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Abstract

ModernAImodelsmake it easy to exploit the correlations in a dataset to predict a target of interest

from a given set of inputs. However, the primary use of thesemodels often lies outside the training

data. For example, while one can train a Transformer to correlate a patient’s medical history to

their chances of developing coronary heart disease (CHD), the goal would be to estimate risks

on populations elsewhere or in the future. Challenges arise if the model relies on correlations

that shift between training and test times or capture non-causal relationships. Predictions based

on unstable relationships can degrade outside the training distribution, and basing treatment

decisions on non-causal relationships can result in harm. This thesis first develops amethodology

for generalizing out-of-distribution (ood) and estimating causal effects. It closeswith an empirical

study of building and transporting CHD risk models at two large hospital systems.

The first part begins by defining a class of distribution shifts where standard training or balancing

the data yield models can perform worse than random guessing. We characterize representations

that generalize across such shifts and derive an algorithm to build models with such represen-

tations. Next, we develop an approach to encode knowledge of features used by humans into

building robust models. The last work in this part identifies biases implicit in the standard way of

training — gradient-based optimization of cross-entropy — that force models to depend more on

unstable features than on the more informative stable ones. We develop a class of loss functions

to encourage dependence on the more informative features.
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The second part of this thesis studies cases where common assumptions that enable causal esti-

mation are violated. We provide an algorithm to estimate causal effects with deep models from

confounded data where instrumental variables are available. This algorithm generalizes the con-

trol function method and works without the separability assumptions required by popular algo-

rithms like two-stage least-squares and generalized method of moments. Then, we consider tasks

where the confounders are known to equal a function of the variables whose effects we want to

estimate; this setup violates an assumption known as overlap or positivity, commonly made to

uniquely determine (identify) causal effects from non-randomized data. In this setting, we derive

nonparametric conditions for identifiability and derive an estimator that solves a gradient flow

equation to answer general causal queries from the data without overlap.

The last part of this thesis performs an empirical study of building and transporting CHD risk

models between two large hospitals. Departing from the standard approach of constructing risk

scores from carefully chosen features, we use broad feature sets available in the electronic health

records (ehrs). We train AI models to predict time-to-CHD from minimally curated ehr data

that outperform existing risk scores both at the institution where they were trained and when

transported externally.
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1 | Introduction

Prediction is fundamental to making better decisions. Consider sepsis — a life-threatening reac-

tion to infection — which is responsible for at least 350,000 deaths each year∗. With the aid of a

model that predicts if a patient is at risk of sepsis, care providers acted to reduce sepsis-related

mortality by 17% [1]. At its core, prediction requires on extracting correlations between a tar-

get of interest and given inputs or covariates. Advances in supervised learning and pre-training

make it easy to extract complex input-output correlations from data. The modern recipe is sim-

ple: gradient-based optimization of a loss function with an appropriately chosen model class such

as, for example, residual neural networks or transformers.

Trouble begins when it is no longer suitable to assume that the data on which a model is built

comes from the same data generating process as the data onwhich themodel is to be used. For ex-

ample, while one can train a transformer to correlate a patient’s medical history to their chances

of developing coronary heart disease (CHD), the goal would then be to estimate risks on popu-

lations elsewhere or in the future. The challenge is that correlations that the model picked up

can shift between training and test times or capture non-causal relationships. Predictions based

on unstable relationships can degrade outside the training distribution and basing treatment de-

cisions on non-causal relationships can result in harm. In this thesis, we develop methodology

for generalizing out-of-distribution (ood) and estimating causal effects. We then perform an em-
∗https://www.nigms.nih.gov/education/fact-sheets/Pages/sepsis.aspx
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pirical study in building and transporting CHD risk models at two large hospital systems. The

settings vary, sometimes subtly, across chapters and so we defer their descriptions to the individ-

ual chapters.

The first part of this thesis tackles the problem of ood generalization. Chapter 2 considers spu-

rious correlations that are induced by a changing relationship between the label and a nuisance

variable that is also correlated with the covariates. For example, in classifying animals in natural

images, the background, which is a nuisance, can predict the type of animal. This nuisance-

label relationship does not always hold, and the performance of a model trained under one such

relationship may be poor on data with a different nuisance-label relationship.

To build predictive models that perform well regardless of the nuisance-label relationship, we de-

velop Nuisance-Randomized Distillation (NuRD). We introduce the nuisance-randomized distri-

bution, a distribution where the nuisance and the label are independent. Under this distribution,

we define the set of representations such that conditioning on any member, the nuisance and the

label remain independent. We prove that the representations in this set always perform better

than chance, while representations outside of this set may not. NuRD finds a representation from

this set that is most informative of the label under the nuisance-randomized distribution, and we

prove that this representation achieves the highest performance regardless of the nuisance-label

relationship. We evaluateNuRD on several tasks including chest X-ray classificationwhere, using

non-lung patches as the nuisance, NuRD produces models that predict pneumonia under strong

spurious correlations.

Chapter 3 studies how knowledge about features that are related to the label in the same way

across different settings for that task, called semantic features or semantics, can help the process

of building robust models. Features with varying relationships to the label, like the background

in the animal classification task, are nuisances. Models that exploit nuisance-label relationships

face performance degradation when these relationships change. Building models robust to such
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changes requires additional knowledge beyond samples of the features and labels. For example,

existingwork uses annotations of nuisances or assumes erm-trainedmodels depend on nuisances.

Approaches to integrate new kinds of additional knowledge enlarge the settings where robust

models can be built.

We develop an approach to use knowledge about the semantics by corrupting them in data,

and then using the corrupted data to produce models which identify correlations between nui-

sances and the label. Once these correlations are identified, they can be used to adjust for where

nuisances drive predictions. We study semantic corruptions in powering different spurious-

correlation avoidingmethods onmultiple ood tasks like classifyingwaterbirds, nli, and detecting

cardiomegaly in chest X-rays.

Chapter 4 studies the problem of shortcut learning from the lens of implicit biases in training.

Common explanations for shortcut learning assume that the shortcut improves prediction under

the training distribution but not in the test distribution. Thus, models trained via the typical

gradient-based optimization of cross-entropy, which we call default-erm, utilize the shortcut.

However, even when the stable feature determines the label in the training distribution and the

shortcut does not provide any additional information, like in perception tasks, default-erm still

exhibits shortcut learning.

Why are such solutions preferred when the loss for default-erm can be driven to zero using the

stable feature alone? By studying a linear perception task, we show that default-erm’s pref-

erence for maximizing the margin leads to models that depend more on the shortcut than the

stable feature, even without overparameterization. This insight suggests that default-erm’s im-

plicit inductive bias towards max-margin is unsuitable for perception tasks. Instead, we develop

an inductive bias toward uniform margins and show that this bias guarantees dependence only

on the perfect stable feature in the linear perception task. We develop loss functions that encour-

age uniform-margin solutions, called marg-ctrl. Marg-ctrl mitigates shortcut learning on a
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variety of vision and language tasks, showing that better inductive biases can remove the need

for expensive two-stage shortcut-mitigating methods in perception tasks.

The second part of this thesis studies cases where common assumptions that enable causal esti-

mation are violated. Chapter 5 considers causal estimation using external sources of randomness

that only influence the treatment called IVs. We study variables constructed from treatment and

IV that help estimate effects, called control functions. We characterize general control functions

for effect estimation in a meta-identification result. Then, we show that structural assumptions

on the treatment process allow the construction of general control functions, thereby guarantee-

ing identification. To construct general control functions and estimate effects, we develop the

general control function method (GCFN).

GCFN’s first stage called variational decoupling (VDE) constructs general control functions by

recovering the residual variation in the treatment given the IV. Using VDE’s control function,

GCFN’s second stage estimates effects via regression. Further, we develop semi-supervisedGCFN

to construct general control functions using subsets of data that have both IV and confounders

observed as supervision; this needs no structural treatment process assumptions. We evaluate

GCFN on low and high dimensional simulated data and on recovering the causal effect of slave

export on modern community trust [2].

Chapter 6 considers tasks where the confounders are known to equal a function of the very vari-

ableswhose effects wewant to estimate. Causal inference relies on two fundamental assumptions:

ignorability and positivity. We study causal inference when the true confounder value can be ex-

pressed as a function of the observed data; we call this setting efc. In this setting ignorability is

satisfied, however positivity is violated, and causal inference is impossible in general.

We consider two scenarios where causal effects are estimable. First, we discuss interventions

on a part of the treatment called functional interventions and a sufficient condition for effect es-

timation of these interventions called functional positivity. Second, we develop conditions for
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nonparametric effect estimation based on the gradient fields of the functional confounder and

the true outcome function. To estimate effects under these conditions, we develop lode. Further,

we prove error bounds on lode’s effect estimates, evaluate our methods on simulated and real

data, and empirically demonstrate the value of efc.

The third part of this thesis, chapter 7 covers an empirical study in transporting risk models

for coronary heart disease (CHD). Accurate risk models for CVD improve primary prevention

of the disease. Unlike the standard approach of constructing risk scores from carefully chosen

features, training flexible survival models built on data from rich sources, like the EHR, has lead

to better risk models in populations onwhich they were trained. However, EHR data can shift and

exhibit variability due to changing hospital processes necessitates checking the transportability

of a model, that is whether it remains valid at external institutions and robust to possible data

shifts.

We train transformer-based models to predict time-to-CHD on fromminimally curated electronic

health record (ehr) data that outperform existing risk scores both at the institution they were

trained on and when transported externally. We find that the patient’s diagnoses and demo-

graphic information to be key features in achieving high internal performance and transporta-

bility, while including measurements may hurt transportability. Comparing the models’ external

performance against that of an externally trained on, we find that variation in external perfor-

mance across demographic subgroups is driven by the differences between the data within the

subgroups rather than disproportionate model transport across subgroups.
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Part I

Out-of-distribution Generalization

7



2 | Out-of-distribution generalization

in the presence of nuisance-induced

spurious correlations

2.1 Introduction

Spurious correlations are relationships between the label and the covariates that are prone to

change between training and test distributions [3]. Predictive models that exploit spurious cor-

relations can perform worse than even predicting without covariates on the test distribution [4].

Discovering spurious correlations requires more than the training distribution because any single

distribution has a fixed label-covariate relationship. Often, spurious correlations are discovered

by noticing different relationships across multiple distributions between the label and nuisance

factors correlated with the covariates. We call these nuisance-induced spurious correlations.

For example, in classifying cows vs. penguins, typical images have cows appear on grasslands

and penguins appear near snow, their respective natural habitats [4, 5], but these animals can be

photographed outside their habitats. In classifying hair color from celebrity faces on CelebA [6],

gender is correlated with the hair color. This relationship may not hold in different countries [7].

In language, sentiment of amovie review determines the types of words used in the review to con-
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vey attitudes and opinions. However, directors’ names appear in the reviews and are correlated

with positive sentiment in time periods where directors make movies that are well-liked [8]. In

X-ray classification, conditions like pneumonia are spuriously correlated with non-physiological

traits of X-ray images due to the association between the label and hospital X-ray collection pro-

tocols [9]. Such factors are rarely recorded in datasets but produce subtle differences in X-ray

images that convolutional networks easily learn [10].

We formalize nuisance-induced spurious correlations in a nuisance-varying family of distribu-

tions where any two distributions are different only due to the differences in the nuisance-label

relationship. As the nuisance is informative of the label, predictive models exploit the nuisance-

label relationship to achieve the best performance on any single member of the family. However,

predictive models that perform best on one member can perform even worse than predicting

without any covariates on another member, which may be out-of-distribution (ood). We develop

NuRD to use data collected under one nuisance-label relationship to build predictive models that

perform well on other members of the family regardless of the nuisance-label relationship in that

member. Specifically, NuRD estimates a conditional distribution which has ood generalization

guarantees across the nuisance-varying family.

In section 2.2, we motivate and develop ideas that help guarantee performance on every member

of the family. The first is the nuisance-randomized distribution: a distribution where the nuisance

is independent of the label. An example is the distribution where cows and penguins have equal

chances of appearing on backgrounds of grass or snow. The second is an uncorrelating representa-

tion: a representation of the covariates such that under the nuisance-randomized distribution, the

nuisance remains independent of the label after conditioning on the representation. The set of

such representations is the uncorrelating set. We show that the nuisance-randomized conditional

of the label given an uncorrelating representation has performance guarantees: such conditionals

perform as well or better than predicting without covariates on every member in the family while
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other conditionals may not. Within the uncorrelating set, we characterize one that is optimal on

every member of the nuisance-varying family simultaneously. We then prove that the same op-

timal performance can be realized by uncorrelating representations that are most informative of

the label under the nuisance-randomized distribution.

Following the insights in section 2.2, we develop Nuisance-Randomized Distillation (NuRD) in

section 2.3. NuRD finds an uncorrelating representation that is maximally informative of the label

under the nuisance-randomized distribution. NuRD’s first step, nuisance-randomization, breaks

the nuisance-label dependence to produce nuisance-randomized data. We provide two nuisance

randomization methods based on generative models and reweighting. The second step, distilla-

tion, maximizes the information a representation has with the label on the nuisance-randomized

data over the uncorrelating set. We evaluate NuRD on class-conditional Gaussians, labeling col-

ored MNIST images [4], distinguishing waterbirds from landbirds, and classifying chest X-rays.

In the latter, using the non-lung patches as the nuisance, NuRD produces models that predict

pneumonia under strong spurious correlations.

2.2 Nuisance-Randomization and Uncorrelating Sets

We formalize nuisance-induced spurious correlations via a family of data generating processes.

Let y be the label, z be the nuisance, and x be the covariates (i.e. features). The family consists of

distributions where the only difference in the members of the family comes from the difference

in their nuisance-label relationships. Let 𝐷 index a family of distributions F = {𝑝𝐷}𝐷 ; a member

𝑝𝐷 in the nuisance-varying family of distributions F takes the following form:

𝑝𝐷 (y, z, x) = 𝑝 (y)𝑝𝐷 (z | y)𝑝 (x | z, y), (2.1)
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where 𝑝𝐷 (z | y) is positive and bounded for any y where 𝑝 (y) > 0 and any z in the family’s

nuisance space 𝑆F . This family is called the nuisance-varying family. Due to changing nuisance-

label relationships in this family, the conditional distribution of the label y given the covariates

x in one member, e.g. the training distribution, can perform worse than predicting without co-

variates on another member of the family, e.g. a test distribution with a different nuisance-label

relationship. We define performance of a model 𝑝 (y | x) on a distribution 𝑝𝑡𝑒 as the negative

expected KL-divergence from the true conditional 𝑝𝑡𝑒 (y | x):

Perf𝑝𝑡𝑒 (𝑝 (y | x)) = −E𝑝𝑡𝑒 (x)KL [𝑝𝑡𝑒 (y | x) ∥ 𝑝 (y | x)] .

Higher is better. This performance equals the expected log-likelihood up to a constant, 𝐶𝑝𝑡𝑒 =

H𝑝𝑡𝑒 (y | x), that only depends on the 𝑝𝑡𝑒 :

Perf𝑝𝑡𝑒 (𝑝 (y | x)) = E𝑝𝑡𝑒 (y,x) log𝑝 (y | x) +𝐶𝑝𝑡𝑒 .

Consider the following example family {𝑞𝑎}𝑎∈R:

y ∼ N(0, 1) z ∼ N(𝑎y, 0.5) x = [x1 ∼ N(y − z, 1.5), x2 ∼ N(y + z, 0.5)] . (2.2)

Given training distribution 𝑝𝑡𝑟 = 𝑞1 and test distribution 𝑝𝑡𝑒 = 𝑞−1, the conditional 𝑝𝑡𝑟 (y | x)

performs even worse than predicting without covariates, Perf𝑝𝑡𝑒 (𝑝 (y)) ≥ Perf𝑝𝑡𝑒 (𝑝𝑡𝑟 (y | x));

see appendix A.1.9 for the proof. The problem is that 𝑝𝑡𝑟 (y | x) utilizes label-covariate rela-

tionships that do not hold when the nuisance-label relationships change. When the changing

nuisance-label relationship makes the conditional 𝑝𝐷 (y | x) of one member unsuitable for an-

other 𝑝′
𝐷
∈ F , the family exhibits nuisance-induced spurious correlations.

Next, we identify a conditional distribution with performance guarantees across all members of

the family. We develop two concepts to guarantee performance on everymember of the nuisance-
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varying family: the nuisance-randomized distribution and uncorrelating representations.

Definition 1. The nuisance-randomized distribution is 𝑝 |= (x, y, z) = 𝑝 (x | y, z)𝑝𝑡𝑟 (z)𝑝 (y).∗

In the cows vs. penguins example, 𝑝 |= is the distribution where either animal has an equal chance

to appear on backgrounds of grass or snow. The motivation behind the nuisance-randomized

distribution is that when the nuisance is independent of the label, (noisy†) functions of only the

nuisance are not predictive of the label. If the covariates only consist of (noisy) functions of either

the nuisance or the label but never a mix of the two (an example of mixing is x1 = y − z + 𝑛𝑜𝑖𝑠𝑒),

then the conditional 𝑝 |= (y | x) does not vary with the parts of x that are (noisy) functions of just

the nuisance. Thus, 𝑝 |= (y | x) ignores the features which have changing relationships with the

label.

How about nuisance-varying families where the covariates contain functions that mix the label

and the nuisance? Equation (2.2) is one such family, where the covariates x1 and x2 are functions

of both the label and the nuisance. In such nuisance-varying families, the conditional 𝑝 |= (y | x)

can use functions that mix the label and the nuisance even though the nuisance is not predictive

of the label by itself. These mixed functions have relationships with the label which change

across the family; for example in eq. (2.2), the coordinate x1 is correlated positively with the label

under 𝑞0 but negatively under 𝑞−2. Then, under changes in the nuisance-label relationship, the

conditional 𝑝 |= (y | x) can perform worse than predicting without covariates because it utilizes a

relationship, via these mixed features, that no longer holds. See appendix A.1.9 for details.

We address this performance degradation of 𝑝 |= (y | x) by introducing representations that help

avoid reliance on functions thatmix the label and the nuisance. We note that when the conditional

𝑝 |= (y | x) uses functions that mix the label and the nuisance, knowing the exact value of the
∗Different marginal distributions 𝑝 |= (z) produce different distributions where the label and nuisance are inde-

pendent. The results are insensitive to the choice as long as 𝑝 |= (z) > 0 for any z ∈ 𝑆F . One distribution that satisfies
this requirement is 𝑝 |= (z) = 𝑝𝑡𝑟 (z). See lemma 2.

†Noisy functions of a variable are functions of that variable and exogenous noise.
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nuisance should improve the prediction of the label, i.e. y ̸|= 𝑝 |= z | x. ‡ Therefore, to avoid reliance

on mixed functions, we define uncorrelating representations 𝑟 (x), where the nuisance does not

provide any extra information about the label given the representation:

Definition 2. An uncorrelating set of representations is R(𝑝 |= ) s.t. ∀𝑟 ∈ R(𝑝 |= ), y |= 𝑝 |= z | 𝑟 (x).

In the example in eq. (2.2), 𝑟 (x) = x1 + x2 is an uncorrelating representation because it is purely

a function of the label and the noise. Conditional distributions 𝑝 |= (y | 𝑟 (x)) for any uncorrelating

𝑟 (x) only depend on properties that are shared across all distributions in the nuisance-varying

family. Specifically, for 𝑟 ∈ R(𝑝 |= ), the conditional distribution 𝑝 |= (y | 𝑟 (x)) uses 𝑝 (𝑟 (x) | y, z) and

𝑝 (y) which are both shared across all members of the family F . For z′ such that 𝑝 |= (z′ | 𝑟 (x)) >

0,

𝑝 |= (y | 𝑟 (x)) = 𝑝 |= (y | 𝑟 (x), z′) = 𝑝 |= (y | z′)𝑝 |= (𝑟 (x) | y, z′)
𝑝 |= (𝑟 (x) | z′)

=
𝑝 (y)𝑝 (𝑟 (x) | y, z′)
E𝑝 (y)𝑝 (𝑟 (x) | y, z′)

. (2.3)

This fact helps characterize the performance of 𝑝 |= (y | 𝑟 (x)) on any member 𝑝𝑡𝑒 ∈ F :

Perf𝑝𝑡𝑒 (𝑝 |= (y | 𝑟 (x))) = Perf𝑝𝑡𝑒 (𝑝 (y)) + E
𝑝𝑡𝑒 (y,z)

KL
[
𝑝 (𝑟 (x) | y, z) ∥ E𝑝 (y)𝑝 (𝑟 (x) | y, z)

]
. (2.4)

As KL-divergence is non-negative, for any uncorrelating representation 𝑟 , the conditional 𝑝 |= (y | 𝑟 (x))

does at least aswell as predictingwithout covariates for all members𝑝𝑡𝑒 ∈ F : Perf𝑝𝑡𝑒 (𝑝 |= (y | 𝑟 (x))) ≥

Perf𝑝𝑡𝑒 (𝑝 (y)). See appendix A.1.3 for the formal derivation. In fact, we show in appendix A.1.5

that when the identity representation 𝑟 (x) = x is uncorrelating, then 𝑝 |= (y | x) is minimax optimal

for a family with sufficiently diverse nuisance-label relationships.

Equation (2.4) lower bounds the performance of 𝑝 |= (y | 𝑟 (x)) for any representation in the uncor-
‡This is because the nuisance is independent of the label under the nuisance-randomized distribution and can

be thought of as a source of noise in 𝑝 |= (x | y); consequently, conditional on x containing these mixed functions,
knowing z provides extra information about the label by decreasing noise.

13



relating set across all 𝑝𝑡𝑒 ∈ F . However, it does not specify which of these representations leads

to the best performing conditional. For example, between two uncorrelating representations like

the shape of the animal and whether the animal has horns, which predicts better? Next, we char-

acterize uncorrelating representations that are simultaneously optimal for all test distributions

𝑝𝑡𝑒 ∈ F .

Optimal uncorrelating representations. As we focus on nuisance-randomized condition-

als, henceforth, by performance of 𝑟 (x), wemean the performance of 𝑝 |= (y | 𝑟 (x)): Perf𝑝𝑡𝑒 (𝑟 (x)) =

Perf𝑝𝑡𝑒 (𝑝 |= (y | 𝑟 (x))). Consider two uncorrelating representations 𝑟, 𝑟2, where the pair (𝑟, 𝑟2) is

also uncorrelating. How can 𝑟2(x) dominate 𝑟 (x) in performance across the nuisance-varying

family? Equation (2.3) shows that

𝑝 |= (y | [𝑟 (x), 𝑟2(x)]) ∝ 𝑝 (y)𝑝 (𝑟 (x) | 𝑟2(x), y, z = z)𝑝 (𝑟2(x) | y, z = z).

If 𝑟2(x) blocks the dependence between the label and 𝑟 (x), i.e. 𝑟 (x) |= 𝑝 |= y | 𝑟2(x), z, then knowing

𝑟 does not change the performance when 𝑟2 is known, suggesting that blocking relates to per-

formance. In theorem 1, we show that the maximally blocking uncorrelating representation is

simultaneously optimal: its performance is as good or better than every other uncorrelating rep-

resentation on every distribution in the nuisance-varying family. We state the theoremfirst:

Theorem 1. Let 𝑟 ∗ ∈ R(𝑝 |= ) be maximally blocking:

∀𝑟 ∈ R(𝑝 |= ), y |= 𝑝 |= 𝑟 (x) | z, 𝑟 ∗(x).

Then,

1.

(
Simultaneous optimality

)
∀𝑝𝑡𝑒 ∈ F , ∀𝑟 ∈ R(𝑝 |= ), Perf𝑝𝑡𝑒 (𝑟 ∗(x)) ≥ Perf𝑝𝑡𝑒 (𝑟 (x)) .

2.

(
Information maximality

)
∀𝑟 (x) ∈ R(𝑝 |= ), I𝑝 |= (y; 𝑟 ∗(x)) ≥ I𝑝 |= (y; 𝑟 (x)) .
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3.

(
Information maximality implies simultaneous optimality

)
∀𝑟 ′ ∈ R(𝑝 |= ),

I𝑝 |= (y; 𝑟 ′(x)) = I𝑝 |= (y; 𝑟 ∗(x)) =⇒ ∀𝑝𝑡𝑒 ∈ F , Perf𝑝𝑡𝑒 (𝑟 ∗(x)) = Perf𝑝𝑡𝑒 (𝑟 ′(x)) .

The proof is in appendix A.1.4. The first part of theorem 1, simultaneous optimality, says that a

maximally blocking uncorrelating representation 𝑟 ∗ dominates every other 𝑟 ∈ R(𝑝 |= ) in perfor-

mance on every test distribution in the family. In the cows vs. penguins example, the segmented

foreground that contains only the animal is a maximally blocking representation because the ani-

mal blocks the dependence between the label and any other semantic feature of the animal.

The second and third parts of theorem 1 are useful for algorithm building. The second part proves

that a maximally blocking 𝑟 ∗ is also maximally informative of the label under 𝑝 |= , indicating how

to find a simultaneously optimal uncorrelating representation. What about other information-

maximal uncorrelating representations? The third part shows that if an uncorrelating represen-

tation 𝑟 ′ has the same mutual information with the label (under 𝑝 |= ) as the maximally blocking 𝑟 ∗,

then 𝑟 ′ achieves the same simultaneously optimal performance as 𝑟 ∗. In the cows vs. penguins ex-

ample, an example of a maximally informative uncorrelating representation is the number of legs

of the animal because the rest of the body does not give more information about the label. The

second and third parts of theorem 1 together show that finding an uncorrelating representation

that maximizes information under the nuisance-randomized distribution finds a simultaneously

optimal uncorrelating 𝑟 (x).

2.3 Nuisance-Randomized Distillation (NuRD)

Theorem 1 says a representation that maximizes information with the label under the nuisance-

randomized distribution has the best performance within the uncorrelating set. We develop a

representation learning algorithm to maximize the mutual information between the label and
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a representation in the uncorrelating set under the nuisance-randomized distribution. We call

this algorithm Nuisance-Randomized Distillation (NuRD). NuRD has two steps. The first step,

called nuisance randomization, creates an estimate of the nuisance-randomized distribution. The

second step, called distillation, finds a representation in the uncorrelating set with the maximum

information with the label under the estimate of the nuisance-randomized distribution from step

one.

Nuisance Randomization. We estimate the nuisance-randomized distributionwith generative

models or by reweighting existing data. Generative-NuRD uses the fact that 𝑝 (x | y, z) is the same

for each member of the nuisance-varying family F . With an estimate of this conditional denoted

𝑝 (x | y, z), generative-NuRD’s estimate of the nuisance-randomized distribution is z ∼ 𝑝𝑡𝑟 (z), y ∼

𝑝 (y), x ∼ 𝑝 (x | y, z). For high dimensional x, the estimate 𝑝 (x | y, z) can be constructed with deep

generative models. Reweighting-NuRD importance weights the data from 𝑝𝑡𝑟 by 𝑝 (y)/𝑝𝑡𝑟 (y | z),

making it match the nuisance-randomized distribution:

𝑝 |= (x, y, z) = 𝑝 (y)𝑝𝑡𝑟 (z)𝑝 (x | y, z) = 𝑝 (y)𝑝𝑡𝑟 (z)
𝑝𝑡𝑟 (y | z)
𝑝𝑡𝑟 (y | z)𝑝 (x | y, z) = 𝑝 (y)

𝑝𝑡𝑟 (y | z)𝑝𝑡𝑟 (x, y, z).

Reweighting-NuRD uses a model trained on samples from 𝑝𝑡𝑟 to estimate 𝑝 (y)
𝑝𝑡𝑟 (y | z) .

Distillation. Distillation seeks to find the representation in the uncorrelating set that max-

imizes the information with the label under 𝑝 |= , the estimate of the nuisance-randomized dis-

tribution. Maximizing the information translates to maximizing likelihood because the entropy

H𝑝 |=

(y) is constant with respect to the representation 𝑟𝛾 parameterized by 𝛾 :

I𝑝 |=

(𝑟𝛾 (x); y) − H𝑝 |=

(y) = E𝑝 |= (y,𝑟𝛾 (x)) log𝑝 |= (y | 𝑟𝛾 (x)) = max
𝜃

E𝑝 |= (y,𝑟𝛾 (x)) log𝑝𝜃 (y | 𝑟𝛾 (x)).
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Theorem 1 requires the representations be in the uncorrelating set. When conditioning on rep-

resentations in the uncorrelating set, the nuisance has zero mutual information with the label:

I𝑝 |= (y; z | 𝑟𝛾 (x)) = 0. We operationalize this constraint by adding a conditional mutual information

penalty to the maximum likelihood objective with a tunable scalar parameter 𝜆

max
𝜃,𝛾

E𝑝 |= (y,z,x) log𝑝𝜃 (y | 𝑟𝛾 (x)) − 𝜆I𝑝 |=

(y; z | 𝑟𝛾 (x)) . (2.5)

The objective in eq. (2.5) can have local optima when the representation is a function of the nui-

sance and exogenous noise (noise that generates the covariates given the nuisance and the label).

The intuition behind these local optima is that the value of introducing information that predicts

the label does not exceed the cost of the introduced conditional dependence. Appendix A.1.6 gives

a formal discussion and an example with such local optima. Annealing 𝜆, which controls the cost

of conditional dependence, can mitigate the local optima issue at the cost of setting annealing

schedules.

Instead, we restrict the distillation step to search over representations 𝑟𝛾 (x) that are alsomarginally

independent of the nuisance z under 𝑝 |= , i.e. z |= 𝑝 |= 𝑟𝛾 (x). This additional independence removes

representations that depend on the nuisance but are not predictive of the label; in turn, this re-

moves local optima that correspond to functions of the nuisance and exogenous noise. In the

cows vs. penguins example, representations that are functions of the background only, like the

presence of snow, are uncorrelating but do not satisfy the marginal independence. Together,

the conditional independence y |= 𝑝 |= z | 𝑟𝛾 (x) and marginal independence z |= 𝑝 |= 𝑟𝛾 (x) hold if and

only if the representation and the label are jointly independent of the nuisance : (y, 𝑟𝛾 (x)) |= 𝑝 |= z.

Using mutual information to penalize joint dependence (instead of the penalty in eq. (2.5)), the

distillation step in NuRD is

max
𝜃,𝛾

E𝑝 |= (y,z,x) log𝑝𝜃 (y | 𝑟𝛾 (x)) − 𝜆I𝑝 |=

( [y, 𝑟𝛾 (x)]; z) . (2.6)
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We show in lemma 4 that within the set of representations that satisfy joint independence,

NuRD learns a representation that is simultaneously optimal in performance on all members

of the nuisance-varying family. To learn representations using gradients, the mutual information

needs to be estimated in a way that is amenable to gradient optimization. To achieve this, we

estimate the mutual information in NuRD via the classification-based density-ratio estimation

trick [11]. We use a critic model 𝑝𝜙 to estimate said density ratio. We describe this technique in

appendix A.1.1 for completeness. We implement the distillation step as a bi-level optimization

where the outer loop optimizes the predictive model 𝑝𝜃 (y | 𝑟𝛾 (x)) and the inner loop optimizes

the critic model 𝑝𝜙 which helps estimate the mutual information.

Algorithm. We give the full algorithm boxes for both reweighting-NuRD and generative-

NuRD in appendix A.1.1. In reweighting-NuRD, to avoid poor weight estimation due to mod-

els memorizing the training data, we use cross-fitting; see algorithm 1. The setup of nuisance-

induced spurious correlations in eq. (2.1) assumes 𝑝 (y) is fixed across distributions within the

nuisance-varying familyF . This condition can be relaxedwhen 𝑝𝑡𝑒 (y) is known; see appendixA.1.1.

2.4 Related Work

In table 2.1, we summarize key differences between NuRD and the related work: invariant learn-

ing [4, 12], distributionmatching [13, 14], shift-stable prediction [15], group-DRO [16], and causal

regularization [17, 18]. We detail the differences here.

Nuisance versus Environment. In general, an environment is a distribution with a specific

spurious correlation [16]. When the training and test distributions are members of the same

nuisance-varying family, environments denote specific nuisance-label relationships. In contrast,

nuisances are variables whose changing relationship with the label induces spurious correlations.

While obtaining data from diverse environments requires data collection from sufficiently differ-

18



ent sources, one can specify nuisances from a single source of data via domain knowledge.

Domain generalization, domain-invariant learning, and subgroup robustness Webriefly

mention existing methods that aim to generalize to unseen test data and focus on how these

methods can suffer in the presence of nuisance-induced spurious correlations; for a more de-

tailed presentation, see appendix A.1.2. Domain generalization and domain-invariant learning

methods assume the training data consists of multiple sufficiently different environments to gen-

eralize to unseen test data that is related to the given environments or subgroups [4, 12, 13, 19,

20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. Due to its focus on nuisances, NuRD works with data

from a single environment. Taking a distributional robustness [31] approach, Sagawa et al. [16]

used group-DRO to build models that perform well on every one of a finite set of known sub-

groups. Other work also aims to minimize worst subgroup error with a finite number of fixed but

unknown subgroups [32, 33]; as subgroups are unknown, they only find an approximate mini-

mizer of the worst subgroup error in general even with infinite data. While these methods [32, 33]

were developed to enforce fairness with respect to a sensitive attribute, they can be applied to ood

generalization with the nuisance treated as the sensitive attribute; see [34]. Given the nuisance,

existence of a finite number of subgroups maps to an additional discreteness assumption on the

nuisance variable; in contrast, NuRD works with general nuisances. Given a high dimensional z,

as in our experiments, defining groups based on the value of the nuisance like in [16] typically

results in groups with at most one sample; with the resulting groups, methods that minimize

worst subgroup error will encourage memorizing the training data.

Nuisance as the environment label for domain generalization. Domain generalization

methods are inapplicable when the training data consists only of a single environment. In this

work, the training data comes from only one member of the nuisance-varying family, i.e. from a

single environment. What if one treats groups defined by nuisance values as environments?
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Table 2.1: NuRD vs. methods that use nuisances or environments. In this work, the training data comes
from a single member of the family F , i.e. a single environment. For methods that require multiple
environments, values of the nuisance can be treated as environment labels. Unlike existing methods,
NuRD works with high-dimensional nuisances without requiring them at test time.

Invariant Dist. match Shift-stable Group-DRO Causal reg. NuRD

High-dim z ✗ ✗ ✓ ✗ ✗ ✓

No test-time z ✓ ✓ ✗ ✓ ✓ ✓

Using the nuisance as the environment label can produce non-overlapping supports (over the

covariates) between environments. In Colored-MNIST for example, splitting based on color pro-

duces an environment of green images and an environment of red images. When the covariates

do not overlap between environments, methods such as Arjovsky et al. [4], Krueger et al. [12]

will not produce invariant representations because themodel can segment out the covariate space

and learn separate functions for each environment.

Methods based on conditional distribution matching [13, 14] build representations that are condi-

tionally independent of the environment variable given the label. When the training data is split

into groups based on the nuisance value, representations built by these methods are independent

of the nuisance given the label. However, splitting on a high-dimensional nuisance like image

patches tends to yield many groups with only a single image. Matching distributions of repre-

sentations for the same label across all environments is not possible when some environments

only have one label.

Causal learning and shift-stable prediction. Anticausal learning [35] assumes a causal

generative process for a class of distributions like the nuisance-varying family in eq. (2.1). In

such an interpretation, the label y and nuisance z cause the image x, and under independence

of cause and mechanism, 𝑝 (x | y, z) is fixed — in other words, independent — regardless of the

distribution 𝑝𝐷 (y, z). A closely related idea to NuRD is that of Shift-Stable Prediction [15, 36].

Subbaswamy et al. [15] perform graph surgery to learn 𝑝 |= (y | x, z) assuming access to z during
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test time. Shift-stable models are not applicable without nuisances at test time while NuRD only

requires nuisances during training. However, if the nuisance is available at test time, the com-

bined covariate-set [x, z] is 1) uncorrelating because y |= 𝑝 |= z | [x, z] and 2) maximally blocking

because 𝑟 ( [x, z]) |= y | z, [x, z], and theorem 1 says 𝑝 |= (y | [x, z]) is optimal.

Two concurrent works also build models using the idea of a nuisance variable. Makar et al. [18]

assume that there exists a stochastic function of y but not z, called x∗, such that y |= 𝑝𝐷x | x∗, z; they

use a marginal independence penalty 𝑟 (x) |= 𝑝 |= z. Veitch et al. [17] use counterfactual invariance

to derive a conditional independence penalty 𝑟 (x) |= 𝑝𝑡𝑟 z | y. The theory in these works requires

the nuisance to be discrete, and their algorithms require the nuisance to be both discrete and low-

cardinality; NuRD and its theory work with general high-dimensional nuisances. Counterfactual

invariance promises that a representation will not vary with the nuisance but it does not produce

optimal models in general because it rejects models that depend on functions of the nuisance. On

the other hand, the uncorrelating property allows using functions of only the nuisance that are

in the covariates to extract further information about the label from rest of the covariates; this

leads to better performance in some nuisance-varying families, as we show using the theory of

minimal sufficient statistics [37] in appendix A.1.7.

2.5 Experiments

We evaluate the implementations of NuRD on class-conditional Gaussians, Colored-MNIST [4],

Waterbirds [16], and chest X-rays [38, 39]. See appendix A.2 for implementation details and

further evaluations of NuRD.

Model selection, baselines, and metrics. Models in both steps of NuRD are selected us-

ing heldout subsets of the training data. We split the training data into training and validation

datasets with an 80− 20 split. For nuisance-randomization, this selection uses standard measures
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Table 2.2: Accuracy of NuRD versus erm on class conditional Gaussians.

Method Heldout 𝑝𝑡𝑟 Heldout 𝑝 |= 𝑝𝑡𝑒

erm 84 ± 0% − 39 ± 0%
generative-NuRD 71 ± 0% 67 ± 0% 58 ± 0%
reweighting-NuRD 71 ± 1% 66 ± 0% 58 ± 0%

of held-out performance. Selection in the distillation step picks models that give the best value of

the distillation objective on a held out subset of the nuisance-randomized data from NuRD’s first

step.

We compare against erm because, as discussed in section 2.4, existing methods that aim to gener-

alize under spurious correlations require assumptions, such as access to multiple environments

or discrete nuisance of small cardinality, that do not hold in the experiments. When possible,

we report the oracle accuracy or build gold standard models using data that does not have a

nuisance-label relationship to exploit. For every method, we report the average accuracy and

standard error across 10 runs each with a different random seed. We report the accuracy of each

model for each experiment on the test data (𝑝𝑡𝑒 ) and on heldout subsets of the original training

data (𝑝𝑡𝑟 ) and the estimate of the nuisance-randomized distribution (𝑝 |= ). For all experiments, we

use 𝜆 = 1 and one or two epochs of critic model updates for every predictive model update.

2.5.1 Class-Conditional Gaussians

We generate data as follows: withB(0.5) as the uniform Bernoulli distribution, 𝑞𝑎 (y, z, x) is

y ∼ B(0.5) z ∼ N(𝑎(2y − 1), 1) x = [x1 ∼ N(y − z, 9), x2 ∼ N(y + z, 0.01)] . (2.7)

The training and test sets consist of 10000 samples from 𝑝𝑡𝑟 = 𝑞0.5 and 2000 samples from 𝑝𝑡𝑒 =

𝑞−0.9 respectively. All models in both NuRD methods are parameterized with neural networks.
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Table 2.3: Accuracy of NuRD versus erm on Colored-MNIST. The oracle accuracy is 75%.

Method Heldout 𝑝𝑡𝑟 Heldout 𝑝 |= 𝑝𝑡𝑒

erm 90 ± 0% − 10 ± 0%
generative-NuRD 73 ± 1% 80 ± 1% 68 ± 2%
reweighting-NuRD 75 ± 0% 74 ± 0% 75 ± 0%

Results. Table 2.2 reports results. The test accuracy of predicting with the optimal linear un-

correlating representation 𝑟 ∗(x) = x1 + x2, is 62%; appendix A.2 gives the optimality proof. Both

generative-NuRD and reweighting-NuRD achieve close to this accuracy.

2.5.2 Colored-MNIST

We construct a colored-MNIST dataset [3, 4] with images of 0s and 1s. In this dataset, the values

in each channel for every pixel are either 0 or 1. We construct two environments and use one as

the training distribution and the other as the test. In training, 90% of red images have label 0; 90%

of green images have label 1. In test, the relationship is flipped: 90% of the 0s are green, and 90%

of the 1s are red. In both training and test, the digit determines the label only 75% of the time,

meaning that exploiting the nuisance-label relationship produces better training accuracies. The

training and test data consist of 4851 and 4945 samples respectively. We run NuRDwith the most

intense pixel as the nuisance.

Results. See table 2.3 for the results. erm learns to use color, evidenced by the fact that it

achieves a test accuracy of only 10%. The oracle accuracy of 75% is the highest achievable by

models that do not use color because the digit only predicts the label with 75% accuracy. While

generative-NuRD has an average accuracy close to the oracle, reweighting-NuRD matches the

oracle at 75%.
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Method 𝑝𝑡𝑟 𝑝 |= 𝑝𝑡𝑒

erm 91 ± 0% − 66 ± 2%
reweighting-NuRD 85 ± 1% 81 ± 1% 83 ± 2%

Figure 2.1: Table of results and figure showing an example of the nuisance for Waterbirds. On the left are
the accuracies of NuRD and erm onWaterbirds. Gold standard accuracy is 90% (see the results paragraph
below). The figure shows an image and the corresponding border nuisance. NuRD has both images during
training and only the left image at test time.

2.5.3 Learning to classify Waterbirds and Landbirds

Sagawa et al. [16] consider the task of detecting the type of bird (water or land) from images

where the background is a nuisance. Unlike Sagawa et al. [16], we do not assume access to

validation and test sets with independence between the background and the label. So, we split

their dataset differently to create our own training and test datasets with substantially different

nuisance-label relationships. The training data has 90% waterbirds on backgrounds with water

and 90% landbirds on backgrounds with land. The test data has this relationship flipped. We use

the original image size of 224×224×3. The training and test sets consist of 3510 and 400 samples

respectively. We ensure that 𝑝 (y = 1) = 0.5 in training and test data. Thus, predicting the most

frequent class achieves an accuracy of 0.5. Cropping out the whole background requires manual

segmentation. Instead, we use the pixels outside the central patch of 196×196 pixels as a nuisance

in NuRD. This is a high-dimensional nuisance which impacts many existing methods negatively;

see section 2.4. The covariates are the whole image; see fig. 2.1.

Results. Figure 2.1 reports results. We construct a gold standard model on data where water-

birds and landbirds have equal chances of appearing on backgrounds with water and land; this

model achieves a test accuracy of 90%. erm uses the background to predict the label, as evidenced

by its test accuracy of 66%. Reweighting-NuRD uses the background patches to adjust for the spu-

rious correlation to achieve an average accuracy close to the gold standard, 83%. We do not report

generative-NuRD’s performance as training on the generated images resulted in classifiers that
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predict as poorly as chance on real images. This may be due to the small training dataset.

2.5.4 Learning to label pneumonia from X-rays

In many problems such as classifying cows versus penguins in natural images, the background,

which is a nuisance, predicts the label. Medical imaging datasets have a similar property, where

factors like the device used to take the measurement are predictive of the label but also leave a

signature on the whole image. Here, we construct a dataset by mixing two chest x-ray datasets,

CheXpert and MIMIC, that have different factors that affect the whole image, with or without

pneumonia. The training data has 90% pneumonia images from MIMIC and 90% healthy images

from CheXpert. The test data has the flipped relationship, with 90% of the pneumonia images

from CheXpert and 90% of the healthy images from MIMIC. We resize the X-ray images to 32 ×

32. Healthy cases are downsampled to make sure that in the training and test sets, healthy and

pneumonia cases are equally probable. Thus, predicting the most frequent class achieves an

accuracy of 0.5. The training and test datasets consist of 12446 and 400 samples respectively.

In chest X-rays, image segmentation cannot remove all the nuisances because nuisances like

scanners alter the entire image [9, 10, 40]. However, non-lung patches, i.e. pixels outside the

central patches which contain the lungs, are a nuisance because they do not contain physiological

signals of pneumonia. We use the non-lung patches (4-pixel border) as a nuisance in NuRD. This

is a high-dimensional nuisance which impacts existing methods negatively; see section 2.4. The

covariates are the whole image; see fig. 2.2.

Results. Figure 2.2 reports results. Building an oracle model in this experiment requires knowl-

edge of all factors that correlate the label with all the parts of the X-ray. Such factors also exist

within each hospital but are not recorded in MIMIC and CheXpert; for example, different depart-

ments in the same hospital can have different scanners which correlate the non-lung patches of

the X-ray with the label [9]. erm uses the nuisance to predict pneumonia, as evidenced by its
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Method 𝑝𝑡𝑟 𝑝 |= 𝑝𝑡𝑒

erm 89 ± 0% − 37 ± 1%
generative-NURD 70 ± 3% 90 ± 2 41 ± 2%
reweighting-NuRD 75 ± 1% 68 ± 1% 61 ± 1%

Figure 2.2: Table of results and figure showing an example of the nuisance for chest X-rays. The figure
shows an example of a chest X-ray and the corresponding non-lung patches (right). NuRD has both images
during training and only the left image at test time.

test accuracy of 37%. Reweighting-NuRD uses the non-lung patches to adjust for the spurious

correlation and achieves an accuracy of 61%, a large improvement over erm.

Generative-NuRD also outperforms erm’s performance on average. Unlike reweighting-NuRD

which outperforms predicting without covariates, generative-NuRD performs similar to predict-

ing without covariates on average. The few poor test accuracies may be due to two ways gen-

erative nuisance-randomization can be imperfect: 1) little reliance of x on z with y fixed, 2) in-

sufficient quality of generation which leads to poor generalization from generated to real im-

ages.

2.6 Discussion

We develop an algorithm for ood generalization in the presence of spurious correlations induced

by a nuisance variable. We formalize nuisance-induced spurious correlations in a nuisance-

varying family, where changing nuisance-label relationships make predictive models built from

samples of one member unsuitable for other members. To identify conditional distributions that

have performance guarantees on all members of the nuisance-varying family, we introduce the

nuisance-randomized distribution and uncorrelating representations. We characterize one un-

correlating representation that is simultaneously optimal for all members. Then, we show that

uncorrelating representations most informative of the label under the nuisance-randomized dis-

tribution also achieve the same optimal performance. Following this result, we propose to esti-
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mate the nuisance-randomized distribution and, under this distribution, construct the uncorre-

lating representation that is most informative of the label. We develop an algorithm called NuRD

and show that it outperforms erm on synthetic and real data by adjusting for nuisance-induced

spurious correlations. Our experiments show that NuRD can use easy-to-acquire nuisances (like

the border of an image) to do this adjustment; therefore, our work suggests that the need for

expensive manual segmentation, even if it does help exclude all the nuisances, could be miti-

gated.

Limitations and the future. Given groups based on pairs of nuisance-label values, Sagawa

et al. [7] suggest that subsampling equally from each group produces models more robust to spu-

rious correlations than reweighting [16, 41]; however, subsampling is ineffective when the nui-

sance is high-dimensional. Instead, as sufficient statistics of the conditional 𝑝𝑡𝑟 (y | z) render y, z

independent, grouping based on values of sufficient statistics could be promising. The nuisance-

randomization steps in generative-NuRD and reweighting-NuRD model different distributions

in the training distribution: 𝑝𝑡𝑟 (x | y, z) and 𝑝𝑡𝑟 (y | z) respectively. Methods that combine the

two approaches to produce better estimates of the nuisance-randomized distribution would be

interesting. The first step in reweighting-NuRD is to estimate 𝑝𝑡𝑟 (y | z). As deep networks tend

to produce inflated probabilities [42], one must take care to build calibrated models for 𝑝 (y | z).

Adapting either calibration-focused losses [43, 44] or ensembling [45] may produce calibrated

probabilities.

In our experiments, the training data contains a single environment. Methods for invariant

representation learning [4, 12, 13, 14] typically require data from multiple different environ-

ments. Nuisance-randomized data has a different nuisance-label relationship from the training

data, meaning it is a different environment from the training data. Following this insight, using

nuisance-randomization to produce samples from different environments using data from only

a single environment would a fruitful direction. The absolute performance for both erm which
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exploits spurious correlations and NuRDwhich does not, is too low to be of use in the clinic. Ab-

solute performance could be improved with larger models, more data, using pretrained models,

and multi-task learning over multiple lung conditions, all techniques that could be incorporated

into learning procedures in general, including NuRD.
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3 | Nuisances via Negativa: Adjusting

for Spurious Correlations via Data

Augmentation

3.1 Introduction

Relationships between the label and the covariates can change across data collected at different

places and times. For example, in classifying animals, data collected in natural habitats have

cows appear more often on grasslands, while penguins appear more often on backgrounds of

snow; these animal-background relationships do not hold outside natural habitats [4, 46]. Some

features, like an animal’s shape, are predictive of the label across all settings for a task; these

are semantic features, or semantics in short. Other features with varying relationships with the

label, like the background, are nuisances. Even with semantics present, models trained via erm

can predict using nuisances and thus fail to generalize [5]. Models that rely only on the semantic

features performwell even when the nuisance-label relationship changes, unlike models that rely

on nuisances.

Building models that generalize under changing nuisance-label relationships requires additional

knowledge, beyond a dataset of features and labels sampled from the training distribution. For
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example, many works assume knowledge of the nuisance. In the animal-background example,

this would correspond to a feature that specifies the image background, which we may use when

specifying our learning algorithm. [17, 18, 47, 48]; another common type of assumption is access

to multiple datasets over which the nuisance-label correlation varies [4, 24, 49], and some other

forms of knowledge have been explored [50, 51, 52].

Semantic Corruptions. In this paper, we explore the use of a different type of knowledge:

corruptions of semantic features. Intuitively, imagine trying to predict the label from a corrupted

input𝑇 (x), where all semantic information has been removed. Any better-than-chance prediction

provides us a window into the nuisances, as it must rely on them. We will then use these obtained

biased models to guide methods that we identify here as biased-model-based spurious-correlation

avoiding methods (b-scams).

B-scams. There is a class of methods in the literature that use predictions of a biased model to

adjust for nuisances, and learn predictors that are free of spurious correlations. Among others,

these include jtt [53], EILL [34], NuRD [48], and dfl, poe [47]. The key question arising from

these works is how can we obtain biased models? In empirical studies, prior works on b-scams

either use annotations of the nuisance or an ERM-trained model over the training data as a place-

holder for the biased model. The latter approach, based on an ERM-trained model, is successful if

that model completely ignores semantic information. In practice, these heuristics are rather frag-

ile. Annotations for nuisances are seldom available, and we lack a principled method to ascertain

whether a model trained with erm relies only on semantic features. Therefore, employing seman-

tic corruptions could serve as a valuable alternative to these heuristics. We claim that semantic

corruptions offer a principled and useful approach to obtaining biased models.

Semantic corruptions𝑇 (x)must strike a delicate balance between removing semantic information

and preserving nuisances. For example, if𝑇 (x) replaces all pixels in an image with random noise,

it corrupts semantics while simultaneously erasing all information about the nuisances. An ideal
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𝑇 (x) would isolate nuisances by targeting only the semantic information in the input, e.g., by

in-painting the animal for the task of classifying cows and penguins. Implementing such ideal

corruptions is unrealistic, as they are task-specific and may require human annotations of the

semantic features; e.g., one can segment the objects in every image. Doing so for all classification

problems is extremely laborious. In tasks like nli, it is unclear even how to annotate semantics, as

they do not correspond to simple features like subsets of words. In summary, after outlining the

desired characteristics of semantic corruptions, we define corruptions that are beneficial across

multiple tasks and do not require human annotation. Our contributions are as follows:

1. Show that acquiring additional knowledge beyond a labeled dataset is necessary for effectively

learning robust models (theorem 2). Then, in proposition 1, we formalize sufficient conditions

under which additional knowledge in the form of a semantic corruption enables b-scams to

learn robust models.

2. Develop multiple semantic corruptions for object recognition and natural language inference.

These include patch randomization, n-gram randomization, frequency filtering, and intensity

filtering. Then, we situate existing procedures, such as region-of-interest masking and premise

masking, under the umbrella of semantic corruptions.

3. Empirically, we demonstrate that any semantic corruption can power any b-scam. The corruption-

powered versions of these methods outperform erm on out-of-distribution (ood) generaliza-

tion tasks like Waterbirds, cardiomegaly detection from chest X-rays, and NLI. Corruption-

powered NuRD, dfl, and poe achieve performance similar to said methods run with extra

observed nuisance variables. Corruption-powered jtt outperforms vanilla jtt.
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3.2 Biased-model-based spurious-correlation avoiding

methods

A spurious correlation is a relationship between the covariates x and the label y that changes

across settings like time and location [5]. The features whose relationship with the label changes

are called nuisances. With a vector of nuisances z, let 𝑝𝑡𝑟 (y, z, x), 𝑝𝑡𝑒 (y, z, x) be the training and

test distributions.

Achieving robustness to spurious correlations reqires additional knowledge. In the

presence of spurious correlations, the training distribution 𝑝𝑡𝑟 may not equal the test distribution

𝑝𝑡𝑒 . Without further assumptions, no algorithm that only sees data from 𝑝𝑡𝑟 (y, x) can produce

a predictor that works well on 𝑝𝑡𝑒 . To achieve generalization when 𝑝𝑡𝑒 ≠ 𝑝𝑡𝑟 , work in the ood

generalization literature assumes a relationship between the training and test distributions. We

follow the work of Makar et al. [18], Puli et al. [48] and assume that only nuisance-label relation-

ships — i.e. the conditional z | y — changes between training and test. Formally, we let 𝑝𝑡𝑟 , 𝑝𝑡𝑒

come from a family of distributions whose members have different nuisance-label relationships

but share the same relationship between the label and the semantics x∗:

Definition 3. (Nuisance-varying family with semantic features x∗ [18, 48])

F = {𝑝𝐷 : 𝑝𝐷 (y, z, x∗, x) = 𝑝 (y, x∗) 𝑝𝐷 (z | y) 𝑝 (x | z, x∗)} . (3.1)

Many common tasks inood generalization, including some from section 3.4, fit this definition. For

example, in classifying natural images, the background type is the nuisance z and its relationship

to the label can change across places, each corresponding to a different member of F . The animal

shape however is made of semantic features x∗ that are related to the label in the same way
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across places. Like in this example, we assume that the semantic features x∗ equal a function of

the covariates x∗ = 𝑒 (x) almost surely under every 𝑝𝐷 ∈ F , but neither x∗ nor 𝑒 (·) are known.

Finally, the semantics and nuisances together account for all the information that x has about y,

meaning x |= 𝑝𝐷y | x∗, z.

Building models that are robust to a shifting nuisance-label relationship relies on additional

knowledge, such as nuisance annotations, in the training data [16, 17, 18, 48, 54]. Given knowl-

edge of z, work like [18, 48] estimate a distribution, denoted 𝑝 |= , under which the label and nui-

sance are independent (y |= 𝑝 |= z): 𝑝 |= (y, x) =
∫
𝑧,𝑥∗

𝑝 (y, x∗ = 𝑥∗)𝑝𝑡𝑟 (z = 𝑧)𝑝 (x | z = 𝑧, x∗ = 𝑥∗)𝑑𝑧𝑑𝑥∗.

Following [48], we call 𝑝 |= the nuisance-randomized distribution. The model 𝑝 |= (y = 1 | x) achieves

the lowest risk on any member of the family F amongst the set of risk-invariant models; see

Proposition 1 [18]). However, even when 𝑝𝑡𝑟 , 𝑝𝑡𝑒 ∈ F and optimal risk-invariant predictors can

be built with nuisances, it is impossible to always beat random chance when given data {y, x} ∼

𝑝𝑡𝑟 :

Theorem 2. For any learning algorithm, there exists a nuisance-varying family F where predicting

with 𝑝 |= (y = 1 | x) achieves 90% accuracy on all members such that given training data y, x from

one member 𝑝𝑡𝑟 ∈ F , the algorithm cannot achieve better accuracy than 50% (random chance) on

some 𝑝𝑡𝑒 ∈ F .

The proof is in appendix B.1 and proceeds in two steps. With ACCℎ (𝑝) as the expected accuracy

of a model ℎ on distribution 𝑝 , the first step of the proof defines two nuisance-varying families

F1, F2 such that no single model can perform well on both families simultaneously; any ℎ(x) for

which ACC𝑝1 (ℎ) > 50% for all 𝑝1 ∈ F will have that ACC𝑝2 (ℎ) < 50% for some 𝑝2 ∈ F2 and

vice-versa. The second step shows that the two families F1, F2 have a member that has the same

distribution over y, x; letting the training data come from this distribution means that any learn-

ing algorithm that returns a performant model — one that beats 50% accuracy – on one family

must fail to return a performant model on the other. Next, we discuss different methods that use
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additional knowledge beyond y, x to build robust predictors.

3.2.1 Biased-model-based spurious-correlation avoiding methods.

We focus on methods that correct models using knowledge of nuisances or where they might

appear in the covariates [47, 48, 53]. We first establish that the common central part in these

methods is a model that predicts the label using nuisances, which we call the biased model; due

to this commonality, we call these biased-model-based spurious-correlation avoiding methods

(b-scams). At a high level, a b-scam has two components. The first is a biased model that is

built to predict the label by exploiting the nuisance-label relationship via extra knowledge or

assumptions. The biased model is then used to guide a second model to predict the label without

relying on nuisances.

We briefly summarize the different b-scams here, differentiated by the additional knowledge they

use to build biased models. The differences between the methods are summarized in table 3.1.

We give details for NuRD here and defer algorithmic details about the rest to appendix B.2.

Biased models from knowledge of the nuisances. The first category of b-scams from Ma-

habadi et al. [47], Puli et al. [48] assumes additional knowledge in the form of nuisance annotations

z. For example, in nli — where the goal is determining if a premise sentence entails a hypothesis

— [47] compute the fraction of words shared between the hypothesis and the premise for each

sample in the training data and use this as one of the nuisance features in building the biased

model. The biased model in NuRD, poe, dfl is learned by predicting the label from the nuisance

annotations in the training data to estimate 𝑝𝑡𝑟 (y | z). Using nuisance annotations, Makar et al.

[18], Puli et al. [48] use the model 𝑝𝑡𝑟 (y | z) as the biased model to define importance weights and

minimize risk w.r.t a distribution 𝑝 |= obtained as

𝑝 |= (y, z, x) = 𝑝𝑡𝑟 (y)𝑝𝑡𝑟 (z)𝑝 (x | y, z) = 𝑝 (y)
𝑝𝑡𝑟 (y | z)𝑝𝑡𝑟 (z)𝑝𝑡𝑟 (y | z)𝑝 (x | y, z) = 𝑝 (y)

𝑝𝑡𝑟 (y | z)𝑝𝑡𝑟 (y, z, x).
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Table 3.1: Summary of NuRD, jtt, poe, and dfl. Each method approximates the biased model: 𝑝𝑡𝑟 (y | z).
This table describes the different biased models, their names, how they are built.

Method Name What the biased model is Assumptions/Knowledge

jtt Identification model 𝑝𝑡𝑟 (y | x) learned via erm erm learns biased models.
poe/dfl Biased model 𝑝𝑡𝑟 (y | z) learned via erm z from domain-knowledge.
NuRD Weight model 𝑝𝑡𝑟 (y | z) learned via erm z from domain-knowledge.

The second step in NuRD [48] trains a model to predict y from a representation 𝑟 (x) on data

from 𝑝 |= such that z |= 𝑝 |= y | 𝑟 (x); this step is called distillation. Due to y |= 𝑝 |= z, learning in 𝑝 |=

avoids features that depend only on the nuisance and due to z |= 𝑝 |= y | 𝑟 (x), distillation avoids

features that are mixed functions of the label and the nuisance (e.g. x1 = y + z). With these

insights, NuRD builds models of the form 𝑝 |= (y | 𝑟 (x)) that are most informative of the label.

Mechanically, NuRD’s distillation solves this:

max
𝜃,𝛾

E𝑝 |= log𝑝𝜃 (y | 𝑟𝛾 (x)) − 𝜆I𝑝 |= (y; z | 𝑟𝛾 (x)) .

Puli et al. [48] show that suchmodels are best in a class of predictors with lower bounds on perfor-

mance. The mutual information above is zero when y |= 𝑝 |= z | x; this condition holds for semantic

corruptions as we discuss in appendix B.2. Thus, we run the distillation step as importance-

weighted erm on the training data.

Mahabadi et al. [47] consider two methods to train a biased model and a base predictive model

jointly to make the base model predict without relying on the biases. They propose 1) poe, where

the loss is the sum of the log loss of the two models and 2) dfl, where the biased model is used

to weight the cross-entropy loss for the base model. For both methods, Mahabadi et al. [47] build

a biased model as 𝑝𝑡𝑟 (y | z). Intuitively, the base model focuses on classifying samples that the

biased model misclassifies. The methods fine-tune a BERT model [55] and do not propagate the

gradients of the biased model to update the common parameters (token embeddings).
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Biased models from assumptions on erm-trained models. The second category of b-scams

like LFF [56], UMIX [57], and jtt [53] require additional knowledge that vanilla erm builds a biased

model that exploits the nuisance-label relationship. Given such amodel, theseworks use it to reduce

a second model’s dependence on the nuisance. We focus on jtt [53] which aims to build models

robust to group shift, where the relative mass of a fixed set of disjoint groups of the data changes

between training and test times. The groups here are subsets of the data defined by a pair of

values of discrete label and nuisance values. While jtt works without relying on training group

annotations, i.e. without nuisances, it assumes erm’s missclassifications are because of a reliance

on the nuisance. jtt first builds an “identification” model via erm to isolate samples that are

misclassified. Then, jtt trains a model via erm on data with the loss for the misclassified samples

upweighted (by constant 𝜆). The epochs to train the identification model and the upweighting

constant are hyperparameters that require tuning using group annotations [53].

The commonality of a biased model. The central part in NuRD, dfl, poe, and jtt is a model

that predicts the label using nuisances, like 𝑝𝑡𝑟 (y | z), which we call the biased model as in He

et al. [58]. The predictive models in each b-scam are guided to not depend on nuisances used

by the biased model. While b-scams reduce dependence on nuisances, they build biased models

using additional nuisance annotations or require assumptions that erm-trained models predict

using the nuisance. In the next section, we describe an alternative: corrupt semantic information

with data augmentations to construct biased models.

3.3 OOD generalization via Semantic Corruptions

The previous section summarized how biased models can be built in b-scams using either direct

knowledge of nuisances or knowledge that erm-trained models rely on the nuisances. We now

introduce semantic corruptions and show how they enable building biased models. Semantic cor-
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ruptions are transformations of the covariates that do not retain any knowledge of the semantics,

except what may be in the nuisance z:

Definition 4 (Semantic Corruption). A semantic corruption is a transformation of the covariates

𝑇 (x, 𝜹), where 𝜹 is a random variable such that 𝜹 |= (y, z, x, x∗), if

∀𝑝𝐷 ∈ F 𝑇 (x, 𝜹) |= 𝑝𝐷x∗ | z.

Here, we characterize conditions under which biased models built from semantic corruptions

could be used to estimate robust models. As discussed in section 3.2, 𝑝 |= (y | x) is the optimal

risk-invariant predictor, and is the target of erm when predicting the label y from x under the

nuisance-randomized distribution 𝑝 |= . NuRD estimates this distribution as part of the algorithm,

and methods like jtt aim to approximate 𝑝 |= , for example, upweighting samples mis-classified by

a model that relies on z to predict y. We compare 𝑝 |= which is obtained by breaking the nuisance-

label relationship against the distribution obtained by breaking the relationship between the label

and the data augmentation :

𝑝 |= (y, x) =
∫
𝑧

𝑝𝑡𝑟 (y)
𝑝𝑡𝑟 (y | z = 𝑧)𝑝𝑡𝑟 (y, z = 𝑧, x), 𝑝𝑇 (y, x) =

∫
𝛿

𝑝 (𝜹 = 𝛿) 𝑝𝑡𝑟 (y)
𝑝𝑡𝑟 (y | 𝑇 (x, 𝛿))𝑝𝑡𝑟 (y, x)𝑑𝛿.

We show here that the 𝐿1 distance between 𝑝 |= (y, x) and 𝑝𝑇 (y, x) is controlled by an 𝐿2-distance

between the biasedmodels built from the nuisance and the data augmentations respectively:

Proposition 1. Let𝑇 : X×R𝑑 → X be a function. Assume the r.v. 𝑝𝑡𝑟 (y | 𝑇 (x, 𝜹))−1 has a bounded

second moment under the distribution 𝑝 |= (y, z, x)𝑝 (𝜹), and that 𝑝𝑡𝑟 (y |𝑇 (x, 𝜹)) and 𝑝𝑡𝑟 (y | z) satisfy

E𝑝 |= (y,z,x)𝑝 (𝜹)𝑝𝑡𝑟 (y | 𝑇 (x, 𝜹))−2 ≤ 𝑚2, E𝑝 |= (y,z,x)𝑝 (𝜹) |𝑝𝑡𝑟 (y | 𝑇 (x, 𝜹)) − 𝑝𝑡𝑟 (y | z) |2 = 𝜖2.

Then, the 𝐿1 distance between 𝑝 |= (y, x) and 𝑝𝑇 (y, x) is bounded: ∥𝑝 |= (y, x) − 𝑝𝑇 (y, x)∥1 ≤ 𝑚𝜖 . For a
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semantic corruption that also satisfies y |= 𝑝𝑡𝑟 z | 𝑇 (x, 𝜹) the inequalities hold with 𝜖 = 0.

If 𝜖 = 0, 𝑝𝑇 (y, x) = 𝑝 |= (y, x) which means that almost surely the conditionals match 𝑝 |= (y | x) =

𝑝𝑇 (y | x). Then, as 𝑝 |= (y | x) is the optimal risk-invariant predictor, so is 𝑝𝑇 (y | x). More gener-

ally, standard domain adaptation risk bounds that are controlled by the total variation distance

between source and target [59, Theorem 1] bound the risk of a model under 𝑝 |= using the 𝐿1 bound

𝑚𝜖 — which upper bounds the total variation — and the risk under 𝑝𝑇 .

Without nuisance annotations, one cannot test whether estimate the 𝐿2-distance between the

two biased models 𝑝𝑡𝑟 (y | z) and 𝑝𝑡𝑟 (y | 𝑇 (x, 𝜹)) in proposition 1. This distance can be large

when a transformation 𝑇 (x, 𝜹) retains semantic information. To avoid, we turn to a comple-

mentary source of knowledge: semantic features. Using this knowledge, we design families of

data augmentations that corrupt the semantic information in x to construct semantic corruptions.

Focusing on two popular ood tasks, object recognition and nli, we use only semantic knowl-

edge to build corruptions that retain some aspects of the covariates. Biased models built on such

corruptions will depend on any retained nuisances; more retained nuisances mean better biased

models.

3.3.1 Semantic corruptions via permutations

We first build corruptions when semantics appear as global structure. We give an intuitive exam-

ple for such global semantics. Consider the waterbirds dataset from Sagawa et al. [16] with water-

birds and landbirds appearing predominantly on backgrounds with water and land respectively.

Semantic features like the wing shape and the presence of webbed feet are corrupted by randomly

permuting small patches. See fig. 3.1(a). Formally, given subsets of the covariates x1, · · · x𝑘 ex-

tracted in an order, global semantics 𝑒 (x1, · · · , x𝑘) change with the order of extraction. Formally,

with a random permutation 𝜋 ∼ 𝑞(𝜋) and recalling that semantics are x∗ = 𝑒 (x), the information

about semantics is lost after permutation: ∀𝑝𝐷 , I𝑝𝐷 ,𝑞(𝜋) (x∗; 𝑒 (x𝜋 (1), · · · x𝜋 (𝑘)))) = 0.
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We give an example of a semantic corruption with global semantics. Consider distributions

{𝑝𝐷}𝐷∈R with different nuisance-label relationships. With U as the uniform distribution over

{1, 2, 3}, and N as the normal distribution, 𝑝𝐷 (y, z, x) corresponds to y ∼ U, z ∼ N(𝐷y, 1), and

y selecting a configuration of x

y = 1 =⇒ x = [−z, z, z], y = 2 =⇒ x = [z,−z, z], y = 3 =⇒ x = [z, z,−z]

The index of the negated coordinate is the semantic feature x∗ that equals y and computing it

requires comparing coordinates: y = 1 if x2x3 > 0, y = 2 if x1x3 > 0, and y = 3 otherwise.

In words, the semantic feature is global. However, z = x1 + x2 + x3 is determined regardless of

where the negative sign is, i.e. it is not global. A random permutation 𝑇 (x, 𝜹) of the coordinates

in x is thus a semantic corruption: as𝑇 (x, 𝜹) permutes the location of the negation,𝑇 (x, 𝜹) | y, z

is distributed identically to 𝑇 (x, 𝜹) | z. In turn, 𝑇 (x, 𝜹) |= y | z. Further, the product of the three

coordinates of 𝑇 (x, 𝜹) determines z: (Π𝑖∈{1,2,3}𝑇 (x, 𝜹)𝑖)1/3 = −z. Thus, 𝑇 (x, 𝜹) determines z and

y |= z | 𝑇 (x, 𝜹). These two independencies imply that 𝜖 = 0 in proposition 1. Then, biased models

from 𝑇 (x) are as good as ones from z. Next, we give corruptions for global semantics in vision

and language tasks, that retain non-global features.

Patch randomization. Object recognition tasks where the object is a shape that can satisfy the

global property. For illustration, consider differentiating cows and penguins in natural images;

here, shape is a global semantic feature that structures multiple patches. Permuting patches via

patch randomization (pr), like in fig. 3.1(a), corrupts global semantics.

N-gram randomization. Tasks like natural language inference (nli) — where the goal is deter-

mining if a premise sentence entails a hypothesis — satisfy the global-semantics property. Con-

sider this example: the sentence "Bob speaks but Jon does not" contradicts "Jon speaks but Bob

does not" but entails "Bob speaks". The meaning is inferred from a global structure on the words
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(a) pr to corrupt global semantics in Waterbirds.
The original is on the left, followed by prs with sizes
112, 28, 14. At sizes > 28, shape is corrupted.

(b) roi-mask to corrupt semantics in chest X-rays.
The original is on the left, followed by roi-mask of
size 112, 154, 196. For 196, the heart is blocked out.

Figure 3.1: Semantic corruptions of Waterbirds via pr and chest X-rays via roi-mask.

and the order they appear in. Here, randomizing the order of the words corrupts the semantics:

For example, one randomized order of the sentence "Jon speaks but Bob does not" is "Bob speaks

but Jon does not"; the former entails "Jon speaks" but the latter contradicts it. We randomize

the order by permuting different 𝑛-grams in each sentence; we call this n-gram randomization

(nr).

3.3.2 Semantic corruptions via masking

The second corruption we build focuses on cases where certain subsets of the covariates are

necessary part of semantics. Masking, by removing that subset or setting it to a constant, corrupts

semantics. Formally, we corrupt the semantics by replacing subsets x𝑆 with a value that is out of

support: for example, in images where pixels lie in (0, 1), we corrupt x = [x𝑆 , x−𝑆 ] as xcorrupted =

[0 ∗ x𝑆 , x−𝑆 ]. As an illustrative example, consider a family F = {𝑝𝐷}𝐷∈𝑅 with varying nuisance-

label relationships. With a, b being uniform binary random variables, e(𝜌) as the exponential

distribution with parameter 𝜌 , and 𝑠+(𝑢) = log(1+exp(𝑢)) as softplus, 𝑝𝐷 (y, z, x) describes:

y = a ⊕ b, z ∼ e(𝑠+(𝐷 ∗ (2y − 1))), x = [(2a − 1)z, (2b − 1)z] . (3.2)

For such a family, we show thatmasking out coordinate x1 is a semantic corruption: 𝑇 (x) = [0, x2]

satisfies 𝑇 (x) |= y | z and 𝑇 (x) ̸|= z. First, due to y being computed as an XOR function of a, b, it

holds that b |= y. Then, due to z only relying on y and exogenous noise, b |= (y, z) which implies

40



b |= y | z. Given z, b determines x2, so b |= y | z =⇒ x2 |= y | z =⇒ 𝑇 (x) |= y | z. Further, ∥𝑇 (x)2∥ =

z which means y |= z | 𝑇 (x). These two independencies imply that 𝜖 = 0 in proposition 1. Then,

using 𝑇 (x) to build biased models is equivalent to building them with z.

ROI-masking for object recognition. Semantics in images can often be localized to a region-

of-interest (roi). For example, in detecting cardiomegaly, the roi is the chest where the heart

resides. Masking out the roi removes centrally located semantic information from the chest X-

ray (fig. 3.1(b)). We call this roi-mask.

Premise-masking for NLI. Semantic features in nli rely on the meanings of the premise and

the hypothesis sentences: for example, the premise states the occurrence of an event (“Alice sat

while Bob stood.”) which can entail (“Alice sat.”) or contradict (“Bob sat.”) the hypothesis. The

information about the setup in the premise is therefore crucial to detect entailment or contra-

diction. If the context given by the premise is blocked out, the hypothesis sentence can predict

the label only due to nuisances. Thus, masking the premise is a semantic corruption for nli that

retains hypothesis features; we call this prem-mask.

3.3.3 Semantic corruptions via freqency and intensity filters

Pr relies on differences in relative size and roi-mask relies on differences in spatial position.

We consider two aspects of the image that are not spatial, frequency and pixel-intensity, and

give corruptions for features that depend on these aspects. Semantics can appear as signals in a

particular region of the frequency spectrum, or appear at a particular luminosity in the image.

For example, consider detecting cardiomegaly from chest X-rays, where the heart appears as an

object formed of bright pixels with little variation in intensity across the pixels; the latter suggests

that the heart features are low-frequency signals.
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(a) Corruption via freq-filt. Original image to
the left followed zeroing out 14, 56, 112 of the low-
est frequencies. The heart features are corrupted
at 56.

(b) Corruption via int-filt. Original image to the
left followed by zeroing out pixels with intensities
above the 80%, 60%,40%. Heart features look cor-
rupted at 40%.

Figure 3.2: Semantic corruptions of chest X-rays via freq-filt and int-filt respectively.

This observation motivates corruptions along the axes of frequency and pixel-intensity: freq-

filt and int-filt. Freq-filt zeroes-out frequencies in the discrete fourier domain, while int-filt

zero-out pixels based on their intensities. See fig. 3.2 for how freq-filt and int-filt corrupt the

heart region. freq-filt and int-filt require characterizing semantic features in frequency and

intensity spaces; this is in contrast to roi-mask that is based on characterizing the position in

pixel space that the semantics occur in.

3.3.4 Using semantic corruptions in practice

For each method in table 3.1, we use a semantic corruption𝑇 (x) in building a model 𝑝𝑡𝑟 (y |𝑇 (x)).

For reweighting-NuRD, we replace 𝑝𝑡𝑟 (y | z) with 𝑝𝑡𝑟 (y | 𝑇 (x)), for dfl and poe, we replace

the model 𝑝𝑡𝑟 (y | z) with 𝑝𝑡𝑟 (y | 𝑇 (x)), and for jtt, we use 𝑝𝑡𝑟 (y | 𝑇 (x)) as the identification

model.

Choosing the corruption parameter. To corrupt with pr, nr, and roi-mask, freq-filt, one

must select a size parameter and to corrupt with int-filt, onemust specify an intensity threshold.

For NuRD, jtt, poe and dfl, we select corruption parameters with the same validation schemes

used to select other hyperparameters in each respective paper. In practice, including the b-scams

run without semantic corruptions in the b-scam’s validation scheme ensures a lower bound on

performance. For example, for jtt, this inclusion yields a lower bound that corresponds to vanilla

jtt’s performance. We also report results for all corruption parameters in appendix B.3.3, show-
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ing that all semantic corruptions except int-filt are not sensitive to the parameters, and lead to

models that outperform erm.

3.4 Experiments

We study semantic corruptions in powering NuRD [48], jtt [53], and poe and dfl [47]. To be

faithful to the original evaluations of each method, we run them on tasks from their respective

papers: NuRD on waterbirds, jtt on waterbirds and nli where the nuisance is the presence of a

negation word, and poe and dfl on nli evaluated on a challenging test dataset, HANS [60]. We

run NuRD on chest X-rays but focus on detecting cardiomegaly rather than the original pneu-

monia [48] because pneumonia detection even with known-nuisances is not performant. See

appendix B.3 for details and appendix B.3.3 for additional experiments investigating semantic

corruptions.

Methods, metrics and model selection. For images, we corrupt semantics with pr, a central

roi-mask, freq-filt, and int-filt. To show the value of semantic corruptions relative to existing

data augmentations, we also consider two baseline transformations of images. The first is random

cropping (rand-crop) like in self-supervised learning [61, 62] where patches of random sizes are

sampled, covering ≥ 0.08 fraction of the image. The second is adding gaussian noise (gauss-

noise). For text, we corrupt semantics with nr and prem-mask. We report the average test

accuracy for every method. To be able to compare to what jtt is trained for in Liu et al. [53], we

report worst-group test accuracy for jtt. For each method, we compare the performance of the

original method to that of the methods run with semantic corruption (including the baselines).

For the corruption-powered versions, group annotations and nuisances are unavailable in the

training data. Known-nuisance versions of poe, dfl, and NuRD use direct knowledge of one or

more nuisances during training. In choosing parameters and early stopping, like Liu et al. [53]
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do with vanilla jtt, corruption-powered jtt uses validation group annotations. For the other

methods, we follow validation schemes from the respective papers: for NuRD we follow Puli

et al. [48] and use a validation set weighted to have independent nuisance and label, and for

poe/dfl, we follow Mahabadi et al. [47] and use a set of 1000 samples from the HANS training

dataset.

