-10 CIFAR-100 ImageNet

Dziugaite and Roy [2017] 16.1 ✗ ✗ ✗ ✗ ✗

Rivasplata et al. [2019] 2.2 ✗ ✗ ✗ ✗ ✗

Zhou et al. [2019] 46 91.6 100 100 96.5
Dziugaite et al. [2021] 11★ 38★ 23★ ✗ ✗

Pérez-Ortiz et al. [2021] 21.7/1.5★ 49.1 90.0/16.7★ 100 ✗

Our bounds 11.6/1.4★ 32.8/10.1★ 58.2/16.6★ 94.6/44.4★ 93.5/40.9★

Our focus is to achieve better bounds in order to better understand generalization in deep

neural networks. For example, we investigate the effects of transfer learning, equivariance, and

stochastic training on the bounds, and argue for the importance of data-independent bounds in

explaining generalization. We summarize improvements of our bounds relative to prior results in

Table 5.1.

5.3 A Primer on PAC-Bayes Bounds

PAC-Bayes bounds are fundamentally an expression of Occam’s razor: simpler descriptions of

the data generalize better. As an illustration, consider the classical generalization bound on a

finite hypothesis class. Let 𝑅(ℎ) = 1
𝑛

∑𝑛
𝑖=1 ℓ (ℎ (𝑥𝑖) , 𝑦𝑖) be the empirical risk of a hypothesis ℎ ∈ H ,

with |H | < ∞. Let ℓ be the 0-1 loss, and let 𝑅(ℎ) = E[𝑅(ℎ)] denote the population risk. With

probability at least 1 − 𝛿 , the population risk of hypothesis ℎ using 𝑛 data samples satisfies

𝑅(ℎ) ⩽ 𝑅(ℎ) +
√︂

log |H | + log(1/𝛿)
2𝑛

. (5.1)

71

In other words, the population risk is bounded by the empirical risk and a complexity term log |H |

which counts the number of bits needed to specify any hypothesis ℎ ∈ H .

But what if we don’t believe that each hypothesis is equally likely? If we consider a prior

distribution over the hypothesis class that concentrates around likely hypotheses, then we can

construct a variable length code that uses fewer bits to specify those hypotheses. Note that if 𝑃 is

a prior distribution overH , then any given hypothesis ℎ will take log2
1

𝑃 (ℎ) bits to represent when

using an optimal compression code for 𝑃 . This prior may result in a smaller complexity term as

long as the hypotheses that are consistent with the data are also likely under the prior, regardless

of the size of the hypothesis class.

Moreover, the number of bits required can be reduced from log2
1

𝑃 (ℎ) to KL(𝑄 ∥ 𝑃) by consid-

ering a distribution of “good” solutions 𝑄 . If we don’t care which element of 𝑄 we arrive at, we

can gain some bits back from this insensitivity (which could be used to code a separate message).

The average number of bits to code a sample from𝑄 using the prior 𝑃 is the cross entropy H(𝑄, 𝑃)

and we get H(𝑄) bits back from being agnostic about which sample ℎ ∼ 𝑄 to use, yielding the

KL-divergence between 𝑄 and 𝑃 : H(𝑄, 𝑃) − H(𝑄) = KL(𝑄 ∥ 𝑃).

With these improvements on the finite hypothesis bound — replacing log |H | with KL(𝑄 ∥ 𝑃),

and sampling a hypothesis ℎ ∈ H — we arrive (with minor bookkeeping) at the PAC-Bayes bound

introduced in McAllester [1999]. This last bound states that with probability at least 1 − 𝛿 ,

E
ℎ∼𝑄
[𝑅 (ℎ)] ⩽ E

ℎ∼𝑄
[𝑅 (ℎ)] +

√︂
KL(𝑄 ∥ 𝑃) + log(𝑛/𝛿) + 2

2𝑛 − 1
. (5.2)

Many refinements of (5.2) have been developed [Langford and Seeger 2001; Maurer 2004;

Catoni 2007; Thiemann et al. 2017] but retain the same character. That is, the lower the ratio

of the KL-divergence to the number of data points 𝑛, the lower the gap between empirical and

expected risk. In this work, we use the tighter Catoni [2007] variant of the PAC-Bayes bound (see

Appendix A.4.10 for details).

72

Universal Prior. Leveraging Occam’s razor, we can define a prior that explicitly penalizes

the minimum compressed length of the hypothesis, also known as the universal prior [Solomonoff

1964]: 𝑃 (ℎ) = 2−𝐾 (ℎ)/𝑍 , where 𝐾 is the prefix Kolmogorov complexity [Hutter et al. 2008] of ℎ

(the length of the shortest program that produces ℎ and also delimits itself), and 𝑍 ⩽ 1.1 Using a

point mass posterior on a single hypothesis ℎ∗, we get the following upper-bound

KL
(
1[ℎ=ℎ∗] ∥ 𝑃 (ℎ)

)
= log 1

𝑃 (ℎ∗) ⩽ 𝐾 (ℎ
∗) log 2 ⩽ 𝑙 (ℎ∗) log 2 + 2 log 𝑙 (ℎ∗),

where 𝑙 (ℎ) is the length of a given program that reproduces ℎ not including the delimiter. For

convenience, we can condition on using the same method for compression and decompression for

all elements of the prior. Lastly, we can improve the tightness of the previous PAC-Bayes bound

by reducing the compressed length 𝑙 (ℎ∗) of the hypothesis ℎ∗ that we found during training.

Model Compression. Model compression aims to find nearly equivalent models that can be

expressed in fewer bits either for deploying them in mobile devices or for improving their inference

time on specialized hardware [Cheng et al. 2017, 2018]. For computing PAC-Bayes generalization

bounds, however, we only care about the model size. Therefore, we can employ compression

methodswhichmay otherwise be unfavorable in practice due toworse computational requirements.

Pruning and quantization are among the most widely used methods for model compression. In

this work, we rely on quantization (Section 5.4.2) to achieving tighter generalization bounds.

5.4 Tighter Generalization Bounds via Adaptive Subspace

Compression

Training a neural network involves taking many gradient steps in a high-dimensional space R𝐷 .

Although 𝐷 may be large, the loss landscape has been found to be simpler than typically believed
1The universal prior similar to the discrete hypothesis prior from Zhou et al. [2019] but setting𝑚(ℎ) = 2−2 log2 𝑙 (ℎ)

rather than the flat𝑚(ℎ) = 2−72.

73

[Dauphin et al. 2014; Goodfellow and Vinyals 2015; Garipov et al. 2018]. Analogous to the notion

of intrinsic dimensionality more generally, Li et al. [2018] searched for the lowest dimensional

subspace in which the network can be trained and still fit the training data. The weights of a

neural network 𝜃 ∈ R𝐷 are parametrized in terms of an initialization 𝜃0 and a projection𝑤 ∈ R𝑑

to a lower dimensional subspace through a fixed matrix 𝑃 ∈ R𝐷×𝑑 ,

𝜃 = 𝜃0 + 𝑃𝑤. (5.3)

To facilitate favorable conditioning during optimization, 𝑃 is chosen to be approximately or-

thonormal 𝑃⊤𝑃 ≈ 𝐼𝑑×𝑑 . For scalability, Li et al. [2018] use random normal matrices of the form

𝑃 ∼ N (0, 1)𝐷×𝑑 /
√
𝐷 , and their sparse approximations [Li et al. 2006; Le et al. 2013].

In its original form, intrinsic dimensionality (ID) is only used as a scientific tool to measure

the complexity of the learning task. Unlike methods like pruning, intrinsic dimension [Li et al.

2018] scales with complexity of the task — more complex tasks require a larger intrinsic dimen-

sion. Subsequently, we find that ID combined with quantization can serve as an effective model

compression method. We note that ideas similar to the intrinsic dimensionality of a model have

been explored in the context of model compression for estimating bounds [Arora et al. 2018b].

For our work, the ability to find the intrinsic dimension 𝑑 ≪ 𝐷 has profound implications for the

compressibility of the models, and therefore our ability to construct generalization bounds. As

demonstrated by Zhou et al. [2019], the compressibility of a neural network has a direct connection

to generalization and allows us to compute non-vacuous PAC-Bayes bounds for transfer learning.

Resting upon ID, our key building blocks to achieve tight generalization bounds are composed

of (i) a new scalable method to train an intrinsic dimensionality neural network parameterized by

(5.3) (Section 5.4.1), and (ii) a new approach to simultaneously train both the quantized neural

network weights and the quantization levels for maximum compression (Section 5.4.2). Our

complete method is summarized in Algorithm 2.

74

0.0 0.5 1.0 1.5
d ×104

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
Ac

cu
ra

cy

Sparse
Dense
FiLM
Kronecker Sum
Kronecker Product

0.0 0.5 1.0 1.5
d ×104

0

20

40

60

80

Ru
nt

im
e

(G
PU

 H
ou

rs
) Sparse

Dense
FiLM
Kronecker Sum
Kronecker Product

0 1 2 3
d ×104

0.3

0.4

0.5

0.6

0.7

0.8

Tr
ai

n
Ac

cu
ra

cy

FiLM
Kronecker Product
FiLM + Kron

Figure 5.2: Effective and scalable projection operators. (Left) Different projection operators 𝑃
(Section 5.4.1) used for transfer learning from Imagenet to CIFAR-10 on a ResNet-34 across different
subspace dimensions 𝑑 . Kronecker product, Sparse, and Dense perform almost identically (Center)
Kronecker product runs with substantially reduced the runtime cost compared to the Sparse or Fastfood
matrices used by Li et al. [2018]. (Right) Training from scratch on CIFAR-10. The FiLM projector alone
is unable to fit the data when training from scratch, and instead a sum of FiLM and Kronecker Product
projectors perform the best.

5.4.1 Finding Better Random Subspaces

To further improve upon the scalability and effectiveness of the projections 𝑃 used by Li et al.

[2018], we introduce three novel projector constructions.

Kronecker Sum Projector. Using the Kronecker product ⊗, we construct the matrix

𝑃⊕ = (1 ⊗ 𝑅1 + 𝑅2 ⊗ 1)/
√

2𝐷 where 𝑅1, 𝑅2 ∼ N(0, 1)
√
𝐷×𝑑 and 1 is the vector of all ones in R

√
𝐷 .

Noting that 𝑅1 ⊥⊥ 𝑅2 and that the entries are standard normal, 𝑃⊤⊕𝑃⊕ = 𝐼𝑑×𝑑 + O(1/
√
𝐷).

Kronecker Product Projector. Alternatively, we form the matrix 𝑃⊗ = 𝑄1 ⊗ 𝑄2/
√
𝐷

with the smaller 𝑄1, 𝑄2 ∼ N(0, 1)
√
𝐷×
√
𝑑 , and again this matrix is approximately orthogonal:

𝑃⊤⊗𝑃⊗ = (𝑄⊤1 𝑄1/
√
𝐷) ⊗ (𝑄⊤2 𝑄2/

√
𝐷) = 𝐼 ⊗ 𝐼 +𝑂 (𝐷−1/4) = 𝐼𝑑×𝑑 +𝑂 (𝐷−1/4). 2

The matrix vector multiply𝑤 ↦→ 𝑃𝑤 for both of the above projectors can be performed in time

𝑂 (𝑑
√
𝐷) and 𝑂 (

√
𝑑𝐷) respectively, rather than the 𝑂 (𝑑𝐷) that is required by the dense random

matrix. Figure 5.2 demonstrates the runtime speedup and training performance improvement in

comparison to the methods using by Li et al. [2018]. Notably, the Kronecker-structured projections
2As neither 𝐷 nor 𝑑 is typically a perfect square, we concatenate a dense random matrix to pad out the difference

between 𝐷 , 𝑑 , and a perfect square. As (
√
𝐷 + 1)2 = 𝐷 + 2

√
𝐷 + 1, we have that the size of this padding is at most√

𝐷 ×
√
𝑑 , so it does not increase the asymptotic cost of performing the matrix vector multiplies.

75

retain the fidelity of the dense random matrix while being orders of magnitude faster than the

alternative operators when scaling to larger values of 𝑑 . In other words, the Kronecker-structured

projectors are as good as the dense projectors for generating random linear subspaces of a given

size, but are much scalable.

FiLM projector. BatchNorm parameters have an disproportionate effect on the downstream

task performance relative to their size. This observation has been used in Featurewise independent

Linear Modulation (FiLM) [Perez et al. 2018; Dumoulin et al. 2018] for efficient control of neural

networks in many different settings. Several authors have explored performing fine-tuning for

transfer learning solely on these parameters and the final linear layer [Kanavati and Tsuneki

2021]. Drawing on these observations, we construct a projection matrix 𝑃FiLM where only columns

corresponding with BatchNorm or head parameters are non-zero and sampled from N(0, 1)𝑑/
√
𝐷 ,

which we also show in Figure 5.2. While the FiLM projector is highly effective for transfer learning

(shown in Figure 5.2 left), the performance saturates quickly when training from scratch. For

this reason, when training from scratch we employ the sum 𝑃FiLM+⊗ = (𝑃FiLM + 𝑃⊗)/
√

2, which

outperforms the two projectors individually as shown in Figure 5.2 right.

5.4.2 Quantization Scheme and Training

Through quantization, the average number of bits used per parameter can be substantially reduced.

When optimizing purely for model size rather than efficiency on specialized hardware, we can

choose non-linearly spaced quantization levels which are learned, and use variable length coding

schemes as shown in Han et al. [2016]. Additionally, the straight through estimator has been

central to learning weights in binary neural networks [Hubara et al. 2016]. We combine these

ideas to simultaneously optimize the quantized weights and the quantization levels for maximum

compression.

Given the full precision weights 𝑤 = [𝑤1, . . . ,𝑤𝑑] ∈ R𝑑 and a vector 𝑐 = [𝑐1, . . . 𝑐𝐿] ∈ R𝐿 of

𝐿 quantization levels, we construct the quantized vector �̂� = [�̂�1, . . . , �̂�𝑑] such that �̂�𝑖 = 𝑐𝑞(𝑖)

76

where 𝑞(𝑖) =𝑘 |𝑤𝑖 − 𝑐𝑘 |. The quantization levels 𝑐 are learned alongside𝑤 , where the gradients

are defined using the straight through estimator [Bengio et al. 2013; Yin et al. 2019]:

𝜕�̂�𝑖

𝜕𝑤 𝑗

= 𝛿𝑖 𝑗 and
𝜕�̂�𝑖

𝜕𝑐𝑘
= 1[𝑞(𝑖)=𝑘] (5.4)

We initialize 𝑐 with uniform spacing between the minimum and maximum values in parameter

vector𝑤 or k-means [Choi et al. 2017]. To further compress the network, we use a variable length

code in the form of arithmetic coding [MacKay and Mac Kay 2003], which takes advantage of the

fact that certain quantization levels are more likely than others. Given probabilities 𝑝𝑘 (empirical

fractions) for cluster 𝑐𝑘 , arithmetic coding of𝑤 takes at most ⌈𝑑 × H(𝑝)⌉ + 2 bits, where H(𝑝) is

the entropy H(𝑝) = −∑
𝑘 𝑝𝑘 log2 𝑝𝑘 . For a small number of quantization levels, arithmetic coding

yields better compression than Huffman coding.

In summary, we use ⌈𝑑 × H(𝑝)⌉ + 2 bits for coding the quantized weights �̂� , 16𝐿 bits for

the codebook 𝑐 (represented in half precision), and additional 𝐿 ×
⌈
log2 𝑑

⌉
bits for representing

the probabilities 𝑝𝑘 , arriving at 𝑙 (𝑤) ⩽ ⌈𝑑 × H(𝑝)⌉ + 𝐿 × (16 +
⌈
log2 𝑑

⌉
) + 2. As we show in

Appendix A.4.2, we optimize over the subspace dimension 𝑑 and the number of quantization levels

𝐿 and any other hyperparameters, by including them in the compressed description of our model,

contributing only a few extra bits.

5.4.3 Transfer Learning

For transfer learning, we replace 𝜃0 with a learned initialization 𝜃D that is found using the

pretraining task and data D. With the ID compression, the universal prior 𝑃 (ℎ | 𝜃D) ∝ 2−𝐾 (ℎ |𝜃D)

will place higher likelihood on solutions 𝜃 that are close to the pre-training solution 𝜃D .

77

Algorithm 2 Compute PAC-Bayes Bound.
0: Inputs: Neural network 𝑓𝜃 , Training dataset {𝑥𝑖, 𝑦𝑖}𝑛𝑖=1, Clusters 𝐿, Intrinsic dimension 𝑑 ,

Confidence 1 − 𝛿 , and Prior distribution 𝑃 .
0: function COMPUTE_BOUND(𝑓𝜃 , 𝐿, 𝑑, (𝑥𝑖, 𝑦𝑖)𝑛𝑖=1 , 𝛿, 𝑃)
0: 𝑤 ← TRAIN_ID(𝑓𝜃 , 𝑑 , (𝑥𝑖, 𝑦𝑖)𝑛𝑖=1) {(Section 5.4.1)}
0: �̂� ← TRAIN_QUANTIZE(𝑤 , 𝐿, (𝑥𝑖, 𝑦𝑖)𝑛𝑖=1)
0: Compute quantized train error 𝑅 (�̂�).
0: KL (𝑄, 𝑃) ← GET_KL(�̂�, 𝑃) {(Section 5.3)}
0: return GET_CATONI_BOUND(𝑅 (�̂�), KL (𝑄, 𝑃), 𝛿 , 𝑛) {(Section 5.3)}
0: end function
0: function TRAIN_QUANTIZE(𝑤, 𝐿, (𝑥𝑖, 𝑦𝑖)𝑛𝑖=1) {(Section 5.4.2)}
0: Initialize 𝑐 ← GET_CLUSTERS(𝑤, 𝐿) for 𝑖 = 1 to quant_epochs do
0:
𝑐 ← 𝑐 − 𝜌∇𝑐L (𝑤, 𝑐) and𝑤 ← 𝑤 − 𝜌∇𝑤L (𝑤, 𝑐)

0:
0: return �̂�
0: end function
0: function GET_KL((�̂�, 𝑃))
0: 𝑐 , count← GET_UNIQUE_VALS_COUNTS(�̂�)
0: message_size← DO_ARITHMETIC_ENCODING(�̂� , 𝑐 , count)
0: message_size← message_size + hyperparam_search {(Appendix A.4.2)}
0: return message_size + 2 × log (message_size)
0: end function=0

5.5 Empirical Non-Vacuous Bounds

Combining the training in structured random subspaces with our choice of learned quantization,

we produce extremely compressed but high performing models. Using the universal prior, we

bound the generalization error of these models and optimize over the degree of compression via the

subspace dimension and other hyperparameters as summarized in Algorithm 2. We additionally

describe hyperparameters, architecture specifications for each experiment, and other experimental

details in Appendix A.4.5. In the following subsections, we apply our method to generate strong

generalization bounds in the data-independent, data-dependent, and transfer learning settings.

78

Table 5.2: Our PAC-Bayesian subspace compression bounds compared to state-of-the-art (SOTA)
bounds. All results are with 95% confidence, i.e. 𝛿 = .05. The sign † refers to data-independent SOTA
numbers that we computed using [Pérez-Ortiz et al. 2021], which we run on the additional datasets.

Dataset Data-independent priors Data-dependent priors
Err. Bound (%) SOTA (%) Err. Bound (%) SOTA (%)

MNIST 11.6 21.7 [Pérez-Ortiz et al. 2021] 1.4 1.5 [Pérez-Ortiz et al. 2021]
+ SVHN Transfer 9.0 16.1†

FashionMNIST 32.8 46.5† 10.1 38 [Dziugaite et al. 2021]
+ CIFAR-10 Transfer 28.2 30.1†

CIFAR-10 58.2 89.9† 16.6 16.7 [Pérez-Ortiz et al. 2021]
+ ImageNet Transfer 35.1 54.2†

CIFAR-100 94.6 100† 44.4 –
+ ImageNet Transfer 81.3 98.1†

ImageNet 93.5 96.5 [Zhou et al. 2019] 40.9 –

5.5.1 Non-Vacuous PAC-Bayes Bounds

We present our bounds for the data-independent prior in Table 5.2. We derive the first non-vacuous

bounds on FashionMNIST, CIFAR-10, and CIFAR-100 without data-dependent priors. These results

have particular significance, as we argue in Section 5.5.2 that using data-dependent priors are not

explanatory about the learning process. In particular, we improve over the compression bound

results obtained by Zhou et al. [2019] on MNIST from 46% to 11.55% and on ImageNet from 96.5%

to 94.1%. In terms of compression, we dramatically improve the rates as we reduce the compressed

size for the best MNIST bound by 94% bringing it down from 6.23 KB to 0.38KB with LeNet5 and,

on ImageNet, by 87% bringing it down from 358 KB to 46.3 KB with MobileViT. Since we perform

transfer learning with an ImageNet-trained checkpoint, we omit transfer learning experiments on

the ImageNet (downstream) dataset. The tightness of our SOTA subspace compression bounds

allows us to improve the understanding of several deep learning phenomena as discussed in

Section 5.6. See ?? A.4.5.1 for model architectures and Appendix A.4.1 for additional results.

5.5.2 Data-Dependent PAC-Bayes Bounds

So far, we demonstrated the strength of our bounds on data-independent priors, where we con-

siderably improve on the state-of-the-art. However, a number of recent papers have considered

79

data-dependent priors as a way of achieving tighter bounds [Pérez-Ortiz et al. 2021; Dziugaite

et al. 2021]. In this setup, the training data D = {(𝑥𝑖, 𝑦𝑖)}𝑛𝑖=1 is partitioned into two parts, D𝑎

and D𝑏 , with length 𝑛 −𝑚 and𝑚. The first dataset is used to construct a data-dependent prior

𝑃 (ℎ | D𝑎), and then the bound is formed over the remaining part of the process: the adaptation

of the prior 𝑃 (ℎ | D𝑎) to the posterior 𝑄 (ℎ) using the data D𝑏 . The empirical risk is computed

over D𝑏 only. Intuitively, using dataset D𝑎 it is possible to construct a much tighter prior over

the possible neural network solutions. In our setting, similar to transfer learning, we use the

prior 𝑃D𝑎
(𝜃) = 2−𝐾 (𝜃 |𝜃D𝑎)/𝑍 where for compression we use 𝜃 = 𝜃D𝑎

+ 𝑃𝑤 , and 𝜃D𝑎
is the solution

found by training the model (without random projections) on the data D𝑎 rather than initializing

randomly. With these data-dependent priors, we achieve the best bounds in Table 5.2.

However, our adaptive approach exposes a significant downside of data-dependent priors.

To the extent that PAC-Bayes bounds can be used for explanation, data-dependent bounds only

provide insights into the procedure used to adapt the prior 𝑃D𝑎
(𝜃) to the posterior 𝑄 using D𝑏 :

any learning that is done in finding 𝑃D𝑎
(𝜃) is not constrained or explained by the bound. Given

the ability to adapt the size of the KL to the difficulty of the problem, it is possible to squeeze all

of the learning into 𝑃D𝑎
(𝜃) and none in this adaption to 𝑄 . This phenomenon happens as the

KL → 0, which we find happens empirically (or very nearly so) across splits of the data, and

especially when 𝑛 −𝑚 is large. Setting 𝑄 (𝜃) = 1[𝜃=𝜃D𝑎] , the KL has only the contribution from the

optimization over 𝑑 : KL(𝑄 | |𝑃D𝑎
) ⩽ log𝐷 . We find that the bound is nothing more than a variant

of the simple Hoeffding bound where D𝑏 is the validation set 𝑅
(
𝜃D𝑎

)
⩽ 𝑅D𝑏

(
𝜃D𝑎

)
+

√︃
log(𝐷𝑚/𝛿)+2

2𝑚−1 .

