
Distributed Randomness in Adversarial Settings

by

Kevin Choi

A dissertation submitted in partial fulfillment

of the reqirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

August, 2025

Professor Joseph Bonneau

https://jbonneau.com/

© Kevin Choi

All rights reserved, 2025

Dedication

To my family: my father, my mother, my older brother, and my younger sister.

iii

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my advisor, Joe. His an-

chored support and insights as amentor have always guidedme through themany ups and downs

of my PhD journey, for which I am forever grateful. Joe was also generous enough to lead me

through many memorable experiences, such as outdoor climbing at the Gunks, touring San Fran-

cisco on nighttime trolleys, and the New Paltz retreat. His generosity, both inside and outside of

school, is something I will always remember.

I would also like to extend my gratitude to the rest of my dissertation committee: Yevgeniy

Dodis, Benedikt Bünz, Alin Tomescu, and Philipp Jovanovic. Their presence on the committee

and openness to help mean a lot to me. Furthermore, I would like to thank all other outstand-

ing professors at NYU from whom I had the privilege of learning, including Oded Regev, Subhash

Khot, Davi Geiger, Anasse Bari, Ralph Grishman, Aurojit Panda, Anirudh Sivaraman, Rajesh Ran-

ganath, Michael Walfish, and Lakshmi Subramanian.

Next, I would like to acknowledge my co-authors and other collaborators: Arasu Arun, Mi-

randa Christ, Aathira Manoj, Nirvan Tyagi, Walter McKelvie, Tal Malkin, Brad Windsor, Zachary

DeStefano, Chelsea Komlo, Benedikt Bünz, Rachit Garg, BenediktWagner, FaxingWang, William

Wang, and Noah Golub. In particular, Arasu, I feel lucky to have had you as my academic sibling

who started around the same time as I did. While it was sometimes a bit of a challenge to get

you out of Stuytown for us to do something together, it was always rewarding to convince you

to hang out, take our photos together at Yankee Stadium, and, most importantly, go through the

iv

ups and downs together. Miranda, it was such a joy whenever you invited me to climbing, and

I am glad we were able to spend time together in different contexts. Zach, I am grateful for the

many fond memories we shared during PhD. Faxing, somehow you ended up at NYU, and it was

always great to see you in the office and talk about crypto and life.

In addition to academic conversations, Will and Noah have been my muscle-up collaborators.

As each year goes by, I am reminded that health is wealth, and after my knee surgery in 2024, my

body was not in the best shape. Will, thank you for starting your muscle-up journey with me,

which helped mine after a hiatus, and Noah, thank you for sharing your cultural, historical, and

musical knowledge with me along the way.

A huge thank you goes to my officemates, Jacob Salzberg and Alexandre Moine, without

whom I would not be able to hear words like Coq/Roq, Lean, and separation logic. Jacob, I also

appreciate your wisdom on kefir—thank you. Alexandre, merci beaucoup pour nos conversations

sur la musique. On that note, I would also like to thank my first officemate, Cheng Tan, when I

first arrived at NYU, as well as John Westhoff. Further thanks to other building mates at various

points in time: Xiangyu Gao, Haseeb Ashfaq, Shiva Iyer, Taegyun Kim, Fabian Ruffy, Betty Li

Hou, and Derek Yen. Thanks also to Sihyun Lee and the Sihyun Bar.

Outside of NYU, I would like to acknowledge Prashanth Ramakrishna and Alireza Kavousi

for meaningful conversations, Magdalena Stern-Baczewska and Beth Pratt for their heartening

support from Columbia, Gina Lee for artistic inspirations, Sangah Park for the yoga journey, and

Minseok Baik and Hobin Kim for many memories in Korea.

Having done my undergraduate studies in NYC as well, I am privileged to be surrounded by

friends I have known for years. A huge thank you to maestros Augusto Ghiotto and Javier Llaca;

my life would not be the same without you both in many respects. I thoroughly appreciate our

respective travel memories (e.g. to Korea, Japan, or Mexico) in addition to countless memories

since college. Further thanks to Jiajia Zhao, Barbie Matthews, Binna Han, Jorge Rojas Zamalloa,

Dajung Yoo, and Helen Yang.

v

Finally, thanks to the Mashpotato Pizza group chat with Javier, Jorge, Salvador, and Souren. I

always have the best Mexican food when I am with the group.

vi

Abstract

Distributed randomness in adversarial settings concerns the problem of jointly computing

a random output in a network of mutually untrusting participants such that the output is not

predictable or biasable by any participant or any coalition of participants. A distributed random-

ness beacon (DRB) is a service that periodically emits random outputs through such distributed

randomness protocols and has found applications in cryptographically verifiable lotteries and

gaming as well as leader election in distributed systems and consensus algorithms. In the past

decade, the landscape of DRBs has evolved, withmany DRB protocols relying on ad hoc heuristics

rather than structured design principles. While this bottom-up approach has led to interesting

integrations of cryptographic techniques, establishing a unifying framework of DRBs has re-

mained open prior to this work. Similarly, the consideration of security properties of DRBs, such

as unbiasability and unpredictability, has typically been restricted to specific settings.

This dissertation seeks to address these gaps by adopting a top-down approach to realizing a

distributed randomness beacon. We conceptualize the broader design space of DRBs, introduce

comprehensive security definitions applicable to all DRBs, and consider a variety of practical

deployment scenarios. Simultaneously, we compare protocols based on their communication and

computational efficiency and also highlight the functionality of various cryptographic building

blocks in light of DRBs rather than solely focusing on their technical details.

Furthermore, we shed light on the security gap that exists between theoretical models and

real-world scenarios, where most theoretical DRBs rely on the honest majority assumption (net-

vii

work assumption that more than half of the nodes are honest) which has shown to break down

in practice (e.g. the $625 million Axie Infinity’s Ronin hack in 2022). Recognizing this issue, we

propose two new optimized DRB protocols—Bicorn and Cornucopia—that offer robustness even

in the presence of a dishonest majority. Bicorn is a “commit-reveal-recover" protocol designed

to recover withheld values through special-purpose timed commitments. In its optimistic case,

Bicorn is reminiscent of a classic commit-reveal protocol and thus remains efficient despite the

dishonest majority setting. From a different angle, Cornucopia explores the possibility of achiev-

ing sublinear verification cost per beacon output in a dishonest majority setting and offers an

affirmative solution. As the amount of data posted to the public bulletin board (in a public bul-

letin board model) is reduced from prior work’s linear to constant, Cornucopia is in fact able to

enjoy a lower communication complexity in general. We achieve this using cryptographic accu-

mulators and define a novel security property of accumulators called insertion security, to handle

the case of a malicious coordinator.

Through these contributions, we aim to advance the understanding and implementation of

distributed randomness beacons in light of cryptography and beyond, offering current insights,

recent progress, and directions for future research.

viii

Contents

Dedication iii

Acknowledgments iv

Abstract vii

List of Figures xiv

List of Tables xv

1 Introduction 1

1.1 Historical Context . 2

1.2 Organization . 5

1.3 Statement of Work . 6

2 Preliminaries 9

2.1 Verifiable delay functions . 9

2.2 Accumulators . 11

2.3 Vector commitments . 13

2.4 Algebraic group model . 14

2.5 Groups of unknown order and RSW assumptions 15

2.6 Randomizing exponent sizes . 17

2.7 Non-interactive zero-knowledge proofs . 17

ix

2.8 Verifiable Secret Sharing (VSS) . 19

2.9 Distributed Key Generation (DKG) . 20

2.10 Publicly Verifiable Secret Sharing (PVSS) . 21

2.11 Verifiable Random Function (VRF) . 23

2.12 Distributed Verifiable Random Function (DVRF) 24

2.13 DDH-DVRF . 25

2.14 GLOW-DVRF . 25

2.15 Dfinity-DVRF . 26

2.16 Other Cryptographic Primitives . 26

2.16.1 Lagrange Interpolation . 26

2.16.2 BLS Signature . 27

2.16.3 NIZK of Discrete Logarithm Equality (DLEQ) 28

3 Design Space of Distributed Randomness Beacons 29

3.1 Context . 29

3.1.1 System Model . 29

3.1.2 Strawman Protocol: Rock-Paper-Scissors 30

3.1.3 Commit-Reveal . 31

3.1.4 Ideal Distributed Randomness Beacons . 32

3.2 Delay-Based Protocols . 35

3.2.1 Modifying Commit-Reveal . 36

3.2.2 Adding Recovery to Commit-Reveal . 37

3.2.3 Chain of VDFs . 38

3.3 Commit-Reveal-Punish . 39

3.3.1 Enforcing Every Reveal . 40

3.3.2 Rational Threshold Commit-Reveal . 40

x

3.4 Commit-Reveal-Recover . 44

3.4.1 From Threshold Secret Sharing . 44

3.4.1.1 Commit-Reveal-Recover . 45

3.4.1.2 Share-Reconstruct-Aggregate 46

3.4.1.3 Share-Aggregate-Reconstruct 46

3.4.2 From Threshold Encryption . 47

3.5 Committee-Based Protocols . 48

3.5.1 Step 1. Committee Selection . 48

3.5.1.1 Public Committee Selection . 48

3.5.1.2 Private Committee Selection . 50

3.5.2 Step 2. Beacon Output Generation . 52

3.5.2.1 Fresh Per-Node Entropy . 52

3.5.2.2 Combining Previous Output and Precommitted Per-Node Entropy 53

3.6 Protocols With No Marginal Entropy . 55

3.7 Discussion . 58

3.7.1 Relation to Collective Coin Flipping Protocols 58

3.7.2 Withholding Attacks . 60

3.7.3 Adaptive Security . 61

3.7.4 Comparison of DRBs . 63

3.7.5 Concurrent Work . 64

3.8 Notes for Practitioners . 69

4 Bicorn: Tolerating Dishonest Majority with Optimistic Efficiency 71

4.1 Context . 71

4.2 Overview . 74

4.2.1 Protocol Outline . 74

xi

4.2.2 Bicorn-ZK: Using Zero-Knowledge Proofs 76

4.2.3 Bicorn-PC: Using Precommitment . 78

4.2.4 Bicorn-RX: Using Pseudorandom Exponents 78

4.2.5 Comparison . 79

4.3 Timed DRBs: Syntax and Security Definitions . 80

4.4 Security of Bicorn-RX . 82

4.5 Security of Bicorn-ZK . 87

4.6 Security of Bicorn-PC . 89

4.7 Implementation . 92

4.8 Discussion . 94

4.9 Individual protocol presentations . 97

5 Cornucopia: Tolerating Dishonest Majority in Large-Scale Networks 101

5.1 Context . 101

5.2 Timed DRBs: Definitions and Constructions . 104

5.2.1 Unicorn . 106

5.2.2 Cornucopia . 107

5.3 Cornucopia Security . 107

5.4 Insertion-secure accumulators . 112

5.4.1 Accumulators without insertion security 112

5.4.2 Merkle trees . 113

5.4.3 RSA accumulators . 114

5.4.4 Bilinear accumulators . 116

5.4.5 From generic universal accumulators . 117

5.4.6 From vector commitments . 120

5.5 Efficiency comparison of accumulator constructions 122

xii

5.6 Concluding Discussion . 124

6 Conclusion 128

Bibliography 130

xiii

List of Figures

2.1 VDF sequentiality game . 10

2.2 Accumulator security game . 12

2.3 Security games for the repeated squaring hardness assumptions: computational

RSW (left), computational power-of-RSW (center), and decisional RSW (right). . 15

2.4 Soundness (left) and zero-knowledge (right) security games for non-interactive

zero-knowledge proof systems. 19

3.1 Security game for DRB unbiasability. 32

4.1 Security games for themain security properties: consistency (left), 𝑡-unpredictability

(center), and 𝑡-indistinguishability (right). 81

5.1 Security games for (𝑝, 𝜎)-indistinguishability and (𝑝, 𝜎)-unpredictability. 105

5.2 The Unicorn timed DRB protocol [Lenstra and Wesolowski, 2015] 107

5.3 The Cornucopia protocol . 108

5.4 Insertion security game . 108

xiv

List of Tables

3.1 DRB Comparison . 62

3.2 Committee-Based DRBs . 65

4.1 A brief comparison of the Bicorn variants. See Protocol 1 for notation (⟨G⟩ and

⟨B⟩ are the sizes of elements from G and B, respectively) and Chapter 2 for a

background on the RSW assumptions, the algebraic group model (AGM), the ran-

dom oracle model (ROM), and zero-knowledge proof of knowledge of exponent

(ZK-PoKE). 79

4.2 Ethereum gas costs and main operations involved for each Bicorn variant as well

as Unicorn [Lenstra andWesolowski, 2015] andCommit-Reveal DRBs. For Bicorn-

PC, the Commit cost is split to show Precommit and Commit costs. The opera-

tions are: storeG/2𝜆 , storing a group element or 2𝜆-bit value; mul, multiplication

of two group elements; exp, raising a group element to a power of size 2𝜆 bits;

poe.v and zk-poke.v, verifying a proof of exponentiation and proof of knowledge

of exponent, respectively. Concrete costs are given with G = QR+𝑁 within an

RSA-2048 group and 𝜆 = 128. 93

5.1 Comparison of accumulator options for Cornucopia, at a security level of 𝜆 = 128

bits. Witness generation time is the time required to compute all 𝑛 witnesses.

†RSA accumulators can be instantiated using class groups [Long, 2018], which do

not require trusted setup. We report numbers here for the classic RSA group Z∗
𝑁
. . 122

xv

1 | Introduction

Secure randomness generation has long been a fundamental problem. With the advent of

distributed ledger technologies and proof-of-stake protocols, the particular problem setting of

generating a common random output from distributed sources in a network of mutually untrust-

ing participants—where some may actively attempt to bias or predict the output—has gained

significant attention in the past decade. The reason is that a random leader or committee must

be selected periodically ad infinitum in many of these distributed systems for the purpose of

coordinating the network state.

While this is reminiscent of the traditional literature on leader election in distributed systems,

the key distinction lies in the network and trust assumptions. In traditional distributed systems,

being a leader is not inherently beneficial or desirable. Participating nodes do not necessarily

compete for leadership, which is why protocols like PBFT [Castro and Liskov, 1999] simply rotate

leadership in a round-robin fashion whereas Raft [Ongaro and Ousterhout, 2014] bases leader

election on honest local clocks of replicas.

The recent setting in a distributed ledger like Ethereum [Wood et al., 2014] is quite different.

Here, nodes actively compete to become leaders, as each leader is rewarded for their coordination

efforts which may lead to securing billions of dollars in an incentivized network. This unique

context has spurred significant research in distributed randomness that is both publicly verifiable

and robust in adversarial settings, with the goal of powering various leader election mechanisms

and more.

1

1.1 Historical Context

Before delving into distributed randomness and distributed randomness beacons (DRBs), we

make a couple historical notes and motivate the study by identifying prior gaps in the literature.

Coin Flipping. Although the problem of distributed randomness in adversarial settings is more

relevant today than ever, it is certainly not a new challenge. Take coin flipping in information

theory, for example. Foundational works by Ben-Or and Linial [Ben-Or and Linial, 1985, Ben-

Or and Linial, 1989] examine coin flipping in the full information model, where computationally

unbounded participants use a single broadcast channel to agree on a random bit. This body of

literature primarily focuses on asymptotic (rather than concrete) bounds for corruption thresh-

olds, bias, and round complexity. While these results are insightful from a theoretical perspective,

a gap is that practical distributed randomness ideally needs to be as unbiasable as possible and

must allow cryptography for practical purposes in the first place.

Now, let us consider coin flipping in classical cryptography. Blum’s protocol for coin flip-

ping over the phone [Blum, 1983], for instance, introduces cryptographic techniques but does

not address adversarial participants who may abort or withhold values. Withholding is an issue

that is fundamental in the sense that honest failures (e.g. due to network connectivity) and mali-

ciously motivated withholding are indistinguishable. It is therefore a practical issue which Blum’s

work leaves as a gap; ideally, a well-designed distributed randomness protocol should handle this

scenario gracefully. Some later works [Moran et al., 2009,Haitner and Tsfadia, 2014] do incorpo-

rate cryptography and account for withholding. However, they are constrained by Cleve’s lower

bound [Cleve, 1986]: for any 𝑟 -round coin flipping protocol, an efficient adversary controlling

half or more of the participants can bias the output by Ω(1/𝑟). As a result, the best that these

works can achieve is to meet Cleve’s lower bound under classical assumptions. This again leaves

a gap, as we want distributed randomness that has no bias. Interestingly, we show how to cir-

2

cumvent this lower bound with modern delay functions later in the dissertation, opening new

possibilities for distributed randomness even with a dishonest majority.

Randomness beacon. The main classical work most closely related to modern research on

distributed randomness is the concept of a randomness beacon, first formalized by Rabin [Ra-

bin, 1983] in 1983. A randomness beacon is an ideal service that regularly emits fresh random

values that no party can manipulate or predict. This simple yet powerful concept, if realized,

could serve many amazing applications such as verifiable lotteries and gaming [Bonneau et al.,

2015, Gainsbury and Blaszczynski, 2017], electronic voting [Adida, 2008], selecting parameters

for cryptographic protocols [Baigneres et al., 2015, Lenstra and Wesolowski, 2015], leader elec-

tion in proof-of-stake protocols [Gilad et al., 2017,Kiayias et al., 2017,Boneh et al., 2020,Edgington,

2023,Johnson et al., 2024,Oshitani and Drake, 2025], distributed ledger sharding [Al-Bassam et al.,

2017,Kokoris-Kogias et al., 2018,Wang et al., 2019,David et al., 2022], timestamps [Chatzigiannis

and Chalkias, 2021, Arun et al., 2022], asynchronous Byzantine consensus protocols [Abraham

et al., 2022, Zhang and Duan, 2022,Duan et al., 2023], private stream aggregation [Brorsson and

Gunnarsson, 2023], and federated learning inmachine learning [Ma et al., 2023,van Kempen et al.,

2023,Chen et al., 2024,Karthikeyan and Polychroniadou, 2024,Ma et al., 2024].

However, because no such ideal beacon exists, various protocols have been developed to ap-

proximate this functionality for practical use.

Centralized Beacon. Relying on a trusted third party like NIST [Fischer et al., 2011, Kelsey

et al., 2019] or random.org [Haahr, 2010] might be the simplest way to realize a beacon. For ex-

ample, NIST’s beacon service publishes a 512-bit randomness output every 60 seconds. However,

a centralized beacon carries drawbacks typically associated with centralized services, such as the

risk of compromise or misbehavior due to a single point of failure as well as the inability of the

end user to verify the security of the beacon. In particular, it is straightforward to design a mali-

cious beacon that outputs statistically random values which are predictable given a trapdoor. For

3

instance, given a semantically secure encryption scheme, the underhanded beacon can simply

use a secret key to encrypt a counter in each interval. The security of the underlying encryp-

tion scheme guarantees that this is indistinguishable from random without access to the key, but

completely predictable given the key.

Implicit Beacon. Alternatively, implicit beacons exhibit randomness via publicly available en-

tropy sources such as stock market data [Clark and Hengartner, 2010] or proof-of-work (PoW)

blockchains like Bitcoin [Nakamoto, 2008,Bonneau et al., 2015,Bentov et al., 2016,Han et al., 2020].

These approaches leverage the apparent randomness in financial markets or mining processes to

generate beacon outputs. Bitcoin’s proof-of-work mechanism, for instance with its inherent un-

predictability in solving cryptographic puzzles, can represent a source of entropy. Nonetheless,

implicit beacons are potentially vulnerable to malicious insiders. Financial markets are suscep-

tible to manipulation by actors making unnatural trades to fix prices or exchanges reporting

incorrect data. Similarly, Bitcoin miners can withhold blocks or choose between colliding blocks,

potentially biasing the randomness. While these beacons are plausibly secure and low-cost in

practice, they still lack formal models of security and may not provide the guarantees required

for meaningful applications.

Satellite-Based Beacon. Powered by Cryptosat’s satellites launched since 2022 [Michalevsky,

2022], the Cosmic True Random Number Generator (cTRNG) project by SpaceComputer sources

entropy from cosmic flares and is live in 2025 in beta form [Langellotti, 2025]. A recent devel-

opment, such a beacon certainly offers unique security advantages by placing the randomness

generation infrastructure in physical locations not readily accessible by any earthly actor. Pow-

erful is the fact that this idea is now tangible as opposed to merely theoretical, as it instantiates

Rabin’s vision and also makes a meaningful step towards realizing a satellite-based blockchain

altogether which is shown to have the potential to be highly performant at a very low energy

cost [Shasha et al., 2023].

4

Distributed Randomness Beacon. While a satellite-based beacon represents an exciting di-

rection, a different approach, arguably the most flexible and pragmatic, for contemporary usage

is to reduce trust in a centralized or implicit beacon by performing a distributed protocol for the

purpose of randomness, i.e. via multi-party distributed randomness beacon (DRB). The benefit of

the DRB approach is its participatory nature (which for instance a satellite-based beacon does not

provide), allowing flexible configuration of a beacon depending on context, network, and trust

assumptions. At the same time, rich ideas from distributed computing, systems, and consensus

related to fault tolerance can be leveraged to build a highly robust beacon. Indeed, DRB proto-

cols are designed to remain secure and live despite some fraction of malicious participants, and

various ways exist to often juggle with security and scalability overall.

1.2 Organization

The goal of the following chapters is to systematize distributed randomness beacons from a

top-down perspective and then to present two novel protocols that can withstand a dishonest

majority. We propose a general framework encompassing all DRB protocols in the landscape. To

aid comparison and discussion of properties, we provide an overview of these protocols along

with the cryptographic building blocks used to construct them. We identify two key components

of DRB design: selection of entropy providers and beacon output generation, which can be de-

coupled from each other. Enabling a more holistic analysis of a DRB as a result, we also provide

new insights and discussion on potential attack vectors, countermeasures, and techniques that

lead to better scalability.

We begin with mathematical preliminaries in Chapter 2 and proceed to analyzing the design

space of distributed randomness beacons in Chapter 3. We include our systemmodel, a strawman

DRB under perfect synchrony (an ideal assumption), commit-reveal [Blum, 1983], and the defini-

tion of an ideal DRB in Section 3.1. Section 3.2 introduces protocols using delay functions (verifi-

5

able delay functions [Boneh et al., 2018a] and timed commitments [Boneh andNaor, 2000]), which

offer the best fault tolerance (dishonest majority) and simplicity, assuming secure delay functions

can be implemented in practice. In Section 3.3 to 3.6, we introduce non-delay-based DRB proto-

cols categorized by the number of nodes contributing marginal entropy (i.e. per-epoch random-

ness that is independently generated at a node level) in each epoch. Sections 3.3 and 3.4 review

protocols in which all nodes contribute marginal entropy. These protocols vary in mechanisms

used to recover from faulty nodes, including financial punishment [RANDAO, 2016,Yakira et al.,

2020], threshold secret sharing [Schoenmakers, 1999, Cascudo and David, 2017], and threshold

encryption [Desmedt and Frankel, 1990]. Section 3.5 covers committee-based protocols in which

each epoch includes an extra committee selection step, after which only a committee (subset)

of nodes contributes marginal entropy. These protocols are more complex but can offer greater

communication efficiency with large numbers of nodes. Section 3.6 covers pseudorandom pro-

tocols that do not require any marginal entropy; these protocols can be highly efficient but have

no mechanism to recover from compromise.

We highlight the importance of a dishonest majority setting when elaborating on Bicorn

(Chapter 4) and Cornucopia (Chapter 5), in which we via Bicorn achieve the best of commit-

reveal and delay functions, and via Cornucopia achieve sublinear verification cost per beacon

output.

1.3 Statement of Work

This dissertation is entirely my own work except where noted based on prior publications:

SoK: Distributed Randomness Beacons. The authors are Kevin Choi, Aathira Manoj, and

Joseph Bonneau, and the work was published in IEEE Symposium on Security and Privacy in 2023.

This work is expanded in Chapter 3.

6

• A holistic literature review, coming up with the framework to encompass all DRBs, and

updating the DRB Comparison Table over time

Bicorn: An optimistically efficient distributed randomness beacon. The authors are

Kevin Choi, Arasu Arun, Nirvan Tyagi, and Joseph Bonneau, and the work was published in

Financial Cryptography and Data Security in 2023. This work corresponds to Chapter 4.

• Conceiving the RX (randomized exponent) variant of Bicorn, working on security proofs

(unpredictability and indistinguishability) for the RX variant in the algebraic group model,

and collaborating on security proofs for the other variants

Cornucopia: Distributed Randomness Beacons at Scale. The authors are Miranda Christ,

Kevin Choi, and Joseph Bonneau, and the work was published in Advances in Financial Technolo-

gies in 2024. This work corresponds to Chapter 5.

• DRB definition and security properties, and narrating the protocol in light of related work

(such as Unicorn and Bicorn)

I also published the following works which are not included in this dissertation:

Thistle: A vector database in Rust. The authors are Brad Windsor and Kevin Choi, and the

work was published as arXiv preprint (arXiv:2303.16780) in 2023.

• Implementing the HNSW algorithm (graph-based approximate nearest neighbor search al-

gorithm called hierarchical navigable small world) in Rust, pipelining deep learningmodels,

and making vector queries in light of Transformer-based BERT model and embeddings

Accountable Secret Leader Election. The authors are Miranda Christ, Kevin Choi, Walter

McKelvie, Joseph Bonneau, and Tal Malkin, and the work was published in Advances in Financial

Technologies in 2024.

7

• Conceiving the idea, refining definitions of accountability, and working on the committee-

based approach which uses threshold encryption

8

2 | Preliminaries

In this chapter, we define common or recurring building blocks, assumptions, and notations.

We first define verifiable delay functions (VDFs) [Boneh et al., 2018a], accumulators [Benaloh

and De Mare, 1993], and vector commitments [Catalano and Fiore, 2013]. They rely on public

parameters pp which all functions take implicitly, though we will typically omit this for brevity.

We use 𝜆 to denote a security parameter, and poly(𝜆) and negl(𝜆) to denote polynomial and

negligible functions of 𝜆, respectively. We use
$←− (or

$−→) to denote the output of a randomized

algorithm, or sampling uniformly at random from a range. We use 𝛼 to denote an advice string

passed from a precomputation algorithm to a later online algorithm. We assume all adversaries

are limited to running in probabilistic polynomial time (PPT) in the security parameter 𝜆; some

adversaries are further limited to running in 𝜎 (𝑡) steps on at most 𝑝 (𝑡) parallel processors where

noted. We let [𝑘] denote the set {1, . . . , 𝑘}.

2.1 Verifiable delay functions

Definition 2.1 (Verifiable delay function [Boneh et al., 2018a]). A verifiable delay function (VDF)

is a tuple of algorithms (Setup, Eval,Verify) where:

VDF.Setup(𝜆, 𝑡) → pp takes as input 𝜆 and a time parameter 𝑡 and outputs public parameters

pp.

VDF.Eval(pp, 𝑥) → (𝑦, 𝜋) takes as input 𝑥 and produces an output 𝑦 and optional proof 𝜋 . This

9

Gsequential
A0,A1,𝑡,VDF

(𝜆)

pp
$←− VDF.Setup(𝜆, 𝑡)

𝛼
$←− A0 (pp)

𝑥
$←− 𝑈

𝑦
$←− A1 (𝛼, 𝑥)

𝑦, 𝜋 ← VDF.Eval(pp, 𝑥)

return 𝑦 = 𝑦

Figure 2.1: VDF sequentiality game

function should run in 𝑡 sequential steps.

VDF.Verify(pp, 𝑥,𝑦, 𝜋) → {0, 1} takes an input 𝑥 , output 𝑦, and optional proof 𝜋 , and verifies if

(𝑦, 𝜋) is a genuine output of Eval.

VDFs must satisfy the following three properties:

Verifiability. The verification algorithm is efficient (at most polylogarithmic in 𝑡 and 𝜆) and

always accepts when given a genuine output from VDF.Eval.

Uniqueness. VDF evaluation must be a function, meaning that VDF.Eval is a deterministic al-

gorithm and it is computationally infeasible to find two pairs (𝑥,𝑦), (𝑥,𝑦′) with 𝑦 ≠ 𝑦′ that

VDF.Verify will accept.

Sequentiality. VDFs must impose a computational delay. Roughly speaking, computing a VDF

successfullywith non-negligible probability over a uniformly distributed challenge𝑥 should

be impossible without executing 𝑡 sequential steps. Formally (adapted from [Boneh et al.,

2018a]):

Definition 2.2 (VDF sequentiality [Boneh et al., 2018a]). A VDF is (𝑝, 𝜎)-sequential if for all

randomized algorithms A0 which run in total time 𝑂 (poly(𝑡, 𝜆)), and A1 which run in parallel

10

time 𝜎 (𝑡) on at most 𝑝 (𝑡) processors:

Pr
[
Gsequential
A0,A1,𝑡,VDF

(𝜆) = 1
]
≤ negl(𝜆)

where Gsequential
A0,A1,𝑡,VDF

(𝜆) is defined in Figure 2.1.

2.2 Accumulators

Definition 2.3 (Accumulator [Benaloh and De Mare, 1993,Camenisch and Lysyanskaya, 2002]).

Given a data universe𝑈 , an accumulator [Benaloh and De Mare, 1993] is a tuple of algorithms

(Setup,Accumulate,GetMemWit,MemVer) where:

Acc.Setup(𝜆) → pp takes as input 𝜆 and outputs public parameters pp.

Acc.Accumulate(𝑆) → 𝐴 takes as input a set 𝑆 ⊆ 𝑈 to be accumulated. It outputs𝐴, an accumu-

lator value for 𝑆 .

Acc.GetMemWit(𝑆,𝐴, 𝑥) → 𝑤 takes as input a set 𝑆 ⊆ 𝑈 , an accumulator value 𝐴 for 𝑆 , and an

element 𝑥 ∈ 𝑆 . It outputs a membership witness𝑤 for 𝑥 .

Acc.MemVer(𝐴, 𝑥,𝑤) → {0, 1} takes as input an accumulator value𝐴, an element 𝑥 , and a mem-

bership proof (membership witness) 𝑤 . It verifies if 𝑥 is included in the accumulated set

represented by 𝐴.

We describe here only the accumulator functionality necessary for our purposes. Accumu-

lators generally also support an incremental Update function to add additional elements to the

accumulated set and dynamic accumulators support a Delete function to remove elements [Ca-

menisch and Lysyanskaya, 2002]. Cornucopia does not require either capability; we assume in

each run of the protocol the coordinator collects all randomness contributions (the set being ac-

cumulated), accumulates them in one batch operation and never deletes.

11

Gacc
A,Acc (𝜆)

pp
$←− Acc.Setup(𝜆)

𝑆, 𝑥,𝑤
$←− A(pp)

𝐴← Acc.Accumulate(𝑆)

return
Acc.MemVer(𝐴, 𝑥,𝑤) ∧ 𝑥 ∉ 𝑆

Figure 2.2: Accumulator security game

An accumulator is correct if MemVer always accepts for elements included in honestly accu-

mulated sets. An accumulator is computationally correct if it is computationally infeasible to find

a set such that an honestly generated inclusion proof for an element in that set does not verify.

The key security property of an accumulator is that for an honestly generated accumulator value

for some set 𝑆 , it is infeasible to find a membership proof for an element not in 𝑆 :

Definition 2.4 (Accumulator security [Camenisch and Lysyanskaya, 2002]). An accumulator

Acc is secure if no PPT adversary A can succeed with non-negligible probability in Gacc
A,Acc(𝜆) as

defined in Figure 2.2.

A universal accumulator [Li et al., 2007] also supports non-membership proofs; that is, it

supports two additional functions:

Acc.GetNonMemWit(𝑆,𝐴, 𝑥′) → 𝑤 ′ takes as input a set 𝑆 ⊆ 𝑈 , an accumulator value 𝐴 for 𝑆 ,

and an element 𝑥′ ∉ 𝑆 . It outputs a non-membership witness𝑤 ′ for 𝑥′.

Acc.NonMemVer(𝐴, 𝑥′,𝑤 ′) → {0, 1} takes as input an accumulator value 𝐴, an element 𝑥′, and

a non-membership proof (non-membership witness) 𝑤 ′. It verifies if 𝑥′ is not included in

the accumulated set represented by 𝐴.

For Cornucopia itself, a universal accumulator is not required as there is no reason for the

coordinator to prove to any user that their contribution is not included. However, in Section 5.4.5

we show a generic transformation from any universal accumulator to an insertion-secure accu-

mulator.

12

A universal accumulator is correct if, in addition to MemVer accepting for all included ele-

ments, NonMemVer accepts for all non-included elements. Security requires (in addition to basic

accumulator security) that no adversary can find valid membership and non-membership proofs

for the same element:

Definition 2.5 (Universal accumulator security [Li et al., 2007]). A universal accumulator Acc is

secure if for all PPT adversaries A:

Pr



pp
$←− Acc.Setup(𝜆)

𝐴, 𝑥,𝑤,𝑤 ′
$←− A(pp)

Acc.MemVer(𝐴, 𝑥,𝑤) ∧ Acc.NonMemVer(𝐴, 𝑥,𝑤 ′)


≤ negl(𝜆)

2.3 Vector commitments

We present only the functionality of vector commitments necessary for our applications.

Definition 2.6 (Vector commitment [Catalano and Fiore, 2013]). Given a message spaceM, a

vector commitment is a tuple of algorithms including:

Setup(𝜆, 𝑠) → pp takes in the security parameter 𝜆 and the size 𝑠 of the committed vector, and

outputs public parameters pp.

Commit(𝑚1, . . . ,𝑚𝑠) → (𝐶, aux) takes as input a vector of 𝑠 messages inM, and outputs a com-

mitment 𝐶 and some auxiliary information aux.

Open(𝑚, 𝑖, aux) → 𝜋𝑖 takes as input a message𝑚 ∈ M, an index 𝑖 , and some auxiliary informa-

tion aux. It outputs a proof 𝜋𝑖 that the 𝑖th component of the committed vector is𝑚.

Ver(𝐶,𝑚, 𝑖, 𝜋𝑖) → {0, 1} takes as input a commitment, a message𝑚, an index 𝑖 , and a proof that

the 𝑖th component of the committed vector is𝑚. It verifies the proof.

13

A vector commitment must satisfy correctness, which requires that honestly generated proofs

for correct components of honestly generated vector commitments verify. A vector commitment

must also satisfy position binding, which requires that an adversary cannot produce a (possibly

maliciously formed) commitment and two proofs of distinct values for the same component.

Definition 2.7 (Position binding [Catalano and Fiore, 2013]). A vector commitment satisfies

position binding if for all 𝑖 ∈ [𝑠] and for all PPT adversaries A:

Pr



pp
$←− Acc.Setup(𝜆)

𝐶,𝑚,𝑚′, 𝑖, 𝜋𝑖, 𝜋 ′𝑖
$←− A(pp)

Ver(𝐶,𝑚, 𝑖, 𝜋𝑖) ∧ Ver(𝐶,𝑚′, 𝑖, 𝜋 ′𝑖) ∧𝑚 ≠𝑚′


≤ negl(𝜆)

2.4 Algebraic group model

In some of our security proofs, we consider security against algebraic adversaries which we

model using the algebraic group model (AGM), following the treatment of [Fuchsbauer et al.,

2018]. We call an algorithm A algebraic if for all group elements 𝑍 that are output (either as

final output or as input to oracles), A additionally provides the representation of 𝑍 relative to

all previously received group elements. The previously received group elements include both

original inputs to the algorithm and outputs received from calls to oracles. More specifically,

if [𝑋]𝑖 is the list of group elements [𝑋0, . . . , 𝑋𝑛] ∈ G that A has received so far, then, when

producing group element 𝑍 , A must also provide a list [𝑧]𝑖 = [𝑧0, . . . , 𝑧𝑛] such that 𝑍 =
∏
𝑖 𝑋

𝑧𝑖
𝑖
.

14

GC-RSW
A,𝑡,GGen (𝜆)

(G, 𝑔, 𝐴, 𝐵) $←− GGen(𝜆)
𝜎 ← A0 (G, 𝑔, 𝐴, 𝐵)
𝑥

$←− G

𝑦
$←− A1 (𝜎, 𝑥)

Return 𝑦 = 𝑥2
𝑡

GC-RSW𝑒

A,𝑡,GGen (𝜆)

(G, 𝑔, 𝐴, 𝐵) $←− GGen(𝜆)
𝜎 ← A0 (G, 𝑔, 𝐴, 𝐵)
𝑥

$←− G

(𝑒,𝑦) $←− A1 (𝜎, 𝑥)
Return 𝑦 = (𝑥𝑒)2𝑡

GD-RSW
A,𝑡,𝑏,GGen (𝜆)

(G, 𝑔, 𝐴, 𝐵) $←− GGen(𝜆)
𝜎 ← A0 (G, 𝑔, 𝐴, 𝐵)
𝑥

$←− G; 𝑦1 ← 𝑥2
𝑡 ; 𝑦0

$←− G

𝑏′
$←− A1 (𝜎, 𝑥,𝑦𝑏)

Return 𝑏 = 𝑏′

Figure 2.3: Security games for the repeated squaring hardness assumptions: computational RSW (left),
computational power-of-RSW (center), and decisional RSW (right).

2.5 Groups of unknown order and RSW assumptions

Our protocols will operate over cyclic groups of unknown order. We assume an efficient

group generation algorithm GGen(𝜆) that takes as input security parameter 𝜆 and outputs a

group description G, generator 𝑔, and range [𝐴, 𝐵] where 𝐴, 𝐵, and 𝐵 − 𝐴 are all exponential in

𝜆; the group G has order in range [𝐴, 𝐵]. We assume efficient algorithms for sampling from the

group (𝑔
$←− G) and for testing membership.

There are a few currently known options with which to instantiate a group of unknown order.

One option that requires only a transparent setup is through class groups of imaginary quadratic

order [Buchmann and Hamdy, 2011]. However, class groups typically incur high concrete over-

heads. Instead, one may opt for more efficient RSA groups, which require a trusted setup or

multiparty computation “ceremony” [Chen et al., 2021] to compute the modulus 𝑁 = 𝑝𝑞 without

revealing safe primes 𝑝, 𝑞. Looking forward, we will require our group to additionally be cyclic

and satisfy the low order assumption [Boneh et al., 2018b]. So instead we will use the groupQR+𝑁 ,

the group of signed quadratic residues modulo 𝑁 (we refer to Pietrzak for more details [Pietrzak,

2018]).

The security of our constructions is based on the assumption, proposed by RSW [Rivest et al.,

1996], that, given a random element 𝑥 ∈ G, the fastest algorithm to compute 𝑦 = 𝑥 (2
𝑡) takes 𝑡

sequential steps. We follow the formalism of Katz et al. [Katz et al., 2020]. We use three RSW

15

assumptions; we provide security games in Figure 2.3.

Computational RSW. In the computational RSW game, the adversaryA = (A0,A1) is tasked

with computing the 2𝑡 -th power of a challenge element. The adversary acts in two stages. In

the preprocessing stage,A0 is given a description of the group and outputs an intermediate state

passed to A1. In the challenge stage, A1 is given the challenge input 𝑥 and intermediate state 𝜎

and attempts to output 𝑦 = 𝑥2
𝑡 . We define the advantage of an adversary as:

AdvC-RSWA,𝑡,GGen(𝜆) = Pr
[
GC-RSW
A,𝑡,GGen(𝜆) = 1

]
In this game and in the following, the advantage is only meaningful when the challenge stage

adversary’s running time is limited to < 𝑡 . In the Strong AGM (SAGM) [Katz et al., 2020] and

when G is QR𝑁 , it is shown that when A0,A1 run in fewer than 𝑝𝑜𝑙𝑦 (𝜆), 𝑡 steps, respectively,

GC-RSW can be won with only negligible probability assuming the hardness of factoring [Katz

et al., 2020, Theorem 2].

Computational power-of-RSW. We introduce a stronger variant of computational RSW that

we term computational “power-of-RSW.” In this game, the adversary need not output 𝑦 = 𝑥2
𝑡

directly, rather the adversary may output (𝑒,𝑦𝑒) such that 𝑦𝑒 = (𝑥𝑒)2
𝑡 . The hardness of compu-

tational power-of-RSW for time-bounded adversaries can be shown with a slight modification

of the proof used to show the hardness of computational RSW in [Katz et al., 2020]. The SAGM

adversary outputs 𝑑 (alongside 𝑒 ≠ 0) with |𝑑 | < 2𝑡 such that 𝑥𝑑 = 𝑥𝑒 ·2
𝑡 . Computing 4(𝑒 · 2𝑡 − 𝑑)

then gives a multiple of 𝜙 (𝑁), allowing us to factor 𝑁 . We define the advantage of an adversary

as:

AdvC-RSW
𝑒

A,𝑡,GGen(𝜆) = Pr
[
GC-RSW𝑒

A,𝑡,GGen(𝜆) = 1
]

16

Decisional RSW. Finally, a stronger decisional assumption is that an attacker cannot even dis-

tinguish 𝑥2𝑡 from a random group element. There is no proof for this assumption, even in generic

models. We define the advantage of an adversary as:

AdvD-RSWA,𝑡,GGen(𝜆) =
���Pr [
GD-RSW
A,𝑡,1,GGen(𝜆) = 1

]
− Pr

[
GD-RSW
A,𝑡,0,GGen(𝜆) = 1

] ���
2.6 Randomizing exponent sizes

We recall a useful lemma for randomizing group elements [Micciancio, 2005].

Lemma 2.8. For any cyclic group G and generator 𝑔, if 𝑟
$←− B is chosen uniformly at random, then

the statistical distance between 𝑔𝑟 and the uniform distribution over G is at most |G|2|B| .

Looking forward, we will use this lemma in our security proofs to replace a generator taken

to the power of a large exponent of size |B| ≈ 22𝜆 · |G| with a random element. Alternatively,

one may opt for the stronger short exponent indistinguishability (SEI) assumption [Couteau et al.,

2021] which asserts that an adversary cannot computationally distinguish between a uniformly

random element of G and 𝑔𝑟 for 𝑟
$←− [0, 22𝜆]. The latter assumption enables significant efficiency

gains in practice, with participants publishing 32-byte 𝛼 values instead of 288 bytes.