3.4.1 Object recognition tasks

To be faithful to the original evaluations of each method, we evaluate jtt on waterbirds, and

NuRD on bothwaterbirds and detecting cardiomegaly; both tasks have images of size 224×224×3.

Both Puli et al. [48] and Liu et al. [53] use the raw waterbirds data from Sagawa et al. [16], where

the task is detecting the type of bird (water or land) from images where the background is a

nuisance. Unlike Liu et al. [53], Puli et al. [48] process the waterbirds to get a different setup from

Sagawa et al. [16]. To stay true to the original evaluations of the methods, we recreate the setups

as described in their respective papers. For both tasks, we use pr (of patch sizes 7, 14, 28, 56),

roi-mask (of mask sizes 112, 140, 168, 196), freq-filt (of high-pass filter sizes 196, 168, 140, 112),

and int-filt (of thresholds 0.1, 0.2, 0.3, 0.4) as semantic corruptions. For gauss-noise, we use

variances 0.01, 0.25, 1, 4.

NuRD on waterbirds. For NuRD, we recreate the waterbirds experiment from Puli et al. [48]

where the full waterbirds data from Sagawa et al. [16] was subsampled into training, validation,

and test datasets each with label balance. However, unlike Sagawa et al. [16], the validation data

comes from the same distribution as the training data. The training and validation datasets have

90% waterbirds on backgrounds with water and 90% landbirds on backgrounds with land. The

test data has a flipped relationship. Known-nuisance NuRD uses an additional label denoting the

background-type as the nuisance.

Table 3.2 gives results. Selecting hyperparameters using NuRD’s validation approach gives sizes
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14 for pr (86.9%), 196 for roi-mask (86.9%), 168 for freq-filt (83.5%), and threshold 0.2 for int-

filt (86.9%). Consider the gap between erm and known-nuisance NuRD. NuRD with pr, roi-

mask, freq-filt, and int-filt close 99%, 99%, 82%, 99% of the gap respectively. NuRD with these

semantic corruptions outperforms erm (68.0%) and NuRD with rand-crop (73.7%) and gauss-

noise (82.0%).

Table 3.2: Mean and standard er-
ror of test accuracy across 10 seeds
of NuRDwith semantic corruptions
on waterbirds. Known-z NuRD uses
a label for the type of background
as the nuisance. Consider the gap
between erm and known-nuisance
NuRD. NuRD with semantic cor-
ruptions pr, roi-mask, freq-filt,
and int-filt close 99%, 99%, 82%, 99%
of the gap respectively. NuRD with
semantic corruptions outperforms
erm and NuRD with rand-crop,
gauss-noise.

Method test acc.

Known-z NuRD 87.2 ± 1.0%

pr 86.9 ± 1.2%

roi-mask 86.9 ± 1.7%

freq-filt 83.5 ± 1.1%

int-filt 86.9 ± 1.1%

rand-crop 73.7 ± 2.0%

gauss-noise 82.0 ± 2.6%

erm 68.0 ± 1.9%
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Table 3.3: Test worst-group (WG)
accuracies of jtt on waterbirds. jtt
with semantic corruptions outper-
forms erm, vanilla jtt, and jtt
with baseline corruptions (rand-
crop, gauss-noise).

Method test WG acc.

Vanilla jtt 86.5%

pr 89.0%

roi-mask 88.2%

freq-filt 87.2%

int-filt 87.0%

rand-crop 75.0%

gauss-noise 71.0%

erm 72.0%

Additionally, in table B.4 in appendix B.3, we give the re-

sults for all corruption parameters, showing that NuRD with

semantic corruptions is insensitive to hyperparameters of the

corruption and outperforms erm. In appendix B.3.1, we dis-

cuss how the baseline gauss-noise could close 80% of the gap

between erm and known-z NuRD.

JTT on waterbirds. For jtt, we repeat the waterbirds ex-

periment from Liu et al. [53] which uses the original data

from Sagawa et al. [16]. The training data has 95% water-

birds on backgrounds with water and 95% landbirds on back-

grounds with land. Both the validation and test datasets have

bird label independent of the background. The groups here

are subsets of the data that correspond to a pair of values

of bird-type and background-type. Like vanilla jtt, we use

group annotations in the validation data to compute worst-

group error and early stop training when using pr and roi-

mask. The results for vanilla jtt are from our run using the optimal hyperparameters from Liu

et al. [53].

Table 3.3 shows the results. Selecting the corruption hyperparameters on the validation worst-

group accuracy gives size 14 for pr (89%), size 196 for roi-mask (88.2%), size 112 for freq-filt

(87.2%), and threshold 0.4 for int-filt (87.0%). Jtt with these semantic corruptions outperforms

erm (72.0%), vanilla jtt (86.5%), and jtt with the baseline corruptions rand-crop (75%) and

gauss-noise (71%). Additionally, table B.7 shows that jttwith pr and roi-mask outperforms jtt

with the baseline corruptions and erm at every patch/border-size.
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Table 3.4: Mean and standard er-
ror of test accuracy over 10 seeds
of NuRD on chest X-rays. Known-z
NuRD uses the hospital as the nui-
sance. Consider the gap between
erm and known-z NuRD. NuRD with
pr, roi-mask, freq-filt, and int-
filt close 72%, 82%, 65%, 35% of the
gap respectively. Except with int-
filt, NuRD with semantic corrup-
tions outperforms erm and NuRD
with baseline corruptions.

Method test acc.

Known-z NuRD 81.7 ± 0.3%

pr 77.0 ± 1.2%

roi-mask 78.7 ± 0.3%

freq-filt 76.0 ± 0.6%

int-filt 71.0 ± 1.0%

rand-crop 59.9 ± 2.1%

gauss-noise 69.0 ± 1.9%

erm 65.3 ± 1.1%

NuRD on detecting cardiomegaly In chest X-ray classi-

fication, differences between hospitals, like the scanners used

to produce the X-rays, are known to correlate thoracic condi-

tions with non-physiological aspects in the image; for exam-

ple, only some scanners render the air in the lungs in white

[9]. We consider the shape-based object recognition task of

cardiomegaly (an irregularly sized heart) detection and, fol-

lowing Puli et al. [48], construct a dataset from two chest X-

ray datasets: chexpert [38] and MIMIC [39]. The training

and validation datasets have 90% cardiomegaly images from

MIMIC and 90% healthy images from chexpert, while the test

data has a flipped relationship. Known-nuisance NuRD uses

hospital identity as the nuisance.

See table 3.4 for results. Selecting the corruption parameters

using NuRD’s validation approach gives size 14 for pr (77%),

size 196 for roi-mask (78.7%), size 168 for freq-filt (76.0%),

and threshold 0.1 for the int-filt (71.0%). Consider the gap

between erm and known-nuisance NuRD. NuRD with pr,

roi-mask, freq-filt, and int-filt close 72%, 82%, 65%, 35%

of the gap respectively. NuRDwith all semantic corruptions, outperforms erm (65.3%) andNuRD

with the baselines gauss-noise (69%) and rand-crop (59.9%). Additionally, we report results

for all corruptions in table B.4 in appendix B.3 showing that NuRD with pr and roi-mask are

insensitive to hyperparameters and outperform erm.

3.4.2 Nli
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Table 3.5: Mean and standard devia-
tion of accuracies (over 4 seeds) on the
HANS dataset. The results for poe and
dfl that use known nuisances are given
under known. poe with nr (nr) performs
better than known-nuisance poe. dflwith
(nr) closes 84% of the gap between erm
and known-nuisance dfl. Poe and dfl
with prem-mask (pm) close 33% and 28% of
the gap between erm and the respective
method with known z.

Method HANS test acc.

poe, known-z 66.3 ± 0.6%

poe, nr 66.7 ± 1.5%

poe, pm 64.5 ± 1.9%

dfl, known-z 69.3 ± 0.2%

dfl, nr 68.4 ± 1.5%

dfl, pm 65.2 ± 0.7%

erm 63.6 ± 1.1%

For methods poe, dfl, and jtt, we use the MNLI dataset

[63] to fine-tune a BERTmodel. The evaluations of these

methods in their respective papers have different nui-

sances and, consequently, different test sets. In accor-

dance, we describe the setup and the results separately.

We use nr (sizes 1, 2, 3, 4) to produce nuisances for both

setups.

PoE and DFL For poe and dfl, we report test accu-

racies on the HANS dataset [60] as in Mahabadi et al.

[47]. HANS was created to test the reliance of models

on three known nuisances: 1) lexical overlap, 2) subse-

quence match, and 3) constituent matching subtrees in

the parse trees. Known-nuisance poe and dfl use exact

knowledge of these nuisances.

Table 3.5 gives the mean test accuracies over 4 seeds.

For both dfl and poe, selecting the size hyperparameter

based on the average accuracy on a small subset of the

HANS training data (1000 samples) gives 𝑛 = 3. With this size, poe achieves 66.7%, improving

over poe with known nuisances (66.3%). dfl with nr of size 3, achieves 68.4%, closing 84% of the

gap between erm and known-nuisance dfl (69.3%).

Poe and dfl with prem-mask (pm) close 33% and 28% of the gap between erm and when the

methods have knowledge of z. We expect the methods with nr do better than with prem-mask

because the latter corrupts nuisances like lexical overlap between premise and hypothesis that

HANS focuses on. Additionally, we give results for all 𝑛-gram sizes in table B.5 in appendix B.3,

showing that poe and dfl beat erm for all 𝑛-gram sizes. Further, in appendix B.3.3.1, we evalu-
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ate poe and dfl models on the ANLI [64] dataset and counterfactually-augmented data [65] in

tables B.9 and B.10.

Table 3.6: Worst-group and average test
accuracies of jtt on nli. jtt with prem-
mask (pm) and nr (nr) outperforms vanilla
jtt and erm.

Worst-group Avg.

Vanilla jtt 71.3% 79.1%

jtt + pm 72.1% 79.9%

jtt + nr 74.3% 79.7%

erm 67.9% 82.4%

JTT For jtt, we repeat the nli experiment from Liu

et al. [53], where the presence of a negation word in the

hypothesis sentence is the nuisance. The groups here

are subsets of the data that correspond to a value of the

label and whether or not there is a negation word in the

hypothesis. Vanilla jtt uses group annotations in the

validation data to tune the hyperparameters and early

stop training. For each 𝑛-gram size, we run jtt with nr

for two values of the number of epochs of training for

the identification model: 2, 3. Following the hyperparameter selection procedure from Liu et al.

[53], for each 𝑛-gram size, we give the results for the run with the higher validation worst-group

accuracy. Vanilla jtt is run with the optimization hyperparameters from [53].

Table 3.6 gives the results. Selecting the size hyperparameter for nr using validation worst-group

accuracy, like Liu et al. [53] do for jtt, gives 𝑛 = 1with test worst-group accuracy of 74.3%, better

than vanilla jtt’s 71.3%. Additionally, table B.8 shows that jtt using nr at every size or prem-

mask performs better than both vanilla jtt (71.3%) and erm (67.9%).

3.5 Related work

Biased-model-based spurious-correlation avoiding methods (b-scams) like [17, 18, 48, 58, 66] as-

sume the nuisance is available as additional knowledge during training. Semantic corruptions

offer a complementary approach to hand-crafting nuisances or obtaining auxiliary labels, by

capturing nuisances that remain after corruption (e.g. non-global nuisances remain after pr). B-

49



scams like LFF [56], UMIX [57], and jtt [53] all rely on one crucial assumption: that erm-training

builds a biased model that exploits the nuisance and use it to reduce a second model’s dependence

on the nuisance. Each method trains the second model with weighted cross-entropy with higher

weights for samples misclassified by the biased model; the methods differ in how they build the

biased model and how they compute the weighted loss. The biased models learn to predict the

label from the covariates. Such a model can also rely on the semantic features and upweighting

its misclassified samples produces data with a different label-semantic relationship from the one

in the training data. Models trained on such data are suboptimal on test data which has the same

semantic relationship as the training data. Using semantic corruptions in these b-scams reduces

the biased model’s reliance on the semantics and makes the second model rely more on the se-

mantics; thus, b-scams that rely on assumptions on erm-trained models being biased achieve

better performance when using semantic corruptions. The experiments in section 3.4 confirm

this empirically: jtt with semantic corruptions improves over vanilla jtt.

Two instances of semantic corruptions, prem-mask and roi-mask, appear in earlier work [47, 48,

58] but were designed using knowledge of where nuisances appear in the covariates. [48] used

the borders of X-ray images as features that are related only to the scanner type (the nuisance),

and not human physiology, to avoid spurious correlations in the detection of cardiomegaly. For

nli, Mahabadi et al. [47] use knowledge that the test set was constructed from samples misclas-

sified by a model that relies on the hypothesis alone to build a biased model using the hypothesis

sentence. These are special cases of roi-mask and prem-mask from section 3.3.2 repsectively.

Our work widely generalizes the observations from the papers above by formally defining and

further realizing the abstraction of semantic corruptions in several instances and across applica-

tions.

Bahng et al. [67] uses cnns with small receptive fields (RFs), to capture non-global nuisances.

However, their method is typically limited to very small filters because at size 3x3, deep neural
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networks like vgg detect global semantics like shapes. In contrast, the size choice in pr has no

bearing on the choice of the model; we used default vision models. Bras et al. [68] automatically

identify and remove examples with nuisances using adversarial filtering, but risk removing gen-

uinely easy examples. Qin et al. [69] work solely with vision transformers and point out that nui-

sances are the only reason labels can be predicted from transformations akin to patch-randomized

images. They propose to encourage transformers to have predictions and representations of the

original images be dissimilar from those of patch-randomized ones. In contrast, our work applies

to general flexible models and shows that semantic corruptions can be used to break the label’s

relationship with nuisances in the original images.

[51, 54] use additional knowledge about nuisances or environments to corrupt nuisances in the

covariates, [54] corrupt nuisances in the covariates via the Mixup [70] of samples from different

domains that share a label. [51] directly randomize nuisances; for example, in detecting ani-

mals in their natural habitats, they place segmented animal foregrounds onto random habitat

backgrounds. Unlike these methods, we design semantic corruptions using the complementary

knowledge about semantics, which can be available even without knowledge about nuisances.

Clark et al. [66], Li and Vasconcelos [71] construct nuisances in the training stage using prior

knowledge: for example, [66] uses the first token of the hypothesis as a nuisance for a synthetic

nli task which was created to have the first token be spuriously correlated with the label. An-

other example is the VQA task where the question-type is used as the nuisance. The constructed

nuisances are then used to build biased (or bias-only) models, or construct per-sample weights

to de-bias the loss. In contrast, we use knowledge about semantics to corrupt them; for example,

the order of the words is a semantic feature that is corrupted by randomizing the order. This

construction does not use knowledge of the nuisance.

Sinha et al. [72] use techniques like pr to restrict supports in self-supervised learning and gen-

erative modeling. Carlucci et al. [73] use pr images to encourage a model to recover semantic
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structure. In contrast, we use pr to corrupt semantics and build biased models that rely on the

nuisances, which help build predictive models that avoid reliance on nuisances. We focus on

corrupting semantic features using simple procedures (like permuting, masking, filtering) while

papers [8, 65, 74, 75, 76, 77, 78] focus on perturbing semantic features while keeping other features

the same. These transformations produce examples of different labels, and are called counterfac-

tuals. These examples are used to counterfactually augment the training data [65]. Constructing

counterfactuals can be hard. Works like [65, 74, 75, 76] rely on humans to create counterfactuals

because it is difficult to automate semantic perturbation without changing nuisances. For exam-

ple, consider classifying dogs versus cats. Creating a dog that looks like a specific cat is much

harder than removing the cat from the image by masking out those pixels.

Methods like [8, 78] construct counterfactuals automatically, but require additional knowledge

of how nuisances appear in the text. For example, Wang and Culotta [78] matches sentences that

have opposite labels while sharing most words. The non-shared words would then be considered

semantic. Techniques like the matching one above from [8] are unrealistic beyond the task of

sentiment classification. For example, consider the label of entailment or contradiction in NLI.

Data samples with entailment as the label that contain negation words are rare. This makes it

hard to find a good counterfactual for data samples labeled with contradiction. Further, matching

is difficult in other modalities, like images, where covariates are continuous or high-dimensional

and live in spaces where metrics are unclear.

3.6 Discussion

We study the use of semantic knowledge in models robust to spurious correlations. In the-

orem 2, we show that additional knowledge is necessary to achieve ood generalization even

when the training and test distributions are coupled in a nuisance-varying family. Then, propo-

sition 1 shows that a biased model built from a transformation of the covariates𝑇 (x, 𝜹) — that is
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𝑝𝑡𝑟 (y |𝑇 (x, 𝜹) — can power b-scams to avoid nuisances if the biasedmodel 𝑝𝑡𝑟 (y |𝑇 (x, 𝜹)) is close

to 𝑝𝑡𝑟 (y | z) in 𝐿2 distance. There are two scenarios where this distance is large: the transforma-

tion does not corrupt semantics and it corrupts nuisances. We use knowledge of the semantics

to design semantic corruptions to avoid the first scenario. Since we work without nuisances, to

avoid the second scenario — that is to choose 𝑇 (x, 𝜹) that retain nuisances — we use standard

validation schemes in b-scams. Using semantic corruptions, practitioners can run different kinds

of b-scams (NuRD, jtt, dfl, poe). Corruption-powered methods like NuRD and dfl perform

close to how they would with known nuisances. For methods like jtt, the corruption-powered

versions perform better than their vanilla versions that rely on erm on the raw covariates to yield

nuisances.

Limitations. The quality of any semantic corruption, and thus the quality of the results, de-

pends on the extent to which semantics are destroyed and nuisances are retained. Pr and nr

are built to corrupt global semantics, and therefore are most suitable for when the nuisances are

local. Roi-mask corrupts semantics in the roi and prem-mask corrupts the semantic context in

the premise; these are most suitable for when nuisances lie outside the region-of-interest (roi)

or in the hypothesis respectively. Finally, freq-filt and int-filt corrupt semantics in particular

parts of the frequency and intensity spectrum, and are most suitable for when the nuisances and

semantics lie in separate parts of the spectra. Knowledge about the kind of nuisances present in a

dataset can lead to better choices of semantic corruptions. Alternatively, one could use standard

validation schemes to select a corruption, like we do in section 3.4.

When applied blindly, the procedures we describe may retain semantics or corrupt nuisances.

Pr and nr may corrupt global nuisances and retain local semantics, roi-mask and prem-mask

may corrupt nuisances that occur in the same region as the semantics, and freq-filt and int-

filtmay corrupt both semantics and nuisances if they appear at similar frequencies or intensity.

For example, when pr is used blindly on covariates with non-global semantics, the biased model
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may rely on said semantics; this in turn guides the predictive model to ignore these semantics

and, thus, lose predictive performance. Alternatively, when nuisances are global, prmay corrupt

them. For example in detecting cows and penguins, other nuisance animals (like dogs) may co-

occur with cows more often; pr would corrupt this nuisance animal. Using pr in a b-scam for

such tasks could lead to non-robust predictive models that rely on corrupted nuisances.

Our experiments suggest that it might be possible to guard against performance degradation due

to blind usage of semantic corruptions if the corruption parameter is made a hyperparameter

and selected using standard validation schemes. In both classifying waterbirds and nli, there

exist non-global semantics, like small beaks and individual words, that are not corrupted by pr

and nr respectively. However, in our Waterbirds and nli experiments, we show models built

using semantic corruptions, with validated size choices, close more than 80% of the gap in test

performance between erm and themethods that use known nuisances. Now, imagine the extreme

case of running NuRD, poe, dfl with a semantic corruption that destroys all information in the

covariates. Biased models would predict like random chance, and the resulting predictive models

would be no less robust than erm. On the other hand, methods like jtt perform at least as well

as their vanilla versions as long as the validation strategy used in vanilla jtt covers the identity

function as a corruption. Future work could consider combining semantic corruptions as a way

to better retain of nuisances. Given the validation strategies for b-scams, a practitioner can easily

validate over both single and hybrid corruptions.

Summary. Semantic corruptions power b-scams to build models robust to spurious correla-

tions using knowledge about the semantic features. Additional knowledge is always required to

achieve such robustness, and existing work assumes access to nuisance annotations or that erm-

trained models rely on nuisances. By developing semantic corruptions, we give an approach to

use a new kind of additional knowledge, thereby enlarging the set of tasks where one can build

robust models. As discussed above, our experiments show that using semantic corruptions in
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b-scams leads to models more robust than erm and jtt even when the corruptions may have

corrupted some nuisances. These two properties demonstrate the value of semantic corruptions

as a way to build robust models.
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4 | Don’t Blame Dataset Shift:

Shortcut Learning due to

Gradients and Cross Entropy

4.1 Introduction

Shortcut learning is a phenomenon where a model learns to base its predictions on an unstable

correlation, or shortcut, that does not hold across data distributions collected at different times

and/or places [5]. A model that learns shortcuts can perform worse than random guessing in

settings where the label’s relationship with the shortcut feature changes [79, 80]. Such drops in

performance do not occur if the model depends on features whose relationship with the label

does not change across settings; these are stable features.

Shortcut learning is well studied in cases where models that use both shortcut and stable features

achieve lower loss than models that only use the stable feature [4, 5, 80]. These works consider

cases where the Bayes-optimal classifier — the training conditional distribution of the label given

the covariates — depends on both stable and shortcut features. In such cases, shortcut learning

occurs as the Bayes-optimal predictor is the target of standard supervised learning algorithms

such as the one that minimizes the log-loss via gradient descent (gd), which we call default-
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erm.

However, in many machine learning tasks, the stable feature perfectly predicts the label, i.e. a

perfect stable feature. For example, in task of predicting hair color from images of celebrity faces

in the CelebA dataset [16], the color of the hair in the image determines the label. This task is a

perception task. In such classification tasks, the label is independent of the shortcut feature given

the stable feature, and the Bayes-optimal predictor under the training distribution only depends

on the stable feature. Default-erm can learn this Bayes-optimal classifier which, by depending

solely on the stable feature, also generalizes outside the training distribution. But in practice,

default-erm run on finite data yields models that depend on the shortcut and thus perform worse

than chance outside the training distribution [16, 53, 81]. The question is, why does default-erm

prefer models that exploit the shortcut even when a model can achieve zero loss using the stable

feature alone?

To understand preferences toward shortcuts, we study default-erm on a linear perception task

with a stable feature that determines the label and a shortcut feature that does not. The perfect

linear stable feature means that data is linearly separable. This separability means that default-

erm-trained linear models classify in the same way as the minimum ℓ2-norm solution that has

all margins greater than 1; the latter is commonly called max-margin classification [82]. We

prove that default-erm’s implicit inductive bias toward the max-margin solution is harmful in

that default-erm-trained linear models depend more on the shortcut than the stable feature. In

fact, such dependence on the shortcut occurs even in the setting with fewer parameters in the

linear model than data points, i.e. without overparameterization. These observations suggest

that a max-margin inductive bias is unsuitable for perception tasks.

Next, we study inductive biases more suitable for perception tasks with perfect stable features.

We first observe that predicting with the perfect stable feature alone achieves uniformmargins on

all samples. Formally, if the stable feature 𝑠 (x) determines the label y via a function𝑑 , y = 𝑑◦𝑠 (x),
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one can achieve any positive 𝑏 as the margin on all samples simultaneously by predicting with

𝑏 · 𝑑 ◦ 𝑠 (x). We show that in the same setting without overparameterization where max-margin

classification leads to shortcut learning, models that classify with uniform margins depend only

on the stable feature.

Building on these observations, we identify alternative loss functions that are inductively biased

toward uniform margins, which we call margin control (marg-ctrl). We empirically demon-

strate that marg-ctrlmitigates shortcut learning on multiple vision and language tasks without

the use of annotations of the shortcut feature in training. Further, Marg-ctrl performs on par

or better than the more expensive two-stage shortcut-mitigating methods [53, 81]. We then in-

troduce a more challenging setting where both training and validation shortcut annotations are

unavailable, called the nuisance-free setting. In the nuisance-free setting, marg-ctrl always out-

performs default-erm and the two-stage shortcut-mitigating methods. These empirical results

suggest that simply incorporating inductive biases more suitable for perception tasks is sufficient

to mitigate shortcuts.

4.2 Shortcut learning in perception tasks due to

maximizing margins

Setup. We use y, z, x to denote the label, the shortcut feature, and the covariates respectively.

We let the training and test distributions (𝑝𝑡𝑟 , 𝑝𝑡𝑒 ) be members of a family of distributions indexed

by 𝜌 , F = {𝑝𝜌 (y, z, x)}𝜌 , such that the shortcut-label relationship 𝑝𝜌 (z, y) changes over the family.

Many common tasks in the spurious correlations literature have stable features 𝑠 (x) that are

perfect, meaning that the label is a deterministic function 𝑑 of the stable feature: y = 𝑑 ◦𝑠 (x). For

example, in the Waterbirds task the bird’s body determines the label and in the CelebA task, hair

color determines the label [16]. As 𝑠 (x) determines the label, it holds that y |= 𝑝𝜌 (x, z) | 𝑠 (x). Then,
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the optimal predictor on the training distribution is optimal on all distributions in the family F ,

regardless of the shortcut because 𝑝𝑡𝑟 (y | x) = 𝑝𝑡𝑟 (y | 𝑠 (x)) = 𝑝𝑡𝑒 (y | 𝑠 (x)) = 𝑝𝑡𝑒 (y | x) .

The most common procedure to train predictive models to approximate 𝑝𝑡𝑟 (y | x) is gradient-

based optimization of cross-entropy (also called log-loss); we call this default-erm. Default-erm

targets the Bayes-optimal predictor of the training distribution which, in tasks with perfect stable

features, also performs optimally under the test distribution. However, despite targeting the

predictor that does not depend on the shortcut, models built with default-erm still rely on shortcut

features that are often less predictive of the label and are unstable, i.e. vary across distributions

[5, 80]. We study default-erm’s preference for shortcuts in a data generating process (dgp) where

both the shortcut and the perfect stable feature are linear functions of the covariates.

4.2.1 Shortcut learning in linear perception tasks

Let Rad be the uniform distribution over {1,−1},N be the normal distribution,𝑑 be the dimension

of x, and 𝜌 ∈ (0, 1), 𝐵 > 1 be scalar constants. The dgp for 𝑝𝜌 (y, z, x) is:

y ∼ Rad, z ∼


𝑝𝜌 (z = 𝑦 | y = 𝑦) = 𝜌

𝑝𝜌 (z = −𝑦 | y = 𝑦) = (1 − 𝜌)
, 𝜹 ∼ N(0, I𝑑−2), x = [𝐵 ∗ z, y, 𝜹] . (4.1)

This dgp is set up to mirror the empirical evidence in the literature showing that shortcut features

are typically learned first [16]. The first dimension of x, i.e. x1, is a shortcut that is correlated with

y according to 𝜌 . The factor 𝐵 in x1 scales up the gradients for parameters that interact with x1 in

predictions. For large enough 𝐵, model dependence on the shortcut feature during default-erm

goes up faster than the stable feature [83].

The training distribution is 𝑝𝑡𝑟 = 𝑝0.9 and the test distribution is onewhere the shortcut’s relation-

ship with the label is flipped 𝑝𝑡𝑒 = 𝑝0.1. Models achieve worse than random test accuracy (50%)
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(a) Average accuracy and loss curves. (b) Accuracy/loss on shortcut and leftover groups.

Figure 4.1: Accuracy and loss curves for training a linearmodel with default-erm on 1000 training samples
from 𝑝0.9, with 𝐵 = 10, 𝑑 = 300 (see eq. (4.1)), and testing on 𝑝0.1. (a) The model achieves 100% train
accuracy but < 40% test accuracy. (b) The learned model achieves high test accuracy (≈ 90%) on the
shortcut group and low test accuracy on the leftover group (≈ 30%). Models that depend more on the
stable feature than on the shortcut, achieve at least 50% accuracy on both the shortcut and leftover groups.
Hence the learned model exploits the shortcut to classify the shortcut group and overfits to the leftover
group.

if they exploit the training shortcut relationship and the predicted class flips when the shortcut

feature flips. We train with default-erm which uses log-loss: on a data point (x, y) the log-loss

is

ℓ𝑙𝑜𝑔 (y𝑓𝜃 (x)) = log [1 + exp(−y𝑓𝜃 (x))] .

With 𝑑 = 300 and 𝐵 = 10, we train a linear model on 1000 samples from the training distribution

𝑝𝜌=0.9, and evaluate on 1000 samples from 𝑝𝜌=0.1.

Observations. Figure 4.1(a) shows that when trained with default-erm, the linear model does

not do better than chance (< 50%) on the test data even after 50, 000 epochs. So, even in the

presence of the perfect feature x2, the model relies on other features like the shortcut x1. Since

the final training loss is very small, on the order of 10−9, this result is not due to optimization

being stuck in a local minima with high loss. These observations indicate that, in the linear

setting, gradient-based optimization with log-loss prefers models that depend more on

the shortcut than the perfect stable feature.
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To better understand this preference we focus on the errors in specific groups in the data. Con-

sider the classifier that only uses the shortcut z and makes the Bayes-optimal prediction w.r.t 𝑝𝑡𝑟 :

argmax𝑦 𝑝𝑡𝑟 (y = 𝑦 | z). We call instances that are classified correctly by this model the shortcut

group, and the rest the leftover group. We use these terms for instances in the training set as

well as the test set. In this experiment y is positively correlated with z, hence the shortcut group

consists of all instances with y𝑖 = z𝑖 and the leftover group of those with y𝑖 ≠ z𝑖 .

Figure 4.1(b) gives accuracy and loss curves on the shortcut and leftover groups for the first

10000 epochs. The test accuracy for the shortcut group hits 90% while the leftover group test

accuracy is < 40%, meaning that the model exploits the shortcuts. Even though amodel that relies

solely on the shortcut misclassifies the leftover group, we see that the training loss of the learned

model on this group approaches 0. The model drives down training loss in the leftover group

by depending on noise, which results in larger test loss in the leftover group than the shortcut

group. Thus, fig. 4.1(b) demonstrates that the default-erm-trained model classifies the

training shortcut group by using the shortcut feature while overfitting to the training

leftover group.

Shortcut dependence like in fig. 4.1 occurs even with ℓ2-regularization and when training neural

networks; see appendix C.2.1 and appendix C.2.4 respectively. Next, we analyze the failure mode

in fig. 4.1, showing that the shortcut dependence is due to default-erm’s implicit bias to learn

the max-margin classifier. Next, we study the failure mode in fig. 4.1 theoretically, showing that

the shortcut dependence is due to default-erm’s inductive bias toward learning the max-margin

classifier.

Max-margin classifiers depend more on the the shortcut than the stable feature. We

consider training a linear model 𝑓𝜃 (x) = w⊤x where w = [w𝑧,w𝑦,w𝑒] with default-erm. Data

from eq. (4.1) is always linearly separable due to the perfect stable feature, but many hyperplanes

that separate the two classes exist. When a linear model is trained with default-erm on linearly
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separable data, it achieves zero training loss and converges to the direction of a minimum ℓ2-

norm solution that achieves a margin of at least 1 on all samples [82, 84, 85]; this is called the

max-margin solution. We now show that for a small enough leftover group, large enough scaling

factor 𝐵 and dimension 𝑑 of the covariates, max-margin solutions depend more on the shortcut

feature than the stable feature:

Theorem 3. Letw∗
be the max-margin predictor on𝑛 training samples from eq. (4.1)with a leftover

group of size 𝑘 . There exist constants 𝐶1,𝐶2, 𝑁0 > 0 such that

∀𝑛 > 𝑁0, ∀ integers 𝑘 ∈
(
0,
𝑛

10

)
, ∀ 𝑑 ≥ 𝐶1𝑘 log(3𝑛), ∀ 𝐵 > 𝐶2

√︂
𝑑

𝑘
, (4.2)

with probability at least 1 − 1/3𝑛 over draws of the training data, it holds that 𝐵w∗
𝑧 > w∗

𝑦 .

The size of the leftover group 𝑘 concentrates around (1 − 𝜌)𝑛 because each sample falls in the

leftover group with probability (1 − 𝜌). Thus, for 𝜌 > 0.9, that is for a strong enough shortcut,

the condition in theorem 3 that 𝑘 < 𝑛/10 will hold with probability close to 1; see appendix C.1.5

for more details.

The proof is in appendix C.1. The first bit of intuition is that using the shortcut can have lower

norm because of the scaling factor 𝐵. Using the shortcut only, however, misclassifies the leftover

group. The next bit of intuition is that using noise from the leftover group increases margins in

one group at a rate that scales with the dimension 𝑑 , while the cost in the margin for the other

group only grows as
√
𝑑 . This trade-off in margins means the leftover group can be correctly clas-

sified using noise without incorrectly classifying the shortcut group. The theorem then leverages

convex duality to show that this type of classifier that uses the shortcut and noise has smaller

ℓ2-norm than any linear classifier that uses the stable feature more.

The way the margin trade-off in the proof works is by constructing a linear classifier whose

weights on the noise features are a scaled sum of the product of the label and the noise vector in
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the leftover group: for a scalar 𝛾 , the weights w𝑒 = 𝛾
∑
𝑖∈𝑆leftover y𝑖𝜹𝑖 . The margin change on the

𝑗th training sample from using these weights is y 𝑗w⊤
𝑒 𝜹 𝑗 . For samples in the shortcut group, the

margin change looks like a sum of mean zero independent and identically distributed variables;

the standard deviation of this sum grows as
√
𝑑 . For samples in the leftover group, the margin

change is the sum of mean one random variables; this sum grows as 𝑑 and its standard deviation

grows as
√
𝑑 . The difference in mean relative to the standard deviation is what provides the

trade-off in margins.

We now discuss three implications of the theorem.

First, theorem 3 implies that the leftover group sees worse than random accuracy (0.5).

To see this, note that for samples in the leftover group the margin y(w∗)⊤x = w∗
𝑦−𝐵w∗

𝑧+(w∗
𝑒 )⊤y𝜹

is a Gaussian random variable centered at a negative numberw∗
𝑦−𝐵w∗

𝑧 . Then, with Φ𝑒 as the CDF

of the zero-mean Gaussian random variable (w∗
𝑒 )⊤𝜹 , accuracy in the test leftover group is

𝑝 (y(w∗)⊤x ≥ 0 | y ≠ z) = 𝑝 [(w∗
𝑒 )⊤𝜹 > −(w∗

𝑦 − 𝐵w∗
𝑧)] = 1 − Φ𝑒 (−(w∗

𝑦 − 𝐵w∗
𝑧)) ≤ 0.5.

Second, the leftover group in the training data is overfit in that the contribution of noise in predic-

tion (| (w∗
𝑒 )⊤𝜹 |) is greater than the contribution from the stable and shortcut features. Formally,

in the training leftover group, w∗
𝑦 − 𝐵w∗

𝑧 < 0. Then, due to max-margin property,

w∗
𝑦 − 𝐵w∗

𝑧 + (w∗
𝑒 )⊤y𝑖𝜹𝑖 > 1 =⇒ (w∗

𝑒 )⊤y𝑖𝜹𝑖 ≥ 1 − (w∗
𝑦 − 𝐵w∗

𝑧) > |w∗
𝑦 − 𝐵w∗

𝑧 |.

Third, many works point to overparameterization as one of the causes behind shortcut learning

[16, 86, 87], but in the setup in fig. 4.1, the linear model has fewer parameters than samples in

the training data. In such cases with non-overparameterized linear models, the choice of default-

erm is typically not questioned, especially when a feature exists that linearly separates the data.
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Corollary 1 formally shows shortcut learning for non-overparameterized linearmodels.

In words, default-erm — that is vanilla logistic regression trained with gradient-based

optimization — can yield models that rely more on the shortcut feature even without

overparameterization.

Corollary 1. For all 𝑛 > 𝑁0 — where the constant 𝑁0 is from theorem 3 — with scalar 𝜏 ∈ (0, 1)

such that the dimension of x is 𝑑 = 𝜏𝑛 < 𝑛, for all integers 𝑘 < 𝑛×min
{
1
10 ,

𝜏
𝐶1 log 3𝑛

}
, a linear model

trained via default-erm yields a predictor w∗
such that 𝐵w∗

𝑧 > w∗
𝑦 .

If default-erm produces models that suffer from shortcut learning even without overparameter-

ization, its implicit inductive bias toward max-margin classification is inappropriate for percep-

tion tasks in the presence of shortcuts. Next, we study inductive biases more suited to perception

tasks.

4.3 Toward inductive biases for perception tasks with

shortcuts

The previous section formalized how default-erm solutions, due to the max-margin inductive

bias, rely on the shortcut and noise to minimize loss on training data even in the presence of a

different zero-population-risk solution. Are there inductive biases more suitable for perception

tasks?

Given a perfect stable feature 𝑠 (x) for a perception task, in that for a function 𝑑 when y =

𝑑 ◦𝑠 (x), one can achieve margin 𝑏 ∈ (0,∞) uniformly on all samples by predicting with the stable

𝑏 ·𝑑 ◦𝑠 (x). In contrast, max-margin classifiers allow for disparate margins as long as the smallest

margin crosses 1, meaning that it does not impose uniform margins. The cost of allowing dis-

parate margins is the preference for shortcuts even without overparamterization (corollary 1). In

the same setting however, any uniform-margin classifier for the linear perception task (eq. (4.1))
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relies only on the stable feature:

Theorem 4. Consider 𝑛 samples of training data from dgp in eq. (4.1) with 𝑑 < 𝑛. Consider a linear

classifier 𝑓𝜃 (x) = w⊤x such that for all samples in the training data y𝑖w
⊤x𝑖 = 𝑏 for any 𝑏 ∈ (0,∞).

With probability 1 over draws of samples, w = [0, 𝑏, 0𝑑−2] .

Theorem 4 shows that uniform-margin classifiers only depend on the stable feature, standing in

contrast with max-margin classifiers which can depend on the shortcut feature (theorem 3). The

proof is in appendix C.1.6. Thus, inductive biases toward uniformmargins are better suited

for perception tasks. Next, we identify several ways to encourage uniform margins.

Margin control (marg-ctrl). To produce uniformmarginswith gradient-based optimization,

we want the loss to be minimized at uniform-margin solutions and be gradient-optimizable. We

identify a variety of losses that satisfy these properties, and we call them marg-ctrl losses.

marg-ctrl losses have the property that per-sample loss monotonically decreases for margins

until a threshold then increases for margins beyond it. In turn, minimizing loss then encourages

all margins to move to the threshold.

Mechanically, when models depend more on shortcuts than the stable feature during training,

margins on samples in the shortcut group will be larger than those in the leftover group; see

the right panel in fig. 4.1(b) where the train loss in the shortcut group is lower than the leftover

group indicating that the margins are smaller in the leftover group. This difference is margins is a

consequence of the shortcut matching the label in one group and not the other, thus, encouraging

the model to have similar margins across all samples pushes the model to depend less on the

shortcut. In contrast, vanilla log-loss can be driven to zero in a direction with disparate margins

across the groups as long as the margins on all samples go to∞. We define marg-ctrl losses for

a model 𝑓𝜃 with the margin on a sample (x, y) defined as y𝑓𝜃 (x).

As the first marg-ctrl loss, we develop the 𝜎-damped log-loss: we evaluate log-loss on a mar-
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Figure 4.2: Using 𝜎-damped log-loss yields linear models that depend on the perfect stable feature to
achieve near perfect test accuracy. The middle panel shows that 𝜎-damping maintains similar margins in
the training shortcut and leftover groups unlike unconstrained log-loss, and the right panel shows 𝜎-damp
achieves better leftover test-loss.

gin multiplied by a monotonically decreasing function of the margin. In turn, the input to the

loss increases with the margin till a point and then decreases. For a temperature 𝑇 and sigmoid

function 𝜎 , the 𝜎-damped loss modifies the model output 𝑓𝜃 and plugs it into log-loss:

ℓ𝜎-damp(y, 𝑓𝜃 ) = ℓlog
(
y

(
1 − 𝜎

(
y𝑓𝜃
𝑇

))
𝑓𝜃

)

For large margin predictions y𝑓𝜃 > 0, the term 1 − 𝜎 (y𝑓𝜃 (x)/𝑇 ) damps down the input to log-loss.

The largest the input to ℓlog can get is 0.278𝑇 , found by setting the derivative to zero, thus lower

bounding the loss. As log-loss is a decreasing function of its input, the minimum of ℓ𝜎-damp occurs

when the margin is 0.278𝑇 on all samples. To demonstrate empirical advantage, we compare

standard log-loss to 𝜎-damped loss on eq. (4.1); see fig. 4.2. The left panel of figure fig. 4.2 shows

that test accuracy is better for𝜎-damp. Themiddle and right panels shows the effect of controlling

margins in training, where losses on shortcut and leftover groups hover at the same value.

Second, we design the 𝜎-stitch loss, which imitates log-loss when y𝑓𝜃 (x) < 𝑢 and penalizes larger

margins (y𝑓𝜃 > 𝑢) by negating the sign of y𝑓𝜃 (x):

ℓ𝜎-stitch = ℓ𝑙𝑜𝑔 ( 1[y𝑓𝜃 (x) ≤ 𝑢]y𝑓𝜃 (x) + 1[y𝑓𝜃 (x) > 𝑢] (2𝑢 − y𝑓𝜃 (x)) ) (4.3)
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As the third marg-ctrl loss, we directly penalize large margins via a log-penalty:

ℓmarg-log = ℓ𝑙𝑜𝑔 (y𝑓𝜃 (x)) + 𝜆 log
(
1 + |𝑓𝜃 (x) |2

)
(4.4)

The fourth marg-ctrl loss controls margins by penalizing |𝑓𝜃 (x) |2:

ℓsd = ℓ𝑙𝑜𝑔 (y𝑓𝜃 (x)) + 𝜆 |𝑓𝜃 (x) |2 (4.5)

This last penalty was called sd by Pezeshki et al. [88], who use it as a way to decouple learning

dynamics in the neural tangent kernel (ntk) regime. Instead, from the lens of marg-ctrl, sd

mitigates shortcuts in eq. (4.1) because it encourages uniform margins, even though sd was orig-

inally derived from different principles, as we discuss in section 4.5. In appendix C.2.2, we plot

all marg-ctrl losses and show that marg-ctrl improves over default-erm on the linear percep-

tion task; see figs. C.3 to C.5. We also run marg-ctrl on a neural network and show that while

default-erm achieves test accuracy worse than random chance, marg-ctrl achieves 100% test

accuracy; see figs. C.7 to C.10 in appendix C.2.4.

4.4 Vision and language experiments

We evaluate marg-ctrl on common datasets with shortcuts: Waterbirds, CelebA [16], and Civil-

comments [79]. First, marg-ctrl always improves over default-erm. Then, we show that marg-

ctrl performs similar to or better than two-stage shortcut-mitigating methods like jtt [53] and

cnc [81] in traditional evaluation settings where group annotations are available in the validation

data. Finally, we introduce a more challenging setting that only provides class labels in training

and validation, called the nuisance-free setting. In contrast to the traditional setting that al-

ways assumes validation group annotations, the nuisance-free setting does not provide group

annotations in either training or in validation. In the nuisance-free setting, marg-ctrl outper-
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forms jtt and cnc, even though the latter are supposed to mitigate shortcuts without knowledge

of the groups.

Datasets. We use the Waterbirds and CelebA datasets from Sagawa et al. [16] and the Civil-

Comments dataset from Koh et al. [79], Borkan et al. [89]. In Waterbirds, the task is to classify

images of a waterbird or landbird, and the label is spuriously correlated with the image back-

ground consisting of land or water. There are two types of birds and two types of background,

leading to a total of 4 groups defined by values of 𝑦, 𝑧. In CelebA [6, 16], the task is to classify

hair color of celebrities as blond or not. The gender of the celebrity is a shortcut for hair color.

There are two types of hair color and two genders in this dataset, leading to a total of 4 groups

defined by values of 𝑦, 𝑧. In CivilComments-WILDS [79, 89], the task is to classify whether an

online comment is toxic or non-toxic, and the label is spuriously correlated with mentions of

certain demographic identities. There are 2 labels and 8 types of the shortcut features, leading to

16 groups.

Metrics, model selection, and hyperparameters. We report the worst-group test accuracy

for each method. The groups are defined based on the labels and shortcut features. The more

a model depends on the shortcut, the worse the worst-group error. Due to the label imbalance

in all the datasets, we use variants of 𝜎-damp, 𝜎-stitch, marg-log, and sd with class-dependent

hyperparameters; see appendix C.2.6.2. For all methods, we use the standard Adam optimizer [90]

and let the learning rate and weight decay hyperparameters be tuned along with the method’s

hyperparameters. We first report results for all methods using validation worst-group accuracy

to select method and optimization hyperparameters and early stop. For both jtt and cnc, this

is the evaluation setting that is used in existing work [53, 81, 83]. Finally, in the nuisance-free

settingwhere no group annotations are available, we select hyperparameters using label-balanced

average accuracy. Appendix C.2.6 gives further details about the training, hyperparameters, and

experimental results.
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Figure 4.3: Loss curves of default-erm on CelebA for two combinations of lr and wd. The combination
with the larger learning rate (blue) achieves 72.8% test worst-group accuracy, beating the other combi-
nation by 20%. The model that achieves the best validation (and test) worst-group accuracy is the one
at epoch 13 from the blue run. This model achieves similar loss in both groups and the full data model
suggesting that large lr and wd controls margins from exploding (higher training loss in all panels) and
avoids systematically smaller margins in the leftover group compared to the shortcut group.

4.4.1 Marg-ctrl mitigates shortcuts in the default setting

Here, we experiment in the standard setting from Liu et al. [53], Zhang et al. [81], Idrissi et al.

[83] and use validation group annotations to tune hyperparameters and early-stopping.

Marg-ctrl improves over default-erm. We compare marg-ctrl to default-erm on CelebA,

Waterbirds, and Civilcomments. Table 4.1 shows that every marg-ctrl method achieves higher

test worst-group accuracy than default-erm on all datasets. Default-erm achieves a mean test

worst-group accuracy of 70.8%, 72.8% and 60.1% on Waterbirds, CelebA, and Civilcomments re-

spectively. Compared to default-erm, marg-ctrl methods provide a 5 − 10% improvement on

Waterbirds, 7 − 10% improvement on CelebA, 7 − 10% improvement on Civilcomments. These

improvements show the value of inductive biases more suitable for perception tasks.

Large lr and wd may imitate marg-ctrl in erm. Default-erm’s performance varies greatly

across different values of lr and wd on, for instance, CelebA: the test worst-group accuracy

improves by more than 20 points over different lr and wd combinations. Why does tuning lr

and wd yield such improvements? We explain this phenomenon as a consequence of instability

in optimization induced by large lr andwdwhich prevents the model from maximizing margins
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and in turn can control margins. Figure 4.3 provides evidence for this explanation by comparing

default-erm’s loss curves for two lr and wd combinations.

The blue loss curves in fig. 4.3 correspond to the run with the larger lr andwd combination. The

model that achieves the best validation (and test) worst-group accuracy over all combinations of

hyperparameters for default-erm, including those not in the plot, is the one at epoch 13 on the

blue curves. This model achieves similar train and test losses (≈ 0.4) and thus similar margins in

the shortcut group, the leftover group, and the whole dataset. The red curves stand in contrast

where the lower lr results in the leftover group having higher training and test losses, and there-

fore smaller margins, compared to the shortcut group. These observations together support the

explanation that default-ermwith large lr andwdmitigates shortcuts when controlling margins

like marg-ctrl.

Marg-ctrl performs as well or better than two-stage shortcut-mitigating methods.

Two-stage shortcut mitigating methods like Correct-n-Contrast (cnc) and Just Train Twice (jtt)

aim to mitigate shortcuts by using a model trained with default-erm to approximate group anno-

tations. They rely on the assumption that a model trained via default-erm either predicts with the

shortcut feature (like background inWaterbirds) or that the model’s representations separate into

clusters based on the shortcut feature. The methods then approximate group annotations using

this default-erm-trained model and use them to mitigate shortcut learning in a second predictive

model. Jtt upweights the loss on the approximate leftover group and cnc uses a contrastive loss

to enforce the model’s representations to be similar across samples that have the same label but

different approximate group annotations. Appendix C.2.6.1 gives details.

Table 4.1 compares marg-ctrl to jtt and cnc on Waterbirds, Celeba, and CivilComments. On

CelebA, sd, marg-log, and 𝜎-stitch perform similar to cnc while all marg-ctrl techniques out-

perform jtt. On Waterbirds, all marg-ctrl methods outperform jtt and cnc. On CivilCom-

ments, 𝜎-damp and sd perform similar to jtt and outperform cnc. Cnc’s performance on Wa-
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CelebA WB Civil

erm 72.8 ± 9.4 70.8 ± 2.4 60.1 ± 0.4
cnc 81.1 ± 0.6 68.0 ± 1.8 68.8 ± 0.2
jtt 75.2 ± 4.6 71.7 ± 4.0 69.9 ± 0.4

marg-log 82.8 ± 1.1 78.2 ± 1.9 68.4 ± 1.8
𝜎-damp 79.4 ± 0.6 78.6 ± 1.1 69.6 ± 0.4

sd 81.4 ± 2.5 80.5 ± 1.4 69.9 ± 1.1
𝜎-stitch 81.1 ± 2.2 75.9 ± 3.4 67.8 ± 2.8

Table 4.1: Mean and standard deviation of test worst-group accuracies over two seeds for default-erm,
jtt, cnc, 𝜎-damp, 𝜎-stitch, sd, and marg-log. Every marg-ctrlmethod outperforms default-erm on every
dataset. OnWaterbirds, marg-ctrl outperforms jtt and cnc. On CelebA, sd, marg-log, and 𝜎-stitch beat
jtt and achieve similar or better performance than cnc. On CivilComments, 𝜎-damp and sd beat cnc and
achieve similar performance to jtt.

terbirds differs from Zhang et al. [81] because their reported performance requires unique large

wd choices (like wd set to 1) to build a first-stage model that relies most on the shortcut feature

without overfitting to the training data.

Marg-ctrl is faster than jtt and cnc. Marg-ctrl takes the same time as default-erm, tak-

ing around 1, 20 and 60 minutes per epoch for Waterbirds, CelebA, and CivilComments respec-

tively on an RTX8000 GPU. In contrast, on average over runs, jtt takes around 6, 80, 120minutes

per epoch and cnc takes around 8, 180, 360minutes per epoch. Thus, marg-ctrl performs as well

or better than jtt and cncwhile being simpler to implement and computationally cheaper.

4.4.2 Marg-ctrl mitigates shortcuts in the nuisance-free setting

Work like [53, 81] crucially require validation group annotations because these methods push the

work of selecting models for mitigating shortcuts to validation. Determining shortcuts itself is

a laborious manual process, which means group annotations will often be unavailable. Further,

given a perfect stable feature that determines the label and a shortcut that does not, only models

that rely on the stable feature more than the shortcut can achieve the highest validation accuracy.

Thus, we introduce a more challenging setting that only provides class labels in training and
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CelebA WB Civil

erm 57.5 ± 5.8 69.1 ± 2.1 60.7 ± 1.5
cnc 67.8 ± 0.6 60.0 ± 8.0 61.4 ± 1.9
jtt 53.3 ± 3.3 71.7 ± 4.0 53.4 ± 2.1

marg-log 74.2 ± 1.4 77.9 ± 0.3 66.8 ± 0.2
𝜎-damp 70.8 ± 0.3 74.8 ± 1.6 65.6 ± 0.2

sd 70.3 ± 0.3 78.7 ± 1.4 67.8 ± 1.3
𝜎-stitch 76.7 ± 0.6 74.5 ± 1.2 66.0 ± 1.0

Table 4.2: Average and standard deviation of test worst-group accuracy over two seeds of marg-ctrl,
default-erm, jtt, and cnc in the nuisance-free setting. Hyperparameter selection and early stopping use
label-balanced average accuracy. All marg-ctrl methods outperform default-erm, jtt, and cnc on all
datasets.

validation, called the nuisance-free setting. In the nuisance-free setting, models are selected

based on label-balanced average accuracy: the average of the accuracies over samples of each

class.

Table 4.2 reports test worst-group (WG) accuracy in the nuisance-free setting. Onall the datasets,

every marg-ctrl outperforms default-erm, jtt, and cnc. On average, the marg-ctrl

methods close at least 61% of the gap between default-erm in the nuisance-free setting and the

best performance in table 4.1 on every dataset. In contrast, cnc and jtt sometimes perform

worse than default-erm.

4.5 Related work

A large body of work tackles shortcut learning under different assumptions [4, 12, 17, 24, 34,

80, 91, 92]. A different line of work focuses on learning in neural networks in idealized settings

[93, 94, 95, 96, 97, 98, 99].

Shah et al. [100] study simplicity bias [101] and show that neural networks provably learn the

linear function over a non-linear one, in the first epoch of training. In a similar vein, Hermann

and Lampinen [102] show that neural networks can prefer a linearly-decodable feature over a
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non-linear but more predictive feature, and Scimeca et al. [103] make similar observations and

use loss landscapes to empirically study which features are easier to learn. Simplicity bias alone

only describes neural biases early in training and does not explain why more predictive stable

features are not learned later. Unlike simplicity bias which focuses on linear versus non-linear

features, max-margin bias is the reason default-erm prefers one linear feature, the shortcut, over

another, the stable feature, like in the synthetic experiment in section 4.2.

While Pezeshki et al. [88] allow for perfect features, they hypothesize that shortcut learning

occurs because when one feature is learned first, other features are gradient-starved and are

not learned as well. They focus on a special setting where feature representations for different

samples have inner product equal to a small constant to show that models can depend more on

the imperfect feature than the perfect feature. In this special setting, they show that penalizing

the magnitudes of what we call the margin mitigates shortcuts; this method is called spectral

decoupling (sd). However, as we show in appendix C.2.5, the assumption in Lemma 1 [88] is

violated when using a linear model to classify in the simple linear dgp in eq. (4.1). However, sd

on a linear model mitigates shortcuts in the dgp in eq. (4.1); see C.2.5. Thus, the theory in Pezeshki

et al. [88] fails to not explain why sdworks for eq. (4.1), but the uniform-margin property explains

why all the marg-ctrl losses, including sd, mitigate shortcuts.

Nagarajan et al. [86] consider tasks with perfect stable features and formalize geometric prop-

erties of the data that make max-margin classifiers give non-zero weight to the shortcut feature

(w𝑧 > 0). In their set up, the linear models are overparameterized and it is unclear when w𝑧 > 0

leads to worse-than-random accuracy in the leftover group because they do not separate the

model’s dependence on the stable feature from the dependence on noise. See fig. C.11 for an

example where w𝑧 > 0 but test accuracy is 100%. In contrast to Nagarajan et al. [86], theorem 3

gives a family of dgps where the leftover group accuracy is worse than random, even without

overparameterization. Ahuja et al. [104] also consider linear classification with default-erm with
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a perfect stable feature and conclude that default-erm learns only the stable feature because they

assume no additional dimensions of noise in the covariates. We develop the necessary nuance

here by including noise in the problem and showing default-erm depends on the shortcut feature

even without overparameterization.

Sagawa et al. [7] andWald et al. [87] both consider overparameterized settings where the shortcut

feature is informative of the label even after conditioning on the stable feature. In both cases, the

Bayes-optimal predictor also depends on the shortcut feature, which means their settings do

not allow for an explanation of shortcut dependence in examples like fig. 4.1. In contrast, we

show shortcut dependence occurs even in the presence of a perfect stable feature and without

overparameterization. Li et al. [105], Pezeshki et al. [106] focus on relative feature complexity and

discuss the effects of large lr on which features are learned first during training, but do not allow

for perfect features. Idrissi et al. [83] empirically find that tuning lr and wd gets default-erm to

perform similar to two-stage shortcut-mitigating methods like jtt [53]. We view the findings of

[83] through the lens of marg-ctrl and explain how large lr and wd approximate marg-ctrl

to mitigate shortcuts; see section 4.4.

Marg-ctrl is related to but different from methods proposed in Liu et al. [107], Cao et al. [108],

Kini et al. [109]. These works normalize representations or the last linear layers and linearly

transform the logits to learn models with better margins under label imbalance. Next, methods

like Learning from Failure (lff) [56], jtt [53], and cnc [81] build two-stage procedures to avoid

shortcut learning without group annotations in training. They assume that default-erm produces

models that depend more on the shortcut and select hyperparamters of the two stage process

using validation group annotations. In the nuisance-free setting where there are no validation

group annotations, the performance of these methods can degrade below that of default-erm. In

contrast, better characterizing the source of shortcut learning in perceptual problems leads to

marg-ctrl methods that are not as reliant on validation group annotations (see nuisance-free
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results in Section 4.4). Without any group annotations, encouraging uniformmargins via

marg-ctrlmitigates shortcuts better than jtt and cnc.

Soudry et al. [82] characterize the inductive bias of gradient descent to converge in direction

to max-margin solutions when using exponentially tailed loses; Wang et al. [84, 85] then prove

similar biases toward max-margin solutions for Adam and RMSProp. Ji et al. [110] show that for

general losses that decrease in y𝑓𝜃 (x), gradient descent has an inductive bias to follow the ℓ2-

regularization path. All these inductive biases prefer shortcuts if using them leads to lower loss

within an ℓ2-norm-budget. Marg-ctrl provides a different inductive bias toward producing the

same margin on all samples, which means gradient descent veers models away from imperfect

shortcuts that lead to disparity in network outputs. Such inductive biases are suitable for tasks

where a feature determines the label (ℎ(x) = y).

4.6 Discussion

We studywhy default-erm—gradient-based optimization of log-loss — yields models that depend

on the shortcut evenwhen the populationminimum of log-loss is achieved bymodels that depend

only on the stable feature. By studying a linear task with perfect stable features, we show that

default-erm’s preference toward shortcuts sprouts from an inductive bias toward maximizing

margins. Instead, inductive biases toward uniform margins improve dependence on the stable

feature and can be implemented via marg-ctrl. Marg-ctrl improves over default-erm on a

variety of perception tasks in vision and language without group annotations in training, and is

competitive with more expensive two-stage shortcut-mitigating methods. In the nuisance-free

setting, where even validation group annotations are unavailable, marg-ctrl outperforms all the

baselines. The performance thatMarg-ctrl yields demonstrates that changing inductive biases

can remove the need for expensive shortcut-mitigating methods in perception tasks.

Without overparameterization, uniform-margin classifiers are unique and learn stable features
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only, while max-margin classifiers can depend more on shortcuts. With overparameterization,

max-margin classifiers are still unique but uniform-margin solutions are not which necessitates

choosing between solutions. The experiments in section 4.4 suggest that choosing between

uniform-margin classifiers with penalties like ℓ2 improves over max-margin classifiers with ℓ2:

all experiments use overparameterized models trained with weight decay and marg-ctrl out-

performs default-erm. Further, our experiments suggest that uniform-margin classifiers are in-

sensitive to the wd and lr choices, unlike max-margin classifiers; appendix C.2.8 shows that

marg-ctrl achieves high performance for all lr and wd choices but erm requires tuning.

Theorem 3 also explains how balancing may or may not improve dependence on the stable fea-

tures. For example, a weighting-based approach produces the same max-margin solution as

default-erm [7, 111], but subsampling leads to a different solution that could depend less on the

shortcut. For the latter however, models are more prone to overfitting on the smaller subsampled

dataset. Similar observations were made in [7] but this work extends the insight to tasks with per-

fect stable features. Comparing erm and marg-ctrl on subsampled data would be fruitful.

Any exponentially tailed loss when minimized via gradient descent converges to the max-margin

solution in direction [82]. Thus, theorem 3 characterizes shortcut learning for any exponentially-

tailed loss. However, losses with decreasing polynomial tails — for example, ℓ (𝑎) = 1
1+𝑎𝐾 for some

𝐾 > 0 — do not converge to the max-margin classifier. One future direction is to show shortcut-

dependence results like theorem 3 for polynomial-tailed losses, which in turn would mean that

all common classification losses with a decreasing tail impose inductive biases unsuitable for

perception tasks.

In the tasks we consider with perfect stable features, Bayes-optimal predictors rely only on the

stable feature. A weaker independence condition implies the same property of Bayes-optimal

predictors even when y is not determined by 𝑠 (x): y |= (x, z) | 𝑠 (x). For example, in the Civil-

Comments dataset a few instances have ambiguous labels [112] meaning that there may not be a
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perfect stable feature. Studying uniform margins and other inductive biases under this indepen-

dence would be fruitful.
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Part II

Generalizing Causal Estimation
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5 | General Control Functions for

Causal Estimation from

Instrumental Variables

5.1 Introduction

Many disciplines use observational data to estimate causal effects: economics [113], sociology [114],

psychology [115], epidemiology [116], and medicine [117]. Estimating causal effects with obser-

vational data requires care due to the presence of confounders that influence both treatment and

outcome. Observational causal estimators deal with confounders in one of two ways. One, they

assume that all confounders are observed; an assumption called ignorability. Two, they assume a

source of external randomness that has a direct influence only on the treatment. Such a source is

called an instrumental variable (IV) [118, 119]. An example is college proximity as an IV to study

effects of education [120].

Two common IV-based causal effect estimation methods are the two-stage least-squares method

(2SLS) [121, 122, 123] and the traditional control function method (CFN) [119, 124, 125, 126].

Both methods have a common first stage: learn a distribution over the treatment conditioned on

the IV. In the second stage, 2SLS regresses the outcome on simulated treatments from the first
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stage, while CFN’s second stage regresses the outcome on the true treatment and the error in

the prediction of treatment from the first stage. The prediction error can be used to control for

confounding and is thus called a control function. Though widely used, both 2SLS and CFN break-

down under certain conditions like, for example, when the outcome depends on multiplicative

interactions of treatment and confounders. Further, CFN requires an additional assumption about

the correlations between noise and outcome.

We study causal estimation with control functions. To estimate effects, control functions must

satisfy ignorability. Our meta-identification result (theorem 5) shows that a control function

satisfies ignorability if 1) the control function and IV together reconstruct the treatment, and 2)

the confounder and control function together are jointly independent of the IV. We will refer to

such control functions as general control functions. Effect estimation in general requires that the

treatment has a chance to take any value given the control function; this is called positivity. We

show positivity for general control functions holds if the IV can set treatment to any value; we

call this a strong IV.

Any general control function uniquely determines the effect because it satisfies ignorability and

positivity (given a strong IV). Causal identification requires effects to be uniquely determined

by the observed data distribution. Thus, building general control functions using observed data

guarantees causal identification. As reconstruction andmarginal independence are properties of

the joint distribution over observed data and control function, they can be guaranteed. Guaran-

teeing joint independence requires further assumptions as it involves the unobserved confounder.

We show that structural assumptions on the treatment process, such as treatment being an addi-

tive function of the confounder and IV, help ensure joint independence.

To build general control functions and use them to estimate effects, we develop the general con-

trol function method (GCFN). GCFN’s first stage, called variational decoupling (VDE), constructs

the general control function. VDE is a type of autoencoder where the encoder constructs the
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control function and the decoder reconstructs treatment from control function and IV, under

the constraint that the control function and IV are independent. When VDE is perfectly solved

with a decoder that reflects a structural treatment process assumption, like additivity, reconstruc-

tion and joint independence are guaranteed. Thus with a strong IV, ignorability and positivity

hold which implies identification, and that effect estimation does not require structural assump-

tions on the outcome process like those in 2SLS and CFN. Using VDE’s general control function,

GCFN’s second stage estimates the causal effect. GCFN’s second stage can be any method that

relies on ignorability like matching/balancing methods [127, 128, 129] and doubly-robust meth-

ods [130].

We also consider a setting where a subset of the data has observed confounders that provide ig-

norability. We develop semi-supervised GCFN to estimate effects in this setting. Semi-supervised

GCFN’s first stage is an augmented VDE that forces the control function to match the confounder

in the subset where it is observed. This augmented VDE helps guarantee joint independence even

with a decoder that does not reflect structural treatment process assumptions.

In section 5.4, we evaluate GCFN’s causal effect estimation on simulated data with the outcome,

treatment, and IV observed. We demonstrate how GCFN produces correct effect estimates with-

out additional assumptions on the true outcome process, whereas 2SLS, CFN, and DeepIV [131]

fail to produce the correct estimate. Further, we show that GCFN performs on par with recently

proposed methods DeepGMM [132] and DeepIV [131] on high-dimensional simulations from

each respective paper. We also demonstrate that in data with a small subset having observed con-

founders, semi-supervised GCFN outperforms outcome regression on treatment and confounder

within the subset. We also show recovery of the effect of slave export on current societal trust [2].

Related Work. Classical examples of methods that use IVs include the Wald estimator [133],

two-stage least-squares method (2SLS) [121, 122, 123] and control function method (CFN) [119,
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124, 125, 126]. The Wald estimator assumes constant treatment effect. 2SLS’s estimation could be

biased when the outcome generating process has multiplicative interactions between treatment

and confounders (appendix D.1.10). Guo and Small [134] proved that under some assumptions,

CFN improves upon 2SLS. Beyond these classical estimators, Wooldridge [124] discusses exten-

sions of regression residuals for non-linear models under distributional assumptions about the

noise in the treatment process. Hartford et al. [131] developed DeepIV, a deep variant of 2SLS and

Singh et al. [135] kernelized the 2SLS algorithm. An alternative to 2SLS is the generalized method

of moments (GMM) [136] which solves moment equations implied by the independence of the

confounder and the IV. Bennett et al. [132] develop a minimax GMM and use neural networks to

specify moment conditions.

Given only an IV, treatment, and outcome, causal effects are not identifiable without further as-

sumptions [137, 138]. Newey [139] and Chetverikov andWilhelm [140] assume additive outcome

processes, where the outcome process is a sum of the causal effect and zero-mean noise; such

models are also called separable. Identification in separable models relies on the completeness

condition [141] which requires the conditional distribution of treatment given IV to sufficiently

vary with the IV. Newey [139], Chetverikov and Wilhelm [140] discuss non-parametric estima-

tors under assumptions of monotonicity of the treatment process and shape of causal effects (for

eg. 𝑈 -shaped). We focus on the setting where the outcome process cannot be represented as a

sum of the causal effect and noise, often called a non-separable model [142]. Imbens and Newey

[143] showed effect identification in non-separable models when the treatment has a continuous

strictly monotonic cumulative distribution function (cdf) given the IV. Under this same condi-

tion, we can guarantee joint independence via a strictly monotonic reconstruction map which

means identification holds.

5.1.1 Review of IVs and traditional control function theory
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Figure 5.1: Causal graph with
hidden confounder z, outcome
y, instrument 𝝐 , treatment t.

To define the causal effect we use causal graphs [144]. In causal

graphs, each variable is represented by a node, and each causal re-

lationship is a directed arrow from the cause to the effect. Causal

graphs get transformed by interventions with the do-operator.

The shared relationships between the graphs before and after the

do-operation make estimation possible. The causal effect of giving a treatment t = 𝑎 on an out-

come y is E[y | do(t = 𝑎)]. The causal graph in Figure 5.1 describes a broad class of IV problems.

The difficulty of causal estimation in this graph stems from the unobserved confounder z. The

IV 𝝐 helps control for z. Two popular IV-based methods are the two-stage least-squares method

(2SLS) and control function method (CFN).

We follow the CFN setup from Guo and Small [134], where the true outcome and treatment

processes have additive zero-mean noise called 𝜼y and 𝜼t that may be correlated due to z:

y = 𝑓 (t) + 𝜼y, t = 𝑔(𝝐) + 𝜼t. (5.1)

To estimate the causal effect, the CFN method constructs a control function with the regression

residual t − 𝑔(𝝐). Then, CFN regresses the outcome y on the regression residual and the treat-

ment t. The causal effect is the estimate of the function 𝑓 (t). For this estimate to be valid, theCFN

method assumes that𝜼t,𝜼y satisfy the following property for some constant 𝜌 , (A4 in [134]):

E[𝜼y | 𝜼t = 𝜂] = 𝜌𝜂 (5.2)

This property restricts the applicability of the CFN method by limiting how confounders influ-

ence the outcome and the treatment. Consider the following additive noise example: 𝝐, z ∼

N(0, 1), t = z + 𝝐, y ∼ N(t2 + z2, 1), where N is the standard normal. Here 𝜼𝑦 = z2 and

𝜼t = z meaning that E[𝜼y | 𝜼t = 𝜂] = 𝜂2, violating the assumption in eq. (5.2). Note that
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E[zt2] = E[zz2] = 0, however E[t2z2] > 0. This means regressing y on t2 and z, i.e., with the

correct model for 𝑓 (t), would result in an inflated coefficient of t2, which is an incorrect causal

estimate. Equation (5.2) is required because some specified function of t could be correlated with

an unspecified function of z, resulting in a biased causal estimate. See appendix D.1.10 for an

example where 2SLS produces biased effect estimates. The assumption in eq. (5.1) restricts the

confounder’s influence to be additive on both the treatment and outcome. Further, CFN assumes

that the average additive influence the confounder has on the outcome to be a scaled version of

the confounder’s influence on the treatment (eq. (5.2)). Such assumptions may not hold in real

data. For example, the effect of a medical treatment on patient lifespan is confounded by the

patient’s current health. This confounder influences the treatment through a human decision

process, while it influences the outcome through a physiological process making it unlikely to

meet CFN’s assumptions.

5.2 Causal Identification with General Control

Functions

With a control function that satisfies ignorability and positivity, causal estimation reduces to

regression of the outcome on the treatment and the control function. We characterize such control

functions:

Theorem 5. (Meta-identification result for control functions)

Let 𝐹 (t, 𝝐, y) be the true data distribution. Let control function ẑ be sampled conditionally on t, 𝝐 . Let

𝑞(ẑ, t, 𝝐) = 𝑞(ẑ | t, 𝝐)𝐹 (t, 𝝐) be the joint distribution over ẑ, t, 𝝐 . Further, let 𝑔 be a deterministic func-

tion and 𝜹 be independent noise such that t = 𝑔(z, 𝝐, 𝜹) and let the implied true joint be 𝐹 ′(t, z, 𝜹).

Assume the following:

1. (A1) ẑ satisfies the reconstruction property: ∃𝑑, ẑ, t, 𝝐 ∼ 𝑞(ẑ, t, 𝝐) =⇒ t = 𝑑 (ẑ, 𝝐).
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2. (A2) The IV is jointly independent of control function, true confounder, and noise 𝜹 : 𝝐 |= (z, ẑ, 𝜹).

3. (A3) Strong IV. For any compact 𝐵 ⊆ supp(t), ∃𝑐𝐵 s.t. a.e. 𝑡 ∈ 𝐵, 𝐹 ′(t = 𝑡 | z, 𝜹) ≥ 𝑐𝐵 > 0.

Then, the control function ẑ satisfies ignorability and positivity:

𝑞(y | t = 𝑡, ẑ) = 𝑞(y | do(t = 𝑡), ẑ) a.e. in supp(t) 𝑞(ẑ) > 0 =⇒ 𝑞(t = 𝑡 | ẑ) > 0.

Therefore, the true causal effect is uniquely determined by 𝑞(ẑ, t, y) for almost every 𝑡 ∈ supp(t):

Eẑ [y | t = 𝑡, ẑ] = Eẑ [y | do(t = 𝑡), ẑ] = E[y | do(t = 𝑡)] .

Theorem 5 characterizes functions of treatment and IV that satisfy reconstruction (A1) and joint

independence (A2) which we call general control functions. Positivity of tw.r.t. the general control

function holds under an assumption about the treatment process that the IV is strong (A3). Ignor-

ability and positivity w.r.t. ẑ imply that the true causal effect is uniquely determined as a function

of the observed data distribution 𝑞(ẑ, t, y) ∗. If A1 and A2 are satisfied by the observed data dis-

tribution 𝑞(ẑ, t, y, 𝝐), the true effect is uniquely determined by the observed data distribution and

thus causal identification holds. However, joint independence (A2) relies on the unobserved true

confounder z. So, theorem 5 is a meta-identification result because it does not specify how to

guarantee joint independence using 𝑞(ẑ, t, 𝝐). In section 5.2.1, we discuss structural assumptions

on the treatment process that instantiate this meta-result and guarantee identification.

Theorem 5 holds for both discrete and continuous t given that the causal effect exists for all

𝑡 ∈ supp(t).† While we focus on the causal effect E[y | do(t)], theorem 5 guarantees any prop-

erty of y | do(t) can be estimated; for e.g. quantile treatment effects. For ease of exposition, we
∗We also require that EẑE[y | do(t), ẑ] exists. This is guaranteed if the causal effect E[y | do(t)] = EzE[y | t, z]

exists as ignorability holds w.r.t. ẑ: EẑE[y | do(t), ẑ] = EẑE𝑞 (z | ẑ)E[y | t, z] = EzE[y | t, z].
†Effects for certain treatments can be identified even without the strong IV assumption (A3): for any compact

subset 𝐵 ⊆ supp(t) such that ∀𝑡 ∈ 𝐵, 𝐹 ′ (t = 𝑡 | z, 𝜹) ≥ 𝑐𝐵 > 0, effects can be estimated for all 𝑡 ∈ 𝐵.
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restrict ourselves to treatments of the form t = 𝑔(𝝐, z), without noise 𝜹 . Then, theorem 5 requires

only 𝝐 |= (z, ẑ). In appendix D.1.6, we show 𝝐 |= (ẑ, z, 𝜹) is guaranteed for more general treatment

processes of the form t = 𝑔(𝝐, ℎ(z, 𝜹)). Guaranteeing joint independence requires further condi-

tions and is the central challenge in developing two-stage IV-based estimators.

Why joint independence? A potential outcome yt is the outcome that would be observed if

a unit is given treatment t. The potential outcome yt follows the distribution of y under the 𝑑𝑜

operator and only depends on the true confounder z. For ignorability with respect to ẑ, we need

yt to be independent of t, given ẑ. By reconstruction, given ẑ, t is purely a function of 𝝐 . This

means ignorability with respect to the control function ẑ requires that the true confounder and

IV be independent given the control function. Therefore, ignorability requires z |= 𝝐 | ẑ. Further,

conditional independence ẑ |= 𝝐 | z implies positivity of t w.r.t ẑ if 𝝐 is strong. Joint independence

𝝐 |= (z, ẑ) implies both the conditional independencies above.

The causal graph fig. 5.1 with y marginalized out can be represented with two sources of ran-

domness one from the unobserved confounder z and one from the IV 𝝐 ; the extra randomness in

t denoted as 𝜹 can be absorbed into z. In this setup, the treatment and control function are deter-

ministic functions of the unobserved confounder and IV. With only two sources of randomness,

joint independence means the control function ẑ needs to only be a function of the true unob-

served confounder z. When ẑ is a stochastic function of the treatment and IV, joint independence

holds if ẑ determines z while ẑ |= 𝝐 .

As ẑ and 𝝐 are observed, we can guarantee ẑ |= 𝝐 . Themarginal independence z |= 𝝐 holds by defini-

tion of an IV. However, even both marginal independencies ẑ |= 𝝐 and z |= 𝝐 together do not imply

joint independence 𝝐 |= (ẑ, z). This means a control function ẑ that satisfies the reconstruction

property and marginal independence ẑ |= 𝝐 may fail to yield ignorability. In appendix D.1.4, we

build an example of a deterministic almost everywhere invertible function of two independent

variables c = 𝑓 (a, b) such that c |= a and c |= b and yet, joint independence (c, b) ̸|= a is violated.
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As z is unobserved, achieving joint independence requires further assumptions. Next, we discuss

how structural assumptions on the true treatment process can help guarantee joint indepen-

dence.

5.2.1 Guaranteeing joint independence for identification

We show structural treatment process assumptions help guarantee joint independence by relating

it to 𝑞(ẑ, t, 𝝐) and thus giving identification. Joint independence can be guaranteed (via marginal

independence) if the reconstruction map 𝑑 (ẑ, 𝝐) (A1, theorem 5) reflects the functional structure

of the treatment process. As an example, consider an additive treatment process t = z + 𝑔(𝝐). If

the reconstruction map is 𝑑 (ẑ, 𝝐) = ℎ′(ẑ) + 𝑔′(𝝐) and 𝝐 |= ẑ, joint independence holds. To see this,

note

ℎ′(ẑ) − Eẑ [ℎ′(ẑ)] = t − E[t | 𝝐] = z − Ez [z] =⇒ ∃ constant 𝑐, ℎ′(ẑ) = z + 𝑐, (5.3)

meaning ℎ′(ẑ) determines z. By ẑ |= 𝝐 , it holds that 𝑞(ẑ, z | 𝝐) = 𝑞(ẑ, ℎ′(ẑ) − 𝑐 | 𝝐) = 𝑞(ẑ, z).

Thus, leveraging the functional structure of the treatment process helps guarantee joint inde-

pendence by relating it to 𝑞(ẑ, t, 𝝐), via ẑ |= 𝝐 . Assuming treatment gets generated from other

known invertible functions, such as multiplication t = ℎ(z) ∗ 𝑔(𝝐), also leads to joint indepen-

dence. Imbens and Newey [143] proved effect identification when the treatment is a continuous

strictly monotonic function of the confounder; these conditions helps guarantee joint indepen-

dence (see appendix D.1.7). For more general treatments of the form t = 𝑔(𝝐, ℎ(z, 𝜹)) the struc-

tural assumptions from above can only guarantee (ℎ(z, 𝜹), ẑ) |= 𝝐 ; see appendix D.1.5 for general

additive treatments: t = ℎ(z, 𝜹) +𝑔(𝝐). However, we show in appendix D.1.6 that for such general

treatment processes (ℎ(z, 𝜹), ẑ) |= 𝝐 =⇒ (z, ẑ, 𝜹) |= 𝝐 which, together with reconstruction, im-

plies ignorability(theorem 5). In summary, under certain structural assumptions, general control

functions exist (ẑ = z for example) and can be built using only properties of the observed data dis-
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tribution 𝑞(ẑ, t, 𝝐). This guarantees identification. In section 5.3, we develop practical algorithms

to build general control functions.