We can see this phenomenon in Figure 5.1(a) where we compare existing data-dependent

bounds to the simple Hoeffding bound applied directly to the data-dependent prior which was

trained on only a small fraction of the data. We can consider the Hoeffding bound as the simplest

data-dependent bound without any fine-tuning so that the prior, a single pre-trained checkpoint,

is directly evaluated on held-out validation data with no KL-divergence term. If another data-

dependent bound cannot achieve significantly stronger guarantees than the prior Hoeffding bound,

80

then it only explains that neural networks generalize because the priors already have low validation

error which is no explanation for generalization at all. Indeed, we see in Figure 5.1 that the strength

of existing data-dependent bounds relies almost entirely on the a priori properties of the data-

dependent prior rather than constraining the actual learning process through compressibility.

Similarly, from a minimum description length (MDL) perspective, data-independent bounds can

be used to provide a lossless compression of the training data, whereas data-dependent bounds

cannot (see Appendix A.4.8).

We also note that with data-dependent priors, optimization over the subspace dimension

selects very low dimensionality, even if the data does not have low intrinsic dimension. Because

most of the data fitting is moved into fitting the prior, the bound selects a low complexity solution

with respect to the prior without hurting data fit by choosing a low subspace dimensionality

(Appendix A.4.4).

By contrast, data-independent bounds explain generalization for the entirety of the learning

process. Similarly, our transfer learning bounds meaningfully constrain what happens in the

fine-tuning on the downstream task, but they do not constrain the prior determined from the

upstream task.

5.5.3 Non-Vacuous PAC-Bayes Bounds for Transfer Learning

By directly interpreting PAC-Bayes bounds through the lens of compression, we immediately

see the benefits of using an upstream dataset for transfer learning. Transfer learning allows

us to constrain the prior 𝑃 (𝜃 | 𝜃D𝑎
) around parameters consistent with the upstream dataset

D𝑎 , reducing the KL-divergence between the prior and the posterior and leading to even tighter

bounds as we show in Table 5.2. Our tighter data-independent transfer learning bounds provide a

theoretical certification that transfer learning can improve generalization. Our PAC-Bayes transfer

learning approach also indicates that transfer learning can boost generalization whenever codings

optimized on a pre-training task are more efficient for encoding a downstream posterior than an a

81

priori guess made before seeing data. By contrast, downstream tasks which greatly differ from the

upstream task may only be consistent with models that are not compressible under the learned

prior, a scenario that describes negative transfer. See Appendix A.4.3 for more details.

5.6 Understanding Generalization through PAC-Bayes

Bounds

The classical viewpoint of uniform convergence focuses on properties of the hypothesis class as a

whole, such as its size. In contrast, PAC-Bayes shows that the ability to generalize is not merely

a result of the hypothesis class but also a result of the particular dataset and the characteristics

of the individual functions in the hypothesis class. After all, many elements of our hypothesis

class are not compressible, yet in order to guarantee generalization, we choose the ones that are.

Real datasets actually contain a tremendous amount of structure, or else we could not learn from

them as famously argued by Hume [1978] and No Free Lunch theorems [Wolpert and Macready

1997; Giraud-Carrier and Provost 2005]. This high degree of structure in real-world datasets is

reflected in the compressibility of the functions (i.e. neural networks) we find in our hypothesis

class which fit them.

In this section, we examine exactly how dataset structure manifests in compressible models

by applying our generalization bounds, and we see what happens when this structure is broken,

for example by shuffling pixels or fitting random labels. Corrupting the dataset degrades both

compressibility and generalization.

MLPs vs CNNs. It is well known that convolutional neural networks (CNNs) generalize

much better than standard multilayer perceptrons (MLPs) with alternating fully-connected layers

and activation functions on image classification problems, even when controlling for the number

of parameters. In our generalization bounds, this is reflected in the improved compressibility of

CNNs when compared to MLPs. In Figure 5.3 (left), we see how on CIFAR-10 a we are able to

82

0 1 2 3
×104

60
70
80
90

100

Er
r.

Bo
un

d
(%

)

Standard

0 1 2 3
×104

Shuffled Pixels

0 1 2 3
×104

Shuffled Labels

CNN
MLP

Subspace Dimension d

Figure 5.3: Breaking structure in the data and the model. Our PAC-Bayes bound computed using
various subspace dimensions for a fixed size CNN and MLP, both with 500k parameters. We train on (left)
CIFAR-10, (center) CIFAR-10 with shuffled pixels, (right) CIFAR-10 with shuffled labels. Structure in the
dataset induces structure in the model. As structure is removed from the dataset, models which fit the
data become much less compressible, hence generalize worse.

find a lower description length for a CNN than an MLP with the same number of parameters. See

?? A.4.5.4 for experimental details.

Shuffled Pixels. However, when the image structure is broken by shuffling the pixels,

we find that CNNs are no better at generalizing than MLPs. For this dataset, CNNs become

substantially less compressible and hence our bounds show them generalizing worse than MLPs,

see Figure 5.3 (center). MLPs do not suffer when this structure is broken since they never used it

in the first place.

Shuffled Labels. When the structure of the dataset is entirely broken by shuffling the

labels, the compressibility of the models (both for CNNs and MLPs) which fit the random labels

is lost. Regardless of the subspace dimension used, our generalization bounds are all at 100%

error as shown in Figure 5.3 (right). It is not possible to fit the training data using low subspace

dimensions, and when using a large enough dimension to fit the data, the compressed size of the

model is larger than the training data and hence the generalization bounds are vacuous.

Equivariance. Designing models which are equivariant to certain symmetry transforma-

tions has been a guiding principle for the development of data-efficient neural networks in many

domains [Cohen and Welling 2016a; Cohen et al. 2018b; Thomas et al. 2018; Weiler and Cesa

2019a; Finzi et al. 2020; Jumper et al. 2021]. While intuitively it is clear that respecting dataset

83

symmetries severely improves generalization, relatively little has been proven for neural networks

[Lyle et al. 2020; Elesedy and Zaidi 2021; Zhu et al. 2021; Bietti et al. 2021; Elesedy 2022]. We

compress and evaluate rotationally equivariant (𝐶8) and non-equivariant Wide ResNets [Weiler

and Cesa 2019a; Zagoruyko and Komodakis 2016] trained on MNIST and a rotated version of

MNIST. As shown in Figure A.5, the rotationally equivariant models are more compressible and

provably generalize better than their non-equivariant counterparts when paired with a dataset

that also has the rotational symmetry. See Appendix A.4.6 for further details.

Is Stochasticity Necessary for Generalization? It is widely hypothesized that the implicit

biases of SGD help to find solutions which generalize better. For example, Arora et al. [2018a] argue

that there is no regularizer that replicates the benefits of gradient noise. Wu et al. [2020], Smith

et al. [2020], and Li et al. [2021] advocate that gradient noise is necessary to achieve state-of-the-art

performance. In comparison, recent work by Geiping et al. [2022] shows that full-batch gradient

descent can match state-of-the-art performance, and Izmailov et al. [2021] shows that full-batch

Hamiltonian Monte Carlo sampling generalizes significantly better than mini-batch MCMC and

stochastic optimization.

We train ResNet-18 and LeNet5 models on CIFAR-10 and MNIST, respectively, using full-batch

and SGDwith different intrinsic dimensionalities. We provide the training details in Appendix A.4.7.

For MNIST with LeNet5, the best generalization bounds that we obtain are 11.55% and 11.20% using

stochastic gradient descent (SGD) and full-batch training respectively. The best generalization

bounds that we obtain for CIFAR-10 with ResNet-18 are 74.68% and 75.3% using SGD and full-

batch training respectively. We also extend this analysis to SVHN to MNIST transfer learning

with LeNet5 and obtain PAC-Bayes bounds of 9.0% and 8.7% using SGD and full-batch training

respectively. These close theoretical guarantees on the generalization error for both SGD and

full-batch training suggest that while the implicit biases of SGD may be helpful, they are not at all

necessary for understanding why neural networks generalize well (see Appendix A.4.7).

Double Descent. Our bounds are also tight enough to predict the double descent phe-

84

nomenon noted in Nakkiran et al. [2020]. See Appendix A.4.9 for a depiction of these experiments

and a discussion of their significance.

5.7 Discussion

In this work, we constructed a new method for compressing deep learning models that is highly

adaptive to the model and to the training dataset. Following Occam’s prior, which considers

shorter compressed length models to be more likely, we construct state-of-the-art generalization

bounds across a variety of settings. Through our compression bounds, we show how generalization

relates to the structure in the dataset and in the model, and we are able to explain aspects of neural

network generalization for natural image datasets, shuffled pixels, shuffled labels, equivariant

models, and stochastic training.

Limitations. Despite the power of our compression scheme and the ability of our bounds

to faithfully describe the generalization properties of many modeling decisions and phenomena,

we are scratching the surface of explaining generalization. Our compression bounds prefer models

with a smaller number of parameters as shown in Appendix A.4.8, instead of larger models which

actually tend to generalize better. While we achieved better model compression than previous

works, it is unlikely that we are close to theoretical limits. Maybe through nonlinear parameter

compression schemes we might find that larger deep learning models are more compressible than

smaller models. Moreover, it is unclear how to relate the bounds of the compressed models to their

uncompressed counterparts, perhaps leveraging ideas from Nagarajan and Kolter [2019a] and

others investigating this question. Additionally, while our bounds show that the compressibility

of our models implies generalization, we make no claims about the reverse direction. However,

we believe that model compression and Occam’s razor have yet untapped explanatory power in

deep learning.

85

6 | Conclusion

In conclusion, this thesis has advanced the understanding and application of mathematical induc-

tive biases in the context of deep learning models, by developing novel methods for constructing

equivariant models, and investigating the role of equivariance and other inductive biases in learn-

ing and generalization. The four chapters of this thesis present a comprehensive exploration of

the interplay between equivariance, model construction, priors, and generalization, opening new

avenues for research and practical applications in the field of machine learning.

Chapter 1 introduced EMLP, a general construction for equivariant linear layers that en-

compasses a wide variety of matrix groups and representations. This innovative approach has

demonstrated consistently improved generalization in problems involving symmetry, such as

Lorentz invariant particle scattering and dynamical systems. While there exists a tradeoff between

generality and specialized implementation, EMLP shows great promise in reducing experimenta-

tion costs and fostering the development of new methods for using equivariant models on diverse

domains. Future research may focus on overcoming the limitations in training speed and model

size, allowing for even more versatile applications of this approach.

Chapter 2 presented RPP, a method for converting restriction priors, such as equivariance

constraints, into flexible models that are biased towards structure but not constrained by it.

RPP models have shown superior performance in various settings, particularly in reinforcement

learning where state and action spaces are often messy, with only approximate symmetries. This

work encourages the development of more expressive priors for neural networks, which can better

86

capture high-level assumptions and accommodate the complexities of data, even when they do

not match our expectations. The results from this chapter suggest that future research should

focus on designing better techniques for enforcing high-level properties and incorporating prior

knowledge more effectively.

Chapter 3 introduced a new metric for measuring equivariance, enabling a nuanced investiga-

tion of how architectural design and training procedures affect the representations discovered

by neural networks. The findings of this chapter challenge conventional wisdom, highlighting

that factors such as model scale, data scale, and training recipe can play a more significant role in

learning equivariances than architecture. These results have important implications for the design

and evaluation of neural networks, highlighting the impact of aliasing in symmetry breaking, the

existence of an equivariance gap on out of distribution data, and highlighting elements outside of

model construction that can help ameleriorate these factors through learning. Future research

should explore alternative ways of combating aliasing to improve equivariance and smoothness

properties in such models.

Finally, Chapter 4 constructed a new method for compressing deep learning models, proving

state-of-the-art generalization bounds that adapt to both the model and the training dataset.

This work has illuminated the relationships between generalization, dataset structure, and model

structure, explaining aspects of neural network generalization across various settings through the

lens of the Occam’s razor prior. With this approach we are able to prove generalization bounds

showing the benefits of equivariance when the data and model structure are aligned. The results

of this chapter underline the ways in which the inductive biases of the model, the latent structure

in the data, and the induced generalization properties interrelate.

In summary, this thesis has made significant strides in broadening the scope and automation

of equivariant model construction, uncovering the role of inductive biases in learning and gener-

alization, and developing new machine learning models for scientific applications. By building on

the foundations established in this work, future research can further exploit the power of math-

87

ematical inductive biases, enabling the development of more intelligent, efficient, and effective

deep learning models that reflect our prior knowledge and better understand the complex patterns

underlying real-world data.

88

A | Appendices

A.1 Appendix for General and Automated Eqivariant

Model Construction with Eqivariant-MLP

A.1.1 Overview

In subsection A.1.2 we prove that Equation 2.4 and Equation 2.5 are necessary and sufficient

conditions to satisfy the symmetry constraint. In subsection A.1.3 we prove that the simple iterative

MVM method for finding the nullspace converges to the true nullspace with an exponential rate,

and we derive the complexity upper bounds for various symmetry groups and representations. In

subsection A.1.4 we show that using gated nonlinearities or Norm-ReLUs alone are not sufficient

for universality. In subsection A.1.5 we detail the various groups we implement and calculate the

equivariant subspaces for different tensor representations. In subsection A.1.6 we detail the steps

necessary to extend our implementation to new groups and representations. subsection A.1.7

details some additional rules by which the solutions for group products can be sped up. Finally,

subsection A.1.9 and subsection A.1.10 describe training hyperparameters and how the datasets

were constructed.

89

A.1.2 Necessary and Sufficient Conditions for Eqivariance

Theorem A.1. Given a (real) Lie group 𝐺 with a finite number of connected components, and a

representation 𝜌 acting on vector space 𝑉 , the symmetry constraint

∀𝑔 ∈ 𝐺 : 𝜌 (𝑔)𝑣 = 𝑣 (A.1)

for 𝑣 ∈ 𝑉 is satisfied if and only if

∀𝑖 = 1, .., 𝐷 : 𝑑𝜌 (𝐴𝑖)𝑣 = 0, (A.2)

∀ℓ = 1, ..., 𝑀 : (𝜌 (ℎℓ) − 𝐼)𝑣 = 0, (A.3)

where {𝐴𝑖}𝐷𝑖=1 are 𝐷 basis vectors for the 𝐷 dimensional Lie Algebra 𝔤 with induced representation

𝑑𝜌 , and for some finite collection {ℎℓ }𝑀ℓ=1 of discrete generators.

Proof: As shown in subsection A.1.8, elements of a (real) Lie group can be written as 𝑔 =

exp (∑𝑖 𝛼𝑖𝐴𝑖)Π𝑖ℎ𝑘𝑖 for some collection of real valued coefficients 𝛼𝑖 ∈ R and discrete coefficients

𝑘𝑖 ∈ [−𝑀, ..., 𝑀] which index the 𝑀 discrete generators (and their inverses). Note that 𝑀 is

upper bounded𝑀 ⩽ (𝐷 + 1) + nc(𝐺), by the sum of the dimension and the number of connected

components of 𝐺 and is often much smaller as shown by the examples in subsection A.1.5. For

subgroups of 𝑆𝑛 for example,𝑀 ⩽ 𝑛 [Guralnick 1989]. Discrete groups are included as a special

case of Lie groups with 𝐷 = 0. The forward and backward directions of the proof are shown below.

Necessary: Assume ∀𝑔 ∈ 𝐺 : 𝜌 (𝑔)𝑣 = 𝑣 . Writing 𝑔 = exp (∑𝑖 𝛼𝑖𝐴𝑖)Π𝑖ℎ𝑘𝑖 , we can freely choose

group elements with 𝑘 = ∅ to find that

∀𝛼 : 𝜌
(
exp (

𝐷∑︁
𝑖=1

𝛼𝑖𝐴𝑖)
)
𝑣 = exp

(
𝑑𝜌 (

𝐷∑︁
𝑖=1

𝛼𝑖𝐴𝑖)
)
𝑣 = 𝑣

using the correspondence between group and algebra representation (2.1). From the linearity of

90

𝑑𝜌 (·), this implies exp
(∑

𝑖 𝛼𝑖𝑑𝜌 (𝐴𝑖)
)
𝑣 = 𝑣 . Taking the derivative with respect to 𝛼𝑖 at 𝛼 = 0, we

have that

∀𝑖 = 1, .., 𝐷 : 𝑑𝜌 (𝐴𝑖)𝑣 = 0, (A.4)

since the exponential map satisfies 𝑑
𝑑𝑡

exp(𝑡𝐵) |𝑡=0 = 𝐵.

Similarly for the discrete constraints we can set 𝛼𝑖 = 0 and 𝑘 = [ℓ] so that 𝜌 (𝑔)𝑣 = 𝜌 (Π𝑖ℎ𝑘𝑖)𝑣 =

𝜌 (ℎℓ)𝑣 = 𝑣 . By setting varying ℓ , we get the𝑀 constraints

∀ℓ = 1, ..., 𝑀 : (𝜌 (ℎℓ) − 𝐼)𝑣 = 0. (A.5)

Sufficient: Assume Equation A.2 and Equation A.3 both hold. Starting with the continuous

constraints, exponential map (defined through the Taylor series) satisfies

exp (𝐵)𝑣 = 𝑣 + 𝐵𝑣 + 1
2
𝐵2𝑣 + ...

but if 𝐵𝑣 = 0 then exp (𝐵)𝑣 = 𝑣 since all terms except 𝑣 are 0. Setting 𝐵 =
∑
𝑖 𝛼𝑖𝑑𝜌 (𝐴𝑖) =

𝑑𝜌 (∑𝑖 𝛼𝑖𝐴𝑖) which satisfies 𝐵𝑣 = 0, we have that

∀𝛼𝑖 : exp
(
𝑑𝜌 (

∑︁
𝑖

𝛼𝑖𝐴𝑖)
)
𝑣 = 𝑣

∀𝛼𝑖 : 𝜌
(
exp (

∑︁
𝑖

𝛼𝑖𝐴𝑖)
)
𝑣 = 𝑣 . (A.6)

Similarly for the discrete generators, if ∀ℓ : 𝜌 (ℎℓ)𝑣 = 𝑣 then

∀ℓ : 𝑣 = 𝜌 (ℎℓ)−1𝑣 = 𝜌 (ℎ−ℓ)𝑣,

91

and any product satisfies

𝜌 (Π𝑁𝑖=1ℎ𝑘𝑖)𝑣 = Π𝑁𝑖=1𝜌 (ℎ𝑘𝑖)𝑣 =
(
Π𝑁−1
𝑖=1 𝜌 (ℎ𝑘𝑖)

)
𝜌 (ℎ𝑘𝑁)𝑣 .

since 𝜌 (ℎ𝑘𝑁)𝑣 = 𝑣 we can remove that factor and repeat the argument to get

𝜌 (Π𝑁𝑖=1ℎ𝑘𝑖)𝑣 =
(
Π𝑁−1
𝑖=1 𝜌 (ℎ𝑘𝑖)

)
𝑣 = ... = 𝑣 . (A.7)

Putting Equation A.6 and Equation A.7 together, we have that

∀𝛼, 𝑘 : 𝜌 (exp (
∑︁
𝑖

𝛼𝑖𝐴𝑖)Π𝑖ℎ𝑘𝑖)𝑣 = 𝑣 .

Since every group element can be expressed as 𝑔 = exp (∑𝑖 𝛼𝑖𝐴𝑖)Π𝑖ℎ𝑘𝑖 for some 𝛼, 𝑘 , the equivari-

ance constraint ∀𝑔 ∈ 𝐺 : 𝜌 (𝑔)𝑣 = 𝑣 is satisfied.

A.1.3 Krylov Method for Efficiently Finding the Eqivariant Subspace

The iterative Krylov subspace algorithm that we use to find the nullspace of the constraint matrix

𝐶 is a close variant of the iterative methods for finding the largest eigenvectors such as power

iteration and Ojas method . We need to be able to compute the nullspaces of the massively large

constraint matrices𝐶 (such as the (4× 105) × (7× 104) sized matrix for computing the equivariant

subspace of 𝑇 𝑆5
7 in subsection A.1.5), making use of efficient structure that allows fast MVMs with

𝐶 .

While the shift and invert strategy for finding small eigenvalues is commonly recommended

[Ipsen 1997], the costs of inversion via conjugate gradients for these massive matrices can make it

exceedingly slow in practice. Other methods such as block Lanczos [Eberly 2004] and Wiedemann

[Turner 2006] have been explored in the literature for the nullspace problem, but these methods

tend to be exceedingly complicated.

92

Instead we provide a much simpler algorithm that is also extremely fast: simple gradient

descent followed by a small SVD. We prove that gradient descent converges exponentially in this

problem, and that with probability 1 our method converges to the correct nullspace with error 𝜖

in 𝑂 (log(1/𝜖)) iterations. We then verify this fact empirically. The algorithm is closely related to

power iteration [Francis 1961], Oja’s rule [Shamir 2015], and the PCA approaches that are framed

as optimization problems [Garber and Hazan 2015].

As introduced in algorithm 1 we propose the following algorithm for finding the nullspace

with rank 𝑟 ⩽ 𝑟max and then use iterative doubling of 𝑟max until the conditions are met.

Fast Krylov Nullspace
def CappedKrylovNullspace(𝐶, 𝑟max):

𝑋 ∼ N(0, 1)𝑛×𝑟max

while 𝐿(𝑋) > 𝜖 do
𝐿(𝑋) = ∥𝐶𝑋 ∥2

𝐹

𝑋 ← 𝑋 − 𝜂∇𝐿
end

�̃�, Σ̃, �̃� = SVD(𝑋)

return �̃�

Assume then that 𝑟 ⩽ 𝑟max (abbreviated 𝑟𝑚) and that we will use the notation from Equation 2.6

that 𝐶 = 𝑈

Σ 0

0 0

𝑃⊤

𝑄⊤

 . The gradients of 𝐿 are ∇𝑋𝐿 = 𝐶⊤𝐶𝑋 and thus gradient descent can be

written as the iteration

𝑋𝑡+1 = (𝐼 − 𝜂𝐶⊤𝐶)𝑋𝑡 . (A.8)

We can write 𝑋 in terms of the true singular vectors of 𝐶 (the eigenvectors of 𝐶⊤𝐶) which form

a basis. 𝑄 and 𝑃 are orthogonal (𝑄⊤𝑄 = 𝐼 , 𝑄⊤𝑃 = 0, 𝑃⊤𝑃 = 𝐼) and we define the projections of

𝑋𝑡 onto these subspaces,𝑊𝑡 = 𝑄
𝑇𝑋𝑡 and 𝑉𝑡 = 𝑃𝑇𝑋𝑡 . As orthogonal transformations of isotropic

93

0 50 100 150 200 250
iterations

10 11

10 8

10 5

10 2

101

|C
X|

2 F e
rro

r

Group
SO(2)
O(3)
S(5)
Z(6)
D(4)
SO13p
Sp(2)
SU(3)
RubiksCube
S(50)

Tensor Rank
1
2
3
4
5
6

Figure A.1: Exponential convergence of algorithm 1 shown empirically over a range of groups and tensor
representations for 𝑟max = 20. In each of these cases, 𝑋 converges to the limits of floating point precision
in 300 iterations.

Gaussians are also isotropic Gaussians, the two matrices are initially distributed𝑊0 ∼ N(0, 1)𝑟×𝑟𝑚

and 𝑉0 ∼ N(0, 1) (𝑛−𝑟)×𝑟𝑚 .