2.7 Non-interactive zero-knowledge proofs

A non-interactive proof system for a relation R over statement-witness pairs (𝑥,𝑤) enables

producing a proof, 𝜋 ← Prove(pk, 𝑥,𝑤), that convinces a verifier ∃𝑤 : (𝑥,𝑤) ∈ R, 0/1 ←

Verify(𝑣𝑘, 𝜋, 𝑥); pk and vk are proving and verification keys, (pk, vk) ← Keygen(R). A non-

interactive argument of knowledge further convinces the verifier not only that the witness𝑤 exists

but also that the prover knows 𝑤 , and if proved in zero-knowledge, the verifier does not learn any

additional information about𝑤 . The formal security properties of a non-interactive proof system

are as follows.

17

Completeness. A proof system is complete if given a true statement, a prover with a witness

can convince the verifier. We will make use of proof systems with perfect completeness. A proof

system has perfect completeness if for all (𝑥,𝑤) ∈ R,

Pr [Verify(𝑥, Prove(𝑥,𝑤)) = 1] = 1 .

Knowledge soundness. A proof system is computationally knowledge sound if whenever a

prover is able to produce a valid proof for a statement𝑥 , it is a true statement, i.e., there exists some

witness 𝑤 such that (𝑥,𝑤) ∈ R. We require a stronger property to allow for simulating proofs

for false statements. This scenario is common in security proofs and so it is desirable to have

soundness even in the presence of simulated proofs. This stronger notion of knowledge sound-

ness is known as simulation-extractability and is defined by the security game Gsound
A,R,PoK,S,Ext(𝜆)

(Figure 2.4) in which an adversary is tasked with finding a verifying statement and proof where

the statement is not in R. The advantage of an adversary is defined as

AdvsoundA,R,PoK,S,Ext(𝜆) = Pr[Gsound
A,R,PoK,S,Ext(𝜆) = 1] .

Zero-knowledge. A proof system is computationally zero-knowledge if a proof does not leak

any information besides the truth of a statement. Zero-knowledge is defined by the security game

Gzk
A,𝑏,R,PoK,S(𝜆) (Figure 2.4) in which an adversary is tasked with distinguishing between proofs

generated from a valid witness and simulated proofs generated without a witness by simulator

S. The advantage of an adversary is defined as

AdvzkA,R,PoK,S(𝜆) =
��Pr[Gzk

A,1,R,PoK,S(𝜆) = 1] − Pr[Gzk
A,0,R,PoK,S(𝜆) = 1]

�� .
In this work, we will make use of proof systems for two relations. First, we use PoE for

the following relation for proofs of exponentiation in groups of unknown order [Wesolowski,

2019, Pietrzak, 2018, Boneh et al., 2019]: {((𝑥,𝑦 ∈ G, 𝛼 ∈ Z),⊥) : 𝑦 = 𝑥𝛼 }. Second, we use ZK-

PoKE (realized by ZKPoKRep from [Boneh et al., 2019]) for zero-knowledge proofs of knowledge

of exponent in groups of unknown order: {((𝑥,𝑦 ∈ G), 𝛼 ∈ Z) : 𝑦 = 𝑥𝛼 }.

18

Gsound
A,R,PoK,S,Ext (𝜆)

(𝑠𝑡S, pp)
$←− S.Setup(𝜆)

(𝑥, 𝜋) $←− ASimProve (pp)
𝑤 ← Ext(A)

Return
∧©­­­­­«

PoK.Verify(𝑥, 𝜋)

(𝑥,𝑤) ∉ R

(𝑥, 𝜋) ∉ Q

ª®®®®®¬
SimProve(𝑥,𝑤)

𝜋
$←− S.Prove(𝑥 : 𝑠𝑡S)

Q ← Q ∪ {(𝑥, 𝜋)}
Return 𝜋

Gzk
A,𝑏,R,PoK,S (𝜆)

pp1
$←− PoK.Setup(𝜆)

(𝑠𝑡S, pp0)
$←− S.Setup(𝜆)

𝑏′
$←− AProve (pp𝑏)

Return 𝑏′

Prove(𝑥,𝑤)
Require (𝑥,𝑤) ∈ R
𝜋1

$←− PoK.Prove(𝑥,𝑤)
𝜋0

$←− S.Prove(𝑥 : 𝑠𝑡S)
Return 𝜋𝑏

Figure 2.4: Soundness (left) and zero-knowledge (right) security games for non-interactive zero-
knowledge proof systems.

2.8 Verifiable Secret Sharing (VSS)

VSS schemes have two security requirements.

• Secrecy. If the dealer is honest, then the probability of an adversary learning any informa-

tion about the dealer’s secret in the sharing phase is negl(𝜆).

• Correctness. If the dealer is honest, then the honest nodes output the secret 𝑠 at the end of

the reconstruction phase with a high probability of 1 − negl(𝜆).

Feldman-VSS [Feldman, 1987] and Pedersen-VSS [Pedersen, 1991a] are the most commonly used

VSS schemes.

Feldman-VSS. The following summarizes a simple VSS scheme proposed by Paul Feldman for

sharing a secret 𝑠 among 𝑛 participants where any subset of 𝑡 + 11 among them can reconstruct

the secret.
1𝑡 related to secret sharing denotes the maximum number of nodes an adversary can corrupt.

19

• ShareGen(𝑠) → ({𝑠𝑖},𝐶) with 𝑠 ∈ Z𝑞 involves the dealer sampling 𝑡 random coefficients

𝑎1, . . . , 𝑎𝑡 ∈ Z𝑞 and constructing 𝑝 (𝑥) = 𝑠 +𝑎1𝑥 +𝑎2𝑥2+ · · ·+𝑎𝑡𝑥𝑡 . The shares are computed

as 𝑠𝑖 = 𝑝 (𝑖) in mod 𝑞 for 1 ≤ 𝑖 ≤ 𝑛 and shared privately with each participant. The

commitments to the secret 𝐶0 = 𝑔𝑠 as well as coefficients 𝐶 𝑗 = 𝑔𝑎 𝑗 for 𝑗 = 1, . . . , 𝑡 are also

broadcast by the dealer.

• ShareVerify(𝑠𝑖,𝐶) → {0, 1} involves each participant 𝑃𝑖 checking if:

𝑔𝑠𝑖 =

𝑡∏
𝑗=0
𝐶𝑖

𝑗

𝑗 =𝐶0𝐶
𝑖
1𝐶

𝑖2

2 · · ·𝐶𝑖
𝑡

𝑡

If it does not hold for some 𝑖 , then 𝑃𝑖 broadcasts an accusation against the dealer, who has

to respond by broadcasting the correct 𝑠𝑖 . Correct reconstruction is achieved by filtering

out shares not passing ShareVerify.

• Recon(𝐴, {𝑠𝑖}𝑖∈𝐴) → 𝑠 outputs the secret 𝑠 by performing Lagrange interpolation (see Sec-

tion 2.16.1) with 𝑡 + 1 valid shares from the reconstruction set 𝐴 of nodes:

𝑠 = 𝑝 (0) =
∑︁
𝑗∈𝐴

𝑝 (𝑗)𝜆0, 𝑗,𝐴

The verifiability in Feldman-VSS comes from inclusion of commitments to the coefficients.

These commitments enable participants to verify the validity of the shares that they receive from

the dealer.

2.9 Distributed Key Generation (DKG)

One of the best known DKG schemes is Joint-Feldman, proposed by Pedersen [Pedersen,

1991b].

20

Joint-Feldman. In this DKG scheme, each participant uses Feldman-VSS to share a randomly

chosen secret. The protocol is implemented as follows:

• DKG(1𝜆, 𝑡, 𝑛) → (𝑠𝑘𝑖, 𝑝𝑘𝑖, 𝑝𝑘) proceeds in two phases—Sharing and Reconstruction.

1. In Sharing phase, each participant 𝑃𝑖 runs Feldman-VSS by choosing a random poly-

nomial over Z𝑞 of degree 𝑡 , 𝑝𝑖 (𝑧) =
∑𝑡
𝑗=0 𝑎𝑖 𝑗𝑧

𝑗 , and sending a subshare 𝑠𝑖 𝑗 = 𝑝𝑖 (𝑗)

in mod 𝑞 to each participant 𝑃 𝑗 privately. To satisfy the verifiability portion of VSS,

𝑃𝑖 also broadcasts 𝐶𝑖𝑘 = 𝑔𝑎𝑖𝑘 for 𝑘 = 0, . . . , 𝑡 . Let the commitment corresponding to

the secret be denoted by 𝑦𝑖 = 𝐶𝑖0. Each participant 𝑃 𝑗 also verifies the subshares it

receives from other participants by performing verification steps of Feldman-VSS on

each subshare. If verification for index 𝑖 fails, 𝑃 𝑗 broadcasts a complaint against 𝑃𝑖 .

If 𝑃𝑖 receives more than 𝑡 complaints, then 𝑃𝑖 is disqualified. Otherwise, 𝑃𝑖 reveals

the subshare 𝑠𝑖 𝑗 for every 𝑃 𝑗 that has broadcast a complaint. We call C the set of

non-disqualified participants.

2. Reconstruction phase calculates the keys based on C. The group public key is calcu-

lated as 𝑝𝑘 =
∏
𝑖∈C 𝑦𝑖 where the individual public keys are 𝑝𝑘𝑖 = 𝑦𝑖 . Each participant

𝑃 𝑗 ’s individual secret key is computed as 𝑠𝑘 𝑗 =
∑
𝑖∈C 𝑠𝑖 𝑗 . Though not computed explic-

itly, the group secret key 𝑠𝑘 is equal to both
∑
𝑖∈C 𝑎𝑖0 and the Lagrange interpolation

involving the individual secret keys {𝑠𝑘 𝑗 } 𝑗∈C .

2.10 Publicly Verifiable Secret Sharing (PVSS)

PVSS can be described by the following algorithms:

• Setup(𝜆) → 𝑝𝑝 generates the public parameters 𝑝𝑝 , an implicit input to all other algo-

rithms.

21

• KeyGen(𝜆) → (𝑠𝑘𝑖, 𝑝𝑘𝑖) generates the PVSS key pair used for encryption and decryption

for node 𝑖 .

• Enc(𝑝𝑘𝑖,𝑚) → 𝑐 and Dec(𝑠𝑘𝑖, 𝑐) → 𝑚′ are subalgorithms used to encrypt and decrypt the

share to node 𝑖 , respectively. Both Enc and Decmay optionally output a proof (e.g. 𝜋𝐷𝐿𝐸𝑄).

• ShareGen(𝑠) → ({Enc(𝑝𝑘𝑖, 𝑠𝑖)}, {𝑠′𝑖 }, 𝜋) with 𝑠′𝑖 = Dec(𝑠𝑘𝑖, Enc(𝑝𝑘𝑖, 𝑠𝑖)) is a two-part pro-

cess. First, the dealer with secret 𝑠 generates secret shares {𝑠𝑖} and sends each encrypted

share Enc(𝑝𝑘𝑖, 𝑠𝑖) to node 𝑖 with an optional encryption proof 𝜋𝐸𝑛𝑐𝑖 . Second, node 𝑖 decrypts

the received encrypted share to generate 𝑠′𝑖 and broadcasts it with an optional decryption

proof 𝜋𝐷𝑒𝑐𝑖 . Note that it is possible that 𝑠′𝑖 ≠ 𝑠𝑖 . In fact, 𝑠′𝑖 = ℎ
𝑠𝑖 is standard (referred to as

sharing a group element). 𝜋 incorporates {𝜋𝐸𝑛𝑐𝑖 } and {𝜋𝐷𝑒𝑐𝑖 } as well as any auxiliary proof

necessary.

• ShareVerify({Enc(𝑝𝑘𝑖, 𝑠𝑖)}, {𝑠′𝑖 }, 𝜋) → {0, 1} verifies if ShareGen is correct overall using 𝜋 .

• Recon(𝐴, {𝑠′𝑖 }𝑖∈𝐴) → 𝑠′ reconstructs the shared secret 𝑠′ via Lagrange interpolation (in the

exponent) from a set 𝐴 of 𝑡 + 1 nodes whose contributions are passed by the ShareVerify

algorithm. Typically, 𝑠′ = ℎ𝑠 in the landscape (referred to as sharing a group element).

PVSS is a secure VSS scheme providing the following additional guarantee:

• Public Verifiability. If the ShareVerify algorithm returns 1, then the scheme is valid in a

publicly verifiable manner with high probability 1 − negl(𝜆).

Schoenmakers PVSS. One of the simplest PVSS schemes used in practice is one by Schoenmak-

ers [Schoenmakers, 1999]. As typical, the setup involves 𝑔, ℎ ∈ G𝑞 . Additionally, each participant

𝑃𝑖 generates a secret key 𝑥𝑖 ∈ Z∗𝑞 and registers 𝑦𝑖 = ℎ𝑥𝑖 as its public key.

22

• ShareGen(𝑠) → ({Enc(𝑦𝑖, 𝑠𝑖)}, {𝑠′𝑖 }, 𝜋) with 𝑠′𝑖 equal to Dec(𝑥𝑖, Enc(𝑦𝑖, 𝑠𝑖)) first involves

production of {Enc(𝑦𝑖, 𝑠𝑖)} by the dealer with secret 𝑠 . Namely, the dealer picks a random

polynomial 𝑝 of degree 𝑡 with coefficients in Z𝑞

𝑝 (𝑥) =
𝑡∑︁
𝑖=0

𝑎𝑖𝑥
𝑖

where 𝑠 = 𝑝 (0) = 𝑎0 and computes 𝑌𝑖 = Enc(𝑦𝑖, 𝑠𝑖) = 𝑦
𝑝 (𝑖)
𝑖

, which is sent to each node 𝑖

along with information needed to prove its correctness: 𝐶 𝑗 = 𝑔𝑎 𝑗 for 0 ≤ 𝑗 ≤ 𝑡 such that

𝑋𝑖 =
∏𝑡

𝑗=0𝐶
𝑖 𝑗

𝑗 = 𝑔𝑝 (𝑖) and DLEQ (𝑔,𝑋𝑖, 𝑦𝑖, 𝑌𝑖) (see Section 2.16.3). Upon receiving 𝑌𝑖 , node

𝑖 computes 𝑠′𝑖 = Dec(𝑥𝑖, 𝑌𝑖) = 𝑌 1/𝑥𝑖
𝑖

= ℎ𝑝 (𝑖) and generates information needed to prove its

correctness: DLEQ (ℎ,𝑦𝑖, 𝑠′𝑖 , 𝑌𝑖).

• ShareVerify({𝑌𝑖}, {𝑠′𝑖 }, 𝜋) → {0, 1} verifies the encryption proof DLEQ (𝑔,𝑋𝑖, 𝑦𝑖, 𝑌𝑖) where

𝑋𝑖 ’s are computed from 𝐶 𝑗 ’s as well as the decryption proof DLEQ (ℎ,𝑦𝑖, 𝑠′𝑖 , 𝑌𝑖).

• Recon(𝐴, {𝑠′𝑖 }𝑖∈𝐴) → ℎ𝑠 performs the following Lagrange interpolation in the exponent

∏
𝑖∈𝐴
(𝑠′𝑖)𝜆0,𝑖,𝐴 = ℎ

∑
𝑖∈𝐴 𝑝 (𝑖)𝜆0,𝑖,𝐴 = ℎ𝑝 (0) = ℎ𝑠

where 𝜆0,𝑖,𝐴 denotes the Lagrange coefficients. Note that, unlike VSS, the scheme does not

require the knowledge of the values 𝑝 (𝑖) by the participants. The secret keys 𝑥𝑖 are not

exposed as well and thus can be reused.

2.11 Verifiable Random Function (VRF)

A VRF [Micali et al., 1999, Dodis and Yampolskiy, 2005] is a function that, given an input 𝑥

and a secret key 𝑠𝑘 , generates a unique, pseudorandom output 𝑦 as well as a proof 𝜋 verifying

that the computation has been done correctly. Due to 𝜋 , it is possible to repeatedly generate new

23

pseudorandom outputs with one 𝑠𝑘 and varying inputs in a verifiable manner whereas otherwise

(e.g. using a classical pseudorandom function) one needs to divulge the secret key and sacrifice

its reusability for public verification purposes. It can be represented by the following tuple of

algorithms.

• Prove(𝑠𝑘, 𝑥) → (𝐹𝑠𝑘 (𝑥), 𝜋𝑠𝑘 (𝑥)) generates the pseudorandom output 𝐹𝑠𝑘 (𝑥) and its proof

of correctness 𝜋𝑠𝑘 (𝑥) given input 𝑥 and secret key 𝑠𝑘 .

• Verify(𝑝𝑘, 𝑥,𝑦, 𝜋) → {0, 1} outputs 1 if it is verified that 𝑦 = 𝐹𝑠𝑘 (𝑥) using the proof 𝜋 and

0 otherwise.

2.12 Distributed Verifiable Random Function (DVRF)

A distributed verifiable random function (DVRF) is a VRF where any 𝑡 + 1 out of 𝑛 nodes can

jointly compute a pseudorandom output while any 𝑡 nodes cannot. It can be described by the

following algorithms:

• DKG(1𝜆, 𝑡, 𝑛) → (𝑠𝑘𝑖, 𝑝𝑘𝑖, 𝑝𝑘) runs a typical DKG.

• PartialEval(𝑠𝑘𝑖, 𝑥) → (𝑦𝑖, 𝜋𝑖) outputs the partial evaluation 𝑦𝑖 as well as its proof of cor-

rectness 𝜋𝑖 given an input 𝑥 and a node’s secret key 𝑠𝑘𝑖 .

• PartialVerify(𝑝𝑘𝑖, 𝑥,𝑦𝑖, 𝜋𝑖) → {0, 1} verifies the correctness of the partial evaluation𝑦𝑖 given

its proof 𝜋𝑖 , an input 𝑥 , and a node’s public key 𝑝𝑘𝑖 .

• Combine(𝐴, {(𝑦𝑖, 𝜋𝑖)}𝑖∈𝐴) → (𝑦, 𝜋) outputs the DVRF evaluation 𝑦 as well as its proof of

correctness 𝜋 given a set 𝐴 of 𝑡 + 1 nodes and their outputs of PartialEval(𝑠𝑘𝑖, 𝑥), all of

which pass PartialVerify.

• Verify(𝑝𝑘, {𝑝𝑘𝑖}, 𝑥,𝑦, 𝜋) → {0, 1} verifies the DVRF evaluation 𝑦 given 𝜋 , input 𝑥 , and

public keys.

24

2.13 DDH-DVRF

DDH-DVRF (from the decisional Diffie-Hellman assumption) is described by the following

DVRF algorithms.

• DKG(1𝜆, 𝑡, 𝑛) runs a typical DKG.

• PartialEval(𝑠𝑘𝑖, 𝑥) outputs (𝑦𝑖, 𝜋𝑖) where𝑦𝑖 = 𝐻 (𝑥)𝑠𝑘𝑖 and 𝜋𝑖 = DLEQ (𝑔,𝑔𝑠𝑘𝑖 , 𝐻 (𝑥), 𝐻 (𝑥)𝑠𝑘𝑖)

denoting the non-interactive Chaum-Pedersen protocol (see Section 2.16.3).

• PartialVerify(𝑝𝑘𝑖, 𝑥,𝑦𝑖, 𝜋𝑖) is equivalent to DLEQ-Verify(𝑔, 𝑝𝑘𝑖, 𝐻 (𝑥), 𝑦𝑖, 𝜋𝑖) (Section 2.16.3)

and verifies the correctness of the PartialEval algorithm using 𝜋𝑖 .

• Combine(𝐴, {(𝑦𝑖, 𝜋𝑖)}𝑖∈𝐴) outputs (𝑦, 𝜋) where𝑦 =
∏
𝑖∈𝐴 𝑦

𝜆0,𝑖,𝐴
𝑖

and 𝜋 = {(𝑦𝑖, 𝜋𝑖)}𝑖∈𝐴. Details

related to Lagrange coefficients 𝜆0,𝑖,𝐴 are included in Section 2.16.1.

• Verify(𝑝𝑘, {𝑝𝑘𝑖}, 𝑥,𝑦, 𝜋) verifies all partial proofs via PartialVerify for all 𝑖 ∈ 𝐴 from 𝜋 and

checks 𝑦 =
∏
𝑖∈𝐴 𝑦

𝜆0,𝑖,𝐴
𝑖

.

2.14 GLOW-DVRF

Providing a compact proof 𝜋 , GLOW-DVRF uses a bilinear pairing 𝑒 : G1 ×G2 → G𝑇 similar

to BLS (Section 2.16.2) such that the setup includes hash functions 𝐻1 : {0, 1}∗ → G1 and 𝐻2 :

G1 → {0, 1}𝑦 (𝜆) . While resembling DDH-DVRF, the following algebraic modifications are made

due to pairings.

• DKG(1𝜆, 𝑡, 𝑛) is adapted so that 𝑝𝑘𝑖 resides in G1 while 𝑝𝑘 resides in G2. This is achieved

by letting (𝑝𝑘𝑖, 𝑝𝑘) = (𝑔𝑠𝑘𝑖1 , 𝑔
𝑠𝑘
2) for 𝑔1 ∈ G1 and 𝑔2 ∈ G2. The purpose of this is to facilitate

a compact proof in the final Verify step.

• PartialEval(𝑠𝑘𝑖, 𝑥) outputs (𝑦𝑖, 𝜋𝑖); 𝑦𝑖 = 𝐻1(𝑥)𝑠𝑘𝑖 and 𝜋𝑖 = DLEQ (𝑔1, 𝑔𝑠𝑘𝑖1 , 𝐻1(𝑥), 𝐻1(𝑥)𝑠𝑘𝑖).

25

• PartialVerify(𝑝𝑘𝑖, 𝑥,𝑦𝑖, 𝜋𝑖) is equivalent to DLEQ-Verify(𝑔1, 𝑝𝑘𝑖, 𝐻1(𝑥), 𝑦𝑖, 𝜋𝑖) and verifies

the correctness of the PartialEval algorithm using 𝜋𝑖 .

• Combine(𝐴, {(𝑦𝑖, 𝜋𝑖)}𝑖∈𝐴) outputs (𝑦, 𝜋) where 𝜋 =
∏
𝑖∈𝐴 𝑦

𝜆0,𝑖,𝐴
𝑖

and 𝑦 = 𝐻2(𝜋). Note that 𝜋

is a group element.

• Verify(𝑝𝑘, {𝑝𝑘𝑖}, 𝑥,𝑦, 𝜋) verifies 𝑦 = 𝐻2(𝜋) and a pairing equation 𝑒 (𝜋,𝑔2) = 𝑒 (𝐻1(𝑥), 𝑝𝑘).

2.15 Dfinity-DVRF

Dfinity-DVRF is given by the following DVRF algorithms.

• DKG(1𝜆, 𝑡, 𝑛) is adapted so that both 𝑝𝑘𝑖 and 𝑝𝑘 reside in G2. This is achieved by letting

(𝑝𝑘𝑖, 𝑝𝑘) = (𝑔𝑠𝑘𝑖2 , 𝑔
𝑠𝑘
2) for 𝑔2 ∈ G2. The purpose of this is to facilitate the check of some

pairing equation in both PartialVerify and Verify.

• PartialEval(𝑠𝑘𝑖, 𝑥) outputs (𝑦𝑖, 𝜋𝑖) where 𝑦𝑖 = 𝐻1(𝑥)𝑠𝑘𝑖 and 𝜋𝑖 = ⊥. The reason for a null

proof is that a pairing equation check is used in PartialVerify (i.e. the differentiator from

GLOW-DVRF) with no need for any auxiliary information.

• PartialVerify(𝑝𝑘𝑖, 𝑥,𝑦𝑖, 𝜋𝑖) checks a pairing equation 𝑒 (𝑦𝑖, 𝑔2) = 𝑒 (𝐻1(𝑥), 𝑝𝑘𝑖).

• Combine(𝐴, {(𝑦𝑖, 𝜋𝑖)}𝑖∈𝐴) equals that in GLOW-DVRF.

• Verify(𝑝𝑘, {𝑝𝑘𝑖}, 𝑥,𝑦, 𝜋) equals that in GLOW-DVRF.

2.16 Other Cryptographic Primitives

2.16.1 Lagrange Interpolation

Given a non-empty reconstruction set 𝐴 ⊂ Z𝑞 , the Lagrange basis polynomials are given by

𝜆 𝑗,𝐴 (𝑥) =
∏
𝑘∈𝐴\{ 𝑗}

𝑥−𝑘
𝑗−𝑘 ∈ Z𝑞 [𝑋] such that the Lagrange coefficients 𝜆𝑖, 𝑗,𝐴 = 𝜆 𝑗,𝐴 (𝑖) ∈ Z𝑞 enable

26

the equality 𝑝 (𝑖) = ∑
𝑗∈𝐴 𝑝 (𝑗)𝜆𝑖, 𝑗,𝐴 for any polynomial 𝑝 ∈ Z𝑞 [𝑋] of degree at most |𝐴| − 1. The

process of computing this equality is called Lagrange interpolation.

2.16.2 BLS Signature

Introduced by Boneh, Lynn, and Shacham in 2003, the BLS signature scheme [Boneh et al.,

2001] consists of the following tuple of algorithms given a key pair (𝑠𝑘, 𝑝𝑘).

• Sign𝑠𝑘 (𝑚) → 𝐻1(𝑚)𝑠𝑘 outputs a digital signature 𝜎 = 𝐻1(𝑚)𝑠𝑘 given secret key 𝑠𝑘 and

message𝑚 where 𝐻1 is a hash function such that 𝐻1 : {0, 1}∗ → G1.

• Verify𝑝𝑘 (𝑚,𝜎) → {0, 1} verifies 𝜎 given signature 𝜎 , message 𝑚, and public key 𝑝𝑘 via

𝑒 (𝜎,𝑔2) = 𝑒 (𝐻1(𝑚), 𝑝𝑘).

Note that BLS uses a bilinear pairing 𝑒 : G1 × G2 → G𝑇 with G1 = ⟨𝑔1⟩, G2 = ⟨𝑔2⟩, G𝑇 denoting

a cyclic group of prime order 𝑞, and the following requirements.

• Bilinearity. 𝑒 (𝑔𝑥1 , 𝑔
𝑦

2) = 𝑒 (𝑔1, 𝑔2)𝑥𝑦 for all 𝑥,𝑦 ∈ Z∗𝑞 .

• Non-degeneracy. 𝑒 (𝑔1, 𝑔2) ≠ 1.

• Computability. 𝑒 (𝑔1, 𝑔2) can be efficiently computed.

The threshold variant [Boldyreva, 2003] of BLS (i.e. threshold BLS) requires Sign𝑠𝑘 (𝑚) to be

computed by 𝑡 + 1 out of 𝑛 nodes. This is achieved via DKG such that 𝑠𝑘 denotes the implicit

group secret key whereas each node broadcasts its partial signature𝐻1(𝑚)𝑠𝑘𝑖 , 𝑡 +1 of which from

the set 𝐴 of honest nodes are combined to generate

𝐻1(𝑚)𝑠𝑘 =
∏
𝑖∈𝐴

(
𝐻1(𝑚)𝑠𝑘𝑖

)𝜆0,𝑖,𝐴
via Lagrange interpolation in the exponent.

27

2.16.3 NIZK of Discrete Logarithm Eqality (DLEQ)

Also known as the Chaum-Pedersen protocol [Chaum and Pedersen, 1992], the Σ proto-

col [Damgård, 2002] for proving that the two discrete logarithms are equal without revealing

the discrete logarithm value itself can be turned into a NIZK by applying the Fiat-Shamir heuris-

tic [Fiat and Shamir, 1986]. Namely, the prover can non-interactively prove the knowledge of 𝛼

such that (ℎ1, ℎ2) = (𝑔𝛼1 , 𝑔𝛼2) via 𝜋𝐷𝐿𝐸𝑄 = DLEQ (𝑔1, ℎ1, 𝑔2, ℎ2) with group elements in G𝑞 .

DLEQ (𝑔1, ℎ1, 𝑔2, ℎ2)

Input: 𝑔1, ℎ1, 𝑔2, ℎ2 ∈ G𝑞 , 𝛼 ∈ Z𝑞

Output: 𝜋 = (𝑒, 𝑠)

1. 𝐴1 = 𝑔
𝑤
1 , 𝐴2 = 𝑔

𝑤
2 for𝑤

$←− Z𝑞

2. 𝑒 = 𝐻 (ℎ1, ℎ2, 𝐴1, 𝐴2)

3. 𝑠 =𝑤 − 𝛼 · 𝑒 (mod 𝑞)

4. 𝜋 = (𝑒, 𝑠)

DLEQ-Verify(𝑔1, ℎ1, 𝑔2, ℎ2, 𝜋)

Input: 𝑔1, ℎ1, 𝑔2, ℎ2 ∈ G𝑞 , 𝜋 = (𝑒, 𝑠)

Output: 𝑏 ∈ {0, 1}

1. 𝐴′1 = 𝑔
𝑠
1ℎ
𝑒
1, 𝐴
′
2 = 𝑔

𝑠
2ℎ
𝑒
2

2. 𝑒′ = 𝐻 (ℎ1, ℎ2, 𝐴′1, 𝐴′2)

3. 𝑏 =


1 if 𝑒′ = 𝑒

0 otherwise

28

3 | Design Space of Distributed

Randomness Beacons

3.1 Context

3.1.1 System Model

We consider a system with a fixed set of 𝑛 participants P = {𝑃1, 𝑃2, ..., 𝑃𝑛} (also called nodes).

We may also write P = {1, 2, ..., 𝑛} for the purpose of algebraic formulations. Of the 𝑛, up to

𝑡 nodes may be faulty (also called malicious or Byzantine) and engage in incorrect (arbitrary)

behavior during a protocol run. An adversary A that controls up to 𝑡 such nodes is called 𝑡-

limited. Otherwise, nodes that are honest abide by the specified protocol.

We assume a standard public key infrastructure (PKI) such that all nodes know each others’

public keys, and that all nodes are connected via point-to-point secure (providing authenticity)

communication channels. All messages exchanged by honest nodes are digitally signed by the

sender, and recipients always validate each message before proceeding. By default, we assume

a synchronous network, in which there exists some known finite message delay bound Δ. This

means that an adversary can delay a message by at most Δ.

Moreover, we assume a computationally bounded adversary A which runs in probabilistic

polynomial time (PPT). In particular, this means A cannot break standard cryptographic primi-

29

tives such as hash functions, digital signatures, etc. For delay-based protocols, we also assume the

adversary cannot compute delay functions in fewer than 𝑇 time steps. The three ways in which

A can deviate from a protocol are omitting a message (i.e. withholding attack), sending invalid

messages, and colluding to coordinate an attack based on private information shared among ma-

licious nodes. Additionally, A has the power to perform a grinding attack, in which A privately

precomputes and iterates through polynomially many combinations of inputs to an algorithm

in order to derive a desirable output. By default, we assume a (𝑡-limited) static adversary that

chooses nodes to be corrupted before a protocol run whereas an adaptive adversary can choose

nodes to be corrupted at any time during a protocol run (we assume a model where nodes remain

corrupted once corrupted).

We denote our computational model’s security parameter by 𝜆. We call a function negl(𝜆)

negligible if for all 𝑐 > 0 there exists a 𝜆0 such that negl(𝜆) < 1
𝜆𝑐
for all 𝜆 > 𝜆0. The group elements

𝑔, ℎ ∈ G are generators of G while 𝑝, 𝑞 denote primes where 𝑞 | 𝑝 − 1 (unless stated explicitly)

such thatG𝑞 is a group of prime order 𝑞. The notation 𝑡𝑢𝑝𝑙𝑒 [0] denotes the first element of 𝑡𝑢𝑝𝑙𝑒 .

Furthermore, we model any hash function 𝐻 (·) as a random oracle [Bellare and Rogaway, 1993].

In the context of a distributed randomness beacon, we use 𝜏 to denote epoch number and Ω𝜏

to denote the beacon output (i.e. the distributed randomness output) in epoch 𝜏 . The entropy-

providing committee denoted by C𝜏 refers to a subset of nodes (hereafter called entropy providers)

that proactively generate and provide marginal entropy in epoch 𝜏 .

3.1.2 Strawman Protocol: Rock-Paper-Scissors

Distributed randomness assuming perfect synchrony (Δ = 0) is straightforward. Consider

the following one-round protocol where each participant 𝑖 broadcasts its entropy contribution

(i.e. independently generated randomness) 𝑒𝑖
$←− Z𝑝 to every other participant at the same time.

30

The protocol’s random output Ω is calculated (via modular addition in Z𝑝) as:

Ω =

𝑛∑︁
𝑖=1

𝑒𝑖 (3.1)

Repeating this protocol periodically would yield a DRB. This protocol is simple—in fact, it is

essentially what humans approximate when playing rock-paper-scissors (with 𝑒𝑖
$←− Z3). Under

perfect synchrony, it is secure as long as any single participant chooses its 𝑒𝑖 randomly. However,

security falls apart completely once messages can be delayed. Consider a simple scenario with

three participants {𝑃1, 𝑃2, 𝑃3} producing Ω = 𝑒1 + 𝑒2 + 𝑒3. If 𝑃3 can read 𝑒1 and 𝑒2 before sending

𝑒3 (due to non-zero message latency) to 𝑃1 and 𝑃2, then 𝑃3 can fix the output Ω to any value Ω̃

by choosing 𝑒3 = Ω̃ − 𝑒1 − 𝑒2. Effectively, the protocol cannot tolerate any malicious partici-

pants without perfect synchrony. Indeed, humans may attempt to cheat in rock-paper-scissors

by quickly adjusting their play in reaction to what their opponent is playing.

3.1.3 Commit-Reveal

A classic fix for the above synchrony problem is to introduce a cryptographic commitment

step before each party reveals its entropy contribution.

1. Commit. Each participant 𝑃𝑖 broadcasts a cryptographic commitment 𝑐𝑖 = Com(𝑒𝑖, 𝑟𝑖) (with

fresh randomness 𝑟𝑖) to its entropy contribution 𝑒𝑖 rather than 𝑒𝑖 itself. Note thatCom(𝑥, 𝑟0)

denotes a cryptographic commitment to 𝑥 with hiding and binding properties [Blum, 1983,

Damgård, 1998]. If participants sample 𝑒𝑖 from a suitably large space, it is also secure to

simply publish 𝑐𝑖 = 𝐻 (𝑒𝑖).

2. Reveal. Once all participants have shared their corresponding commitments, each partic-

ipant 𝑃𝑖 then opens its commitment by revealing the pair (𝑒𝑖, 𝑟𝑖). In turn, 𝑃𝑖 verifies each

received pair (𝑒 𝑗 , 𝑟 𝑗) for 𝑗 ≠ 𝑖 by recomputing 𝑐 𝑗 = Com(𝑒 𝑗 , 𝑟 𝑗). Given that these checks

31

Gunbias
A,𝑏,DRB(𝜆)

𝑝𝑝𝜏 ← DRB𝜏 .Setup(𝜆)
𝜎 ← A0(𝑝𝑝𝜏)
Ω𝜏,1 ← DRB𝜏A1 (𝜎)∪(P\A1 (𝜎))
Ω𝜏,0 ← DRB𝜏P
𝑏′← A2(𝜎,Ω𝜏,𝑏)
Return 𝑏 = 𝑏′

Figure 3.1: Security game for DRB unbiasability.

pass, the final output Ω can be computed as in Equation 3.1. If any of the checks do not

pass, however, the protocol aborts and outputs ⊥.

With the additional commit step, it becomes impossible for any participant to manipulate the

outputΩ, as the contribution values are bound by commitments published before any participants

reveal. Nonetheless, the protocol can still be biased, as the last-revealing participant 𝑃𝑘 can in fact

compute Ω earlier than others and hence can decide to withhold (not reveal) (𝑒𝑘 , 𝑟𝑘) if Ω is not

to its liking. This is called the last-revealer attack. Note that this attack is indistinguishable from

an honest node going offline, and indeed the protocol in this basic form also has no robustness

against non-Byzantine faults.

3.1.4 Ideal Distributed Randomness Beacons

Clearly, a DRB should prevent any one participant from tampering with (e.g. predicting,

biasing, or aborting) the output. We formalize the security properties of an ideal DRB as follows.

Definition 3.1 (Ideal distributed randomness beacon). An ideal distributed randomness beacon

satisfies the following security properties:1

1We present a game-based security definition here, as it is the most commonly used in the literature. Other
formulations, such as ideal functionalities as used in UC-security [Canetti, 2001], are possible.

32

1. Unbiasability. A DRB is unbiasable if, for any PPT adversaryA = (A0,A1,A2), the adver-

sary’s advantage in the game depicted in Figure 3.1, given by

AdvunbiasA,DRB(𝜆) =
���Pr [
Gunbias
A,1,DRB(𝜆) = 1

]
− Pr

[
Gunbias
A,0,DRB(𝜆) = 1

] ���
is negligible, i.e. AdvunbiasA,DRB(𝜆) ≤ negl(𝜆).

2. Liveness. We define liveness [Cherniaeva et al., 2019] by requiring that the advantage of

A denoted by Pr[Ω𝜏 = ⊥] (i.e. the probability that the beacon output at the end of epoch

𝜏 is null) is negligible, given a DRB that runs among honest participants and A.

3. Unpredictability. We define two types of unpredictability. Suppose a DRB’s epoch 𝜏 starts

at time 𝑇𝜏,0 and finalizes (Ω𝜏 becomes publicly available) at 𝑇𝜏,1 in the optimistic case (if

every node is honest and online) and at 𝑇𝜏,2 in the worst case.

• A DRB is 𝛼-intra-unpredictable (𝛼 > 0) ifA participating in DRB𝜏 (Figure 3.1) cannot

predict any property of Ω𝜏 at time 𝑇𝜏,2 − 𝛼 with non-negligible advantage:

Pr[Ω𝜏 ∈ 𝑌] ≤
|𝑌 |

2ℓΩ𝜏 (𝜆)
+ negl(𝜆)

where 𝑌 denotes the set of possible values predicted by A and ℓΩ𝜏 (𝜆) denotes the

bit-length of Ω𝜏 . It is 𝛼-intra-predictable otherwise.

• A DRB is 𝛽-inter-unpredictable (𝛽 ≥ 1) if A cannot predict any property of Ω𝜏+𝛽′ (as

defined above) for any 𝛽′ ≥ 𝛽 before 𝑇𝜏,2 with non-negligible advantage.

Unbiasability. In the unbiasability gameGunbias
A,𝑏,DRB depicted in Figure 3.1, the adversary algorithm

A0 first precomputes an advice string (𝜎) given theDRB’s public parameters 𝑝𝑝𝜏 in epoch𝜏 (which

may include the previous beacon output, a list of participants in epoch 𝜏 , the identity of the epoch

leader, etc. depending on protocol specifications). Our definition is quite general in that the advice

33

string may encode any biasing “strategy.” This string is taken by A1, which then (statically and

within epoch 𝜏) corrupts up to 𝑡 nodes in the honest node set P = {1, . . . , 𝑛}, interacts with

P \ A1, and outputs the beacon output Ω𝜏,1. In contrast, Ω𝜏,0 denotes the honest beacon output

generated by P (and not involving A1). For both, the notation DRB𝜏
P̃
denotes a DRB in epoch 𝜏

with a participant set P̃. Then A2 distinguishes the two cases given the same advice string. A

DRB is unbiasable if the adversary can do so with negligible probability. Our definition includes

the possibility of private biasing, e.g. the adversary biases the result in a way that requires a

secret key to detect. This means that the biased beacon outputs can even appear pseudorandom

(indistinguishable from uniform distribution) to an outsider, a notion not considered in previous

works [Bonneau et al., 2015,Bhat et al., 2021,Das et al., 2022].

Liveness. While liveness implies a notion called guaranteed output delivery [Schindler et al.,

2020,Das et al., 2022] (all honest nodes receive Ω𝜏 at the end of epoch 𝜏), it is in turn implied by

unbiasability (due to the fact that Ω𝜏,0 from Figure 3.1 is never null). For instance, commit-reveal,

due to the last-revealer attack, does not satisfy liveness and thus is biasable.

Unpredictability. We note that 𝛽-inter-unpredictability (though in different forms) has been

considered in previous works [Bhat et al., 2021, Bhat et al., 2023] for 𝛽 ≥ 1, but we extend the

notion to “𝛽 = 0” and explicitly consider 𝛼-intra-unpredictability in conjunction with 𝛽-inter-

unpredictability, in order to exhibit variations across all possible DRBs. While neither implies

the other, both are defined using the same probability formulation (involving Pr[Ω ∈ 𝑌]), which

has not been considered in previous works [Bhat et al., 2021,Schindler et al., 2020,Das et al., 2022]

and captures cases where (say)A predicts the first bit of Ω is 1 (in which case𝑌 is a set of possible

beacon output values whose first bit is 1), predicts the middle 10 bits make a prime number, etc.

We also note that 𝛽-inter-unpredictability implies 𝛽-inter-unpredictability for all 𝛽 > 𝛽 , and that

𝛼-intra-unpredictability for all 𝛼 > 0 implies unbiasability. The reason is that biasability allows

A in Gunbias
A,𝑏,DRB to make a prediction towards its biasing strategy encoded in 𝜎 , implying that there

exists 𝛼 > 0 such that the protocol is 𝛼-intra-predictable.

34

3.2 Delay-Based Protocols

One way to prevent the last-revealer attack is to compute Ω𝜏 using a delay function after

combining each node’s entropy contribution. If the delay is suitably long, no participant can

predict what effect a potential contribution will have on the output before its contribution must

be published. Typically, a verifiable delay function (VDF) [Boneh et al., 2018a,Boneh et al., 2018b]

is used to accomplish this while maintaining efficient verifiability of the result.