5.2.2 Comparison of identification with general control functions to

existing work

Traditional CFN theory [134] relies on the assumption that the treatment process is additive; re-

call t = 𝑔(𝝐) +𝜼𝑡 from section 5.1.1 and 𝜼𝑡 is correlated with outcome noise due to z. Beyond this

additivity assumption, traditional CFN theory further assumes 1) the outcome process is additive,

like in eq. (5.1), 2) the noise 𝜼𝑦 in the outcome process is independent of the IV, 3) linear noise

relationship between 𝜼𝑡 ,𝜼𝑦 , like in eq. (5.2), and 4) (relevance) the treatment effect function and

IV are correlated [134]. When the treatment process is additive, joint independence can be guar-

anteed as a property of the distribution 𝑞(ẑ, t, 𝝐), via ẑ |= 𝝐 ; see section 5.2.1. Then, identification

with general control functions requires a strong IV. While it allows structural outcome process

assumptions (like 3) can be relaxed, a strong IV needs more than the two IV properties, indepen-

dence with confounder and relevance. However, domain expertise helps reason about strong IVs;

for example, can college proximity influence a student’s decision to go to college regardless of

skill? If yes, college proximity is a strong IV. We compare against other identification conditions

(like 2SLS and [143]) in appendix D.1.8.

5.3 The General Control Function Method (GCFN)

GCFN constructs a general control function and estimates effects with it. GCFN has two stages.

The first stage constructs a general control function as the code of an autoencoder. The second

stage builds a model from the control function and the treatment to the outcome and estimates

effects.
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Variational Decoupling We construct the control function ẑ as a stochastic function of the

treatment t and the IV 𝝐 ; with parameter 𝜃 , the estimator is 𝑞𝜃 (ẑ | t, 𝝐). First, to guarantee the

reconstruction property (A1 in theorem 5), the control function and the IVmust determine treat-

ment, implying that with parameter 𝜙 , 𝑝𝜙 (t | ẑ = 𝑧, 𝝐) should be maximized for 𝑧 ∼ 𝑞(ẑ | t, 𝝐).

Together, these form the parts of an autoencoder where a control function is sampled conditioned

on the treatment and IV, while the treatment is reconstructed from the same control function and

IV. Second, to guarantee marginal independence, we force the control function to be independent

of the IV: ẑ |= 𝝐 . Let the true data distribution be 𝐹 (t, 𝝐) and I denote mutual information. Putting

the two parts together, we define a constrained optimization to construct ẑ, called variational

decoupling (VDE):

(VDE) max
𝜃,𝜙

E𝐹 (t,𝝐)E𝑞𝜃 (ẑ | t,𝝐) log𝑝𝜙 (t | ẑ, 𝝐) 𝑠 .𝑡 I𝜃 (ẑ; 𝝐) = 0. (5.4)

Recall from section 5.2.1 that with a reconstruction map 𝑑 (ẑ, 𝝐) (from A1 in theorem 5) that

reflects the functional structure of the treatment, marginal independence ẑ |= 𝝐 implies joint in-

dependence. To model such a map, VDE’s decoder, 𝑝𝜙 (t | ẑ = 𝑧, 𝝐) reflects the same functional

structure. For example, with an additive treatment process the decoder would be parametrized

as log𝑝𝜙 (t | ẑ, 𝝐) ∝ −(t − ℎ′
𝜙
(ẑ) − 𝑔′

𝜙
(𝝐))/𝜎2

𝜙
; 𝜎𝜙 allows for a point-mass distribution 𝑝𝜙 at op-

timum of VDE. In summary, beyond the observed treatment and IV, VDE takes a specification

of the functional structure of the treatment process as input which informs the structure of the

decoder.

VDE is converted to an unconstrained optimization problem by absorbing the independence con-

straint into the optimization via the Lagrange multipliers trick with 𝜆 > 0,

max
𝜃,𝜙

E𝐹 (t,𝝐)E𝑞𝜃 (ẑ | t,𝝐) log𝑝𝜙 (t | ẑ, 𝝐) − 𝜆I𝜃 (ẑ; 𝝐). (5.5)
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Estimation of the mutual information requires 𝑞𝜃 (ẑ | 𝝐). Instead, we lower bound the negative

mutual information by introducing an auxiliary distribution 𝑟𝜈 (ẑ). This yields a tractable objec-

tive:

max
𝜃,𝜙,𝜈

E𝐹 (t,𝝐)
[
(1 + 𝜆)E𝑞𝜃 (ẑ | t,𝝐) log𝑝𝜙 (t | ẑ, 𝝐) − 𝜆KL [𝑞𝜃 (ẑ | t, 𝝐) ∥ 𝑟𝜈 (ẑ)]

]
. (5.6)

A full derivation can be found in Appendix D.1.2. The lower bound is tight when the auxiliary

distribution 𝑟𝜈 (ẑ) = 𝑞𝜃 (ẑ). For example, when 𝑞𝜃 (ẑ | t, 𝝐) is categorical, optimizing eq. (5.6) with a

categorical 𝑟𝜈 (ẑ)makes the lower bound tight. The parameters 𝜃, 𝜙, 𝜈 can be learned via stochastic

optimization. VDE can be adapted to use covariates by conditioning on the covariates as needed.

Outcome Modeling. VDE provides a general control function ẑ and its marginal distribution

𝑞𝜃 (ẑ). If the IV is strong, ẑ satisfies ignorability and positivity and the causal effect can be esti-

mated by regressing the outcome on the control function and the treatment. Other effect estima-

tion methods like matching/balancing methods [127, 128, 129] and doubly-robust methods [130]

can be used. This regression is GCFN’s second stage, called the outcome stage. We formalize this

outcome stage as a maximum-likelihood problem and learn a model with parameters 𝛽 under the

true data distribution 𝐹 (y, t, 𝝐) and the general control function distribution 𝑞𝜃 (ẑ | t, 𝝐):

argmax
𝛽

E𝐹 (y,t,𝝐)E𝑞𝜃 (ẑ | t,𝝐) log𝑝𝛽 (y | ẑ, t) . (5.7)

Semi-Supervised GCFN. The explicit optimization to learn the control function in VDE makes

it simple to take advantage of datapoints where both the confounder and IV are observed by

forcing the control function to predict the observed confounder. Letm be anmissingness indicator

variable that is 1when the true confounder z is observed and 0 otherwise. Let the joint distribution
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be 𝐹 (t, 𝝐,m, z) and 𝜁 be a scaling hyperparameter parameter. Then the augmented VDE stage in

semi-supervised GCFN, with 𝜅 = 𝜆/(1+𝜆), is

max
𝜃,𝜙,𝜈

E
𝐹 (t,𝝐,m,z)

[
E

𝑞𝜃 (ẑ | t,𝝐)
log𝑝𝜙 (t | ẑ, 𝝐) − 𝜅KL [𝑞𝜃 (ẑ | t, 𝝐) ∥ 𝑟𝜈 (ẑ)] + 𝜁m log𝑞𝜃 (ẑ = z | t, 𝝐).

]
(5.8)

The added term log𝑞𝜃 (ẑ = z | t, 𝝐) encourages the control function to place all of its mass on the

observed confounder value. When the control function places all of its mass on the confounder,

the control function is determined by value of the confounder. Together with the fact that the

confounder is independent of the IV, this implies the control function, confounder pair is jointly

independent of the instrument. Therefore, given enough datapoints with the confounder and

IV observed, joint independence can be guaranteed without treatment assumptions like in sec-

tion 5.2.1. The second stage of semi-supervised GCFN uses the outcome regression in eq. (5.7) to

estimate effects.

5.3.1 Error bounds for GCFN’s estimated effects

An imperfectly estimated general control function may violate the conditional independence

z |= 𝝐 | ẑ which is required for ignorability. If ignorability does not hold, estimated effects are

biased. First, assuming an additive treatment process, we bound the expected bias in causal ef-

fects using quantities optimized during training in VDE, specifically reconstruction error and

dependence of ẑ on 𝝐 :

Theorem 6. Assume an additive treatment process t = z+𝑔(𝝐) where 𝑔 is an 𝐿𝑔-Lipschitz function,

and E𝐹 (z)z = 0. Let E[y | t = 𝑡, z = 𝑧] = 𝑓 (𝑡, 𝑧) be an 𝐿-Lipschitz function in 𝑧 for any 𝑡 . Further,

1. let reconstruction error be non-zero but bounded E𝑞(t,ẑ,𝝐) (t − ẑ − 𝑔′(𝝐))2 ≤ 𝛿. Assume that 𝑔′ is

also 𝐿𝑔-Lipschitz. Further, let E𝑞(ẑ) ẑ = 0, and E𝑞(ẑ) |ẑ| < ∞.

2. Assume 𝝐 ̸|= ẑ and let the dependence be bounded: max𝑧 W1 (𝑞(𝝐 | ẑ = 𝑧) ∥ 𝐹 (𝝐)) ≤ 𝛾 .
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With the estimated and true causal effects as 𝜏 (𝑡) = Eẑ𝑓 (𝑡, ẑ) and 𝜏 (𝑡) = 𝐸z𝑓 (𝑡, z) respectively,

E𝐹 (t) |𝜏 (t) − 𝜏 (t) | ≤ 𝐿

√︃
𝛿 + 4𝛾𝐿𝑔E𝑞(ẑ) |ẑ|.

See appendix D.1.9.1 for the proof. Second, in theorem 3 in appendix D.1.9.2, we prove a general

error bound for GCFN that depends on the residual confounding that ẑ does not control for,

measured as the conditional mutual information I(z; t | ẑ). When I(z; t | ẑ) > 0, ignorability may

not hold and estimated effects are biased. Assuming positivity and a sufficiently concentrated

z | ẑ, we prove in theorem 3 that I(z; t | ẑ) controls average absolute error in effects. This error

is tempered by the smoothness of outcome as a function of the confounder z. This bound also

accounts for errors due to poor estimation of E[y | t, ẑ] in low density regions of 𝑞(t, ẑ) which

may occur when ẑ ̸|= 𝝐 .

5.4 Experiments

We evaluate GCFN on simulated data, where the true causal effects are known and show that

GCFN corrects for confounding and estimates causal effects better than CFN, 2SLS, and a 2SLS

variant, DeepIV [131]. We then evaluate GCFN on high-dimensional data using simulations from

DeepIV [131] and DeepGMM [132]. Then, we estimate the effect of slave export on community

trust [2] and compare GCFN’s estimate to the effect reported in [2].

Experimental details For GCFN, we let the control function ẑ be a categorical variable. The

encoder in VDE, 𝑓𝜃 , is a 2-hidden-layer neural network 𝑓𝜃 , which parametrizes a categorical like-

lihood 𝑞𝜃 (ẑ = 𝑖 | t = 𝑡, 𝝐 = 𝜖) ∝ exp (𝑓𝜃 (𝑡, 𝜖, 𝑖)). The decoder is also a 2-hidden-layer network; the

reconstructed likelihood of t is different for different experiments. In all experiments, the hid-

den layers in both encoder and decoder networks have 100 units and use ReLU activations. The

outcome model is also a 2-hidden-layer neural network with ReLU activations. For the simulated
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data, the hidden layers in the outcome model have 50 hidden units. In estimating the effect of

slave export, the hidden layers in the outcome model have only 10 hidden units; larger width re-

sulted in overfitting. Unless specified otherwise, we train on 5000 samples with a batch size of 500

for optimizing both VDE and the outcome model for 100 epochs with Adam [90]. In section 5.4.1

and section 5.4.2, we evaluate effect estimates on a subset of the support of the treatment distri-

bution where the most mass lies: 200 equally spaced treatment values in [−1, 1]. We defer other

details to appendix D.2.

All hyperparameters for VDE, except the mutual-information coefficient 𝜅 = 𝜆/(1 + 𝜆), and the

outcome-stage were found by evaluating the respective objectives on a held-out validation set.

In our experiments, we found that setting 𝜅 between 0.1− 0.4 worked best. GCFN’s performance

was only mildly sensitive to changing 𝜅 within this range. However, one can tune 𝜅 further by

choosing the one which gives the control function ẑ𝜅 that results in the largest expected out-

come likelihood on a heldout set. This procedure relies on VDE and outcome objectives reaching

optimum if and only if ẑ satisfies perfect reconstruction and marginal independence. See ap-

pendix D.2.1 for further details.

5.4.1 Simulations with specific decoder structure

We compare GCFN’s performance against 2SLS, CFN and DeepIV and show that GCFN outper-

forms these methods when the functional properties of the treatment process are known. We

consider two settings with continuous outcome, treatment, and confounders where the assump-

tions of 2SLS and CFN fail: 1) with an additive treatment process and a multiplicative outcome

process and 2) with a multiplicative treatment process and an additive outcome process. For both

settings, the causal effect is the same E[y | do(t = 𝑡)] = 𝑡 . The control function ẑ is set to have 50

categories. We report results for the mutual information coefficient 𝜅 = 𝜆/1+𝜆 = 0.1. We consider

3 different strengths of confounding as captured by the parameter 𝛼 ∈ [0.5, 1.0, 2.0].
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Figure 5.2: GCFN obtains bet-
ter effect estimates than CFN
and DeepIV when the additive
outcome process assumption is
violated.

Figure 5.3: GCFN produces
better effect estimates than
CFN and DeepIV when the
additive treatment process
assumption is violated.

Figure 5.4: Mean RMSE of causal ef-
fects of the GCFN-predicted causal
effects versus percentages of samples
with z observed.

Multiplicative outcome & Additive treatment With N as the normal distribution, we

generate z, 𝝐 ∼ N(0, 1), t = (z + 𝝐)/
√
2, y ∼ N(t + 𝛼t2z, 0.1), wher 𝛼 controls confounding;

larger magnitude of 𝛼 means more confounding. The generation process above violates the linear

noise relation assumption, E[𝜼y |𝜼t] ∝ 𝜼t, thatCFN requires [134]. GCFN, on the other hand, does

not require this assumption. In this experiment, VDE has an additive decoder which specifies a

Gaussian reconstruction likelihood: t ∼ N(ℎ′
𝜙
(ẑ) + 𝑔′

𝜙
(𝝐), 1). In Figure 5.2, we compare GCFN

to CFN and DeepIV, and show that GCFN produces the best causal effect estimates. Unlike the

others, GCFN can adjust for confounding when the outcome process is not additive. Averaged

over all 𝛼s, GCFN outperforms the baselines with an RMSE of 0.09 ± 0.06 compared to CFN’s

0.58 ± 0.01, 2SLS’s 0.55 ± 0.58, and DeepIV’s 0.25 ± 0.17.

Multiplicative treatment & Additive outcome. For this simulation, we generate data as

follows: z, 𝝐 ∼ N(0, 1), t = z𝝐, y ∼ N(t + 𝛼z, 0.1). In this experiment, VDE has a multiplicative

decoder which specifies a gaussian reconstruction likelihood with t = N(ℎ′
𝜙
(ẑ)𝑔′

𝜙
(𝝐), 1). The

2SLS method uses a linear model t = 𝛽𝝐 + 𝜼t which will correctly estimate E[t | 𝝐] = 0 in our

generation process. Figure 5.3 shows that GCFN out-performs CFN and DeepIV and is robust

to different strengths of confounding (𝛼 ∈ {0.5, 1, 2}). Averaged over all 𝛼s, GCFN outperforms

the baselines with an RMSE of 0.13 ± 0.08 compared to CFN’s 0.58 ± 0.02, 2SLS’s 0.55 ± 0.56,

and DeepIV’s 0.58 ± 0.01. We omit 2SLS from fig. 5.2 because it performs strictly worse than
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DeepIV, its deep variant. DeepIV gives effect-estimates that are close to 0. We justify this in ap-

pendix D.1.11.

5.4.2 GCFN with confounders observed on a subset

In this experiment, we demonstrate that semi-supervised GCFN does not need outcome or treat-

ment process assumptions if the confounder z is observed on a subset of the data. Let 𝜌 be the

fraction with z observed and B be the Bernoulli distribution. We generate a maskm ∼ B(𝜌) and

data 𝝐, z ∼ N(0, 1), t = 𝝐z, y ∼ N(t + tz, 0.1). Let z′ = z ∗ m. We observe (y, t, 𝝐, z′,m).

The structurally unrestricted decoder uses a categorical reconstruction likelihood: 𝑝𝜙 (t = 𝑗 | ẑ =

𝑧, 𝝐 = 𝜖) ∝ exp (𝑔𝜙 (𝑧, 𝜖, 𝑗)). The treatment t is discretized into 50 bins. The intervals [−∞,−3.5]

and [3.5,∞] correspond to one bin each and the interval [−3.5, 3.5] is split into 48 equally-sized

bins. This suffices because few samples fall outside [−3.5, 3.5]. For semi-supervisedGCFN,VDE’s

objective has an additional term defined on the samples with observed z’s (eq. (5.8)). The con-

founder z is split into bins the same way as the treatment. The additional term for the 𝑖𝑡ℎ sample

is the categorical log-likelihood of the observed (𝑡𝑖, 𝜖𝑖, 𝑧𝑖) with respect to the encoder-specified

distribution: 𝑞(ẑ = 𝑧𝑖 | t = 𝑡𝑖, 𝝐 = 𝜖𝑖) ∝ exp(𝑓𝜃 (𝑡𝑖, 𝜖𝑖, 𝑧𝑖)). We set the scaling 𝜁 on this additional

term to be 0.5. We report results for 𝜅 = 0.1. For other 𝜅 ∈ {0.2, 0.3}, results were similar or

better.

We compare semi-supervisedGCFN against regression with the same outcomemodel as the base-

line, trained only on samples with the confounder observed. We estimated this “supervised”

baseline in the same manner as the outcome stage of GCFN. Figure 5.4 plots the RMSE of the pre-

dicted causal effects vs. percentage of samples with observed z’s in fig. 5.4. If the data has 2% or

more samples with the confounder observed, GCFN estimates effects better than the supervised

baseline.
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5.4.3 GCFN on high-dimensional Covariates

In this experiment, we evaluate GCFN on a non-linear simulation given in Hartford et al. [131]

to demonstrate that DeepIV improves upon 2SLS. Their generation models the effect of price (t)

on sales (y), given customer covariates (x, MNIST image), and time 𝑠; they use fuel price as an

IV. The outcome is generated using the label of the MNIST image, which denotes customer price

sensitivity. The data generation process for t is additive in IV and confounder. Following this,

we use the same additive decoder in VDE as in section 5.4.1, but with time 𝑠 as an additional

input. We give further experimental details and Hartford et al. [131]’s data generating process

in appendix D.2.3.

We report effect MSE on a fixed out-of-sample set (oos). We compare against Hartford et al.

[131]’s reported results for two sample sizes, 10, 000 and 20, 000. DeepIV’s reported results ex-

clude a few large effect MSE outliers; we do not exclude such errors for GCFN. We report GCFN’s

performance over 10 seeds. Overall, GCFN performed on par or better than DeepIV. First, we

report GCFN’s effect MSE with 𝜅 = 0.2. For 10, 000 samples, GCFN produced effect MSEs that

ranged in [0.30 − 0.42], better than DeepIV’s reported range of around [0.30 − 0.50] (which is

almost twice as large). For 20, 000 samples, GCFN’s effect MSE range improved to [0.25 − 0.40]

while DeepIV reported a performance of around [0.25 − 0.45]. For both sample sizes, we note

that 𝜅 = 0.1, 0.3 gave similar results. To see this, for 20, 000 samples, averaged over 10 seeds,

GCFN achieved a mean effect MSE of 0.305 or better for any 𝜅 ∈ {0.1, 0.2, 0.3}, beating DeepIV’s

0.32.

5.4.4 GCFN on high-dimensional IVs

In this experiment, we evaluate GCFN on data with a high-dimensional IV. Bennett et al. [132]

use the following data generating process to demonstrate DeepGMM [132] improves upon exist-

ing methods: 𝝐 ∼ U[−3, 3] z ∼ N(0, 1) t ∼ N(z + 𝝐, 0.1) y = N (|t| + z, 0.1) . However, the
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scalar 𝝐 is not directly observed. Instead, 𝝐 is mapped to a digit {0, . . . , 9} and a corresponding

MNIST image 𝝐𝑀 is given as the IV. To estimate effects well with such an IV, any method must

learn to label the MNIST image. In this setting, VDE’s encoder and decoder both take an em-

bedding ℓ𝛾 (𝝐𝑀 ) ∈ R10 as input. The embedding ℓ𝛾 is trained in VDE along with the encoder and

decoder. Respecting the additive treatment process, we specify an additive decoder.

We ran GCFN with 10 different random seeds and report results for 𝜅 = 0.3, chosen based on

mean test outcome MSE (0.136 ± 0.008). GCFN performs competitively with an effect MSE of

0.077 ± 0.022 compared to DeepGMM’s 0.07 ± 0.02 and DeepIV’s 0.11 ± 0.00, both as reported

in [132]. Effect MSE for 𝜅 ∈ {0.2, 0.4} were similar and within standard error of DeepGMM’s

performance. See appendix D.2.4 for further experimental details and results.

5.4.5 The Effect of Slave Export on Trust

Wedemonstrate the recovery of the causal effect of slave export on the trust in the community [2].

Nunn and Wantchekon [2] pooled surveys and historical records to get sub-ethnicity and tribe

level data from the period of slave trade. The data was used to study the long-term effects of slave-

trade, measured in the 2005 Afrobarometer survey. We predict the effect of the treatment t =ln(1

+ slave-export/area) on the outcome of interest, y =trust in neighbors. The dataset has 6932

samples with 59 features. After filtering out missing values, we preprocessed 46 covariates and

IV to have mean 0 and maximum 1, and the treatment t to lie in [0, 2]. The authors claim that the

distance to sea cannot causally affect how individuals trust each other, but it affects the chance

of coming in contact with colonial slave-traders and being shipped to the Americas, making it

an IV. They control for urbanization, fixed effects for sophistication, political hierarchies beyond

community, integration with the rail network, contact with European explorers, and missions

during colonial rule.

For this experiment, VDE’s decoder 𝑔𝜙 specifies a categorical reconstruction likelihood as 𝑝𝜙 (t =
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𝑖 | ẑ = 𝑧, 𝝐 = 𝜖) ∝ exp (𝑔𝜙 (𝑧, 𝜖, 𝑖)). Each category of the treatment corresponds to one of 50

equally-sized bins in the interval [0, 2]. Nunn and Wantchekon [2] use a linear model for the

outcome y and use the distance to sea as an IV for each community. We also use a partially linear

model y = 𝛽t + ℎ𝜃 (ẑ) so that the effect we recover is of comparable nature to the effect reported

in the paper. The outcome network ℎ𝜃 has 2 layers with 10 hidden units each and ReLUs.

Averaged over 4mutual information coefficients 𝜅 and 5 random seeds, GCFN’s estimate of 𝛽 was

−0.21 ± 0.04 compared with −0.27 ± 0.10, as reported by Nunn and Wantchekon [2].

5.5 Discussion and Future

In this paper, we characterize general control functions for causal estimation. General control

functions allow for effect estimation without structural outcome process assumptions like 2SLS

or CFN. The key challenge in building general control functions is ensuring joint independence

between the IV and the control function and (unobserved) true confounder. Joint independence

can be guaranteed via structural treatment process assumptions, like additivity or monotonicity.

We develop the general control function method (GCFN) to build general control functions and

estimate effects with them. Further, we develop semi-supervised GCFN which uses confounders

observed on a subset of the data to construct general control functions without treatment process

assumptions. Finally, we consider imperfect estimation of the general control function and bound

average error in effects using quantities optimized in VDE.

Tradeoffs with assumptions. In causal estimation, parametric assumptions can be traded-off

with assumptions of strength of IV or positivity. Consider a setting where 𝝐 is binary. For every

possible confounder value, only two values of the treatment are observed. Thus it is impossible

to estimate a quadratic function of t for each fixed value of the confounder. This means y | t is

not identified without strong assumptions like linearity in t. Incorporating outcome properties,
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like the conditional independence y |= 𝝐 | t, z, into control function estimation would be a fruitful

direction.
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6 | Causal Estimation with Functional

Confounders

6.1 Introduction

Determining the effect of interventions on outcomes using observational data lies at the core of

many fields like medicine, economic policy, and genomics. For example, policy makers estimate

effects to elect whether to invest in education or job training programs. In medicine, doctors use

effects to design optimal treatment strategies for patients. Geneticists perform genome-wide as-

sociation studies (gwas) to relate genotypes and phenotypes. In observational data, there could

exist unobserved variables that affect both the intervention and the outcome, called confounders.

A necessary condition for the causal effect to be identified is that all confounders are observed;

called ignorability. If ignorability holds, a sufficient condition for causal effect estimation is ade-

quate variation in the intervention after conditioning on the confounders; this condition is called

positivity.

The data apriori does not differentiate between confounders and interventions. It is the practi-

tioners that select interventions of interest from all pre-outcome variables (variables that occur

before the outcome). Then, assuming knowledge of the data generating mechanism, practitioners

can label certain variables amongst the remaining pre-outcome variables as confounders. This
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corresponds to indexing into the set of pre-outcome variables.

In certain problems the confounders are specified as a function of the pre-outcome variables that

does not simply index into the set of pre-outcome variables. For a concrete example, consider

gwas. The goal in gwas is to estimate the influence of genetic variations on phenotypes like dis-

ease risk. In gwas, population and family structures both result in certain genetic variations and

affect phenotypes and therefore, are confounders [145]. Practitioners specify these confounders

by using the genetic similarity between individuals [146, 147, 148], which is a function of the

genetic variations. When the confounders are a function of the same pre-outcome variables that

define the interventions, positivity is violated. Then, the class of interventions whose effects are

estimable is not well-defined.

We study causal effect estimation in such settings, where a function of the pre-outcome variables

provides the confounder and these same pre-outcome variables define the intervention. We call

this estimation with functional confounders (efc). In efc, one column in the observed data is

the outcome and all others are pre-outcome variables. We assume access to a function ℎ(·) that

takes as input the pre-outcome variables and returns the value of the confounder. Further, we

assume these confounders give us ignorability. In settings like gwas, the function ℎ reflects the

practitioner-specified function that captures the genetic variation influenced by the population

structure. In traditional obs-ci, ℎ(·) reflects the selection of certain variables in the data and

labelling them as confounders. In efc, two different values of the confounder are never observed

for the same setting of the pre-outcome variables. This means that positivity is violated and the

effects of only certain interventions may be estimable.

We address this issue in two ways. First, we investigate a class of plausible interventions that

are functions of the observed pre-outcome variables, called functional interventions. We develop

a sufficient condition to estimate the effects of said functional interventions, called functional

positivity (f-positivity). Second, we consider intervening on all pre-outcome variables, called
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the full intervention. We develop a sufficient condition to estimate the effect of the full interven-

tion, called causal redundancy (c-redundancy). For an intervention, given a confounder value,

c-redundancy allows us to compute a surrogate intervention such that the conditional effect of

the surrogate is equal to that of the original intervention. We also show that such surrogate inter-

ventions exist only under a certain condition that we call Effect Connectivity, that is necessary for

nonparametric effect estimation in efc. This condition is satisfied by default in traditional obs-ci

if ignorability and positivity hold. Then, we develop an algorithm for causal estimation assuming

c-redundancy, called Level-set Orthogonal Descent Estimation (lode), which estimates effects

using surrogate interventions. If the surrogate is not estimated well, lode’s estimates are biased.

We establish bounds on this bias that capture the mitigating effect of the smoothness of the true

outcome function.

Relatedwork The problem of genome-wide association studies (gwas) is to estimate the effect

of genetic variations(also called snps) on the phenotype [149]. The ancestry of the subjects acts

as a confounder in gwas. In gwas practice, principle component analysis (pca) and linear mixed

models (lmms) are used to compute this confounding structure [147, 148]. Lippert et al. [146]

suggest estimating the confounders and effects on separate subsets of the snps. This separation

disregards the confounding that is captured in the interaction of the two subsets of snps. Gwas is

a special case of effects frommultiple treatments (mte) where the confounder value is specified via

optimization as a function of the pre-outcome variables [150, 151]. In all these settings, positivity

is violated and not all effects are estimable. We provide an avenue for nonparametric effect-

estimation of the full intervention under a new condition, c-redundancy.

Traditional observational causal inference (obs-ci) review We setup causal inference

with Structural Causal Models [144] and use𝑑𝑜 (t = t∗) to denote making an intervention. Let t be

a vector of the interventions, z be the confounder, and y be the outcome. Let 𝜼 ∼ 𝑝 (𝜼) (𝜼 |= (z, t))

be noise. With 𝑓 as the outcome function, we define the causal model for traditional obs-ci as
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∗:

z ∼ 𝑝 (z), t ∼ 𝑝 (t | z), 𝑦 = 𝑓 (t, z,𝜼).

Let 𝑝 (𝑦, z, t) denote the joint distribution implied by this data generating process. The effects of

interest under the full intervention 𝑑𝑜 (t = t∗) are the average and conditional effect

(average) 𝜏 (t∗) = Ez,𝜼 𝑓 (t∗, z,𝜼) (conditional) 𝜙 (t∗, z) = E𝜼 [𝑓 (t∗, z,𝜼)] . (6.1)

With observed confounders, two assumptions make causal estimation possible: ignorability and

positivity. Ignorability means that all confounders z are observed in data. Conditioning on all

the confounders, the outcome under an intervention is distributed as if conditional on the value

of the intervention: 𝑝 (y = 𝑦1 | 𝑑𝑜 (t = t∗), z = z) = 𝑝 (𝑓 (t∗, z,𝜼) = 𝑦1) = 𝑝 (y = 𝑦1 | t = t∗, z =

z). This allows the expression of average effect as an expectation over the observed outcomes

𝜏 (t∗) = Ez,𝜼 [𝑓 (t∗, z,𝜼)] = EzE[𝑦 | z, t∗] . The conditional expectation only exists for all t∗ if

𝑝 (𝑦 | z, t = t∗) = 𝑝 (𝑦,z,t=t∗)/𝑝 (z)𝑝 (t=t∗ | z) exists. Positivity guarantees this existence

(positivity) ∀t∗ ∈ supp(t) 𝑝 (z = z) > 0 =⇒ 𝑝 (t = t∗ | z = z) > 0. (6.2)

6.2 Estimation with functional confounders

In traditional obs-ci, causal estimation relied on knowing the confounders. In this section, we

consider settings where confounders are known via a function of the pre-outcome variables

ℎ(t) = z. We call this setting estimation with functional confounders (efc). An example of this

is gwas, where snps (the pre-outcome variables) are used to estimate the confounding popu-

lation structure through methods like pca [148]. Assuming the confounders are a function of
∗We focus on 𝑓 that generates y from t, z. SCMs generally specify the function that generates t from z also.
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the pre-outcome variables violates positivity in general. Positivity is violated in this setting be-

cause

∀𝑡1, 𝑡2 ∈ supp(t) 𝑠 .𝑡 . ℎ(𝑡2) ≠ ℎ(𝑡1) =⇒ 𝑝 (z = ℎ(𝑡2) | t = 𝑡1) = 0 ≠ 𝑝 (z = ℎ(𝑡2)) > 0

In words, two different confounder values cannot occur for the same 𝑡 . A positivity violation

precludes nonparametric effect estimation of the full intervention 𝑑𝑜 (t = t∗).

Positivity and Regression Identifiability Positivity can be viewed as providing identifia-

bility. To see this, let the confounder be z = ℎ(t) and the outcome be 𝑦 (t, z,𝜼) = z + ℎ(t). Now

consider regressing z and t onto 𝑦. Then, functions 𝑦 = 𝛼z + 𝛽ℎ(t) indexed by 𝛼, 𝛽 , such that

𝛼 +𝛽 = 2, are consistent with the observed data. Thus, there exist infinitely many solutions to the

conditional expectation of 𝑦 on (t, z), meaning that the regression is not identifiable. Assuming

positivity necessitates sufficient randomness to identify the regression and thus the causal effect.

A violation of positivity means that nonparametric estimation of causal effects needs further

assumptions.

6.2.1 Setup for estimation with functional confounders

In efc, the confounder is provided as a non-bijective function ℎ of the pre-outcome variables t.

To reflect this property, we use ℎ(t) to denote the confounder. As an illustrative example, let G

be the Gamma distribution and consider z ∈ {−1, 1}, 𝑝 (z = 1) = 0.5 is the confounder and the

intervention of interest is t = z ∗ G(1, exp(z)). Note sign(t) = z meaning that ℎ(t) = sign(t) is

the confounder. Figure 6.1 shows causal graphs connecting our efc notation to that in traditional

obs-ci. With noise 𝜼 ∼ 𝑝 (𝜼) (𝜼 |= t), our causal model samples, in order, the confounder "part"

of pre-outcome variables ℎ(t), the pre-outcome variables t, and the outcome y via the outcome
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Figure 6.1: Causal Graphs for Traditional obs-ci vs. efc.

function 𝑓 †:

ℎ(t) ∼ 𝑝 (ℎ(t)) t ∼ 𝑝 (t | ℎ(t)) y = 𝑓 (t, ℎ(t),𝜼)

Similar to traditional obs-ci, for an intervention t∗ the average effect, 𝜏 (·), and the conditional

effect, 𝜙 (·, ·) at ℎ(t∗2), respectively, are defined as:

𝜏 (t∗) = E
ℎ(t),𝜼

[𝑓 (t∗, ℎ(t),𝜼)], 𝜙 (t∗, ℎ(t∗2)) = E
𝜼
[𝑓 (t∗, ℎ(t∗2),𝜼)] . (6.3)

As the pre-outcome variables determine the confounder, positivity is violated. Further, the out-

come function 𝑓 (t, ℎ(t),𝜼) could recover the exact value of ℎ(t) from t instead of its second argu-

ment. Thus, two different outcome functions could lead to the same observational data distribu-

tion, posing a fundamental obstacle to causal effect estimation. This is the central challenge in

efc.

6.2.2 CausalQuestions With Functional Positivity

Without positivity, we can only estimate the effects of certain functions of t. We call such inter-

ventions, on some function 𝑔(t), functional interventions. The implied causal model for the out-

come for functional intervention value 𝑔(t∗) and confounder value ℎ(t∗2) is first t ∼ 𝑝 (t | 𝑔(t) =
†We also assume no interference [152] (also called Stable Unit Treatment Value Assumption [153]) which means

that an individual’s outcome does not depend on others’ treatment. In efc, when t and 𝜼 are sampled IID there is no
interference. To see this, note ∀𝑖, 𝑗 (t𝑖 ,𝜼𝑖 ) |= (t𝑗 ,𝜼 𝑗 ) =⇒ (y𝑖 , t𝑖 ) |= (y𝑗 , t𝑗 ) =⇒ y𝑖 |= t𝑗 .
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𝑔(t∗), ℎ(t) = ℎ(t∗2)) and then y = 𝑓 (t, ℎ(t∗2),𝜼) ‡. Then, the functional average effect is

(average) 𝜏 (𝑔(t∗)) = Eℎ(t),𝜼Et | 𝑔(t)=𝑔(t∗),ℎ(t) [𝑓 (t, ℎ(t),𝜼)] .

An example of a functional intervention is intervening on the cumulative dosage of a drug. In

contrast, traditional interventions would set each individual dose given at different points in

time.

f-positivity and Functional Effect Estimation For the causal model above to be well-

defined for all functional interventions 𝑔(t∗), the conditional 𝑝 (t | 𝑔(t) = 𝑔(t∗), ℎ(t) = ℎ(t∗2))

must exist. To guarantee this existence, we define functional positivity (f-positivity) for any

𝑔(t∗)

(f-positivity) 𝑝 (ℎ(t) = ℎ(t∗2)) > 0 =⇒ 𝑝 (𝑔(t) = 𝑔(t∗) | ℎ(t) = ℎ(t∗2)) > 0. (6.4)

F-positivity says that the function of the pre-outcome variables that is being intervened on

needs to have sufficient randomness when the function of the pre-outcome variables that defines

the confounders is fixed. Further, under f-positivity, effect estimation for functional interven-

tions is reduced to traditional obs-ci on data 𝑝 (y, 𝑔(t), ℎ(t)). With positivity and ignorability

satisfied, traditional causal estimators such as propensity scores [156], matching [157], regres-

sion [158], and doubly robust methods [159] can be used to estimate the causal effect. Focusing

on regression, let 𝑓𝜃 be a flexible function, then min𝜃 E𝑦,t [(y − 𝑓𝜃 (ℎ(t), 𝑔(t)))2] would estimate

the conditional expectation of interest : E[y | ℎ(t), 𝑔(t∗)]. With 𝜃 , the effect of 𝑔(t∗) can be es-

timated by averaging the estimate of the conditional expectation over the marginal distribution
‡Intervening on 𝑔(t) can be interpreted as making a soft intervention [154, 155] of t to 𝑝 (t | z, 𝑔(t) = 𝑔(t̃)).
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𝑝 (ℎ(t)):

𝜏 (𝑔(t∗)) = Et [𝑓𝜃 (ℎ(t), 𝑔(t∗))] . (6.5)

6.3 Identification of effects of the full intervention

When positivity is violated, causal effects cannot be estimated as conditional expectations over

the observed data in general. We give a functional condition, called causal redundancy (c-redundancy),

that allows us to estimate the effect of the full intervention 𝑑𝑜 (t = t∗), even when positivity is

violated. Specifically, c-redundancy allows us to construct a surrogate intervention t′(t∗, ℎ(t∗2))

whose conditional effect at ℎ(t′) matches the conditional effect of interest, 𝜙 (t∗, ℎ(t∗2)). Let t̃ be

a fixed value of the full intervention, then c-redundancy is

Assumption. Recall the outcome 𝑦 = 𝑓 (t̃, ℎ(t̃), 𝜂). With ∇t̃ as gradient w.r.t. to argument t̃:

∀t̃, ℎ(t̃2), 𝜂, ∇t̃𝑓 (t̃, ℎ(t̃2), 𝜂)𝑇∇t̃ℎ(t̃) = 0.

In words, c-redundancy is the condition that the outcome function 𝑓 uses the value of the

confounder from its second argument instead of computing ℎ(t) from the first argument§. To

compute the conditional effect 𝜙 (t∗, ℎ(t∗2)), we develop Level-set Orthogonal Descent Estimation

(lode). lode’s key step is to construct a surrogate intervention t′(t∗, ℎ(t∗2)) such that

𝜙 (t∗, ℎ(t∗2)) = 𝜙 (t′(t∗, ℎ(t∗2)), ℎ(t∗2)), ℎ(t∗2) = ℎ(t′(t∗, ℎ(t∗2))) .

§If 𝑓 transforms its first argument t̃ intoℎ(t̃) as one amongst many different computations, the chain rule implies
∇t̃ 𝑓 (t̃, ℎ(t∗2))⊤∇t̃ℎ(t̃) has a term ∥∇t̃ℎ(t̃)∥2 which is non-zero in general.
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Figure 6.2: lode’s traversal.

By definition, a surrogate intervention lives in the conditional

effect level-set: {t̃ : 𝜙 (t̃, ℎ(t∗2)) = 𝜙 (t∗, ℎ(t∗2))}. So lode

searches this level-set for t′(t∗, ℎ(t∗2)). See fig. 6.2 which plots

the conditional effect level-sets with the value of ℎ(t) fixed (red)

in (supp(t), supp(ℎ(t)))-space. Green corresponds to the ob-

served data, supp(t, ℎ(t)). lode finds t′(t∗, ℎ(t∗2)) by traversing

the level-sets (black) to account for the confounder part mis-

match ℎ(t∗) ≠ ℎ(t∗2). c-redundancy ensures lode can traverse

these level-sets as it implies ∇t̃𝜙 (t̃, ℎ(t̃2))∇t̃ℎ(t̃) = 0 under the regularity conditions in theo-

rem 6.1. Thus, under c-redundancy, surrogate interventions can be constructed by solving a

gradient flow equation which guarantees identification as follows:

Theorem 6.1. Assume c-redundancy holds. Assuming the following:

1. Let t′(t∗, ℎ(t∗2)) be the limiting solution to the gradient flow equation
𝑑 t̃(𝑠)
𝑑𝑠

= −∇t̃(ℎ(t̃(𝑠)) −

ℎ(t∗2))2, initialized at t̃(0) = t∗; i.e. t′(t∗, ℎ(t∗2)) = lim𝑠→∞ t̃(𝑠).

Further, let ℎ(t′(t∗, ℎ(t∗2))) = ℎ(t∗2) and t′(t∗, ℎ(t∗2)) ∈ supp(t).

2. 𝑓 (t̃, ℎ(t̃), 𝜂) andℎ(t̃) as functions of t̃, ℎ(t̃) are continuous and differentiable and the derivatives

exist for all t̃, 𝜂. Let ∇t̃𝑓 (t̃, ℎ(t̃), 𝜂) exist and be bounded and integrable w.r.t. the probability

measure corresponding to 𝑝 (𝜼), for all values of t̃ and ℎ(t̃).

Then the conditional effect (and therefore the average effect) is identified:

𝜙 (t∗, ℎ(t∗2)) = 𝜙
(
t′(t∗, ℎ(t∗2)), ℎ(t′(t∗, ℎ(t∗2)))

)
= E

[
y | t = t′(t∗, ℎ(t∗2))

]
(6.6)

In words, the key idea is that starting at t̃(0) = t∗ and following ∇t̃ℎ(t̃) means t̃(𝑠) always

lies in the level-set {t̃ : 𝜙 (t̃, ℎ(t∗2)) = 𝜙 (t∗, ℎ(t∗2))}. See appendix E.1.2 for the proof. While c-

redundancy is stated in terms of the gradient of the outcome function, it suffices for theorem 6.1
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to assume aweaker condition about the gradient of the conditional effect: ∇t̃E𝜼 𝑓 (t̃, t̃2,𝜼)⊤∇t̃ℎ(t̃) =

0.

Surrogate Positivity In theorem 6.1, we assumed that the surrogate t′(t∗, ℎ(t∗2)) ∈ supp(t).

This condition, which we call surrogate positivity (analogous to positivity), states that for any

intervention and confounder, surrogate interventions that are limiting solutions to the gradient

flow equation have nonzero density conditional on the confounder value. Formally, for any in-

tervention t = t∗

𝑝 (ℎ(t) = ℎ(t∗2)) > 0 =⇒ 𝑝 (t = t′(t∗, ℎ(t∗2)) | ℎ(t) = ℎ(t∗2)) > 0, (6.7)

and t′(t∗, ℎ(t∗2)) satisfies assumption 1 in theorem 6.1. Surrogate positivity alongwith c-redundancy,

is sufficient for full effect estimation under efc. Next, we show that the positivity assumption in

traditional causal inference is a special case of surrogate positivity.

Traditional observational causal inference (obs-ci) and lode Let the confounder and

intervention of interest in traditional obs-ci be z and a respectively. Assume both are scalars and

ignorability and positivity hold. This setup can be embedded in efc by defining the vector of pre-

outcome variables as: t = [a; z] . In this setting, c-redundancy and surrogate positivity(eq. (6.7))

hold by default. Let the outcome be y = 𝑓 (t, ℎ(t)) = 𝑓 (a, z), where 𝑓 only depends on the first

element of t, i.e. a¶. Let 𝑒1 = [1, 0] and 𝑒2 = [0, 1]. In traditional obs-ci as efc, ∇t̃𝑓 (t̃, ℎ(t∗2)) ∝ 𝑒1

and ∇t̃ℎ(t̃) ∝ 𝑒2 meaning that ∇t̃𝑓 (t̃, ℎ(t∗2))⊤∇t̃ℎ(t̃) = 0. Thus, c-redundancy holds by default.

Moreover, under positivity of a w.r.t. z, we also have surrogate positivity for traditional obs-ci as

an efc problem. In this setting, lode computes t′ = [𝑎∗, ℎ(t∗2)] by following −∇t̃ℎ(t̃) = [0,−1],

which only changes the value of ℎ(t̃2), not the value of 𝑎. Thus, t∗ and t′(t∗, ℎ(t∗2)) will have

the same first element and t′’s second element will be ℎ(t∗2). As a has positivity w.r.t. z, we
¶We ignore noise in the outcome for ease of exposition.
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have 𝑝 (a = 𝑎∗, z = ℎ(t∗2)) > 0 which means t′ ∈ supp(t). The estimated conditional effect is

E[y | t = t′(t∗, ℎ(t∗2))] = 𝑓 ( [𝑎∗, 𝑧∗], ℎ(t∗2)) = E[y | a = 𝑎∗, z = ℎ(t∗2))], which matches the

estimate in traditional obs-ci.

Implementation of lode Lode first estimates the conditional expectation E[y | t]; this can

be done with model-based or nonparametric estimators. This is achieved by regressing y on

t, 𝑓 = argmin𝑢∈F Ey,t∼𝐷 (y − 𝑢 (t))2, with empirical distribution 𝐷 . The surrogate intervention

t′(t∗, ℎ(t∗2)) is computed using Euler integration to solve the gradient flow equation. Euler in-

tegration in this setting is equivalent to gradient descent with a fixed step size. Other, more

efficient schemes like Runge–Kutta numerical integration methods [160] could also be used. The

conditional effect estimate is 𝑓 (t′(t∗, ℎ(t∗2))). See algorithm 4 for a description.

6.3.1 Estimation error of lode in practice

To compute the surrogate intervention t′, lode uses the gradients of ℎ(·) in Euler integration.

In practice, taking Euler integration steps, instead of solving the gradient flow exactly, could

result in errors. Then t′ could lie outside the level-set of the conditional effect 𝜙 (t∗, ℎ(t∗2)) =

E𝜼 [𝑓 (t∗, ℎ(t∗2),𝜼)]. Further, if ℎ(t′(t∗, ℎ(t∗2))) ≠ ℎ(t∗2), lode incurs error for conditioning on a

value of the confounder that is different from ℎ(t∗2). The error due to t′ estimation is decoupled

from the error in the estimation ofE[y | t] which addswithout further amplification. We formalize

this error:

Theorem 6.2. Consider the conditional effect 𝜙 (t∗, ℎ(t∗2)). Let t̂(t∗, ℎ(t∗2)) be the estimate of the

surrogate intervention computed by lode, computed via Euler integration of the gradient flow
𝑑 t̃(𝑠)
𝑑𝑠

=

−∇t̃(ℎ(t̃(𝑠)) − ℎ(t∗2))2, initialized at t̃(0) = t∗. Assume the true surrogate t′(t∗, ℎ(t∗2)) exists and

is the limiting solution to the gradient flow equation.

1. Let the finite sample estimator of E[y | t = t̃] be 𝑓 (t̃). Let the error for all t̃ be bounded,
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|𝑓 (t̃) − E[y | t = t̃] | ≤ 𝑐 (𝑁 ), where 𝑁 is the sample size and lim𝑁→∞ 𝑐 (𝑁 ) = 0.

2. Assume 𝐾 Euler integrator steps were taken to find the surrogate estimate t̂(t∗, ℎ(t∗2)), each

of size ℓ . Let the maximum confounder mismatch be max𝑖≤𝐾 (ℎ(t̃𝑖) − ℎ(t∗2))2 = 𝑀 .

3. Let 𝐿𝑧,t̃ be the Lipschitz-constant of 𝜙 (t̃, ℎ(t̃2)) as a function of ℎ(t̃2), for fixed t̃.

Let 𝐿𝑒 be the Lipschitz-constant of E[y | t = t̃] = 𝜙 (t̃, ℎ(t̃)) as a function of t̃.

Assume ℎ has a gradient with bounded norm, ∥∇ℎ(t̃)∥2 < 𝐿ℎ .

Assume 𝑓 ’s Hessian has bounded eigenvalues: ∀t̃, t̃2, ∥∇2
t̃
𝜙 (t̃, ℎ(t̃2))∥2 ≤ 𝜎H𝜙 .

The conditional effect estimate error, 𝜉 (t∗, ℎ(t∗2)) = |𝑓 (t̂) − 𝜙 (t∗, ℎ(t∗2)) |, is upper bounded by:

𝑐 (𝑁 ) +min
(
𝐿𝑒 ∥t′ − t̂∥2, 2𝐾ℓ2

(
O(ℓ) +𝑀𝜎H𝜙𝐿2ℎ

)
+ 𝐿𝑧,t̂∥ℎ(t̂) − ℎ(t∗2)∥2

)
(6.8)

See appendix E.1.3 for the proof. Theorem 6.2 captures the trade-off between biases due to condi-

tioning on the wrong confounder value and due to the accumulated error in solving the gradient

flow equation. This accumulated error analysis may be loose in settings where the sum of many

gradient steps lead to t̂ ≈ t′, even if each step individually induces large error. In such settings,

the term that depends on ∥t̂ − t′∥2 is a better measure of error. The maximum-mismatch 𝑀 ap-

pears because Euler integrator takes steps that depend on the magnitude of the gradient which

depends on the mismatch value (ℎ(t̃𝑖) − ℎ(t∗2)). If mismatch is large for some 𝑖 , the Euler step

could lead to a large error for a fixed step size ℓ . We discuss the assumptions in theorems 6.1

and 6.2 in appendix E.1.1

6.3.2 Effect Connectivity and the Existence of t′(t∗, ℎ(t∗2))

The key element in Theorem 6.1 is the surrogate intervention t′ such that its conditional effect

givenℎ(t′), equals that of t∗ andℎ(t∗2). The orthogonality ∇t̃𝑓
⊤∇t̃ℎ = 0, is a functional condition
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that does not guarantee t′(t∗, ℎ(t∗2)) exists in supp(t); a necessity to compute E[y | t = t′]

without additional parametric assumptions. We give a general condition called Effect Connectivity

that guarantees the surrogate intervention exists. With conditional effect 𝜙 (t∗, ℎ(t∗2)), for any

t∗

𝑝 (ℎ(t) = ℎ(t∗2)) > 0 =⇒ 𝑝 (𝜙 (t, ℎ(t)) = 𝜙 (t∗, ℎ(t∗2)) | ℎ(t) = ℎ(t∗2)) > 0. (6.9)

In words, t has a chance of setting the conditional effect to any possible value supp(𝜙 (t, ℎ(t2)))

given any confounder valueℎ(t∗2) ∈ supp(ℎ(t)). An equivalent statement is that every level set of

the conditional effect 𝜙 (t∗, ℎ(t∗2)), withℎ(t∗2) fixed, contains an intervention for each confounder

value. That is, for some ℎ(t∗2) define the level set 𝐴𝑐 = {t∗; 𝑓 (t∗, ℎ(t∗2)) = 𝑐}, then ∀ℎ(t∗2) ∈

supp(ℎ(t)), 𝑝 (t ∈ 𝐴𝑐 | ℎ(t) = ℎ(t∗2)) > 0.

Theorem6.3. Under Effect Connectivity, eq. (6.9), any surrogate intervention t′(t∗, ℎ(t∗2)) ∈ supp(t).

We give the proof in appendix E.1.4. Whether the intervention t′(t∗, ℎ(t∗2)) can be found via

tractable search is problem-specific. If the surrogate t′(t∗, ℎ(t∗2)) exists ∀t∗, ℎ(t∗2), then eq. (6.9)

holds by definition of the surrogate. Effect Connectivity allows us to reason about values of 𝑓

anywhere in supp(t) × supp(ℎ(t)) using only samples from 𝑝 (y, t). Further, it is necessary in

efc:

Theorem 6.4. Effect Connectivity is necessary for nonparametric effect estimation in efc.

We prove this in appendix E.1.5. Effect Connectivity ensures that causal models with different

causal effects have different observational distributions. Then, parametric assumptions on the

causal model are not necessary to estimate effects.
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6.4 Experiments

We evaluate lode on simulated data first and show that lode can correct for confounding. We

also investigate the error induced by imperfect estimation of the surrogate intervention in lode.

Further, we run lode on a gwas dataset [161] and demonstrate that lode is able to correct

for confounding and recovers genetic variations that have been reported relevant to Celiac dis-

ease [162, 163, 164, 165].

6.4.1 Simulated experiments

We investigate different properties of lode on simulated data where ground truth is available.

Let the dimension of t (pre-outcome variables) be𝑇 = 20 and outcome noise be𝜼 ∼ N(0, 0.1). We

consider two efc causal models, denoted by 𝐴 and 𝐵 with different ℎ(t) and 𝑓 (t, ℎ(t),𝜼):

(𝐴) ℎ(t) = 𝛾
∑
𝑖 t𝑖√
𝑇
, t ∼ N(0, 𝜎2I𝑇×𝑇 ), 𝑦 =

∑
𝑖 (−1)𝑖t𝑖√
𝑇

+ 𝛼ℎ(t)2 + (1 + 𝛼)ℎ(t) + 𝜼

(𝐵) ℎ(t) = ∑
𝑖:𝑖∈2Z

𝛾t𝑖t𝑖+1, t ∼ N(0, 𝜎2I𝑇×𝑇 ), 𝑦 =

∑
𝑖 (−1)𝑖t2𝑖√
𝑇

+ 𝛼ℎ(t) + 𝜼

In both causal models, c-redundancy is satisfied. The constant 𝛾 controls the strength of the

confounder and the constant 𝛼 controls the Lipschitz constant of the outcome as a function of

the confounder. We let the variance 𝜎2 = 1, unless specified otherwise. In the following, we train

on 1000 samples and report conditional effect rmse, computed with another 1000 samples. We

used a degree-2 kernel ridge regression to fit the outcome model as a function of t. This model

is correctly specified, and so the conditional E[y | t = t̃] can be estimated well. We compare

against a baseline estimate of conditional effect that is the same outcome model’s estimate of

E[y | t = t∗]. This baseline fails to account for confounding and produces a biased estimate of

the conditional effect of 𝑑𝑜 (t = t∗), conditional on any ℎ(t∗2) ≠ ℎ(t∗).
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(a) Causal Model 𝐴 (b) Causal Model 𝐵

Figure 6.3: Rmse of estimated conditional effect vs. strength of confounding 𝛾 . lode corrects for con-
founding and produces good effect estimates across different values of 𝛾 .

(a) Causal Model 𝐴 (b) Causal Model 𝐵

Figure 6.4: rmse of estimated conditional effect estimate vs. the strength of confounding 𝛾 , for different
levels of variance of t, 𝜎2. Small 𝜎 leads to large conditional estimation error.

First, we investigate how well lode can correct for confounding for both causal models. We let

𝛼 = 1 and obtain surrogate estimates by Euler integrating until the quantity Et∗,ℎ(t∗2) (ℎ(t̃(𝑠)) −

ℎ(t∗2))2 is smaller than 10−4 times value at initialization, where Et∗,ℎ(t∗2) is expectation over the

evaluation set. In fig. 6.3, we plot the mean and standard deviation of conditional effect rmse

averaged over 10 seeds, for different strengths of confounding. We see that lode is able to estimate

effects well across multiple strengths of confounding while the baseline suffers.

Second, we investigate lode’s estimation when surrogate positivity holds but the probability

𝑝 (t ≈ t′(t∗, ℎ(t∗2))) is very small. This results in estimation error due to poor fitting of the

outcome model in low density regions of supp(t). We run lode on simulated data where t is

generated with different variances (𝜎2). For small 𝜎 , the outcome model error is large when

using surrogate interventions t′(t∗, ℎ(t∗2)), where either ℎ(t∗2) or t∗ is large. This leads to high
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Figure 6.5: Rmse of estimated conditional effect vs. step size in Euler Integrator in causal model 𝐵.
Accumulating error due to large step size in Euler integrator increases with strength of confounding.

variance effect estimation as we show in fig. 6.4 for both causal models. For various variances

of t, 𝜎2, we plot the mean and standard deviation of rmse of estimated conditional effect over 10

seeds, against different 𝛾 .

Third, we investigate the bias induced due to imperfect estimation of the surrogate intervention in

lode for both causal models. We construct surrogate interventions t′(t∗, ℎ(t∗2)) by ensuring there

is confounder-value mismatch ℎ(t̃) ≠ ℎ(t∗2). We do this by interrupting Euler integration when

the objectiveEt∗,ℎ(t∗2) (ℎ(t
′(t∗, ℎ(t∗2)))−ℎ(t∗2))2 = 𝛿2 > 0,where theEt∗,ℎ(t∗2) is over our evaluation

set upon which we estimate conditional effects. For different 𝛼 , we plot in fig. 6.6 the mean and

standard deviation of rmse of estimated conditional effect over 10 seeds, against different degrees

of confounder mismatch, 𝛿 . The error due to confounder mismatch is mitigated by small 𝛼 , the

Lipschitz-constant of the outcome as a function ofℎ(t). Finally, we consider how step size in Euler

integration affects the quality of estimated effects. Large step sizes may result in biased surrogate

estimates; this bias is captured in the accumulation error in section 6.3.1. We focus on the non-

linear case in causal model B where gradient errors can accumulate(see appendix E.1.3.1). We

demonstrate this error in fig. 6.5 where we plot mean and standard deviation of conditional effect

rmse against the strength of confounding, for different step sizes ℓ . We do not report results for

larger step sizes (ℓ > 2) because Euler integration diverged for many surrogate estimates.
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(a) Causal Model 𝐴 (b) Causal Model 𝐵

Figure 6.6: Rmse of estimated conditional effect vs. degree of confounder mismatch 𝛿 . Error due to
conditioning on a mismatched value of the confounder increases with strength of confounding but is
mitigated by smoothness of the outcome function.

6.4.2 Effects in Genetics (gwas)

In this experiment, we explore the associations of genetic factors and Celiac disease. We utilize

data from the Wellcome Trust Celiac disease gwas dataset [161, 162] consisting of individuals

with celiac disease, called cases (𝑛 = 3796), and controls (𝑛 = 8154). We construct our dataset by

filtering from the ∼ 550, 000 snps. The only preprocessing in our experiments is linkage disequi-

librium pruning of adjacent snps (at 0.5 𝑅2) and PLINK [166] quality control. After this, 337, 642

snps remain for 11, 950 people. We imputed missing snps for each person by sampling from the

marginal distribution of that snp. No further snp or person was dropped due to missingness.

The objective of this experiment is to show that lode corrects for confounding and recovers snps

reported in the literature [162, 163, 164, 165]. To this end, after preprocessing, we included in our

data 50 snps reported in [162, 163, 164, 165] and 1000 randomly sampled from the rest.

We use outcome models and functional confounders ℎ() traditionally employed in the gwas lit-

erature. We choose a linear ℎ(t̃) = 𝐴⊤t̃, where 𝐴 is a matrix of the right singular vectors of a

normalized Genotype matrix, that correspond to the top 10 singular values [147]. The outcome

model is selected from logistic Lasso linearmodels with various regularization strengths, via cross

validation within the training data (60% of the dataset). We defer details about the experimental

116



setup to appendix E.2.

We then use this outcome model in lode to compute causal effects on the whole filtered dataset.

The effects are computed one snp at a time. First, for each person t̃, create t̃1𝑖 , t̃
0
𝑖 which cor-

respond to the 𝑖th snp set to 1 and 0 respectively, with all other snps same as t̃. Randomly

sample a ℎ(t∗2) from the marginal 𝑝 (ℎ(t)) and, using the outcome model 𝑃𝜃 , compute 𝜙 (t̃, 𝑖) =

log 𝑃𝜃 (𝑦=1|t′ (t̃1𝑖 ,ℎ(t∗2)))/𝑃𝜃 (𝑦=1|t′ (t̃0𝑖 ,ℎ(t∗2))). The average effect of snp 𝑖 is obtained by averaging across

all persons:
∑

t̃
𝜙 (t̃,𝑖)/𝑁 . Any snp that beats a specified threshold of effect is deemed relevant to

Celiac disease by lode. We use a 60 − 40% train-test split, and outcome model selection is done

via cross-validation within the training set. We did 5-fold cross-validation using just the training

set. We use Scikit-learn [167] to fit the outcome models and for cross-validation.

snp Effect. Coef.

rs13151961 0.17 0.32

rs2237236 0.17 0.00

rs1738074 −0.16 −0.23

rs11221332 −0.15 −0.24

Table 6.1: A few snps previously reported
as relevant and recovered by lode, with es-
timated effects and Lasso coefficients. lode
produces effect estimates that do not rely
purely on the coefficients.

Results The best outcome model was a Lasso

model, trained with regularization constant 10. We

select relevant snps by thresholding estimated effects

at a magnitude > 0.1. From 1050 snps (1000 not re-

ported before) lode returned 31 snps, out of which

13 were previously reported as being associated with

Celiac disease [162, 163, 164, 165]. In appendix E.2.2

we plot the true positive and false negative rates of

identifying previously reported snps, as a function of

the effect threshold.

In table 6.1, we list a few snps that were both deemed

relevant by lode and were reported in existing literature [162, 163, 164, 165], their effects, and

their Lasso coefficients. The full list is in table E.1 in appendix E.2. If lode cannot adjust for con-

founding, the Lasso coefficients would dictate the effects; 0 coefficient means 0 effect. However,

the two pairs of snps in table 6.1 show that the effects estimated by lode do not rely solely on the
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Lasso coefficients. For the first pair (rs13151961, rs2237236), the effect is the same but the coeffi-

cient of one is 0, while the other is positive. We note that rs2237236 was found to be associated

with ulcerative colitis [168, 169], which is an inflammatory bowel disease that has been reported

to share some common genetic basis with celiac disease [170]. For the second pair, (rs1738074,

rs11221332), the magnitude of the effect is smaller for the former, but the coefficient is larger.

Thus, lode adjusts for confounding factors that the outcome model ignored.

6.5 Discussion

When positivity is violated in traditional obs-ci, not all effects are estimable without further

assumptions. In such cases, practitioners have to turn to parametric models to estimate causal

effects. However, parametric models can be misspecified when used without underlying causal

mechanistic knowledge. We develop a new general setting of observational causal effect estima-

tion called estimation with functional confounders (efc) where the confounder can be expressed

as a function of the data, meaning positivity is violated. Even when positivity is violated, the

effects of many functional interventions are estimable. We develop a sufficient condition called

functional positivity (f-positivity) to estimate effects of functional interventions. Such effects

could be of independent interest; like the effect of cumulative dosage of a drug instead of joint

effects of multiple dosages at different times.

Second, we prove a necessary condition for nonparametric estimation of effects of the full inter-

vention. We propose the c-redundancy condition, under which, the effect of the full interven-

tion on t is estimable without parametric restrictions. We develop Level-set Orthogonal Descent

Estimation (lode) that computes surrogate interventions whose effects are estimable and match

a conditional effect of interest. Further, we give bounds on errors (theorem 6.2) induced due to

imperfect estimation of the surrogate intervention. Finally, we empirically demonstrate lode’s

ability to correct for confounding in both simulated and real data.
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Future. A few directions of improvement remain which we elaborate next. First, f-positivity

may not hold for all functions 𝑔(t) that we want to intervene on. Instead, one could compute a

“projection” 𝑔Π to the space of functions that satisfy f-positivity and inspect the effects defined

by 𝑔Π instead. A second direction of interest is to let ℎ(t) only account for a part of the confound-

ing, meaning ignorability is violated. This bias could be mitigated under smoothness conditions

of the outcome function and its interaction with the degree of violation of ignorability.

Finally, lode’s search strategy is Euler integration, which is equivalent to gradient descent with a

fixed step size. Optimization techniques like momentum, rescaling the gradient using an adaptive

matrix, and using second order hessian information, speed up gradient descent. However, if there

are many local or global minima for (ℎ(t̃) − ℎ(t∗2))2, such techniques will result in a different

solution than Euler integration, which could mean that effect estimates are biased. One extension

of lode would allow for search strategies that use such techniques.
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Part III

An Empirical Study in Building and

Transporting CHD risk Models
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AI models for CHD risk assessment

The first two parts of this thesis developed methodology for two problems: out-of-distribution

(ood) generalization and causal effect estimation. These two problems have a common theme:

use observed data from one distribution (training/confounded distribution) to support decisions

under a different distribution (test/interventional distribution). This thesis’ last part tackles a task

in healthcare that fits the same theme: survival analysis for risk estimation.

Focusing on coronary heart disease (CHD), the task is to estimate the chance that a patient de-

velops CHD within a time horizon. Risk estimates help care providers plan preventative inter-

ventions (as opposed to curative treatment that occurs after a particular diagnosis is confirmed).

Models of risk are necessarily trained on retrospective data but are deployed prospectively which

means, in the same spirit as the first part of this thesis, risk models need to generalize beyond

the training distribution. In healthcare, such generalizability is called transportability. Establish-

ing model transportability on external populations (such as patients from a different hospital) is

a crucial step before deploying said model. In the following chapter, we build transportable AI

models of CHD risk from minimally curated ehr data.
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7 | Performant and Transportable

modeling of CHD risk from

minimally curated Hospital-Scale

EHRs

(This chapter presents part of an ongoing project authored by, among others, Shreyas Bhave (Columbia

DBMI), Aahlad Puli, Mark Goldstein, Mert Ketenci (Columbia DBMI), Noémie Elhadad (Columbia

DBMI), Adler Perotte (Columbia DBMI), and Rajesh Ranganath)

7.1 Introduction

Developing accurate risk assessment models for cardiovascular disease (CVD) is a foundational

challenge in the primary prevention of CVD. Existing clinical guidelines from the AmericanHeart

Association (AHA), American College of Cardiology (ACC), and the World Health Organization

(WHO) all recommend that 10-year CVD risk be used to guide the type and intensity of pre-

ventative treatments [171, 172]. CVD risk scores are often computed using survival models that

account for the natural censoring in clinical data [173]. Popular risk scores include the Framing-

ham Risk Score (FRS) [174, 175] and the Pooled Cohort Equations (PCE) [176]. These risk scores
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Figure 7.1: Flexible survival models built fromminimally curated EHR data perform better than
existing score and transport well.

perform around a c-index of 0.70 [176, 177]), and have established utility by verifying whether a

model transports to new settings [178, 179, 180].

The widespread adoption and use of electronic health records (EHRs) [181] has spurred the study

of alternative approaches to computing risk scores [182, 183, 184, 185] that ingest large amounts of

the EHR. For survival analysis specifically, training on hospital-wide EHRs has shown promising

results for predicting lung cancer survival [186], Chronic Kidney Disease [187] and CVD [182,

188].

In pilot studies, the use of artificial intelligence (AI) for survival analysis on EHRs yield models

for CVD that improve over existing risk scores in the population on which they were trained [189,

190]. However, there has been limited investigation into the transportability of these feature-rich

and flexible survival models (Figure 7.1). Several drivers are responsible. First, larger feature sets

require more effort to harmonize data for validation. Second, the advent of EHRs and easy-to-use
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AI tools has made it easier for different places to have models trained on their own data, which

leads to questioning the need to study transportability.

Considering that training occurs on historical data with the intended use being on future popu-

lations, all model deployment requires transporting a model. This transport implies that perfor-

mance within-institution on historical data is not the definite criteria for a predictive model. For

example, a model that is performant on historical data may degrade in the future due to changes

in unmarked patient demographics, such as a shift in race/ethnicity [191], or changes in data

quality or collection [192]. Further, online testing within a hospital can also be too slow for long-

term chronic diseases like Coronary Heart Disease (CHD) because labels may only appear years

after predictions were made. Finally, just as in the sciences (for example, experimental physics),

one needs to rule out bugs in the experimental setup, such as label leakage and reproducibility

issues, which have been shown to give an unrealistic picture of model performance in healthcare

[193, 194]. Validating externally is at the core of any argument that a model is applicable beyond

the retrospective data used to train it. This paper performs an external validation of flexible

survival models for CHD by fitting dozens of survival models across two large health

systems.

The standard approach to assess transportability is to compare a metric like concordance at an

external institution against a baseline or reference [195]. However, when concerns arise about

the external performance, the standard approach does not separate the role of model transport

on external performance from that of the nature of the external population. As an example, the

external hospital could have a larger fraction of a population on which it is harder to make pre-

dictions. Low performance metrics in this hospital do not stem from transporting a model, but

rather reflect that it is harder to predict on the underlying data. Thus, when external perfor-

mance raises concerns, it may be helpful to compute further quantitative metrics that adjust for

the varying hardness across populations [196]. As one such quantitative metric, we propose
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the T-gap which computes the difference in performance between the transported model and an

externally trained model, with the latter providing an empirical characterization of the hardness

of the external population.

Empirically, we build dozens of survival models — which we call DeepCAT— for coronary heart

disease using different choices of feature sets and evaluate their transportability. DeepCAT mod-

els achieve high absolute concordance and low absolute Brier score; that is, DeepCAT models

transport well (Tables 7.1 and 7.2) in the populations we study.

As a whole this paper makes several contributions

• AI models of CHD risk built on minimally curated EHR data perform better internally and

externally than the FRS and PCE scores, as well as the recently introduced PREVENT score

[181, 197].

• Models including a broad set of diagnoses perform best. This shows the value of using

features beyond the small curated sets common in previous risk scores for building trans-

portable models.

• Using T-gaps, we find that variation in external performance across demographic sub-

groups is driven by the differences between the data within the subgroups rather than

disproportionate model transport across subgroups.

7.2 Results

Comparing Cohorts. We consider two outcomes. The first outcome, referred to as soft CHD,

follows from what was used in the framingham score [174, 175]: which accounts for angina

pectoris (ICD 9 prefix: 413), acute myocardial infarction (ICD 9 prefix: 410) and coronary insuffi-

ciency (ICD 9 prefix: 411), and hard CHD which accounts for acute myocardial infarction (ICD 9

prefix: 410) and The second outcome, referred to as hard CHD, follows from the CHD definition in
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PREVENT score [181, 197]: acute myocardial infarction (ICD 9 prefix: 410 and ICD 10CM prefix

I21) and subsequent myocardial infarction (ICD 10CM prefix: I22).

We use data derived from EHRs in-use at two large, academic institutions: Columbia University

Irving Medical Center (CUIMC) and New York University Langone Health (NYULH). The demo-

graphic characteristics of the cohorts are shown in Table F.7. CUIMC and NYULH have similar

cohort size, with over 1 million patients and over 20 million encounters, and the prevalence for

both SoftCHD and Hard CHD is similar in both systems: ≈ 5% and ≈ 2.5% respectively. Both

cohorts have significantly more female than male patients; sex differences are diminished among

CHD cases.

Comparing DeepCat to Existing Scores. We introduce a survival model, named DeepCat, to

study the transportability of flexible, feature-rich survival models for both soft and hard CHD.

DeepCat uses the SetTransformer++ [198] which can encode features like labs, vitals, drugs, con-

ditions, smoking status, age, and demographics into a survival distribution for time-to-event (Sec-

tion 7.5.3). DeepCat makes no assumptions on the shape of the survival distribution. We train

candidate DeepCat models for soft CHD at each institution with different feature combinations

(conditions and drugs, conditions only etc.). One feature set is chosen for each cohort based on

the soft CHD concordance on the external cohort. We do this to replicate the model building

study in two locations. We then train DeepCat models for hard CHD on each cohort with their

respective feature sets. The DeepCat models are then evaluated internally and externally against

established scores. For performances reported in the text, confidence intervals are in the appendix

(table F.6).

Table 7.1 reports concordance of DeepCat models for both soft and hard CHD outcomes. In

summary, DeepCat outperforms the existing scores, FRS and PCE, and the newly designed score

PREVENT [181, 197], in every situation. For soft CHD, DeepCat models built at CUIMC and

NYULH attain at least 0.84 concordance internally and 0.81 externally. FRS and PCE attain ≤
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Table 7.1: Comparing established risk scores to DeepCat models at CUIMC (test N=66,319) and
NYULH (test N=87,151). DeepCat trained at either NYULH or CUIMC outperforms established scores
at both sites.

SoftCHD HardCHD
CUIMC NYULH CUIMC NYULH

FRS [174, 175] .73 (.724, .742) .74 (.735, .749) .79 (.778, .802) .75 (.734, .754)

PCE [176] .70 (.688, .709) .73 (.726, .741) .75 (.739, .765) .74 (.732, .757)

PREVENT
[181, 197] .75 (.74, .758) .78 (.768, .782) .81 (.796, .818) .79 (.780, 0.799)

DeepCat
NYULH .81 (.802, .817) .84 (.831, .842) .85 (.837, .858) .85 (.839, .857)

DeepCat
CUIMC .85 (.849, .861) .81 (.806, .822) .88 (.869, .888) .82 (.813, .829)

0.74 at both institutions, which is in line with prior EHR studies of these models [199, 200, 201].

DeepCatmodels trained at either institution outperform PREVENT both internally and externally

(DeepCat ≥ .81, PREVENT ≤ .78). For hard CHD, DeepCat models built at CUIMC and NYULH

attain at least 0.85 concordance internally and 0.82 externally. At CUIMC, all existing scores

achieve < 0.81 concordance, while the DeepCat models trained at either institution achieve better

than 0.85 concordance. At NYULH, all existing scores achieve < 0.79 concordance, while the

DeepCat models trained at either institution achieve better than 0.82 concordance.

Discriminative performance similar to that in table 7.1 holds for a variant of concordance that

emphasizes discriminating small and large event times, when adjusting for censoring and re-

stricting to a subpopulation with time-to-event of at least 1 year; see tables F.1 to F.4 in ap-

pendix F.1.2.

To evaluate calibration, we computed the Brier score at 5 years. Table 7.2 shows that DeepCAT

models for soft and hard CHD outcome achieve good brier score both internally and externally

(<0.05 [202]). We show calibration curves in appendix F.1.1.
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Exploring Subpopulation Performance. Risk scores should be evaluated across subpopula-

tions to understand how performance varies across groups that appear with lower frequency. We

first study the difference in external performance (concordance) between subpopulations. The left

panels (A) of the subplots of Figure 7.2 show histograms of these differences between all pairs of

subpopulations for both soft and hard CHD outcomes. The differences in external performance

can be as large as 0.20 of concordance. This difference could indicate that the model transports

worse on some subgroups relative the others. However, the two panels in the middle (B-C) of Fig-

ure 7.2 show that differences in performance between subgroups correlate less with differences

in T-gap than with differences in the performance of the externally trained models. In turn, the

differences in external performance between subgroups would not be resolved by replacing an

external model with an externally trained model. That is, variable transport across groups does

not drive the differences in external performance.

To verify that differences arise for reasons other than transport, the right panels (D) of Figure 7.2

plot the external performance and the performance of the externally trained model in on the var-

ious subpopulations, ordered by external performance; the two performances increase in concert

with one other. These plots suggest that the differences in external performance between sub-

populations primarily sprout from differences in the data distribution of sub-population rather

due to model transport.

Focusing on performance internally, for both soft and hard CHD outcomes DeepCat models per-

form better on Asian and White populations than Black populations at both institutions. For

both outcomes, the performance in Asian populations at CUIMC is particularly higher than the

other racial or ethnic categories, with the largest gap being between Asian Females and Hispan-

ic/Latino Males: CUIMC Asian Females ≥ 0.96 versus CUIMC Hispanic/Latino males < 0.81.

In both institutions, models also perform better on females compared to males. For soft CHD,

NYULH females 0.85 versus NYULH males 0.82 and CUIMC females 0.86 versus CUIMC males
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Table 7.2: Performance and Transportability of DeepCat models measured by the IPCW-Brier
score at 5 years (lower is better). Both internally and externally, DeepCat models achieve good brier
scores (< 0.05 is considered excellent [202]).

Internal External

Model Performance Performance

Soft CHD. NYULH .05 (.039,.055) .04 (.038,.042)
CUIMC .04 (.036,.039) .06 (.045,.063)

Hard CHD NYULH .03 (.028, .032) .02 (.015,.017)
CUIMC .02 (.014, .017) .034 (.032,.036)

0.82. For hard CHD, NYULH females 0.86 versus NYULH males 0.83 and CUIMC females 0.89

versus CUIMC males 0.84.

Which features are needed for CHD prediction? We performed the feature set selection

study (based on validation soft CHD performance) at two locations, which resulted in two mod-

els, DeepCat-NYULH, and DeepCat-CUIMC. While DeepCat-NYULH uses age, conditions, and

demographics, DeepCat-CUIMC additionally uses smoking status, lab measurements, and drug

brands. Given that different feature sets were chosen in different places, a natural question is

which features are actually important for CHD?. We further ablated to see if this feature difference

important.

For soft CHD, when using the smaller set of NYULH features, the CUIMCmodel maintains .85 in-

ternal performance (concordance) and external performance is .80. Similarly for hard CHD, when

using the smaller set of NYULH features, the CUIMC model maintains .87 internal performance

(concordance) and external performance is .82. Therefore, on both outcomes, when trained on a

smaller set of features, the CUIMC model retains its performance gain of several points over the

existing scores FRS, PCE, and PREVENT.

DeepCat models featuring conditions observe whether any of 669 possible codes are present in
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(a) Subpopulation performance differences forsoft CHDmodels trained at NYULH (top) and CUIMC (bot-
tom) and evaluated externally.

(b) Subpopulation performance differences forhard CHD models trained at NYULH (top) and CUIMC
(bottom) and evaluated externally.

Figure 7.2: For both outcomes, external performance differences correlate more with internal
performance differences than with T-gaps. Left panels (a.(A), b.(A)) show the differences in external
performance across pairs of subpopulations. The two plots in the middle (a.(B-C), b.(B-C)) show that
external performance differences are more correlated with internal performance differences than with
differences in T-gaps. The right panels (a.(D), b.(D)) orders subpopulations based on increasing external
performance and shows the external performance and the performance of the externally trained model;
the two performances tend to increase in concert with one other.
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a patient’s medical history. Models with no demographic features may sometimes be required;

on predicting softCHD subject to the constraint of no demographic features, DeepCat-CUIMC

achieves .85 concordance internally and .81 externally while DeepCat-NYULH achieves .83 in-

ternally and .80 externally, both nearly retaining their performance. On predicting hardCHD,

subject to the constraint of no demographic features, DeepCat-CUIMC achieves .87 concordance

internally and .82 externally while DeepCat-NYULH achieves .84 internally and .85 externally,

both nearly retaining their performance.