Writing 𝑋𝑡 = 𝑄𝑊𝑡 + 𝑃𝑉𝑡 , and noting 𝐶⊤𝐶 = 𝑃Σ2𝑃⊤ we can now see the effect of the iteration

on the subspaces:

𝑄𝑊𝑡+1 + 𝑃𝑉𝑡+1 = (𝐼 − 𝜂𝑃Σ2𝑃⊤)
(
𝑄𝑊𝑡 + 𝑃𝑉𝑡)

= 𝑄𝑊𝑡 + 𝑃 (𝐼 − 𝜂Σ2)𝑉𝑡 .

Unrolling the iteration, we have that𝑊𝑡 =𝑊0 and 𝑉𝑡 = 𝑃 (𝐼 − 𝜂Σ2)𝑡𝑉0. So long as the learning rate

is chosen 𝜂 < 2/𝜎2
max then the iteration will converge exponentially to 𝑋 = 𝑄𝑊0. Given optimal

learning rate, the convergence is 𝑇 = 𝑂 (𝜅 log(1/𝜖)) where 𝜅 = (𝜎max
𝜎min
)2. Since𝑊0 is a Gaussian

random matrix N(0, 1)𝑟×𝑟𝑚 , it will be full rank 𝑟 with probability 1. Therefore, performing a final

SVD on𝑋 will yield the nullspace𝑄 . The runtime of this procedure is𝑂 ((𝑀 +𝐷)T𝑟𝑚 log(1
𝜖
) +𝑟 2

𝑚𝑛)

since eachmatrix multiply with𝐶 and𝐶⊤ takes time (𝑀+𝐷)T𝑟𝑚 where T is the time for multiplies

with the 𝜌 and 𝑑𝜌 matrices with a single vector, and there are𝑀 + 𝐷 such multiplies that go into

a single multiply with 𝐶 . Finally the 𝑟 2
𝑚𝑛 factor is the cost of taking the SVD of 𝑋 at the end. The

exponential convergence is shown empirically across a range of groups in Figure A.1.

If 𝑟 > 𝑟max then the SVD output �̃� is a random projection of rank 𝑟max of the true nullspace 𝑄 .

Given an unknown 𝑟 , we can simply rerun the algorithm doubling 𝑟max each time until the rank of

94

�̃� is less than 𝑟max. Adding up the costs, the total runtime of the algorithm to reach an 𝜖 accurate

solution for the nullspace is

𝑂 ((𝑀 + 𝐷)T𝑟 log(1
𝜖
) + 𝑟 2𝑛). (A.9)

To put this runtime into perspective, we can upper bound the runtime to compute the symmetric

bases for rank 𝑝 tensors 𝑇𝑘 of any subgroup of the symmetric group𝐺 ⩽ 𝑆𝑚 . Since all𝐺 ⩽ 𝑆𝑚 can

be expressed with 𝐷 +𝑀 < 𝑚 discrete generators [Guralnick 1989], and axis-wise permutations

of the 𝑛 =𝑚𝑘 sized tensors can be performed in time T =𝑚𝑘 , the runtime is upper bounded by

𝑂 (𝑚𝑘𝑟 (𝑚 log(1
𝜖
) + 𝑟)).

Similarly for the orthogonal groups SO(𝑚) and O(𝑚) with 𝐷 = 𝑚(𝑚 − 1)/2 infinitesmal

generators and 𝑀 ⩽ 1 discrete generators, the MVM time can be done in T = 𝑘𝑚𝑘 since the

infinitesmal generators can be expressed with only 2 nonzero elements. Putting this together, the

symmetric spaces for rank𝑇𝑘 tensors can be solved for in time𝑂 (𝑚𝑘𝑟 (𝑘𝑚2 log(1
𝜖
) + 𝑟)), where 𝑟 is

also upper bounded by the Bell numbers 𝑟 ⩽ 𝐵𝑘 . Generalizations of the Lorentz group SO(𝑝, 𝑛−𝑝)

and O(𝑝, 𝑛 − 𝑝) have identical runtimes, and similarly for the complex groups SU(𝑛) and U(𝑛), as

well as the symplectic group Sp(𝑛).

For the equivariant maps between the popular irreducible representations: 𝜌 = 𝜓𝑘 ⊗𝜓ℓ for the

group 𝐺 = SO(3), T = 𝑘2ℓ + 𝑘ℓ2 giving the runtime of our method 𝑂 ((𝑘2ℓ + 𝑘ℓ2)𝑟 log(1
𝜖
) + 𝑟 2𝑘ℓ).

Meanwhile for irreducible representations of 𝐺 = SO(2) the runtime is a mere 𝑂 (𝑟 log(1
𝜖
) + 𝑟 2)

regardless of 𝑘 and ℓ .

A.1.4 Linear Layers and Gated Nonlinearities are Not Universal

Outside of the regular representations where each 𝜌 (𝑔) is a permutation matrix, we cannot

necessarily use pointwise nonlinearities. Existing equivariant nonlinearities for this setting such

as Norm-ReLU and Gated-Nonlinearity can artificially limit the expressivity of the networks in

cases such as when using tensor representations.

95

Theorem A.2. Consider equivariant networks built only from equivariant linear layers that map

between (direct sums of) tensor representations with features 𝑣 ∈
⊕

𝑎∈A 𝑇𝑎 (as well as biases) and

nonlinearities which act separately on each of the tensors 𝜎 : 𝑇𝑎 → 𝑇𝑎 , or with an additional scalar

as 𝜎 : 𝑇0 × 𝑇𝑎 → 𝑇𝑎 . There exists groups (like SO(2) and O(3)) for which these networks cannot

approximate even simple equivariant functions.

Suppose the base representation 𝜌 of a group 𝐺 includes elements that satisfy ∃(𝑔,𝑔′) :

𝜌 (𝑔′) = −𝜌 (𝑔), which we term the parity property. For simplicity assume the representation is

orthogonal 𝜌 = 𝜌∗ so that we can talk about rank 𝑘 tensors rather than rank (𝑝, 𝑞) tensors, but

the same argument also applies for non-orthogonal representations setting 𝑘 = 𝑝 + 𝑞. Tensor

representations 𝜌𝑘 (𝑔) = 𝜌 (𝑔)⊗𝑘 that have an order 𝑘 that is odd will also have the parity property

since 𝜌 (𝑔′)⊗𝑘 = (−1)𝑘𝜌 (𝑔)⊗𝑘 . But because the equivariance constraint holds for all 𝑔 ∈ 𝐺 , the

following two constraints must also hold for odd 𝑘 :

𝜌 (𝑔)⊗𝑘𝑣 = 𝑣

−𝜌 (𝑔)⊗𝑘𝑣 = 𝑣 .

Adding the two constraints together, we have that all equivariant tensors of odd rank (for groups

with this property) are 𝑣 = 0. This also means that all equivariant linear maps from a tensor with

even rank to a tensor with odd rank will be 0.

This is a property of the equivariance for linear layers for certain groups and is not by itself a

problem; however, if the equivariant nonlinearities 𝜎 act separately on each tensor and preserve

its rank 𝜎 : 𝑇𝑎 → 𝑇𝑎 then all quantities in the network (inputs, outputs, and features) of even order

are computationally disconnected from those of odd order. Since the nonlinearities act only on

a given tensor and keep its order the same, and linear layers between even and odd are 0, there

can be no nontrivial path between the two. Similarly for nonlinearities like Gated-Nonlinearities

which take in an additional scalar gate as input, so that the nonlinearities are maps 𝜎 : 𝑇0×𝑇𝑎 → 𝑇𝑎

96

we can extend the result. For these kinds of nonlinearities, features of odd order can depend on

inputs and features in previous layers of odd and even rank; however, there is still no path from a

feature or input of odd order to a later feature or output of even order.

A simple example is the group O(3) and the standard vector representation for 𝑅⊤𝑅 = 𝐼 ,

𝜌 (𝑅) = 𝑅. Suppose the input to the network is the vector 𝑣 ∈ 𝑇1 and the target to be learned

is the scalar 𝑓 (𝑣) = ∥𝑣 ∥ ∈ 𝑇0. Since the input is an odd order tensor and the output is an even

order tensor, there can be no nonzero computational path in the network connecting them. Using

Norm-ReLU or Gated-Nonlinearities the only valid output of such a network is a constant 𝑐 which

is independent of the input, and the network cannot fit a simple function such as ∥ · ∥.

Of course this limitation extends much beyond this simple example, preventing inner products,

matrix vector multiplies, and many other kinds of valid equivariant functions from being expressed,

regardless of the size of the network. In fact, using the standard vector representation for all

groups O(𝑛) as well as SO(2𝑛) satisfies the parity property, and will provably have this limitation.

Other groups like the Lorentz group SO(1, 3) and O(1, 3), and the symplectic group Sp(𝑛) satisfy

this property.

A.1.5 Eqivariant Bases for Various Groups

In this section we list the dimension of the symmetric bases for various groups and tensor

representations that we calculate using our algorithm, and visualize the bases.

A.1.5.1 Discrete Translation Group Z𝑛

The discrete translation group (or cyclic group) Z𝑛 is generated by a single shift permutation

P[𝑛, 1, 2, ..., 𝑛 − 1]. Translation equivariant neural networks make use of convolutions which

are maps (𝑇1 → 𝑇1) � 𝑇2 and average pooling (𝑇1 → 𝑇0) � 𝑇1. We recover the 𝑛 dimensional

convolution bases and the 1 dimensional average pooling element as shown in the table and

Figure 2.3. We also show the ranks for higher order tensors, which appear to satisfy 𝑟 = 𝑛𝑘−1 for

97

Z𝑛 and 𝑇𝑘 . While we are not aware of the higher order equivariant tensor having been derived in

the literature, it’s not unlikely due to the prominence of the translation group in signal processing.

Z2 Z3 Z4 Z5 Z6 Z7 Z8

𝑇1 1 1 1 1 1 1 1

𝑇2 2 3 4 5 6 7 8

𝑇3 4 9 16 25 36 49 64

𝑇4 8 27 64 125 216 343 512

𝑇5 16 81 256 625 1296 2401

𝑇6 32 243 1024 3125

𝑇7 64 729 4096

Table A.1: Symmetric subspace rank 𝑟 for tensors 𝑇𝑘 of 𝐺 = Z𝑛

A.1.5.2 Permutation Group S𝑛

We review the solutions to the permutation group S𝑛 which were solved for analytically in Maron

et al. [2018], which we solve for numerically using our algorithm. As expected, the solutions bases

match the limiting size of the 𝑘th Bell number 𝐵𝑘 as 𝑛 →∞.

However, Maron et al. [2018] claim that the size of the basis is always 𝐵𝑘 regardless of 𝑛

and that is not quite correct. The basis derived in Maron et al. [2018] is always equivariant,

but sometimes it contains linearly dependent solutions, leading to an overcounting when 𝑛 is

small. The fact that the basis cannot always be of size 𝐵𝑘 can be seen from the fact that the total

dimension of 𝑇𝑘 is 𝑛𝑘 and the equivariant subspace thus has rank 𝑟 ⩽ 𝑛𝑘 . The Bell numbers grow

super exponentially in 𝑘 (about (𝑘/log(𝑘))𝑘) and therefore given any 𝑛 they must exceed the

maximum 𝑛𝑘 for some value of 𝑘 . The place where the original argument of Maron et al. [2018]

breaks down is when the equivalence classes 𝛾 may be empty. For example the equivalence class

𝛾1 = {{1}, {2}, {3}, {4}} corresponds to indices 𝑖1,𝑖2,𝑖3,𝑖4 which are all distinct. But for 𝑛 < 4 one

98

cannot form a set of four indices that are all distinct, hence 𝛾1 is empty for 𝑛 < 4. To the best of

our knowledge, the dimension of the equivariant subspaces for small 𝑛 that we report below are

the precise values and have not been presented anywhere else.

S2 S3 S4 S5 S6 S7 S8 𝐵𝑘

𝑇1 1 1 1 1 1 1 1 1

𝑇2 2 2 2 2 2 2 2 2

𝑇3 4 5 5 5 5 5 5 5

𝑇4 8 14 15 15 15 15 15 15

𝑇5 16 41 51 52 52 52 52 52

𝑇6 32 122 187 202 203 203 203

𝑇7 64 365 715 855 877

Table A.2: Symmetric Subspace rank 𝑟 for tensors 𝑇𝑘 of 𝐺 = S𝑛

A.1.5.3 Rubik’s Cube Group

Showing the capabilities to apply to unexplored groups and representations, we compute the

equivariant bases for linear layers that are equivariant to the action of the Rubik’s Cube group.

The Rubik’s cube group is a subgroup of the permutation group 𝐺 < 𝑆48 containing all valid

Rubik’s cube transformations. The group is extremely large |𝐺 | > 4 × 1019, but is generated by

only 6 generators: 𝐹, 𝐵,𝑈 , 𝐷, 𝐿, 𝑅 a quarter turn about the front, back, up, down, left, and right

faces.

We use the standard 48 dimensional regular representation where each of the 6 ∗ (9 − 1) = 48

facets (the center facets are excluded) is a component. The state of the Rubik’s cube is represented

by a 48 dimensional vector where each component is an integer 0 − 5 representing the 6 possible

colors each facet can take. Using this representation, the 6 generators can be expressed as

permutations and we refer the readers to the code for the (lengthy) values of the permutations.

99

Below we show the dimension of the equivariant basis and the size of the tensors in which the

basis is embedded. Note that as the Rubik’s cube is a subgroup of 𝑆48, and has fewer group

elements as symmetries, the size of the equivariant basis is larger 2, 6, 22, ... vs 1, 2, 5, For 𝑇4

of size 484 = 5308416 we were able to run the solver with 𝑟max = 20 before running out of GPU

memory.

𝑇1 𝑇2 𝑇3 𝑇4

r 2 6 22 >20

48𝑘 48 2304 110592 5308416

Table A.3: Symmetric Subspace rank 𝑟 for tensors 𝑇𝑘 of Rubik’s Cube Group

A.1.5.4 Continuous Rotation Groups SO(𝑛) and O(𝑛)

The special orthogonal group SO(𝑛) and the orthogonal group O(𝑛) are continuous Lie groups

have the Lie algebra

𝔬(𝑛) = 𝔰𝔬(𝑛) = 𝑇idSO(𝑛) = {𝐴 ∈ R𝑛×𝑛 : 𝐴⊤ = −𝐴}

of dimension 𝐷 = 𝑛(𝑛 − 1)/2. The orthogonal group can be constructed with the additional

discrete generator ℎ =

−1 0

0 𝐼𝑛−1

 that has det(ℎ) = −1.

100

SO(2) SO(3) SO(4) SO(5) SO(6) SO(7)

𝑇2 2 1 1 1 1 1

𝑇3 0 1 0 0 0 0

𝑇4 6 3 4 3 3 3

𝑇5 0 6 0 1 0 0

𝑇6 20 15 25 15 16 15

𝑇7 0 36 0 15

𝑇8 70 91 196

Table A.4: Symmetric subspace rank 𝑟 for tensors 𝑇𝑘 of 𝐺 = SO(𝑛)

We omit the first row 𝑇1 since all the values are 0. The additional basis element along the

diagonal 𝑛 = 𝑘 can be recognized as the well known anti-symmetric Levi-Civita symbol 𝜀𝑖 𝑗𝑘ℓ

However this basis element does not respect orientation reversing isometries, and is thus absent

in the equivariant basis for O(𝑛):

O(2) O(3) O(4) O(5) O(6) O(7)

𝑇2 1 1 1 1 1 1

𝑇3 0 0 0 0 0 0

𝑇4 3 3 3 3 3 3

𝑇5 0 0 0 0 0 0

𝑇6 10 15 15 15 15 15

𝑇7 0 0 0 0

𝑇8 35 91 105

Table A.5: Symmetric subspace rank 𝑟 for tensors 𝑇𝑘 of 𝐺 = O(𝑛)

101

A.1.5.5 Lorentz Groups SO+(1, 3), SO(1, 3), O(1, 3)

The Lorentz group is defined as the set of matrices that preserve the Lorentz metric 𝜂: O(1, 3) =

{𝐿 ∈ R4×4 : 𝐿⊤𝜂𝐿 = 𝜂}. Differentiating, one gets the 𝐷 = 6 dimensional Lie algebra 𝔰𝔬(1, 3) =

{𝐴 ∈ R4×4 : 𝐴⊤𝜂 + 𝜂𝐴 = 0}. The full Lorentz group O(1, 3) has four connected components.

The identity component of the Lorentz group SO+(1, 3) is just the exponential of the Lie algebra

SO+(1, 3) = exp(𝔬(1, 3)). The subgroup SO(1, 3) of O(1, 3) with determinant 1 can be constructed

with the additional generator ℎ1 = −𝐼 (which combines time reversal with a parity transformation),

and the full Lorentz group O(1, 3) includes ℎ1 as well as the generator ℎ2 =

−1 0

0 𝐼3

 that reverses
time only. As these groups are not orthogonal, we must distinguish 𝑇(𝑎,𝑏) from 𝑇(𝑎+𝑏,0) . Below we

show the number of basis vectors for 𝑇(𝑘,0) which for these 3 groups is the same number as for

𝑇(𝑘−𝑖,𝑖) although the bases elements are distinct.

𝑇(2,0) 𝑇(3,0) 𝑇(4,0) 𝑇(5,0) 𝑇(6,0) 𝑇(7,0) 𝑇(8,0)

SO+(1, 3) 1 0 4 0 25 0 196

SO(1, 3) 1 0 4 0 25 0 196

O(1, 3) 1 0 3 0 15 0 105

Table A.6: Symmetric subspace rank 𝑟 for tensors 𝑇(𝑘,0) for the Lorentz groups.

A.1.5.6 Symplectic Group Sp(𝑛)

Similar to the orthogonal group and the Lorentz group, the symplectic group is defined through

the perservation of a quadratic form.

Sp(𝑛) = {𝑀 ∈ R2𝑛×2𝑛 : 𝑀⊤Ω𝑀 = Ω},

102

where Ω =

0 𝐼𝑛

−𝐼𝑛 0

 and is often relevant in the context of Hamiltonian mechanics and classical

physics. The quadratic form Ω can be interpreted as a measurement of oriented area (in phase

space) and is preserved by the evolution of many systems. The 𝐷 = 𝑛(2𝑛 + 1) dimensional Lie

algebra satisfies

𝔰𝔭(𝑛) = {𝐴 ∈ R2𝑛×2𝑛 : 𝐴⊤Ω + Ω𝐴 = 0},

and any element in Sp(𝑛) can be written𝑀 = exp(𝐴1)exp(𝐴2) for some 𝐴1, 𝐴2 ∈ 𝔰𝔭(𝑛).

Sp(1) Sp(2) Sp(3) Sp(4) Sp(5) Sp(6)

𝑇(2,0) 1 1 1 1 1 1

𝑇(3,0) 0 0 0 0 0 0

𝑇(4,0) 2 3 3 3 3 3

𝑇(5,0) 0 0 0 0 0 0

𝑇(6,0) 5 14 15 15

𝑇(7,0) 0 0 0

𝑇(8,0) 14 84

Table A.7: Symmetric subspace rank 𝑟 for tensors 𝑇(𝑘,0) of 𝐺 = Sp(𝑛)

Although for large values of 𝑛, the dimension of the basis for Sp(𝑛) becomes similar to that

of its subgroup O(𝑛), the basis elements themselves are quite different. Like the Lorentz groups,

different ways of distributing the rank between the base vector space and its dual as 𝑇(𝑘−𝑖,𝑖) for

different 𝑖 yields different solutions for the equivariant basis.

A.1.5.7 Special Unitary Group SU(𝑛)

Using a complex valued SVD and replacing the objective in the iterative algorithm 𝐿(𝑄) = ∥𝐶𝑄 ∥2
𝐹
=

Tr(𝑄⊤𝐶⊤𝐶𝑄) with 𝐿(𝑄) = Tr(𝑄†𝐶†𝐶𝑄) where † is the complex conjugate transpose, we can

103

apply our method to solve for the equivariant bases for complex groups such as the special unitary

group SU(𝑛) relevant for the symmetries of the standard model of particle physics.

The group can be defined

SU(𝑛) = {𝑈 ∈ C𝑛×𝑛 : 𝑈 †𝑈 = 1, det(𝑈) = 1}.

The Lie algebra of dimension 𝐷 = 𝑛2 − 1 satisfies

𝔰𝔲(𝑛) = {𝐴 ∈ C𝑛×𝑛 : 𝐴† = −𝐴, Tr(𝐴) = 0}.

The group is contained in the image of the exponential map, exp(𝔰𝔲(𝑛)) = SU(𝑛). Since the size

of the basis differs between𝑇(4,1) and𝑇(3,2) for example, we show the solutions for only a selection

of tensor ranks. It may also be useful to consider anti-linear maps, but we leave this to future

work.

𝑇(3,0) 𝑇(3,1) 𝑇(3,2) 𝑇(3,3) 𝑇(4,0) 𝑇(4,1) 𝑇(4,2)

SU(2) 0 2 0 5 2 0 5

SU(3) 1 0 0 6 0 3 0

SU(4) 0 0 0 6 1 0 0

Table A.8: Symmetric subspace rank 𝑟 for tensors 𝑇(𝑞,𝑝) of 𝐺 = SU(𝑛)

A.1.6 Recipe for Use

Below we outline the minimum required steps for adding new groups and representations to our

existing implementation written in Jax [Bradbury et al. 2018].

Adding new groups:

1. Specify a sufficient set of𝑀 discrete generators and their base representation as a matrix

104

𝜌 (ℎ𝑖) or as a matrix vector multiply 𝑣 → 𝜌 (ℎ𝑖)𝑣 for each 𝑖 = 1, 2, ..., 𝑀

2. Specify a basis for the Lie algebra (if any) and its base representation as a matrix 𝑑𝜌 (𝐴𝑖) or

as a matrix vector multiply 𝑣 → 𝑑𝜌 (𝐴𝑖)𝑣 for each 𝑖 = 1, 2, ..., 𝐷

Wewalk through these steps and provide examples inAdding new representations 𝜌 to existing

groups:

1. Specify 𝜌 (ℎ𝑖) as a function of 𝜌 (ℎ𝑖)

2. Define dim(𝑉), ==, and hash functions for the representation

We provide more detailed instructions along with examples for implementing new groups

at https://emlp.readthedocs.io/en/latest/notebooks/3new_groups.html and new repre-

sentations at https://emlp.readthedocs.io/en/latest/notebooks/4new_representations.

html.

Given that a base representation 𝜌 is faithful, all representations can be constructed as functions

of this 𝜌 whatever it may be.

A specification of 𝜌 (ℎ) = 𝑓 (𝜌 (ℎ)) induces the Lie algebra representation 𝑑𝜌 (𝐴) which may

be computed automatically using autograd Jacobian vector products (JVP), without needing to

specify it manually. 𝑑𝜌 (𝐴) = JVP(𝑓 , 𝐼 , 𝑑𝜌 (𝐴)) which corresponds in math terms to the operation

𝑑𝜌 (𝐴) = 𝐷𝑓 |𝜌 (ℎ)=𝐼 (𝑑𝜌 (𝐴)).

