
Decision Problems for

Global Protocol Specifications

by

Elaine Li

A dissertation submitted in partial fulfillment

of the reqirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

August, 2025

Professor Thomas Wies

© Elaine Li

all rights reserved, 2025

Acknowledgements

The five joyful years I spent as a PhD student are due in no small part to the following individuals.

I am deeply indebted to my advisor, Thomas Wies. Thomas was exceedingly generous in

offering his time, confidence, and the space to let me to grow as a researcher. Beyond his advisory

duties, Thomas was an exemplary scientific role model. His discerning taste, spirit of inquiry, and

sense of humor have all left an indelible mark on me, and I feel incredibly fortunate to have been

his advisee.

I would like to thank my committee members: Joseph Tassarotti, Aurojit Panda, Rupak Ma-

jumdar and Ankush Das. Joe guided me through my first paper reviewing experience, and spent

valuable time reviewing this thesis. Panda showed me what it meant to understand an idea at

the technical, scientific, and stylistic levels. Rupak’s enthusiasm encouraged me to pursue new

problem settings. Ankush brought a refreshing perspective that challenged my thinking about

existing paradigms.

I would like to thank my coauthors for their collaboration on several papers in this thesis:

Damien Zufferey, for providing me with the proper orientation to the research area, and Felix

Stutz, for teaching me everything I know about high-level message sequence charts and LATEX.

I am grateful to the fellow members of NYU ACSys and inhabitants of 60 FA’s fourth floor,

past and present, for fostering a lively environment conducive to both work and play.

I am blessed to be in the fluffy company of Remy, my beloved chinchilla. A special thanks to

YunFan, Mark, Ryan, Arasu, Rama, and Krithika for babysitting Remy during my travels.

iii

I would like to thank my alma mater, Yale-NUS College. 2025 marks the College’s last year in

operation, and I owe much to my friends, professors, and the wider community for creating an

intellectual milieu that has been instrumental to my academic journey thus far.

To my parents, Jing Li and Baojie Li, for steadfastly shaping me into the person I am today.

They will always be the Dr. Li’s that precede me. To the rest of the Li family, thank you for being

my orchard.

My final thank you goes to Noah, my fiancé, my bud, and my home. I look forward to many

more five years spent together.

iv

Abstract

Concurrency is ubiquitous inmodern computing, message passing is a major concurrency paradi-

gm, and communication protocols are therefore a key target for formal verification. Writing

implementations for each protocol participant individually, such that their composition is free

from communication errors and deadlocks, is challenging and error-prone. In response, vari-

ous verification methodologies center around the construct of a global protocol. Global protocol

specifications synchronously describe the message-passing behaviors of all protocol participants

from a bird’s-eye view, and thus rule out large classes of communication errors by construction.

Global protocols are adopted in industry by the ITU standard and UML, and are widely studied in

academia in the form of high-levelmessage sequence charts, session types and choreographic pro-

grams. Application domains for this top-down verification methodology include cryptographic

security, cyber-physical systems, and web services. This thesis contributes decision procedures

for three problems central to global protocol verification: implementability, synthesis, and sub-

typing. Implementability asks whether a protocol admits a distributed implementation, synthesis

in turn computes one, and subtyping asks whether an admissible implementation can be sub-

stituted in whole or part to yield fewer behaviors. This thesis additionally contributes a Rocq

mechanization of a precise implementability characterization for infinite-state protocols, and the

Sprout tool for automatically verifying such protocols.

v

Contents

Acknowledgments iii

Abstract v

List of Figures ix

List of Tables xii

1 Introduction 1

2 Preliminaries 10

I Theory 21

3 Implementability 22

3.1 Introduction . 22

3.2 Overview . 25

3.3 Characterizing Protocol Implementability . 31

3.3.1 Soundness . 36

3.3.2 Completeness . 39

3.4 Checking Implementability . 40

vi

3.4.1 Symbolic Protocols . 40

3.4.2 Finite Protocols . 44

3.4.3 Symbolic Finite Protocols . 48

3.5 Related Work . 50

4 Implementability Modulo Network Architectures 56

4.1 Overview . 58

4.2 Implementability modulo network architectures 62

4.3 Global specification compatibility . 67

4.4 Channel compliance: an alphabetic abstraction of network architectures 69

4.5 Characterization of generalized implementability 76

4.5.1 Decidability and Complexity . 82

4.6 Related Work . 85

4.7 Discussion . 90

5 Synthesis 94

5.1 Introduction . 94

5.2 Synthesizing Finite Implementations . 94

5.3 Synthesizing General Implementations . 96

6 Subtyping 98

6.1 Introduction . 98

6.2 Motivation . 100

6.3 Deciding Protocol Verification . 103

6.4 Deciding Protocol Refinement . 113

6.4.1 Protocol Refinement Relative to Subset Construction 117

6.4.2 Protocol Refinement (General Case) . 123

vii

6.5 Complexity Analysis . 128

6.6 Related Work . 128

II Implementation 132

7 Rocq Mechanization 133

7.1 Introduction . 133

7.2 Mechanization . 134

7.2.1 Protocols as Labeled Transition Systems 135

7.2.2 Infinite Protocol Semantics . 136

7.2.3 Constructing Canonical Implementations 140

7.2.4 Simplification of Soundness . 144

7.3 Related Work . 149

8 SPROUT 151

8.1 Introduction . 151

8.2 Overview . 152

8.3 Implementation . 154

8.3.1 GCLTS Eligibility . 154

8.3.2 Optimizations . 156

8.4 Evaluation . 159

8.4.1 Optimization efficacy . 159

8.4.2 Evaluation and comparison against Session* 159

A Appendix 163

Bibliography 195

viii

List of Figures

1.1 Two-bidder protocol. 4

1.2 State machine for seller S for Fig. 1.1. 4

1.3 State machine for bidder B1 for Fig. 1.1. 5

1.4 State machine for bidder B2 for Fig. 1.1. 5

2.1 The two-bidder protocol from Fig. 1.1 as a symbolic protocol with registers 𝑟𝑧 , 𝑟𝑦 ,

𝑟𝑧1 , and 𝑟𝑧2 . 17

3.1 Odd-even: An implementable but not syntactically projectable protocol and its

local implementations . 25

3.2 High-level message sequence charts for the global types of ??. 28

3.3 Two protocols: S1 using a⃝ with receive order violation S′1 using b⃝ without re-

ceive order violation. 29

3.4 S2: An protocol with a send violation. 30

3.5 Two concrete runs of S1 (Fig. 3.3): (a) with 𝑥 = 2 and 𝑦 = 3 and (b) with 𝑥 = 1 and

𝑦 = 3. 31

3.6 A concrete run of S2 (Fig. 3.4) with s choosing the top branch. 32

3.7 A concrete run of S2 (Fig. 3.4) with s choosing the bottom branch and 𝑥2 = 4. . . 32

3.8 S3: A non-implementable protocol with dependent refinements. 33

3.9 S′3: An implementable protocol with dependent refinements. 33

ix

3.10 Two concrete runs of S3 (Fig. 3.8): (a) with 𝑥 = 2, 𝑦 = 4, 𝑧 = 3 and (b) with

𝑥 = 3, 𝑦 = 4, 𝑧 = 4. 34

3.11 Example where states 𝑞1 and 𝑞3 satisfy Send Coherence for r. 42

3.12 Example where states 𝑞1 and 𝑞3 violate Send Coherence for r. 42

4.1 Task scheduler with task delegation. 58

4.2 Local implementation for s . 65

4.3 Local implementation for w2 . 65

4.4 Local implementation for w1 . 65

4.5 A global protocol S𝑎 that is non-implementable on a bag network but imple-

mentable on a peer-to-peer box network. 78

4.6 A global protocol S𝑏 that is non-implementable on a peer-to-peer box network

but implementable on a senderbox network. 78

4.7 Illustration of 3-SAT reduction for implementability. 83

4.8 Illustration of variable assignment gadget S𝑋 . 83

4.9 Illustration of clause selection gadgetS𝐶 . Highlighted parts indicate modification

for generalized reduction. 84

4.10 A non-implementable protocol with an existentially 1-bounded canonical imple-

mentation. 87

4.11 A global protocol Ssend implementable under rendezvous synchrony, but not un-

der rsc synchrony. 91

4.12 A global protocol Ssend′ not implementable under either rendezvous synchrony

or rsc synchrony, but implementable by asynchronous automata. 91

6.1 Two state machines for role q . 102

6.2 Subset construction of G1 onto p and three alternative implementations 104

6.3 Subset construction of G2 onto p and two alternative implementations 104

x

6.4 CSM violating subprotocol fidelity with respect to G𝑙𝑜𝑜𝑝 114

6.5 Subset construction for p and two state machines for q and r for G′ 115

6.6 Two candidate implementations for p . 117

7.1 Addition GCLTS. 135

7.2 Addition symbolic protocol. 135

7.3 Example infinite protocol Sinf . 138

7.4 Example infinite protocol S′inf . 138

7.5 Induction hypothesis. 147

7.6 Inner induction hypothesis. 147

8.1 Candidate specification for the two-bidder protocol. 152

8.2 Sprout input file for protocol specification in Fig. 8.1. 152

xi

List of Tables

3.1 Comparison of related work (in chronological order) 50

8.1 Comparison of verification times with and without optimizations. 159

8.2 Comparison of verification times with [Zhou et al. 2020]. For each example, we

report the number of participants (|P |), ground truth implementability (✓✓✓ or ×),

verification times for Session* [Zhou et al. 2020] and Sprout with a 30s time-

out per 𝜇CLP instance (T/O), and the result: ✓✓✓ for implementable/projectable, ×

for non-implementable/non-projectable, and ? for inconclusive due to timeout.

Examples not expressible in Session* are marked with N/A. 162

xii

1 | Introduction

Concurrency is ubiquitous in our increasingly efficient and interconnected world. From geo-

graphically distributed financial transactions, to local Internet of Things networks, to multi-core

hardware within a single device, many safety and operation-critical systems run on concurrent

software. Errors in concurrent software can be extremely costly, and ensuring its correctness is

therefore of paramount importance. Unfortunately, concurrency bugs are notoriously subtle and

difficult to detect. In contrast with sequential programs, which run on a single machine, con-

current programs run on multiple independent machines, typically distributed across space and

time. This gives rise to a potentially infinite number of interleaving behaviors, only a handful of

which may exhibit existing bugs.

Formal verification is the use of mathematical reasoning to prove that a program meets its

intended specification. Unlike testing, which examines only a finite number of behaviors, verifi-

cation can rigorously guarantee that errors are absent from a potentially infinite set of behaviors.

Approaches to formal verification vary by the kinds of programs they target and the level of

automation they provide. While formal verification of sequential programs enjoys both solid

theoretical foundations and widespread practical adoption, the same cannot be said for concur-

rent programs. My thesis contributes theoretical results and practical tooling for the automated

verification of concurrent programs.

Message-passing is a key paradigm of concurrent programming. The message-passing behav-

ior of independent processes in a distributed system is governed by communication protocols,

1

which specify how processes cooperate to achieve a common goal, such as maintaining a consis-

tent database, performing distributed computations, or negotiating a shared purchase. Writing a

correct implementation for each process individually, such that their interactions are free from

errors such as deadlocks, orphan messages and unspecified receptions, is made more challenging

by the presence of network asynchrony: every occurrence of two processes being able to send a

message at the same time doubles the search space for potential bugs. Errors in protocol design

and implementation threaten the efficiency, availability and functional correctness of the appli-

cation depending on it, making communication protocols a prime target for formal verification.

One salient methodology for verifying message-passing centers on the construct of a global

protocol. Global protocols synchronously specify message exchanges between all processes from

a birds-eye view. By specifying the sending and receiving of a message as a single atomic event,

global protocols rule out large classes of communication errors by construction. Moreover, global

protocols enjoy simpler checking of deadlock-freedom. As a result, global protocol specifications

have been adopted in industry and are widely studied in academia. Message sequence charts

are a visual formalism for describing communication protocols [Mauw and Reniers 1997; Genest

et al. 2003; Genest and Muscholl 2005; Gazagnaire et al. 2007; Roychoudhury et al. 2012]. Mes-

sage sequence charts found early industry adoption by the ITU standard [International Telecom-

munication Union 2011] in 1993, was subsequently incorporated into UML [Object Management

Group] in 2005, and is part of theWeb Service ChoreographyDescription Language [Web Services

ChoreographyWorking Group 2005]. Global specifications are also featured in the contemporary

programming languages frameworks of multiparty session types and choreographic program-

ming. Multiparty session types (MSTs) have been implemented in over a dozen programming

languages, including Python [Demangeon et al. 2015; Neykova and Yoshida 2017; Neykova et al.

2017], Java [Hu and Yoshida 2016, 2017], C [Ng et al. 2012], Go [Lange et al. 2018; Castro-Perez

et al. 2019], Scala [Castro-Perez and Yoshida 2023], Rust [Cutner et al. 2022; Lagaillardie et al.

2022], OCaml [Imai et al. 2020] and F# [Neykova et al. 2018]. Application domains for MSTs in-

2

clude operating systems [Fähndrich et al. 2006], high performance computing [Honda et al. 2012;

Niu et al. 2016; de Muijnck-Hughes and Vanderbauwhede 2019], cyber-physical systems [Ma-

jumdar et al. 2019, 2020], and web services [Yoshida et al. 2013]. Choreographic programming

frameworks have been implemented in Java [Giallorenzo et al. 2024], Haskell [Shen et al. 2023],

Rust [Languages, Systems, and Data Lab, UC Santa Cruz; Kashiwa et al. 2023] and applied to dis-

tributed architecture [Palma et al. 2024], cryptographic security protocols [Gancher et al. 2023],

and cyber-physical systems [Cruz-Filipe andMontesi 2016]. We refer the reader to [Yoshida 2024]

and [Montesi 2023] for a comprehensive survey of MST and choreography applicability respec-

tively.

We tour key features of the top-down verification methodology embodied by global protocols

using the example of the two-bidder protocol. The two-bidder protocol specifies the behavior of

two bidders, B1 and B2, who negotiate to split the purchase of a book from seller S. We depict

the protocol as a high-level message sequence chart (HMSC) in Fig. 1.1. In the HMSC visualism,

protocol participants are represented using vertical lines, and synchronous communications are

represented as arrows from a sender to a receiver. The outer arrows depict control flow, and

double lines depict final states.

The protocol begins with B1 announcing to S and B2 the book 𝑦 it proposes to buy. The

protocol requires that 𝑦 signifies a valid ISBN number, which we abstract with the predicate

ISBN(𝑦). The seller S then informs B1 the requested book’s price 𝑧. After this, B1 and B2 enter a

bidding phase in which they negotiate the split of their respective contributions𝑏1 and𝑏2 towards

the purchase. In each round of the bidding phase, B1 proposes its contribution 𝑏1 to B2. Bidder B2

then decides to either abort the protocol by sending a quit message to S, or respond to B1 with

its own bid 𝑏2. In case B2 aborts, S echoes the abort message to B1 and the protocol terminates.

In case B2 continues bidding, if the sum of the proposed bids exceeds the book’s price, B1 informs

S of the successful negotiation. Seller S in turn relays the message to B2. Otherwise, B1 sends a

cont message to B2, informing them that they need to enter another bidding round. Throughout

3

the bidding phase, B1 and B2 track the values of their latest bids in the registers 𝑧1 and 𝑧2. The

refinements ensure that the proposed bids are strictly increasing from one round to the next, thus

enforcing termination.

S B1 B2
𝑦{ISBN(𝑦) }

𝑦{ISBN(𝑦) }

𝑧{𝑧 > 0}

S B1 B2
𝑏1 {𝑏1 > 𝑧1 }

S B1 B2
quit

quit

S B1 B2
succ{𝑏1 + 𝑏2 ≥ 𝑧}

succ

S B1 B2
𝑏2 {𝑏2 > 𝑧2 }

S B1 B2
cont{𝑏1 + 𝑏2 < 𝑧}

⟨𝑧1, 𝑧2 ⟩ ≔ ⟨0, 0⟩

⟨𝑧1, 𝑧2 ⟩ ≔ ⟨𝑏1, 𝑏2 ⟩

Figure 1.1: Two-bidder protocol.

𝑞0,S

S

𝑞1,S

𝑞2,S

𝑞3,S

𝑞4,S

𝑞5,S

𝑞6,S

S ⊳ B1?𝑦{ISBN(𝑦) }

S ⊲ B1!𝑧{𝑧 > 0}

S ⊳ B2?quit

S ⊲ B1!quit

S ⊳ B1?succ{𝑏1 + 𝑏2 ≥ 𝑧}

S ⊲ B2!succ

Figure 1.2: State machine for seller S for

Fig. 1.1.

Using our global specification, we desire to synthesize a distributed implementation, namely

a local implementation for each participant, that behaves according to the global protocol when

executed concurrently on a reliable, asynchronous network in which messages can be delayed

or reordered, but not dropped or duplicated. In particular, we require that the implementations

never deadlock and that all participants behave consistently according to each locally chosen

branch, executing send and receive actions exactly in the prescribed order. The latter property is

known as protocol fidelity.

Figs. 1.2 to 1.4 show an admissible implementation for the two-bidder protocol in Fig. 1.1,

consisting of a local implementation for each participant: S, B1 and B2. The transition labels

specify their local behaviors: B1 ⊲ S!𝑦{ISBN(𝑦)} specifies that B1 sends a message 𝑦 to S such that

𝑦 satisfies ISBN(𝑦), i.e. 𝑦 is a valid ISBN number; S ⊳ B1?𝑦{ISBN(𝑦)} specifies that S receives 𝑦

4

𝑞0,B1

B1

𝑞1,B1

𝑞2,B1𝑞3,B1

𝑞4,B1

𝑞5,B1

𝑞6,B1 𝑞7,B1

𝑞8,B1 𝑞9,B1

B1 ⊲ S!𝑦{ISBN(𝑦) }

B1 ⊲ B2!𝑦{ISBN(𝑦) }

B1 ⊳ S?𝑧{𝑧 > 0}

⟨𝑧1, 𝑧2 ⟩ ≔ ⟨0, 0⟩

B1 ⊲ B2!𝑏1{𝑏1 > 𝑧1}

B1 ⊳ S?quit B1 ⊳ B2?𝑏2{𝑏2 > 𝑧2}

B1 ⊲ B2!succ{𝑏1 + 𝑏2 ≥ 𝑧} B1 ⊲ B2!cont{𝑏1 + 𝑏2 < 𝑧}

⟨𝑧1, 𝑧2 ⟩ ≔ ⟨𝑏1, 𝑏2 ⟩

Figure 1.3: State machine for bidder B1 for Fig. 1.1.

𝑞0,B2

B2

𝑞1,B2

𝑞2,B2

𝑞3,B2

𝑞4,B2 𝑞5,B2

𝑞6,B2 𝑞7,B2

B2 ⊳ B1?𝑦{ISBN(𝑦) }

⟨𝑧1, 𝑧2 ⟩ ≔ ⟨0, 0⟩

B2 ⊳ B1?𝑏1{𝑏1 > 𝑧1}

B2 ⊲ S!quit B2 ⊲ B1!𝑏2{𝑏2 > 𝑧2}

B2 ⊳ S?succ B2 ⊳ B1?cont{𝑏1 + 𝑏2 < 𝑧}

⟨𝑧1, 𝑧2 ⟩ ≔ ⟨𝑏1, 𝑏2 ⟩

Figure 1.4: State machine for bidder B2 for

Fig. 1.1.

from B1, and can assume ISBN(𝑦) holds of 𝑦.

The synthesis question first begs the implementability question, which asks whether an ad-

missible implementation exists for a given global protocol. The implementability of Fig. 1.1 is

witnessed by Figs. 1.2 to 1.4, which together exhibit the same behaviors as the global protocol

and is never stuck. To see that the implementability problem is non-trivial, consider a variant

of the protocol in Fig. 1.1 where the succ message to S is sent by B2 instead of B1. The resulting

protocol is no longer implementable because B2 never learns about the price 𝑧 of the book 𝑦 and

is therefore unable to determine when the negotiation with B1 has succeeded.

The two-bidder protocol under consideration permits two paths to termination: either the

bidders agree on a split of the book price and the protocol terminates successfully, or the second

bidder chooses to quit early and the bidding is unsuccessful. We may wish to consider a variant

in which only successful termination is possible. The problems of subtyping and refinement ask

whether such a subset of the original protocol’s behaviors remains implementable, and whether

a given implementation suffices to implement it.

5

This thesis studies decision problems central to the top-down verification methodology of

global protocols. Implementability, also known as realizability, asks whether a global protocol

admits a distributed implementation that exhibits exactly the set of specified behaviors and is

deadlock-free. Synthesis asks to compute such an admissible implementation. Subtyping asks

whether all or part of an admissible distributed implementation can be replaced to yield a subset

of the global protocol’s specified behaviors. Protocols are non-implementable when they require

local processes to act on information not observable to them, such as choices made by other

processes. Synthesized implementations must preserve all global behaviors, without introducing

new behaviors. Prior solutions to implementability and synthesis are imprecise [Honda et al.

2008; Coppo et al. 2015; Toninho and Yoshida 2017; Scalas et al. 2017], often conservatively re-

jecting protocols that are in fact implementable. New frameworks extending existing protocol

fragments with additional features, such as data refinements [Zhou et al. 2020] and crash-stop

failures [Brun and Dardha 2023], inherit the same sources of incompleteness from prior theory.

More worryingly, some type systems have been shown to be unsound, typing programs that ex-

hibit communication errors or deadlock [Scalas and Yoshida 2019]. The implementability and

synthesis problems are only thoroughly understood for restricted protocol fragments, often with

strong assumptions on finiteness and communication topology that limit their expressivity [Alur

and Yannakakis 1999; Muscholl and Peled 1999; Morin 2002; Lohrey 2003; Genest et al. 2006b].

These theoretical limitations undermine the trustworthiness and applicability of top-down pro-

tocol verification frameworks.

This thesis contributes sound and complete characterizations for the aforementioned prob-

lems that improve prior work along the dimensions of expressivity, precision and optimality.

Part I presents theoretical results, Part II presents mechanization and tool support for the theo-

retical results, and together the two parts contain results from the following papers:

• Elaine Li, Felix Stutz, Thomas Wies, and Damien Zufferey. Complete multiparty session

type projection with automata. In Constantin Enea and Akash Lal, editors, Computer

6

Aided Verification - 35th International Conference, CAV 2023, Paris, France, July 17-22, 2-

23, Proceedings, Part III, volume 13966 of Lecture Notes in Computer Science, pages 350-

373. Springer, 2023a. doi: 10.1007/978-3-031-37709_17. URL: https://doi.org/10.1007/

978-3-031-37709-9_17

• Elaine Li, Felix Stutz and Thomas Wies. Deciding subtyping for asynchronous multiparty

sessions. In Stephanie Weirich, editor, Programming Languages and Systems - 33rd Euro-

pean Symposium on Programming, ESOP 2024, Held as Part of the European Joint Confer-

ences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April

6-11, 2024, Proceedings, Part I, volume 14576 of Lecture Notes in Computer Science, pages

176-205. Springer, 2024. doi: 10.1007/978-3-031-57262-3_8. URL: https://doi.org/10.

1007/978-3-031-57262-3_8

• Elaine Li, Felix Stutz, ThomasWies, and Damien Zufferey. Characterizing implementability

of global protocols with infinite states and data. Proc. ACM Program. Lang., 9(OOPSLA1):14

34-1463, 2025b. doi: 10.1145/3720493. URL: https://doi.org/10.1145/3720493

• Elaine Li, Felix Stutz, Thomas Wies, and Damien Zufferey. Sprout: A verifier for sym-

bolic multiparty protocols. In Ruzica Piskac and Zvonimir Rakamarić, editors, Computer

Aided Verification - 37th International Conference, CAV 2025, Zagreb, Croatia, July 23-25,

2025, Proceedings, Part III, volume 15933 of Lecture Notes in Computer Science, pages 304-317.

Springer, 2025a. doi: 10.1007/978-3-031-98682-6_16. URL: https://doi.org/10.1007/

978-3-031-98682-6_16

• Elaine Li and Thomas Wies. Certified implementability of global multiparty protocols. To

appear in 16th International Conference on Interactive Theorem Proving, ITP 2025, September

28-October 1, 2025, Reykjavík, Iceland.

• Elaine Li and Thomas Wies. Implementability of global distributed protocols modulo net-

7

https://doi.org/10.1007/978-3-031-37709-9_17
https://doi.org/10.1007/978-3-031-37709-9_17
https://doi.org/10.1007/978-3-031-57262-3_8
https://doi.org/10.1007/978-3-031-57262-3_8
https://doi.org/10.1145/3720493
https://doi.org/10.1007/978-3-031-98682-6_16
https://doi.org/10.1007/978-3-031-98682-6_16

work architectures. Under submission.

The thesis author is primary contributor and lead author of all aforementioned papers with

the exception of [Li et al. 2023a], in which they are co-first author. Only the parts of [Li et al.

2023a] contributed by the thesis author are included in this thesis.

Contributions. The contributions of this thesis are summarized below.

• A precise characterization of implementability of global communicating labeled transition

systems (GCLTS): a semantically-defined class of asynchronous communication protocols

that subsumes most formalisms in the literature [Li et al. 2025b].

• Asymptotically optimal decision procedures and complexity analysis for implementability

of finite GCLTS (co-NP complete), the syntactic fragment of multiparty session types (co-

NP complete), and symbolic, finite-state GCLTS (PSPACE-complete) [Li et al. 2025b].

• A sound and relatively complete algorithm for checking implementability of symbolic,

infinite-state GCLTS, and a tool implementation [Li et al. 2025b,a].

• A Rocq mechanization of the preciseness result from [Li et al. 2025b] [Li and Wies 2025b].

• A compatibility criterion that identifies asynchronous network architectures well-suited

to global protocol specification methodology, and a generalization of all aforementioned

results to compatible network architectures [Li and Wies 2025a].

• Sound and complete synthesis algorithms for finite protocols, and a blueprint for the gen-

eral case [Li et al. 2023a].

• A precise characterization of various subtyping and refinement problems for multiparty

session types, in addition to their complexity analysis [Li et al. 2024].

8

Funding Acknowledgement. The work in this thesis is supported by the National Science

Foundation under grant agreement 2304758.

9

2 | Preliminaries

Words. Let Σ be an alphabet. Σ∗ denotes the set of finite words over Σ, Σ𝜔 the set of infinite

words, and Σ∞ their union Σ∗ ∪ Σ𝜔 . A word 𝑢 ∈ Σ∗ is a prefix of word 𝑣 ∈ Σ∞, denoted 𝑢 ≤ 𝑣 ,

if there exists 𝑤 ∈ Σ∞ with 𝑢 · 𝑤 = 𝑣 ; we denote all prefixes of 𝑢 with pref (𝑢). Given a word

𝑤 = 𝑤0 . . .𝑤𝑛 , we use 𝑤 [𝑖] to denote the i-th symbol 𝑤𝑖 ∈ Σ, and 𝑤 [0..𝑖] to denote the subword

between and including𝑤0 and𝑤𝑖 , i.e.𝑤0 . . .𝑤𝑖 .

Message Alphabets Let P be a possibly infinite set of participants andV be a possibly infinite

data domain. We define the set of synchronous events Γsync ≔ {p→ q :𝑚 | p, q ∈ P and𝑚 ∈ V}

where p→q :𝑚 denotes a message exchange of𝑚 from sender p to receiver q. For a participant

p ∈ P, we define the alphabet Γp = {p→ q :𝑚 | q ∈ P, 𝑚 ∈ V} ∪ {q→ p :𝑚 | q ∈ P, 𝑚 ∈ V},

denoting the set of synchronous events in which p is either the sender or receiver in the message

exchange. A synchronous event is split into a send and receive asynchronous event for the sender

and receiver respectively. For a participant p ∈ P, we define the alphabet Σp,! = {p ⊲ q!𝑚 | q ∈

P, 𝑚 ∈ V} of send events and the alphabet Σp,? = {p ⊳ q?𝑚 | q ∈ P, 𝑚 ∈ V} of receive events.

The asynchronous event p ⊲ q!𝑚 denotes participant p sending a message 𝑚 to q, and p ⊳ q?𝑚

denotes participant p receiving a message𝑚 from q. We write Σp = Σp,! ∪ Σp,?, Σ! =
⋃

p∈P Σp,!,

and Σ? =
⋃

p∈P Σp,?. Finally, the set of asynchronous events is Σasync = Σ! ∪ Σ?.

Projections. We map synchronous words to asynchronous words using a homomorphism

split, defined as split(p→ q : 𝑚) ≔ p ⊲ q!𝑚. q ⊳ p?𝑚. Because split is injective, there ex-

10

ists a unique inverse, which we denote split−1. We say that p is active in 𝑥 if 𝑥 ∈ Γsync and

𝑥 ∈ Γp, or if 𝑥 ∈ Σasync and 𝑥 ∈ Σp. For each participant p ∈ P, we define a homomorphism ⇓Γp ,

where 𝑥⇓Γp = 𝑥 if 𝑥 ∈ Γp and 𝜀 otherwise, and a homomorphism ⇓Σp
, where 𝑥⇓Σp

= 𝑥 if 𝑥 ∈ Σp

and 𝜀 otherwise. We define a class of projections based on pattern-matching of alphabet symbols,

denoted ⇓-. The result of the projection is determined by the unspecified parts of the pattern. For

example, ⇓p⊲-!- projects the event p ⊲ q!𝑚 onto (q,𝑚), and non-send events and send events that

do not have p as the sender onto 𝜀. The function ⇓q⊳p?- projects receive events of p from q of any

message value onto the message value, and all other events to 𝜀.

Eqality under local projection. We say that 𝑤1 ∈ Σ∗async and 𝑤2 ∈ Σ∗async are equal under

local projection, denoted 𝑤1 ≡P 𝑤2, if for all p, 𝑤1⇓Σp
= 𝑤2⇓Σp

. We use [𝑤]≡P to denote the

equivalence class under local projection with representative 𝑤 . We lift this to sets𝑊 ⊆ Σ∞, by

defining [𝑊]≡P =
⋃

𝑤∈𝑊 [𝑤]≡P .

Our starting point for specifying global protocols is a labeled transition system over the syn-

chronous alphabet Γsync .

Labeled Transition Systems A labeled transition system (LTS) is a tuple S = (𝑆, Γ,𝑇 , 𝑠0, 𝐹)

where 𝑆 is a set of states, Γ is a set of labels, 𝑇 is a set of transitions from 𝑆 × Γ × 𝑆 , 𝐹 ⊆ 𝑆 is a set

of final states, and 𝑠0 ∈ 𝑆 is the initial state. We use 𝑝
𝛼−→ 𝑞 to denote the transition (𝑝, 𝛼, 𝑞) ∈ 𝑇 .

Runs and traces of an LTS are defined in the expected way. A run is maximal if it is either finite

and ends in a final state, or is infinite. The language of an LTS S, denoted L(S), is defined as the

set of maximal traces. A state 𝑠 ∈ 𝑆 is a deadlock if it is not final and has no outgoing transitions.

An LTS is deadlock-free if no reachable state is a deadlock. An LTS is deterministic if for every

𝑠
𝑥1−→ 𝑠1, 𝑠

𝑥2−→ 𝑠2 ∈ 𝑇 , 𝑥1 = 𝑥2 implies 𝑠1 = 𝑠2. Given an LTS S = (𝑆, Γ,𝑇 , 𝑠0, 𝐹) and a state 𝑠 ∈ 𝑆 , we

use S𝑠 to denote the LTS obtained by replacing 𝑠0 with 𝑠 as the initial state: (𝑆, Γ,𝑇 , 𝑠, 𝐹).

We impose three conditions on the class of LTSs we use to model communication protocols

11

from a global perspective: that final states do not contain outgoing transitions, that all outgoing

transitions from a state share a sender, and that the LTS is deadlock-free.

Global communicating labeled transition systems. An LTSS = (𝑆, Γsync,𝑇 , 𝑠0, 𝐹) is a global

communicating labeled transition system (GCLTS) if it satisfies the following conditions:

(1) sink-finality: for every final state 𝑠 ∈ 𝐹 , there does not exist 𝑙 ∈ Γsync and 𝑠′ ∈ 𝑆 with

𝑠
𝑙−→ 𝑠′ ∈ 𝑇 ;

(2) sender-driven choice: for all states 𝑠, 𝑠1, 𝑠2 ∈ 𝑆 and 𝑙1, 𝑙2 ∈ Γsync such that 𝑠
𝑙𝑖−→ 𝑠𝑖 ∈ 𝑇 for

𝑖 ∈ {1, 2}, there is a participant p ∈ P who is the sender for both, i.e. split(𝑙𝑖) ∈ Σp,! for

𝑖 ∈ {1, 2}, and furthermore 𝑙1 = 𝑙2 =⇒ 𝑠1 = 𝑠2;

(3) deadlock freedom: S is deadlock-free.

Condition (1) is ubiquitous in the domain of multiparty session types and was also shown to

require special treatment in the literature on high-level message sequence charts [Dan et al. 2010].

We show that sink-finality is only required to ensure that the finite language of an implementation

for global protocol S matches the finite semantics of S. The condition can be waived if we define

the semantics of our implementation model in terms of traces. We formalize this alternative

semantics at the end of this section after introducing protocol implementability.

Condition (2) is a generalisation of most multiparty session types fragments, which require

not only a dedicated sender but also a dedicated receiver, a condition we refer to as directed

choice. In contrast, mixed choice lifts all restrictions on choice, and amounts to only requiring

determinism. Lohrey [2003] showed that realizability is undecidable for high level message se-

quence charts satisfying determinism and Condition (3). Sender-driven choice thus represents

a good middle ground, allowing to express interesting communication patterns while retaining

decidability of implementability.

Condition (3) simply requires that protocols do not specify deadlocking behaviors.

12

To model real-world verification targets, we desire for our global protocol specifications to

be as expressive as possible. Various dimensions of expressivity have been explored in the liter-

ature, such as arbitrary message payloads, non-deterministic choice, unrestricted recursion and

parametricity. Formalisms such as choreography automata [Gheri et al. 2022], high-level message

sequence charts [Mauw and Reniers 1997; Genest et al. 2003; Genest and Muscholl 2005; Gazag-

naire et al. 2007; Roychoudhury et al. 2012; Alur et al. 2003; Lohrey 2003; Alur and Yannakakis

1999; Muscholl and Peled 1999; Morin 2002; Genest et al. 2006b] and session types [Honda et al.

2008; Bocchi et al. 2010, 2012; Toninho and Yoshida 2017; Zhou et al. 2020; Li et al. 2023a] corre-

spond to syntactically-defined fragments that incorporate a selection of these features. GCLTS

subsume many aforementioned fragments of asynchronous multiparty session types and chore-

ography automata, and capture the following important features:

• Asynchrony: the semantics are interpreted over a peer-to-peer, asynchronous network,

with FIFO channels connecting each pair of protocol participants.

• Generalized sender-driven choice: the only notable syntactic restriction imposed by our

formalism is that at each branching point of the protocol’s control flow, a single participant

chooses a branch. In other words, the first message that is sent in each branch of a choice

must come from the same sender. However, we impose no restrictions on the recipient or

themessage payload other than that no two branches share the same recipient andmessage.

• Infinite protocol state: protocol states contain registers that take values from an infinite

domain. This allows loops to carry memory across iterations, and allows the protocol to be

specified in terms of dependent refinement predicates.

• Infinite message payloads: messages can carry values drawn from an infinite data domain.

In the remainder of the thesis we refer to a GCLTS simply as a protocol.

13

Restricting Protocols to Participants. From a protocolS, we can define a local protocol for

each participant p via domain restriction to Σp. Formally, given a protocol S = (𝑆, Γsync,𝑇 , 𝑠0, 𝐹),

we define Sp ≔ (𝑆, Γp ⊎ {𝜀},𝑇p, 𝑠0, 𝐹) where 𝑇p ≔ {𝑠
𝑙⇓Γp−−−→ 𝑠′ | 𝑠 𝑙−→ 𝑠′ ∈ 𝑇 } for a participant p ∈ P.

Next, we introduce our distributed implementation model.

Communicating LTS T = {{𝑇p}}p∈P is a communicating labeled transition system (CLTS) over

P and V if 𝑇p is a deterministic LTS over Σp for every p ∈ P, denoted by (𝑄p, Σp, 𝛿p, 𝑞0,p, 𝐹p).

Let
∏

p∈P 𝑄p denote the set of global states and Chan = {(p, q) | p, q ∈ P, p ≠ q} denote the set

of channels. A configuration of A is a pair (®𝑠, 𝜉), where ®𝑠 is a global state and 𝜉 : Chan→V∗ is

a mapping from each channel to a sequence of messages. We use ®𝑠p to denote the state of p in ®𝑠 .

The CLTS transition relation, denoted→, is defined as follows.

• (®𝑠, 𝜉) p⊲q!𝑚−−−−→ (®𝑠 ′, 𝜉′) if (®𝑠p, p ⊲ q!𝑚, ®𝑠 ′p) ∈ 𝛿p, ®𝑠r = ®𝑠 ′r for every participant r ≠ p, 𝜉′(p, q) =

𝜉 (p, q) ·𝑚 and 𝜉′(𝑐) = 𝜉 (𝑐) for every other channel 𝑐 ∈ Chan.

• (®𝑠, 𝜉) q⊳p?𝑚−−−−→ (®𝑠 ′, 𝜉′) if (®𝑠q, q ⊳ p?𝑚, ®𝑠 ′q) ∈ 𝛿q, ®𝑠r = ®𝑠 ′r for every participant r ≠ q, 𝜉 (p, q) =

𝑚 · 𝜉′(p, q) and 𝜉′(𝑐) = 𝜉 (𝑐) for every other channel 𝑐 ∈ Chan.

In the initial configuration (®𝑠0, 𝜉0), each participant’s state in ®𝑠0 is the initial state 𝑞0,p of 𝐴p, and

𝜉0 maps each channel to 𝜀. A configuration (®𝑠, 𝜉) is final iff ®𝑠p is final for every p and 𝜉 maps

each channel to 𝜀. Runs and traces are defined in the expected way. A run is maximal if either

it is finite and ends in a final configuration, or it is infinite. The language L(T) of the CLTS T

is defined as the set of maximal traces. A configuration (®𝑠, 𝜉) is a deadlock if it is not final and

has no outgoing transitions. A CLTS is deadlock-free if no reachable configuration is a deadlock.

Equivalently, a CLTS is deadlock-free if every trace can be extended to a maximal one.