Which Features Contribute to Performance and Transportability? We next explore which

features contribute to improved performance within and across institutions. Focusing on soft

CHD, Figure 7.3 plots the change in concordance when a feature group gets added to any other

subset of the remaining features. For both internal and external performance, including condi-

tions provides the largest improvement in concordance. The median improvement both inter-

nally and externally for including conditions is 0.06 versus at most 0.01 improvement for any

other inclusion. Finally, looking at the change in performance when including measurements in

Figure 7.3 shows that including more features does not always lead to better generalization, with

most models decreasing in external performance when measurements are included.

Figure 7.3: Condition features contribute most to model improvements at both institutions. For
each feature grouping, each box-and-whisper plot displays concordance differences betweenmanymodels
built with and without the feature grouping, for all combinations of the remaining features and across
two sites. Models built in either institution improve in concordance at both institutions most notably
when condition features are included; median improvement 6 concordance points versus less than 1 point
for all other features. Notably, for external performance, most models decrease in concordance when
measurement features are added.

131



Best Internally or Best Externally. Selecting models on best internal performance may skip

those with better external performance. On soft CHD, NYULH models improve from 0.782 con-

cordance to 0.809 at CUIMC when selecting externally-best instead of internally best models.

These externally best models also retain near optimal performance internally: while the exter-

nal performance gain is 0.03, the internal performance loss is only 0.003, an order of magnitude

smaller. For CUIMC models, the effect is less pronounced.
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Figure 7.4: understanding tgap

External PerformanceDifferences ver-

sus T-gaps. T-gaps contextualize perfor-

mance of a model transported to an ex-

ternal site by comparing against a model

trained at the external site. The left panel

of fig. 7.4 shows visual intuition on how

the T-gap is computed. However, com-

puting T-gaps would not be useful if they

always matched the difference between

internal and external performance (de-

noted Δ). The right panel of fig. 7.4 shows

that models with large performance differences across institutions may have small T-gaps. A

model that has a large absolute difference in 5-year IPCW-weighted concordance of 0.11 between

internal and external performance. But, the T-gap is 0.02meaning that the model drops very little

performance relative to the externally-trainedmodel (NYULH) and indicates that model transport

does not drive the large difference between internal and external performance.
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(a) NYULH models (b) CUIMC models

Figure 7.5: The bold squares have internal performance above 0.82. Arrows connect a model’s external
performance to its internal performance. Bold arrows show that the top externally-performing models
have near-top internal performance while near-top internally performing models have variable external
performance ranging from good to bad.

7.3 Discussion

DeepCat Models are Predictive of soft and hard CHD and Transportable Across Pop-

ulations. We developed DeepCat, a flexible and feature-rich survival model for soft and hard

coronary heart disease (CHD). We demonstrate that DeepCat’s performance, both internal and

external, surpasses established scores such as FRS, PCE, and PREVENT at two large metropolitan

hospitals, NYULH and CUIMC. DeepCat, trained at either institution on minimally-curated EHR

features, achieves concordance greater than 0.81 on soft CHD and 0.82 on hard CHD at both in-

stitutions. The models maintain this good discrimination when considering patients with longer

times to events (over one year) and when evaluating predictions over a five-year horizon, which

aligns with clinically relevant timeframes [171]; see appendix F.1.2. We observe that strong exter-

nal performance does not come at expense of internal performance; on soft CHD, models that are

good externally are good internally (Figure 7.5). Our findings also confirm that DeepCat models

transport equitably across diverse clinical subpopulations, discussed below.

Flexible Feature-RichModels. Inmachine learning, flexiblemodels are typically built by incor-
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porating a wide range of potentially relevant features and optimizing over a large function class,

enabling the model to access useful relationships for prediction where they exist [203]. In clin-

ical settings, however, modeling is often approached differently, using carefully chosen feature

sets (for example, just features known to be mechanistically relevant [197]) to minimize potential

dependence on non-transportable associations, or shortcuts [5]. Moreover, a common motif in

clinical settings is that feature sets should be kept small to avoid requiring patients to undergo

numerous measurements at the time of risk assessment and to avoid over-screening [181]. This

line of reasoning involves a trade-off, however, as excluding relevant features beforehand can

introduce statistical bias.

Further, choosing between large feature sets and over-screening may also be a false dichotomy:

if we do need to expand the set of features to decrease bias, must it always require additional

screenings? Recent work in clinical tasks — such as predicting lung cancer survival [186], Chronic

Kidney Disease [187], CVD [182, 188], cardiogenic shock [204] and others [182, 183, 184, 185] —

represents a shift in this thinking, hinging on the idea that there is significant predictive value in

whichever data happens to be available about a patient at the time of risk assessment, even if not

each possible feature is always observed. With this data, a computer can decide whether to use

a given observation. Such models can be built with methods that handle missingness [190] and

can then be validated on external populations to see if they generalize to new patient populations

[178, 179, 180]. In this work, we observe that such an approach—using all available features in

the EHR and validating for best external performance—leads to good models for CHD.

Demographics Features. Our findings demonstrated the utility of demographic features such

as race, ethnicity, and gender, with both DeepCat models using them when selecting models for

optimal external performance. On the other hand, recent work on cardiovascular risk modeling

[181, 197] has discounting the use of these features a priori. While it is true that features like

race are social constructs and not directly linked to disease physiology, they can serve as a proxy
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for missing information that is physiologically relevant. For example, South Asian males are at

increased risk of heart disease, even after adjusting for traditional risk factors [205]. Amodel with

genetic data could in principle discern this risk, but in its absence, demographic features can help

identify such high-risk groups. Recognizing that certain settings may require the exclusion of

race, we also investigated the performance of models without demographics on both soft and

hard CHD outcomes and found that they still performed better than existing scores, albeit with

a marginal decrease in performance relative to DeepCat models with demographics (≤ 1 point

decrease in concordance). The current results suggest, at least when predicting CHDwith flexible

models, that it may be advantageous not to rule out demographics a priori.

Condition Features Promote Transportability Condition features (diagnosis codes) signif-

icantly improve both internal and external performance of DeepCat models across all feature

combinations, with a median improvement in concordance of 6 points for including conditions

compared to less than 1 point for other features. Such diagnosis codes are often associated with

two concerns: that usage varies across practices [206] and that codes may appear in EHRsmonths

after diagnosis, raising potential concerns about label leakage [193]. However, the strong external

performance of DeepCat models suggests that variations in coding practice may be sufficiently

mitigated by our standardization of data in the OMOP format. Further, strong performance on

long times-to-event data suggests that performance gains due to label leaks are unlikely.

In relationship to other scores, performance improves progressively when adding conditions,

from FRS and PCE (2 conditions) to PREVENT (4 conditions) to DeepCat (669 conditions) (per-

formance in Table 7.1 and frequent features listed in Table F.13). Two more cardiovascular risk

scores that are newer than FRS, but study different outcomes (composite CHD and stroke), are AS-

SIGN [207] and QRISK3 [182]; these scores also include new features for diagnoses like arthritis,

chronic kidney disease, migraines, Lupus, and mental illness. Looking forward, it may be advan-

tageous to use a large number of conditions from the outset and enhance validation practices,
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rather than gradually expanding small feature sets over time.

Measurements may harm external performance. Unlike conditions, we may expect labs and

vitals (e.g., cholesterol levels) to support transportable risk models due to sufficient standard-

ization into common measurement units. However, we find that incorporating labs and vitals

in models can negatively impact transportability, with most models showing decreased external

performance when these measurements are included (Figure 7.3). We hypothesize that conditions

(e.g. a diagnosis of high cholesterol) excel over measurements (one instantaneous cholesterol test)

because diagnoses can function as a summary statistic that a lab value has been abnormal over a

duration of time rather in any one instant. We additionally hypothesize that variations in mea-

surement missingness patterns across institutions may be the cause. Missingness can vary based

on institutional practices or patient-specific factors (e.g., labs missing at random for a subpopu-

lation in one location but not in another). Addressing this issue requires investigate assumptions

about missingness (e.g., monotone missingness patterns [208]) to ensure risk estimation under

the complete data distribution. Generative models of complete feature distributions, which could

account for missingness patterns, could be beneficial for addressing missingness despite the in-

herent challenges of generative modeling [209, 210].

Subpopulation Transportability Prior studies have indicated that CHD risk models exhibit

varying absolute performance across clinically relevant subpopulations [211, 212]. Our examina-

tion of subpopulations confirms this external performance disparity (Figure 7.2 left panels). To

better understand the source of variability, we introduced and analyzed T-gaps, which measure

the extent to which external performance can match the performance of an externally-trained

model (can an NYULH-trained model do as well at CUIMC as a CUIMC-trained model?). In the

middle left panel (B) in Figure 7.2, T-gap disparities are not correlated with external performance

meaning that fact that an NYULH model matches a CUIMC model on one subpopulation but not

another is not predictive of which subpopulation the NYULH model predicts better on. Further
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investigation shows that external performance are correlated with performance of externally-

trained models, meaning that it is the inherent differences in the subpopulation data at either site

that must at least partially drive external performance variation across subpopulations (fig. 7.2

right panels).

To better understand the source of these performance discrepancies, we investigated internal per-

formance. DeepCat models perform better in Asian and White populations compared to Black

populations, consistent with challenges observed in existing risk models such as FRS and PCE

[181]. Additionally, our findings reveal that models perform worse in male populations than

in female populations, despite the higher incidence of CHD in males [213]. This highlights the

necessity for gender-specific adjustments in risk models to address these discrepancies effec-

tively. More broadly, the disparity in model performance across subpopulations, especially in

higher incidence groups, underscores the importance of deeply understanding EHR data nuances

across groups. Such understanding can come from considering unaccounted social determinants

of health or biases in data collection, for example why some subpopulations report their demo-

graphics more completely than others. Such steps are crucial for mitigating performance vari-

ability across subpopulations and enhancing overall model accuracy and transportability.

OMOP and Large Observational Health Data Networks. Standardizing data across institu-

tions using the OMOP common data ∗ model plays a crucial role in this work. In this study, data

from two institutions were harmonized such that measurements (labs and vitals, LOINC codes),

diagnoses (SNOMED or ICD-9/10), and medications (RxNorm) shared a common meaning across

the institutions. The process of standardizing data into the OMOP format was relatively straight-

forward. CUIMC already maintained an OMOP view of their data, and the authors at NYULH

were able to create a similar view using a simple set of queries. This standardization is not unique

to our study; the OMOP format has been employed in thousands of studies within the OHDSI
∗https://www.ohdsi.org/data-standardization/
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network †, demonstrating its utility and broad applicability. The success and transportability of

flexible, feature-rich models highlight the potential for deploying these models across various

hospital systems, provided that health records are available in standardized formats. This study

lays the groundwork for extending our approach to multi-site cases, leveraging the capabilities

of large observational health data networks to evaluate and enhance model generalizability on a

larger scale.

Causality: Toward Safe Prospective Deployment Assessing transportability is a crucial step

toward the prospective deployment of predictive models, but it is not sufficient for ensuring their

safe deployment. Various dataset shifts can occur that affect prospectivemodel performance, with

treatments being a significant example. Treatment decisions based on the model may induce their

own shift. For instance, patients in the training data for current models may have been classified

as high risk by older risk scores (e.g., FRS) and subsequently treated by providers. This treatment

could have delayed their CHD onset, making them appear healthier in the data than they would

be without intervention. Consequently, predictive models may incorrectly classify these patients

and similar ones as low-risk. Instead, models that can account for the effect of interventions

(like high dose statins) on a reduction in CHD risk are more suitable for assigning treatments to

patients.

7.4 Limitations

Phenotyping based on rule-based codes is a challenging problem. For example, the true diagnosis

of CHDmay be prior to the one derived (left-censoring). As one check, under the assumption that

left-censoring often comes from patients that enter the system just after diagnosis, we omitted

data with time-to-CHD less than one year, and observed negligible effects on model performance;

this would indicate that left-censoring is not a major concern in this data.
†https://dash.ohdsi.org/research
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When building or evaluating risk scores, censored data is unavoidable. In line with previous risk

scoring studies, we build survival models, since standard classification may only estimate risk in

the uncensored population and cause disparities for infrequent patients. We followed current best

practices by additionally estimating censoring models and using them in re-weighted estimators

of metrics such as Brier score and IPCW-concordance, intended to estimate model performance

on the complete data distribution [214, 215, 216].

Leveraging the OMOP format allowed us to replicate model training across institutions seam-

lessly. There may however be discrepancies; for example, conditions could be recorded with

varying levels of granularity between the two institutions without being mapped to the same

features. In this work, we evaluated models across institutions and found that, on the contrary,

condition features do help build models that transport, and models built with conditions were less

susceptible to transportability failures due to other features (i.e. e.g. data discrepancies in non

condition features such as drugs were less detrimental when conditions were included).

Both institutions in this study are based in New York City, meaning there is potential for overlap-

ping patients and care patterns, yielding optimistic estimates of how well CHDmodels transport.

With that said, these findings may still generalize; New York City is among the most diverse

cities, and features many sub-populations and sub-communities, each with distinct income levels

and health backgrounds. The two hospitals studied are large, diverse systems featuring four large

centers and dozens of small geographically separate practices.

Finally, while two institutions is a start, we believe that such studies should be extended to the

multi-site setting, since this ismore in linewith the aim of building transportablemodels; whether

a model is to be used in many institutions or just one, the population the model must serve, going

beyond the training data, is not just one alternative population, but rather a constantly evolving

heterogeneous one.
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7.5 Methods

7.5.1 Data

Standardized Data using OMOP. To replicate cohort creation across CUIMC and NYULH,

we use a standardized version of the data using the Observational Medical Outcomes Partnership

(OMOP) common data model [217]. We obtain data for labs, vitals, drugs, conditions, smoking

status and demographics including gender, ethnicity, race, and age. We standardize conditions

using the SNOMED-CT terminology, labs using the LOINC terminology, and drugs using the

RxNorm vocabulary.

Phenotype. The first outcome, referred to as soft CHD, follows fromwhat was used in the fram-

ingham score [174, 175] and in prior work [190, 200]: which accounts for angina pectoris (ICD

9 prefix: 413), acute myocardial infarction (ICD 9 prefix: 410) and coronary insufficiency (ICD

9 prefix: 411). The second outcome, referred to as hard CHD, follows from the CHD definition

from [181, 197]: acute myocardial infarction (ICD 9 prefix: 410 and ICD 10CM prefix I21) and

subsequent myocardial infarction (ICD 10CM prefix: I22). We map these ICD codes and their

children to SNOMEDs whose descendants are then found by using the OMOP Concept table to

map SNOMEDs to Concept IDs, and then using the OMOP Concept Relationship table to retrieve

all Concept IDs that "Map To" the parent concepts. In total, we retrieve 162 distinct SNOMED

codes for soft CHD and 206 for hard CHD.

During phenotyping, the time of the CHD event or the censoring time is extracted for each pa-

tient. The number of months between each interaction time (when features aremeasured) and the

CHD or censoring time becomes the time-to-event label. An additional indicator records whether

the time is a CHD time or a censoring time. These labels are used for survival modeling. We fol-

low the same process of cohort and dataset construction for both soft and hard CHD outcomes.
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So we say CHD when explaining the process of construction.

Cohort Definition. We define a broad adult cohort including data from inpatient, outpatient

and emergency room visits. We set the following inclusion criteria: (1) patients must be above

18 and (2) to ensure data quality, patients are required to have at least 5 distinct months of data

recorded (not necessarily consecutive).

Among included patients, we record the first time of any CHD diagnosis according to the pheno-

type. For patients with no CHD code, we record the last observed data point in the EHR as their

censoring time. We give complete cohort details in Appendix F.2. We report soft CHD patients

statistics in Table F.7 and data statistics in Table F.8.

Feature Extraction. We start with a list of relevant lab measurements (Table F.11) and vital

signs (Table F.12) present at both institutions, and with all possible conditions (Table F.13) and

medications (Table F.14). Among features with nonzero occurrence at both institutions, if at

least one hospital has frequency (in % of patients) above a specified threshold (1% for diagnosis

codes, 0.5% for medications ordered, 1% for labs/vitals), we include the feature in the final set. For

medications, we compare counts at different levels of the RxNorm hierarchy and finally included

two levels: ingredients and brands. The final feature set consists of 452 drug ingredients, 2507

drug brands, 49 lab measurements, 5 vital signs, 669 diagnoses, age, race, gender, ethnicity, and

smoking status.

Dataset construction. For each patient, we extract data from their entire health record until

the time of the first CHD event or censoring time. We aggregate data at the month level; each

distinct (patient, month) interaction becomes a single data point. For labs and vital signs, we take

the mean value across all observations within the month. For conditions, each month’s feature is

the aggregate set of all past patient conditions. For medications and diagnoses, we use the set of

codes present within a month. We manually map smoking status, race, gender and ethnicity to
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specific categories (Table F.9 and Table F.10).

To handle missing labs and vitals, we introduce missingness indicators for whether measure-

ments are observed or imputed in that month [190], and include the indicators as features to

CHD models. For the imputed value of the missing feature, we use last-one-carry-forward im-

putation which uses past information as the current information for a lab or vital when it is not

measured but previously observed. For any values that remain missing (never measured) we use

the population median.

To mitigate the influence of outliers due to potential data entry issues in the measurements,

we clip them to standard clinically observable (i.e. possible) ranges [218, 219, 220, 221] (Ta-

ble F.5).

7.5.2 Models

Model Architecture. The model first creates embeddings (numerical representations of cat-

egorical features) for drugs, conditions, demographics, and smoking. We use the permutation-

invariant transformer, SetTransformer++ [198], to model the relationship between time-to-CHD

and the sets of conditions and drugs at each month. Then, the embeddings and remaining fea-

tures are combined and transformed through a neural network to parameterize a time-to-event

categorical distribution [190, 222, 223, 224], where each category represents a small time interval

(e.g. several months). This choice makes no assumptions on the shape of the survival distribution

because any shape can be approximated by a categorical with enough bins, and the number of

bins can be increased when more data becomes available [190, 224].

Model Training. Wemodel the data with survival analysis, which is the standard approach for

time-to-event data in the presence of censoring [173]. We assume right-censoring, meaning the

true time-to-event is greater than the observed time for censored patients. With 𝑥𝑖 as features, 𝑡𝑖
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as the possibly observed time-to-event, and 𝑐𝑖 as the possibly observed censoring time, we define

𝑢𝑖 = min(𝑡𝑖, 𝑐𝑖) as the observed time and 𝛿𝑖 as an indicator that is 1 if 𝑢𝑖 = 𝑡𝑖 and 0 if 𝑢𝑖 = 𝑐𝑖 . The

observed survival data is {𝑥𝑖, 𝑢𝑖, 𝛿𝑖}𝑁𝑖=1.

The statistical object of interest is 𝑝 (𝑡 | 𝑥), the conditional probability mass function of the time-

to-event given the input features. We estimate 𝑝 (𝑡 | 𝑥) using maximum likelihood estimation.

Under conditionally independent and noninformative censoring, the likelihood for model 𝑝𝜃 is

[225]:

𝐿(𝜃 ) =
𝑁∏
𝑖=1

𝑝𝜃 (𝑡𝑖 = 𝑢𝑖 | 𝑥𝑖)𝛿𝑖𝑆𝜃 (𝑢𝑖 | 𝑥𝑖) (1−𝛿𝑖 ), (7.1)

where 𝑆𝜃 (𝑡 | 𝑥𝑖) = 1 − 𝑝𝜃 (𝑡𝑖 ≤ 𝑡 | 𝑥𝑖) is acquired by summing the probability mass model 𝑝𝜃 .

We use a split of 90% training, 5% evaluation and 5% test data across patients such that the same

patient does not appear in multiple splits. Early stopping is used by assessing performance on

the evaluation set to prevent overfitting. See Appendix Appendix F.4 for hyperparameter details.

We describe the Framingham, Pooled Cohort equations, and PREVENT scores in appendix F.3.

The train, evaluation, and test sets for soft and hard CHD contain the same patients. To compute

test metrics and evaluation metrics for choosing feature sets, we use a subset of the data formed

by randomly dropping all but one visit per patient.

7.5.3 Evaluation

Evaluation Approach. To assess the role of features in transportability we train dozens of

models for soft CHD, using 63 different feature grouping combinations, at each hospital. We

evaluate all models on the evaluation and test sets of both institutions. We choose the best fea-

ture sets (with and without demographics) based the external evaluation concordance, obtaining

four feature sets and corresponding soft CHD models. We then train hard CHD models with

these four feature sets. These steps produce the four soft and four hard CHD models whose test
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metrics are in reported in section 7.2. We compute performance under the various metrics in

key subpopulations (e.g. Asian females and Black males) to assess whether within-institution

performance and transportability differs across subpopulations.

Metrics. We evaluate several discrimination and calibration metrics. For discrimination, we

compute concordance using the expected value of 𝑝𝜃 (𝑡 | 𝑥𝑖) as a predicted time, and checking

the ordering with respect to the true times. This ordering is known for all pairs (𝑖, 𝑗) where 𝑢𝑖

is uncensored and 𝑢 𝑗 > 𝑢𝑖 . The concordance is then the proportion of such correctly ordered

comparable pairs:

𝐶 =

∑𝑁
𝑖=1

∑𝑁
𝑗=1 1(E𝑝𝜃 [𝑡𝑖 | 𝑥𝑖] < E𝑝𝜃 [𝑡 𝑗 | 𝑥 𝑗 ])1(𝑢𝑖 < 𝑢 𝑗 )𝛿𝑖∑𝑁

𝑖=1
∑𝑁
𝑗=1 1(𝑢𝑖 < 𝑢 𝑗 )𝛿𝑖

(7.2)

We also compute concordance with expected value predictions replaced by modeled Cumulative

Distribution Function (CDF) values 𝐹𝜃 (𝑡 | 𝑥𝑖) := 𝑝𝜃 (𝑡𝑖 ≤ 𝑡 | 𝑥𝑖) at prediction horizons of 1 year,

5 years, and 10 years, and a weighted version to account for censoring. We chose these hori-

zons because they are key choices over which risk is often estimated for cardiovascular disease

[226].

For calibration, we compute inverse-weighted Brier score and binomial log likelihood at 1 year,

5 year and 10 years. These metrics check the overall fit of CDF 𝐹𝜃 , which assesses calibration. To

estimate these metrics under censoring, we employ the reweighting technique [214, 216]. which

reweights by the probabilities of the censoring time being larger than some time 𝜏 : 𝐺 (𝜏, 𝑥𝑖) :=

𝑝 (𝑐𝑖 > 𝜏 | 𝑥𝑖). For example, the weighted Brier Score is:

𝐵𝑆𝑤𝑡 (𝜏) =
1
𝑁

𝑁∑︁
𝑖=1

(1 − 𝐹𝜃 (𝜏 | 𝑥𝑖))2𝛿𝑖1(𝑢𝑖 < 𝜏)
𝐺 (𝑢𝑖, 𝑥𝑖)

+ 𝐹𝜃 (𝜏 | 𝑥𝑖)21(𝑢𝑖 > 𝜏)
𝐺 (𝜏, 𝑥𝑖)

. (7.3)

When 1 −𝐺 equals the censoring CDF, 𝐵𝑆𝑤𝑡 equals the Brier Score under no censoring. Approx-

imating𝐺 requires training time-to-censoring models; this mirrors the training of time-to-event
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models, but where now the target time is the censoring time, which is censored by observed

CHD times. The censoring model uses all features. We use NYULH’s censoring model to evalu-

ate all models on NYULH’s data, and vice versa for CUIMC. Further details and other metrics are

reported in Appendix F.4.

Notation for External Evaluation Definitions We have two institutions A and B where

models may be fit on datasets D𝐴 and D𝐵 . A conditional model is fit at each institution with

parameters 𝜃 and 𝜙 , respectively: 𝑀𝐴 = 𝑝𝐴
𝜃
(𝑡 | 𝑥) and 𝑀𝐵 = 𝑝𝐵

𝜙
(𝑡 | 𝑥). We may define a function

𝑓 (𝑀,D) which corresponds to a performance assessment of a fitmodel𝑀 evaluated on some data

sourceD. Examples of this function could be a negative log likelihood computation, concordance

or other performance metrics.

The Existing Approach to External Validation In the usual setup for clinical external val-

idation, the difference in performance of the same model at two institution is assessed. We define

this quantity as Δ𝑀𝐴 = 𝑓 (𝑀𝐴,D𝐴) − 𝑓 (𝑀𝐴,D𝐵). If 𝑓 is concordance, this amounts to assessing

the difference in concordance of a single model trained at institution A across data from both

institutions, as shown in fig. 7.6. A limitation of using this evaluation lies in that it assesses the

transportability of a model comparing performances on two different populations without any

consideration to difficulty of predicting in either population.

The Transport Gap We introduce the T-validation gap (T-gap), which measures the difference

between external performance and the known best-achievable performance on the external data,

using the same inputs, which we can think of as an empirical upper bound on performance at

the external institution. This quantity Δ
𝑡𝑔𝑎𝑝

D𝐴
= 𝑓 (𝑀𝐴,D𝐴) − 𝑓 (𝑀𝐵,D𝐴) compares two models on

a fixed dataset, and is taken as a performance metric for model𝑀𝐵 . This process is shown in Fig-

ure 7.6 on the right panel. The T-gap assesses transportability by comparing performances on the

same population, thereby correcting for the difficulty of prediction in different populations.
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Model Transported from Site A to B

Performance Threshold

T-gap (Our Approach)
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Clinical External Validation
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Site A Site B

Site A Data: "A
Model Trained at Site A: MA
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Performance of model A on Site B Data

Model Trained at Site B: MB Model Transported from Site B to A

Figure 7.6: Cross-Institutional Validation Enables More Specific Conclusions About Transporta-
bility. In T-validation, a CUIMC model (blue) is compared against the NYULH model (purple) at Site B,
rather than to the CUIMC model’s performance at Site A.
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8 | Discussion

The thesis presents a set of techniques and empirical results that enable better healthcare deci-

sions. In part one, we develop an understanding of why models fail to predict well when the

distribution shifts between training and testing and propose solutions for building models that

generalize ood with different levels of knowledge about the task. Part two makes it easier to

estimate effects on confounded data with IVs and extend causal inference to be able to use con-

founders specified as functions of variables that we want to intervene on. In part three, we built

CHD risk models from minimally curated ehr data that outperformed existing risk scores at the

hospital where they were trained and when transported externally. Such models are easy to run

on patient information collected in the natural course of a hospital visit to plan preventative

treatment. We outline future directions next.

8.1 Future

Flexible and Adaptive ood generalization. Existing ood generalization algorithms work

for specific kinds of distribution shifts, which may not capture important real-world settings.

For example, no single ood algorithm substantially outperforms empirical risk minimization on

all the problems in the WILDS benchmark [227]. Then, it is essential to develop algorithms for

ood generalization that are flexible enough to work for a wide variety of shifts. What if the en-

vironment at test time continuously shifts? The model then needs the capability to adaptively
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improve prediction with a few labeled or unlabeled examples at test time; test-time adaptation

algorithms exist [228] but are designed for fixed test distributions. There’s a reason to at least con-

ceptually divide the problem into the parts of inferring new shifts and adaptation; the inference

and adaptation steps can rely on information beyond the covariates. For example, in classifying

chest X-rays or MRIs, hospital information is available during training and for adaptation, often

in clinical process notes. Despite the conceptual division, a single model could handle multiple

kinds of side information by leveraging recent advances in large multi-modal modeling. An im-

portant direction here is to adapt to shifts by leveraging various kinds of side information via

large multi-modal models with the inference and adaptation steps folded into a single training

objective.

Safely leveraging rich ehrs with large AI models. Large ehr systems typically track pa-

tients for decades. Modeling from such a rich view of patient trajectories presents an opportunity

to improve health outcomes. However, ehrs are not designed for research, and confounding vari-

ables that support treatment decisions are often hidden in process or discharge notes. However,

as the providers typically know more than what is recorded in the vitals or lab values, collider

variables may also be recorded in the notes. Conditioning on such colliders creates a bias in the

inferred effects [193] or removes overlap between the treated and control groups. Leveraging

clinical notes without introducing additional bias may need new techniques. It would be inter-

esting to leverage techniques from chapter 2 that isolate stable correlations via independence

objectives to distill large language model (llm) representations of clinical notes into the right

variables to condition on.

Implicit biases in adapting large models. A foundational issue to building models from

large datasets in a trustworthy way is building and adapting large general models for specific

clinical tasks. Such adaptation either passes in labeled pairs as part of the prompt to exploit

in-context learning [229] or train on targeted data obtained by model-based filtering of a larger
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dataset [230, 231]. What if the data passed in the prompt contains shortcuts? One direction here

is to extend the study from chapter 4 to investigate implicit biases in-context learning when the

prompt contains shortcuts. Alternatively, what if the model used to filter data relies on spurious

correlations? Turning the independence constraints in chapter 2 to test for spuriousness would

be fruitful here. A different direction would be to train the model simultaneously on the filtered

data and on augmentations like nr from chapter 3 while weighting the loss of the former samples

with the inverse-probability from the latter samples.
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A | Appendices for chapter 2

A.1 Further details about NuRD and proofs

A.1.1 Details about NuRD

The algorithm boxes for reweighting-NuRD and generative-NuRD are given in algorithms 1 and

2.

Estimating and using the weights in reweighting-NuRD. In learning 𝑝𝑡𝑟 (y | z) for a high-

dimensional z, flexible models like deep neural networks can have zero training loss when the

model memorizes the training data. For a discrete y, such a model would output 𝑝𝑡𝑟 (y | z) =

1 for every sample in the training data. Then, the model’s weight estimates on the training

data are 𝑝 (y)/𝑝𝑡𝑟 (y | z) = 𝑝 (y). Weighting the training data with such estimates fails to break the

nuisance-label relationship because 𝑝𝑡𝑟 (y, z, x) 𝑝 (y)
𝑝𝑡𝑟 (y | z) = 𝑝𝑡𝑟 (y, z, x)𝑝 (y) ∝ 𝑝𝑡𝑟 (z | y)𝑝 (x | y, z).

To avoid such poor weight estimation, we employ a cross-fitting procedure: split the data into

𝐾 disjoint folds, and the weights for each fold are produced by a model trained and validated

on the rest of the folds. See algorithm 1 for details. In estimating loss for each batch under 𝑝 |=

during training, one can either weight the per-sample loss or produce the batches themselves via

weighted sampling from the data with replacement.
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Density-ratio trick in Distillation. The density-ratio trick for estimating mutual infor-

mation [11] involves Monte Carlo estimating the mutual information using a binary classifier.

Let ℓ = 1 be the pseudolabel for samples from 𝑝 |= (y, 𝑟𝛾 (x), z), and ℓ = 0 for samples from

𝑝 |= (y, 𝑟𝛾 (x))𝑝 |= (z). Then,

I𝑝 |=

( [𝑟𝛾 (x), y]; z) = E𝑝 |= (y,z,x) log
𝑝 |= (y, 𝑟𝛾 (x), z)

𝑝 |= (y, 𝑟𝛾 (x))𝑝 |= (z)
= E𝑝 |= (y,z,x) log

𝑝 (ℓ = 1 | y, z, 𝑟𝛾 (x))
1 − 𝑝 (ℓ = 1 | y, z, 𝑟𝛾 (x))

.

With parameters 𝜙 , we estimate the conditional probability with a critic model, denoted 𝑝𝜙 .

Accounting for shifts in the marginal label distribution. NuRD relies on the assump-

tion in eq. (2.1) that distributions in the nuisance-varying family F have the same marginal

𝑝 (y). What happens if 𝑝𝑡𝑒 comes from a nuisance-varying family with a different marginal?

Formally, with 𝑝𝑡𝑟 ∈ F , let 𝑝𝑡𝑒 belong to a nuisance-varying family F ′ = {𝑝𝑡𝑒 (y)/𝑝𝑡𝑟 (y)𝑝𝐷 (y, z, x) =

𝑝𝑡𝑒 (y)𝑝𝐷 (z | y)𝑝 (x | y, z)} where 𝑝𝐷 ∈ F . Given knowledge of the marginal distribution 𝑝𝑡𝑒 (y),

note that theweighted training distribution 𝑝𝑡𝑟 ′ = 𝑝𝑡𝑒 (y)/𝑝𝑡𝑟 (y)𝑝𝑡𝑟 (y, z, x) lives inF ′. RunningNuRD

on 𝑝𝑡𝑟 ′ produces predictive models that generalize to 𝑝𝑡𝑒 . To see this, note

𝑝′ |= (y, z, x) = 𝑝′𝑡𝑟 (y)𝑝′𝑡𝑟 (z)𝑝 (x | y, z)

is a nuisance-randomized distribution in F ′. With R(𝑝′ |= ) as the uncorrelating set of represen-

tations defined with respect to 𝑝′ |= , i.e. 𝑟 ′(x) ∈ R(𝑝′ |= ) =⇒ y |= 𝑝′ |= z | 𝑟 ′, lemma 1 and theorem 1

hold. It follows that running NuRD on samples from 𝑝𝑡𝑒 (y)/𝑝𝑡𝑟 (y)𝑝𝑡𝑟 (y, z, x) produces an estimate

of 𝑝′ |= (y | 𝑟 ′(x)) (𝑟 ′(x) ∈ R(𝑝′ |= )) with the maximal performance on every 𝑝𝑡𝑒 ∈ F ′ if a maximally

blocking 𝑟 ∗(x) ∈ R(𝑝′ |= ).
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A.1.2 Extended related work

Domain generalization methods aim to build models with the goal of generalizing to unseen test

data different from the training data [3]. Recent work uses multiple sufficiently different envi-

ronments to generalize to unseen test data that lies in the support of the given environments or

subgroups [4, 12, 13, 19, 20, 21, 22, 23, 24]. Chang et al. [232] develop a multi-environment ob-

jective to interpret neural network predictions that are robust to spurious correlations. Similarly,

domain-invariant learning and related methods build representations that are independent of the

domain [25, 26, 27, 28, 29, 233].

Due to its focus on nuisances,NuRDworkswith data from a single environment. As in section 2.4,

to split the data into multiple environments, one can split the data into groups based on the value

of the nuisance. Then, domain-invariant methods build representations that are independent

of the nuisance and under nuisance-induced spurious correlations these representations may

ignore semantic features because they are correlated with the nuisance. Domain adaptation [234,

235, 236] methods assume access to unlabelled test data which NuRD does not require. We do

not assume access to the test data because nuisance-label relationships can change over time or

geography which, in turn, changes the the target distribution.

Taking a distributional robustness [31] approach, Sagawa et al. [16] applied group-DRO to train-

ing data where the relative size of certain groups in the training data results in spurious correla-

tions. Given these groups, group-DRO optimizes the worst error across distributions formed by

weighted combinations of the groups. With high dimensional z as in our experiments, defining

groups based on the value of the nuisance typically results in groups with at most one sample;

with such groups, group-DRO will encourage memorizing the training data. Other work aims to

minimize worst subgroup error with a finite number of fixed but unknown subgroups [32, 33]; as

subgroups are unknown, they only find an approximate minimizer of the worst subgroup error

in general even with infinite data.
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Algorithm 1: Reweighting-NuRD
Input: Training data 𝐷 , specification of the weight model 𝑝𝛼 (y | z) which estimates 𝑝𝑡𝑟 (y | z) , representation model 𝑟𝛾 (x) , predictive model 𝑝𝜃 (y | 𝑟𝛾 (x) ) and critic model

𝑝𝜙 (ℓ | y, z, 𝑟𝛾 (x) ) ; regularization coefficient 𝜆, number of iterations for the weight model 𝑁𝑤 , for the predictive model and representation 𝑁𝑝 , and the number of critic model
steps 𝑁𝑐 . Number of folds 𝐾 .

Result: Return estimate of 𝑝 |= (y | 𝑟𝛾 (x) ) for 𝑟𝛾 ∈ R(𝑝 |= ) with maximal information with y.
Nuisance Randomization step;
Estimate the marginal distribution over the label 𝑝 (y) ;
Split data into 𝐾 equal disjoint folds, 𝐷 = {𝐹𝑖 }𝑖≤𝐾 , for cross-fitting;
for each fold 𝐹𝑖 , 𝑖 ≤ 𝐾 do // (cross-fitting)

Initialize 𝑝𝛼 (y | z) ;
for 𝑁𝑤 iterations do

Sample training batch from the rest of the folds (𝐹−𝑖 ) : 𝐵 ∼ 𝐹−𝑖 ;
Compute likelihood

∑
(y𝑖 ,z𝑖 ) ∈𝐵 log𝑝𝛼 (y𝑖 | z𝑖 ) ;

Update 𝛼 to maximize this likelihood (via Adam for example);
end

Produce weights 𝑤𝑖 = �̂� (y𝑖 )/𝑝𝛼 (y𝑖 | z𝑖 ) for each (y𝑖 , z𝑖 , x𝑖 ) ∈ 𝐹𝑖 ;
end

Distillation step;
Initialize 𝑟𝛾 , 𝑝𝜃 , 𝑝𝜙 ;
for 𝑁𝑝 iterations do

for 𝑁𝑐 iterations do

Sample training batch 𝐵 ∼ 𝐷 and sample independent copies of z marginally: z̃𝑖 ∼ 𝐷 ;
Construct batch �̃� = {y𝑖 , z̃𝑖 , x𝑖 };
Compute likelihood ∑︁

(y𝑖 ,z𝑖 ,x𝑖 ) ∈𝐵
𝑤𝑖 log𝑝𝜙 (ℓ = 1 | y𝑖 , z𝑖 , 𝑟𝛾 (x𝑖 ) ) +

∑︁
(y𝑖 ,z̃𝑖 ,x𝑖 ) ∈�̃�

𝑤𝑖 log𝑝𝜙 (ℓ = 0 | y𝑖 , z̃𝑖 , 𝑟𝛾 (x𝑖 ) ) .

Update 𝜙 to maximize likelihood (via Adam for example);
end

Sample training batch 𝐵 ∼ 𝐷 ;
Compute distillation objective using the density-ratio trick

1
|𝐵 |

∑︁
(x𝑖 ,y𝑖 ,z𝑖 ) ∈𝐵

𝑤𝑖

[
log𝑝𝜃 (y𝑖 | 𝑟𝛾 (x𝑖 ) ) − 𝜆 log

𝑝𝜙 (ℓ = 1 | y𝑖 , z𝑖 , 𝑟𝛾 (x𝑖 ) )
1 − 𝑝𝜙 (ℓ = 1 | y𝑖 , z𝑖 , 𝑟𝛾 (x𝑖 ) )

]
.

Update 𝜃,𝛾 to maximize objective (via Adam for example).
end

Return 𝑝𝜃 (y | 𝑟𝛾 (x) ) .

In contrast, NuRD builds predictive models with performance guarantees across all test distribu-

tions (that factorize as eq. (2.1)) using knowledge of the nuisance. Given the nuisance, existence

of a finite number of subgroups maps to an additional discreteness assumption on the nuisance

variable; NuRD works with general high-dimensional nuisances. Wang and Culotta [237] focus

on sentiment analysis of reviews and build a dataset where the nuisance label relationship is

destroyed by swapping words known to be associated with sentiment of the review, with their

antonyms. This is equivalent to using domain-specific knowledge to sample from 𝑝 (x | y, z)

in generative NuRD. NuRD requires no domain-specific knowledge about the generative model

𝑝 (x | y, z).
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Algorithm 2: Generative-NuRD
Input: Training data𝐷 , specification of the generative model 𝑝𝛽 (x | y, z) that estimates 𝑝𝑡𝑟 (x | y, z) , representation model 𝑟𝛾 (x) , predictive model 𝑝𝜃 (y | 𝑟𝛾 (x) ) , and critic model

𝑝𝜙 (ℓ | y, z, 𝑟𝛾 (x) ) ; regularization coefficient 𝜆, number of iterations for the weight model 𝑁𝑤 , number of iterations for the predictive model and representation 𝑁𝑝 , number

of critic steps 𝑁𝑐 .

Result: Return estimate of 𝑝 |= (y | 𝑟𝛾 (x) ) for 𝑟𝛾 ∈ R(𝑝 |= ) with maximal information with y.

Nuisance Randomization step;

for 𝑁𝑤 iterations do

Sample training batch 𝐵 ∼ 𝐷 ;

Compute likelihood
∑

(y𝑖 ,z𝑖 ,x𝑖 ) ∈𝐵 log𝑝𝛽 (x𝑖 | z𝑖 , y𝑖 ) (or some generative objective);

Update 𝛽 to maximize objective above;

end

Estimate the marginal distribution over the label 𝑝 (y) ;

Sample independent label and nuisance y𝑖 ∼ 𝐷, z𝑗 ∼ 𝐷 , and then sample x̃ ∼ 𝑝𝛽 (x | y𝑖 , z𝑗 ) ;

Construct dataset �̂� using triples {y𝑘 = y𝑖 , z𝑘 = z𝑗 , x𝑘 = x̂};

Distillation step;

Initialize 𝑟𝛾 , 𝑝𝜃 , 𝑝𝜙 ;

for 𝑁𝑝 iterations do

for 𝑁𝑐 iterations do

Sample training batch 𝐵 ∼ 𝐷 and sample independent copies of z marginally: z̃𝑖 ∼ 𝐷 ;

Construct batch �̃� = {y𝑖 , z̃𝑖 , x𝑖 } using 𝐵;

Compute likelihood ∑︁
(y𝑖 ,z𝑖 ,x𝑖 ) ∈𝐵

𝑤𝑖 log𝑝𝜙 (ℓ = 1 | y𝑖 , z𝑖 , 𝑟𝛾 (x𝑖 ) ) +
∑︁

(y𝑖 ,z̃𝑖 ,x𝑖 ) ∈�̃�
𝑤𝑖 log𝑝𝜙 (ℓ = 0 | y𝑖 , z̃𝑖 , 𝑟𝛾 (x𝑖 ) ) .

Update 𝜙 to maximize likelihood (via Adam for example);

end

Sample batch from generated training data 𝐵 ∼ �̃� ;

Compute distillation objective using the density-ratio trick

1
|𝐵 |

∑︁
(x𝑘 ,y𝑘 ,z𝑘 ) ∈𝐵

[
log𝑝𝜃 (y𝑘 | 𝑟𝛾 (x𝑘 ) ) − 𝜆 log

𝑝𝜙 (ℓ = 1 | y𝑘 , z𝑘 , 𝑟𝛾 (x𝑘 ) )
1 − 𝑝𝜙 (ℓ = 1 | y𝑘 , z𝑘 , 𝑟𝛾 (x𝑘 ) )

]
;

Update 𝜃,𝛾 to maximize objective (via Adam for example).

end

Return 𝑝𝜃 (y | 𝑟𝛾 (x) ) .
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A.1.3 Key lemmas for uncorrelating representations

In this lemma, we derive the performance of the nuisance-randomized conditional 𝑝 |= (y | 𝑟 (x))

for any 𝑟 ∈ R(𝑝 |= ) and show that it is at least as good as predicting without covariates on any

𝑝𝑡𝑒 ∈ F .

Lemma 1. Let F be a nuisance-varying family (eq. (2.1)) and 𝑝 |= = 𝑝 (y)𝑝𝑡𝑟 (z)𝑝 (x | y, z) for some

𝑝𝑡𝑟 ∈ F . Assume ∀𝑝𝐷 ∈ F , 𝑝𝐷 (z | y) is bounded. If 𝑟 (x) ∈ R(𝑝 |= ), then ∀𝑝𝑡𝑒 ∈ F , the performance

of 𝑝 |= (y | 𝑟 (x)) is

Perf𝑝𝑡𝑒 (𝑝 |= (y | 𝑟 (x))) = Perf𝑝𝑡𝑒 (𝑝 (y)) + E
𝑝𝑡𝑒 (y,z)

KL

[
𝑝 (𝑟 (x) | y, z) ∥ E𝑝 (y)𝑝 (𝑟 (x) | y, z)

]
. (A.1)

As the KL-divergence is non-negative, Perf𝑝𝑡𝑒 (𝑝 |= (y | 𝑟 (x))) ≥ Perf𝑝𝑡𝑒 (𝑝 (y)).

Proof. (of lemma 1) Note that the identity E𝑝 (x)𝑔 ◦ 𝑓 (x) = E𝑝 (𝑓 (x))𝑔 ◦ 𝑓 (x) implies that

E𝑝𝑡𝑒 (y,x) log
𝑝𝑡𝑒 (y)

𝑝 |= (y | 𝑟 (x)) = E𝑝𝑡𝑒 (y,𝑟 (x)) log
𝑝𝑡𝑒 (y)

𝑝 |= (y | 𝑟 (x)) .

As 𝑝 |= (z | y) = 𝑝𝑡𝑟 (z) > 0 on z ∈ 𝑆F and y s.t. 𝑝 (y) > 0 is bounded, lemma 3 implies that

𝑝 |= (y, z, x) > 0 ⇔ 𝑝𝑡𝑒 (y, z, x) > 0. This fact implies the following KL terms and expectations of

log-ratios are all well-defined:

−Perf𝑝𝑡𝑒 (𝑝 |= (y | 𝑟 (x))) = E𝑝𝑡𝑒 (x)KL [𝑝𝑡𝑒 (y | x) ∥ 𝑝 |= (y | 𝑟 (x))]

= E𝑝𝑡𝑒 (y,x) log
𝑝𝑡𝑒 (y | x)𝑝𝑡𝑒 (y)
𝑝 |= (y | 𝑟 (x))𝑝𝑡𝑒 (y)

= E𝑝𝑡𝑒 (y,x) log
𝑝𝑡𝑒 (y | x)
𝑝𝑡𝑒 (y)

+ E𝑝𝑡𝑒 (y,x) log
𝑝𝑡𝑒 (y)

𝑝 |= (y | 𝑟 (x))

= E𝑝𝑡𝑒 (y,x) log
𝑝𝑡𝑒 (y | x)
𝑝𝑡𝑒 (y)

+ E𝑝𝑡𝑒 (y,𝑟 (x)) log
𝑝 (y)

𝑝 |= (y | 𝑟 (x))

= E𝑝𝑡𝑒 (x)KL [𝑝𝑡𝑒 (y | x) ∥ 𝑝 |= (y)] + E𝑝𝑡𝑒 (y,z,𝑟 (x)) log
𝑝 (y)

𝑝 |= (y | 𝑟 (x))
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= E𝑝𝑡𝑒 (x)KL [𝑝𝑡𝑒 (y | x) ∥ 𝑝 |= (y)] + E𝑝𝑡𝑒 (y,z)E𝑝 |= (𝑟 (x) | y,z) log
𝑝 |= (y)

𝑝 |= (y | 𝑟 (x))

= E𝑝𝑡𝑒 (x)KL [𝑝𝑡𝑒 (y | x) ∥ 𝑝 |= (y)] + E𝑝𝑡𝑒 (y,z)E𝑝 |= (𝑟 (x) | y,z) log
𝑝 |= (y | z)

𝑝 |= (y | 𝑟 (x), z)

= E𝑝𝑡𝑒 (x)KL [𝑝𝑡𝑒 (y | x) ∥ 𝑝 |= (y)] + E𝑝𝑡𝑒 (y,z)E𝑝 |= (𝑟 (x) | y,z) log
𝑝 |= (y | z)𝑝 |= (𝑟 (x) | z)

𝑝 |= (y, 𝑟 (x) | z)

= E𝑝𝑡𝑒 (x)KL [𝑝𝑡𝑒 (y | x) ∥ 𝑝 |= (y)] + E𝑝𝑡𝑒 (y,z)E𝑝 |= (x | y,z) log
𝑝 |= (𝑟 (x) | z)
𝑝 |= (𝑟 (x) | y, z)

= E𝑝𝑡𝑒 (x)KL [𝑝𝑡𝑒 (y | x) ∥ 𝑝 |= (y)] − E𝑝𝑡𝑒 (y,z)E𝑝 |= (𝑟 (x) | y,z) log
𝑝 |= (𝑟 (x) | y, z)
𝑝 |= (𝑟 (x) | z)

= E𝑝𝑡𝑒 (x)KL [𝑝𝑡𝑒 (y | x) ∥ 𝑝 |= (y)] − E𝑝𝑡𝑒 (y,z)KL [𝑝 |= (𝑟 (x) | y, z) ∥ 𝑝 |= (𝑟 (x) | z)]

Here, 𝑝 |= (𝑟 (x) | y, z) = 𝑝 (𝑟 (x) | y, z) as 𝑝 |= (x | y, z) = 𝑝 (x | y, z) by definition of the nuisance-

varying family. The proof follows by noting that the gap in performance of 𝑝 |= (y | 𝑟 (x)) and 𝑝 (y)

equals an expected KL term:

−Perf𝑝𝑡𝑒 (𝑝 (y)) + Perf𝑝𝑡𝑒 (𝑝 |= (y | 𝑟 (x))) = E𝑝𝑡𝑒 (y,z)KL [𝑝 |= (𝑟 (x) | y, z) ∥ 𝑝 |= (𝑟 (x) | z)]

= E𝑝𝑡𝑒 (y,z)KL
[
𝑝 (𝑟 (x) | y, z) ∥ E𝑝 (y)𝑝 (𝑟 (x) | y, z)

]
.

(A.2)

Rearranging these terms completes the proof. □

Lemma 2 shows that uncorrelating sets are the same for any nuisance-randomized distribution

and that the conditional distribution of the label given an uncorrelating representations is the

same for all nuisance-randomized distributions.

Lemma 2. Let F be a nuisance-varying family with 𝑝 (y) and 𝑝 (x | y, z) and nuisance space 𝑆F .

Consider distributions 𝑝 |= ,1(y, z, x) = 𝑝 (y)𝑝 |= ,1(z)𝑝 (x | y, z) and 𝑝 |= ,2(y, z, x) = 𝑝 (y)𝑝 |= ,2(z)𝑝 (x | y, z)

such that 𝑝 |= ,1(z) > 0, 𝑝 |= ,2(z) > 0 for z ∈ 𝑆F , and 𝑝 |= ,1(y, z, x) > 0 ⇐⇒ 𝑝 |= ,2(y, z, x) > 0. Then, the
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uncorrelating sets are equal R(𝑝 |= ,1) = R(𝑝 |= ,2) and for any 𝑟 (x) ∈ R(𝑝 |= ,1),

𝑝 |= ,1(y | 𝑟 (x)) = 𝑝 |= ,2(y | 𝑟 (x)) .

Proof. By the assumption that 𝑝 |= ,1(y, z, x) > 0 ⇔ 𝑝 |= ,2(y, z, x) > 0, there exist some z such that

𝑝 |= ,1(z | 𝑟 (x)) > 0 and 𝑝 |= ,2(z | 𝑟 (x)) > 0. With such z, for any 𝑟 ∈ R(𝑝 |= ,1),

𝑝 |= ,1(y | 𝑟 (x)) = 𝑝 |= ,1(y | 𝑟 (x), z)

= 𝑝 (y)𝑝 (𝑟 (x) | y, z)
𝑝 |= ,1(𝑟 (x) | z)

= 𝑝 (y) 𝑝 (𝑟 (x) | y, z)
E𝑝 |= ,1 (y | z) [𝑝 |= ,1(𝑟 (x) | z, y)]

= 𝑝 (y) 𝑝 (𝑟 (x) | y, z)
E𝑝 (y)𝑝 (𝑟 (x) | z, y)

= 𝑝 (y) 𝑝 (𝑟 (x) | y, z)
E𝑝 |= ,2 (y | z)𝑝 (𝑟 (x) | z, y)

= 𝑝 (y)𝑝 (𝑟 (x) | y, z)
𝑝 |= ,2(𝑟 (x) | z)

= 𝑝 |= ,2(y | 𝑟 (x), z)

Taking expectation on both sides with respect to 𝑝 |= ,2(z | 𝑟 (x)),

E𝑝 |= ,2 (z | 𝑟 (x))𝑝 |= ,1(y | 𝑟 (x)) = E𝑝 |= ,2 (z | 𝑟 (x))𝑝 |= ,2(y | 𝑟 (x), z) = 𝑝 |= ,2(y | 𝑟 (x)) . (A.3)

Note that E𝑝 |= ,2 (z | 𝑟 (x))𝑝 |= ,1(y | 𝑟 (x)) = 𝑝 |= ,1(y | 𝑟 (x)), which implies

𝑝 |= ,1(y | 𝑟 (x)) = 𝑝 |= ,1(y | 𝑟 (x), z) = 𝑝 |= ,2(y | 𝑟 (x), z) = 𝑝 |= ,2(y | 𝑟 (x)),

completing one part of the proof, 𝑝 |= ,1(y | 𝑟 (x)) = 𝑝 |= ,2(y | 𝑟 (x)).

Further, we showed y |= 𝑝 |= ,1z | 𝑟 (x) =⇒ y |= 𝑝 |= ,2z | 𝑟 (x) which means 𝑟 (x) ∈ R(𝑝 |= ,2). As the above
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proof holds with 𝑝 |= ,1, 𝑝 |= ,2 swapped with each other, 𝑟 (x) ∈ R(𝑝 |= ,1) ⇐⇒ 𝑟 (x) ∈ R(𝑝 |= ,2).

□

The next lemma shows that every member of the nuisance-varying family is positive over the

same set of y, z, x and is used in proposition 1 and lemma 1.

Lemma 3. Let the nuisance-varying family F be defined with 𝑝 (y), 𝑝 (x | y, z) and nuisance space

𝑆F . Let distributions 𝑝𝐷 = 𝑝 (y)𝑝𝐷 (z | y)𝑝 (x | z, y) and 𝑝′
𝐷
= 𝑝 (y)𝑝′

𝐷
(z | y)𝑝 (x | z, y) be such that

𝑝𝐷 (z | y), 𝑝′𝐷 (z | y) > 0 for all y such that 𝑝 (y) > 0 and z ∈ 𝑆F . Further assume 𝑝𝐷 (z | y), 𝑝′𝐷 (z | y)

are bounded. Then, 𝑝𝐷 (y, z, x) > 0 ⇔ 𝑝′
𝐷
(y, z, x) > 0.

Proof. For any z ∈ 𝑆F and any y such that 𝑝 (y) > 0, 𝑝𝐷 (z | y) > 0 and 𝑝′
𝐷
(z | y)

𝑝𝐷 (z | y) > 0,

𝑝′𝐷 (y, z, x) = 𝑝 (x | y, z)𝑝′𝐷 (z | y)𝑝 (y) = 𝑝 (x | y, z)𝑝𝐷 (z | y)𝑝 (y)
𝑝′
𝐷
(z | y)

𝑝𝐷 (z | y)
= 𝑝𝐷 (y, z, x)

𝑝′
𝐷
(z | y)

𝑝𝐷 (z | y)
.

(A.4)

Thus, for all z in the nuisance space 𝑆F and any y such that 𝑝 (y) > 0,

𝑝′𝐷 (y, z, x) > 0 ⇐⇒ 𝑝𝐷 (y, z, x) > 0.

As z only takes values in the nuisance space 𝑆F , when 𝑝 (y) = 0,

𝑝′𝐷 (y, z, x) = 𝑝𝐷 (y, z, x) = 0.

Together, the two statements above imply

𝑝𝐷 (y, z, x) > 0 ⇔ 𝑝′𝐷 (y, z, x) > 0.

□
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A.1.4 Optimal uncorrelating representations

Theorem 1. Let 𝑟 ∗ ∈ R(𝑝 |= ) be maximally blocking:

∀𝑟 ∈ R(𝑝 |= ), y |= 𝑝 |= 𝑟 (x) | z, 𝑟 ∗(x).

Then,

1.

(
Simultaneous optimality

)
∀𝑝𝑡𝑒 ∈ F , ∀𝑟 ∈ R(𝑝 |= ), Perf𝑝𝑡𝑒 (𝑟 ∗(x)) ≥ Perf𝑝𝑡𝑒 (𝑟 (x)) .

2.

(
Information maximality

)
∀𝑟 (x) ∈ R(𝑝 |= ), I𝑝 |= (y; 𝑟 ∗(x)) ≥ I𝑝 |= (y; 𝑟 (x)) .

3.

(
Information maximality implies simultaneous optimality

)
∀𝑟 ′ ∈ R(𝑝 |= ),

I𝑝 |= (y; 𝑟 ′(x)) = I𝑝 |= (y; 𝑟 ∗(x)) =⇒ ∀𝑝𝑡𝑒 ∈ F , Perf𝑝𝑡𝑒 (𝑟 ∗(x)) = Perf𝑝𝑡𝑒 (𝑟 ′(x)) .

Proof. (proof for theorem 1)

We first prove that for any pair 𝑟, 𝑟2 ∈ R(𝑝 |= ) such that 𝑟2 blocks 𝑟 , 𝑟 (x) |= 𝑝 |= y | z, 𝑟2(x), 𝑟2 dom-

inates the performance of 𝑟 on every 𝑝𝑡𝑒 ∈ F . The simultaneously optimality of the maximally

blocking representationwill follow. For readability, let ℓ (𝑟2) = E𝑝𝑡𝑒 (x)KL [𝑝𝑡𝑒 (y | x) ∥ 𝑝 |= (y | 𝑟2(x))].

We will show that

E𝑝𝑡𝑒 (x)KL [𝑝𝑡𝑒 (y | x) ∥ 𝑝 |= (y | 𝑟 (x))] ≥ ℓ (𝑟2).

We will use the following identity which follows from the fact that 𝑝 (x | y, z) does not change

between distributions in the data generating process eq. (2.1):

𝑝𝐷 (𝑟2(x) | y, z, 𝑟 (x)) =
𝑝𝐷 (𝑟2(x), 𝑟 (x) | y, z)
𝑝𝐷 (𝑟 (x) | y, z)

=
𝑝 (𝑟2(x), 𝑟 (x) | y, z)
𝑝 (𝑟 (x) | y, z)
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= 𝑝 (𝑟2(x) | y, z, 𝑟 (x)) .

Next, we will show that

E𝑝𝑡𝑒 (x)KL [𝑝𝑡𝑒 (y | x) ∥ 𝑝 |= (y | 𝑟 (x))]

= ℓ (𝑟2) + E𝑝𝑡𝑒 (y,z,𝑟 (x))KL [𝑝 |= (𝑟2(x) | y, z, 𝑟 (x)) ∥ 𝑝 |= (𝑟2(x) | 𝑟 (x), z)] .

The steps are similar to lemma 1’s proof

E𝑝𝑡𝑒 (x)KL [𝑝𝑡𝑒 (y | x) ∥ 𝑝 |= (y | 𝑟 (x))] = E𝑝𝑡𝑒 (y,x) log
𝑝𝑡𝑒 (y | x)

𝑝 |= (y | 𝑟2(x))
+ E𝑝𝑡𝑒 (y,x) log

𝑝 |= (y | 𝑟2(x))
𝑝 |= (y | 𝑟 (x))

= ℓ (𝑟2) + E𝑝𝑡𝑒 (y,𝑟 (x),𝑟2 (x)) log
𝑝 |= (y | 𝑟2(x))
𝑝 |= (y | 𝑟 (x))

= ℓ (𝑟2) + E𝑝𝑡𝑒 (y,z,𝑟 (x),𝑟2 (x)) log
𝑝 |= (y | 𝑟2(x), z)
𝑝 |= (y | 𝑟 (x), z) {as 𝑟, 𝑟2 ∈ R(𝑝 |= )}

= ℓ (𝑟2) + E𝑝𝑡𝑒 (y,z,𝑟 (x),𝑟2 (x)) log
𝑝 |= (y | 𝑟2(x), 𝑟 (x), z)
𝑝 |= (y | 𝑟 (x), z) {y |= 𝑝 |= 𝑟 (x) | z, 𝑟2(x)}

= ℓ (𝑟2) + E𝑝𝑡𝑒 (y,z,𝑟 (x),𝑟2 (x)) log
𝑝 |= (y, 𝑟2(x) | 𝑟 (x), z)

𝑝 |= (y | 𝑟 (x), z)𝑝 |= (𝑟2(x) | 𝑟 (x), z)

= ℓ (𝑟2) + E𝑝𝑡𝑒 (y,z,𝑟 (x),𝑟2 (x)) log
𝑝 |= (𝑟2(x) | y, 𝑟 (x), z)
𝑝 |= (𝑟2(x) | 𝑟 (x), z)

= ℓ (𝑟2) + E𝑝𝑡𝑒 (y,z,𝑟 (x))E𝑝𝑡𝑒 (𝑟2 (x) | y,z,𝑟 (x)) log
𝑝 |= (𝑟2(x) | y, 𝑟 (x), z)
𝑝 |= (𝑟2(x) | 𝑟 (x), z)

= ℓ (𝑟2) + E𝑝𝑡𝑒 (y,z,𝑟 (x))KL [𝑝 |= (𝑟2(x) | y, z, 𝑟 (x)) ∥ 𝑝 |= (𝑟2(x) | 𝑟 (x), z)]

Noting that KL is non-negative and that Perf is negative-KL proves the theorem:

E𝑝𝑡𝑒 (x)KL [𝑝𝑡𝑒 (y | x) ∥ 𝑝 |= (y | 𝑟2(x))] ≤ E𝑝𝑡𝑒 (x)KL [𝑝𝑡𝑒 (y | x) ∥ 𝑝 |= (y | 𝑟 (x))] . (A.5)
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It follows that for a maximally blocking 𝑟 ∗

∀𝑟 ∈ R(𝑝 |= ) E𝑝𝑡𝑒 (x)KL [𝑝𝑡𝑒 (y | x) ∥ 𝑝 |= (y | 𝑟 ∗(x))] ≤ E𝑝𝑡𝑒 (x)KL [𝑝𝑡𝑒 (y | x) ∥ 𝑝 |= (y | 𝑟 (x))] .

As performance is negative KL, the proof follows that 𝑟 ∗ dominates 𝑟 in performance. This con-

cludes the first part of the proof.

For the second part, we prove information maximality of a maximally blocking 𝑟 ∗(x) ∈ R(𝑝 |= ).

The proof above shows that the model 𝑝 |= (y | 𝑟 ∗(x)) performs at least as well as 𝑝 |= (y | 𝑟 (x)) for

any 𝑟 (x) ∈ R(𝑝 |= ) on any 𝑝𝑡𝑒 ∈ F . We characterize the gap in performance between 𝑝 |= (y | 𝑟 ∗(x))

and 𝑝 |= (y | 𝑟 (x)) for any 𝑟 (x) ∈ R(𝑝 |= ) as the following conditional mutual information term:

E𝑝 |= (y,z,𝑟 (x))KL [𝑝 |= (𝑟 ∗(x) | y, z, 𝑟 (x)) ∥ 𝑝 |= (𝑟 ∗(x) | 𝑟 (x), z)] = I𝑝 |= (𝑟 ∗(x); y | z, 𝑟 (x)) .

The entropy decomposition of conditional mutual information (with H𝑞 (·) as the entropy under

a distribution 𝑞) gives two mutual information terms.

E𝑝 |= (y,z,𝑟 (x))KL [𝑝 |= (𝑟 ∗(x) | y, z, 𝑟 (x)) ∥ 𝑝 |= (𝑟 ∗(x) | 𝑟 (x), z)] = I𝑝 |= (𝑟 ∗(x); y | z, 𝑟 (x)),

= H𝑝 |= (y | z, 𝑟 (x)) − H𝑝 |= (y | z, 𝑟 (x), 𝑟 ∗(x))

= H𝑝 |= (y | z, 𝑟 (x)) − H𝑝 |= (y | z, 𝑟 ∗(x)) {y |= 𝑝 |= 𝑟 (x) | z, 𝑟 ∗(x)}

= H𝑝 |= (y | 𝑟 (x)) − H𝑝 |= (y | 𝑟 ∗(x)) {𝑟, 𝑟 ∗ ∈ R(𝑝 |= )}

= H𝑝 |= (y | 𝑟 (x)) − H𝑝 |= (y) + H𝑝 |= (y) − H𝑝 |= (y | 𝑟 ∗(x))

= I𝑝 |= (y; 𝑟 ∗(x)) − I𝑝 |= (y, 𝑟 (x)) .
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This difference is non-negative for any 𝑟 ∈ R(𝑝 |= ) which proves the second part of the theorem:

I𝑝 |= (y; 𝑟 ∗(x)) − I𝑝 |= (y, 𝑟 (x)) = I𝑝 |= (𝑟 ∗(x); y | z, 𝑟 (x)) ≥ 0.

For the third part, note that any representation 𝑟 ′ which satisfies I𝑝 |= (y; 𝑟 ∗(x)) = I𝑝 |= (y, 𝑟 ′(x))

(information-equivalence) also satisfies

I𝑝 |= (y; 𝑟 ∗(x) | z, 𝑟 ′(x)) = 0 =⇒ y |= 𝑝 |= 𝑟
∗(x) | z, 𝑟 ′(x) .

Under this condition, eq. (A.5) implies

E𝑝𝑡𝑒 (x)KL [𝑝𝑡𝑒 (y | x) ∥ 𝑝 |= (y | 𝑟 ∗(x))] ≥ E𝑝𝑡𝑒 (x)KL [𝑝𝑡𝑒 (y | x) ∥ 𝑝 |= (y | 𝑟 ′(x))] .

However, as 𝑟 ′ ∈ R(𝑝 |= ) and that 𝑟 ∗(x) is maximally blocking, which (by the proof above) implies

E𝑝𝑡𝑒 (x)KL [𝑝𝑡𝑒 (y | x) ∥ 𝑝 |= (y | 𝑟 ∗(x))] ≤ E𝑝𝑡𝑒 (x)KL [𝑝𝑡𝑒 (y | x) ∥ 𝑝 |= (y | 𝑟 ′(x))] .

The only way both these conditions hold is if

E𝑝𝑡𝑒 (x)KL [𝑝𝑡𝑒 (y | x) ∥ 𝑝 |= (y | 𝑟 ∗(x))] = E𝑝𝑡𝑒 (x)KL [𝑝𝑡𝑒 (y | x) ∥ 𝑝 |= (y | 𝑟 ′(x))] .

This completes the proof that for any 𝑟 ′ ∈ R(𝑝 |= ) that is information-equivalent to 𝑟 ∗(x) under

𝑝 |= , the model 𝑝 |= (y | 𝑟 ′(x)) has the same performance as 𝑝 |= (y | 𝑟 ∗(x)) for every 𝑝𝑡𝑒 ∈ F , and

consequently, 𝑟 ′ is also optimal.

□
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A.1.5 Minimax optimality

Proposition 1. Consider a nuisance-varying family F (eq. (2.1)) such that for some 𝑝𝑡𝑟 ∈ F there

exists a distribution 𝑝 |= ∈ F such that 𝑝 |= = 𝑝 (y)𝑝𝑡𝑟 (z)𝑝 (x | y, z) ∈ F . Let F satisfy

y ̸|= 𝑝𝐷z =⇒ ∃𝑝′𝐷 ∈ F 𝑠 .𝑡 .
[
E𝑝′

𝐷
(x)KL

[
𝑝′𝐷 (y | x) ∥ 𝑝𝐷 (y | x)

]
− I𝑝′

𝐷
(x; y)

]
> 0. (A.6)

If y |= 𝑝 |= z | x, then 𝑝 |= (y | x) is minimax optimal :

𝑝 |= (y | x) = argmin
𝑝𝐷 (y | x);𝑝𝐷∈F

max
𝑝′
𝐷
∈F

E𝑝′
𝐷
(x)KL

[
𝑝′𝐷 (y | x) ∥ 𝑝𝐷 (y | x)

]
.

Proof. (of proposition 1) By lemma 3, as 𝑝𝐷 (y, z, x) > 0 ⇔ 𝑝′
𝐷
(y, z, x) > 0, performance is well

defined for any 𝑝𝐷 (y | x) on any 𝑝′
𝐷
∈ F . First, lemma 1 with 𝑝𝑡𝑒 = 𝑝′𝐷 and 𝑟 (x) = x gives

I𝑝′
𝐷
(x; y) − E𝑝′

𝐷
(x)KL

[
𝑝′𝐷 (y | x) ∥ 𝑝 |= (y | x)

]
= E𝑝′

𝐷
(x)KL

[
𝑝′𝐷 (y | x) ∥ 𝑝 |= (y)

]
− E𝑝′

𝐷
(x)KL

[
𝑝′𝐷 (y | x) ∥ 𝑝 |= (y | x)

]
= E𝑝′

𝐷
(y,z)KL

[
𝑝 (x | y, z) ∥ E𝑝 (y)𝑝 (x | y, z)

]
.

= E𝑝′
𝐷
(y,z)KL [𝑝 |= (x | y, z) ∥ 𝑝 |= (x | z)] ≥ 0.

(A.7)

Thus, unlike any 𝑝𝐷 ∈ F such that y ̸|= 𝑝𝐷z,

max
𝑝′
𝐷
∈F

[
E𝑝′

𝐷
(x)KL

[
𝑝′𝐷 (y | x) ∥ 𝑝 |= (y | x)

]
− I𝑝′

𝐷
(x; y)

]
≤ 0. (A.8)

For any 𝑝𝐷 such that y ̸|= 𝑝𝐷z, let 𝑝′𝐷 be such that E𝑝′
𝐷
(x)KL

[
𝑝′
𝐷
(y | x) ∥ 𝑝𝐷 (y | x)

]
− I𝑝′

𝐷
(x; y) > 0.

As eq. (A.8) implies E𝑝′
𝐷
(x)KL

[
𝑝′
𝐷
(y | x) ∥ 𝑝 |= (y | x)

]
− I𝑝′

𝐷
(x; y) ≤ 0, it follows that ∀𝑝𝐷 such that
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y ̸|= 𝑝𝐷z,

max
𝑝′
𝐷
∈F

E𝑝′
𝐷
(x)KL

[
𝑝′𝐷 (y | x) ∥ 𝑝𝐷 (y | x)

]
> max
𝑝′
𝐷
∈F

E𝑝′
𝐷
(x)KL

[
𝑝′𝐷 (y | x) ∥ 𝑝 |= (y | x)

]
.

By lemma 3, any 𝑝𝐷 ∈ F is positive over the same set of y, z, x and if y |= 𝑝𝐷z, then 𝑝𝐷 (y | x) =

𝑝 |= (y | x) (see lemma 2 for proof with instantiation 𝑟 (x) = x). This means

𝑝 |= (y | x) = argmin
𝑝𝐷∈F

max
𝑝′
𝐷
∈F

E𝑝′
𝐷
(x)KL

[
𝑝′𝐷 (y | x) ∥ 𝑝𝐷 (y | x)

]
.

□

See proposition 3 for an example nuisance-varying family where the information criterion in

eq. (A.6) holds.

A.1.6 Distillation details and a local optima example for eq. (2.5)

Figure A.1: Landscape of the objective in eq. (2.5) for the example in eq. (2.2) for linear representations
𝑟𝑢,𝑣 (x) = 𝑢x1 + 𝑣x2. Local maxima correspond to representations 𝑟−𝑢,𝑢 and global maxima to representa-
tions 𝑟𝑢,𝑢 .
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The objective in eq. (2.5) can have local optima when the representation is a function of the

nuisance and the exogenous noise in the generation of the covariates given the nuisance and the

label. Formally, let the exogenous noise 𝝐 satisfy (𝝐, z) |= 𝑝 |= y. Then,

(𝝐, z) |= 𝑝 |= y =⇒ (𝑓 (𝝐, z), z) |= 𝑝 |= y =⇒ z |= 𝑝 |= y | 𝑓 (z, 𝝐).

Such a representation 𝑟 (x) = 𝑓 (𝝐, z) is both in the uncorrelating set and independent of the label

y under the nuisance-randomized distribution 𝑝 |= meaning it does not predict the label.

Local optima example for conditional information regularization eq. (2.5). Figure A.1

plots the value of the objective in eq. (2.5) computed analytically for 𝜆 = 20, over the class of

linear representations indexed by 𝑢, 𝑣 ∈ R, 𝑟𝑢,𝑣 (x) = 𝑢x1 + 𝑣x2, under the data generating pro-

cess in eq. (2.2). Representations of the kind 𝑟−𝑢,𝑢 (x) = 𝑢 (x2 − x1) are functions of z and some

noise independent of the label and, as fig. A.1 shows, are local maxima on the landscape of the

maximization objective in eq. (2.5). Global maxima correspond to representations 𝑟𝑢,𝑢 .

Performance characterization for jointly independent representations

Lemma 4. Let F be a nuisance varying family. For any jointly independent representation 𝑟 , i.e.

[𝑟 (x), y] |= 𝑝 |= z,

∀𝑝𝑡𝑒 ∈ F Perf𝑝𝑡𝑒 (𝑝 |= (y | 𝑟 (x))) = 𝐶𝑝𝑡𝑒 + I𝑝 |= (𝑟 (x); y),

where 𝐶𝑝𝑡𝑒 is a 𝑝𝑡𝑒-dependent constant that does not vary with 𝑟 (x).

NuRD maximizes the information term I𝑝 |= (y; 𝑟𝛾 (x)) and, therefore, maximizes performance on ev-

ery member of F simultaneously. It follows that within the set of jointly independent representations,

NuRD, at optimality, produces a representation that is simultaneously optimal on every 𝑝𝑡𝑒 ∈ F .
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Proof. Lemma 1 says that for any uncorrelating representation 𝑟 ∈ R(𝑝 |= ) and ∀𝑝𝑡𝑒 ∈ F ,

Perf𝑝𝑡𝑒 (𝑝 |= (y | 𝑟 (x))) = Perf𝑝𝑡𝑒 (𝑝 (y)) + E
𝑝𝑡𝑒 (y,z)

KL
[
𝑝 (𝑟 (x) | y, z) ∥ E𝑝 (y)𝑝 (𝑟 (x) | y, z)

]
.

However, as the joint independence [𝑟 (x), y] |= 𝑝 |= z implies both the uncorrelating property and

𝑟 (x) |= 𝑝 |= z | y, the second term in the RHS above can be expressed as I𝑝 |= (𝑟 (x); y):

E
𝑝𝑡𝑒 (y,z)

KL
[
𝑝 (𝑟 (x) | y, z) ∥ E𝑝 (y)𝑝 (𝑟 (x) | y, z)

]
= E
𝑝𝑡𝑒 (y,z)

KL
[
𝑝 |= (𝑟 (x) | y, z) ∥ E𝑝 |= (y)𝑝 |= (𝑟 (x) | y, z)

]
= E
𝑝𝑡𝑒 (y,z)

KL
[
𝑝 |= (𝑟 (x) | y) ∥ E𝑝 |= (y)𝑝 |= (𝑟 (x) | y)

]
= E
𝑝𝑡𝑒 (y,z)

KL [𝑝 |= (𝑟 (x) | y) ∥ 𝑝 |= (𝑟 (x))]

= E
𝑝𝑡𝑒 (y)

KL [𝑝 |= (𝑟 (x) | y) ∥ 𝑝 |= (𝑟 (x))]

= E
𝑝 |= (y)

KL [𝑝 |= (𝑟 (x) | y) ∥ 𝑝 |= (𝑟 (x))]

= I𝑝 |= (𝑟 (x); y) .

Noting 𝐶𝑝𝑡𝑒 = Perf𝑝𝑡𝑒 (𝑝 (y)) does not vary with 𝑟 (x) completes the proof. □

Performance gaps between jointly independent representations anduncorrelating rep-

resentations. The joint independence [𝑟 (x), y] |= 𝑝 |= z implies the uncorrelating property but

uncorrelating representations only satisfy this joint independence when they are independent of

the nuisance. Thus, representations that satisfy joint independence form a subset of uncorrelat-

ing representations. This begs a question: is there a loss in performance by restricting NuRD

to representations that satisfy said joint independence? In appendix A.1.7.1, we use the theory

of minimal sufficient statistics [37] to show that there exists a nuisance-varying family where

the best uncorrelating representation dominates every representation that satisfies joint inde-
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pendence on every member distribution, and is strictly better in at least one.

A.1.7 Counterfactual invariance vs. the uncorrelating property

We A) show that counterfactually invariant representations are a subset of uncorrelating repre-

sentations by reducing counterfactual invariance to the joint independence [𝑟 (x), y] |= 𝑝 |= z and B)

give an example nuisance-varying family F where the best uncorrelating representation strictly

dominates every jointly independent representation in performance on every test distribution

𝑝𝑡𝑒 ∈ F : at least as good on all 𝑝𝑡𝑒 ∈ F and strictly better on at least one.

We show A by proving counterfactually invariant representations satisfy joint independence

[𝑟 (x), y] |= 𝑝 |= z which implies the uncorrelating property, but not vice versa. Counterfactual in-

variance implies that for all 𝑝𝐷 ∈ F , the conditional independence 𝑟 (x) |= 𝑝𝐷z | y holds by theorem

3.2 in [17]. As y |= 𝑝 |= z, it follows that [𝑟 (x), y] |= 𝑝 |= z; this joint independence implies the uncor-

relating property, y |= 𝑝 |= z | 𝑟 (x). But, uncorrelating representations only satisfy the said joint

independence when they are independent of the nuisance.

We show B in appendix A.1.7.1 by constructing a nuisance-varying family where the optimal per-

formance is achieved by an uncorrelating representation that is dependent on the nuisance.

A.1.7.1 Joint independence vs. the uncorrelating property

Here, we discuss the performance gap between representations that are uncorrelating (y |= 𝑝 |= z | 𝑟 (x))

and those that satisfy the joint independence (y, 𝑟 (x)) |= 𝑝 |= z. We construct a data generating

process where optimal performance on every member of F is achieved only by uncorrelating

representations that do not satisfy joint independence.