A.1.7 Group Products

Many of the relevant groups for larger problems like 2D arrays, GCNNs, point clouds [Fuchs

et al. 2020], sets of images [Maron et al. 2020], and hierarchical structures [Wang et al. 2020] have

multiple distinct group substructures. 2D translation symmetry is the group 𝐺 = Z𝑛 × Z𝑛 = Z2
𝑛,

GCNNs have 𝐺 = 𝐻 ⋉ Z2
𝑛 point clouds typically have 𝐺 = 𝑆𝑛 × E(3), sets of images have the

symmetry 𝑆𝑚 × Z2
𝑛, and a voxelized point cloud network could be (𝑆𝑛 × E(3)) ≀ Z3

𝑚. Here these

105

https://emlp.readthedocs.io/en/latest/notebooks/3new_groups.html
https://emlp.readthedocs.io/en/latest/notebooks/4new_representations.html
https://emlp.readthedocs.io/en/latest/notebooks/4new_representations.html

symbols for combining groups are the direct product (×), semi-direct product (⋉) and wreath

product (≀). An additional asymptotic speedup can be achieved for groups that are constructed

using these structures by exploiting knowledge about how solutions for the larger group depend

on the solutions for the constituent groups.

Suppose representation 𝜌𝑎 of the group𝐺𝑎 acts on the space𝑉𝑎 which has the symmetric basis

𝑄𝑎 , and 𝜌𝑏 of 𝐺𝑏 acts on 𝑉𝑏 with the symmetric basis 𝑄𝑏 .

(×): As shown in [Maron et al. 2020], the equivariant basis for𝐺𝑎 ×𝐺𝑏 with rep 𝜌𝑎 ⊗ 𝜌𝑏 can be

written as the Kronecker product 𝑄𝑎𝑏 = 𝑄𝑎 ⊗ 𝑄𝑏 .

(≀): In [Wang et al. 2020] it was worked out that the equivariant basis for 𝐺𝑎 ≀ 𝐺𝑏 with rep

(𝜌𝑎 ≀ 𝜌𝑏) ⊗ (𝜌𝑎 ≀ 𝜌𝑏)∗ satisfies unvec(𝑄𝑎𝑏 [𝛼, 𝛽]) = unvec(𝑄𝑎𝛽) ⊗ 𝐼 +11⊤ ⊗ unvec(𝑄𝑏𝛼) where 𝛼, 𝛽

are coefficient vectors of size 𝑟𝑎 ,𝑟𝑏 and the unvec(·) operation reshapes a vector into a matrix.

A.1.8 Parametrizing Lie Groups with Continuous and Discrete

Generators

According to Winkelmann [2003], every real connected Lie group 𝐺 of dimension 𝐷 contains

a dense subgroup 𝐻 ⩽ 𝐺 generated by 𝐷 + 1 elements (which can be constructed explicitly by

sampling elements in a neighborhood of the identity). Since 𝐻 is dense in 𝐺 , for every element

𝑔 ∈ 𝐺 has a neighborhood N(𝑔) which contains an element ℎ ∈ 𝐻 . Since ℎ ∈ N (𝑔) it must

also be true that 𝑔ℎ−1 ∈ N (id) is in a neighborhood of the identity. Since the exponential

map exp is a bijection for a neighborhood around the identity, it must be possible to express

𝑔ℎ−1 = exp (𝐴) = exp (∑𝑖 𝛼𝑖𝐴𝑖) for some 𝐴 ∈ 𝔤 that we can then write in terms of the basis

elements 𝐴𝑖 . Rearranging, and expressing ℎ in terms of the finite generators for 𝐻 , ℎ = Π𝑖ℎ𝑘𝑖 , we

have that any 𝑔 ∈ 𝐺 can be written

𝑔 = exp (
∑︁
𝑖

𝛼𝑖𝐴𝑖)Π𝑖ℎ𝑘𝑖 . (A.10)

106

or more succinctly 𝐺 = exp (𝔤)𝐻 . It is likely that the result can also be extended to other fields

like C such as by embedding the group in a higher dimensional real group, but we focus on the

real case here. For groups with multiple connected components, we can apply the same result

with at most one additional discrete generator for each of the connected components.

A.1.9 Implementation Details

While there is substantial freedom in the chosen representation for a given feature layer of a

neural network, for maximum expressiveness in the subsequent neural network architecture given

a fixed channel budget, we suggest allocating the channels to the different representations in each

layer with a uniform allocation heuristic. Progressing from lower dimensional representations

to higher dimensional ones, the multiplicity of the representation should be chosen so that the

number of channels for associated with each is approximately the same. We use this heuristic for

the equivariant networks of each experiment in the paper.

For the three synthetic experiments, we use networks constructed with 3 EMLP layers each

with 𝑐 = 384 channels, followed by a single equivariant linear layer mapping to the output type.

For the bilinear layer, The baseline MLPs also have 3 hidden layers of size 𝑐 = 384 each. We train

all models with batchsize 500, and learning rate 3 × 10−3 with the Adam optimizer [Kingma and

Ba 2014]. We train for a total of min(900000/𝑁, 1000) epochs where 𝑁 is the size of the dataset,

which we found was ample for convergence of both models in all cases. The training time for the

EMLP is a couple minutes, while the MLP model trains in < 1 minute.

For the modeling of the double spring pendulum dynamical system we use the same hy-

perparameters except with 𝑐 = 128 for all models. For the numerical integrator, we use the

adaptive RK integrator that is default to Jax with tolerance 2 × 10−6. We measure relative error as

relative_error(𝑎, 𝑏) = ∥𝑎 − 𝑏∥/(∥𝑎∥ + ∥𝑏∥). For calculating state relative error, the state is the full

vector 𝑧 of both position and momentum. We train for a total of 2000 epochs, long enough for

each of the models to converge.

107

A.1.10 Datasets

We generate the O(5) invariant dataset using the function 𝑓 (𝑥1, 𝑥2) = sin(∥𝑥1∥)−∥𝑥2∥3/2+
𝑥⊤1 𝑥2
∥𝑥1∥∥𝑥2∥

and sampling 𝑥1, 𝑥2 ∼ N(0, 1)5. We generate the O(3) equivariant inertia dataset by computing

I =
∑5
𝑖=1𝑚𝑖 (𝑥⊤𝑖 𝑥𝑖𝐼 − 𝑥𝑖𝑥⊤𝑖) for 𝑥𝑖 ∼ N(0, 1)3 and sampling positive masses by passing random

entries through a softplus:𝑚𝑖 ∼ Softplus(N (0, 1)).

For the Lorentz invariant particle interaction dataset we calculate the targets 𝑦 = 4[𝑝 (𝜇𝑝𝜈) −

(𝑝𝛼𝑝𝛼−𝑝𝛼𝑝𝛼)𝜂𝜇𝜈] [𝑞(𝜇𝑞𝜈)−(𝑞𝛼𝑞𝛼−𝑞𝛼𝑞𝛼)𝜂𝜇𝜈] from the sampledmomenta 𝑝𝜇, 𝑝𝜇, 𝑞𝜇, 𝑞𝜇 ∼ N(0, 1/42).

For each of these datasets we separate out a test set of size 5000 and a validation set of size

1000 which we use for early stopping.

For the double spring dynamical system, we generate the ground truth trajectories using the

Hamiltonian dynamics of the Hamiltonian

𝐻 (𝑥1, 𝑥2, 𝑝1, 𝑝2) = 𝑉 (𝑥1, 𝑥2) +𝑇 (𝑝1, 𝑝2)

where 𝑇 (𝑝1, 𝑝2) = ∥𝑝1∥2/2𝑚1 + ∥𝑝2∥2/2𝑚2 and 𝑉 (𝑥1, 𝑥2) =

1
2𝑘1(∥𝑥1∥ − ℓ1)2 + 1

2𝑘2(∥𝑥1 − 𝑥2∥ − ℓ2)2 +𝑚1𝑔
⊤𝑥1 +𝑚2𝑔

⊤𝑥2.

The constants are chosen𝑚1 = 𝑚2 = 𝑘1 = 𝑘2 = ℓ1 = ℓ2 = 1. The gravity direction is down

𝑔 = [0, 0, 1]. We sample the initial conditions from the distribution 𝑥1 ∼ [0, 0,−1.5] + N (0, .22)3,

𝑥2 ∼ [0, 0,−3] + N (0, .22)3 and 𝑝1, 𝑝2 ∼ N(0, .42)3. We integrate these systems for a time 𝑇 = 30𝑠

and for each initial condition we select a randomly chosen 1𝑠 chunk (evaluated at five 0.2𝑠 intervals)

as the training data. We generate 1500 trajectory chunks which we split up into 500 for each of

the train, validation, and test sets.

108

A.2 Appendix for Residual Pathway Priors for Approximate

Eqivariance

Appendix Outline

In Section 3.7 discuss potential for negative impact. In Section A.2.2 we investigate the utility

of using RPP-EMLP for the policy function only on the Mujoco tasks. In Section A.2.3 we detail

the datasets and experimental methodology used in the paper. Finally in Sections A.2.4 and A.2.5

we break down the components of the Mujoco environment state and action spaces, and the

representations that we use for them.

A.2.1 Potential Negative Impacts

As one of our primary application areas is reinforcement learning, and specifically exploiting

approximate symmetries in reinforcement learning, wemust address the potential negative impacts

of the deployment of RPPs in RL systems. In general model free RL algorithms tend to be brittle,

and often policies and behavior learned in a simulated environment like Mujoco don’t transfer

easily to real world robots. This point is acknowledged by most RL researchers, and a large effort

is being made to improve the situation. Applying neural networks to the control of real robots can

be dangerous if the functions are important or failure can cause injury to the robot or humans.

We believe that RL will ultimately be impactful for robot control, however practitioners need to

be responsible and exercise caution.

A.2.2 Benefit of Eqivariant Value Functions

In principle both the policy and the value or critic function can benefit from equivariance. However,

the policy learns from the value function in the policy update which is approximately equivalent

109

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106) 1e6

0

2500

5000

7500

10000

12500
Av

er
ag

e
Re

tu
rn

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106) 1e6

0

50

100

150

Av
er

ag
e

Re
tu

rn

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106) 1e6

0

1000

2000

3000

Av
er

ag
e

Re
tu

rn

HalfCheetah-v2 Swimmer-v2 Hopper-v2

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106) 1e6

0

1000

2000

3000

4000

5000

Av
er

ag
e

Re
tu

rn

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106) 1e6

1000

2000

3000

4000

5000

6000
Av

er
ag

e
Re

tu
rn

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106) 1e6

0

1000

2000

3000

4000

5000

Av
er

ag
e

Re
tu

rn

SAC
RPP
RPP & Q

Walker2d-v2 Ant-v2 Humanoid-v2

Figure A.2: Average reward curves (max over steps) for an RPP-EMLP applied to the policy 𝜋 only, as well
as an RPP-EMLP for both the policy 𝜋 and the critic 𝑄 . Mean and standard deviation taken over 4 trials
shown in the shaded region. Only minor performance gains are achieved if using RPP for the policy only,
however this variant is more stable and can to train on Humanoid-v2 without diverging.

to minimizing the KL divergence

E𝑠∼D [KL(𝜋𝜙 (·|𝑠) | exp(𝑄𝜃 (·, 𝑠))/𝑍𝜃 (𝑠))]

as derived in Haarnoja et al. [2018b]. If the value function 𝑄 is a standard MLP yielding a non

equivariant distribution and the policy function 𝜋 is an RPP that merely has a bias towards

equivariance, then the RPP policy will learn to fit the non equivariant parts of 𝑄 as if it were a

ground truth dataset that is not equivariant. This likely explains why we find in practice that

using an RPP for the value function has a stronger impact on performance as shown in Figure 3.4.

110

A.2.3 Experimental Details

Here we present the training details of the models used in the paper. Experiments were run

on private servers with NVIDIA Titan RTX and RTX 2080 Ti GPUs. We estimate that all runs

performed in the initial experimentation and final evaluation on the RL tasks used approximately

500 GPU hours. The experiments on dynamical systems, CIFAR-10, and UCI data required an

additional 200 GPU hours.

A.2.3.1 Synthetic Dataset Experiments (3.5.1 and 3.5.2)

The windy pendulum dataset is a variant of the double spring pendulum Hamiltonian system

from Finzi et al. [2021]. In addition to the Hamiltonian of the base system

𝐻0(𝑥1, 𝑥2, 𝑝1, 𝑝2) = 𝑉 (𝑥1, 𝑥2) +𝑇 (𝑝1, 𝑝2)

where 𝑇 (𝑝1, 𝑝2) = ∥𝑝1∥2/2𝑚1 + ∥𝑝2∥2/2𝑚2 and 𝑉 (𝑥1, 𝑥2) =

1
2𝑘1(∥𝑥1∥ − ℓ1)2 + 1

2𝑘2(∥𝑥1 − 𝑥2∥ − ℓ2)2 +𝑚1𝑔
⊤𝑥1 +𝑚2𝑔

⊤𝑥2,

we add a perturbation 𝐻1(𝑥1, 𝑥2, 𝑝1, 𝑝2) = −𝑤⊤𝑥1 −𝑤⊤𝑥2 that is the energy of the wind acting as a

constant force pushing in the𝑤 = [−8,−5, 0] direction. Setting 𝐻 = 𝐻0 + 𝜖𝐻1, we can control the

strength of the wind and we choose 𝜖 = 0.01. This perturbation breaks the SO(2) symmetry about

the 𝑧 axis.

For the MLP, EMLP, and RPP we use 3 layer deep 128 hidden unit Hamiltonian neural networks

[Greydanus et al. 2019] to fit the data using the rollouts of an ODE integrator [Chen et al. 2018] with

an MSE loss on rollouts of length 5 timesteps with Δ𝑡 = 0.2. For training we use 500 trajectory

chunks and use another 500 for testing. We train all models in section 3.5.1 for 1000 epochs,

sufficient for convergence. The input and output representation for EMLP and RPP-EMLP is

111

𝑉 4
O(3) → R, where 𝑉O(3) is the restricted representation from the standard representation of a 3D

rotation matrix to the given group in question, like SO(2) for rotations about the 𝑧 axis. The input

is 𝑉 4
O(3) because there are two point masses each of which has a 3D vectors for position and for

momentum. The scalar R output is the Hamiltonian function.

The Modified Inertia dataset is a small regression dataset off of the task also from Finzi et al.

[2021] for learning the moment of inertia matrix in 3D of a collection of 5 point masses. For the

base Inertia dataset, the targets are I =
∑5
𝑖=1𝑚𝑖 (𝑥⊤𝑖 𝑥𝑖𝐼 − 𝑥𝑖𝑥⊤𝑖) from the input tuples (𝑚𝑖, 𝑥𝑖)5𝑖=1.

In order to break the equivariance of the dataset, we add an additional term so that the target

is 𝑦 = vec(I + 0.3I2𝑧𝑧⊤I) where 𝑧 is the unit vector along the 𝑧 axis. The input and output

representations for EMLP and RPP-EMLP on this problem are (R ⊕ 𝑉)5 → 𝑉 ⊗ 𝑉 , representing

the 5 point masses and vectors mapping to matrices 𝑉 ⊗ 𝑉 .

We use 1000 train and test examples for the inertia datasets and we train for 500 epochs. In

both cases we use an Adam optimizer [Kingma and Ba 2014] with a learning rate of 0.003.

A.2.3.2 Image and UCI experiments (3.5.3)

We use the CIFAR-10 and UCI datasets, taken from Krizhevsky et al. [2009] and Dua and Graff

[2017] respectively. In Section 3.5 we train models on dynamical systems and CIFAR-10 and UCI

regression data. For the CIFAR-10 experiments we use a convolutional neural network (and the

equivalent MLP) with 9 convolutional layers and 1 fully connected layer, and max-pooling layers

after the third and sixth convolutional layers. The channel sizes of the 9 layers are, in order:

16, 16, 16, 32, 32, 32, 32, 32, 32. We train for 200 epochs using a cosine learning rate schedule with

an initial learning rate of 0.05 and the Adam optimizer.

For the UCI tasks we use a small convolutional neural network, and the equivalent MLP, with 3

convolutional layers and 1 fully connected layer, with each convolutional layer having 32 channels.

Models are trained for 1000 epochs using an Adam optimizer with a learning rate of 0.01 and a

cosine learning rate schedule.

112

A.2.3.3 Model Free RL

We train on the Mujoco locomotion tasks in the OpenAI gym environments [Brockman et al. 2016].

We follow the implementation details and hyperparameters from Haarnoja et al. [2018c], with

a learned temperature function, stochastic policies, and double critics. Additionally we use the

recommendation from Andrychowicz et al. [2020] to initialize the last layer of the policy network

with 100x smaller weights, which we find slightly improves the performance of both RPP and the

baseline. Additionally for RPP which can be less stable than standard SAC, we use the Adam betas

𝛽1 = 0.5 and 𝛽2 = 0.999 that are used in he GAN community [Miyato et al. 2018] rather than the

defaults. Training with the RPP 𝜋 and 𝑄 functions on the Mujoco locomotion tasks takes about 8

hours for 1 million steps.

We found it necessary to reduce the speed 𝜏 of the critic moving average to keep SAC stable

on some of the environments, with values shown in Table A.9. In general, higher 𝜏 ’s are favorable

for learning quickly. Unfortunately we were not able to get SAC with an RPP Q function to train

reliably on Humanoid, even after trying multiple values of 𝜏 .

Walker2d Hopper HalfCheetah Swimmer Ant Humanoid

Baseline 𝜏 .005 .005 .005 .005 .005 .005
RPP 𝜏 .004 .005 .005 .004 .005 ✗

Table A.9: Critic moving average speed 𝜏 .

A.2.3.4 Transition Models for Mujoco

We train the transition models on a dataset of 50000 transitions which are composed of 5000

trajectory chunks of length 10. These trajectory chunks are sampled uniformly from the replay

buffer collected over the course of training a standard SAC agent for 106 steps on each of the

environments. We train by minimizing the ℓ1 norm of the rollout error over a 10 step trajectory,

and we evaluate on a holdout set of 50 trajectories of length 100.

113

The models are simple MLPs or RPPs mapping from the state and control actions to the state

space, predicting the change in state,

𝑥𝑡+1 = 𝑥𝑡 + NN(𝑥𝑡 , 𝑢𝑡).

For the MLPs and RPPs we use 2 hidden layers of size 256 as well as swish activations [Ramachan-

dran et al. 2017]. We use a prior variance of 106 in the equivariant subspace and 3 in the non

equivariant subspace. The RPP is a standard RPP-EMLP with the input representation 𝜌𝑋 ⊕ 𝜌𝑈

(concatenation of the representation of the state space and the action space), output representation

𝜌𝑋 , and symmetry group described in subsection A.2.4 the same as for the model free experiments.

We train the transition models for 500 epochs which takes about 45 minutes for RPP compared to

15 minutes for the standard MLPs.

A.2.4 Mujoco State and Action Representations

Based on the state and action spaces of the Mujoco environments we describe in subsection A.2.5,

we define appropriate group representations on these spaces. Let 𝑉 be the base representation of

the group acted upon by permutations for Z𝑛 and by rotation matrices for SO(2), let R denote a

scalar representation (of dimension 1) that is unaffected by the transformations, and let 𝑃 be a

pseudoscalar representation (of dimension 1) that transforms by the sign of the permutation. For

Z2, 𝑃 takes the values 1 and −1 and acts by negating the values when a flip or L/R reflection is

applied.

From the raw state and action spaces listed in subsection A.2.5, we convert quaternions to 3D

rotation matrices for Humanoid and Ant, and we reorder elements to group together left/right

pairs for Walker2d and Swimmer. The representations of these transformed state and action

vectors are shown in Table A.10. Note that 𝑉 3 denotes 𝑉 ⊕ 𝑉 ⊕ 𝑉 = 𝑉 ⊕3, and is simply the

concatenation of 3 copies of𝑉 as R3 would be 3 copies of R. This is not to be confused with powers

114

Table A.10: Mujoco Locomotion State and Action Representations used for RPP-EMLP

Env State Representation Action Rep Group

Hopper R ⊕ 𝑃5 ⊕ R ⊕ 𝑃4 𝑃3 Z2

Swimmer R ⊕ 𝑃↔ ⊕ (𝑃↔ ⊗ 𝑉↕) ⊕ (R ⊕ 𝑃)2 ⊕ (𝑃↔ ⊗ 𝑉↕) 𝑃↔ ⊗ 𝑉↕ Z↔2 × Z
↕
2

HalfCheetah R ⊕ 𝑃8 ⊕ R ⊕ 𝑃7 𝑃6 Z2
Walker2d R2 ⊕ 𝑉 3 ⊕ R3 ⊕ 𝑉 3 𝑉 3 Z2

Ant R5 ⊕ 𝑉 2 ⊕ R6 ⊕ 𝑉 2 𝑉 2 Z4
Humanoid R ⊕ 𝑉 ⊗2

SO(3) ⊕ R
17 ⊕ 𝑉 2

SO(3) ⊕ R
17 R17 SO(2)

of the tensor product, 𝑉 ⊗3 = 𝑉 ⊗ 𝑉 ⊗ 𝑉 . For Humanoid, we denote the restricted representation

of 3D rotation matrices restricted to the SO(2) rotations about the 𝑧 axis as 𝑉SO(3) .

A.2.5 Mujoco State and Action Spaces

In order to build symmetries into the state and action representations for Mujoco environments, we

need to have a detailed understanding of what the state and action spaces for these environments

represent. As these spaces are not well documented, for each of the Mujoco environments we

experimented in the simulator and identified the meanings of the state vectors in Tables A.15,

A.17, A.16, A.12, A.14, A.11, and A.13. We hope that these detailed descriptions can be useful to

other researchers.

115

Table A.11: Hopper-v2 State and Action Spaces

State Space

X (Unobserved)
Y

Orientation Angle
Hip Angle
Knee Angle
Ankle Angle
X Velocity
Y Velocity

Orientation Angular Velocity
Hip Angular Velocity
Knee Angular Velocity
Ankle Angular Velocity

Action Space
Hip
Knee
Ankle

Table A.12: Swimmer-v2 State and Action Spaces

State Space

X (Unobserved)
Y (Unobserved)

Orientation Angle
Head Joint Angle
Tail Joint Angle

X Velocity
Y Velocity

Orientation Angular Velocity
Head Joint Angular Velocity
Tail Joint Angular Velocity

Action Space Head Joint
Tail Joint

A.3 Appendix for Lie Derivative for Measuring Learned

Eqivariance

A.3.1 Lie Groups, Lie Derivatives, and LEE

A.3.1.1 Lie Groups and Local/Global Notions of Eqivariance

The key to understandingwhy the local - global equivalence holds is that (exp(𝑋)−1) = ∑∞
𝑘=1𝑋

𝑘/𝑘!

has the same nullspace as 𝑋 (here repeated application of 𝑋 on a function 𝑓 is just the repeated

directional derivative, and this is the definition of a vector field used in differential geometry).