Communicating state machines [Brand and Zafiropulo 1983] are a special case of CLTS where

the LTS for each participant p ∈ P is a deterministic finite state machine. Note that CLTS feature

14

a peer-to-peer communication topology, and FIFO queues as its message channels. In Chapter 4,

we generalize CLTS to alternative asynchronous network architectures, denoted A, that vary

their communication topology and message channel data structure, but for now we implicitly

assume that A denotes peer-to-peer FIFO communication. Moreover, note that because CLTS

describe asynchronous communication with message channels of unbounded size, they differ

from Zielonka’s asynchronous automata [Zielonka 1987], which actually describe synchronously

communicating systems [Mukund 2002]. We refer the reader to [Diekert and Rozenberg 1995] for

further details.

Executable words of a CLTS. A finite asynchronous word𝑤 ∈ Σ∗async is executable in a CLTS

T if 𝑤 ∈ pref(L(T)). We say that 𝑤 ∈ Σ∗async is executable if it is executable in some T and use

L(A) ⊆ Σ∗async to denote all such words.

Global protocol semantics. We next define the asynchronous semantics of global protocol

S, denoted C∼(S) ⊆ Σ∞. The starting point for the semantics C∼(S) is the synchronous lan-

guage L(S). Intuitively, synchronous words in L(S) specify the coordination of events across

all protocol participants, in addition to a total order of events per participant. From L(S) we ob-

tain a set of 1-synchronous asynchronous words through split, which simply splits each atomic

message exchange into its send and receive counterparts, denoted split(L(S)). We want to in-

clude all asynchronous words that are equal to these 1-synchronous words under local projection

and the given network architecture A.

We handle the finite and infinite words separately to define the global protocol semantics as

the union of its finite and infinite semantics:

C∼(S) = C∼fin(S) ∪ C
∼
inf (S)

The finite semantics is obtained by following the above recipe, but restricting split(L(S)) to

15

finite words:

C∼fin(S) = [Σ
∗
async ∩ split(L(S))]≡P ∩ L(A) .

Our definition of finite words coincides with message sequence chart (MSC) semantics, which

is defined order-theoretically, as the union of a total order of events for each participant, and a

partial order capturing network behavior, see e.g. [Alur et al. 2003]. Unlike MSC semantics, we

additionally provide a semantics for infinite words.

The infinite semantics are those words whose prefixes are extensible to some word in L(S)

modulo equality under local projection and the network semantics:

C∼inf (S) = {𝑤 ∈ Σ
∞
async | ∀𝑢 ≤ 𝑤. 𝑢 ∈ pref ([split(L(S))]≡P ∩ L(A))} .

For disambiguation, we refer to L(S) ⊆ Γ𝜔sync as the LTS semantics of S, and refer to C∼(S) ⊆

Σ𝜔async as the protocol semantics of S.

We illustrate our protocol semantics using the following example, whose semantics contains

both finite and infinite words:

p→q :𝑚
r→q :𝑚

The synchronous runs of the protocol are either of the form p→ q : 𝑚∞, or of the form (p→

q : 𝑚)𝑛 · r → q : 𝑚. The split runs are subsequently of the form (p ⊲ q!𝑚 · q ⊳ p?𝑚)∞ or

(p ⊲ q!𝑚 · q ⊳ p?𝑚)𝑛 · r ⊲ q!𝑚 · q ⊳ r?𝑚. Because our infinite word semantics do not impose any

fairness assumptions, the unfairly scheduled word p ⊲ q!𝑚∞ is an infinite word of the protocol.

The word r ⊲ q!𝑚 · p ⊲ q!𝑚 · q ⊳ p?𝑚 · q ⊳ r?𝑚 is a finite word of the protocol under a peer-to-peer

FIFO network, where the network reorders the send events from p and r, but q receives in the

specified protocol order, first from p and then from r.

In the remainder of the thesis, we overload notation and use L(S) to denote C∼(S).

16

𝑞0 𝑞1 𝑞2 𝑞3

𝑞4

𝑞5

𝑞6

𝑞7

𝑞8

{
𝑟𝑦 = 0 ∧ 𝑟𝑧 = 0
∧ 𝑟𝑧1 = 0 ∧ 𝑟𝑧2 = 0

}
B1→S :𝑦

{
ISBN(𝑦)
∧ 𝑟 ′𝑦 = 𝑦

}
B1→B2 :𝑦{𝑦 = 𝑟𝑦 }

S→B1 :𝑧
{

𝑧 > 0
∧ 𝑟 ′𝑧 = 𝑧

}

B1→B2 :𝑏1

{
𝑏1 > 𝑟𝑧1
∧ 𝑟 ′𝑧1 = 𝑏1

}

B2→S :𝑥 {𝑥 = quit}

S→B1 :𝑥 {𝑥 = quit}

B2→B1 :𝑏2

{
𝑏2 > 𝑟𝑧2
∧ 𝑟 ′𝑧2 = 𝑏2

}

B1→S :𝑥
{

𝑥 = succ

∧ 𝑟𝑧1 + 𝑟𝑧2 ≥ 𝑟𝑧

}
S→B2 :𝑥 {𝑥 = succ}

B1→B2 :𝑥
{

𝑥 = cont

∧ 𝑟𝑧1 + 𝑟𝑧2 < 𝑟𝑧

}

Figure 2.1: The two-bidder protocol from Fig. 1.1 as a symbolic protocol with registers 𝑟𝑧 , 𝑟𝑦 , 𝑟𝑧1 , and

𝑟𝑧2 .

Finally, we define protocol implementability.

Protocol Implementability A protocol S is implementable if there exists a CLTS {{𝑇p}}p∈P

satisfying the following two properties: (i) protocol fidelity: L({{𝑇p}}p∈P) = L(S), and (ii)

deadlock freedom: {{𝑇p}}p∈P is deadlock-free. We say that {{𝑇p}}p∈P implements S.

One could consider an alternative semantics for both global protocols and CLTS implemen-

tations that disposes of the notion of finite words in favor of prefixes. This alternative notion of

implementability is defined as follows:

Protocol Prefix-Implementability A protocolS is prefix-implementable if there exists a CLTS

{{𝑇p}}p∈P satisfying the following two properties: (i) prefix protocol fidelity: pref(L({{𝑇p}}p∈P)) =

pref(C∼A (S)), and (ii) deadlock freedom: {{𝑇p}}p∈P is deadlock-free. We say that {{𝑇p}}p∈P prefix-

implements S.

In Chapter 6, we study a notion of implementability that relaxes language equality to language

inclusion, and defer relevant definitions until then.

Next, we introduce our model for finitely representing infinite state protocols. We refer to

these representations simply as symbolic protocols. Figure 2.1 shows the two-bidder protocol

from Fig. 1.1 expressed as a symbolic protocol.

17

The formal definition of symbolic protocols is given below. In the definition, we assume a fixed

but unspecified first-order background theory of message values (e.g. linear integer arithmetic).

We assume standard syntax and semantics of first-order formulas and denote by F the set of first-

order formulas with free variables drawn from an infinite set 𝑋 . We assume that these variables

are interpreted over the set of message values V . For a valuation 𝜌 ∈ 𝑋 → V and 𝜑 ∈ F (𝑋),

we write 𝜌 |= 𝜙 to indicate that 𝜑 evaluates to true under 𝜌 in the underlying theory.

Symbolic protocol. A symbolic protocol is a tuple S = (𝑆, 𝑅,Δ, 𝑠0, 𝜌0, 𝐹) where

• 𝑆 is a finite set of control states,

• 𝑅 is a finite set of register variables,

• Δ ⊆ 𝑆 × P × 𝑋 × P × F × 𝑆 is a finite set that consists of symbolic transitions of the form

𝑠
p→q:𝑥{𝜑}
−−−−−−−→ 𝑠′ where the formula 𝜑 with free variables 𝑅 ⊎ 𝑅′ ⊎ {𝑥} expresses a transition

constraint that relates the old and new register values 𝑅 and 𝑅′ with the sent value 𝑥 ,

• 𝑠0 ∈ 𝑆 is the initial control state,

• 𝜌0 : 𝑅 →V is the initial register assignment, and

• 𝐹 ⊆ 𝑆 is a set of final states.

To streamline our definition, we specify register updates and predicates describing the com-

municated message value altogether in one transition constraint 𝜑 . To specify register updates,

for each register variable 𝑟 ∈ 𝑅, we define a primed copy 𝑟 ′ that refers to the same register in

the post-state of a transition, and we define 𝑅′ = {𝑟 ′ | 𝑟 ∈ 𝑅}. We use 𝑟1, 𝑟2, 𝑟3 to denote register

variables, and 𝑥,𝑦, 𝑧 to denote communication variables. Thus, the free variables in 𝜑 are either

variables from 𝑅 describing registers in the pre-state, variables from 𝑅′ describing registers in the

post-state, or a communication variable 𝑥 . For example, p→ q : 𝑥{𝑒𝑣𝑒𝑛(𝑥) ∧𝑟 ′1 = 𝑟1+ 1∧ 𝑟 ′2 = 𝑥}

18

describes p sending q an even number 𝑥 , incrementing the value of register 𝑟1 by 1, and storing

the value of 𝑥 in register 𝑟2.

We formally specify the two-bidder protocol from Fig. 1.1 as a symbolic protocol in Fig. 2.1

for demonstration purposes. Note that the transition predicate ISBN(𝑦) from 𝑞1 to 𝑞2 is replaced

with an equality. For readability and conciseness, we employ the following conventions. We treat

communication variables as registers that are automatically assigned the communicated value,

e.g. S→ B1 : 𝑧{𝑧 > 0} should be understood as S→ B1 : 𝑥{𝑥 > 0 ∧ 𝑧′ = 𝑥} for some fresh 𝑥 .

Furthermore, if the communicated value is a constant 𝑐 and there is no need to store this value,

we inline it and write S→B2 : succ{⊤} instead of S→B2 :𝑥{𝑥 = succ}. We may further omit the

condition ⊤, turning S→B2 :succ{⊤} into S→B2 :succ.

Symbolic protocols are specification-wise similar to symbolic register automata [D’Antoni

et al. 2019], but allow more general patterns of register manipulation and do not a priori require

formulas to come from an effective Boolean algebra. Symbolic protocols can be seen as a finite

description of an infinite-state LTS, whose concrete states consist of a control state along with

an assignment for the register variables 𝑅. Transitions are concrete communication events that

optionally modify register values. We formally define the concretization of a symbolic protocol

below.

Concretization of symbolic protocols. For a symbolic protocol S = (𝑆, 𝑅,Δ, 𝑠0, 𝜌0, 𝐹), let SS

denote its concrete protocol. The set of states of SS is 𝑆 × (𝑅 →V).

Transitions in SS are defined as follows:

𝑠1
p→q:𝑥{𝜑}
−−−−−−−→ 𝑠2 ∈ Δ 𝜌1𝜌

′
2 [𝑥 ↦→ 𝑣] |= 𝜑

(𝑠1, 𝜌1)
p→q:𝑣−−−−−→ (𝑠2, 𝜌2)

Intuitively, the rule says that a symbolic transition from 𝑠1 to 𝑠2 can be instantiated to one from

(𝑠1, 𝜌1) to (𝑠2, 𝜌2) on value 𝑣 when 𝑣 together with the register assignments in the pre- and post-

19

state satisfy the transition constraint 𝜑 . Here, we use juxtaposition 𝜌1𝜌
′
2 of register assignments

to express their disjoint union. The assignment 𝜌′2 is obtained from 𝜌2 by replacing registers 𝑟 in

the domain with their primed version in 𝑅′. The initial state is defined as (𝑠0, 𝜌0). A state (𝑠, 𝜌)

in SS is final when 𝑠 ∈ 𝐹 .

Thus, the concrete protocolSS is a protocol over the alphabet Γsync . The language of a symbolic

protocol S is defined as the language of its concretization SS. Consequently, a symbolic protocol

is implementable if its concretization is implementable.

20

Part I

Theory

21

3 | Implementability

3.1 Introduction

In this chapter, we study the implementability problem for GCLTS. GCLTS subsume many ex-

isting fragments of asynchronous multiparty session types and choreography automata. Our

two-bidder example from Chapter 1 highlights several important expressive features of GCLTS:

• Generalized sender-driven choice: after B2 receives a bid from B1, it has the option to either

send a bid back to B1 and continue the bidding process, or terminate the protocol by sending

a quitmessage to the bookseller, who then relays the terminationmessage to the first bidder.

Due to this choice interaction alone, the protocol is not expressible in [Zhou et al. 2020].

• Infinite state: the protocol state contains registers that can be assigned values from an

infinite domain. Registers are updated to store the last bid from each round 𝑧1 and 𝑧2, and

to enforce that bidders make strictly increasing bids per round.

• Infinite message data: message payload values can be drawn from an infinite data domain,

such as the book price 𝑧 and bids 𝑏1 and 𝑏2.

• Dependent refinement predicates: message payloads are constrained by data refinements

such as 𝑧1 < 𝑏1 and 𝑧 < 𝑏1 + 𝑏2. The refinement predicates can refer to current register

values in addition to data values sent in prior messages.

22

• Partial information: each protocol participant only has a partial view of the global protocol

state. For example, even though S participates in the bidding phase of the protocol, it never

learns about the bids 𝑏1 and 𝑏2 in each bidding round. In fact, the registers 𝑧1 and 𝑧2 that

store the last bid are known only to the bidders.

Implementability is undecidable for this general class of protocols. The presence of and in-

teraction between the aforementioned features means that even soundly approximating imple-

mentability is challenging. Existing work is either comparable in expressivity but does not solve

the implementability problem, or solves the implementability problem but is incomparably re-

stricted in expressivity. Zhou et al. [2020] present a framework for synchronous, refined multi-

party session types that soundly approximates implementability through its endpoint projection,

but that may yield local specifications that are not implementable. Several works [Alur et al. 2005;

Lohrey 2003; Stutz 2023; Li et al. 2023a] precisely characterize implementability for finite protocol

specifications. However, the implementability check in [Alur et al. 2005; Li et al. 2023a] relies on

synthesizing an implementation upfront, which is not possible for infinite-state protocols. Das

and Pfenning [2020] study local session types with arithmetic refinements in a binary setting.

We address these challenges by decomposing the implementability problem into two steps.

First, we give a precise, semantic characterization of implementability for GCLTS that we prove

sound and complete once and for all. Our characterization is defined directly on the global speci-

fication, and thus forgoes the need to first synthesize a candidate implementation. Moreover, our

characterization gives a unified semantic explanation to disparate causes of non-implementability

that arise from the expressivity of our protocol fragment. We encapsulate the complexities intro-

duced by communication-specific features such as asynchrony and partial information in the

first step. Our semantic characterization reduces implementability to (co)reachability in the

GCLTS. Specifically, we provide a sound and complete reduction to the first-order fixpoint logic

𝜇CLP [Unno et al. 2023]. The 𝜇CLP calculus can express recursive predicates with least and

greatest fixpoint semantics where the predicate body is constrained by a first-order logic for-

23

mula over a background theory. Our implementability characterization can therefore be checked

by existing 𝜇CLP solvers. Second, we use this reduction to obtain a blueprint for solving imple-

mentability algorithmically. Our reduction yields algorithms that are sound and complete relative

to an assumed oracle for solving 𝜇CLP validity, in addition to decision procedures with optimal

complexity for various decidable classes.

Contributions. In summary, the contributions in this chapter are:

• Global communicating labeled transition systems (GCLTS): a semantically-defined class of

asynchronous communication protocols that subsumes most formalisms in the literature.

• A precise characterization of implementability for GCLTS.

• The first symbolic algorithm for checking implementability of infinite, symbolic protocols

that is sound and relatively complete.

• Optimal decision procedures for checking implementability of finite protocols. In particu-

lar, we show that for explicit protocol representations that enumerate all states and tran-

sitions, the problem is co-NP-complete, and for symbolic protocol representations that en-

code states and transitions using predicates and variables, the problem is PSPACE-complete.

• As a corollary of the previous result, we obtain a co-NP decision procedure for imple-

mentability of global types, tightening a prior PSPACE upper bound [Li et al. 2023a,b].

The results from this chapter are published in [Li et al. 2025b]. Because GCLTS subsumemulti-

party session types, the implementability characterization proposed in this chapter subsumes the

results from [Li et al. 2023a], which presents a sound and complete algorithm for implementability

and synthesis of multiparty session types.

24

3.2 Overview

p q r

L1 R1

L2
L3

R2
R3

R4
R5
R6

L4
L5
L6

(a) Odd-even protocol

q!𝑜
q!𝑜

q!𝑏

r?𝑜

q!𝑚
q!𝑜

q!𝑏

r?𝑚

(b) Local impl.

for role p

p?𝑜
r!𝑜 p?𝑚

p?𝑜

r!𝑜 r!𝑜

p?𝑏

r!𝑏

(c) Local impl.

for role q

{L1, R1, R2, R4}

{L2, L4, R3} {L3, R2, R4}

{L5}

{L6}

{R5}

{R6}

q?𝑜
q?𝑜

q?𝑜
q?𝑏

p!𝑜

q?𝑏

q?𝑏

p!𝑚

(d) Local impl.

for role r

Figure 3.1: Odd-even: An implementable but not syntactically projectable protocol and its local imple-

mentations

We begin with a discussion of the incompleteness of existing projection operators for the

restricted fragment of GCLTS corresponding to multiparty session types.

Global Multiparty Session Types. Global types for MSTs are defined by the grammar:

𝐺 ::= 0 |
∑︁
𝑖∈𝐼

p→q𝑖 :𝑚𝑖 .𝐺𝑖 | 𝜇𝑡 . 𝐺 | 𝑡

where p, q𝑖 range over P, 𝑚𝑖 over a finite set V , and 𝑡 over a set of recursion variables. Each

branch of a choice is assumed to be distinct: ∀𝑖, 𝑗 ∈ 𝐼 . 𝑖 ≠ 𝑗 ⇒ (q𝑖,𝑚𝑖) ≠ (q 𝑗 ,𝑚 𝑗), and the sender

and receiver of an atomic action is assumed to be distinct: ∀𝑖 ∈ 𝐼 . p ≠ q𝑖 . Recursion is guarded: in

𝜇𝑡 .𝐺 , there is at least one message between 𝜇𝑡 and each 𝑡 in 𝐺 . The
∑

operator is omitted when

|𝐼 | = 1, and often replaced with the infix operator + for readability.

We adopt a more permissive choice construct for global types proposed in [Majumdar et al.

2021a]. In contrast to the original definition of global types introduced by Honda et al. [2008]

and inherited by later works, our global types allow receivers in a choice q𝑖, q 𝑗 to be distinct. We

25

refer to this as sender-driven choice, and the original construct as directed choice.

A global type G can be equivalently represented using a finite state machine GAut(G) =

(𝑄G, Γ𝑠𝑦𝑛𝑐 ⊎ {𝜀}, 𝛿G, 𝑞0,G, 𝐹G) where 𝑄G is the set of all syntactic subterms in G together with the

term 0, 𝛿G is the smallest set containing (∑𝑖∈𝐼 p→q𝑖 :𝑚𝑖 .𝐺𝑖, p→q𝑖 :𝑚𝑖,𝐺𝑖) for each 𝑖 ∈ 𝐼 , as well

as (𝜇𝑡 .𝐺′, 𝜀,𝐺′) and (𝑡, 𝜀, 𝜇𝑡 .𝐺′) for each subterm 𝜇𝑡 .𝐺′, 𝑞0,G = G and 𝐹G = {0}. Each 𝜀 transition in

GAut(G) is the only transition from the state it originates from, and thus can be removed to yield

a protocol SG = (𝑄G, Γsync, 𝛿
′
G, 𝑞0,G, 𝐹G), where 𝛿′G contains only transitions labeled with 𝑙 ∈ Γsync .

It is easy to verify that SG is indeed a GCLTS.

MST frameworks typically solve synthesis and implementability simultaneously via an effi-

cient syntactic projection operator. Abstractly, a projection operator is a partial map from global

types to collections of implementations. A projection operator proj is sound when every global

typeG in its domain is implemented by proj(G), and complete when every implementable global

type is in its domain. In standard MST frameworks, both global protocols and distributed imple-

mentations are represented as syntactic types, and projection operators are therefore also syn-

tactic in nature. Existing syntactic projection operators for MSTs are all incomplete or unsound

with respect to implementability [Honda et al. 2008; Coppo et al. 2015; Toninho and Yoshida 2017;

Scalas et al. 2017]. A key limitation of syntactic projection operators is that they can only com-

pute local types that share a structure with the global type. However, structural similarity is not

a necessary condition for admissible local types, and its enforcement can lead to incompleteness,

as demonstrated by the following global type G𝑜𝑒 :

+


p→q :o. q→r :o. 𝜇𝑡1. (p→q :o. q→r :o. q→r :o. 𝑡1 + p→q :b. q→r :b. r→p :o. 0)

p→q :m. 𝜇𝑡2. (p→q :o. q→r :o. q→r :o. 𝑡2 + p→q :b. q→r :b. r→p :m. 0)

Fig. 3.1a visualizesG𝑜𝑒 as an HMSC. The top and bottom choice branches ofG𝑜𝑒 correspond to

the left and right sub-protocols, and the participants p, q and r are represented by the left, middle

26

and right vertical lines respectively. Participant p initiates the protocol by choosing to send either

o orm to q. In the left branch, q forwards the message o to r, whereas in the right branch, q does

not forward the message m. Both branches then proceed identically: in a loop, p sends an o

message to q, and q forwards this message twice to r. Participant p signals termination of the

loop by sending b to q, which q again forwards to r. Upon receiving the termination message b,

r must send a different message to p indicating its knowledge of p’s initial choice: o for the left

branch, and m for the right branch.

Figs. 3.1b to 3.1d depict the local implementations for participants p, q and r. Notice the

structural similarity between the global protocol and the local implementations for p and q. For

participant p, the reason is evident: p determines the control flow throughout the entire protocol,

initially determining the choice of left or right branch, then determining the number of loop

iterations before signaling termination. Participant q does not determine the control flow, but is

immediately informed of p’s choices when they are made. In the loop on each branch, participant

q’s actions are identical, and thus collapsed into a single sub-protocol. Participant r, on the other

hand, neither determines the control flow nor learns of it either directly or indirectly, yet can

deduce p’s initial choice from the parity of the number of omessages it receives from q throughout

the protocol: an odd number means p chose left, and an even number means p chose right. The

resulting local implementation for r features transitions going back and forth between the two

branches, reflecting r’s belief update on p’s choice every time it receives a new o message from

q. Syntactic projection operators fail to create such transitions that are not present in the global

protocol. Fundamentally, the cause of incompleteness lies in the fact that syntactic projection

operators use a linear time algorithm to tackle a problem that turns out to be co-NP-complete, as

we show later in this chapter.

The brittleness of syntactic projection operators has prompted the idea of abandoning global

type specifications altogether in favor of model checking user-provided implementations [Scalas

and Yoshida 2019; Lange and Yoshida 2019]. Correctly distinguishing implementable from non-

27

(a) G𝑟 (b) G′𝑟 (c) G𝑠 (d) G′𝑠

Figure 3.2: High-level message sequence charts for the global types of ??.

implementable global types is non-trivial, beyond the incompleteness of existing syntactic pro-

jection operators. Consider the following two pairs of global types, whose HMSC representations

are depicted in Fig. 3.2:

G𝑟 = +


p→q :o. q→r :o. p→r :o. 0

p→q :m. p→r :o. q→r :o. 0
G𝑠 = +


p→q :o. r→q :o. 0

p→q :m. r→q :m. 0

G′𝑟 = +


p→q :o. q→r :o. r→p :o. p→r :o. 0

p→q :m. p→r :o. r→q :o. q→r :o. 0
G′𝑠 = +


p→q :o. r→q :b. 0

p→q :m. r→q :b. 0

Similar to G𝑜𝑒 , in all four examples, p chooses a branch by sending either o or m to q. The

global type G𝑟 is not implementable because r cannot learn which branch was chosen by p. For

any local implementation of r to be able to execute both branches, it must be able to receive o

from p and q in any order. Because the two send events p⊲r!o and q⊲r!o are independent of each

other, they may be reordered. Consequently, any implementation of G𝑟 must permit executions

that are consistent with global behaviors not described byG𝑟 , such as p→q :m. q→r :o. p→r :o.

In contrast, G′𝑟 is implementable. In the top branch of G′𝑟 , role p can only send to r after it has

received from r, which prevents the reordering of the send events q ⊲ r!o and p ⊲ r!o. The bottom

branch is symmetric. Hence, r learns p’s choice based on which message it receives first.

For the global type G𝑠 , role r again cannot learn the branch chosen by p, and subsequently

cannot know whether to send o or m to q, leading inevitably to deadlocking executions. In con-

28

trast, G′𝑠 is again implementable because the expected behavior of r is independent of the choice

by p.

In [Li et al. 2023a], we present the first sound and complete projection operator for MSTs

based on a novel, automata-theoretic approach to synthesis and implementability checking. Our

projection operator separates synthesis from checking implementability, and critically relies on

the observation that if a global type is implementable, then its canonical implementation imple-

ments it. Thus, we reduce the implementability problem to a set of sound and complete condi-

tions, which we call Send Validity, Receive Validity and No Mixed Choice, that are checked directly

on the canonical implementation. Precise characterizations of implementability exist for other

classes of finite state GCLTS [Li et al. 2023a; Stutz 2023; Lohrey 2003]. Unfortunately, these tech-

niques all rely on synthesizing an implementation upfront, which is not possible for general

GCLTS. The examples above show that deciding implementability in the presence of network

asynchrony and non-deterministic choice already presents a challenge for protocols with finite

GCLTS specifications. Both of these features are present and moreover interact with dependent

refinement predicates to make checking implementability for general GCLTS uniquely challeng-

ing. We illustrate these challenges in a series of examples below.

s→p :𝑥 {⊤} a⃝ p→r :𝑦{𝑦 > 𝑥 }

b⃝ p→r :𝑦{𝑦 = 𝑥 + 2}

p→q :b{𝑒𝑣𝑒𝑛 (𝑥) }

p→q :m{𝑜𝑑𝑑 (𝑥) }

p→r :𝑧1 q→r :𝑧2 r→p :𝑧{𝑧 = 𝑧1 − 𝑧2}

q→r :𝑧2 p→r :𝑧1 r→p :𝑧{𝑧 = 𝑧2 − 𝑧1}
Figure 3.3: Two protocols: S1 using a⃝ with receive order violation S′1 using b⃝ without receive order

violation.

Consider the examples S1 (using a⃝) and S′1 (using b⃝) in Fig. 3.3, which are variations of the

examples for Receive Validity [Li et al. 2023a] featuring dependent predicates. A transition label

p→r :𝑦{𝑦 > 𝑥}, which is a⃝ for S1, atomically specifies the send event by p and the corresponding

receive event by r, along with the constraint that 𝑦 satisfies 𝑦 > 𝑥 . In S1, participant p chooses a

branch without explicitly informing r of their choice. In both branches, r is required to subtract

the second value that is sent from the first value that is sent, and send the result back to p.

29

However, due to asynchrony, both messages can arrive in r’s message channels simultaneously,

and r cannot tell which value was sent first. Therefore, r may subtract the values in the wrong

order, rendering the protocol unimplementable.

In Li et al. [2023a], we propose one method of protocol repair: introducing a message sent by

r on each branch that creates a causal dependency between the messages from p and q, so that r

can no longer receive them in either order. The incorporation of dependent refinements enables

a new method of protocol repair: one that does not change the communication events among the

participants. The newly repaired protocol is depicted in S′1, in which the predicate on the second

transition is changed from 𝑦 > 𝑥 to 𝑦 = 𝑥 + 2. Despite the fact that r is still not informed of

p’s choice, r can infer p’s choice through the parity of the first value it received from p and thus

correctly follow the protocol: if 𝑦 is even, r receives from p first, and if 𝑦 is odd, r receives from

q first.

𝑞1

𝑞2

s→q :b
q→p :𝑥1{𝑥1 = 4} p→q :o q→r :m

s→q :m
q→p :𝑥2{⊤}

q→r :b{𝑥2 ≠ 5}

q→r :m{𝑥2 = 5} p→q :o

Figure 3.4: S2: An protocol with a send violation.

We now turn our attention to send violations. In the protocol shown in Fig. 3.4, s chooses

a branch and communicates its choice to q. Participant p is again not explicitly informed of the

choice: in fact, p can receive 4 from q on both branches. At first glance, it appears as though it

is safe for p to send o to q upon receiving 4 from q, because whilst p cannot distinguish the two

branches, both branches contain the transition p→ q : o. Upon closer inspection, the predicate

guarding the transition immediately preceding p −→ q : o on the lower branch, 𝑥2 = 5, is only

satisfied when p receives 5 from q. When p receives 4, the lower branch from 𝑞2 is disabled, and

since the upper branch from 𝑞2 does not contain the transition p → q : o, the protocol is not

implementable.

The examples above exemplify the ways in which refinement predicates complicate imple-

30

mentability checking for symbolic protocols. We return to these examples, in addition to some

others, in greater detail in Section 3.3 when we present our precise characterization of imple-

mentability. The rest of the chapter is structured as follows. Section 3.3 presents our semantic

characterization of implementability for GCLTS in terms of (co)reachability, and proves that it

is precise. Section 3.4 describes our sound and complete reduction from the characterization in

Section 3.3 to logical formulas in 𝜇CLP [Unno et al. 2023], and additionally presents improved

complexity results under certain finiteness assumptions on the GCLTS. Section 3.5 discusses re-

lated work and concludes.

3.3 Characterizing Protocol Implementability

Wemotivate our precise characterization of protocol implementability through examples of non-

implementable protocols, and show that seemingly disparate sources of non-implementability

share a unified semantic explanation. Recall the protocol S1 from Section 3.2 with a receiver

violation, depicted in Fig. 3.3. The infinite-state LTS S1 contains the two concrete run prefixes

depicted in Fig. 3.5, where the values of 𝑥,𝑦 are 2, 3 and 1, 3 respectively.

(a)
s→p : 2 p→r : 3 p→q :b p→r :o q→r :o r→p :b

(b) s→p : 1 p→r : 3

p→q :m q→r :o p→r :o r→p :m

Figure 3.5: Two concrete runs of S1 (Fig. 3.3): (a) with 𝑥 = 2 and 𝑦 = 3 and (b) with 𝑥 = 1 and 𝑦 = 3.

Inspecting S1’s specification reveals that the protocol expects r to receive messages from

p and q in a different order depending on the branch that q chooses to follow. However, this

expectation is unreasonable in a distributed setting. Between the two concrete runs, r’s partial

view of the protocol’s behavior is the same: r receives a value 3 from p, yet r is expected to

receive in p, q order in one run, and receive in q, p order in the other.

31

Recall the protocol S2 from Section 3.2 with a sender violation, depicted in Fig. 3.4. Again

𝑞1s→q :b q→p : 4 p→q :o q→r :m

Figure 3.6: A concrete run of S2 (Fig. 3.4) with s choos-
ing the top branch.

𝑞2
s→q :m

q→p : 4

q→r :b

Figure 3.7: A concrete run of S2 (Fig. 3.4) with

s choosing the bottom branch and 𝑥2 = 4.

inspecting S2’s specification, the branching structure imposes the expectation that on the top

branch, p should send q an o message, whereas on the bottom branch, p should immediately

terminate. The two concrete runs in Fig. 3.6 and Fig. 3.7 again demonstrate that this expectation

is unreasonable: p receives the value 3 from q in both runs, but in one run is expected to send a

message, whereas in the other is expected to terminate.

The non-implementability in the examples above can be attributed to insufficient local in-

formation about protocol control flow. This source of non-implementability is inherent to the

expressive power of branching choice in protocol specifications, and is present even in finite

protocols with more restricted choice constructs. While most existing works soundly detect in-

sufficient local information through conservative projection algorithms [Honda et al. 2008; Coppo

et al. 2015; Toninho and Yoshida 2017; Scalas et al. 2017], Li et al. [2023a] give a complete charac-

terization. To check implementability, they first obtain a candidate implementation by restricting

the global protocol onto each participant’s alphabet, and then determinizing the resulting finite

state automaton. Then, they check sound and complete conditions directly on the states of the

candidate implementation.

Our first observation towards a precise characterization is that implementability checking can

be done on the global protocol directly, without synthesizing a candidate implementation upfront.

This is especially important in the general case, when synthesizing a candidate implementation

is itself challenging and not always possible. Our analysis of the protocols above shows that

non-implementability can be blamed solely on the existence of certain states in the concrete LTS

represented by the global protocol. In fact, we show in §3.4 that the implementability check for

32

global types by Li et al. [2023a] can be made more efficient by forgoing the synthesis step.

Let us now turn our attention to a different source of non-implementability that is unique to

the setting of dependent data refinements. Consider the following pair of symbolic protocols S3

and S′3, depicted in Fig. 3.8 and Fig. 3.9.

p→q :𝑥 {⊤} q→r :𝑦{𝑦 > 𝑥 } r→p :𝑧{𝑧 > 𝑥 }

Figure 3.8: S3: A non-implementable protocol

with dependent refinements.

p→q :𝑥 {⊤} q→r :𝑦{𝑦 = 𝑥 } r→p :𝑧{𝑧 > 𝑥 }

Figure 3.9: S′3: An implementable protocol with

dependent refinements.

Non-implementability is again caused by insufficient local information, but this time with re-

spect to message data rather than control flow: in fact, no branching choice appears in this pair of

simple protocols. The problem instead arises in the fact that in both S3 and S′3, r does not know

the value of 𝑥 . While an implementation for r could produce a subset of S3’s behaviors (e.g. by

sending 𝑧 such that 𝑧 > 𝑦), or produce a superset of S3’s behaviors (e.g. by sending all values

for 𝑧), no implementation can produce exactly the specified behaviors, as required by protocol

fidelity. Zhou et al. [2020] address partial information of protocol variables by syntactically clas-

sifying whether a variable is known or unknown to a participant, and annotating the variables

accordingly in the typing context: a variable is known to its sender and receiver, and unknown

to all other participants. However, this syntactic analysis is itself insufficient, as demonstrated by

these examples: both protocols yield the same classification of variables per participant, yet one

is implementable and the other is not.

We instead turn to concrete runs of S3 to find the source of non-implementability. Let us

consider the concrete runs of S3 depicted in Fig. 3.10, where the values of 𝑥,𝑦 are 2, 4 and 3, 4 re-

spectively.

In this pair of runs, r observes the same behaviors, namely receiving the value 4 from q.

While S3 also permits r to send 4 to p in the first run, sending 3 to p in the second run con-

stitutes a violation to the refinement predicate 𝑧 > 𝑥 , i.e. 3 > 3 is false. Again, this presents a

problem because the two run prefixes are indistinguishable to r. Observe that in this example,

33

(a)
p→q : 2 q→r : 4 r→p : 3

(b)
p→q : 3 q→r : 4 r→p : 4

Figure 3.10: Two concrete runs of S3 (Fig. 3.8): (a) with 𝑥 = 2, 𝑦 = 4, 𝑧 = 3 and (b) with 𝑥 = 3, 𝑦 = 4, 𝑧 = 4.

non-implementability can again be blamed solely on the existence of states in the global protocol.

We formalize a participant’s local information about the protocol using two variations on

the standard notion of reachability. Let S = (𝑆, Γsync,𝑇 , 𝑠0, 𝐹) be a protocol and let p ∈ P be

a participant. The standard notion defines 𝑠′ as reachable from 𝑠 in S on 𝑤 ∈ Γ∗sync , denoted

𝑠
𝑤−→∗ 𝑠′, when there exists a sequence of transitions 𝑠1

𝑙1−→ 𝑠2 . . . 𝑠𝑛−1
𝑙𝑛−1−−−→ 𝑠𝑛 , such that 𝑠1 = 𝑠 ,

𝑠𝑛 = 𝑠′, 𝑙1 . . . 𝑙𝑛−1 =𝑤 and for each 1 ≤ 𝑖 < 𝑛, it holds that 𝑠𝑖
𝑙𝑖−→ 𝑠𝑖+1 ∈ 𝑇 . We first define a notion

of reachability that restricts the transitions to only the actions observable by a single participant.

Participant-based Reachability. We say that 𝑠 ∈ 𝑆 is reachable for p on 𝑢 ∈ Γ∗p when there

exists 𝑤 ∈ Γ∗sync such that 𝑠0
𝑤−→∗ 𝑠 ∈ 𝑇 and 𝑤⇓Γp = 𝑢, which we denote 𝑠0

𝑢
=⇒
p

∗ 𝑠 . We characterize

simultaneously reachable pairs of states for each participant using the notion of participant-based

reachability.

Simultaneous Reachability. We say that 𝑠1, 𝑠2 ∈ 𝑆 are simultaneously reachable for partic-

ipant p on 𝑢 ∈ Γ∗p , denoted 𝑠0
𝑢
=⇒
p

∗ 𝑠1, 𝑠2, if there exist 𝑤1,𝑤2 ∈ Γ∗sync such that 𝑠0
𝑤1−−→∗ 𝑠1 ∈

𝑇, 𝑠0
𝑤2−−→∗ 𝑠2 ∈ 𝑇 and 𝑤1⇓Γp = 𝑤2⇓Γp = 𝑢. Simultaneous reachability captures the notion of lo-

cally indistinguishable states: to a participant, two states are locally indistinguishable if they are

simultaneously reachable.

Send Coherence requires that any message that can be sent from a state can also be sent from

all other states that are locally indistinguishable to the sender.

Definition 3.1 (Send Coherence). A protocol S = (𝑆, Γsync,𝑇 , 𝑠0, 𝐹) satisfies Send Coherence (SC)

34

when for every 𝑠1
p→q:𝑚−−−−−→ 𝑠2 ∈ 𝑇, 𝑠′1 ∈ 𝑆 :

(∃𝑢 ∈ Γ∗p . 𝑠0
𝑢
=⇒
p

∗ 𝑠1, 𝑠
′
1) =⇒ (∃𝑠′2 ∈ 𝑆. 𝑠′1

p→q:𝑚
======⇒

p

∗ 𝑠′2) .

Receive Coherence, on the other hand, requires that no message which can be received from

a state can be received from any other state that is locally indistinguishable to the receiver.

Definition 3.2 (Receive Coherence). A protocolS = (𝑆, Γsync,𝑇 , 𝑠0, 𝐹) satisfies Receive Coherence

(RC) when for every 𝑠1
p→q:𝑚−−−−−→ 𝑠2, 𝑠

′
1

r→q:𝑚−−−−−→ 𝑠′2 ∈ 𝑇 :

(r ≠ p∧∃𝑢 ∈ Γ∗q . 𝑠0
𝑢
=⇒
q

∗ 𝑠1, 𝑠
′
1) =⇒ ∀𝑤 ∈ pref (L(S𝑠′2)) .𝑤⇓Σq

≠𝜀 ∨V(𝑤⇓p⊲q!_)≠V(𝑤⇓q⊳p?_)·𝑚) .