Definition 3.2 (Verifiable delay function). A verifiable delay function (VDF) is a function that

takes a specified number of sequential steps to compute (even with a large amount of parallelism

available) but takes significantly less time to verify. It is described by the following algorithms:

• Setup(𝜆,𝑇) → 𝑝𝑝 is a randomized algorithm that outputs public parameters 𝑝𝑝 given

security parameter 𝜆 and delay parameter 𝑇 2.

• Eval(𝑝𝑝, 𝑥) → (𝑦, 𝜋) computes 𝑦 in 𝑇 sequential steps and (optionally) a proof 𝜋 , given 𝑝𝑝

and an input 𝑥 .

• Verify(𝑝𝑝, 𝑥,𝑦, 𝜋) → {0, 1} outputs 1 if 𝑦 is the unique correct evaluation of the VDF on

input 𝑥 and 0 otherwise.

Twowell-knownVDF proposals, due to Pietrzak [Pietrzak, 2018] andWesolowski [Wesolowski,

2019], make use of the (believed) inherently sequential nature of repeated squaring in a group of

unknown order. VDFs can also be constructed from incrementally verifiable computation [Boneh

et al., 2018a,Khovratovich et al., 2022,Kothapalli et al., 2022,Kothapalli and Setty, 2024,Arun and

Setty, 2024], isogenies [De Feo et al., 2019, Chavez-Saab et al., 2021], and lattices [Lai and Mala-

volta, 2023,Cini et al., 2023,Osadnik et al., 2025]. VDFs can be used to derive unbiasable random-

ness either from existing, biasable protocols (e.g. commit-reveal or public implicit beacons) or as

the building block for an entirely new protocol (like RandRunner [Schindler et al., 2021]).
2𝑡 denotes corruption threshold for a 𝑡-limited adversary in this chapter.

35

3.2.1 Modifying Commit-Reveal

The Unicorn protocol [Lenstra and Wesolowski, 2015] uses the Sloth function (a VDF precur-

sor based on computing square roots modulo a prime) in a manner similar to commit-reveal. In

fact, commitments are no longer needed; participants simply publish their entropy contributions

directly. Unicorn can be improved using a modern VDF in place of Sloth to achieve faster (con-

stant time) verification time for a given delay parameter. We refer to VDF-enhanced Unicorn as

Unicorn++. It runs as follows:

1. Collect. Every participant 𝑃𝑖 broadcasts its entropy contribution 𝑒𝑖 between time𝑇0 and𝑇1

(assuming synchronized clocks). At 𝑇1, they are combined into 𝑥𝜏 = 𝐻 (𝑒1, . . . , 𝑒𝑛).

2. Evaluate. Some party evaluates the VDF with 𝑥𝜏 and a chosen delay parameter 𝑇 (part of

𝑝𝑝) via

𝑦𝜏 , 𝜋𝜏 = VDF.Eval(𝑝𝑝, 𝑥𝜏)

such that Ω𝜏 = 𝐻 (𝑦𝜏), which is posted and can be efficiently verified by any observer using

𝜋𝜏 via VDF.Verify.

As long as 𝑇 is longer than the duration of 𝑇1 − 𝑇0, Unicorn++ successfully defends against any

attack possible by the last entropy provider. Also desirably, it is unbiasable by an adversary that

controls 𝑛 − 1 of the participants, as even one honest entropy contribution requires computation

of VDF.Eval from scratch. The downside of the protocol is that somebody must evaluate the VDF,

which is slow by design. It is possible to outsource this computation, even in a decentralized

manner [Thyagarajan et al., 2021b], as it does not matter for security who evaluates since VDFs

are deterministic and verifiable.

We note a variation of above [Bonneau et al., 2015,Bünz et al., 2017], replacing or bolstering

the participant entropy contributions with stock prices [Clark and Hengartner, 2010] or PoW

blockchain headers [Nakamoto, 2008, Bentov et al., 2016,Han et al., 2020] (which are otherwise

36

susceptible to manipulation) to supply 𝑥𝜏 in Collect. Such schemes are collectively denoted by

Ext. Beacon+VDF in Table 3.1. Unfortunately, they do not easily compare to other DRBs, as the

security model depends on the cost of manipulating the external beacon, which has not yet been

formally analyzed.

Cornucopia (Chapter 5) presents an optimization where a cryptographic accumulator is har-

nessed to capture all user contributions succinctly. HeadStart [Lee et al., 2022] is similar, uses

Merkle trees, and emphasizes a multi-round pipelined protocol to scale up Unicorn++ while re-

ducing latency. Cornucopia adopts the same conceptual approach as HeadStart, but the approach

differs in that Cornucopia offers a generic construction from any accumulator and develops pre-

cise security notions that are needed.

3.2.2 Adding Recovery to Commit-Reveal

Another way to modify commit-reveal is to leverage a different class of delay functions called

timed commitments [Boneh and Naor, 2000] in place of regular commitments used in commit-

reveal. The idea is simple: timed commitments are commitmentswith an additional slow recovery

process (the committed value can be recovered in 𝑇 sequential steps but not before) in case the

committer withholds.

Definition 3.3 (Timed commitment). A timed commitment is a commitment with an additional

algorithm whereby the committed value can be recovered (or forced open) in 𝑇 sequential steps

but not before:

• ForceOpen(𝑐) → (𝑥, 𝑟0) outputs the committed value (𝑥, 𝑟0) in 𝑇 sequential steps given a

commitment 𝑐 = Com(𝑥, 𝑟0).

This recovery process avoids the last-revealer attack, as a withholding participant’s contri-

bution can be recovered. Thus, the resulting distributed randomness protocol can be seen as

a “commit-reveal-recover” protocol (Section 3.4). This approach was suggested by Boneh and

37

Naor [Boneh and Naor, 2000] though not specified in detail. Thyagarajan et al. [Thyagarajan

et al., 2021a] proposed leveraging homomorphic timed commitments to combine contributions

and only require one delay function even if all participants refuse to open (rather than one com-

putation per withholder). Bicorn (Chapter 4) realizes the above logic in a simple, efficient DRB

with comparable overhead to basic commit-reveal.

The advantage of Bicorn over Unicorn++ is that in the optimistic case (where every partici-

pant is honest) the protocol has no delay, analogous to a simple commit-reveal. Context may be

important to consider if the optimistic case is unlikely to occur (e.g. due to poor network condi-

tions or too many participants), in which case Unicorn++ is simpler and also requires only one

delay function computation.

All of the protocols in this family share a fundamental predictability downside: if only one

participant (or a colluding coalition) withholds while all others reveal, then the attacker(s) can

simulate the optimistic case and learn Ω𝜏 early. As this implies 𝑇 -intra-unpredictability (with

delay parameter𝑇), a protocol should consider Ω𝜏 to be potentially available to adversaries as of

𝑇𝜏,1 (optimistic case), even if it is not publicly known until 𝑇𝜏,2 (worst case).

3.2.3 Chain of VDFs

A disadvantage of above approaches is that each epoch may require consensus [Castro and

Liskov, 1999] on inputs to the delay function, incurring communication cost. Also, the rate at

which beacon outputs are generated is limited by 𝑇 (by default in Unicorn++ and in Bicorn’s

ForceOpen case). RandRunner [Schindler et al., 2021] tackles these issues by leveraging a VDF

design that builds a deterministic chain of outputs (more precisely, a chain of 𝑛 interleaved VDFs

each set up by a node) to bypass per-epoch consensus while allowing each epoch’s duration to

be independent of 𝑇 in the optimistic case.

Namely, RandRunner uses Pietrzak’s VDF [Pietrzak, 2018], where knowledge of a trapdoor

allows an efficient evaluation of a VDF without 𝑇 sequential steps unlike VDF.Eval (but with

38

𝑇 steps otherwise). In its setup, each 𝑃𝑖 broadcasts 𝑝𝑝𝑖 (each corresponding to a different VDF

per participant). Then the idea is that, in each epoch, 𝐻 (Ω𝜏−1) is input to the VDF of the epoch

leader—selected via either round-robin (i.e. taking turns in some permuted order) or random se-

lection (i.e. using Ω𝜏−1 as seed), discussed in Section 3.5.1.1. In the optimistic case, the honest

leader (the only one that knows its trapdoor) efficiently evaluates and publishes the VDF output

as the beacon output while in the faulty case (if the leader withholds), others can evaluate the

same value albeit more slowly.

Thus, RandRunner optimistically generates each beacon output rapidly with only𝑂 (𝑛) com-

munication complexity. Adversarial leaders can increase the epoch duration to 𝑇 and the com-

munication complexity to 𝑂 (𝑛2).3 The protocol exhibits two other beneficial properties. First,

liveness is retained even with a dishonest majority and when network connectivity breaks down

completely, as one can simply compute the beacon outputs over time via VDF.Eval. Second, it

is impossible to bias the beacon once bootstrapped such that even the strongest adversary can

only predict but not bias. The trade-off is that RandRunner can never achieve the ideal 1-inter-

unpredictability property due to the existence of leaders that can withhold and adversaries with

higher compute power. In other words, 𝛽-inter-unpredictability can be achieved only with 𝛽 > 1,

though 𝛽 can be bounded [Schindler et al., 2021] with assumptions.

3.3 Commit-Reveal-Punish

Another approach to preventing last-revealer attacks is commit-reveal-punish, which assumes

that all participants are rational entities and use financial penalties to discourage withholding.

This requires some form of escrow (e.g. smart contracts on Ethereum [Wood et al., 2014]) to

collect initial deposits from the participants which can be slashed (destroyed or redistributed) if

misbehavior is detected. Commit-reveal-punish schemes defend against the last-revealer attack
3We assume consensus at a protocol level incurs 𝑂 (𝑛2) communication cost (bitwise) by default.

39

either by forcing every participant to reveal [Andrychowicz et al., 2014,Bentov and Kumaresan,

2014, RANDAO, 2016] or by tolerating some number of withholding participants via threshold

commit-reveal [Yakira et al., 2020]. These two approaches are summarized below.

3.3.1 Enforcing Every Reveal

Extending basic commit-reveal, RANDAO (’16) [RANDAO, 2016] implements commit-reveal-

punish in a straightforward way. Each participant is required to deposit coins at the time of

commitment, which are slashed if that participant withholds its value during the reveal phase.

The drawback of this approach is twofold. First, honest failures are indistinguishable from with-

holding and must also be punished. Attackers might exploit this by trying to block victim nodes

from publishing (e.g. by bidding up the price of gas in a smart contract platform). Second, a

high deposit of𝑂 (𝑛2) coins is required to ensure fairness [Andrychowicz et al., 2014,Bentov and

Kumaresan, 2014]. Thus, RANDAO (’16) is suitable only if participants are expected to be highly

available and possess an ample supply of coins. Practical deployment also requires understand-

ing of the value to participants of manipulating the beacon (to ensure the opportunity cost of lost

deposits is higher). This assumption is reasonable for applications such as a lottery but may not

apply for a public beacon whose use is not known in advance.

3.3.2 Rational Threshold Commit-Reveal

Economically Viable Randomness (EVR) [Yakira et al., 2020] provides an alternative requiring

constant deposits while tolerating (honest) faults to an extent. This is achieved by devising a

threshold variant of commit-reveal (i.e. in which 𝑡+1, as opposed to all𝑛, nodes reveal to compute

Ω𝜏) and having an incentive mechanism around it. The threshold nature also invites collusion,

which is counteracted by EVR’s informing mechanism: if the escrow is notified of collusion (via

informing), it rewards the informer and slashes the deposits of all others (collective punishment).

40

Realizing this, nodes are discouraged to collude, fearing another node within the coalition would

inform.

EVR requires multiple cryptographic building blocks (introduced here, as they are used in

other DRBs throughout the paper). EVR uses Escrow-DKG [Yakira et al., 2019], an extension

of DKG (distributed key generation) [Pedersen, 1991b,Gennaro et al., 1999,Groth, 2021,Gurkan

et al., 2021], to realize a threshold commit-reveal. DKG allows a set of 𝑛 nodes to collectively

generate a pair (𝑠𝑘, 𝑝𝑘) of group secret and public keys such that 𝑠𝑘 is shared and “implied” (i.e.

never computed explicitly) by 𝑛 nodes via the following building blocks.

Definition 3.4 ((𝑡, 𝑛)-secret sharing). The dealer in a (𝑡, 𝑛)-secret sharing shares a secret to 𝑛

participants such that any subset of 𝑡 + 1 or more participants can reconstruct the secret, but

smaller subsets cannot.

Definition 3.5 (Shamir’s secret sharing). A concrete realization of (𝑡, 𝑛)-secret sharing, Shamir’s

secret sharing [Shamir, 1979] allows a dealer to share a secret 𝑠 = 𝑝 (0) for some secret shar-

ing polynomial 𝑝 ∈ Z𝑞 [𝑋] of degree 𝑡 among 𝑛 participants each holding a share 𝑠𝑖 = 𝑝 (𝑖) for

𝑖 = 1, ..., 𝑛. Any subset of 𝑡 + 1 or more participants can reconstruct the secret 𝑠 via Lagrange in-

terpolation (Section 2.16.1), but smaller subsets cannot. In this paper, we use (𝑡, 𝑛)-secret sharing

and Shamir’s secret sharing interchangeably.

Definition 3.6 (Verifiable secret sharing). Verifiable secret sharing (VSS) [Feldman, 1987, Peder-

sen, 1991a] protects a (𝑡, 𝑛)-secret sharing scheme against a malicious dealer sending incorrect

shares by enabling verification of each share. VSS can be described by the following algorithms

(see Section 2.8 for details):

• Setup(𝜆) → 𝑝𝑝 generates the public parameters 𝑝𝑝 , an implicit input to all other algo-

rithms.

• ShareGen(𝑠) → ({𝑠𝑖},𝐶) is executed by the dealer with secret 𝑠 to generate secret shares

41

{𝑠𝑖} (each of which is sent to node 𝑖 correspondingly) as well as commitment𝐶 to the secret

sharing polynomial of degree 𝑡 .

• ShareVerify(𝑠𝑖,𝐶) → {0, 1} verifies share 𝑠𝑖 using 𝐶 .

• Recon(𝐴, {𝑠𝑖}𝑖∈𝐴) → 𝑠 reconstructs 𝑠 via Lagrange interpolation from a set𝐴 of 𝑡 + 1 nodes

that pass ShareVerify.

Definition 3.7 (Distributed key generation). A distributed key generation (DKG) [Pedersen, 1991b,

Gennaro et al., 1999] allows 𝑛 participants to collectively generate a group public key (with an im-

plicit group secret key), individual secret keys, and individual public keys without a trusted third

party. It does so by running 𝑛 instances of VSS (with each participant acting as a dealer for its

independent secret):

• DKG(1𝜆, 𝑡, 𝑛) → (𝑠𝑘𝑖, 𝑝𝑘𝑖, 𝑝𝑘) outputs the 𝑖-th node’s secret key, its public key (e.g. 𝑝𝑘𝑖 =

𝑔𝑠𝑘𝑖), and a group public key 𝑝𝑘 (e.g. 𝑝𝑘 = 𝑔𝑠𝑘) for an implicit group secret key 𝑠𝑘 given

security parameter 1𝜆 , 𝑡 , and 𝑛.

The intuition behind DKG is that it allows 𝑡 + 1 (but not less) out of 𝑛 nodes to jointly use 𝑠𝑘

via Lagrange interpolation without necessarily knowing 𝑠𝑘 . See Section 2.9 for details. Unlike

secret sharing schemes, one DKG setup can lead to a number (at least polynomial in the security

parameter) of usages, as the group secret key is never computed explicitly during normal use.

The crux of EVR is adopting Escrow-DKG. It is first different from a classic DKG in that an

escrow platform Escrow (e.g. smart contract) disincentivizes misbehavior. Second and more im-

portantly, Escrow-DKG’s implicit group secret key 𝑠𝑘 is in fact the beacon output that becomes

computed and publicized (unlike traditional DKGs in which the group secret key is never re-

vealed). EVR proceeds in four phases:

1. Setup. Every participant registers by depositing 1 coin per secret (i.e. entropy contribu-

tion), and Escrow accordingly sets the threshold parameter 𝑡 = 2𝑛/3 required for Escrow-

42

DKG. It also sets the illicit profit bound (i.e. extra profit an adversary can gain as a result of

using EVR’s output as opposed to an ideal beacon) to 𝑛 − 𝑡 = 𝑛/3 and the informing reward

to 𝑛.

2. Commit. Escrow-DKG is run, and each participant ends up with an individual key pair

(𝑠𝑘𝑖, 𝑝𝑘𝑖) as well as 𝑝𝑘 .

3. Inform. Any colluding participant that preemptively knows Ω𝜏 is incentivized to inform

Escrow to earn an informing reward obtained via collective punishment.

4. Reveal. Ω𝜏 = 𝑠𝑘 is reconstructed once 𝑡 + 1 (or more) participants reveal their 𝑠𝑘𝑖 ’s. Initial

deposits are returned after verification by Escrow. If Ω𝜏 is not reconstructed by the end,

Escrow also initiates collective punishment.

While a malicious node in EVR might withhold to abort the protocol during Reveal or collude

to learn Ω𝜏 before Reveal, security comes from the fact that both are disincentivized. First, setting

the illicit profit bound to 𝑛 − 𝑡 makes withholding unprofitable, as the 𝑛 − 𝑡 or more participants

needed to successfully abort EVR would earn an amount bounded by the illicit profit bound at the

cost of losing their deposits. This prevents biasability. Second, setting the informing reward to 𝑛

makes informing more profitable than any illicit profit. Thus, any coalition of nodes colluding to

preemptively learn Ω𝜏 is economically unstable, as all nodes are incentivized to defect and act as

an informer. This prevents predictability.

Despite the benefits of the threshold nature and constant deposits enabling a flexible incentive

mechanism, EVR requires further economic assumptions beyond those needed for commit-reveal-

punish. Specifically, EVR assumes a limit on illicit profit and a bound on the total number of coins

𝑛/3 (a participant with more coins than this is not allowed to join EVR as per decentralization

assumption [Yakira et al., 2020]).

43

3.4 Commit-Reveal-Recover

Without using escrow to enforce desired behavior, commit-reveal-recover variants defend

against the last-revealer attack by providing a mechanism to recover or reconstruct a partici-

pant’s entropy contribution if withheld. This can be achieved by either threshold secret sharing

or threshold encryption. Protocols based on commit-reveal-recover assume a 𝑡-limited adversary

and require the cooperation of at least 𝑡 + 1 nodes to reconstruct such that two desirable proper-

ties are achieved simultaneously: there is no need for all 𝑛 nodes to reveal while any subset of 𝑡

Byzantine nodes cannot collude to preemptively reconstruct. Note that this creates an inherent

trade-off: while a smaller value of 𝑡 helps tolerate more honest faults, it also means that a smaller

subset can collude to predict the beacon output in advance.

3.4.1 From Threshold Secret Sharing

Commit-reveal-recover variants often use publicly verifiable secret sharing (PVSS) [Schoen-

makers, 1999, Cascudo and David, 2017] as a subprotocol in order to allow any external party

(not just the participants) to verify the correctness of sharing and reconstruction.

Definition 3.8 (Publicly verifiable secret sharing). Publicly verifiable secret sharing (PVSS) is a

VSS with the following additional algorithms to enable public verification: PVSS.KeyGen (which

generates a key pair per participant), PVSS.Enc (for public-key encryption), and PVSS.Dec (de-

cryption). The idea is that PVSS.ShareGen uses above to encrypt and decrypt PVSS shares

and also to generate public proofs, e.g. non-interactive zero-knowledge (NIZK) proofs. Then

PVSS.ShareVerify can be run by anyone (not just the participants). See Section 2.10 for details.

The idea in these commit-reveal-recover variants is that each participant generates a secret

(i.e. entropy contribution), distributes PVSS shares to each other participant, and receives 𝑛 re-

spective shares of 𝑛 other participants’ secrets. These shares are then used to compute Ω𝜏 via

44

Lagrange interpolation4 (PVSS.Recon) in case some nodes withhold. Based on when and how

such Lagrange interpolation takes place, we subdivide the protocols into the following categories:

commit-reveal-recover, share-reconstruct-aggregate, and share-aggregate-reconstruct.

3.4.1.1 Commit-Reveal-Recover

Extending commit-reveal, commit-reveal-recover adds a step to the commit phase where every

participant is additionally required to distribute PVSS shares of its corresponding secret so that

others can reconstruct it via Lagrange interpolation (recover) if withheld. The trade-off is addi-

tional communication cost, which amplifies if 𝑂 (𝑛) Lagrange interpolations need to take place.

Scrape [Cascudo and David, 2017] adopts this technique.

Scrape. With its own PVSS scheme [Cascudo and David, 2017] designed for efficiency, Scrape

runs as follows after the initial generation (PVSS.KeyGen) of (𝑠𝑘𝑖, 𝑝𝑘𝑖) for each of the 𝑛 nodes:

1. Commit. Every node 𝑃 𝑗 runs PVSS.ShareGen(𝑠 (𝑗)) as a dealer and publishes the encrypted

shares Enc(𝑝𝑘𝑖, 𝑠 (𝑗)𝑖) for 𝑖 ∈ [𝑛] and encryption proofs. 𝑃 𝑗 also publishes a commitment to

the secret exponent Com(𝑠 (𝑗), 𝑟 𝑗) (with fresh randomness 𝑟 𝑗). Upon receiving encrypted

shares and proofs, all nodes run PVSS.ShareVerify to verify correct encryption. Let C𝜏 be

the set of nodes with published commitments and valid shares.

2. Reveal. Once 𝑡 +1 nodes have distributed their commitments and valid shares, every node

𝑃 𝑗 , 𝑗 ∈ C𝜏 , opens its commitment by revealing (𝑠 (𝑗), 𝑟 𝑗).

3. Recover. For every node 𝑃𝑎 ∈ C𝜏 that withholds (𝑠 (𝑎), 𝑟𝑎) in Reveal, other nodes 𝑃 𝑗 for

𝑗 ≠ 𝑎 reconstruct ℎ𝑠 (𝑎) via PVSS.Recon, which requires each node to publish its decrypted

share ℎ𝑠
(𝑎)
𝑗 and the proof of correct decryption passing PVSS.ShareVerify.

4. Aggregate. The final randomness is Ω𝜏 =
∏

𝑗∈C𝜏 ℎ
𝑠 (𝑗) .

4In this paper, we assume one Lagrange interpolation at a protocol level incurs𝑂 (𝑛2) and𝑂 (𝑛3) communication
cost (bitwise) in the optimistic and worst cases, respectively.

45

Note that Scrape, in the optimistic case (without Recover), is just a commit-reveal with𝑂 (𝑛2)

PVSS shares distributed in the network during commit, 𝑂 (𝑛) per node. In the worst case (with

Recover), it requires an entirely new round of communication and potentially 𝑂 (𝑛) Lagrange

interpolations.

Albatross. Extending Scrape, Albatross [Cascudo and David, 2020] provides an improved amor-

tized communication complexity of𝑂 (𝑛) per beacon output by generating a batch of𝑂 (𝑛2) bea-

con outputs per epoch (as opposed to one). This is achieved by two techniques: packed Shamir

secret sharing and linear 𝑡-resilient functions. As packed Shamir secret sharing allows sharing of

𝑂 (𝑛) secrets (as opposed to one) per instance while linear 𝑡-resilient functions allow outputting

of 𝑂 (𝑛) values (as opposed to one) in the final randomness aggregation step, each of these tech-

niques multiplicatively contributes 𝑂 (𝑛) to the number of beacon outputs produced per epoch.

3.4.1.2 Share-Reconstruct-Aggregate

Another approach is to skip the commit-reveal phase and by default reconstruct each se-

cret shared via PVSS. In other words, all nodes can distribute their PVSS shares (share), perform

Lagrange interpolation per secret for a total of𝑂 (𝑛) times (reconstruct), and aggregate the inter-

polated secrets to output Ω𝜏 (aggregate). While the resulting share-reconstruct-aggregate saves a

round of communication (Reveal) from Scrape’s worst case, its average case does incur substan-

tial communication cost due to𝑂 (𝑛) Lagrange interpolations, each of which requires cooperation

of 𝑡 + 1 nodes. Hence, this approach is preferable when it can be assumed that most epochs will

require recovery due to faulty participants. RandShare [Syta et al., 2017] uses this technique.

3.4.1.3 Share-Aggregate-Reconstruct

Another alternative is to harness the homomorphic property of PVSS, due to which only one,

as opposed to 𝑂 (𝑛), Lagrange interpolation reconstructs Ω𝜏 if nodes perform aggregate before

reconstruct, hence share-aggregate-reconstruct. SecRand [Guo et al., 2020] uses this technique

46

to optimize communication complexity simply, and Rondo [Meng et al., 2025] takes it further by

applying more sophisticated optimizations via their version of VSS with Bulletproofs [Bünz et al.,

2018] and batching (which they call batched asynchronous VSS with partial output) to achieve

𝑂 (𝑛2 log𝑛) communication complexity in the worst case.

3.4.2 From Threshold Encryption

While protocols based on threshold secret sharing can incur high communication cost of

𝑂 (𝑛4) due to 𝑂 (𝑛) Lagrange interpolations, protocols relying on a different cryptographic prim-

itive, namely threshold encryption [Desmedt and Frankel, 1990] (which does not rely on PVSS),

offer a variant where only one Lagrange interpolation suffices even in the worst case. Though

reminiscent of share-aggregate-reconstruct, these protocols differ in that they require a DKG,

which may be run multiple times to refresh keys. In this section, we summarize how a protocol

like HERB [Cherniaeva et al., 2019] uses threshold encryption to construct a DRB.

The main idea is simple: 𝑛 participating nodes run a DKG, encrypt their respective entropy

contributions under the group public key 𝑝𝑘 , homomorphically combine all ciphertexts into one

group ciphertext, and jointly (requiring at least 𝑡 + 1 nodes) decrypt the group ciphertext via one

Lagrange interpolation. Effectively, the DKG is what makes this possible, as it allows the usage

of 𝑠𝑘 (to decrypt a ciphertext under 𝑝𝑘) without knowing it (recall from Definition 3.7).

HERB achieves a communication complexity of 𝑂 (𝑛2) and 𝑂 (𝑛3) in the optimistic and worst

cases, respectively. Its requirement of DKG in the setup presents a caveat however, as a new DKG

must take place for any attempt to refresh keys of participants, e.g. in case of a suspected hack

or a simple reconfiguration (in which the set of participants changes). This can incur additional

cost per DKG.

47

3.5 Committee-Based Protocols

All aforementioned commit-reveal variants include every node in the entropy-providing com-

mittee C𝜏 for every epoch. Incorporatingmarginal entropy from all nodes scales poorly with large

numbers of participants, and hence a natural optimization is to select a smaller subset of nodes

to contribute marginal entropy in each epoch (i.e. reduce |C𝜏 |).

In this section, we consider DRBs that are committee-based, with C𝜏 such that 1 ≤ |C𝜏 | < 𝑛.

Committee-based protocols proceed in two steps: committee selection and beacon output genera-

tion. As the names suggest, C𝜏 is agreed upon during committee selectionwhile the beacon output

Ω𝜏 is generated and agreed upon during beacon output generation. We observe that committee

selection and beacon output generation are, at least theoretically, modular such that subproto-

cols can be independently chosen for the two components. We visualize these two dimensions

of committee-based DRBs in Table 3.2. We also observe that the protocols introduced so far (e.g.

commit-reveal-recover) can be used as a module in a larger committee-based protocol, with the

chosen committee executing the chosen protocol in each epoch.

3.5.1 Step 1. Committee Selection

The first step of a committee-based DRB involves selecting C𝜏 in a way agreed by all nodes.

We classify committee selection mechanisms into two: public and private.

3.5.1.1 Public Committee Selection

In a public committee selection, only public information is needed to derive C𝜏 .

Round-Robin (RR).A simple example is round-robin (RR), in which nodes simply take predeter-

mined turns being selected. While RR can work with committees of any size, typically RR is used

to select a committee of size one (i.e. a leader) corresponding to node 𝑖 ≡ 𝜏 (mod 𝑛). Protocols

like BRandPiper [Bhat et al., 2021] (in which the epoch leader is the only active entropy provider)

48

adopt RR as their leader selection mechanism due to its innate fairness property [Azouvi et al.,

2018] (also known as chain quality [Garay et al., 2015] in the blockchain context) where all nodes,

by RR’s definition, take equal leadership.

Random Selection (RS). A second example is random selection (RS), which uses some public

randomness (most commonly the last beacon output Ω𝜏−1) to derive C𝜏 . In HydRand [Schindler

et al., 2020] and GRandPiper [Bhat et al., 2021], C𝜏 consists of a node 𝑖 ≡ Ω𝜏−1 (mod 𝑛̃) where

𝑛̃ is the number of eligible nodes. Ouroboros [Kiayias et al., 2017] uses a similar process called

follow-the-satoshi [Bentov et al., 2014,Kiayias et al., 2017] which selects nodes weighted by stake.

Ethereum’s RANDAO (’25) [Edgington, 2023, Johnson et al., 2024,Oshitani and Drake, 2025] also

uses the previous beacon output to randomly select nodes weighted by stake. HashRand [Ban-

darupalli et al., 2024] has a similar mechanism.

Randomized selection means that some nodes may, in theory, never be selected as entropy

providers. A more serious concern is that an adversary can attempt to bias Ω𝜏 via grinding in

order to bias C𝜏+1 (which can bias Ω𝜏+1). In the worst case, this can lead to a vicious cycle in which

an adversary controlling enough nodes on the current committee tomanipulate the beacon output

can ensure it will also control enough nodes on the next committee, and so on ad infinitum.

This is not an issue in RR, as its committee selection is deterministic and independent of the

preceding beacon output. Nonetheless, a trade-off of RR is that denial-of-service (DoS) becomes

indefinitely possible (for all epochs 𝜏 for 𝜏 > 𝜏 given Ω𝜏) since each committee is publicly known

in advance. All in all, RR gains unbiasability (due to determinism) at the cost of indefinite DoS,

while RS reduces the risk of DoS, i.e. that only for epoch 𝜏 + 1 (due to randomization given Ω𝜏),

at the cost of potential grinding attacks.

Leader-Based Selection (LS). A third example, leader-based selection (LS) is a hybrid method

that exhibits both determinism and randomization. It runs in two steps: the first step involves

electing an epoch leader (either by RR or RS) while the second involves selection of C𝜏 by the

elected leader. It is in this way that the mechanism is deterministic from the leader’s perspective

49

while randomized from that of others.

One approach to limit the power delegated to the leader is that |C𝜏 | needs to be greater than

𝑡 so that a malicious leader wouldn’t be able to choose C𝜏 maliciously. RandHound [Syta et al.,

2017], SPURT [Das et al., 2022], and OptRand [Bhat et al., 2023] demonstrate such LS.

• RandHound. As instantiated in RandHerd [Syta et al., 2017], RandHound’s leader election

(i.e. via RS as the first step of LS) involves a public lottery where each node generates a lot-

tery ticket 𝐻 (𝐶 ∥ 𝑝𝑘𝑖) given a public configuration parameter𝐶 (assuming its randomness)

such that node argmin𝑖 𝐻 (𝐶 ∥ 𝑝𝑘𝑖) becomes the leader (originally called client). In the sec-

ond step of LS, RandHound adopts a form of sharding (involving PVSS groups). The leader

selects more than a threshold number of nodes in each shard (PVSS group), guaranteeing

a threshold number of entropy providers across all shards.

• SPURT and OptRand. Unlike RandHound, SPURT and OptRand adopt RR as the first step

of LS, with nodes simply taking turns as an epoch leader. Then the leader chooses C𝜏 based

on received encrypted messages.

Given an underlying DRB that utilizes a leader to orchestrate communication, LS is a natu-

ral choice to committee selection, as a leader helps mitigate the protocol’s communication cost

overall.

3.5.1.2 Private Committee Selection

In a private committee selection, also known as a private lottery, each node needs to input some

private information (e.g. secret key) in order to check whether or not it has been selected into C𝜏

(i.e. has won a lottery to serve on the committee). The general formulation of a private lottery is

given by

𝑓𝑝𝑟𝑖𝑣 (·) < 𝑡𝑎𝑟𝑔𝑒𝑡

50

where 𝑓𝑝𝑟𝑖𝑣 (·) is a lottery function (i.e. pseudorandom function) that takes some private input

𝑝𝑟𝑖𝑣 and 𝑡𝑎𝑟𝑔𝑒𝑡 denotes the lottery’s “difficulty level” (a la proof-of-work), which can be adjusted

to make the lottery arbitrarily easy or hard to win.

Each node calculates 𝑓𝑝𝑟𝑖𝑣 (·) and checks if the above inequality is satisfied, in which case it

“wins” the lottery and becomes an entropy provider. As an adversary can perform a grinding

attack by trying many values of 𝑝𝑟𝑖𝑣 until a desirable function output is achieved, one crucial

requirement is that 𝑝𝑟𝑖𝑣 should be provably committed in the past and thus be ungrindable at the

time of computation of 𝑓𝑝𝑟𝑖𝑣 (·).

A prime example of a private lottery is one based on VRFs (verifiable random functions [Micali

et al., 1999,Dodis and Yampolskiy, 2005]), which output a pseudorandom value (as well as a proof

for verification) given secret key 𝑠𝑘 and input 𝑥 (see Section 2.11). Most notably, Algorand [Gilad

et al., 2017] uses VRFs to realize a lottery every epoch. Quite naturally, one’s private input to

VRF𝑠𝑘 (·) is its secret key. The lottery5 is given by

VRF𝑠𝑘 (Ω𝜏−1 ∥ 𝑟𝑜𝑙𝑒) < 𝑡𝑎𝑟𝑔𝑒𝑡

where 𝑟𝑜𝑙𝑒 is some parameter specific to Algorand. As both Ω𝜏−1 and 𝑟𝑜𝑙𝑒 are already public

and ungrindable at the time of computation, Algorand makes sure 𝑠𝑘 is likewise ungrindable

by requiring that 𝑠𝑘 is committed in advance. Similar private lotteries are used by Ouroboros

Praos [David et al., 2018], Caucus [Azouvi et al., 2018] (where a hash chain replaces VRFs), and

NV (from Nguyen-Van et al. [Nguyen-Van et al., 2019]). See Table 3.2 for details.

Private lotteries provide two notable benefits: resilience to DoS attack (due to its property

of delayed unpredictability [Azouvi et al., 2018] where one cannot predict the eligibility of hon-

est nodes until they reveal) and independent participation (i.e. nodes do not have to know other

participants in advance to participate) allowing less communication cost as well as a more per-
5While there are multiple versions of Algorand, we consider its first version, as they do not differ fundamentally.

51

missionless setting. Nonetheless, it can introduce the possibility of biasing via withholding (as

discussed in Section 3.7.2).

3.5.2 Step 2. Beacon Output Generation

Given a concrete committee C𝜏 , the next step is to output Ω𝜏 . While any aforementioned

protocol may be run among nodes in C𝜏 to realize a DRB, other approaches provide different

trade-offs. We classify variants which require fresh (independently generated on the spot) per-

node entropy (contribution) and those which combine previous beacon output with precommitted

(independently generated but precommitted, hence ungrindable) per-node entropy.

3.5.2.1 Fresh Per-Node Entropy

Beacon output generation approaches involving fresh (also referred to as true randomness [Cas-

cudo et al., 2021, Das et al., 2022] as opposed to pseudorandomness) per-node entropy are typi-

cally commit-reveal-recover variants from Section 3.4. Some protocols in this family include the

following:

Share-Reconstruct-Aggregate. In Ouroboros, nodes in C𝜏 (i.e. slot leaders of epoch 𝜏) per-

form a RandShare-style share-reconstruct-aggregate using PVSS to output Ω𝜏 . RandHound uses

a similar approach (facilitated by an epoch leader), and HashRand applies more sophisticated op-

timizations to this process via their version of VSS (which they call batched asynchronous weak

VSS) to achieve 𝑂 (𝑛2 log𝑛) communication complexity in the worst case.

Share-Aggregate-Reconstruct. In SPURT, OptRand, and BRandPiper, nodes in C𝜏 perform a

SecRand-style share-aggregate-reconstruct to output Ω𝜏 . BRandPiper has a twist: it utilizes the

idea of buffering PVSS shares in advance. While there is one entropy provider per epoch, 𝑛

secrets (one from each node) are combined such that it provides the ideal 1-inter-unpredictability

property as opposed to 𝑡-inter-unpredictability (as in HydRand or GRandPiper). The trick is that

each epoch leader generates 𝑛 fresh secrets (entropy contributions) that become combined with

52

others’ secrets in the next 𝑛 epochs, respectively. In an epoch, one node distributes 𝑂 (𝑛2) PVSS

shares (buffered by other nodes) whereas, in a typical share-aggregate-reconstruct like SPURT

and OptRand, each of 𝑂 (𝑛) nodes distributes 𝑂 (𝑛) PVSS shares (with no buffering).

From Threshold Encryption. Similar to HERB, entropy providers in NV [Nguyen-Van et al.,

2019] contribute their fresh entropy using ElGamal although they use its classical, non-threshold

version due to NV’s centralized model in which a third party called the Requester is the direct

recipient of a beacon output. As a result, each entropy provider generates and encrypts its en-

tropy and sends it to the Requester, which then decrypts all the messages received from entropy

providers and outputs their sum as Ω𝜏 . Naturally, this Requester version of NV can be modified

into what we call NV++, which differs from NV in two ways. First, nodes in C𝜏 (once finalized)

can be made to performHERB among themselves. This eliminates the existence of the centralized

Requester. Second, entropy provision (i.e. broadcasting one’s entropy) can be coupled with proof

of membership to C𝜏 (i.e. broadcasting the fact that a node has won the VRF private lottery). In

NV, these two are separate steps potentially incurring adaptive insecurity (a concept delineated

in Section 3.7.3).

3.5.2.2 Combining Previous Output and Precommitted Per-Node Entropy

To optimize communication cost, one can require less input from entropy providers each

epoch. The canonical optimization involves utilizing Ω𝜏−1 as a source of entropy to produce

Ω𝜏 . The caveat in doing so is that grinding may become possible once Ω𝜏−1 becomes public,

which is why it is necessary to require entropy contributions for epoch 𝜏 to be precommitted

before combining with Ω𝜏−1 to output Ω𝜏 . This prevents grindability while taking advantage of

the convenience of Ω𝜏−1. Such a requirement is observed in many committee-based protocols,

though their details may seem unrelated on the surface.

• HydRand and GRandPiper. Each epoch, an entropy provider (i.e. epoch leader) in HydRand

commits its entropy that becomes opened (revealed) in the next epoch it is selected as the

53

leader again. In other words, the epoch leader’s precommitted entropy 𝑒𝜏 from its last epoch

𝜏 of leadership is the one that becomes combined with Ω𝜏−1 in the form of ℎ𝑒𝜏 to generate

Ω𝜏 = 𝐻 (Ω𝜏−1 ∥ ℎ𝑒𝜏)

while PVSS recovery is used in case the leader fails to open 𝑒𝜏 in epoch 𝜏 . Notable in

HydRand is the fact (achieving ungrindability of ℎ𝑒𝜏) that one honest node must be present

in any 𝑡 + 1 consecutive epochs due to the requirement that a leader cannot gain another

leadership in the next 𝑡 epochs. Similar overall is GRandPiper’s beacon output generation

(see Table 3.2).

• Algorand and Ouroboros Praos. These schemes use a VRF for beacon output generation

(rather than only for committee selection as in NV++). The secret key 𝑠𝑘 of the epoch

leader often corresponds to precommitted per-node entropy as long as the assumption that

nodes cannot switch their 𝑠𝑘 at the time of VRF’s computation holds. Algorand’s beacon

output is given by

Ω𝜏 = VRF𝑠𝑘 (Ω𝜏−1 ∥ 𝜏)

combining the previous output Ω𝜏−1 with the precommitted entropy 𝑠𝑘 . Note that the

input to the VRF in beacon output generation is different from that in committee selection,

as the VRF output in committee selection is always going to be less than 𝑡𝑎𝑟𝑔𝑒𝑡 by design.

Ouroboros Praos’ beacon output is generated similarly (see Table 3.2).

• Caucus. Each new reveal (ℎ𝜏 in epoch 𝜏) from an entropy provider’s private hash chain in

Caucus corresponds to that node’s precommitted entropy. The beacon output

Ω𝜏 = ℎ𝜏 ⊕ Ω𝜏−1

54

naturally follows its committee selection mechanism 𝐻 (ℎ𝜏 ⊕ Ω𝜏−1) < 𝑡𝑎𝑟𝑔𝑒𝑡 . See Table 3.2

for details.

Note on RANDAO. Historically, the term RANDAO has been an overloaded one. In this disser-

tation, wemake the distinction between RANDAO (’16) [RANDAO, 2016] and RANDAO (’25) [Edg-

ington, 2023, Johnson et al., 2024,Oshitani and Drake, 2025] to clarify. While the former reflects

a commit-reveal-punish protocol (Section 3.3) implemented on Ethereum in 2016, the latter de-

notes the underlying mechanism of Ethereum’s consensus layer (Beacon Chain) as outlined in

EIP-7917 [Oshitani and Drake, 2025] (C𝜏 is selected more deterministically in advance) subsum-

ing the Electra update [Johnson et al., 2024] (which makes updates to system parameters related

to node balances but does not yet include EIP-7917’s determinism). Even though the mechanism

of RANDAO (’25) is quite different from that of the classic commit-reveal and commit-reveal-

punish, it is still referred to as a type of commit-reveal where, as opposed to fresh entropy as

in RANDAO (’16), a one-time precommitted entropy (i.e. secret key) is used to pseudorandomly

“reveal” multiple (hashes of) BLS signatures over respective epochs.

3.6 Protocols With No Marginal Entropy

It is possible to devise a protocol where no node contributes anymarginal entropy (|C𝜏 | = 0) as

the beacon runs, producing the beacon output solely via cryptographic pseudorandomness. This

can improve efficiency as no node needs to generate and communicate fresh entropy. However,

the beacon becomes predictable forever (𝛽-inter-unpredictability fails for all 𝛽) if compromised

(perhaps undetectably).