Theorem 2. Define a nuisance-varying family F = {𝑝𝐷 (y, z, x) = 𝑝 (y)𝑝𝐷 (z | y)𝑝 (x | y, z)}. Let

R 𝐽 = {𝑟 (x); [𝑟 (x), y] |= 𝑝 |= z} and R𝐶 = {𝑟 (x); y |= 𝑝 |= z | 𝑟 (x)} be the set of representations that, un-

der the nuisance-randomized distribution, satisfy joint independence and conditional independence
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respectively. Then there exists a nuisance-varying family F such that

∀𝑝𝑡𝑒 ∈ F max
𝑟∈R 𝐽

Perf𝑝𝑡𝑒 (𝑟 (x)) ≤ max
𝑟∈R𝐶

Perf𝑝𝑡𝑒 (𝑟 (x)), (A.9)

and ∃𝑝𝑡𝑒 ∈ F for which the inequality is strict

max
𝑟∈R 𝐽

Perf𝑝𝑡𝑒 (𝑟 (x)) < max
𝑟∈R𝐶

Perf𝑝𝑡𝑒 (𝑟 (x)), (A.10)

Proof. In this proof we will build a nuisance-varying family F such that 𝑝 |= ∈ F and y |= 𝑝 |= z | x.

This makes x a maximally blocking uncorrelating representation because 𝑟 (x) |= 𝑝 |= y | x, z. Thus

it has optimal performance on every 𝑝𝑡𝑒 ∈ F within the class of uncorrelating representations.

We let y be binary, 𝑝 |= ∈ F . The structure of the rest of the proof is as follows:

1. The representation 𝑓 (x) = 𝑝 |= (y = 1 | x) is optimal in that it performs exactly as well as x

on every member of the family F .

2. Any representation 𝑇 (x) that matches the performance of x on every 𝑝𝑡𝑒 ∈ F satisfies

y |= 𝑝 |= x | 𝑇 (x).

3. All functions 𝑇 (x) such that y |= 𝑝 |= x | 𝑇 (x) determine 𝑓 (x). This is shown in lemma 5.

4. We construct a familywhere 𝑓 (x) ̸|= 𝑝 |= zwhich, by the point above, means that every optimal

representation𝑇 (x) is dependent on z: 𝑇 (x) ̸|= 𝑝 |= z. But every representation 𝑟 ∈ R 𝐽 satisfies

𝑟 (x) |= 𝑝 |= z and, therefore, is strictly worse in performance than 𝑓 (x) on 𝑝 |= , meaning that

they perform also strictly worse than x (because Perf𝑝𝑡𝑒 (𝑓 (x)) = Perf𝑝𝑡𝑒 (x)). Noting x ∈

R𝐶 completes the proof.

For 1, let 𝑓 (x) = 𝑝 |= (y = 1 | x). However, we show here that 𝑝 |= (y | 𝑓 (x)) = 𝑝 |= (y | x).

𝑝 |= (y = 1 | 𝑓 (x)) = E𝑝 |= (x | 𝑓 (x))𝑝 |= (y = 1 | x, 𝑓 (x))
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= E𝑝 |= (x | 𝑓 (x))𝑝 |= (y = 1 | x)

= E𝑝 |= (x | 𝑓 (x)) 𝑓 (x)

= 𝑓 (x)

= 𝑝 |= (y = 1 | x) (= 𝑝 |= (y | x, 𝑓 (x)))

This means 𝑓 (x) performs exactly as well as x on every 𝑝𝑡𝑒 ∈ F and x |= 𝑝 |= y | 𝑓 (x).

For 2, recall Perf𝑝𝑡𝑒 (𝑟 (x)) = −E𝑝𝑡𝑒 (x)KL [𝑝𝑡𝑒 (y | x) ∥ 𝑝 |= (y | 𝑟 (x))] and note that 1 implies

Perf𝑝 |= (x) = Perf𝑝 |= (𝑓 (x)) = 0.

Let 𝑇 (x) be any function that performs as well as 𝑓 (x) on every 𝑝𝑡𝑒 ∈ F . As 𝑝 |= ∈ F ,

0 = Perf𝑝 |= (𝑓 (x)) = Perf𝑝 |= (𝑇 (x))

= −E𝑝 |= (x)KL [𝑝 |= (y | x) ∥ 𝑝 |= (y | 𝑇 (x)]

= −E𝑝 |= (x)KL [𝑝 |= (y | x,𝑇 (x)) ∥ 𝑝 |= (y | 𝑇 (x)]

= −I𝑝 |= (y; x | 𝑇 (x))

=⇒ y |= 𝑝 |= x | 𝑇 (x).

We leave 3 to lemma 5 and show 4 here.

The example data generating process. We give a data generating process where 𝑓 (x) =

𝑝 (y = 1 | x) is dependent on z : 𝑓 (x) ̸|= 𝑝 |= z. We assume 𝑝 |= ∈ F . With a binary y and a normal z,

let 𝑝 |= (y, z, x) = 𝑝 (y)𝑝 (z)𝑝 (x | y, z) be generated as follows: with 𝜌 : {0, 1} × {0, 1} → (0, 1), let

𝑝 (y = 1) = 0.5, z ∼ N(0, 1), 𝑝 (b = 1 | y = 𝑦, z = 𝑧) = 𝜌 (𝑦, 1[𝑧 ≥ 0]), x = [b, 1[z ≥ 0]] .
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We will drop the subscript in |= 𝑝 for readability next. Throughout the next part, we use a key

property of independence: [𝑎, 𝑏] |= 𝑐 ⇐⇒ 𝑏 |= 𝑐 | 𝑎, 𝑎 |= 𝑐 .

As z is a standard normal random variable 1[z ≥ 0] |= |z| | y, meaning we can write (y, 1[𝑧 ≥

0]) |= |z| because z is generated independently of y. Thus, as the distribution of b only depends

on 1[𝑧 ≥ 0] and y due to the data generating process, it holds that (b, y, 1[z ≥ 0]) |= |z|. Then

(b, y, 1[z ≥ 0]) |= |z| =⇒ y |= |z| | b, 1[z ≥ 0] =⇒ y |= z | b, 1[z ≥ 0] =⇒ y |= z | x

As x only depends on 1[z ≥ 0] and b, for readability, we define a = 1[z ≥ 0]. Then 𝑝 |= (y, a, b) =

𝑝 |= (y)𝑝 |= (a)𝑝 (b | y, a), where 𝑝 (b = 1 | y = 𝑦, a = 𝑎) = 𝜌 (𝑦, 𝑎) and x = [b, a].

We overload the notation for 𝑓 : expanding x = [𝑏, 𝑎], we let 𝑓 (x) = 𝑓 (𝑏, 𝑎) = 𝑝 (y = 1 | x = [𝑏, 𝑎]).

We write 𝑓 (𝑏, 𝑎) for different values of 𝑏 here,

𝑓 (1, 𝑎) = 𝑝 (y = 1 | x = [1, 𝑎]) = 𝑝 (y = 1 | b = 1, a = 𝑎)

=
𝑝 (b = 1, y = 1 | a = 𝑎)
𝑝 (b = 1 | a = 𝑎)

=
𝑝 (y = 1)𝑝 (b = 1 | y = 1, a = 𝑎)∑

𝑦∈{0,1} 𝑝 (y = 𝑦)𝑝 (b = 1 | y = 𝑦, a = 𝑎)

=
0.5𝑝 (b = 1 | y = 1, a = 𝑎)

0.5
∑
𝑦∈{0,1} (𝑝 (b = 1 | y = 𝑦, a = 𝑎))

=
𝜌 (1, 𝑎)

𝜌 (0, 𝑎) + 𝜌 (1, 𝑎) .

𝑓 (0, 𝑎) = 𝑝 (y = 1 | x = [0, 𝑎]) = 𝑝 (y = 1 | b = 0, a = 𝑎)

=
𝑝 (b = 0, y = 1 | a = 𝑎)
𝑝 (b = 0 | a = 𝑎)

=
𝑝 (y = 1)𝑝 (b = 0 | y = 1, a = 𝑎)∑

𝑦∈{0,1} 𝑝 (y = 𝑦)𝑝 (b = 0 | y = 𝑦, a = 𝑎)

=
0.5(1 − 𝑝 (b = 1 | y = 1, a = 𝑎))

0.5
(∑

𝑦∈{0,1} 1 − 𝑝 (b = 1 | y = 𝑦, a = 𝑎)
)
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=
1 − 𝜌 (1, 𝑎)

2 − 𝜌 (0, 𝑎) − 𝜌 (1, 𝑎) .

We let 𝜌 (𝑦, 1) = 0.5 for 𝑦 ∈ {0, 1}, 𝜌 (0, 0) = 0.1, and 𝜌 (1, 0) = 0.9. Then, with 𝑎 = 1,

𝑓 (1, 𝑎) = 𝜌 (1, 1)
𝜌 (0, 1) + 𝜌 (1, 1) =

0.5
0.5 + 0.5

= 0.5, (A.11)

𝑓 (0, 𝑎) = 1 − 𝜌 (1, 1)
2 − 𝜌 (0, 1) − 𝜌 (1, 𝑎) =

1 − 0.5
2 − 0.5 − 0.5

= 0.5, (A.12)

and with 𝑎 = 0,

𝑓 (1, 𝑎) = 𝜌 (1, 0)
𝜌 (0, 0) + 𝜌 (1, 0) =

0.9
0.1 + 0.9

= 0.9, (A.13)

𝑓 (0, 𝑎) = 1 − 𝜌 (1, 0)
2 − 𝜌 (0, 0) − 𝜌 (1, 0) =

1 − 0.9
2 − 0.1 − 0.9

= 0.1. (A.14)

Thus, the distribution 𝑓 (x) | a = 𝑎 changes with 𝑎 meaning that 𝑓 (x) ̸|= a which implies 𝑓 (x) ̸|= z

as a = 1[z ≥ 𝑎] is a function of z.

Note that 𝑓 (x) ̸|= z, then 𝑓 (x) ∉ R 𝐽 as 𝑓 (x) |= z is an implication of joint independence. Any

function𝑇 (x) that achieves the same performance as 𝑝 |= (y | 𝑓 (x)) (by 3 and lemma 5), determines

𝑓 (x). It follows that, 𝑇 (x) ∉ R 𝐽 because

𝑓 (x) ̸|= 𝑝 |= z =⇒ 𝑇 (x) ̸|= 𝑝 |= z.

So every 𝑟 ∈ R 𝐽 must perform worse than 𝑓 (x), and consequently x, on 𝑝 |= . Finally, the inde-

pendence x ̸|= 𝑝 |= z implies x ∉ R 𝐽 but y |= 𝑝 |= z | x and so x ∈ R𝐶 . In this example we constructed,

x is the maximally blocking uncorrelating representation which means that it is optimal in R𝐶

on every 𝑝𝑡𝑒 ∈ F . As R 𝐽 is a subset, any 𝑟 ∈ R 𝐽 can at best match the performance of x and we

already showed that every 𝑟 ∈ R 𝐽 is worse than 𝑓 (x) and consequently x on 𝑝 |= . This completes

the proof.
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□

Lemma 5. Consider a joint distribution 𝑝 (y, x) with binary y. Assume that 𝑝 (x | y = 𝑦) has

the same support for 𝑦 ∈ {0, 1}. Then, for any function 𝑇 (x) such that y |= x | 𝑇 (x), the function

𝑓 (x) = 𝑝 (y = 1 | x) is 𝑇 (x)-measurable (𝑇 (x) determines 𝑓 (x)).

Proof. We use the notion of sufficient statistics from estimation theory, which are defined for a

family of distributions, to define the set of functions 𝑇 (x) for the joint distribution 𝑝 (y, x).

Sufficient statistics in estimation theory. Consider a family of distributionsP = {𝑝𝜃 (x);𝜃 ∈

Ω}. Assume 𝜃 is discrete and that Ω is finite. A function𝑇 (x) is a sufficient statistic of a family of

distributions P if the conditional distribution 𝑝𝜃 (x | 𝑇 (x) = 𝑡) does not vary with 𝜃 for (almost)

any value of 𝑡 . A minimal sufficient statistic is a sufficient statistic 𝑀 (𝑥) such that for any suffi-

cient statistic 𝑇 (𝑋 ) 𝑇 (𝑥) = 𝑇 (𝑥′) =⇒ 𝑀 (𝑥) = 𝑀 (𝑥′). Any bijective transform of 𝑀 (x) is also a

minimal sufficient statistic.

The rest of the proof will follow from relying on theorem 6.12 from [37] which constructs a

minimal sufficient statistic for a finite family of distributions P = {𝑝𝑖 ; 𝑖 ∈ {0, 𝐾 − 1}} as

𝑀 (x) =
{
𝑝1(x)
𝑝0(x)

,
𝑝2(x)
𝑝0(x)

, · · · , 𝑝𝐾−1(x)
𝑝0(x)

}

Defining the family with conditionals. Now let the family P = {𝑝𝑦 (x));𝑦 ∈ {0, 1}} where

𝑝𝑦 (x) = 𝑝 (x | y = 𝑦) which are conditionals of the joint distribution 𝑝 (x, y) we were given in the

theorem statement. Next, we show that the set of functions𝑇 (x) such that y |= 𝑝x | 𝑇 (x) is exactly

the set of the sufficient statistics for the family {𝑝 (x | y = y); y ∈ {0, 1}}.

By definition of sufficiency where 𝑝𝑦 (x | 𝑇 (x) = 𝑡) does not vary with 𝑦 for any value of 𝑡 ,

∀𝑡, 𝑝1(x |𝑇 (x) = 𝑡) = 𝑝0(x |𝑇 (x) = 𝑡) ⇐⇒ ∀𝑡, 𝑝 (x |𝑇 (x) = 𝑡, y = 1) = 𝑝 (x |𝑇 (x) = 𝑡, y = 0),
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where the last statement is equivalent to the conditional independence x |= y | 𝑇 (x).

Minimality of 𝑝 (y = 1 | x). By definition 𝑝𝑦 (x) = 𝑝 (x | y = 𝑦). As this family contains only

two elements, the minimal sufficient statistic is

𝑀 (x) = 𝑝1(x)
𝑝0(x)

=
𝑝 (x | y = 1)
𝑝 (x | y = 0) =

𝑝 (y = 0)
𝑝 (y = 1)

𝑝 (y = 1 | x)
1 − 𝑝 (y = 1 | x) .

Thus,𝑀 (x) is a bijective transformation of the function 𝑝 (y = 1 | x) (when 𝑝 (y = 1 | x) ∈ (0, 1))

which in turn implies that 𝑝 (y = 1 | x) is a minimal sufficient statistic for the family P.

Conclusion. We showed that the set of functions that satisfy y |= x | 𝑇 (x) are sufficient statis-

tics for the family P. In turn, because only sufficient statistics 𝑇 (x) of the family P satisfy

y |= 𝑝x | 𝑇 (x), it follows by definition that 𝑝 (y = 1 | x) is determined by every 𝑇 (x), complet-

ing the proof.

□

A.1.8 Gaussian example of the information criterion

Proposition 3. Consider the following family of distributions 𝑞𝑎 indexed by 𝑎 ∈ R,

𝜖𝑦,𝜖𝑧 ∼ N(0, 1) y ∼ N(0, 1) z ∼ N(𝑎y, 1/2) x = [y + 𝜖𝑦, z +
√︁
1/2𝜖𝑧]

In this family, for any 𝑝𝐷 = 𝑞𝑏 (y | z) where y ̸|= 𝑝𝐷z, there exists a 𝑝′𝐷 = 𝑞𝑎 (y | z) such that

[
E𝑝′

𝐷
(x)KL

[
𝑝′𝐷 (y | x) ∥ 𝑝𝐷 (y | x)

]
− I𝑝′

𝐷
(x; y)

]
> 0.

Proof. (of proposition 3) First, write z = 𝑎y +
√︁
1/2𝛿 where 𝛿 ∼ N(0, 1). Let 𝜖 =

√︁
1/2 (𝛿 + 𝜖𝑧); this

is a normal variable with mean 0 and variance 1. Then, write x = [y + 𝜖𝑦, 𝑎y + 𝜖] where 𝜖𝑦, 𝜖 are
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Gaussian random variables with joint distribution 𝑞(𝜖𝑦)𝑞(𝜖). Therefore, 𝑞𝑎 (y, x) is a multivariate

Gaussian distribution, with the following covariance matrix (over y, x1, x2):

Σ =

©«
1 1 𝑎

1 2 𝑎

𝑎 𝑎 𝑎2 + 1

ª®®®®®¬
=⇒ Σ1,2 = [1, 𝑎], Σ−1

2,2, =
1

𝑎2 + 2
©«
𝑎2 + 1 −𝑎

−𝑎 2

ª®®¬ ,
The conditional mean and variance are:

E𝑞𝑎 [y | x = x] = Σ1,2Σ
−1
2,2x =

1
𝑎2 + 2

[1, 𝑎]x

𝜎2𝑞𝑎 (y | x) = Σ1,1 − Σ1,2Σ
−1
2,2Σ2,1 = 1 − 𝑎2 + 1

𝑎2 + 2
=

1
𝑎2 + 2

.

Rewrite the quantity in the theorem statement as a single expression:

E𝑞𝑎 (x)KL [𝑞𝑎 (y | x) ∥ 𝑞𝑏 (y | x)] − I𝑞𝑎 (x; y)

= E𝑞𝑎 (x)KL [𝑞𝑎 (y | x) ∥ 𝑞𝑏 (y | x)] − E𝑞𝑎 (x)KL [𝑞𝑎 (y | x) ∥ 𝑞(y)] .

= E𝑞𝑎 (x,y) log
𝑞𝑎 (y | x)
𝑞𝑏 (y | x) − E𝑞𝑎 (x,y) log

𝑞𝑎 (y | x)
𝑞(y) .

= E𝑞𝑎 (x,y) (log𝑞(y) − log𝑞𝑏 (y | x)) .

(A.15)

Expand (log𝑞(y) − log𝑞𝑏 (y | x)) in terms of quantities that vary with y, x and those that do not:

log𝑞(y = y) − log𝑞𝑏 (y = y | x) = −y
2

2
− log

√
2𝜋 +

(
y − E𝑞𝑏 [y | x]

)2
2𝜎2𝑞𝑏 (y | x)

+ log
√︃
2𝜋𝜎2𝑞𝑏 (y | x)

= −y
2

2
− log

√
2𝜋 + (𝑏2 + 2)

(
y − 1

𝑏2+2 [1, 𝑏]x
)2

2
+ log

√︂
2𝜋

𝑏2 + 2

= −y
2

2
+ (𝑏2 + 2)

(
y − 1

𝑏2+2 [1, 𝑏]x
)2

2
+ log

√︂
1

𝑏2 + 2
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As only the first two terms vary with y, x, compute the expectations E𝑞𝑎 over these:

E𝑞𝑎 (x)𝑞𝑎 (y | x)
©«−

y2

2
+ (𝑏2 + 2)

(
y − 1

𝑏2+2 [1, 𝑏]x
)2

2
ª®®¬

= E𝑞(y)

(
−y

2

2

)
+ (𝑏2 + 2)E𝑞(y)𝑞𝑎 (x | y)

(
y − 1

𝑏2+2 [1, 𝑏]x
)2

2

= −1
2
+ (𝑏2 + 2)E𝑞(y)𝑞𝑎 (x | y)

(
(𝑏2 + 2)y − [1, 𝑏]x

)2
2(𝑏2 + 2)2

= −1
2
+ E𝑞(y)𝑞𝑎 (x | y)

(
(𝑏2 + 2)y − [1, 𝑏]x

)2
2(𝑏2 + 2)

= −1
2
+ E𝑞(y)𝑞(𝜖𝑦)𝑞(𝜖)

(
(𝑏2 + 2)y − y − 𝜖𝑦 − 𝑎𝑏y − 𝑏𝜖

)2
2(𝑏2 + 2)

= −1
2
+ E𝑞(y)𝑞(𝜖𝑦)𝑞(𝜖)

(
(𝑏2 + 1 − 𝑎𝑏)y − 𝜖𝑦 − 𝑏𝜖

)2
2(𝑏2 + 2)

= −1
2
+
var

(
(𝑏2 + 1 − 𝑎𝑏)y

)
+ var(𝜖𝑦) + var(𝑏𝜖)

2(𝑏2 + 2)

= −1
2
+
(𝑏2 + 1 − 𝑎𝑏)2var (y) + var(𝜖𝑦) + 𝑏2var(𝜖)

2(𝑏2 + 2)

= −1
2
+ (𝑏2 + 1 − 𝑎𝑏)2 + 1 + 𝑏2

2(𝑏2 + 2)

=
(𝑏2 + 1 − 𝑎𝑏)2 − 1

2(𝑏2 + 2)

The proof follows for any 𝑎 such that

(𝑏2 + 1 − 𝑎𝑏)2 − 1
2(𝑏2 + 2) + log

√︁
1/𝑏2+2 = (𝑏2 + 1 − 𝑎𝑏)2 − 1

2(𝑏2 + 2) − 1
2
log

(
𝑏2 + 2

)
> 0

Let 𝑎 = 𝑏 + 1+𝜈
𝑏

for some scalar 𝜈 . Then, if |𝜈 | > 1 + (𝑏2 + 2) log(𝑏2 + 2),

(𝑏2 + 1 − 𝑎𝑏)2 − 1
2(𝑏2 + 2) − 1

2
log

(
𝑏2 + 2

)
=

𝜈2 − 1
2(𝑏2 + 2) −

1
2
log

(
𝑏2 + 2

)
> 0.

□
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A.1.9 Example showing where uncorrelating representations are

necessary

In this section, we motivate nuisance-randomization and the uncorrelating property. Consider

the following data generating process for a family {𝑞𝑎}𝑎∈R and fixed positive scalar 𝜎2:

y ∼ N(0, 1) z ∼ N(𝑎y, 0.5) x =
[
x1 ∼ N(y − z, 𝜎2 − 0.5), x2 ∼ N(y + z, 0.5)

]
. (A.16)

Letting 𝜎2 = 2 recovers the example in eq. (2.2). We keep 𝜎2 for ease of readability for the first

few steps and substitute in 2 later. We show results here in three parts

1. We derive the performance of 𝑝 (y) = 𝑞𝑏 (y) = 𝑞(y) relative to 𝑞𝑏 (y | x) under 𝑞𝑎 . The

performance of 𝑞(y) (recall Perf is negative KL) relative to 𝑞𝑏 (y | x) on 𝑞𝑎 (y, x) can be

written as

−E𝑞𝑎 (x)KL [𝑞𝑎 (y | x) ∥ 𝑞(y)] − (−E𝑞𝑎 (x)KL [𝑞𝑎 (y | x) ∥ 𝑞𝑏 (y | x)])) (A.17)

= E𝑞𝑎 (x,y) (log𝑞(y) − log𝑞𝑏 (y | x)) . (A.18)

2. We set 𝑏 = 1 and show the performance gap in eq. (A.17) is positive for any 𝑎 > 3.48 and

𝑎 < −0.314, which means that for those 𝑞𝑎 , the performance of guessing randomly with

𝑞(y) is better than that of training conditional 𝑞1(y | x).

3. Then, we set 𝑏 = 0 and show the performance gap in eq. (A.17) is positive for any 𝑎 > 5.63

and any 𝑎 < −2.13, which means that for those 𝑞𝑎 , the performance of guessing randomly

with 𝑞(y) is better than that of the nuisance-randomized conditional 𝑞0(y | x) = 𝑝 |= (y | x).

176



Performance of 𝑞(y) relative to 𝑞𝑏 (y | x) under 𝑞𝑎 Define the noise in z to be 𝜖𝑧 and the

noises in x1, x2 to be 𝜖1, 𝜖2 respectively. Rewrite

x =

[
(1 − 𝑎) ∗ y −

√
0.5𝜖𝑧 +

√
𝜎2 − 0.5𝜖1, (1 + 𝑎) ∗ y +

√
0.5𝜖2 +

√
0.5𝜖𝑧)

]
.

Let the joint distribution over y, 𝜖1, 𝜖2 be 𝑞(y)𝑞(𝜖1)𝑞(𝜖2). Then, 𝑞𝑎 (y, x) is a multivariate Gaussian

distribution. We will now write the covariance matrix of [y, x1, x2]. As y, 𝜖𝑧, 𝜖1, 𝜖2 are all mutually

independent in any combination,

Var(y) = 1 (A.19)

Var(x1) = (1 − 𝑎)2Var(y) + 0.5Var(𝜖𝑧) + (𝜎2 − 0.5)Var(𝜖1) = (1 − 𝑎)2 + 𝜎2 (A.20)

Var(x2) = (1 + 𝑎)2Var(y) + 0.5Var(𝜖𝑧) + 0.5Var(𝜖2) = (1 + 𝑎)2 + 1 (A.21)

E(yx1) = (1 − 𝑎)Var(y) = 1 − 𝑎 (A.22)

E(yx2) = (1 + 𝑎)Var(y) = 1 + 𝑎 (A.23)

E(x1x2) = (1 − 𝑎2)Var(y) − 0.5Var(𝜖𝑧) = −0.5 + (1 − 𝑎2) (A.24)

(A.25)

The covariance matrix of the joint Gaussian over y, x1, x2

Σ =

©«
1 (1 − 𝑎) (1 + 𝑎)

(1 − 𝑎) (1 − 𝑎)2 + 𝜎2 (1 − 𝑎2) − 0.5

(1 + 𝑎) −0.5 + (1 − 𝑎2) (1 + 𝑎)2 + 1

ª®®®®®¬
,

=⇒ |Σ2,2, | = (1 − 𝑎2)2 + 𝜎2(1 + 𝑎)2 + (1 − 𝑎)2 + 𝜎2 − 0.25 − (1 − 𝑎2)2 + (1 − 𝑎2)

= 𝜎2(1 + 𝑎)2 + 1 − 2𝑎 + 𝑎2 + 𝜎2 − 0.52 + 1 − 𝑎2

= 𝜎2(1 + 𝑎)2 + 𝜎2 − 2𝑎 + 2 − 0.52
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Letting 𝜎2 = 2, we have that

|Σ2,2 | = 2(1 + 2𝑎 + 𝑎2) + 2 + 2 − 2𝑎 + 0.25 = 2(𝑎 + 0.5)2 + 5.25.

Nowwe derive themean and the variance terms of theGaussian conditional distribution𝑞𝑎 (y | x):

=⇒ Σ1,2 = [1 − 𝑎, 1 + 𝑎], Σ−1
2,2, =

1
2(𝑎 + 0.5)2 + 5.25

©«
(1 + 𝑎)2 + 1 0.5 − (1 − 𝑎2)

0.5 − (1 − 𝑎2) (1 − 𝑎)2 + 2

ª®®¬ ,
=⇒ E𝑞𝑎 [y | x = x] = Σ1,2Σ

−1
2,2x =

[(1 − 𝑎) + 0.5((1 + 𝑎)), 2(1 + 𝑎) + 0.5((1 − 𝑎))]x
2(𝑎 + 0.5)2 + 5.25

= E𝑞𝑎 [y | x = x] = Σ1,2Σ
−1
2,2x =

1
2(𝑎 + 0.5)2 + 5.25

[0.5(3 − 𝑎), 0.5(5 + 3𝑎)]x

=⇒ 𝜎2𝑞𝑎 (y | x)

= Σ1,1 − Σ1,2Σ
−1
2,2Σ2,1

= 1 − 𝜎2(1 + 𝑎)2 + (1 − 𝑎)2 + (1 − 𝑎2)
2(𝑎 + 0.5)2 + 5.25

=
2(𝑎 + 0.5)2 + 5.25 − 𝜎2(1 + 𝑎)2 − ((1 − 𝑎)2 + (1 − 𝑎2))

2(𝑎 + 0.5)2 + 5.25

=
𝜎2 − 2𝑎 + 2 − 0.52 − (1 − 2𝑎 + 𝑎2 + 1 − 𝑎2)

2(𝑎 + 0.5)2 + 5.25

=
𝜎2 − 2𝑎 + 2 − 0.52 − (2 − 2𝑎)

2(𝑎 + 0.5)2 + 5.25

=
𝜎2 − 0.52

2(𝑎 + 0.5)2 + 5.25

=
1.75

2(𝑎 + 0.5)2 + 5.25

The performance of 𝑞(y) (recall Perf is negative KL) relative to 𝑞𝑏 (y | x) on 𝑞𝑎 (y, x) can be
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written as

E𝑞𝑎 (x)KL [𝑞𝑎 (y | x) ∥ 𝑞𝑏 (y | x)] − E𝑞𝑎 (x)KL [𝑞𝑎 (y | x) ∥ 𝑞(y)] = E𝑞𝑎 (x,y) (log𝑞(y) − log𝑞𝑏 (y | x)) .

Expand (log𝑞(y) − log𝑞𝑏 (y | x)) in terms that vary with y, x and those that do not:

log𝑞(y = y) − log𝑞𝑏 (y = y | x)

= −y
2

2
− log

√
2𝜋 +

(
y − E𝑞𝑏 [y | x]

)2
2𝜎2𝑞𝑏 (y | x)

+ log
√︃
2𝜋𝜎2𝑞𝑏 (y | x)

= −y
2

2
− log

√
2𝜋 + (2(𝑏 + 0.5)2 + 5.25)

(
y − E𝑞𝑏 [y | x]

)2
2(1.75) + log

√︃
2𝜋𝜎2𝑞𝑏 (y | x)

= −y
2

2
+ (2(𝑏 + 0.5)2 + 5.25)

(
y − E𝑞𝑏 [y | x]

)2
3.5

+ log
√︃
𝜎2𝑞𝑏 (y | x)

(A.26)

Next, we want to compute E𝑞𝑎 (x,y) (log𝑞(y) − log𝑞𝑏 (y | x)). As 𝑞𝑎 (y) is a standard normal distri-

bution, the first term averages to −1
2 . Then, the only other random quantity is

(
y − E𝑞𝑏 [y | x]

)2,
and we compute

E𝑞𝑎 (x,y)
(
y − E𝑞𝑏 [y | x]

)2
.

For this, expand
(
y − E𝑞𝑏 [y | x]

)
noting that x comes from 𝑞𝑎 (y, x) and so is

x =

[
(1 − 𝑎) ∗ y −

√
0.5𝜖𝑧 +

√
1.5𝜖1, (1 + 𝑎) ∗ y +

√
0.5𝜖2 +

√
0.5𝜖𝑧)

]
.

y − E𝑞𝑏 [y | x] = y − Σ1,2Σ
−1
2,2x

= y − 1
2(𝑏 + 0.5)2 + 5.25

[0.5(3 − 𝑏), 0.5(5 + 3𝑏)]x
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When does the training conditional perform worse than random? Now let’s set 𝑏 = 1.

Then, 2(𝑏 + 0.5)2 + 5.25 = 2(1 + 0.5)2 + 5.25 = 9.75 and we get

y − E𝑞𝑏 [y | x] = y − 1
2(𝑏 + 0.5)2 + 5.25

[1, 4]x

= y − 1
2(1 + 0.5)2 + 5.25

[1, 4]x

= y − 1
9.75

(
1 ∗ [(1 − 𝑎) ∗ y −

√
0.5𝜖𝑧 +

√
1.5𝜖1] + 4 ∗ [(1 + 𝑎) ∗ y +

√
0.5𝜖2 +

√
0.5𝜖𝑧)]

)
This expression takes the form 1

9.75 (𝛼y + 𝛽𝜖𝑧 + 𝛾 ∗ 𝜖1 + 𝜃 ∗ 𝜖2). As y, 𝜖𝑧, 𝜖1, 𝜖2 are mutually inde-

pendent standard normal random variables, Ey,𝜖𝑧 ,𝜖1,𝜖2
(
y − E𝑞𝑏 [y | x(y, 𝜖𝑧, 𝜖1, 𝜖2)]

)2 will evaluate

to
1

(9.75)2
(
𝛼2 + 𝛽2 + 𝛾2 + 𝜃 2

)
.

Now,

𝛼 = 9.75 − (1 − 𝑎) − 4 ∗ (1 + 𝑎) = 4.75 − 3𝑎

𝛽 = −1(−
√
0.5) − 4 ∗

√
0.5 = −3

√
0.5

𝛾 = −1 ∗
√
1.5

𝜃 = −4 ∗
√
0.5

The last term to compute is

log
√︃
𝜎2𝑞𝑏 (y | x) = 1

2
log

1.75
2(𝑏 + 0.5)2 + 5.25

= 0.5 log
1.75
9.75

> −0.8588
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Thus, following eq. (A.26)

E𝑞𝑎 (x,y) (log𝑞(y) − log𝑞𝑏 (y | x)) = E𝑞(y) −
y2

2
+ (2(𝑏 + 0.5)2 + 5.25)

(
y − E𝑞𝑏 [y | x]

)2
3.5

= E𝑞(y) −
y2

2
+ (9.75)

(
y − E𝑞𝑏 [y | x]

)2
3.5

+ log
√︃
𝜎2𝑞𝑏 (y | x)

> −1
2
+ 9.75

3.5
1

(9.75)2
(
𝛼2 + 𝛽2 + 𝛾2 + 𝜃 2

)
− 0.8588

= −1
2
+ 9.75

3.5
1

(9.75)2
(
(4.75 − 3𝑎)2 + (−3

√
0.5)2 + (−1 ∗

√
1.5)2 + (−4 ∗

√
0.5)2

)
− 0.8588

=
1

3.5 ∗ 9.75
(
(4.75 − 3𝑎)2 + 4.5 + 1.5 + 8

)
− 1.3588

=
1

34.125
(
(4.75 − 3𝑎)2 + 14

)
− 1.3588

By solving a quadratic equation, this number is greater than 0 for every value 𝑎 > 3.48 and

𝑎 < −0.314. This concludes that the training conditional 𝑞1(y | x) performs worse than predicting

randomly with 𝑞(y) on some members of the nuisance-varying family.

When does the nuisance-randomized conditional perform worse than random if x is

not uncorrelating? Now let’s set 𝑏 = 0. Then, 2(𝑏 + 0.5)2 + 5.25 = 2(0.5)2 + 5.25 = 5.75 and

we get

y − E𝑞𝑏 [y | x] = y − 1
2(𝑏 + 0.5)2 + 5.25

[1.5, 2.5]x

= y − 1
2(0.5)2 + 5.25

[1.5, 2.5]x

= y − 1
5.75

(
1.5 ∗ [(1 − 𝑎) ∗ y −

√
0.5𝜖𝑧 +

√
1.5𝜖1]

+ 2.5 ∗ [(1 + 𝑎) ∗ y +
√
0.5𝜖2 +

√
0.5𝜖𝑧)]

)
This expression takes the form 1

5.75 (𝛼y + 𝛽𝜖𝑧 + 𝛾 ∗ 𝜖1 + 𝜃 ∗ 𝜖2). As y, 𝜖𝑧, 𝜖1, 𝜖2 are mutually inde-

pendent standard normal random variables, Ey,𝜖𝑧 ,𝜖1,𝜖2
(
y − E𝑞𝑏 [y | x(y, 𝜖𝑧, 𝜖1, 𝜖2)]

)2 will evaluate
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to
1

(5.75)2
(
𝛼2 + 𝛽2 + 𝛾2 + 𝜃 2

)
.

Now,

𝛼 = 5.75 − 1.5(1 − 𝑎) − 2.5 ∗ (1 + 𝑎) = 1.75 − 𝑎

𝛽 = −1.5 ∗ (−
√
0.5) − 2.5 ∗

√
0.5 = −

√
0.5

𝛾 = −1.5 ∗
√
1.5

𝜃 = −2.5 ∗
√
0.5

The last term to compute is

log
√︃
𝜎2𝑞𝑏 (y | x) = 1

2
log

1.75
2(𝑏 + 0.5)2 + 5.25

= 0.5 log
1.75
5.75

= 0.5 log
7
23

> −0.5947

Thus, following eq. (A.26)

E𝑞𝑎 (x,y) (log𝑞(y) − log𝑞𝑏 (y | x)) = E𝑞(y) −
y2

2
+ (2(𝑏 + 0.5)2 + 5.25)

(
y − E𝑞𝑏 [y | x]

)2
3.5

= E𝑞(y) −
y2

2
+ (5.75)

(
y − E𝑞𝑏 [y | x]

)2
3.5

+ log
√︃
𝜎2𝑞𝑏 (y | x)

> −1
2
+ 5.75

3.5
1

(5.75)2
(
𝛼2 + 𝛽2 + 𝛾2 + 𝜃 2

)
− 0.5947

= −1
2
+ 5.75

3.5
1

(5.75)2
(
(1.75 − 𝑎)2 + (−

√
0.5)2 + (−1.5 ∗

√
1.5)2 + (−2.5 ∗

√
0.5)2

)
− 0.5948

=
1

3.5 ∗ 5.75

(
(1.75 − 𝑎)2 + (−

√
0.5)2 + (−1.5 ∗

√
1.5)2 + (−2.5 ∗

√
0.5)2

)
− 1.0947

=
1

20.125
(
(1.75 − 𝑎)2 + 0.5 + 3.375 + 3.125

)
− 1.0947

=
1

20.125
(
(1.75 − 𝑎)2 + 7

)
− 1.0947
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By solving a quadratic equation, this number is greater than 0 for every value 𝑎 > 5.63 and

𝑎 < −2.13. This concludes that the nuisance-randomized conditional 𝑞0(y | x) = 𝑝 |= (y | x)

performs worse than predicting randomly with 𝑞(y) on some members of the nuisance-varying

family when x is not uncorrelating.

A.2 Further experimental details

Implementation details In section 2.5, the label y is a binary variable and, consequently, we

use the Bernoulli likelihood in the predictive model and the weight model. In reweighting-NuRD

in practice, the estimate of the nuisance-randomized distribution𝑝 |= (y, z, x) ∝ 𝑝𝑡𝑟 (y)/𝑝𝑡𝑟 (y | z)𝑝𝑡𝑟 (y, z, x)

with an estimated 𝑝𝑡𝑟 (y | z) may have a different marginal distribution 𝑝 |= (y) ≠ 𝑝𝑡𝑟 (y). To ensure

that 𝑝𝑡𝑟 (y) = 𝑝 |= (y), we weight our preliminary estimate 𝑝 |= again as 𝑝𝑡𝑟 (y)
𝑝 |= (y) 𝑝 |= (y, z, x).

In all the experiments, the distribution 𝑝𝜃 (y | 𝑟𝛾 (x)) is a Bernoulli distribution parameterized by

𝑟𝛾 and a scaling parameter 𝜃 . In general, when the family of 𝑝 |= (y | 𝑟𝛾 (x)) is unknown, learning

predictive models requires a parameterization 𝑝𝜃 (y | 𝑟𝛾 (x)). When the family is known, for ex-

ample when y is categorical, the parameters 𝜃 are not needed because the distribution 𝑝 (y | 𝑟𝛾 (x))

can be parameterized by the representation itself. For the critic model 𝑝𝜙 (ℓ | y, z, 𝑟𝛾 (x)) in the

distillation step, we use a two layer neural network with 16 hidden units and ReLU activations

that takes as input y, 𝑟𝛾 (x), and a scalar representation 𝑠𝜓 (z); the critic model’s parameters are

𝜙,𝜓 . The representation 𝑠𝜓 (z) is different in the different experiments and we give these details

below.

In generative-NuRD, we select models for 𝑝 (x | y, z) by using the generative objective’s value

on a heldout subset of the training data. For model selection, we use Gaussian likelihood in the

class-conditional Gaussian experiment, binary likelihood in the colored-MNIST experiment, and

squared-loss reconstruction error in theWaterbirds and chest X-ray experiments. In reweighting-

NuRD, we use a cross-fitting procedure where the training data is split into𝐾 folds, and𝐾 models
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are trained: for each fold, we produce weights using a model trained and validated on the other

𝐾 − 1 folds. Hyperparameter selection for the distillation step is done using the distillation loss

from eq. (2.6) evaluated on a heldout validation subset of the nuisance-randomized data from the

first step.

In all experiments, we report results with the distillation step optimized with a fixed 𝜆 = 1 and

with 1 or 2 epochs worth of critic model updates per every representation update. In setting the

hyperparameter 𝜆, a practitioner should choose the largest 𝜆 such that optimization is still stable

for different seeds and the validation loss is bounded away from that of marginal prediction. Next,

we give details about each individual experiment.

Optimal linear uncorrelating representations in Class Conditional Gaussians. Here,

we show that 𝑟 ∗(x) = x1 + x2 is the best linear uncorrelating representation in terms of per-

formance. First let the Gaussian noises in the two coordinates of x (given y, z) be 𝝐1 ∼ N(0, 9)

and 𝝐2 ∼ N(0, 0.01) respectively. Define 𝑟𝑢,𝑣 (x) = 𝑢x1 + 𝑣x2 = (𝑢 + 𝑣)y + (𝑣 − 𝑢)z + 𝑢𝝐1 + 𝑣𝝐2.

We will show that 𝑞0(z | 𝑟𝑢,𝑣 (x), y = 1) ≠ 𝑞0(z | 𝑟𝑢,𝑣 (x), y = 0) when 𝑢 ≠ 𝑣 and 𝑢 ≠ −𝑣 . First,

𝑞0(z, 𝑟𝑢,𝑣 (x) | y = 𝑦) is a bivariate Gaussian with the following covariance matrix:

Σ𝑦 =
©«

1 (𝑣 − 𝑢)

(𝑣 − 𝑢) (𝑣 − 𝑢)2 + 9𝑢2 + 0.01𝑣2

ª®®¬ =⇒ Σ𝑦;1,2 = 𝑣 − 𝑢, Σ−1
𝑦;2,2 =

1
(𝑣 − 𝑢)2 + 9𝑢2 + 0.01𝑣2

The conditional mean is:

E𝑞𝑎 [z | 𝑟𝑢,𝑣 (x) = 𝑟, y] = E[z | y = 1] + Σ1,2Σ
−1
2,2

(
𝑟 − E[𝑟𝑢,𝑣 (x) | y = 1]

)
= E[z] + Σ1,2Σ

−1
2,2 (𝑟 − (𝑢 + 𝑣)y)

=
(𝑣 − 𝑢) (𝑟 − (𝑢 + 𝑣)y)
(𝑣 − 𝑢)2 + 9𝑢2 + 0.01𝑣2
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which is independent of y if and only if 𝑢 + 𝑣 = 0 or 𝑢 − 𝑣 = 0. The conditional variance

does not change with 𝑦 because it is determined by Σ𝑦 which does not change with 𝑦. Thus

𝑞0(z | 𝑟𝑢,𝑣 (x), y) = 𝑞0(z | 𝑟𝑢,𝑣 (x)) if and only if 𝑢 = 𝑣 or 𝑢 = −𝑣 . When 𝑢 = 𝑣 , 𝑟𝑢,𝑣 = 2𝑢y + noise

and 𝑟𝑢,𝑢 ̸|= 𝑞0y meaning that 𝑟𝑢,𝑢 helps predict y. In contrast, when 𝑢 = −𝑣 , 𝑟𝑢,𝑣 = 2𝑣z + noise and

so 𝑟−𝑣,𝑣 |= 𝑞0y =⇒ 𝑞0(y | 𝑟−𝑣,𝑣 ) = 𝑞0(y), meaning that 𝑞0(y | 𝑟−𝑣,𝑣 ) has the same performance as

the marginal. However, for all 𝑢 ≠ 0, 𝑟𝑢,𝑢 = 𝑢𝑟1,1 is a bijective transform of 𝑟1,1 and, therefore,

𝑞0(y | 𝑟𝑢,𝑢 (x)) = 𝑞0(y | 𝑟1,1(x)). Thus, within the set of linear uncorrelating representations, 𝑟1,1

is the best because its performance dominates all others on every 𝑝𝑡𝑒 ∈ F .

Implementation details forClass ConditionalGaussians. In reweighting-NuRD, themodel

for 𝑝𝑡𝑟 (y | z) is a Bernoulli distribution parameterized by a neural network with 1 hidden layer

with 16 units and ReLU activations. In generative-NuRD, the model for 𝑝 (x | y, z) is an isotropic

Gaussian whose mean and covariance are parameterized with a neural network with one layer

with 16 units and ReLU activations. We use 5 cross-fitting folds in estimating the weights in

reweighting-NuRD. We use weighted sampling with replacement in computing the distillation

objective.

In the distillation step in both reweighting and generative-NuRD, the representation 𝑟𝛾 (x) is a

neural network with one hidden layer with 16 units and ReLU activations. The critic model

𝑝𝜙 (ℓ | y, z, 𝑟𝛾 (x)) consists of a neural network with 2 hidden layers with 16 units each and ReLU

activations that takes as input y, 𝑟𝛾 (x), and a scalar representation 𝑠𝜓 (z) which is again a neural

network with a single hidden layer of 16 units and ReLU activations.

We use cross entropy to train 𝑝𝑡𝑟 (y | z), 𝑝 |= (y | 𝑟𝛾 (x)), and 𝑝𝜙 (ℓ | y, z, 𝑟𝛾 (x)) using the Adam [90]

optimizer with a learning rate of 10−2. We optimized the model for 𝑝𝑡𝑟 (y | z) for 100 epochs and

the model for 𝑝𝑡𝑟 (x | y, z) for 300 epochs. We ran the distillation step for 150 epochs with the

Adam optimizer with the default learning rate. We use a batch size of 1000 in both stages of

NuRD. We run the distillation step with a fixed 𝜆 = 1 and two epoch’s worth of gradient steps
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(16) for the critic model for each gradient step of the predictive model and the representation. In

this experiment, we do not re-initialize 𝜙,𝜓 after a predictive model update.

Implementation details for Colored-MNIST. For reweighting-NuRD, to use the same archi-

tecture for the representation 𝑟𝛾 (x) and for 𝑝𝑡𝑟 (y | z), we construct the nuisance as a 28×28 image

with each pixel being equal to the most intense pixel in the original image. In generative-NuRD,

we use a PixelCNN model for 𝑝 (x | y, z) with 10masked convolutional layers each with 64 filters.

The model was trained using a Bernoulli likelihood with the Adam optimizer and a fixed learning

rate of 10−3 and batch size 128. We parameterize multiple models in this experiment with the fol-

lowing neural network: 4 convolutional layers (with 32, 64, 128, 256 channels respectively) with

ReLU activations followed by a fully connected linear layer into a single unit. Both 𝑟𝛾 (x), 𝑠𝜓 (z)

are parameterized by this network. Both 𝑝𝑡𝑟 (y | z) in reweighting-NuRD and 𝑝𝑡𝑟 (y | x) for erm

are Bernoulli distributions parameterized by the network described above. We use 5 cross-fitting

folds in estimating the weights in reweighting-NuRD.

For the critic model 𝑝𝜙 (ℓ | y, z, 𝑟𝛾 (x)) in the distillation step, we use a two-hidden-layer neural

network with 16 hidden units and ReLU activations that takes as input y, 𝑟𝛾 (x), and the scalar

representation 𝑠𝜓 (z); the parameters 𝜙 contain 𝜓 and the parameters for the two hidden-layer

neural network. The predictive model 𝑝𝜃 (y | 𝑟𝛾 (x)) is a Bernoulli distribution parameterized by

𝑟𝛾 (x) multiplied by a scalar 𝜃 .

We use cross entropy to train 𝑝𝑡𝑟 (y | z), 𝑝 |= (y | 𝑟𝛾 (x)), and 𝑝𝜙 (ℓ | y, z, 𝑟𝛾 (x)) using the Adam [90]

optimizer with a learning rate of 10−3. We optimized the model for 𝑝𝑡𝑟 (y | z) for 20 epochs and

ran the distillation step for 20 epochs with the Adam optimizer with the default learning rate. We

use a batch size of 300 in both stages of NuRD. We run the distillation step with a fixed 𝜆 = 1

and one epoch’s worth of gradient steps (14) for the critic model for each gradient step of the

predictive model and the representation. In this experiment, we do not re-initialize 𝜙,𝜓 after a

predictive model update.
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Implementation details for the Waterbirds experiment. For generative-NuRD, we use

VQ-VAE 2 [238] to model 𝑝𝑡𝑟 (x | y, z). For multiple latent sizes and channels in the encoder

and the decoder, we saw that the resulting generated images were insufficient to build classifiers

that predict better than chance on real data. This may be because of the small training dataset that

consists of only 3000 samples. The model for 𝑝 |= (y | 𝑟𝛾 (x)) is two feedforward layers stacked on

top of the representation 𝑟𝛾 (x). The model 𝑝𝑡𝑟 (y | z) in reweighting-NuRD is the same model as

𝑝 |= (y | 𝑟𝛾 (x)) as a function of x. The model for 𝑝𝜙 (ℓ | y, z, 𝑟𝛾 (x)) consists of a neural network with

two feedforward layers that takes as input y, 𝑟𝛾 (x), and a representation 𝑠𝜓 (z). Both 𝑟𝛾 and 𝑠𝜓 are

Resnet-18 models initialized with weights pretrained on Imagenet; the parameters 𝜙 contain 𝜓

and the parameters for the two hidden-layer neural network. The model in erm for 𝑝𝑡𝑟 (y | x) uses

the same architecture as 𝑝 |= (y | 𝑟𝛾 (x)) as a function of x. We use 5 cross-fitting folds in estimating

the weights in reweighting-NuRD.

We use binary cross entropy as the loss in training 𝑝𝑡𝑟 (y | z), 𝑝𝜃 (y | 𝑟𝛾 (x)), and 𝑝𝜙 (ℓ | y, z, 𝑟𝛾 (x)))

using the Adam [90] optimizer with a learning rate of 10−3. We optimized the model for 𝑝𝑡𝑟 (y | z)

for 10 epochs and ran the distillation step for 5 epochs with the Adam optimizer with the default

learning rate for all parameters except 𝛾 , which parameterizes the representation 𝑟𝛾 ; for 𝛾 , we

used 0.0005. The predictive model, the critic model, and the weight model are all optimized with

a weight decay of 0.01. We use a batch size of 300 for both stages of NuRD. We run the distillation

step with a fixed 𝜆 = 1 and two epoch’s worth of gradient steps (16) for the critic model for each

gradient step of the predictive model and the representation. To prevent the critic model from

overfitting, we re-initialize 𝜙,𝜓 after every gradient step of the predictive model.

Implementation details for the chest X-ray experiment. To help with generative model-

ing, when creating the dataset, we remove X-ray samples from MIMIC that had all white or all

black borders. We use a VQ-VAE2 [238] to model 𝑝 (x | y, z) using code from here to both train

and sample. The encoder takes the lung patch as input, and the decoder takes the quantized em-
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beddings and the non-lung patch as input. VQ-VAE2 is hierarchical with a top latent code and a

bottom latent code which are both vector-quantized and fed into the decoder to reconstruct the

image. Both latents consist of 8× 8 embeddings each of dimension 64. The VQ-VAE is trained for

200 epochs with Adam [90] with a batch size of 256 and dropout rate of 0.1. Generating samples

from the VQ-VAE2 involves sampling the top latent code conditioned on the label, followed by

sampling the bottom latent code conditioned on the label and the top latent code, and passing

both latent codes to the decoder. To generate from the latent codes, we build a PixelSNAIL to

generate the top latent code given the label and a PixelCNN to generate the bottom latent code

given the label and the top latent code. These models have 5 residual layers with 128 convolu-

tional channels. All other details were default as in here. We train these models for 450 epochs

with a batch size of 256 with a learning rate of 5 × 10−5.

For reweighting-NuRD, the model 𝑝 |= (y | 𝑟𝛾 (x)) is two feedforward layers stacked on top of the

representation 𝑟𝛾 (x). The model in erm for 𝑝𝑡𝑟 (y | x) uses the same architecture as 𝑝 |= (y | 𝑟𝛾 (x))

as a function of x. Next we use a single architecture to parameterize multiple parts in this ex-

periment: 3 convolutional layers (each 64 channels) each followed by batch norm, and dropout

with a rate of 0.5 and followed by a linear fully-connected layer into a single unit. We parame-

terize the two representations 𝑟𝛾 (x), 𝑠𝜓 (z) with this network. To build 𝑝𝜙 (ℓ | y, z, 𝑟𝛾 (x)), we stack

two feedforward layers of 16 hidden units with ReLU activations on top of a concatenation of y,

𝑟𝛾 (x),and the scalar representation 𝑠𝜓 (z) as described above; the parameters 𝜙 contain𝜓 and the

parameters for the two hidden-layer neural network. We use 5 cross-fitting folds in estimating

the weights in reweighting-NuRD.

We use binary cross entropy as the loss in training 𝑝𝑡𝑟 (y | z), 𝑝𝜃 (y | 𝑟𝛾 (x)), and 𝑝𝜙 (ℓ | y, z, 𝑟𝛾 (x)))

using the Adam [90] optimizer with a learning rate of 10−3. We use a batch size of 1000 for both

stages of NuRD. We optimized the model for 𝑝𝑡𝑟 (y | z) for 150 epochs and ran the distillation step

for 100 epochs with the Adam optimizer with the default learning rate. Only the optimization for
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𝑝𝑡𝑟 (y | z) has a weight decay of 1𝑒 − 2. We run the distillation step with a fixed 𝜆 = 1 and two

epoch’s worth of gradient steps (20) for the critic model for each gradient step of the predictive

model and the representation. To prevent the critic model from overfitting, we re-initialize 𝜙,𝜓

after every gradient step of the predictive model.

A.2.1 Additional experiments

Excluding the boundary from the images (covariates) does not improve erm in general.

In both Waterbirds and chest X-rays, we use the easy-to-acquire border as a nuisance in NuRD.

Models trained on the central (non-border) regions of the image can exploit the nuisances in

the center and consequently fail to generalize when the nuisance-label relationship changes. In

fact, classifiers produced by erm on border-less images do not generalize well to the test data,

producing test accuracies of 39±0.5% on chest X-rays and 65±2.3% onWaterbirds averaged over

10 seeds. However, as independence properties that hold for the border also hold for nuisances

in the central region that are determined by the border, NuRD can use the border to control for

certain nuisances in the center of the image.

Additional experiments with NuRD. We evaluate reweighting-NuRD further in the follow-

ing ways:

1. Run NuRD on data from the training data distribution defined in section 2.5 and evaluate

on data from test distributions 𝑝𝑡𝑒 with different nuisance-label relationships.

2. Train NuRD with different-sized borders as nuisances.

3. TrainNuRDwithout a nuisancewhere the training and the test data have the same nuisance-

label relationship; we implement this by setting the nuisance z = 0 wherever it is passed as

input in the weight model or critic model.

4. Run the distillation step with different 𝜆.
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Figure A.2: Plots of average accuracy vs. test 𝜌 for classifying Waterbirds and Pneumonia. A larger 𝜌
implies a larger difference between the nuisance-label relationship in the test data used for evaluation
and the training data, which has a 𝜌 = 0.1. Nuisance-randomized data corresponds to 𝜌 = 0.5. Unlike
NuRD, erm’s performance quickly degrades as the difference between the train and the test distributions
increases.

Different test distributions. For this experiment, we compute the test accuracies of the

models trained in the experiments in section 2.5 on data with different nuisance-label relation-

ships. For both classifying Waterbirds and Pneumonia, a scalar parameter 𝜌 controls nuisance-

label relationships in the data generating process. In waterbirds,

𝜌 = 𝑝 (y = 𝑤𝑎𝑡𝑒𝑟𝑏𝑖𝑟𝑑 | background = land) = 𝑝 (y = 𝑙𝑎𝑛𝑑𝑏𝑖𝑟𝑑 | background = water) .

In chest X-rays, 𝜌 corresponds to the fraction of Pneumonia cases that come from CheXpert and

normal cases that come from MIMIC in the data; in this task, hospital differences are one source

of nuisance-induced spurious correlations. In both tasks, 𝜌 = 0.1 in the training data; as test 𝜌

increases, the nuisance-label relationship changes and becomes more different from the training

data. We plot the average and standard error of accuracies aggregated over 10 seeds for different

test 𝜌 ∈ {0.5, 0.7, 0.9} in fig. A.2.

Nuisance specification with different borders. For Waterbirds, we ran NuRD with the

pixels outside the central 168x168 patch (a 56 pixel border) as the nuisance. Averaged over 10

seeds, reweighting-NuRD produced a model with 81% test accuracy which is similar to the accu-
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racy achieved by NuRD using a 28-pixel border as the nuisance. In comparison, erm achieves an

accuracy of 66%.

NuRD without a nuisance and no nuisance-induced spurious correlations in classi-

fying Waterbirds. We performed an additional experiment on classifying Waterbirds where

NuRD is given a constant nuisance which is equivalent to not using the nuisance. We generated

training and test data with independence between the nuisance and the label; the nuisance-label

relationship does not change between training and test. Averaged over 10 seeds, erm achieved a

test accuracy of 89 ± 0.4% and NuRD achieved a test accuracy of 88 ± 1%.

Reweighting-NuRD with different 𝜆. Large 𝜆s may make optimization unstable by penal-

izing even small violations of joint independence. Such instabilities can lead NuRD to build pre-

dictive models that do not do better than marginal prediction, resulting in large distillation loss

(log-likelihood + information loss) on the validation subset of the training data. However, a small

𝜆 may result in NuRD learning non-uncorrelating representations which can also perform worse

than chance.

We ranNuRD on the waterbirds and class-conditional Gaussians experiments with 𝜆 = 5 (instead

of 𝜆 = 1 like in section 2.5) and found that, on a few seeds, NuRD produces models with close

to 50% accuracy (which is the same as majority prediction) or large information loss or both.

Excluding seeds with large validation loss, reweighting-NuRD achieves an average test accuracy

of 76% on waterbirds and 61% on class-conditional Gaussians. Annealing the 𝜆 during training

could help stabilize optimization.

In setting the hyperparameter 𝜆 in general, a practitioner should choose the largest 𝜆 such that

optimization is still stable over different seeds and the validation loss is bounded away from that

of predicting without any features.
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B | Appendices for chapter 3

B.1 Proofs and Discussion on Semantic Corruptions

In this section we give the proofs of Theorem 2 and Proposition 1. The first result shows that

even if we know our training and test data are sampled from distributions in a nuisance varying

family F , additional assumptions are required in order to learn a predictor that is robust across

the entire family.

Theorem 1. For any learning algorithm, there exists a nuisance-varying family F where predicting

with 𝑝 |= (y = 1 | x) achieves 90% accuracy on all members such that given training data y, x from

one member 𝑝𝑡𝑟 ∈ F , the algorithm cannot achieve better accuracy than predicting at random on

some 𝑝𝑡𝑒 ∈ F .

Proof. At a high-level, we setup two nuisance-varying families F1 = {𝑝1,𝜌}, F2 = {𝑝2,𝜌} where

1. There are members of each family that have the same distribution over (y, x). We let this

distribution over y, x be the training data.

2. Thus looking at this training data alone, no algorithm can tell which family the test distri-

bution will come from.

3. Then, the proof concludes by showing any predictor that performs better than the chance
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on all members of F1, will perform worse than chance on a member of F2.

Defining the two families. We now define two nuisance-varying families F1 = {𝑝1,𝜌} and

F2 = {𝑝2,𝜌}. For 𝑎 ∈ {−1, 1}, and 𝛼 ∈ [0, 1] let R𝛼 (𝑎) be a probability distribution obtained by

randomly flipping the sign of 𝑎 with probability 1 − 𝛼 :

𝑟 ∼ R𝛼 (𝑎) =⇒


𝑝 (𝑟 = 𝑎) = 𝛼

𝑝 (𝑟 = −𝑎) = 1 − 𝛼
(B.1)

Then, define the family {𝑝1,𝜌} as the distributions resulting from the following sampling process:

y ∼ R0.5(1)

z ∼ R𝜌 (y)

x∗ ∼ R0.9(y)

x = [x∗, z]

The second family 𝑝2,𝜌 follows the same process except that the positions of the semantic feature

and nuisance are flipped x = [z, x∗]. Notice that predicting y from x1 in F1 and from x2 in

F2, achieves 90% accuracy. In both families, by construction, the following properties hold

𝑝1,𝜌 (y) = 𝑝2,𝜌 (y) 𝑝1,𝜌 (z, y) = 𝑝2,𝜌 (z, y), 𝑝1,𝜌 (x∗, y) = 𝑝2,𝜌 (x∗, y), x1 |= 𝑝 ·,𝜌x2 | y.

If 𝜌 ≠ 0.9, due to the flipping of the positions of x∗, z between 𝑝1,𝜌 and 𝑝2,𝜌 ,

𝑝1,𝜌 (x1 | y) ≠ 𝑝2,𝜌 (x1 | y) 𝑝1,𝜌 (x2 | y) ≠ 𝑝2,𝜌 (x2 | y).

But when 𝜌 = 0.9, the distributions are the same: 𝑝·,𝜌 (x1 | y) d
= 𝑝·,𝜌 (x2 | y) =⇒ 𝑝1,0.9(y, x) =
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𝑝2,0.9(y, x).With this we let the training data come from 𝑝𝑡𝑟 = 𝑝1,0.9.

Reducing accuracy computation to summing conditional probabilities. Now, we ex-

press the accuracy of any predictor 𝑓 (𝑥1, 𝑥2) ∈ {−1, 1} of 𝑝1,𝜌 :

ACC𝑓 (𝑝1,𝜌) = E𝑝1,𝜌 (y,x1,x)1[y = 𝑓 (x1, x2)]

=
∑︁
𝑥1,𝑥2

𝑝1,𝜌 (y = 𝑓 (𝑥1, 𝑥2), x1 = 𝑥1, x2 = 𝑥2)

=
∑︁
𝑥1,𝑥2

𝑝1,𝜌 (x1 = 𝑥1, x2 = 𝑥2 | y = 𝑓 (𝑥1, 𝑥2))𝑝1,𝜌 (y = 𝑓 (𝑥1, 𝑥2))

= 0.5
∑︁
𝑥1,𝑥2

𝑝1,𝜌 (x1 = 𝑥1, x2 = 𝑥2 | y = 𝑓 (𝑥1, 𝑥2)) (B.2)

With this expression, we have reduced computing the accuracy of a model 𝑓 (𝑥1, 𝑥2) to taking one

from a pair of numbers — either 𝑝1,𝜌 (x1 = 𝑥1, x2 = 𝑥2 | y = 1) or 𝑝1,𝜌 (x1 = 𝑥1, x2 = 𝑥2 | y = −1)

based on what 𝑓 (𝑥1, 𝑥2) predicts — for each possible value of 𝑥1, 𝑥1 ∈ {−1, 1}2, summing them

and multiplying by 0.5.

Showing only a semantic predictor can achieve better accuracy than random chance

on F1. Next, we will show that the only way to achieve better accuracy than random chance on

every member of F1 is to predict with 𝑓 (𝑥1, 𝑥2) = 𝑥1. To show this, we will express the accuracy

computation for two distributions 𝑝1,0 and 𝑝1,1 by constructing a table of values of 𝑝1,𝜌 (x1 =

𝑥1, x2 = 𝑥2 | y = 1) and 𝑝1,𝜌 (x1 = 𝑥1, x2 = 𝑥2 | y = −1) for 𝜌 = 0 and 𝜌 = 1 separately.

𝑝1,1
x1

−1 +1

x2
−1 0, 0.9 0, 0.1

+1 0.1, 0 0.9, 0

𝑝1,0
x1

−1 +1

x2
−1 0.1, 0 0.9, 0

+1 0, 0.9 0, 0.1
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(𝑥1, 𝑥2) (−1,−1) (−1, 1) (1,−1) (1, 1) ACC𝑓 (𝑝1,0) acc ACC𝑓 (𝑝1,1) min
0 1 1 1 1 0.50 0.50 0.50
1 1 1 1 -1 0.55 0.05 0.05
2 1 1 -1 1 0.05 0.55 0.05
3 1 1 -1 -1 0.10 0.10 0.10
4 1 -1 1 1 0.95 0.45 0.45
5 1 -1 1 -1 1.00 0.00 0.00
6 1 -1 -1 1 0.50 0.50 0.50
7 1 -1 -1 -1 0.55 0.05 0.05
8 -1 1 1 1 0.45 0.95 0.45
9 -1 1 1 -1 0.50 0.50 0.50
10 -1 1 -1 1 0.00 1.00 0.00
11 -1 1 -1 -1 0.05 0.55 0.05

=⇒ 12 -1 -1 1 1 0.90 0.90 0.90
13 -1 -1 1 -1 0.95 0.45 0.45
14 -1 -1 -1 1 0.45 0.95 0.45
15 -1 -1 -1 -1 0.50 0.50 0.50

Table B.1: The 16 different functions that are possible when predicting a label in {−1, 1} from x ∈ {−1, 1}2.
We compute the accuracies on 𝑝1,0, 𝑝1,1 and report the minimum of the two. The only predictor that
achieves better than random chance accuracy (denoted by =⇒) is 𝑓 (𝑥1, 𝑥2) = 𝑥1.

By definition of accuracy from eq. (B.2), the accuracy of any predictor 𝑓 (𝑥1, 𝑥2) comes down to

picking one from the pair of numbers — left one if prediction if 1 and right otherwise — from

each element in the table, summing them and multiplying by 0.5. There are 16 possible functions

(2 possible predictions each for 4 combinations of 𝑥1, 𝑥2) and we enumerate them in table B.1,

showing that only 𝑓 ∗(𝑥1, 𝑥2) = 𝑥1 will perform better than chance on both distributions 𝑝1,0 and

𝑝1,1.

No predictor can achieve better accuracy than random on both F1 and F2. The earlier

parts showed that the only predictor that achieves better accuracy than random chance on all of

F1 is one that only relies on x1, which equals the semantic feature x∗ under 𝑝1,𝜌 . However, under

𝑝2,𝜌 , x1 is the nuisance z. Then, the predictor 𝑓 ∗(𝑥1, 𝑥2) = 𝑥1 has zero accuracy under 𝑝2,0 because
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under 𝑝2,0, we have z ∼ 𝑅0(y) which means z ≠ y with probability one:

ACC𝑓 ∗ (𝑝2,0) =
∑︁
𝑥1,𝑥2

𝑝2,0(y = 𝑓 (𝑥1, 𝑥2), x1 = 𝑥1, x2 = 𝑥2) =
∑︁
𝑥1,𝑥2

𝑝2,0(y = 𝑥1, z = 𝑥1, x2 = 𝑥2) = 0

(B.3)

□

B.1.1 Semantic corruptions, biased models, and proof of

proposition 1

We give the definition of a semantic corruption here and discuss how it implies alternative intu-

itive definitions before presenting the proof of proposition 1 on using corruptions to build biased

models.

Definition 5 (Semantic Corruption). A semantic corruption is a transformation of the covariates

𝑇 (x, 𝜹), where 𝜹 is a random variable such that 𝜹 |= (y, z, x, x∗), if

∀𝑝𝐷 ∈ F 𝑇 (x, 𝜹) |= 𝑝𝐷x∗ | z.

Two other plausible definitions that come to mind are 𝑇 (x, 𝜹) |= 𝑝 |= x
∗ and that y |= 𝑝𝐷𝑇 (x, 𝜹) | z.

These are both intuitive properties that can be asked of a semantic corruption that is supposed

to discards all information about semantics, provided that the z which we wish to retain holds

no information on it (which is the case under 𝑝 |= ). We now show that definition 5 implies these

two.

From the definition that if𝑇 (x, 𝜹) is a semantic corruption, then it also holds that𝑇 (x, 𝜹) |= 𝑝 |= x
∗:
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since x∗ |= 𝑝 |= z

𝑝 |= (𝑇 (x, 𝜹), x∗) = E𝑝 |= (z)𝑝 |= (𝑇 (x, 𝜹), x∗ | z) = E𝑝 |= (z)𝑝 |= (𝑇 (x, 𝜹) | z)𝑝 |= (x∗ | z) (B.4)

= 𝑝 |= (x∗)E𝑝 |= (z)𝑝 |= (𝑇 (x, 𝜹) | z) = 𝑝 |= (x∗)𝑝 |= (𝑇 (x, 𝜹)) . (B.5)

A semantic corruption satisfies the second definition also because

𝑝𝐷 (y|𝑇 (x), z) =
∫

𝑝𝐷 (y|x∗,𝑇 (x), z)𝑝𝐷 (x∗ |z,𝑇 (x))𝑑x∗ =
∫

𝑝𝐷 (y|x∗, z)𝑝𝐷 (x∗ |z,𝑇 (x))𝑑x∗

=

∫
𝑝𝐷 (y|x∗, z)𝑝𝐷 (x∗ |z)𝑑x∗ = 𝑝𝐷 (y|z)

(B.6)

First transition adds in integration over the values of x∗, second one uses the property of the

nuisance varying family that x⊥⊥𝑝𝐷y|z, x∗ and therefore it is also conditionally independent for

any 𝑇 (x, 𝜹). Then the third transition is due to 𝑇 (x, 𝜹) being a semantic corruption. The next

result shows that the more our semantic corruption captures information about the nuisance that

is relevant to predicting y, the better we can approximate learning under 𝑝 |= , which would yield

the optimal risk-invariant predictor over F [18].

B.1.1.1 Proof of proposition 1.

Now, using the property in eq. (B.6) that holds for semantic corruptions, we prove proposi-

tion 1.

Proposition 1. Let𝑇 : X×R𝑑 → X be a function. Assume the r.v. 𝑝𝑡𝑟 (y | 𝑇 (x, 𝜹))−1 has a bounded

second moment under the distribution 𝑝 |= (y, z, x)𝑝 (𝜹), and that 𝑝𝑡𝑟 (y |𝑇 (x, 𝜹)) and 𝑝𝑡𝑟 (y | z) satisfy

E𝑝 |= (y,z,x)𝑝 (𝜹)𝑝𝑡𝑟 (y | 𝑇 (x, 𝜹))−2 ≤ 𝑚2, E𝑝 |= (y,z,x)𝑝 (𝜹) |𝑝𝑡𝑟 (y | 𝑇 (x, 𝜹)) − 𝑝𝑡𝑟 (y | z) |2 = 𝜖2.

Then, the 𝐿1 distance between 𝑝 |= (y, x) and 𝑝𝑇 (y, x) is bounded: ∥𝑝 |= (y, x) − 𝑝𝑇 (y, x)∥1 ≤ 𝑚𝜖 . For a

semantic corruption that also satisfies y |= 𝑝𝑡𝑟 z | 𝑇 (x, 𝜹) the inequalities hold with 𝜖 = 0.
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Proof. The 𝐿1 distance between the distributions is bounded from above by a 𝑝 |= -weighted 𝐿1

distance between 𝑝𝑡𝑟 (y | z) and 𝑝𝑡𝑟 (y | 𝑇 (x)), upto a constant:

∫
𝑦,𝑥

|𝑝 |= (y, x) − 𝑝𝑇 (y, x)) | 𝑑𝑦𝑑𝑥 (B.7)

=

∫
𝑦,𝑥

����∫
𝑧

𝑝𝑡𝑟 (y)𝑝𝑡𝑟 (y, z, x)𝑝 (𝜹)
[

1
𝑝𝑡𝑟 (y | z) −

1
𝑝𝑡𝑟 (y | 𝑇 (x, 𝜹))

]
𝑑𝑧

����𝑑𝑦𝑑𝑥 (B.8)

=

∫
𝑦,𝑥

����∫
𝑧

𝑝𝑡𝑟 (y)𝑝𝑡𝑟 (y, z, x)𝑝 (𝜹)
[
𝑝𝑡𝑟 (y | 𝑇 (x)) − 𝑝𝑡𝑟 (y | z)
𝑝𝑡𝑟 (y | z)𝑝𝑡𝑟 (y | 𝑇 (x, 𝜹)) −

]
𝑑𝑧

����𝑑𝑦𝑑𝑥 (B.9)

=

∫
𝑦,𝑥

����E𝑝𝑡𝑟 (z)𝑝 (𝜹) 𝑝𝑡𝑟 (y)
𝑝𝑡𝑟 (y | 𝑇 (x, 𝜹))𝑝 (x | y, z) [𝑝𝑡𝑟 (y | 𝑇 (x, 𝜹)) − 𝑝𝑡𝑟 (y | z)]

����𝑑𝑦𝑑𝑥 (B.10)

≤
∫
𝑦,𝑥

E𝑝𝑡𝑟 (z)𝑝 (𝜹)

���� 𝑝𝑡𝑟 (y)
𝑝𝑡𝑟 (y | 𝑇 (x, 𝜹))𝑝 (x | y, z) [𝑝𝑡𝑟 (y | 𝑇 (x, 𝜹)) − 𝑝𝑡𝑟 (y | z)]

����𝑑𝑦𝑑𝑥 (B.11)

=

∫
𝑦,𝑥,𝑧

𝑝𝑡𝑟 (z)𝑝𝑡𝑟 (y)𝑝 (𝜹)𝑝 (x | y, z) 1
𝑝𝑡𝑟 (y | 𝑇 (x, 𝜹)) |𝑝𝑡𝑟 (y | 𝑇 (x, 𝜹)) − 𝑝𝑡𝑟 (y | z) | 𝑑𝑦𝑑𝑥𝑑𝑧

(B.12)

= E𝑝 |= (y,z,x)𝑝 (𝜹)
1

𝑝𝑡𝑟 (y | 𝑇 (x, 𝜹)) |𝑝𝑡𝑟 (y | 𝑇 (x, 𝜹)) − 𝑝𝑡𝑟 (y | z) | (B.13)

≤
(√︄

E𝑝 |= (y,x)𝑝 (𝜹)
1

𝑝𝑡𝑟 (y | 𝑇 (x, 𝜹))2

) √︃
E𝑝 |= (y,z,x)𝑝 (𝜹) |𝑝𝑡𝑟 (y | 𝑇 (x, 𝜹)) − 𝑝𝑡𝑟 (y | z) |2 (B.14)

Substituting the bounds from the theorem statement completes the proof of the bound.

Finally, if 𝑇 is a semantic corruption, by eq. (B.6), it holds that

𝑝𝑡𝑟 (y | 𝑇 (x, 𝜹), z) = 𝑝𝑡𝑟 (y | z).

Then, if it also holds that y |= 𝑝𝑡𝑟 z | 𝑇 (x, 𝜹), it holds that

𝑝𝑡𝑟 (y | 𝑇 (x, 𝜹), z) = 𝑝𝑡𝑟 (y | 𝑇 (x, 𝜹)) .
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Together this implies that almost everywhere in 𝑝𝑡𝑟 (y, z, x)𝑝 (𝜹)

𝑝𝑡𝑟 (y | 𝑇 (x, 𝜹)) = 𝑝𝑡𝑟 (y | z) =⇒ E𝑝 |= (y,z,x)𝑝 (𝜹) |𝑝𝑡𝑟 (y | 𝑇 (x, 𝜹)) − 𝑝𝑡𝑟 (y | z) |2 = 0.

This shows that for a semantic corruption such that y |= 𝑝𝑡𝑟 z | 𝑇 (x, 𝜹), it holds that 𝜖 = 0. □

B.2 Further details about b-scams and related work

NuRD. Focusing on mitigating spurious correlations, Puli et al. [48] identify a conditional that

has performance guarantees on every test distribution within a family of distributions with vary-

ing nuisance-label relationships: 𝑝𝑡𝑒 ∈ F . They develop NuRD to learn the conditional us-

ing data only from 𝑝𝑡𝑟 ≠ 𝑝𝑡𝑒 . NuRD uses 1) the nuisance-randomized distribution, 𝑝 |= (y, z, x) =

𝑝 (y)𝑝 |= (z)𝑝 (x | y, z), where z |= 𝑝 |= y, and 2) an uncorrelating representation 𝑟 (x) forwhich z |= 𝑝 |= y | 𝑟 (x).

NuRD builds models of the form 𝑝 |= (y | 𝑟 (x)) using 𝑟 (x) that are most informative of the la-

bel.

We run reweighting-NuRD, which uses a biased model 𝑝𝑡𝑟 (y | z) as an importance weight to

compute loss under the nuisance-randomized distribution: 𝑝 |= (y, z, x) = 𝑝𝑡𝑟 (y)
𝑝𝑡𝑟 (y | z)𝑝𝑡𝑟 (y, z, x).

To run reweighting-NuRDwith semantic corruptions, we replace 𝑝𝑡𝑟 (y | z) with 𝑝𝑡𝑟 (y | 𝑇 (x)) for

a semantic corruption 𝑇 (x). Semantic corruptions are noisy functions of x: with noise 𝝐 such

that (y, z, x) |= 𝑝𝐷𝝐 , 𝑇 (x) = 𝑈 (x, 𝝐). This implies

y |= 𝑝 |= 𝝐 | x =⇒ y |= 𝑝 |= x, 𝝐 | x =⇒ y |= 𝑝 |=𝑇 (x) | x

Thus, 𝑟 (x) = x is uncorrelating and 𝑝 |= (y | x) achieves the optimality guarantees in Puli et al.

[48]. These optimality guarantees imply that regardless of the test nuisance-label relationship,

𝑝 |= (y | x) will achieve optimal performance within the class of models like 𝑝 |= (y | 𝑟 (x)).
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End-to-end bias mitigation. Mahabadi et al. [47] consider two methods to train a biased

model 𝑝𝑡𝑟 (y | z) and a base predictive model jointly to make the base model predict without

relying on the biases. The methods use and fine-tune a BERT model [55] and do not propagate

the gradients of the biased model to update the common parameters (token embeddings in this

case). They propose 1) poe, where the log of the product of the predictions (the output proba-

bilities) of the two models is used to compute the classification loss and 2) dfl, where the biased

model is used to weight the cross-entropy loss for the base model.

The intuition for poe is that the samples for which the biased model classifies correctly will not

contribute to the gradients of the base model; thus the base model focuses more on classifying

samples that the biased model misclassifies. The dfl algorithmweights each sample as the biased

model’s predicted probability of all but the label, exponentiated with 𝛾 > 0. This downweights

samples that the biased model classifies correctly which in turn mitigates the base model’s re-

liance on a nuisance which only helps predict the downweighted samples correctly.