NoMixed Choice requires that roles cannot equivocate between sending and receiving in two

locally indistinguishable states.

Definition 3.3 (No Mixed Choice). A protocol S = (𝑆, Γsync,𝑇 , 𝑠0, 𝐹) satisfies No Mixed Choice

(NMC) when for every 𝑠1
p→q:𝑚−−−−−→ 𝑠2, 𝑠

′
1

r→p:𝑚−−−−−→ 𝑠′2 ∈ 𝑇 : (∃𝑢 ∈ Γ∗p . 𝑠0
𝑢
=⇒
p

∗ 𝑠1, 𝑠
′
1) =⇒ ⊥ .

Our semantic characterization of protocol implementability is the conjunction of the above

three conditions. In contrast to the syntactic analysis in [Zhou et al. 2020], our semantic approach

is sound and complete. In contrast to the sound and complete approach in [Li et al. 2023a], our

implementability conditions do not rely on synthesizing an implementation upfront.

Definition 3.4 (Coherence Conditions). A protocol satisfies Coherence Conditions (CC) when it

satisfies Send Coherence, Receive Coherence and No Mixed Choice.

The preciseness of CC is stated as follows.

Theorem 3.5. Let S be a protocol. Then, S is implementable if and only if it satisfies CC.

In the next two sections, we illustrate the key steps for proving Theorem 3.5. We refer the

reader to Chapter A for the complete proofs.

35

3.3.1 Soundness

Soundness requires us to show that if a protocol satisfies CC, then it is implementable. We begin

by echoing the observation made in several prior works [Alur et al. 2003; Stutz 2023; Li et al.

2023a] that for any global protocol, there exists a canonical implementation consisting of one

local implementation per participant. We formally define what it means for an implementation

to be canonical in our setting below.

Definition 3.6 (Canonical implementations). We say a CLTS {{𝑇p}}p∈P is a canonical implemen-

tation for a protocol S = (𝑆, Γsync,𝑇 , 𝑠0, 𝐹) if for every p ∈ P, 𝑇p satisfies:

(i) ∀𝑤 ∈ Σ∗p. 𝑤 ∈ L(𝑇p) ⇔ 𝑤 ∈ L(S)⇓Σp
, and (ii) pref (L(𝑇p)) = pref (L(S)⇓Σp

).

We first prove that following fact about canonical implementations of protocols satisfying

NMC, which states that the canonical implementations themselves do not exhibit mixed choice.

Lemma 3.7 (NoMixed Choice). LetS be a protocol satisfying NMC (Definition 3.3) and let {{𝑇p}}p∈P

be a canonical implementation for S. Let 𝑤𝑥1,𝑤𝑥2 ∈ pref (L(𝑇p)) with 𝑥1 ≠ 𝑥2 for some p ∈ P.

Then, 𝑥1 ∈ Σ! iff 𝑥2 ∈ Σ!.

We choose the canonical implementation as our existential witness to show that any protocol

satisfying CC is implementable. By the definition of implementability (Chapter 2), soundness

amounts to showing the following three conditions:

(a) L(S) ⊆ L({{𝑇p}}p∈P), (b) L({{𝑇p}}p∈P) ⊆ L(S), and (c) {{𝑇p}}p∈P is deadlock-free.

Condition (a) states that any canonical implementation recognizes at least the global proto-

col behaviors. This fact can be shown for any LTS and canonical CLTS, and does not rely on

assumptions about determinism or sender-drivenness, nor assumptions about the LTS satisfying

CC.

Lemma 3.8 (Canonical implementation language contains protocol language). Let S be an LTS

and let {{𝑇p}}p∈P be a canonical implementation for S. Then, L(S) ⊆ L({{𝑇p}}p∈P).

36

Condition (b), on the other hand, states that any behavior recognized by the canonical im-

plementation is a global protocol behavior, in other words, that the canonical CLTS does not add

behaviors. This is only true for protocols that satisfy CC.

Furthermore, the acceptance condition for infinitewords inL(S) differs from that in {{𝑇p}}p∈P :

the latter accepts all infinite traces, whereas the former requires to show that an infinite word

𝑤 satisfies 𝑤 ⪯𝜔∼ 𝑤 ′ for some other infinite word 𝑤 ′ ∈ L(S). Therefore, showing prefix set

inclusion is not sufficient, and we must reason about the finite and infinite case separately.

Lemma 3.9 (Global protocol language contains canonical implementation language). Let S be

a protocol satisfying CC and let {{𝑇p}}p∈P be a canonical implementation for S such that for all

𝑤 ∈ Σ∗async , if𝑤 is a trace of {{𝑇p}}p∈P , then 𝐼 (𝑤) ≠ ∅. Then, L({{𝑇p}}p∈P) ⊆ L(S).

Towards these ends, we show the inductive invariant that every trace in the canonical imple-

mentation of a protocol satisfying CC satisfies intersection set non-emptiness.

Definition 3.10 (LTS intersection sets). Let S be an LTS. Let p be a participant and 𝑤 ∈ Σ∗async

be a word. We define the set of possible runs RSp (𝑤) as all maximal runs of S that are consistent

with p’s local view of𝑤 :

RSp (𝑤) ≔ {𝜌 is a maximal run of S | 𝑤⇓Σp
≤ split(trace(𝜌))⇓Σp

} .

We denote the intersection of the possible run sets for all participants as 𝐼S (𝑤) ≔ ⋂
p∈P RSp (𝑤).

Definition 3.11 (Unique splitting of a possible run). Let S be an LTS, p a participant, and 𝑤 ∈

Σ∗async a word. Let 𝜌 be a run in RSp (𝑤). We define the longest prefix of 𝜌 matching𝑤 :

𝛼′ ≔ max{𝜌′ | 𝜌′ ≤ 𝜌 ∧ split(trace(𝜌′))⇓Σp
≤ 𝑤⇓Σp

} .

If 𝛼′ ≠ 𝜌 , we can split 𝜌 into 𝜌 = 𝛼 · 𝑠 𝑙−→ 𝑠′ · 𝛽 where 𝛼′ = 𝛼 · 𝑠 . , which we call the unique splitting

of 𝜌 for p matching𝑤 . Uniqueness follows from the maximality of 𝛼′.

37

For example, the unique splitting of 𝜌 = 𝑠1
p→q:m−−−−−→ 𝑠2

r→q:b1−−−−−→ 𝑠3
r→q:b2−−−−−→ 𝑠4

q→p:o−−−−−→ 𝑠5 for p

matching 𝑤 = r ⊲ q!b1. p ⊲ q!m is 𝛼 · 𝑠3
r→q:b2−−−−−→ 𝑠4 · 𝛽 , where 𝛼 = 𝑠1

p→q:m−−−−−→ 𝑠2
r→q:b1−−−−−→ 𝑠3 and

𝛽 = 𝑠4
q→p:o−−−−−→ 𝑠5.

Our intersection non-emptiness inductive invariant is stated below. The proof proceeds by

induction on the length of a prefix 𝑤 of the canonical implementation, and case splits based

on whether 𝑤 is extended by a send or receive action. Lemma 7.1 and Lemma 3.13 provide a

characterization for each case respectively.

Lemma 3.12 (Intersection set non-emptiness). Let S be a protocol satisfying CC, and let {{𝑇p}}p∈P

be a canonical implementation for S. Then, for every trace 𝑤 ∈ Σ∗async of {{𝑇p}}p∈P , it holds that

𝐼 (𝑤) ≠ ∅.

Lemma 3.13 (Receive events do not shrink intersection sets). Let S be a protocol satisfying CC,

and let {{𝑇p}}p∈P be a canonical implementation forS. Let𝑤𝑥 be a trace of {{𝑇p}}p∈P such that 𝑥 ∈ Σ?.

Then, 𝐼 (𝑤) = 𝐼 (𝑤𝑥).

Lemma 3.14 (Send events preserve run prefixes). Let S be a protocol satisfying CC and {{𝑇p}}p∈P

be a canonical implementation for S. Let 𝑤𝑥 be a trace of {{𝑇p}}p∈P such that 𝑥 ∈ Σp,! for some

p ∈ P. Let 𝜌 be a run in 𝐼 (𝑤), and 𝛼 · 𝑠𝑝𝑟𝑒
𝑙−→ 𝑠𝑝𝑜𝑠𝑡 · 𝛽 be the unique splitting of 𝜌 for p with respect

to𝑤 . Then, there exists a run 𝜌′ in 𝐼 (𝑤𝑥) such that 𝛼 · 𝑠𝑝𝑟𝑒 ≤ 𝜌′.

Finally, we show that protocols that satisfy CC and intersection set non-emptiness have

deadlock-free canonical implementations. The proof follows immediately from the following

lemma and the fact that CLTS are deterministic, and is thus omitted.

Lemma 3.15 (Canonical implementation deadlock freedom). Let S = (𝑆, Γsync,𝑇 , 𝑠0, 𝐹) be a proto-

col satisfying CC and let {{𝑇p}}p∈P be a canonical implementation for S such that for all𝑤 ∈ Σ∗async ,

if𝑤 is a trace of {{𝑇p}}p∈P , then 𝐼 (𝑤) ≠ ∅. Then, {{𝑇p}}p∈P is deadlock-free.

38

Soundness thus follows from the three conditions above.

Lemma 3.16 (Soundness of CC). Let S be a protocol. If S satisfies CC, then S is implementable.

3.3.2 Completeness

Completeness requires us to show that if a protocol is implementable, then it satisfies CC. We

prove completeness by modus tollens, and assume that a protocol S does not satisfy CC. Thus,

we assume the negation of either SC, RC or NMC. From the negation of SC we obtain a simulta-

neously reachable pair of states inS such that a send event that is enabled in one is never enabled

from the other. From the negation of RC we obtain a simultaneously reachable pair of states in S

such that a receive event that is enabled in one is also enabled in the other. From the negation of

NMC we obtain a simultaneously reachable pair of transitions where a participant is the sender

in one and the receiver in the other. We assume an arbitrary CLTS that implements S, and using

each witness in turn, we show that this CLTS must recognize a trace that is not a prefix in L(S),

thereby either violating protocol fidelity or deadlock freedom.

Lemma 3.17 (Completeness). Let S be a protocol. If S is implementable, then S satisfies CC.

An immediate consequence of the soundness and completeness of CC is the following fact

about the special case of binary protocols, when |P | = 2:

Lemma 3.18. Every binary protocol is implementable.

In the binary case, participant-based reachability is equivalent to standard reachability, be-

cause both participants are involved in every synchronous communication. Because protocols

are deterministic, there exist no two distinct states in a binary protocol that are simultaneously

reachable for either participant, and thus CC holds vacuously.

39

3.4 Checking Implementability

Having established that CC is precise for protocol implementability, we next present sound and

relatively complete algorithms to check CC for several protocol classes. We start with the most

general case of symbolic protocols before considering decidable classes of finite-state protocols.

3.4.1 Symbolic Protocols

In the remainder of the section, we fix a symbolic protocol S = (𝑆, 𝑅,Δ, 𝑠0, 𝜌0, 𝐹). We assume

that the concretization of S is a GCLTS (Chapter 2). Additionally, we define two copies of the

symbolic protocol, denoted S1 and S2 that wewill use in describing our symbolic implementability

check. Each copy S𝑖 = (𝑅𝑖, 𝑆,Δ𝑖, 𝜌𝑖, 𝑠0, 𝐹) with 𝑖 ∈ {1, 2} is obtained from S by renaming each

register 𝑟 to a fresh register 𝑟𝑖 , each unique communication variable 𝑥 to 𝑥𝑖 , and substituting

the new register and communication variables into the transition constraints and initial register

assignment accordingly; the control states remain the same.

Because symbolic protocols describe concrete protocols with infinitelymany states and transi-

tions, implementability cannot be checked explicitly using our CC characterization for protocols,

i.e. by iterating over all states and transitions. Instead, we present symbolic conditions that are

valid on the symbolic protocol if and only if its concrete protocol is implementable.

Theorem 3.19 (Symbolic Implementability). S is implementable if and only if it satisfies Symbolic

Send Coherence, Symbolic Receive Coherence, and Symbolic No Mixed Choice.

We now present these symbolic conditions, starting with Symbolic Send Coherence.

Send Coherence first requires us to characterize pairs of states in a protocol that are simul-

taneously reachable for each participant on some prefix in its local language. In the symbolic

setting, this amounts to the following: given a participant and a pair of control states (𝑠1, 𝑠2) in

the symbolic protocol, characterize the register assignments for pairs of concrete states (𝑠1, 𝜌1),

40

(𝑠2, 𝜌2) that are in the respective control states. The predicate prodreachp(𝑠1, 𝒓1, 𝑠2, 𝒓2) describes

this for each p ∈ P where 𝒓 𝒊 are vectors of the registers in 𝑅𝑖 obtained by ordering them according

to some fixed total order. We define this predicate as a least fixpoint as follows.

Definition 3.20 (Simultaneous reachability in product symbolic protocol). Let p ∈ P be a par-

ticipant and let 𝑠1, 𝑠
′
1, 𝑠2, 𝑠

′
2 ∈ 𝑆 . Then,

prodreachp(𝑠′1, 𝒓 ′1, 𝑠′2, 𝒓 ′2) ≔𝜇 (𝑠′1 = 𝑠0 ∧ 𝑠′2 = 𝑠0 ∧ 𝒓 ′1 = 𝜌0 ∧ 𝒓 ′2 = 𝜌0)

∨ (
∨

(𝑠1, r→s:𝑥1{𝜑1}, 𝑠′1) ∈Δ1
(𝑠2, r→s:𝑥2{𝜑2}, 𝑠′2) ∈Δ2

p=r∨p=s

∃𝑥1𝑥2𝒓1𝒓2. prodreachp(𝑠1, 𝒓1, 𝑠2, 𝒓2) ∧ 𝜑1 ∧ 𝜑2 ∧ 𝑥1 = 𝑥2)

∨ (
∨

(𝑠1, r→s:𝑥1{𝜑1}, 𝑠′1) ∈Δ1 ∧ p≠r∧p≠s
∃𝑥1𝒓1. prodreachp(𝑠1, 𝒓1, 𝑠

′
2, 𝒓

′
2) ∧ 𝜑1)

∨ (
∨

(𝑠2, r→s:𝑥2{𝜑2}, 𝑠′2) ∈Δ2 ∧ p≠r∧p≠s
∃𝑥2𝒓2. prodreachp(𝑠′1, 𝒓 ′1, 𝑠2, 𝒓2) ∧ 𝜑2) .

The second top-level disjunct in the definition after the base case handles the cases where S1

and S2 synchronize on a common action involving p. The remaining two disjuncts correspond to

the cases where either S1 or S2 follows an 𝜀 transition.

Given a pair of simultaneously reachable states (𝑠1, 𝜌1), (𝑠2, 𝜌2) in p, Send Coherence now

checks whether all values 𝑥1 that can be sent to some q in (𝑠1, 𝜌1) can also be sent from (𝑠2, 𝜌2),

modulo following 𝜀 transitions to reach the actual state where p can send to q. We thus need to

express 𝜀-reachability. We formalize the dual: the predicate unreach𝜀p,q(𝑠2, 𝒓2, 𝑥1) expresses that p

cannot reach any state where it may send 𝑥1 to q, by following 𝜀 transitions from symbolic state

(𝑠2, 𝒓2). This is formulated as a greatest fixpoint as follows:

Definition 3.21 (𝜀-unreachability of psending 𝑥 to q). For p, q ∈ P and 𝑠 ∈ 𝑆 , let

unreach
𝜀
p,q(𝑠, 𝒓 , 𝑥) ≔𝜈 (

∧
(𝑠, p→q:𝑦{𝜑 }, 𝑠′) ∈Δ

¬𝜑 [𝑥/𝑦]) ∧ (
∧

(𝑠, r→t:𝑦{𝜑 }, 𝑠′) ∈Δ
p≠r∧p≠t

∀𝑦 𝒓 ′. 𝜑 ⇒ unreach
𝜀
p,q(𝑠′, 𝒓 ′, 𝑥)) .

The first conjunct checks that whenever p reaches a state with an outgoing send transition

41

𝑞0

𝑞1

𝑞2

𝑞3

𝑞4

𝑞5

p→q :𝑏
{
𝑏 = 0
∧𝑐′ = 0

}

r→p :𝑥 {⊤}

p→q :𝑏
{
𝑏 > 0
∧𝑐′ = 0

}
p→q :𝑐

{
𝑐 < 𝑏

∧𝑐′ = 𝑐 + 1

}
p→q :exit{𝑐 ≥ 𝑏}

r→p :𝑥 {⊤}

Figure 3.11: Example where states 𝑞1 and 𝑞3
satisfy Send Coherence for r.

𝑞0

𝑞1

𝑞2

𝑞3

𝑞4

𝑞5

p→q :𝑏
{
𝑏 = 0
∧𝑐′ = 0

}

r→p :𝑥 {⊤}

p→q :𝑏
{
𝑏 > 0
∧𝑐′ = 0

}
p→q :𝑐

{
𝑐 ≥ 0

∧𝑐′ = 𝑐 + 1

}
p→q :exit{𝑐 < 0}

r→p :𝑥 {⊤}

Figure 3.12: Example where states 𝑞1 and 𝑞3
violate Send Coherence for r.

to q, it cannot send the value 𝑥 because the transition constraint 𝜑 is not satisfied. The second

conjunct checks that every outgoing 𝜀 transition is either disabled (¬𝜑 holds) or following the

transition does not reach an appropriate send state.

We combine the auxiliary predicates into our Symbolic Send Coherence condition.

Definition 3.22 (Symbolic Send Coherence). A symbolic protocol S satisfies Symbolic Send Co-

herence when for each transition 𝑠1
p→q:𝑥1{𝜑1}−−−−−−−−−→ 𝑠′1 ∈ Δ1 and state 𝑠2 ∈ 𝑆 , the following is valid:

prodreachp(𝑠1, 𝒓1, 𝑠2, 𝒓2) ∧ 𝜑1 ∧ unreach𝜀p,q(𝑠2, 𝒓2, 𝑥1) =⇒ ⊥ .

A keen reader may have noticed that because the symbolic characterization of Send Coher-

ence involves a greatest fixpoint, it is a liveness property. Thus, proving Send Coherence, in gen-

eral, involves a termination argument. To see this, consider the two protocols shown in Figs. 3.11

and 3.12. Consider the pair of states (𝑞1, [𝑐 ↦→ 0]) and (𝑞3, [𝑐 ↦→ 0]) which are simultaneously

reachable for r in both protocols. The send transition for r enabled in 𝑞1 needs to be matched

with a corresponding send transition in an 𝜀-reachable state from 𝑞3. The only candidate states

for this match in both protocols are those at control state 𝑞4. These states are reachable from 𝑞3

if and only if the loop in 𝑞3 terminates, which it does in Fig. 3.11 but not in Fig. 3.12.

Receive Coherence is conditioned on two simultaneously reachable states (𝑠1, 𝒓1) and (𝑠2, 𝒓2)

42

for a participant q. It checks that if q can receive 𝑥 from p in the first state, q cannot also receive 𝑥

as the first message from p in the second state, in which it can also receive from a different partic-

ipant r, unless p sending 𝑥 causally depends on q first receiving from r. We thus need to define a

predicate that captures whether 𝑥1 may be available as the first message from q to p, while track-

ing causal dependencies. We introduce a family of predicates availp,q,B (𝑥1, 𝑠2, 𝒓2) for this purpose.

Here, B is used to track the causal dependencies. B tracks the set of participants that are blocked

from sending a message because their send action causally depends on q first receiving from r.

The predicates are defined as the least fixpoint of the following mutually recursive definition.

Definition 3.23 (Symbolic Availability).

availp,q,B (𝑥1, 𝑠, 𝒓) ≔𝜇 (
∨

(𝑠, r→t:𝑥{𝜑}, 𝑠′)∈Δ
r∈B

r≠p∨t≠q

∃𝑥 𝒓′. availp,q,B∪{t} (𝑥1, 𝑠
′, 𝒓′) ∧ 𝜑)

∨ (
∨

(𝑠, r→t:𝑥{𝜑}, 𝑠′)∈Δ
r∉B

r≠p∨t≠q

∃𝑥 𝒓′. availp,q,B (𝑥1, 𝑠
′, 𝒓′) ∧ 𝜑) ∨ (

∨
(𝑠, p→q:𝑥{𝜑}, 𝑠′)∈Δ

p∉B

𝜑 [𝑥1/𝑥]) .

The last disjunct in the definition handles the cases where the message 𝑥1 from p is imme-

diately available to be received by q in symbolic state (𝑠, 𝒓) and p has not been blocked from

sending. The other two disjuncts handle the cases when 𝑥1 becomes available after some other

message exchange between r and t. Here, if r is blocked, then t also becomes blocked since it

depends on r sending before it can receive (the first disjunct). Otherwise, no participant is added

to the blocked set (the second disjunct).

With the available message predicate in place, we can now define Symbolic Receive Coher-

ence.

Definition 3.24 (Symbolic Receive Coherence). A symbolic protocol S satisfies Symbolic Receive

Coherence when for every pair of transitions 𝑠1
p→q:𝑥1{𝜑1}−−−−−−−−−→ 𝑠′1 ∈ Δ1 and 𝑠2

r→q:𝑥2{𝜑2}−−−−−−−−−→ 𝑠′2 ∈ Δ2

43

with p ≠ r:

prodreachq(𝑠1, 𝒓1, 𝑠2, 𝒓2) ∧ 𝜑1 ∧ 𝜑2 ∧ availp,q,{q} (𝑥1, 𝑠
′
2, 𝒓

′
2) =⇒ ⊥ .

Finally, No Mixed Choice is conditioned on two simultaneously reachable states (𝑠1, 𝒓1) and

(𝑠2, 𝒓2) with outgoing send and receive transitions for a participant p.

Definition 3.25 (Symbolic NoMixed Choice). A symbolic protocol S satisfies Symbolic NoMixed

Choice when for every pair of transitions 𝑠1
p→q:𝑥1{𝜑1}−−−−−−−−−→ 𝑠′1 ∈ Δ1 and 𝑠2

r→p:𝑥2{𝜑2}−−−−−−−−−→ 𝑠′2 ∈ Δ2:

prodreachp(𝑠1, 𝒓1, 𝑠2, 𝒓2) ∧ 𝜑1 ∧ 𝜑2 =⇒ ⊥ .

We conclude this section with a discussion of how to check GCLTS assumptions, namely sink

finality, sender-driven choice, and deadlock-freedom, on a symbolic protocol. Sink finality can be

checked directly by examining the syntax of the symbolic protocol. Sender-driven choice without

determinism can likewise be checked directly on the states of the symbolic protocol. Determinism

and deadlock freedom are undecidable in general but can both be reduced to reachability. Thus,

both our Symbolic Coherence Conditions and GCLTS assumptions can be discharged using off-

the-shelf 𝜇CLP solvers. We leave such an implementation to future work.

We next apply our framework to decidable fragments of symbolic protocols, some of which

have been studied in the literature.

3.4.2 Finite Protocols

We first consider finite protocols. Let S = (𝑆, Γsync,𝑇 , 𝑠0, 𝐹) be a protocol with finite 𝑆 and 𝑇 . Be-

cause 𝑆 and 𝑇 are finite, we can transform CC into an imperative algorithm (see Algorithm 1)

and use it to check implementability directly. For checking Receive Coherence, we need to

decide the predicate availp,q,{q} (𝑚, 𝑠), which is defined like the symbolic availability predicate

44

Algorithm 1 Check CC for finite protocols
⊲ Let LTS S = (𝑆, Γsync,𝑇 , 𝑠0, 𝐹)
⊲ Checking Send Coherence
for 𝑠1

p→q:𝑚−−−−−→ 𝑠2 ∈ 𝑇 do

for 𝑠 ≠ 𝑠1 ∈ 𝑆 do

if L(𝑆, Γp ⊎ {𝜀},𝑇p, 𝑠0, {𝑠}) ∩ L(𝑆, Γp ⊎ {𝜀},𝑇p, 𝑠0, {𝑠1}) ≠ ∅ then
𝑏 ← ⊥
for 𝑠3

p→q:𝑚−−−−−→ 𝑠4 ∈ 𝑇 do 𝑏 ← 𝑏 ∨
(
𝑠

𝜀
=⇒
p

∗ 𝑠3

)
if ¬𝑏 then return ⊥

⊲ Checking Receive Coherence
for 𝑠1

p→q:𝑚−−−−−→ 𝑠2, 𝑠3
r→q:𝑚−−−−−→ 𝑠4 ∈ 𝑇, 𝑠1 ≠ 𝑠2, p ≠ r do

if L(𝑆, Γq ⊎ {𝜀},𝑇q, 𝑠0, {𝑠1}) ∩ L(𝑆, Γq ⊎ {𝜀},𝑇q, 𝑠0, {𝑠3}) ≠ ∅ then
if availp,q,{q} (𝑚, 𝑠4) then return ⊥

⊲ Checking No Mixed Choice
for 𝑠1

p→q:𝑚−−−−−→ 𝑠2, 𝑠3
r→p:𝑚−−−−−→ 𝑠4 ∈ 𝑇, 𝑠1 ≠ 𝑠2 do

if L(𝑆, Γq ⊎ {𝜀},𝑇q, 𝑠0, {𝑠1}) ∩ L(𝑆, Γq ⊎ {𝜀},𝑇q, 𝑠0, {𝑠3}) ≠ ∅ then return ⊥
return ⊤

availp,q,{q} (𝑥, 𝑠, 𝒓), except on protocols instead of symbolic protocols.

It is easy to see that Send Coherence and NoMixed Choice can be checked in time polynomial

in the size of S. However, the inclusion of availp,q,{q} (𝑚, 𝑠) as a subroutine for checking Receive

Coherence yields the following complexity result.

Theorem 3.26. Implementability of finite protocols is co-NP-complete.

Proof. To see that implementability is in co-NP, observe that violations of Send Coherence and

No Mixed Choice can be checked in NP, by guessing a participant p and a pair of states 𝑠1, 𝑠2

that satisfy the respective preconditions, and verifying simultaneous reachability of 𝑠1 and 𝑠2 for

p. For Send Coherence, we guess an additional state 𝑠3 with an outgoing transition labeled with

p → q : 𝑚, and check 𝜀-reachability from 𝑠1 to 𝑠3. For Receive Coherence, availp,q,{q} (𝑚, 𝑠2)

can be checked in NP by guessing a simple path in S from 𝑠2 to some state 𝑠′ with an outgoing

transition labeled with p→ q : 𝑚. We then evaluate availp,q,{q} (𝑚, 𝑠2) along that path, which can

be done in polynomial time. We can restrict ourselves to simple paths because the blocked set B

monotonically increases when traversing a path in S. Moreover, availp,q,{q} (𝑚, 𝑠2) is antitone in

the blocked set.

45

We show NP-hardness of non-implementability via a reduction from the 3-SAT problem. As-

sume a 3-SAT instance 𝜑 = 𝐶1 ∧ . . . ∧ 𝐶𝑘 . Let 𝑥1, . . . , 𝑥𝑛 be the variables occurring in 𝜑 and let

𝐿𝑖 𝑗 be the 𝑗th literal of clause 𝐶𝑖 , with 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 3. We construct a protocol S𝜑 over

participants P = {p, q, r, x1, x1, . . . , xn, xn}, such that 𝜑 is satisfiable iff S𝜑 is implementable. In

particular, we ensure that S𝜑 is implementable iff availp,q,{q} (𝑚, 𝑠) does not hold for some state 𝑠

in S𝜑 . The protocol S𝜑 is constructed from the following subprotocols:

1. Define a protocol S𝑋 representing a truth assignment to variables 𝑥𝑖 with states 𝑠1, . . . , 𝑠𝑛+1

as follows: for every 1 ≤ 𝑖 ≤ 𝑛 there are two paths of four transitions each between 𝑠𝑖 and

𝑠𝑖+1. The paths consist of transitions labeled with r → xi : ⊥, r → xi : ⊤, r → q : 𝑚𝑥𝑖 ,

q→ xi : 𝑚, and r→ xi : ⊥, r→ xi : ⊤, r→ q : 𝑚𝑥𝑖 , q→ xi : 𝑚, respectively.

2. Define a protocol S𝐶 representing the clauses𝐶𝑖 with states 𝑡1, . . . , 𝑡𝑘+1 as follows. For each

1 ≤ 𝑖 ≤ 𝑘 there are three paths of three transitions between each 𝑡𝑖 and 𝑡𝑖+1, one for each

1 ≤ 𝑗 ≤ 3, labeled with r→ 𝑠 : 𝑚 𝑗 , r→ p : 𝑚𝑟 , 𝑠 → p : 𝑚, where 𝑠 = x if 𝐿𝑖 𝑗 = 𝑥 and 𝑠 = x

if 𝐿𝑖 𝑗 = ¬𝑥 for 𝑥 ∈ {𝑥1, . . . , 𝑥𝑛}.

3. Define a protocol S𝐹 with two states 𝑞′
𝑓
and 𝑞 𝑓 and a single transition from 𝑞′

𝑓
to 𝑞 𝑓 labeled

with p→ q : 𝑚.

4. Define a protocol S𝑇 with five states 𝑞1, . . . , 𝑞5, and two paths 𝑞1
r→p:𝑚1−−−−−−→ 𝑞2

r→q:𝑚−−−−−→ 𝑞3 and

𝑞1
r→p:𝑚2−−−−−−→ 𝑞4

p→q:𝑚−−−−−→ 𝑞5.

We merge all of the above protocols to obtain S𝜑 by identifying the state 𝑞3 with 𝑠1, 𝑠𝑛+1 with

𝑡1 and 𝑡𝑘+1 with 𝑞′𝑓 . The initial state is 𝑞1 and the final states are {𝑞5, 𝑞 𝑓 }.

Observe that the size of S𝜑 is linear in the size of 𝜑 . Moreover, it is easy to check that S𝜑

is indeed a GCLTS: all choices are sender-driven and deterministic, and final states are the only

states with no outgoing transitions, yielding sink-finality and deadlock-freedom.

46

Wefirst establish that availp,q,{q} (𝑚,𝑞3) holds inS𝜑 iff𝜑 is satisfiable. Observe that the blocked

set B computed by availp,q,{q} (𝑚,𝑞3) along a path between 𝑠1 and 𝑠𝑛+1 contains for each variable

𝑥𝑖 either xi or xi. The blocked set B thus encodes a truth assignment 𝜌B for the 𝑥𝑖 ’s where

𝜌B (𝑥𝑖) = ⊤ iff xi ∉ B. By construction of S𝑋 , for every truth assignment 𝜌 , there exists a path

between 𝑠1 and 𝑠𝑛+1 such that 𝜌 = 𝜌B for the blocked set B computed along that path.

The paths between states 𝑡𝑖 and 𝑡𝑖+1 in subprotocol S𝐶 allow p to proceed and not be blocked

if one of the paths has a participant not in B, i.e. 𝐶𝑖 is satisfied by 𝜌B . Thus, a path from 𝑠𝑛+1 = 𝑡1

to 𝑡𝑘+1 = 𝑞′
𝑓
adds p to B at 𝑡𝑖 iff 𝜌B does not satisfy at least one of the clauses 𝐶𝑖 . Therefore,𝑚 is

available in 𝑞3 iff there exists a B such that 𝜌B satisfies 𝜑 .

It remains to show that S𝜑 is non-implementable iff availp,q,{q} (𝑚,𝑞3) holds in S𝜑 . We argue

that all participants except q have sufficient local information about the control flow of the proto-

col to behave accordingly. Participant r dictates the control flow at every branching point of the

protocol, and thus is implementable. Participants x1, x1, . . . xn, xn learn the control flow via receiv-

ing messages from participant r, whose labels uniquely determine their next actions: receiving⊤

means inaction, receiving⊥means receive a further message from q, and receiving𝑚means send

a message encoding its own variable name to p. Participant p is likewise informed by r about

the control flow, and only sends𝑚 to q upon either receiving𝑚2 or top from r. Upon receiving

r’s choice of disjunct for each clause, it anticipates a message from the participant encoding that

disjunct.

Participant q, on the other hand, is not informed by r about r’s initial choice at 𝐺𝑥1 , and can

locally choose between receptions from p or r. In the case that availp,q,{q} (𝑚,𝑞3) holds, there

exists a path from 𝐺 to G𝜑 in which p is not blocked. Thus, the message from p can be asyn-

chronously reordered to arrive in q’s channel such that both receptions are enabled, and q may

violate implementability by receiving the message from p out of order. If availp,q,{q} (𝑚,𝑞3) does

not hold, only one reception is enabled, which uniquely informs q about r’s choice. In the case

that the reception from p is enabled, q terminates, otherwise it receives messages from r encoding

47

participants to send further messages to, and terminates upon receiving the final message from p.

Thus, S𝜑 is non-implementable iff q violates Receive Coherence for the transitions 𝑞2
r→q:𝑚−−−−−→ 𝑞3

and 𝑞4
p→q:𝑚−−−−−→ 𝑞5, i.e. availp,q,{q} (𝑚,𝑞3) does not hold.

We obtain thatS𝜑 is non-implementable iff availp,q,{q} (𝑚,𝑞3) holds inS𝜑 iff𝜑 is satisfiable. □

The same 3-SAT reduction can be adapted to show co-NP-completeness of implementability

for global multiparty session types.

Lemma 3.27. Implementability of global types is co-NP-complete.

Our reduction shows that deciding the availp,q,{q} (𝑚, 𝑠) predicate for global types is in co-NP.

The proof of Lemma 3.27 can be found in Chapter A.

3.4.3 Symbolic Finite Protocols

Finally, we study symbolic representations of finite protocols. More precisely, we consider the

fragment of symbolic protocols where V is the set of Booleans and all transition constraints 𝜑

are given by propositional formulas. We show that for this class of symbolic protocols, the im-

plementability problem is PSPACE-complete.

Theorem 3.28. Implementability of symbolic finite protocols is PSPACE-complete.

Proof sketch. To show that implementability is in PSPACE, we show that a witness to the negation

of CC can be checked in nondeterministic polynomial space. This follows by a reduction to

the reachability problem for extended finite state machines, which is in PSPACE [Godefroid and

Yannakakis 2013]. By Savitch’s Theorem, it follows that the negation ofCC is in PSPACE. Because

PSPACE is closed under complement and CC precisely characterizes implementability, it follows

that implementability is in PSPACE.

We showPSPACE-hardness of the implementability problem by a reduction from the PSPACE-

hard problem of deciding reachability for 1-safe Petri nets [Esparza andNielsen 1994]. Let (𝑁,𝑀0)

be a 1-safe Petri net, with 𝑁 = (𝑆,𝑇 , 𝐹). Let𝑀 be a marking of 𝑁 .

48

We construct a symbolic protocol that is implementable iff 𝑁 does not reach 𝑀 . For ease of

exposition, we present this symbolic protocol as a symbolic dependent global type G𝑁 with the

understanding that the encoding of G𝑁 as a symbolic protocol is clear.

We first describe the construction of G𝑁 . The outermost structure of G𝑁 consists of a par-

ticipant r communicating a choice between two branches to s where the bottom branch solely

consists of p sending 𝑙 to q: G𝑁 ≔ (r→s :𝑚1{⊤}. 𝐺𝑡 + r→s :𝑚2{⊤}. p→q : 𝑙{⊤}. 0). Since p is

not informed about the choice of the branch taken by s, it will have to be able to match this send

transition in every run that follows the continuation 𝐺𝑡 of the top branch. We will construct 𝐺𝑡

such that this match is possible iff𝑀 is reachable in 𝑁 .

In 𝐺𝑡 , participants r and s enter a loop that simulates 𝑁 :

𝐺𝑡 ≔ 𝜇𝑠 [𝑣 ≔ 𝑀0] . +



∑
𝑡 ∈𝑇 r→s :𝑚𝑡 {𝑣 ⇒ 𝑡−}. 𝑠 [𝑣 ≔ ((𝑣 ∧ ¬𝑡−) ∨ 𝑡+)]

r→s : restart{⊤}. 𝑠 [𝑣 ≔ 𝑀0]

r→s : reach𝑀 {𝑣 =𝑀}. p→q :𝑙{⊤}. 0

The loop variable 𝑣 is a |𝑆 |-length bitvector that tracks the current marking of the net. It is

initialized to 𝑀0. Inside the loop, r has the following choices. First, it may pick any transition

𝑡 ∈ 𝑇 of the net and send an𝑚𝑡 message to s, provided the transition is enabled for firing (i.e., the

input places of 𝑡 all contain a token: 𝑣 ⇒ 𝑡−). After this communication, 𝑣 is updated according

to the fired transition 𝑡 .

The last branch of the choice in the loop is enabled if 𝑣 is equal to𝑀 . Here, r can send reach𝑀

to s, which gives p the opportunity to send the 𝑙 message to q, allowing it to match the send

transition from the lower branch in the top level choice of 𝐺𝑁 .

Finally, the middle branch allows r to abort the simulation at any point and start over. This

ensures that if the simulation ever reaches a dead state due to firing a transition that would render

𝑀 unreachable, it can recover by starting again from 𝑀0. Thus, for all states of the simulator, p

has an 𝜀 path from that state to a state where it can send 𝑙 to q iff𝑀 is reachable from𝑀0 in𝑁 . The

only other sender is rwhichmakes all choices and, hence, never reaches two different states along

49

the same prefix trace, thus satisfying Send Coherence trivially. It follows that Send Coherence

for p holds iff 𝑀 is reachable from 𝑀0 in 𝑁 . To see that Receive Coherence holds, observe that

no participant receives messages from two different senders. No Mixed Choice similarly holds

trivially.

𝐺𝑁 is deadlock-free because the branch in the loop of 𝐺𝑡 where r sends the restart message

is always enabled. Moreover, it is easy to see that 𝐺𝑁 is deterministic because each branch of a

choice sends a different message value.

In summary, 𝐺𝑁 is a GCLTS that is implementable iff 𝑁 reaches 𝑀 . The size of G𝑁 is linear

in the size of 𝑁 , so we obtain the desired reduction. □

3.5 Related Work

Table 3.1 summarizes the most closely related works that address the implementability problem

of communication protocols with data refinements. We discuss these works in terms of key ex-

pressive features and completeness of characterization.