Since they have the same nullspace, the space of functions for which exp(𝑋) 𝑓 = 𝑓 is the same

as the space 𝑋 𝑓 = 0. The same principle holds for 𝜌 (exp(𝑋)) 𝑓 = 𝑓 and 𝑑𝜌 (𝑋) 𝑓 = 0 since

𝜌 (exp(𝑋)) = exp(𝑑𝜌 (𝑋)) (a basic result in representation theory, which can be found in [Hall

2013]) where 𝑑𝜌 is the corresponding Lie algebra representation of 𝜌 , which for vector fields is the

116

Table A.13: HalfCheetah-v2 State and Action Spaces

State Space

X (Unobserved)
Y

Orientation Angle
Rear Hip Angle
Rear Knee Angle
Rear Ankle Angle
Front Hip Angle
Front Knee Angle
Front Ankle Angle

X Velocity
Y Velocity

Orientation Angular Velocity
Rear Hip Angular Velocity
Rear Knee Angular Velocity
Rear Ankle Angular Velocity
Front Hip Angular Velocity
Front Knee Angular Velocity
Front Ankle Angular Velocity

Action Space

Rear Hip
Rear Knee
Rear Ankle
Front Hip
Front Knee
Front Ankle

Table A.14: Walker2d-v2 State and Action Spaces

State Space

X (Unobserved)
Y

Orientation Angle
Right Hip Angle
Right Knee Angle
Right Ankle Angle
Left Hip Angle
Left Knee Angle
Left Ankle Angle

X Velocity
Y Velocity

Orientation Angular Velocity
Right Hip Angular Velocity
Right Knee Angular Velocity
Right Ankle Angular Velocity
Left Hip Angular Velocity
Left Knee Angular Velocity
Left Ankle Angular Velocity

Action Space

Right Hip
Right Knee
Right Ankle
Left Hip
Left Knee
Left Ankle

Lie derivative 𝑑𝜌 (𝑋) = 𝐿𝑋 . Hence carrying over the constraint for each element ∀𝑋 ∈ 𝔤 : 𝐿𝑋 𝑓 = 0

is equivalent to ∀𝑋 ∈ 𝔤 : 𝜌 (exp(𝑋)) 𝑓 = 𝑓 which is the same as ∀𝑔 ∈ 𝐺 : 𝜌 (𝑔) 𝑓 = 𝑓 . Unpacking the

representation 𝜌12 of 𝑓 , this is just the global equivariance constraint ∀𝑔 ∈ 𝐺 : 𝜌2(𝑔)−1𝑓 (𝜌1(𝑔)𝑥) =

𝑓 (𝑥).

117

A.3.1.2 Lie Derivative Chain Rule

Suppose we have two functions ℎ : 𝑉1 → 𝑉2 and 𝑓 : 𝑉2 → 𝑉3, and corresponding representations

𝜌1, 𝜌2, 𝜌3 for the vector spaces 𝑉1,𝑉2,𝑉3. Expanding out the definition of 𝜌31,

𝜌31(𝑔) [𝑓 ◦ ℎ] (𝑥) = 𝜌3(𝑔)−1𝑓 (ℎ(𝜌1(𝑔)𝑥))

= 𝜌3(𝑔)−1𝑓 (𝜌2(𝑔)𝜌2(𝑔)−1ℎ(𝜌1(𝑔)𝑥))

= 𝜌32(𝑔) [𝑓] ◦ 𝜌21(𝑔) [ℎ] (𝑥).

From the definition of the Lie derivative, and using the chain rule that holds for the derivative

with respect to the scalar 𝑡 , and noting that 𝑔0 = Id so 𝜌 (𝑔0) = Id, we have

L𝑋 (𝑓 ◦ ℎ) (𝑥) =
𝑑

𝑑𝑡

(
𝜌31(𝑔𝑡) [𝑓 ◦ ℎ] (𝑥)

)����
0

=
𝑑

𝑑𝑡

(
𝜌32(𝑔𝑡) [𝑓] ◦ 𝜌21(𝑔𝑡) [ℎ] (𝑥)

)����
0

=

(
𝑑

𝑑𝑡
𝜌32(𝑔𝑡) [𝑓]

��
𝑡=0

)
◦ 𝜌21(𝑔0) [ℎ] (𝑥) +

[
𝑑 (𝜌32(𝑔0) [𝑓])

����
ℎ(𝑥)

] (
𝑑

𝑑𝑡
𝜌21(𝑔𝑡) [ℎ]

��
𝑡=0

)
(𝑥)

=

(
𝑑

𝑑𝑡
𝜌32(𝑔𝑡) [𝑓]

��
𝑡=0

)
◦ ℎ(𝑥) + 𝑑 𝑓 |ℎ(𝑥)

(
𝑑

𝑑𝑡
𝜌21(𝑔𝑡) [ℎ]

��
𝑡=0

)
(𝑥)

= (L𝑋 𝑓) ◦ ℎ(𝑥) + 𝑑 𝑓 |ℎ(𝑥) (L𝑋ℎ) (𝑥),

where 𝑑 𝑓 |ℎ(𝑥) is the Jacobian of 𝑓 at ℎ(𝑥) and 𝑑 𝑓 |ℎ(𝑥) (L𝑋ℎ) (𝑥) is understood to be the Jacobian

vector product of 𝑑 𝑓 |ℎ(𝑥) with (L𝑋ℎ) (𝑥), equivalent to the directional derivative of 𝑓 along

(L𝑋ℎ) (𝑥). Therefore the Lie derivative satisfies a chain rule

A.3.1.3 Stochastic Trace Estimator for Layerwise Metric

Unrolling this chain rule for a sequence of layers NN(𝑥) = 𝑓𝑁 :1(𝑥) := 𝑓𝑁 (𝑓𝑁−1(...(𝑓1(𝑥)))), or even

an autograd DAG, we can identify the contribution that each layer 𝑓𝑖 makes to the equivariance

118

error of the whole as the sum of terms 𝐶𝑖 = 𝑑 𝑓𝑁 :𝑖+1L𝑋 𝑓𝑖 , L𝑋 (NN) = ∑𝑁
𝑖=1𝐶𝑖 .

Each of these𝐶𝑖 , like L𝑋 (NN) measure the equivariance error for all of the outputs (which we

define to be the softmax probabilities), and are hence vectors of size 𝐾 where 𝐾 is the number of

classes. In order to summarize the𝐶𝑖 as a single number for plotting, we compute their norm ∥𝐶𝑖 ∥

which satisfy ∥L𝑋 (NN)∥ ⩽ ∑
𝑖 ∥𝐶𝑖 ∥.

To compute 𝑑 𝑓𝑁 :𝑖+1L𝑋 𝑓𝑖 , one can use autograd to perform Jacobian vector products (as opposed

to typical vector Jacobian products) and build up 𝑑 𝑓𝑁 :𝑖+1 in a backwards pass. Unfortunately doing

so is quite cumbersome in the PyTorch framework where the large number of available models

are implemented and pretrained. A trick which can be used to speed up this computation is to use

stochastic trace estimation [Avron and Toledo 2011]. Since vector Jacobian products are cheap and

easy, we can compute ∥𝐶𝑖 ∥2 = E[𝐴] as the expectation of the estimator 𝐴 = (1/𝑁)∑𝑁
𝑛 (𝑧⊤𝑛𝐶𝑖)2 =

(1/𝑁)∑𝑁
𝑛 (𝑧⊤𝑛 𝑑 𝑓𝑁 :𝑖+1L𝑋 𝑓𝑖)2 with iid. Normal probe vectors 𝑧𝑛 ∼ N(0, 𝐼), and the quantity 𝑧⊤𝑛 𝑑 𝑓𝑁 :𝑖+1

which is a standard vector Jacobian product.

One can see that E[𝐴] = 𝐶⊤𝑖 E[𝑧𝑧⊤]𝐶𝑖 = 𝐶⊤𝑖 𝐼𝐶𝑖 = ∥𝐶𝑖 ∥2. We can then measure the variance of

this estimator to control for the error and increase 𝑁 until this error is at an acceptable tolerance

(we use 𝑁 = 100 probes). The convergence of this trace estimator is shown in Figure A.3 (right)

for several different layers of a ResNet-50. In producing the final layerwise attribution plots, we

average the computed quantity ∥𝐶𝑖 ∥ over 20 images from the ImageNet test set.

A.3.2 LEE Theorems

A.3.2.1 LEE and consistency regularization

As shown in Athiwaratkun et al. [2018], consistency regularization with Gaussian input pertur-

bations can be viewed as an estimator for the norm of the Jacobian of the network, but in fact

when the perturbations are not Gaussian but from small spatial transformations, consistency

regularization actually penalizes the Lie derivative norm. In the Π-model [Laine and Aila 2016]

119

(the most basic form of consistency regularization), the consistency regularization minimizes the

norm of the difference of the outputs of the network when two randomly sampled transformations

𝑇 𝑎 and 𝑇𝑏 are applied to the input,

Lcons = ∥ 𝑓 (𝑇 𝑎 (𝑥)) − 𝑓 (𝑇𝑏 (𝑥))∥2. (A.11)

Suppose that the two transformations are representations of a given symmetry group and can

be written as 𝑇 𝑎 = 𝜌 (𝑔𝑎) and 𝑇𝑏 = 𝜌 (𝑔𝑏), and the group elements can be expressed as the flow

generated by a linear combination of the vector fields which form the Lie Algebra: 𝑔𝑎 = Φ∑
𝑖 𝑎𝑖𝑋𝑖

for

some coefficients {𝑎𝑖}𝑑𝑖=1 and likewise for 𝑔𝑏 . We can define the log map, mapping group elements

top their generator values in this basis: log(𝑔𝑎) = 𝑎. Then, assuming 𝑎𝑖 are small (and therefore

the transformations are small), Taylor expansion yields Lcons = ∥ 𝑓 (𝑥) +
∑
𝑖 𝑎𝑖L𝑋𝑖

𝑓 (𝑥) +𝑂 (𝑎2) −

[𝑓 (𝑥) +∑
𝑗 𝑏 𝑗L𝑋 𝑗

𝑓 (𝑥) +𝑂 (𝑏2)] ∥2. Therefore, taking the expectation over the distribution which

𝑎 and 𝑏 are sampled over (which is assumed to be centered with E[𝑎𝑖] = E[𝑏𝑖] = 0 as well as the

input distribution 𝑥 , we get that

E𝑎,𝑏,𝑥 [Lcons] = 2E[∥
∑︁
𝑖

L𝑋𝑖
𝑓 (𝑥)∥2Σ] + higher order terms, (A.12)

where ∥∥2Σ denotes the norm with respect to the covariance matrix Σ = Cov(𝑎) = Cov(𝑏).

When the transformations are not parameter space perturbations such as dropout, but input

space perturbations like translations (which have been found to be far more important to the

overall performance of the method [Athiwaratkun et al. 2018]), we can show that consistency reg-

ularization coincides with minimizing the expected Lie derivative norm. In this sense, consistency

regularization can be viewed as an intervention for reducing the equivariance error on unlabeled

data.

120

A.3.2.2 Translation LEE and aliasing

Below we show that spatial aliasing directly introduces translation equivariance error as measured

by the Lie derivative, where the aliasing operation 𝐴[·] is given by Equation 4.2. The Fourier

series representation of an image ℎ(𝑥,𝑦) with pixel locations (𝑥,𝑦) is 𝐻𝑛𝑚 with spatial frequencies

(𝑛,𝑚), where the band limited reconstruction

ℎ(𝑥,𝑦) = 1
2𝜋

∑︁
𝑛𝑚

𝐻𝑛𝑚𝑒
2𝜋𝑖 (𝑥𝑛+𝑦𝑚) = 𝐹−1 [𝐻]

and 𝐹−1 is the inverse Fourier transform, and the sums range over frequencies of −𝑀/2 to +𝑀/2

for both 𝑛 and𝑚 where𝑀 is the image height and width (assumed to be square for convenience).

Applying a continuous translation by 𝑡v along vector v = (𝑣𝑥 , 𝑣𝑦) to the input means resampling

the translated band limited continuous reconstruction ℎ(𝑥,𝑦) at the grid points.

𝑇𝑡v [ℎ] (𝑥,𝑦) = ℎ(𝑥 − 𝑡𝑣𝑥 , 𝑦 − 𝑡𝑣𝑦) = 1
2𝜋

𝑀/2∑︁
𝑛,𝑚=−𝑀/2

𝐻𝑛𝑚𝑒
2𝜋𝑖 [(𝑥−𝑡𝑣𝑥)𝑛+(𝑦−𝑡𝑣𝑦)𝑚]

To simplify the notation, we will consider translations along only 𝑥 and suppress the𝑚 index

of 𝐻𝑛𝑚 , effectively deriving the result for the translations of a 1d sequence, but that extends

straightforwardly to the 2 dimensional case.

𝑇𝑡v [ℎ] (𝑥) = ℎ(𝑥 − 𝑡𝑣𝑥) = 1
2𝜋

𝑀/2∑︁
𝑛=−𝑀/2

[𝐻𝑛𝑒−2𝜋𝑖𝑡𝑣𝑥𝑛]𝑒2𝜋𝑖𝑥𝑛

Applying the aliasing operation, sampling the image to a new size𝑀′ (with Nyquist frequency

121

𝑀′/2), we have

𝐴[𝑇𝑡v [ℎ]] (𝑥) = 1
2𝜋

𝑀/2∑︁
𝑛=−𝑀/2

[𝐻𝑛𝑒−2𝜋𝑖𝑡𝑣𝑥𝑛]𝑒2𝜋𝑖𝑥Alias(𝑛)

= 1
2𝜋

𝑀 ′/2∑︁
𝑛′=−𝑀 ′/2

[∑︁
𝑛=Alias−1 (𝑛′)

𝐻𝑛𝑒
−2𝜋𝑖𝑡𝑣𝑥𝑛

]
𝑒2𝜋𝑖𝑥𝑛′

where the last line follows from applying a change of variables 𝑛′ = Alias(𝑛).

Applying the final inverse translation (which acts on the 𝑀′ sampling rate band limited

continuous reconstruction), we have

𝑇−𝑡v [𝐴[𝑇𝑡v [ℎ]]] (𝑥) = 1
2𝜋

𝑀 ′/2∑︁
𝑛′=−𝑀 ′/2

[∑︁
𝑛=Alias−1 (𝑛′)

𝐻𝑛𝑒
−2𝜋𝑖𝑡𝑣𝑥 (𝑛−𝑛′)

]
𝑒2𝜋𝑖𝑥𝑛′ .

Taking the derivative with respect to 𝑡 , we have

Lv(𝐴) (ℎ) = 𝑑
𝑑𝑡

��
0𝑇−𝑡v [𝐴[𝑇𝑡v [ℎ]]]

= 1
2𝜋

𝑀 ′/2∑︁
𝑛′=−𝑀 ′/2

[∑︁
𝑛=Alias−1 (𝑛′)

2𝜋𝑖𝑣𝑥 (𝑛′ − 𝑛)𝐻𝑛
]
𝑒2𝜋𝑖𝑥𝑛′ .

Notably, for aliasing when the frequency is reduced by a factor of 2 from downsampling, there

are only two values of 𝑛 that satisfy Alias(𝑛) = 𝑛′: the value 𝑛 = 𝑛′ and the one that gets aliased

down, therefore when multiplied by 𝑛 − 𝑛′ the sum
[∑

𝑛=Alias−1 (𝑛′) 2𝜋𝑖𝑣𝑥 (𝑛′ − 𝑛)𝐻𝑛
]
consists only

of a single term.

According to Parseval’s theorem, the Fourier transform 𝐹 is unitary, and therefore the norm of

the function as a vector evaluated at the discrete sampling points 𝑥 = 1/𝑀′, 2/𝑀′, ... is the same

122

as as the norm of the Fourier transform:

∥Lv(𝐴) (ℎ)∥2 = ∥𝐹 [Lv(𝐴) (ℎ)] ∥2

∥Lv(𝐴) (ℎ)∥2 =
𝑀 ′/2∑︁

𝑛′=−𝑀 ′/2

���� ∑︁
𝑛=Alias−1 (𝑛′)

2𝜋𝑖𝑣𝑥 (𝑛′ − 𝑛)𝐻𝑛
����2

∥Lv(𝐴) (ℎ)∥2 =
𝑀/2∑︁

𝑛=−𝑀/2
(2𝜋)2𝑣2

𝑥 (Alias(𝑛) − 𝑛)2𝐻 2
𝑛 ,

using the fact that only one element is nonzero in the sum. Finally, generalizing to the 2d case, we

have

∥Lv(𝐴) (ℎ)∥2 = (2𝜋)2
∑︁
𝑛𝑚

𝐻 2
𝑛𝑚

(
𝑣2
𝑥 (Alias(𝑛) − 𝑛)2 + 𝑣2

𝑦 (Alias(𝑚) −𝑚)2
)
, (A.13)

showing how the translation Lie derivative norm is determined by the higher frequency compo-

nents which are aliased down.

A.3.3 Learned Eqivariance Experiments

A.3.3.1 Layer-wise Eqivariance Baselines

We use EQ-T and EQ-Tfrac [Karras et al. 2021] to calculate layer-wise equivariance by caching

intermediate representations from the forward pass of the model. For image-shaped intermediate

representations, EQ-T samples integer translations in pixels between -12.5% and 12.5% of the

image dimensions in pixels. EQ-Tfrac is identical but with continuous translation vectors. The

individual layer is applied to the transformed input and then the inverse group action is applied

to the output, which is compared with the original cached output. Many different normalization

could be chosen to compare equivariance errors across layers. The most obvious are 1
𝑁
, 1√

𝑁
, and 1

1

(no normalization), where 𝑁 = 𝐶 ×𝐻 ×𝑊 . As we show in section 4.5, the normalization method

can have a large effect of the relative contribution of a layer, despite the decision being relatively

arbitrary (in contrast to LEE, which removes the need for doing so as the scale is automatically

123

measured relative to the contribution to the output).

A.3.3.2 Model List

The models included in Figure 1 are

• Early CNNs: ResNets [He et al. 2015], ResNeXts [Xie et al. 2017], VGG [Simonyan and

Zisserman 2014], Inception [Szegedy et al. 2016], Xception [Chollet 2017], DenseNet [Huang

et al. 2017], MobileNet [Sandler et al. 2018], Blur-Pool Resnets and Densenets [Zhang 2019],

ResNeXt-IG [Mahajan et al. 2018a], SeResNe*ts [Hu et al. 2018], ResNet-D [He et al. 2018],

Gluon ResNets [Guo et al. 2020; Zhang et al. 2019, 2020], SKResNets [Li et al. 2019], DPNs

[Chen et al. 2017]

• Modern CNNs: EfficientNet [Tan and Le 2019a, 2021], ConvMixer [Trockman and Kolter

2022], RegNets [Radosavovic et al. 2020], ResNet-RS, [Bello et al. 2021], ResNets with new

training recipes [Wightman et al. 2021], ResNeSts [Zhang et al. 2020], RexNet [Han et al.

2021a], Res2Net [Gao et al. 2019], RepVGG [Ding et al. 2021], NFNets [Brock et al. 2021],

XNect [Mehta et al. 2020], MixNets [Tan and Le 2019c], ResNeXts with SSL pretraining

[Yalniz et al. 2019], DLA [Yu et al. 2019], CSPNets [Wang et al. 2019], ECA NFNets and

ResNets [Brock et al. 2021], HRNet [Sun et al. 2019], MnasNet [Tan et al. 2019]

• Vision transformers: ViT [Dosovitskiy et al. 2020], CoaT [Dai et al. 2021], SwinViT [Liu et al.

2021c], [Bao et al. 2021], CaiT [Touvron et al. 2021c], ConViT [d’Ascoli et al. 2021], CrossViT

[Chen et al. 2021], TwinsViT [Chu et al. 2021], TnT [Han et al. 2021b], XCiT [El-Nouby et al.

2021], PiT [Heo et al. 2021], Nested Transformers [Zhang et al. 2022]

• MLP-based architectures: MLPMixer [Touvron et al. 2021b], ResMLP [Touvron et al. 2021a],

gMLP [Liu et al. 2021a], MLP-Mixers with (Si)GLU [Wightman 2019]

124

A.3.3.3 Alternative End-to-End Eqivariance Metrics

Discrete Consistency. We adopt the consistency metric from Zhang [2019], which simply

measures the fraction of top-1 predictions that match after applying an integer translation to

the input (in our case by 10 pixels). Instead of reporting consistency numbers, we report (1 −

% matching), so that consistency because a measure of equivariance error. Equivariant models

should exhibit end-to-end invariance, high consistency, and low equivariance error.

Expected Group Sample Eqivariance. Inspired by work in equivariant architecture design

[Finzi et al. 2020; Hutchinson et al. 2021], we provide an additional equivariance metric for

comparison against the Lie derivative. Following [Hutchinson et al. 2021], we sample 𝑘 group

elements in the neighborhood of the identity group element, with sampling distribution D(𝐺),

and calculate the sample equivariance error for model 𝑓 as 1
𝑘

∑
𝑘 | |𝜌−1

2 (𝑔𝑘) 𝑓 (𝜌1(𝑔𝑘)𝑥) − 𝑓 (𝑥) | |. For

translations we take D(𝐺) to be Uniform(−5, 5) in pixels.

Versus LEE. There are several reasons why the continuous lie derivative metric is preferable

over discrete and group sample metrics. Firstly, it allows us to break down the equivariance

error layerwise enabling more fine grained analysis in a way not possible with the discrete

analog. Secondly, the metric is less dependent on architectural details like the input resolution

of the network. For example, for discrete translations by 1 pixel, these translations have a

different meaning depending on the resolution of the input, whereas our lie derivatives are defined

as the derivative of translations as a fraction of the input size, which is consistently defined

regardless of the resolution. Working with the vector space forming the Lie algebra rather than

the group also removes some unnecessary freedom in how one constructs the metric. Rather

than having to choose an arbitrary distribution over group elements, if we compute the Lie

derivatives for a set of basis vectors of the lie algebra, we have completely characterized the space,

and all lie derivatives are simply linear combinations of the computed values. Finally, paying

125

attention to continuous transformations reveals the problems caused by aliasing which are far less

apparent when considering discrete transformations, and ultimately the relevant transformations

are continuous and we should study them directly.

A.3.3.4 LEE for Additional Transformations

Beyond the 3 continuous transformations that we study with Lie derivatives above, there are many

more that might reveal important properties of the network. Here we include an three additional

transformations–hyperbolic rotation, brightening, and stretch.

Figure A.3 (left) shows that, perhaps surprisingly, models with high accuracy become more

equivariant to hyperbolic rotations. We suspect this surprisingly general equivariance to diverse

set of continuous transformations is probably the result of improved anti-aliasing learned implicitly

by more accurate models. LEE does not identify any significant correlation between brightening

or stretch transformations and generalization ability.

Hyperbolic Rot. Brighten Stretch Trace Estimator

0.70 0.75 0.80 0.85 0.90
Imagenet Test Accuracy

0.02

0.04

0.06

Eq
ui

va
ria

nc
e

Er
ro

r

R2 = 0.360

CNN ViT MixerCNN ViT Mixer

0.70 0.75 0.80 0.85 0.90
Imagenet Test Accuracy

0.0000

0.0005

0.0010

Eq
ui

va
ria

nc
e

Er
ro

r

R2 = 0.121

CNN ViT MixerCNN ViT Mixer

0.70 0.75 0.80 0.85 0.90
Imagenet Test Accuracy

0.0

0.1

0.2

0.3

Eq
ui

va
ria

nc
e

Er
ro

r

R2 = 0.014

CNN ViT MixerCNN ViT Mixer
0 20 40 60 80 100

Number of Probes

10 1

100

101

102

|L
f i|

2 E
st

im
at

e

Layer type
Activation
Conv2d
Pool

Figure A.3: (Left): Extending Figure 4.5 we show the Lie derivate norm for hyperbolic rotation, brightening,
and stretch transformations. We observe that more accurate models are also more equivariant to hyperbolic
rotations and to brighten transformation, to a more limited extent. In the case of hyperbolic rotations,
this result is surprising, as nothing has directly encouraged this equivariance. One possible explanation is
decreased aliasing in models with higher accuracy. Marker size indicates model size. Error bars show one
standard error over the images use to evaluate the Lie derivative. (Right): Cumulative mean and standard
error of the estimator (computed for translations on a ResNet-50).