Such a DRB can be based on a distributed verifiable random function [Cachin et al., 2005,

Galindo et al., 2021,Camenisch et al., 2022] (DVRF, also known as threshold VRF or TVRF [Cas-

cudo et al., 2021]). The idea is that the VRF’s 𝑠𝑘 is distributed among 𝑛 nodes via DKG such that

55

𝑡 + 1 nodes can cooperate to compute a per-epoch VRF output (as well as its proof), as if the

computation involves one master node with 𝑠𝑘 ; see Section 2.12.

DVRF-based DRB. Each beacon output of a DVRF-based DRB is then given by

Ω𝜏 = DVRF.Combine(𝐴, {DVRF.PartialEval(𝑠𝑘𝑖, 𝑓 (Ω𝜏−1))}𝑖∈𝐴) [0]

where 𝑠𝑘𝑖 denotes each node’s secret key after a DKG and 𝑓 denotes some deterministic function

of Ω𝜏−1.

The output is equivalent to one trustworthy master node with complete knowledge of 𝑠𝑘

computing the output as:

Ω𝜏 = VRF𝑠𝑘 (𝑓 (Ω𝜏−1))

There is no marginal entropy contributed by the participants, as 𝑓 typically takes a form resem-

bling 𝑓 (Ω𝜏−1) = 𝐻 (𝜏 ∥ Ω𝜏−1). The ideal 1-inter-unpredictability of the above DVRF formulation

relies on the fact that no one node (or up to 𝑡 nodes) can gain knowledge of 𝑠𝑘 to be able to

compute and predict future beacon outputs.

DVRF-based DRB from a chain of unique signatures. Since taking the hash of a verifiable

unpredictable function (VUF) [Micali et al., 1999] is equivalent to a VRF, a unique digital sig-

nature (which is a VUF [Dodis and Yampolskiy, 2005]) can be made into a DVRF by computing

its threshold variant [Boldyreva, 2003] and hashing the output (assuming a hash function as a

random oracle [Bellare and Rogaway, 1993]). Dfinity [Camenisch et al., 2022] and drand [drand,

2020] (while differing slightly in minor details) both use the BLS signature scheme [Boneh et al.,

2001] to realize a DRB as

Ω𝜏 = 𝐻 (Sign𝑠𝑘 (𝜏 ∥ Ω𝜏−1))

where Sign𝑠𝑘 (·) is a threshold BLS signature computed by at least 𝑡 + 1 nodes with 𝑠𝑘 as the

implicit group secret key generated via DKG. The actual computation involves combining of

56

partial signatures computed using 𝑠𝑘𝑖 (see Section 2.16.2).

Variations on a chain of unique signatures. Besides a chain of BLS signatures, there exist

several other variations.

• RandHerd [Syta et al., 2017]. Two modifications are made in RandHerd. First, a form of

“sharding” into groups (each of size 𝑐) allows reduction of overall communication com-

plexity. Second, the underlying signature scheme used is Schnorr instead of BLS. Each Ω𝜏

is a threshold Schnorr signature on message𝑚 = 𝑡𝜏 where 𝑡𝜏 denotes the timestamp at the

epoch’s beginning. As 𝑚 can technically be chosen (and thus biased) by the leader, one

simple improvement can be setting𝑚 = 𝜏 ∥ Ω𝜏−1 a la Dfinity or drand.

• DDH-DRB and GLOW-DRB [Galindo et al., 2021]. These two DRBs modify Dfinity-DVRF

(i.e. each epoch of Dfinity) and explore space-time trade-off by using DLEQ NIZKs (Sec-

tion 2.16.3) in place of pairing equations (Section 2.15). See Section 2.13 and 2.14 for details.

• Strobe [Beaver et al., 2023]. In Strobe, threshold RSA decryption conceptually replaces

the threshold BLS process. Note that RSA decryption and BLS signature are similar in

that one needs a secret value (decryption key 𝑑 and signer’s 𝑠𝑘 , respectively) to perform

the respective operations. The analogy is that threshold BLS distributes 𝑠𝑘 in a threshold

manner (via DKG) while threshold RSA distributes 𝑑 (not via DKG). The difference is that

the latter requires a trusted setup (knowledge of factors of 𝑁 , the RSA modulus), and this

is Strobe’s main downside. Its benefit of using threshold RSA decryption is equally clear:

the simple relationship Ω𝑑𝜏 = Ω𝜏−1 (mod 𝑁) allows efficient generation of all past beacon

outputs (a novel property of a DRB called history generation) and thus extremely efficient

verification of the beacon history.

• GRandLine [Bacho et al., 2024a] and Aptos [Das et al., 2025]. In GRandLine, the novelty

is that a “group-element DKG” (DKG in which the resulting group secret key is a group

57

element as opposed to a field element) powers the DVRF leveraging 𝑒 (𝑠𝑘, 𝐻 (𝑚)) as op-

posed to 𝐻 (𝑚)𝑠𝑘 . The benefit of this approach is that (say) Scrape’s PVSS can be used

more intuitively to realize a publicly verifiable DKG and thus this DRB. Another technique

in GRandLine involves a recursive communication protocol to reduce the overall commu-

nication complexity. Taking a similar group-element DKG approach, Aptos optimizes its

PVSS (combining those by Scrape and Groth [Groth, 2021]) and more importantly unlocks

the weighted variants of PVSS, DKG, and DVRF in a practical manner.

3.7 Discussion

3.7.1 Relation to Collective Coin Flipping Protocols

Conceptually, distributed randomness is not a new line of research. Dating to Blum’s clas-

sic work on coin flipping over the phone [Blum, 1983], distributed randomness has been much

researched, albeit in a different context as elaborated below. Namely, Ben-Or and Linial in their

seminal work [Ben-Or and Linial, 1985, Ben-Or and Linial, 1989] introduced the full information

model for the collective coin flipping problem, in which 𝑛 participants with unbounded compu-

tational power communicate only via a single broadcast channel to generate a common random

bit (such that an honest majority is required [Saks, 1989,Boppana and Narayanan, 2000] and thus

assumed). Numerous works exist in this setting, largely classifiable into different types of adver-

saries dealt with: static [Ben-Or and Linial, 1989, Kahn et al., 1989, Saks, 1989, Ajtai and Linial,

1993,Alon and Naor, 1993, Feige, 1999, Russell et al., 1999, Boppana and Narayanan, 2000], adap-

tive [Ben-Or and Linial, 1989, Lichtenstein et al., 1989,Dodis, 2000,Goldwasser et al., 2015,Hait-

ner and Karidi-Heller, 2020, Kalai et al., 2021], and variants of adaptive [Cleve and Impagliazzo,

1993,Aspnes, 1998,Goldwasser et al., 2015,Mahloujifar andMahmoody, 2019,Etesami et al., 2020].

See [Haitner and Karidi-Heller, 2020,Kalai et al., 2021] for this line of research.

58

Overall, these works concern upper and lower bounds on corruption threshold, bias (devia-

tion from coin flipping probability 1/2), and round complexity, all of which provide interesting

theoretical insights. Nonetheless, these bounds are often asymptotic (hence not practical) and

are grounded in a more lax definition of security where it is sufficient that bias is bounded (but

can still be nontrivial). This is in contrast to the modern literature on DRBs considered in this pa-

per, which aims to design protocols which are as unbiasable as possible, output multiple bits per

epoch, have explicit round complexity and fault tolerance, and assume computationally bounded

adversaries in a cryptographic setting as well as point-to-point communication channels in the

first place.

Outside the full informationmodel (such that cryptography is allowed), the well-known lower

bound by Cleve [Cleve, 1986] states that for any 𝑟 -round coin flipping protocol there exists an

efficient adversary controlling half or more of the participants that can bias the output by Ω(1/𝑟).

In other words, it is impossible to have an unbiasable coin flipping protocol with a dishonest

majority.

While this may seem to contradict the fault tolerance of delay-based DRBs from Section 3.2,

we note that delay functions help circumvent Cleve’s impossibility result in the following two

ways. First, timed commitments allow recovery of a value that is withheld (either due to hon-

est or Byzantine fault) and lost from an honest node’s perspective. In Cleve’s proof, the notion

of a “default bit” is used in such withholding situation whereas timed commitments effectively

deprecate this default bit mechanism, sidestepping the proof logic.

Second, an implicit assumption in Cleve’smodel is that a Byzantine node is capable of grinding

through possibilities to its liking and can arbitrarily choose which messages to output based on

inputs from other nodes that are honest. However, VDFs limit this capability such that it is not

possible for even a dedicated attacker to grind through possibilities to fix an output of some

computation. As a result of above, delay functions can be used to build DRBs that enjoy both the

highest fault tolerance and unbiasability without violating any classical lower bounds, and it is

59

rather surprisingly shown in Bonneau et al. [Bonneau et al., 2025] that the converse holds too,

i.e. any fair coin flipping protocol secure against a dishonest majority implies the existence of a

delay function. In a similar vein, Bailey et al. [Bailey et al., 2022] shows that VDFs can circumvent

some classical impossibility results for general multiparty computation (MPC), of which DRBs are

a special case.

3.7.2 Withholding Attacks

In a withholding attack, an adversary can influence the outcome by not publishing some infor-

mation. Any leader-based protocol is vulnerable due to the inherent reliance on a leader’s avail-

ability, affecting the protocol’s liveness (as well as unbiasability and potentially unpredictability).

Any protocol with a private lottery is also fundamentally vulnerable.

1. Protocols with a leader. RandHound, RandHerd, and SPURT suffer from the leader un-

availability issue in case the leader withholds such that their liveness is affected and a

beacon output can be aborted.6 A fallback is needed if a leader withholds (e.g. HydRand’s

PVSS recovery).

2. Protocols with a private lottery. The issue of withholding is more fundamental with

private lottery schemes like Algorand, as there is no accountability. There are two possible

remedies. First, we can require all participants to post their lottery outputs every single

epoch even if they lose the lottery, in which case any lack of message would be indicative

of withholding. However, this incurs communication cost, negating the advantages of a

private lottery. Second, SSLE (single secret leader election) [Boneh et al., 2020] can be used

to guarantee one winner per epoch, enabling detection of withholding. The guarantee of

one winner as opposed to the expectation of one winner is what differentiates SSLE. While

this makes withholding obvious, it does not prevent withholding by itself, nor does it detect
6In contrast to a leader in SPURT, that in RandHound or RandHerd can abort after seeing the beacon output in

plaintext.

60

who withholds in the case of withholding. Designing efficient SSLE protocols remains an

open research area.

3.7.3 Adaptive Security

A DRB is adaptively secure if its security properties remain unaffected against an adaptive

adversary instead of a static one. Here, we discuss a way to remedy adaptive attacks.

1. Requiring private lottery winners to broadcast marginal entropy and proof of se-

lection into C𝜏 in the same message. While some private lottery schemes may involve

less than or equal to 𝑡 entropy providers per epoch, the fact that one message (per entropy

provider) comprises both announcement of winning the lottery and provision of marginal

entropy allows adaptive security (e.g. as in Algorand). By the time an adversary knows

which nodes to corrupt adaptively in an epoch (after the nodes reveal their identity as

entropy providers), there is no extra step left to be corrupted. A similar line of research

exists in the MPC literature in a model called YOSO (You-Only-Speak-Once) [Gentry et al.,

2021, Liu-Zhang et al., 2025], inspired by Algorand.

On the one hand, it is important for the sake of adaptive security that there is no central

point of dependency in any step of a protocol. Otherwise, participating nodes depend on the

leader (functioning as either an orchestrator or an entropy provider) such that an adversary can

adaptively corrupt such leaders. On the other hand, we note that a proof of adaptive security does

not follow immediately from a protocol’s lack of leaders and can in fact be tricky to show. That

threshold BLS achieves adaptive security is a result (with variations in assumptions) established

only in recent years [Bacho and Loss, 2022,Das and Ren, 2024,Libert, 2025], and the same is true

for OptRand [Bacho and Loss, 2023].

61

Table 3.1: DRB Comparison

Se
ct
io
n

(d
is
se
rt
at
io
n)

Cr
yp

to
gr
ap
hi
c

Pr
im

iti
ve

Fa
ul
tT

ol
er
an
ce

(le
ss

th
an
)

In
de
pe
nd

en
t

Pa
rt
ic
ip
at
io
n

Pe
r-
Ep

oc
h

En
tr
op

y
Pr
ov
id
er

𝛼
-In

tr
a-

U
np

re
di
ct
ab
ili
ty

𝛽
-In

te
r-

U
np

re
di
ct
ab
ili
ty

Im
m
un

ity
to

W
ith

ho
ld
in
g

Ve
rifi

er
Co

m
pl
ex
ity

Co
m
m
un

ic
at
io
n

Co
m
pl
ex
ity

M
ax

D
am

ag
e

Re
co
ve
ry

Co
st

Po
st
-Q

ua
nt
um

Optimistic Worst

Commit-Reveal 3.1 Commitment 1 ✓ All 𝑂 (Δ) 1 ✗ 𝑂 (𝑛) 𝑂 (𝑛2) 𝑂 (𝑛3) Bias 𝑂 (1) ✓

Unicorn++

3.2

VDF 𝑛 ✓ All 𝑂 (Δ) 1 ✓ 𝑂 (𝑛) 𝑂 (𝑛2) 𝑂 (𝑛3) None 𝑂 (1) ✗

Cornucopia (§ 5) VDF 𝑛 ✓ All 𝑂 (Δ) 1 ✗ 𝑂 (1) 𝑂 (𝑛) 𝑂 (𝑛2) None 𝑂 (1) ✗

Ext. Beacon+VDF VDF 𝑛 ✓ External𝑂 (Δ) 1 ✓ 𝑂 (1) 𝑂 (𝑛) 𝑂 (𝑛2) None 𝑂 (1) ✗

HeadStart VDF 𝑛 ✓ All 𝑂 (Δ) 1 ✗ 𝑂 (𝐿 + log𝑛)# 𝑂 (𝑛 log𝑛) 𝑂 (𝑛2 log𝑛) None 𝑂 (1) ✗

RandRunner Trapdoor VDF 𝑛 ✗ None 𝑇 ‡ 𝑡§ ✓ 𝑂 (log𝑇)‡ 𝑂 (𝑛) 𝑂 (𝑛2) Predict𝑂 (𝑛3) ✗

Bicorn (§ 4) Timed commitment 𝑛 ✓ All 𝑇 ‡ 1 ✓ 𝑂 (𝑛) 𝑂 (𝑛2) 𝑂 (𝑛3) None 𝑂 (1) ✗

RANDAO (’16) 3.3 Commitment 𝑛 ✓ All 𝑂 (Δ) 1 ✓ 𝑂 (𝑛) 𝑂 (𝑛2) 𝑂 (𝑛2)† None 𝑂 (𝑛)† ✓

EVR Escrow-DKG 𝑛/3 ✗ All 𝑂 (Δ) 1 ✓ 𝑂 (𝑛3) 𝑂 (𝑛3) 𝑂 (𝑛4) None 𝑂 (𝑛) ✗

Scrape

3.4

PVSS 𝑛/2 ✗ All 𝑂 (Δ) 1 ✓ 𝑂 (𝑛2) 𝑂 (𝑛3) 𝑂 (𝑛4) Biasr 𝑂 (𝑛3) ✗

Albatross PVSS 𝑛/2 ✗ All 𝑂 (Δ) 1 ✓ 𝑂 (1) 𝑂 (𝑛) 𝑂 (𝑛2) Biasr 𝑂 (𝑛3) ✗

RandShare (P)VSS 𝑛/3 ✗ All 𝑂 (Δ) 1 ✓ 𝑂 (𝑛3) 𝑂 (𝑛3) 𝑂 (𝑛4) Biasr 𝑂 (1) ✗

SecRand PVSS 𝑛/2 ✗ All 𝑂 (Δ) 1 ✓ 𝑂 (𝑛2) 𝑂 (𝑛3) 𝑂 (𝑛4) Biasr 𝑂 (𝑛3) ✗

Rondo (P)VSS 𝑛/3 ✗ All 𝑂 (Δ) 1 ✓ 𝑂 (𝑛2) 𝑂 (𝑛2) 𝑂 (𝑛2 log𝑛) Biasr 𝑂 (𝑛4) ✗

HERB Thr. ElGamal 𝑛/3 ✗ All 𝑂 (Δ) 1 ✓ 𝑂 (𝑛) 𝑂 (𝑛2) 𝑂 (𝑛3) Biasr 𝑂 (𝑛4) ✗

HydRand

3.5

PVSS 𝑛/3 ✗ Comm*𝑂 (Δ) 𝑡 ✓ 𝑂 (𝑛) 𝑂 (𝑛2) 𝑂 (𝑛3) Bias 𝑂 (𝑛3) ✗

GRandPiper PVSS 𝑛/2 ✗ Comm*𝑂 (Δ) 𝑡 ✓ 𝑂 (𝑛2) 𝑂 (𝑛2) 𝑂 (𝑛2) Bias 𝑂 (𝑛3) ✗

BRandPiper (P)VSS 𝑛/2 ✗ Comm*𝑂 (Δ) 1 ✓ 𝑂 (𝑛2) 𝑂 (𝑛2) 𝑂 (𝑛3) Bias 𝑂 (𝑛4) ✗

Ouroboros PVSS 𝑛/2 ✗ Comm 𝑂 (Δ) 1 ✓ 𝑂 (𝑛2) 𝑂 (𝑛3) 𝑂 (𝑛3)† Bias 𝑂 (𝑛2)† ✗

RandHound PVSS 𝑛/3 ✗ Comm 𝑂 (Δ) 1 ✗ 𝑂 (𝑐𝑛) 𝑂 (𝑐2𝑛) 𝑂 (𝑐2𝑛2) Bias 𝑂 (𝑛3) ✗

HashRand (P)VSS 𝑛/3 ✗ Comm 𝑂 (Δ) 1 ✓ 𝑂 (𝑛2 log𝑛) 𝑂 (𝑛2 log𝑛)𝑂 (𝑛2 log𝑛) Bias 𝑂 (𝑛4) ✓

SPURT PVSS 𝑛/3 ✗ Comm 𝑂 (Δ) 1 ✗ 𝑂 (𝑛) 𝑂 (𝑛2) 𝑂 (𝑛2) Bias 𝑂 (𝑛3) ✗

OptRand PVSS 𝑛/2 ✗ Comm 𝑂 (Δ) 1 ✓ 𝑂 (𝑛) 𝑂 (𝑛2) 𝑂 (𝑛2) Bias 𝑂 (𝑛3) ✗

Caucus Hash chain 𝑛/3 ✓ Comm*𝑂 (Δ) 1 ✗ 𝑂 (1) 𝑂 (𝑛) 𝑂 (𝑛2) Bias 𝑂 (𝑛3) ✓

NV++ VRF, thr. ElGamal 𝑛/3 ✗ Comm 𝑂 (Δ) 1 ✗ 𝑂 (𝑛) 𝑂 (𝑛) 𝑂 (𝑛)† Bias 𝑂 (𝑛2)† ✗

Algorand VRF 𝑛/3 ✓ Comm*𝑂 (Δ) 1 ✗ 𝑂 (1) 𝑂 (𝑛) 𝑂 (𝑛)† Bias 𝑂 (𝑛2)† ✗

Ouroboros Praos VRF 𝑛/2 ✓ Comm 𝑂 (Δ) 1 ✗ 𝑂 (𝑛) 𝑂 (𝑛2) 𝑂 (𝑛2)† Bias 𝑂 (𝑛2)† ✗

RANDAO (’25) BLS 𝑛/3 ✗ Comm 𝑂 (Δ) 1 ✗ 𝑂 (1) 𝑂 (𝑛) 𝑂 (𝑛)† Bias 𝑂 (𝑛2)† ✗

drand

3.6

Thr. BLS 𝑛/2 ✗ None 𝑂 (Δ) 1 ✓ 𝑂 (1) 𝑂 (𝑛2) 𝑂 (𝑛3) Predict𝑂 (𝑛4) ✗

RandHerd Thr. Schnorr 𝑛/3 ✗ None 𝑂 (Δ) 1 ✗ 𝑂 (1) 𝑂 (𝑐2𝑛) 𝑂 (𝑛4) Bias 𝑂 (𝑛4) ✗

DDH-DRB DDH-based DVRF 𝑛/2 ✗ None 𝑂 (Δ) 1 ✓ 𝑂 (𝑛) 𝑂 (𝑛2) 𝑂 (𝑛3) Predict𝑂 (𝑛4) ✗

GLOW-DRB Pairing-based DVRF 𝑛/2 ✗ None 𝑂 (Δ) 1 ✓ 𝑂 (1) 𝑂 (𝑛2) 𝑂 (𝑛3) Predict𝑂 (𝑛4) ✗

Strobe RSA, VSS 𝑛/2 ✗ None 𝑂 (Δ) 1 ✓ 𝑂 (1) 𝑂 (𝑛2) 𝑂 (𝑛3) Predict 𝑂 (𝑛) ✗

GRandLine PVSS, pairing 𝑛/2 ✗ None 𝑂 (Δ) 1 ✓ 𝑂 (𝑛) 𝑂 (𝑛2) 𝑂 (𝑛3) Predict𝑂 (𝑛3) ✗

Comm is short for Committee. 𝑐 is the size of a shard in RandHerd and RandHound. We assume a leader can be Byzantine for both.
Albatross’ verifier and communication complexities are per beacon output. In Ouroboros and Ouroboros Praos, we assume the number of
slot leaders in an epoch is denoted by 𝑛. In RANDAO (’25), it is 32. r In a non-rushing adversary model, max damage would be predict rather
than bias. * Each committee consists of a leader by default or by expectation. † PBB (public bulletin board) is assumed.
‡𝑇 denotes VDF’s delay parameter, and verification of Pietrzak’s VDF is logarithmic in 𝑇 . § 𝛽 = 𝑡 for RandRunner’s 𝛽-inter-unpredictability
assuming a dishonest minority without any computational advantage. See [Schindler et al., 2021] for more scenarios.
In HeadStart, 𝐿 is the number of contribution rounds within an epoch.

62

3.7.4 Comparison of DRBs

Table 3.1 provides an overall comparison of DRBs. Fault Tolerance indicates the minimum

number of faulty nodes that can abort a protocol (after the initial setup). Protocols with Indepen-

dent Participation allow a node to contribute to beacon output without the knowledge of other

nodes in advance.

Verifier Complexity refers to the computational cost for a passive observer (not participating

in the protocol) to verify a beacon output. We exclude the cost associated with the initial setup

for both verifier and communication complexities. We assume a verifier complexity of 𝑂 (𝑛) per

Lagrange interpolation or Scrape’s PVSS [Cascudo and David, 2017]. Communication Complexity

concerns bitwise point-to-point communication among nodes by default. Alternatively, we con-

sider a public bulletin board (PBB) (e.g. blockchain) as a reliable information exchange medium in

protocols where it is intrinsic. In a PBB model, we consider both the bitwise writing cost (amount

of data posted to PBB) and reading cost (by all nodes where each node only reads data relevant

to it). In the absence of PBB, Byzantine consensus [Castro and Liskov, 1999] incurs 𝑂 (𝑛2) cost

per decision by default.

Max Damage refers to the maximum damage possible when 𝑛 − 1 rushing [Gennaro et al.,

1999] adversarial nodes cooperate. The reason for this column is to observe the consequence of

when the honest majority assumption fails, which has happened in practice (e.g. a $625 million

Axie Infinity’s Ronin hack in 2022 [Scharfman, 2023]). A rushing adversary may delay sending

messages until after reading messages sent by all honest nodes in a given round of communica-

tion. There can exist a separation between what rushing versus non-rushing adversaries can do

especially in protocols from Section 3.4: if one can generate its entropy contributions after seeing

(or otherwise simultaneously with) all the honest nodes’ entropy contributions, then biasing (or

otherwise predicting) is possible. The same fundamental reasoning applies to (say) Ouroboros,

where slot leaders (i.e. entropy providers) communicate in sequential slots (and hence the ad-

63

versary can reconstruct an honest node’s entropy contribution before generating its own). In

escrow-based protocols, we assume the adversaries are rational.

Recovery Cost refers to the communication cost associatedwith recovering from an adversarial

corruption. Regenerating keys (e.g. PVSS.KeyGen or for private lottery schemes) and VDF.Setup

incur 𝑂 (𝑛3) recovery cost without PBB (and 𝑂 (𝑛2) with PBB) while we conservatively assume

each DKG incurs𝑂 (𝑛4) recovery cost (although it can be optimized [Gurkan et al., 2021,Abraham

et al., 2023, Bacho et al., 2024a, Bacho et al., 2024b, Feng et al., 2024]). Post-Quantum indicates

whether or not the protocol is post-quantum secure. Finally, we note that it is possible to employ

multiple DRBs as subprotocols to amulti-tieredDRB (an approach taken byMt. Random [Cascudo

et al., 2021]) in order to combine and take advantage of various DRB properties at the same time.

3.7.5 Concurrent Work

In addition to our work, two concurrent SoKs (one by Raikwar and Gligoroski [Raikwar and

Gligoroski, 2022] and one by Kavousi et al. [Kavousi et al., 2024]) exist and offer different per-

spectives on distributed randomness. We provide a detailed comparison here and shed light on

the motivation of our SoK as well as on the progress of the DRB landscape in general since the

publication of the SoKs.

Security definitions. In the SoK by Raikwar and Gligoroski [Raikwar and Gligoroski, 2022],

the authors first define the four security properties of a DRB and additionally provide what it

means for a DRB to be secure (by delineating a different security game altogether). While the

two properties liveness and public verifiability are roughly the same as our notions, unbiasability

(or bias-resistance in their work) and unpredictability are defined differently. Specifically, bias-

resistance is defined by two inequalities—Pr[bit𝑖 (Ω𝜏) = A𝑖 (Ω1, . . . ,Ω𝜏−1)] ≤ 1
2 + negl(𝜆) and

Pr[bit𝑖 (Ω𝜏) = 0] ≤ 1
2 + negl(𝜆)—where bit𝑖 (Ω𝜏) denotes the 𝑖-th bit of Ω𝜏 . Essentially, this defi-

nition of bias-resistance is reflective of bitwise pseudorandomness and thus accounts for attacks

64

Table 3.2: Committee-Based DRBs

Step 2: Beacon Output Generation
Fresh per-node entropy Ω𝜏−1 & precommitted per-node entropy

St
ep

1:
Co

m
m
itt
ee

Se
le
ct
io
n

Pu
bl
ic

RR
BRandPiper
Step 1: Node 𝑖 ≡ 𝜏 (mod 𝑛)
Step 2: Share-aggregate-reconstruct

RS
Ouroboros
Step 1: Follow-the-satoshi1

Step 2: Share-reconstruct-aggregate

HydRand
Step 1: Node 𝑖 ≡ Ω𝜏−1 (mod 𝑛̃)
Step 2: Ω𝜏 = 𝐻 (Ω𝜏−1 ∥ ℎ𝑒𝜏)

GRandPiper
Step 1: Node 𝑖 ≡ Ω𝜏−1 (mod 𝑛̃)
Step 2: Ω𝜏 = 𝐻 (ℎ𝑒𝜏 ,Ω𝜏−1, ...,Ω𝜏−𝑡)

LS

RandHound
Step 1: Node argmin𝑖 𝐻 (𝐶 ∥ 𝑝𝑘𝑖)
Step 2: Share-reconstruct-aggregate

SPURT, OptRand
Step 1: Node 𝑖 ≡ 𝜏 (mod 𝑛)
Step 2: Share-aggregate-reconstruct

Pr
iv
at
e

VRF
NV++
Step 1: VRF𝑠𝑘 (Ω𝜏−1 ∥ 𝑛𝑜𝑛𝑐𝑒) < 𝑡𝑎𝑟𝑔𝑒𝑡
Step 2: Threshold ElGamal

Algorand
Step 1: VRF𝑠𝑘 (Ω𝜏−1 ∥ 𝑟𝑜𝑙𝑒) < 𝑡𝑎𝑟𝑔𝑒𝑡
Step 2: Ω𝜏 = VRF𝑠𝑘 (Ω𝜏−1 ∥ 𝜏)

Ouroboros Praos2

Step 1: VRF𝑠𝑘 (Ω𝜏−1 ∥ 𝑠𝑙𝑜𝑡 ∥ TEST) < 𝑡𝑎𝑟𝑔𝑒𝑡
Step 2: Ω𝜏 = 𝐻 (Ω𝜏−1 ∥ 𝑒𝑝𝑜𝑐ℎ ∥ 𝜌1 ∥ ... ∥ 𝜌𝐾)

Hash chain
Caucus3

Step 1: 𝐻 (ℎ𝜏 ⊕ Ω𝜏−1) < 𝑡𝑎𝑟𝑔𝑒𝑡
Step 2: Ω𝜏 = ℎ𝜏 ⊕ Ω𝜏−1

Public committee selection mechanisms (Section 3.5.1.1) include RR (round-robin), RS (random selection), and LS
(leader-based selection) while details regarding private committee selection can be found in Section 3.5.1.2. For
details on beacon output generation, see Sections 3.5.2.1 and 3.5.2.2. Note that HashRand and RANDAO (’25) reside
in the same categories as Ouroboros and HydRand, respectively.
1 This sampling mechanism selects nodes weighted by stake [Bentov et al., 2014,Kiayias et al., 2017].
2 The protocol is a variant of Algorand. While |C𝜏 | is expected to be one in Algorand (with 1 final winner per lottery
and 1 lottery per epoch), that in Ouroboros Praos is expected to be 𝐾 where each epoch consists of 𝐾 slots and
thus 𝐾 per-slot lotteries. Parameters 𝑠𝑙𝑜𝑡 and 𝑒𝑝𝑜𝑐ℎ denote the slot and epoch numbers, respectively, and 𝜌𝑖 =

VRF𝑠𝑘𝑖 (Ω𝜏−1 ∥ 𝑠𝑙𝑜𝑡𝑖 ∥ NONCE) is returned by the slot leader of 𝑠𝑙𝑜𝑡𝑖 . TEST and NONCE are strings.
3 In Caucus, a VRF is replaced by a hash function combined with a hash chain, i.e. a list (ℎ1, ..., ℎ𝑚) with ℎ𝜏 = 𝐻 (ℎ𝜏+1)
for all 𝜏 = 1, ...,𝑚 − 1 where ℎ𝑚 = 𝑠 for some random seed. A hash chain provides the functionality of provably
committing to private inputs as one publicizes one ℎ𝜏 at a time (ℎ𝜏 in epoch 𝜏). Each node independently generates
a private hash chain. One downside is that the hash chain needs to be periodically regenerated, as𝑚 is finite.

like bit-fixing attacks where the attacker is able to fix a bit of the beacon output. However, it

does not account for “inter-bit” attacks where (say) the attacker fixes all bits of a beacon output

65

except the first one to be the value taken by the first bit which is still pseudorandom; in this

case, the beacon output is still pseudorandom at a bit level but is biased to be either 0 · · · 0 or

1 · · · 1 at an output level. Interestingly, their notion of a secure DRB given in their Appendix does

work with pseudorandomness at an output level, but it does not account for private biasing as in

our definition of unbiasability. On a different note, their definition of unpredictability concerns

predicting beacon outputs of all future epochs but not the next immediate one (similar to our

𝛽-inter-unpredictability with 𝛽 ≥ 1). We extend the definition to 𝛽 = 0 and consider 𝛼-intra-

unpredictability, which better corresponds to an intuitive prediction attack where the attacker

tries to predict the next immediate beacon output and its properties.

Our definitions are motivated by intuitive applications, such as lotteries, a potentially biased

beacon that appears pseudorandom to outsiders, and drand (which has already been deployed for

years). For the purpose of lotteries (and any other intuitive use of randomness), our definitions

consider not only bit-fixing scenarios, but also scenarios (including the above inter-bit attack)

where any property of Ω𝜏 may be manipulated or predicted. This is helpful, as an adversary

would likely want to know if (say) the winning lottery number is even or odd even if it cannot

compute the value exactly. In light of a potentially biased beacon that appears pseudorandom, our

definitions are also helpful, as we make the biasing strategy 𝜎 explicit and allow the possibility

of private biasing where a secret key may be needed to detect the bias.

In the context of a drand-like beacon, our definitions more tightly analyze the possibility of

such a beacon to be predictable (forever) but not biasable (which is the realistic threat of these

beacons). The reason is that for a compromised drand-like beacon, A participating in DRB𝜏 (as

in Figure 3.1) is able to basically distinguish Ω𝜏,1 from random at time𝑇𝜏,2 − 𝛼 for 𝛼 =𝑤 (Δ) with

the help of 𝜎 = 𝑠𝑘 (DKG group secret key); however, unbiasability is still satisfied given that the

values of Ω𝜏,1 and Ω𝜏,0 are exactly equal (assuming A does produce value for Ω𝜏,1) such that the

advantage in distinguishing the two cases (𝑏 = 0 or 𝑏 = 1) is zero when challenged with the exact

same value. In general, any compromised beacon that has no marginal entropy is conceptually

66

going to be predictable but not biasable, and our definitions capture this scenario tightly due to the

fact that our unbiasability game is essentially a distinguishing one between when the adversary

participates in a protocol run or not, which is subtly different than distinguishing from random.

Top-down and bottom-up. One of the main gaps filled by our SoK is that we take a top-down

approach to DRB design as opposed to bottom-up. We consequently illustrate based on concepts

like marginal entropy and entropy providers. In the other SoKs, emphasis is placed on the un-

derlying cryptographic primitives and their properties (security, scalability, etc.), complementing

our approach. Especially in Kavousi et al. [Kavousi et al., 2024], the theme of public randomness

is also thematically complementary, making their discussions of PVSS, VRF, VDF, and blockchain

particularly insightful and interesting from the perspective of public randomness.

Research gaps and progress. Here, we highlight several research gaps identified in the SoKs

and describe how our proposed solutions address them. The first one is called Research Problem 3

by Raikwar and Gligoroski [Raikwar and Gligoroski, 2022] and concerns the design of a DRBwith

sub-quadratic communication complexity and optimal fault-tolerance. While Unicorn++ techni-

cally achieves sub-quadratic communication complexity in a PBB model (where 𝑛 participants

post 𝑛 entropy contributions), its communication complexity is at least quadratic in the absence

of PBB if a transcript of size 𝑂 (𝑛) must be agreed upon every epoch. To achieve sub-quadratic

communication complexity without PBB, a protocol would thus ideally require an agreeable tran-

script of size at most 𝑂 (1); with PBB, this means the amount of data posted to PBB should be of

size at most 𝑂 (1). This is exactly what Cornucopia does; rather than 𝑛 entropy contributions,

a cryptographic accumulator accumulating those 𝑛 entries is posted to PBB after coordinating

with a coordinator from which each participant receives a proof of inclusion (membership proof)

separately. While concretely instantiating a sub-quadratic DRB with an efficient consensus algo-

rithm realizing (and obviating) a PBB is still an open problem, it is in this way that Cornucopia

makes progress towards Research Problem 3.

67

The second gap we highlight is called Research Problem 4 by Raikwar and Gligoroski and

concerns the design of a puzzle-based DRB incurring low computation complexity. Bicorn solves

exactly this problem, and it does so by leveraging timed commitments in which the delay compu-

tation is in fact avoided in the optimistic case; only in the pessimistic case is the delay computation

required. More details can be found in Chapter 4.

Among many technical research gaps portrayed by Kavousi et al. [Kavousi et al., 2024], one of

them (Gap 3) concerns the minimization of bias in a protocol driven by leader-based VRF, which

has the advantage of avoiding a DKG setup at the cost of potential bias. Progress here is given by

Christ et al. [Christ et al., 2024] in the form of accountable secret leader election. In the context

of SSLE, the accountability property is particularly useful, as SSLE provides a stronger guarantee

of leader uniqueness per epoch compared to VRF-style leader elections. As the work defines

accountability and also devises mechanisms to add accountability to existing constructions (both

SSLE and VRF-style), it becomes possible to identify withholding leaders in a post hoc fashion.

In a carefully implemented rational model, these mechanisms can effectively minimize the bias

pointed out by this research gap.

Finally, both SoKs identify optimizing for reconfiguration (or dynamic participation) as a key

research gap, as it is well-known that performing a new DKG setup whenever a node joins or

leaves is expensive and inefficient. The notion of silent setup [Garg et al., 2024a,Garg et al., 2024b]

has recently been introduced to address this inefficiency; conceptually, the suggested solution is

to take the approach of computing a multi-signature (e.g. product of individual signatures by

participants) which is innately amenable to dynamic participation as opposed to a threshold sig-

nature. For instance, a novel type of encryption known as silent threshold encryption [Garg et al.,

2024b] can be achieved by taking suchmulti-signature as awitness to awitness encryption. While

further optimizations such as making the construction homomorphically aggregatable and reduc-

ing the size of the common reference string are still needed for scalability, it is now theoretically

possible to construct a DRB with silent setup via this technique. Hence, new possibilities await

68

beyond previous PVSS-based constructions, for designing DRBs that are capable of gracefully

handling dynamic participation.

3.8 Notes for Practitioners

Our systematization highlights important insights both for practitioners and researchers.

Based on our comparative framework, we advise practitioners planning to deploy a DRB to con-

sider the following high-level guidelines:

• Delay-based protocols stand above the competition in terms of scalability, flexibility, and

robustness, enabling an efficient DRBwith unlimited, open participation and security given

any honest participant. In theory, VDFs appear to be a silver bullet for DRBs, though they

have yet to be widely used in practice and assumptions about VDF security and hardware

speeds remain relatively new. They also invoke a unique practical cost in that somebody

must be able to compute a VDF (preferably by running specialized hardware), which can

add latency to the DRB.

• If not using VDFs, practitioners need to think critically about two design dimensions: how

large is the set of participants, and how frequently will it change? Given a small, static set of

participants, DKG-based protocols, e.g. HERB (from threshold encryption) and drand (from

DVRF), scale better than PVSS-based protocols. HERB and drand are both competitive in

this setting, differing in randomness quality and max damage.

• For a small but dynamic set of participants, PVSS-based protocols offer better flexibility

(by avoiding a costly DKG setup per reconfiguration) and randomness quality. Committees

may be needed to scale to more participants.

• Given a large, dynamic set of participants, protocols with private lotteries like Algorand

offer better scalability and flexibility simultaneously although the randomness quality is

69

potentially affected by withholding.

• Finally, escrow-based protocols are suitable against purely financially-motivated adver-

saries in applications such as lotteries or finance, at the cost of locking up some amount of

capital during the protocol.

70

4 | Bicorn: Tolerating Dishonest

Majority with Optimistic Efficiency

4.1 Context

With our observation that the honest majority assumption (network assumption that more

than half of the nodes are honest) may be critically violated in practice, for instance in the form

of a $625 million Axie Infinity’s Ronin hack in 2022 [Scharfman, 2023], we initiate a further

study of the dishonest majority setting in the following chapters. In particular, we return to the

classic commit-reveal [Blum, 1983] which consists of two steps. First, all participants publish a

commitment 𝑐𝑖 = Commit(𝑟𝑖) to a random value 𝑟𝑖 (we take this as our entropy contribution

𝑒𝑖 from Section 3.1.3 as we hereafter abstract away 𝑟𝑖 from Section 3.1.3). Next, participants

reveal their 𝑟𝑖 values and the result is Ω = Combine(𝑟1, . . . , 𝑟𝑛) for some suitable combination

function (such as exclusive-or or a cryptographic hash). These protocols are simple, efficient,

and secure as long as one participant chooses a random 𝑟𝑖 value—assuming all participants open

their commitments. However, the output can be biased by the last participant to open their

commitment via the aforementioned last-revealer attack.

Related work. Several approaches exist to avoid last-revealer attacks. Commit-reveal-punish

protocols impose a financial penalty on any participant who fails to open their commitment. This

penalty can be automatically enforced usingmodern cryptocurrencies [Andrychowicz et al., 2014,

71

RANDAO, 2016], but this requires locking up capital and security relies on economic assumptions

about the value of manipulation to the attacker.

Other protocols relax the security model of commit-reveal and assume an honest majority

of participants. Many constructions enable a majority of participants to recover the input of a

malicious minority of participants [Schoenmakers, 1999,Cascudo and David, 2017,Cascudo and

David, 2020,Syta et al., 2017,Guo et al., 2020,Schindler et al., 2020,Bhat et al., 2021,Kiayias et al.,

2017,Das et al., 2022,Bhat et al., 2023], using cryptographic tools such as publicly verifiable secret

sharing (PVSS). Typically, these constructions can tolerate some threshold 𝑡 of malicious partic-

ipants failing to complete the protocol, with the trade-off that any coalition of 𝑡 + 1 participants

can (secretly) learn the impending output early and potentially bias the protocol, leading to a

requirement that 𝑡 < 𝑛
2 (honest majority). These protocols are also often quite complex, with

communication and computation costs superlinear in 𝑛. Another approach is to rely on thresh-

old cryptography for participants to jointly compute a cryptographic function which produces Ω,

such as threshold signatures in Dfinity [Camenisch et al., 2022], threshold encryption [Cherni-

aeva et al., 2019], or threshold inversion in RSA groups [Beaver and So, 1993,Beaver et al., 2023].

The drand DRB [drand, 2020], which uses a chain of threshold BLS signatures, is now deployed

publicly with a group of 16 participating nodes producing a new random output every 30 seconds.

A very different approach to constructing DRBs uses time-based cryptography, specifically

using delay functions to prevent manipulation. The simplest example is Unicorn [Lenstra and

Wesolowski, 2015], a one-round protocol in which participants directly publish (within a fixed

time window) a random input 𝑟𝑖 . The result is computed as Ω = Delay(Combine(𝑟1, . . . , 𝑟𝑛)).

By assumption, a party cannot compute the Delay function before the deadline to publish their

contribution 𝑟𝑖 and therefore cannot predict Ω or choose 𝑟𝑖 in such a way as to influence it.

This protocol retains the strong 𝑛 − 1 (just one honest node) security model of commit-reveal,

but with no last-revealer attacks. It is also simple and, using modern verifiable delay functions1

1We consider a VDF-enhanced version of Unicorn (Unicorn++) hereafter.