Formally, with a biased model 𝑓𝜃 (z) and a predictive model 𝑓𝛾 (x) that output a vector of logits

over classes, 𝜎 denoting the soft-max function that maps logits to class-probabilities, and 𝜎 (·)𝑦

denoting the softmax-probability of label 𝑦

poe max
𝜃,𝛾

∑︁
𝑖∈training data

log𝜎 (𝑓𝜃 (z𝑖))𝑦𝑖 + log𝜎 (𝑓𝛾 (x𝑖))𝑦𝑖 (B.15)

dfl max
𝜃,𝛾

∑︁
𝑖∈training data

(
1 − 𝜎 (𝑓𝜃 (z𝑖))𝑦𝑖

)𝛾 log𝜎 (𝑓𝛾 (x𝑖))𝑦𝑖 (B.16)

Mahabadi et al. [47] build the biased model 𝑓𝜃 using known nuisances z. We build this model

from a semantic corruption 𝑇 (x).

Just Train Twice (JTT). jtt works in two stages: 1) build an "identification" model via erm

on the training data to isolate samples that are misclassified due to reliance on the nuisances
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and 2) train a model via erm on data with the loss for the misclassified samples upweighted (by

constant 𝜆). The identification model in jtt is built to be a biased model. When the identification

model equals 𝑝𝑡𝑟 (y | z), it exactly misclassifies the samples in the groups in the minority group∗.

Upweighting these samples produces a dataset with lesser dependence between the nuisance and

the label. Models learned on the upweighted data dependmore on the semantics. See algorithm 3

for pseudocode.

Algorithm 3: Jtt.
Input: Training set 𝐷 and hyperparameters 𝑇 and 𝜆up. Stage one: identification
1. Train identification model 𝑓𝜃 on 𝐷 via ERM for 𝑇 steps.
2. Construct the errors set of training examples misclassified by 𝑓𝜃 .
Stage two: upweighting identified points

3. Construct upsampled dataset 𝐷up containing examples in the error set repeated 𝜆up times
and all other examples once.
4. Train final model 𝑓𝛾 on 𝐷up via ERM.

In this work, we build the identification model on semantic corruptions i.e. we learn 𝑓𝜃 to predict

y from 𝑇 (x). The training samples to be upweighted are the ones misclassified when predicting

with the identification model on semantic-corrupted versions of the sample, i.e. 𝑇 (x). The second

stage is run as in [53] with training data.

Optimization-generalization Dilemma Like many other algorithms in the ood generaliza-

tion literature, training b-scamss based on semantic corruptions may also suffer from obstacles

due to optimization and generalization: employing statistical constraints to handle distribution

shift may not build models that perform well OOD due to overfitting [87], training difficulties

[239, 240, 241], or reliance on inappropriate inductive biases [86, 242]. Some approaches in the

literature can alleviate these difficulties: two-stage methods incorporate the ood objective only

when training smaller models on top of large ones [239, 240, 241, 243, 244], subsampling instead
∗The minority group is the set of samples that the nuisance misclassifies. For example, when 𝑝𝑡𝑟 (y = z) >

𝑝𝑡𝑟 (y ≠ z), then the minority group is the set of samples with y ≠ z because using only the nuisance results in
predicting y = 𝑏 where z = 𝑏.
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Figure B.1: Example of pr of a chest X-ray image. The image is followed by prs of size 112, 56, 28, 14, 7, 2.

of weighting [7, 245], or large ℓ2 regularization [16].

In our implementations we use validation data and regularization to tune parameters for the

weighted-erm algorithm as proposed in the original papers of the b-scams we experiment with.

As erm is standard practice, there are no new optimization difficulties but generalization difficul-

ties can occur due to overfitting [87, 242]. Any improvements in generalization in weighted-erm

will lead to improvements in models built by b-scams with biased models from semantic corrup-

tions.

B.3 Further experimental details

B.3.1 Remark on baseline corruptions

NuRD with the baseline corruption gauss-noise outperforms erm and closes 80% of the gap

between erm and known-zNuRD in table 3.2. We explain such an improvement as a consequence

of gauss-noise corrupting semantics more than it corrupts nuisances; we explain below. In tasks

like waterbirds, nuisances are present in most if not all patches of the image regardless of where

the patches appear. On the other hand, semantic features are localized to a few adjacent patches

(like the birds parts appearing next to each other). When nuisances are present is many more

patches than the semantics, adding gaussian noise to all pixels corrupts semantics more than

nuisances. To see why, consider meausurements of a quantity as a gaussian random variable

with the quantity as its mean. More measurements lead to better estimates of the mean.
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B.3.2 Implementation details

Each experiment in the paper was run on up to 2 RTX8000 GPUs. The hyperparameters for meth-

ods that use known nuisances in the training data, like NuRD, poe, dfl are tuned on validation

data from the training distribution. For NuRD, we select corruption hyperparameters using the

mean of the balanced validation accuracy across 10 seeds. We do the same when using semantic

corruptions.

Experimental details for Waterbirds For the NuRD setup, the training, validation, and test

datasets have 3020, 756, 800 samples respectively. We use a single architecture to parameterize

the predictive model and the weight model in this experiment: two fully connected layers on top

of a ResNet18 initialized at weights pretrained on Imagenet. We use the same training procedure

for NuRD with known nuisances or with semantic corruptions. Both models are trained with

cross-entropy. The weight model is optimized with the default Adam optimizer for 20 epochs

with a batch size of 64. The predictive model is optimized with the Adam optimizer for 20 epochs

with a learning rate of 0.0002, a weight decay of 0.01, and a batch size of 250.

For the jtt setup, the training, validation, and test datasets have 4795, 1199, 5794 samples respec-

tively. For jtt, we use the samemodel and model parameters as Liu et al. [53] using their released

code. We repeat the details here for completeness. The model for both stages of jtt is a ResNet-

50. Both models are optimized by stochastic gradient descent (SGD) with momentum 0.9, weight

decay 1.0, and learning rate 1 × 10−5. Both models are trained for 300 epochs with batch size

64, using batch normalization and no data augmentation. The identification model used to select

samples to upweight corresponds to epoch 60 and the upweighting constant is 𝜆 = 100.

Experimental details for cardiomegaly detection. The training, validation, and test datasets

are fixed across seeds and have 18000, 2000, 1000 samples respectively. To run reweighting-NuRD,

we use a single architecture to parameterize the predictive model and the weight model in this
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experiment: two fully connected layers on top of a ResNet18 initialized at weights pretrained on

Imagenet. In known-nuisance NuRDwith the hospital as the nuisance, the biased model is an es-

timate of 𝑝𝑡𝑟 (y | hospital), which is obtained by binning the samples based on the hospital and av-

eraging the labels. We use the same training procedure for NuRD with known nuisances or with

semantic corruptions. Both weight and predictive models are trained with cross-entropy. The

weight model and the predictive model are optimized with the Adam optimizer over 25 epochs

with a batch size of 256, and learning rate 0.001.

Implementation details for nli For poe and dfl, we build classifiers by fine-tuning a pre-

trained BERTmodel [55] on the data. We follow the same training procedure and hyperparameter

details as used in Mahabadi et al. [47] —models were trained on the MNLI training dataset which

consists of 392k examples, with a learning rate of 2 × 10−5 with a batch size of 8 using the Adam

Optimizer. All models are trained for 3 epochs. The development set contains 9815 examples and

the HANS test contains 30000 examples. Since the HANS dataset has only two labels — ‘entail-

ment’ and ‘non-entailment’ — we combine the neutral and contradiction classes during inference

on HANS.

For the jtt setup, Liu et al. [53] mix the training and development sets from MNLI and create

their own training, validation, and test sets of sizes 206175, 82462, 123712 respectively. For jtt,

we use the same model and model parameters as Liu et al. [53] using their released code. We

use the optimal hyperparameters reported in [53] for the learning rate, weight decay, and the

upweighting constant. We repeat the details here for completeness. The model for both stages

of jtt is a pretrained BERT model that is finetuned during training. Both models are optimized

by the AdamW optimizer with clipping for the predictive model, no weight decay, and an initial

learning rate of 2×10−5. Both models are trained for 5 epochs with batch size 32 and dropout. The

identification model used to select samples to upweight corresponds to epoch 2 for vanilla jtt

(reported optimal in Liu et al. [53]); for jttwith semantic corruption, we select one from 2, 3 using
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validation group annotations. For both, the upweighting constant is 𝜆 = 6. Our runs with these

parameters did not yield the test worst-group accuracy reported in [53] (72.6%); our experiments

yielded a test worst-group accuracy 71.3%. We expect this may be due to the differences in the

random seed; jtt is sensitive to hyperparameters and differences in order of batches may result

in drops in performance.

In nr, when the number of words in the sentence is not a multiple of 𝑛, there will be one 𝑘-gram

(𝑘 < 𝑛). In implementing nr, we ensure that the position of this k-gram is randomized i.e. we

make sure that it does not always occur at the end of the sentence, for example. nr is implemented

before word-piece tokenization (which BERT uses), to ensure that we randomize words instead

of subwords. We also create a small HANS-like development set, which is used to tune the size

parameter. This set is constructed by randomly sampling 1000 examples from the HANS training

set, which has zero overlap with the HANS test set.

B.3.3 Full results tables and additional experiments

Wegive the results for all size parameters; see table B.4, table B.5, table B.6, table B.7, and table B.8.

To report the same metrics as in [47] for poe and dfl and [48] forNuRD, we report standard error

for NuRD and standard deviation for poe and dfl .

B.3.3.1 Results on Adversarial NLI [64] and CAD [65]

In table B.9 and table B.10, we report evaluations of poe and dflmodels on the adversarial ANLI

[64] and the counterfactually augmented dataset [65].

B.3.3.2 Additional experiments

Experiments with weaker spurious correlations. To verify the effectiveness of the seman-

tic corruptions for powering b-scams like jtt that rely on assumptions on erm-trained models,
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we experiment with a modified version of the Waterbirds dataset. In the modified dataset, the

spurious feature predicts the label only 75% of the time; this is weaker than the 93% in the origi-

nal dataset and the invariant relationship which achieves > 85% accuracy across all groups. We

ran erm, jtt, and corruption-powered jtt. For both versions of jtt, we tune over the same

hyperparameters as in Liu et al. [53].

Table B.2: Test worst-group
(WG) accuracies of jtt on
modified waterbirds where the
spurious correlation is weaker
than the invariant relationship.
Corruption-powered jtt out-
performs erm, vanilla jtt, and
jtt with baseline corruptions
(rand-crop, gauss-noise) by
≥ 4.4%.

Method test WG acc.

Vanilla jtt 78.6%

pr 84.6%

roi-mask 85.2%

freq-filt 83.2%

int-filt 83.0%

rand-crop 76.2%

gauss-noise 75.9%

erm 76.1%

The results in table B.2 show that corruption-powered jtt is bet-

ter than vanilla jtt and erm. The improvement of corruption-

powered jtt over vanilla jtt increases from 0.5% in table 3.3 to

4.4% in table B.2; this indicates that vanilla jtt is more sensitive to

the strength of the spurious correlation than corruption-powered

jtt.

Experiments with multiple spurious features. We run roi-

mask-powered NuRD with a modified version of the ColorFulM-

NIST dataset [243]. The images consist of 42 × 42 × 3 pixels, with

the middle 14 × 14 forming the MNIST image showing a 0 or a 1

and the rest being background patches. The digit in the middle

predicts the binary label 1 or 0 with 75% accuracy. Given some

𝑝 ∈ [0, 1], this dataset sets each of the background patch colors

deterministically based on the image in the middle with probabil-

ity 𝑝; with probability 1 − 𝑝 , each background is a random color

(see figure 5 in [243].) We generate the training data with 𝑝 = 0.9,

and the validation and test data with 𝑝 = 0.
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Roi-mask-powered NuRD with central-roi sizes 14 and 28 achieves test accuracies 71.1% and

70.3% respectively, beating erm which achieves 51.7% because it relies more on the background

colors. pr is not suited for this experiment because the different nuisance colors are chosen based

on the patch position, and pr randomizes patch positions which corrupt these nuisances.

Table B.3: Accuracy of
predicting the label from
the image corrupted by pr
as patch-size decreases. As
the label is independent of
the nuisance, a lower accu-
racy means that more se-
mantic information is cor-
rupted.

pr size Accuracy

Full image 86%

112 76%

56 73%

28 64%

14 58%

7 57%

Experiments showing that corrupting the semantics is the

reason behind the improved ood performance in corrup-

tion-powered b-scams. First, we show that corruptions actually do

corrupt semantics, taking pr as the example. We focus on the Wa-

terbirds dataset to show how patch size affects semantics. For this

investigation, we construct training and test datasets where the la-

bel and nuisance are independent and build models for predicting the

label.

The results are in table B.3 and show that as patch-size decreases, more

semantic information is lost. These results mean that for patch sizes

< 28, a biased model built from the corrupted image cannot predict

the label well using semantics alone; the accuracy of random chance

is 50%. As the label is independent of the nuisance, a lower accuracy

means more semantic information is corrupted. However, on the orig-

inal dataset, our biased models at these patch sizes achieve at least 85% accuracy in predicting

the label from the corrupted images, meaning that they rely mostly on the nuisance.

Second, to show that corruptions actually do help, we ran the full NuRD algorithm on the Wa-

terbirds dataset from [48] with a biased model built directly on the uncorrupted covariates; that

is we train a model with erm to predict y from x and use it as the biased model in NuRD. The

resulting test accuracy is < 70%. When using patch-sizes under 28, the pr-powered NuRD al-

gorithm achieves a test accuracy of nearly 87%. This shows that the corruption of semantics is
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directly responsible for improving model robustness.

Table B.4: Mean and standard error of test accuracy across 10 seeds of NuRD on classifying waterbirds.
Known-nuisance NuRD uses a label for the type of background as the nuisance. Selecting the size hy-
perparameter based on the average accuracy over 10 seeds on the validation dataset gives 14 for pr, 196
for roi-mask, 168 for freq-filt, and 0.2 for int-filt. Consider the gap between erm and known-nuisance
NuRD. NuRD with pr, roi-mask, freq-filt, and int-filt close 99%, 99%, 82%, 99% of the gap respectively.
NuRD with these semantic corruptions outperforms erm and NuRD with rand-crop and gauss-noise.
NuRD with all semantic corruptions outperforms erm (69.2%).

known rm rm rm rm pr pr pr pr
z 196 168 140 112 7 14 28 56 erm

Mean 87.2% 86.9% 86.6% 86.2% 86.3% 85.6% 86.9% 82.5% 84.9% 68.0%
Std. err. 1.0% 1.1% 1.2% 1.8% 1.6% 1.4% 1.2% 2.0% 1.4% 1.9%

ff ff ff ff if if if if
196 168 140 112 0.1 0.2 0.3 0.4

Mean 83.8% 83.5% 81.0% 80.3% 81.2% 86.9% 85.0% 81.9%
Std. err. 1.2% 1.1% 1.4% 1.7% 1.7% 1.1% 1.5% 1.7%

rand-crop gauss gauss gauss gauss
0.01 0.25 1 4

Mean 73.7% 75.8% 74.1% 78.0% 83.9%
Std. err. 2.0% 3.2% 3.1% 3.4% 1.4%

Table B.5: Average accuracies and standard deviation over 4 seeds of poe and dfl with semantic corrup-
tions on the HANS dataset. The results for known poe and dfl from [47], where both methods use known
nuisances. For both methods, selecting the size hyperparameter based on the average accuracy on a small
dataset (1000 samples) from the test distribution gives 𝑛 = 3. With this size, poe with nr performs better
than known-nuisance poe while dfl with nr closes 84% of the gap between erm and known-z dfl .

z poe dfl

Known 66.3 ± 0.6% 69.3 ± 0.2%
1-gram 65.7 ± 2.0% 66.5 ± 1.5%
2-gram 66.0 ± 0.9% 68.5 ± 0.7%
3-gram 66.7 ± 1.5% 68.4 ± 1.5%
4-gram 66.2 ± 2.9% 65.0 ± 2.0%

erm − 63.6%.
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Table B.6: Mean and standard error of test accuracy across 10 seeds of NuRD on detecting cardiomegaly
from chest X-rays. Known-nuisance NuRD uses the hospital as the nuisance. Selecting the corruption
parameters based on the mean accuracy over 10 seeds on the validation dataset gives 14 for pr, 196 for
roi-mask, 168 for freq-filt, and 0.1 for the int-filt. Consider the gap between erm and known-nuisance
NuRD. NuRD with pr, roi-mask, freq-filt, and int-filt close 72%, 82%, 65%, 35% of the gap respectively.
NuRDwith semantic corruptions outperformsNuRDwith baseline augmentations rand-crop and gauss-
noise. NuRD with pr and roi-mask outperforms erm for all size parameters.

known rm rm rm rm pr pr pr pr
z 196 168 140 112 7 14 28 56 erm

Mean 81.7% 78.7% 78.3% 77.2% 73.6% 76.2% 77.0% 74.9% 74.3% 65.3%
Std. err. 0.3% 0.3% 0.8% 0.8% 0.7% 1.2% 1.2% 1.0% 1.4% 1.1%

ff ff ff ff if if if if
196 168 140 112 0.1 0.2 0.3 0.4

Mean 74.4% 76.0% 75.3% 71.3% 71.0% 68.0% 62.0% 57.1%
Std. err. 1.5% 0.6% 0.9% 1.6% 1.0% 1.6% 1.8% 3.2%

rand-crop gauss gauss gauss gauss
0.01 0.25 1 4

Mean 59.9% 62.3% 63.5% 68.0% 69.0%
Std. err. 2.1% 3.7% 3.4% 1.1% 1.9%

209



Table B.7: Test worst-group accuracies of jtt with semantic corruptions on waterbirds. Selecting the
corruption hyperparameters on the validation worst-group accuracy gives size 14 for pr, size 196 for roi-
mask, size 112 for freq-filt, and threshold 0.4 for int-filt. jttwith these semantic corruptions outperforms
erm, vanilla jtt, and jtt with the baseline corruptions rand-crop and gauss-noise. jtt with pr and roi-
mask outperforms jtt with the baseline corruptions and erm for all sizes.

Vanilla rm rm rm rm pr pr pr pr
jtt 196 168 140 112 7 14 28 56 erm

86.5% 88.2% 88.0% 86.9% 86.2% 89.3% 89.0% 88.9% 89.1% 72%

ff ff ff ff if if if if
196 168 140 112 0.1 0.2 0.3 0.4

82.5% 84.5% 85.2% 87.2% 69.1% 80.0% 81.7% 87.0%

rand-crop gauss gauss gauss gauss
0.01 0.25 1 4

75% 0.0% 0.0% 71.0% 0.0%

Table B.8: Worst-group and average test accuracies of jtt with semantic corruptions on nli. jtt with
prem-mask and nr of every size outperforms vanilla jtt. Selecting the size hyperparameter for nr using
validation worst-group accuracy, like Liu et al. [53] do for vanilla jtt, gives 𝑛 = 1. At this size, jtt with nr
outperforms vanilla jtt by 3% accuracy.

Worst-group Average

Vanilla jtt 71.3% 79.1%
prem-mask 72.1% 79.9%
1-gram 74.3% 79.7%
2-gram 71.9% 80.0%
3-gram 72.0% 80.1%
4-gram 73.4% 80.4%

erm 67.9% −
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Table B.9: ANLI [64] evaluations of models trained on MultiNLI. With a t-test to measure statistical
significance, at the standard significance level of 0.05, we found that poe with nr gave a statistically sig-
nificant improvement over the baseline on ANLI-R1 and ANLI-R2, while dfl gave a statistically significant
improvement on ANLI-R1.

Model ANLI - R1 ANLI - R2 ANLI - R3

erm 23.1 ± 0.9 28.2 ± 0.8 29.8 ± 0.4
poe-known 23.5 ± 0.6 27.8 ± 0.8 29.8 ± 0.8
dfl-known 23.7 ± 1.3 27.8 ± 1.1 30.4 ± 0.9
poe - n3 24.8 ± 1.1 29.2 ± 0.4 30.4 ± 1.2
dfl - n3 24.9 ± 0.6 29.0 ± 1.2 29.9 ± 0.3

poe - prem-mask 23.6 ± 1.2 27.3 ± 0.8 29.8 ± 0.8
dfl - prem-mask 22.3 ± 0.7 27.7 ± 0.6 29.3 ± 1.1

Table B.10: Mean and standard deviation of CAD [65] test accuracy over 4 seeds. At the end, we also
report the results of finetuning BERT on CAD training data from [65]. When trained onMNLI, on average
over the CAD subsets RH and RH, dfl and poe with semantic corruptions, dfl and poe with known-
nuisances, and erm perform on par (within one std.) or better than finetuning directly on the training
CAD dataset. The improvement over finetuning directly on CAD may be due to the fact that the CAD
dataset is much smaller than MNLI ( 7𝑘 vs. 400𝑘).

Method RP RH Avg. on RP and RH

erm on MNLI 61.1 ± 0.3 76.5 ± 0.4 68.8 ± 0.2

poe-known 60.6 ± 0.5 77.0 ± 1.1 68.8 ± 0.3
poe 3-gram 60.8 ± 0.5 76.1 ± 0.7 68.4 ± 0.2
poe prem-mask 61.7 ± 0.6 75.6 ± 1.0 68.6 ± 0.5

dfl-known 60.6 ± 0.8 76.2 ± 0.7 68.4 ± 0.4
dfl 3-gram 58.4 ± 1.8 72.7 ± 1.0 65.5 ± 1.4
dfl prem-mask 62.4 ± 0.7 76.1 ± 0.8 69.3 ± 0.6

erm on CAD (from [65]) 64.6 67.8 66.2
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C | Appendices for chapter 4

C.1 Proof of Theorem 3, Corollary 1, and Theorem 4

C.1.1 Helper Lemmas

C.1.1.1 Bounding norms and inner products of isotropic random vectors.

The main lemmas of this section are lemma 8 and lemma 9. We will then use these two to bound

norms of sums of random vectors and inner products between the sum and a single random vec-

tor in lemma 10. We first list some facts from [246] that we will use to bound the probability with

which norms and inner products of Gaussian random vectors deviate far from their mean.

Definition 6. (Sub-Gaussian norm) For an r.v. x, the sub-Gaussian norm, or𝜓2-norm, is

∥x∥𝜓2 = inf{𝑡 > 0,E[exp(x2/𝑡2)] ≤ 2}.

An r.v. is called sub-Gaussian if its𝜓2-norm is finite and for some fixed constant 𝑐

𝑝 ( |x| > 𝑡) ≤ 2 exp(−𝑐𝑡2/∥x∥𝜓2).
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A Gaussian r.v. x ∼ N(0, 𝜎2) has an𝜓2-norm of 𝐺𝜎 for a constant 𝐺 =

√︃
8
3 .
∗

Definition 7. (Sub-exponential norm) For an r.v. x, the sub-exponential norm, or𝜓1-norm, is

∥x∥𝜓1 = inf{𝑡 > 0,E[exp( |x|/𝑡)] ≤ 2}.

A sub-exponential r.v. is one that has finite𝜓1-norm.

Lemma 6. (Lemma 2.7.7 from [246]) Products of sub-Gaussian random variables x, y is a sub-

exponential random variable with it’s𝜓1-norm bounded by the product of the𝜓2-norm

∥xy∥𝜓1 ≤ ∥x∥𝜓2 ∥y∥𝜓2

Lemma 6 implies that the product of two mean-zero standard normal vectors is a sub-exponential

random variable with𝜓1-norm less than 𝐺2.

Lemma 7. (Bernstein inequality, Theorem 2.8.2 [246]) For i.i.d sub-exponential random variables

∗𝐺 =

√︃
8
3 . This follows from:

Ex∼N(0,𝜎2 ) [exp(x2/𝑡2)] =
∫ ∞

−∞

1
𝜎
√
2𝜋

exp(−𝑥2/2𝜎2) exp(𝑥2/𝑡2)𝑑𝑥 =

∫ ∞

−∞

1
𝜎
√
2𝜋

exp
(
−𝑥2 (𝑡

2 − 2𝜎2)
2𝜎2𝑡2

)
𝑑𝑥

=
1

𝜎
√
2𝜋

√︄
𝜋

(𝑡2−2𝜎2 )
2𝜎2𝑡2

=
1

𝜎
√
𝜋

√︄
𝜋𝜎2𝑡2

(𝑡2 − 2𝜎2) =

√︄
𝑡2

(𝑡2 − 2𝜎2)√︄
𝑡2

(𝑡2 − 2𝜎2) ≤ 2 =⇒ 𝑡2 ≤ 4(𝑡2 − 2𝜎2) =⇒ 8𝜎2 ≤ 3𝑡2 =⇒ inf{𝑡 : 8𝜎2 ≤ 3𝑡2} =
√︂

8
3
𝜎.

213



x1, · · · , x𝑑 , for a fixed constant 𝑐 = 1
(2𝑒)2 and 𝐾 = ∥x1∥𝜓1

𝑝

(����� 𝑑∑︁
𝑖=1

x𝑖

����� > 𝑡
)
≤ 2 exp

(
−𝑐 min

{
𝑡2

𝐾2𝑑
,
𝑡

𝐾

})

Next, we apply these facts to bound the sizes of inner products between two unit-variance Gaus-

sian vectors.

Lemma 8. (Bounds on inner products of Gaussian vectors) Let u, v be 𝑑-dimensional random vectors

where each coordinate is an i.i.d standard normal r.v. Then, for any scalar 𝜖 > 0 such that 𝜖 ≤ 𝐺2
√
𝑑 ,

for a fixed constant 𝑐 = 1
(2𝑒)2

𝑝

(��u⊤v�� > 𝜖√𝑑) ≤ 2 exp
(
−𝑐 𝜖

2

𝐺4

)
.

Proof. First, the inner product is u⊤v =
∑𝑑
𝑖 u𝑖v𝑖 ; it is the sum of products of i.i.d. standard normal

r.v. (𝜎 = 1). Then, by lemma 6, each term in the sum is a sub-exponential r.v. with 𝜓1-norm

bounded as follows:

𝐾 = ∥u𝑖v𝑖 ∥𝜓1 ≤ ∥u𝑖 ∥𝜓2 ∥u𝑖 ∥𝜓2 = 𝐺 ×𝐺 = 𝐺2. (C.1)

We can apply Bernstein inequality lemma 7 to sub-exponential r.v. to the inner product and then

upper bound the probability by replacing 𝐾 with the larger 𝐺2 in eq. (C.1)

𝑝
(
|u⊤v| > 𝑡

)
≤ 2 exp

(
−𝑐 min

{
𝑡2

𝐾2𝑑
,
𝑡

𝐾

})
≤ 2 exp

(
−𝑐 min

{
𝑡2

𝐺4𝑑
,
𝑡

𝐺2

})

Substituting 𝑡 = 𝜖
√
𝑑 in the above gives us:
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𝑝

(
|u⊤v| > 𝜖

√
𝑑

)
≤ 2 exp

(
−𝑐 min

{
𝜖2𝑑

𝐺4𝑑
,
𝜖
√
𝑑

𝐺2

})
Using the fact that 𝜖 ≤ 𝐺2

√
𝑑 to achieve the minimum concludes the proof:

𝜖 ≤ 𝐺2
√
𝑑 =⇒ 𝜖2 ≤ 𝜖𝐺2

√
𝑑 =⇒ 𝜖2

𝐺4 ≤ 𝜖
√
𝑑

𝐺2 =⇒ min

{
𝜖2𝑑

𝐺4𝑑
,
𝜖
√
𝑑

𝐺2

}
=
𝜖2

𝐺4

□

Lemma 9. Let x be a Gaussian vector of size 𝑑 where each element is a standard normal, meaning

that ∥x𝑖 ∥𝜓2 = 𝐺 . Then, for any 𝑡 > 0 and a fixed constant 𝑐 = 1
(2𝑒)2 , the norm of the vector

concentrates around

√
𝑑 according to

𝑝

(���∥x∥ − √
𝑑

��� > 𝑡 ) ≤ 2 exp(−𝑐𝑡2/𝐺4).

Proof. Equation 3.3 from the proof of theorem 3.1.1 in [246] shows that

𝑝 ( |∥x∥ −
√
𝑑 | > 𝑡) ≤ 2 exp(−𝑐𝑡2/(max𝑖 ∥x𝑖 ∥𝜓2)4).

As x has i.i.d standard normal entries, max𝑖 ∥x𝑖 ∥𝜓2 = 𝐺 , concluding the proof. □

C.1.1.2 Concentration of norms of sums of random vectors and their inner

products

This is the main lemma that we will use in proving theorem 3.

Lemma 10. Consider a set of vectors𝑉 = {𝜹𝑖} where 𝜹𝑖 ∈ R𝑑 of size𝑇𝑉 ≥ 1 where each element of

each vector is drawn independently from the standard normal distributionN(0, 1). Then, for a fixed
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constant 𝑐 = 1
(2𝑒)2 and any 𝜖 ∈ (0,𝐺2

√
𝑑) with probability ≥ 1 − 2 exp(−𝜖2 𝑐

𝐺4 ) 1
√
𝑇𝑉

∑︁
𝑖∈𝑉

𝜹𝑖

 ≤
√
𝑑 + 𝜖 (C.2)

and with probability ≥ 1 − 4𝑇𝑉 exp(−𝜖2 𝑐
𝐺4 )

∀𝜹 𝑗 ∈ 𝑉
〈
𝜹 𝑗 ,

∑︁
𝑖∈𝑉

𝜹𝑖

〉
≥ 𝑑 − 3𝜖

√︁
𝑇𝑉𝑑 (C.3)

Further, consider any set 𝑈 of vectors 𝑈 = {𝜹𝑖} of size 𝑇𝑈 , where each vector also has coordi-

nates drawn i.i.d from the standard normal distribution N(0, 1). Then, with probability ≥ 1 −

2𝑇𝑢 exp(−𝜖2 𝑐
𝐺4 )

∀𝜹 𝑗 ∈ 𝑈
�����
〈
𝜹 𝑗 ,

∑︁
𝑖∈𝑉

𝜹𝑖

〉����� ≤ 𝜖√︁𝑇𝑉𝑑, (C.4)

By union bound, the three events above hold at once with a probability at least 1 − 2(2𝑇𝑉 + 𝑇𝑢 +

1) exp(−𝜖2 𝑐
𝐺4 ).

Proof. We split the proof into three parts one each for eqs. (C.2) to (C.4).

Proof of eq. (C.2). As 𝜹 is a vector of random i.i.d standard normal random variables, note that
1√
𝑇𝑉

∑
𝑖 𝜹𝑖 is also a vector of i.i.d standard normal random variables. This follows from the fact that

the sum of 𝑇𝑉 standard normal random variables is a mean-zero Gaussian random variable with

standard deviation
√
𝑇𝑉 . Thus dividing by the standard deviation makes the variance 1, making

it standard normal.
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Then, applying lemma 9 with 𝑡 = 𝜖 gives us the following bound:

𝑝

( 1
√
𝑇𝑉

∑︁
𝑖

𝜹𝑖

 >
√
𝑑 + 𝜖

)
≤ 𝑝

(�����
 1
√
𝑇𝑉

∑︁
𝑖

𝜹𝑖

 − √
𝑑

����� > 𝜖
)
≤ 2 exp(−𝑐𝜖2/𝐺4)

Proof of eq. (C.3) We split the inner product into two cases: 𝑇𝑉 = 1 and 𝑇𝑉 ≥ 2.

Case 𝑇𝑉 = 1. First note that due to lemma 9,

∀𝑗 ∈ 𝑉 , 𝑝

(
∥𝜹 𝑗 ∥ <

√
𝑑 − 𝜖

)
≤ 𝑝

(��� ∥𝜹 𝑗 ∥ − √
𝑑

��� > 𝜖) ≤ 2 exp(−𝑐𝜖2/𝐺4).

Then, the following lower bound holds with probability at least 1 − 2 exp(−𝑐𝜖2/𝐺4)

∀𝑗 ∈ 𝑉 ,
〈
𝜹 𝑗 ,

∑︁
𝑖∈𝑉

𝜹𝑖

〉
= ∥𝜹 𝑗 ∥2

≥ (
√
𝑑 − 𝜖)2

≥ 𝑑 − 2𝜖
√
𝑑

≥ 𝑑 − 3𝜖
√︁
𝑇𝑉𝑑,

To summarize this case, with the fact that 1 − 2 exp(−𝑐𝜖2/𝐺4) ≥ 1 − 4𝑇𝑉 exp(−𝑐𝜖2/𝐺4), we have that

∀𝑗 ∈ 𝑉 ,
〈
𝜹 𝑗 ,

∑︁
𝑖∈𝑉

𝜹𝑖

〉
≥ 𝑑 − 3𝜖

√︁
𝑇𝑉𝑑,

with probability at least 1 − 4𝑇𝑉 exp(−𝑐𝜖2/𝐺4).

Case 𝑇𝑉 ≥ 2. First note that,

∀𝑗 ∈ 𝑉
〈
𝜹 𝑗 ,

∑︁
𝑖∈𝑉

𝜹𝑖

〉
= ∥𝜹 𝑗 ∥2 +

〈
𝜹 𝑗 ,

∑︁
𝑖∈𝑉 ,𝑖≠ 𝑗

𝜹𝑖

〉
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For each of the 𝑇𝑉 different 𝜹 𝑗 ’s, using lemma 9 bounds the probability of the norm ∥𝜹 𝑗 ∥ being

larger than
√
𝑑 − 𝜖 :

𝑝

(
∥𝜹 𝑗 ∥ <

√
𝑑 − 𝜖

)
≤ 𝑝

(��� ∥𝜹 𝑗 ∥ − √
𝑑

��� > 𝜖) ≤ 2 exp(−𝑐𝜖2/𝐺4).

In the case where𝑇𝑉 ≥ 2, we express the inner product of a vector and a sum of vectors as follows〈
𝜹 𝑗 ,

∑︁
𝑖∈𝑉 ,𝑖≠ 𝑗

𝜹𝑖

〉
=

√︁
𝑇𝑉 − 1

〈
𝜹 𝑗 ,

1
√
𝑇𝑉 − 1

∑︁
𝑖∈𝑉 ,𝑖≠ 𝑗

𝜹𝑖

〉
,

and noting that like above, 1√
𝑇𝑉−1

∑
𝑖∈𝑉 ,𝑖≠ 𝑗 𝜹𝑖 is a vector of standard normal random variables, we

apply lemma 8 to get

∀𝑖 ∈ 𝑉 𝑝

(�����
〈
𝜹 𝑗 ,

∑︁
𝑖∈𝑉 ,𝑖≠ 𝑗

𝜹𝑖

〉����� ≥ 𝜖√︁(𝑇𝑉 − 1)𝑑
)
≤ 2 exp

(
−𝑐 𝜖

2

𝐺4

)
.

Putting these together, by union bound over 𝑉

𝑝

[
∀𝑗 ∈ 𝑉

(
∥𝜹 𝑗 ∥ <

√
𝑑 − 𝜖

)
or

(�����
〈
𝜹 𝑗 ,

∑︁
𝑖∈𝑉 ,𝑖≠ 𝑗

𝜹𝑖

〉����� ≥ 𝜖√︁(𝑇𝑉 − 1)𝑑
)]

≤
∑︁
𝑗∈𝑉

𝑝

(
∥𝜹 𝑗 ∥ <

√
𝑑 − 𝜖

)
+ 𝑝

(�����
〈
𝜹 𝑗 ,

∑︁
𝑖∈𝑉 ,𝑖≠ 𝑗

𝜹𝑖

〉����� ≥ 𝜖√︁(𝑇𝑉 − 1)𝑑
)

≤
∑︁
𝑗∈𝑉

2 exp
(
−𝑐 𝜖

2

𝐺4

)
+ 2 exp

(
−𝑐 𝜖

2

𝐺4

)
≤ 4𝑇𝑉 exp

(
−𝑐 𝜖

2

𝐺4

)
.
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Thus, with probability at least 1 − 4𝑇𝑉 exp
(
−𝑐 𝜖2

𝐺4

)
, none of the events happen and

∀𝑗 ∈ 𝑉
〈
𝜹 𝑗 ,

∑︁
𝑖∈𝑉

𝜹𝑖

〉
= ∥𝜹 𝑗 ∥2 +

〈
𝜹 𝑗 ,

∑︁
𝑖∈𝑉 ,𝑖≠ 𝑗

𝜹𝑖

〉
≥ (

√
𝑑 − 𝜖)2 − 𝜖

√︁
(𝑇𝑉 − 1)𝑑

= 𝑑 − 2𝜖
√
𝑑 + 𝜖2 − 𝜖

√︁
(𝑇𝑉 − 1)𝑑

≥ 𝑑 − 2𝜖
√︁
(𝑇𝑉 − 1)𝑑 − 𝜖

√︁
(𝑇𝑉 − 1)𝑑

≥ 𝑑 − 3𝜖
√︁
𝑇𝑉𝑑

Thus, putting the analysis in the two cases together, as long as 𝑇𝑉 ≥ 1

∀𝑗 ∈ 𝑉
〈
𝜹 𝑗 ,

∑︁
𝑖∈𝑉

𝜹𝑖

〉
≥ 𝑑 − 3𝜖

√︁
𝑇𝑉𝑑,

with probability at least 1 − 4𝑇𝑉 exp
(
−𝑐 𝜖2

𝐺4

)
.

Proof of eq. (C.4) Next, we apply lemma 8 again to the inner product of two vectors of i.i.d

standard normal random variables:

∀𝑗 ∈ 𝑈 𝑝

( �����
〈
𝜹 𝑗 ,

1
√
𝑇𝑉

∑︁
𝑖∈𝑉

𝜹𝑖

〉����� ≥ 𝜖√𝑑
)
< 2 exp(−𝑐𝜖2/𝐺4).

By union bound over𝑈

𝑝

[
∀𝑗 ∈ 𝑈

( �����
〈
𝜹 𝑗 ,

1
√
𝑇𝑉

∑︁
𝑖∈𝑉

𝜹𝑖

〉����� ≥ 𝜖√𝑑
)]

< 2𝑇𝑢 exp(−𝑐𝜖2/𝐺4).

Thus, with probability at least 1 − 2𝑇𝑢 exp
(
−𝑐 𝜖2

𝐺4

)
, the following holds, concluding the proof
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∀𝑗 ∈ 𝑈
�����
〈
𝜹 𝑗 ,

1
√
𝑇𝑉

∑︁
𝑖∈𝑉

𝜹𝑖

〉����� ≤ 𝜖√𝑑.
□

Lemma 11. Let {x𝑖, y𝑖}𝑖≤𝑛 be a collection of 𝑑 dimensional covariates x𝑖 and label y𝑖 sampled ac-

cording to 𝑝𝜌 in eq. (4.1). The covariates x𝑖 = [±𝐵y𝑖, y𝑖𝜹𝑖], where +𝐵 in the middle coordinate

for 𝑖 ∈ 𝑆shortcut and −𝐵 for 𝑖 ∈ 𝑆leftover. The dual formulation of the following norm-minimization

problem

wstable = argmin
w

w2
𝑦 +w2

𝑧 + ∥w𝑒 ∥2

s.t. 𝑖 ∈ 𝑆shortcut 𝑤𝑦 + 𝐵𝑤𝑧 +w⊤
𝑒 y𝑖𝜹𝑖 > 1

s.t. 𝑖 ∈ 𝑆leftover 𝑤𝑦 − 𝐵𝑤𝑧 +w⊤
𝑒 y𝑖𝜹𝑖 > 1

w𝑦 ≥ 𝐵w𝑧

is the following with 𝜁⊤ = [−𝐵, 1, 0𝑑−2],

max
𝜆≥0,𝜈≥0

−1
4
∥𝜁𝜈 + 𝑋⊤𝜆∥2 + 1⊤𝜆, (C.5)

where 𝑋 is a matrix with y𝑖x𝑖 as its rows.

Proof. We use Lagrange multipliers 𝜆 ∈ R𝑛, 𝜈 ∈ R to absorb the constraints and then use strong

duality. Letting 𝜁⊤ = [−𝐵, 1, 0𝑑−2], 𝑋 be a matrix where the 𝑖th row is x𝑖y𝑖 ,

min
w

∥w∥2 s.t. 𝑋w − 1 ≥ 0 𝜁⊤w ≥ 0

has the same solution as

max
𝜆≥0,𝜈≥0

min
w

∥w∥2 − (𝑋w − 1)⊤𝜆 − 𝜈𝜁⊤w (C.6)
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Now, we solve the inner minimization to write the dual problem only in terms of 𝜆, 𝜈 . Solving the

inner minimization involves solving a quadratic program, which is done by setting its gradient

to zero,

∇w
(
∥w∥2 − (𝑋w − 1)⊤𝜆 − 𝜈𝜁⊤w

)
= 2w − 𝑋⊤𝜆 − 𝜈𝜁 = 0

=⇒ w =
1
2
(𝜁𝜈 + 𝑋⊤𝜆)

Substituting w = 1
2 (𝜁𝜈 + 𝑋

⊤𝜆) in eq. (C.6)

∥w∥2−(𝑋w − 1)⊤𝜆 − 𝜈𝜁⊤w =

1
4
∥𝜁𝜈 + 𝑋⊤𝜆∥2 − ( 1

2
(𝑋 (𝜁𝜈 + 𝑋⊤𝜆) − 1)⊤𝜆 − 1

2
𝜈𝜁⊤(𝜁𝜈 + 𝑋⊤𝜆)

=
1
4
∥𝜁𝜈 + 𝑋⊤𝜆∥2 − ( 1

2
(𝑋 (𝜁𝜈 + 𝑋⊤𝜆) − 1)⊤𝜆 − 1

2
𝜈2∥𝜁 ∥2 − 1

2
𝜈𝜁⊤𝑋⊤𝜆

=
1
4
∥𝜁𝜈 + 𝑋⊤𝜆∥2 − 1

2
(𝑋 (𝑋⊤𝜆))⊤𝜆 − 1

2
(𝑋 (𝜁𝜈))⊤𝜆 + 1⊤𝜆 − 1

2
𝜈2∥𝜁 ∥2 − 1

2
𝜈𝜁⊤𝑋⊤𝜆

=
1
4
∥𝜁𝜈 + 𝑋⊤𝜆∥2 −

(
1
2
(𝑋 (𝑋⊤𝜆))⊤𝜆 + 1

2
𝜈2∥𝜁 ∥2 + 𝜈𝜁⊤𝑋⊤𝜆

)
+ 1⊤𝜆

=
1
4
∥𝜁𝜈 + 𝑋⊤𝜆∥2 −

(
1
2
(𝑋⊤𝜆)⊤𝑋⊤𝜆 + 1

2
𝜈2∥𝜁 ∥2 + 𝜈𝜁⊤𝑋⊤𝜆

)
+ 1⊤𝜆

=
1
4
∥𝜁𝜈 + 𝑋⊤𝜆∥2 − 1

2
(
∥𝑋⊤𝜆∥2 + ∥𝜈𝜁 ∥2 + 2𝜈𝜁⊤𝑋⊤𝜆

)
+ 1⊤𝜆

=
1
4
∥𝜁𝜈 + 𝑋⊤𝜆∥2 − 1

2
∥𝜁𝜈 + 𝑋⊤𝜆∥2 + 1⊤𝜆

= −1
4
∥𝜁𝜈 + 𝑋⊤𝜆∥2 + 1⊤𝜆

□
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C.1.2 Shortcut learning in max-margin classification

We repeat the dgp from the linear perception task in eq. (4.1) here.

y ∼ Rad, z ∼


𝑝𝜌 (z = 𝑦 | y = 𝑦) = 𝜌

𝑝𝜌 (z = −𝑦 | y = 𝑦) = (1 − 𝜌)
, 𝜹 ∼ N(0, I𝑑−2), x = [𝐵 ∗ z, y, 𝜹] . (C.7)

Theorem 1. Letw∗
be the max-margin predictor on𝑛 training samples from eq. (C.7)with a leftover

group of size 𝑘 . There exist constants 𝐶1,𝐶2, 𝑁0 > 0 such that

∀ integers 𝑘 ∈
(
0,
𝑛

10

)
(C.8)

∀ 𝑑 ≥ 𝐶1𝑘 log(3𝑛), (C.9)

∀ 𝐵 > 𝐶2
√︁
𝑑/𝑘, (C.10)

with probability at least 1 − 1
3𝑛 over draws of the training data, it holds that 𝐵w∗

𝑧 > w∗
𝑦 .

Before giving the proof of theorem 3, we first give the corollary showing overparameterization

is not necessary for theorem 3 to hold.

Corollary 1. For all 𝑛 > 𝑁0 — where the constant 𝑁0 is from theorem 3 — with scalar 𝜏 ∈ (0, 1)

such that the dimension 𝑑 = 𝜏𝑛 < 𝑛, theorem 3 holds.

∀𝑘 ≤ 𝑛 ×min
{
1
10
,

𝜏

𝐶1 log 3𝑛

}
,

a linear model trained via default-erm yields a predictor w∗
such that 𝐵w∗

𝑧 > w∗
𝑦 .

Proof. We show that for a range of 𝑘 , for all 𝑛 ≥ 𝑁0 theorem 3 holds for some 𝑑 < 𝑛. Note that
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theorem 3 holds for 𝑛 ≥ 𝑁0, 𝑑 = 𝐶1𝑘 log(3𝑛) and

∀𝑘 <
𝑛

10
.

Setting 𝑑 ≤ 𝜏𝑛 for some 𝜏 ∈ (0, 1) such that 𝑑 < 𝑛 means that theorem 3 holds if

𝐶1𝑘 log(3𝑛) = 𝑑 ≤ 𝜏𝑛 =⇒ 𝑘 ≤ 𝜏𝑛

𝐶1 log(3𝑛)
.

Absorbing this new upper bound into the requirements on 𝑘 for theorem 3 to hold, we get that

for any scalar 𝑛 > 𝑁0, 𝜏 ∈ (0, 1), 𝑑 = 𝜏𝑛, theorem 3 holds for

∀𝑘 < 𝑛 ×min
{
1
10
,

𝜏

𝐶1 log(3𝑛)

}
.

In turn, even though 𝑑 < 𝑛, a linear model trained via default-erm converges in direction to a

max-margin classifier such that w∗ with 𝐵w∗
𝑧 > w∗

𝑦 . □

Proof. (of theorem 3)We consider two norm-minimization problems overw, one under constraint

w𝑦 ≥ 𝐵w𝑧 and another under w𝑦 < 𝐵w𝑧 . We show that the latter achieves lower norm and

therefore, max-margin will achieve solutions w𝑦 < 𝐵w𝑧 . The two minimization problems are as

follows:
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wstable = argmin
w

𝑤2
𝑦 +𝑤2

𝑧 + ∥w𝑒 ∥2

s.t. 𝑖 ∈ 𝑆shortcut 𝑤𝑦 + 𝐵𝑤𝑧 +w⊤
𝑒 y𝑖𝜹𝑖 > 1

s.t. 𝑖 ∈ 𝑆leftover 𝑤𝑦 − 𝐵𝑤𝑧 +w⊤
𝑒 y𝑖𝜹𝑖 > 1

w𝑦 ≥ 𝐵w𝑧

(C.11)

wshortcut = argmin
w

𝑤2
𝑦 +𝑤2

𝑧 + ∥w𝑒 ∥2

s.t. 𝑖 ∈ 𝑆shortcut 𝑤𝑦 + 𝐵𝑤𝑧 +w⊤
𝑒 y𝑖𝜹𝑖 > 1

𝑖 ∈ 𝑆leftover 𝑤𝑦 − 𝐵𝑤𝑧 +w⊤
𝑒 y𝑖𝜹𝑖 > 1

w𝑦 < 𝐵w𝑧

(C.12)

From eq. (C.11), any w that satisfy the constraints of the dual maximization problem will lower

bound the value of the optimum of the primal, ∥wstable∥2 ≥𝑊stable. From the eq. (C.12), substitut-

ing a guess inwshortcut that satisfies the constraints yields an upper bound, ∥wshortcut∥2 ≤𝑊shortcut.

The actual computation of the bounds𝑊shortcut,𝑊stable is in lemmas 12 and 13 which are proved in

appendix C.1.3 and appendix C.1.4 respectively. We reproduce the lemmas here for convenience.

Lemma. (7) Consider the following optimization problem from eq. (C.11) where 𝑛 samples of x𝑖, y𝑖

come from eq. (4.1) where x𝑖 ∈ R𝑑 :

wstable = argmin
w

𝑤2
𝑦 +𝑤2

𝑧 + ∥w𝑒 ∥2

s.t. 𝑖 ∈ 𝑆shortcut 𝑤𝑦 + 𝐵𝑤𝑧 +w⊤
𝑒 y𝑖𝜹𝑖 > 1

s.t. 𝑖 ∈ 𝑆leftover 𝑤𝑦 − 𝐵𝑤𝑧 +w⊤
𝑒 y𝑖𝜹𝑖 > 1

w𝑦 ≥ 𝐵w𝑧

(C.13)

Let 𝑘 = |𝑆leftover | > 1. Then, for a fixed constant 𝑐 = 1
(2𝑒)2 , with any scalar 𝜖 <

√
𝑑 , with probability

at least 1 − 2 exp(−𝑐𝜖2/𝐺4) and ∀ integers𝑀 ∈
[
1, ⌊ 𝑛2𝑘 ⌋

]
,

∥wstable∥2 ≥𝑊stable =
1

4 +
(√
𝑑+𝜖

)2
2𝑀𝑘

.
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Lemma. (8) Consider the following optimization problem from eq. (C.11) where 𝑛 samples of x𝑖, y𝑖

come from eq. (4.1) where x𝑖 ∈ R𝑑 :

wshortcut = argmin
w

𝑤2
𝑦 +𝑤2

𝑧 + ∥w𝑒 ∥2

s.t. 𝑖 ∈ 𝑆shortcut 𝑤𝑦 + 𝐵𝑤𝑧 +w⊤
𝑒 y𝑖𝜹𝑖 > 1

𝑖 ∈ 𝑆leftover 𝑤𝑦 − 𝐵𝑤𝑧 +w⊤
𝑒 y𝑖𝜹𝑖 > 1

w𝑦 < 𝐵w𝑧

(C.14)

Let 𝑘 = |𝑆leftover | ≥ 1. Then, for a fixed constant 𝑐 = 1
(2𝑒)2 , with any scalar 𝜖 < 1

3

√︃
𝑑
𝑘
<

√
𝑑 , with

probability at least 1 − 2(2𝑘 + (𝑛 − 𝑘) + 1) exp(−𝑐 𝜖2
𝐺4 ), for 𝛾 = 2

𝑑−4𝜖
√
𝑘𝑑
,

∥wshortcut∥2 ≤𝑊shortcut = 𝛾
2𝑘 (

√
𝑑 + 𝜖)2 +

(
1 + 𝛾𝜖

√
𝑑𝑘

)2
𝐵2

Together, the lemmas say that for any ∀ integers𝑀 ∈
[
1, ⌊ 𝑛2𝑘 ⌋

]
and 𝜖 < 1

3

√︃
𝑑
𝑘
, with probability

≥ 1 − 2 exp(−𝑐𝜖2/𝐺4)

∥wstable∥2 ≥𝑊stable =
1

4 +
(√
𝑑+𝜖

)2
2𝑀𝑘

.

and with probability at least 1 − 2(2𝑘 + (𝑛 − 𝑘) + 1) exp(−𝑐 𝜖2
𝐺4 ), for 𝛾 = 2

𝑑−4𝜖
√
𝑘𝑑

> 0,

∥wshortcut∥2 ≤𝑊shortcut = 𝛾
2𝑘 (

√
𝑑 + 𝜖)2 +

(
1 + 𝛾𝜖

√
𝑑𝑘

)2
𝐵2

First, we choose 𝜖2 = 2𝐺
4

𝑐
log(3𝑛). This gives us the probability with which these bounds hold:

as 𝑘 < 0.1𝑛 we have 𝑘 + 2 < 𝑛
2 and

1 − 2(2𝑘 + (𝑛 − 𝑘) + 2) exp(−𝑐 𝜖
2

𝐺4 ) = 1 − 2(𝑛 + 𝑘 + 2) exp(−2 log(3𝑛))
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≥ 1 − 2( 3𝑛
2
) exp(−2 log(3𝑛))

= 1 − exp(−2 log(3𝑛) + log(3𝑛))

= 1 − exp(− log(3𝑛))

= 1 − 1
3𝑛
.

Next, we will instantiate the parameter𝑀 and set the constants𝐶1,𝐶2 and the upper bound on 𝑘

in theorem 3 to guarantee the following eq. (separation inequality):

𝑊shortcut = 𝛾
2𝑘 (

√
𝑑 + 𝜖)2 +

(
1 + 𝛾𝜖

√
𝑑𝑘

)2
𝐵2

<
1

4 +
(√
𝑑+𝜖

)2
2𝑀𝑘

=𝑊stable, (separation inequality)

which then implies that ∥wshortcut∥2 < ∥wstable∥2, concluding the proof.

Invoking the conditions in theorem 3 and setting the upper bound on 𝑘 . We will keep

the 𝜖 as is for simplicity of reading but invoke the inequalities satisfied by log(3𝑛) from theorem 3:

∃ constant 𝐶1, 𝑑 ≥ 𝐶1𝑘 log(3𝑛).

Now we let 𝐶1 = 2 𝐺
4

𝑐𝐶2 for a constant 𝐶 ∈
(
0, 13

)†, such that

𝜖2 = 2
𝐺4

𝑐
log(3𝑛) < 𝐶2𝑑

𝑘
=⇒ 𝜖 < 𝐶

√︂
𝑑

𝑘
and 𝜖

√
𝑘𝑑 < 𝐶𝑑. (C.15)

We next find a 𝐶 ∈
(
0, 13

)
such that eq. (separation inequality) holds with 𝑀 = 5, which upper

bounds 𝑘 :

𝑀 <
𝑛

2𝑘
=⇒ 𝑘

𝑛
<

1
2𝑀

=
1
10

=⇒ 𝑘 <
𝑛

10
.

†The 1
3 comes from requiring that 𝜖 < 1

3

√︃
𝑑
𝑘
from lemma 13.
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Simplifying𝑊shortcut and𝑊stable. To actually show𝑊shortcut < 𝑊stable in eq. (separation in-

equality), we compare a simplified strict upper bound on the LHS𝑊shortcut and a simplified strict

lower bound on the RHS𝑊stable

For the simplification of the RHS𝑊stable of eq. (separation inequality), we will use the fact that𝑑 ≥

2 𝐺
4

𝑐𝐶2 log(3𝑛)𝑘 . Given the assumption 𝑛 > 𝑁0, choosing 𝑁0 to be an integer such that log(3𝑁0) ≥
40𝑐𝐶2

𝐺4 means that log(3𝑛) > 40𝑐𝐶2

𝐺4 and we have

𝑑

𝑘
> 80 =⇒ 𝑑

10𝑘
> 8 =⇒ 1

2
𝑑

10𝑘
> 4 (C.16)

which gives us, for𝑀 = 5,

𝑊stable =
1

4 +
(√
𝑑+𝜖

)2
2𝑀𝑘

(C.17)

=
1

4 +
(√
𝑑+𝜖

)2
10𝑘

(C.18)

≥ 1

3
2

(√
𝑑+𝜖

)2
10𝑘

{4 <
1
2
𝑑

10𝑘
<

1
2
(
√
𝑑 + 𝜖)2
10𝑘

from eq. (C.16) } (C.19)

=
20𝑘

3(
√
𝑑 + 𝜖)2

(C.20)

≥ 20𝑘

3(
√
𝑑 +𝐶

√
𝑑√
𝑘
)2

{𝜖 <
𝐶
√
𝑑

√
𝑘

from eq. (C.15) } (C.21)

=
20𝑘

3(1 + 𝐶√
𝑘
)2𝑑

(C.22)

>
20𝑘

3(1 +𝐶)2𝑑 {𝑘 ≥ 1} (C.23)

Now, we produce a simpler upper bound on the first part of the LHS of eq. (separation inequality):
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recalling that 𝛾 = 2
𝑑−4𝜖

√
𝑘𝑑
, and substituting in the upper bounds on 𝜖 ,

𝛾2𝑘 (
√
𝑑 + 𝜖)2 =

(
2(
√
𝑑 + 𝜖)

𝑑 − 4𝜖
√
𝑘𝑑

)2
𝑘

< 4
©«
(
√
𝑑 +𝐶

√︃
𝑑
𝑘
)

𝑑 − 4𝐶𝑑
ª®®¬
2

𝑘 {𝜖 <
𝐶
√
𝑑

√
𝑘

from eq. (C.15) }

=
4𝑘
𝑑

©«
(1 + 𝐶√

𝑘
)

1 − 4𝐶
ª®¬
2

≤ 4𝑘
𝑑

(
1 +𝐶
1 − 4𝐶

)2
, {𝑘 ≥ 1} (C.24)

Next is a simpler upper bound on the second part of the LHS of eq. (separation inequality). Again

with 𝛾 = 2
𝑑−4𝜖

√
𝑘𝑑
,

(
1 + 𝛾𝜖

√
𝑑𝑘

)2
𝐵2

=

(
1 + 2𝜖

√
𝑑𝑘

𝑑−4𝜖
√
𝑘𝑑

)2
𝐵2

≤

(
1 + 2𝐶𝑑

𝑑−4𝐶𝑑

)2
𝐵2

=

(
1 + 2𝐶

1−4𝐶
)2

𝐵2

Now setting

𝐵 >
√
2

(
1 + 2𝐶

1−4𝐶
)√︃

4𝑘
𝑑

( 1+𝐶
1−4𝐶

)
gives the lower bound on 𝐵 from theorem 3:

𝐵 > 𝐶2

√︂
𝑑

𝑘
, where 𝐶2 =

(
1 + 2𝐶

1−4𝐶
)

√
2
( 1+𝐶
1−4𝐶

) =
(1 − 2𝐶)
√
2(1 +𝐶)

.
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Formally,

𝐵 > 𝐶2

√︂
𝑑

𝑘
=⇒

(
1 + 2𝐶

1−4𝐶
)2

𝐵2
<

1
2

(√︂
4𝑘
𝑑

(
1 +𝐶
1 − 4𝐶

))2
=
1
2
4𝑘
𝑑

(
1 +𝐶
1 − 4𝐶

)2
. (C.25)

By combining the upper bound from eq. (C.25) and the upper bound from eq. (C.24), we get an

upper bound on the whole of the LHS of eq. (separation inequality), which in turn provides an

upper bound on𝑊shortcut:

𝑊shortcut = 𝛾
2𝑘 (

√
𝑑 + 𝜖)2 +

(
1 + 𝛾𝜖

√
𝑑𝑘

)2
𝐵2

<
3
2
4𝑘
𝑑

(
(1 +𝐶)
1 − 4𝐶

)2
≤ 3

2
4𝑘
𝑑

(
(1 +𝐶)
1 − 4𝐶

)2
,

because 𝑘 ≥ 1. Note the upper bound is strict.

Concluding the proof. Now, we show that a 𝐶 exists such that the following holds, which

implies𝑊shortcut < 𝑊stable, which in turn implies eq. (separation inequality) and the proof con-

cludes:

𝑊shortcut <
3
2
4𝑘
𝑑

(
(1 +𝐶)
1 − 4𝐶

)2
≤ 20𝑘

3(1 +𝐶)2𝑑 <𝑊stable.

The above inequality holds when

6
(
(1 +𝐶)
1 − 4𝐶

)2
≤ 20

3(1 +𝐶)2 ⇐⇒ (1 +𝐶)2 −
√︂

10
9
(1 − 4𝐶) ≤ 0.

The right hand side holds when the quadratic equation (1 +𝐶)2 −
√︃

10
9 (1 − 4𝐶) is non-positive,

which holds between the roots of the equation. The equation’s positive solution is

𝐶 =
−3 +

√
10

3 + 2
√
10 +

√︃
5(8 + 3

√
10)

≈ 0.008.

Setting 𝐶 to this quantity satisfies the requirement that 𝐶 ∈ (0, 13 ).
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Thus, a𝐶 exists such that eq. (separation inequality) holds which concludes the proof of theorem 3

for the following constants and constraints implied by 𝐶 and𝑀 = 5:

𝐶2 =
(1 − 2𝐶)
√
2(1 +𝐶)

𝐶1 = 2
𝐺4

𝑐𝐶2 𝑘 <
𝑛

10
,

where𝐺 is the𝜓2-norm of a standard normal r.v. and 𝑐 is the absolute constant from the Bernstein

inequality in lemma 7. □

C.1.3 Lower bounding the norm of solutions that rely more on the

stable feature

Lemma 12. Consider the following optimization problem from eq. (C.11) where 𝑛 samples of x𝑖, y𝑖

come from eq. (4.1) where x𝑖 ∈ R𝑑 :

wstable = argmin
w

𝑤2
𝑦 +𝑤2

𝑧 + ∥w𝑒 ∥2

s.t. 𝑖 ∈ 𝑆shortcut 𝑤𝑦 + 𝐵𝑤𝑧 +w⊤
𝑒 y𝑖𝜹𝑖 > 1

s.t. 𝑖 ∈ 𝑆leftover 𝑤𝑦 − 𝐵𝑤𝑧 +w⊤
𝑒 y𝑖𝜹𝑖 > 1

w𝑦 ≥ 𝐵w𝑧

(C.26)

Let 𝑘 = |𝑆leftover | > 1. Then, for a fixed constant 𝑐 = 1
(2𝑒)2 , with any scalar 𝜖 <

√
𝑑 , with probability

at least 1 − 2 exp(−𝑐𝜖2/𝐺4) and ∀ integers𝑀 ∈
[
1, ⌊ 𝑛2𝑘 ⌋

]
,

∥wstable∥2 ≥𝑊stable =
1

4 +
(√
𝑑+𝜖

)2
2𝑀𝑘

.

Proof. By lemma 11, the dual of eq. (C.11) is the following for 𝜁 = [−𝐵, 1, 0𝑑−2] and 𝑋 is an 𝑛 × 𝑑
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matrix with rows y𝑖x𝑖 :

max
𝜆≥0,𝜈≥0

−1
4
∥𝜁𝜈 + 𝑋⊤𝜆∥2 + 1⊤𝜆 (C.27)

Now by duality

∥wstable∥2 ≥ max
𝜆≥0,𝜈≥0

−1
4
∥𝜁𝜈 + 𝑋⊤𝜆∥2 + 1⊤𝜆,

which means any feasible candidate to eq. (C.27) gives a lower bound on ∥wstable∥2.

Feasible Candidates for 𝜆, 𝜈 . We now define a set𝑈 ⊂ [𝑛], and let 𝜆𝑖 = 𝛼
|𝑈 | > 0 for 𝑖 ∈ 𝑈 and

0 otherwise. For𝑀 ∈ (1, ⌊ 𝑛2𝑘 ⌋], we take 2𝑀𝑘 samples from the training data to be included in𝑈 .

Formally,

𝑈 = 𝑆leftover ∪ (2𝑀 − 1)𝑘 a random samples from 𝑆shortcut,

which gives the size |𝑈 | = 2𝑀𝑘 . Then, we let 𝜈 = 𝛼
2(𝑀−1)
2𝑀 > 0.

Note that for the above choice of 𝜆, 𝑋⊤𝜆 is a sum of the rows from 𝑈 scaled by 𝛼
|𝑈 | . Adding up

𝑘 rows from 𝑆leftover and 𝑘 rows from 𝑆shortcut cancels out the 𝐵s and, so in the 𝐵 is accumulated

|𝑈 | − 2𝑘 = 2(𝑀 − 1)𝑘 times, and so

𝑋⊤𝜆 =

[
𝛼 ∗ |𝑈 | − 2𝑘

|𝑈 | 𝐵, 𝛼,
𝛼

|𝑈 |
∑︁
𝑖∈𝑈

𝜹𝑖

]
=

[
𝛼𝐵

2(𝑀 − 1)
2𝑀

,𝛼,
𝛼

|𝑈 |
∑︁
𝑖∈𝑈

𝜹𝑖

]
.

As 𝜆 has 𝛼
|𝑈 | on |𝑈 | elements and 0 otherwise, 𝜆⊤1 = 𝛼

As we set 𝜈 = 𝛼
2(𝑀−1)
2𝑀 ,

𝜈𝜁 + 𝑋⊤𝜆 =

[
−𝛼𝐵 2(𝑀 − 1)

2𝑀
+ 𝛼 2(𝑀 − 1)

2𝑀
𝐵, 𝛼

2(𝑀 − 1)
2𝑀

+ 𝛼, 0 + 𝛼

|𝑈 |
∑︁
𝑖

𝜹𝑖

]
(C.28)
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=

[
0 , 𝛼

(
1 + 2(𝑀 − 1)

2𝑀

)
,

𝛼

|𝑈 |
∑︁
𝑖

𝜹𝑖

]
(C.29)

=⇒ ∥𝜁𝜈 + 𝑋⊤𝜆∥2 =

[
0, 𝛼

(
1 + 2(𝑀 − 1)

2𝑀

)
,
𝛼

|𝑈 |
∑︁
𝑖∈𝑈

𝜹𝑖

]2 (C.30)

= 𝛼2


[
0,

(
1 + 2(𝑀 − 1)

2𝑀

)
,
1
|𝑈 |

∑︁
𝑖∈𝑈

𝜹𝑖

] (C.31)

For the chosen values of 𝜈, 𝜆 the value of the objective in eq. (C.27) is

−𝛼2
4


[
0,

(
1 + 2(𝑀 − 1)

2𝑀

)
,
1
|𝑈 |

∑︁
𝑖∈𝑈

𝜹𝑖

]2 + 𝛼 (C.32)

Letting

Γ =


[
0,

(
1 + 2(𝑀 − 1)

2𝑀

)
,
1
|𝑈 |

∑︁
𝑖∈𝑈

𝜹𝑖

]2 ,
the objective is of the form 𝛼 − 𝛼2Γ

4 . To maximize with respect to 𝛼 , setting the derivative of the

objective w.r.t 𝛼 to 0 gives:

1 − 2𝛼Γ
4

= 0 =⇒ 𝛼 =
2
Γ

=⇒ 𝛼 − 𝛼2Γ

4
=

2
Γ
− 4
Γ2

Γ

4
=

1
Γ
.

This immediately gives us

∥wstable∥2 ≥
1
Γ
,

and we lower bound this quantity by upper bounding Γ.

By concentration of gaussian norm as in lemma 9, with probability at least 1 − 2 exp(−𝑐 𝜖2
𝐺4 ) 1

|𝑈 |
∑︁
𝑖∈𝑈

𝜹𝑖

 = 1√︁
|𝑈 |

 1√︁
|𝑈 |

∑︁
𝑖∈𝑈

𝜹𝑖

 ≤ 1√︁
|𝑈 |

(
√
𝑑 + 𝜖).
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In turn, recalling that |𝑈 | = 2𝑀𝑘

Γ ≤
(
(2(𝑀 − 1) + 2𝑀)

2𝑀

)2
+

(√
𝑑 + 𝜖√︁
|𝑈 |

)2
< 4 +

(√
𝑑 + 𝜖√︁
|𝑈 |

)2
≤ 4 +

(√
𝑑 + 𝜖

)2
2𝑀𝑘

The upper bound on Γ gives the following lower bound on ∥wstable∥2:

∥wstable∥2 ≥
1
Γ
≥ 1

4 +
(√
𝑑+𝜖

)2
2𝑀𝑘

□

C.1.4 Upper bounding the norm of solutions that rely more on the

shortcut.

Lemma 13. Consider the following optimization problem from eq. (C.11) where 𝑛 samples of x𝑖, y𝑖

come from eq. (4.1) where x𝑖 ∈ R𝑑 :

wshortcut = argmin
w

𝑤2
𝑦 +𝑤2

𝑧 + ∥w𝑒 ∥2

s.t. 𝑖 ∈ 𝑆shortcut 𝑤𝑦 + 𝐵𝑤𝑧 +w⊤
𝑒 y𝑖𝜹𝑖 > 1

𝑖 ∈ 𝑆leftover 𝑤𝑦 − 𝐵𝑤𝑧 +w⊤
𝑒 y𝑖𝜹𝑖 > 1

w𝑦 < 𝐵w𝑧

(C.33)

Let 𝑘 = |𝑆leftover | ≥ 1. Then, for a fixed constant 𝑐 = 1
(2𝑒)2 , with any scalar 𝜖 < 1

3

√︃
𝑑
𝑘
<

√
𝑑 , with

probability at least 1 − 2(2𝑘 + (𝑛 − 𝑘) + 1) exp(−𝑐 𝜖2
𝐺4 ), for 𝛾 = 2

𝑑−4𝜖
√
𝑘𝑑
,

∥wshortcut∥2 ≤𝑊shortcut = 𝛾
2𝑘 (

√
𝑑 + 𝜖)2 +

(
1 + 𝛾𝜖

√
𝑑𝑘

)2
𝐵2
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Proof. Let 𝑘 = |𝑆leftover |. The candidate we will evaluate the objective for is

w =

[
𝛽

𝐵
, 0, 𝛾

∑︁
𝑗∈𝑆leftover

y 𝑗𝜹 𝑗

]
. (C.34)

High-probability bounds on the margin achieved by the candidate and norm ofw The

margins on the shortcut group and the leftover group along with the constraints are as follows:

∀𝑗 ∈ 𝑆shortcut 𝑚 𝑗 = 0 + 𝐵 ∗ 𝛽
𝐵
+

〈
y 𝑗𝜹 𝑗 , 𝛾

∑︁
𝑖∈𝑆leftover

y𝑖𝜹𝑖

〉
≥ 1

∀𝑗 ∈ 𝑆leftover 𝑚 𝑗 = 0 − 𝐵 ∗ 𝛽
𝐵
+

〈
y 𝑗𝜹 𝑗 , 𝛾

∑︁
𝑖∈𝑆leftover

y𝑖𝜹𝑖

〉
≥ 1.

(C.35)

Due to the standard normal distribution being isotropic, and y 𝑗 ∈ {−1, 1}, y 𝑗𝜹 𝑗 has the same

distribution as 𝜹 𝑗 . Then, we apply lemma 10 with 𝑉 = 𝑆leftover,𝑈 = 𝑆shortcut — which means

𝑇𝑣 = 𝑘 and 𝑇𝑢 = (𝑛 − 𝑘) — to bound the margin terms in eq. (C.35) and ∥w∥2 with probability at

least

1 − 2(2𝑘 + (𝑛 − 𝑘) + 2) exp(−𝑐 𝜖
2

𝐺4 ).

Applying the bound in eq. (C.4) in lemma 10 between a sum of vectors and a different i.i.d vector,

∀𝑗 ∈ 𝑆shortcut

�����
〈
y 𝑗𝜹 𝑗 , 𝛾

∑︁
𝑖∈𝑆leftover

y𝑖𝜹𝑖

〉����� ≤ 𝛾𝜖√𝑘𝑑 (C.36)

Applying the bound in eq. (C.3) from lemma 10

∀𝑗 ∈ 𝑆leftover

〈
y 𝑗𝜹 𝑗 , 𝛾

∑︁
𝑖∈𝑆leftover

y𝑖𝜹𝑖

〉
≥ 𝛾

(
𝑑 − 3𝜖

√
𝑘𝑑

)
(C.37)
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The margin constraints on the shortcut and leftover from eq. (C.35) respectively imply

𝛽 − 𝛾𝜖
√
𝑑𝑘 ≥ 1 − 𝛽 + 𝛾

(
𝑑 − 3𝜖

√
𝑘𝑑

)
≥ 1

We choose 𝛽 = 1 + 𝛾𝜖
√
𝑑𝑘 , which implies an inequality that 𝛾 has to satisfy the following, which

is due to 𝑑 − 3𝜖
√
𝑘𝑑 > 0,

−(1 + 𝛾𝜖
√
𝑑𝑘) + 𝛾

(
𝑑 − 3𝜖

√
𝑘𝑑

)
≥ 1 =⇒ 𝛾 ≥ 2

𝑑 − 4𝜖
√
𝑘𝑑

Now, we choose

𝛾 =
2

𝑑 − 4𝜖
√
𝑘𝑑
.

Computing the upper bound on the value of the objective in the primal problem in

eq. (C.12) The feasible candidate’s norm ∥w∥2 is an upper bound on the solution’s norm ∥wshortcut∥2

and so

∥wshortcut∥2 ≤ ∥w∥2 = 1
𝐵2
𝛽2 +

𝛾 ∑︁
𝑗∈𝑆leftover

y 𝑗𝜹 𝑗

2 = 𝛾2𝑘
 1
√
𝑘

∑︁
𝑗∈𝑆leftover

𝜹 𝑗

2 + 𝛽2𝐵2
By lemma 10 which we invoked,  1

√
𝑘

∑︁
𝑗∈𝑆leftover

𝜹 𝑗

2 ≤ (
√
𝑑 + 𝜖)2.

To conclude the proof, substitute 𝛽 = 1 + 𝛾𝜖
√
𝑑𝑘 and get the following upper bound with 𝛾 =

2
𝑑−3𝜖

√
𝑘𝑑
:

∥wshortcut∥2 ≤ 𝛾2𝑘 (
√
𝑑 + 𝜖)2 + 𝛽

2

𝐵2
= 𝛾2𝑘 (

√
𝑑 + 𝜖)2 +

(
1 + 𝛾𝜖

√
𝑑𝑘

)2
𝐵2

.
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□

C.1.5 Concentration of 𝑘 and intuition behind theorem 3

Concentration of 𝑘 around (1−𝜌)𝑛. Denote the event that the 𝑖th sample lies in the leftover

group as 𝐼𝑖 : then 𝐸 [𝐼𝑖] = 1 − 𝜌 and the leftover group size is 𝑘 =
∑
𝑖 𝐼𝑖 . Hoeffding’s inequality

(Theorem 2.2.6 in [246]) shows that for any 𝑡 > 0, 𝑘 is at most (1 − 𝜌)𝑛 + 𝑡
√
𝑛 with probability at

least 1 − exp(−2𝑡2):

𝑝

(
𝑘 − (1 − 𝜌)𝑛 > 𝑡

√
𝑛

)
= 𝑝

(∑︁
𝑖

(𝐼𝑖 − (1 − 𝜌)) > 𝑡
√
𝑛

)
= 𝑝

(∑︁
𝑖

(𝐼𝑖 − 𝐸 [𝐼𝑖]) > 𝑡
√
𝑛

)
≤ exp(−2𝑡2).

Letting 𝜌 = 0.9 +
√︃

log 3𝑛
𝑛

and 𝑡 =
√︁
log 3𝑛, gives us

𝑝

(
𝑘 − (1 − 𝜌)𝑛 > 𝑡

√
𝑛

)
= 𝑝

(
𝑘 − 0.1𝑛 +

√︁
𝑛 log 3𝑛 >

√︁
log 3𝑛

√
𝑛

)
= 𝑝 (𝑘 − 0.1𝑛 > 0)

≤ exp(−2𝑡2)

= exp(−2 log 3𝑛).

=

(
1
3𝑛

)2
<

1
3𝑛

To connect 𝜌 to shortcut learning due to max-margin classification, we take a union bound of the

event that 𝑘 < 0.1𝑛, which occurs with probability at least 1 − 1
3𝑛 and theorem 3 which occurs

with probability at least 1− 1
3𝑛 . This union bound guarantees that with probability at least 1− 2

3𝑛

over sampling the training data, max-margin classification on 𝑛 training samples from eq. (4.1)

relies more on the shortcut feature if 𝜌 is above a threshold; and this threshold converges to 0.9
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at the rate of
√︁
log 3𝑛/𝑛.

C.1.6 Bumpy losses improve ERM in the under-parameterized

setting

Theorem 2. Consider 𝑛 samples of training data from dgp in eq. (4.1) with 𝑑 < 𝑛. Consider a linear

classifier 𝑓𝜃 (x) = w⊤x such that for all samples in the training data y𝑖w
⊤x𝑖 = 𝑏 for any 𝑏 ∈ (0,∞).

With probability 1 over draws of samples, w = [0, 𝑏, 0𝑑−2] .

Proof. Letting 𝑋 be the matrix where each row is y𝑖x𝑖 , the theorem statement says the solution

w∗

𝑋w∗ = 𝑏1 (C.38)

First, split w∗ = [𝑤∗
𝑧 ,𝑤

∗
𝑦 ,w∗

−𝑦]. Equation (C.38) says that the margin of the model on any sample

satisfies

y(w∗)⊤x = 𝑤∗
𝑦y

2 +𝑤∗
𝑧yz + y(w∗

−𝑦)⊤𝜹 = 𝑏 =⇒ y(w∗
−𝑦)⊤𝜹 = 𝑏 −𝑤∗

𝑦y
2 −𝑤∗

𝑧yz

We collect these equations for the whole training data by splitting 𝑋 into columns: denoting 𝑌, 𝑍

as vectors of y𝑖 and z𝑖 and using · to denote element wise operation, split 𝑋 into columns that

correspond to y, z and 𝜹 respectively as 𝑋 = [𝑌 · 𝑌 | 𝑌 · 𝑍 | 𝑋𝛿 ]. Rearranging terms gives us

𝑤∗
𝑧𝑌 · 𝑍 +𝑤∗

𝑦1 + 𝑋𝛿w∗
𝛿
= 𝑏1 =⇒ 𝑋𝛿w∗

𝛿
= (𝑏 −𝑤∗

𝑦)1 −𝑤∗
𝑧𝑌 · 𝑍 .

The elements of 𝑌 · 𝑍 lie in {−1, 1} and, as the shortcut feature does not always equal the label,

the elements of 𝑌 · 𝑍 are not all the same sign.
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Solutions do not exist when one non-zero element exists in (𝑏 − 𝑤∗
𝑦)1 − 𝑤∗

𝑧𝑌 · 𝑍 By

definition of w∗

𝑋𝛿w∗
𝛿
= (𝑏 −𝑤∗

𝑦)1 −𝑤∗
𝑧𝑌 · 𝑍 .

Denote 𝑟 = (𝑏 −𝑤∗
𝑦)1 −𝑤∗

𝑧𝑌 · 𝑍 . and 𝐴 = 𝑋𝛿 . Now we show that w.p. 1 solutions do not exist for

the following system of linear equations:

𝐴𝑤 = 𝑟 .