126

A.3.3.5 Rotated MNIST Finetuning

In order to test the ability of SOTA imagenet pre-trained models to learn equivariance competitive

with specialized architectures, we adapted the example rotated MNIST notebook available in

E2CNN repository [Weiler and Cesa 2019b]. We use the base model and default finetuning

procedure from [He et al. 2021], finetuning for 100 epochs, halving the learning rate on loss

plateaus.

A.4 Appendix for Understanding the Inductive Biases of

Neural Networks

Appendix Outline

The appendix is organized as follows.

• In Appendix A.4.1, we report results for additional bounds for SVHN and ImageNet. We

also report the compression size corresponding to our best bound values and compare it

to the compression size obtained through standard pruning. Furthermore, in ?? A.4.1.1 we

prove why models cannot both be compressible and fit random labels.

• In Appendix A.4.2, we describe how optimization over hyperparameters like the intrinsic

dimension impact the PAC-Bayes bound

• In Appendix A.4.3, we show how our PAC-Bayes bound benefit from transfer learning.

• In Appendix A.4.4, we discuss data-dependent priors and their effect on the subspace

dimension optimization.

• In Appendix A.4.5, we detail our experimental setup including models, datasets, and hyper-

parameter settings for training and bound computation.

127

https://github.com/QUVA-Lab/e2cnn/blob/master/examples/model.ipynb
https://dl.fbaipublicfiles.com/mae/pretrain/mae_pretrain_vit_base.pth
https://github.com/facebookresearch/mae/blob/main/FINETUNE.md
https://github.com/facebookresearch/mae/blob/main/FINETUNE.md

• In Appendix A.4.6, we provide a compression perspective to why equivariant models may

be more desirable for generalization.

• In Appendix A.4.7, we further discuss how our through our PAC-Bayes compression bounds,

we provide evidence that SGD is not necessary for generalization.

• In Appendix A.4.8, we ablate the model size and show how it impacts our bounds and

compressibility, we identify the best performing size of models for our bounds.

• In Appendix A.4.9, we present our observations on double descent and their preditability

from our PAC-Bayes bounds.

• In Appendix A.4.10, we expand our theoretical discussion and emphasize conceptual differ-

ences between our method and previous ones in the literature.

• Lastly, in ?? we provide licensing information on the datasets we use.

A.4.1 Additional Results

In addition to the results reported in Table 5.2, we report the best bounds for SVHN and ImageNet-

1k as well as the corresponding compressed size in Tables A.18 and A.19. In Table A.18 we

show how compressing the model via intrinsic dimension (ID) yields better results than standard

pruning. In this table, we basically run our method but substitute ID with pruning and then

proceed by quantizing the remaining weights and encoding them through arithmetic encoding.

When pruning we used the standard iterative procedure following Han et al. [2016], for the MNIST

model we pruned 98.8% of the weights, for the FMNIST model 97.0% of the weights, for the SVHN

model 98.8% of the weights and for both the CIFAR-10 and CIFAR-100 models we pruned 52.1% of

the weights and stopped there as the accuracy dropped significantly if we kept pruning.

Error bars on our bounds: We re-run the bounds computation for 10 times and observe that

the values are consistent. On average, we obtain ±0.5% variation in our bounds for models trained

128

from scratch and ±0.1% variation for transfer learning models.

A.4.1.1 Models that can fit random labels cannot be compressed

Our ability to construct nonvacuous generalization bounds rests on the ability to construct models

which both fit the training data and are highly compressible. However, when the structure in the

dataset has been completely destroyed by shuffling the labels, then we do not find that our models

are compressible (shown in Figure 5.3 right). This is not just an empirical fact, but one that can

be proven apriori: models which fit random labels cannot be compressed. While this result is a

trivial consequence of complexity theory, we present an argument here for illustration.

Almost all random datasets are incompressible

When sampling labels uniformly at random, almost all datasets are not substantially compress-

ible. Given a datasetD = {𝑥𝑖, 𝑦𝑖}𝑛𝑖=1 (where we are only considering the labels 𝑦𝑖 , and conditioning

on the inputs 𝑥𝑖), and denoting |D| as the length of the string of labels, the probability that a

given dataset can be compressed to size |D| − 𝑐 is less than 2−𝑐+1. To see this, one must consider

that there are only
∑|D|−𝑐
𝑖=0 2𝑖 ⩽ 2|D|−𝑐+1 programs of length ⩽ |D| − 𝑐 (fewer still when restricting

to self delimiting programs), and there are 2|D| possible datasets. Therefore averaging over all

randomly labeled datasets the fraction which are compressible to less than or equal to |D| − 𝑐 bits

is at most 2|D|−𝑐+1/2|D| = 2−𝑐+1.

A compressible model which fits the data is a compression of the dataset

Let prior 𝑃 that includes a specification of the model architecture, and the model ℎ which

outputs probabilities for each of the outcomes: 𝑝 (𝑦 = 𝑘 | 𝑥𝑖) = ℎ(𝑥𝑖)𝑘 . We can decompose the

(prefix) Kolmogorov complexity of the dataset (given the prior) as

𝐾 (D | 𝑃) ⩽ 𝐾 (D | ℎ, 𝑃) + 𝐾 (ℎ | 𝑃). (A.14)

The term 𝐾 (D | ℎ, 𝑃) can be interpreted as a model fit term and upper bounded by the total

129

negative log likelihood simply using the model probabilities as a distribution to encode the labels:

𝐾 (D | ℎ, 𝑃) ⩽ −∑
𝑖 log2 ℎ(𝑥𝑖)𝑦𝑖 + 1 = NLL(D | ℎ) + 1.

Using the fact that almost all random datasets are incompressible, and choosing 𝑐 = 1 +

log2(1/𝛿), we have that with probability at least 1 − 𝛿 over all randomly sampled datasets

𝐾 (D | 𝑃) > |D| − log2(1/𝛿) − 1. Plugging into (A.14) and rearranging, we have with probability

1 − 𝛿 ,

𝐾 (ℎ |𝑃) ⩾ |D| − NLL(D | ℎ) − log2(1/𝛿) − 2, (A.15)

In Figure A.6 we plot the quantity 𝐾 (ℎ | 𝑃) + NLL(D | ℎ) which represents the compressed

size of the dataset achieved by our model (related to the minimum description length principle).

We see that the value is considerably lower than the size of the dataset |D|, emphasizing that real

machine learning datasets such as CIFAR-10 have a very low Kolmogorov complexity and are

very unlike those with random labels.

A.4.2 Subspace Dimension Optimization and Hyperparameters in the

Universal Prior

The smaller the chosen intrinsic dimension 𝑑 , the more similar 𝜃 is to the initialization 𝜃0 in (5.3).

Consequently, that value of 𝜃 is more likely under the universal prior given the shorter description

length. Note that in this prior, we condition on the random seed used to generate 𝜃0 and 𝑃 . As we

optimize over different parameters such as the subspace dimension 𝑑 = 1, .., 𝐷 , and possibly other

hyperparameters such as the learning rate, or number of quantization levels 𝐿, we must encode

these into our prior and thus pay a penalty for optimizing over them. We can accomodate this

very simply by considering the hypothesis ℎ as not just specifying the weights, but also specifying

these hyperparameters: ℎ = (𝜃, 𝑑, 𝐿, lr), and therefore using the universal prior 𝑃 (ℎ) = 2−𝐾 (ℎ)/𝑍

we pay additional bits for each of these quantities: 𝐾 (ℎ) ⩽ 𝐾 (𝜃 | 𝑑, 𝐿) +𝐾 (𝑑) +𝐾 (𝐿) +𝐾 (lr). If we

optimize over a fixed number 𝐻 of distinct values known in advance for a given hyperparameter

130

such as 𝐿, then we can code 𝐿 using this information in only log2(𝐻) bits. In general, we can also

bound the dimensionalities searched over by the maximum 𝐷 so that 𝐾 (𝑑) ⩽
⌈
log2𝐷

⌉
in any case.

A.4.3 Transfer Learning Bounds

We show the expanded results both with and without transfer learning in Table A.18. When

finetuning from ImageNet we use the larger EfficientNet-B0 models rather than the small convnet.

Despite the fact that the model is significantly larger than the convnet or resnet models that we

use to achieve the best bounds for from scratch training, the difference between the finetuned and

pretrained models is highly compressible.

A.4.4 Data Dependent Priors

We observe that when using data dependent priors, our optimization over the subspace dimension

(and the complexity of the model used to fit the data when measured against the prior) favors

very low dimensions and low KL values which we show empirically in Figure A.4. Indeed, a large

fraction of the data fitting is moved into fitting a good prior, particularly when the dataset fraction

used to train the prior is large. When the prior is already fitted on the data, the final solution can

have a very low complexity with respect to that prior without affecting data fit, and is encouraged

to do so.

A.4.5 Experimental Details

In this section we provide experimental details to reproduce our results.

A.4.5.1 Model Training Details

We use a standard small convolutional architecture for our experiments, which we find produces

better bounds than its ResNet counterparts. The architecture is detailed in Table A.20, and we use

131

0.2 0.5 0.8
Prior Train Subset

20

30

40

50

60

70

Er
r.

Bo
un

d
(%

)
Intrinsic. Dim.

0
3500
5000
7500

0.2 0.5 0.8
Prior Train Subset

50

60

70

80

90

100

Er
r.

Bo
un

d
(%

) Intrinsic. Dim.
0
5000
10000
15000
20000

(a) CIFAR-10 (b) CIFAR-100

Figure A.4: Data-dependent bounds focus on fitting a good prior. Our bounds using data dependent
priors trained using varying fractions of the training dataset. We see that when using data dependent
priors, lower intrinsic dimensionalities and lower KL models are favored by the bound.

𝑘 = 16 for experiments, but this value is ablated in Figure A.6.

Stochastic training: All models were trained for 500 epochs using the Adam optimizer with

learning rate 0.001, except for ImageNet which was trained for 80 epochs with SGD using learning

rate of 0.05 and weight decay of 0.00002. The model architectures for each dataset are listed below:

• MNIST [LeCun et al. 1998] (+ SVHN [Netzer et al. 2011] Transfer): LeNet-5 [LeCun et al.

1998].

• FashionMNIST [Xiao et al. 2017] (+ CIFAR-10 [Krizhevsky 2009] Transfer): ResNet20 [He

et al. 2016b].

• SVHN: ConvNet (Table A.20).

• SVHN + ImageNet Transfer: EfficientNet-B0 [Tan and Le 2019b].

• CIFAR-10: ConvNet.

• CIFAR-10 + ImageNet Transfer: EfficientNet-B0 [Tan and Le 2019b].

• CIFAR-100 [Krizhevsky 2009]: ConvNet.

• CIFAR-100 + ImageNet [Deng et al. 2009] Transfer: EfficientNet-B0.

132

Full-batch training: We train all models for 3000 epochs, use learning rates equal to 0.1

(MNIST + LeNet-5 and CIFAR-10 + ResNet-18) and 0.5 (CIFAR-10 +ConvNet), and a cosine learning

rate scheduler that we warm-up for 10 epochs. We also clip the full gradient to have an 𝐿2-norm

of at most 0.25 before performing parameter updates in each epoch [Geiping et al. 2022].

Transfer Learning All previous training details remain the same, except that 𝜃0 from (5.3)

is initialized from a pre-trained checkpoint instead of a random initialization. As typically done

in literature, the final classification layer is replaced with a randomly initialized fully-connected

layer to account for the number of classes in the downstream task.

A.4.5.2 Bound Hyperparameter Optimization

As explained in Appendix A.4.2, we optimize the bound hyperparameters by considering that

the hypothesis of interest ℎ specifies the hyperparameters in addition to the weights. Therefore,

we pay bits back for the combination of hyperparemeters that we select. For example, if we are

doing a grid search over 2 values of the quantization-aware training learning rate, 2 values of the

intrinsic dimensionality values, 2 values of the quantization levels, and use k-means by default,

then the number of bits that we pay is log2(2 × 2 × 2) = 3 bits.

Optimizing PAC-Bayes bounds for data-independent priors: Our PAC-Bayesian sub-

space compression bounds for data-independent priors have 4 hyperparameters that we list

here-under alongside the possible values that we consider for each hyperparameter:

• The learning rate for the quantization-aware training, possible values: {0.001, 0.003, 0.005,

0.0001}.

• The intrinsic dimensionality, possible values: {0, 1000, 2500, 3000, 3500, 4000, 5000, 7500,

8000, 10000, 12000, 15000, 20000, 25000, 50000, 100000, 250000, 500000}, except for the Ima-

geNet transfer learning which was conducted on the more limited range:

{500, 1000, 2000, 3000, 4000, 6000, 8000}

133

• The number of quantization levels, possible values: {0, 7, 11, 30, 50}.

• The quantization initialization, possible values: {uniform, k-means}.

Note that we only use a subset of these hyperparameter values for some datasets, depending on

the dataset size and other considerations. For all bound computations, we use arithmetic encoding

and 30 epochs of quantization-aware training.

In Table A.21, we summarize the hyperparameters corresponding to the data-independent

bounds that we report in Table 5.2.

Optimizing PAC-Bayes bounds for data-dependent priors: In addition to the hyperpa-

rameters listed above, we also tune the hyperparameter corresponding to the subset of the training

dataset that we use to train the prior on. We consider the following values for the subset of the

training dataset: {20%, 50%, 80%}.

In Table A.22, we summarize the the hyperparameters corresponding to the data-dependent

bounds that we report in Table 5.2. The best bounds are obtained for intrinsic dimensionality

equal to 0, therefore no quantization is performed.

A.4.5.3 Computational Infrastructure & Resources

Our computational hardware involved a mix of NVIDIA GeForce RTX 2080 Ti (12GB), NVIDIA

TITAN RTX (24GB), NVIDIA V100 (32GB), and NVIDIA RTX8000 (48GB). The experiments were

managed via W&B [Biewald 2020]. The total computational cost of all experiments (including the

ones that do not appear in this work) amounts to ≈ 8000 GPU hours.

A.4.5.4 Breaking Data and Model Structure Experiment

In this experiment we compared our generalization bounds derived for training convolutional

networks and MLPs on standard CIFAR10, as well as when data structure is broken by shuffling

the pixels or shuffling the labels. We trained for 100 standard epochs with batch size 128 and then

134

another 50 epochs of quantization aware training in all cases. We use 7 quantization levels and

uniform quantization initialization for all to simplify. When comparing against an MLP, we use

a 3 hidden layer MLP with ReLU nonlinearities, and we feed in the images by flattening them

into 3 × 32 × 32 sized vectors. We use 150 hidden units in the intermediate layers of the MLP and

choose 𝑘 = 46 in the simple convolutional architecture described in Table A.20 so as to match the

parameter count (though slightly smaller models perform slightly better as ablated in Figure A.6).

A.4.6 Eqivariance

We conduct a simple experiment to evaluate the extent to which model equivariance has on the

compressibility of deep learning models and the tightness of our generalization bounds. We use the

rotationally equivariant 𝐶8 WideResNet model from Weiler and Cesa [2019a] which has an 8-fold

rotational symmetry, and we also use a non equivariant version of this model. The equivariant

model has a depth of 10 and a widen factor of 4 yielding 1.451M parameters. We control for the

number of parameters by adjusting the widen factor of the non equivariant model to 4.67 yielding

1.447M parameters.

We evaluate these models both on MNIST and the RotMNIST dataset [Larochelle et al. 2007]

consisting of 12K training examples of rotated MNIST digits. As shown in Figure A.5 (a), when

paired with the rotationally symmetric RotMNIST dataset, the rotationally equivariant model

achieves better bounds and is more compressible than it’s non equivariant counterpart despite

having the same number of parameters. However, when this symmetry of the dataset is removed

by considering standard MNIST, we see that the benefits of equivariance to the generalization

bound and compressibility vs the WRN model dissapear.

135

500 1000 1500 2000
Subspace Dimension

0

20

40

60

80

100

Er
r.

Bo
un

d
(%

)

WRN
C8WRN

500 1000 1500 2000
Subspace Dimension

0

20

40

60

80

100

Er
r.

Bo
un

d
(%

)

(a) RotMNIST (12k labels) (b) MNIST (60k labels)

Figure A.5: Rotationally-equivariant models provably generalize better on rotationally-
equivariant data. Comparison of rotationally equivariant 𝐶8 WideResNet vs ordinary WideResNet
with the same number of parameters on (a) the rotationally equivariant RotMNIST dataset [Larochelle et al.
2007] and (b) the ordinary MNIST dataset. Both models are capable of fitting the data, but the equivariant
model yields a more compressible solution when fitting the rotationally equivariant data than the non
equivariant model, and hence yields a better generalization bound. (Note the difference in dataset size,
RotMNIST has only 12K data points unlike MNIST)

A.4.7 Full-Batch vs. Stochastic Training (SGD)

To further expand on the results that we present in Section 5.6, we study the impact of hyperpa-

rameters, namely the weight decay and the architecture choice, on the bounds obtained through

full-batch (F-B) training. Table A.23 summarizes these results and we provide the training and

bound computation details in Appendix A.4.5. Our PAC-Bayes subspace compression bounds

provide similar theoretical guarantees for both full-batch and stochastic training, suggesting that

the implicit biases of SGD are not necessary to guarantee good generalization. Moreover, we see

that the results are consistent for different configurations, which result in comparable bounds

overall.

Transfer learning using full-batch training: We perform full batch training for transfer

learning from SVHN to MNIST using LeNet-5 and the same experimental setup described in

Appendix A.4.5. Our best PAC-Bayes subspace compression bounds for SVHN to MNIST transfer

are 8.7% and 9.0% for full-batch and SGD training, respectively. This finding provides further

136

evidence that good generalization of neural networks, and the success of transfer learning in

particular, does not necessarily require stochasticity or additional flatness-inducing procedures to

be achieved.

Finally, we note that we optimize over the same set of hyperparameters for the bound compu-

tation for both full-batch and stochastic training.

A.4.8 Model Size vs. Compressibility

We perform an ablation to determine how the size of the model affects our generalization bounds.

Using the fixed model architecture Table A.20, we vary the width 𝑘 from 4 to 192. Using our

subspace compression scheme, we find that the compression ratio of the model does increase with

model size, however the total compressed size still increases slowly making our bounds less strong

for larger models. For this paper, we find the sweet spot 𝑘 = 16 is just above the point with equal

number of parameters and data points.

We note that this finding leaves room for an improved compression scheme and generalization

bounds which are able to explain why even larger models still generalize better. Curiously, when

plotting to the total compressed dataset size (𝐾 (ℎ |𝑃) + NLL) using the model as a compression

scheme, we find that the MDL principle which favors shorter description lengths of the data

actually prefers larger models than our PAC-Bayes generalization bounds selects.

A.4.9 Double Descent

Under select conditions, we are able to reproduce the double descent phenomenon in our general-

ization bounds. In Figure A.7 (right), we show that our bound exhibits a double descent similar to

what we see in terms of the test error Figure A.7 (left). The results we show in Figure A.7 (right)

are obtained for a fixed intrinsic dimensionality of 35000, but we observed that this middle descent

consistently appears in our bounds plots for a given (fixed) intrinsic dimensionality where we

137

104 105 106 107

Model Parameters

56

58

60

62
Er

r.
Bo

un
d

(%
)

Best ID dim
2000
3500
5000

104 105 106 107

Model Parameters

10.0

12.5

15.0

17.5

20.0

M
DL

 (K
B)

Figure A.6: Model size, compressibility, and MDL. Left: Generalization error bound as a function of
model size on the CIFAR10 dataset. The ID subspace dimension that achieves the best bound is shown by
the color. In terms of our bound computation, the optimal number of parameters of the network is only
slightly above the number of data points. Right: The total compressed size (𝐾 (ℎ |𝑃) + NLL) of the training
dataset using our model as a compression scheme. While the raw labels have size 20.3KB (shown by the
black line), the best model compresses the labels down to 8.6KB. Curiously, the compressed dataset size
and hence the MDL principle favors larger models than our generalization bounds.

select the best bound for each base width. However, we expect that extending the plot out to

larger model widths the bound gets worse again as explained in Appendix A.4.8.

5 10 15 20
Base Width

0.20

0.25

0.30

0.35

0.40

Te
st

 E
rro

r (
La

st
 E

po
ch

)

Label Noise
0.2
Mode
Scratch
Transfer

5 10 15 20
Base Width

85

86

87

88

89

90

Er
r.

Bo
un

d
(%

)

Figure A.7: Our bounds display a double descent as we increase the width. Left: Double descent (in
terms of the test error of the last epoch model) observed when varying the width of a ResNets-18 model to
fit the CIFAR-10 dataset with label noise equal to 0.2. Right: Our bounds showing a similar double descent
behaviour where the bound starts to worsen only to become better again at a later width. Here we can fix
the intrinsic dimensionality to be equal to 35000 and we choose the best subspace compression bound for
each base width.

138

A.4.10 PAC-Bayes Bounds

A.4.10.1 Catoni PAC-Bayes Bound

In our case, since neural networks achieve low training error, we focus on a bound like Catoni

[2007] which becomes tighter when KL (𝑄, 𝑃) is large. This is the same bound used in Zhou et al.

[2019].

Theorem A.3 (Catoni [2007]). Given a 0-1 loss ℓ , a fixed 𝛼 > 1 and a confidence level 𝛿 ∈ (0, 1)

then

𝜃 ∼ 𝑄
E
[𝑅 (𝑓𝜃)] ≤ inf

𝜆>1
Φ−1
𝜆/𝑁

[
𝜃 ∼ 𝑄
E
[𝑅 (𝑓𝜃)] +

𝛼

𝜆

[
KL (𝑄, 𝑃) + log

1
𝛿
+ 2 log

(
log

(
𝛼2𝜆

)
log𝛼

)]]
holds with probability higher than 1 − 𝛿 and where

Φ−1
𝛾 (𝑥) =

1 − 𝑒𝛾𝑥
1 − 𝑒𝛾 .

A.4.10.2 Variable Length Encoding and Robustness Adjustment

In Zhou et al. [2019], the authors assume a fixed length encoding for the weights. Given that the

distribution over quantization levels is highly nonuniform, using a variable length encoding (such

as Huffman encoding or arithmetic encoding) can represent the same information using fewer

bits. While this choice gives significant benefits, it means that we cannot immediately make use

of robustness adjustment from Zhou et al. [2019], where the robustness adjustment comes from

considering neighboring models that result from perturbing the weights slightly.

Revisiting the prior derivation in Zhou et al. [2019], we show why the method used for

bounding the KL does not transfer over to variable length encodings. In Zhou et al. [2019], the

139

prior used is

𝑃 = 1
𝑍

∑︁
𝑆,𝑄,𝐶

2−(|𝑆 |+|𝐶 |+𝑑 ⌈log𝐿⌉)N
(
�̂� (𝑆,𝑄,𝐶) , 𝜏2)

where 𝑆 denotes the encoding of the position of the pruned weights, 𝐶 denotes the codebook,

𝑄 the codebook value that the weight take, 𝑑 the number of nonzero weights, 𝐿 the number of

clusters, �̂� the quantized weight and 𝜏2 the prior variance. Note that �̂� changes depending on

𝑆,𝑄,𝐶 and also note that the fixed-length encoding can be seen in how we sum over 𝑑 ⌈log𝐿⌉

options. This prior is a mixture of Gaussians centered at the quantized values. With this choice

of prior Zhou et al. [2019] and setting the posterior to be also Gaussian centered at a quantized

value, one can upper bound the KL with a computationally tractable term involving the sum over

dimensions. Crucially, for their decomposition they use the fact that the size of the encoding |𝑄 | is

𝑑 ⌈log𝐿⌉, which is independent of the coding𝑄 and only dependent on the codebook𝐶 . Therefore

they are able to upper bound the KL.