72

(VDFs) [Boneh et al., 2018a], the result can be efficiently verified. The downside is that a delay

function must be computed for every run of the protocol.

Our approach. We introduce the Bicorn family of DRB protocols, which retain the advantages

of Unicorn while enabling efficient computation of the result (with no delay) if all participants

act honestly. The general structure is:

• Each of 𝑛 participants chooses a random value 𝑟𝑖 and publishes 𝑐𝑖 = TCom(𝑟𝑖) using a timed

commitment scheme [Boneh and Naor, 2000] TCom before some deadline 𝑇1.

• In the optimistic case, every participant opens their commitment by publishing 𝑟𝑖 . The DRB

output is Ω = Combine(𝑟1, . . . , 𝑟𝑛). In this case, the protocol is equivalent to a classic commit-

reveal protocol.

• If any participant does not publish their 𝑟𝑖 value, it can be recovered by computing 𝑟𝑖 =

ForceOpen(𝑐𝑖), a slow function requiring 𝑡 steps of sequential work which cannot be eval-

uated quickly enough for a malicious coalition of participants to learn honest participants’

committed values early. The result Ω is the same as in the optimistic case, even if all partici-

pants don’t reveal their committed values.

This protocol structure was used in a recent proposal by Thyagarajan et al. [Thyagarajan

et al., 2021a]. They observe that by using a homomorphic commitment scheme, the commit-

ments can be combined and only a single forced opening is required, instead of opening every

withholding participant’s commitment separately. Asymptotically, their protocols require linear

(𝑂 (𝑛)) communication and computation costs when run with 𝑛 participants.

However, Thyagarajan et al. use a general-purpose CCA-secure timed commitment scheme

suitable for committing to arbitrary messages, which introduces significant practical complexity

and overhead. Our key insight is that constructing a DRB does not require a general-purpose

commitment scheme; it is sufficient to use a special restricted commitment scheme which only

enables committing to a pseudorandom message. As a result, our protocols are considerably

73

simpler and offer much better concrete performance.

Contributions. We introduce the Bicorn family of protocols, which comes in three flavors with

slightly different security proofs and practical implications:

• Bicorn-ZK, which requires each participant to publish a zero-knowledge proof of knowledge

of exponent. This imposes the highest practical overhead but offers the simplest security

proof.

• Bicorn-PC, in which participants “pre-commit” their contribution before the protocol. This is

the simplest version, though it adds an extra communication round (which can be amortized

over multiple runs).

• Bicorn-RX, which utilizes a randomized exponent to preventmanipulation attacks. This is the

most efficient version in practice, though the security proof relies on stronger assumptions.

In Section 4.4, we prove security by reducing to the RSW assumption [Rivest et al., 1996]

in the algebraic group model (AGM) [Fuchsbauer et al., 2018], except for Bicorn-ZK where we

assume a zero-knowledge proof of knowledge of exponent (ZK-PoKE) exists. The Bicorn-RX

variant assumes a random oracle. In Section 4.7, we report on concrete implementations of these

protocols in Ethereum, showing that our constructions are practical and incur 3–8× increase in

per-user cost compared to commit-reveal (but with no manipulation due to aborts) and 5–7×

compared to Unicorn (but with no delay function required in the optimistic case).

4.2 Overview

4.2.1 Protocol Outline

We specify all three of our protocol variants in Protocol 1. Our protocols are initialized

via a security parameter 𝜆 and a delay parameter 𝑡 , and work over a group of unknown order,

which we denote G (see preliminaries in Section 2.5). In addition to the group G, the public

74

parameters include a pair (𝑔, ℎ), where 𝑔 is a generator of the group and ℎ = 𝑔2
𝑡 . If desired, a

Wesolowski [Wesolowski, 2019] or Pietrzak [Pietrzak, 2018] proof of exponentiation can enable

efficient verification thatℎwas computed correctly. Note that this setup only needs to be run once

ever (for a specific delay parameter 𝑡) and can be used repeatedly (and concurrently) by separate

protocol instances; the number of participants does not need to be known and may dynamically

change over time.

The common structure of Bicorn protocols is:

• Each of 𝑛 participants chooses a random value 𝛼𝑖 and publishes 𝑐𝑖 = 𝑔𝛼𝑖 . The value 𝑐𝑖 can

be viewed as the input to a VDF whose output is (𝑐𝑖)2
𝑡 , with 𝛼𝑖 serving as a trapdoor to

quickly compute (𝑐𝑖)2
𝑡

= (𝑔𝛼𝑖)2𝑡 = (𝑔2𝑡)𝛼𝑖 = ℎ𝛼𝑖 . Without knowledge of 𝛼𝑖 this value is slow

to compute. Depending on the security assumptions made, 𝛼𝑖 can be sampled from different

distributions. We abstract this choice by parameterizing by a uniform distribution B from

which 𝛼𝑖 is sampled.

• Participants “open” their commitment 𝑐𝑖 by revealing a value 𝛼𝑖 . It can be quickly verified

that 𝛼𝑖 is the correct 𝛼𝑖 by verifying that 𝑐𝑖 = 𝑔𝛼𝑖 .

• Optimistic case: Given all correct 𝛼𝑖 values, the DRB output Ω is the product Ω =
∏
𝑖∈[𝑛] ℎ

𝛼𝑖 ,

which is unpredictable as long as at least one of the 𝛼𝑖 values was randomly chosen and is

easy to compute if all 𝛼𝑖 values are correctly revealed.

• Pessimistic case: If any participant withholds 𝛼𝑖 (or chose 𝑐𝑖 without knowledge of the corre-

sponding 𝛼𝑖), then the missing value ℎ𝛼𝑖 can be recovered (slowly) by computing ℎ𝛼𝑖 = (𝑐𝑖)2
𝑡 ,

equivalent to evaluating a VDF. If multiple participants withhold 𝛼𝑖 , naively one must com-

pute each missing value ℎ𝛼𝑖 individually. A more efficient approach (which works even if

all participants withhold 𝛼𝑖) is to first combine each participant’s contribution into the value

𝜔 =
∏
𝑖∈[𝑛] 𝑐𝑖 . The output can then be computed via a single slow computation as Ω = 𝜔2𝑡 ,

which is identical to the output Ω =
∏
𝑖∈[𝑛] ℎ

𝛼𝑖 computed in the optimistic case.

75

By itself this protocol is insecure, because a malicious participant need not choose 𝑐𝑖 by

choosing a value 𝛼𝑖 and computing 𝑔𝛼𝑖 . An adversary 𝑗 who has precomputed a desired output

Ω∗ = (𝜔∗)2
𝑡 and is able to publish last can compute a malicious contribution:

𝑐 𝑗 = 𝜔∗ ·
©­«

∏
𝑖∈[𝑛],𝑖≠𝑗

𝑐𝑖
ª®¬
−1

(4.1)

This will cancel out every other participant’s contribution and force the output value Ω∗.

There are three ways to prevent this attack, each leading to a protocol variant with slightly dif-

ferent properties, which we will present in the following subsections. We present the protocols

combined for comparison in Protocol 1, with separate presentations in Section 4.9.

4.2.2 Bicorn-ZK: Using Zero-Knowledge Proofs

The conceptually simplest fix is for each user to publish, along with their commitment 𝑐𝑖 , a

zero-knowledge proof-of-knowledge 𝜋𝑖 = ZK-PoKE(𝑔, 𝑐𝑖, 𝛼𝑖) of the discrete logarithm of 𝑐𝑖 to the

base 𝑔𝑖 (i.e. 𝛼𝑖). This version (Bicorn-ZK) is specified in Protocol 1 (left). This removes the attack

above, as an adversary who computes 𝑐 𝑗 via Equation 4.1 will not know the discrete log of 𝑐 𝑗 to

the base 𝑔. Such proofs can be done in groups of unknown order particularly efficiently in this

case. The use of a fixed base 𝑔 enables the simpler ZKPoKRep protocol of Boneh et al. [Boneh

et al., 2019] (possibly in combination with their proof aggregation PoKCR protocol).

Participants publishing invalid proofs are removed, and the protocol can continue and still

produce output. Attempting to participate with an invalid proof is equivalent to not participating

at all (though participants who do so might need to be blocked or penalized financially to deter

denial-of-service attacks).

It might be tempting to optimize the protocol by not verifying each proof 𝜋𝑖 in the optimistic

case, instead checking directly that 𝑐𝑖 = 𝑔𝛼𝑖 using the revealed value 𝛼𝑖 . However, this would

introduce a subtle attack: a malicious participant could publish a correctly generated (𝑐𝑖, 𝛼𝑖) pair

but with an invalid proof 𝜋̃𝑖 . Next, after all other participants have revealed their 𝛼 values, the

76

Setup(𝜆, 𝑡) (run once for all protocol runs)

1. Run (G, 𝑔, 𝐴, 𝐵) $←− GGen(𝜆) to generate a group of unknown order
2. Compute ℎ ← 𝑔2

𝑡 , optionally with 𝜋ℎ = PoE(𝑔, ℎ, 2𝑡)
3. Output (G, 𝑔, ℎ, 𝜋ℎ, 𝐴, 𝐵)

Prepare() (run by each participant 𝑖)

𝛼𝑖
$←− B

𝑐𝑖 ← 𝑔𝛼𝑖

𝜋𝑖 ← ZK-PoKE(𝑔, 𝑐𝑖 , 𝛼𝑖)

𝛼𝑖
$←− B

𝑐𝑖 ← 𝑔𝛼𝑖

𝑑𝑖 ← 𝐻 (𝑐𝑖)

𝛼𝑖
$←− B

𝑐𝑖 ← 𝑔𝛼𝑖

Precommit(𝑑𝑖) (run by each participant 𝑖)

− Publish 𝑑𝑖 −

. deadline 𝑇0 . . .

Commit(𝑐𝑖 , 𝜋𝑖) (run by each participant 𝑖)

Publish 𝑐𝑖 , 𝜋𝑖 Publish 𝑐𝑖 Publish 𝑐𝑖

. deadline 𝑇1 . . .

Reveal(𝛼𝑖) (run by each participant 𝑖)

Publish 𝛼𝑖 Publish 𝛼𝑖 Publish 𝛼𝑖

Finalize({(𝛼𝑖 , 𝑐𝑖 , 𝑑𝑖 , 𝜋𝑖)}𝑛𝑖=1) (optimistic case, once per protocol run)

1. ∀𝑗 Verify proof 𝜋 𝑗
–else: remove user 𝑗

2. ∀𝑗 Verify 𝑐 𝑗 = 𝑔𝛼̃ 𝑗

–else: go to Recover

Ω =
∏
𝑖∈[𝑛]

ℎ𝛼̃𝑖

1. ∀𝑗 Verify 𝑑 𝑗 = 𝐻 (𝑐 𝑗)
–else: remove user 𝑗

2. ∀𝑗 Verify 𝑐 𝑗 = 𝑔𝛼̃ 𝑗

–else: go to Recover

Ω =
∏
𝑖∈[𝑛]

ℎ𝛼̃𝑖

1. 𝑏∗ ← 𝐻 (𝑐1 | | . . . | |𝑐𝑛)
2. ∀𝑗 Verify 𝑐 𝑗 = 𝑔𝛼̃ 𝑗

–else: go to Recover

Ω =
∏
𝑖∈[𝑛]

(
ℎ𝐻 (𝑐𝑖 ∥𝑏∗)

)𝛼̃𝑖

Recover({(𝑐𝑖 , 𝑑𝑖 , 𝜋𝑖)}𝑛𝑖=1) (pessimistic case, once per protocol run)

Ω =
©­«
∏
𝑖∈[𝑛]

𝑐𝑖
ª®¬
2𝑡

Ω =
©­«
∏
𝑖∈[𝑛]

𝑐𝑖
ª®¬
2𝑡

Ω =
©­«
∏
𝑖∈[𝑛]

𝑐
𝐻 (𝑐𝑖 ∥𝑏∗)
𝑖

ª®¬
2𝑡

Protocol 1: All Bicorn protocol variants: Bicorn-ZK (left column), Bicorn-PC (center column), and Bicorn-
RX (right column). Each protocol is presented individually in Section 4.9.

77

attacker can compute the impending result Ω with their own contribution included, as well as

the alternative Ω′ if it is removed. They could then choose which output is produced, introducing

one bit of bias into the protocol: by publishing 𝛼𝑖 , they will remain in the protocol (as 𝜋̃𝑖 is not

checked) and Ω will result, whereas by withholding 𝛼𝑖 they will force the pessimistic case, in

which they will be removed on account of the faulty 𝜋̃𝑖 and Ω′ will result. Thus, it is important

to verify every participant’s proof 𝜋𝑖 in both cases to prevent this attack.

4.2.3 Bicorn-PC: Using Precommitment

Another approach to prevent manipulation is to add an initial precommitment round where

participants publish 𝑑𝑖 = 𝐻 (𝑐𝑖), preventing them from choosing 𝑐𝑖 in reaction to what others

have chosen. This version (Bicorn-PC) is specified in Protocol 1 (center). Participants can de-

cline to reveal their committed 𝑐𝑖 , in which case they are removed and the protocol can continue

safely. Because participants will not have time to compute the impending output before choosing

whether to reveal, this does not introduce any opportunity for manipulation.

Note that the precommitted values 𝑑𝑖 can be published at any point prior to 𝑇0 (the point at

which participants start revealing their actual commitment 𝑐𝑖). If the protocol is run iteratively,

it is possible for participants to publish any number of precommitments 𝑑𝑖 in advance (or a single

commitment to a set of 𝑑𝑖 values using a set commitment construction such as a Merkle Tree),

making the protocol a two-round protocol on an amortized basis.

4.2.4 Bicorn-RX: Using Pseudorandom Exponents

Finally, we can prevent manipulation by raising each participant’s contribution 𝑐𝑖 to a unique

(small) exponent which depends on all other participants’ contributions. Specifically, we define

𝑏∗ to be the hash of all 𝑐𝑖 values: 𝑏∗ = 𝐻 (𝑐1 | |𝑐2 | | . . . | |𝑐𝑛). We then raise each value 𝑐𝑖 to the

pseudorandom exponent 𝑏𝑖 = 𝐻 (𝑐𝑖 ∥ 𝑏∗). The intuition is that modifying any contribution 𝑐𝑖

78

Protocol Rounds Communication Assumptions

§4.2.2 Bicorn-ZK 2 𝑛(⟨G⟩ + ⟨B⟩ + |𝜋 |) RSW, ZK-PoKE

§4.2.3 Bicorn-PC 3 𝑛(⟨G⟩ + ⟨B⟩ + 𝜆) RSW, AGM

§4.2.4 Bicorn-RX 2 𝑛(⟨G⟩ + ⟨B⟩) RSW, AGM, ROM

Table 4.1: A brief comparison of the Bicorn variants. See Protocol 1 for notation (⟨G⟩ and ⟨B⟩ are the sizes
of elements from G and B, respectively) and Chapter 2 for a background on the RSW assumptions, the
algebraic group model (AGM), the random oracle model (ROM), and zero-knowledge proof of knowledge
of exponent (ZK-PoKE).

will induce new exponents on each participant’s contribution which prevents an adversary from

forcing the value 𝜔 =
∏
𝑖∈[𝑛] 𝑐

𝐻 (𝑐𝑖 ∥𝑏∗)
𝑖

to a fixed value. A similar technique was used by Boneh

et al. [Boneh et al., 2018c] to prevent rogue-key attacks in BLS multi-signatures. This version

(Bicorn-RX) is specified in Protocol 1 (right).

4.2.5 Comparison

Each of these leads to a secure protocol, albeit reducing to slightly different computational

assumptions, as we will prove in Section 4.4. All of our protocols reduce to the RSW assump-

tions with Bicorn-PC and Bicorn-RX requiring the algebraic group model (AGM) for the security

reductions and Bicorn-RX also assuming a random oracle. Bicorn-ZK doesn’t require the AGM

explicitly but instead assumes a secure zero-knowledge proof of knowledge of exponent (ZK-

PoKE) for which efficient existing protocols are proven secure only in the AGM [Boneh et al.,

2019].

Each protocol also offers slightly different performance trade-offs, though asymptotically all

require𝑂 (𝑛) broadcast communication by participating nodes and𝑂 (𝑛) computation to verify the

result. While Bicorn-PC incurs an extra round, Bicorn-ZK incurs extra computational overhead

which may be significant in some scenarios (e.g. smart contracts). Bicorn-RX requires only two

rounds and does not require the user to produce proofs but requires extra group exponentiations

which incur slightly higher costs than Bicorn-PC.

79

4.3 Timed DRBs: Syntax and Security Definitions

We first define a timed DRB using a generalized syntax which captures all of our protocol

variants. A timed DRB protocol DRB with time parameter 𝑡 is the following tuple of algorithms.

We describe them below for a run of the protocol with 𝑛 participants:

• Setup(𝜆, 𝑡) $−→ pp: The setup algorithm takes as input a security parameter 𝜆 and a time

parameter 𝑡 and outputs a set of public parameters pp.

• Prepare(pp) $−→ (𝛼𝑖, 𝑐𝑖, 𝑑𝑖, 𝜋𝑖): The prepare algorithm is run by each participant and outputs

a tuple of opening, commitment, precommitment, and proof. The precommitment is con-

tributed during the Precommit phase (see Protocol 1). The commitment and proof are con-

tributed during the Commit phase, and the opening is contributed during the Reveal phase.

The length of the Commit phase is dictated by the time parameter 𝑡 .

• Finalize(pp, {(𝛼𝑖, 𝑐𝑖, 𝑑𝑖, 𝜋𝑖)}𝑛𝑖=1) → Ω: The finalize algorithm is run after the Reveal phase and

verifies the contributions of participants to optimistically produce a final output Ω or returns

⊥ indicating the need to move to the pessimistic case.

• Recover(pp, {(𝑐𝑖, 𝑑𝑖, 𝜋𝑖)}𝑛𝑖=1) → Ω: The recover algorithm performs the timed computation to

recover the output Ω without any revealed 𝛼 values.

We require Finalize to be a deterministic algorithm running in time polylog(𝑡) (the fast optimistic

case), and Recover to be a deterministic algorithm running in time (1 + 𝜖)𝑡 for some small 𝜖 . We

also require the following security properties of a timed DRB (given in pseudocode in Figure 4.1).

Consistency. Our first security property is a form of correctness. We require that it is not pos-

sible for the optimistic and pessimistic paths to return different outputs. The adversary is tasked

with providing an accepting set of contributions that results in different outputs from Finalize and

Recover. We define the advantage of an adversary as AdvconsistA,𝑡,𝑛,DRB(𝜆) = Pr
[
Gconsist
A,𝑡,𝑛,DRB(𝜆) = 1

]
.

𝑡-Unpredictability. The 𝑡-unpredictability game tasks an adversary with predicting the final

80

Gconsist
A,𝑡,𝑛,DRB (𝜆)

pp
$←− Setup(𝜆, 𝑡)

(𝛼1, 𝑐1, 𝑑1, 𝜋1)
$←− Prepare(pp)

(𝜎, {𝑑𝑖 }𝑛
′
𝑖=1)

$←− A0 (pp, 𝑑1)
{(𝛼𝑖 , 𝑐𝑖 , 𝜋𝑖)}𝑛𝑖=2

$←− A1 (𝜎, 𝑐1, 𝜋1)
Ω ← Finalize(pp, {(𝛼𝑖 , 𝑐𝑖 , 𝑑𝑖 , 𝜋𝑖)}𝑛𝑖=1)

Return
∧©­­«

Ω ≠ ⊥

Ω ≠ Recover(pp, {(𝑐𝑖 , 𝑑𝑖 , 𝜋𝑖)}𝑛𝑖=1)

ª®®¬
Gunpred
A,𝑡,𝑛,DRB (𝜆)

pp
$←− Setup(𝜆, 𝑡)

(𝛼1, 𝑐1, 𝑑1, 𝜋1)
$←− Prepare(pp)

(𝜎, {𝑑𝑖 }𝑛
′
𝑖=1)

$←− A0 (pp, 𝑑1)
(Ω̃, {(𝑐𝑖 , 𝜋𝑖)}𝑛𝑖=2)

$←− A1 (𝜎, 𝑐1, 𝜋1)
Return Ω̃ = Recover(pp, {(𝑐𝑖 , 𝑑𝑖 , 𝜋𝑖)}𝑛𝑖=1)

Gindist
A,𝑡,𝑛,𝑏,DRB (𝜆)

pp
$←− Setup(𝜆, 𝑡)

(𝛼1, 𝑐1, 𝑑1, 𝜋1)
$←− Prepare(pp)

(𝜎0, {𝑑𝑖 }𝑛
′
𝑖=1)

$←− A0 (pp, 𝑑1)
(𝜎1, {(𝑐𝑖 , 𝜋𝑖)}𝑛𝑖=2)

$←− A1 (𝜎0, 𝑐1, 𝜋1)
Ω1 ← Recover(pp, {(𝑐𝑖 , 𝑑𝑖 , 𝜋𝑖)}𝑛𝑖=1)
Ω0

$←− G

𝑏′
$←− A2 (𝜎1,Ω𝑏)

Return 𝑏 = 𝑏′

Figure 4.1: Security games for the main security properties: consistency (left), 𝑡-unpredictability (center),
and 𝑡-indistinguishability (right).

output Ωexactly, allowing it control of all but a single honest protocol participant (which pub-

lishes first). We define the advantage of an adversary as AdvunpredA,𝑡,𝑛,DRB(𝜆) = Pr
[
Gunpred
A,𝑡,𝑛,DRB(𝜆) = 1

]
.

𝑡-Indistinguishability. The 𝑡-unpredictability property does not guarantee the output is in-

distinguishable from random. For that, we provide a stronger 𝑡-indistinguishability property in

which the adversary must distinguish an honest output from a random output, again allowing

81

the adversary control of all but one participant. We define the advantage of an adversary as:

AdvindistA,𝑡,𝑛,DRB(𝜆) =
���Pr [
Gindist
A,𝑡,𝑛,1,DRB(𝜆) = 1

]
− Pr

[
Gindist
A,𝑡,𝑛,0,DRB(𝜆) = 1

] ���. A timed DRB that satisfies

𝑡-unpredictability can be transformed generically into one with 𝑡-indistinguishability by apply-

ing a suitable randomness extractor [Trevisan and Vadhan, 2000, Trevisan, 2001] or hash func-

tion (modeled as a random oracle) to the output. A nice feature of our DRBs is that they satisfy

𝑡-indistinguishability with respect to the group output space (without applying a randomness

extractor) under the suitable decisional RSW assumption.

Discussion. In 𝑡-unpredictability and 𝑡-indistinguishability, the adversaries A1 and A2 are re-

stricted to run in fewer than 𝑡 sequential steps. This is a slight simplification of the (𝑝, 𝜎)-

sequentiality assumption in VDFs [Boneh et al., 2018a], which is suitable for working in the

AGM in which parallelism is not helpful in computing group operations.

Note that our syntax and security definitions encompass all three of our protocol variants.

Except for Bicorn-ZK, the proofs 𝜋𝑖 can be set to ⊥ and are ignored; except for Bicorn-PC, the

precommitment values 𝑑𝑖 can be set to ⊥ and are ignored. Also note that there are 𝑛′ (⩾ 𝑛) values

of 𝑑𝑖 output by the adversary; they have the option in Bicorn-PC to choose which to use in later

steps. The implementation of Recover is unique to each protocol.

We observe that the consistency property holds unconditionally for all Bicorn variants, as

Finalize and Recover are deterministic and algebraically equivalent. It remains to prove unpre-

dictability and indistinguishability for each variant.

4.4 Security of Bicorn-RX

Theorem 4.1 (𝑡-Unpredictability of Bicorn-RX). Let Abrx = (Abrx,0,Abrx,1) be an algebraic ad-

versary against the 𝑡-unpredictability of BRX with random exponent space B = [22𝜆 ·𝐵] where hash

function 𝐻 is modeled as a random oracle. Then we construct an adversaryArsw = (Arsw,0,Arsw,1)

82

such that

AdvunpredAbrx,𝑡,𝑛,BRX
(𝜆) ≤ AdvC-RSW

𝑒

Arsw,𝑡,GGen(𝜆) +
2(q2ro + 𝑛) + 1

22𝜆+1
+

ℓ∏
𝑖=1

𝐼 1
𝑝𝑖

(𝑟𝑖, 𝑛) ,

and where GGen
$−→ (G, 𝑔, 𝐴, 𝐵) generates the group of unknown order (|G| = ∏ℓ

𝑖=1 𝑝
𝑟𝑖
𝑖
for distinct

primes 𝑝1, . . . , 𝑝ℓ) used by BRX, qro is the number of queries made to the random oracle, 𝑛 is the

number of participants, and 𝐼 1
𝑝
(𝑟, 𝑛) = (1− 1

𝑝
)𝑛 ∑∞

𝑗=𝑟

(𝑛+𝑟−1
𝑟

)
𝑝− 𝑗 is the regularized beta function. The

running time of 𝑇 (Arsw,0) ≈ 𝑇 (Abrx,0) + 2𝑡 and 𝑇 (Arsw,1) ≈ 𝑇 (Abrx,1).

Proof. At a high level, our proof strategy will be to replace the initial commitment 𝑐1 provided by

the single honest participant with a random group element. If Abrx can win with non-negligible

probability, thenwe show that due to unpredictability of the random exponents applied in Bicorn-

RX, it must be that a nontrivial large exponent of 𝑐1 was computed which we can use to win the

computational power-of-RSW game.

More specifically, we bound the advantage of Abrx by bounding the advantage of a series

of game hops, using the fundamental lemma of game playing and its identical-until-bad argu-

ment [Bellare and Rogaway, 2006]. We define G = Gunpred
Abrx,𝑡,𝑛,BRX

(𝜆) and hybrids G1,G2,G3 for

which we justify the following claims leading to the inequality above:

• |Pr [G(𝜆) = 1] − Pr [G1(𝜆) = 1] | ≤ 1
22𝜆+1

• |Pr [G1(𝜆) = 1] − Pr [G2(𝜆) = 1] | ≤ q2ro
22𝜆

• |Pr [G2(𝜆) = 1] − Pr [G3(𝜆) = 1] | ≤ 𝑛

22𝜆 +
∏ℓ
𝑖=1 𝐼 1

𝑝𝑖

(𝑟𝑖, 𝑛)

• Pr [G3(𝜆) = 1] = AdvC-RSW
𝑒

Arsw,𝑡,GGen(𝜆)

G → G1. Hybrid G1 is defined the same as G except G1 samples 𝑐1 in Prepare at random from G

instead of through an exponent sampled from B. By Lemma 2.8, the statistical distance between

G and G1 is at most 1/22𝜆+1.

We can view G1 as computing the beacon output Ω using the representations of {𝑐𝑖}𝑛𝑖=2 pro-

vided by the algebraic adversary. Since Abrx is algebraic, it will provide a representation for

83

each 𝑐𝑖 in terms of elements (𝑐1, 𝑔, ℎ). That is, the adversary outputs [(𝑒𝑖,0, 𝑒𝑖,1, 𝑒𝑖,2)]𝑛𝑖=2 such that

𝑐𝑖 = 𝑐
𝑒𝑖,0
1 𝑔𝑒𝑖,1ℎ𝑒𝑖,2 .

Given a value ℎ̂ = ℎ2
𝑡 , we can compute Ω as follows. Consider the random exponents 𝑏𝑖 =

𝐻 (𝑐𝑖 ∥ 𝑏∗) where 𝑏∗ = 𝐻 (𝑐1 | | . . . | |𝑐𝑛), and let b = (𝑏1, . . . , 𝑏𝑛). Using these, we have:

Ω =

(
𝑛∏
𝑖=1

𝑐
𝑏𝑖
𝑖

)2𝑡
=

(
𝑐
𝑏1
1 ·

𝑛∏
𝑖=2

(
𝑐
𝑒𝑖,0
1 𝑔𝑒𝑖,1ℎ𝑒𝑖,2

)𝑏𝑖)2𝑡
=

(
𝑐
𝑏1+

∑𝑛
𝑖=2 𝑏𝑖𝑒𝑖,0

1 𝑔
∑𝑛
𝑖=2 𝑏𝑖𝑒𝑖,1ℎ

∑𝑛
𝑖=2 𝑏𝑖𝑒𝑖,2

)2𝑡
By letting e = (1, 𝑒2,0, . . . , 𝑒𝑛,0),𝑚1 =

𝑛∑︁
𝑖=2

𝑏𝑖𝑒𝑖,1, and𝑚2 =

𝑛∑︁
𝑖=2

𝑏𝑖𝑒𝑖,2,

=

(
𝑐
⟨b,e⟩
1 𝑔𝑚1ℎ𝑚2

)2𝑡
= (𝑐2𝑡1)⟨b,e⟩ · ℎ𝑚1 · ℎ̂𝑚2

Thus if Abrx wins, i.e., Ω̃ = Ω, then we have

(𝑐2𝑡1)⟨b,e⟩ = Ω̃ · ℎ−𝑚1 · ℎ̂−𝑚2

and we buildArsw to win the computational power-of-RSW game by setting 𝑐1 equal to challenge

element 𝑥 and returning this value alongwith ⟨b, e⟩. All that is left to show is that ⟨b, e⟩ ≠ 0which

we can do through an application of the Schwartz-Zippel lemma modulo a composite [Schwartz,

1980, Zippel, 1979, Bünz and Fisch, 2022]. Define a non-zero polynomial 𝑓 (𝑥1, . . . , 𝑥𝑛) = 𝑥1 +∑𝑛
𝑖=2 𝑥𝑖𝑒𝑖,0. Note that 𝑓 (b) = ⟨b, e⟩.

G1 → G2. To apply the Schwartz-Zippel lemma modulo a composite, we must first have that

the evaluation point b does not coincide with values precomputed by the adversary. To do this,

we step through G2 in which we disallow the output of the random oracle 𝐻 from colliding

with (the trailing substring of) any previous inputs to the random oracle. This ensures that the

adversary has not made any previous queries that include 𝑏∗ and ultimately ensures that the 𝑏𝑖

values are chosen randomly after the polynomial is decided. We can apply a standard birthday

analysis to bound the probability of collision among the qro queries made to q2ro/22𝜆 , to bound

84

the distinguishing advantage between G1 and G2.

G2 → G3. After we have that the evaluation point b does not coincide with precomputed val-

ues, we transition to G3 which is identical to G2 except it aborts if 𝑓 (b) = 0. We bound the

distinguishing advantage to probability 𝑛

22𝜆 +
∏ℓ
𝑖=1 𝐼 1

𝑝𝑖

(𝑟𝑖, 𝑛) by applying Schwartz-Zippel modulo

a composite [Bünz and Fisch, 2022]. Adversary Arsw can simulate G3 perfectly, simulating the

setup and computing ℎ̂ with 2𝑡 work, and wins the RSW gamewith the same advantage as G3. ■

Theorem 4.2 (𝑡-Indistinguishability of Bicorn-RX). Let Abrx = (Abrx,0,Abrx,1,Abrx,2) be an

adversary against the 𝑡-indistinguishability of BRX with random exponent space B = [22𝜆 · 𝐵]

where hash function 𝐻 is modeled as a random oracle. Then we construct an adversary Arsw =

(Arsw,0,Arsw,1) such that

AdvindistAbrx,𝑡,𝑛,BRX
(𝜆) ≤ AdvD-RSWArsw,𝑡,GGen(𝜆) +

2q2ro + 1
22𝜆

+ 2(𝑝 + 𝑞 − 1) (𝑛

|𝑖𝑚(𝐻) | +
𝑛2

𝑝𝑞
) ,

and where GGen
$−→ (G, 𝑔, 𝐴, 𝐵) generates a group of unknown order QR+𝑁 (whose order is 𝑝𝑞 where

𝑁 = 𝑝𝑞 for 𝑝 = 2𝑝 + 1, 𝑞 = 2𝑞 + 1) used by BRX, qro is the number of queries made to the

random oracle, 𝑛 is the number of participants, and 𝑖𝑚(𝐻) is the image of 𝐻 . The running time of

𝑇 (Arsw,0) ≈ 𝑇 (Abrx,0) + 2𝑡 and 𝑇 (Arsw,1) ≈ 𝑇 (Abrx,1) +𝑇 (Abrx,2).

Proof. We bound the advantage of Abrx by bounding the advantage of a series of game hops,

using the fundamental lemma of game playing and its identical-until-bad argument [Bellare and

Rogaway, 2006]. We define G𝑏 = Gindist
Abrx,𝑡,𝑛,𝑏,BRX

(𝜆) and hybrids G𝑏1 ,G𝑏2 ,G𝑏3 for which we justify the

following claims leading to the inequality above:

•
��Pr [
G𝑏 (𝜆) = 1

]
− Pr

[
G𝑏1 (𝜆) = 1

] �� ≤ 1
22𝜆+1

•
��Pr [
G𝑏1 (𝜆) = 1

]
− Pr

[
G𝑏2 (𝜆) = 1

] �� ≤ q2ro
22𝜆

•
��Pr [
G𝑏2 (𝜆) = 1

]
− Pr

[
G𝑏3 (𝜆) = 1

] �� ≤ (𝑝 + 𝑞 − 1) · (𝑛
|𝑖𝑚(𝐻) | +

𝑛2

𝑝𝑞
)

•
��Pr [
G1
3 (𝜆) = 1

]
− Pr

[
G0
3 (𝜆) = 1

] �� = AdvD-RSWArsw,𝑡,GGen(𝜆)

Hybrid G𝑏1 is defined the same as G𝑏 except G𝑏1 samples 𝑐1 in Prepare at random from G

85

instead of through an exponent sampled from B. By Lemma 2.8, the statistical distance between

G𝑏 and G𝑏1 is at most 1/22𝜆+1.

We can view G𝑏1 as computing the beacon output Ω using the representations of {𝑐𝑖}𝑛𝑖=2 pro-

vided by the algebraic adversary. Since Abrx is algebraic, it will provide a representation for

each 𝑐𝑖 in terms of elements (𝑐1, 𝑔, ℎ). That is, the adversary outputs [(𝑒𝑖,0, 𝑒𝑖,1, 𝑒𝑖,2)]𝑛𝑖=2 such that

𝑐𝑖 = 𝑐
𝑒𝑖,0
1 𝑔𝑒𝑖,1ℎ𝑒𝑖,2 .

As in the unpredictability proof, given a value ℎ̂ = ℎ2
𝑡 , we can compute Ω as follows. Consider

the random exponents 𝑏𝑖 = 𝐻 (𝑐𝑖 ∥ 𝑏∗) where 𝑏∗ = 𝐻 (𝑐1 | | . . . | |𝑐𝑛), and let b = (𝑏1, . . . , 𝑏𝑛). Using

these, we have:

Ω =

(
𝑛∏
𝑖=1

𝑐
𝑏𝑖
𝑖

)2𝑡
=

(
𝑐
𝑏1
1 ·

𝑛∏
𝑖=2

(
𝑐
𝑒𝑖,0
1 𝑔𝑒𝑖,1ℎ𝑒𝑖,2

)𝑏𝑖)2𝑡
=

(
𝑐
𝑏1+

∑𝑛
𝑖=2 𝑏𝑖𝑒𝑖,0

1 𝑔
∑𝑛
𝑖=2 𝑏𝑖𝑒𝑖,1ℎ

∑𝑛
𝑖=2 𝑏𝑖𝑒𝑖,2

)2𝑡
By letting e = (1, 𝑒2,0, . . . , 𝑒𝑛,0),𝑚1 =

𝑛∑︁
𝑖=2

𝑏𝑖𝑒𝑖,1, and𝑚2 =

𝑛∑︁
𝑖=2

𝑏𝑖𝑒𝑖,2,

=

(
𝑐
⟨b,e⟩
1 𝑔𝑚1ℎ𝑚2

)2𝑡
= (𝑐2𝑡1)⟨b,e⟩ · ℎ𝑚1 · ℎ̂𝑚2

We consider a transition in which 𝑐2𝑡1 is replaced with a random group element following the

decisional RSW game. We will want to show that the distinguishing advantage for this transition

is equal to the advantage ofArsw. To do this, we will first need to set up the transition with a few

more hybrids.

First, as in the unpredictability game, we transition through G𝑏2 to disallow collisions in the

random oracle in the way specified in the proof of Theorem 4.1. Next, we further define G𝑏3 that

is the same asG𝑏2 but aborts if𝑔⟨b,e⟩ is not a generator ofQR+𝑁 . This happens if gcd(⟨b, e⟩, |QR+𝑁 |) ≠

1, a condition that is equivalent (inmodulo |QR+𝑁 | = 𝑝𝑞) to 𝑓 (b) = ⟨b, e⟩ = 𝑘 for𝑘 ∈ {0, 𝑝, 𝑞, . . . , 𝑝𝑞−

𝑝, 𝑝𝑞 −𝑞}. As we can apply Schwartz-Zippel modulo a composite [Bünz and Fisch, 2022, Remark

3] to each 𝑘 and there are 𝑝 + 𝑞 − 1 such 𝑘’s, we apply the union bound to bound the probability

86

that 𝑔⟨b,e⟩ is not a generator of QR+𝑁 to (𝑝 +𝑞 − 1) · (𝑛
|𝑖𝑚(𝐻) | +

𝑛2

𝑝𝑞
), where |𝑖𝑚(𝐻) | denotes the size

of the image of the random oracle. While a large |𝑖𝑚(𝐻) | may be required for this theoretical

bound, a remark here is that one may opt for stronger assumptions, such as the short exponent

indistinguishability (SEI) assumption [Couteau et al., 2021] due to the fact that 𝐻 outputs occur

only in the exponents, for efficiency gains in practice.

Now, we are set up to constructArsw by bounding the distinguishing advantage between G1
3

and G0
3 where G1

3 computes the challenge Ω using the process above, while G0
3 computes the

challenge Ω by replacing 𝑐2𝑡1 with a random group element. Note that in the case of G1
3 , Ω is

computed to match the output of Recover. On the other hand, in the case of G0
3 , Ω is in fact a

random group element. This can be seen as follows. The random group element that replaces 𝑐2𝑡1

can be written as 𝑔𝑟 for some 𝑟
$←− [1, |G|], and so we have:

Ω = (𝑔𝑟)⟨b,e⟩ · ℎ𝑚1 · ℎ̂𝑚2 = (𝑔⟨b,e⟩)𝑟 · ℎ𝑚1 · ℎ̂𝑚2

Since 𝑔⟨b,e⟩ is a generator by the previous hybrid transition, we have that (𝑔⟨b,e⟩)𝑟 is a random

group element, and so Ω is a random group element. Thus,Arsw perfectly simulates G𝑏3 based on

the challenge bit, simulating the setup and computing ℎ̂ with 2𝑡 work, and wins the RSW game

with the same advantage as the distinguishing advantage between G1
3 and G0

3 . ■

4.5 Security of Bicorn-ZK

Theorem 4.3 (𝑡-Unpredictability of Bicorn-ZK). Let Abzk = (Abzk,0,Abzk,1) be an adversary

against the 𝑡-unpredictability of BZK with random exponent space B = [22𝜆 · 𝐵]. Then we con-

struct adversaries Arsw = (Arsw,0,Arsw,1), Azk, and Asound such that

AdvunpredAbzk,𝑡,𝑛,BZK
(𝜆) ≤ AdvC-RSWArsw,𝑡,GGen(𝜆) + Adv

zk
Azk,ZK-PoKE(𝜆) + Adv

sound
Asound,ZK-PoKE,S,Ext(𝜆) +

1
22𝜆+1

,

and where GGen
$−→ (G, 𝑔, 𝐴, 𝐵) generates the group of unknown order used by BZK, and S and Ext

are the simulator and extractor for ZK-PoKE. The running time of 𝑇 (Arsw,0) ≈ 𝑇 (Abzk,0) + 𝑡 and

87

𝑇 (Arsw,1) ≈ 𝑇 (Abzk,1).

Proof. We bound the advantage of Abzk by bounding the advantage of a series of game hops,

using the fundamental lemma of game playing and its identical-until-bad argument [Bellare and

Rogaway, 2006]. We define G = Gunpred
Abzk,𝑡,𝑛,BZK

(𝜆) and hybrids G1,G2,G3 for which we justify the

following claims leading to the inequality above:

• |Pr [G(𝜆) = 1] − Pr [G1(𝜆) = 1] | ≤ AdvzkAzk,ZK-PoKE(𝜆)

• |Pr [G1(𝜆) = 1] − Pr [G2(𝜆) = 1] | ≤ 1
22𝜆+1

• |Pr [G2(𝜆) = 1] − Pr [G3(𝜆) = 1] | ≤ AdvsoundAsound,ZK-PoKE,S,Ext(𝜆)

• Pr [G3(𝜆) = 1] = AdvC-RSWArsw,𝑡,GGen(𝜆)

Hybrid G1 is defined the same as G except G1 simulates the zero-knowledge proof 𝜋1 in

Prepare. The distinguishing advantage is directly bounded by the zero-knowledge property of

ZK-PoKE.

Hybrid G2 is defined the same as G1 except G2 samples 𝑐1 in Prepare at random fromG instead

of through an exponent sampled from B. By Lemma 2.8, the statistical distance between G1 and

G2 is at most 1/22𝜆+1.

Hybrid G3 extracts the discrete log {𝛼𝑖}𝑛𝑖=2 from the adversary-provided {𝜋𝑖}𝑛𝑖=2 using the

extractor from the knowledge soundness property of ZK-PoKE. We bound the probability of any

extraction failure using an adversary against the simulation-extractability soundness ofZK-PoKE.