First, note that 𝐴 = 𝑋𝛿 has y𝑖𝜹𝑖 for rows and as y𝑖 |= 𝜹𝑖 and y𝑖 ∈ {−1, 1}, each vector y𝑖𝜹𝑖 is

distributed identically to a vector of independent standard Gaussian random variables. Thus, 𝐴

is a matrix of IID standard Gaussian random variables.

Let 𝑈 denote 𝐷 − 2 indices such that the corresponding rows of 𝐴 form a matrix 𝐷 − 2 × 𝐷 − 2

matrix and 𝑟𝑈 has at least one non-zero element; let 𝐴𝑈 denote the resulting matrix. Now 𝐴𝑈 is

a 𝐷 − 2 × 𝐷 − 2 sized matrix where each element is a standard Gaussian random variable. Such

matrices have rank 𝐷 − 2 with probability 1 because square singular matrices form a measure

zero set under the Lebesgue measure over R𝐷−2×𝐷−2[247].

We use subscript ·−𝑈 to denote all but the indices in𝑈 . The equation𝐴𝑤 = 𝑟 implies the following

two equations:

𝐴𝑈𝑤 = 𝑟𝑈 𝐴−𝑈𝑤 = 𝑟−𝑈 .

As 𝐴𝑈 is has full rank (𝐷 − 2), 𝐴𝑈𝑤 = 𝑟𝑈 admits a unique solution w∗
𝑈
≠ 0 — because 𝑟𝑈 has at

least one non-zero element by construction. Then, it must hold that

𝐴−𝑈w∗
𝑈 = 𝑟−𝑈 . (C.39)
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For any row 𝑣⊤ ∈ 𝐴−𝑈 , eq. (C.39) implies that 𝑣⊤w∗ equals a fixed constant. As 𝑣 is a vector of i.i.d

standard normal random variables, 𝑣⊤w∗ is a gaussian random variable with mean
∑(w∗

𝑖 ) and

variance ∥w∗∥2. Then with probability 1, 𝑣⊤w∗ will not equal a constant. Thus, w.p.1 𝐴−𝑈w∗
𝑈
=

𝑟−𝑈 is not satisfied, which means w.p.1 there are no solutions to 𝐴w = 𝑟 .

Case where (𝑏 −𝑤∗
𝑦)1 −𝑤∗

𝑧𝑌 · 𝑍 is zero element-wise As 𝑋 has rank 𝐷 − 2, 𝑋𝛿w∗
𝛿
= 0 only

when w∗
𝛿
= 0.

Each element in (𝑏 −𝑤∗
𝑦)1 −𝑤∗

𝑧𝑌 · 𝑍 is either 𝑏 −𝑤∗
𝑦 +𝑤∗

𝑧 or 𝑏 −𝑤∗
𝑦 −𝑤∗

𝑧 . Thus,

(𝑏 −𝑤∗
𝑦)1 −𝑤∗

𝑧𝑌 · 𝑍 = 0 =⇒


𝑏 −𝑤∗

𝑦 +𝑤∗
𝑧 = 0,

𝑏 −𝑤∗
𝑦 −𝑤∗

𝑧 = 0
(C.40)

Adding and subtracting the two equations on the right gives

2(𝑏 −𝑤∗
𝑦) = 0 and 2𝑤∗

𝑧 = 0.

Thus, w∗
𝛿
= 0,𝑤∗

𝑧 = 0, 𝑏 = 𝑤∗
𝑦 . □

C.2 Further experimental details and results

C.2.1 Default-erm with ℓ2-regularization.

In section 4.3, we show default-erm achieves zero training loss by using the shortcut to classify

the shortcut group and noise to classify the leftover group, meaning the leftover group is overfit.

The usual way tomitigate overfitting is via ℓ2-regularization, which, one can posit, may encourage

models to rely on the perfect stable feature instead of the imperfect shortcut and noise.
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Figure C.1: Default-erm with ℓ2-regularization with a penalty coefficient of 𝜆 = 10−8 achieves a test
accuracy of ≈ 50% , outperforming default-erm. The right panel shows that ℓ2-regularization leads to
lower test loss on the minority group, meaning that the regularization does mitigate some overfitting.
However, the difference between the shortcut and leftover test losses shows that the model still relies on
the shortcut.

We train the linear model from section 4.3 with default-erm and ℓ2-regularization — implemented

as weight decay in the AdamW optimizer [248] — on data from eq. (4.1) with 𝑑 = 800, 𝐵 = 10, 𝑛 =

1000. Figure C.1 plots accuracy and losses for the ℓ2-regularized default-erm with the penalty

coefficient set to 10−8; it shows that ℓ2-regularization leads default-erm to build models that only

achieve ≈ 50% test accuracy.

For smaller penalty coefficients, default-erm performs similar to how it does without regulariza-

tion, and for larger ones, the test accuracy gets worse than default-erm without regularization.

We give an intuitive reason for why larger ℓ2 penalties may lead to larger reliance on the shortcut

feature. Due to the scaling factor 𝐵 = 10 in the synthetic experiment, for a fixed norm budget,

the model achieves lower loss when using the shortcut and noise compared to using the stable

feature. In turn, heavy ℓ2-regularization forces the model to rely more on the shortcut to avoid

the cost of larger weight needed by the model to rely on the stable feature and the noise.

C.2.2 Margin control (marg-ctrl)

In fig. C.2, we plot the different marg-ctrl losses along with log-loss. Each marg-ctrl loss

has a "bump" which characterizes the loss function’s transition from a decreasing function of

240



0 2 4
Margin, yf (x)

0

1

2

3

Lo
ss

 v
al

ue

log-loss
-damp

sd
marg-log
-stitch

Figure C.2: Comparing log-loss with marg-ctrl as functions of the margin. Each marg-ctrl loss has a
"bump" which characterizes the loss function’s transition from a decreasing function of the margin to an
increasing one. These bumps push models to have uniform margins because the loss function’s derivative
after the bump is negative which discourages large margins. The hyperparameters (temperature in 𝜎-
damp or function output target in marg-log.) affect the location of the bump and the slopes of the
function on either side of the bump.

the margin to an increasing one. These bumps push models to have uniform margins because

the loss function’s derivative after the bump is negative which discourages large margins. The

hyperparameters — like temperature in 𝜎-damp or function output target in marg-log — affect

the location of the bump and the slopes of the function on either side of the bump.

C.2.3 Marg-ctrl on a linear model

In fig. C.3, we compare default-erm to 𝜎-stitch. In fig. C.4 and fig. C.5, compare sd and marg-log

respectively to default-erm. The left panel of all figures shows that marg-ctrl achieves better

test accuracy than default-erm, while the right most panel shows that the test loss is better on the

leftover group usingmarg-ctrl. Finally, the middle panel shows the effect of controlling margins

in training; namely, the margins on the training data do not go to ∞, evidenced by the training

loss being bounded away from 0. Depending on the shortcut feature leads to different margins

and therefore test losses between the shortcut and leftover groups; the right panel in each plot

shows that the the test losses on both groups reach similar values, meaning marg-ctrlmitigates

dependence on the shortcut. While default-erm fails to perform better than chance (50%) even

after 100, 000 epochs (see fig. 4.1), marg-ctrlmitigates shortcut learning within 5000 epochs and

achieves 100% test accuracy.
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Figure C.3: A linear trained with 𝜎-stitch depend on the perfect stable feature to achieve perfect test
accuracy, unlike default-erm. The middle panel shows that 𝜎-stitch does not let the loss on the training
shortcut group to go to zero, unlike default-erm, and the right panel shows the test leftover group loss is
better.
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Figure C.4: A linear model trained with sd depend on the perfect stable feature to achieve perfect test
accuracy whereas default-erm performs worse than random chance. The middle panel shows that sd does
not let the loss on the training shortcut group to go to zero, unlike vanilla default-erm, and the right panel
shows the test-loss is better for the leftover group.

C.2.4 marg-ctrl vs. default-erm with a neural network

With 𝑑 = 100 and 𝐵 = 10 in eq. (4.1), we train a two layer neural network on 3000 samples from

the training distribution. The two layer neural network has a 200 unit hidden layer that outputs

a scalar. Figure C.6 shows that a neural network trained via default-erm fails to cross 50% test

accuracy even after 40, 000 epochs, while achieving less than 10−10 in training loss.

In fig. C.7, we compare default-erm to 𝜎-stitch. In fig. C.9 and fig. C.10, compare sd andmarg-log

respectively to default-erm. The left panel of all figures shows that marg-ctrl achieves better

test accuracy than default-erm, while the right most panel shows that the test loss is better on

the leftover group using marg-ctrl. Finally, the middle panel shows the effect of controlling

242



margins in training; namely, the margins on the training data do not go to ∞, evidenced by the

training loss being bounded away from 0.

C.2.5 Spectral decoupling for a linear model on the linear dgp in

eq. (4.1).

We first show that a linear classifier trained with sd achieves 100% test accuracy while default-

erm performs worse than chance on the test data; so, sd builds models with more dependence on

the stable perfect feature, compared to erm. Next, we outline the assumptions for the gradient

starvation (GS) regime from Pezeshki et al. [88] and then instantiate it for a linear model under

the data generating process in eq. (4.1), showing that the assumptions for the GS-regime are

violated.

Figure C.4 shows the results of training a linear model with sd on training data of size 1000

sampled as per eq. (4.1) from 𝑝𝜌=0.9 with 𝑑 = 300; the test data also has a 1000 samples but comes

from 𝑝𝜌=0.1. Figure C.4 shows that sd builds models with improved dependence on the perfect

stable feature, as compared to erm, to achieve 100% test accuracy.
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Figure C.5: A linear model trained with marg-log depend on the perfect stable feature to achieve perfect
test accuracy whereas default-erm performs worse than random chance. The middle panel shows that
marg-log does not let the loss on the training shortcut group to go to zero, unlike default-erm, and the
right panel shows the test-loss is better for the leftover group.
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(a) Average accuracy and loss curves. (b) Accuracy/loss on shortcut and leftover groups.

Figure C.6: Training a two-layer neural network with default-erm on data from eq. (4.1). The model
achieves 100% train accuracy but < 40% test accuracy even after 40, 000 epochs. The plot below zooms in
on the first 4000 epochs and shows that the model drives down loss on the test shortcut groups but not
on the test leftover group. This shows that the model uses the shortcut to classify the shortcut group and
noise for the leftover.
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Figure C.7: A neural network trained with 𝜎-stitch depend on the perfect stable feature to achieve perfect
test accuracy, unlike default-erm. Themiddle panel shows that𝜎-stitch does not let the loss on the training
shortcut group to go to zero, unlike default-erm, and the right panel shows the test leftover group loss is
better.

C.2.5.1 The linear example in Eqation (4.1) violates the gradient starvation

regime.

Background on [88]. With the aim of explaining why erm-trained neural networks depend

more on one feature over a more informative one, Pezeshki et al. [88] derive solutions to ℓ2-

regularized logistic regression in the ntk; they let the regularization coefficient be small enough

for the regularized solution to be similar in direction to the unregularized solution. Given 𝑛

samples y𝑖, x𝑖 , let Y be a diagonal matrix with the labels on its diagonal, X be a matrix with x𝑖 as

its rows, and ŷ(X, 𝜃 ) = 𝑓𝜃 (X) be the𝑛-dimensional vector of function outputs where each element

is ŷ𝑖 = 𝑓𝜃 (x𝑖). In gradient-based training in the ntk regime, the vector of function outputs of the
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Figure C.8: A neural network trained with 𝜎-damp depend on the perfect stable feature to achieve perfect
test accuracy whereas default-erm performs worse than random chance. The middle panel shows that 𝜎-
damp does not let the loss on the training shortcut group to go to zero, unlike vanilla default-erm, and
the right panel shows the test-loss is better for the leftover group.
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Figure C.9: A neural network trained with sd depend on the perfect stable feature to achieve perfect
test accuracy whereas default-erm performs worse than random chance. The middle panel shows that sd
does not let the loss on the training shortcut group to go to zero, unlike vanilla default-erm, and the right
panel shows the test-loss is better for the leftover group.

network with parameters 𝜃 can be approximated as ŷ = Φ0𝜃 , where Φ0 is the neural-tangent-

random-feature (ntrf) matrix at initialization:

Φ0 =
𝜕ŷ(X, 𝜃0)
𝜕𝜃0

To define the features, the strength (margin) of each feature, and how features appear in each

sample, [88] compute the singular value decomposition (svd) of the ntrf Φ0 multiplied by the

diagonal-label matrix Y:

YΦ0 = USV⊤. (C.41)
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Figure C.10: A neural network trained with marg-log depend on the perfect stable feature to achieve
perfect test accuracy whereas default-erm performs worse than random chance. The middle panel shows
that marg-log does not let the loss on the training shortcut group to go to zero, unlike default-erm, and
the right panel shows the test-loss is better for the leftover group.

The rows of V are features, the diagonal elements of S are the strengths of each feature and the 𝑖th

row of U denotes how each feature appears in the ntrf representation of the 𝑖th sample.

To study issues with the solution to ℓ2-regularized logistic regression, Pezeshki et al. [88] define

the gradient starvation (GS) regime. Under the GS regime, they assume U is a perturbed identity

matrix that is also unitary: for a small constant 𝛿 << 1, such a matrix has all diagonal elements
√
1 − 𝛿2 and the rest of the elements are of the order 𝛿 such that the rows have unit ℓ2-norm.

TheGS regime is violated in eq. (4.1). When 𝑓𝜃 is linear, 𝑓𝜃 (x) = 𝜃⊤x, the ntrfmatrix is

𝜕ŷ(X, 𝜃0)
𝜕𝜃0

=
𝜕X𝜃0
𝜕𝜃0

= X.

In this case, let us look at an implication ofU being a perturbed identity matrix that is also unitary,

as Pezeshki et al. [88] assume. With (u𝑖)⊤ as the 𝑖th row of U, the transpose of 𝑖th sample can be

written as (x𝑖)⊤ = (u𝑖)⊤SV. [88] assume that 𝛿 << 1 in that the off-diagonal terms of U are small

perturbations such that off-diagonal terms of U(S2 + 𝜆I)U⊤ have magnitude much smaller than

1, meaning that the terms | (u𝑖)⊤S2(u 𝑗 ) + 𝜆 | << 1 for 𝑖 ≠ 𝑗 and positive and small 𝜆 << 1.

246



Then,

|y𝑖y 𝑗 (x𝑖)⊤x 𝑗 | = | (x𝑖)⊤x 𝑗 |

= | (u𝑖)⊤SV⊤VSu 𝑗 |

= | (u𝑖)⊤S2u 𝑗 |

<< 1

In words, this means that any two samples x𝑖, x 𝑗 are nearly orthogonal. Now, for samples from

eq. (4.1), for any 𝑖, 𝑗 such that z 𝑗 = z𝑖 and y𝑖 = y 𝑗 ,

��(x𝑖)⊤x 𝑗 �� = ��𝐵2z𝑖z 𝑗 + y𝑖y 𝑗 + (𝜹𝑖)⊤𝜹 𝑗
�� ≥ |100 + 1 + (𝜹𝑖)⊤𝜹 𝑗 |

As 𝜹 are isotropic Gaussian vectors, around half the pairs 𝑖, 𝑗 will have (𝜹𝑖)⊤𝜹 𝑗 > 0 meaning��(x𝑖)⊤x 𝑗 �� > 101. This lower bound implies that U is not a perturbed identity matrix for samples

from eq. (4.1). This violates the setup of the gradient starvation regime from [88].

Thus, the linear dgp in eq. (4.1) does not satisfy the conditions for the GS regime that is proposed

in [88]. The GS regime blames the coupled learning dynamics for the different features as the

cause for default-erm-trained models depending more on the less informative feature. Pezeshki

et al. [88] derive spectral decoupling (sd) to avoid coupling the training dynamics, which in turn

can improve a model’s dependence on the perfect feature. sd adds a penalty to the function

outputs which [88] show decouples training dynamics for the different features as defined by the

ntrf matrix:

ℓsd(y, 𝑓𝜃 (x)) = log(1 + exp(y𝑓𝜃 )) + 𝜆 |𝑓𝜃 (x) |2

As eq. (4.1) lies outside theGS regime, the success of sd on data from eq. (4.1) cannot be explained

as a consequence of avoiding the coupled training dynamics in the GS regime Pezeshki et al.
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Figure C.11: With 𝑑 = 200 and 𝑛 = 1000, a linear classifier can still depend on the shortcut feature
and achieve 100% test accuracy. Nagarajan et al. [86] consider linearly separable data and formalize
geometric properties of the data that make max-margin classifiers give non-zero weight to the shortcut
feature (w𝑧 > 0). In their example, it is unclear when w𝑧 > 0 leads to poor accuracy in the leftover
group because Nagarajan et al. [86] do not separate the model’s dependence on the stable feature from
the dependence on noise. The example here gives an example where w𝑧 > 0 but test accuracy is 100%.
demonstrating that guarantees on test leftover group error require comparing w𝑦 and w𝑧 ; the condition
w𝑧 > 0 alone is insufficient.

[88]. However, looking at sd as marg-ctrl, the success of sd, as in fig. C.4, is explained as a

consequence encouraging uniform margins.

Anexample of perfect test accuracy evenwithdependence on the shortcut. In fig. C.11,

we train a linear model with default-erm on data from eq. (4.1), showing that even when shortcut

dependence is non-zero, test leftover group accuracy can be 100%. Nagarajan et al. [86] consider

linearly separable data and formalize geometric properties of the data that make max-margin

classifiers give non-zero weight to the shortcut feature (w𝑧 > 0). In their example, it is unclear

when w𝑧 > 0 leads to poor accuracy in the leftover group because Nagarajan et al. [86] do not

separate the model’s dependence on the stable feature from the dependence on noise. The ex-

ample in fig. C.11 gives an example where w𝑧 > 0 but test accuracy is 100%, demonstrating that

guarantees on test leftover group error require comparingw𝑦 andw𝑧 ; the conditionw𝑧 > 0 alone

is insufficient. In contrast, theorem 1 characterizes cases where leftover group accuracy is worse

than random even without overparameterization.
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C.2.6 Experimental details

C.2.6.1 Background on Just Train Twice (jtt) and Correct-n-Contrast (cnc)

jtt Liu et al. [53] develop jtt with the aim of building models robust to subgroup shift, where

the mass of disjoint subgroups of the data changes between training and test times. To work

without training group annotations, jtt assumes erm builds models with high worst-group error.

With this assumption, jtt first builds an "identification" model via erm to pick out samples that

are misclassified due to model’s dependence on the shortcut. Then, jtt trains a second model

again via erm on the same training data with the loss for the misclassified samples upweighted

(by constant 𝜆). As Liu et al. [53] point out, the number of epochs to train the identification model

and the upweighting constant are hyperparameters that require tuning using group annotations.

As Liu et al. [53], Zhang et al. [81] show that jtt and cnc outperforms lff and other two-stage

shortcut-mitigating methods ([81]), so we do not compare against them.

Correct-n-Contrast (cnc) In a fashion similar to jtt, the first stage of cnc is to train a model

with regularized erm to predict based on spurious attributes, i.e. shortcut features. Zhang et al.

[81] develop a contrastive loss to force the model to have similar representations across samples

that share a label but come from different groups (approximately inferred by the first-stage erm

model). Formally, the first-stage model is used to approximate the spurious attributes in one of

two ways: 1) predict the label with the model, 2) cluster the representations into as many clusters

as there are classes, and then use the cluster identity. The latter technique was first proposed in

[249]. For an anchor sample (y𝑖, x𝑖) of label y = 𝑦, positive samples 𝑃𝑖 are those than have the

same label but have the predicted spurious attribute is a different value: 𝑧 ≠ 𝑦. Negatives 𝑁𝑖 are

those that have a different label but the spurious attribution is the same: 𝑧 = 𝑦. For a temperature
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parameter 𝜏 and representation function 𝑟𝜃 , the per-sample contrastive loss for cnc is:

ℓ𝑐𝑜𝑛𝑡 (𝑟𝜃 , 𝑖) = Ex𝑝∼𝑃𝑖

[
− log

exp(𝑟𝜃 (x𝑖 )⊤𝑟𝜃 (x𝑝 )/𝜏)∑
𝑛∈𝑁𝑖 exp

(
𝑟𝜃 (x𝑖 )⊤𝑟𝜃 (x𝑛)/𝜏

)
+ ∑

𝑝∈𝑃𝑖 exp
(
𝑟𝜃 (x𝑖 )⊤𝑟𝜃 (x𝑝 )/𝜏

) ] .
The samples 𝑖 are called anchors. For a scalar 𝜆 to trade off between contrastive and predictive

loss, the overall per-sample loss in the second-stage in cnc is

𝜆ℓ𝑐𝑜𝑛𝑡 (𝑟𝜃 , 𝑖) + (1 − 𝜆)ℓ𝑙𝑜𝑔−𝑙𝑜𝑠𝑠 (y𝑖𝑤⊤𝑟𝜃 (x𝑖)) .

Cnc uses hyperparameters informed by dataset-specific empirical results from prior

work. The original implementation of cnc from Zhang et al. [81] uses specific values of first-

stage hyperparameters like weight decay and early stopping epoch for each dataset by using

empirical results from prior work [16, 53]. The prior work finds weight-decay and early stopping

epochwhich lead default-ermmodels to achieve low test worst-group accuracy, implying that the

model depends on the spurious attribute. This means the first-stage models built in cnc are pre-

selected to pay attention to the spurious attributes. For example, [81] point out that the first-stage

model they use for Waterbirds predicts the spurious feature with an accuracy of 94.7%.

Without using dataset-specific empirical results from prior work, choosing lr and wd requires

validating through the whole cnc procedure. We let cnc use the same lr andwd for both stages

and then validate the choice using validation performance of the second-stage model. This choice

of hyperparameter validation leads to a similar number of validation queries for all methods that

mitigate shortcuts.

250



C.2.6.2 Training details

Variants of marg-ctrl to handle label imbalance. The three datasets that we use in our

experiments — Waterbirds, CelebA, and Civilcomments — all have an imbalanced (non-uniform)

marginal distribution over the label; for each dataset,

max
class∈{−1,1}

𝑝 (y = class) > 0.75.

When there is sufficiently large imbalance, restricting the margins on all samples could bias the

training to reduce loss on samples in the most-frequent class first and overfit on the rest of the

samples. This could force a model to predict the most frequent class for all samples, resulting in

high worst-group error.

To prevent such a failure mode, we follow [88] and define variants of 𝜎-damp, marg-log, and 𝜎-

stitch that have either 1) different maximum margins for different classes or 2) different per-class

loss values for the same margin value. Mechanically, these variants encourage uniform margins

within each class, thus encouraging the model to rely less on the shortcut feature. We give the

variants here for labels taking values in {−1, 1}:

1. With per-class temperatures 𝑇−1,𝑇1 > 0 the variant of 𝜎-damp is

with 𝑓𝜃 = 𝑤 𝑓
⊤𝑟𝜃 (x),

ℓ𝜎-damp(y, 𝑓𝜃 ) = ℓ𝑙𝑜𝑔
[
𝑇y ∗ 1.278y𝑓𝜃 (1 − 𝜎 (1.278 ∗ y𝑓𝜃 ))

]
The 1.278 comes in to make sure the maximum input to log-loss occurs at 𝑓𝜃 = 1. How-

ever, due to the different temperatures 𝑇1 ≠ 𝑇−1, achieving the same margin on all samples

produces lower loss on the class with the larger temperature.
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2. With per-class temperatures 𝑇−1,𝑇1 > 0 the variant of 𝜎-stitch is

with 𝑓𝜃 = 𝑤 𝑓
⊤𝑟𝜃 (x),

ℓ𝜎-stitch(y𝑓𝜃 ) = ℓ𝑙𝑜𝑔
(
𝑇y [ 1[y𝑓𝜃 (x) < 1] × y𝑓𝜃 (x) + 1[y𝑓𝜃 (x) > 1] × (2 − y𝑓𝜃 (x)) ]

)
3. With per-class function output targets 𝛾−1, 𝛾1 > 0 the variant of marg-log is

with 𝑓𝜃 = 𝑤 𝑓
⊤𝑟𝜃 (x),

ℓmarg-log(y𝑓𝜃 ) = ℓ𝑙𝑜𝑔 (y𝑓𝜃 ) + 𝜆 log(1 + |𝑓𝜃 − 𝛾y |2).

These per-class variants are only for training; at test time, the predicted label is sign(𝑓𝜃 ).

Details of the vision and language experiments. We use the same datasets from [53],

downloaded via the scripts in the code from [83]; see [83] for sample sizes and the group propor-

tions. For the vision datasets, we finetune a resnet50 from Imagenet-pretrained weights and for

Civilcomments, we finetune a BERT model.

Optimization details. For all methods and datasets, we tune over the following weight de-

cay (wd) parameters: 10−1, 10−2, 10−3, 10−4 For the vision datasets, we tune learning rate (lr)

over 10−4, 10−5 and for CivilComments, we tune over 10−5, 10−6. For CivilComments, we use the

AdamW optimizer while for the vision datasets, we use the Adam optimizer; these are the stan-

dard optimizers for their respective tasks [3, 80]. We use a batch size of 128 for both CelebA

and Waterbirds, and train for 20 and 100 epochs respectively. For CivilComments we train for 10

epochs with a batch size of 16.
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Figure C.12: Images mis-classified by a model trained on CelebA data with equal group sizes, i.e. without
a shortcut. Samples with blonde as the true label have a white strip at the bottom while samples with
non-blonde as the true label have a black strip at the bottom. The figure demonstrates that many images
with blonde people in the image have the non-blonde label, thus demonstrating label noise. For example,
see a blonde man in the first row that is labelled non-blonde and a non-blonde lady in the third row that
is lablled blonde. Yet, marg-ctrl improves over erm for many lr and wd combinations; see fig. C.13.

Per-methodHyperparameters. Like in [88], the per-class temperatures𝑇−1,𝑇1 for𝜎-damp and

𝜎-stitch, and the function output targets 𝛾−1, 𝛾1 for marg-log are hyperparameters that we tune

using the worst-group accuracy or label-balanced average accuracy computed on the validation

dataset, averaged over 2 seeds.

1. For 𝜎-stitch, we select from 𝑇−1 ∈ {1, 2} and 𝑇1 ∈ {2, 4, 8, 12} such that 𝑇1 > 𝑇−1.

2. For 𝜎-damp, we search over 𝑇−1 ∈ {1, 2} and 𝑇1 ∈ {2, 4} such that 𝑇1 > 𝑇−1.

3. For sd and marg-log, we search over 𝛾−1 ∈ {−1, 0, 1} and 𝛾1 ∈ {1, 2, 2.5, 3} for the image

datasets and 𝛾1 ∈ {1, 2} for the text dataset, and the penalty coefficient is set to be 𝜆 = 0.1

4. For jtt, we search over the following parameters: the number of epochs 𝑇 ∈ {1, 2} for

CelebA and Civilcomments and 𝑇 ∈ {10, 20, 30} for Waterbirds, and the upweighting con-

stant 𝜆 ∈ {20, 50, 100} for the vision datasets and 𝜆 ∈ {4, 5, 6} for Civilcomments.
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5. For cnc, we search over the same hyperparameter as [81] : the temperature in𝜏 ∈ {0.05, 0.1},

the contrastive weight 𝜆 ∈ {0.5, 0.75}, and the gradient accumulation steps 𝑠 ∈ {32, 64}.

For the language task in Civilcomments, we also try one additional 𝑠 = 128.

C.2.7 Marg-ctrl improves over default-erm on CelebA even without

the stable feature being perfect.

CelebA is a perception task in that the stable feature is the color of the hair in the image. But

unlike the synthetic experiments, marg-ctrl does not achieve a 100% test accuracy on CelebA.

We investigated this and found that CelebA in fact has some label noise.

We trained a model via the marg-ctrl method 𝜎-damp on CelebA data with no shortcut; this

data is constructed by subsampling the groups to all equal size, (5000 samples). This achieves a

test worst-group accuracy of 89%. We visualized the images that were misclassified by this model

and found that many images with blond-haired people were classified as having non-blonde hair.

Figure C.12 shows 56 misclassified images where samples with blonde as the true label have a

white strip at the bottomwhile samples with non-blonde as the true label have a black strip at the

bottom. The figure shows that images with blonde people can have the non-blonde label, thus

demonstrating label noise. Thus, marg-ctrl improves over erm even on datasets like CelebA

where the stable features do not determine the label.

C.2.8 Sensitivity of erm and marg-ctrl to varying lr and wd

In fig. C.13, we compare the test worst-group accuracy of default-erm and marg-ctrl on CelebA,

for different values of lr and wd. There are 8 combinations of lr and wd for which erm is run.

For each combination of lr and wd, the hyperparameters of the marg-ctrl method (values of

𝜆,𝑇 , 𝑣) are tuned using validation group annotations, and the test worst-group accuracy corre-

sponds to the best method hyperparameters. Default-erm’s performance changes more with lr
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Figure C.13: Test worst-group accuracy on CelebA of default-erm and marg-ctrl for different values of
lr andwd. Default-erm’s performance changes more with lr andwd than marg-ctrl, which shows that
default-erm is more sensitive than marg-ctrl. Only 2 combinations of lr and wd improve erm beyond
a test worst-group accuracy of 60%, while every marg-ctrl method achieves more than 70% test worst-
group accuracy for every combination of lr and wd.

andwd than marg-ctrl, which shows that default-erm is more sensitive than marg-ctrl. Only

2 combinations of lr andwd improve erm beyond a test worst-group accuracy of 60%, while ev-

erymarg-ctrlmethod achieves more than 70% test worst-group accuracy for every combination

of lr and wd.
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D | Appendices for chapter 5

D.1 Theoretical Details and Proofs

Notation We use the expectation operator in different contexts in the proof. E𝑞 denotes ex-

pectation with respect to the density 𝑞 and Ez denotes expectation with respect to the density

of the random variable z. When the density function or the random variable are clear from the

context, we drop the subscript and use E.

D.1.1 The general IV causal graph with covariates/observed

confounders

zx

𝝐 t y

Figure D.1: Causal graph with hidden confounder z, outcome y, IV 𝝐 , treatment t and covariates x.

Figure D.1 is the general version of the IV problem where the instrumental variable property

holds true after conditioning on x. This is sometimes called a conditional instrument. All our

proofs and results carry over to the situation with covariates after conditioning all estimables
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and distributions on x. VDE in this setting with covariates is re-written as:

max
𝜃,𝜙

E𝐹 (t,𝝐,x)E𝑞𝜃 (ẑ | t,𝝐,x) log𝑝𝜙 (t | ẑ, 𝝐, x) − 𝜆I𝜃 (ẑ; 𝝐 |x) (D.1)

D.1.2 Mutual Information lower bound

Here, we show the full derivation of the lower bound for negative mutual-information. We derive

the lower bound for the general case where there are both observed and unobserved confounders.

A simple lower bound can be obtained by usingH(ẑ | 𝝐, x) ≥ H(ẑ | 𝝐, t, x), but this cannot be made

tight unless 𝝐 completely determines t. Therefore, we cannot guarantee independence unless

the data at hand is not confounded. Instead we introduce two auxiliary distributions 𝑟𝜈 (ẑ | x)

and 𝑝𝜙 (t | 𝝐, ẑ, x), following the work in variational inference [250, 251, 252, 253] and causal

inference [150].

We let 𝐹 (t, x, 𝝐, y) be the true data distribution and 𝑞𝜃 (ẑ | t, 𝝐, x = 𝑥) be the control function distri-

bution. We overload notation and also use 𝑞𝜃 to refer to any distribution that involves operations

with 𝑞𝜃 (ẑ | t, 𝝐, x = 𝑥). We use c
= to denote that the LHS and RHS are equal up to constants that

are ignored during optimization. In the following, both H(t, 𝝐 | x = 𝑥), H(𝝐 |x = 𝑥) are constants

with respect to the parameters of interest 𝜙, 𝜃, 𝜈 and we will drop them from the lower bound

when encountered. For a given x = 𝑥 , we lower-bound the negative instantaneous conditional

mutual information:

−𝜆I(ẑ; 𝝐 | 𝑥) = −𝜆KL [𝑞𝜃 (ẑ, 𝝐 | 𝑥) ∥ 𝑞𝜃 (ẑ | 𝑥)𝐹 (𝝐 | 𝑥)]

= − 𝜆
[
E𝑞𝜃 (𝝐,ẑ | 𝑥) [log𝑞𝜃 (𝝐 | ẑ, 𝑥) − log 𝐹 (𝝐 | 𝑥)]

]
= − 𝜆

[
E𝑞𝜃 (𝝐,ẑ | 𝑥) [log𝑞𝜃 (𝝐 | ẑ, 𝑥)] + H(𝝐 | 𝑥)

]
c
= − 𝜆

[
E𝑞𝜃 (𝝐,ẑ | 𝑥)

[
KL [𝑞𝜃 (ẑ | 𝑥) ∥ 𝑞𝜃 (ẑ | 𝑥)] + KL [𝑞𝜃 (t | 𝝐, ẑ, 𝑥) ∥ 𝑞𝜃 (t | 𝝐, ẑ, 𝑥)] + log𝑞𝜃 (𝝐 | ẑ, 𝑥)

] ]
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≥ − 𝜆
[
E𝑞𝜃 (𝝐,ẑ | 𝑥)

[
KL [𝑞𝜃 (ẑ | 𝑥) ∥ 𝑟𝜈 (ẑ | 𝑥)] + KL

[
𝑞𝜃 (t | 𝝐, ẑ, 𝑥) ∥ 𝑝𝜙 (t | 𝝐, ẑ, 𝑥)

]
+ log𝑞𝜃 (𝝐 | ẑ, 𝑥)

] ]
= − 𝜆

[
E𝑞𝜃 (𝝐,ẑ | 𝑥)

[
log [𝑞𝜃 (ẑ, 𝝐 | 𝑥)] + E𝑞𝜃 (t | 𝝐,ẑ,𝑥) log𝑞𝜃 (t | 𝝐, ẑ, 𝑥)

− E𝑞𝜃 (ẑ | 𝑥) log 𝑟𝜈 (ẑ | 𝑥) − E𝑞𝜃 (t,𝝐,ẑ | 𝑥) log𝑝𝜙 (t | 𝝐, ẑ, 𝑥)
]

= − 𝜆
[
E𝑞𝜃 (𝝐,ẑ,t | 𝑥) log [𝑞𝜃 (ẑ, 𝝐, t | 𝑥)] − E𝑞𝜃 (ẑ | 𝑥) log 𝑟𝜈 (ẑ | 𝑥) − E𝑞𝜃 (t,𝝐,ẑ | 𝑥) log𝑝𝜙 (t | 𝝐, ẑ, 𝑥)

]
= − 𝜆

[
E𝐹 (t,𝝐 | 𝑥)E𝑞𝜃 (ẑ | 𝝐,t,𝑥) log

[
𝑞𝜃 (ẑ | t, 𝝐, 𝑥) − log𝑝𝜙 (t | 𝝐, ẑ, 𝑥)

]
− H(t, 𝝐 | 𝑥)

− E𝑞𝜃 (ẑ | 𝑥) log 𝑟𝜈 (ẑ | 𝑥)
]

c
= − 𝜆E𝐹 (t,𝝐 | 𝑥)

[
KL [𝑞𝜃 (ẑ | t, 𝝐, 𝑥) ∥ 𝑟𝜈 (ẑ | 𝑥)] − E𝑞𝜃 (ẑ | 𝝐,t,𝑥) log𝑝𝜙 (t | 𝝐, ẑ, 𝑥)

]
,

where the hidden term −𝜆 [H(𝝐 | x = 𝑥) − H(t, 𝝐 | x = 𝑥)] is a constant for a given instance of the

problem. We do not need access to the distribution t, ẑ, 𝝐 | x = 𝑥 because the information that we

lower bounded, I(ẑ; 𝝐 | x = 𝑥), is averaged over x = 𝑥 in our objective. Recall that 𝑝𝜙 (t | 𝝐, ẑ, x = 𝑥)

is the reconstruction term in VDE. This lower bound is tight when the introduced KL terms are

0, which occurs when 𝑟𝜈 (ẑ | x = 𝑥) = 𝑞𝜃 (ẑ | x = 𝑥) and 𝑝𝜙 (t | 𝝐, x = 𝑥, ẑ) = 𝑞𝜃 (t | 𝝐, x = 𝑥, ẑ). This

means that if the models 𝑝𝜙 , 𝑟𝜈 are rich enough, the gap between the lower bound and mutual

information can be optimized to be zero. The second term E𝑞𝜃 (ẑ | 𝝐,t,x=𝑥) log𝑝𝜙 (t | 𝝐, ẑ, x = 𝑥) is the

same as the reconstruction likelihood. Thus substituting the lower bound into the full objective

with given covariates gives

E𝐹 (t,𝝐,x)
[
(1 + 𝜆)E𝑞𝜃 (ẑ | t,𝝐,x) log𝑝𝜙 (t | 𝝐, ẑ, x) − 𝜆KL [𝑞𝜃 (ẑ | t, 𝝐, x) ∥ 𝑟𝜈 (ẑ | x)]

]
Optimization for variational decoupling (VDE). The VDE optimization involves the ex-

pectations of distributions with parameters with respect to a distribution that also has param-

eters. For distributions that are not being integrated against, we can move the gradient inside

the expectation. For distributions that are integrated against, score-function methods provide a

general tool to compute stochastic gradients; Glasserman [254], Williams [255], Ranganath et al.
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[256], Mnih and Gregor [257]. In our experiments, we let the control function be a categorical

variable. This allows us to marginalize out the control function and compute the gradient.

D.1.3 Proof of Theorem 1

Theorem 1. (Meta-identification result for general control functions)

Let 𝐹 (t, 𝝐, y) be the true data distribution. Let control function ẑ be sampled conditionally on t, 𝝐 . Let

𝑞(ẑ, t, 𝝐) = 𝑞(ẑ | t, 𝝐)𝐹 (t, 𝝐) be the joint distribution over ẑ, t, 𝝐 . Further, let 𝑔 be a deterministic func-

tion and 𝜹 be independent noise such that t = 𝑔(z, 𝝐, 𝜹) and let the implied true joint be 𝐹 ′(t, z, 𝜹).

Assume the following:

1. (A1) ẑ satisfies the reconstruction property: ∃𝑑, ẑ, t, 𝝐 ∼ 𝑞(ẑ, t, 𝝐) =⇒ t = 𝑑 (ẑ, 𝝐).

2. (A2) The IV is jointly independent of control function, true confounder, and noise 𝜹 : 𝝐 |= (z, ẑ, 𝜹).

3. (A3) Strong IV. For any compact 𝐵 ⊆ supp(t), ∃𝑐𝐵 s.t. a.e. 𝑡 ∈ 𝐵, 𝐹 ′(t = 𝑡 | z, 𝜹) ≥ 𝑐𝐵 > 0.

Then, the control function ẑ satisfies ignorability and positivity:

𝑞(y | t = 𝑡, ẑ) = 𝑞(y | do(t = 𝑡), ẑ) a.e. in supp(t) 𝑞(ẑ) > 0 =⇒ 𝑞(t = 𝑡 | ẑ) > 0.

Therefore, the true causal effect is uniquely determined by 𝑞(ẑ, t, y) for almost every 𝑡 ∈ supp(t):

Eẑ [y | t = 𝑡, ẑ] = Eẑ [y | do(t = 𝑡), ẑ] = E[y | do(t = 𝑡)] .

We prove this for the setting without covariates. The proof adapts to the setting with covariates

(observed confounders) by conditioning all terms on them.

Proof. (Theorem 5) The proof shows that reconstruction (A1) and joint independence (A2) to-

gether imply ignorability, and strong IV (A3) together with the joint independence (A2) imply

positivity.
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Ignorability. To establish ignorability we need to show that y𝑡 |= t | ẑ where y𝑡 is the potential

outcome for a unit when the treatment given is t = 𝑡 . The outcome y is constructed from the

potential outcomes by indexing the one y𝑡∗ corresponding to the observed treatment t = 𝑡∗.

By assumption A2, we have the joint independence 𝝐 |= (z, ẑ) which implies

𝝐 |= (z, ẑ) =⇒ 𝝐 |= z | ẑ = 𝑧 ∀𝑧 ∈ supp(ẑ).

Note that by the reconstruction property (from assumption A1) t = 𝑑 (ẑ, 𝝐). So given ẑ, t is purely

a function of 𝝐 . Thus, given ẑ, t satisfies the same conditional independence as 𝝐 : 𝝐 |= z | ẑ. Using

this, we have

𝝐 |= z | ẑ =⇒ 𝑑 (ẑ, 𝝐) |= z | ẑ =⇒ t |= z | ẑ.

The potential outcome y𝑡 depends only on z and some noise 𝜼 that is jointly independent of all

other variables. This means for some function𝑚𝑡 such that y𝑡 =𝑚𝑡 (z,𝜼).

t |= z | ẑ =⇒ t |=𝑚𝑡 (z,𝜼) | ẑ =⇒ t |= y𝑡 | ẑ.

This shows ignorability.

Strength of IV and Positivity. Positivity means that for almost every 𝑡 ∈ supp(t),

𝑞(ẑ) > 0, =⇒ 𝑞(t = 𝑡 | ẑ) > 0.
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We start with 𝑞(t | ẑ) and expand it as an integral over the full joint.

𝑞(t | ẑ) =
∫

𝑞(t | z = 𝑧, ẑ, 𝝐 = 𝜖, 𝜹 = 𝛿, t)𝑞(𝝐 = 𝜖 | z = 𝑧, ẑ, 𝜹 = 𝛿)𝑞(z = 𝑧, 𝜹 = 𝛿 | ẑ)𝑑𝑧𝑑𝛿𝑑𝜖

=

∫
𝑞(t | z = 𝑧, 𝝐 = 𝜖, 𝜹 = 𝛿)𝑞(𝝐 = 𝜖 | z = 𝑧, ẑ, 𝜹 = 𝛿)𝑞(z = 𝑧, 𝜹 = 𝛿 | ẑ)𝑑𝑧𝑑𝛿𝑑𝜖

{by t = 𝑔(z, 𝝐, 𝜹)}

=

∫
𝑞(t | z = 𝑧, 𝝐 = 𝜖, 𝜹 = 𝛿)𝑞(𝝐 = 𝜖 | z = 𝑧, 𝜹 = 𝛿)𝑞(z = 𝑧, 𝜹 = 𝛿 | ẑ)𝑑𝑧𝑑𝛿𝑑𝜖

{by A2: 𝝐 |= (z, ẑ, 𝜹)}

=

∫ [∫
𝑞(t | z = 𝑧, 𝝐 = 𝜖, 𝜹 = 𝛿)𝑞(𝝐 = 𝜖 | z = 𝑧, 𝜹 = 𝛿)𝑑𝜖

]
𝑞(z = 𝑧, 𝜹 = 𝛿 | ẑ)𝑑𝑧𝑑𝛿

=

∫
𝐹 ′(t | z = 𝑧, 𝜹 = 𝛿)𝑞(z = 𝑧, 𝜹 = 𝛿 | ẑ)𝑑𝑧𝑑𝛿

(D.2)

Note that 𝑞(z = 𝑧, 𝜹 = 𝛿 | ẑ) is a valid density over (z = 𝑧, 𝜹 = 𝛿) ∗. Under assumption A3, for any

compact set 𝐵 ⊆ supp(t) and for almost every 𝑡 ∈ 𝐵,

𝑞(t = 𝑡 | ẑ) =
∫

𝐹 ′(t = 𝑡 | z = 𝑧, 𝜹 = 𝛿)𝑞(z = 𝑧, 𝜹 = 𝛿 | ẑ)𝑑𝑧𝑑𝛿

≥ 𝑐𝐵
∫

𝑞(z = 𝑧, 𝜹 = 𝛿 | ẑ)𝑑𝑧𝑑𝛿

= 𝑐𝐵 > 0

(D.3)

However, almost every 𝑡 ∈ supp(t) is contained in some compact subset 𝐵 ⊆ supp(t). Thus,

eq. (D.3) holds for almost every 𝑡 ∈ supp(t), meaning that positivity is satisfied.
∗If 𝑞(z = 𝑧, 𝜹 = 𝛿 | ẑ) = 0 everywhere then no pair (z = 𝑧, 𝜹 = 𝛿) maps to ẑ and ẑ cannot be observed and we

cannot condition on it. But ẑ is constructed explicitly as part of the algorithm, so it’s observed. Thus𝑞(z = 𝑧, 𝜹 = 𝛿 | ẑ)
is a valid conditional density.
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Computing the causal effect. Given ignorability and positivity, the true causal effect (a.e. in

supp(t)) is determined as a property of the distribution 𝑞(ẑ, t, y) as follows:

E𝑞(ẑ)E[y | ẑ, t = 𝑡] = E𝑞(ẑ)E[y | ẑ, do(t = 𝑡)] = E[y | do(t = 𝑡)]

□

Assumptions for continuous t. When t has non-zero density rather than non-zero probability

given the general control function, the true expected outcome being continuous everywhere as

a function of the treatment is a sufficient condition for the causal effect estimation for almost all

treatment values.

D.1.4 Marginal Independence does not imply joint independence

Here, we build an example of a function of two independent variables a, b that is marginally

independent of both. Let 1𝑒 be one if 𝑒 is true and zero if not,

a, b ∼ uniform(0, 1),

c(a, b) = 1a+b>1(a + b − 1) + 1a+b≤1(a + b).

First, c is marginally a uniform variable.† The distribution c | a = 𝑥 can be obtained by translating

the distribution of b up by 𝑥 , then translating the part greater than one down to zero, meaning

c | a is uniformly distributed. Thus 𝑝 (c | a) = 𝑝 (c) meaning c |= a. However, c is a deterministic

function of a and b. Therefore, while c | a is uniformly distributed, c | (a, b) is a dirac-delta

distribution, meaning 𝑝 (c | a, b) ≠ 𝑝 (c | a) implying c ̸|= a | b. Note that b can be constructed back

from c, a up to measure-zero as b = c − a if c > a and b = c − a + 1 if c ≤ a; i.e., c is almost
†𝑃 (c < 𝑥) = 𝑃 (a + b < 𝑥) + 𝑃 (1 < a + b < 1 + 𝑥) = 0.5(𝑥2 − 1) + 1 − 0.5(1 − 𝑥)2 = 𝑥 .
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everywhere invertible for each fixed a = 𝑎.

This construction with uniform random variables can be generalized to other continuous distri-

butions by inverse transform sampling. Any marginal density of a, b can be bijectively mapped to

a uniform density over [0, 1]. Then c can be computed as above and then a, b, c can be bijectively

mapped back; c could be mapped back with the CDF of b. Conditional dependence is unaffected

by bijective transformations and therefore the issue remains. Similar constructions exist with

discrete random variables. In general, assumptions on the true data generating process will be

needed to ensure joint independence.

D.1.5 From additive treatment processes to joint independence

Consider treatment processes of the form t = ℎ(z, 𝜹) + 𝑔(𝝐). Let the reconstruction map be

additive:

t = ℎ′(ẑ) + 𝑔′(𝝐).

Consider the random variable t−E[t | 𝝐] which is sampled as follows: 𝝐 ∼ ℎ(𝝐), z ∼ ℎ(z), 𝜹 ∼ ℎ(𝜹)

and t − E[t | 𝝐] = ℎ(z, 𝜹) + 𝑔(𝝐) − Ez,𝜹 [ℎ(z, 𝜹) + 𝑔(𝝐)]. We show that ℎ′(ẑ) determines ℎ(z, 𝜹) by

expressing the random variable t − E[t | 𝝐] in terms of z, 𝜹 and ẑ

ℎ′(ẑ) − Eẑ [ℎ′(ẑ)] = t − E[t | 𝝐] = ℎ(z, 𝜹) − Ez,𝜹 [ℎ(z, 𝜹)] .

Therefore for some constant 𝑐 , ℎ′(ẑ) = ℎ(z, 𝜹) + 𝑐 . By the independence, ẑ |= 𝝐 , we have

𝑞(ẑ, ℎ(z, 𝜹) | 𝝐) = 𝑞(ẑ, ℎ′(ẑ) − 𝑐 | 𝝐) = 𝑞(ẑ, ℎ′(ẑ) − 𝑐) = 𝑞(ẑ, ℎ(z, 𝜹)) .
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Thus we have (ẑ, ℎ(z, 𝜹)) |= 𝝐 . See lemma 14 for the proof that (ẑ, ℎ(z, 𝜹)) |= 𝝐 implies the joint

independence 𝝐 |= (ẑ, z, 𝜹) for any treatment process t = 𝑔(𝝐, ℎ(z, 𝜹)), including t = 𝑔(𝝐) +

ℎ(z, 𝜹).

D.1.6 Joint independence for treatments with additional noise

General control functions for treatments of the form t = 𝑔(𝝐, ℎ(z, 𝜹)), unlike t = 𝑔(𝝐, z), require a

stronger joint independence 𝝐 |= (z, ẑ, 𝜹) to guarantee ignorability (A2, theorem 5). The structural

assumptions — that helped guarantee 𝝐 |= (z, ẑ) above — can guarantee 𝝐 |= (ℎ(z, 𝜹), ẑ). Here, we

show that 𝝐 |= (ℎ(z, 𝜹), ẑ) =⇒ 𝝐 |= (z, ẑ, 𝜹) in such settings.

Lemma 14. Consider treatment process t = 𝑔(𝝐, ℎ(z, 𝜹)) and the joint independence (ẑ, ℎ(z, 𝜹)) |= 𝝐

holds. Then, if ẑ = 𝑒 (t, 𝝐), the joint independence (ẑ, z, 𝜹) |= 𝝐 holds.

Proof. We begin by showing 𝑞(ẑ | z, 𝝐, 𝜹) = 𝑞(ẑ | ℎ(z, 𝜹)):

𝑞(ẑ | z, 𝝐, 𝜹) =
∫

𝑞(ẑ | z, 𝝐, t = 𝑡, 𝜹)𝑞(t = 𝑡 | 𝝐, z, 𝜹)𝑑𝑡 {full joint expansion}

=

∫
𝑞(ẑ | 𝝐, t = 𝑡)𝑞(t = 𝑡 | 𝝐, z, 𝜹)𝑑𝑡 {ẑ |= (z, 𝜹) | 𝝐, t = 𝑡}

=

∫
𝑞(ẑ | 𝝐, t = 𝑡)𝑞(t = 𝑡 | 𝝐, ℎ(z, 𝜹))𝑑𝑡 {t = 𝑔(𝝐, ℎ(z, 𝜹))}

=

∫
𝑞(ẑ | 𝝐, t = 𝑡, ℎ(z, 𝜹))𝑞(t = 𝑡 | 𝝐, ℎ(z, 𝜹))𝑑𝑡 {ẑ |=ℎ(z, 𝜹) | 𝝐, t = 𝑡}

= 𝑞(ẑ | 𝝐, ℎ(z, 𝜹))

= 𝑞(ẑ | ℎ(z, 𝜹)) {(ẑ, ℎ(z, 𝜹)) |= 𝝐}

(D.4)

Integrating both sides with respect to 𝑞(𝝐 | z, 𝜹) we get

∫
𝑞(ẑ | ℎ(z, 𝜹))𝑞(𝝐 = 𝜖 | z, 𝜹)𝑑𝜖 =

∫
𝑞(ẑ | z, 𝝐 = 𝜖, 𝜹)𝑞(𝝐 = 𝜖 | z, 𝜹)𝑑𝜖 = 𝑞(ẑ | z, 𝜹) (D.5)
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Now, the LHS in eq. (D.5) is

∫
𝑞(ẑ | ℎ(z, 𝜹))𝑞(𝝐 = 𝜖 | z, 𝜹)𝑑𝜖 = 𝑞(ẑ | ℎ(z, 𝜹)) =⇒ 𝑞(ẑ | ℎ(z, 𝜹)) = 𝑞(ẑ | z, 𝜹).

This means

𝑞(ẑ | z, 𝝐, 𝜹) = 𝑞(ẑ | ℎ(z, 𝜹)) = 𝑞(ẑ | z, 𝜹)

Thus (ẑ, ℎ(z, 𝜹)) |= 𝝐 implies the joint independence (ẑ, z, 𝜹) |= 𝝐 . □

Note. The proof above shows that we can recover a control function that satisfies ignorabil-

ity. In this additive setting with finite support however, both the control function and the true

confounder violate another fundamental assumption in causal estimation: positivity. To see this

violation of positivity notice that 𝑝 (t > 𝑎 + max𝜖∈supp(𝝐) 𝑔(𝜖) | ℎ(z, 𝜹) = 𝑎) = 0 for any 𝑎 such

that 𝑝 (t > 𝑎 +max𝜖∈supp(𝝐) 𝑔(𝜖)) > 0 and 𝑝 (ℎ(z, 𝜹) = 𝑎) > 0. When positivity is violated, further

assumptions are needed to compute causal effects on the whole support of t in general. Without

further assumptions, effects can only be computed on a compact subset of 𝐵 ⊆ supp(t) within

which positivity holds.

D.1.7 From monotonic treatment processes to joint independence

Imbens and Newey [143] explored identification for settings where the outcome process is non-

separable but the treatment is a strictly monotonic function of the unobserved confounder. We

show that if the reconstruction map 𝑑 (ẑ, 𝝐) reflects this monotonicity condition and ẑ |= 𝝐 , the

control function is determined by the true confounder and therefore joint independence holds.

In VDE, the decoder would be monotonic to reflect this assumption.

Lemma 15. Let 𝝐 and z be the true IV and confounder respectively. Let z be a continuous scalar.

1. Assume that z has a continuous strictly monotonic cdf. Let the true treatment process be t = 𝑔(𝝐, z)
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where 𝑔 is strictly monotonic in the second argument.

2. Let the control function be ẑ = 𝑒 (𝝐, t) and let ẑ |= 𝝐 . Let reconstruction map be 𝑑 where t = 𝑑 (𝝐, ẑ).

Let 𝑒 (·, ·) and 𝑑 (·, ·) be strictly monotonic in the second argument
‡
.

3. Assume that the functions 𝑔, 𝑒, 𝑑 are continuous in the second argument and exist for almost every

value in the first argument.

Then, the control function ẑ can be expressed as a deterministic function of the true confounder z.

Proof. First, note that t can be written as a function of 𝝐 and a uniform random variable u using

the cdf-inverse trick. Let 𝐻 (𝑧) = 𝐹 (z ≤ 𝑧). By strict monotonicity and continuity of 𝐻 , 𝐻−1

exists and z = 𝐻−1(u) for a uniform random variable u |= 𝝐 :

t = 𝑔(𝝐, z) = 𝑔(𝝐, 𝐻−1(u)) = 𝑔(𝝐, u).

Note that𝐻−1 is strictly monotonic. So, 𝑔 is a strictly monotonic function in the second argument.

Second, due to ẑ |= 𝝐 , the conditional cdf of ẑ | 𝝐 = 𝜖 is the same as the marginal cdf as ẑ for

almost every value 𝜖 ∈ supp(𝝐); let’s call this cdf �̂� . By the definition ẑ = 𝑒 (𝝐, t) we can express

ẑ = 𝑒 (𝝐, 𝑔(𝝐, u)). Now, 𝑒 (·, ·), 𝑔(·, ·) are both continuous and strictly monotonic in the second

argument. So, ẑ’s cdf �̂� is also strictly monotonic and �̂�−1 exists and is again strictly monotonic.

Therefore, for almost any 𝜖 ∈ supp(𝝐), we can construct a new uniform random variable by

applying ẑ’s cdf �̂� to ẑ:

v = �̂� (ẑ) = �̂� (𝑒 (𝝐, 𝑔(𝝐, u))).

For simplicity, let v = 𝐽 (𝝐, u). Note 𝐽 (·, 𝑢) is strictly monotonic in𝑢 by strict monotonicity of �̂�, 𝑔

in their second arguments. So, we can write u’s cdf in terms of v’s cdf:

𝑎 = 𝑃 (u < 𝑎) = 𝑃 (v < 𝐽 (𝜖, 𝑎)) = 𝐽 (𝜖, 𝑎).
‡Note that 𝑒 (𝜖, ·) = 𝑑−1 (𝜖, ·). Then, monotonicity of 𝑑 in the second argument implies the same for 𝑒 .
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This means that 𝐽 (𝜖, 𝑎) is an identity function for almost any 𝜖 ∈ supp(𝝐).

Finally, we can write ẑ as a function of z for almost any 𝜖 ∈ supp(𝝐), completing the proof:

ẑ = �̂�−1(𝐽 (𝜖, 𝐻 (z))) = �̂�−1(𝐻 (z))

□

D.1.8 Comparion against other identification results

Imbens and Newey [143] consider non-separable outcome processes, i.e. y = 𝑓 (t, z) and con-

struct control functions by assuming that 1) treatment is a strictly monotonic function of the

confounder, 3) the confounder is continuous with a strictly monotonic cdf, and 2) positivity

holds for t with respect to z. These assumptions also lead to identification with general control

functions due to the following: a) the positivity assumption is equivalent to the strong IV assump-

tion and b) like additivity, the strict monotonicity assumption reflected in the reconstruction map

𝑑 (ẑ, 𝝐) as a function of ẑ helps guarantee joint independence; see appendix D.1.7.

2SLS requires the outcome process to be additive, y = 𝑓 (t) + z. Further, 2SLS needs a “complete-

ness” property: the causal effect function and IV are correlated [134]. While joint independence

may not be guaranteed by the completeness condition, it can be guaranteed in certain settings

that violate completeness. An example is multiplicative treatment t = z ∗ 𝝐 with z ∼ N(0, 1)

and a linear outcome; 2SLS fails because E[t𝝐] = 0. When joint independence can be guaran-

teed and the IV is strong, identification with general control functions does not require structural

restrictions like additivity of the outcome process that both 2SLS and CFN rely on.
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D.1.9 Estimation error bounds

We give an example of how violations in reconstruction and independence affect errors in ef-

fects.

D.1.9.1 GCFN’s estimation error in additive treatment process

Theorem 2. Assume an additive treatment process t = z+𝑔(𝝐) where 𝑔 is an 𝐿𝑔-Lipschitz function,

and E𝐹 (z)z = 0. Let E[y | t = 𝑡, z = 𝑧] = 𝑓 (𝑡, 𝑧) be an 𝐿-Lipschitz function in 𝑧 for any 𝑡 . Further,

1. let reconstruction error be non-zero but bounded E𝑞(t,ẑ,𝝐) (t − ẑ − 𝑔′(𝝐))2 ≤ 𝛿. Assume that 𝑔′ is

also 𝐿𝑔-Lipschitz. Further, let E𝑞(ẑ) ẑ = 0, and E𝑞(ẑ) |ẑ| < ∞.

2. Assume 𝝐 ̸|= ẑ and let the dependence be bounded: max𝑧 W1 (𝑞(𝝐 | ẑ = 𝑧) ∥ 𝐹 (𝝐)) ≤ 𝛾 .

With the estimated and true causal effects as 𝜏 (𝑡) = Eẑ𝑓 (𝑡, ẑ) and 𝜏 (𝑡) = 𝐸z𝑓 (𝑡, z) respectively,

E𝐹 (t) |𝜏 (t) − 𝜏 (t) | ≤ 𝐿

√︃
𝛿 + 4𝛾𝐿𝑔E𝑞(ẑ) |ẑ|.

Proof. Recall the true data distribution is 𝐹 (t, z, 𝝐) such that z |= 𝝐 and the implied joint𝑞(ẑ, t, z, 𝝐) =

𝑞(ẑ | t, 𝝐)𝐹 (t, z, 𝝐). For any 𝐿-Lipschitz function ℓ (𝜖):

|E𝑞(𝝐,ẑ)ℓ (𝝐)ẑ| = |E𝑞(ẑ)
(
ẑE𝑞(𝝐 | ẑ)ℓ (𝝐)

)
−

(
E𝑞(ẑ)𝐹 (𝝐) ẑℓ (𝝐)

)
| {E𝑞(ẑ) ẑ = 0}

=
��E𝑞(ẑ) (

ẑ
(
E𝑞(𝝐 | ẑ)ℓ (𝝐) − E𝐹 (𝝐)ℓ (𝝐)

) ) ��
≤ E𝑞(ẑ) |ẑ|

��E𝑞(𝝐 | ẑ)ℓ (𝝐) − E𝐹 (𝝐)ℓ (𝝐)
��

≤ 𝐿E𝑞(ẑ) |ẑ|W1 (𝑞(𝝐 | ẑ) ∥ 𝐹 (𝝐))

≤ 𝛾𝐿E𝑞(ẑ) |ẑ|.

(D.6)

Using the definition of the additive treatment process and the reconstruction error bound, E𝑞(z,ẑ,𝝐) (z+
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𝑔(𝝐) − ẑ − 𝑔′(𝝐))2 = E𝑞(t,ẑ,𝝐) (t − ẑ − 𝑔′(𝝐))2 ≤ 𝛿 . Now, we can bound error in ẑ approximating z

𝛿 ≥ E𝑞(z,ẑ,𝝐) (z − ẑ + 𝑔(𝝐) − 𝑔′(𝝐))2

= E𝑞(z,ẑ) (z − ẑ)2 + E𝐹 (𝝐) (𝑔(𝝐) − 𝑔′(𝝐))2 + 2E𝑞(z,ẑ,𝝐) (z − ẑ) (𝑔(𝝐) − 𝑔′(𝝐))

≥ E𝑞(z,ẑ) (z − ẑ)2 + 2E𝑞(z,ẑ,𝝐) (z − ẑ) (𝑔(𝝐) − 𝑔′(𝝐))

= E𝑞(z,ẑ) (z − ẑ)2 + 2E𝐹 (z)𝐹 (𝝐)z(𝑔(𝝐) − 𝑔′(𝝐)) − 2E𝑞(ẑ,𝝐) ẑ(𝑔(𝝐) − 𝑔′(𝝐)) {z |= 𝝐}

= E𝑞(z,ẑ) (z − ẑ)2 + 0 − 2E𝑞(ẑ,𝝐) ẑ(𝑔(𝝐) − 𝑔′(𝝐)) {E𝐹 (z)z = 0}

≥ E𝑞(z,ẑ) (z − ẑ)2 − 4𝛾𝐿𝑔E𝑞(ẑ) |ẑ| {𝑔(𝝐) − 𝑔′(𝝐) is 2𝐿𝑔-Lipschitz}

Thus, E𝑞(z,ẑ) (z − ẑ)2 ≤ 𝛿 + 4𝛾𝐿𝑔E𝑞(ẑ) |ẑ|.We bound the absolute error in causal effect due to using

ẑ instead of z

Et |𝜏 (t) − 𝜏 (t) | = Et |E𝑞(ẑ) 𝑓 (t, ẑ) − E𝐹 (z) 𝑓 (t, z) |

= Et |E𝑞(ẑ,z) (𝑓 (t, ẑ) − 𝑓 (t, z)) |

≤ EtE𝑞(ẑ,z) |𝑓 (t, ẑ) − 𝑓 (t, z) |

≤ Et𝐿E𝑞(ẑ,z) |ẑ − z|

≤ 𝐿Et

√︃
E𝑞(ẑ,z) (ẑ − z)2 (Cauchy-Schwarz)

≤ 𝐿

√︃
𝛿 + 4𝛾𝐿𝑔E𝑞(ẑ) |ẑ|

(D.7)

When sample size goes to ∞, we can guarantee that reconstruction becomes perfect, meaning

that 𝛿 → 0, and that ẑ |= 𝝐 holds, meaning that 𝛾 → 0. Then, this error bound on effects becomes

0.

□

269



D.1.9.2 Bounding effect estimation error

Here, we show that if positivity holds for t w.r.t. z, and t w.r.t. ẑ, the residual confounding given

ẑ, i.e. I(z; t | ẑ), controls the expected absolute error in effects if 𝑞(z | ẑ) is sufficiently concen-

trated.

Theorem3. Let 𝐹 (y, t, z, 𝝐) be the true data distribution. Let𝑞(y, t, ẑ) =
∫
𝐹 (y, t, z = 𝑧, 𝜖)𝑞(ẑ | t, 𝜖)𝑑𝑧𝑑𝜖 .

With 𝜏 (𝑡∗) and 𝜏 (𝑡∗) as the true and estimated causal effect of 𝑑𝑜 (t = 𝑡∗) respectively, let 𝜔 (𝑡∗) =

|𝜏 (𝑡∗) − 𝜏 (𝑡∗) | be the error. We assume the following.

1. Assume that t satisfies positivity with respect to z, and t satisfies positivity with respect to ẑ.

2. Let E[y | t = 𝑡, z = 𝑧] where E is w.r.t. 𝐹 , be an 𝐿𝑡 -Lipschitz function of 𝑧, for any 𝑡 .

3. Let 𝐿 := sup𝑡 𝐿𝑡 . Let𝑊 := sup𝑡,𝑧 𝐹 (t=𝑡)/𝑞(t=𝑡 | ẑ=𝑧).

4. Assume 𝑞(z | ẑ) satisfies the transportation inequality 𝑇1(𝜎2/2) [258].

Then, the expected absolute error in effects is bounded as: E𝐹 (t)𝜔 (t) ≤ 𝜎𝐿
√︁
𝑊 I(z; t | ẑ) .

Proof. (of theorem 3) Positivity of t w.r.t. z implies the conditional expectation E[y | z = 𝑧, t =

𝑡∗] exists for all 𝑧 ∈ supp(𝐹 (z)), 𝑡∗ ∈ supp(t). Positivity of t w.r.t. ẑ implies the conditional

expectation E[y | ẑ = 𝑧, t = 𝑡∗] exists for all 𝑧 ∈ supp(𝐹 (ẑ)), 𝑡∗ ∈ supp(t). We begin by expanding

the expectation E[y | ẑ = 𝑧, t = 𝑡∗] as an integral over the conditional 𝐹 (y | z, t, ẑ)𝑞(z | t, ẑ).

E[𝑦 | ẑ = 𝑧, t = 𝑡∗] =
∫

E [y | z = 𝑧, t = 𝑡∗, ẑ = 𝑧] 𝑞(z = 𝑧 | t = 𝑡∗, ẑ = 𝑧)𝑑𝑧

=

∫
E [y | z = 𝑧, t = 𝑡∗] 𝑞(z = 𝑧 | t = 𝑡∗, ẑ = 𝑧)𝑑𝑧 {by y |= ẑ | t, z},

where the inner expectation is with respect to the conditional distribution 𝐹 (y | t, z). Now, we

prove the bound on 𝜔 (𝑡∗) by expanding the true and estimated effects as expectations over z:

𝜔 (𝑡∗) = |𝜏 (𝑡∗) − 𝜏 (𝑡∗) |
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=

����∫ [
𝐹 (z = 𝑧) − E𝑞(ẑ)𝑞(z = 𝑧 | t = 𝑡∗, ẑ)

]
E [y | z = 𝑧, t = 𝑡∗] 𝑑𝑧

����
= 𝐿𝑡∗

����∫ [
𝐹 (z = 𝑧) − E𝑞(ẑ)𝑞(z = 𝑧 | t = 𝑡∗, ẑ)

] E [y | z = 𝑧, t = 𝑡∗]
𝐿∗𝑡

𝑑𝑧

����
= 𝐿𝑡∗

����∫ [
E𝑞(ẑ) (𝑞(z = 𝑧 | ẑ) − 𝑞(z = 𝑧 | t = 𝑡∗, ẑ))

] E [y | z = 𝑧, t = 𝑡∗]
𝐿∗𝑡

𝑑𝑧

����
≤ 𝐿𝑡∗E𝑞(ẑ)

����∫ [(𝑞(z = 𝑧 | ẑ) − 𝑞(z = 𝑧 | t = 𝑡∗, ẑ))] E [y | z = 𝑧, t = 𝑡∗]
𝐿∗𝑡

𝑑𝑧

����
≤ 𝐿𝑡∗E𝑞(ẑ)W1 (𝑞(z | t = 𝑡∗, ẑ) ∥ 𝑞(z | ẑ))

{E[y | z=𝑧,t=𝑡∗]/𝐿𝑡∗ is 1-Lipschitz}

≤ 𝐿𝑡∗E𝑞(ẑ)𝜎
√︁
KL [𝑞(z | t = 𝑡∗, ẑ) ∥ 𝑞(z | ẑ)]

≤ 𝐿𝑡∗𝜎

√︃
E𝑞(ẑ)KL [𝑞(z | t = 𝑡∗, ẑ) ∥ 𝑞(z | ẑ)] {by Cauchy Schwarz},

where theW1 termwas bounded byKL by the assumption that𝑞(z | ẑ) satisfies the transportation

inequality 𝑇1(𝜎2/2) [258]. Using 𝐿 = sup𝑡 𝐿𝑡 and𝑊 = 𝐹 (t=𝑡)/𝑞(t=𝑡 | ẑ=𝑧), we can bound the average

absolute error

E𝐹 (t)𝜔 (t) ≤ 𝜎E𝐹 (t)𝐿t
√︃
E𝑞(ẑ)KL [𝑞(z | t, ẑ) ∥ 𝑞(z | ẑ)]

≤ 𝜎𝐿
√︃
E𝑞(ẑ)E𝐹 (t)KL [𝑞(z | t, ẑ) ∥ 𝑞(z | ẑ)] {by Cauchy Schwarz}

= 𝜎𝐿

√︄
E𝑞(ẑ)E𝑞(t | ẑ)

𝐹 (t)
𝑞(t | ẑ)KL [𝑞(z | t, ẑ) ∥ 𝑞(z | ẑ)]

≤ 𝜎𝐿
√
𝑊

√︃
E𝑞(ẑ)E𝑞(t | ẑ)KL [𝑞(z | t, ẑ) ∥ 𝑞(z | ẑ)]

= 𝜎𝐿
√
𝑊

√︁
I(t; z | ẑ)

□
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D.1.10 Estimation with the Two-stage least-sqares method

We first describe the general version of two-stage least-squares method (2SLS). Let the outcome,

treatment and IV be y, t′, 𝝐 respectively and the true data distribution be 𝑝 (t′, y, 𝝐).

1. In the first-stage, 2SLS learns the distribution 𝑞(t | 𝝐). Given some class of distributions𝑄 , the

first-stage can be framed as a maximum-likelihood problem:

𝑞 = argmax
𝑞′∈𝑄

E𝑝 (t′,𝝐) log𝑞′(t′ | 𝝐)

In our setup, t is the synthetic treatment sampled from the conditional distribution 𝑞 estimated

in the first stage.

2. In the second-stage, 2SLS learns the conditional distribution of the outcome y given the syn-

thetic treatment t sampled from the conditional 𝑞(t | 𝝐) from the first stage. Given some class

of distributions 𝐺 , 2SLS’s second-stage can be framed as a maximum-likelihood problem:

𝑔 = argmax
𝑔′∈𝐺

E𝑝 (y,𝝐)E𝑞(t | 𝝐) log𝑔′(y | t).

The causal effect estimate is then computed as: 𝑓 ∗(𝑡) = E𝑔(y | t=𝑡) [y] .

Typically in settings with continuous y, t, both stages of 2SLS are framed and implemented as

least-squares regressions instead of maximum-likelihood problems. See Kelejian [121] for an

overview of classical vs. Bayesian two-stage least-squares methods.

In this section, we derive an alternate expression for 2SLS’s causal effect estimate 𝑓 ∗(𝑡). Recall

that t is the synthetic treatment sampled from the conditional distribution 𝑞 estimated in the first

stage. We assume that both stages of 2SLS are perfectly solved. Note that t is independently
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sampled conditioned on 𝝐 . This imposes the following conditional independencies:

y |= t | 𝝐, t′ 𝑎𝑛𝑑 t′ |= t | 𝝐 .

We marginalize out t′, 𝝐 from the joint 𝑞(y, t, t′, 𝝐) to get the dependence of y on t:

𝑓 ∗(𝑡) = E[y = 𝑦 | t = 𝑡]

=

∫
𝑡 ′,𝜖
𝑦𝑞(y = 𝑦, t′ = 𝑡 ′, 𝝐 = 𝜖 | t = 𝑡)𝑑𝜖𝑑𝑦𝑑𝑡 ′

=

∫
𝑡 ′,𝜖
𝑦𝑝 (y = 𝑦 | t′ = 𝑡 ′, 𝝐 = 𝜖, t = 𝑡)𝑞(𝝐 = 𝜖 | t = 𝑡)𝑝 (t = 𝑡 ′ | 𝝐 = 𝜖, t = 𝑡)𝑑𝜖𝑑𝑦𝑑𝑡 ′

=

∫
𝑡 ′,𝜖
𝑦𝑝 (y = 𝑦 | t′ = 𝑡 ′, 𝝐 = 𝜖)𝑞(𝝐 = 𝜖 | t = 𝑡)𝑝 (t′ = 𝑡 ′ | 𝝐 = 𝜖)𝑑𝜖𝑑𝑦𝑑𝑡 ′

{by t′ |= t | 𝝐, t |= y | t, 𝝐},

(D.8)

which yields

𝑓 ∗(𝑡) =
∫

𝑦𝑝 (y = 𝑦 | t′ = 𝑡 ′, 𝝐 = 𝜖)𝑞(𝝐 = 𝜖 | t = 𝑡)𝑝 (t′ = 𝑡 ′ | 𝝐 = 𝜖)𝑑𝜖𝑑𝑦𝑑𝑡 ′

= E𝑞(𝝐 | t=𝑡)E𝑝 (t′ | 𝝐)E[y | t′, 𝝐] .
(D.9)

This shows that the effect estimated by 2SLS can be rewritten as

𝑓 ∗(𝑡) = E[y | t = 𝑡] = E𝑞(𝝐 | t=𝑡)E𝑝 (t′ | 𝝐)E[y | t′, 𝝐]

With this, we show that 2SLS’s estimation is biased when the outcome process might have multi-

plicative interactions between treatment and confounders. Consider this data generation:

𝝐, z ∼ N(0, 1), t = 𝝐 + z, y = t + t2z.

Let 𝑝 (t | 𝝐) be the learned conditional treatment distribution from a perfectly solved first-stage.
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We use the reverse conditional 𝑝 (𝝐 | t). 2SLS’s causal effect estimate can be rewritten as 𝑓 (𝑡) =

E𝑞(𝝐 | t=𝑡)E𝑝 (t′ | 𝝐)E[y | t′, 𝝐]. The true causal effect is 𝑓 (𝑡) = E𝑝 (z) [t + t2z | do(t = 𝑡)] = 𝑡 . Note

that E[𝝐 | t = 𝑡] = Ez∼N(0,1) [𝑡 − z] = 𝑡 . The 2SLS-estimate is 3𝑡 ≠ 𝑡 = 𝑓 (𝑡):

𝑓 ∗(𝑡) = E𝑞(𝝐 | t=𝑡)E𝑝 (t′ | 𝝐)E[y | t′, 𝝐]

= E𝑞(𝝐 | t=𝑡)E𝑝 (𝑧)E[y | t′ = z + 𝝐, 𝝐]

= E𝑞(𝝐 | t=𝑡)E𝑝 (𝑧) [𝝐 + z + (𝝐 + z)2z] = 3𝑡

This shows 2SLS needs to assume properties of the true outcome and treatment processes.

D.1.11 The DeepIV objective

DeepIV [131] extends the two-stage least-squares method to use neural networks in both stages

of treatment and outcome estimation. For simplicity, we ignore the covariates x. The first stage

of DeepIV estimates the conditional density of treatment given the IV. Assuming the first-stage

of DeepIV is solved and we have an estimate 𝑝𝜃 (t | 𝝐), the outcome stage of DeepIV solves the

following to obtain an estimate 𝑓𝜙 (t) for the true causal effect 𝑓 (𝑡) = E[y | do(t = 𝑡)]:

min
𝜙

Ey,𝝐 [y − E𝑝𝜃 (t | 𝝐) 𝑓𝜙 (t)]
2. (D.10)

This optimization eq. (D.10) has a subtle issue. We will show that there exist different functions

that solve the optimization problem, thereby resulting in different treatment-effect estimates.

Assume that the first stage was solved with t ∼ 𝑝 (t | 𝝐). The trouble lies in the fact that eq. (D.10)

averages the function 𝑓𝜙 (t) over the distribution 𝑝 (t | 𝝐). If there exists a function 𝑓 ′ ≠ 0 such

that E𝑝 (t | 𝝐) 𝑓 ′(t) = 0, both 𝑓 and 𝑓 + 𝑓 ′ solve the optimization problem in Equation (D.10). As

there is no way to separate 𝑓 from functions like 𝑓 + 𝑓 ′, we face a non-identifiability issue.

We show that multiplicative interactions between 𝝐, z in the true treatment process is a suffi-
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cient condition for such functions 𝑓 ′ to exist. Consider the following data generation with no

confounding:

𝝐, z ∼ N(0, 1), t = z𝝐, y = t2.

Here the true causal effect is 𝑓 (𝑡) = 𝑡2. Wewill show thatE𝑝 (t | 𝝐) 𝑓 (t) = E𝑝 (t | 𝝐) (𝑓 (t)+t), meaning

that both 𝑓 (𝑡) and 𝑓 (𝑡) + 𝑡 solve the optimization problem eq. (D.10). Notice that E[t | 𝝐] = 0 and

therefore

E𝑝 (t | 𝝐) (𝑓 (t) + t) = E[(t2 + t) | 𝝐] = E[t2 | 𝝐] + E[t | 𝝐] = E[t2 | 𝝐] = E𝑝 (t | 𝝐) [𝑓 (t)] .

For any constant 𝑎, the function 𝑡2 + 𝑎𝑡 also solves the optimization problem in eq. (D.10). This

means thatmultiple solutions to theDeepIV objective exist that are not the true causal effect.