KL
©«N

(
�̂�, 𝜎2𝐼𝑑

)
,
∑︁
𝑄

N(�̂� (𝑆,𝑄,𝐶), 𝜏2)ª®¬ =

𝑑∑︁
𝑖=1
KL

(
N

(
�̂�𝑖, 𝜎

2) , 𝐿∑︁
𝑗=1
N

(
�̂� 𝑗 , 𝜏

2))

due to the independence of the fixed length encoding to that of the values that each quantized

value takes, see appendix in Zhou et al. [2019]. This independence is broken for variable length

encoding as the cluster centers and the values that each weight can take are interlinked. Thus,

we cannot express and satisfactorily approximate the first high-dimensional KL term as a sum of

one-dimensional elements that can be estimated through quadrature or Monte Carlo.

140

Table A.15: Ant-v2 State and Action Spaces

State Space

X (Unobserved)
Y (Unobserved)

Z
Orientation Quaternion (4𝐷)

Limb 2 Left/Right
Limb 2 Up/Down
Limb 3 Left/Right
Limb 3 Up/Down
Limb 4 Left/Right
Limb 4 Up/Down
Limb 1 Left/Right
Limb 1 Up/Down

Action Space

Limb 1 Left/Right
Limb 1 Up/Down
Limb 2 Left/Right
Limb 2 Up/Down
Limb 3 Left/Right
Limb 3 Up/Down
Limb 4 Left/Right
Limb 4 Up/Down

Table A.16: Humanoid-v2 Action Space

Action Space

Torso Forward/Backward
Torso Z

Torso Left/Right
Right Hip Left/Right
Right Hip Up/Down
Right Hip Front/Back
Right Knee Front/Back
Left Hip Left/Right
Left Hip Up/Down
Left Hip Front/Back
Left Knee Front/Back

Right Shoulder Left/Right
Right Shoulder Front/Back
Right Elbow Front/Back
Left Shoulder Left/Right
Left Shoulder Front/Back
Left Elbow Front/Back

Table A.17: Humanoid-v2 State Space

State Space
(Position)

X (Unobserved)
Y (Unobserved)

Z
Orientation Quaternion (4𝐷)

Torso Z
Torso Forward/Backward

Torso Left/Right
Right Hip Left/Right
Right Knee Left/Right
Right Hip Up/Down
Right Knee Up/Down
Left Hip Left/Right
Left Knee Left/Right
Left Hip Up/Down
Left Knee Up/Down

Right Shoulder Left/Right
Right Shoulder Up/Down
Right Elbow Left/Right
Left Shoulder Left/Right
Left Shoulder Up/Down
Left Elbow Left/Right

State Space
(Velocity)

Body Linear Velocity (3𝐷)
Body Angular Velocity (3𝐷)

Torso Z
Torso Forward/Backward

Torso Left/Right
Right Hip Left/Right
Right Knee Left/Right
Right Hip Up/Down
Right Knee Up/Down
Left Hip Left/Right
Left Knee Left/Right
Left Hip Up/Down
Left Knee Up/Down

Right Shoulder Left/Right
Right Shoulder Up/Down
Right Elbow Left/Right
Left Shoulder Left/Right
Left Shoulder Up/Down
Left Elbow Left/Right

141

Table A.18: Using our subspace method rather than pruning yields substantially higher compression
ratios and hence tighter generalization bounds. We report our error bounds (%) and compressed size (KL
(KB)), 1 KB = 8192 bits. First, we compress the model weights using ID, quantizing its values and then
storing them through arithmetic encoding. We then report the bounds obtained by only switching ID to
standard pruning. All results are data-independent and obtained with 95% confidence, i.e. 𝛿 = .05.

Dataset ID + Quant + Arith Pruning + Quant + Arith
Err. Bound (%) KL (KB) Err. Bound (%) KL (KB)

MNIST 11.6 0.4 47.9 6.5
+ SVHN Transfer 9.0 0.4

FashionMNIST 32.8 0.8 54.9 3.5
+ CIFAR-10 Transfer 28.2 0.9

SVHN 36.1 1.3 74.4 4.3
+ ImageNet Transfer 29.1 1.4

CIFAR-10 58.2 1.2 100.0 57.8
+ ImageNet Transfer 35.1 1.0

CIFAR-100 94.6 4.1 99.9 50.7
+ ImageNet Transfer 81.3 2.8

Table A.19: Our PAC-Bayesian Subspace Compression Bounds with data-dependent priors compared
to state-of-the-art PAC-Bayes non-vacous data-dependent bounds. All results are obtained with 95%
confidence, i.e. 𝛿 = .05.

Dataset Err. Bound (%) SoTA (%)
MNIST 1.4 1.5 [Pérez-Ortiz et al. 2021]
FashionMNIST 10.1 38 [Dziugaite et al. 2021]
SVHN 8.7 –
CIFAR-10 16.6 16.7 [Pérez-Ortiz et al. 2021]
CIFAR-100 44.4 –
ImageNet 40.9 –

142

Table A.20: Simple convolutional architecture we use to compute our bounds.

ConvNet Architecture
Conv(3,𝑘), BN, ReLU
Conv(𝑘 ,𝑘), BN, ReLU
Conv(𝑘 ,2𝑘), BN, ReLU
MaxPool2d(2)
Conv(2𝑘 ,2𝑘), BN, ReLU
Conv(2𝑘 ,2𝑘), BN, ReLU
Conv(2𝑘 ,2𝑘), BN, ReLU
MaxPool2d(2)
Conv(2𝑘 ,2𝑘), BN, ReLU
Conv(2𝑘 ,2𝑘), BN, ReLU
Conv(2𝑘 ,2𝑘), BN, ReLU
GlobalAveragePool2d
Linear(2𝑘 ,𝐶)

Table A.21: Hyperparameters corresponding to our PAC-Bayesian Subspace Compression Bounds reported
in Table 5.2 as well as SVHN and ImageNet to SVHN transfer learning with data-independent priors. All
bound results are obtained with 95% confidence, i.e. 𝛿 = .05.

Err. Bound (%) Quant. Learning Rate Intrinsic Dimensionality Levels Quant. Init.
MNIST 11.6 0.005 1000 7 Uniform
+ SVHN Transfer 9.0 0.005 1000 7 Uniform

FashionMNIST 32.8 0.005 2500 7 Uniform
+ CIFAR-10 Transfer 28.2 0.005 2500 7 Uniform

SVHN 36.1 0.0001 3500 11 Uniform
+ ImageNet Transfer 29.1 0.003 4000 7 Uniform

CIFAR-10 58.2 0.0001 3500 7 k-Means
+ ImageNet Transfer 35.1 0.003 3000 7 Uniform

CIFAR-100 94.6 0.0001 10000 11 k-Means
+ ImageNet Transfer 81.3 0.003 8000 7 Uniform

Table A.22: Hyperparameters corresponding to our PAC-Bayes bounds reported in Table 5.2 as well as
SVHN and ImageNet with data-dependent priors. The best bounds are obtained for intrinsic dimension-
ality equal to 0, therefore no quantization is performed. All bound results are obtained with 95% confidence,
i.e. 𝛿 = .05.

Err. Bound (%) Training Subset (%)
MNIST 1.4 50
FashionMNIST 10.1 80
SVHN 8.7 50
CIFAR-10 16.6 80
CIFAR-100 44.4 80
ImageNet 40.9 50

143

Table A.23: Our PAC-Bayes subspace compression bounds obtained through full-batch (F-B) training for
different configurations and datasets.

Dataset Architecture Stochastic Err. Bound (%) F-B Weight Decay F-B Err. Bound (%)

MNIST LeNet-5 11.6

0.01
0.001
0.005
0.0001

12.5
11.2
12.0
11.7

CIFAR-10 ResNet-18 74.7

0.01
0.001
0.005
0.0001

77.8
76.3
76.1
75.3

CIFAR-10 ConvNet 58.2
0.01
0.001
0.0001

65.8
63.6
61.4

144

Bibliography

Abdolhosseini, F., Ling, H. Y., Xie, Z., Peng, X. B., and van de Panne, M. (2019). On learning

symmetric locomotion. In Motion, Interaction and Games, pages 1–10.

Amos, B., Stanton, S., Yarats, D., and Wilson, A. G. (2020). On the model-based stochastic value

gradient for continuous reinforcement learning. arXiv preprint arXiv:2008.12775.

Anderson, B., Hy, T. S., and Kondor, R. (2019). Cormorant: Covariant molecular neural networks.

In Advances in Neural Information Processing Systems, pages 14510–14519.

Andrychowicz, M., Raichuk, A., Stańczyk, P., Orsini, M., Girgin, S., Marinier, R., Hussenot, L.,

Geist, M., Pietquin, O., Michalski, M., et al. (2020). What matters in on-policy reinforcement

learning? a large-scale empirical study. arXiv preprint arXiv:2006.05990.

Arora, S., Cohen, N., and Hazan, E. (2018a). On the optimization of deep networks: Implicit

acceleration by overparameterization. In Proceedings of the 35th International Conference on

Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80

of Proceedings of Machine Learning Research, pages 244–253. PMLR.

Arora, S., Ge, R., Neyshabur, B., and Zhang, Y. (2018b). Stronger generalization bounds for deep

nets via a compression approach. In Proceedings of the 35th International Conference on Machine

Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of

Proceedings of Machine Learning Research, pages 254–263. PMLR.

145

Athiwaratkun, B., Finzi, M., Izmailov, P., and Wilson, A. G. (2018). There are many consistent

explanations of unlabeled data: Why you should average. arXiv preprint arXiv:1806.05594.

Avron, H. and Toledo, S. (2011). Randomized algorithms for estimating the trace of an implicit

symmetric positive semi-definite matrix. Journal of the ACM (JACM), 58(2):1–34.

Azulay, A. and Weiss, Y. (2018). Why do deep convolutional networks generalize so poorly to

small image transformations? arXiv preprint arXiv:1805.12177.

Bao, H., Dong, L., and Wei, F. (2021). Beit: Bert pre-training of image transformers. arXiv preprint

arXiv:2106.08254.

Batzner, S., Musaelian, A., Sun, L., Geiger, M., Mailoa, J. P., Kornbluth, M., Molinari, N., Smidt,

T. E., and Kozinsky, B. (2022). E (3)-equivariant graph neural networks for data-efficient and

accurate interatomic potentials. Nature communications, 13(1):1–11.

Bekkers, E. J. (2019). B-spline cnns on lie groups. arXiv preprint arXiv:1909.12057.

Bello, I., Fedus, W., Du, X., Cubuk, E. D., Srinivas, A., Lin, T.-Y., Shlens, J., and Zoph, B. (2021).

Revisiting resnets: Improved training and scaling strategies. arXiv preprint arXiv:2103.07579.

Bengio, Y., Léonard, N., and Courville, A. (2013). Estimating or Propagating Gradients through

Stochastic Neurons for Conditional Computation. Preprint arXiv:1308.3432v1.

Benton, G., Finzi, M., Izmailov, P., and Wilson, A. G. (2020). Learning invariances in neural

networks. arXiv preprint arXiv:2010.11882.

Bietti, A., Venturi, L., and Bruna, J. (2021). On the sample complexity of learning under geometric

stability. Advances in Neural Information Processing Systems, 34.

Biewald, L. (2020). Experiment tracking with weights and biases. Software available from

wandb.com.

146

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). Weight uncertainty in neural

network. In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015,

Lille, France, 6-11 July 2015, volume 37 of JMLR Workshop and Conference Proceedings, pages

1613–1622. JMLR.org.

Bogatskiy, A., Anderson, B., Offermann, J. T., Roussi, M., Miller, D. W., and Kondor, R. (2020).

Lorentz group equivariant neural network for particle physics. arXiv preprint arXiv:2006.04780.

Bouchacourt, D., Ibrahim, M., and Morcos, A. (2021). Grounding inductive biases in natural images:

invariance stems from variations in data. Advances in Neural Information Processing Systems,

34:19566–19579.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A.,

VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX: composable transformations

of Python+NumPy programs.

Brock, A., De, S., Smith, S. L., and Simonyan, K. (2021). High-performance large-scale image

recognition without normalization. arXiv preprint arXiv:2102.06171.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W.

(2016). Openai gym. arXiv preprint arXiv:1606.01540.

Catoni, O. (2007). PAC-Bayesian Supervised Classification: the Thermodynamics of Statistical

Learning. Institute of Mathematical Statistics Lecture Notes.

Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y., Baldassi, C., Borgs, C., Chayes, J. T., Sagun,

L., and Zecchina, R. (2017). Entropy-sgd: Biasing gradient descent into wide valleys. In 5th

International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,

Conference Track Proceedings. OpenReview.net.

147

Chen, C.-F., Fan, Q., and Panda, R. (2021). Crossvit: Cross-attention multi-scale vision transformer

for image classification. arXiv preprint arXiv:2103.14899.

Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. (2018). Neural ordinary differential

equations. In Advances in neural information processing systems, pages 6571–6583.

Chen, Y., Li, J., Xiao, H., Jin, X., Yan, S., and Feng, J. (2017). Dual path networks.

Cheng, Y., Wang, D., Zhou, P., and Zhang, T. (2017). A survey of model compression and accelera-

tion for deep neural networks. arXiv preprint arXiv:1710.09282.

Cheng, Y., Wang, D., Zhou, P., and Zhang, T. (2018). Model compression and acceleration for deep

neural networks: The principles, progress, and challenges. IEEE Signal Processing Magazine,

35(1):126–136.

Choi, Y., El-Khamy, M., and Lee, J. (2017). Towards the limit of network quantization. In 5th

International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,

Conference Track Proceedings. OpenReview.net.

Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 1251–1258.

Chu, X., Tian, Z., Wang, Y., Zhang, B., Ren, H., Wei, X., Xia, H., and Shen, C. (2021). Twins:

Revisiting the design of spatial attention in vision transformers. arXiv preprint arXiv:2104.13840.

Chua, K., Calandra, R., McAllister, R., and Levine, S. (2018). Deep reinforcement learning in

a handful of trials using probabilistic dynamics models. In Advances in Neural Information

Processing Systems, pages 4754–4765.

Cohen, T., Geiger, M., andWeiler, M. (2018a). A general theory of equivariant cnns on homogeneous

spaces. arXiv preprint arXiv:1811.02017.

148

Cohen, T. and Welling, M. (2016a). Group equivariant convolutional networks. In International

conference on machine learning, pages 2990–2999.

Cohen, T. S., Geiger, M., Köhler, J., and Welling, M. (2018b). Spherical cnns. arXiv preprint

arXiv:1801.10130.

Cohen, T. S. and Welling, M. (2016b). Steerable cnns. arXiv preprint arXiv:1612.08498.

Conrad, K. (2013). Generating sets. Expository, unpublished paper on the author’s personal homepage.

Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. V. (2020). Randaugment: Practical automated data

augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition Workshops, pages 702–703.

Dai, Z., Liu, H., Le, Q. V., and Tan, M. (2021). Coatnet: Marrying convolution and attention for all

data sizes. arXiv preprint arXiv:2106.04803.

d’Ascoli, S., Touvron, H., Leavitt, M., Morcos, A., Biroli, G., and Sagun, L. (2021). Convit: Improving

vision transformers with soft convolutional inductive biases. arXiv preprint arXiv:2103.10697.

Dauphin, Y. N., Pascanu, R., Gülçehre, Ç., Cho, K., Ganguli, S., and Bengio, Y. (2014). Identifying

and attacking the saddle point problem in high-dimensional non-convex optimization. In

Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information

Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 2933–2941.

De Sa, C., Re, C., and Olukotun, K. (2015). Global convergence of stochastic gradient descent for

some non-convex matrix problems. In International Conference on Machine Learning, pages

2332–2341. PMLR.

Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Li, F. (2009). Imagenet: A large-scale hierarchical

image database. In 2009 IEEE Computer Society Conference on Computer Vision and Pattern

149

Recognition (CVPR 2009), 20-25 June 2009, Miami, Florida, USA, pages 248–255. IEEE Computer

Society.

Ding, N., Chen, X., Levinboim, T., Changpinyo, B., and Soricut, R. (2022). Pactran: Pac-bayesian

metrics for estimating the transferability of pretrained models to classification tasks. arXiv

preprint arXiv:2203.05126.

Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., and Sun, J. (2021). Repvgg: Making vgg-style

convnets great again. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 13733–13742.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M.,

Minderer, M., Heigold, G., Gelly, S., et al. (2020). An image is worth 16x16 words: Transformers

for image recognition at scale. arXiv preprint arXiv:2010.11929.

Dua, D. and Graff, C. (2017). UCI machine learning repository.

Dumoulin, V., Perez, E., Schucher, N., Strub, F., Vries, H. d., Courville, A., and Bengio, Y. (2018).

Feature-wise transformations. Distill, 3:e11.

Dym, N. and Maron, H. (2020). On the universality of rotation equivariant point cloud networks.

arXiv preprint arXiv:2010.02449.

Dziugaite, G. K., Hsu, K., Gharbieh, W., Aprino, G., and Roy, D. M. (2021). On the Role of Data

in Pac-Bayes Bounds. The 24th International Conference on Artificial Intelligence and Statistics

(AISTATS).

Dziugaite, G. K. and Roy, D. M. (2017). Computing nonvacuous generalization bounds for deep

(stochastic) neural networks with many more parameters than training data. In Proceedings of

the Thirty-Third Conference on Uncertainty in Artificial Intelligence, UAI 2017, Sydney, Australia,

August 11-15, 2017. AUAI Press.

150

Eberly, W. (2004). Reliable krylov-based algorithms for matrix null space and rank. In Proceedings

of the 2004 international symposium on Symbolic and algebraic computation, pages 127–134.

El-Nouby, A., Touvron, H., Caron, M., Bojanowski, P., Douze, M., Joulin, A., Laptev, I., Neverova,

N., Synnaeve, G., Verbeek, J., et al. (2021). Xcit: Cross-covariance image transformers. arXiv

preprint arXiv:2106.09681.

Elesedy, B. (2022). Group symmetry in pac learning. In ICLR 2022 Workshop on Geometrical and

Topological Representation Learning.

Elesedy, B. and Zaidi, S. (2021). Provably strict generalisation benefit for equivariant models. arXiv

preprint arXiv:2102.10333.

Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., and Madry, A. (2018). A rotation and a translation

suffice: Fooling cnns with simple transformations.

Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., and Madry, A. (2019). Exploring the landscape of

spatial robustness. In International conference on machine learning, pages 1802–1811. PMLR.

Esteves, C., Allen-Blanchette, C., Zhou, X., and Daniilidis, K. (2017). Polar transformer networks.

arXiv preprint arXiv:1709.01889.

Finzi, M., Stanton, S., Izmailov, P., and Wilson, A. G. (2020). Generalizing convolutional neural

networks for equivariance to lie groups on arbitrary continuous data. In International Conference

on Machine Learning.

Finzi, M., Welling, M., and Wilson, A. G. (2021). A practical method for constructing equivariant

multilayer perceptrons for arbitrary matrix groups. arXiv preprint arXiv:2104.09459.

Francis, J. G. (1961). The qr transformation a unitary analogue to the lr transformation—part 1.

The Computer Journal, 4(3):265–271.

151

Frey, N., Soklaski, R., Axelrod, S., Samsi, S., Gomez-Bombarelli, R., Coley, C., and Gadepally, V.

(2022). Neural scaling of deep chemical models.

Fuchs, F. B., Worrall, D. E., Fischer, V., and Welling, M. (2020). Se (3)-transformers: 3d roto-

translation equivariant attention networks. arXiv preprint arXiv:2006.10503.

Gao, S., Cheng, M.-M., Zhao, K., Zhang, X.-Y., Yang, M.-H., and Torr, P. H. (2019). Res2net: A new

multi-scale backbone architecture. IEEE transactions on pattern analysis and machine intelligence.

Garber, D. and Hazan, E. (2015). Fast and simple pca via convex optimization. arXiv preprint

arXiv:1509.05647.

Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D. P., and Wilson, A. G. (2018). Loss surfaces,

mode connectivity, and fast ensembling of dnns. In Advances in Neural Information Processing

Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,

December 3-8, 2018, Montréal, Canada, pages 8803–8812.

Geiping, J., Goldblum, M., Pope, P. E., Moeller, M., and Goldstein, T. (2022). Stochastic Training Is

Not Necessary For Generalization. The 10th International Conference on Learning Representations

(ICLR).

Giraud-Carrier, C. and Provost, F. (2005). Toward a justification of meta-learning: Is the no free

lunch theorem a show-stopper. In Proceedings of the ICML-2005 Workshop on Meta-learning,

pages 12–19.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

Goodfellow, I. J. and Vinyals, O. (2015). Qualitatively characterizing neural network optimization

problems. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,

USA, May 7-9, 2015, Conference Track Proceedings.

152

Greydanus, S., Dzamba, M., and Yosinski, J. (2019). Hamiltonian neural networks. In Advances in

Neural Information Processing Systems, pages 15353–15363.

Guo, J., He, H., He, T., Lausen, L., Li, M., Lin, H., Shi, X., Wang, C., Xie, J., Zha, S., Zhang, A., Zhang,

H., Zhang, Z., Zhang, Z., Zheng, S., and Zhu, Y. (2020). Gluoncv and gluonnlp: Deep learning

in computer vision and natural language processing. Journal of Machine Learning Research,

21(23):1–7.

Guralnick, R. M. (1989). On the number of generators of a finite group. Archiv der Mathematik,

53(6):521–523.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018a). Soft actor-critic: Off-policy maximum

entropy deep reinforcement learning with a stochastic actor. In International Conference on

Machine Learning, pages 1861–1870. PMLR.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018b). Soft actor-critic: Off-policy maximum

entropy deep reinforcement learning with a stochastic actor. In International Conference on

Machine Learning, pages 1861–1870. PMLR.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta,

A., Abbeel, P., et al. (2018c). Soft actor-critic algorithms and applications. arXiv preprint

arXiv:1812.05905.

Hall, B. C. (2013). Lie groups, lie algebras, and representations. In Quantum Theory for Mathemati-

cians, pages 333–366. Springer.

Han, D., Yun, S., Heo, B., and Yoo, Y. (2021a). Rethinking channel dimensions for efficient model

design. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 732–741.

153

Han, K., Xiao, A., Wu, E., Guo, J., Xu, C., and Wang, Y. (2021b). Transformer in transformer. arXiv

preprint arXiv:2103.00112.

Han, S., Mao, H., and Dally, W. J. (2016). Deep Compression: Compressing Deep Neural Networks

with Pruning, Trained Quantization and Huffman Coding. The 4th International Conference on

Learning Representations (ICLR).

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick, R. (2021). Masked autoencoders are scalable

vision learners. arXiv:2111.06377.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recognition.

He, K., Zhang, X., Ren, S., and Sun, J. (2016a). Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

He, K., Zhang, X., Ren, S., and Sun, J. (2016b). Deep residual learning for image recognition. In

2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV,

USA, June 27-30, 2016, pages 770–778. IEEE Computer Society.

He, K., Zhang, X., Ren, S., and Sun, J. (2016c). Identity mappings in deep residual networks. In

European conference on computer vision, pages 630–645. Springer.

He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., and Li, M. (2018). Bag of tricks for image classification

with convolutional neural networks. arXiv preprint arXiv:1812.01187.

Heo, B., Yun, S., Han, D., Chun, S., Choe, J., and Oh, S. J. (2021). Rethinking spatial dimensions of

vision transformers. arXiv preprint arXiv:2103.16302.