Game G3 outputs 1 when Ω̃ = Ω = (𝑐1)2
𝑡 ·∏𝑛

𝑖=2 ℎ
𝛼𝑖 . We build an adversaryArsw that wins the

computational RSW game with the same advantage as G3 by replacing 𝑐1 with challenge 𝑥 and

outputting 𝑦 = Ω̃∏𝑛
𝑖=2 ℎ

𝛼𝑖
. ■

Theorem 4.4 (𝑡-Indistinguishability of Bicorn-ZK). Let Abzk = (Abzk,0,Abzk,1,Abzk,2) be an ad-

versary against the 𝑡-indistinguishability of BZK with random exponent space B = [22𝜆 · 𝐵]. Then

we construct adversaries Arsw = (Arsw,0,Arsw,1), Azk, and Asound such that

AdvindistAbzk,𝑡,𝑛,BZK
(𝜆) ≤ AdvD-RSWArsw,𝑡,GGen(𝜆) + 2 · Adv

zk
Azk,ZK-PoKE(𝜆) + 2 · Adv

sound
Asound,ZK-PoKE,S,Ext(𝜆) +

1
22𝜆

,

88

and where GGen
$−→ (G, 𝑔, 𝐴, 𝐵) generates the group of unknown order used by BZK, and S and Ext

are the simulator and extractor for ZK-PoKE. The running time of 𝑇 (Arsw,0) ≈ 𝑇 (Abzk,0) + 𝑡 and

𝑇 (Arsw,1) ≈ 𝑇 (Abzk,1) +𝑇 (Abzk,2).

Proof. We bound the advantage of Abzk by bounding the advantage of a series of game hops,

using the fundamental lemma of game playing and its identical-until-bad argument [Bellare and

Rogaway, 2006]. We define G𝑏 = Gindist
Abzk,𝑡,𝑛,𝑏,BZK

(𝜆) and hybrids G𝑏1 ,G𝑏2 ,G𝑏3 for which we justify the

following claims leading to the inequality above:

•
��Pr [
G𝑏 (𝜆) = 1

]
− Pr

[
G𝑏1 (𝜆) = 1

] �� ≤ AdvzkAzk,ZK-PoKE(𝜆)

•
��Pr [
G𝑏1 (𝜆) = 1

]
− Pr

[
G𝑏2 (𝜆) = 1

] �� ≤ 1
22𝜆+1

•
��Pr [
G𝑏2 (𝜆) = 1

]
− Pr

[
G𝑏3 (𝜆) = 1

] �� ≤ AdvsoundAsound,ZK-PoKE,S,Ext(𝜆)

•
��Pr [
G1
3 (𝜆) = 1

]
− Pr

[
G0
3 (𝜆) = 1

] �� = AdvD-RSWArsw,𝑡,GGen(𝜆)

Hybrids G𝑏1 , G𝑏2 and G𝑏3 are defined as in the unpredictability proof for Bicorn-ZK, simulating

𝜋1, sampling a random 𝑐1, and extracting {𝛼𝑖}𝑛𝑖=2, respectively.

In G1
3 , the challenge output is computed to match the output of Recover as Ω = (𝑐1)2

𝑡 ·∏𝑛
𝑖=2 ℎ

𝛼𝑖 . In G0
3 , the challenge output is computed in the same way but by replacing (𝑐1)2

𝑡 with

a random group element resulting in Ω to be a random group element. Thus, Arsw perfectly

simulates G𝑏3 based on the challenge bit (by setting 𝑐1 equal to challenge input 𝑥 and replacing 𝑐2
𝑡

1

with challenge input 𝑦) and wins the RSW game with the same advantage as the distinguishing

advantage between G1
3 and G0

3 . ■

4.6 Security of Bicorn-PC

Theorem 4.5 (𝑡-Unpredictability of Bicorn-PC). Let Abpc = (Abpc,0,Abpc,1) be an adversary

against the 𝑡-unpredictability of BPCwith random exponent spaceB = [22𝜆 ·𝐵] where hash function

89

𝐻 is modeled as a random oracle. Then we construct an adversaryArsw = (Arsw,0,Arsw,1) such that

AdvunpredAbpc,𝑡,𝑛,BPC
(𝜆) ≤ AdvC-RSWArsw,𝑡,GGen(𝜆) +

4𝑛 · qro + 1
22𝜆+1

,

and whereGGen
$−→ (G, 𝑔, 𝐴, 𝐵) generates the group of unknown order used by BPC, 𝑛 is the number

of participants, and qro is the number of queries made to the random oracle. The running time of

𝑇 (Arsw,0) ≈ 𝑇 (Abpc,0) + 2𝑡 and 𝑇 (Arsw,1) ≈ 𝑇 (Abpc,1).

Proof. We bound the advantage of Abpc by bounding the advantage of a series of game hops,

using the fundamental lemma of game playing and its identical-until-bad argument [Bellare and

Rogaway, 2006]. We define G = Gunpred
Abpc,𝑡,𝑛,BPC

(𝜆) and hybrids G1,G2,G3 for which we justify the

following claims leading to the inequality above:

• |Pr [G(𝜆) = 1] − Pr [G1(𝜆) = 1] | ≤ 1
22𝜆+1

• |Pr [G1(𝜆) = 1] − Pr [G2(𝜆) = 1] | ≤ 𝑛·qro
22𝜆

• |Pr [G2(𝜆) = 1] − Pr [G3(𝜆) = 1] | ≤ 𝑛·qro
22𝜆

• Pr [G3(𝜆) = 1] = AdvC-RSWArsw,𝑡,GGen(𝜆)

Hybrid G1 is defined the same as G except G1 samples 𝑐1 in Prepare at random fromG instead

of through an exponent sampled from B. By Lemma 2.8, the statistical distance between G and

G1 is at most 1/22𝜆+1.

Hybrid G2 is defined the same as G1 except we disallow collisions in the random oracle used

for precommitments, i.e., we use sampling without replacement instead of sampling from [22𝜆].

We can apply a standard birthday analysis to bound the probability of collision among the 𝑛

queries made to 𝑛 · qro/22𝜆 , which bounds the distinguishing advantage between G1 and G2.

We can view G2 as computing the beacon output Ω using the representations of {𝑐𝑖}𝑛𝑖=2 pro-

vided by the algebraic adversary. SinceAbpc is algebraic, it will provide a representation for each

𝑐𝑖 not in terms of (𝑐1, 𝑔, ℎ), but in terms of (𝑔, ℎ). The reason, which is important to note, is that

the adversary needs to precommit before being given 𝑐1 in Bicorn-PC. Accordingly, we check if

𝑐𝑖 was queried to the random oracle by Abpc,0 for each {𝑐𝑖}𝑛𝑖=2. Since we disallow collisions in

90

the random oracle in a prior game hop, there is only one possible 𝑐𝑖 that maps to each 𝑑𝑖 . If the

random oracle was not queried on 𝑐𝑖 then we do not have a representation for 𝑐𝑖 in (𝑔, ℎ). The

contribution 𝑐𝑖 will affect the output if the sampling of a new value for𝐻 (𝑐𝑖) matches 𝑑𝑖 provided

by the adversary. If it does, this is a “bad” case, and we can bound the probability of this occurring

for all 𝑛 by 𝑛 · qro/22𝜆 . We transition to G3 where this bad case does not occur.

Then we have that the adversary outputs [(𝑒𝑖,1, 𝑒𝑖,2)]𝑛𝑖=2 such that 𝑐𝑖 = 𝑔𝑒𝑖,1ℎ𝑒𝑖,2 . Using this, and

given a value ℎ̂ = ℎ2
𝑡 , we can compute Ω as follows:

Ω =

(
𝑛∏
𝑖=1

𝑐𝑖

)2𝑡
=

(
𝑐1 ·

𝑛∏
𝑖=2

𝑔𝑒𝑖,1ℎ𝑒𝑖,2

)2𝑡
=

(
𝑐1 · 𝑔

∑𝑛
𝑖=2 𝑒𝑖,1 · ℎ

∑𝑛
𝑖=2 𝑒𝑖,2

)2𝑡
By letting𝑚1 =

𝑛∑︁
𝑖=2

𝑒𝑖,1 and𝑚2 =

𝑛∑︁
𝑖=2

𝑒𝑖,2,

= (𝑐1 · 𝑔𝑚1 · ℎ𝑚2)2
𝑡

= (𝑐2𝑡1) · ℎ𝑚1 · ℎ̂𝑚2

Thus if Abpc wins, i.e., Ω̃ = Ω, then we have

(𝑐2𝑡1) = Ω̃ · ℎ−𝑚1 · ℎ̂−𝑚2 ,

and we buildArsw to win the computational RSW game by setting 𝑐1 equal to challenge element

𝑥 and returning this value. The simulation is perfect, with 2𝑡 work to perform setup and compute

ℎ̂, and thus the advantage of Arsw matches the advantage of G3. ■

Theorem 4.6 (𝑡-Indistinguishability of Bicorn-PC). Let Abpc = (Abpc,0,Abpc,1,Abpc,2) be an

adversary against the 𝑡-indistinguishability of BPC with random exponent space B = [22𝜆 · 𝐵]

where hash function 𝐻 is modeled as a random oracle. Then we construct an adversary Arsw =

(Arsw,0,Arsw,1) such that

AdvindistAbpc,𝑡,𝑛,BPC
(𝜆) ≤ AdvD-RSWArsw,𝑡,GGen(𝜆) +

4𝑛 · qro + 1
22𝜆

,

and whereGGen
$−→ (G, 𝑔, 𝐴, 𝐵) generates the group of unknown order used by BPC, 𝑛 is the number

91

of participants, and qro is the number of queries made to the random oracle. The running time of

𝑇 (Arsw,0) ≈ 𝑇 (Abpc,0) + 2𝑡 and 𝑇 (Arsw,1) ≈ 𝑇 (Abpc,1) +𝑇 (Abpc,2).

Proof. We bound the advantage of Abpc by bounding the advantage of a series of game hops,

using the fundamental lemma of game playing and its identical-until-bad argument [Bellare and

Rogaway, 2006]. We define G𝑏 = Gindist
Abpc,𝑡,𝑛,𝑏,BPC

(𝜆) and hybrids G𝑏1 ,G𝑏2 ,G𝑏3 for which we justify the

following claims leading to the inequality above:

•
��Pr [
G𝑏 (𝜆) = 1

]
− Pr

[
G𝑏1 (𝜆) = 1

] �� ≤ 1
22𝜆+1

•
��Pr [
G𝑏1 (𝜆) = 1

]
− Pr

[
G𝑏2 (𝜆) = 1

] �� ≤ 𝑛·qro
22𝜆

•
��Pr [
G𝑏2 (𝜆) = 1

]
− Pr

[
G𝑏3 (𝜆) = 1

] �� ≤ 𝑛·qro
22𝜆

•
��Pr [
G1
3 (𝜆) = 1

]
− Pr

[
G0
3 (𝜆) = 1

] �� = AdvD-RSWArsw,𝑡,GGen(𝜆)

Hybrids G𝑏1 , G𝑏2 and G𝑏3 are defined as in the unpredictability proof for Bicorn-PC, sampling

a random 𝑐1, disallowing random oracle collisions, and disallowing precommitments that do not

provide a representation in (𝑔, ℎ), respectively. In G1
3 , the challenge output is computed to match

Recover as Ω = (𝑐1)2
𝑡 ·ℎ𝑚1 · ℎ̂𝑚2 . In G0

3 , the challenge output is computed in the same way but by

replacing (𝑐1)2
𝑡 with a random group element resulting in Ω to be a random group element. Thus,

Arsw perfectly simulates G𝑏3 based on the challenge bit (by setting 𝑐1 equal to challenge input 𝑥

and replacing 𝑐2𝑡1 with challenge input 𝑦) and wins the RSW game with the same advantage as

the distinguishing advantage between G1
3 and G0

3 . ■

4.7 Implementation

We implemented all three variants of Bicorn in Solidity and measured the associated gas costs

in Ethereum [Wood et al., 2014]. Our results are presented in Table 4.2. We instantiateG as an RSA

group with a 2048-bit modulus (specifically, it is the quadratic residue subgroup QR+𝑁 [Pietrzak,

2018]). Multiplying two group elements costs ∼90,000 gas and raising a group element to a power

92

Gas Costs (×103), Operations Involved

Commit/user Reveal/user Recover

Commit-Reveal 50 store2𝜆 60 xor, hash -

Unicorn 55 store2𝜆 - 30𝑛 𝑛·hash

+2,330
poe.v

§4.2.2 Bicorn-ZK 2,950 zk-poke.v, storeG 300 exp, mul (negligible)

§4.2.3 Bicorn-PC 155; 180 mul, storeG 300 exp, mul (negligible)

§4.2.4 Bicorn-RX 145 mul, storeG 425 2·exp, mul 170n 𝑛·exp

Table 4.2: Ethereum gas costs and main operations involved for each Bicorn variant as well as Uni-
corn [Lenstra and Wesolowski, 2015] and Commit-Reveal DRBs. For Bicorn-PC, the Commit cost is split
to show Precommit and Commit costs. The operations are: storeG/2𝜆 , storing a group element or 2𝜆-bit
value; mul, multiplication of two group elements; exp, raising a group element to a power of size 2𝜆 bits;
poe.v and zk-poke.v, verifying a proof of exponentiation and proof of knowledge of exponent, respectively.
Concrete costs are given with G = QR+𝑁 within an RSA-2048 group and 𝜆 = 128.

of size 32 bytes costs ∼150,000 gas. As mentioned in Section 2.6, we use the short exponent

indistinguishability (SEI) assumption [Couteau et al., 2021] to reduce the size of the exponent

required in practice from 288 to 32 bytes. The largest costs for each protocol are verifying a proof

of exponentiation (PoE) for the VDF computation in the pessimistic Recover case and verifying

a zero-knowledge proof of knowledge of exponent needed for each commitment in Bicorn-ZK.

We implemented both proofs using non-interactive variants of Wesolowski proofs (ZKPoKRep

from [Boneh et al., 2019] for the latter), which requires a prime challenge to be sampled. Verifying

this “hash-to-prime” operation costs between 2.3–4 million gas, depending on the size of the

Pocklington certificate used to test the primality of a number onchain. Table 4.2 reports costs

with the smallest possible certificate. A recent work [Kemmoe and Lysyanskaya, 2024] shows

it is possible to replace “hash-to-prime” with hashing to large odd integers, which may be an

optimization.

Comparison to other DRBs. Per-user Costs: We find that the user operations for Bicorn-RX

are practical on Ethereum with them costing 3× for Commit and 7× for Reveal when compared

93

to the standard Commit-Reveal and Unicorn protocols. In total, the sum of these operations per

user per run comes to under 600,000 gas.

Pessimistic Costs: In the pessimistic case, a single call to Recover is required in all versions of

Bicorn, costingmillions of gas. This pessimistic case is roughly equivalent to every run of Unicorn.

As the number of users grows large and the chances of Bicorn’s optimistic case occurring decrease

though, at some point it may make more sense to switch to Unicorn and avoid the overheads of

Commit and Reveal that Bicorn protocols incur.

4.8 Discussion

Last revealer prediction. All Bicorn variants come with a fundamental security caveat: if

participant 𝑗 withholds their 𝛼 𝑗 value, but all others publish, then participant 𝑗 will be able to sim-

ulate the optimistic case and learn Ω quickly, while the honest participants will need to execute

the pessimistic case and compute the delay function to complete before learning Ω. Similarly, a

coalition of malicious participants can share their 𝛼 values and privately compute Ω. This issue

appears fundamental; in any protocol with a fast optimistic case and a slow pessimistic case, a

unified malicious coalition can simulate the optimistic case.

This does not undermine 𝑡-unpredictability or 𝑡-indistinguishability and does not allow an

adversary to manipulate the outcome. As a result, any protocol built on top of Bicorn should

consider the output Ω to be potentially available to adversaries as of the deadline 𝑇1, even if the

result is not publicly known until 𝑇1 + 𝑡 if the pessimistic case is triggered. For example, in a

lottery application all wagers must be locked in before time 𝑇1.

Incentives and punishment. While all Bicorn variants ensure malicious participants cannot

manipulate the output, they can waste resources by forcing the protocol into the more-expensive

recovery mode. The protocol provides accountability as to which nodes published an incorrect

94

𝛼𝑖 value or other minor deviations which lead to removal (i.e. publishing an incorrect 𝑐𝑖 such that

𝐻 (𝑐𝑖) ≠ 𝑑𝑖 in Bicorn-PC or publishing an incorrect 𝜋𝑖 in Bicorn-ZK). If signatures are added to

each message, efficient fraud proofs are possible. In a blockchain setting, financial penalties can

be used to punish incorrect behavior.

Batch verification optimization. In the optimistic case, the 𝑛 exponentiations required to

verify that 𝑐𝑖 = 𝑔𝛼𝑖 for each participant can be streamlined via batch verification [Bünz et al.,

2018,Bellare et al., 1998]. The general idea is that 𝑔𝑥 = 1 ∧ 𝑔𝑦 = 1 can be verified more efficiently

by checking 𝑔𝑟 ·𝑥+𝑦 = 1 for a random 𝑟
$←− R, as the latter equation implies the former with high

probability given a large enough R. In our case, to verify that 𝑐1 = 𝑔𝛼1 ∧ 𝑐2 = 𝑔𝛼2 ∧ . . . ∧ 𝑐𝑛 = 𝑔𝛼𝑛 ,

we generate random values 𝑟𝑖
$←− R and verify that 𝑔

∑
𝑟𝑖 ·𝛼𝑖 =

∏
𝑐
𝑟𝑖
𝑖
. Thus, instead of computing 𝑛

exponentiations each with an exponent of size |B|, verification requires only one exponentiation

with an exponent of size 𝑛 |B| |R| and one 𝑛-way multi-exponentiation [Pippenger, 1980].

Lowering costs with rollup proofs. Practical costs can become significant if all users must

post data to the blockchain to participate. An alternative solution is to perform Bicorn mediated

via a rollup server (Rollup-Bicorn) which gathers every participant’s 𝑐𝑖 value and publishes:

• A commitment 𝑠 = SetCommitment(𝐶) to the set 𝐶 = {𝑐1, . . . , 𝑐𝑛} of all participant contri-

butions. For example, 𝑠 might be a Merkle Tree root.

• The value 𝑐∗ =
∏
𝑖∈[𝑛] 𝑐𝑖 , the product of all participants’ commitments.

– For Bicorn-RX, 𝑐∗ will be adjusted with each party’s exponent 𝐻 (𝑐𝑖 | |𝑏∗).

• A succinct proof (SNARK) 𝜋rollup-commit that 𝑐∗ has been computed consistently with the set

𝑆 . This proof does not need to be zero-knowledge.

– For Bicorn-ZK, the proof must recursively check each proof 𝜋𝑖 .

– For Bicorn-PC, the proof must check 𝑐𝑖 was correctly precommitted.

– For Bicorn-RX, the proof must check 𝑐𝑖 was raised to the power 𝑏𝑖 .

95

In the optimistic case, if all participants reveal their private value 𝛼𝑖 , then the rollup server

can finalize the protocol by posting:

• The output Ω and a succinct proof (SNARK) 𝜋rollup-finalize that states that:

– The prover knows a set 𝐴 = {𝛼1, . . . , 𝛼𝑛}

– For each 𝑐𝑖 ∈ 𝐶 , it holds that 𝑐𝑖 = 𝑔𝛼𝑖

– The output Ω was computed correctly given the set 𝐴.

In the pessimistic case, if the rollup server goes offline without supplying the second proof

(or some participants don’t publish 𝛼𝑖), anybody can still compute Ω = 𝑐
(2𝑡)
∗ . A single proof could

be used which is a disjunction of verifying the rollup server’s proof 𝜋rollup-finalize or verifying a

PoE proof that Ω = 𝑐2
𝑡

∗ . The end result is that Bicorn can be run with 𝑂 (1) cost for any number

of participants.

Lowering cost with delegation. While the rollup approach requires only constant overhead

on the blockchain regardless of the number of participants, the primary downside (in common

with most rollup systems) is that the rollup server can censor by refusing to include any partici-

pant’s 𝑐𝑖 in the protocol. In the worst case, a malicious rollup server might only allow participants

from a known cabal to participate, who are then able to manipulate the DRB output.

To achieve the best of bothworlds (the efficiency of rollup servers aswell as robustness against

censorship), we might design a delegated Bicorn protocol. In a delegated protocol, users can

choose betweenmultiple rollup servers or directly participate as an untrusted (possibly singleton)

rollup server. This works like delegated proof-of-stake protocols: participants can delegate for

efficiency if they want or participate individually if no server is considered trustworthy. This is

straightforward for Bicorn-PC and Bicorn-ZK, as each rollup server can simply compute a partial

product 𝑐∗ which are multiplied together to obtain the final output Ω. Such a protocol for Bicorn-

RX would require additional rounds of exponent randomization, to ensure each user’s exponent

is randomized by contributions from users at other rollup servers.

96

Bicorn Setup

Setup
input: 𝜆, 𝑡
output: group G, generators 𝑔, ℎ ∈ G, proof 𝜋ℎ , range [𝐴, 𝐵]

1. Run (G, 𝑔, 𝐴, 𝐵) $←− GGen(𝜆) to generate a group of unknown order

2. Compute ℎ ← 𝑔2
𝑡 , optionally with 𝜋ℎ = PoE(𝑔, ℎ, 2𝑡)

Protocol 2: Bicorn setup routine (common to all protocol variants), where PoE is a proof of exponentia-
tion [Boneh et al., 2019].

4.9 Individual protocol presentations

For reference, we present each protocol variant separately.

97

Bicorn-ZK

. deadline 𝑇0

Commit
Each participant 𝑖 runs:

1. Sample 𝛼𝑖
$←− B

2. Compute 𝑐𝑖 ← 𝑔𝛼𝑖

3. Compute 𝜋𝑖 ← ZK-PoKE(𝑔, 𝑐𝑖 , 𝛼𝑖)

4. Publish 𝑐𝑖 , 𝜋𝑖

. deadline 𝑇1

Reveal
Each participant 𝑖 runs:

1. Publish 𝛼𝑖

Finalize
input: 𝑐𝑖 , 𝜋𝑖 , 𝛼𝑖 for 𝑖 ∈ [1, 𝑛]
output: Ω

1. For all users 𝑖 , verify 𝜋𝑖 using 𝑐𝑖

(a) If verification fails for any 𝜋𝑖 , remove participant 𝑖

2. Verify that 𝑐𝑖 = 𝑔𝛼̃𝑖 for all 𝑖 ∈ [1, 𝑛]

(a) If so, output Ω =
∏
𝑖∈[𝑛]

ℎ𝛼̃𝑖 // optimistic case

3. Output Ω =
©­«
∏
𝑖∈[𝑛]

𝑐𝑖
ª®¬
2𝑡

// pessimistic case

(a) Optionally, a proof 𝜋Ω can be output to enable efficient verification of Ω

Protocol 3: Bicorn protocol with zero-knowledge proofs of knowledge of exponent (ZK-PoKE)

98

Bicorn-PC

Precommit
Each participant 𝑖 runs:

1. Sample 𝛼𝑖
$←− B

2. Compute 𝑐𝑖 ← 𝑔𝛼𝑖

3. Publish 𝑑𝑖 = 𝐻 (𝑐𝑖)

. deadline 𝑇0

Commit
Each participant 𝑖 runs:

1. Publish 𝑐𝑖

. deadline 𝑇1

Reveal
Each participant 𝑖 runs:

1. Publish 𝛼𝑖

Finalize
input: 𝑑𝑖 , 𝑐𝑖 , 𝛼𝑖 for 𝑖 ∈ [1, 𝑛]
output: Ω

1. Verify that 𝑑𝑖 = 𝐻 (𝑐𝑖) for all 𝑖 ∈ [1, 𝑛]

(a) If any 𝑑𝑖 ≠ 𝐻 (𝑐𝑖) or 𝑐𝑖 was not published by 𝑇1, remove participant 𝑖

2. Verify that 𝑐𝑖 = 𝑔𝛼̃𝑖 for all 𝑖 ∈ [1, 𝑛]

(a) If so, output Ω =
∏
𝑖∈[𝑛]

ℎ𝛼̃𝑖 // optimistic case

3. Output Ω =
©­«
∏
𝑖∈[𝑛]

𝑐𝑖
ª®¬
2𝑡

// pessimistic case

(a) Optionally, a proof 𝜋Ω can be output to enable efficient verification of Ω

Protocol 4: Bicorn protocol with precommitment round

99

Bicorn-RX

. deadline 𝑇0

Commit
Each participant 𝑖 runs:

1. Sample 𝛼𝑖
$←− B

2. Compute 𝑐𝑖 ← 𝑔𝛼𝑖

3. Publish 𝑐𝑖

. deadline 𝑇1

Reveal
Each participant 𝑖 runs:

1. Publish 𝛼𝑖

Finalize
input: 𝑐𝑖 , 𝛼𝑖 for 𝑖 ∈ [1, 𝑛]
output: Ω

1. Compute 𝑏∗ = 𝐻 (𝑐1 | |𝑐2 | | . . . | |𝑐𝑛)

2. Verify that 𝑐𝑖 = 𝑔𝛼̃𝑖 for all 𝑖 ∈ [1, 𝑛]

(a) If so, output Ω =
∏
𝑖∈[𝑛]

(
ℎ𝐻 (𝑐𝑖 ∥𝑏∗)

)𝛼̃𝑖 // optimistic case

3. Output Ω =
©­«
∏
𝑖∈[𝑛]

𝑐
𝐻 (𝑐𝑖 ∥𝑏∗)
𝑖

ª®¬
2𝑡

// pessimistic case

(a) Optionally, a proof 𝜋Ω can be output to enable efficient verification of Ω

Protocol 5: Bicorn protocol with randomized exponents using a random oracle 𝐻

100

5 | Cornucopia: Tolerating Dishonest

Majority in Large-Scale Networks

5.1 Context

While Bicorn successfully introduces an optimistic case to the Unicorn protocol in a con-

cretely efficient manner, it is realistically possible that, especially in large-scale networks, the

pessimistic case will be triggered significantly more than the optimistic case. The reason is that

Bicorn still inherits the downside of commit-reveal, which is that even one faulty node (honest

or malicious) can interfere with the flow of the protocol. As a result, Bicorn is a protocol that

shines when used in a “reliable” network where nodes are expected to be online most of the time

and failures are expected to occur occasionally but not too frequently. If the pessimistic case of

Bicorn is to be triggered every single epoch, it might as well be more practical to run Unicorn,

with the beacon output computed as Ω = Delay(Combine(𝑟1, . . . , 𝑟𝑛)). In that case, the downside

of Unicorn which motivates Cornucopia is that Θ(𝑛) contributions must be posted to the public

bulletin board per protocol run.

Our approach. We formalize the approach of using a cryptographic accumulator (e.g. Merkle

tree) to publish a succinct commitment to all users’ contributions, retaining the security advan-

tages of Unicorn in the strong 𝑛 − 1 (just one honest node) security model while reducing the

storage overhead (on the public bulletin board) from Θ(𝑛) to 𝑂 (1). We call this general protocol

101

Cornucopia, with a general structure as follows:

• Each participant sends their contribution 𝑟𝑖 to a coordinator before a time deadline 𝑇0.

• The coordinator accumulates all of the contributions into a succinct commitment 𝑅 and

publishes it to a public bulletin board. It sends each user a proof 𝜋𝑖 that their value 𝑟𝑖 is

included in 𝑅.

• After time 𝑡 passes, the result Ω = Delay(𝑅) is published as well as a proof 𝜋Ω.

• Users check both that their contribution was included in 𝑅 and that Ω was properly com-

puted from 𝑅.

While this is a small change to Unicorn, it is powerful: individual users can now be convinced

that Ω is truly random with sublinear verification costs. Observe that since security requires

only one honest participant, individuals only need to verify that they themselves participated in

the protocol (assuming they trust that their own device has not been compromised). A malicious

coordinator and any number of other malicious participants in the protocol cannot manipulate

the DRB output.

Amalicious coordinator might exclude all honest users from participating, but these users can

easily see that they have been excluded and know not to trust the DRB output. For this reason,

the coordinator can be viewed as semi-trusted; it is trusted for availability but not for security.

This approach opens the door to massive open-participation randomness protocols. For exam-

ple, every user buying a lottery ticket might contribute randomness, or every user in a massively

multi-player online (MMO) game might contribute randomness to seed the game engine. These

applications might include millions of participants, which would not be feasible with an hon-

est majority requirement or linear verification costs per user. Cornucopia, by contrast, can offer

constant or logarithmic verification costs (depending on the choice of accumulator) thus making

planet-scale distributed randomness generation possible. The coordinator does face at least linear

102

costs to compute the accumulator and per-user proofs, but for certain accumulators [Srinivasan

et al., 2022a,Wang et al., 2023], the coordinator can efficiently batch compute all users’ witnesses.

Related work. Unicorn [Lenstra and Wesolowski, 2015] introduces delay-based DRBs. Several

extensions to Unicorn (of which Bicorn is one) work in a similar model. For instance, RandRun-

ner [Schindler et al., 2021] enables avoiding a delay function per beacon output although it does

not support flexible participation and allows a withholding leader to affect the protocol.

HeadStart [Lee et al., 2022] is the most similar DRB construction to Cornucopia, also using

Merkle trees and a multi-round pipelined protocol to scale up Unicorn by combining many users’

contributions in a succinct commitment. We adopt the same conceptual approach as HeadStart,

but our approach differs in offering a generic construction from any accumulator and developing

precise security notions required of accumulators for use with DRBs.

Our contributions.

• We formalize the concept of combining a VDF with an accumulator as Cornucopia (Sec-

tion 5.2).

• We prove (in Section 5.3) that this approach is secure when instantiated with any VDF and

any accumulator that satisfies a natural security notion that we develop, called insertion

security.

• We prove (in Section 5.4) that the most commonly used accumulator constructions either

naturally feature insertion security (Merkle trees) or need only trivial modifications to

achieve it (RSA accumulators, bilinear accumulators, and accumulators from vector com-

mitments), meaning Cornucopia is practical to build from standard cryptographic assump-

tions and implementations. Furthermore, the efficiency of Cornucopia can take likely take

advantage of future accumulator schemes (assuming insertion security can be proven).

• We compare performance implications of different accumulators (Section 5.5). Since Cor-

103

nucopia can be instantiated with any insertion-secure accumulator, the protocol can be

tailored to different settings by choosing an accumulator to optimally trade off communi-

cation and computation.

Finally, we conclude in Section 5.6 with discussion about some protocol extensions and open

problems.

5.2 Timed DRBs: Definitions and Constructions

We first define timed DRBs using a generalized syntax.1

Definition 5.1 (Timed DRBs). A timed DRB protocol consists of the following algorithms:

Setup(𝜆, 𝑡) $−→ pp: The setup algorithm can be run once and outputs public parameters pp used

for multiple protocol runs.

Prepare(pp) $−→ 𝑟𝑖 : The prepare algorithm is run by each participant to produce a random-

ness contribution 𝑟𝑖 . This contribution is submitted during the contribution phase, which is

bounded in length by the time parameter 𝑡 .

Post({𝑟𝑖}) → (𝑅, {𝜋𝑖}): The post algorithm is run by a coordinator immediately after the end

of the contribution phase, producing a commitment 𝑅 to all users’ contributions and (op-

tionally) a list of user-specific proofs 𝜋𝑖 . Typically, this value 𝑅 will be posted to a public

bulletin board, whereas 𝜋𝑖 will be made privately available.

Finalize(pp, 𝑅) → (Ω, 𝜋Ω): The finalize algorithm is run after the post algorithm, evaluating a

delay function on 𝑅 to produce a final DRB output Ω and (optionally) a proof 𝜋Ω. It is a

deterministic algorithm running in time (1 + 𝜖)𝑡 for some small 𝜖 .
1Note that our syntax here is specific to one-round timedDRBs. Some timedDRBs such as Bicorn have an optional

second communication round.

104

Gindist
A,𝑡,𝑏,DRB (𝜆)

pp
$←− Setup(𝜆, 𝑡)

𝑟1
$←− Prepare(pp)

𝛼0
$←− A0 (pp)

𝛼1, 𝑅, 𝜋1
$←− A1 (𝛼0, 𝑟1)

Ω0, 𝜋0 ← Finalize(pp, 𝑅)
Ω1

$←− 𝑈
𝑏′

$←− A2 (𝛼1,Ω𝑏)

return 𝑏 = 𝑏′ ∧ Verify(pp, 𝑅,Ω0, 𝜋0, 𝑟1, 𝜋1)

Gunpred
A,𝑡,DRB (𝜆)

pp
$←− Setup(𝜆, 𝑡)

𝑟1
$←− Prepare(pp)

𝛼0
$←− A0 (pp)

Ω̃, 𝜋Ω̃, 𝑅, 𝜋1
$←− A1 (𝛼0, 𝑟1)

return Verify(pp, 𝑅, Ω̃, 𝜋Ω̃, 𝑟1, 𝜋1)

Figure 5.1: Security games for (𝑝, 𝜎)-indistinguishability and (𝑝, 𝜎)-unpredictability.

Verify(pp, 𝑅,Ω, 𝜋Ω, 𝑟𝑖, 𝜋𝑖) → {0, 1}: Individual users should verify both the final DRB output Ω

as well as that their contribution 𝑟𝑖 was correctly included, possibly with the help of an

auxiliary user-specific proof 𝜋𝑖 .

A timed DRB has the following security properties (shown in Figure 5.1):

Definition 5.2 ((𝑝, 𝜎)-unpredictability). The (𝑝, 𝜎)-unpredictability game tasks an adversary

with predicting the final output Ω exactly, allowing it control of all but a single honest par-

ticipant (which publishes first). This adversary’s computation is broken into two phases. In

the precomputation phase, before the adversary sees the honest contribution 𝑟1, it may run an

algorithm A0 that runs in time poly(𝜆, 𝑡). This algorithm outputs some advice string. After

seeing 𝑟1, the adversary is limited to running for 𝜎 (𝑡) steps on at most 𝑝 (𝑡) parallel processors,

exactly like the adversary for VDF sequentiality (Theorem 2.2). The adversary’s advantage is:

AdvunpredA,𝑡,DRB(𝜆) = Pr
[
Gunpred
A,𝑡,DRB(𝜆) = 1

]
.

As the (𝑝, 𝜎)-unpredictability property does not guarantee the DRB output is indistinguish-

able from random, we define a stronger (𝑝, 𝜎)-indistinguishability property in which the adver-

sary must distinguish a DRB output from a random output, again allowing the adversary control

of all but one participant.

105

Definition 5.3 ((𝑝, 𝜎)-indistinguishability). The (𝑝, 𝜎)-indistinguishability game is exactly like

the (𝑝, 𝜎)-unpredictability game, except with an extra input bit 𝑏. The challenger provides the

adversary the genuine output of Finalize if 𝑏 = 0 and a random output if 𝑏 = 1. The adversary

must, after running for at most 𝜎 (𝑡) steps on at most 𝑝 (𝑡) parallel processors, output a guess 𝑏′

for which output it received. We define the adversary’s advantage as:

AdvindistA,𝑡,DRB(𝜆) =
���Pr [
Gindist
A,𝑡,1,DRB(𝜆) = 1

]
− Pr

[
Gindist
A,𝑡,0,DRB(𝜆) = 1

] ���
As observed by Boneh et al. [Boneh et al., 2018a], there is a generic transformation in the

random oracle model in which a timed DRB which satisfies (𝑝, 𝜎)-unpredictability can be trans-

formed generically into one with (𝑝, 𝜎)-indistinguishability by applying the random oracle to the

output.

5.2.1 Unicorn

As a warm-up, we describe Unicorn [Lenstra and Wesolowski, 2015] succinctly as a timed

DRB in our framework in Figure 5.2. Note that the the original Unicorn proposal used the delay

function Sloth, which computes modular square roots modulo a prime. We describe Unicorn here

using a modern VDF instead [Boneh et al., 2018a].

Intuitively, Unicorn is secure because every user can check that their value is included in the

posted set {𝑟𝑖}. A VDF is evaluated on a hash of this set. A single honest user is enough to ensure

this hashed value cannot have been predicted and precomputed by the adversary. Lenstra and

Wesolowski prove security of Unicorn in a slightly different model [Lenstra and Wesolowski,

2015]. We note that its security is also implied by our security proof for Cornucopia in Theo-

rem 5.7, as Unicorn is a special case using the “concatenation accumulator” which simply con-

catenates all accumulated values.

The primary downside of Unicorn is the fact that |𝑅 | = Θ(𝑛). The goal of Cornucopia is to

106

Setup(𝜆, 𝑡) $−→ pp
pp← VDF.Setup(𝜆, 𝑡)

Prepare() $−→ 𝑟𝑖

𝑟𝑖
$←− 𝑈

Post({𝑟𝑖 }) → (𝑅,∅)
𝑅 ← {𝑟𝑖 }

Finalize(𝑅) → (Ω, 𝜋Ω)
Ω, 𝜋Ω ← VDF.Eval(𝐻 (𝑅))

Verify(pp, 𝑅,Ω, 𝜋Ω, 𝑟𝑖 , 𝜋𝑖) → {0, 1}
return 𝑟𝑖 ∈ 𝑅 ∧ VDF.Verify(𝐻 (𝑅),Ω, 𝜋Ω)

Figure 5.2: The Unicorn timed DRB protocol [Lenstra and Wesolowski, 2015]

achieve the same security as Unicorn while storing only Θ(1) data on the public bulletin board.

5.2.2 Cornucopia

Cornucopia, shown in Figure 5.3, improves on Unicorn by having the coordinator accumulate

all user contributions into a succinct commitment 𝑅 using a cryptographic accumulator scheme

(see Section 2.2). Because |𝑅 | does not grow with the number of participants, Cornucopia makes

it easy to scale to many users with low publishing costs and low costs for users to verify that the

beacon output Ω incorporates their contribution 𝑟𝑖 . Our indistinguishability and unpredictability

definitions ensure that the protocol is secure as long as a single honest user contributes, so any

honest user can be convinced the final result is random as long as they are convinced that their

contribution was included.

5.3 Cornucopia Security

Towards proving that Cornucopia is a secure timed DRB, we first must define a novel security

property for accumulators, insertion security:

107

Setup(𝜆, 𝑡) $−→ pp
pp← (VDF.Setup(𝜆, 𝑡),Acc.Setup(𝜆))

Prepare() $−→ 𝑟𝑖

𝑟𝑖
$←− 𝑈

Post({𝑟𝑖 }) → (𝑅, {𝜋𝑖 })
𝑅 ← Acc.Accumulate({𝑟𝑖 })
𝜋𝑖 ← Acc.GetMemWit({𝑟 𝑗 }, 𝑅, 𝑟𝑖)

Finalize(𝑅) → (Ω, 𝜋Ω)
Ω, 𝜋Ω ← VDF.Eval(𝐻 (𝑅))

Verify(pp, 𝑅,Ω, 𝜋Ω, 𝑟𝑖 , 𝜋𝑖) → {0, 1}
return VDF.Verify(𝐻 (𝑅),Ω, 𝜋Ω) ∧Acc.MemVer(𝑅, 𝑟𝑖 , 𝜋𝑖)

Figure 5.3: The Cornucopia protocol

Ginsert
A,Acc (𝜆)

pp
$←− Acc.Setup(𝜆)

𝐴← A(pp)
𝑥

$←− 𝑈
𝑤 ← A(pp, 𝐴, 𝑥)

return Acc.MemVer(𝐴, 𝑥,𝑤)

Figure 5.4: Insertion security game

Definition 5.4 (Insertion Security). An accumulator is insertion-secure if for any PPT algorithm

A, the probability of A winning the insertion security game (Figure 5.4) is negligible:

Pr
[
Ginsert
A,Acc(𝜆) = 1

]
≤ negl(𝜆)

To win the insertion security game (Figure 5.4), the adversary must produce an accumula-

tor value 𝐴 such that it can supply a membership proof for a randomly chosen element with

non-negligible probability. Note that the adversary is not limited to producing 𝐴 via the normal

Accumulate function; it can produce 𝐴 using any procedure at all. We will prove this property

holds for concrete accumulators in Section 5.4, for now we will assume we have access to an

108

accumulator which satisfies this property.

We next prove two useful lemmas. The first is that if Cornucopia is constructed using an

insertion-secure accumulator, an adversary cannot guess a satisfactory 𝑅 before seeing the ran-

domness contribution 𝑟1. Insertion security implies that it is difficult to precompute an accumu-

lator value for which one can provide a membership proof of a random element revealed later.

The second states that if the adversary does not query 𝑅 to the random oracle in its precompu-

tation phase, it cannot output Ω̃ = VDF.Eval(𝐻 (𝑅)). This is because after the precomputation

phase, the adversary is (𝑝, 𝜎)-sequential and therefore cannot evaluate the VDF; thus, to prove

this lemma we invoke VDF sequentiality.

Lemma 5.5. Let E1 be the event that Gunpred
A,𝑡,CC(𝜆) = 1 and A0 queried 𝑅 to the random oracle. If

Cornucopia (CC) is instantiated with an insertion-secure accumulator, then Pr [E1] ≤ negl(𝜆).

Proof. Suppose for the sake of contradiction that for some constant 𝑐 > 0,

Pr
[
Gunpred
A,𝑡,CC(𝜆) = 1 ∧ A0 queried 𝑅 to the random oracle

]
⩾

1
𝜆𝑐

We define an adversaryB that breaks insertion security of the accumulator scheme by simulating

the challenger inGunpred
A,𝑡,CC and usingA = (A0,A1). B first receivesAcc.pp inGinsert

B,Acc(𝜆). It samples

VDF.pp← VDF.Setup(𝜆, 𝑡) and passes pp = (Acc.pp,VDF.pp) toA0. B simulates the challenger

in Gunpred
A,𝑡,CC(𝜆) and records the queries 𝑞1, . . . , 𝑞𝑘 that A0 makes to the random oracle. B also

receives 𝛼0 as the output of A0. B then chooses some query 𝑞𝑖 uniformly at random from the

queries made by A0 and outputs 𝐴 = 𝑞𝑖 as its accumulator value in Ginsert
B,Acc(𝜆). B then receives 𝑥

from the challenger inGinsert
B,Acc(𝜆), and it continues simulating theGunpred

A,𝑡,CC(𝜆) challenger by passing

𝛼0 and 𝑟1 = 𝑥 to A1. B receives (Ω̃, 𝑅,𝑤1) as the output of A1.