Expressivity. All existing works in Table 3.1 effectively require history-sensitivity, meaning

that a “predicate guaranteed by a [participant p] can only contain those interaction variables that

[p] knows” [Bocchi et al. 2010], see also [Bocchi et al. 2012, Def. 2]. As discussed in §3.3, syntactic

approaches to analyzing variable knowledge is overly conservative, and as a result no prior work

Table 3.1: Comparison of related work (in chronological order)

Paper

Communication

paradigm

Branching

restrictions

History

sensitivity

Characterization

[Bocchi et al. 2010] asynchronous directed choice required incomplete
[Bocchi et al. 2012] asynchronous directed choice required incomplete

[Toninho and Yoshida 2017] synchronous directed choice required incomplete
[Zhou et al. 2020] synchronous directed choice required incomplete
[Gheri et al. 2022] synchronous well-sequencedness required unknown

this work asynchronous sender-driven choice not required relatively complete

50

can handle protocols such as the example in Fig. 3.9. In a similar vein, Zhou et al. [2020] impose

the syntactic restriction that all participants in a loop must be able to update all loop registers,

which rules out loops like the one in the two-bidder protocol (Fig. 1.1).

Furthermore, all prior works except for [Gheri et al. 2022] employ the directed choice restric-

tion, which is strictly less general than sender-driven choice. Many of these works also feature

separate constructs for selecting branches and sending data. In our symbolic protocols, this is

not necessary because selecting branches can be modeled with equality predicates, as shown in

Fig. 2.1. Gheri et al. [2022] generalize choreography automata, which are finite-state LTSs with

communciation events as transition labels but without final states. One major difference between

our work and theirs lies in the treatment of interleavings. Unlike our protocol semantics, which

are closed under the indistinguishability relation ∼, inspired by Lamport’s happened-before re-

lation, choreography automata languages do not include any interleavings not present in the

language. Setting aside asynchronous traces, the protocol p→ q :𝑚. r→ s :𝑚. 0 in our setting

would need to be represented as p→q :𝑚. r→s :𝑚. 0 + r→s :𝑚. p→q :𝑚. 0 in their setting, and

the following protocol 𝜇𝑡 . p→q :𝑚. r→s :𝑚. 𝑡 does not admit a representation as a choreography

automaton. The branching behaviors are restricted with a well-sequencedness condition [Gheri

et al. 2022, Def. 3.2], a condition that has since been refined because it was shown to be flawed

[Finkel and Lozes 2023]. Majumdar et al. [2021b] showed that well-formedness conditions on

synchronous choreography automata do not generalize soundly to the asynchronous setting.

Asynchronous communication is more challenging to analyze in general because it easily

gives rise to infinite-state systems. Zhou [2024] conjectures that the framework in [Zhou et al.

2020] “can be extended to support asynchronous communication”, but does not conjecture if

and how the projection operator would change. Due to directed choice, the same projection

operator may remain sound under asynchronous semantics, because it rules out protocols where

participants have a choice to receive from different senders. However, it will also likely inherit

the same sources of incompleteness present in the synchronous setting.

51

In contrast to all aforementioned works, several works [Dagnino et al. 2021; Castellani et al.

2022, 2024] allow to specify send and receive events separately with “deconfined” global types.

Deconfined global types are specified as a parallel composition of local processes, and then

checked for desirable correctness properties, which were shown to be undecidable [Dagnino et al.

2021].

Completeness. Implementability is a thoroughly-studied problem in the high-level message

sequence chart (HMSC) literature. HMSCs are a standardized formalism for describing com-

munication protocols in industry [Union 1996] and are well-studied in academia [Mauw and

Reniers 1997; Genest et al. 2003; Genest and Muscholl 2005; Gazagnaire et al. 2007; Roychoud-

hury et al. 2012]. In the HMSC setting, implementability is called safe realizability, and is defined

with respect to the implementation model of communicating finite state machines [Brand and

Zafiropulo 1983]. Similar to our setting, a canonical implementation exists for any HMSC [Alur

et al. 2003, Thm. 13]; unlike our setting, it is always computable. Therefore, existing work has

focused less on synthesis and more on checking implementability. Despite having only finite

states and data, HMSC implementability was shown to be undecidable in general [Lohrey 2003].

Various fragments have since been identified in which the problem regains decidability. Lohrey

[2003] showed implementability to be EXPSPACE-complete for bounded HMSCs [Alur and Yan-

nakakis 1999; Muscholl and Peled 1999] and globally-cooperative HMSCs [Morin 2002; Genest

et al. 2006b]. These fragments restrict the communication topology of loops to be strongly and

weakly connected respectively. For HMSCs where every two consecutive communications share

a participant, implementability was shown to be PSPACE-complete [Lohrey 2003].

In contrast, works that study comparably expressive protocol fragments to ours often sidestep

the implementability question. Instead, implementability is addressed in the form of syntactic

well-formedness conditions, as mentioned above, or indirectly through synthesis. None of the

prior works attempted to show completeness; it was later shown in [Stutz 2023; Li et al. 2023a]

52

that all but Gheri et al. [2022] are incomplete. Several works [Bocchi et al. 2010, 2012; Toninho and

Yoshida 2017; Zhou et al. 2020] synthesize local implementations using the “classical” projection

from multiparty session types. One kind of merge operator, called the plain merge, allows only

the two participants in a choice to exhibit different behavior on each branch, a condition which

is breached by our two-bidder protocol (Fig. 1.1). Zhou et al. [2020] proves the soundness of

projection with plain merge, but implements a more permissive variant called full merge in the

toolchain. However, the projected local types are not guaranteed to be implementable: both

Fig. 3.8 and Fig. 3.9 are projectable in [Zhou et al. 2020]. Thus, the implementability problem is

deferred to local types.

Our results show that synthesis is “as possible as” the determinization of the non-deterministic

underlying automata fragment. This means that implementations can be synthesized even for

expressive classes of protocols that correspond to e.g. symbolic finite automata [D’Antoni and

Veanes 2017; Shen et al. 2023] and certain classes of timed and register automata [Bertrand et al.

2015; Clemente et al. 2022] due to the existence of off-the-shelf determinization algorithms for

these classes [Veanes et al. 2010; Veanes and Bjørner 2012; Bertrand et al. 2018].

Scalas and Yoshida [2019] check safety properties of collections of local types by encoding

the properties as 𝜇-calculus formulas and then model checking the typing context against the

specification. They focus primarily on finite-state typing contexts under synchronous semantics,

and thus all properties in their setting are decidable. For the asynchronous setting, only three

sound approximations of safety are proposed, one of which bounds channel sizes and thus falls

back into the finite-state setting.

Next, we discuss further related works on choreographic programming and binary session

types.

Choreographic Programming. Choreographic programming [Cruz-Filipe and Montesi 2020;

Giallorenzo et al. 2021; Hirsch and Garg 2022] describes global message-passing behaviors as pro-

53

grams rather than protocols, and therefore incorporate many more programming language fea-

tures that are abstracted away in our model, such as computation and mutable state, in addition

to features that our model cannot express, such as higher-order computations and delegation.

Endpoint projection for choreographic programs, which shares a theoretical basis with multi-

party session type projection, then generates individual, executable programs for each partici-

pant. The question of implementability, though undecidable in the presence of such expressivity,

remains relevant to the soundness of endpoint projections. We discuss three approaches to end-

point projection. Pirouette [Hirsch and Garg 2021] requires the programmer to specify explicit

synchronization messages to ensure that “different locations stay in lock-step with each other”,

and conservatively rejects programs that are underspecified in this regard. Pirouette provides a

mechanized proof of deadlock freedom for endpoint projections in Coq. Note that the claims of

soundness and completeness in [Hirsch and Garg 2021] are not with respect to implementability,

but with respect to the translation via endpoint projection. HasChor [Shen et al. 2023] rules out

non-implementability by automatically incorporating location broadcasts when a choice is made.

No formal correctness claims are made in [Shen et al. 2023]. Jongmans and van den Bos [2022]

allow if- and while- statements to be annotated with a conjunction of conditional choices for each

participant, which expresses decentralized decision-making in protocols. They show that their

endpoint projection for well-formed choreographies guarantees deadlock freedom and functional

correctness. All aforementioned choreographic programming works assume a synchronous net-

work.

Binary Session Types with Refinements. Finally, we briefly mention work on binary ses-

sion types with refinements and data dependencies. In the binary setting, implementability is a

less interesting problem due to the inherent duality between the two protocol participants; the

distinction between global and local types is no longer meaningful. Griffith and Gunter [2013]

refine binary sessions with basic data types, and shows decidability of the subtyping problem.

54

Gommerstadt et al. [2018] applies a similar type system for runtime monitoring of binary com-

munication. Thiemann and Vasconcelos [2020] propose a label-dependent binary session type

framework which allows the subsequent behavior of the protocol to depend on previous labels,

which are drawn from a finite set. Das and Pfenning [2020] study the undecidable problem of

local type equality, and provide a sound approximate algorithm. Das et al. [Das and Pfenning

2022; Das et al. 2021] further apply binary session types with refinements to resource analysis of

blockchain smart contracts and amortized cost analysis.

Actris [Hinrichsen et al. 2020] embeds binary session types into the Iris framework [Jung et al.

2018]. The framework assumes asynchronous communication with FIFO channels, and can verify

programs that combine message-passing concurrency and shared-memory concurrency. Actris

has been extended with session type subtyping (Actris 2.0 [Hinrichsen et al. 2022]) and with lin-

earity to prove both preservation and progress (LinearActris [Jacobs et al. 2024]). Multris [Hin-

richsen et al. 2024] is an extension of Actris in Iris to the multiparty setting. The message-passing

layer of Multris is more restricted than Actris: Multris assumes synchronous communication and

prohibits choice over channels: choices can only be made about message values between a given

sender and receiver. Multris takes a bottom-up approach [Scalas and Yoshida 2019] to correct-

ness: given a collection of local types, the type system checks that they can be safely combined.

Multris guarantees protocol fidelity but not progress.

55

4 | Implementability Modulo Network

Architectures

Global protocol specifications enjoy the illusion of synchrony, specifying send and receive events

jointly from the perspective of an omniscient observer. Nonetheless, they are intended to specify

distributed implementations, which run on an asynchronous network. The diversity of asyn-

chronous network architectures complicates the landscape of theoretical results and verification

methodologies. Different network architectures have been studied in relation to one another, see

[Chevrou et al. 2016, 2019; Giusto et al. 2023], as well as in the context of different decision prob-

lems, such as synchronizability and reachability [Lohrey 2003; Finkel and Lozes 2023; Bollig et al.

2021; Delpy et al. 2024]. Because communication errors in one architecture do not necessarily

arise in another, most existing results target a fixed communication architecture, and it is unclear

if and why they can be generalized. In the case of HMSC and multiparty session types, peer-

to-peer FIFO networks are the de facto choice of network architecture. Many theoretical results

target communicating state machines [Brand and Zafiropulo 1983], which likewise features peer-

to-peer FIFO channels. While this communication model is ubiquitous in practice, other network

models have been studied both for their applicability and theoretical interest. For example, Erlang

and Go assume a mailbox network, and many correctness proofs of classic distributed algorithms

such as leader election [Gallager et al. 1983] and clock synchronization [Lamport 2019] rely on

bag semantics.

56

In this chapter, we investigate the implementability problem for global specifications modulo

the choice of the underlying (asynchronous) network architecture. To begin with, we observe

that not all network architectures are suitable for the top-down design methodology of global

specifications. Some well-known architectures such as FIFO mailbox networks defy common

assumptions made by designers of global protocols, diminishing the utility of the approach. Our

first contribution is a semantic property of network architectures that ensures their compatibility

with the global specification methodology.

We then generalize the sound and complete characterization of implementability for global

protocols presented in Chapter 3. The generalization abstracts from the concrete case of peer-

to-peer FIFO networks to provide a characterization that is parametric in the network architec-

ture. A key technical contribution of this generalization is an axiomatic network model that

abstracts from low-level details of network behavior, enabling equational reasoning at the level

of sequences of communication events.

To demonstrate the versatility of our result, we consider eight network architectures that pick

among four choices of communication topologies (peer-to-peer, one-to-many, many-to-one, and

one-to-one), and two choices of message buffer data structure (FIFO queues andmultisets). Out of

these eight architectures, six satisfy our compatibility criterion and all of these six also satisfy our

axiomatic network model. We then use the generalized implementability characterization to ob-

tain decidability and complexity results for implementability of finite-state global specifications,

instantiated for each of the six compatible architectures.

The generalized implementability characterization is fully formalized in the Rocq proof as-

sistant, and we build directly on the proof development of [Li and Wies 2025b], discussed in

Chapter 7. To the best of our knowledge, our result is the first mechanized proof of a funda-

mental concurrency theory property that is parametric in the choice of network architecture. In

contrast to existing generalization arguments that are reduction-based, our generalization is for-

mal languages-based, and reasons about different channel architectures using generic, alphabetic

57

s w1 w2
full

s w1 w2
full

full

s w1 w2
half

half

half

s w1 w2
half

half

half

s w1 w2
full s w1 w2

half

half

s w1 w2
half

1 2 3

𝑎 𝑏

𝑐 𝑑

Figure 4.1: Task scheduler with task delegation.

definitions on words.

Contributions. In summary, the contributions in this chapter are:

• We introduce the implementability problem for global protocol specifications modulo net-

work architectures.

• We provide a semantic characterization of whether a given network architecture is com-

patible with the global protocol design methodology.

• We give a sound and complete characterization of global specification implementability

that is parametric in an axiomatic network model. All proofs are mechanized in Rocq.

• We derive decision procedures for the implementability problem modulo six concrete net-

work architectures and provide precise complexity results.

4.1 Overview

We use a task scheduling protocol as our motivating example to illustrate the differences between

asynchronous network architectures. The global specification of the protocol in HMSC notation

58

is shown in Fig. 4.1. The protocol involves three participants: a scheduler s and two workers w1

and w2. Initially, s chooses to schedule the entire task to either only w1 or only w2, or it decides to

split the workload between the two workers. The first two cases are depicted in branches 1 and 2,

where s sends a full message to the respective worker. The third case is branch 3 where s sends

a half message to both workers. Worker w2 always completes its assigned task immediately and

sends the result back to s by echoing the message it has received from s. However, whenever w1

is assigned a task, it has the option to behave like w2 (branches 𝑏 and 𝑑) or to be lazy and delegate

some or all of its work to w2 (branches 𝑎 and 𝑐). The protocol operates in a loop, but we omit the

back-edges to the initial state in Fig. 4.1 for readability.

Implementability modulo network architectures We want to know whether there exist

local implementations for the three participants that behave according to the given global pro-

tocol specification when executed concurrently on an asynchronous network architecture. In

particular, we require that the implementations never deadlock and that all participants behave

consistently according to each locally chosen branch, executing send and receive actions exactly

in the prescribed order. The latter property is known as protocol fidelity. The network archi-

tecture is a parameter of the problem statement. A priori, we only require that the network is

asynchronous and reliable: (1) messages are not duplicated and (2) messages can be delayed or

reordered but not dropped.

Determining implementability A local implementation can only gain information about the

global protocol state by making branching decisions and by receiving messages. Protocol viola-

tions may arise because a participant has insufficient information to decide what action to take

next based on the decisions and observations it has made so far.

Let us start by analyzing the implementability question for the task scheduling protocol, as-

suming a standard peer-to-peer FIFO network architecture (also referred to as peer-to-peer box

semantics in this chapter). Throughout the chapter, we use p ⊲ q!𝑚 to denote a send event where

59

participant p sends𝑚 to q. Likewise, we use q ⊳p?𝑚 to denote an event where q receives message

𝑚 that was previously sent from p.

Under the assumed architecture, the protocol is not implementable: w2 cannot distinguish

between a protocol run that follows branches 1 and 𝑎 and a run that follows branches 3 and 𝑐 .

In both cases, w2 may find itself in the same local state 𝑞 where only the half message from w1 is

available in its associated channel buffer (i.e., in the 3𝑐 run, the half message from s to w2 may be

delayed). If the protocol is following the 1𝑎 run, w2’s next action should be to send a reply to s.

However, in the 3𝑐 run it should first wait for the arrival of the half message from s. If w2 were

to wait in state 𝑞, this would lead to a deadlock in the 1𝑎 run and if it were to send to s, it would

violate protocol fidelity in the 3𝑐 run.

Perhaps surprisingly, replacing the peer-to-peer box network by another asynchronous net-

work architecture does not resolve this problem. The reason for non-implementability solely

depends on the asynchronous nature of communication and the fact that the two send events

s ⊲w2!half and w1 ⊲w2!half in the 3𝑎 run do not causally depend on each other. They can therefore

happen concurrently, causing the two messages to arrive at w2 in any order. Thus, the protocol

is non-implementable for any asynchronous network architecture.

However, in general, implementability depends on the specific network architecture. For

example, consider a possible repair of the global specification that replaces the message value

half of the send from w1 to w2 on branch 1𝑎 with delegate. Now, w2 can tell the two branches

apart: it can wait until either a half message is available in its buffer from s, indicating that the

protocol follows branch 3, or a delegatemessage is available in the buffer from w2, indicating that

the other participants chose to follow branch 1𝑎. Since the two cases are exclusive, w2 can make

its decision as soon as it observes one of the two. This change renders the protocol implementable

under peer-to-peer box semantics.

On the other hand, this repair does not help if the network architecture has a mailbox seman-

tics (i.e., all messages sent to the same recipient are collected in one FIFO buffer). The issue with

60

mailbox semantics is that in the 3𝑐 branch, the network may still asynchronously reorder the two

messages sent to w2 by delaying the message from s. Since messages are buffered in FIFO order

of arrival, this would force w2 to first receive the message from w1 before being able to retrieve

the one from s in the buffer. The resulting sequence of events would violate protocol fidelity.

If on the other hand, we change the network frommailbox tomailbag semantics where there is

a single buffer per recipient but the buffer is unordered, then the protocol becomes implementable

again with the proposed repair.

In this chapter, we provide a uniform characterization of the implementability problem that

addresses these subtle differences in the semantics of the network architecture.

Compatibility with global specifications The case of mailbox semantics deserves some

further discussion. Consider again the problematic run of 3𝑎 where the message from w1 ar-

rives before the one from s in w2’s mailbox. Note that the ensuing violation of protocol fidelity

has nothing to do with incomplete information by any of the protocol participants about what

branch the protocol is following. Instead, it is solely due to the constraints imposed by the net-

work architecture on the executions of individual protocol runs. In particular, the problem cannot

be repaired by changing message payloads in the protocol specification, like we did for the peer-

to-peer box network. In a way, the protocol asks for an implementation that can control aspects

of the network behavior that are inherently not under the control of the sought-after local im-

plementations.

As another contribution of this chapter, we propose a semantic property of network archi-

tectures that separates those architectures that are compatible with global specifications (like

peer-to-peer box and mailbag) from those that are not (like mailbox).

Outline. We formally define the implementability problem for global specifications modulo

network architectures in Section 4.2. In Section 4.3 we then introduce our compatibility prop-

erty that characterizes well-suited network architectures. Section 4.4 presents an axiomatic ab-

61

straction of network architectures that enables us to reason modularly and equationally about

network behaviors without committing to any particular architecture. Building on this abstrac-

tion, Section 4.5 then presents sound and complete conditions that characterize implementability

of a given global specification. These conditions can be checked directly on the specification.

We show that this characterization applies to all well-known network architectures that satisfy

our compatibility criterion and we use it to obtain decidability results with optimal complexity

bounds for implementability of finite state specifications, modulo each of these architectures. Fi-

nally, Section 4.6 provides a detailed comparison with related work before we conclude with a

discussion of extensions and open problems in Section 4.7.

4.2 Implementability modulo network architectures

In this section, we present our network-parametric formalism implementation model for asyn-

chronous communication protocols. We show how to generalize global protocol semantics to

likewise be parametric in an implementation model with some choice of network architecture.

We finally define the parametric implementability problem in a choice of architecture.

Our implementation model is based on communicating state machines (CSMs) [Brand and

Zafiropulo 1983]. CSMs consist of a collection of finite state machines, one for each participant,

that communicate via pairwise FIFO channels. We generalize CSMs along two key dimensions:

the communication topology, and the data structure for message buffers. We also lift the restric-

tion imposed by CSMs that the number of participants and the state spaces of the local state

machines must be finite, as done in [Li et al. 2025b; Li and Wies 2025b]. In terms of communica-

tion topology, we consider four models studied in the literature: n-to-n, in which all senders and

receivers share the same global channel, one-to-n, in which receivers share the same channel to

receive from a single sender, n-to-one, in which senders share the same channel to send to a single

receiver, and one-to-one, in which each sender and receiver pair have a unique channel. In terms

62

of message buffers, we consider two options: ordered FIFO queues, and unordered multisets. To

give some examples of communication architectures in this family that are used in practice: the

FIFO n-to-n model is also known as a global bus, the one-to-one multiset model is referred to as a

message soup and commonly used in leader election protocols, the one-to-n model is commonly

seen in work-stealing parallel programming paradigms, the one-to-n is also known as mailbox

communication, and the one-to-one or peer-to-peer model is the standard network architecture

for CSMs and widely assumed in the theory and practice of verification.

Following [Delpy et al. 2024], we define the communication topology in terms of a map from

a sender and receiver pair to a message buffer.

Definition 4.1 (Network architecture). A network architecture over a set of participants P is a

pair A = (X,B, bf) where X is an abstract type of channel states, B is a set of channel contents

and bf : X→ P × P → B is a map that associates each sender and receiver pair with a channel

contents. Intuitively, bf (𝜉, p, q) denotes the message buffer to which messages sent from p to q

are deposited.

We define the considered network architectures in terms of the cross product of four com-

munication topologies and two buffer types. The four communication topologies are defined as

follows (with our naming conventions given in parenthesis, where “B” refers to the name of one

of the buffer types below):

• n-to-n (peer-to-peer B): X = P × P → B, bf (𝜉, p, q) = 𝜉 (p, q),

• one-to-n (mailB): X = P → B, bf (𝜉, p, q) = 𝜉 (p),

• n-to-one (senderB): X = P → B, bf (𝜉, p, q) = 𝜉 (q),

• one-to-one (monoB): X = B, bf (𝜉, p, q) = 𝜉 ,

and the two buffer types are:

63

• FIFO queues (B=box): B =V∗, and

• multisets (B=bag): B =V → N.

We assume that buffers in B are equipped with a total insert and a partial remove operation.

The later is only defined when a given message is available in a channel. We lift the defini-

tions of insert and remove to channels 𝜉 ∈ X in the following way: insert(𝜉, p, q,𝑚) = 𝜉′ where

bf (𝜉′, p, q) = insert(bf (𝜉, p, q)) and all other message buffers remain unchanged; remove(𝜉, p, q,𝑚)

= 𝜉′ where bf (𝜉′, p, q) = remove(bf (𝜉, p, q)) and all other message buffers remain unchanged.

In the case of FIFO queues, insert corresponds to appending at the end of the queue, remove

corresponds to removing from the head; in the case of multisets, insert is multiset addition, and

remove multiset deletion. Throughout this chapter, we will use set notation for multisets and

multiset operations. We also assume a unique empty channel state 𝑏0 ∈ B, which is 𝜀 in the case

of FIFO queues and ∅ in the case of multiset buffers.

We present our definition of communicating labeled transition systems parametric in a choice

of network architecture A below, generalizing the definition of CLTS from Chapter 2.

Network-parametric CLTS TA = {{𝑇p}}p∈P is a CLTS over P,V and A if 𝑇p is a deterministic

LTS over Σp for every p ∈ P, denoted (𝑄p, Σp, 𝛿p, 𝑞0,p, 𝐹p). Let
∏

p∈P 𝑄p denote the set of global

states. A configuration of A is a pair (®𝑠, 𝜉), where ®𝑠 is a global state and 𝜉 ∈ X is a channel state.

We use ®𝑠p to denote the state of p in ®𝑠 . The CLTS transition relation, denoted→, is defined as

follows.

• (®𝑠, 𝜉) p⊲q!𝑚−−−−→ (®𝑠 ′, 𝜉′) if (®𝑠p, p ⊲ q!𝑚, ®𝑠 ′p) ∈ 𝛿p, ®𝑠r = ®𝑠 ′r for every participant r ≠ p, 𝜉′ =

insert(𝜉, p, q,𝑚).

• (®𝑠, 𝜉) q⊳p?𝑚−−−−→ (®𝑠 ′, 𝜉′) if (®𝑠q, q ⊳ p?𝑚, ®𝑠 ′q) ∈ 𝛿q, ®𝑠r = ®𝑠 ′r for every participant r ≠ q, 𝜉′ =

remove(𝜉, p, q,𝑚).

64

w 1
!fu
ll

w1?hal
f

w1?full

w2?half

w
1 !h

a
lf

w2!full w2?full

w2!half w2?half

w1?half

w2?half

Figure 4.2: Local implementation for s

s?full
s!full

w1?halfw1?delegate
s!half

Figure 4.3: Local implementation for w2

s?full
w2!del

eg
ate

s!half

s!full

s?half
s!half

w2!half

Figure 4.4: Local implementation for w1

In the initial configuration (®𝑠0, 𝜉0), each participant’s state in ®𝑠0 is the initial state 𝑞0,p of 𝐴p, and

𝜉0 maps each channel to the empty buffer 𝑏0. A configuration (®𝑠, 𝜉) is final iff ®𝑠p is final for every

p and 𝜉 = 𝜉0. Runs and traces are defined in the expected way. A run is maximal if either it is

finite and ends in a final configuration, or it is infinite. The language L(TA) of the CLTS TA is

defined as the set of maximal traces, and pref(L(TA)) is defined as the set of prefixes of maximal

traces. A configuration (®𝑠, 𝜉) is a deadlock if it is not final and has no outgoing transitions. A

CLTS is deadlock-free if no reachable configuration is a deadlock.

The local implementations for participants s, w1 and w2 of the repaired task scheduling pro-

tocol from Section 4.1 assuming a peer-to-peer box network are depicted in Fig. 4.2, Fig. 4.4 and

Fig. 4.3 respectively. Note that the active participants are omitted from transition labels for clarity.

We present network-parametric definitions of executable words, and of global protocol se-

mantics below. The incorporation of network-parametricity does not change much from the

definitions assuming a peer-to-peer box network presented in Chapter 2.

65

Executable words of a network-parametric CLTS A finite asynchronous word𝑤 ∈ Σ∗async
is executable in a CLTS TA if 𝑤 ∈ pref(L(TA)). We say that 𝑤 ∈ Σ∗async is executable under A if it

is executable in some TA and use L(A) ⊆ Σ∗async to denote all such words.

Global protocol semantics Given a network architectureA and a global protocol S, we next

define their asynchronous semantics C∼A (S) ⊆ Σ∞. Recall that S is an LTS over the synchronous

alphabet Γsync . The starting point for the semantics C∼A (S) is the synchronous language L(S).

From L(S) we can obtain a set of 1-synchronous asynchronous words through split, which

simply splits each atomic send and receive event into its two counterparts, denoted split(L(S)).

We want to include all asynchronous words that are equal to these 1-synchronous words under

local projection and the given network architecture A.

We handle the finite and infinite words separately to define the global protocol semantics as

the union of its finite and infinite semantics:

LA(S) = Lfin
A (S) ∪ L

inf
A (S)

The finite semantics is obtained by following the above recipe, but restricting split(L(S)) to

finite words:

Lfin
A (S) = [Σ

∗
async ∩ split(L(S))]≡P ∩ L(A) .

The infinite semantics are those words whose prefixes are extensible to some word in L(S)

modulo equality under local projection and the network semantics:

Linf
A (S) = {𝑤 ∈ Σ

∞
async | ∀𝑢 ≤ 𝑤. 𝑢 ∈ pref ([split(L(S))]≡P ∩ L(A))} .

For disambiguation, we refer to L(S) ⊆ Γ𝜔sync as the LTS semantics of S, and refer to LA(S) ⊆

Σ𝜔async as the protocol semantics of S.

66

We are now ready to define the network-parametric implementability problem:

Definition 4.2 (Network-parametric Protocol Implementability). A protocol S is implementable

under network architecture A if there exists a CLTS TA = {{𝑇p}}p∈P such that the following two

properties hold: (i) protocol fidelity: L({{𝑇p}}p∈P) = LA(S), and (ii) deadlock freedom: {{𝑇p}}p∈P

is deadlock-free. We say that {{𝑇p}}p∈P implements S under A.

4.3 Global specification compatibility

Observe that the only controllable components of a CLTS specification are the LTSs for the local

participants: the network is uncontrollable. For an implementation to realize a global specifica-

tion, however, both the local implementations and the network must be well-behaved. Consider

the simple straight line global specification:

p1→q :𝑚 p2→q :𝑚

Despite its simplicity, there does not exist a deadlock-free mailbox CLTS that implements this

global specification. Any candidate CLTS must exhibit the following deadlocking trace:

p2 ⊲ q!𝑚 · p1 ⊲ q!𝑚 .

Because the network can reorder p2’s send event before p1’s send event, yet the local actions of q

tell it to receive in the opposite order, the only way for the CLTS to not deadlock is for𝑇q to admit

the local trace q ⊳ p2?𝑚 · q ⊳ p1?𝑚. The same issue arises in monobox CLTS, which can be seen as

multiplexing all peer-to-peer FIFO queues into a single, global FIFO queue. Note, however, that

deadlocks do not arise when FIFO queues are replaced with unordered multisets. Notice further

that the issue ceases to arise in senderbox communication, in which all messages from a single

sender to all other recipients are enqueued into a single FIFO queue, i.e., the dual of mailbox

communication.

67

Intuitively, a network architecture A is compatible with global specifications if no global

specification can prescribe that its A-implementations distinguish between two asynchronous

words that are fundamentally indistinguishable by A. Thus, mailbox and monobox architectures

are not compatible with global specifications, as demonstrated by the above example. We argue

that this notion of compatibility provides a litmus test for whether a given network architecture

is well-suited for the top-down protocol design methodology.

We formalize this compatibility property of a network architecture A as follows. Recall that

an asynchronous word𝑤 ∈ Σ is executable in a CLTS TA if𝑤 ∈ pref(L(TA)) and𝑤 is executable

under A if it is executable in some TA. We say that two asynchronous words 𝑤1 and 𝑤2 can be

distinguished by A if there exists TA such that either𝑤1 or𝑤2 is executable in TA, but not both.

Definition 4.3 (Compatibility). A network architecture A is compatible with global specifica-

tions if no asynchronous words 𝑤1,𝑤2 ∈ Σ∗async with 𝑤1 ≡P 𝑤2 that are executable under A can

be distinguished by A.

The remaining six network architectures aside from mailbox and monobox all satisfy this

compatibility property.

Network architectures that violate compatibility violate the atomicity of straight-line speci-

fications. Thus, they are ill-suited as implementation targets for global specifications, which can

be viewed as the branching composition of straight line specifications. Implementability at heart

concerns a problem of partial information about global branching control flow: given an incom-

plete view of the global protocol state, does each participant have enough information to correctly

follow the protocol? In the case of the example protocol above, all participants have complete

information over the global protocol, yet errors arise from uncontrollable network scheduling.

Thus, we contend that protocols with such semantics constitute degenerate cases that should be

excluded from global specification-based methodologies. In a word, specifications whose straight

line constituents are themselves potentially non-realizable should not be composed.

68

4.4 Channel compliance: an alphabetic abstraction of

network architectures

Recall that protocol semantics are centrally defined in terms of executability, which is in turn

defined as the existence of a CLTS that executes a given word under the given network archi-

tecture. Thus far, our only understanding of executability is an operational one, in terms of the

global transition relation of a CLTS. The global transition relation operates on the state space and

channel space simultaneously, and thus concerns itself with both local implementation behavior

and channel behavior. To complicate things further, channel behavior is highly specific to a given

network architecture. These operational differences get in the way of general reasoning about

CLTS with different network architectures all at once.

We address this challenge by wholesale replacing the operational view of network architec-

tures we have presented thus far with a purely algebraic view. We introduce a key abstraction that

enables us to reason about implementability in a network-parametric manner: channel compli-

ance. Our notion of channel compliance first eliminates local implementations from the picture,

separating out the controllable local implementations’ behaviors from uncontrollable network

behavior. This allows us to reason purely about sequences of send and receive events that are

executable modulo assumptions about local implementations. Channel compliance then gives an

algebraic specification of asynchronous words that satisfy the ordering restrictions imposed by a

given network architecture. Our notion of channel compliance is inspired by and named after the

corresponding definition for peer-to-peer box networks, introduced in [Majumdar et al. 2021a]

to define multiparty session type semantics. Similar sequential specifications of communication

models can also be found in [Chevrou et al. 2016].

The rest of the section is structured as follows. First, we present a correspondence between

operational CLTS and algebraic channel compliance that ensures our notion of channel compli-

69

ance is capturing exactly the right thing. Then, we present alphabetical definitions of channel

compliance that precisely capture the remaining six network architectures that we study. Having

established their correspondence with their target CLTS implementation models, we use them to

simplify our global protocol semantics. Finally, we discuss the algebraic abstraction that unifies

all these concrete channel compliance notions and show how it helps us to achieve a network-

parametric characterization of implementability.

Throughout this section, we fix a network architecture A. We use CA ⊆ Σ∗ to denote the

set of A-channel compliant words. The algebraic specification of A will be given later. First, we

definewhat it means for CA to accurately capture a network architecture in terms of the following

correspondence, which can be viewed as a meta-correctness criterion for our proposed algebraic

abstractions:

Definition 4.4 (Correspondence between channel compliance and CLTS network architecture).

Let CA ⊆ Σ∗ be a notion of channel compliance. We say that CA precisely captures A if for

any A-CLTS TA and 𝑤 ∈ Σ∗async , 𝑤 is a trace of TA if and only if 𝑤 ∈ CA and for all p ∈ P,

𝑤⇓Σp
∈ pref (L(𝑇p)).

Once we have established that CA precisely captures A, we can use it to simplify our global

protocol semantics, by replacing L(A), which is defined in terms of the existence of a CLTS TA,

with CA.

Corollary 4.5 (Network-parametric Asynchronous Protocol Semantics). Let S be an LTS over

Γsync . If CA precisely captures A, then

LA(S) = ([Σ∗async ∩ split(L(S))]≡P ∩ CA)

∪ {𝑤 ∈ Σ∞async | ∀𝑢 ≤ 𝑤. 𝑢 ∈ pref ([split(L(S))]≡P ∩ CA)} .

We propose alphabetical notions of channel compliance for each of the six network architec-

tures we consider below that we have shown to satisfy the meta-correctness correspondence in

70

our Rocq mechanization.

As a reminder, ⇓- means projection to either the identity or 𝜀, depending on whether the

symbol at hand pattern-matches -. Note that in the peer-to-peer case, it suffices to compare

sequences of message values, because the sender and receiver pair is fixed. This is not true in

general for other channel architectures. In other words, for other channel architectures, messages

need to contain their sender and/or receiver ID in order to be properly handled by the network.

In the following, let𝑤 ∈ Σ∞.

Definition 4.6 (Peer-to-peer box channel compliance). We say that𝑤 is p2p box channel compli-

ant if for all prefixes𝑤 ′ ≤ 𝑤 , for all p ≠ q ∈ P,𝑤 ′⇓q⊳p?_ ≤ 𝑤 ′⇓p⊲q!_.

Definition 4.7 (Peer-to-peer bag channel compliance). We say that𝑤 is p2p bag channel compli-

ant if for all prefixes𝑤 ′ ≤ 𝑤 , for all p ≠ q ∈ P, {𝑚 | q ⊳ p?𝑚 ∈ 𝑤 ′} ⊆ {𝑚 | p ⊲ q!𝑚 ∈ 𝑤 ′}.

Definition 4.8 (Senderbox channel compliance). We say that 𝑤 is senderbox channel compliant

if for all prefixes𝑤 ′ ≤ 𝑤 , for all p ∈ P,𝑤 ′⇓_⊳p?_ ≤ 𝑤 ′⇓p⊲_!_.

Definition 4.9 (Senderbag channel compliance). We say that 𝑤 is senderbag channel compliant

if for all prefixes𝑤 ′ ≤ 𝑤 , for all p ∈ P. {(𝑚, q) | q ⊳ p?𝑚 ∈ 𝑤 ′} ⊆ {(𝑚, q) | p ⊲ q!𝑚 ∈ 𝑤 ′}.

Definition 4.10 (Mailbag channel compliance). We say that 𝑤 is mailbag channel compliant if

for all prefixes𝑤 ′ ≤ 𝑤 , for all q ∈ P. {(𝑚, p) | q ⊳ p?𝑚 ∈ 𝑤 ′} ⊆ {(𝑚, p) | p ⊲ q!𝑚 ∈ 𝑤 ′}.

Definition 4.11 (Monobag channel compliance). We say that𝑤 ismonobag channel compliant if

for all prefixes𝑤 ′ ≤ 𝑤 , {(𝑚, p, q) | q ⊳ p?𝑚 ∈ 𝑤 ′} ⊆ {(𝑚, p, q) | p ⊲ q!𝑚 ∈ 𝑤 ′}.

The correspondence for each (A, CA) pair is proven by induction on word length.

In the remainder of the chapter, we refer to A-channel compliance simply as channel compli-

ance, and assume that the network parameter is implicit unless explicitly specified.

Next, we discuss the benefits that our alphabetic characterization of A-executable confer in

terms of 1) facilitating automation, 2) clarifying the relationship between network architectures,

and 3) simplifying definitions.

71

Automation. Channel compliance reduces odious, operational CLTS reasoning about explicit

channel states and transitions in each participant’s local implementation, to algebraic, equational

reasoning phrased in terms of word concatenation, homomorphisms, and prefixes ordering. This

makes proofs more amenable to automation, a fact that we exploit in our Rocq development.

All bag CLTSs are eqivalent. An immediate consequence of our alphabetic characterization

is that all network architectures with multiset message buffers are equivalent.

Lemma 4.12. Peer-to-peer bag, mailbag, senderbag and monobag channel compliance are equiva-

lent.

This can easily be shown by proving senderbag, mailbag and peer-to-peer bag channel compli-

ance to all be equivalent to monobag channel compliance. From an implementation perspective,

this equivalence has the following operational interpretation: in a monobag CLTS with a global

message soup, since messages in the soup are all labeled with sender and receiver, one can “on

demand” separate the message soup into P2 multisets, or P multisets by sender ID or receiver

ID whenever messages are sent or received, and thus simulate the other network architectures.

The implication of this equivalence is that despite the difference in CLTS definitions for the

four bag architectures, we can show a correspondence between each and monobag channel com-

pliance, and prove that monobag channel compliance satisfies the required assumptions once and

for all.