One potential reason that DeepIV may not run into this non-identifiability issue is that an upper

bound of the original proposed objective is solved instead. To compute gradients for the original

optimization, two independent expectations are needed, which is not sample-efficient; this is

called the double-sample problem. So, [131] optimize an upper bound (via Jensen’s):

E𝐹 (y,𝝐) [y − E𝑝𝜃 (t | 𝝐) 𝑓𝜙 (t)]
2 ≤ E𝐹 (y,𝝐)E𝑝𝜃 (t | 𝝐) [y − 𝑓𝜙 (t)]2. (D.11)

The RHS above is a log-likelihood problem with a Gaussian likelihood. A general form of this is

E𝐹 (y,𝝐)E𝑝𝜃 (t | 𝝐) log𝑝𝜙 (y | t); where 𝑝𝜙 is supposed to model the distribution of the outcome under

do(t). Finally, as DeepIV is based on 2SLS, DeepIV assumes an additive outcome process to avoid

the issues in the previous section.

DeepIV under multiplicative treatment processes We show here that the upper bound

that DeepIV minimizes can also produce biased effect estimates when the true treatment process
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is multiplicative. The upper bound that DeepIV optimizes is:

argmin
𝑓 ∗

E𝐹 (y,𝝐)E𝑝 (t | 𝝐) [y − 𝑓 ∗(t)]2 = argmin
𝑓 ∗

E𝐹 (𝝐)E𝑝 (t | 𝝐)E𝐹 (y | 𝝐) [y − 𝑓 ∗(t)]2

Note that we use 𝐹 (y | 𝝐) and not 𝐹 (y | t, 𝝐) because here t refers to the synthetic treatment

sampled from the conditional distribution 𝑝 (t | 𝝐) learned in the first stage of DeepIV, which

means y |= t | 𝝐 . We do a bias-variance decomposition of the expectation and refer to terms that

do not depend on ℎ as constants 𝐶 with respect to the optimization.

E𝐹 (𝝐)E𝑝 (t | 𝝐)E𝐹 (y | 𝝐) [y − 𝑓 ∗(t)]2 = E𝐹 (𝝐)E𝑝 (t | 𝝐)E𝐹 (y | 𝝐) [E[y | 𝝐] − 𝑓 ∗(t)]2 + E𝐹 (𝝐) [𝜎2(y | 𝝐)]

= E𝑝 (t)E𝑝 (𝝐 | t)E𝐹 (y | 𝝐) [E[y | 𝝐] − 𝑓 ∗(t)]2 +𝐶

(D.12)

Now consider the generation process 𝝐, z ∼ N(0, 1) with the true treatment and outcome gener-

ated as t = 𝝐z and y = t + z. Note that 𝐸 [y | 𝝐 = 𝑎] = 𝐸z [z + 𝑎z] = 0. Therefore the optimization

reduces to the following:

argmin
𝑓 ∗

E𝑝 (t)E𝑝 (𝝐 | t)E𝐹 (y | 𝝐) [0 − 𝑓 ∗(t)]2 = 0 ≠ 𝑓 (𝑡) = 𝑡

Thus, DeepIV’s relaxed optimization problem also needs assumptions on the true treatment pro-

cess.

D.1.12 Information preserving maps and additional utility

constraints

A bijective map is one that maps each element in its domain to a unique element in its range.

No information can be lost in this process, resulting in bijective transformations being called

information-preserving maps. Information-preserving maps preserve computations that only
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involve conditioning and expectations; meaning that the causal effect estimate EẑE[y | t, ẑ] is

preserved. Therefore we can impose additional distributional utility constraints satisfied by bi-

jective transformations of the general control function ẑ, without losing the properties of ignor-

ability.

Coupled with flexible over-parametrized modelling, information-preserving maps give us the

ability to enforce utility constraints on the latent space of ẑ. If there is an outcome-model that

works well with data drawn from a normal distribution, one can add an additional term to VDE’s

objective that is the KL divergence between the distribution of ẑ and a normal distribution. If we

wanted information about continuity in t to be preserved in ẑ, we could enforce linear interpo-

lation. Similarly, we could force an constructed ẑ to have a monotonic relation with t. One could

enforce multiple constraints from a combination of distances, divergences, ordering and modal-

ity constraints. When used correctly, these constraints trade optimization complexity between

outcome-stage and VDE.

D.2 Experimental Details

In this section, we expand on the details of experiments presented in section 5.4. In all exper-

iments, the hidden layers in both encoder and decoder networks have 100 units and use ReLU

activations. The outcome model is also a 2-hidden-layer neural network with ReLU activations

unless specified otherwise. For the simulated data, the hidden layers in the outcome model have

50 hidden units. We optimize VDE and outcome-stage for 100 epochs with Adam; starting with

a learning rate of 10−2 and halving it every 10 epochs if the training error goes up.

277



D.2.1 Selecting 𝜆

We discuss here why good 𝜆 (equivalently 𝜅) can be selected based on the resulting expected

outcome likelihood, i.e. the outcome modelling objective, on a heldout validation set.

As VDE’s control function is constructed as a function of (t, 𝝐), i.e. ẑ = 𝑒 (t, 𝝐), it holds that

y |= ẑ | 𝝐, t. So, predicting y from (ẑ, t), as in GCFN, cannot be better than predicting y from

(t, 𝝐):

H(y | t, ẑ) ≥ H(y | t, 𝝐, ẑ) = H(y | t, 𝝐).

The slack in the inequality is H(y | t, ẑ) − H(y | t, 𝝐, ẑ) = I(y, 𝝐 | t, ẑ) and equality holds when

y |= 𝝐 | t, ẑ. This independence holds in general only if both z |= 𝝐 | ẑ and perfect reconstruction

hold; see appendix D.2.1.1. Thus, in general, the expected outcome likelihood achieves maximum

only when both perfect reconstruction and conditional independence are satisfied.

In practice, instead of the unconstrained VDE, we optimize the lower-bound objective in eq. (5.6)

on a finite dataset. Due to local minima or finite-sample error, this lower-bound optimized with

a 𝜅 that is too large may give a ẑ that retains little information about z so as keep the KL small.

Similarly, when 𝜅 is too small, ẑ may memorize t to keep the reconstruction error small without

paying much in the 𝜅 × KL term. In either case, the resulting ẑ fails to satisfy one of either

perfect reconstruction or conditional independence, meaning that y ̸|= 𝝐 | t, ẑ in general. Then,

as discussed above, the outcome model cannot achieve the maximum possible expected outcome

likelihood. This insight suggests the following procedure to select good 𝜅 based on validation

outcome likelihood: §:

1. Solve VDE for a collection of 𝜅 and obtain the control function ẑ𝜅 for each.

2. Regress y on t, ẑ𝜅 and evaluate expected outcome likelihood on a heldout validation set.
§At first glance, one failure case seems to be when ẑ memorizes 𝝐 only, leading to y |= 𝝐 | t, ẑ. However, such

a ẑ does not help reconstruct t along with 𝝐 while resulting in a large KL [𝑞(ẑ | t, 𝝐) ∥ 𝑞(ẑ)]. This leads to a very
sub-optimal objective value in VDE. As we maximize to solve VDE, such failure cases do not occur.
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(This heldout set should be different from the one used to tune all other hyperparameters)

3. Select the 𝜅 that led to the largest validation outcome likelihood; use the corresponding ẑ𝜅

in GCFN’s second stage to estimate effects (retrain or use the model from step 2).

D.2.1.1 Conditional Independence of outcome and instrument given ẑ, t

By definition, the potential outcome yt depends only on z and for any observed (t, y), and by

consistency, y = yt. Therefore z |= 𝝐 | ẑ, t =⇒ yt |= 𝝐 | ẑ, t ⇐⇒ y |= 𝝐 | ẑ, t. Under the joint

𝑞(ẑ, t, 𝝐, z) = 𝑞(ẑ | t, 𝝐)𝐹 (t, 𝝐, z), it follows that z |= 𝝐 | ẑ, t when the reconstruction property and

the conditional independence z |= 𝝐 | ẑ hold:

𝑞(z, 𝝐 | ẑ, t) = 𝑞(z | 𝝐, ẑ, t)𝑞(𝝐 | ẑ, t)

= 𝑞(z | 𝝐, ẑ)𝑞(𝝐 | ẑ, t) {by reconstruction t = 𝑑 (ẑ, 𝝐)}

= 𝑞(z | ẑ)𝑞(𝝐 | ẑ, t) {by joint independence z |= 𝝐 | ẑ}

= 𝑞(z | ẑ, t)𝑞(𝝐 | ẑ, t) {by joint independence and reconstruction z |= t | ẑ},

(D.13)

where z |= t | ẑ is shown in the proof of theorem 5. If yt is an invertible function of z, y |= 𝝐 | ẑ, t =⇒

z |= 𝝐 | ẑ, t. Thus, in general, z |= 𝝐 | ẑ, t is a necessary condition for y |= 𝝐 | ẑ, t.

D.2.2 Simulations with Specific Decoder Structure

We used the python package statsmodels for 2SLS and our own implementation of CFN. We used

the DeepIV package developed by Hartford et al. [131].

Multiplicative treatment + Additive outcome. We use the 2SLS function from statsmod-

els [259] which uses a linear model t = 𝛽𝝐 + 𝜼t that will correctly predict that E[t | 𝝐] = 0. We

optimized the treatment and the response models in DeepIV [131] for a 100 epochs each.
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D.2.3 GCFN on high-dimensional covariates

Here, we give further details about section 5.4.3. We give Hartford et al. [131]’s simulation with

our notation:

z, 𝝐 ∼ N(0, 1), t = 25 + (𝝐 + 3)𝜓𝑠 + 𝜈, y = N
(
100 + (10 + t)ℓ (x)𝜓𝑠 − 2t + 0.5z, 0.75

)
,

where 𝜓𝑠 is a non-linear function of time 𝑠 , and ℓ (x) is the label of the MNIST image. We opti-

mized both VDE and outcome stage with Adam with batch size 500 for 200 epochs beginning at

10−2 and halving the learning rate when the average loss over 5 epochs increases. We use the

outcome model architecture from DeepIV [131] where convolutional layers construct a represen-

tation which is concatenated with t and 𝑠 , before being fed to the fully-connected layers. GCFN’s

outcome model differs only in that the fully-connected layers take as input the control function

ẑ, time 𝑠 and treatment t. The best outcome model was chosen based on validation outcome

MSE.

D.2.4 GCFN on high-dimensional IV

Figure D.2: GCFN performs on par with
DeepGMM on high-dimensional IV experi-
ment specified in DeepGMM [132].

Here, we give further details about section 5.4.4. The

encoder and additive decoder in VDE are 2-layer net-

works like in the section 5.4.1. In this experiment we

use a 3 layer outcome model with 50 units in each

layer. We used 10, 000 samples as in DeepGMM and

optimized both VDE and outcome stage with Adam

with a batch size 1000 for 100 epochs beginning at a

learning rate of 10−2 and halving it when the aver-

age loss over 5 epochs increases. We plot outcome and effect MSE for GCFN for 5 different
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𝜅 ∈ {0.1, 0.2, 0.3, 0.4, 0.5} in fig. D.2. Note that low outcome MSE corresponds to low effect MSE.

The plot shows mean and standard deviation of effect MSE of the causal effect for 5 different 𝛼 ’s

and 10 random seeds. GCFN performs on par with DeepGMM [132].

D.2.5 Additional experiments

The following experiment is done with a structurally unrestricted decoder even though the true

treatment process is additive. We compare against CFN to demonstrate that GCFN does not

require structural restrictions on the outcome process. Let N be the normal distribution and 𝛼

be a parameter to control the confounding strength. We generate

z, 𝝐 ∼ N(0, 1), t = (z + 𝝐)/
√
2, y ∼ N(t2 + 𝛼z2, 0.1). (D.14)

The larger the absolute values of 𝛼 , the more the confounding. In economics terminology, the

treatment noise and the outcome noise are 𝜼𝑡 = z and 𝜼𝑦 = 𝛼z2 + 𝑛𝑜𝑖𝑠𝑒 respectively. The genera-

tion process in eq. (D.14) violates assumption A4 in Guo and Small [134] for CFN: E[𝜼𝑦 |𝜼𝑡 ] ∝ 𝜼𝑡 .

GCFN does not require this assumption. We use 5000 samples and a batch size of 500. We dis-

cretize the treatment to have 50 categories. Of the 50, 48 categories correspond to equally sized

bins in [−3.5, 3.5], with the remaining 2 correspond to values less than −3.5 and greater than 3.5

respectively. We compare against CFN with both stages correctly specified as functions of t and

z.

We find, as expected, that GCFN out-performs CFN. Over 5 runs, for 𝛼 = 1, we obtain an RMSE of

0.3±0.1while the CFN only manages to obtain an RMSE of 1.5±0.1 despite having the correctly

specified model for t2. For other 𝛼 ∈ {−2,−1, 2}, GCFN was similarly better.
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E | Appendices for chapter 6

E.1 Theoretical details

E.1.1 A note about the assumptions

Note about the assumptions In theorem 6.1, assumption 1 consists of three parts that can

all be validated on observed data: 1) that the gradient flow converges, 2) that the confounder

value of the surrogate matches the confounder value whose effect is of interest, and 3) that the

surrogate intervention lies in the support of the pre-outcome variables. Assumption 2 is required

for expectations and their gradients to exist and be finite. In theorem 6.2, assumption 1 requires

a consistent estimator of E[y | t], which can be provided with regression. Assumption 3 lists

regularity conditions which help control how the surrogate estimation error propagates to the

effect error.

E.1.2 Proof of Theorem 6.1

We restate the theorem for completeness:

Theorem E.1. Assume c-redundancy holds. Assuming the following:

1. Let t′(t∗, ℎ(t∗2)) be the limiting solution to the gradient flow equation
𝑑 t̃(𝑠)
𝑑𝑠

= −∇t̃(ℎ(t̃(𝑠)) −

ℎ(t∗2))2, initialized at t̃(0) = t∗; i.e. t′(t∗, ℎ(t∗2)) = lim𝑠→∞ t̃(𝑠).
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Further, let ℎ(t′(t∗, ℎ(t∗2))) = ℎ(t∗2) and t′(t∗, ℎ(t∗2)) ∈ supp(t).

2. 𝑓 (t̃, ℎ(t̃), 𝜂) andℎ(t̃) as functions of t̃, ℎ(t̃) are continuous and differentiable and the derivatives

exist for all t̃, 𝜂. Let ∇t̃𝑓 (t̃, ℎ(t̃), 𝜂) exist and be bounded and integrable w.r.t. the probability

measure corresponding to 𝑝 (𝜼), for all values of t̃ and ℎ(t̃).

Then the conditional effect (and therefore the average effect) is identified:

𝜙 (t∗, ℎ(t∗2)) = 𝜙
(
t′(t∗, ℎ(t∗2)), ℎ(t′(t∗, ℎ(t∗2)))

)
= E

[
y | t = t′(t∗, ℎ(t∗2))

]
(E.1)

Proof. Recall definition of conditional effect 𝜙 (t̃, ℎ(t̃2)) = E𝜼 𝑓 (t̃, ℎ(t̃2),𝜼). Recall ∇t̃ is the gra-

dient with respect to the first argument of 𝑓 , that is t̃. First, by assumption 2, E and ∇ commute,

under the dominated convergence theorem. Then, by c-redundancy

∇t̃𝜙 (t̃, ℎ(t∗))𝑇∇t̃ℎ(t̃) = ∇t̃E𝜼 𝑓 (t̃, ℎ(t∗),𝜼)𝑇∇t̃ℎ(t̃) = E𝜼 [∇t̃𝑓 (t̃, ℎ(t∗),𝜼)𝑇∇t̃ℎ(t̃)] = 0.

Now consider the gradient flow equation 𝑑 t̃(𝑠)/𝑑𝑠 = −∇t̃(ℎ(t̃) − ℎ(t∗2))2. We refer to the gra-

dient evaluated at t̃ as Δt̃ = −∇t̃(ℎ(t̃) − ℎ(t∗2))2 = −2(ℎ(t̃) − ℎ(t∗2))∇t̃ℎ(t̃). We will express

𝜙 (t′(t∗, ℎ(t∗2)), ℎ(t∗2)) as defined by the starting point 𝜙 (t∗, ℎ(t∗2)) and the gradient flow equa-

tion.

Let the solution path to the gradient flow equation be 𝐶 with t∗, t′(t∗, ℎ(t∗2)) being the starting

and ending points respectively. By the Gradient Theorem [260], we have that 𝜙 (t∗, ℎ(t∗2)) and

𝜙 (t′(t∗, ℎ(t∗2)), ℎ(t∗2)) are related via the line integral over 𝐶:

∫
𝐶

∇t̃𝜙 (t̃, ℎ(t∗2)) · 𝑑 t̃ = 𝜙 (t′(t∗, ℎ(t∗2)), ℎ(t∗2)) − 𝜙 (t̃, ℎ(t∗2))

Let t̃(𝑠) be a parametrization of solution path 𝐶 by the scalar time 𝑠 ∈ [0,∞). Now, to ob-

tain the value of 𝜙 (t̃, ℎ(t∗2)), we will compute the line integral over the vector field defined by
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∇t̃𝜙 (t̃, ℎ(t∗2)), which exists by assumption 2 in theorem 6.1, evaluated along the path 𝐶 defined

by Δt̃(𝑠):

𝜙 (t′(t∗, ℎ(t∗2)), ℎ(t∗2)) = 𝜙 (t∗, ℎ(t∗2)) +
∫
𝐶

∇t̃𝜙 (t̃, ℎ(t∗2)) · 𝑑 t̃

= 𝜙 (t∗, ℎ(t∗2)) +
∫ ∞

0
∇t̃𝜙 (t̃(𝑠), ℎ(t∗2))𝑇

𝑑 t̃(𝑠)
𝑑𝑠

𝑑𝑠

= 𝜙 (t∗, ℎ(t∗2)) +
∫ ∞

0
∇t̃𝜙 (t̃(𝑠), ℎ(t∗2))𝑇Δt̃(𝑠) 𝑑𝑠

= 𝜙 (t∗, ℎ(t∗2))

+
∫ ∞

0
−2((ℎ(t̃(𝑠)) − ℎ(t∗2))) ∇t̃𝜙 (t̃(𝑠), ℎ(t∗2))𝑇∇t̃ℎ(t̃(𝑠)) 𝑑𝑠

= 𝜙 (t∗, ℎ(t∗2)) + 0 {by c-redundancy}

(E.2)

Finally, by assumption 1 in theorem 6.1, ℎ(t′(t∗, ℎ(t∗2))) = ℎ(t∗2), and so

𝜙 (t∗, ℎ(t∗2)) = 𝜙 (t′(t∗, ℎ(t∗2)), ℎ(t∗2)) = 𝜙 (t′(t∗, ℎ(t∗2)), ℎ(t′(t∗, ℎ(t∗2)))) (E.3)

For clarity, the same equation, but using t′ and suppressing dependence on t∗, ℎ(t∗2)):

𝜙 (t∗, ℎ(t∗2)) = 𝜙 (t′, ℎ(t∗2)) = 𝜙 (t′, ℎ(t′)) (E.4)

Under the causal model for efc, the outcome y = 𝑓 (t, ℎ(t),𝜼). Then, ∀t̃ ∈ supp(𝑝 (t)),

E[y | t = t̃] = E𝜼 [𝑓 (t̃, ℎ(t̃),𝜼)] = 𝜙 (t̃, ℎ(t̃)) . (E.5)
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Using that t′(t∗, t∗2) ∈ supp(𝑝 (t)) and eqs. (E.4) and (E.5), the conditional effect is identified

𝜙 (t∗, ℎ(t∗2)) = 𝜙 (t′(t∗, ℎ(t∗2)), ℎ(t′(t∗, ℎ(t∗2))))

= E[y | t = t′(t∗, ℎ(t∗2))]
(E.6)

Thus, the conditional effect and the average effect are identified asE[y | t′(t∗, ℎ(t∗2))] and 𝜏 (t∗) =

Eℎ(t)E[y | t′(t∗, ℎ(t))] respectively. □

Note about convergence of gradient flow Any ODE’s solution, if it exists and converges,

converges to an𝜔-limit set [261]. An𝜔-limit set is nonempty when the solution path lies entirely

in a closed and bounded set and can consist of limit cycles, equilibrium points, or neither [261,

262]. A gradient flow equation 𝑑 t̃(𝑠)/𝑑𝑠 = −∇ℎ(t̃) (also called a gradient system) has the special

property that its 𝜔-limit set only consists of critical points of ℎ(t̃); critical points of ℎ(t̃) are also

equilibrium points of the gradient flow equation [262]. Further, if∇ℎ(t̃) exists and is bounded and

ℎ(t̃) has bounded sublevel sets ({t̃ : ℎ(t̃) ≤ 𝑐}), then the solution to the gradient flow equation

will entirely lie within a bounded set. This is because along the solution path, ℎ(t̃(𝑠)) always

decreases meaning that the solution will remain in any sublevel set it started in. Thus, if ℎ(t̃) has

bounded sublevel sets, the solution of the gradient flow equation will converge only to critical

points of ℎ(t̃).

E.1.3 Estimation error in lode

Theorem E.2. Consider the conditional effect 𝜙 (t∗, ℎ(t∗2)). Let t̂(t∗, ℎ(t∗2)) be the estimate of the

surrogate intervention computed by lode, computed via Euler integration of the gradient flow
𝑑 t̃(𝑠)
𝑑𝑠

=

−∇t̃(ℎ(t̃(𝑠)) − ℎ(t∗2))2, initialized at t̃(0) = t∗. Assume the true surrogate t′(t∗, ℎ(t∗2)) exists and

is the limiting solution to the gradient flow equation.

1. Let the finite sample estimator of E[y | t = t̃] be 𝑓 (t̃). Let the error for all t̃ be bounded,
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|𝑓 (t̃) − E[y | t = t̃] | ≤ 𝑐 (𝑁 ), where 𝑁 is the sample size and lim𝑁→∞ 𝑐 (𝑁 ) = 0.

2. Assume 𝐾 Euler integrator steps were taken to find the surrogate estimate t̂(t∗, ℎ(t∗2)), each

of size ℓ . Let the maximum confounder mismatch be max𝑖≤𝐾 (ℎ(t̃𝑖) − ℎ(t∗2))2 = 𝑀 .

3. Let 𝐿𝑧,t̃ be the Lipschitz-constant of 𝜙 (t̃, ℎ(t̃2)) as a function of ℎ(t̃2), for fixed t̃.

Let 𝐿𝑒 be the Lipschitz-constant of E[y | t = t̃] = 𝜙 (t̃, ℎ(t̃)) as a function of t̃.

Assume ℎ has a gradient with bounded norm, ∥∇ℎ(t̃)∥2 < 𝐿ℎ .

Assume 𝑓 ’s Hessian has bounded eigenvalues: ∀t̃, t̃2, ∥∇2
t̃
𝜙 (t̃, ℎ(t̃2))∥2 ≤ 𝜎H𝜙 .

The conditional effect estimate error, 𝜉 (t∗, ℎ(t∗2)) = |𝑓 (t̂) − 𝜙 (t∗, ℎ(t∗2)) |, is upper bounded by:

𝑐 (𝑁 ) +min
(
𝐿𝑒 ∥t′ − t̂∥2, 2𝐾ℓ2

(
O(ℓ) +𝑀𝜎H𝜙𝐿2ℎ

)
+ 𝐿𝑧,t̂∥ℎ(t̂) − ℎ(t∗2)∥2

)
(E.7)

Proof. (of Theorem 6.2) Recall the definition of conditional effect : 𝜙 (t̃, ℎ(t̃2)) = E𝜼 𝑓 (t̃, ℎ(t̃2),𝜼).

lode’s estimate of the conditional effect is 𝑓 (t̂(t∗, ℎ(t∗2))). We will suppress notation for de-

pendence on t∗, ℎ(t∗2), and use t′ and t̂ to refer to the true surrogate intervention and the esti-

mated surrogate interventions respectively. Note 𝑓 is the estimate of the conditional expectation

E[y | t = t̃], learned from 𝑁 samples. We first bound the error by splitting into two parts and

bounding each separately:

|𝜉 (t∗, ℎ(t∗2)) | = |𝑓 (t̂) − 𝜙 (t∗, ℎ(t∗2)) |

≤ |𝑓 (t̂) − 𝜙 (t̂, ℎ(t̂)) | + |𝜙 (t̂, ℎ(t̂)) − 𝜙 (t∗, ℎ(t∗2)) |

≤ 𝑐 (𝑁 ) + |𝜙 (t̂, ℎ(t̂)) − 𝜙 (t∗, ℎ(t∗2)) |

≤ |𝜙 (t̂, ℎ(t̂)) − 𝜙 (t̂, ℎ(t∗2)) | + |𝜙 (t̂, ℎ(t∗2)) − 𝜙 (t∗, ℎ(t∗2)) | + 𝑐 (𝑁 )

The first term is bounded via the Lipschitz-ness of𝜙 as a function ofℎ(t̃) with fixed first argument
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t̃ = t̂.

|𝜙 (t̂, ℎ(t̂)) − 𝜙 (t̂, ℎ(t∗2)) | ≤ 𝐿𝑧,t̂ |ℎ(t̂) − ℎ(t∗2) |

We now bound the remaining term. Recall that Lode’s computation of the surrogate intervention

involved 𝐾 gradient steps, each of size ℓ . We work with a constant step-size but the analysis can

be generalized to a non-uniform step size. Indexing steps with 𝑖 , let 𝑑𝑖 = ℎ(t̃𝑖) − ℎ(t∗2) be the

confounder mismatch error at the 𝑖th iterate. Then note that t̂ = t∗ − ℓ ∑𝐾−1
𝑖=0 2𝑑𝑖∇t̃ℎ(t̃𝑖). We can

use this to bound the error 𝜙 (t̂, ℎ(t∗2)) − 𝜙 (t∗, ℎ(t∗2)). With t̃𝐾 = t̂ and t̃0 = t∗, we proceed by

expressing the error as a telescoping sum and using the Taylor expansion for 𝜙 (t̃, ℎ(t∗2)) in terms

of the the first argument t̃.

𝜙 (t̂, ℎ(t∗2)) − 𝜙 (t∗, ℎ(t∗2)) =
𝐾−1∑︁
𝑖=0

𝜙 (t̃𝑖+1, ℎ(t∗2)) − 𝜙 (t̃𝑖, ℎ(t∗2)) (E.8)

=

𝐾−1∑︁
𝑖=0

∇t̃𝜙 (t̃𝑖, ℎ(t∗2))⊤(t̃𝑖+1 − t̃𝑖) (E.9)

+ 1
2
(t̃𝑖+1 − t̃𝑖)⊤∇2

t̃
𝜙 (t̃𝑖, ℎ(t∗2)) (t̃𝑖+1 − t̃𝑖) + O(∥t̃𝑖+1 − t̃𝑖 ∥32) (E.10)

=

𝐾−1∑︁
𝑖=0

2ℓ𝑑𝑖∇t̃𝜙 (t̃𝑖, ℎ(t∗2))⊤∇t̃ℎ(t̃𝑖) + 2(ℓ𝑑𝑖)2∇t̃ℎ(t̃𝑖)⊤∇2
t̃
𝜙 (t̃𝑖, ℎ(t∗2))∇t̃ℎ(t̃𝑖) + O(ℓ3) (E.11)

=

𝐾−1∑︁
𝑖=0

0 + 2(ℓ𝑑𝑖)2∇t̃ℎ(t̃𝑖)⊤∇2
t̃
𝜙 (t̃𝑖, ℎ(t∗2))∇t̃ℎ(t̃𝑖) + O(ℓ3) (E.12)

= O(𝐾ℓ3) +
𝐾−1∑︁
𝑖=0

2(ℓ𝑑𝑖)2∇t̃ℎ(t̃𝑖)⊤∇2
t̃
𝜙 (t̃𝑖, ℎ(t∗2))∇t̃ℎ(t̃𝑖) (E.13)

≤ O(𝐾ℓ3) +
𝐾−1∑︁
𝑖=0

2(ℓ (ℎ(t̃𝑖) − ℎ(t∗2)))2
���∇t̃ℎ(t̃𝑖)⊤∇2

t̃
𝜙 (t̃𝑖, ℎ(t∗2))∇t̃ℎ(t̃𝑖)

��� (E.14)

≤ O(𝐾ℓ3) +
𝐾−1∑︁
𝑖=0

2ℓ2𝑀
���∇t̃ℎ(t̃𝑖)⊤∇2

t̃
𝜙 (t̃𝑖, ℎ(t∗2))∇t̃ℎ(t̃𝑖)

��� (E.15)

≤ O(𝐾ℓ3) +
𝐾−1∑︁
𝑖=0

2ℓ2𝑀𝜎H𝜙 ∥∇t̃ℎ(t̃𝑖)∥22 (E.16)
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≤ O(𝐾ℓ3) +
𝐾−1∑︁
𝑖=0

2ℓ2𝑀𝜎H𝜙𝐿2ℎ (E.17)

= 2𝐾ℓ2
(
O(ℓ) +𝑀𝜎H𝜙𝐿2ℎ

)
, (E.18)

where the inequalities follow by the maximum value of (ℎ(t̃𝑖) −ℎ(t∗2))2, bounded eigenvalues of

the Hessian of 𝜙 and the Lipschitz-ness of ℎ(t̃).

Another way we bound the error is via the Lipschitz constant of the conditional expectation as a

function of t̃. Recall this is 𝐿𝑒 . An alternate bound on the error is as follows:

|𝜙 (t̂, ℎ(t̂)) − 𝜙 (t∗, ℎ(t∗2)) | = |𝜙 (t̂, ℎ(t̂)) − 𝜙 (t′, ℎ(t′)) | ≤𝐿𝑒 ∥t′ − t̂∥2

The bound follows:

|𝜉 (t̃, ℎ(t∗2)) | ≤ 𝑐 (𝑁 ) +min
(
𝐿𝑒 ∥t′ − t̂∥2, 2𝐾ℓ2

(
O(ℓ) +𝑀𝜎H𝜙𝐿2ℎ

)
+ 𝐿𝑧,t̂∥ℎ(t̂) − ℎ(t∗2)∥2

)
□

E.1.3.1 A note on linear confounder functions and lode

In the proof above, the error in Euler integration accumulates due to terms like this one:

∇⊤
t̃
ℎ(t̃)∇2

t̃
𝑓 (t̃, ℎ(t∗), 𝜂)∇t̃ℎ(t̃).

For a linear confounder function that satisfies ∇t̃ℎ(t̃) = 𝛽 , such terms can be expressed as

𝛽⊤∇t̃(∇t̃𝑓 (t̃, ℎ(t∗), 𝜂)⊤𝛽) = 𝛽⊤∇t̃(0) = 0 under c-redundancy. Thus, such error does not accu-

mulate even with large step sizes.

Further, note that the gradient flow equation in lode for the causal model 𝐴 in section 6.4 is

a linear ODE whose solution has a closed form expression and one can estimate the surrogate
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without numerical integration [261].

E.1.4 Proof of sufficiency of Effect Connectivity

TheoremE.3. Under Effect Connectivity, eq. (6.9), any surrogate intervention t′(t∗, ℎ(t∗2)) ∈ supp(t).

Proof. Recall 𝜙 (t̃, ℎ(t̃)) = E𝜼 𝑓 (t̃, ℎ(t̃),𝜼). We have ∀t∗ ∈ supp(𝑝 (t)):

𝑝 (ℎ(t) = ℎ(t∗2)) > 0 =⇒ 𝑝 (𝜙 (t, ℎ(t)) = 𝜙 (t∗, ℎ(t∗2)) | ℎ(t) = ℎ(t∗2)) > 0.

This implies ∃t′ ∈ supp(t), 𝜙 (t′, ℎ(t∗2)) = 𝜙 (t∗, ℎ(t∗2)), 𝑠 .𝑡 . ℎ(t′) = ℎ(t∗2).

Then, 𝜙 (t∗, ℎ(t∗2)) = 𝜙 (t′, ℎ(t∗2)) = 𝜙 (t′, ℎ(t′)) = E[y | t = t′] . □

E.1.5 Necessity of Effect Connectivity for Nonparametric effect

estimation in efc

Theorem E.4. Effect Connectivity is necessary for nonparametric effect estimation in efc.

Proof. (Proof of Theorem 6.4) Let the outcome be y = 𝑓 (t, ℎ(t)). Recall the joint distribution

𝑝 (t, y) and let ℎ(t) be the confounder. Let Effect Connectivity be violated, i.e. there exists a non-

measure-zero subset 𝐵 ∈ supp(t) × supp(ℎ(t)) such that ∗:

∀ t̃, ℎ(t̃2) ∈ 𝐵, 𝑝 (𝑓 (t, ℎ(t)) = 𝑓 (t̃, ℎ(t̃2)) | ℎ(t) = ℎ(t̃2)) = 0.

Now, we construct a new outcome y2 = 𝑓2(t, ℎ(t)) and show the conditional effects for this new

outcome are different from the one defined by 𝑓 on ∀(t̃, ℎ(t̃2)) ∈ 𝐵. Let

𝑓2(t̃, ℎ(t̃2)) = 𝑓 (t̃, ℎ(t̃2)) + 10 ∗ 1((t̃, ℎ(t̃2)) ∈ 𝐵) |.
∗Non-zero w.r.t. the product measure over supp(t) × supp(ℎ(t)) due to 𝑝 .
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We have 𝑓2(t̃, ℎ(t̃)) = 𝑓 (t̃, ℎ(t̃)) ∀t̃ ∈ supp(t) , as the additional term in 𝑓2 is only present for

(t̃, ℎ(t̃2)) ∈ 𝐵; this follows from the fact that ∀t̃ ∈ supp(t), (t̃, ℎ(t̃)) ∉ 𝐵 as

𝑝 [𝑓 (t, ℎ(t)) = 𝑓 (t̃, ℎ(t̃)) | ℎ(t) = ℎ(t̃)] = 𝑝 [𝑓 (t, ℎ(t)) = 𝑓 (t̃, ℎ(t̃))] > 0.

Thus, 𝑝 (y, t) =𝑑 𝑝 (y2, t) are equal in distribution since 𝐵 ∩ supp(t, ℎ(t)) = ∅. This means that the

conditional effects are different for the outcomes y, y2 for all (t̃, ℎ(t̃2)) ∈ 𝐵:

E[y | 𝑑𝑜 (t = t̃), ℎ(t) = ℎ(t̃2)] ≠ E[y2 | 𝑑𝑜 (t = t̃), ℎ(t) = ℎ(t̃2)]

Therefore, for causal models that violates Effect Connectivity, there exist observationally equiv-

alent causal models with different causal effects. Thus, nonparametric effect estimation is impos-

sible. Thus, Effect Connectivity is required for efc. □

E.1.6 Algorithmic details

We give in algorithm 4 pseudocode for lode.

Algorithm 4: lode for 𝑑𝑜 (t = t∗)
Input: Functional confounder ℎ(t); tolerance 𝜖
Output: Conditional effects of t∗, ℎ(t∗2)
Regress y on t and compute 𝑓 () := argmin𝑢∈F Ey,t(y − 𝑢 (t))2.
To estimate effects of t∗, ℎ(t∗2), compute the surrogate intervention t′(t∗, ℎ(t∗2)) by Euler
integrating the gradient flow equation, initialized at t̃ = t∗, until (ℎ(t̃𝑠) − ℎ(t∗2))2 < 𝜖 .

𝑑 t̃(𝑠)
𝑑𝑠

= ∇t̃(ℎ(t̃𝑠) − ℎ(t∗2))2,

Return 𝑓 (t′(t∗, ℎ(t∗2)));
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Extensions of lode Consider that we have access to𝑚(ℎ(t)) for some bijective differentiable

function𝑚(·), instead of ℎ(t). The orthogonality in c-redundancy holds

∇t̃𝑓 (t̃, ℎ(t̃2), 𝜂)𝑇∇t̃𝑚(ℎ(t̃)) =𝑚′(ℎ(t̃))∇t̃𝑓 (t̃, ℎ(t̃2), 𝜂)𝑇∇t̃ℎ(t̃) = 0.

Then, using𝑚(ℎ(t̃)) to compute the surrogate t′(t∗, ℎ(t∗2)), lode would estimate valid effects.

Similarly, lode can estimate the effect on any differentiable transformation of the outcome𝑚(𝑦),

because ∇t̃𝑚(𝑦t̃)𝑇∇t̃ℎ(t̃) =𝑚′(𝑦t̃)∇t̃𝑓 (t̃, ℎ(t̃2), 𝜂)𝑇∇t̃ℎ(t̃) = 0 holds.

E.2 Experimental Details

E.2.1 Functional confounders in gwas

Here, we show how ℎ(t) = 𝐴𝑡 and 𝐴 reflect the traditional pca based adjustment in gwas. Recall

population structure acts as a confounder in gwas. Price et al. [147] demonstrated that using the

principal components of the normalized genetic relationships matrix adjusts for confounding due

to population structure in gwas. Let the genotype matrix be 𝐺 with people as rows and snps as

columns, such that each element is one of 0, 1/2, 1, where 1/2 and 1 refer to one and two copies of

the allele respectively at the position of the snp. With 𝑝𝑠 as the allele frequency at snp 𝑠 [263], Φ is

the genetic relationship matrix whose elements are defined asΦ𝑖, 𝑗 = 1
𝑆

∑𝑆
𝑠=1 (𝐺𝑖,𝑠−𝑝𝑠 ) (𝐺 𝑗,𝑠−𝑝𝑠 )/𝑝𝑠 (1−𝑝𝑠 ).

Then, Price et al. [147] compute the top 𝐾 (10 suggested) principal components of Φ to use as the

axes of variation due to the population structure. The eigenvectors of Φ are the left eigenvectors

of 𝐺 such that Φ = 𝐺𝐺𝑇 which capture independent axes of variation of individuals.

Price et al. [147] exploit the idea that if a snp aligns with some of the axes of variation, this is

due to the population structure. These axes of variation are the top 𝐾 eigenvectors 𝑈 of 𝜙 =

𝐺𝐺𝑇 ≈ 𝑈Λ𝑈 ⊤, where 𝑈 ∈ R𝑁×𝐾 , Φ ∈ R𝑁×𝑁 and Λ ∈ R𝐾×𝐾 . Here, 𝑈 are also the left singular
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vectors of 𝐺 ≈ 𝑈 Σ𝑉𝑇 where Σ ∈ R𝐾×𝐾 is diagonal, and 𝑉 ∈ R𝑆×𝐾 . We use ≈ to denote that

the chosen 𝐾 eigenvectors explain the variation due to population structure; what remains are

random mutations.

Let the 𝑠th snp be 𝐺·,𝑠 ∈ R𝑁 , which is a column in 𝐺 . In Price et al. [147], population structure

in the 𝑠th snp is captured in 𝐺⊤
·,𝑠𝑈 . In words, projecting the snp 𝐺·,𝑠 onto the axes of variation

in individuals gives the population structure between 𝑠th snp and the outcome. This projection

𝐺⊤
·,𝑠𝑈 is a row of 𝐺⊤𝑈 ∈ R𝑆×𝐾 . In turn, 𝐺⊤𝑈 ∈ R𝑆×𝐾 is the population structure in all snps.

Projecting this population structure onto the genotype of an individual gives the confounding

due to population structure amongst the snps present in the genotype. With 𝐺 𝑗,· ∈ {0, 1/2, 1}𝑆 as

the genotype for an individual 𝑗 , this projection is
(
(𝐺⊤𝑈 )⊤𝐺 𝑗,·

)
. However, 𝐺 ≈ 𝑈 Σ𝑉𝑇 implies

that 𝐺⊤𝑈 ≈ 𝑉 Σ. Reflecting this, ℎ(t) = Σ𝑉𝑇 t is the functional confounder for an individual

t.
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E.2.2 Expanded results

In table E.1, we list the 13 snps recovered by lode, that have been previously reported as relevant

to Celiac disease. In fig. E.1, we plot the true positive and false negative rate amongst snps deemed

relevant by lode. The ground truth here are the snps reported associated with celiac disease in

prior literature.

snp Effect Lasso Coef.

rs3748816 0.12 0.20

rs10903122 0.10 0.17

rs2816316 0.11 0.20

rs13151961 0.17 0.32

rs2237236 0.17 0.00

rs12928822 0.14 0.29

rs2187668 −0.70 −2.37

rs2327832 −0.12 −0.20

rs1738074 −0.16 −0.23

rs11221332 −0.15 −0.24

rs653178 −0.13 −0.21

rs4899260 −0.12 −0.19

rs17810546 −0.12 −0.20

Table E.1: Full list of snps previously reported
as relevant that were recovered by lode, and
their estimated effects and Lasso coefficients
for snps. The effect threshold here is 0.1.

Figure E.1: True positive vs. False negative rate
aswe vary the threshold on average effects, that
determines which snps lode deems relevant to
the outcome.
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F | Appendices for chapter 7

F.1 Additional Figures and Tables

Lab and vital clipping ranges are reported in Table F.5.

F.1.1 Calibration curves

In figs. F.1 and F.2(b), we report calibration curves for 5-year risk where we adjust for censoring

by weighting with the inverse-probability of censoring. For both outcomes, NYULH models cal-

ibration error under 0.1 both internally and externally; externally, this error seems to come from

over-predicting risk. In contrast, CUIMC models internally have calibration error under 0.1 but

dramatically under-predict risk when transported. We suspect that this loss of calibration stems

NYULH data having earlier event times than CUIMC data: in the NYULH test data, nearly 90% of

the uncensored patients have event times under 5 years but in the CUIMC test data, that fraction

is only 66%.

F.1.2 Addressing censoring and label-leakage concerns.

One concern in evaluating survival models is that censoring hides how well the model performs

on patients that were censored. A separate concern with training and evaluating on EHR data is

that features that co-occur with the outcome of interest may be recorded before the event itself
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(a) NYULH models (b) CUIMC models

Figure F.1: IPCW-Calibration curves for risk at 5 years and the associated root-mean-squared calibration
error for the soft CHD outcome.

(a) NYULH models (b) CUIMC models

Figure F.2: IPCW-Calibration curves for risk at 5 years and the associated root-mean-squared calibration
error for the hard CHD outcome.

and may accidentally leak the label. To address these concerns, we turn to a variant of concor-

dance that places more emphasis on discriminating short and long term events, which is called

truncated concordance. Briefly, concordance truncated at 5 years measures how well the model

discriminates uncensored event times under 5 years from larger event times either under or over 5

years. To adjust for the censoring mechanism, we evaluate the inverse-probability-of-censoring-

weighted (IPCW) truncated concordance. All the models from table 7.1 so far achieve similar

discriminative performance when evaluated with IPCW) concordance truncated at 5 years; see

table F.1 and table F.2. To check if label-leakage occurs and inflates the performance, we restrict

the evaluation to have event times larger than a year and evaluate unweighted concordance trun-

cated at 5 years. All the models from table 7.1 retain similar discriminative performance when

evaluated with concordance truncated at 5 years on the test set restricted to have times-to-event

above a year; see table F.3 and table F.4.
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Table F.1: Transportability in inverse-weighted concordance truncated at 5 years for soft CHD; ↑ implies
higher. For a model trained at an institution (given in braces), we report the metric at the internal and
external institutions and also the T-val at the external institution.

Model (trained at) Internal External

IPCW Conc. ↑ DeepCAT (NYULH) 0.83 (0.825, 0.836) 0.78 (0.752, 0.822)
DeepCAT (CUIMC) 0.87 (0.854, 0.895) 0.81 (0.805, 0.821)

Table F.2: Transportability in inverse-weighted concordance truncated at 5 years forhardCHD; ↑ implies
higher. For a model trained at an institution (given in braces), we report the metric at the internal and
external institutions and also the T-val at the external institution.

Model (trained at) Internal External

IPCW Conc. ↑ DeepCAT (NYULH) 0.84 (0.825, 0.847) 0.85 (0.833, 0.886)
DeepCAT (CUIMC) 0.90 (0.882, 0.935) 0.81 (0.800, 0.825)

Table F.3: Transportability in concordance truncated at 5 years for patients whose soft CHD times to
event are above 1 year ; ↑ implies higher is better. For a model trained at an institution (given in braces),
we report the metric at the internal and external institutions and also the T-val at the external institution.
DeepCAT stratifies patients whose events are at least 1 year away,

Model (trained at) Internal External

Conc. at 5 years. ↑ DeepCAT (NYULH) 0.84 (0.830, 0.843) 0.81 (0.804, 0.823)
DeepCAT (CUIMC) 0.86 (0.849, 0.863) 0.80 (0.797, 0.811)

Table F.4: Transportability in concordance truncated at 5 years for patients whose hard CHD times to
event are above 1 year ; ↑ implies higher is better. For a model trained at an institution (given in braces), we
report the metric at the internal and external institutions and also the T-val at the external institution.

Model (trained at) Internal External

Conc. at 5 years. ↑ DeepCAT (NYULH) 0.84 (0.827, 0.848) 0.84 (0.823, 0.851)
DeepCAT (CUIMC) 0.87 (0.853, 0.880) 0.81 (0.798, 0.824)
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Table F.5: Clipping Ranges for Labs and Vitals. We clip a subset of labs and vitals to clinically observ-
able values to mitigate effects of possible data entry issues.

Measurement Name concept_id low high

Alanine aminotransferase [Enzymatic activity/volume] in Serum or
Plasma

3006923 1.0 10000

Albumin [Mass/volume] in Serum or Plasma 3024561 1.0 20
Albumin [Mass/volume] in Serum or Plasma by Electrophoresis 3028286 1.0 20
Alkaline phosphatase [Enzymatic activity/volume] in Serum or Plasma 3035995 5.0 10000
aPTT in Platelet poor plasma by Coagulation assay 3018677 10.0 180
Aspartate aminotransferase [Enzymatic activity/volume] in Serum or
Plasma

3013721 1.0 10000

Bicarbonate [Moles/volume] in Arterial blood 3008152 2.0 100
Bicarbonate [Moles/volume] in Plasma 3015473 2.0 100
Bicarbonate [Moles/volume] in Venous blood 3027273 2.0 100
Body temperature 3020891 75.0 110
C reactive protein [Mass/volume] in Serum or Plasma 3020460 0.0 300
C reactive protein [Mass/volume] in Serum or Plasma by High sensitiv-
ity method

3010156 0.0 300

Calcium [Mass/volume] in Serum or Plasma 3006906 4.0 20
Carbon dioxide, total [Moles/volume] in Serum or Plasma 3015632 4.0 130
Chloride [Moles/volume] in Arterial blood 3031248 85.0 120
Chloride [Moles/volume] in Blood 3018572 85.0 120
Chloride [Moles/volume] in Serum or Plasma 3014576 85.0 120
Chloride [Moles/volume] in Venous blood 3035285 85.0 120
Cholesterol [Mass/volume] in Serum or Plasma 3027114 50.0 500
Cholesterol in HDL [Mass/volume] in Serum or Plasma 3007070 0.0 150
Cholesterol in LDL [Mass/volume] in Serum or Plasma 3028437 0.0 400
Creatinine [Mass/volume] in Blood 3051825 0.1 15
Creatinine [Mass/volume] in Serum or Plasma 3016723 0.1 15
Diastolic blood pressure 3012888 20.0 180
Erythrocytes [#/volume] in Blood by Automated count 3020416 1.0 8
Fibrin D-dimer FEU [Mass/volume] in Platelet poor plasma 3051714 0.0 10000
Fibrinogen [Mass/volume] in Platelet poor plasma by Coagulation assay 3016407 10.0 1000
Glucose [Mass/volume] in Blood 3000483 10.0 1500
Glucose [Mass/volume] in Serum or Plasma 3004501 10.0 1500
Heart rate 3027018 25.0 250
Hematocrit [Volume Fraction] of Blood 3009542 15.0 60
Hematocrit [Volume Fraction] of Blood by Automated count 3023314 15.0 60
Hemoglobin [Mass/volume] in Blood 3000963 2.5 19
Hemoglobin A1c/Hemoglobin.total in Blood 3004410 2.0 25
INR in Platelet poor plasma by Coagulation assay 3022217 0.1 15
Platelets [#/volume] in Blood by Automated count 3024929 0.0 2000
Potassium [Moles/volume] in Serum or Plasma 3023103 2.5 7
Protein [Mass/volume] in Serum or Plasma 3020630 2.0 10
Prothrombin time (PT) 3034426 5.0 50
Sodium [Moles/volume] in Serum or Plasma 3019550 100.0 180
Respiratory rate 3024171 5.0 100
Sodium [Moles/volume] in Arterial blood 3043706 100.0 180
Sodium [Moles/volume] in Blood 3000285 100.0 180
Sodium [Moles/volume] in Venous blood 3041473 100.0 180
Systolic blood pressure 3004249 40.0 300
Triglyceride [Mass/volume] in Serum or Plasma 3022192 15.0 1500
Urea nitrogen [Mass/volume] in Blood 3004295 2.0 130
Urea nitrogen [Mass/volume] in Serum or Plasma 3013682 2.0 130
Leukocytes [#/volume] in Blood by Automated count 3000905 0.0 500
Platelet mean volume [Entitic volume] in Blood 3001123 0.0 16
MCHC [Mass/volume] by Automated count 3009744 0.0 45
MCH [Entitic mass] by Automated count 3012030 10.0 50
Erythrocyte distribution width [Ratio] by Automated count 3019897 0.0 40
MCV [Entitic volume] by Automated count 3023599 50.0 140
Bilirubin.total [Mass/volume] in Serum or Plasma 3024128 0.0 50
Age 0.0 120
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Table F.6: Table of the performance numbers from the results section.

Model Data Value Notes

FRS CUIMC ≤ .75

FRS NYULH ≤ .75

PCE CUIMC ≤ .75

PCE NYULH ≤ .75

PREVENT CUIMC ≤ .78

PREVENT NYULH ≤ .78

CUIMC CUIMC .85 best external

NYULH NYULH .84 best external

CUIMC NYULH 0.813 (0.807, 0.821) best external

NYULH CUIMC 0.809 (0.801, 0.816) best external

NYULH NYULH 0.839 (0.833, 0.846) best internal

NYULH CUIMC 0.782 (0.774, 0.789) best internal

CUIMC NYULH 0.811 (0.805, 0.817) best internal

NYULH NYULH 0.764 (0.757, 0.772) Age, Smoking, Measurements

NYULH CUIMC 0.746 (0.737, 0.752) Age, Smoking, Measurements

CUIMC CUIMC 0.798 (0.790, 0.806) Age, Smoking, Measurements

CUIMC CUIMC 0.808 (0.800, 0.815) All except conditions

CUIMC CUIMC 0.850 (0.843, 0.857) All including conditions

CUIMC NYULH 0.769 (0.764, 0.775) All except conditions

CUIMC NYULH 0.805 (0.799, 0.813) All including conditions

NYULH NYULH 0.796 (0.791, 0.804) All except conditions

NYULH NYULH 0.838 (0.832, 0.844) All including conditions

NYULH CUIMC 0.752 (0.746, 0.761) All except conditions

NYULH CUIMC 0.789 (0.782, 0.796) All including conditions

NYULH NYULH 0.846 (0.84, 0.855) best external, on females

NYULH NYULH 0.818 (0.808, 0.826) best external, on males

CUIMC CUIMC 0.855 (0.847, 0.864) best external, on females

CUIMC CUIMC 0.825 (0.818, 0.834) best external, on males

CUIMC CUIMC 0.958 (0.932, 0.99) best external, on Asian females

CUIMC CUIMC 0.818 (0.795, 0.843) best external, on Hispanic males

CUIMC CUIMC 0.851 (0.846, 0.856) All without measurements

CUIMC CUIMC 0.850 (0.845, 0.855) All including measurements

CUIMC NYULH 0.801 (0.795, 0.809) All without measurements

CUIMC NYULH 0.805 (0.799, 0.812) All including measurements

NYULH NYULH 0.837 (0.831, 0.843) All without measurements

NYULH NYULH 0.838 (0.832, 0.844) All including measurements

NYULH CUIMC 0.800 (0.794, 0.809) All without measurements

NYULH CUIMC 0.789 (0.782, 0.796) All including measurements
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F.2 Additional Cohort Information

We report patients statistics in Table F.7, data statistics in Table F.8. We give details about the

smoking categories in Table F.10, about demographics in Table F.9, about labs in Table F.11, about

vitals in Table F.12. about conditions in Table F.13, and about medications in Table F.14.
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Table F.7: CAD Cohort Patient Characteristics. Patient demographics are reported in the full cohorts
and just among the cases who are positive for a coronary artery disease event. The dataset sizes are quite
similar, but the NYU cohort a higher proportion of White and Asian patients. Both cohorts have more
Females than Males.

CUIMC NYUL
All Positive Cases All Positive Cases

# Patients 1,326,380 71,169 1,743,006 84,150
# CAD Events 71,169 (5.4%) – 84,150 (4.8%) –

# Censored Events 1,255,211 (94.6%) – 1,658,856 (95.2%) –
# of Datapoints 19,432,807 1,555,688 25,227,328 1,540,442

Race
Unknown/
Missing 720,413 (54.3%) 37,498 (52.7%) 379,587 (21.8%) 11,362 (13.5%)

White 445,864 (33.6%) 24,640 (34.6%) 1,048,894 (60.2%) 58,874 (70.0%)
Black 112,247 (8.5%) 7577 (10.6%) 190,631 (10.9%) 9024 (10.7%)
Asian 31,287 (2.4%) 919 (1.3%) 101453 (5.8%) 3668 (4.4%)

Native American/
Pacific Islander 16,569 (1.2%) 535 (0.8%) 22,441 (1.3%) 1222 (1.5%)

Ethnicity
Unknown/
Missing 681,966 (51.4%) 32,502 (45.7%) 1,480,432 (84.9%) 59,673 (70.9%)

Non H/L 429,361 (32.4%) 22,093 (31.0%) 237,131 (13.6%) 22,531 (26.8%)
Hispanic/
Latino 215,053 (16.2%) 16,574 (23.3%) 25,443 (1.5%) 1946 (2.3%)

Sex
Female 843,699 (63.6%) 37,748 (53.0%) 1,084,102 (62.2%) 41,641 (49.5%)
Male 482,323 (36.4%) 33,402 (46.9%) 658,486 (37.8%) 42,503 (50.5%)

Unknown/
Missing 358 (0.0%) 19 (0.0%) 418 (0.0%) 6 (0.0%)

Age 52.1 ± 18.9 60.8 ± 15.9 56.1 ± 17.7 68.5 ± 13.3
Age Groups

[18, 30) 2,899,903 (14.9%) 58,889 (3.8%) 238,1527 (9.4%) 13,443 (0.9%)
[30, 40) 3,212,159 (16.5%) 114,886 (7.4%) 3,131,650 (12.4%) 30,966 (2.0%)
[40, 50) 2,892,979 (14.9%) 213,881 (13.7%) 3,513,713 (13.9%) 89,841 (5.8%)
[50, 60) 3,186,021 (16.4%) 316,175 (20.3%) 4,833,097 (19.2%) 242,996 (15.8%)
[60, 70) 3,264,696 (16.8%) 368,797 (23.7%) 5,317,300 (21.1%) 422,373 (27.4%)
[70, 80) 2,573,369 (13.2%) 313,129 (20.1%) 3,936,222 (15.6%) 432,717 (28.1%)

80+ 1,403,680 (7.2%) 169,931 (10.9%) 2,113,819 (8.4%) 308,106 (20.0%)
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Table F.8: CADCohort Dataset Characteristics. For each patient, whether they are positive for a CAD
event or are censored, we define multiple data points; each data point is a unique interaction with the
health system where some observations are recorded binned on a month level. We show the statistics
across the entire dataset, where there are multiple data points for each patient.

CUIMC NYUL
All Positive Cases All Positive Cases

# Patients 1,326,380 71,169 1,743,006 84,150
# of Datapoints 19,432,807 1,555,688 25,227,328 1,540,442
# Datapoints:
CAD Cases 1,555,688 (8.0 %) 1,555,688 1,540,442 (6.1 %) 1,540,442

# Datapoints:
Censored Cases 17877119 (92.0 %) – 23,686,886 (93.9 %) –

Race
Unknown/Missing 9,340,132 (48.1 %) 857,209 (55.1 %) 4,479,356 (17.8 %) 186,612 (12.1 %)

White 7,541,770 (38.8 %) 488,850 (31.4 %) 16,238,504 (64.4 %) 1,103,663 (71.6 %)
Black 1,916,310 (9.9 %) 180,021 (11.6 %) 2,801,003 (11.1 %) 162,328 (10.5 %)
Asian 462,993 (2.4 %) 18,396 (1.2 %) 1,333,863 (5.3 %) 63,498 (4.1 %)

Native American/
Pacific Islander 171,602 (0.9 %) 11,212 (0.7 %) 374,602 (1.5 %) 24,341 (1.6 %)

Ethnicity
Unknown/Missing 7,534,774 (38.8 %) 617,670 (39.7 %) 19,692,029 (78.1 %) 973,465 (63.2 %)

Non H/L 7,515,475 (38.7 %) 449,950 (28.9 %) 5,011,997 (19.9 %) 520,911 (33.8 %)
Hispanic/
Latino 4,382,558 (22.6 %) 488,068 (31.4 %) 523,302 (2.1 %) 46,066 (3.0 %)

Sex
Female 1,320,0127 (67.9 %) 947,477 (60.9 %) 16,007,915 (63.5 %) 808,741 (52.5 %)
Male 6,228,936 (32.1 %) 607,834 (39.1 %) 9,214,274 (36.5 %) 731,513 (47.5 %)

Unknown/Missing 3744 (0.0 %) 377 (0.0 %) 5139 (0.0 %) 188 (0.0 %)
Age 52.1 ± 18.9 60.8 ± 15.9 56.1 ± 17.7 68.5 ± 13.3

Age Groups
[18, 30) 2,899,903 (14.9 %) 58,889 (3.8 %) 238,1527 (9.4 %) 13,443 (0.9 %)
[30, 40) 3,212,159 (16.5 %) 114,886 (7.4 %) 3,131,650 (12.4 %) 30,966 (2.0 %)
[40, 50) 2,892,979 (14.9 %) 213,881 (13.7 %) 3,513,713 (13.9 %) 89,841 (5.8 %)
[50, 60) 3,186,021 (16.4 %) 316,175 (20.3 %) 4,833,097 (19.2 %) 242,996 (15.8 %)
[60, 70) 3,264,696 (16.8 %) 368,797 (23.7 %) 5,317,300 (21.1 %) 422,373 (27.4 %)
[70, 80) 2,573,369 (13.2 %) 313,129 (20.1 %) 3,936,222 (15.6 %) 432,717 (28.1 %)

80+ 1,403,680 (7.2 %) 169,931 (10.9 %) 2,113,819 (8.4 %) 308,106 (20.0 %)
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Table F.9: Demographic Mapping. Race, ethnicity and gender were encoded in the following way.

Race Encoding
concept_id concept name encoding

8527 White 0
8516 Black or African American 1
8515 Asian 2
8557 Native Hawaiian or Other Pacific Islander 3
8657 American Indian or Alaska Native 3

38003610 Polynesian 3
38003613 Other Pacific Islander 3
8552 Unknown 4
0 No matching concept 4

44814653 Unknown 4
Ethnicity

38003564 Not Hispanic or Latino 0
38003563 Hispanic or Latino 1

0 No Matching Concept 2
-1 Unknown 2

8552 Unknown 2
Sex

8507 Male 0
8532 Female 1
0 No Matching Concept 2
-1 Unknown 2

8522 Unknown 2
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Table F.10: Smoking Status Encoding. We identified shared higher-level categories to map existing
concepts to categorical encodings.

concept_id concept_name encoding smoking status

4184633 Passive smoker 0 non smoker
4144272 Never smoked tobacco 0 non smoker
4022662 Non-smoker for personal reasons 0 non smoker
37018706 At risk from passive smoking 0 non smoker
4222303 Non-smoker 0 non smoker
764104 Cigarette smoker (1-4 cigarettes/day) 1 light smoker
4042037 Light cigarette smoker 1 light smoker
4044775 Occasional cigarette smoker 1 light smoker
37395605 Occasional tobacco smoker 1 light smoker
4144273 Trivial cigarette smoker (≤ 1 cigarette/day) 1 light smoker
4052029 Light cigarette smoker (1-9 cigs/day) 1 light smoker
762498 Light tobacco smoker 1 light smoker
4209585 Moderate smoker (20 or less per day) 2 moderate smoker
4190573 Thinking about stopping smoking 2 moderate smoker
4246415 Cigar smoker 2 moderate smoker
4269997 Tobacco smoking consumption - finding 2 moderate smoker
4215409 Ready to stop smoking 2 moderate smoker
4275495 Tobacco smoking behavior - finding 2 moderate smoker
4276526 Cigarette smoker 2 moderate smoker
4298794 Smoker 2 moderate smoker
4218917 Pipe smoker 2 moderate smoker
4216174 Not interested in stopping smoking 2 moderate smoker
44784248 Hookah pipe smoker 2 moderate smoker
42709996 Smokes tobacco daily 2 moderate smoker
4052030 Moderate cigarette smoker (10-19 cigs/day) 2 moderate smoker
4046886 Smoking reduced 2 moderate smoker
4058137 Trying to give up smoking 2 moderate smoker
4044776 Moderate cigarette smoker 2 moderate smoker
762499 Heavy tobacco smoker 3 heavy smoker
4209006 Heavy smoker (over 20 per day) 3 heavy smoker
4041511 Heavy cigarette smoker 3 heavy smoker
4044777 Very heavy cigarette smoker 3 heavy smoker
4044778 Chain smoker 3 heavy smoker
4052947 Heavy cigarette smoker (20-39 cigs/day) 3 heavy smoker
4058136 Very heavy cigarette smoker (40+ cigs/day) 3 heavy smoker
42536346 Ex-smoker for less than 1 year 4 ex-smoker
40486721 Stopped smoking during pregnancy 4 ex-smoker
4310250 Ex-smoker 4 ex-smoker
4232375 Aggressive ex-smoker 4 ex-smoker
4145798 Ex-light cigarette smoker (1-9/day) 4 ex-smoker
4148416 Ex-cigarette smoker amount unknown 4 ex-smoker
762500 Former heavy tobacco smoker 4 ex-smoker
762501 Former light tobacco smoker 4 ex-smoker
4052032 Stopped smoking 4 ex-smoker
4052465 Ex-pipe smoker 4 ex-smoker
4052949 Ex-cigar smoker 4 ex-smoker
4207221 Tolerant ex-smoker 4 ex-smoker
4092281 Ex-cigarette smoker 4 ex-smoker
4141783 Ex-heavy cigarette smoker (20-39/day) 4 ex-smoker
4141784 Ex-very heavy cigarette smoker (40+/day) 4 ex-smoker
4148415 Ex-trivial cigarette smoker (<1/day) 4 ex-smoker
4141782 Ex-moderate cigarette smoker (10-19/day) 4 ex-smoker
46270534 Ex-smoker for more than 1 year 4 ex-smoker
4141786 Tobacco smoking consumption unknown 5 unknown
44814653 Unknown 5 unknown
4233486 Current non-smoker but history unknown 5 unknown
44814650 No information 5 unknown
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Table F.11: Lab Measurements. We included the following key lab measurements for risk assessment.

Lab Test Name concept_id

MCHC [Mass/volume] by Automated count 3009744
Diastolic blood pressure 3012888
Chloride [Moles/volume] in Blood 3018572
Hemoglobin A1c/Hemoglobin.total in Blood 3004410
Bilirubin.total [Mass/volume] in Serum or Plasma 3024128
Aspartate aminotransferase [Enzymatic activity/volume] in Serum or Plasma 3013721
Carbon dioxide, total [Moles/volume] in Serum or Plasma 3015632
Hemoglobin [Mass/volume] in Blood 3000963
Alkaline phosphatase [Enzymatic activity/volume] in Serum or Plasma 3035995
Erythrocyte distribution width [Ratio] by Automated count 3019897
Potassium [Moles/volume] in Serum or Plasma 3023103
C reactive protein [Mass/volume] in Serum or Plasma 3020460
Bicarbonate [Moles/volume] in Plasma 3015473
Sodium [Moles/volume] in Venous blood 3041473
Cholesterol in LDL [Mass/volume] in Serum or Plasma 3028437
Cholesterol in HDL [Mass/volume] in Serum or Plasma 3007070
MCV [Entitic volume] by Automated count 3023599
Glucose [Mass/volume] in Blood 3000483
Urea nitrogen [Mass/volume] in Blood 3004295
Platelet mean volume [Entitic volume] in Blood 3001123
Sodium [Moles/volume] in Blood 3000285
Chloride [Moles/volume] in Serum or Plasma 3014576
Sodium [Moles/volume] in Arterial blood 3043706
Glucose [Mass/volume] in Serum or Plasma 3004501
Platelets [#/volume] in Blood by Automated count 3024929
Respiratory rate 3024171
Heart rate 3027018
Albumin [Mass/volume] in Serum or Plasma by Electrophoresis 3028286
Cholesterol [Mass/volume] in Serum or Plasma 3027114
Prothrombin time (PT) 3034426
INR in Platelet poor plasma by Coagulation assay 3022217
Creatinine [Mass/volume] in Blood 3051825
MCH [Entitic mass] by Automated count 3012030
Triglyceride [Mass/volume] in Serum or Plasma 3022192
Urea nitrogen [Mass/volume] in Serum or Plasma 3013682
Bicarbonate [Moles/volume] in Arterial blood 3008152
aPTT in Platelet poor plasma by Coagulation assay 3018677
C reactive protein [Mass/volume] in Serum or Plasma by High sensitivity method 3010156
Fibrinogen [Mass/volume] in Platelet poor plasma by Coagulation assay 3016407
Erythrocytes [#/volume] in Blood by Automated count 3020416
Chloride [Moles/volume] in Arterial blood 3031248
Bicarbonate [Moles/volume] in Venous blood 3027273
Creatinine [Mass/volume] in Serum or Plasma 3016723
Albumin [Mass/volume] in Serum or Plasma 3024561
Hematocrit [Volume Fraction] of Blood by Automated count 3023314
Leukocytes [#/volume] in Blood by Automated count 3000905
Systolic blood pressure 3004249
Body temperature 3020891
Calcium [Mass/volume] in Serum or Plasma 3006906
Alanine aminotransferase [Enzymatic activity/volume] in Serum or Plasma 3006923
Chloride [Moles/volume] in Venous blood 3035285
Hematocrit [Volume Fraction] of Blood 3009542
Sodium [Moles/volume] in Serum or Plasma 3019550
Protein [Mass/volume] in Serum or Plasma 3020630
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Table F.12: Vital Signs. We included the following key vital signs for risk assessment.

Vital Sign concept_id

Diastolic blood pressure 3012888
Respiratory rate 3024171
Heart rate 3027018
Systolic blood pressure 3004249
Body temperature 3020891

Table F.13: Conditions. We included 669 conditions for risk assessment. This table includes the top 25
occurring conditions at NYULH. Both NYULH and CUIMC use the same total set of conditions.

Condition Name concept_id

Essential hypertension 320128
Hyperlipidemia 432867
Vitamin D deficiency 436070
Dyspnea 312437
Preoperative state 4216244
Cough 254761
Chest pain 77670
Idiopathic osteoarthritis 4035439
Gastroesophageal reflux disease without esophag... 4144111
Obesity 433736
Inconclusive mammography finding 37108814
Electrocardiogram abnormal 320536
Postoperative state 438485
Chronic pain 436096
Fatigue 4223659
Pure hypercholesterolemia 437827
Low back pain 194133
Mixed hyperlipidemia 438720
Abdominal pain 200219
Dizziness and giddiness 433316
Anxiety disorder 442077
Hypothyroidism 140673
Anemia 439777
Postprocedural state finding 444239
Blood chemistry abnormal 436230

305



Table F.14: Medications (ingredients). We included 452 total drug ingredients for risk assessment,
as well as additional drug brands. This table includes the top 25 occurring ingredients at NYULH. Both
NYULH and CUIMC use the same total set of medications.

Medication name concept_id

lidocaine 989878
acetaminophen 1125315
sodium chloride 967823
potassium chloride 19049105
propofol 753626
lactate 19011035
calcium chloride 19036781
ondansetron 1000560
fentanyl 1154029
oxycodone 1124957
midazolam 708298
polyethylene glycol 3350 986417
bupivacaine 732893
gadobutrol 19048493
ibuprofen 1177480
ketorolac 1136980
albuterol 1154343
epinephrine 1343916
famotidine 953076
atorvastatin 1545958
azithromycin 1734104
amoxicillin 1713332
aspirin 1112807
rocuronium 19003953
bisacodyl 924939
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F.3 Baselines

Baseline, Framingham Model. We use the original Framingham score [177] as the baseline

model to evaluate against. This score is the basis of all existing clinical risk scores which are used

in practice for CVDs. The score considers age, sex, LDL cholesterol, HDL cholesterol, systolic and

diastolic blood pressure, diabetes and smoking status. The risk score provides a simple means of

translating these measurements to risk points which correspond to different percentages of 10-

year risk. While the score has been shown to work well in the Framingham cohort, it is known

to have lower performance when applied to EHRs [200].

Baseline, Pooled Cohort Eqations. We use the AHA’s 2013 version of the pooled cohort

equations [176]. This model uses similar features to the Framingham risk score, including choles-

terol, blood pressure, smoking status, diabetes status, age and sex. They develop separate models

for Black and White patients as they are trained on more divers cohorts. We use the reported

parameters from [176] to estimate 10-year risk.

Baseline, PREVENT. We use the CHD version of the PREVENT score from [181, 197]. This

model uses similar features to the PCE, but without race, and adds eGFR, and the use of statins

and hypertensives as features. We use the reported parameters from [197] to estimate 10-year

risk.

F.4 Survival Modeling Evaluation Metrics

Inverse Probability Weighting Survival analysis methods are meant to address the chal-

lenge of censored time-to-event data. Data points are censored if the event time is unobserved.

Often data is right censored, indicating that the event occurred after the censoring time, but the

exact time of the event is not known. There are many well-known survival analysis metrics for
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assessing how well a model ranks event risk (i.e., discrimination) and how well the predicted risk

reflects the true risk (i.e., calibration). The inherent challenge associated with censored data is

that there are a number of unobserved event times. Given this, most prior studies typically only

evaluate using the observed event times. However, there are a class of estimators which adjust for

censored data points called inverse-probability-of-censoring weighting (IPCW) estimators [264].

The general idea behind this class of estimators is to adjust for censored data points by assigning

a weight to each data point depending on how likely the data point is to be censored based on

its features. Data points which are highly likely to be censored are given more weight, while

those that are often observed are given less weight. These estimators effectively compensate for

censored data points by assigning more weight to similar uncensored data [265].

Computing these metrics requires fitting a censoring model: 𝑝 (𝑐 | 𝑥) where 𝑐 is the censoring

time and 𝑥 is the input features. When evaluating the transportability of model𝑀𝐴 on D𝐵 using

a weighted metric, we use the censoring model 𝑝𝐵 (𝑐 | 𝑥) fit at institution B.

Discrimination Metrics We outline both unweighted and IPCW versions of concordance as

our primary evaluation of discriminative performance, or how well a model is ranking different

data points based on predicted risk.

Unweighted Concordance using Expected Value of Predicted Event Distribution. The concor-

dance is computed by taking the expected value of the predicted conditional distributions for

each data point as the estimated time-to-event. All comparable pairs (i.e., pairs of data points

where rank order is known) are then used to assess whether the model is correctly predicting

that the estimated time-to-events are in the same order as the true time-to-events. The propor-

tion that is correct is computed as a measure of concordance. For a time-to-event model 𝑝𝜃 ,

concordance is
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𝐶𝑒𝑥𝑝 =

∑𝑁
𝑖=1

∑𝑁
𝑗=1 1(E𝑝𝜃 [𝑡𝑖 | 𝑥𝑖] < E𝑝𝜃 [𝑡 𝑗 | 𝑥 𝑗 ])1(𝑡𝑖 < 𝑡 𝑗 )𝛿𝑖∑𝑁

𝑖=1
∑𝑁
𝑗=1 1(𝑡𝑖 < 𝑡 𝑗 )𝛿𝑖

(F.1)

Unweighted Concordance at Particular Cutoff 𝜏 . The concordance is computed by comparing

the survival probabilities at a fixed time 𝜏 and evaluating all comparable pairs where at least one

of the event times occurs prior to the cutoff time 𝜏 [266]. In this case 𝑆𝜃 (𝑡) is defined as the

survival function, or 1 minus the CDF of the predicted conditional distribution. This version of

concordance evaluates a model’s discriminative capability at a specific time 𝜏 and may be useful

for risk models where a fixed time horizon is important (e.g., coronary artery disease risk at 10

years).

Inverse Weighted Concordance at Particular Cutoff 𝜏 . This version of concordance is similar to

the prior one, but it uses inverse probability weighting to adjust for censored data points [266]. In

this case, 𝐺 (𝑡 | 𝑥) is defined as the probability that the censoring time occurs after time 𝑡 . Thus,

by inverse weighting by this quantity, data points which are often censored prior to this time are

assigned higher weights. The denominator of the equation renormalizes the estimator according

to the sum of the weights [267]. With 𝐹𝜃 as the CDF of the time-to-event model

𝐶𝑤𝑡 (𝜏) =
∑𝑁
𝑖=1

∑𝑁
𝑗=1 1(𝐹𝜃 (𝜏 | 𝑥𝑖) < 𝐹𝜃 (𝜏 | 𝑥 𝑗 ))1(𝑡𝑖 < 𝑡 𝑗 )1(𝑡𝑖 < 𝜏)𝛿𝑖𝑊 −1

𝑖 𝑗∑𝑁
𝑖=1

∑𝑁
𝑗=1 1(𝑡𝑖 < 𝑡 𝑗 )1(𝑡𝑖 < 𝜏)𝛿𝑖𝑊 −1

𝑖 𝑗

(F.2)

𝑊𝑖 𝑗 = 𝐺 (𝑡𝑖 | 𝑥 𝑗 )𝐺 (𝑡𝑖 | 𝑥𝑖) (F.3)

Calibration Metrics We outline several metrics for assessment of calibration, a measure of

how close predicted risk is to true risk.
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Inverse Weighted Brier Score. The brier score in binary classification problems is defined simply

as the average squared error between the predicted probabilities and the true outcome (0 or 1). In

the case of survival analysis, the event times are separated into indicators using a particular time

𝜏 . All times prior to 𝜏 are assigned a 1 and all times after 𝜏 are assigned a 0. The predicted risk is

the CDF of the conditional distribution. Since, there may be some censored times, we use IPCW

to re-weight. We define 𝐹𝜃 (𝑡 | 𝑥) as the CDF of the predicted conditional distribution. In this case

𝑇𝑖 is the true event time, which is sometimes not known due to censorship. Therefore, instead of

computing equation F.4, we can compute equation F.5. For a full derivation see [216].

𝐵𝑆 (𝜏) = 1
𝑁

=

𝑁∑︁
𝑖=1

(𝐹𝜃 (𝑡𝑖 | 𝑥𝑖) − 1(𝑇𝑖 < 𝜏))2 (F.4)

𝐵𝑆𝑤𝑡 (𝜏) =
1
𝑁

𝑁∑︁
𝑖=1

(1 − 𝐹𝜃 (𝜏 | 𝑥𝑖))2𝛿𝑖1(𝑡𝑖 < 𝜏)
𝐺 (𝑡𝑖 | 𝑥𝑖)

+ 𝐹𝜃 (𝜏 | 𝑥𝑖)21(𝑡𝑖 > 𝜏)
𝐺 (𝜏 | 𝑥𝑖)

(F.5)

Inverse Weighted Binomial Log Likelihood The binomial log likelihood is similar to the brier

score, but we compute negative log likelihood instead of squared error.

𝐵𝐿𝐿𝑤𝑡 (𝜏) =
1
𝑁

𝑁∑︁
𝑖=1

− log(𝐹𝜃 (𝜏 | 𝑥𝑖))𝛿𝑖1(𝑡𝑖 < 𝜏)
𝐺 (𝑡𝑖 | 𝑥𝑖)

+ − log(1 − 𝐹𝜃 (𝜏 | 𝑥𝑖))1(𝑡𝑖 > 𝜏)
𝐺 (𝜏 | 𝑥𝑖)

(F.6)

Inverse Weighted Calibration Curve. Calibration curves are commonly computed in binary clas-

sification tasks. This curve provides some understanding of how well the predicted risk corre-

sponds to the true risk. The predicted risks are discretized into bins and within each bin, the
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frequency of data points which correspond to positive cases is computed. For each bin, this fre-

quency shouldmatch themean of the bin if themodel is properly calibrated. In the case of survival

analysis, we can use the CDF value evaluated at some 𝜏 as the risk of the event having already

happened. Then, we can assign this risk to some bin and then count the number of uncensored

data points in the bin where the event has happened before 𝜏 . This count is censor-weighted and

then divided by the total number of bin members. The following estimates the risk inside the bin

boundaries 𝑏1 and 𝑏2 at time 𝜏 .

𝐶𝐶𝑤𝑡 (𝜏, 𝑏1, 𝑏2) =
∑𝑁
𝑖=1 1(𝑏1 ≤ 𝐹𝜃 (𝜏 | 𝑥𝑖) ≤ 𝑏2)𝛿𝑖1(𝑡𝑖 < 𝜏)𝑊 −1

𝑖∑𝑁
𝑖=1 1(𝑏1 ≤ 𝐹𝜃 (𝜏 | 𝑥𝑖) ≤ 𝑏2)

(F.7)

𝑊𝑖 = 𝐺 (𝑡𝑖 | 𝑥 𝑗 ) (F.8)

Model Optimization Details

The models are trained using stochastic gradient descent with the AdamW optimizer and the

following hyperparameters: (dropout rate: 0.1, weight decay: 1e-2, MDN mixture components:

5, a learning: 1e-4, embedding size: 64). The following bin boundaries in months are used for the

categorical version of the model: [0, 1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54,

57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 132, 144, 156,

168, 180, 192, 204, 216, 228, 240]. The bins are more granular up until the tenth year, but then we

specify larger intervals for each bin beyond ten years.
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