Since A succeeds with at least probability 1
𝜆𝑐
, the probability that MemVer(𝑅, 𝑥,𝑤1) = 1 and

A0 queried 𝑅 to the random oracle is greater than or equal to 1
𝜆𝑐
. Let 𝑞(𝜆) be some polynomial

upper bounding the number of queries that A0 makes to the random oracle; this polynomial

109

must exist sinceA0 runs in polynomial time. Since B’s random choice of 𝑞𝑖 is independent ofA,

Pr[MemVer(𝑅, 𝑥,𝑤1) = 1 ∧𝐴 = 𝑅] ≥ 1
𝜆𝑐
· 1
𝑞(𝜆) which is non-negligible. Thus, with non-negligible

probability, Ginsert
B,Acc(𝜆) = 1. ■

Lemma 5.6. Let E2 be the event that Gunpred
A,𝑡,CC(𝜆) = 1 andA0 did not query 𝑅 to the random oracle.

If CC is instantiated with an insertion-secure accumulator and a verifiable delay function satisfying

(𝑝, 𝜎)-sequentiality, then Pr [E2] ≤ negl(𝜆).

Proof. Suppose for the sake of contradiction that for some constant 𝑐 > 0,

Pr
[
Gunpred
A,𝑡,CC(𝜆) = 1 ∧ A0 did not query 𝑅 to the random oracle

]
⩾

1
𝜆𝑐

We define an adversary B = (B0,B1) that breaks (𝑝, 𝜎)-sequentiality of the VDF by simulating

the challenger and random oracle in Gunpred
A,𝑡,CC and using A = (A0,A1). When A evaluates the

hash function it must query B. B responds in a way that is indistinguishable (to A) from a

random function.

B0 first receives VDF.pp from the VDF challenger in Gsequential
B0,B1,𝑡,VDF(𝜆). B0 samples Acc.pp ←

Acc.Setup(𝜆) and passes pp = (VDF.pp,Acc.pp) to A0. B0 answers A0’s random oracle queries

using uniformly random values. It records these queries and their responses in a list 𝑄 . If any

query is repeated, B0 answers consistently with its previous response in𝑄 . A0 outputs an advice

string 𝛼0, which B0 outputs as part of its advice string 𝛼 = (𝛼0, 𝑄).

Now, the VDF challenger samples a random input 𝑥 which is passed to B1 along with VDF.pp

and 𝛼 . B1 passes 𝛼0 and a randomly-generated value 𝑟1
$←− Prepare(pp) toA1. B1 then simulates

the random oracle forA1, with one key modification: B1 chooses an index 𝑖 ≤ 𝑝 (𝑡) · 𝑡 uniformly

at random2 and answers A1’s 𝑖th random oracle query 𝑞𝑖 with 𝑥 (provided that 𝑞𝑖 has not been

previously queried, otherwise it responds with the appropriate value from 𝑄). It answers any
2Weuse 𝑝 (𝑡) ·𝑡 as a generous upper bound on the number of random oracle queries made byA1, if every processor

queries the oracle in every time step.

110

future repeated queries 𝑞𝑖 similarly. For all other queries, B1 answers randomly the first time and

then consistent with its stored responses in 𝑄 . When A1 outputs (Ω̃, 𝑅,𝑤1), B1 outputs Ω̃.

B properly simulates the random oracle. Since 𝑥 is a uniformly random value and all other

queries receive random responses, B1 does not change the output distribution of the random

oracle and hence does not affect A1’s behavior.

If A succeeds, B succeeds with non-negligible probability. We now argue that if A wins

Gunpred
A,𝑡,CC, B wins Gsequential

B0,B1,𝑡,VDF(𝜆) with non-negligible probability. Recall that ifA wins, DRB.Verify

holds. By uniqueness of the VDF, the probability that A1 outputs a proof 𝜋Ω such that

VDF.Verify(VDF.pp, 𝐻 (𝑅), Ω̃, 𝜋Ω) = 1 yet Ω̃ ≠ VDF.Eval(𝐻 (𝑅)) is negligible. Thus, A1 must

have output Ω̃ = VDF.Eval(𝐻 (𝑅)).

We now show that the fact that A1 outputs VDF.Eval(𝐻 (𝑅)) implies that B breaks (𝑝, 𝜎)-

sequentiality of the VDF. Because the index 𝑖 of the query to be replaced was chosen uniformly

and independently of A1, 𝑞𝑖 was chosen to be the first instance that 𝑅 was queried by A1 with

probability at least 1
𝑝 (𝑡)·𝑡 . SinceA0 did not query 𝑅, we can indeed make this replacement. There-

fore, with non-negligible probability B1 simulates the random oracle to answer 𝑅 with 𝑥 , and

Ω̃ = VDF.Eval(𝑥) as desired.

Thus, for (Ω̃, 𝑅,𝑤1) output by A1, it holds that

Pr
[
Ω̃ = VDF.Eval(𝐻 (𝑅)) ∧ A0 did not query 𝑅 to the RO

]
⩾

1
𝜆𝑐

In the above, we assumed that A1 queried 𝑅 to the random oracle. If A1 did not query 𝑅 to

the random oracle, it has anyways succeeded in computing the VDF output on 𝐻 (𝑅) which is a

random value and identically distributed to 𝑥 .

■

Theorem 5.7 (Unpredictability of Cornucopia). Cornucopia is (𝑝, 𝜎)-unpredictable when instanti-

ated with an insertion-secure accumulator, a verifiable delay function satisfying (𝑝, 𝜎)-sequentiality,

111

and a hash function modeled as a random oracle.

Proof. Let E1 be the event that Gunpred
A,𝑡,CC(𝜆) = 1 and A0 queried 𝑅 to the random oracle. Let E2 be

the event that Gunpred
A,𝑡,CC(𝜆) = 1 and A0 did not query 𝑅 to the random oracle.

Observe that Pr[Gunpred
A,𝑡,CC(𝜆) = 1] = Pr[E1] + Pr[E2]. By Theorem 5.5, Pr[E1] ≤ negl(𝜆). By

Theorem 5.6, Pr[E2] ≤ negl(𝜆). Therefore, Pr[Gunpred
A,𝑡,CC(𝜆) = 1] ≤ negl(𝜆). ■

Corollary 5.8. Cornucopia is (𝑝, 𝜎)-indistinguishable when a random oracle is applied to its output.

5.4 Insertion-secure accumulators

We now turn to the question of instantiating accumulators satisfying insertion security (The-

orem 5.4).

5.4.1 Accumulators without insertion security

Given any secure accumulator schemeAcc, it is trivial to construct an accumulatorAcc’which

is not insertion-secure, but otherwise satisfies the standard security definitions of an accumula-

tor. One approach is to add a special symbol 𝜖 which is defined as the accumulation of the entire

data universe 𝑈 . Acc’.MemVer(𝐴, 𝑥,𝑤) is defined to be 1 if 𝐴 = 𝜖 (regardless of the value of 𝑥 or

𝑤), and otherwise is equal to Acc.MemVer(𝐴, 𝑥,𝑤). The scheme Acc’ can be used exactly as Acc

in normal operation, with the extra property that 𝜖 is a “shortcut” to computing an accumulation

of the entire data universe. RSA accumulators naturally feature such a shortcut: 𝜖 = 1. A valid

membership witness for any 𝑥 is𝑤 = 1, since𝑤𝑥 = 1𝑥 = 1. Although we will prove RSA accumu-

lators can easily be made insertion-secure by disallowing an accumulator of 1, technically they

are not insertion-secure as commonly specified. Bilinear accumulators have the same shortcut,

which we remove with the same modification.

A second example, potentially of practical interest, is a range accumulator. A range accumu-

lator can be defined from any accumulator scheme and for any data universe with a known total

112

ordering (for example, any fixed subset of the integers such as {0, 1}𝑘). With a range accumula-

tor, the value𝐻 (𝑥,𝑦) can be accumulated, which is interpreted as adding a range [𝑥,𝑦] (the value

𝐻 (𝑥, 𝑥) can be accumulated to add a single element 𝑥). Given any value 𝑧, proving membership

can be achieved by providing a witness𝑤 ′ = (𝑤, 𝑥,𝑦) where𝑤 = Acc.GetMemWit(𝑆,𝐴, 𝐻 (𝑥,𝑦))

for 𝑥 ⩽ 𝑧 ⩽ 𝑦. This concept is quite natural and efficient, though it is also trivially not insertion-

secure: an adversary canwinGinsert
A,Acc(𝜆)with probability 1 by accumulating the value𝐻 (𝑥min, 𝑥max)

for the smallest and largest data elements in𝑈 , effectively accumulating the entire data universe

in constant time.3

5.4.2 Merkle trees

Lemma 5.9. A Merkle tree of bounded depth 𝑘 = poly(𝑛) is insertion-secure in the random oracle

model.

Proof. We work in the random oracle model, supposing that the Merkle tree uses a random or-

acle O : {0, 1}2𝑛 → {0, 1}𝑛 . Let 𝐴 be the accumulator output by an adversary A in Ginsert
A,Acc(𝜆).

We show that for a uniform 𝑥 ∈ {0, 1}𝑛 , the adversary can provide a verifying witness 𝑤 =

(𝑤1, . . . ,𝑤𝑘) for 𝑥 with only negligible probability. For a verifying witness, it must hold that

O(𝑤𝑘 | | . . .O(𝑤2 | |O(𝑤1 | |𝑥))) = 𝐴. We’ll show that with overwhelming probability (over choice

of 𝑥), no query to O involved in the witness verification was made by the adversary in step 2 of

Ginsert
A,Acc(𝜆).

This can be shown by induction. Let 𝑎1, . . . , 𝑎ℓ be the adversary’s queries to the random oracle

in step 2. Let 𝑏1, . . . , 𝑏𝑘 be the queries to the random oracle in the Merkle membership proof

verification; that is, 𝑏𝑖 = 𝑤𝑖 | |O(𝑤𝑖−1 | | . . .). Let 𝑝 (𝜆) be a polynomial upper bound on the total

number of queries made by the adversary to the random oracle throughout the game. Observe

first that Pr[𝑏1 = 𝑎 𝑗 for some j] = ℓ

2𝜆 since 𝑏1 = 𝑤1 | |𝑥 and 𝑥 is chosen at random. Assume

3The adversary can in fact winwith non-negligible probability by accumulating any rangewhose size is a constant
fraction of |𝑈 |.

113

that the probability that 𝑏𝑖 is equal to any 𝑎 𝑗 is at most 𝑖ℓ ·𝑝 (𝜆)2𝜆 . If this event does not occur, then

O(𝑏𝑖+1) = O(𝑤𝑖+1 | |O(𝑏𝑖)) is a freshly random value, and the probability that 𝑏𝑖+1 = 𝑎 𝑗 for any 𝑗

is at most ℓ ·𝑝 (𝜆)2𝜆 (since A can try up to 𝑝 (𝜆) values for𝑤𝑖+1).

Pr
[
𝑏𝑖+1 = 𝑎 𝑗 for some 𝑗

]
≤ ℓ · 𝑝 (𝜆)

2𝜆
Pr

[
𝑏𝑖 ≠ 𝑎 𝑗 for all 𝑗

]
+ Pr

[
𝑏𝑖 = 𝑎 𝑗 for some 𝑗

]
≤ ℓ · 𝑝 (𝜆)

2𝜆
+ 𝑖ℓ · 𝑝 (𝜆)

2𝜆

=
(𝑖 + 1)ℓ · 𝑝 (𝜆)

2𝜆

since Pr[𝑏𝑖 = 𝑎 𝑗 for some 𝑗] ≤ 𝑖ℓ ·𝑝 (𝜆)
2𝜆 by assumption. Therefore, the probability that any of the

(polynomially bounded) 𝑘 queries involved in witness verification was queried in step 2 is at most
𝑘ℓ ·𝑝 (𝜆)

2𝜆 ≤ negl(𝜆).

The last query must match the root such that O(𝑤𝑘 | | . . .O(𝑤2 | |O(𝑤1 | |𝑥))) = 𝐴 in order for

witness verification to pass. Since the above argument shows that (𝑤𝑘 | | . . .O(𝑤2 | |O(𝑤1 | |𝑥)))

was never queried in step 2, at the end of which A outputs 𝐴, O(𝑤𝑘 | | . . .O(𝑤2 | |O(𝑤1 | |𝑥))) is a

uniformly random value independent of 𝐴 and equals 𝐴 with only negligible probability. ■

5.4.3 RSA accumulators

In a standard RSA accumulator [Camenisch and Lysyanskaya, 2002, Lipmaa, 2012], Setup(𝜆)

generates a random group of unknown order and a generator 𝑔 for this group using some group

generation algorithm GenGroup. The data universe is Π𝜆 , the set of all 𝜆-bit primes. The accu-

mulator value for a set 𝑆 is 𝐴 = 𝑔
∏
𝑥∈𝑆 𝑥 , and the witness 𝑤 for an element 𝑥 for the value 𝐴 is

𝑤 = 𝑔
∏
𝑥′ ∈𝑆\{𝑥 } 𝑥

′
= 𝐴1/𝑥 . Add(𝐴𝑡 , 𝑥) outputs 𝐴𝑡+1 = 𝐴𝑥𝑡 . Thus, the accumulator value for a set 𝑆

can be obtained by starting with the value 𝐴0 = 1 and adding each 𝑥𝑖 ∈ 𝑆 to 𝐴𝑖=1 to obtain 𝐴𝑖 , re-

peating until we reach 𝐴 |𝑆 | . UpdWit(𝐴𝑡 , 𝑥,𝑤 ′𝑡) outputs𝑤 ′𝑡+1 = (𝑤 ′𝑡)𝑥 . MemVer(𝐴, 𝑥,𝑤) outputs 1

114

if and only if𝑤𝑥 = 𝐴. A non-membership witness for 𝑥 with respect to𝐴 = 𝑔
∏
𝑠∈𝑆 𝑠 is {𝑎, 𝐵} where

𝑎 and 𝑏 are Bézout coefficients for (𝑥,∏𝑠∈𝑆 𝑠), and 𝐵 = 𝑔𝑏 . NonMemVer(𝐴, {𝑎, 𝐵}, 𝑥) outputs 1 if

and only if 𝐴𝑎𝐵𝑥 = 𝑔.

To make RSA accumulators insertion-secure, we add a second condition toMemVer(𝐴, 𝑥,𝑤):

it now outputs 1 if and only if𝑤𝑥 = 𝐴 and 𝐴 ≠ 1. This requirement that𝐴 ≠ 1 allows us to reduce

insertion security to the Adaptive Root Assumption.

Definition 5.10 (Adaptive Root Assumption [Boneh et al., 2018b]).

Pr



G
$←− GenGroup(𝜆)

(𝑣, 𝑠𝑡) ← A0(G)

𝑢𝑙 = 𝑣 ≠ 1 : 𝑙
$←− Π𝜆 = Primes(𝜆)

𝑢 ← A1(𝑣, 𝑙, 𝑠𝑡)


≤ negl(𝜆)

Lemma 5.11. Suppose a standard RSA accumulator is modified; the algorithm MemVer(𝐴, 𝑥,𝑤)

outputs 1 if and only if 𝑤𝑥 = 𝐴 and 𝐴 ≠ 1. The modified RSA accumulator is insertion-secure if the

Adaptive Root Assumption holds for the group generation algorithm GenGroup.

Proof. Suppose that there exists a PPT adversaryA that wins Ginsert
A,Acc(𝜆) with probability at least

1
poly(𝜆) when the data universe is Π𝜆 , the set of all 𝜆-bit primes. We construct a pair of adversaries

B0,B1 that uses A to break the Adaptive Root Assumption. B0 draws G
$←− GenGroup(𝜆). B0

passes G to A and obtains an accumulator value 𝐴. B0 outputs 𝑣 = 𝐴 and 𝑠𝑡 as its current state.

B1 draws a random 𝑙
$←− Π𝜆 and passes 𝑥 = 𝑙 to A. A outputs an alleged witness 𝑤𝑥 which B1

outputs directly as 𝑢 in the Adaptive Root Game.

Recall that if A wins Ginsert
A,Acc(𝜆), it means that MemVer(𝐴, 𝑥,𝑤𝑥) = 1. For RSA accumulators,

MemVer(𝐴, 𝑥,𝑤𝑥) = 1 if and only if (𝑤𝑥)𝑥 = 𝐴 and 𝐴 ≠ 1. This implies that 𝑢𝑙 = 𝑣 where 𝑣 ≠ 1,

and (B0,B1) win the Adaptive Root Game. SinceA wins with probability at least 1
poly(𝜆) , (B0,B1)

115

win with probability at least 1
poly(𝜆) , violating the Adaptive Root Assumption.

■

Corollary 5.12. The modified RSA accumulator is insertion-secure in the algebraic group model

(AGM), since the Adaptive Root Assumption holds in the AGM [Feist, 2022].

5.4.4 Bilinear accumulators

We show that bilinear accumulators [Nguyen, 2005, Srinivasan et al., 2022b] with a small

modification are insertion-secure in the AGM, under the Bilinear 𝑞-Strong Diffie-Hellman As-

sumption. The standard bilinear accumulator was defined by Nguyen [Nguyen, 2005], and we

follow [Papamanthou, 2011] in its presentation. Let G,G be cyclic multiplicative groups of prime

order 𝑝 , and let 𝑒 : G × G → G be a bilinear pairing. Let 𝑠
$←− Z∗𝑝 , and let 𝑔 be a generator of G.

Let srs = [𝑔,𝑔𝑠, . . . , 𝑔𝑠𝑞] be the structured reference string, where 𝑞 is an (polynomial in 𝜆) up-

per bound on the number of accumulated elements. The public parameters are (𝑝,G,G, 𝑒, 𝑔, srs).

Note that 𝑠 must be kept secret even to the coordinator, and therefore a trusted setup is required.

This accumulator has data universe𝑈 = Z∗𝑝 \{−𝑠}. To accumulate a set𝑋 ⊂ 𝑈 , where |𝑋 | ≤ 𝑞,

one computes 𝐴 = 𝑔
∏
𝑥𝑖 ∈𝑋 (𝑥𝑖+𝑠) . The witness for an element 𝑥 ∈ 𝑋 is𝑊 = 𝑔

∏
𝑥𝑖 ∈ (𝑋\{𝑥 }) (𝑥𝑖+𝑠) . To

verify a witness, one checks that 𝑒 (𝑊,𝑔𝑠+𝑥) = 𝑒 (𝐴,𝑔). Tomake this accumulator insertion-secure,

we also check that 𝐴 ≠ 1.

In the algebraic group model, the adversary is constrained to perform only algebraic opera-

tions within the given group. That is, the adversary is given some group elements as input, and

for any element that it outputs, it must provide a description of the operations used to obtain

that element. In our setting, the algebraic adversary is given as input [1, 𝑔, 𝑔𝑠, . . . , 𝑔𝑠𝑞]. For any

group element ℎ that the adversary outputs, it must provide a scalar vector 𝑣 ∈ Z∗𝑝 such that

ℎ =
∏𝑞

𝑖=0 𝑔
𝑣𝑖 ·𝑠𝑖 . We refer the reader to [Fuchsbauer et al., 2018, Gabizon et al., 2019] for a more

formal definition. Observe that the 𝑣𝑖 ’s can be interpreted as the coefficients of a polynomial of

116

degree 𝑞 evaluated at 𝑠 . We use this interpretation in the following proof.

Definition 5.13 (𝑞-Discrete Logarithm Assumption (𝑞-DLOG) [Fuchsbauer et al., 2018]). The

𝑞-DLOG assumption holds in a group G if for every p.p.t. adversary A,

Pr
𝑠←Z∗𝑝

[
A

(
𝑔,𝑔𝑠, . . . , 𝑔𝑠

𝑞
)
→ 𝑠

]
≤ negl(𝜆).

Lemma 5.14. The bilinear accumulator modified so that the 𝐴 = 1 case is disallowed is insertion-

secure in the algebraic group model, under the 𝑞-DLOG Assumption.

Proof. LetA be an algebraic adversary that takes srs as input and outputs 𝐴 such that with non-

negligible probability,A can produce a verifying witness𝑊 for a randomly chosen 𝑥 ∈ Z∗𝑝 . Since

A is algebraic, it must output vectors which we interpret as polynomials 𝛼 (𝑆),𝑤 (𝑆) of degree at

most 𝑞 such that 𝐴 = 𝑔𝛼 (𝑠) and𝑊 = 𝑔𝑤 (𝑠) . Since the witness verifies, 𝑒 (𝑊,𝑔) (𝑠+𝑥) = 𝑒 (𝑔𝛼 (𝑠), 𝑔);

that is, 𝑒 (𝑔,𝑔)𝑤 (𝑠) (𝑠+𝑥) = 𝑒 (𝑔,𝑔)𝛼 (𝑠) . Furthermore, 𝛼 (𝑆) is a nonzero polynomial since verification

requires that 𝐴 ≠ 1.

Observe that since 𝑥 is chosen randomly from an exponentially large set, and 𝛼 is a nonzero

polynomial of polynomially bounded degree, (𝑆+𝑥) divides 𝛼 (𝑆) with only negligible probability

by the Schwartz-Zippel lemma. Therefore, 𝑤 (𝑆) (𝑆 + 𝑥) − 𝛼 (𝑆) is a nonzero polynomial that has

𝑠 as a root. The adversary can factor𝑤 (𝑆) (𝑆 + 𝑥) − 𝛼 (𝑆) in polynomial time to find 𝑠 . ■

5.4.5 From generic universal accumulators

We show how to construct an insertion-secure accumulator Acc′ from any universal accu-

mulator Acc. The core idea is to map each element 𝑥 to two pseudorandom sets (𝑆+𝑥 , 𝑆−𝑥), each a

subset of the data universe𝑈 . Proving membership of 𝑥 for Acc′ in requires showing inclusion of

all elements of 𝑆+𝑥 in Acc and exclusion of all elements of 𝑆−𝑥 in Acc. Intuitively, breaking insertion

security by accumulating the entire data universe in Acc does not work because it will make the

117

required non-membership proofs impossible. The best attacker strategy is to accumulate a ran-

dom subset of half the elements of𝑈 , but this will mean that each item in 𝑆+𝑥 is wrongly excluded

with probability 1
2 and each item in 𝑆−𝑥 is wrongly included with probability 1

2 . By setting ensur-

ing the sizes of 𝑆+𝑥 , 𝑆−𝑥 , we can amplify security to ensure such an adversary has only a negligible

probability of correctly showing inclusion of a random element.

In more detail, let Acc be a universal accumulator scheme for data universe 𝑈 . Here, we

let the data universe for Acc′ be 𝑈 ′ = {0, 1}𝜆 . Let 𝐻 : [𝜆] × 𝑈 ′ → 𝑈 be a hash function that

we will model as a random oracle. For any 𝑥 ∈ 𝑈 ′, let 𝑆+𝑥 :=
{
𝑦 : 𝐻 (𝑖, 𝑥) = 𝑦 for 𝑖 ∈ [𝜆2]

}
, and

let 𝑆−𝑥 :=
{
𝑦 : 𝐻 (𝑖, 𝑥) = 𝑦 for 𝑖 ∈

{
(𝜆2 + 1), . . . , 𝜆

}}
(assume for convenience that 𝜆 is even). We

specify the functions of Acc′ as follows:

Setup: uses the same setup function as Acc.

Accumulate(S′): Let 𝑆 =
⋃
𝑥∈𝑆 ′ 𝑆

+
𝑥 . Outputs 𝐴 = Acc.Accumulate(𝑆).

GetMemWit(S′,A, x): Outputs a vector of witnesses w of length 𝜆 where:

• For 𝑖 ≤ 𝜆
2 ,𝑤𝑖 = Acc.GetMemWit(𝑆,𝐴, 𝐻 (𝑖, 𝑥)) is a membership proof for 𝐻 (𝑖, 𝑥)

• For 𝑖 > 𝜆
2 , 𝑤𝑖 = Acc.GetNonMemWit(𝑆,𝐴, 𝐻 (𝑖, 𝑥)) is a non-membership proof for

𝐻 (𝑖, 𝑥)

MemVer(𝐴, 𝑥,w): Outputs 1 if and only if the following holds for all 𝑖 ∈ [𝜆]:

• For 𝑖 ≤ 𝜆
2 , Acc.MemVer(𝐴,𝐻 (𝑖, 𝑥),𝑤𝑖) = 1.

• For 𝑖 > 𝜆
2 , Acc.NonMemVer(𝐴,𝐻 (𝑖, 𝑥),𝑤𝑖) = 1.

Lemma 5.15. If Acc is a secure universal accumulator and 𝐻 is modeled as a random oracle, Acc′

is insertion-secure.

Proof. Suppose for the sake of contradiction that Acc′ is not insertion-secure, and let A be an

adversary that wins the insertion game with probability at least 1
𝜆𝑐

for some constant 𝑐 > 0,

118

conditioned on the event that it does not query 𝑥 before it outputs 𝐴. (Since A is polynomially-

bounded, this event fails to occur with only negligible probability). Thus, treating 𝐻 as a random

oracle, 𝐻 (𝑥) is a 𝜆-length tuple of truly random independent values 𝑦𝑖 ∈ 𝑈 , where 𝑦1, . . . , 𝑦 𝜆
2

should be included, and 𝑦 𝜆
2+1
, . . . , 𝑦𝜆 should be excluded.

Equivalently, we can think of drawing y = 𝑦1, . . . , 𝑦𝜆 (uniform and i.i.d. from 𝑈) and subse-

quently drawing a uniformly random vector b of Hamming weight 𝜆2 , where𝑦𝑖 should be included

if and only if 𝑏𝑖 = 1.

By an averaging argument, we must have that for a non-negligible fraction of y ∈ 𝑋 , A suc-

ceeds with non-negligible probability over subsequent choice of b ∈ {0, 1}𝜆 . Let E[𝐴, y, b,w] be

the event thatAcc.MemVer(𝐴,𝑦𝑖,𝑤𝑖) = 1 for all 𝑖 such that𝑏𝑖 = 1whileAcc.NonMemVer(𝐴,𝑦𝑖,𝑤𝑖)

equals 1 for all 𝑖 such that 𝑏𝑖 = 0. The success ofA in Ginsert
A,Acc′ (𝜆) implies that E[𝐴, y, b,w] occurs

for its choice of 𝐴 and w, and the random choice of y, b. Thus,

Pr
pp

$←−Setup(𝜆)
y


A outputs 𝐴 such that

Prb [w← A ∧ E[𝐴, y, b,w]] ≥ 1
𝜆𝑐


≥ 1
𝜆𝑐

We now construct an adversary B that breaks the universal accumulator security of Acc by

producing an accumulator value, an element, and both membership and non-membership proofs

for that element. Let B first generate setup parameters and runA on these parameters to obtain

an accumulator value 𝐴. Let B choose y as above and b1, b2 uniformly random vectors of Ham-

ming weight 𝜆2 . B runs A on inputs (y, b1) and (y, b2) to obtain w1 and w2 respectively. With

probability at least 1
𝜆𝑐
, B chose pp and y such that Prb [w← A ∧ E[𝐴, y, b,w]] ≥ 1

𝜆𝑐
. In this

event, the probability that both w1 and w2 verify is at least 1
𝜆2𝑐

. As b1 = b2 with only negligible

probability (since
(𝑛
𝑛/2

)
≥ 2𝑛/2), with overwhelming probability there is some 𝑖 such that (𝑏1)𝑖 ≠

(𝑏2)𝑖 . However, we have (without loss of generality) both that Acc.MemVer(𝐴,𝑦𝑖, (𝑤1)𝑖) = 1 and

Acc.NonMemVer(𝐴,𝑦𝑖, (𝑤2)𝑖) = 1. This happens with probability at least 1
𝜆𝑐
· 1
𝜆2𝑐
·
(
1 − 1

2𝜆

)
, which

119

is non-negligible. This contradicts the universal accumulator security.

■

Correctness. Accumulators typically require correctness, which says that given an honestly-

generated accumulator value for a set, honestly-generated membership proofs for elements in

that set should verify under MemVer; similarly, honestly-generated non-membership proofs for

elements not in that set should verify under NonMemVer. We note that Acc′ has only computa-

tional correctness, since there may be some 𝑥1, 𝑥2 for which the same 𝑦 is included in 𝑆+𝑥1 and 𝑆
−
𝑥2 .

This is problematic, since the membership proofs for 𝑥1, 𝑥2 would require a membership proof

and a non-membership proof for 𝑦 (with respect to Acc), which should be difficult by security of

Acc, and hence 𝑥1 and 𝑥2 cannot both be included in the accumulator. In Cornucopia, if one user

chose 𝑥1 and another user chose 𝑥2, the coordinator could not satisfy both users.

Fortunately, collision resistance of𝐻 ensures that actually finding such 𝑥1, 𝑥2 is computation-

ally hard: finding 𝑥1, 𝑥2 such that 𝑦 ∈ 𝑆+𝑥1 and 𝑦 ∈ 𝑆
−
𝑥2 would involve finding 𝑖1 ≠ 𝑖2 such that

𝑦 = 𝐻 (𝑖1, 𝑥1) = 𝐻 (𝑖2, 𝑥2), which yields a collision of 𝐻 . Computational correctness is sufficient

for use in Cornucopia (and most other applications), as polynomially-bounded users would not

be able to find 𝑥1 and 𝑥2 resulting in the above issue.

5.4.6 From vector commitments

Vector commitments (VCs) [Catalano and Fiore, 2013] can be used to construct an insertion-

secure accumulator for sets of bounded size ⩽ 𝑘 for any 𝑘 polynomial in 𝜆. Let the message space

M underlying our VC have size exponential in 𝜆, and assume there is some total ordering over

M. To accumulate a set 𝑆 ⊆ M, we order this set to obtain a vector and commit to this vector.

The witness for an element 𝑥 ∈ 𝑆 is an index 𝑖 ≤ 𝑘 and a VC opening proof for that index. To

verify this witness, one verifies the opening proof. This scheme is detailed below:

Setup(𝜆) : Output pp← VC.Setup(𝜆, 𝑘).

120

Accumulate(𝑆) : Interpret 𝑆 as an ordered list 𝑠1, . . . , 𝑠 |𝑆 | , and let 𝑣 = [𝑠1, . . . , 𝑠 |𝑆 |, 0, . . . , 0] be a

vector of length 𝑘 . Compute (𝐶, aux) ← VC.Commit(𝑣).

GetMemWit(𝑆,𝐴, 𝑥): Compute (𝐶, aux) from 𝑆 as above. Let 𝑖 be such that 𝑥 = 𝑠𝑖 . Compute

𝜋𝑖 ← VC.Open(𝑥, 𝑖, aux) and output (𝑖, 𝜋𝑖).

MemVer(𝐴, 𝑥, (𝑖, 𝜋𝑖)) : Output VC.Ver(𝐴, 𝑥, 𝑖, 𝜋𝑖).

Position binding of vector commitments says that it is infeasible for a PPT adversary to produce

any (possibly maliciously-generated) 𝐴, distinct values 𝑥, 𝑥′, an index 𝑖 , and accepting proofs

𝜋𝑖, 𝜋
′
𝑖 that the vector committed to by 𝐴 has 𝑥 and 𝑥′ respectively as its 𝑖th component. We prove

insertion security by showing that an adversary that breaks insertion security of this accumulator

can be used to break position binding of the underlying VC scheme.

Theorem 5.16. When constructed with a vector commitment over an exponentially large data uni-

verse, this accumulator scheme is insertion-secure.

Proof. Suppose that Pr
[
Ginsert
A,Acc(𝜆) = 1

]
is non-negligible. Let E𝑖 denote the event thatA outputs

a proof for index 𝑖 . Then there must be some accumulator 𝐴 and index 𝑖 such that

Pr
pp←Setup(𝜆)
𝐴←A(pp)

[
Pr

[
Ginsert
A,Acc(𝜆) = 1 ∧ E𝑖

��� pp, 𝐴]
≥ 1
𝜆𝑐1

]
≥ 1
𝜆𝑐2

for some constants 𝑐1, 𝑐2 > 0.

Consider drawing pp ← Setup(𝜆) and running A(pp) to obtain 𝐴. As stated above, with

non-negligible probability, there exists some 𝑖 such that with non-negligible probability given

this choice of pp, 𝐴 the adversary produces a verifying proof for index 𝑖 . Consider running A

twice from this point, for two independently drawn 𝑥1, 𝑥2 ← 𝑈 . With probability at least 1
𝜆2𝑐1

,A

produces verifying opening proofs 𝜋1, 𝜋2 that the 𝑖th index of the committed vector equals 𝑥1 and

𝑥2 respectively. Since𝑈 is exponentially large, 𝑥1 ≠ 𝑥2 with overwhelming probability. Therefore,

121

Trusted |𝑅 | Witness size |pp| Witness gen. time

Scheme setup (bytes) (asymp.) (bytes) (asymp.) (asymp.)

Merkle tree no 32 𝑂 (log𝑛) 32 · ⌈log𝑛⌉ 𝑂 (1) 𝑂 (𝑛 log𝑛)
RSA accumulator yes† 384 𝑂 (1) 384 𝑂 (1) 𝑂 (𝑛2)

Bilinear accumulator yes 48 𝑂 (1) 48 𝑂 (𝑛) 𝑂 (𝑛 log𝑛)
Hyperproofs yes 48 𝑂 (log𝑛) 48 · ⌈log𝑛⌉ 𝑂 (𝑛) 𝑂 (𝑛 log𝑛)

Table 5.1: Comparison of accumulator options for Cornucopia, at a security level of 𝜆 = 128 bits. Witness
generation time is the time required to compute all 𝑛 witnesses. †RSA accumulators can be instantiated
using class groups [Long, 2018], which do not require trusted setup. We report numbers here for the
classic RSA group Z∗

𝑁
.

we have found a vector commitment 𝐴 and proofs 𝜋1, 𝜋2 that the same component takes on two

distinct values, contradicting position binding of the vector commitment. ■

5.5 Efficiency comparison of accumulator constructions

Cornucopia can be constructed from any insertion-secure accumulator. In Table 5.1 we com-

pare efficiency trade-offs between Merkle trees, RSA accumulators, bilinear accumulators, and

a construction from a vector commitment called Hyperproofs [Srinivasan et al., 2022a]. All of

these schemes require only 𝑂 (1) space on the public bulletin board, regardless of the number of

participants, though the concrete size varies. In practice, each offers different trade-offs which

might be attractive for different applications.

Merkle trees. Merkle trees are optimal in terms of the commitment size (32 bytes) and require

no trusted setup or public parameters. They are also the most efficient for the coordinator to

compute witnesses, both in asymptotic and concrete terms. The only downside of Merkle trees is

logarithmic witness sizes. Overall, we expect this to be the simplest and best approach for many

applications, unless clients are extremely bandwidth-limited or the number of users is very large.

122

RSA accumulators. By contrast, RSA accumulators offer constant witness sizes, potentially

offering the capability to scale to more users without imposing extra bandwidth requirements on

clients. However, we note that the large size of RSA groups considered to offer 128-bit security

(3072 bit moduli) means that Merkle tree proofs are shorter in practice with fewer than ≈ 212

users participating. Furthermore, the size of the public commitment is over 10 times larger than

for Merkle trees. This cost can be significant if the public bulletin board is a layer-1 blockchain

such as Ethereum, where every 32-byte word stored onchain costs around 20,000 gas [Wood et al.,

2014]. RSA accumulators also impose the highest costs on the coordinator (𝑂 (𝑛2)) to compute

witnesses, which may limit scalability.

RSA accumulators also require a trusted setup. This can be done for traditional RSA groups

Z∗
𝑁
as a multiparty ceremony [Chen et al., 2021]. Deployments may also use class groups of

imaginary quadratic order [Buchmann and Hamdy, 2011,Long, 2018], which avoid trusted setup

but have higher concrete overhead and lack well-understood security parameters.

Finally, we note that there may be interesting optimizations when combining RSA accumula-

tors with RSA-based VDFs [Pietrzak, 2018,Wesolowski, 2019], such as offering a combined proof

of inclusion and VDF evaluation.

Bilinear accumulators. Bilinear accumulators can offer the combination of small (48 byte) com-

mitments and constant-sized membership proofs (48 bytes) along with the same asymptotic ef-

ficiency as Merkle trees for computing membership proofs (𝑂 (𝑛 log𝑛)). Bilinear accumulators

offer higher concrete overhead than for Merkle trees. In particular, they require pairing opera-

tions which are relatively expensive compared to hashing (though still cheap in concrete terms).

However, the only pairing operation required is a single operation done by the verifier.

The downside is that bilinear accumulators require a trusted setup of an𝑂 (𝑛)-sized structured

reference string. This powers-of-tau string is common to many protocols and there are many

approaches to generating it in a distributed manner [Kerber et al., 2021,Nikolaenko et al., 2024].

For example, the Filecoin setup generated 227 powers of tau which can be used in a bilinear

123

accumulator with up to 227 ≈ 130 million participants [FileCoin, 2020]. Ethereum generated

a smaller string with 212 powers of tau in a community setup [Foundation, 2023]. While the

coordinator must store this entire structured reference string, participants need only store 𝑂 (1)

terms from this string to verify that their contributions were included.

Hyperproofs. Finally, Hyperproofs [Srinivasan et al., 2022a] is a vector commitment scheme

with the feature that witnesses can be generated in batch very efficiently—generating all 𝑛 wit-

nesses takes 𝑂 (𝑛 log𝑛) time. Concretely, computing all 𝑛 witnesses takes 0.7 hours for 𝑛 = 222

and 2.7 hours for 𝑛 = 224 as implemented in [Srinivasan et al., 2022a]. Verifying witnesses takes

on the order of milliseconds. This efficiency is immediately inherited by the accumulator con-

structed using our approach in Section 5.4.6. The drawback of Hyperproofs is that it requires

linear-sized public parameters that must be generated using a trusted setup. Merkle trees and

bilinear accumulators also allow all witnesses to be batch computed in 𝑂 (𝑛 log𝑛) time.

5.6 Concluding Discussion

We introduce Cornucopia, a simple but powerful framework for VDF-based DRBs, using ac-

cumulators to construct participatory randomness beacon protocols at massive scale. Our work

shows that this paradigm is secure, and it can be instantiated with practically efficient accumu-

lators. Discussing the efficiency of common accumulator constructions in Section 5.5, we note

that there is no obvious accumulator construction that is superior performance-wise in all sce-

narios. We further note that the performance bottleneck in practice for very large deployments

(e.g. millions or billions of users) is likely to be inclusion proof generation by the coordinator.

Constructing an accumulator of a large set and batch-computing all witnesses appears to be an

under-studied problem; our work serves as motivation to revisit accumulator constructions with

this goal in mind.

We discuss possible extensions to the Cornucopia framework, leaving a complete analysis to

124

future work.

Public verifiability. As proposed, Cornucopia only offers meaningful security guarantees to

active participants (as opposed to passive observers) that contribute randomness to the protocol.

We can provide a slightly weaker security guarantee to purely passive participants by intro-

ducing a subset of notarized participants with some public reputation for honesty. These partici-

pants may be organizations such as nonprofits or government bodies that commit to participating

in the protocol regularly. Each notarized participant, after verifying the inclusion proof show-

ing that its contribution is indeed included by the coordinator in the accumulator value, signs

the accumulator value. These signatures might be collected by the coordinator or posted to the

public bulletin board. To save space, they can be compressed using using a signature scheme

such as BLS that supports succinct multi-signatures [Boneh et al., 2018c], resulting in only 𝑂 (1)

additional overhead.

Any observer can then verify with the set of notarized participants that contribute to the

beacon output. As long as one of an observer’s trusted notaries is honest and the VDF output is

valid, the output of Cornucopia must be secure. Using BLS multi-signatures, this would be about

as efficient to verify in practice as a state-of-the-art honest-majority protocol like drand [drand,

2020], while offering much stronger security.

Improving liveness with multiple coordinators. A malicious coordinator can prevent indi-

viduals from contributing to the protocol, or even withhold the commitment 𝑅 and prevent the

protocol from finishing at all. The coordinator cannot do so conditionally based on the impending

outcome, but they can try to block all honest participants. As noted, the coordinator is trusted

for availability but not for security.

A natural way to mitigate denial-of-service is to introduce multiple coordinators, each of

which posts a commitment 𝑅𝑖 . The final beacon output is then Ω = Delay(Combine(𝑅1, . . . , 𝑅𝑛)),

passing the concatenation of these commitments to the VDF. Note that this idea can be extended

125

to a limit where every user might in fact be their own coordinator, in which case the protocol is

exactly Unicorn. This makes it easy to see, informally, that extra malicious coordinators cannot

undermine the security of the protocol as long as the VDF is secure.

Indeed, there is no security reason to limit the number of coordinators, only efficiency con-

siderations. It would be possible in a distributed setting, for example, to enable any party act as

a coordinator as long as they are willing to pay the cost (e.g. gas) of posting their accumulation

𝑅𝑖 to the bulletin board. Now, as long as at least one coordinator posts a commitment that has

at least one honest randomness contribution, the beacon output is unpredictable. Users can sub-

mit contributions to multiple coordinators and trust the final output Ω as long as at least one

coordinator includes their contribution.

Another benefit of this multi-coordinator design is that coordinators can use different ac-

cumulators. This allows users to choose their desired efficiency trade-off. For example, a user

participating across many epochs may prioritize shorter witnesses and opt for the bilinear accu-

mulator with its constant-sized witnesses. Another user who participates only once may opt for

a coordinator using a Merkle tree, requiring an𝑂 (log𝑛)-sized witness, which is a small one-time

cost, and avoiding the need for a trusted setup.

Post-quantum security. As the current building blocks such as RSA-based VDFs, RSA accumu-

lator, and bilinear accumulator do not achieve post-quantum security, Cornucopia may be vulner-

able to quantum attacks unless explicitly instantiatedwith building blocks (VDF and accumulator)

that are post-quantum secure. Basing cryptographic hardness on post-quantum assumptions is

an active area of research in general. For VDFs, the only post-quantum construction that is im-

plemented for practical parameters is a lattice-based one [Osadnik et al., 2025], but the concrete

numbers for VDF proof size and prover time still need improvement. Others exist theoretically

(e.g. isogeny-based [Chavez-Saab et al., 2021]). For accumulators, Merkle trees seem to suffice for

the purpose of Cornucopia while lattice-based constructions exist in other settings [Papamanthou

et al., 2013,Yu et al., 2018,Kemmoe et al., 2025].