Receivability in terms of channel compliance. In the remainder of this section, we develop

the algebraic abstraction of the six concrete channel compliance notions that we will later use for

our proofs.

A central notion to reasoning about asynchronous communication is that of receivability.

From the definitions of CLTS, we see that whether a receive transition q̄ ⊳ p̄?𝑚̄ is enabled from

some execution prefix𝑤 depends on whether the message 𝑚̄ is available in its respective message

72

channel, both components of which take on a different meaning depending on the network archi-

tecture. Following in the spirit of channel compliance, one could consider also giving algebraic

definitions of receivability for each network architecture as follows:

Definition 4.13 (Peer-to-peer box receivable). We say that 𝑚̄ from p̄ to q̄ is p2p box receivable in

𝑤 if𝑤⇓q⊳p?_ · 𝑚̄ ≤ 𝑤⇓p⊲q!_.

Definition 4.14 (Peer-to-peer bag receivable). We say that 𝑚̄ from p̄ to q̄ is p2p bag receivable in

𝑤 if {𝑚 | q ⊳ p?𝑚 ∈ 𝑤 ′} ∪ {𝑚̄} ⊆ {𝑚 | p ⊲ q!𝑚 ∈ 𝑤 ′}.

Definition 4.15 (Senderbox receivable). We say that 𝑚̄ from p̄ to q̄ is senderbox receivable in 𝑤

if𝑤⇓_⊳p?_ · (𝑚̄, q̄) ≤ 𝑤⇓p⊲_!_.

Definition 4.16 (Senderbag receivable). We say that 𝑚̄ from p̄ to q̄ is senderbag receivable in 𝑤

if {(𝑚, q) | q ⊳ p?𝑚 ∈ 𝑤} ∪ {(𝑚̄, q̄)} ⊆ {(𝑚, q) | p ⊲ q!𝑚 ∈ 𝑤}.

Definition 4.17 (Mailbag receivable). We say that 𝑚̄ from p̄ to q̄ is mailbag receivable in 𝑤 if

{(𝑚, p) | q ⊳ p?𝑚 ∈ 𝑤 ′} ∪ {(𝑚̄, p̄)} ⊆ {(𝑚, p) | p ⊲ q!𝑚 ∈ 𝑤 ′}.

Definition 4.18 (Monobag receivable). We say that 𝑚̄ from p̄ to q̄ is monobag receivable in 𝑤 if

{(𝑚, p, q) | q ⊳ p?𝑚 ∈ 𝑤 ′} ∪ {(𝑚̄, p̄, q̄)} ⊆ {(𝑚, p, q) | p ⊲ q!𝑚 ∈ 𝑤 ′}.

It turns out that receivability admits a very direct algebraic characterization in terms of chan-

nel compliance that unifies all these concrete notions of receivability. It is the first property

defining the algebraic abstraction of channel compliance that we use for our proofs:

Definition 4.19 (Receivability in terms of channel compliance). Let𝑤 ∈ Σ∗, p, q ∈ P and𝑚 ∈ V ,

with p ≠ q and 𝑤 A-channel compliant. We say that 𝑚 is receivable from p to q in 𝑤 , denoted

receivable(𝑤, p, q,𝑚) if𝑤 · q ⊳ p?𝑚 is also A-channel compliant.

Receivability thus serves as a salient example of a property concerning CLTS with some net-

work architecture, that is possible to state and prove on the CLTS directly, but that is made much

easier by an alphabetic abstraction of channel compliance.

73

We conclude with the remaining channel compliance related properties that we employ in

our generalized proof. The first pair of properties situates the network architectures we consider

squarely in the hierarchy of asynchronous communication models commonly found in the litera-

ture [Chevrou et al. 2016; Giusto et al. 2023], between the “lower bound” of purely asynchronous

(asy) and “upper bound” of realizable with synchronous communication (rsc). The most per-

missive asynchronous model simply restricts messages to be sent before they are received, and

otherwise imposes no other orders. Architecturally, this is equivalent to multiset CLTS. The least

permissive asynchronous model requires messages that are sent to be immediately received. Ar-

chitecturally, this is equivalent to a CLTS with a single global channel of size 1.

Definition 4.20 (1-synchronous words are channel compliant). Let 𝑢 ∈ Γ∗sync . Then, split(𝑢) is

channel compliant.

Definition 4.21 (Channel compliant words respect send-before-receive). Let 𝑤 ∈ Σ∗async . If 𝑤 is

channel compliant, then𝑤 satisfies send-before-receive order.

The next set of algebraic properties discuss channel compliance under word concatenation.

Definition 4.22 (Channel compliance concatenation properties). Channel compliance satisfies

the following properties:

1. For all 𝑤1,𝑤2 ∈ Σ∗async and 𝑢 ∈ Γ∗sync , if 𝑤1 is channel compliant and 𝑤1 ≡P split(𝑢), then

𝑤2 is channel compliant iff𝑤1 ·𝑤2 is channel compliant.

2. For all𝑤 ∈ Σ∗async , 𝑥 ∈ Σ!, if𝑤 is channel compliant then𝑤𝑥 is channel compliant.

3. For all𝑤 ∈ Σ∗async , 𝑥 ∈ Σ!,𝑦 ∈ Σ?, if𝑤𝑦 is channel compliant then𝑤𝑥𝑦 is channel compliant.

Note that the second property amounts to saying that messages can always be sent while

preserving channel compliance. The inclusion of this property means that our assumptions do

not completely characterize compatible network architectures: bounded FIFO architectures, for

example, are compatible but do not satisfy this property.

74

The final set of properties characterize the past and future of channel compliant words. We

say that 𝑤 ∈ Σ∗async agrees with a synchronous word 𝑢 when for all participants p ∈ P, 𝑤⇓Σp
≤

split(𝑢)⇓Σp
. Given a synchronous word 𝑢 = 𝑢1𝑢2 and an agreeing asynchronous word 𝑤 , we

can “snip” 𝑢1 from𝑤 as follows: for each participant p, we delete from𝑤 the larger of 𝑢1⇓Σp
and

𝑤⇓Σp
. The resulting 𝑤 ′ satisfies that every participant who in 𝑤 has not completed all events

prescribed by 𝑢1 is left with no events in 𝑤 ′, i.e. 𝑤 ′⇓Σp
= 𝜀, whereas every participant who in 𝑤

has completed all events prescribed by𝑢1 and some additional events prescribed by𝑢2 is left with

only the events prescribed by 𝑢2, i.e.𝑤⇓Σp
= split(𝑢1)⇓Σp

·𝑤 ′⇓Σp
.

Definition 4.23 (Receivable is history insensitive). Let𝑤,𝑤 ′ ∈ Σ∗async, 𝛼, 𝛽 ∈ Γ∗sync, p ≠ q ∈ P and

𝑚 ∈ V such that 𝑤 agrees with 𝛼𝛽 , both 𝑤 and 𝑤 ′ are A−channel compliant, split(𝛼)⇓Σq
≤

𝑤⇓Σq
𝑤 ′ is the result of snipping 𝛼 from 𝑤 , and receivableA(𝑤, p, q,𝑚). Then, it holds that

receivableA(𝑤 ′, p, q,𝑚).

This property states that a channel compliant word can forget about a section of its past

without changing the receivable status of a currently receivable message, under the condition

that the receiver has completed all prescribed events in the past.

Looking to the future, the following property states that any channel compliant word that

agrees with some synchronous word can be extended to be equal under local projection to its

1-synchronous counterpart.

Definition 4.24 (Channel compliant prefix extensibility). Let 𝑤 ∈ Σ∗async, 𝜌 ∈ Γ∗sync such that 𝑤

is channel compliant and agrees with 𝜌 . Then, there exists 𝑢 ∈ Σ∗async such that 𝑤𝑢 is channel

compliant, and𝑤𝑢 ≡P split(𝜌).

Finally, to reason about finite CLTS words, we require that channel compliant words that

are equal under local projection to a 1-synchronous word lead to a configuration in the CLTS in

which all channels are empty. Note that this is equivalent to saying that such a word has an equal

number of send and receive events for each sender, receiver and message value triple.

75

Definition 4.25 (Matched words mean empty channels). Let TA be a CLTS, 𝑤 ∈ Σ∗async and

𝑢 ∈ Γ∗sync such that 𝑤 ≡P split(𝑢). Then, in the configuration reached on 𝑤 , all channels are

empty.

4.5 Characterization of generalized implementability

In this section, we present our generalized implementability characterization. We first revisit the

characterization for the peer-to-peer box case, presented in [Li et al. 2025b] and Chapter 3 in the

form of three Coherence Conditions (CC). The Coherence Conditions scrutinize pairs of global

protocol states from which a participant can perform different actions, but whose distinction

may not be locally observable to the participant. CC describes the kinds of local actions that are

safe to perform in this state of unawareness. Send Coherence says that if a participant has the

option to perform a send action from one state, it must have the option to perform the same send

action from any indistinguishable state. Receive Coherence says that if a participant has the option

to perform a receive action from one state, then this same receive action could not possibly be

performed from any other indistinguishable state. No Mixed Choice says that a participant cannot

equivocate between performing a send and receive action.

In a nutshell, CC are 2-hyperproperties stating that from two simultaneously reachable global

protocol states, a participant can either perform a send action that is enabled in both states (Send

Coherence), or perform a receive action that uniquely distinguishes the two states (Receive Co-

herence), but cannot choose between performing a send or receive action (No Mixed Choice).

In Chapter 3, we showed that CC is sound by invoking a canonical implementation (Defini-

tion 3.6), which serves as the witness to implementability.

The key technical argument for soundness lies in showing that the canonical implementa-

tion’s language is a subset of global protocol semantics, and moreover is deadlock-free. This

requires showing that every canonical implementation trace can be associated with a run in the

76

global protocol that each participant has partially completed the prescribed actions of. This in

turn is shown by induction on canonical implementation traces, appealing to CC to argue that

the extension by either a send or receive event retains the existence of a global run that can be

associated with the resulting trace.

Completeness of CC is established in Section 3.3 via modus tollens: from the negation of each

Coherence Condition a trace is constructed that is compliant with no protocol run, yet must be

admitted by any candidate implementation of the protocol. This suffices for an implementability

violation, because either the trace leads to a deadlock, or to a maximal word not in the global

protocol semantics.

In fact, two of three Coherence Conditions, Send Coherence and No Mixed Choice, remain

sound and complete for network-parametric implementability. The reason for soundness boils

down to the following assumption about channel compliance (Definition 4.22, (2)):

∀𝑤 ∈ Σ∗async, 𝑥 ∈ Σ!. 𝑤 is channel compliant =⇒ 𝑤𝑥 is channel compliant .

Intuitively, this assumption entails that send actions are equally dangerous across all consid-

ered network architectures, since they are enabled by the existence of a transition alone. As for

the completeness of Send Coherence and No Mixed Choice, we observe that the witness con-

structed by our completeness proof in Section 3.3 can be adapted to one that is the prefix of a 1-

synchronous trace. Concretely, the witnesses for both conditions assume the form of split(𝛼) ·𝑥 ,

where 𝛼 is a synchronous word and 𝑥 is a send event. Because traces of this form are univer-

sally channel compliant, they are executable under any network architecture, and thus if they

are compliant with no protocol run, they constitute an implementability violation under every

network architecture.

Receive Coherence unfortunately complicates the picture. In contrast to send events, receive

events are conditioned on transitions as well as the availability of the message in question to be

77

received. Message availability in turn highly depends on the network architecture, and requires

considering possible asynchronous reorderings, as evidenced by participant w2’s plight in the task

delegation protocol from §4.1.

Consider the protocols S𝑎 and S𝑏 , depicted in Fig. 4.5 and Fig. 4.6, both from the perspective

of the receiver q. In S𝑎 under a monobag network architecture, q’s bag can contain any number

of𝑚 messages from p, in addition to a⊥message. Participant q can never know when it is safe to

receive the ⊥ message and terminate locally, and thus the protocol is non-implementable. If we

replace the monobag network with a peer-to-peer box network, the final ⊥ message is ordered

after all𝑚 messages have been sent, and thus participant q can always receive the message at the

head of its FIFO queue from p. In S𝑏 under a peer-to-peer box network, when message𝑚 from r

is available to receive, the same message𝑚 could also be available from p simultaneously, leading

q to a protocol violation. If we replace the peer-to-peer box network with a senderbox network,

this ambiguity again goes away: r’s message to s blocks the message to q from being available

to receive, because s’s reception depends on q first receiving from p, thus a unique message is

available for q to receive regardless of the branch selected by p.

p→q :𝑚
p→q :⊥

Figure 4.5: A global protocol S𝑎 that is non-implementable on a bag network but implementable on a

peer-to-peer box network.

p→r :o r→q :𝑚

p→r :b p→q :𝑚 q→s :𝑚 r→s :𝑚 r→q :𝑚

Figure 4.6: A global protocol S𝑏 that is non-implementable on a peer-to-peer box network but imple-

mentable on a senderbox network.

From the two examples, it might appear that any generalization of Receive Coherence must

necessarily hardcode the channel architecture of a particular network model. Fortunately, this

78

turns out not to be the case, thanks to our simple notion of receivability defined in terms of chan-

nel compliance from §4.4. By giving an alphabetic characterization of receivability in terms of

channel compliance, alongside the assumption that receivability is history insensitive (Defini-

tion 4.23), we can express generalized Receive Coherence parametric in the notion of channel

compliance as follows:

Definition 4.26 (Generalized Receive Coherence). A protocol S = (𝑆, Γsync,𝑇 , 𝑠0, 𝐹) satisfies A−

Receive Coherence when for every two simultaneously reachables states 𝑠1, 𝑠2 with ∀ 𝑠1
p→q:𝑚−−−−−→

𝑠2, 𝑠
′
1

r→q:𝑚′−−−−−−→ 𝑠′2 ∈ 𝑇 , (r ≠ p ∨ 𝑚′ ≠ 𝑚) =⇒ ¬ ∃ 𝑤 ∈ pref (L(S𝑠′1)) . 𝑤⇓Σq
= 𝜀 ∧ r ⊲ q!𝑚′ ≤

𝑤⇓Σr
∧ receivableA(𝑤, p, q,𝑚) .

The soundness and completeness proof for generalized Receive Coherence critically relies on

the remaining channel compliance assumptions discussed in §4.4. The history insensitivity of re-

ceivability is especially tricky to establish for senderbox networks, because the property describes

words from a per-participant perspective, whereas channel compliance describes the aggregate

of receptions from all participants relative to a single sender. To bridge the gap between these

two views of words, we made use of a length-based inductive invariant relating the number of

unreceivedmessages in a senderbox to the number of receptions from the sender in the remainder

of the word.

We conclude with a discussion of how to decide the consequent of generalized Receive Co-

herence involving the receivable predicate for each network architecture. More specifically, we

present predicates that are equivalent to the following:

∃ 𝑤 ∈ pref (L(S𝑠′1)). 𝑤⇓Σq
= 𝜀 ∧ r ⊲ q!𝑚′ ≤ 𝑤⇓Σr

∧ receivableA(𝑤, p, q,𝑚) .

In Section 3.4, we defined an availp,q,B (𝑚, 𝑠) predicate, which captures whether the protocol start-

ing from state 𝑠 specifies a trace in which message𝑚 from p to q is available in channel (p, q), and

no participants in the blocked set B have executed any actions. We present below avail defined

79

for non-symbolic protocols.

Definition 4.27 (Receivable for peer-to-peer FIFO).

availp,q,B (𝑚, 𝑠) ≔𝜇 (
∨

(𝑠, r→t:𝑚′, 𝑠′)∈Δ
r∈B

r≠p∨t≠q

availp,q,B∪{t} (𝑚, 𝑠′))

∨ (
∨

(𝑠, r→t:𝑚′, 𝑠′)∈Δ
r∉B

r≠p∨t≠q

availp,q,B (𝑚, 𝑠′)) ∨ (
∨

(𝑠, p→q:𝑚, 𝑠′)∈Δ
p∉B

⊤) .

The predicate availp,q,{q} (𝑚, 𝑠′2) captures the negation of the consequent of Receive Coherence

for the peer-to-peer box network. The requirement that 𝑤⇓Σq
= 𝜀 is enforced by initializing the

blocked set to {q}, the requirement that r ⊲ q!𝑚′ ≤ 𝑤⇓Σr
is enforced by starting from state 𝑠′2, and

the requirement that message 𝑚 from p is receivable by q is enforced by the disjuncts in avail.

In a peer-to-peer box network architecture, messages sent from any sender, receiver pair not

equal to (p, q) use a separate message channel, and thus cannot interfere with the receivability

of message𝑚 from p to q. The first two disjuncts of avail skip over such message exchanges to

continue searching for the message exchange p→q :𝑚.

We treat the remaining network architectures in the same way: we first negate the conse-

quent of generalized Receive Coherence, then we define an avail predicate and instantiate it with

p, q, {q} and 𝑠′2. Next, we describe the avail predicate for the remaining network architectures.

Unlike peer-to-peer box networks, senderbox networks force all participants to share the same

ordered FIFO queue in order to receive from a given sender. Because messages are enqueued

according to the sender’s event order, q can be blocked from receiving its message if p first sends

a message𝑚′ to a non-q receiver, on the condition that said non-q receiver cannot proceed with

receiving𝑚′. Thus, whenwe encounter amessage exchange of the form p→q′ :𝑚′with q′ ≠ q and

q′ blocked, we can quit early in our search for p→q :𝑚. This new stopping condition is reflected

in the third disjunct of sbavail, the analogue of avail for the senderbox network architecture.

80

Definition 4.28 (Receivable for senderbox).

sbavailp,q,B (𝑚, 𝑠) ≔𝜇 (
∨

(𝑠, r→t:𝑚′, 𝑠′)∈Δ
r∈B
r≠p

sbavailp,q,B∪{t} (𝑚, 𝑠′))

∨ (
∨

(𝑠, r→t:𝑚′, 𝑠′)∈Δ
r∉B
r≠p

sbavailp,q,B (𝑚, 𝑠′))

∨ (
∨

(𝑠, p→t:𝑚′, 𝑠′)∈Δ
t∉B
t≠q

sbavailp,q,B (𝑚, 𝑠′)) ∨ (
∨

(𝑠, p→q:𝑚, 𝑠′)∈Δ
p∉B

⊤) .

For bag networks, sends and receives between the same pair of participants with different

message labels do not interfere with one another. Thus, the “skipping” condition is more permis-

sive: not only can we skip messages between other sender and receiver pairs, we can also skip

messages between the same sender receiver pair with different message labels.

Definition 4.29 (Receivable for bag).

bagavailp,q,B (𝑚, 𝑠) ≔𝜇 (
∨

(𝑠, r→t:𝑚′, 𝑠′)∈Δ
r∈B

r≠p∨t≠q∨𝑚′≠𝑚

bagavailp,q,B∪{t} (𝑚, 𝑠′))

∨ (
∨

(𝑠, r→t:𝑚′, 𝑠′)∈Δ
r∉B

r≠p∨t≠q∨𝑚′≠𝑚

bagavailp,q,B (𝑚, 𝑠′)) ∨ (
∨

(𝑠, p→q:𝑚, 𝑠′)∈Δ
p∉B

⊤) .

From the above, it is clear that senderbox receivable implies peer-to-peer box receivable im-

plies bag receivable. Because the receivable predicate appears in a negative position in Receive

Coherence, and the other two Coherence Conditions characterizing implementability are the

same, we obtain the following.

Lemma 4.30 (Implementability relationships). Any bag-implementable global protocol is peer-

to-peer box-implementable, and any peer-to-peer box-implementable global protocol is senderbox-

81

implementable.

The strictness of the inclusions is witnessed by examples𝐺𝑎 and𝐺𝑏 in Fig. 4.5 and Fig. 4.6. We

note that the relationship between the considered network architectures induced by Lemma 4.30

coincide with those established by both [Chevrou et al. 2016] and [Giusto et al. 2023]. We revisit

this point in further detail in §4.6.

We state our generalized Coherence Conditions and generalized preciseness theorem below.

Definition 4.31 (Generalized Coherence Conditions). A protocol S = (𝑆, Γsync,𝑇 , 𝑠0, 𝐹) satisfies

generalized Coherence Conditions under network architecture A when it satisfies Send Coher-

ence, generalized Receive Coherence under A, and No Mixed Choice.

Theorem 4.32 (Preciseness of Generalized Coherence Conditions). Let S be a protocol and let A

be a network architecture. Then, S is implementable under A if and only if it satisfies generalized

Coherence Conditions under A.

4.5.1 Decidability and Complexity

Theorem 4.32 immediately yields a decision procedure for checking implementability of finite

protocols modulo each of the six considered network architectures. We examine the complexity

of problem for the finite fragment for each of these architectures in light of their receivability

relationships. In Chapter 3 we showed that the co-NP completeness of peer-to-peer box imple-

mentability is determined by the co-NP completeness of deciding the avail predicate. It is easy

to see that generalized Receive Coherence for each network architecture can still be checked in

NP. For the lower bound, we show that the same construction with a small modification works

for the other two notions of receivability.

The proof of the co-NP lower bound works by a reduction from 3-SAT to implementability.

The proof assumes a 3-SAT instance 𝜑 = 𝐶1 ∧ . . . ∧ 𝐶𝑘 with variables 𝑥1, . . . , 𝑥𝑛 and literals 𝐿𝑖 𝑗 ,

denoting the 𝑗th literal of clause𝐶𝑖 , with 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 3. From this, it constructs a global

82

protocol S𝜑 such that 𝜙 is unsatisfiable iff S𝜑 is implementable. We summarize the construction

pictorially in Fig. 4.7.

The construction relies on two gadgets: S𝑋 , a gadget that encodes a variable assignment to

variables 𝑥1, . . . , 𝑥𝑛 (Fig. 4.8), and S𝐶 , a gadget that encodes literal selection for clauses𝐶1, . . . ,𝐶𝑘

(Fig. 4.9). The highlighted message in Fig. 4.7 is available for participant q in 𝑞4 if and only if

𝜑 is satisfiable. Consequently, protocol S𝜑 is non-implementable if and only if the highlighted

message is available for participant q in 𝑞4, if and only if 𝜑 is satisfiable. In order to show that

the construction carries over to bag and senderbox networks, one is only required to analyze the

unique message receptions that appear in each gadget. Thus, Fig. 4.8 and Fig. 4.9 each depict the

smallest portion of each gadget necessary to establish our new complexity results.

𝑞1

𝑞4 𝑞5

r→
p :𝑚 2

p→q :𝑚

𝑞2 S𝑋 S𝐶

r→
p :𝑚

1

r→q :𝑚 . . .
𝑞𝑓

p→q :𝑚

Figure 4.7: Illustration of 3-SAT reduction for implementability.

𝑠𝑖
. . .

𝑠𝑖+1
. . .

r→𝑥𝑖 :⊤ r→𝑥𝑖 :⊥ r→q :𝑚𝑥𝑖 q→𝑥𝑖 :𝑚

r→𝑥𝑖 :⊤ r→𝑥𝑖 :⊥ r→q :𝑚𝑥𝑖
q→𝑥𝑖 :𝑚

Figure 4.8: Illustration of variable assignment gadget S𝑋 .

Since both equivalences require reasoning about Receive Coherence, wemust reconsider each

in turn. First, we consider the bag network architecture. As established above, any message

receivable in a peer-to-peer box network is also receivable in a bag network. Thus, we only

need to show that the rest of S𝜑 is implementable, which amounts to checking that no other

bag Receive Coherence violations occur. Participant r does not receive messages, and can thus

83

𝑡𝑖
. . .

𝑡𝑖+1
. . .

r→
𝑥 𝑎

:𝑚
1

r→𝑥𝑏 :𝑚2

r→
𝑥
𝑐 :𝑚

3

r→p :𝑚𝑖

r→p :𝑚𝑖

r→p :𝑚𝑖

𝑥
𝑎 →

p :𝑚
1

𝑥𝑏→q :𝑚2

𝑥 𝑐
→
r :𝑚 3

Figure 4.9: Illustration of clause selection gadget S𝐶 . Highlighted parts indicate modification for gener-

alized reduction.

be ignored. Unlike peer-to-peer FIFO Receive Coherence, bag Receive Coherence additionally

constrains pairs of receptions from the same sender. For the variable participants in S𝑋 , each

participant receives either a ⊥ from r, or a ⊤ followed by an 𝑚 message from q. Thus, bag

Receive Coherence is satisfied. Inspecting S𝐶 , each variable participant only receives one kind of

message, which is𝑚 from r, and if so it sends an𝑚 message to p. Thus, bag Receive Coherence is

satisfied as well. Participant p is uninvolved in S𝑋 , but in S𝐶 receives𝑚 messages from r which

tells it to anticipate a message from some variable participant. The original encoding uses the

samemessage payload from r to tell p to anticipate amessage, but we canmodify the construction

to let r send p a message encoding precisely which variable participant to anticipate a message

from. The eliminates what would otherwise constitute a bag RC violation for p, since r and the

variable participants can overtake p’s receptions. Finally, onto participant q, who is uninvolved

in S𝐶 and only involved in S𝑋 , q receives exactly 𝑛 messages from r, that constitute 𝑛 binary

choices between receiving𝑚𝑥𝑖 and𝑚𝑥𝑖 interrupted by send events from q. Thus, we can conclude

that the modified construction is non-implementable iff bagavailp,q,{q} (𝑚,𝑞3) holds in S𝜑 iff 𝜑 is

satisfiable.

Next, we consider the senderbox network architecture. Because peer-to-peer box imple-

mentability implies senderbox implementability, in this case we only need to independently es-

tablish that sbavailp,q,{q} (𝑚,𝑞3) holds in a senderbox setting. As illustrated above, senderbox

84

receivability can be undermined by messages from the same sender to different receivers, so we

need to check whether any such messages from p to other receivers appear in the subprotocols

S𝑋 and S𝐶 . It is easy to see that no such messages appear, and thus senderbox receivability still

holds.

From this, we conclude that for all considered communication models, implementability re-

mains co-NP complete for finite protocols.

Theorem 4.33. Implementability is co-NP complete for bag and senderbox network architectures.

4.6 Related Work

Network-parametric results from concurrency theory. Here, we discuss other results

that are parametric in a choice of network architecture. Bollig et al. [2021] and Giusto et al. [2023]

study the synchronizability problem for asynchronous communicationmodels. Synchronizability

in general asks whether an asynchronous implementation in the form of a communicating finite

state machine can be soundly and completely approximated in terms of its “synchronous” execu-

tions, where “synchronous” has multiple interpretations. Because our global protocol semantics

are synchronizable by definition, synchronizability is a necessary but insufficient condition for

any candidate implementation of a global protocol. Bollig et al. [2021] presents a framework

unifying several existing notions of synchronizability from the literature, such as universal and

existential 𝑘-boundedness [Genest et al. 2006a], send-synchronizability [Basu and Bultan 2011],

and weak 𝑘-synchrony [Bouajjani et al. 2018]. To complicate matters further, these existing no-

tions of synchronizability are studied under different communication models, including peer-to-

peer FIFO and mailbox, sometimes featuring unmatched send events. The proposed parametric

framework in [Bollig et al. 2021] is based on MSO logic and special treewidth, and establishes

decidability results of four notions of synchronizability for peer-to-peer and mailbox commu-

nication: weakly synchronous, weakly 𝑘-synchronous, existentially 𝑘-bounded, and universally

85

𝑘-bounded.

Giusto et al. [2023] generalize Bollig et al. [2021] to additional communication models and no-

tions of synchronizability. They define communicationmodels as sets of message sequence charts

(MSCs). Message sequence charts are partial order graphs on asynchronous events that contain

a total order per participant, and thus represent sets of executions: MSCs can a priori specify

unmatched sends and messages received out of order, but not branching behavior or recursion as

supported by GCLTS. This broad notion of communication model thus also includes causally or-

dered communication (co), which is not purely expressible in an architectural manner, but rather

should be considered a property of the specification. In other words, implementing a causally

ordered network requires a form of global coordinator that has information about causal histo-

ries. In addition to five communication models considered in our work (p2p,nn,onen,mb,asy),

[Giusto et al. 2023] also considers realizable with synchronous communication (rsc), which is

excluded from our asynchronous implementation fragments.

The authors establish a strict hierarchical order on these seven communication models in

terms of their linearizations: com1 < com2 means that any MSC specifying a linearization ex-

ecutable on com1 must also specify a linearization executable on com2. The authors solve the

(com, C)-synchronizability problem, where com is one of the seven communication models un-

der consideration, and C is a bounding class of MSCs that resemble synchronous communi-

cation, including the aforementioned weakly synchronous and weakly 𝑘-synchronous [Bouaj-

jani et al. 2018], universally and existentially 𝑘-bounded [Genest et al. 2006a]. The (com, C)-

synchronizability problem asks whether all asynchronous executions of a given MSC under com

are contained in the class C-synchronous.

Although our protocol semantics require existentially 1-bounded implementations, deciding

whether a given implementation is existentially 1-bounded does not amount to deciding whether

it implements a given global protocol. Non-implementable protocols can moreover have existen-

tially 1-bounded canonical implementations, as evidenced by the global protocol in Fig. 4.10.

86

p→q :o r→s :o

p→q :b r→s :b

Figure 4.10: A non-implementable protocol with an existentially 1-bounded canonical implementation.

There exists no CLTS that implements this protocol, however the canonical implementation

is existentially 1-bounded. Thus, existential 1-boundedness of the canonical implementation is a

necessary but insufficient condition for implementability.

Giusto et al. [2023] show that because all communication models in com are MSO-definable,

and Courcelle’s theorem applies to any graph of bounded special treewidth, the (com, C)-synchro-

nizability problem is decidable for any bounding class C that is MSO-definable and has bounded

special treewidth. Similarly to our approach, their generalization rests upon identifying an ab-

stract property of the communicationmodels and boundingmodels considered: MSO-definability

and treewidth boundedness.

Non-FIFO communication is considered alongside FIFO communication in [Lohrey 2003],

which studies the safe realizability problem of HMSCs. The problem definition targets com-

municating, finite state machines, and thus safe realizability is equivalent to implementability in

our setting. The class of HMSCs considered generalizes the finite fragment of global protocols

considered in this work along two dimensions: firstly, while specifications are required to sat-

isfy FIFO restrictions, they are not required to be 1-synchronous, meaning that they can specify

e.g. unmatched sends and out-of-order receptions; secondly, branching choice is unrestricted,

relaxing the sender-driven choice condition assumed by our work. Unlike our setting, however,

HMSCs are not given infinite word semantics. As discussed in [Stutz 2024a], sender-driven choice

is a boundary condition for decidability, and thus safe realizability is undecidable. Lohrey [2003]

shows that all (un)decidability results generalize to non-FIFO communication, which is equiva-

lent to our bag network architecture: the only ordering imposed is that messages are sent before

they are received. Because MSCs can distinguish identical communication events using different

87

event labels, the non-FIFO case additionally requires the assumption that MSCs do not spec-

ify message overtaking between the same pair of participants with the same message label. To

transfer upper bounds of safe realizability for FIFO communication to non-FIFO communication,

Lohrey makes use of a polynomial time construction that introduces a new participant (𝑝, 𝑞,𝑚)

for each sender, receiver and message value triple, and replaces all 𝑝 → 𝑞 : 𝑚 events in the

HMSC with 𝑝→ (𝑝, 𝑞,𝑚) :𝑚 followed by (𝑝, 𝑞,𝑚) → 𝑞 :𝑚. Because messages sent are immedi-

ately acknowledged, realizability is preserved, and because messages carry no content and thus

no ordering applies, the set of FIFO executions is equal to the set of non-FIFO executions. The

constructions for lower bounds on FIFO communication already enjoy the property of messages

sent being immediately acknowledged, and thus immediately transfer to the non-FIFO case. Our

generalization of completeness shares a similar reasoning pattern to Lohrey’s complexity gener-

alizations, in that both work by appealing to the lowest common denominator of linearizations,

namely 1-synchronous linearizations.

Chevrou et al. [2016] conduct a systematic study of the same seven communication models

considered by [Giusto et al. 2023]. They establish a hierarchy that differs from [Giusto et al.

2023] in the placement of FIFO 1-n (senderbox) and FIFO n-1 (mailbox) communication: accord-

ing to Chevrou et al. [2016], the two are incomparable, whereas according to Giusto et al. [2023],

senderbox subsumes mailbox. This discrepancy arises from a difference in the definition of com-

munication models, in particular, the difference between a universal and existential quantifier.

Chevrou et al. define communication models as sets of linearizations, requiring that all members

of the set satisfy the communication model, whereas Giusto et al. define communication models

as sets of MSCs, requiring that there exists an MSC linearization that satisfies the communication

model. Chevrou et al. focus more on establishing a taxonomy of communication models, and do

not study decision problems concerning one or more of the communication models.

88

Exploiting synchrony in protocol verification. Next, we give an overview of verification

approaches that leverage the attractive simplicity of synchrony in complementary ways to the

aforementioned “top-down” approaches. The decision problems of boundedness and synchroniz-

ability have been thoroughly studied in the literature [Finkel and Lozes 2023; Delpy et al. 2024;

Bollig et al. 2021], and are the inspiration behind several programming languages and verifica-

tion frameworks [von Gleissenthall et al. 2019; Kragl et al. 2020, 2018; Zhang et al. 2024]. Zhang

et al. [2024] present a framework, Kondo, for verifying safety properties of distributed protocols.

Kondo encourages the user to state and prove correct a synchronous version of an asynchronous,

distributed protocol, in which protocol transitions consist of a matching pair of send and receive

events specified atomically, in addition to state updates. The synchronous protocol’s safety can

then be established using inductive invariants. Kondo classifies inductive invariants into “Reg-

ular Invariants” that capture protocol-agnostic properties such as the monotonicity of a history

variable, and “Protocol Invariants”, which are protocol-specific and contain key insights into why

the protocol is correct. Given a synchronous specification and accompanying safety proof, Kondo

then partially automates the construction of an asynchronous specification and accompanying

safety proof in Dafny, with user assistance to complete proof obligations. The network architec-

ture assumed by Kondo across all protocols is that of a global message soup, fromwhichmessages

are deposited but never removed. Kondo provides empirical support that many protocols in prac-

tice, such as distributed locking and variants of Paxos, do not require more than a synchronous

inductive invariant to be proven correct.

In contrast to Kondo, which takes a synchronous specification as its starting point, the work

by von Gleissenthall et al. [2019] takes as input a collection of local implementations, and com-

putes a synchronization. They present a synchronization algorithm that is sound and complete

for a restricted class of local implementations called Stratified Pairwise Communication Proto-

cols (SPCP). SPCPs are structured as a series of non-interfering rounds: this means, for example,

that the SPCP formulation of two phase commit does not permit the coordinator to concurrently

89

issueVoteRequest messages and receive Vote messages. Their definition of synchronizability

differs from standard definitions [Finkel and Lozes 2023; Delpy et al. 2024; Bollig et al. 2021]: a

program is synchronizable if all halting states are final and have emptymessage buffers, which re-

sembles the standard definition of deadlock freedom. It is established by Finkel and Lozes [Finkel

and Lozes 2023] that synchronizability is decidable for general bag CLTS.

In the context of asynchronous networks, the notion of indistinguishability by two imple-

mentations can be alternatively viewed as a commutativity relation: two asynchronous events

commute if they can be reordered by a scheduler. The idea of using commutativity more gener-

ally to simplify program verification dates back to Lipton [Lipton 1975] and has been thoroughly

investigated, especially for concurrent programs with shared memory, see [Farzan 2023] for an

overview. With a widened space of commutativity relations, the challenge in employing them

consists of identifying ones that are advantageous to verification. Farzan et al. [2023] show how

to contextually exploit the program and property at hand to find the right commutativity relation.

Synchrony. Top-down verification for synchronous communication models has been an active

topic of study, prominently in the form of synchronous multiparty session types [Udomsrirun-

gruang and Yoshida 2025; Peters and Yoshida 2024; Chen et al. 2024; Ghilezan et al. 2019a]. In

§4.7, we discuss variations of synchronous communication, Zielonka’s asynchronous automata,

and their connection to current and future work.

4.7 Discussion

We conclude this chapter with a discussion of synchronous communication models and our con-

nection to Zielonka automata.

Synchronous communication. In this paper, we studied asynchronous communication mod-

els that are definable architecturally, i.e. in terms of communication topology and channel data

90

structure. This is sometimes referred to as the “operational” view of communication models,

in contrast to a denotational view, which includes communication models such as causally or-

dering. We have excluded synchronous communication models from our investigation. Within

synchronous communication, a distinction is to be found between channel-less rendezvous syn-

chronous communication, à la Zielonka’s asynchronous automata [Zielonka 1987], and syn-

chronous communication that is in essence asynchronous communication with a global channel

bound of size 1, à la rsc from [Chevrou et al. 2016] and [Giusto et al. 2023]. A rendezvous syn-

chronous CLTS omits channel configurations, and replaces the transition relation with a single

rule for ®𝑠 p→q:𝑚−−−−−→ ®𝑠 ′, defined as:

(®𝑠p, p ⊲ q!𝑚, ®𝑠 ′p) ∈ 𝛿p ∧ (®𝑠q, q ⊳ p?𝑚, ®𝑠 ′q) ∈ 𝛿q ∧ ∀ r ∈ P . r ≠ p ∧ r ≠ q =⇒ ®𝑠r = ®𝑠 ′r .

In the rendezvous model, also known as the reader-writer model of synchrony, the sender and

receiver in an event jointly decide on the transition to execute. Rendezvous synchrony in essence

voids the designations of sender and receiver: both parties have equal power to select or veto a

communication. In contrast, in rsc, the autonomy to send a message remains with the sender. To

illustrate this point, we revisit the Send Validity violating protocol from [Li et al. 2023a], depicted

in Fig. 4.11.

p→q :o r→q :o

p→q :b r→q :b

Figure 4.11: A global protocol Ssend imple-

mentable under rendezvous synchrony, but not

under rsc synchrony.

p→q :o r→s :o

p→q :b r→s :b

Figure 4.12: A global protocol Ssend′ not imple-

mentable under either rendezvous synchrony

or rsc synchrony, but implementable by asyn-

chronous automata.

Ssend is implementable with a rendezvous synchronous CLTS, but non-implementable on any

implementation of rsc synchrony. On the rscmodel, participant r can send either o or b, and can

91

thus yield the execution trace p⊲q!o ·q⊳p?o ·r⊲q!b; on the rendezvous model, q can communicate

p and q’s joint branch selection to r and veto r’s proposal to fire the wrong transition.