Hinton, G. E. and Van Camp, D. (1993). Keeping the neural networks simple by minimizing the

description length of the weights. In Proceedings of the sixth annual conference on Computational

learning theory, pages 5–13.

154

Hochreiter, S. and Schmidhuber, J. (1997). Flat minima. Neural computation, 9(1):1–42.

Hu, J., Shen, L., and Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 7132–7141.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). Densely connected convolu-

tional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 4700–4708.

Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y. (2016). Binarized neural

networks. Advances in neural information processing systems, 29.

Hume, D. (1978). A Treatise of Human Nature. Oxford University Press. revised P.H. Nidditch.

Hutchinson, M. J., Le Lan, C., Zaidi, S., Dupont, E., Teh, Y. W., and Kim, H. (2021). Lietransformer:

Equivariant self-attention for lie groups. In International Conference on Machine Learning, pages

4533–4543. PMLR.

Hutter, M. et al. (2008). Algorithmic complexity.

Ipsen, I. C. (1997). Computing an eigenvector with inverse iteration. SIAM review, 39(2):254–291.

Izmailov, P., Vikram, S., Hoffman, M. D., and Wilson, A. G. G. (2021). What are bayesian neural

network posteriors really like? In International conference on machine learning.

Janner, M., Fu, J., Zhang, M., and Levine, S. (2019). When to trust your model: Model-based policy

optimization. arXiv preprint arXiv:1906.08253.

Jiang, J., Dun, C., Huang, T., and Lu, Z. (2018). Graph convolutional reinforcement learning. arXiv

preprint arXiv:1810.09202.

155

Johannink, T., Bahl, S., Nair, A., Luo, J., Kumar, A., Loskyll, M., Ojea, J. A., Solowjow, E., and Levine,

S. (2019). Residual reinforcement learning for robot control. In 2019 International Conference on

Robotics and Automation (ICRA), pages 6023–6029. IEEE.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K.,

Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction

with alphafold. Nature, 596(7873):583–589.

Kaggle and EyePacs (2015). Kaggle diabetic retinopathy detection.

Kanavati, F. and Tsuneki, M. (2021). Partial transfusion: on the expressive influence of trainable

batch norm parameters for transfer learning. In Medical Imaging with Deep Learning, pages

338–353. PMLR.

Karras, T., Aittala, M., Laine, S., Härkönen, E., Hellsten, J., Lehtinen, J., and Aila, T. (2021). Alias-free

generative adversarial networks. Advances in Neural Information Processing Systems, 34.

Kashinath, K., Mustafa, M., Albert, A., Wu, J., Jiang, C., Esmaeilzadeh, S., Azizzadenesheli, K.,

Wang, R., Chattopadhyay, A., Singh, A., et al. (2021). Physics-informed machine learning: case

studies for weather and climate modelling. Philosophical Transactions of the Royal Society A,

379(2194):20200093.

Kather, J. N., Weis, C.-A., Bianconi, F., Melchers, S. M., Schad, L. R., Gaiser, T., Marx, A., and

Z"ollner, F. G. (2016). Multi-class texture analysis in colorectal cancer histology. Scientific

reports, 6:27988.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., and Tang, P. T. P. (2017). On large-

batch training for deep learning: Generalization gap and sharp minima. In 5th International

Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference

Track Proceedings. OpenReview.net.

156

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Kostrikov, I., Yarats, D., and Fergus, R. (2020). Image augmentation is all you need: Regularizing

deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649.

Krizhevsky, A. (2009). Learning multiple layers of features from tiny images.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images.

Laine, S. and Aila, T. (2016). Temporal ensembling for semi-supervised learning. arXiv preprint

arXiv:1610.02242.

Lang, L. andWeiler, M. (2020). A wigner-eckart theorem for group equivariant convolution kernels.

arXiv preprint arXiv:2010.10952.

Langford, J. (2002). Quantitatively tight sample complexity bounds. PhD thesis, Carnegie Mellon

University.

Langford, J. and Caruana, R. (2001). (not) bounding the true error. InAdvances in Neural Information

Processing Systems 14 [Neural Information Processing Systems: Natural and Synthetic, NIPS 2001,

December 3-8, 2001, Vancouver, British Columbia, Canada], pages 809–816. MIT Press.

Langford, J. and Seeger, M. (2001). Bounds for Averaging Classifiers. Tech. rep CMU-CS-01-102,

Carnegie Mellon University.

Laptev, D., Savinov, N., Buhmann, J. M., and Pollefeys, M. (2016). Ti-pooling: transformation-

invariant pooling for feature learning in convolutional neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 289–297.

Larochelle, H., Erhan, D., Courville, A., Bergstra, J., and Bengio, Y. (2007). An empirical evaluation

of deep architectures on problems with many factors of variation. In Proceedings of the 24th

international conference on Machine learning, pages 473–480.

157

Le, Q. V., Sarlós, T., and Smola, A. (2013). Fastfood: Approximate kernel expansions in loglinear

time. ArXiv, abs/1408.3060.

LeCun, Y., Bengio, Y., et al. (1995). Convolutional networks for images, speech, and time series.

The handbook of brain theory and neural networks, 3361(10):1995.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D.

(1989). Backpropagation applied to handwritten zip code recognition. Neural computation,

1(4):541–551.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to

document recognition. Proc. IEEE, 86:2278–2324.

Lenc, K. and Vedaldi, A. (2015). Understanding image representations by measuring their equiv-

ariance and equivalence. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 991–999.

Li, C., Farkhoor, H., Liu, R., and Yosinski, J. (2018). Measuring the intrinsic dimension of objective

landscapes. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver,

BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net.

Li, P., Hastie, T. J., and Church, K. W. (2006). Very sparse random projections. In KDD ’06.

Li, X., Wang, W., Hu, X., and Yang, J. (2019). Selective kernel networks. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 510–519.

Li, Z., Malladi, S., and Arora, S. (2021). On the Validity of Modeling SGDwith Stochastic Differential

Equations (SDEs). Preprint arXiv:2102.12470.

Lin, Y., Huang, J., Zimmer, M., Guan, Y., Rojas, J., and Weng, P. (2020). Invariant transform

experience replay: Data augmentation for deep reinforcement learning. IEEE Robotics and

Automation Letters, 5(4):6615–6622.

158

Liu, H., Dai, Z., So, D. R., and Le, Q. V. (2021a). Pay attention to mlps. arXiv preprint arXiv:2105.08050.

Liu, I.-J., Yeh, R. A., and Schwing, A. G. (2020). Pic: permutation invariant critic for multi-agent

deep reinforcement learning. In Conference on Robot Learning, pages 590–602. PMLR.

Liu, R., Lehman, J., Molino, P., Such, F. P., Frank, E., Sergeev, A., and Yosinski, J. (2018). An

intriguing failing of convolutional neural networks and the coordconv solution. arXiv preprint

arXiv:1807.03247.

Liu, Z., Chen, Y., Du, Y., and Tegmark, M. (2021b). Physics-augmented learning: A new paradigm

beyond physics-informed learning. arXiv preprint arXiv:2109.13901.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. (2021c). Swin transformer:

Hierarchical vision transformer using shifted windows. arXiv preprint arXiv:2103.14030.

Lyle, C., van der Wilk, M., Kwiatkowska, M., Gal, Y., and Bloem-Reddy, B. (2020). On the benefits

of invariance in neural networks. arXiv preprint arXiv:2005.00178.

MacKay, D. J. and Mac Kay, D. J. (2003). Information theory, inference and learning algorithms.

Cambridge university press.

Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri, M., Li, Y., Bharambe, A., and Van

Der Maaten, L. (2018a). Exploring the limits of weakly supervised pretraining. In Proceedings of

the European conference on computer vision (ECCV), pages 181–196.

Mahajan, D. K., Girshick, R. B., Ramanathan, V., He, K., Paluri, M., Li, Y., Bharambe, A., and van der

Maaten, L. (2018b). Exploring the limits of weakly supervised pretraining. In ECCV.

Marcos, D., Volpi, M., Komodakis, N., and Tuia, D. (2017). Rotation equivariant vector field networks.

In Proceedings of the IEEE International Conference on Computer Vision, pages 5048–5057.

159

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y. (2018). Invariant and equivariant graph

networks. arXiv preprint arXiv:1812.09902.

Maron, H., Fetaya, E., Segol, N., and Lipman, Y. (2019). On the universality of invariant networks.

arXiv preprint arXiv:1901.09342.

Maron, H., Litany, O., Chechik, G., and Fetaya, E. (2020). On learning sets of symmetric elements.

arXiv preprint arXiv:2002.08599.

Martin, V. (2012). Particle physics.

Maurer, A. (2004). A Note on the PAC Bayesian Theorem. Preprint arXiv 041099v1.

Mavalankar, A. (2020). Goal-conditioned batch reinforcement learning for rotation invariant

locomotion. arXiv preprint arXiv:2004.08356.

McAllester, D. A. (1999). PAC-BayesianModel Averaging. Proceedings of the 12th Annual Conference

on Learning Theory (COLT), pages 164–170.

Mehta, D., Sotnychenko, O., Mueller, F., Xu, W., Elgharib, M., Fua, P., Seidel, H.-P., Rhodin, H.,

Pons-Moll, G., and Theobalt, C. (2020). Xnect. ACM Transactions on Graphics, 39(4).

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. (2018). Spectral normalization for generative

adversarial networks. arXiv preprint arXiv:1802.05957.

Nagarajan, V. and Kolter, J. Z. (2019a). Deterministic pac-bayesian generalization bounds for deep

networks via generalizing noise-resilience. arXiv preprint arXiv:1905.13344.

Nagarajan, V. and Kolter, J. Z. (2019b). Uniform convergence may be unable to explain generaliza-

tion in deep learning. Advances in Neural Information Processing Systems, 32.

160

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., and Sutskever, I. (2020). Deep double

descent: Where bigger models and more data hurt. In 8th International Conference on Learning

Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

Negrea, J., Dziugaite, G. K., and Roy, D. (2020). In defense of uniform convergence: Generalization

via derandomization with an application to interpolating predictors. In International Conference

on Machine Learning, pages 7263–7272. PMLR.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011). Reading digits in natural

images with unsupervised feature learning.

Neyshabur, B. (2020). Towards learning convolutions from scratch. arXiv preprint arXiv:2007.13657.

Neyshabur, B., Bhojanapalli, S., and Srebro, N. (2018). A pac-bayesian approach to spectrally-

normalized margin bounds for neural networks. In 6th International Conference on Learning

Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track

Proceedings. OpenReview.net.

Neyshabur, B., Tomioka, R., and Srebro, N. (2014). In search of the real inductive bias: On the role

of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614.

Noether, E. (1971). Invariant variation problems. Transport theory and statistical physics, 1(3):186–

207.

Olah, C., Cammarata, N., Voss, C., Schubert, L., and Goh, G. (2020). Naturally occurring equivari-

ance in neural networks. Distill, 5(12):e00024–004.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,

N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy,

S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An imperative style, high-

performance deep learning library. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc,

161

F., Fox, E., and Garnett, R., editors, Advances in Neural Information Processing Systems 32, pages

8024–8035. Curran Associates, Inc.

Perez, E., Strub, F., de Vries, H., Dumoulin, V., and Courville, A. C. (2018). Film: Visual reasoning

with a general conditioning layer. In Proceedings of the Thirty-Second AAAI Conference on

Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-

18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18),

New Orleans, Louisiana, USA, February 2-7, 2018, pages 3942–3951. AAAI Press.

Pérez-Ortiz, M., Rivasplata, O., Shawe-Taylor, J., and Szepersvári, C. (2021). Tighter Risk Certificates

for Neural Networks. Journal of Machine Learning Research 22 (2021) 1-40.

Radosavovic, I., Kosaraju, R. P., Girshick, R., He, K., and Dollár, P. (2020). Designing network design

spaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 10428–10436.

Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C., and Dosovitskiy, A. (2021). Do vision trans-

formers see like convolutional neural networks?

Ramachandran, P., Zoph, B., and Le, Q. V. (2017). Searching for activation functions. arXiv preprint

arXiv:1710.05941.

Ravanbakhsh, S. (2020). Universal equivariant multilayer perceptrons. arXiv preprint

arXiv:2002.02912.

Ravanbakhsh, S., Schneider, J., and Poczos, B. (2017). Equivariance through parameter-sharing. In

International Conference on Machine Learning, pages 2892–2901. PMLR.

Ravindran, B. and Barto, A. G. (2004). Approximate homomorphisms: A framework for non-exact

minimization in markov decision processes.

162

Ribeiro, A. H. and Schön, T. B. (2021). How convolutional neural networks deal with aliasing.

In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 2755–2759. IEEE.

Rivasplata, O., Tankasali, V. M., and Szepesvári, C. (2019). Pac-bayes with backprop. arXiv preprint

arXiv:1908.07380.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning internal representations

by error propagation. Technical report, California Univ San Diego La Jolla Inst for Cognitive

Science.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018). Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 4510–4520.

Satorras, V. G., Hoogeboom, E., and Welling, M. (2021). E (n) equivariant graph neural networks.

arXiv preprint arXiv:2102.09844.

Serviansky, H., Segol, N., Shlomi, J., Cranmer, K., Gross, E., Maron, H., and Lipman, Y. (2020).

Set2graph: Learning graphs from sets. arXiv preprint arXiv:2002.08772.

Shamir, O. (2015). A stochastic pca and svd algorithm with an exponential convergence rate. In

International Conference on Machine Learning, pages 144–152. PMLR.

Silver, T., Allen, K., Tenenbaum, J., and Kaelbling, L. (2018). Residual policy learning. arXiv preprint

arXiv:1812.06298.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556.

Smidt, T., Geiger, M., and Rackers, J. (2020). github.com/e3nn/e3nn.

163

Smith, S. L., Elsen, E., and De, S. (2020). On the generalization benefit of noise in stochastic

gradient descent. In Proceedings of the 37th International Conference on Machine Learning, ICML

2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research,

pages 9058–9067. PMLR.

Solomonoff, R. J. (1964). A formal theory of inductive inference. part i. Information and control,

7(1):1–22.

Sukhbaatar, S., Szlam, A., and Fergus, R. (2016). Learning multiagent communication with

backpropagation. arXiv preprint arXiv:1605.07736.

Sun, K., Zhao, Y., Jiang, B., Cheng, T., Xiao, B., Liu, D., Mu, Y., Wang, X., Liu, W., and Wang, J.

(2019). High-resolution representations for labeling pixels and regions.

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. (2016). Inception-v4, inception-resnet and the

impact of residual connections on learning.

Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., and Le, Q. V. (2019). Mnasnet:

Platform-aware neural architecture search for mobile.

Tan, M. and Le, Q. (2019a). Efficientnet: Rethinking model scaling for convolutional neural

networks. In International Conference on Machine Learning, pages 6105–6114. PMLR.

Tan, M. and Le, Q. V. (2019b). Efficientnet: Rethinking model scaling for convolutional neural

networks. In Proceedings of the 36th International Conference on Machine Learning, ICML 2019,

9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning

Research, pages 6105–6114. PMLR.

Tan, M. and Le, Q. V. (2019c). Mixconv: Mixed depthwise convolutional kernels.

Tan, M. and Le, Q. V. (2021). Efficientnetv2: Smaller models and faster training. arXiv preprint

arXiv:2104.00298.

164

Taylor, J., Precup, D., and Panagaden, P. (2008). Bounding performance loss in approximate mdp

homomorphisms. Advances in Neural Information Processing Systems, 21:1649–1656.

Thiemann, N., Igel, C., Wintenberger, O., and Seldin, Y. (2017). A Strongly Quasiconvex PAC-

Bayesian Bound. 28th Annual Conference on Learning Theory (COLT).

Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L., Kohlhoff, K., and Riley, P. (2018). Tensor field

networks: Rotation-and translation-equivariant neural networks for 3d point clouds. arXiv

preprint arXiv:1802.08219.

Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T., Yung, J., Keysers,

D., Uszkoreit, J., Lucic, M., et al. (2021). Mlp-mixer: An all-mlp architecture for vision. arXiv

preprint arXiv:2105.01601.

Touvron, H., Bojanowski, P., Caron, M., Cord, M., El-Nouby, A., Grave, E., Izacard, G., Joulin, A.,

Synnaeve, G., Verbeek, J., et al. (2021a). Resmlp: Feedforward networks for image classification

with data-efficient training. arXiv preprint arXiv:2105.03404.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., and Jégou, H. (2021b). Training

data-efficient image transformers & distillation through attention. In International Conference

on Machine Learning, pages 10347–10357. PMLR.

Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., and Jégou, H. (2021c). Going deeper with

image transformers. arXiv preprint arXiv:2103.17239.

Trockman, A. and Kolter, J. Z. (2022). Patches are all you need? arXiv preprint arXiv:2201.09792.

Turner, W. J. (2006). A block wiedemann rank algorithm. In Proceedings of the 2006 international

symposium on Symbolic and algebraic computation, pages 332–339.

van der Pol, E., Kipf, T., Oliehoek, F. A., and Welling, M. (2020a). Plannable approximations to

mdp homomorphisms: Equivariance under actions. arXiv preprint arXiv:2002.11963.

165

van der Pol, E., Worrall, D., van Hoof, H., Oliehoek, F., and Welling, M. (2020b). Mdp homomorphic

networks: Group symmetries in reinforcement learning. Advances in Neural Information

Processing Systems, 33.

van der Wilk, M., Bauer, M., John, S., and Hensman, J. (2018). Learning invariances using the

marginal likelihood. In Advances in Neural Information Processing Systems, pages 9938–9948.

Vasconcelos, C., Larochelle, H., Dumoulin, V., Romijnders, R., Le Roux, N., and Goroshin, R. (2021).

Impact of aliasing on generalization in deep convolutional networks. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, pages 10529–10538.

Veeling, B. S., Linmans, J., Winkens, J., Cohen, T., andWelling, M. (2018). Rotation equivariant cnns

for digital pathology. In International Conference on Medical image computing and computer-

assisted intervention, pages 210–218. Springer.

Wang, C.-Y., Liao, H.-Y. M., Yeh, I.-H., Wu, Y.-H., Chen, P.-Y., and Hsieh, J.-W. (2019). Cspnet: A

new backbone that can enhance learning capability of cnn.

Wang, R., Albooyeh, M., and Ravanbakhsh, S. (2020). Equivariant maps for hierarchical structures.

arXiv preprint arXiv:2006.03627.

Wang, T. and Ba, J. (2019). Exploring model-based planning with policy networks. arXiv preprint

arXiv:1906.08649.

Weiler, M. and Cesa, G. (2019a). General e (2)-equivariant steerable cnns. In Advances in Neural

Information Processing Systems, pages 14334–14345.

Weiler, M. and Cesa, G. (2019b). General E(2)-Equivariant Steerable CNNs. In Conference on Neural

Information Processing Systems (NeurIPS).

166

Weiler, M., Geiger, M., Welling, M., Boomsma, W., and Cohen, T. S. (2018). 3d steerable cnns:

Learning rotationally equivariant features in volumetric data. In Advances in Neural Information

Processing Systems, pages 10381–10392.

Wightman, R. (2019). Pytorch image models. https://github.com/rwightman/

pytorch-image-models.

Wightman, R., Touvron, H., and Jégou, H. (2021). Resnet strikes back: An improved training

procedure in timm. arXiv preprint arXiv:2110.00476.

Wilson, A. G. and Izmailov, P. (2020). Bayesian deep learning and a probabilistic perspective of

generalization. In Advances in Neural Information Processing Systems.

Winkelmann, J. (2003). Dense random finitely generated subgroups of lie groups. arXiv preprint

math/0309129.

Wolpert, D. H. and Macready, W. G. (1997). No free lunch theorems for optimization. IEEE

transactions on evolutionary computation, 1(1):67–82.

Wood, J. and Shawe-Taylor, J. (1996). Representation theory and invariant neural networks.

Discrete Applied Mathematics, 69(1):33–60.

Worrall, D. and Welling, M. (2019). Deep scale-spaces: Equivariance over scale. In Advances in

Neural Information Processing Systems, pages 7366–7378.

Worrall, D. E., Garbin, S. J., Turmukhambetov, D., and Brostow, G. J. (2017). Harmonic networks:

Deep translation and rotation equivariance. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 5028–5037.

Wu, J., Hu, W., Xiong, H., Huan, J., Braverman, V., and Zhu, Z. (2020). On the noisy gradient

descent that generalizes as SGD. In Proceedings of the 37th International Conference on Machine

167

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine

Learning Research, pages 10367–10376. PMLR.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for benchmarking

machine learning algorithms.

Xiao, T., Dollar, P., Singh, M., Mintun, E., Darrell, T., and Girshick, R. (2021). Early convolutions

help transformers see better. In Thirty-Fifth Conference on Neural Information Processing Systems.

Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. (2017). Aggregated residual transformations

for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 1492–1500.

Yalniz, I. Z., Jégou, H., Chen, K., Paluri, M., and Mahajan, D. (2019). Billion-scale semi-supervised

learning for image classification. CoRR, abs/1905.00546.

Yin, P., Lyu, J., Zhang, S., Osher, S. J., Qi, Y., and Xin, J. (2019). Understanding straight-through

estimator in training activation quantized neural nets. In 7th International Conference on Learning

Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.

Yu, F., Wang, D., Shelhamer, E., and Darrell, T. (2019). Deep layer aggregation.

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo, Y. (2019). Cutmix: Regularization strategy to

train strong classifiers with localizable features. In Proceedings of the IEEE/CVF international

conference on computer vision, pages 6023–6032.

Zagoruyko, S. and Komodakis, N. (2016). Wide residual networks. arXiv preprint arXiv:1605.07146.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., and Smola, A. J. (2017).

Deep sets. In Advances in neural information processing systems, pages 3391–3401.

168

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2021). Understanding deep learning

(still) requires rethinking generalization. Communications of the ACM, 64(3):107–115.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. (2017). mixup: Beyond empirical risk

minimization. arXiv preprint arXiv:1710.09412.

Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Zhang, Z., Lin, H., Sun, Y., He, T., Muller, J., Manmatha, R.,

Li, M., and Smola, A. (2020). Resnest: Split-attention networks. arXiv preprint arXiv:2004.08955.

Zhang, R. (2019). Making convolutional networks shift-invariant again. In International conference

on machine learning, pages 7324–7334. PMLR.

Zhang, Z., He, T., Zhang, H., Zhang, Z., Xie, J., and Li, M. (2019). Bag of freebies for training object

detection neural networks. arXiv preprint arXiv:1902.04103.

Zhang, Z., Zhang, H., Zhao, L., Chen, T., Arik, S. Ö., and Pfister, T. (2022). Nested hierarchical trans-

former: Towards accurate, data-efficient and interpretable visual understanding. In Proceedings

of the AAAI Conference on Artificial Intelligence, volume 36, pages 3417–3425.

Zhou, W., Veitch, V., Austern, M., Adams, R. P., and Orbanz, P. (2019). Non-vacuous generalization

bounds at the imagenet scale: a pac-bayesian compression approach. In 7th International

Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. Open-

Review.net.

Zhou, Y., Ye, Q., Qiu, Q., and Jiao, J. (2017). Oriented response networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 519–528.

Zhu, S., An, B., and Huang, F. (2021). Understanding the generalization benefit of model invariance

from a data perspective. Advances in Neural Information Processing Systems, 34.

169

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	List of Appendices
	Introduction
	General and Automated Equivariant Model Construction with Equivariant-MLP
	Residual Pathway Priors for Approximate Equivariance
	The Lie Derivative for Measuring Learned Equivariance
	Occam's razor and Understanding the Inductive Biases of Neural Networks
	Conclusion
	Appendices
	Bibliography