126

Incentives. Finally, we note that analyzing incentives in public randomness generation is an

important open problem, not just for Cornucopia-style protocols but for DRBs in general. First,

it is necessary in Cornucopia to incentivize the coordinator(s) to provide a highly reliable ser-

vice and expend nontrivial effort computing inclusion proofs. This problem is somewhat similar

to incentivizing nodes to participate in an honest-majority DRB such as drand. In general, ran-

domness beacons are a public good in that they are non-rivalrous (their value is not decreased as

more users rely on them) and non-excludable (it is difficult to prevent anybody from using them

for their own purposes). Standard economic theory predicts that public goods are susceptible to

free-riding: users may not want to contribute to funding a coordinator if they can rely on the

efforts of others to do so and still use the randomness beacon. We hope that the relatively low

costs of running a coordinator means it might attract corporate sponsorship for publicity, be run

by a foundation, or receive government support.

Second, it is necessary to incentivize users to regularly contribute randomness and to ensure

their local machine is uncompromised and generating randomness correctly. The potentially

large scale of Cornucopia instances might paradoxically decrease user motivation: if the protocol

is secure as long as at least one other user is honest, why expend the effort to contribute at all?

This is a version of the bystander effect, whereby opening participation to more parties which can

contribute security means all of them may figure somebody else will do it. Hopefully, the open

nature of Cornucopia may provide a new type of incentive, as by participating users themselves

gain trust that the result is secure.

127

6 | Conclusion

We conclude by identifying the following areas which we consider most promising for further

research:

• While VDFs are a promising tool, practical deployment requires good estimates of the lower

bound of wall-clock VDF evaluation time. More research is needed to gain confidence in the

security of underlying VDF primitives (such as repeated modular squaring), and hardware

implementations must be built to provide practical assurance.

• VDFs might be useful as a modular layer in strengthening other DRBs in a “belt-and-

suspenders” approach.

• With the exception of VDF-based protocols like Unicorn++, all other DRBs assume a per-

missioned setting requiring some initial setup (e.g. PKI or DKG) to establish participants’

identities. It is an open question to extend non-VDF-based protocols to enable ad hoc, per-

missionless participation (so that the overhead of reconfiguration or dynamic participation

is minimal).

• Most existing DRBs assume synchronous communication, which may fail in practice. Ex-

tending protocols to handle asynchrony is an important challenge.

• Most papers today use game-based security definitions. Universal Composability (UC) se-

curity proofs [Canetti, 2001] could be a useful tool for proving more robust and modular

security results.

128

• The post-quantum story of DRBs is yet to unfold. We observe in Table 3.1 that most cur-

rent DRB solutions are not post-quantum secure. While progress is expected at the level of

cryptographic building blocks such as VDF, VRF, PVSS, and DKG, there may be many prac-

tical gaps to fill toward post-quantum DRBs over time alongside incremental deployment

of post-quantum cryptography in general.

• Moreover, leveraging quantum algorithms directly for the sake of (distributed) randomness

is a different line of work that can be supplementary while likewise assuming a landscape

of quantum computers.

• Finally, there is a gap between the systems-based literature on DRBs and the traditional

cryptographic literature on randomness extractors [Trevisan and Vadhan, 2000, Trevisan,

2001], with DRBs simply assuming cryptographic primitives such as hash functions work

as extractors in practice. Utilizing the existing theory of extractors could prove useful in

scenarios where high-quality DRB outputs are required directly.

129

Bibliography

[Abraham et al., 2022] Abraham, I., Ben-David, N., and Yandamuri, S. (2022). Efficient and adap-

tively secure asynchronous binary agreement via binding crusader agreement. In ACM PODC.

[Abraham et al., 2023] Abraham, I., Jovanovic, P., Maller, M., Meiklejohn, S., and Stern, G. (2023).

Bingo: Adaptivity and asynchrony in verifiable secret sharing and distributed key generation.

In Annual International Cryptology Conference.

[Adida, 2008] Adida, B. (2008). Helios: Web-based open-audit voting. In USENIX security sympo-

sium.

[Ajtai and Linial, 1993] Ajtai, M. and Linial, N. (1993). The influence of large coalitions. Combi-

natorica, 13(2).

[Al-Bassam et al., 2017] Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., and Danezis, G.

(2017). Chainspace: A sharded smart contracts platform. arXiv preprint arXiv:1708.03778.

[Alon and Naor, 1993] Alon, N. and Naor, M. (1993). Coin-flipping games immune against linear-

sized coalitions. SIAM Journal on Computing, 22(2).

[Andrychowicz et al., 2014] Andrychowicz, M., Dziembowski, S., Malinowski, D., and Mazurek,

L. (2014). Secure Multiparty Computations on Bitcoin. In IEEE Security & Privacy.

[Arun et al., 2022] Arun, A., Bonneau, J., and Clark, J. (2022). Short-lived zero-knowledge proofs

and signatures. In Asiacrypt.

130

[Arun and Setty, 2024] Arun, A. and Setty, S. (2024). Nebula: Efficient read-write memory and

switchboard circuits for folding schemes. Cryptology ePrint Archive.

[Aspnes, 1998] Aspnes, J. (1998). Lower bounds for distributed coin-flipping and randomized

consensus. Journal of the ACM (JACM), 45(3).

[Azouvi et al., 2018] Azouvi, S., McCorry, P., andMeiklejohn, S. (2018). Winning the caucus race:

Continuous leader election via public randomness. arXiv preprint arXiv:1801.07965.

[Bacho et al., 2024a] Bacho, R., Lenzen, C., Loss, J., Ochsenreither, S., and Papachristoudis, D.

(2024a). Grandline: adaptively secure dkg and randomness beacon with (log-) quadratic com-

munication complexity. In ACM CCS.

[Bacho and Loss, 2022] Bacho, R. and Loss, J. (2022). On the adaptive security of the threshold

BLS signature scheme. In ACM CCS.

[Bacho and Loss, 2023] Bacho, R. and Loss, J. (2023). Adaptively secure (aggregatable) pvss and

application to distributed randomness beacons. In ACM CCS.

[Bacho et al., 2024b] Bacho, R., Loss, J., Stern, G., andWagner, B. (2024b). Harts: High-threshold,

adaptively secure, and robust threshold schnorr signatures. In Asiacrypt.

[Baigneres et al., 2015] Baigneres, T., Delerablée, C., Finiasz, M., Goubin, L., Lepoint, T., and Ri-

vain, M. (2015). Trap me if you can-million dollar curve. IACR Cryptol. ePrint Arch.

[Bailey et al., 2022] Bailey, B., Miller, A., and Sattath, O. (2022). General partially fair multi-party

computation with vdfs. Cryptology ePrint Archive.

[Bandarupalli et al., 2024] Bandarupalli, A., Bhat, A., Bagchi, S., Kate, A., and Reiter, M. K. (2024).

Random beacons in monte carlo: Efficient asynchronous random beacon without threshold

cryptography. In ACM CCS.

131

[Beaver et al., 2023] Beaver, D., Chalkias, K., Kelkar, M., Kokoris-Kogias, L., Lewi, K., de Nau-

rois, L., Nikolaenko, V., Roy, A., and Sonnino, A. (2023). Strobe: Streaming threshold random

beacons. In Advances in Financial Technologies.

[Beaver and So, 1993] Beaver, D. and So, N. (1993). Global, unpredictable bit generation without

broadcast. In Eurocrypt.

[Bellare et al., 1998] Bellare, M., Garay, J. A., and Rabin, T. (1998). Fast batch verification for

modular exponentiation and digital signatures. In Eurocrypt.

[Bellare and Rogaway, 1993] Bellare, M. and Rogaway, P. (1993). Random oracles are practical:

A paradigm for designing efficient protocols. In ACM CCS.

[Bellare and Rogaway, 2006] Bellare, M. and Rogaway, P. (2006). The security of triple encryption

and a framework for code-based game-playing proofs. In Eurocrypt.

[Ben-Or and Linial, 1985] Ben-Or, M. and Linial, N. (1985). Collective coin flipping, robust voting

schemes and minima of banzhaf values. In FOCS.

[Ben-Or and Linial, 1989] Ben-Or, M. and Linial, N. (1989). Collective coin flipping. Advances in

Computing Research.

[Benaloh and De Mare, 1993] Benaloh, J. and De Mare, M. (1993). One-way accumulators: A

decentralized alternative to digital signatures. In Eurocrypt.

[Bentov et al., 2016] Bentov, I., Gabizon, A., and Zuckerman, D. (2016). Bitcoin beacon. arXiv

preprint arXiv:1605.04559.

[Bentov and Kumaresan, 2014] Bentov, I. and Kumaresan, R. (2014). How to use bitcoin to design

fair protocols. In Annual International Cryptology Conference.

132

[Bentov et al., 2014] Bentov, I., Lee, C., Mizrahi, A., and Rosenfeld, M. (2014). Proof of activity:

Extending bitcoin’s proof of work via proof of stake. ACMSIGMETRICS Performance Evaluation

Review.

[Bhat et al., 2023] Bhat, A., Shrestha, N., Kate, A., and Nayak, K. (2023). OptRand: Optimistically

responsive distributed random beacons.

[Bhat et al., 2021] Bhat, A., Shrestha, N., Luo, Z., Kate, A., and Nayak, K. (2021). Randpiper–

reconfiguration-friendly random beacons with quadratic communication. In ACM CCS.

[Blum, 1983] Blum, M. (1983). Coin flipping by telephone a protocol for solving impossible prob-

lems. ACM SIGACT News.

[Boldyreva, 2003] Boldyreva, A. (2003). Threshold signatures, multisignatures and blind signa-

tures based on the gap-diffie-hellman-group signature scheme. In International Workshop on

Public Key Cryptography.

[Boneh et al., 2018a] Boneh, D., Bonneau, J., Bünz, B., and Fisch, B. (2018a). Verifiable Delay

Functions. In Annual International Cryptology Conference.

[Boneh et al., 2019] Boneh, D., Bünz, B., and Fisch, B. (2019). Batching techniques for accumu-

lators with applications to IOPs and stateless blockchains. In Annual International Cryptology

Conference.

[Boneh et al., 2018b] Boneh, D., Bünz, B., and Fisch, B. (2018b). A Survey of Two Verifiable Delay

Functions. Cryptology ePrint Archive, Paper 2018/712.

[Boneh et al., 2018c] Boneh, D., Drijvers, M., and Neven, G. (2018c). Compact multi-signatures

for smaller blockchains. In Asiacrypt.

[Boneh et al., 2020] Boneh, D., Eskandarian, S., Hanzlik, L., and Greco, N. (2020). Single secret

leader election. In Proceedings of the 2nd ACMConference on Advances in Financial Technologies.

133

[Boneh et al., 2001] Boneh, D., Lynn, B., and Shacham, H. (2001). Short signatures from the weil

pairing. In Asiacrypt.

[Boneh and Naor, 2000] Boneh, D. and Naor, M. (2000). Timed commitments. In Annual Interna-

tional Cryptology Conference.

[Bonneau et al., 2025] Bonneau, J., Bünz, B., Christ, M., and Efron, Y. (2025). Good things come

to those who wait: Dishonest-majority coin-flipping requires delay functions. In Eurocrypt.

[Bonneau et al., 2015] Bonneau, J., Clark, J., and Goldfeder, S. (2015). On Bitcoin as a public

randomness source. IACR Cryptol. ePrint Arch.

[Boppana and Narayanan, 2000] Boppana, R. B. andNarayanan, B. O. (2000). Perfect-information

leader election with optimal resilience. SIAM Journal on Computing, 29(4).

[Brorsson and Gunnarsson, 2023] Brorsson, J. and Gunnarsson, M. (2023). Dipsauce: efficient

private stream aggregation without trusted parties. In Nordic Conference on Secure IT Systems.

[Buchmann and Hamdy, 2011] Buchmann, J. andHamdy, S. (2011). A survey on IQ cryptography.

In Public-Key Cryptography and Computational Number Theory.

[Bünz et al., 2018] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., and Maxwell, G. (2018).

Bulletproofs: Short proofs for confidential transactions and more. In IEEE Security & Privacy.

[Bünz and Fisch, 2022] Bünz, B. and Fisch, B. (2022). Schwartz-zippel for multilinear polynomials

mod n. Cryptology ePrint Archive, Paper 2022/458.

[Bünz et al., 2017] Bünz, B., Goldfeder, S., and Bonneau, J. (2017). Proofs-of-delay and random-

ness beacons in Ethereum. IEEE Security and Privacy on the blockchain (IEEE S&B).

[Cachin et al., 2005] Cachin, C., Kursawe, K., and Shoup, V. (2005). Random oracles in con-

stantinople: Practical asynchronous byzantine agreement using cryptography. Journal of

Cryptology.

134

[Camenisch et al., 2022] Camenisch, J., Drijvers, M., Hanke, T., Pignolet, Y.-A., Shoup, V., and

Williams, D. (2022). Internet computer consensus. In ACM PODC.

[Camenisch and Lysyanskaya, 2002] Camenisch, J. and Lysyanskaya, A. (2002). Dynamic accu-

mulators and application to efficient revocation of anonymous credentials. In Annual Interna-

tional Cryptology Conference.

[Canetti, 2001] Canetti, R. (2001). Universally composable security: A new paradigm for crypto-

graphic protocols. In FOCS.

[Cascudo and David, 2017] Cascudo, I. and David, B. (2017). SCRAPE: Scalable randomness at-

tested by public entities. In ACNS.

[Cascudo and David, 2020] Cascudo, I. and David, B. (2020). Albatross: publicly attestable

batched randomness based on secret sharing. In Asiacrypt.

[Cascudo et al., 2021] Cascudo, I., David, B., Shlomovits, O., and Varlakov, D. (2021). Mt. random:

Multi-tiered randomness beacons. Cryptology ePrint Archive.

[Castro and Liskov, 1999] Castro, M. and Liskov, B. (1999). Practical byzantine fault tolerance. In

OSDI.

[Catalano and Fiore, 2013] Catalano, D. and Fiore, D. (2013). Vector commitments and their ap-

plications. In PKC.

[Chatzigiannis and Chalkias, 2021] Chatzigiannis, P. and Chalkias, K. (2021). Proof of assets in

the diem blockchain. In Applied Cryptography and Network Security.

[Chaum and Pedersen, 1992] Chaum, D. and Pedersen, T. P. (1992). Wallet databases with ob-

servers. In Annual International Cryptology Conference.

135

[Chavez-Saab et al., 2021] Chavez-Saab, J., Rodríguez-Henríquez, F., and Tibouchi, M. (2021).

Verifiable isogeny walks: Towards an isogeny-based postquantum vdf. In International Con-

ference on Selected Areas in Cryptography.

[Chen et al., 2024] Chen, J., Zhao, Z., Messou, F. J. A., Katabarwa, R., Alfarraj, O., Yu, K.,

and Guizani, M. (2024). A byzantine-fault-tolerant federated learning method using tree-

decentralized network and knowledge distillation for internet of vehicles. In IEEE Vehicular

Technology Conference.

[Chen et al., 2021] Chen, M., Hazay, C., Ishai, Y., Kashnikov, Y., Micciancio, D., Riviere, T., She-

lat, A., Venkitasubramaniam, M., and Wang, R. (2021). Diogenes: Lightweight Scalable RSA

Modulus Generation with a Dishonest Majority. In IEEE Security & Privacy.

[Cherniaeva et al., 2019] Cherniaeva, A., Shirobokov, I., and Shlomovits, O. (2019). Homomor-

phic encryption random beacon. Cryptology ePrint Archive.

[Christ et al., 2024] Christ, M., Choi, K., McKelvie, W., Bonneau, J., and Malkin, T. (2024). Ac-

countable secret leader election. In Advances in Financial Technologies.

[Cini et al., 2023] Cini, V., Lai, R. W., and Malavolta, G. (2023). Lattice-based succinct arguments

from vanishing polynomials. In Annual International Cryptology Conference.

[Clark and Hengartner, 2010] Clark, J. and Hengartner, U. (2010). On the use of financial data as

a random beacon. EVT/WOTE.

[Cleve, 1986] Cleve, R. (1986). Limits on the security of coin flips when half the processors are

faulty. In TOC.

[Cleve and Impagliazzo, 1993] Cleve, R. and Impagliazzo, R. (1993). Martingales, collective coin

flipping and discrete control processes. Manuscript.

136

[Couteau et al., 2021] Couteau, G., Klooß, M., Lin, H., and Reichle, M. (2021). Efficient range

proofs with transparent setup from bounded integer commitments. In Eurocrypt.

[Damgård, 1998] Damgård, I. (1998). Commitment schemes and zero-knowledge protocols. In

School organized by the European Educational Forum.

[Damgård, 2002] Damgård, I. (2002). On 𝜎-protocols. Lecture Notes, University of Aarhus.

[Das et al., 2022] Das, S., Krishnan, V., Isaac, I. M., and Ren, L. (2022). SPURT: Scalable distributed

randomness beacon with transparent setup. In IEEE Security & Privacy.

[Das et al., 2025] Das, S., Pinkas, B., Tomescu, A., and Xiang, Z. (2025). Distributed randomness

using weighted vufs. In Eurocrypt.

[Das and Ren, 2024] Das, S. and Ren, L. (2024). Adaptively secure bls threshold signatures from

ddh and co-cdh. In Annual International Cryptology Conference.

[David et al., 2018] David, B., Gaži, P., Kiayias, A., and Russell, A. (2018). Ouroboros praos: An

adaptively-secure, semi-synchronous proof-of-stake blockchain. In Eurocrypt.

[David et al., 2022] David, B., Magri, B., Matt, C., Nielsen, J. B., and Tschudi, D. (2022). Gearbox:

Optimal-size shard committees by leveraging the safety-liveness dichotomy. In ACM CCS.

[De Feo et al., 2019] De Feo, L., Masson, S., Petit, C., and Sanso, A. (2019). Verifiable delay func-

tions from supersingular isogenies and pairings. In Eurocrypt.

[Desmedt and Frankel, 1990] Desmedt, Y. and Frankel, Y. (1990). Threshold cryptosystems. In

Advances in Cryptology — CRYPTO’ 89 Proceedings.

[Dodis, 2000] Dodis, Y. (2000). Impossibility of black-box reduction from non-adaptively to adap-

tively secure coin-flipping. In ECCC.

137

[Dodis and Yampolskiy, 2005] Dodis, Y. and Yampolskiy, A. (2005). A verifiable random function

with short proofs and keys. In International Workshop on Public Key Cryptography.

[drand, 2020] drand (2020). Drand. https://drand.love.

[Duan et al., 2023] Duan, S., Wang, X., and Zhang, H. (2023). Fin: Practical signature-free asyn-

chronous common subset in constant time. In ACM CCS.

[Edgington, 2023] Edgington, B. (2023). A technical handbook on ethereum’s move to proof of

stake and beyond. In ETH2 Book.

[Etesami et al., 2020] Etesami, O., Mahloujifar, S., and Mahmoody, M. (2020). Computational

concentration of measure: Optimal bounds, reductions, and more. In SODA.

[Feige, 1999] Feige, U. (1999). Noncryptographic selection protocols. In FOCS.

[Feist, 2022] Feist, D. (2022). RSA Assumptions. rsa.cash/rsa-assumptions.

[Feldman, 1987] Feldman, P. (1987). A practical scheme for non-interactive verifiable secret shar-

ing. In IEEE 28th Annual Symposium on Foundations of Computer Science.

[Feng et al., 2024] Feng, H., Lu, Z., and Tang, Q. (2024). Dragon: Decentralization at the cost of

representation after arbitrary grouping and its applications to sub-cubic dkg and interactive

consistency. In ACM Symposium on Principles of Distributed Computing.

[Fiat and Shamir, 1986] Fiat, A. and Shamir, A. (1986). How to prove yourself: Practical solu-

tions to identification and signature problems. In Conference on the theory and application of

cryptographic techniques.

[FileCoin, 2020] FileCoin (2020). Trusted setup complete! https://filecoin.io/blog/posts/

trusted-setup-complete.

138

https://drand.love
rsa.cash/rsa-assumptions
https://filecoin.io/blog/posts/trusted-setup-complete
https://filecoin.io/blog/posts/trusted-setup-complete

[Fischer et al., 2011] Fischer, M. J., Iorga, M., and Peralta, R. (2011). A public randomness service.

In Proceedings of the International Conference on Security and Cryptography. IEEE.

[Foundation, 2023] Foundation, E. (2023). Proto-danksharding. https://www.eip4844.com.

[Fuchsbauer et al., 2018] Fuchsbauer, G., Kiltz, E., and Loss, J. (2018). The algebraic group model

and its applications. In CRYPTO.

[Gabizon et al., 2019] Gabizon, A., Williamson, Z. J., and Ciobotaru, O. (2019). PLONK: Permu-

tations over Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge. Cryp-

tology ePrint Archive, Paper 2019/953.

[Gainsbury and Blaszczynski, 2017] Gainsbury, S. M. and Blaszczynski, A. (2017). How

blockchain and cryptocurrency technology could revolutionize online gambling. Gaming Law

Review.

[Galindo et al., 2021] Galindo, D., Liu, J., Ordean, M., and Wong, J.-M. (2021). Fully distributed

verifiable random functions and their application to decentralised random beacons. In Euro

S&P.

[Garay et al., 2015] Garay, J., Kiayias, A., and Leonardos, N. (2015). The bitcoin backbone proto-

col: Analysis and applications. In Eurocrypt.

[Garg et al., 2024a] Garg, S., Jain, A., Mukherjee, P., Sinha, R., Wang, M., and Zhang, Y. (2024a).

hints: Threshold signatures with silent setup. In 2024 IEEE Symposium on Security and Privacy

(SP).

[Garg et al., 2024b] Garg, S., Kolonelos, D., Policharla, G.-V., and Wang, M. (2024b). Threshold

encryption with silent setup. In Annual International Cryptology Conference.

139

https://www.eip4844.com

[Gennaro et al., 1999] Gennaro, R., Jarecki, S., Krawczyk, H., and Rabin, T. (1999). Secure dis-

tributed key generation for discrete-log based cryptosystems. In International Conference on

the Theory and Applications of Cryptographic Techniques.

[Gentry et al., 2021] Gentry, C., Halevi, S., Krawczyk, H., Magri, B., Nielsen, J. B., Rabin, T., and

Yakoubov, S. (2021). Yoso: you only speak once. InAnnual International Cryptology Conference.

[Gilad et al., 2017] Gilad, Y., Hemo, R., Micali, S., Vlachos, G., and Zeldovich, N. (2017). Algorand:

Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on

Operating Systems Principles.

[Goldwasser et al., 2015] Goldwasser, S., Kalai, Y. T., and Park, S. (2015). Adaptively secure coin-

flipping, revisited. In ICALP.

[Groth, 2021] Groth, J. (2021). Non-interactive distributed key generation and key resharing.

Cryptology ePrint Archive, Paper 2021/339.

[Guo et al., 2020] Guo, Z., Shi, L., and Xu, M. (2020). SecRand: A Secure Distributed Randomness

Generation Protocol With High Practicality and Scalability. IEEE Access.

[Gurkan et al., 2021] Gurkan, K., Jovanovic, P., Maller, M., Meiklejohn, S., Stern, G., and Tomescu,

A. (2021). Aggregatable distributed key generation. In Eurocrypt.

[Haahr, 2010] Haahr, M. (2010). Random.org: True random number service. www.random.org.

[Haitner and Karidi-Heller, 2020] Haitner, I. and Karidi-Heller, Y. (2020). A tight lower bound on

adaptively secure full-information coin flip. In FOCS.

[Haitner and Tsfadia, 2014] Haitner, I. and Tsfadia, E. (2014). An almost-optimally fair three-

party coin-flipping protocol. In ACM STOC.

140

www. random. org

[Han et al., 2020] Han, R., Lin, H., and Yu, J. (2020). Randchain: A scalable and fair decentralised

randomness beacon. Cryptology ePrint Archive.

[Johnson et al., 2024] Johnson, S., Mengersen, K., O’Callaghan, P., and Madsen, A. L. (2024). Pro-

poser selection in eip-7251. arXiv preprint arXiv:2404.12657.

[Kahn et al., 1989] Kahn, J., Kalai, G., and Linial, N. (1989). The influence of variables on boolean

functions. FOCS.

[Kalai et al., 2021] Kalai, Y. T., Komargodski, I., and Raz, R. (2021). A lower bound for adaptively-

secure collective coin flipping protocols. Combinatorica, 41(1).

[Karthikeyan and Polychroniadou, 2024] Karthikeyan, H. and Polychroniadou, A. (2024). Picaso:

Secure aggregation for federated learning with minimal synchronization. In Advancements In

Medical Foundation Models: Explainability, Robustness, Security, and Beyond.

[Katz et al., 2020] Katz, J., Loss, J., and Xu, J. (2020). On the Security of Time-Lock Puzzles and

Timed Commitments. In TCC.

[Kavousi et al., 2024] Kavousi, A., Wang, Z., and Jovanovic, P. (2024). Sok: Public randomness.

In IEEE European Symposium on Security and Privacy (EuroS&P).

[Kelsey et al., 2019] Kelsey, J., Brandão, L. T., Peralta, R., and Booth, H. (2019). A reference for

randomness beacons: Format and protocol version 2. Technical report, National Institute of

Standards and Technology.

[Kemmoe and Lysyanskaya, 2024] Kemmoe, V. Y. and Lysyanskaya, A. (2024). Rsa-based dy-

namic accumulator without hashing into primes. In ACM CCS.

[Kemmoe et al., 2025] Kemmoe, V. Y., Lysyanskaya, A., and Nguyen, N. K. (2025). Lattice-based

accumulator and application to anonymous credential revocation. Cryptology ePrint Archive.

141

[Kerber et al., 2021] Kerber, T., Kiayias, A., and Kohlweiss, M. (2021). Mining for Privacy: How

to Bootstrap a Snarky Blockchain. In Financial Crypto.

[Khovratovich et al., 2022] Khovratovich, D., Maller, M., and Tiwari, P. R. (2022). MinRoot: can-

didate sequential function for Ethereum VDF. Cryptology ePrint Archive.

[Kiayias et al., 2017] Kiayias, A., Russell, A., David, B., and Oliynykov, R. (2017). Ouroboros:

A provably secure proof-of-stake blockchain protocol. In Annual International Cryptology

Conference.

[Kokoris-Kogias et al., 2018] Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., and

Ford, B. (2018). Omniledger: A secure, scale-out, decentralized ledger via sharding. In 2018

IEEE Symposium on Security and Privacy (SP).

[Kothapalli and Setty, 2024] Kothapalli, A. and Setty, S. (2024). Hypernova: Recursive arguments

for customizable constraint systems. In Annual International Cryptology Conference.

[Kothapalli et al., 2022] Kothapalli, A., Setty, S., and Tzialla, I. (2022). Nova: Recursive zero-

knowledge arguments from folding schemes. In Annual International Cryptology Conference.

[Lai and Malavolta, 2023] Lai, R. W. and Malavolta, G. (2023). Lattice-based timed cryptography.

In Annual International Cryptology Conference.

[Langellotti, 2025] Langellotti, D. (2025). Cypherpunk cosmic randomness: ctrng beta now

live. https://blog.spacecomputer.io/cypherpunk-cosmic-randomness-ctrng-beta-

now-live.

[Lee et al., 2022] Lee, H., Hsu, Y., Wang, J.-J., Yang, H. C., Chen, Y.-H., Hu, Y.-C., and Hsiao,

H.-C. (2022). HeadStart: Efficiently Verifiable and Low-Latency Participatory Randomness

Generation at Scale. In NDSS.

142

https://blog.spacecomputer.io/cypherpunk-cosmic-randomness-ctrng-beta-now-live
https://blog.spacecomputer.io/cypherpunk-cosmic-randomness-ctrng-beta-now-live

[Lenstra and Wesolowski, 2015] Lenstra, A. K. and Wesolowski, B. (2015). A random zoo: sloth,

unicorn, and trx. Cryptology ePrint Archive.

[Li et al., 2007] Li, J., Li, N., and Xue, R. (2007). Universal accumulators with efficient nonmem-

bership proofs. In ACNS.

[Libert, 2025] Libert, B. (2025). Simplified adaptively secure threshold bls signatures. In Cryp-

tographers’ Track at the RSA Conference.

[Lichtenstein et al., 1989] Lichtenstein, D., Linial, N., and Saks, M. (1989). Some extremal prob-

lems arising from discrete control processes. Combinatorica, 9(3).

[Lipmaa, 2012] Lipmaa, H. (2012). Secure accumulators from Euclidean rings without trusted

setup. In ACNS.

[Liu-Zhang et al., 2025] Liu-Zhang, C.-D., Masserova, E., Ribeiro, J., Soni, P., and Thyagarajan,

S. A. (2025). Efficient distributed randomness generation from minimal assumptions where pa

rties s peak s equentially o nce. In Eurocrypt.

[Long, 2018] Long, L. (2018). Binary quadratic forms. https://github.com/Chia-Network/

vdf-competition/blob/master/classgroups.pdf.

[Ma et al., 2024] Ma, Y., Guo, Y., Karthikeyan, H., and Polychroniadou, A. (2024). Armadillo:

Robust secure aggregation for federated learning with input validation. In Advancements In

Medical Foundation Models: Explainability, Robustness, Security, and Beyond.

[Ma et al., 2023] Ma, Y., Woods, J., Angel, S., Polychroniadou, A., and Rabin, T. (2023). Flamingo:

Multi-round single-server secure aggregation with applications to private federated learning.

In IEEE Symposium on Security and Privacy (SP).

[Mahloujifar and Mahmoody, 2019] Mahloujifar, S. and Mahmoody, M. (2019). Can adversarially

robust learning leveragecomputational hardness? In Algorithmic Learning Theory.

143

https://github.com/Chia-Network/vdf-competition/blob/master/classgroups.pdf
https://github.com/Chia-Network/vdf-competition/blob/master/classgroups.pdf

[Meng et al., 2025] Meng, X., Sui, X., Yang, Z., Rong, K., Xu, W., Chen, S., Yan, Y., and Duan, S.

(2025). Rondo: Scalable and reconfiguration-friendly randomness beacon. In NDSS.

[Micali et al., 1999] Micali, S., Rabin, M., and Vadhan, S. (1999). Verifiable random functions. In

IEEE 40th Annual Symposium on Foundations of Computer Science.

[Micciancio, 2005] Micciancio, D. (2005). The RSA group is pseudo-free. In Annual International

Cryptology Conference.

[Michalevsky, 2022] Michalevsky, Y. (2022). Cryptosat launched crypto1 — the first

cryptographic root-of-trust in space. https://medium.com/cryptosatellite/

cryptosat-launches-crypto1-the-first-cryptographic-root-of-trust-in-space-

37dcc324fe65.

[Moran et al., 2009] Moran, T., Naor, M., and Segev, G. (2009). An optimally fair coin toss. In

Theory of Cryptography Conference.

[Nakamoto, 2008] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.

[Nguyen, 2005] Nguyen, L. (2005). Accumulators from bilinear pairings and applications. In

CT-RSA.

[Nguyen-Van et al., 2019] Nguyen-Van, T., Nguyen-Anh, T., Le, T.-D., Nguyen-Ho, M.-P.,

Nguyen-Van, T., Le, N.-Q., and Nguyen-An, K. (2019). Scalable distributed random number

generation based on homomorphic encryption. In IEEE International Conference on Blockchain.

[Nikolaenko et al., 2024] Nikolaenko, V., Ragsdale, S., Bonneau, J., and Boneh, D. (2024). Powers-

of-tau to the people: Decentralizing setup ceremonies. In ACNS.

[Ongaro and Ousterhout, 2014] Ongaro, D. and Ousterhout, J. (2014). In search of an understand-

able consensus algorithm. In USENIX annual technical conference (USENIX ATC).

144

https://medium.com/cryptosatellite/cryptosat-launches-crypto1-the-first-cryptographic-root-of-trust-in-space-37dcc324fe65
https://medium.com/cryptosatellite/cryptosat-launches-crypto1-the-first-cryptographic-root-of-trust-in-space-37dcc324fe65
https://medium.com/cryptosatellite/cryptosat-launches-crypto1-the-first-cryptographic-root-of-trust-in-space-37dcc324fe65

[Osadnik et al., 2025] Osadnik, M., Kaviani, D., Cini, V., Lai, R. W., and Malavolta, G. (2025). Pa-

percraft: Lattice-based verifiable delay function implemented. In IEEE Security & Privacy.

[Oshitani and Drake, 2025] Oshitani, L. and Drake, J. (2025). Eip-7917: Deterministic proposer

lookahead. https://eips.ethereum.org/EIPS/eip-7917.

[Papamanthou, 2011] Papamanthou, C. (2011). Cryptography for efficiency: new directions in au-

thenticated data structures. PhD thesis, Brown University.

[Papamanthou et al., 2013] Papamanthou, C., Shi, E., Tamassia, R., and Yi, K. (2013). Streaming

authenticated data structures. In Eurocrypt.

[Pedersen, 1991a] Pedersen, T. P. (1991a). Non-interactive and information-theoretic secure ver-

ifiable secret sharing. In Annual International Cryptology Conference.

[Pedersen, 1991b] Pedersen, T. P. (1991b). A threshold cryptosystem without a trusted party. In

Workshop on the Theory and Application of of Cryptographic Techniques.

[Pietrzak, 2018] Pietrzak, K. (2018). Simple Verifiable Delay Functions. In ITCS.

[Pippenger, 1980] Pippenger, N. (1980). On the evaluation of powers and monomials. SIAM

Journal on Computing, 9(2):230–250.

[Rabin, 1983] Rabin, M. O. (1983). Transaction protection by beacons. Journal of Computer and

System Sciences.

[Raikwar and Gligoroski, 2022] Raikwar, M. and Gligoroski, D. (2022). SoK: Decentralized ran-

domness beacon protocols. In Australasian Conference on Information Security and Privacy.

[RANDAO, 2016] RANDAO (2016). Randao: A dao working as rng of ethereum. https:

//github.com/randao/randao.

145

https://eips.ethereum.org/EIPS/eip-7917
https://github.com/randao/randao
https://github.com/randao/randao

[Rivest et al., 1996] Rivest, R. L., Shamir, A., and Wagner, D. A. (1996). Time-lock puzzles and

timed-release crypto.

[Russell et al., 1999] Russell, A., Saks, M., and Zuckerman, D. (1999). Lower bounds for leader

election and collective coin-flipping in the perfect information model. In TOC.

[Saks, 1989] Saks, M. (1989). A robust noncryptographic protocol for collective coin flipping.

SIAM Journal on Discrete Mathematics, 2(2).

[Scharfman, 2023] Scharfman, J. (2023). Decentralized finance (defi) fraud and hacks: Part 2. In

The Cryptocurrency and Digital Asset Fraud Casebook.

[Schindler et al., 2021] Schindler, P., Judmayer, A., Hittmeir, M., Stifter, N., and Weippl, E. (2021).

RandRunner: Distributed Randomness from Trapdoor VDFs with Strong Uniqueness. InNDSS.

[Schindler et al., 2020] Schindler, P., Judmayer, A., Stifter, N., and Weippl, E. (2020). HydRand:

Efficient continuous distributed randomness. In IEEE Security & Privacy.

[Schoenmakers, 1999] Schoenmakers, B. (1999). A simple publicly verifiable secret sharing

scheme and its application to electronic voting. In Annual International Cryptology Confer-

ence.

[Schwartz, 1980] Schwartz, J. T. (1980). Fast probabilistic algorithms for verification of polyno-

mial identities. Journal of the ACM (JACM), 27(4):701–717.

[Shamir, 1979] Shamir, A. (1979). How to share a secret. Communications of the ACM.

[Shasha et al., 2023] Shasha, D., Kim, T., Bonneau, J., Michalevsky, Y., Shotan, G., andWinetraub,

Y. (2023). High performance, low energy, and trustworthy blockchains using satellites. Foun-

dations and Trends® in Networking.

146

[Srinivasan et al., 2022a] Srinivasan, S., Chepurnoy, A., Papamanthou, C., Tomescu, A., and

Zhang, Y. (2022a). Hyperproofs: Aggregating and maintaining proofs in vector commitments.

In USENIX Security.

[Srinivasan et al., 2022b] Srinivasan, S., Karantaidou, I., Baldimtsi, F., and Papamanthou, C.

(2022b). Batching, aggregation, and zero-knowledge proofs in bilinear accumulators. In ACM

CCS.

[Syta et al., 2017] Syta, E., Jovanovic, P., Kogias, E. K., Gailly, N., Gasser, L., Khoffi, I., Fischer,

M. J., and Ford, B. (2017). Scalable bias-resistant distributed randomness. In IEEE Security &

Privacy.

[Thyagarajan et al., 2021a] Thyagarajan, S. A. K., Castagnos, G., Laguillaumie, F., and Malavolta,

G. (2021a). Efficient CCA timed commitments in class groups. In ACM CCS.

[Thyagarajan et al., 2021b] Thyagarajan, S. A. K., Gong, T., Bhat, A., Kate, A., and Schröder, D.

(2021b). OpenSquare: Decentralized repeated modular squaring service. In ACM CCS.

[Trevisan, 2001] Trevisan, L. (2001). Extractors and pseudorandom generators. Journal of the

ACM.

[Trevisan and Vadhan, 2000] Trevisan, L. and Vadhan, S. (2000). Extracting randomness from

samplable distributions. In FOCS.

[van Kempen et al., 2023] van Kempen, E., Li, Q., Marson, G. A., and Soriente, C. (2023). Lisa:

Lightweight single-server secure aggregation with a public source of randomness. arXiv

preprint arXiv:2308.02208.

[Wang et al., 2019] Wang, G., Shi, Z. J., Nixon, M., and Han, S. (2019). Sok: Sharding on

blockchain. In Proceedings of the 1st ACM Conference on Advances in Financial Technologies,

pages 41–61.

147

[Wang et al., 2023] Wang,W., Ulichney, A., and Papamanthou, C. (2023). {BalanceProofs}: Main-

tainable Vector Commitments with Fast Aggregation. In USENIX Security.

[Wesolowski, 2019] Wesolowski, B. (2019). Efficient Verifiable Delay Functions. In Eurocrypt.

[Wood et al., 2014] Wood, G. et al. (2014). Ethereum: A secure decentralised generalised trans-

action ledger.

[Yakira et al., 2020] Yakira, D., Asayag, A., Grayevsky, I., and Keidar, I. (2020). Economically

viable randomness. CoRR.

[Yakira et al., 2019] Yakira, D., Grayevsky, I., and Asayag, A. (2019). Rational threshold cryp-

tosystems.

[Yu et al., 2018] Yu, Z., Au, M. H., Yang, R., Lai, J., and Xu, Q. (2018). Lattice-based universal accu-

mulator with nonmembership arguments. In Australasian Conference on Information Security

and Privacy.

[Zhang and Duan, 2022] Zhang, H. and Duan, S. (2022). Pace: Fully parallelizable bft from re-

proposable byzantine agreement. In ACM CCS.

[Zippel, 1979] Zippel, R. (1979). Probabilistic algorithms for sparse polynomials. In Symbolic and

algebraic manipulation.

148

	Dedication
	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Introduction
	Historical Context
	Organization
	Statement of Work

	Preliminaries
	Verifiable delay functions
	Accumulators
	Vector commitments
	Algebraic group model
	Groups of unknown order and RSW assumptions
	Randomizing exponent sizes
	Non-interactive zero-knowledge proofs
	Verifiable Secret Sharing (VSS)
	Distributed Key Generation (DKG)
	Publicly Verifiable Secret Sharing (PVSS)
	Verifiable Random Function (VRF)
	Distributed Verifiable Random Function (DVRF)
	DDH-DVRF
	GLOW-DVRF
	Dfinity-DVRF
	Other Cryptographic Primitives
	Lagrange Interpolation
	BLS Signature
	NIZK of Discrete Logarithm Equality (DLEQ)

	Design Space of Distributed Randomness Beacons
	Context
	System Model
	Strawman Protocol: Rock-Paper-Scissors
	Commit-Reveal
	Ideal Distributed Randomness Beacons

	Delay-Based Protocols
	Modifying Commit-Reveal
	Adding Recovery to Commit-Reveal
	Chain of VDFs

	Commit-Reveal-Punish
	Enforcing Every Reveal
	Rational Threshold Commit-Reveal

	Commit-Reveal-Recover
	From Threshold Secret Sharing
	Commit-Reveal-Recover
	Share-Reconstruct-Aggregate
	Share-Aggregate-Reconstruct

	From Threshold Encryption

	Committee-Based Protocols
	Step 1. Committee Selection
	Public Committee Selection
	Private Committee Selection

	Step 2. Beacon Output Generation
	Fresh Per-Node Entropy
	Combining Previous Output and Precommitted Per-Node Entropy

	Protocols With No Marginal Entropy
	Discussion
	Relation to Collective Coin Flipping Protocols
	Withholding Attacks
	Adaptive Security
	Comparison of DRBs
	Concurrent Work

	Notes for Practitioners

	Bicorn: Tolerating Dishonest Majority with Optimistic Efficiency
	Context
	Overview
	Protocol Outline
	Bicorn-ZK: Using Zero-Knowledge Proofs
	Bicorn-PC: Using Precommitment
	Bicorn-RX: Using Pseudorandom Exponents
	Comparison

	Timed DRBs: Syntax and Security Definitions
	Security of Bicorn-RX
	Security of Bicorn-ZK
	Security of Bicorn-PC
	Implementation
	Discussion
	Individual protocol presentations

	Cornucopia: Tolerating Dishonest Majority in Large-Scale Networks
	Context
	Timed DRBs: Definitions and Constructions
	Unicorn
	Cornucopia

	Cornucopia Security
	Insertion-secure accumulators
	Accumulators without insertion security
	Merkle trees
	RSA accumulators
	Bilinear accumulators
	From generic universal accumulators
	From vector commitments

	Efficiency comparison of accumulator constructions
	Concluding Discussion

	Conclusion
	Bibliography