Perhaps surprisingly, even if we completely hide p’s choice from participants in the second

transition, as shown in Fig. 4.12, Ssend′ is still implementable using Zielonka’s asynchronous

automata. This is because, as pointed out in [Akshay et al. 2013], asynchronous automata are

not “purely” distributed: its transition relations and final states are specified globally. Thus,

an implementation of Ssend′ can simply exclude the final configurations reached on the traces

p→ q : o · r→ s : b and p→ q : b · r→ s : o from the set of final states. The global nature of

asynchronous automata transitions and final states allows local participants to perform actions

that are not visible to the language, potentially leading to deadlocking traces.

Akshay et al. [Akshay et al. 2013] define a fragment of “realistic” asynchronous automata that

rules out this definitional loophole. Realistic asynchronous automata satisfy transition determin-

ism: there is at most one post-state for each pre-state and transition label pair, deadlock-freedom:

each reachable state is either final or has outgoing transitions, and local acceptance: final states

only contain states that are final in each participant’s local automaton. The authors then consider

the realizability problem of regular, I-closed global specifications targeting realistic asynchronous

automata. Zielonka’s theorem, established in [Zielonka 1987] and optimized in [Cori et al. 1993;

Diekert and Rozenberg 1995; Mukund and Sohoni 1997; Genest et al. 2010], states that every

regular, I-closed language has an implementation in the form of an asynchronous automaton.

Thus, realizability in [Akshay et al. 2013] amounts to identifying additional restrictions on the

global specification such that the asynchronous automaton obtained from an optimized, standard

construction [Genest et al. 2010] can be transformed to satisfy the realistic assumptions.

Notably, the Send Coherence condition employed in [Li et al. 2025b] and this work can be

viewed as a special instance of the third semantical condition characterizing realizability, causally

closed [Akshay et al. 2013, Definition 9, (LC3)]. Asynchronous automata further generalize the

sender and receiver of a communication event 𝑎 to a set of participants, denoted dom(𝑎). (LC3)

92

states that whenever 𝑤 is a prefix of the specification language, given an event 𝑐 , if for every

participant in dom(𝑐) there exists another prefix 𝑣𝑝 such that 𝑤 and 𝑣𝑝 are identical according

to 𝑝’s local view, then 𝑤𝑐 is also a prefix of the specification language. Send Coherence is (AC3)

applied only to asynchronous send events, whose only participant is the sender.

Given that in both our work and [Akshay et al. 2013], the implementationmodels share salient

similarities, and the realizability characterizations share a salient condition despite the apparent

difference between synchronous vs. asynchronous communication, we are optimistic about the

possibility of an implementability characterization in our setting that simultaneously handles

synchronous and asynchronous communication.

Symbolic protocols. Finally, we observe that our generalized CC can be used to derive sym-

bolic algorithms for checking implementability of symbolic protocols with dependent refine-

ments, featuring infinite states and data, as demonstrated in Section 3.4 and implemented in

[Li et al. 2025a]. One simply needs to update Symbolic Receive Coherence with the generalized

condition, and replace the symbolic avail predicate with the appropriate version for the network

architecture under consideration, as detailed in §4.5.

93

5 | Synthesis

5.1 Introduction

The synthesis problem asks to compute a candidate implementation from an implementable

global protocol. We show that synthesis amounts to a generalized subset construction modulo

the global protocol fragment, which can be computed in PSPACE. We present a sound and com-

plete synthesis algorithm for finite protocols using a standard automata-theoretic construction.

We then discuss fragments of symbolic protocols for which synthesis is decidable.

5.2 Synthesizing Finite Implementations

The construction of the candidate implementation for a finite protocol is carried out in two steps.

First, for each participant p ∈ P, we define an intermediate state machine GAut(G)↓p that is a

homomorphism of GAut(G). We call GAut(G)↓p the projection by erasure for p, defined below.

Definition 5.1 (Projection by Erasure). Let G be a global type with state machine GAut(G) =

(𝑄G, Γ, 𝛿G, 𝑞0,G, 𝐹G). For each role p ∈ P, we define the state machine GAut(G)↓p = (𝑄G, Σp ⊎

{𝜀}, 𝛿↓, 𝑞0,G, 𝐹G) where 𝛿↓ ≔ {𝑞
split(𝑎)⇓Σp−−−−−−−−−→ 𝑞′ | 𝑞 𝑎−→ 𝑞′ ∈ 𝛿G}. By definition of split(-), it holds

that split(𝑎)⇓Σp
∈ Σp ⊎ {𝜀}.

Then, we determinize GAut(G)↓p via a standard subset construction to obtain a deterministic

local state machine for p.

94

Definition 5.2 (Subset Construction). Let G be a global type and p be a role. Then, the subset

construction for p is defined as

C (G, p) =
(
𝑄p, Σp, 𝛿p, 𝑠0,p, 𝐹p

)
where

• 𝛿 (𝑠, 𝑎) ≔ {𝑞′ ∈ 𝑄G | ∃𝑞 ∈ 𝑠, 𝑞
𝑎−→ 𝜀−→∗ 𝑞′ ∈ 𝛿↓}, for every 𝑠 ⊆ 𝑄G and 𝑎 ∈ Σp

• 𝑠0,p ≔ {𝑞 ∈ 𝑄G | 𝑞0,G
𝜀−→∗ 𝑞 ∈ 𝛿↓},

• 𝑄p ≔ lfp⊆{𝑠0,p}𝜆𝑄.𝑄 ∪ {𝛿 (𝑠, 𝑎) | 𝑠 ∈ 𝑄 ∧ 𝑎 ∈ Σp} \ {∅} , and

• 𝛿p ≔ 𝛿 |𝑄p×Σp

• 𝐹p ≔ {𝑠 ∈ 𝑄p | 𝑠 ∩ 𝐹G ≠ ∅}

Note that the construction ensures that𝑄p only contains subsets of𝑄G whose states are reach-

able via the same traces, i.e. we typically have |𝑄p | ≪ 2|𝑄G | .

Lemma 5.3. Let G be a global type, r be a role, and C (G, r) be its subset construction. If 𝑤 is a

trace of GAut(G), split(𝑤)⇓Σr
is a trace of C (G, r). If 𝑢 is a trace of C (G, r), there is a trace𝑤 of

GAut(G) such that split(𝑤)⇓Σr
= 𝑢. It holds that L(G)⇓Σr

= L(C (G, r)).

Using this lemma, we show that the CSM {{C (G, p)}}p∈P preserves all behaviors of G.

Lemma 5.4. For all global types G, L(G) ⊆ L({{C (G, p)}}p∈P).

We briefly sketch the proof here. Given that {{C (G, p)}}p∈P is deterministic, to prove language

inclusion it suffices to prove the inclusion of the respective prefix sets:

pref(L(G)) ⊆ pref(L{{C (G, p)}}p∈P)

Let 𝑤 be a word in L(G). If 𝑤 is finite, membership in L({{C (G, p)}}p∈P) is immediate from

the claim above. If 𝑤 is infinite, we show that 𝑤 has an infinite run in {{C (G, p)}}p∈P using

95

König’s Lemma. We construct an infinite graph G𝑤 (𝑉 , 𝐸) with 𝑉 ≔ {𝑣𝜌 | trace(𝜌) ≤ 𝑤} and

𝐸 ≔ {(𝑣𝜌1, 𝑣𝜌2) | ∃ 𝑥 ∈ Σ. trace(𝜌2) = trace(𝜌1) · 𝑥}. Because {{C (G, p)}}p∈P is deterministic,

G𝑤 is a tree rooted at 𝑣𝜀 , the vertex corresponding to the empty run. By König’s Lemma, every

infinite tree contains either a vertex of infinite degree or an infinite path. Because {{C (G, p)}}p∈P

consists of a finite number of communicating state machines, the last configuration of any run

has a finite number of next configurations, and G𝑤 is finitely branching. Therefore, there must

exist an infinite path in G𝑤 representing an infinite run for𝑤 , and thus𝑤 ∈ L({{C (G, p)}}p∈P).

The proof of the inclusion of prefix sets proceeds by structural induction and primarily relies

on Lemma 5.3 and the fact that all prefixes in L(G) respect the order of send before receive

events.

5.3 Synthesizing General Implementations

Recall from our proof of soundness in Chapter 3 that we chose the canonical implementation as

our witness to implementability. In other words, if a protocol satisfies CC, then the canonical im-

plementation implements it. When proving completeness, we showed that any implementation

would cause a violation to protocol fidelity or deadlock-freedom. In other words, if a protocol

violates CC, then no implementation exists. Having established that CC precisely characterizes

implementable protocols, we combine these observations to yield the following corollary:

Corollary 5.5 (Canonical implementation is all you need). A protocol is implementable if and

only if the canonical implementation implements it.

For an implementable protocol, this fact serves as a criterion for synthesizing implemen-

tations: any implementation that is canonical will suffice. For the general class of protocols,

synthesis is undecidable. However, for many expressive fragments of protocols that still feature

infinite data, e.g. corresponding to symbolic finite automata [D’Antoni and Veanes 2017; Shen

et al. 2023] and certain classes of timed and register automata [Bertrand et al. 2015; Clemente

96

et al. 2022], one can simply use off-the-shelf determinization algorithms to compute canonical

implementations [Veanes et al. 2010; Veanes and Bjørner 2012; Bertrand et al. 2018]. Moreover,

one implication of our discussion of controllability in §4.3, is that the chosen network architecture

for the implementability problem does not affect synthesis: for all considered network architec-

tures, the global protocol is implementable if and only if the canonical implementation obtainable

by local projection implements it.

97

6 | Subtyping

6.1 Introduction

In this chapter, we study the subtyping problem for multiparty session types with sender-driven

choice. In MST frameworks, the implementability and synthesis problems are solved simultane-

ously using a projection operator, which is a partial map from global types to a collection of local

implementations. Projection operators compute a correct implementation for a given global type

if one exists. However, projection operators only compute one candidate out of many possible

implementations for a given global type, which narrows the usability of MST frameworks. As we

demonstrate below, substituting this candidate can in some cases achieve an exponential reduc-

tion in the size of the local implementation. Furthermore, applications may sometimes require

that an implementation produce only a subset of the global type’s specified behaviors. We refer to

this property as subprotocol fidelity. For example, a general client-server protocol may customize

the set of requests it handles to the specific devices it runs on. Subtyping reintroduces this flexibil-

ity into MST frameworks, by characterizing when an implementation can replace another while

preserving desirable correctness guarantees.

Formally, a subtyping relation is a reflexive and transitive relation that respects Liskov and

Wing’s substitution principle [Liskov and Wing 1994]: 𝑇 ′ is a subtype of𝑇 when𝑇 ′ can be safely

used in any context that expects a term of type 𝑇 . While implementability for MSTs was orig-

inally defined on syntactic local types [Honda 1993; Honda et al. 2008], other implementation

98

models have since been investigated, including communicating session automata [Deniélou and

Yoshida 2012] and behavioral contracts [Castagna et al. 2009]. We motivate our work with the

observation that a subtyping relation is only as powerful as its notion of safety, and the expres-

sivity of its underlying implementation model. Existing subtyping relations adopt a notion of

safety that is agnostic to a global specification. For example, [Barbanera and De’Liguoro 2015;

Bernardi and Hennessy 2016] define safety as the successful completion of a single role in binary

sessions, [Lange and Yoshida 2019] defines safety as eventual reception and progress of all roles

in multiparty sessions, and [Ghilezan et al. 2019b] defines safety as the termination of all roles in

multiparty sessions. As a result, these subtyping relations eagerly reject subtypes that are viable

for the specific global type at hand. In addition, existing implementation models are restricted

to local types with directed choice for branching, or equivalent representations thereof [Bravetti

and Zavattaro 2021], which prohibit a role from sending messages to or receiving messages from

different participants in a choice. This restrictiveness undermines the flexibility that subtyping

is fundamentally designed to provide.

In this chapter, we present a subtyping relation that extends prior work along both dimen-

sions. We define a stronger notion of safety with respect to a given global type: a substitution is

safe if in all well-behaved contexts, the resulting implementation satisfies both deadlock freedom

and subprotocol fidelity. We assume an implementation model of unrestricted communicating

state machines (CSMs) [Brand and Zafiropulo 1983] communicating via FIFO channels, which

subsumes implementation models in prior work [Lange and Yoshida 2019; Ghilezan et al. 2019b;

Cutner et al. 2022]. We demonstrate that this generalization renders existing subtyping relations

which are precise for a restrictive implementation model incomplete. As a result of both ex-

tensions, our subtyping relation requires reasoning about available messages [Majumdar et al.

2021a] for completeness, a novel feature that is absent from existing subtyping relations.

Our result applies to global types with sender-driven choice, which generalize global types

from their original formulation with directed choice [Honda et al. 2008], and borrows insights

99

from the sound and complete projection operator for this class of global types proposed in [Li

et al. 2023a].

Contributions. In this chapter, we present the first precise subtyping relation that guarantees

deadlock freedom and subprotocol fidelity with respect to a global type, and that assumes an un-

restricted, asynchronous CSM implementation model. We solve the Protocol Verification problem

and the Protocol Refinement problem with respect to global type G and a set of roles P:

1. Protocol Verification: Given a CSM A, does A implement G?

2. Protocol Refinement: Let p be a role and let 𝐵 be a safe implementation for p in any well-

behaved context for G. Given 𝐴, can 𝐴 safely replace 𝐵 in any well-behaved context for

G?

We exploit the connection between MST subtyping and CSM refinement to formulate concise

conditions that are directly checkable on candidate state machines. Using this characterization,

we show that both problems are decidable in co-NP, revising an incorrect complexity result pub-

lished in [Li et al. 2024].

6.2 Motivation

We first showcase that sound and complete projection operators can yield local implementations

that are exponential in the size of its global type, but can be reduced to constant size by subtyping.

We then demonstrate the restrictiveness of existing subtyping relations both in terms of their

notion of safety and their implementation model.

Subset projection with exponentially many states. We first construct a family of imple-

mentable global types G𝑛 for 𝑛 ∈ N such that G𝑛 has size linear in 𝑛 and the deterministic finite

state machine for q that recognizes the projection of the global language onto q’s alphabet Σq,

denoted L(G𝑛)⇓Σq
, has size exponential in 𝑛.

100

The construction of the G𝑛’s builds on the regular expression (𝑎∗(𝑎𝑏∗)𝑛𝑎)∗, which can only

be recognized by a deterministic finite state machine that grows exponentially with 𝑛 [Ellul et al.

2005, Thm. 11].

First, we construct the part for (𝑎𝑏∗)𝑖𝑎 recursively. In global types, p→ q :𝑚 denotes role p

sending a message𝑚 to role q, + denotes choice, 𝜇𝑡 binds a recursion variable 𝑡 that can be used

in the continuation, and 0 denotes termination.

𝐺𝑖 ≔ p→q :𝑎. 𝜇𝑡3,𝑖 . +

p→r :𝑚3. p→q :𝑏. 𝑡3,𝑖

p→r :𝑛3. 𝐺𝑖−1

for 𝑖 > 0 and 𝐺0 ≔ p→q :𝑎. 𝑡1

Here, each 𝐺𝑖 for 𝑖 > 0 generates (𝑎𝑏∗) and 𝐺0 adds the last 𝑎. Role p’s choice to send either𝑚3

or 𝑛3 to r respectively encodes the choice to continue iterating 𝑏’s or to stop in 𝑏∗; q however, is

not involved in this exchange and thus q’s local language is isomorphic to (𝑎𝑏∗)𝑖𝑎.

Next, we define some scaffolding 𝐺 (-) for the outermost Kleene Star and the first 𝑎∗:

𝐺 (𝐺′) ≔ 𝜇𝑡1. +


p→r :𝑚1. 𝜇𝑡2. +


p→r :𝑚2. p→q :𝑎. 𝑡2

p→r :𝑛2. 𝐺
′

p→r :𝑛1. 0

.

We combine both to obtain the family G𝑛 ≔ 𝐺 (𝐺𝑛).

As G𝑛 is implementable, the subset projection [Li et al. 2023a] for each role is defined. One

feature of the implementations computed by this projection operator is local language preser-

vation, meaning that the language recognized by the local implementation is precisely the pro-

jection of the global language onto its alphabet, e.g. L(G𝑛)⇓Σq
for role q with alphabet Σq. In

this case, because L(G𝑛)⇓Σq
can only be recognized by a deterministic finite state machine with

size exponential in 𝑛, the corresponding local language preserving implementation also has size

exponential in 𝑛.

However, not all implementations need to satisfy local language preservation. Consider the

type 𝜇𝑡 .(p→ q : o. 𝑡 + p→ q : b. 0). The projection of the global language onto q limits q to only

101

p ⊳ q?𝑚 p ⊳ r?𝑚

p ⊳ r?𝑚

(a) 𝐴

p ⊳ q?𝑚 p ⊳ r?𝑚

(b) 𝐵

Figure 6.1: Two state machines for role q

receiving a sequence of o messages terminated by a b message. However, an implementation

for q can rely on p to send correct sequences of messages, and instead accept any message that it

receives. A similar pattern arises in the familyG𝑛 , where the exponentially-sized implementation

for role q can simply be substituted with an automaton that allows to receive any message from

p.

The restrictiveness of existingMST subtyping relations. Consider the two implementations

for role p, represented as finite state machines 𝐴 and 𝐵 in Figs. 6.1a and 6.1b. State machine 𝐴

embodies the idea of input covariance [Gay and Hole 2005] by adding receive actions, namely

p ⊳ q?𝑚 , which denotes role p receiving a message 𝑚 from role q. But is it the case that 𝐴 is

a subtype of 𝐵? A preliminary answer based on prior work [Lange and Yoshida 2016; Ghilezan

et al. 2019b] is no, for the reason that 𝐴 falls outside of the implementation models considered in

these works: the initial state in𝐴 contains outgoing receive transitions from two distinct senders,

q and r, and one of the final states contains an outgoing transition. Thus, there exists no local

type representation of 𝐴.

As a first step, let us generalize the implementation model to machines with arbitrary finite

state control, and revisit the question. It turns out that the answer now depends on what protocol

role p, alongside the other roles in the context, is following. Consider the two global types

G1 ≔ q→p :𝑚. r→p :𝑚. 0 and G2 ≔ q→p :𝑚. 0 .

We observe that 𝐴 is a subtype of 𝐵 under the context of G2, but not under the context of G1.

Suppose that roles q and r are both following G1, and thus both roles send a message 𝑚 to p.

Under asynchrony, the two messages can arrive in p’s channel in any order; this holds even in

102

a synchronous setting. Therefore, there exists an execution trace in which p takes the transition

labeled p ⊳ r?𝑚 in 𝐴 and first receives from r. Role p then finds itself in a final state with a

pending message from q that it is unable to receive, thus causing a deadlock in the CSM. On the

other hand, if qwere followingG2, the addition of the receive transition p ⊳ r?𝑚 is safe because it

is never enabled, and thus𝐴 can safely compose with any context followingG2 without violating

protocol fidelity and deadlock freedom.

6.3 Deciding Protocol Verification

Protocol Verification asks: Given a CSM A, does A implement G? For two CSMs A and B, we

say that A refines B if and only if every trace in A is a trace in B, and a trace in A terminates

maximally in A if and only if it terminates maximally in B. If A and B refine each other, we

say that they are equivalent. Further, in the case that B is deadlock-free, one can simplify the

condition to the following: every trace in A is a trace in B, and if a trace terminates in A, then

it terminates in B and is maximal in A.

Using the fact that {{P (G, p)}}p∈P is an implementation for G, we can recast Protocol Verifi-

cation in terms of CSM refinement. Therefore, the question amounts to asking whether A and

{{P (G, p)}}p∈P are equivalent.

Our goal is then to present a characterization 𝐶1 that satisfies the following:

Theorem6.1. LetG be an implementable global type andA be a CSM. Then, the subset construction

{{P (G, p)}}p∈P and A are equivalent if and only if 𝐶1 is satisfied.

Wemotivate our characterization for Protocol Verification using a series of examples. Consider

the following simple global type G1:

G1 ≔ +

p→q :b. q→p :b. 0

p→q :m. q→p :m. 0

103

p ⊲ q!m

p ⊲
q!b

p ⊳ q?m

p ⊳ q?b

(a) P (G1, p)

p ⊲ q!m
p ⊲ q!b

p ⊳ q?m
p ⊳ q?b

(b) 𝐴1

p ⊲ q!m
p ⊲ q!b

p ⊳ _?_

(c) 𝐴2

p ⊲ q!b
p ⊲ q!m

p ⊳
q?o

p ⊲ q!o

p ⊳ _?_

(d) 𝐴3

Figure 6.2: Subset construction of G1 onto p and three alternative implementations

p ⊲ q!m

p ⊲
q!b

p ⊲ q!o

p ⊲ q!o

p ⊳ q?m

p ⊳ q?b

(a) P (G2, p)

p ⊲ q!m

p ⊲
q!b

p ⊲
q!o

p ⊲ q!o
p ⊳ _?_

(b) 𝐴4

p ⊲ q!m
p ⊲ q!b p ⊲ q!o

p ⊳ _?_

(c) 𝐴5

Figure 6.3: Subset construction of G2 onto p and two alternative implementations

This global type is trivially implementable; the subset construction for role q obtained by the

projection operator in [Li et al. 2023a] is depicted in Fig. 6.2a. Clearly, in any CSM implementing

G1, the subset construction can be replaced with the more compact state machine 𝐴1, shown in

Fig. 6.2b.

For a local state machine in a CSM, control flow is determined by both the local transition

relation and the global channel state. However, in some cases, the local information is redundant:

the role’s channel contents alone are enough to enforce that it produces the correct behaviors.

In the example above, after p chooses to send q either m or b, q will guarantee that the correct

message, i.e. the same one, is sent back to p. Role p’s state machine can rely on its channel

contents to follow the protocol – it does not need separate control states for each message. In

fact, we can further replace p’s control states after sending with an accepting universal receive

state, as shown in𝐴2 in Fig. 6.2c. Finally, we can add send transitions from unreachable states, as

shown in 𝐴3 in Fig. 6.2d.

Similar patterns arise for send actions. Consider the following variation of the first global

104

type, G2:

G2 ≔ +

p→q :b. p→r :o. q→p :b. 0

p→q :m. p→r :o. q→p :m. 0

The subset construction from [Li et al. 2023a] yields the state machine for p shown in Fig. 6.3a.

Our reasoning above shows that 𝐴4, depicted in Fig. 6.3b, is a correct alternative implemen-

tation for p. Now observe that the pre-states of the two p ⊲ q!o transitions can be collapsed

because their continuations are identical. This yields another correct alternative implementation

𝐴5, shown in Fig. 6.3c.

Informally, the subset construction takes a “maximalist” approach, creating as many distinct

states as possible from the global type, and checking whether they are enough to guarantee that

the role behaves correctly. However, sometimes this maximalism creates redundancy: just be-

cause two states are distinct according to the global type does not mean they need to be. In

these cases, an implementation has the flexibility to merge certain distinct states together, or add

transitions to a state. We wish to precisely characterize when such modifications to local state

machines preserve protocol fidelity and deadlock freedom.

Our conditions for𝐶1 are derived from the Send and Receive Validity conditions that precisely

characterize implementability for global types, given in [Li et al. 2023a]. We present relevant

definitions below.

Definition 6.2 (Available messages [Majumdar et al. 2021a]). The set of available messages is

recursively defined on the structure of the global type. For completeness, we need to unfold the

distinct recursion variables once. For this, we define a map get𝜇 from variable to subterms and

write get𝜇G for get𝜇 (G):
get𝜇 (0) ≔ [] get𝜇 (𝑡) ≔ [] get𝜇 (𝜇𝑡 .𝐺) ≔ [𝑡 ↦→ 𝐺] ∪ get𝜇 (𝐺)

get𝜇 (∑𝑖∈𝐼 p→q𝑖 :𝑚𝑖 .𝐺𝑖) ≔
⋃

𝑖∈𝐼 get𝜇 (𝐺𝑖)

The function𝑀
B,𝑇
(-...) keeps a set of unfolded variables 𝑇 , which is empty initially.

105

𝑀
B,𝑇
(0...) ≔ ∅ 𝑀

B,𝑇
(𝜇𝑡 .𝐺...) ≔ 𝑀

B,𝑇∪{𝑡 }
(𝐺...) 𝑀

B,𝑇
(𝑡 ...) ≔


∅ if 𝑡 ∈ 𝑇

𝑀
B,𝑇∪{𝑡 }
(get𝜇G (𝑡) ...)

if 𝑡 ∉ 𝑇

𝑀
B,𝑇
(∑𝑖∈𝐼 p→q𝑖:𝑚𝑖 .𝐺𝑖 ...) ≔


⋃

𝑖∈𝐼 ,𝑚∈V (𝑀B,𝑇(𝐺𝑖 ...) \ {p ⊲ q𝑖 !𝑚}) ∪ {p ⊲ q𝑖 !𝑚𝑖} if p ∉ B⋃
𝑖∈𝐼 𝑀

B∪{q𝑖 },𝑇
(𝐺𝑖 ...) if p ∈ B

Wewrite𝑀B(𝐺...) for𝑀
B,∅
(𝐺...) . IfB is a singleton set, we omit set notation and write𝑀p

(𝐺...) for𝑀
{p}
(𝐺...) .

Intuitively, the available messages definition captures all of the messages that can be at the

head of their respective channels when a particular role is blocked from taking further transitions.

For notational convenience, we define the origin and destination of a transition generalized

from the subset construction automaton.

Definition 6.3 (Transition Origin and Destination). Let G be a global type and let 𝛿↓ be the

transition relation of GAut(G)↓p. For 𝑥 ∈ Σp and 𝑠, 𝑠′ ⊆ 𝑄G, we define the set of transition origins

tr-orig(𝑠 𝑥−→ 𝑠′) and transition destinations tr-dest(𝑠 𝑥−→ 𝑠′) as follows:

tr-orig(𝑠 𝑥−→ 𝑠′) ≔ {𝐺 ∈ 𝑠 | ∃𝐺′ ∈ 𝑠′. 𝐺 𝑥−→∗ 𝐺′ ∈ 𝛿↓} and

tr-dest(𝑠 𝑥−→ 𝑠′) ≔ {𝐺′ ∈ 𝑠′ | ∃𝐺 ∈ 𝑠 .𝐺 𝑥−→∗ 𝐺′ ∈ 𝛿↓} .

In Chapter 3, we showed that G is implementable if and only if the subset construction CSM

{{C (G, p)}}p∈P satisfies Send Validity, Receive Validity and No Mixed Choice for each C (G, p).

Definition 6.4 (SendValidity). C (G, p) satisfies Send Validity iff every send transition 𝑠
𝑥−→ 𝑠′ ∈ 𝛿p

is enabled in all states contained in 𝑠:

∀𝑠 𝑥−→ 𝑠′ ∈ 𝛿p. 𝑥 ∈ Σp,! =⇒ tr-orig(𝑠 𝑥−→ 𝑠′) = 𝑠 .

106

Definition 6.5 (Receive Validity). C (G, p) satisfies Receive Validity iff no receive transition is

enabled in an alternative continuation that originates from the same source state:

∀𝑠
p⊳q1?𝑚1−−−−−−→ 𝑠1, 𝑠

p⊳q2?𝑚2−−−−−−→ 𝑠2 ∈ 𝛿p.

q1 ≠ q2 =⇒ ∀𝐺2 ∈ tr-dest(𝑠
p⊳q2?𝑚2−−−−−−→ 𝑠2). q1 ⊲ p!𝑚1 ∉ 𝑀

p
(𝐺2 ...) .

We wish to adapt these conditions to define 𝐶1 on arbitrary state machines, not the subset

construction for each participant.

We first present a state decoration function which maps local states in an arbitrary determin-

istic finite state machine to sets of global states in G. Intuitively, state decoration captures all

global states that can be reached in the projection by erasure automaton GAut(G)↓q on the same

prefixes that reach the present state in the local state machine.

Definition 6.6 (State decorationwith respect toG). Let p ∈ P be a role and let𝐴 = (𝑄, Σp, 𝑠0, 𝛿, 𝐹)

be a deterministic finite state machine for p. Let GAut(G)↓p = (𝑄G, Σp ⊎ {𝜀}, 𝛿↓, 𝑞0,G, 𝐹G) be p’s

projection by erasure state machine for G. We define a total function 𝑑G,𝐴 : 𝑄 → 2𝑄G that maps

each state in 𝐴 to a subset of states in GAut(G)↓p such that:

𝑑G,𝐴,p(𝑠) = {𝑞 ∈ 𝑄G | ∃𝑢 ∈ Σ∗p. 𝑠0
𝑢−→∗ 𝑠 ∈ 𝛿 ∧ 𝑞0,G

𝑢−→∗ 𝑞 ∈ 𝛿↓} .

We refer to 𝑑G,𝐴,p(𝑠) as the decoration set of 𝑠 , and omit the subscripts G, 𝐴, p when clear from

context.

Remark 6.7. Note that the subset construction can be viewed as a special state machine for

which the state decoration function is the identity function. In other words, for all 𝑠 ∈ 𝑄p where

𝑄p is the set of states of C (G, p), 𝑑 (𝑠) = 𝑠 .

We are now equipped to present 𝐶1.

107

Definition 6.8 (𝐶1). Let G be a global type and A be a CSM. 𝐶1 is satisfied when for all p ∈ P,

with 𝐴p = (𝑄p, Σp, 𝛿p, 𝑠0,p, 𝐹p) denoting the state machine for p in A, the following conditions

hold:

• Send Decoration Validity:

every send transition 𝑠
𝑥−→ 𝑠′ ∈ 𝛿p is enabled in all states decorating 𝑠:

∀𝑠 p⊲q!𝑚−−−−→ 𝑠′ ∈ 𝛿p. tr-orig(𝑑 (𝑠) p⊲q!𝑚−−−−→ 𝑑 (𝑠′)) = 𝑑 (𝑠).

• Receive Decoration Validity: no receive transition is enabled in an alternative continuation

originating from the same state:

∀𝑠
p⊳q1?𝑚1−−−−−−→ 𝑠1, 𝑠

𝑥−→ 𝑠2 ∈ 𝛿p. 𝑥 ≠ p ⊳ q1?_ =⇒

∀𝐺′ ∈ tr-dest(𝑑 (𝑠) 𝑥−→ 𝑑 (𝑠2)) . q1 ⊲ p!𝑚1 ∉ 𝑀
p
(𝐺 ′ ...) .

• Transition Exhaustivity: every transition that is enabled in some global state decorating 𝑠

must be an outgoing transition from 𝑠:

∀𝑠 ∈ 𝑄. ∀𝐺 𝑥−→∗ 𝐺′ ∈ 𝛿↓. 𝐺 ∈ 𝑑 (𝑠) =⇒ ∃𝑠′ ∈ 𝑄. 𝑠
𝑥−→ 𝑠′ ∈ 𝛿p.

• Final State Validity: a reachable state with a non-empty decorating set is final if its deco-

rating set contains a final global state:

∀𝑠 ∈ 𝑄. 𝑑 (𝑠) ≠ ∅ =⇒ (𝑑 (𝑠) ∩ 𝐹G ≠ ∅ =⇒ 𝑠 ∈ 𝐹p).

We want to show the following equivalence to prove Theorem 6.1:

𝐶1⇔ A refines {{P (G, p)}}p∈P and {{P (G, p)}}p∈P refines A.

We address soundness (the forward direction) and completeness (the backward direction) in

turn. Soundness states that 𝐶1 is sufficient to show that A preserves all behaviors of the subset

construction, and does not introduce new behaviors.

108

We say that a state machine 𝐴 for role p satisfies Local Language Inclusion if it satisfies

L(G)⇓Σp
⊆ L(𝐴). The following lemma, proven in the appendix, establishes that Local Lan-

guage Inclusion follows from Transition Exhaustivity and Final State Validity.

Lemma 6.9. Let 𝐴p = (𝑄p, Σp, 𝛿p, 𝑠0,p, 𝐹p) denote the state machine for p in A. Then, Transition

Exhaustivity and Final State Validity imply L(G)⇓Σp
⊆ L(𝐴p).

The fact thatA preserves behaviors follows immediately from Local Language Inclusion. The

fact thatA does not introduce new behaviors, on the other hand, is enforced by Send Decoration

Validity and Receive Decoration Validity.

In the soundness proof for each of our conditions, we prove refinement via structural induc-

tion on traces. We show refinement in two steps, first showing that any trace in one CSM is a

trace in the other, and then showing that any terminated trace in one CSM is terminated in the

other and maximal.

We restate two key definitions used in the soundness proof.

Definition 6.10 (Intersection sets). Let G be a global type and GAut(G) be the corresponding

state machine. Let p be a role and𝑤 ∈ Σ∗ be a word. We define the set of possible runs RG
p (𝑤) as

all maximal runs of GAut(G) that are consistent with p’s local view of𝑤 :

RG
p (𝑤) ≔ {𝜌 is a maximal run of GAut(G) | 𝑤⇓Σp

≤ split(trace(𝜌))⇓Σp
} .

We denote the intersection of the possible run sets for all roles as

𝐼 (𝑤) ≔
⋂
p∈P

RG
p (𝑤) .

Definition 6.11 (Unique splitting of a possible run). Let G be a global type, p a role, and𝑤 ∈ Σ∗

109

a word. Let 𝜌 be a possible run in RG
p (𝑤). We define the longest prefix of 𝜌 matching𝑤 :

𝛼′ ≔ max{𝜌′ | 𝜌′ ≤ 𝜌 ∧ split(trace(𝜌′))⇓Σp
≤ 𝑤⇓Σp

} .

If 𝛼′ ≠ 𝜌 , we can split 𝜌 into 𝜌 = 𝛼 ·𝐺 𝑙−→ 𝐺′ · 𝛽 where 𝛼′ = 𝛼 ·𝐺 , 𝐺′ denotes the state following

𝐺 , and 𝛽 denotes the suffix of 𝜌 following 𝛼 · 𝐺 · 𝐺′. We call 𝛼 · 𝐺 𝑙−→ 𝐺′ · 𝛽 the unique splitting

of 𝜌 for p matching 𝑤 . We omit the role p when obvious from context. This splitting is always

unique because the maximal prefix of any 𝜌 ∈ RG
p (𝑤) matching𝑤 is unique.

Lemma 6.12 (Soundness of 𝐶1). 𝐶1 implies that A and {{P (G, p)}}p∈P are equivalent.

Proof. The proof that𝐶1 implies {{P (G, p)}}p∈P refinesA depends only on Local Language Inclu-

sion and can be straightforwardly adapted from [Li et al. 2023a, Lemma 4.4]. We instead focus on

showing that 𝐶1 implies A refines {{P (G, p)}}p∈P , which depends on the other two conditions

in 𝐶1. First, we prove that any trace in A is a trace in {{P (G, p)}}p∈P :

Claim 1: ∀𝑤 ∈ Σ∞. 𝑤 is a trace in A implies𝑤 is a trace in {{P (G, p)}}p∈P .

We prove the claim by induction for all finite 𝑤 . The infinite case follows from the finite

case because {{P (G, p)}}p∈P is deterministic and all prefixes of 𝑤 are traces of A and, hence, of

{{P (G, p)}}p∈P . The base cases, where𝑤 = 𝜀, is trivially discharged by the fact that 𝜀 is a trace of

all CSMs. In the inductive step, assume that 𝑤 is a trace of A. Let 𝑥 ∈ Σ such that 𝑤𝑥 is a trace

of A. We want to show that𝑤𝑥 is also a trace of {{P (G, p)}}p∈P .

From the induction hypothesis, we know that 𝑤 is a trace of {{P (G, p)}}p∈P . Let 𝜉 be the

channel configuration uniquely determined by 𝑤 . Let (®𝑠, 𝜉) be the A configuration reached on

𝑤 , and let (®𝑡, 𝜉) be the {{P (G, p)}}p∈P configuration reached on𝑤 .

Let q be the role such that 𝑥 ∈ Σq, and let 𝑠 , 𝑡 denote ®𝑠q, ®𝑡q from the respective CSM configu-

rations reached on𝑤 for A and {{P (G, p)}}p∈P .

To show that𝑤𝑥 is a trace of {{P (G, p)}}p∈P , it thus suffices to show that there exists a state

𝑡 ′ and a transition 𝑡
𝑥−→ 𝑡 ′ in P (G, q).

110

Since {{P (G, p)}}p∈P implements G, all finite traces of {{P (G, p)}}p∈P are prefixes of L(G).

In other words, 𝑤 ∈ pref(L(G)). Let 𝜌 be a run such that 𝜌 ∈ 𝐼 (𝑤); such a run must exist

from [Li et al. 2023a, Lemma 6.3]. Let 𝛼 ·𝐺 𝑙−→ 𝐺′ · 𝛽 be the unique splitting of 𝜌 for qmatching𝑤 .

From the definition of state decoration, it holds that 𝐺 ∈ 𝑑 (𝑠). From the definition of the subset

construction, it holds that 𝐺 ∈ 𝑡 .

We proceed by case analysis on whether 𝑥 is a send or receive event.

• Case 𝑥 ∈ Σq,!. Let 𝑥 = q ⊲ r!𝑚. By assumption, there exists 𝑠
q⊲r!𝑚−−−−→ 𝑠′ in 𝐴q. We instantiate

Send Decoration Validity from 𝐶1 with q and this transition to obtain:

tr-orig(𝑑 (𝑠) q⊲r!𝑚−−−−→ 𝑑 (𝑠′)) = 𝑑 (𝑠) .

From𝐺 ∈ 𝑑 (𝑠), it follows that there exists𝐺′ ∈ 𝑄G such that𝐺
𝑥−→∗ 𝐺′ ∈ 𝛿↓. Because𝐺 ∈ 𝑡 ,

the existence of 𝑡 ′ such that 𝑡
q⊲r!𝑚−−−−→ 𝑡 ′ is a transition in P (G, p) follows immediately from

the definition of P (G, q)’s transition relation.

• Case 𝑥 ∈ Σq,?. Let 𝑥 = q ⊳ r?𝑚.

From the fact that 𝜌 is a maximal run in G with unique splitting 𝛼 · 𝐺 𝑙−→ 𝐺′ · 𝛽 for q

matching w, it holds that 𝑤⇓Σq
· split(𝑙)⇓Σq

∈ pref(L(G))⇓Σq
. From [Li et al. 2023a,

Lemma 4.3], L(G)⇓Σq
= L(P (G, q)). Therefore, there exists a 𝑡 ′′ such that 𝑡

split(𝑙)⇓Σq−−−−−−−−−→ 𝑡 ′′

is a transition in P (G, q). From Transition Exhaustivity, there likewise exists an 𝑠′′ such

that 𝑠
split(𝑙)⇓Σq−−−−−−−−−→ 𝑠′′ is a transition in 𝐴q.

We now proceed by showing that it must be the case that split(𝑙)⇓Σq
= 𝑥 . The reasoning

closely follows that in [Li et al. 2023a, Lemma 6.4], which showed that if Receive Validity

holds for the subset construction, and some role’s subset construction automaton can per-

form a receive action, then the trace extended with the receive action remains consistent

with any global run it was consistent with before. We generalize this property in terms of

111

available message sets in the following lemma, whose proof can be found in the appendix.

Lemma 6.13. Let A be a CSM, q be a role, and𝑤 ,𝑤𝑥 be traces of A such that 𝑥 = q ⊳ r?𝑚.

Let 𝑠 be the state of q’s state machine in theA configuration reached on𝑤 . Let 𝜌 be a run that

is consistent with 𝑤 , i.e. for all p ∈ P . 𝑤⇓Σp
≤ split(trace(𝜌))⇓Σp

. Let 𝛼 · 𝐺 𝑙−→ 𝐺′ · 𝛽 be

the unique splitting of 𝜌 for q matching𝑤 . If r ⊲ q!𝑚 ∉ 𝑀
q
(𝐺 ′ ...) , then 𝑥 = split(𝑙)⇓Σq

.

We wish to apply Lemma 6.13 with 𝜌 to conclude that split(𝑙)⇓Σq
= 𝑥 . We satisfy the

assumption that r ⊲ q!𝑚 ∉ 𝑀
q
(𝐺 ′ ...) by instantiating Receive Decoration Validity with 𝑠

q⊳r?𝑚−−−−→

𝑠′, 𝑠
split(𝑙)⇓Σq−−−−−−−−−→ 𝑠′′ and 𝐺′. The fact that 𝐺′ ∈ tr-dest(𝑑 (𝑠)

split(𝑙)⇓Σq−−−−−−−−−→ 𝑑 (𝑠′′)) follows from

the fact that 𝛼 ·𝐺 𝑙−→ 𝐺′ ·𝛽 is a run inG and the definition of state decoration (Definition 6.6).

Thus, we conclude from split(𝑙)⇓Σq
= 𝑥 that there exists a transition 𝑡

𝑥−→ 𝑡 ′′ in P (G, q).

This concludes our proof that any trace in A is also a trace of {{P (G, p)}}p∈P .

Claim 2: ∀ 𝑤 ∈ Σ∗. 𝑤 is terminated in A =⇒ 𝑤 is terminated in {{P (G, p)}}p∈P and 𝑤 is

maximal in A.

Let𝑤 be a terminated trace inA. By Claim 1,𝑤 is also a trace in {{P (G, p)}}p∈P . Let 𝜉 be the

channel configuration uniquely determined by 𝑤 . Let the {{P (G, p)}}p∈P configuration reached

on 𝑤 be (®𝑡, 𝜉), and let (®𝑠, 𝜉) be the A configuration reached on 𝑤 . To see that every terminated

trace inA is also terminated in {{P (G, p)}}p∈P , assume by contradiction that𝑤 is not terminated

in {{P (G, p)}}p∈P . Because {{P (G, p)}}p∈P is deadlock-free, there must exist a role that can take

a step in {{P (G, p)}}p∈P . Let q be this role, and let 𝑥 be the transition that is enabled from ®𝑡q.

From Local Language Inclusion and the fact that {{P (G, p)}}p∈P is deadlock-free, it holds that 𝑥

is also enabled from ®𝑠q. We arrive at a contradiction. To see that every terminated trace in A

in maximal, from the above we know that 𝑤 is terminated in {{P (G, p)}}p∈P . From the fact that

{{P (G, p)}}p∈P is deadlock-free, 𝑤 is maximal in {{P (G, p)}}p∈P : all states in ®𝑡 are final and all

channels in 𝜉 are empty. From Local Language Inclusion, it follows that all states in ®𝑠 are also final,

and thus𝑤 is maximal in A. □ □

112

Lemma 6.14 (Completeness of 𝐶1). If A and {{P (G, p)}}p∈P are equivalent, then 𝐶1 holds.

We show completeness via modus tollens: we assume a violation in 𝐶1 and the fact that A

and {{P (G, p)}}p∈P are equivalent, and prove a contradiction. Since 𝐶1 is a conjunction of four

conditions, we derive a contradiction from the violation of each condition in turn. In the interest

of proof reuse, we specifywhich of the two refinement conjunctswe contradict for each condition,

and refer the reader to the appendix for the full proofs.

From the negation of Transition Exhaustivity and Final State Validity, we contradict the fact

that {{P (G, p)}}p∈P refines A.

Lemma 6.15. If A violates Transition Exhaustivity or Final State Validity, then it does not hold

that {{P (G, p)}}p∈P refines A.

Unlike the proofs for Transition Exhaustivity and Final State Validity, the proofs for the re-

maining two conditions require both refinement conjuncts to prove a contradiction. Both proofs

find a contradiction by obtaining a witness from the violation of Send Decoration Validity and

Receive Decoration Validity respectively, and showing that the same witness can be used to refute

Send and Receive Validity for the subset construction.

Lemma 6.16. IfA violates Send Decoration Validity or Receive Decoration Validity, then it does

not hold that A and {{P (G, p)}}p∈P are equivalent.

6.4 Deciding Protocol Refinement

We now turn our attention to Protocol Refinement, which asks when an implementation can safely

substitute another in all well-behaved contexts with respect to G. Here, we introduce a new

notion of refinement with respect to a global type.

113

Definition 6.17 (Protocol refinement with respect to G). We say that a CSM {{𝐴p}}p∈P refines

a CSM {{𝐵p}}p∈P with respect to a global type G if the following properties hold: (i) sub-

protocol fidelity: ∃𝑆 ⊆ L(GAut(G)) . L({{𝐴p}}p∈P) = L(split(𝑆)), (ii) language inclusion:

L({{𝐴p}}p∈P) ⊆ L({{𝐵p}}p∈P), and (iii) deadlock freedom: {{𝐴p}}p∈P is deadlock-free.

Item i, subprotocol fidelity, sets our notion of refinement apart from standard refinement. We

motivate this difference briefly using an example. Consider the CSM consisting of the subset

construction for p and 𝐵′q, depicted in Fig. 6.4. This CSM recognizes only words of the form

(p⊲q!𝑚)𝜔 . It is nonetheless considered to refine the global typeG𝑙𝑜𝑜𝑝 ≔ 𝜇𝑡 . p −→ q : 𝑚. 𝑡 according

to the standard notion of refinement, despite the fact that p’s messages are never received by q.

This is because L(G𝑙𝑜𝑜𝑝), containing only infinite words, is defined in terms of an asymmetric

downward closure operator ⪯𝜔∼ , which allows receives to be infinitely postponed. We desire a

notion of refinement that allows roles to select which runs to follow in a global type, but disallows

them from selecting which words to implement among ones that follow the same run. More

formally, our notion of protocol refinement prohibits selectively implementing words that are

equivalent under the indistinguishability relation ∼: any CSM that refines another with respect

to a global type has a language that is closed under ∼.

p ⊲ q!𝑚

(a) State machine C (G, p) (b) State machine 𝐵′q

Figure 6.4: CSM violating subprotocol fidelity with respect to G𝑙𝑜𝑜𝑝

In the remainder of the paper, we refer to refinement with respect to G, and omit mention of

G when clear from context. Again using the fact that {{P (G, p)}}p∈P is an implementation for G,

we say that a CSM {{𝐴p}}p∈P refines G if it refines {{P (G, p)}}p∈P .

We motivate our formulation of the Protocol Refinement problem by posing the following

variation of Protocol Verification, which we call Monolithic Protocol Refinement:

Given an implementable global type G and a CSM A, does A refine {{P (G, p)}}p∈P?

114

This variation asks for a condition, 𝐶′1, that satisfies the equivalence:

𝐶′1⇔A refines {{P (G, p)}}p∈P .

Clearly, 𝐶1 is still a sound candidate as equivalence of two CSMs implies bi-directional pro-

tocol refinement. It is instructive to analyze why the completeness arguments for 𝐶1 fail. Recall

that the completeness proofs for Send Decoration Validity and Receive Decoration Validity used

the violation of each condition to obtain a local state with a non-empty decoration set, which

in turn gives rise to a prefix in L(G) that must be a trace in the subset construction. This trace

is then replayed in the arbitrary CSM, extended in the arbitrary CSM, and then replayed again

in the subset construction. This sequence of replaying arguments critically relied on both the

assumption that A refines {{P (G, p)}}p∈P , and the assumption that {{P (G, p)}}p∈P refines A.

If we cannot assume thatA recognizes every behavior of {{P (G, p)}}p∈P , then the reachable

local states of A are no longer precisely characterized by having a non-empty decoration set.

p ⊲ q!m p ⊲ r!m

(a) State machine C (G, p)

q ⊳ p?m

q ⊳ r?b

q ⊳ r?b
q ⊳ r?o

q ⊲ r!b

(b) State machine 𝐴′q

r ⊲ q!o
r ⊳ p?m

r ⊳ q?o

r ⊳ q?b
r ⊳ q?o

(c) State machine 𝐴′r

Figure 6.5: Subset construction for p and two state machines for q and r for G′

Consider the example global type G′:

G′ ≔ p→q :m. +



r→q :b. p→r :m. +


q→r :b. 0

q→r :o. 0

r→q :o. p→r :m. +


q→r :b. 0

q→r :o. 0

115

Let the CSM A′ consist of the subset construction automaton for p, and the state machines 𝐴′q

and 𝐴′r, given in Figs. 6.5b and 6.5c. The receive transitions highlighted in red are safe despite

violating Receive Decoration Validity, because q and r coordinate with each other on which runs

of G they eliminate: r chooses to never send a b to q, thus q’s highlighted transition is safe, and

conversely, q never chooses to send o to r, thus r’s highlighted transition is safe. Consequently,

A′ refines G′ despite violating 𝐶1.

This example shows that any condition𝐶′1 that is compositional must sacrifice completeness.

In fact, deciding whether an arbitrary CSMA refines the subset construction {{P (G, p)}}p∈P for

some global type G can be shown to be PSPACE-hard via a reduction from the deadlock-freedom

problem for 1-safe Petri nets [Esparza and Nielsen 1994]. We refer the reader to the appendix for

the full construction.

Lemma 6.18. The Monolithic Protocol Refinement problem is PSPACE-hard.

Fortunately, we can recover completeness and tractability by only allowing changes to one

statemachine inA at a time. Next, we formalize the notions ofCSM contexts andwell-behavedness

with respect to G. We useA[·]p to denote a CSM context with a hole for role p ∈ P, andA[𝐴]p

to denote the CSM obtained by instantiating the context with state machine 𝐴 for p. We define

well-behaved contexts in terms of the canonical implementation P (G, p).

Definition 6.19 (Well-behaved CSM contexts with respect to G). Let A[·]p be a CSM context.

We say thatA[·]p is well-behaved with respect to G ifA[P (G, p)]p refines G. We omit Gwhen

clear from context.

Protocol Refinement asks to find a 𝐶2 that satisfies the following:

Theorem 6.20. Let G be an implementable global type, p be a role, and 𝐴, 𝐵 be state machines for

role p such that for all well-behaved contexts A[·]p, A[𝐵]p refines G. Then, for all well-behaved

contexts A[·]p, A[𝐴]p refines A[𝐵]p if and only if 𝐶2 is satisfied.

116

6.4.1 Protocol Refinement Relative to Subset Construction

As a stepping stone, we first consider the special case of Protocol Refinement when 𝐵 is the subset

construction automaton for role p. That is, we present𝐶′2 that satisfies the following equivalence:

𝐶′2⇔ for all well-behaved contexts A[·]p, A[𝐴]p refines A[P (G, p)]p.

The relaxation on language equality from Protocol Verification means that state machine 𝐴 no

longer needs to satisfy Local Language Inclusion, which grants us more flexibility: state machines

are now permitted to remove send events. Let us revisit our example global type, G1:

G1 ≔ +

p→q :b. q→p :b. 0

p→q :m. q→p :m. 0

p ⊲ q!b
q ⊳ p?m
q ⊳ p?b

(a) Removing sends

p ⊲ q!m
p ⊲ q!b q ⊳ p?b

(b) Removing receives

Figure 6.6: Two candidate implementations for p

Consider the candidate state machine for role p given in Fig. 6.6a. The CSM obtained from

inserting this state machine into any well-behaved context refinesG, despite the fact that p never

sends m. In general, send events can safely be removed from reachable states in a local state

machine without violating subprotocol fidelity or deadlock freedom, as long as not all of them

are removed.

The same is not true of receive events, on the other hand. The state machine in Fig. 6.6b is

not a safe candidate for p, because it causes a deadlock in the well-behaved context that consists

of the subset construction for every other role.

Our characterization intuitively follows the notion that input types (receive events) are co-

variant, and output types (send events) are contravariant. However, note that the state machine

above cannot be represented in existing works [Ghilezan et al. 2019b; Bravetti and Zavattaro 2019;

117

Cutner et al. 2022]: their local types support neither states with both outgoing send and receive

events, nor states with outgoing send or receive events to/from different roles.

Our characterization𝐶′2 reuses Send Decoration Validity, Receive Decoration Validity and Final

State Validity from 𝐶1, but splits Transition Exhaustivity into a separate condition for send and

receive events, to reflect the aforementioned asymmetry between them.

Definition 6.21 (𝐶′2). Let p ∈ P be a role and let 𝐴 = (𝑄, Σp, 𝑠0, 𝛿, 𝐹) be a state machine for p.

𝐶′2 is satisfied when the following conditions hold in addition to Send Decoration Validity, Receive

Decoration Validity and Final State Validity:

• Send Preservation: every state containing a send-originating global state must have at least

one outgoing send transition:

∀𝑠 ∈ 𝑄. ∃𝐺 ∈ 𝑄G,!. 𝐺 ∈ 𝑑 (𝑡) =⇒ ∃𝑥 ∈ Σp,!, 𝑠
′ ∈ 𝑄. 𝑠

𝑥−→ 𝑠′ ∈ 𝛿 .

• Receive Exhaustivity: every receive transition that is enabled in some global state decorating

𝑠 must be an outgoing transition from 𝑠:

∀𝑠 ∈ 𝑄. ∀𝐺 𝑥−→∗ 𝐺′ ∈ 𝛿↓. 𝐺 ∈ 𝑑 (𝑠) ∧ 𝑥 ∈ Σp,? =⇒ ∃𝑠′ ∈ 𝑄. 𝑠
𝑥−→ 𝑠′ ∈ 𝛿 .

We want to show the following equivalence:

𝐶′2⇔ for all well-behaved contexts A[·]p, A[𝐴]p refines A[P (G, p)]p.

We first prove the soundness of 𝐶′2.

Lemma 6.22 (Soundness of 𝐶′2). If 𝐶′2 holds, then for all well-behaved contexts A[·]p, A[𝐴]p

refines A[P (G, p)]p.

Proof. Let A[·]p be a well-behaved context with respect to G. Like before, we first prove that

any trace in A[𝐴]p is a trace in A[P (G, p)]p.

Claim 1: ∀𝑤 ∈ Σ∞.𝑤 is a trace in A[𝐴]p =⇒ 𝑤 is a trace in A[P (G, p)]p.

118

The proof of Claim 1 for 𝐶′2 differs from that for 𝐶1 in only two ways. We discuss the differ-

ences in detail below, and avoid repeating the rest of the proof.

1. 𝐶1 grants that every role’s state machine satisfies Send Decoration Validity and Receive Dec-

oration Validity, whereas 𝐶2 only guarantees the conditions for role p. Correspondingly,

A[𝐴]p only differs fromA[P (G, p)]p in p’s state machine; all other roles’ state machines

are identical between the two CSMs. Therefore, the induction step requires a case analysis

on the role whose alphabet the event 𝑥 belongs to. In the case that 𝑥 ∈ Σq where q ≠ p, the

induction hypothesis is trivially re-established by the fact that q’s state machine is identical

in both CSMs. In the case that 𝑥 ∈ Σp, we proceed to reason that 𝑥 can also be performed

by P (G, p) in the same well-behaved context.

2. 𝐶1 includes Transition Exhaustivity, which allows us to conclude that given a run with

unique splitting 𝛼 · 𝐺 𝑙−→ 𝐺′ · 𝛽 for p matching 𝑤 and the fact that 𝐺 ∈ 𝑠 , there must exist

a transition 𝑠
split(𝑙)⇓Σp−−−−−−−−−→ 𝑠′′ in p’s state machine. Lemma 6.13 can then be instantiated

directly with 𝛼 ·𝐺 𝑙−→ 𝐺′ · 𝛽 to complete the proof. 𝐶2, on the other hand, splits Transition

Exhaustivity into Send Preservation and Receive Exhaustivity, and we can only establish that

such a transition exists and reuse the proof in the case that split(𝑙)⇓Σp
∈ Σp,?. Since 𝐴

is permitted to remove send events, if split(𝑙)⇓Σp
∈ Σp,!, the transition 𝑠

split(𝑙)⇓Σp−−−−−−−−−→ 𝑠′′

may not exist at all in 𝐴. However, the existence of a run 𝛼 ·𝐺 𝑙−→ 𝐺′ · 𝛽 where 𝑙 is a send

event for pmakes𝐺 a send-originating global state in p’s projection by erasure automaton.

Send Preservation thus guarantees that there exists a transition 𝑠
𝑥 ′−→ 𝑠′′′ in 𝐴 such that

𝑥′ ∈ Σp,!. By Send Decoration Validity, 𝑥′ originates from 𝐺 in the projection by erasure,

and we can find another run 𝜌′ such that 𝛼′ · 𝐺 𝑙 ′−→ 𝐺′′ · 𝛽′ is the unique splitting for p

matching 𝑤 and split(𝑙′)⇓Σp
= 𝑥′. We satisfy the assumption that r ⊲ p!𝑚 ∉ 𝑀

p
(𝐺 ′′ ...) by

instantiating Receive Decoration Validity with p, 𝑠
𝑥−→ 𝑠′, 𝑠

split(𝑙 ′)⇓Σp−−−−−−−−−→ 𝑠′′ and 𝐺′′. The fact

that 𝐺′′ ∈ tr-dest(𝑑G(𝑠)
split(𝑙 ′)⇓Σp−−−−−−−−−→ 𝑑G(𝑠′′)) follows from the fact that 𝛼 ·𝐺 𝑙 ′−→ 𝐺′′ · 𝛽′ is a

119

run in G and Definition 6.6. Instantiating Lemma 6.13 with 𝜌′, we obtain split(𝑙′)⇓Σp
= 𝑥 ,

which is a contradiction: 𝑥 is a receive event and split(𝑙′)⇓Σp
is a send event. Thus, it

cannot be the case that split(𝑙′)⇓Σp
∈ Σp,!.

This concludes our proof that any trace in A[𝐴]p is also a trace in A[P (G, p)]p.

The following claim completes our soundness proof:

Claim 2: ∀ 𝑤 ∈ Σ∗. 𝑤 is terminated in A[𝐴]p =⇒ 𝑤 is terminated in A[P (G, p)]p and 𝑤 is

maximal in A[𝐴]p.

The proof of Claim 2 for 𝐶1 again relies on Local Language Inclusion, which is unavailable to

𝐶′2. Instead, we turn to Send Preservation, Receive Exhaustivity and Final State Validity to establish

this claim. Let 𝑤 be a terminated trace in A[𝐴]p. By Claim 1, it holds that 𝑤 is a trace in

A[P (G, p)]p. Let 𝜉 be the channel configuration uniquely determined by 𝑤 . Let (®𝑠, 𝜉) be the

A[P (G, p)]p configuration reached on 𝑤 , and let (®𝑡, 𝜉) be the A[𝐴]p configuration reached on

𝑤 . To see that𝑤 is terminated inA[P (G, p)]p, suppose by contradiction that𝑤 is not terminated

in A[P (G, p)]p. Because A[P (G, p)]p is deadlock-free, and because the state machines for all

non-p roles are identical between the two CSMs, it must be the case that p witnesses the non-

termination of 𝑤 , in other words, P (G, p) can take a transition that 𝐴 cannot. Let ®𝑠p
𝑥−→ 𝑠′ be

the transition that p can take from ®𝑠p. Let𝐺 be a state in ®𝑠p; such a state is guaranteed to exist by

the fact that no reachable states in the subset construction are empty. Then, in the projection by

erasure automaton, the initial state reaches 𝐺 on 𝑤⇓Σp
. By the fact that 𝑤 is a trace of A[𝐴]p, it

holds that 𝑠0 reaches ®𝑠p on𝑤⇓Σp
in 𝐴. By the definition of state decoration, 𝐺 ∈ 𝑑 (®𝑡p).

• If 𝑥 ∈ Σ!, it follows that 𝐺 is a send-originating global state. By Send Preservation, for any

state in 𝐴 that contains at least one send-originating global state, of which ®𝑡p is one, there

exists a transition ®𝑡p
𝑥 ′−→ 𝑡 ′ such that 𝑥′ ∈ Σp,!. Because send transitions in a CSM are always

enabled, role p can take this transition in A[𝐴]p. We reach a contradiction to the fact that

𝑤 is terminated in A[𝐴]p.

120

• If 𝑥 ∈ Σ?, it follows that 𝐺 is a receive-originating global state. From Receive Exhaustivity,

any receive event that originates from any global state in 𝑑 (®𝑡p) must also originate from ®𝑡p.

Therefore, there must exist 𝑡 ′ such that ®𝑡p
𝑥−→ 𝑡 ′ is a transition in 𝐵′p. Because the channel

configuration is identical in both CSMs, role p can take this transition inA[𝐴]p. We again

reach a contradiction to the fact that𝑤 is terminated in A[𝐴]p.

To see that 𝑤 is maximal in A[𝐴]p, observe that for all roles q ≠ p, ®𝑠q = ®𝑡q. Thus, it remains

to show that ®𝑡p is a final state in 𝐴. Because ®𝑠p is a final state, by the definition of the subset

construction there exists a global state𝐺 ∈ ®𝑠p such that the projection erasure automaton reaches

𝐺 on 𝑤⇓Σp
and 𝐺 is a final state. Because 𝐴 reaches ®𝑡p on 𝑤⇓Σp

, by Definition 6.6 it holds that

𝐺 ∈ 𝑑 (®𝑡p). By Final State Validity, it holds that ®𝑡p is a final state in 𝐴. This concludes our proof

that any terminated trace in A[𝐴]p is also a terminated trace in A[P (G, p)]p, and is maximal

in A[𝐴]p.

Together, Claim 1 and 2 establish that A[𝐴]p satisfies language inclusion (Item ii) and dead-

lock freedom (Item iii). It remains to show that A[𝐴]p satisfies subprotocol fidelity (Item i).

This follows immediately from [Majumdar et al. 2021a, Lemma 22], which states that all CSM

languages are closed under the indistinguishability relation ∼. □

Lemma 6.23 (Completeness of 𝐶′2). If for all well-behaved contexts A[·]p, A[𝐴]p refines

A[P (G, p)]p, then 𝐶′2 holds.

As before, we prove the modus tollens of this implication, which states that if 𝐶′2 does not

hold, then there exists a well-behaved context A[·]p such that A[𝐴]p does not protocol-refine

A[P (G, p)]p.

We first turn our attention to finding a well-behaved witness context A[·]p such that we

can refute subprotocol fidelity, language inclusion, or deadlock freedom. It turns out that the

context consisting of the subset construction automaton for every other role is a suitable wit-

ness. We denote this context by C (G) [·]p and note that it is trivially well-behaved because

121

C (G) [P (G, p)]p = {{P (G, p)}}p∈P .

Recall from the completeness arguments for 𝐶1 that we obtained a violating state in some

state machine 𝐴 with a non-empty decoration set from the negation of each condition in 𝐶1.

From this state’s decoration set we obtained a witness global state 𝐺 , and in turn a run 𝛼 · 𝐺 in

G, and from the assumption that {{P (G, p)}}p∈P refinesA, we argued that split(trace(𝛼 ·𝐺))

is a trace in A. We then showed that 𝐴 is in the violating state in the A configuration reached

on split(trace(𝛼 ·𝐺)), and from there we used each violated condition to find a contradiction.

The completeness proof for 𝐶′2 cannot simply rely on the fact that {{P (G, p)}}p∈P refines

C (G) [𝐴]p. Instead, we must separately establish that every state with a non-empty decoration

set can be reached on a trace shared by both C (G) [𝐴]p and {{P (G, p)}}p∈P .

Lemma 6.24. Let𝐴 be a state machine for p and 𝑠 be a state in𝐴. Let𝐺 ∈ 𝑑 (𝑠), and let 𝑢 ∈ Σ∗p be a

word such that 𝑠0
𝑢−→∗ 𝑠 in 𝐴. Then, there exists a run 𝛼 ·𝐺 of GAut(G) such that split(trace(𝛼 ·

𝐺))⇓Σp
= 𝑢, split(trace(𝛼 ·𝐺)) is a trace in C (G) [𝐴]p and in the CSM configuration reached on

split(trace(𝛼 ·𝐺)), 𝐴 is in state 𝑠 .

With Lemma 6.24 replacing the assumption that {{P (G, p)}}p∈P refines C (G) [𝐴]p, we can

reuse the construction in Lemma 6.16 to obtain a word that is a trace in C (G) [𝐴]p but not a

trace in {{P (G, p)}}p∈P , thus evidencing the necessity of Send Decoration Validity and Receive

Decoration Validity. The proof of Lemma 6.25 proceeds identically to that of Lemma 6.16 and is

thus omitted.

Lemma 6.25. If 𝐴 violates Send Decoration Validity or Receive Decoration Validity, then it does

not hold that for all well-behaved contexts A[·]p, A[𝐴]p refines C (G) [𝐴]p.

We also use Lemma 6.24 to show the necessity of Send Preservation, Receive Exhaustivity and

Final State Validity. As a starting point, let𝐴, 𝑠 , 𝑢 and 𝛼 ·𝐺 be obtained from Lemma 6.24 and the

violation of Send Preservation. To show the necessity of Send Preservation, we consider the largest

extension 𝑣 of 𝑢 in C (G) [𝐴]p. In the case that 𝑢 is terminated in C (G) [𝐴]p, we refute deadlock

122

freedom from the fact that 𝑢 is not maximal: 𝐺 ∈ 𝑠 is a send-originating state, and final states

in GAut(G) do not contain outgoing transitions. If 𝑣 ≠ 𝑢, there exists a run 𝛼 · 𝐺 p−→q:𝑚−−−−−→ 𝐺′ · 𝛽

such that split(trace(𝛼 ·𝐺 p−→q:𝑚−−−−−→ 𝐺′ · 𝛽)⇓Σp
= 𝑣⇓Σp

. By subprotocol fidelity, split(trace(𝛼 ·

𝐺
p−→q:𝑚−−−−−→ 𝐺′ · 𝛽)) is a trace in C (G) [𝐴]p. Consequently, split(trace(𝛼 ·𝐺

p−→q:𝑚−−−−−→ 𝐺′ · 𝛽))⇓Σp

is a prefix in 𝐴. We find a contradiction from the fact that 𝐴 is deterministic and there is no

outgoing transition labeled p ⊲ q!𝑚 from 𝑠 . Similar arguments can be used to show the necessity

of Receive Exhaustivity. Finally, for Final State Validity, in the case that 𝑠 is non-final in 𝐴 but

contains a final state in GAut(G), we can instantiate Lemma 6.24 with this final state and show

that 𝑢 evidences a deadlock.

Lemma 6.26. If 𝐴 violates Send Preservation, Receive Exhaustivity or Final State Validity, then

it does not hold that for all well-behaved contexts A[·]p, A[𝐴]p refines C (G) [𝐴]p.

6.4.2 Protocol Refinement (General Case)

Equipped with the solution to a special case, we are ready to revisit the general case of Protocol

Refinement, which asks to find a 𝐶2 that satisfies the following:

𝐶2⇔ for all well-behaved contexts A[·]p, A[𝐴]p refines A[𝐵]p.

Critical to the former problems is the fact that the state decoration function precisely captures

those states in a local state machine that are reachable in some CSM execution, under some

assumptions on the context: a state is reachable if and only if its decoration set is non-empty.

This allows the conditions in 𝐶1 and 𝐶′2 to precisely characterize the reachable local states.

The second problem generalizes the subset projection to an arbitrary state machine 𝐵, and

asks whether a candidate state machine 𝐴 (the subtype) refines 𝐵 (the supertype) in any well-

behaved context. Unfortunately, we cannot simply decorate the subtype with the supertype’s

states, because not all states in the supertype are reachable. Instead, we need to restrict the set

123

of states in the supertype to those that themselves have non-empty decoration sets with respect

to G.

In the remainder of this section, let p ∈ P be a role, let 𝐵 = (𝑄𝐵, Σp, 𝑡0, 𝛿𝐵, 𝐹𝐵) denote the

supertype state machine for p, and let 𝐴 = (𝑄𝐴, Σp, 𝑠0, 𝛿𝐴, 𝐹𝐴) denote the subtype state machine

for p. We modify our state decoration function in Definition 6.6 to map states of 𝐴 to subsets of

states in 𝐵 that themselves have non-empty decoration sets with respect to G.

Definition 6.27 (State decoration with respect to a supertype). LetG be a global type. Let p ∈ P

be a role, and let 𝐵 = (𝑄𝐵, Σp, 𝑡0, 𝛿𝐵, 𝐹𝐵) and 𝐴 = (𝑄𝐴, Σp, 𝑠0, 𝛿𝐴, 𝐹𝐴) be two deterministic finite

state machines for p. We define a total function 𝑑G,𝐵,𝐴 : 𝑄′ → 2𝑄 that maps each state in 𝐴 to a

subset of states in 𝐵 such that:

𝑑G,𝐵,𝐴 (𝑠) = {𝑡 ∈ 𝑄𝐵 | ∃𝑢 ∈ Σ∗p. 𝑠0
𝑢−→∗ 𝑠 ∈ 𝛿𝐴 ∧ 𝑡0

𝑢−→∗ 𝑡 ∈ 𝛿𝐵 ∧ 𝑑 (𝑡) ≠ ∅}

We again omit the subscripts G and 𝐴 when clear from context, but retain the subscript 𝐵 to

distinguish 𝑑𝐵 from 𝑑 in Definition 6.6.

We likewise require a generalization of tr-orig and tr-dest to be defined in terms of 𝐵, instead

of the projection by erasure automaton for p.

Definition 6.28 (Transition origin and destination with respect to a supertype). LetG be a global

type, and let 𝐵 = (𝑄𝐵, Σp, 𝑡0, 𝛿𝐵, 𝐹𝐵) be a state machine. For 𝑥 ∈ Σp and 𝑠, 𝑠′ ⊆ 𝑄𝐵 , we define the

set of transition origins tr-orig(𝑠 𝑥−→ 𝑠′) and transition destinations tr-dest(𝑠 𝑥−→ 𝑠′) as follows:

tr-orig𝐵 (𝑠
𝑥−→ 𝑠′) ≔ {𝑡 ∈ 𝑠 | ∃𝑡 ′ ∈ 𝑠′. 𝑡 𝑥−→∗ 𝑡 ′ ∈ 𝛿𝐵} and

tr-dest𝐵 (𝑠
𝑥−→ 𝑠′) ≔ {𝑡 ′ ∈ 𝑠′ | ∃𝑡 ∈ 𝑠 . 𝑡 𝑥−→∗ 𝑡 ′ ∈ 𝛿𝐵} .

We present 𝐶2 in terms of the newly defined decoration function 𝑑𝐵 .

124

Definition 6.29 (𝐶2). LetG be a global type, p ∈ P be a role, and let further 𝐵 = (𝑄𝐵, Σp, 𝑡0, 𝛿𝐵, 𝐹𝐵)

and𝐴 = (𝑄𝐴, Σp, 𝑠0, 𝛿𝐴, 𝐹𝐴) be two deterministic state machines for p. 𝐶2 is the conjunction of the

following conditions:

• Send Decoration Subtype Validity: every send transition 𝑠
𝑥−→ 𝑠′ ∈ 𝛿𝐴 must be enabled in all

states of 𝐵 decorating 𝑠:

∀𝑠 p⊲q!𝑚−−−−→ 𝑠′ ∈ 𝛿𝐴 . tr-orig𝐵 (𝑑𝐵 (𝑠)
p⊲q!𝑚−−−−→ 𝑑𝐵 (𝑠′)) = 𝑑𝐵 (𝑠).

• Receive Decoration Subtype Validity: no receive transition is enabled in an alternative con-

tinuation originating from the same state:

∀𝑠
p⊳q1?𝑚1−−−−−−→ 𝑠1, 𝑠

𝑥−→ 𝑠2 ∈ 𝛿𝐴 . 𝑥 ≠ p ⊳ q1?_ =⇒

∀𝐺 ∈ ⋃
𝑡∈𝑑𝐵 (𝑠2)

{𝑑 (𝑡) | 𝑡 ∈ tr-dest𝐵 (𝑑𝐵 (𝑠)
𝑥−→ 𝑑𝐵 (𝑠2))}. q1 ⊲ p!𝑚1 ∉ 𝑀

p
(𝐺...) .

• Send Subtype Preservation: every state decorated by a send-originating global state must

have at least one outgoing send transition:

∀𝑠 ∈ 𝑄𝐴 . (
⋃

𝑡∈𝑑𝐵 (𝑠)
𝑑 (𝑡) ∩𝑄G,! ≠ ∅) =⇒ ∃𝑥 ∈ Σp,!, 𝑠

′ ∈ 𝑄𝐴 . 𝑠
𝑥−→ 𝑠′ ∈ 𝛿𝐴.

• Receive Subtype Exhaustivity: every receive transition that is enabled in some global state

decorating 𝑠 must be an outgoing transition from 𝑠:

∀𝑠 ∈ 𝑄𝐴 . ∀𝐺
𝑥−→∗ 𝐺′ ∈ 𝛿↓. 𝐺 ∈

⋃
𝑡∈𝑑𝐵 (𝑠)

𝑑 (𝑡) =⇒ ∃𝑠′ ∈ 𝑄𝐴 . 𝑠
𝑥−→ 𝑠′ ∈ 𝛿𝐴.

• Final State Validity: a reachable state is final if its decorating set contains a final global state:

∀𝑠 ∈ 𝑄𝐴 .
⋃

𝑡∈𝑑𝐵 (𝑠)
𝑑 (𝑡) ≠ ∅ =⇒ (⋃

𝑡∈𝑑𝐵 (𝑠)
𝑑 (𝑡) ∩ 𝐹G ≠ ∅) =⇒ 𝑠 ∈ 𝐹𝐴.

We want to show the following equivalence to prove Theorem 6.20:

𝐶2⇔ for all well-behaved contexts A[·]p, A[𝐴]p refines A[𝐵]p.

125

Lemma 6.30 (Soundness of 𝐶2). If 𝐶2 holds, then for all well-behaved contexts A[·]p, A[𝐴]p

refines A[𝐵]p.

Predictably, the proof of soundness is directly adapted from the proof for 𝐶′2 by applying

suitable “liftings”, and can be found in the appendix.

Lemma 6.31 (Completeness of 𝐶2). If for all well-behaved contexts A[·]p, A[𝐴]p refines A[𝐵]p,

then 𝐶2 holds.

Again, we prove the modus tollens of this implication, and we again are required to find a

witness well-behaved contextA[·]p, such thatA[𝐴]p does not refineA[𝐵]p under the assump-

tion of the negation of 𝐶2. In the special case where 𝐵 is the subset construction automaton,

we observed that any state in 𝐴 with a non-empty decoration set with respect to G is reachable

by the CSM consisting of 𝐴 and the subset construction context, denoted C (G) [𝐴]p. We were

therefore able to use C (G) [·]p as the witness well-behaved context. A similar characterization is

true in the general case: a state in 𝐴 is reachable by C (G) [𝐴]p if it has a non-empty decoration

set with respect to 𝐵. This in turn depends on the fact that we only label states in 𝐴 with states

in 𝐵 that themselves have non-empty decorating sets with respect to G. The following lemma

lifts Lemma 6.24 to the general problem setting:

Lemma 6.32. Let 𝐴, 𝐵 be two state machines for p, such that for all well-behaved contexts A[·]p,

A[𝐵]p refinesG. Let 𝑠 be a state in𝐴, and let 𝑡 be a state in𝐵 such that 𝑡 ∈ 𝑑𝐵 (𝑠). Let𝑢 ∈ Σ∗p be aword

such that 𝑠0
𝑢−→∗ 𝑠 in𝐴. Then, there exists a run 𝛼 ·𝐺 ofGAut(G) such that split(trace(𝛼 ·𝐺))⇓Σp

=

𝑢, split(trace(𝛼 ·𝐺)) is a trace in both C (G) [𝐴]p and C (G) [𝐵]p and in the CSM configuration

reached on split(trace(𝛼 ·𝐺)), 𝐴 is in state 𝑠 .

Proof. From the fact that 𝑡 ∈ 𝑑𝐵 (𝑠) and the definition of state decoration (Definition 6.27), it holds

that 𝑑 (𝑡) ≠ ∅ and 𝑡0
𝑢−→∗ 𝑡 ∈ 𝛿𝐵 . Let𝐺 ∈ 𝑑 (𝑡). We apply Lemma 6.24 to obtain a run 𝛼 ·𝐺 such that

split(trace(𝛼 ·𝐺))⇓Σp
= 𝑢, split(trace(𝛼 ·𝐺)) is a trace in C (G) [𝐵]p and in the C (G) [𝐵]p

126

configuration reached on split(trace(𝛼 ·𝐺)), 𝐵 is in state 𝑡 . Because 𝑠0
𝑢−→∗ 𝑠 ∈ 𝛿𝐴, and all non-p

state machines are identical from C (G) [𝐵]p to C (G) [𝐴]p, it is clear that split(trace(𝛼 ·𝐺)) is

also a trace of C (G) [𝐴]p and in the CSM configuration reached on split(trace(𝛼 ·𝐺)), 𝐴 is in

state 𝑠 . □ □

Having found our witness well-behaved context C (G) [·]p, established Lemma 6.32 to replace

Lemma 6.24, and observed that the violation of each condition in𝐶2 likewise yields a state with a

non-empty decoration set with respect to 𝐵, completeness then amounts to showing the existence

of a 𝑤 ∈ Σ∗ such that 𝑤 refutes subprotocol fidelity, language inclusion, or deadlock freedom.

Recall that the proofs for the necessity of Send Preservation, Receive Exhaustivity and Final State

Validity in the case where 𝐵 is the subset construction constructed a trace that refuted either

subprotocol fidelity or deadlock freedom. These two properties are identical across both formu-

lations of the problem, and therefore the construction can be wholly reused to show the necessity

of Send Subtype Preservation, Receive Subtype Exhaustivity and Final State Subtype Validity.

Lemma 6.33. IfA[𝐴]p violates Send Decoration Subtype Validity or Receive Decoration Subtype

Validity, then it does not hold that for all well-behaved contexts A[·]p, A[𝐴]p refines A[𝐵]p.

The proofs for the necessity of Send Decoration Validity and Receive Decoration Validity, on the

other hand, construct a word that is a trace inA[𝐴]p but not a trace in C (G) [𝐴]p. In the general

case, we can show that the same construction is a trace in A[𝐴]p but not a trace in A[𝐵]p. We

omit the proofs to avoid redundancy.

Lemma 6.34. If {{𝐴p}}p∈P violates Send Subtype Preservation, Receive Subtype Exhaustivity, or

Final State Subtype Validity, then it does not hold that for all well-behaved contexts A[·]p, A[𝐴]p

refines A[𝐵]p.

127

6.5 Complexity Analysis

We complete our discussion with a complexity analysis of the two considered problems, building

on the characterizations established in Theorem 6.1 and Theorem 6.20.

For the Protocol Verification problem, let𝑚 be the size ofA and 𝑛 the size of G. Moreover, let

𝐴p be the local implementation of some role p in A. Observe that the sets 𝑑G(𝑠) for each state 𝑠

of 𝐴p as well as the sets 𝑀p
(𝐺 ′ ...) for each subterm 𝐺′ of G are at most of size 𝑛. It is then easy to

see that𝐶1 can be checked in time polynomial in 𝑛 and𝑚. As established in Section 3.4,𝑀p
(𝐺 ′ ...) is

computable in co-NP. Observe that the function 𝑑G can be computed for the local implementation

of each role𝐴p ∈ P using a simple fixpoint loop. Each set 𝑑G(𝑠) can be represented as a bit vector

of size 𝑛, making all set operations constant time. The loop inserts at most 𝑛 subterms of G into

each 𝑑G(𝑠), which takes time 𝑂 (𝑚𝑛) for all insertions. Moreover, for each 𝐺 inserted into a set

𝑑G(𝑠) and each transition 𝑠
𝑥−→ 𝑠′ in 𝐴p, we need to compute the set {𝐺′ | 𝐺 𝑥−→∗ 𝐺′ ∈ 𝛿↓} which is

then added to 𝑑G(𝑠′). Computing these sets takes time 𝑂 (𝑚𝑛) for each 𝐺 and 𝑠 .

Thus, we establish the following complexity characterization.

Theorem 6.35. The Protocol Verification and Protocol Refinement problems are decidable in co-

NP.

6.6 Related Work

Session types were first introduced in binary form by Honda in 1993 [Honda 1993]. Binary ses-

sion types describe interactions between two participants, and communication safety of binary

sessions amounts to channel duality. Binary session types were generalized to multiparty ses-

sion types – describing interactions between more than two participants – by Honda, Yoshida

and Carbone in 2008 [Honda et al. 2008], and the corresponding notion of safety was generalized

from duality to multiparty consistency. Binary session types were inspired by and enjoy a close

128

connection to linear logic [Girard 1987; Wadler 2014; Caires et al. 2016]. Horne generalizes this

connection to multiparty session types and non-commutative extensions of linear logic [Horne

2020]. The connection between multiparty session types and logic is also explored in [Carbone

et al. 2016; Caires and Pérez 2016; Carbone et al. 2017]. MSTs have since been extensively studied

and widely adopted in practical programming languages; we refer the reader to [Coppo et al.

2015] for a comprehensive survey.

Session type syntax. Session type frameworks have enjoyed various extensions since their

inception. In particular, the choice operator for both global and local types has received con-

siderable attention over the years. MSTs were originally introduced as global types, with a di-

rected choice operator that restricted a sender to sending different messages to the same recipient.

[Castagna et al. 2012] and [Majumdar et al. 2021a] relax this restriction to sender-driven choice,

which allows a sender to send different messages to different recipients, and increases the expres-

sivity of global types. The results in this chapter target global types with sender-driven choice.

For local types, a direct comparison can be drawn to the 𝜋-calculus, for which mixed choice was

shown to be strictly more expressive than separate choice [Palamidessi 2003]. Mixed choices al-

low both send and receive actions, whereas separate choices consist purely of either sends or

receives. [Li et al. 2023a] showed that any global type with sender-driven choice can be imple-

mented by a CSMwith only separate choice. Mixed choice for binary local types was investigated

in [Casal et al. 2022], although [Peters and Yoshida 2022] later showed that this variant falls short

of the full expressive power of mixed choice 𝜋-calculus, and instead can only express separate

choice 𝜋-calculus. Other communication primitives have also been studied, such as channel dele-

gation [Honda et al. 2008, 1998; Castellani et al. 2020], dependent predicates [Toninho et al. 2011,

2021], parametrization [Deniélou et al. 2012; Charalambides et al. 2016] and data refinement [?].

Session type semantics. MSTs were introduced in [Honda et al. 2008] with a process algebra se-

mantics. The connection to CSMs was established in [Deniélou and Yoshida 2012], which defines

a class of CSMs whose state machines can be represented as local types, called Communicating

129

Session Automata (CSA). CSAs inherit from the local types they represent restrictions on choice

discussed above, “tree-like” restrictions on the structure (see [Stutz 2023] for a characterization),

and restrictions on outgoing transitions from final states. The CSM implementation model in our

work assumes none of the above restrictions, and is thus true to its name.

Session subtyping. Session subtyping was first introduced by [Gay and Hole 2005] in the con-

text of the 𝜋-calculus, which was in turn inspired by Pierce and Sangiorgi’s work on subtyping

for channel endpoints [Pierce and Sangiorgi 1996]. The session types literature distinguishes

between two notions of subtyping based on the network assumptions of the framework: syn-

chronous and asynchronous subtyping. Both notions respect Liskov and Wing’s substitution prin-

ciple [Liskov and Wing 1994], but differ in the guarantees provided. We discuss each in turn.

Synchronous subtyping follows the notions of covariance and contravariance introduced by

[Gay and Hole 2005], and checks that a subtype contains fewer sends and more receives than

its supertype. For binary synchronous session types, Lange and Yoshida [Lange and Yoshida

2016] show that subtyping can be decided in quadratic time via model checking of a character-

istic formulae in the modal 𝜇-calculus. For multiparty synchronous session types, Ghilezan et

al. [Ghilezan et al. 2019b] present a precise subtyping relation that is universally quantified over

all contexts, and restricts the local type syntax to directed choice. As mentioned in ??, [Ghilezan

et al. 2019b], their subtyping relation is incomplete when generalized to asynchronous multiparty

sessions with directed choice. As discussed in ??, their subtyping relation is further incomplete

when generalized to asynchronous multiparty sessions with mixed choice, due to the “peculiar-

ity [...] that, apart from a pair of inactive session types, only inputs and outputs from/to a same

participant can be related” [Ghilezan et al. 2019b]. The complexity of the subtyping relation

in [Ghilezan et al. 2019b] is not mentioned.

Unlike subtyping relations for synchronous sessions which preserve language inclusion, sub-

typing relations for asynchronous sessions instead focus on deadlock-free optimizations that per-

mute roles’ local order of send and receive actions, also called asynchronous message reordering, or

130

AMR [Cutner et al. 2022]. First proposed for binary sessions by Mostrous and Yoshida [Mostrous

and Yoshida 2009], and for multiparty sessions by Mostrous et al. [Mostrous et al. 2009], this

notion of subtyping does not satisfy subprotocol fidelity in general; indeed, in some cases, the

set of behaviors recognized by a supertype is entirely disjoint from that of its subtype [Bravetti

et al. 2021a]. Asynchronous subtyping was shown to be undecidable for both binary and multi-

party session types [Lange and Yoshida 2017; Bravetti et al. 2018]. Existing works are thus either

restricted to binary protocols [Lange and Yoshida 2017; Bravetti et al. 2021a, 2018; Bacchiani

et al. 2021], prohibit non-deterministic choice involving multiple receivers [Ghilezan et al. 2021;

Bravetti et al. 2021b], or make strong fairness assumptions on the network [Bravetti et al. 2021b].

The connection between session subtyping and behavioral contract refinement has been stud-

ied only in the context of binary session types, and is thus out of scope of our work. We refer the

reader to [Ghilezan et al. 2019b] for a survey.

131

Part II

Implementation

132

7 | Rocq Mechanization

7.1 Introduction

The difficulty of correctly implementing distributed, message-passing protocols is mirrored by

the difficulty of proving the metacorrectness of their verification methodologies. Unsound imple-

mentability checks in verification frameworks may result in implementations that exhibit com-

munication errors or deadlocks, whereas incomplete implementability checks undermine their

utility. Despite the fact that the vast majority of existing implementability checks are conser-

vative and do not aim for completeness, multiple unsound implementability checks have been

proposed [Caires and Pérez 2016; Chen 2015; Deniélou et al. 2012; Deniélou and Yoshida 2012;

Toninho and Yoshida 2017], in addition to false claims about the decidability of implementability

for various protocol classes [Gheri et al. 2022] that were later refuted.

Mechanization has proven to be an effective way to fortify the correctness of pen-and-paper

results. In the domain of process calculi, a mechanization of [Lanese et al. 2008] called HO-

Core [Maksimovic and Schmitt 2015] revealed and subsequently fixed several major flaws in the

existing proofs. Proof assistants especially excel at preventing inexhaustive case analysis, which

was shown by [Finkel and Lozes 2017] to be the cause of erroneous prior works claiming the

decidability of the realizability and synchronizability problems for systems of asynchronously

communicating state machines.

However, all existing works in the intersection of mechanization and protocol implementabil-

133

ity consider restricted implementation models that support only synchronous communication

[Tirore et al. 2023; Hirsch and Garg 2022] or asynchronous communication with directed choice

[Castro-Perez et al. 2021]. Moreover, specifications are restricted to protocols with finitely many

participants and completeness is stated relative to projection operators that are themselves in-

complete for implementability.

In this chapter, we present a mechanization of the precise implementability characterization

for a large class of protocols that subsumes many existing formalisms in the literature presented

in Chapter 3. Our protocols and implementations model asynchronous commmunication, and

can exhibit infinite behavior. Our semantic model of protocols unifies two distinct formalisms

from Chapter 2 under one general definition, which is capable of expressing syntactic formalisms

from other frameworks. We improve upon the results in Chapter 3 by simplifying existing proof

arguments, elaborating on the construction of canonical implementations, and even uncovering

a subtle bug in the semantics for infinite words. As a corollary of our mechanization, we show

that the characterization in Chapter 3 applies even to protocols with infinitely many participants.

We also contribute a reusable library for reasoning about generic communicating state machines,

which can serve as a basis for formalizing other theoretical results in concurrency theory.

7.2 Mechanization

We focus our exposition in this chapter on aspects of the Rocq mechanization that improve upon

the pen-and-paper proofs from Chapter 3. In §7.2.1, we present our purely semantic definition of

protocols, which collapses the distinction between GCLTS and symbolic protocols in Chapter 2,

and can easily encode existing protocol models. In §7.2.2, we discuss a subtle flaw identified in the

infiniteword semantics introduced in [Majumdar et al. 2021a] and inherited by several subsequent

works [Stutz and Zufferey 2022; Stutz 2023; Li et al. 2023a, 2024; Stutz 2024b; Li et al. 2025c],

its implications on the pen-and-paper proofs, and propose a revised infinite word semantics.

134

p→
r :

0
q→r : 1 r→p : 1

. . .
.

p→
r :𝑖 q→r : 𝑗 r→p :𝑖 + 𝑗

Figure 7.1: Addition GCLTS.

p→r :𝑥 {𝑟 ′𝑥 = 𝑥 }

q→r :𝑦{𝑟 ′𝑦 = 𝑦}

r→p :𝑧{𝑧 = 𝑟𝑥 + 𝑟𝑦 }

Figure 7.2: Addition symbolic protocol.

As a byproduct, we obtain the generalization from finite to infinite participant sets for free. In

§7.2.3, we present our novel existence proof of canonical implementations. In §7.2.4, we present

a simplification to a key soundness lemma that features nested induction.

7.2.1 Protocols as Labeled Transition Systems

In Chapter 2, we introduce symbolic protocols as an additional model for finitely representing

potentially infinite GCLTS. Symbolic protocol states store a set of registers, and transitions are

labeled with dependent predicates that can refer to communication variables and register vari-

ables, and can thus describe register updates. The semantics and implementability of a symbolic

protocol is defined in terms of the concrete GCLTS it represents.

For illustration purposes, the GCLTS and symbolic protocol representations of a simple ad-

dition protocol between three participants p, q and r are depicted in Fig. 7.1 and Fig. 7.2. In the

protocol, participants p and q send two natural number values 𝑥 and 𝑦 to participant r, who

replies to participant p with the sum 𝑧 = 𝑥 + 𝑦, after which the protocol terminates.

In Chapter 3, we extend the Coherence Conditions to a set of Symbolic Coherence Condi-

tions for algorithmically checking implementability of symbolic protocols, as well as investigat-

ing complexity of various decidable symbolic protocol fragments.

Thanks to Rocq’s type universe, we unify the two disparate definitions under a single formal

definition in our mechanization, which represents protocols simply as an LTS parametric in a

135

state and alphabet type, containing a transition relation, an initial state, and a final state relation.

Record LTS {A: Type} :=

mkLTS { transition: State -> A -> State -> Prop;

s0: State;

final: State -> Prop; }.

We define LTS semantics using an inductive relation to represent reachability, lists to repre-

sent finite traces, and streams to represent infinite traces. Despite the apparent inconvenience

imposed by the type-level distinction between finite and infinite words, we will see in §7.2.4 that

we can greatly delay the acknowledgement of this distinction in key proofs, and moreover, that

doing so simplifies the existing pen-and-paper proofs.

7.2.2 Infinite Protocol Semantics

In this section, we examine asynchronous protocol semantics for infinite words.

The protocol semantics of S is defined in steps: we begin with the LTS semantics of S, then

apply a homomorphism split to obtain a set of asynchronous words that remain “synchronously

ordered”, i.e. matching send and receive events are adjacent to each other. In an asynchronous

network with peer-to-peer, FIFO channels, certain events can be reordered, and are thus consid-

ered independent. For example, the synchronous trace p→q :𝑚·r→s :𝑚 yields the asynchronous

trace 𝑢1 = p ⊲ q!𝑚 · r ⊲ s!𝑚 · s ⊳ r?𝑚 · q ⊳ p?𝑚, as well as 𝑢2 = r ⊲ s!𝑚 · p ⊲ q!𝑚 · s ⊳ r?𝑚 · q ⊳ p?𝑚,

in which the independent sends by p and r are reordered.

We call two words 𝑤,𝑤 ′ ∈ Σ𝜔async indistinguishable when any asynchronous implementation

recognizing oneword necessarily recognizes the other. Note that indistinguishability is specific to

the assumed communication architecture: two words that are indistinguishable in a peer-to-peer

FIFO setting may not be in a mailbox setting.

Allowing the semantics of global protocols to selectively exclude indistinguishable behav-

136

iors, e.g. by including𝑢1 but excluding𝑢2, would render protocols spuriously non-implementable.

Thus, we desire for our protocol semantics to be closed under this notion of indistinguishability.

For finite words, the indistinguishability relation is intuitive to formalize. Prior works that give

language-theoretic semantics to session types, such as [Majumdar et al. 2021a], define indistin-

guishability in terms of a binary relation on asynchronous events capturing when they can be

reordered, and a notion of channel compliance that captures valid traces with respect to peer-

to-peer, FIFO semantics.1 In the message sequence chart literature, linearizations are required

to satisfy the union of per-participant total orders and the send-before-receive partial order on

events, coinciding with the definition from [Majumdar et al. 2021a]. A key observation is that

in pairs of indistinguishable finite words, the sequence of events for each participant is identical.

Thus, to show that any asynchronous implementation recognizes 𝑤 ′, we do not need to know

more about each participant’s local implementation beyond the fact that it accepts 𝑤⇓Σp
, which

is given from the fact that the implementation as a whole recognizes𝑤 .

For infinite words, however, indistinguishability can no longer be defined purely alphabet-

ically. Consider the pair of infinite words 𝑣1 = p ⊲ q!𝑚𝜔 and 𝑣2 = r ⊲ s!𝑚 · p ⊲ q!𝑚𝜔 . Are 𝑣1

and 𝑣2 indistinguishable? On our previous notion of indistinguishability, the answer is unfortu-

nately, no. The fact that 𝑤 is a trace of an arbitrary asynchronous implementation gives us no

information about the local implementation of participant r, yet to show that 𝑤 ′ is also a trace

of said implementation, we need to additionally know that r’s local implementation admits the

trace r ⊲ s!𝑚. This discrepancy arises from the fact that infinite traces in an asynchronous im-

plementation can infinitely reorder independent events, in this case every occurrence of p ⊲ q!𝑚

with r ⊲ s!𝑚, achieving the effect of indefinitely postponing r ⊲ s!𝑚.

Equipped with an understanding of the importance of indistinguishability-closed global se-
1We identify a minor erratum in the original formulation of the indistinguishability relation [Majumdar et al.

2021a] used in later works [Stutz 2023; Li et al. 2023a, 2024]: cases (3) and (4) are not symmetric, and thus the
relation is not an equivalence relation as claimed.

137

p→q :𝑚

p→q :𝑚′ r→s :𝑚′

Figure 7.3: Example infinite protocol Sinf .

p→q :𝑚

p→q :𝑚′r→s :𝑚′

Figure 7.4: Example infinite protocol S′inf .

mantics, we revisit the definition of infinite protocol semantics as stated in [Li et al. 2025c]:

C∼(S)𝜔 = {𝑤 ′∈Σ𝜔async | ∃𝑤 ∈ Σ𝜔async .𝑤 ∈split(L(S)) ∧ ∀𝑣′ ≤ 𝑤 ′. ∃𝑢,𝑢′ ∈ Σ∗async .

𝑣′ · 𝑢′ is channel-compliant ∧ 𝑢 ≤ 𝑤 ∧ ∀p ∈ P . (𝑣′ · 𝑢′)⇓Σp
= 𝑢⇓Σp

} .

We show via counterexample that C∼(S)𝜔 is not indistinguishability-closed. Consider the

simple protocol depicted in Fig. 7.3, involving four participants p, q, r, s and two message values

𝑚,𝑚′. As per the above definition, L(Sinf) does not include the infinite word r ⊲ s!𝑚 · p ⊲ q!𝑚𝜔 .

In contrast, L(S′inf), whose protocol is obtained by a simple state renaming of Fig. 7.4 and is

depicted in Fig. 7.4, does include r ⊲ s!𝑚 · p ⊲ q!𝑚𝜔 .

Before proposing a revised infinite word semantics that resolves this discrepancy, we discuss

the implications of this counterexample on the results from [Li et al. 2025c]. It is easy to verify

that Sinf is a GCLTS and satisfies CC. However, Sinf is not implementable: there exists no CLTS

that recognizes the finite word p ⊲ q!𝑚𝑛 · p ⊲ q!𝑚′ · r ⊲ s!𝑚′ for all values of 𝑛 ∈ N yet does not

recognize the infinite word r ⊲ s!𝑚 · p ⊲ q!𝑚𝜔 . This contradicts the soundness of the Coherence

Conditions as stated in [Li et al. 2025c]. The error lies in the case for infinite words in the proof

of [Li et al. 2025c, Lemma 4.9], which concludes from the fact that every prefix of an infinite word

𝑤 in the canonical implementation has a non-empty intersection run set 𝐼 (𝑤), that𝑤 ∈ C∼(S)𝜔 .

To show that 𝑤 ∈ C∼(S)𝜔 , one needs to find a witness infinite run 𝜌 in S, such that for every

prefix 𝑣′ ≤ 𝑤 , there exists an extension 𝑢′ and a prefix of rho 𝜌′𝑣 such that for all participants, the

events prescribed by 𝜌′𝑣 and 𝑣′ ·𝑢′ are identical. To show the existence of such a run, the authors

appeal to König’s Lemma, and argue that in a finitely-branching infinite tree containing possible

138

run prefixes for every prefix of𝑤 ′, there exists a ray representing an infinite run. This argument

appears likewise inherited from earlier works on finite, multiparty session types [Majumdar et al.

2021a]. We discover that not only is König’s Lemma not applicable in the infinite setting of [Li

et al. 2025c] where GCLTS states can have infinitely many transitions, the existence of a ray is

insufficient to prove membership of𝑤 in C∼(S)𝜔 . The latter implies that the proof using König’s

Lemma in prior works such as [Majumdar et al. 2021a; Li et al. 2023a] is flawed: indeed, S′inf is

expressible in the multiparty session type fragments defined in these works that assume finitely

many participants, states and transitions. The gap in the reasoning lies in showing that the

infinite run obtained from König’s Lemma is indeed a suitable existential witness required by the

infinite protocol semantics. In the infinite tree constructed for Sinf and word r ⊲ s!𝑚′ · p ⊲ q!𝑚𝜔 ,

the prefix r ⊲ s!𝑚 contributes a vertex labeled with the run prefix p→q :𝑚 · p→q :𝑚′ · r→s :𝑚′.

Subsequent prefixes of the form r ⊲ s!𝑚′ · p ⊲ q!𝑚𝑛 contribute vertices labeled with run prefixes

p→ q :𝑚𝑛 · p→ q :𝑚′ · r→ s :𝑚′. A ray exists in this finite-degree, infinite tree representing

the run p→ q :𝑚𝜔 . This is clearly an infinite run in Sinf , but unfortunately does not satisfy the

conditions required to show membership of 𝑤 ′ in L(Sinf): for prefix r ⊲ s!𝑚′ of 𝑤 , there exists

no prefix of p→q :𝑚𝜔 that matches r’s events.

Fortunately, the flawed infinite word semantics from [Li et al. 2025c] can easily be amended to

accurately reflect the desired, indistinguishability-closed semantics. This amendment is reflected

in the published version of [Li et al. 2025c]: [Li et al. 2025b], as well as in Chapter 2 of this thesis.

Our revised infinite word semantics is as follows:

C∼alt (S)
𝜔 = {𝑤 ′∈Σ𝜔async | ∀𝑣′ ≤ 𝑤 ′. ∃𝜌 ∈ Γ∗sync, 𝑢′ ∈ Σ∗async . 𝜌 ∈pref(L(S))∧

𝑣′ · 𝑢′ is channel-compliant ∧ ∀p ∈ P . (𝑣′ · 𝑢′)⇓Σp
= split(𝜌)⇓Σp

} .

C∼alt (S)
𝜔 swaps the first two quantifiers in the original definition, and weakens the require-

ment that 𝑤 come from an infinite run to the requirement that 𝑤 come from a finite run prefix

139

(that could be part of a finite or infinite maximal run in S). We hypothesize that this revised

condition faithfully represents what prior works intended to capture with their infinite protocol

semantics. It also more closely matches simulation-based notions of trace equivalence, for ex-

ample in [Zhou et al. 2020]. This is further evidenced by the fact that the requisite changes to

the overall proof were minimal: the flawed König’s Lemma argument could simply be omitted

in favor of appealing directly to the intersection set non-emptiness inductive invariant, and the

completeness proof remained largely unchanged. The latter is due to the fact that for any infinite

word𝑤 ,𝑤 ∈ C∼(S)𝜔 =⇒ 𝑤 ∈ C∼alt (S)
𝜔 .

7.2.3 Constructing Canonical Implementations

Showing that a global protocol is implementable amounts to finding a witness CLTS that imple-

ments it. The soundness proof of CC in Chapter 3 chooses a particular CLTS as witness, namely

the canonical implementation (Definition 3.6). Our proofs in Chapter 3 assume the existence of this

canonical implementation for any protocol. Establishing the existence of a canonical implemen-

tation formally in our mechanization requires constructing an explicit, albeit non-constructive,

witness CLTS. The construction is conceptually straightforward; nonetheless, we illustrate key

steps here as it is novel to our mechanization.

We begin by observing that because canonicity is defined on a per-participant basis, and with

respect to an LTS that is deadlock-free, the definition can beweakened to use the LTS semantics of

S rather than its protocol semantics. Theweaker definition avoids reasoning about asynchronous

reorderings and channel compliance, and is formalized in Rocq as follows.

In the Rocq definitions below, S is a protocol of type LTS SyncAlphabet State, and p is a

participant. We choose State -> Prop for the state type of local implementations, so S_p is an

LTS of type LTS AsyncAlphabet (State -> Prop).

Definition canonical_implementation_local_naive S p S_p :=

(forall w:FinAsyncWord , is_finite_word S_p w ->

140

exists w': FinSyncWord , is_finite_word S w' /\ wproj (split w') p = w)

/\

(forall w:FinSyncWord , is_finite_word S w ->

is_finite_word S_p (wproj (split w) p))

/\

(forall w:FinAsyncWord , is_trace S_p w ->

exists w': FinSyncWord , is_trace S w' /\ wproj (split w') p = w)

/\

(forall w:FinSyncWord , is_trace S w ->

is_trace S_p (wproj (split w) p)).

The four conjuncts correspond to four inclusions that altogether define the two equalities

in Definition 3.6, and need to be stated separately due to the type mismatch between finite and

infinite words.

Our construction for each participant’s local implementation can be expressed simply as a

composition of two purely automata-theoretic operations: applying the homomorphism ⇓Σp
for

each participant, followed by determinization. This coincides with the subset construction au-

tomaton as defined in Chapter 5, which we name our definitions after. Formally, for each par-

ticipant p ∈ P, the result of the second step is an LTS over Σp ∪ {𝜖}. To avoid introducing this

compounded alphabet and reasoning about identity elements, we define both operations declar-

atively in one shot, to obtain a local LTS over the alphabet AsyncAlphabet, whose states are of

type State -> Prop, representing subsets of 𝑄 .

The initial state is defined relationally as the set of all states reachable on 𝜖 from 𝑠0 inS. States

in the subset construction are the set of non-empty subsets of states in S. Final states are defined

relationally as sets of states containing at least one final state from S.

Definition initial_subset_construction_state S p :=

fun s => exists (w : list SyncAlphabet), lts.Reachable S (s0 S) w s

141

/\ wproj (split w) p = [].

Definition subset_construction_state S p :=

fun lstate => exists (s : State), lstate s.

Definition final_subset_construction_state S p :=

fun lstate => subset_construction_state S p lstate /\

exists (s : State), lstate s /\ final S s.

The transition relation describes triples (ls, a, ls’) where ls is a pre-state in the subset

construction, a is an asynchronous alphabet symbol in p’s restricted alphabet, and ls’ is a post-

state. The relation states that ls’ contains all states fromS that are either an immediate post-state

of some state 𝑠 in ls, or is 𝜖-reachable from an immediate post-state.

Definition subset_construction_transition_relation S p :=

fun lstate1 a lstate2 => is_active p a

/\ subset_construction_state S p lstate1

/\ subset_construction_state S p lstate2

/\ forall (s':State), lstate2 s' <->

(exists (s:State), lstate1 s /\ transition S s (async_to_sync a) s')

\/

(exists (s s_inter:State), lstate1 s /\

transition S s (async_to_sync a) s_inter /\

exists (v_epsilon:list SyncAlphabet),

lts.Reachable S s_inter v_epsilon s' /\

wproj (split v_epsilon) p = []).

The former two conjuncts are implied by the latter two conjuncts together with the definition

of final states in the subset construction. The latter two conjuncts state that every asynchronous

142

trace in a participant’s canonical local implementation corresponds to a synchronous trace in

S, and every synchronous trace in S corresponds to an asynchronous trace in the participant’s

canonical local implementation.

Unfortunately, these two properties are not themselves inductive: in both cases, the induction

hypothesis is not strong enough to show that the respective traces can be extended. We state

and prove two inductive invariants that explicitly quantify over states of S in a participant’s

canonical local implementation S_p, and weaken them to obtain the third and fourth conjuncts.

The strengthened inductive properties respectively state that for every reachable state ls on

some asynchronous word w in S_p, for every global state s in ls, one can find a corresponding

synchronous word w’ such that w’ and w agree on participant p’s events, and S reaches s on w’;

conversely, for every reachable global state s on some synchronous word w in S, one can find a

corresponding local state ls’ and asynchronous word w’ such that w’ and w agree on participant

p’s events, and S_p reaches ls’ on w’.

Finally, we define the canonical CLTS by mapping each participant to their subset construc-

tion. To show that the map thus defined is indeed a CLTS, we additionally need to prove that each

local implementation is deterministic, andmoreover operates on its own restricted alphabet. Both

proofs are straightforward by definition of the subset construction; our proof of determinism uses

the axioms of functional and propositional extensionality from Rocq’s Logic library to establish

the equality of local states of type State -> Prop. We conclude with the existence lemma:

Lemma canonical_implementation_exists :

forall (S : @LTS SyncAlphabet State),

deadlock_free S ->

exists (T : CLTS),

@canonical_implementation (State -> Prop) S T.

143

7.2.4 Simplification of Soundness

The core argument for soundness in Section 3.3 relies on proving the following inductive invari-

ant:

Let S be a protocol satisfying CC, and let {{𝑇p}}p∈P be a canonical CLTS for S. Let𝑤 be

a trace of {{𝑇p}}p∈P . Then, 𝐼 (𝑤) ≠ ∅.

The set 𝐼 (𝑤) contains finite or infinite maximal runs in S that are possible with respect to

the trace 𝑤 . Formally, 𝜌 ∈ 𝐼 (𝑤) means that for every participant p ∈ P, 𝑤⇓Σp
≤ split(𝜌)⇓Σp

,

i.e. each participant’s local events in 𝑤 agree with what 𝜌 prescribes. The proof proceeds by

induction on the length of𝑤 , with case analysis in the inductive step on whether the next event

is a send or receive event.

The non-emptiness of 𝐼 (𝑤) amounts to an existential quantification over a disjunction. In our

mechanization, however, due to the type-level distinction between finite and infinite runs, this

property takes the form of a disjunction over existentials:

Definition I_set_non_empty (S: LTS) (w: FinAsyncWord) :=

(exists (run: FinSyncWord), finite_possible_run S run w)

\/

(exists (run: InfSyncWord), infinite_possible_run S run w).

Although our soundness arguments from Section 3.3 are mechanizable using this definition

of intersection set non-emptiness, doing so would involve repetitive reasoning to deal with finite

and infinite runs separately that does not shed additional insight on the problem. We instead

prove that every canonical CLTS trace has a possible run prefix. Our new inductive invariant

factors out the distinction between finite and infinite runs, and is additionally more expressive

than its pen-and-paper counterpart: it makes explicit the construction of a possible run prefix

for 𝑤𝑥 from one for 𝑤 . When 𝑥 is a receive event, our lemma states that the exact same run

144

prefix can be reused. When 𝑥 is a send event, a run prefix can be constructed incrementally by

processing𝑤 in increasing length order, and appealing to CC to incrementally extend a prefix of

the possible run prefix for𝑤𝑥 .

We focus the exposition below on our simplified proof for the inductive step when 𝑥 is a send

event. We restate the relevant lemma below.

Lemma 7.1 (Send events preserve run prefixes). LetS be a protocol satisfying CC and {{𝑇p}}p∈P be

a canonical implementation for S. Let𝑤𝑥 be a trace of {{𝑇p}}p∈P such that 𝑥 ∈ Σp,! for some p ∈ P.

Let 𝜌 be a run in 𝐼 (𝑤), and 𝛼 · 𝑠𝑝𝑟𝑒
𝑙−→ 𝑠𝑝𝑜𝑠𝑡 · 𝛽 be the unique splitting of 𝜌 for p with respect to 𝑤 .

Then, there exists a run 𝜌′ in 𝐼 (𝑤𝑥) such that 𝛼 · 𝑠𝑝𝑟𝑒 ≤ 𝜌′.

The unique splitting of a run for a participant with respect to a trace is the largest prefix of

the run that matches the participant’s actions in the trace, formalized as follows:

Definition is_alpha (run alpha:FinSyncWord) (w:FinAsyncWord) p :=

prefix alpha run /\ wproj w p = wproj (split alpha) p /\

(forall (u: FinSyncWord), wproj w p = wproj (split u) p ->

prefix u run -> prefix u alpha).

For example, the unique splitting of run 𝜌 = p→ q :𝑚 · r→ s :𝑚 · r→ q :𝑚 · q→ p :𝑚 for

participant p with respect to trace 𝑢 = p ⊲ q!𝑚 · r ⊲ s!𝑚 · r ⊲ q!𝑚 is p→q :𝑚 · r→s :𝑚 · r→q :𝑚,

because p has only completed the first event prescribed by 𝜌 in 𝑢, namely sending 𝑚 to r, but

has not completed the second event, namely receiving𝑚 from q. Because the two synchronous

events in between these two events in 𝜌 do not concern p, they are included in the largest prefix.

If a run disagrees with a trace on some participant’s actions, the unique splitting is 𝜖 , for example

𝜌’s unique splitting for participant r with respect to trace r ⊲ s!𝑚′.

Our adapted formalization of the lemma is thus stated as follows:

Lemma send_preserves_run_prefixes_finite :

forall S T w x rho_fin alpha ,

145

GCLTS S -> NMC S -> SCC S -> RCC S ->

canonical_implementation S T ->

is_clts_trace T w -> is_clts_trace T (w ++ [x]) -> is_snd x ->

possible_run_prefix S rho_fin w ->

is_alpha rho alpha w (sender_async x) ->

exists (rho ': FinSyncWord),

prefix alpha rho ' /\ possible_run_prefix S rho ' (w ++ [x]).

The proof of Lemma 7.1 relies on a nested induction argument. We illustrate the key steps in

order to elucidate the structure of the nested induction and explain our simplified proof. From

the induction hypothesis, we are granted a canonical CLTS trace w and a possible run prefix for

w. Let the send extention to w be x = Snd p q m. We can then define the largest prefix of rho

matching w for participant p, and because the premise grants that alpha <> rho, there must exist

a next action prescribed by rho for p, which we denote l. As a reminder, since rho is a run of

the global protocol, which is an LTS over the synchronous alphabet, l is a synchronous alphabet

symbol. By the induction hypothesis, rho is compliant with all participants:

forall (p: participant), prefix (wproj w p) (wproj (split rho) p)

The induction step asks to construct an existential witness for a new possible run prefix, rho’,

that is compliant with wx. In the case that l = Event p q m, we can directly reuse rho as our

witness, and the three conjuncts required of rho’ are trivially satisfied when rho’ = rho. When

this is not the case, we must construct a different witness. We first appeal to Send Coherence

Condition to show that we can find a different continuation from alpha that agrees with x, in

other words, l’ = [Event p q m] and alpha ++ l’ is a run in the global protocol.

With this extension and removal of the original suffix from rho, however, we are left only

with a guarantee about p’s compliance:

prefix (wproj (w ++ [x]) p) (wproj (split (alpha ++ [Event p q m])) p)

146

In the case that all of the actions in w were already contained in alpha, we can use alpha

++ [l’] directly as our witness for rho’. However, in the case that some of w’s actions were

contained in the now removed suffix, it is no longer true that all participants are compliant with

alpha ++ [l’]. Therefore, the next step of the proof involves restoring a suffix that is “long

enough” to contain all of the actions that were originally in w.

Our pen-and-paper argument for suffix restoration is algorithmic in nature, and is captured by

the pseudocode in Algorithm 2. The algorithm initializes the candidate run 𝜌𝑐 as 𝛼 ·l’ appended to

an arbitrary run suffix 𝛽 to form a maximal run. The outer while loop then “fixes” disagreements

between 𝑤 and the current candidate run 𝜌𝑐 one symbol at a time, updating 𝜌𝑐 after each fix.

Termination is guaranteed by the fact that 𝑤 has finite length and that each event in 𝑤 is fixed

at most once. The outer while loop invariant relates 𝜌′𝑐 with 𝜌𝑐 , and guarantees that the largest

common prefix shared by 𝜌′𝑐 and 𝜌𝑐 between each loop iteration is strictly increasing. Because

the initial candidate run is picked such that it includes 𝛼 · l’ as a prefix, and the common prefix

between runs can only get longer, it holds by transitivity that when the while loop terminates,

the final candidate run must have 𝛼 · l’ as a prefix, and furthermore is compliant with all events

in𝑤 .

Formalizing the above algorithm in addition to its loop invariants would require a custom

inductive predicate that relates the candidate run with disagreeing events in 𝑤 . The fact that

the loop invariant depends on both the current and previous candidate run introduces significant

additional complexity.

We find a weaker inductive invariant that eliminates this dependency: it suffices to show that

Figure 7.5: Induction hypothesis. Figure 7.6: Inner induction hypothesis.

147

Algorithm 2 Algorithmic representation of Lemma 4.16 [Li et al. 2025b]
⊲ Let 𝜌𝑐 be 𝛼 · 𝑙′ · 𝛽 , where 𝛽 is an arbitrary maximal suffix
𝜌𝑐 ← 𝛼 · 𝑙′ · 𝛽
while ¬(∀p ∈ P . 𝑤⇓Σp

≤ split(𝜌𝑐)⇓Σp
) do

⊲ 𝑖 is the index of the earliest disagreeing event in 𝜌𝑐
𝑖 ← 𝑙𝑒𝑛𝑔𝑡ℎ(𝜌𝑐)
⊲ 𝑗 iterates over all prefixes of𝑤
𝑗 ← 0
for 𝑗 ∈ {0..𝑙𝑒𝑛𝑔𝑡ℎ(𝑤)} do

𝑘 ← max{𝑘′ | ∀p ∈ P . split(𝜌𝑐 [0..𝑘′ − 1])⇓Σp
≤ 𝑤 [0.. 𝑗]⇓Σp

}
if 𝑘 < 𝑖 then

𝑖 ← 𝑘

𝑗 ← 𝑗 + 1
⊲ 𝑦 is the earliest disagreeing event in 𝜌𝑐
𝑦 ← split(𝜌𝑐) [𝑖]
⊲ y’ is obtained from SCC to no longer disagree with𝑤
𝜌𝑐 ← 𝜌𝑐 [0..𝑖 − 1] · y’

𝛼 · l’ ≤ 𝜌𝑐 remains a prefix of the candidate run. This holds trivially upon entry to the while loop,

and is preserved by each iteration from the fact that 𝛼 comes from the original 𝜌 that is compliant

with𝑤 , and thus no events in𝑤 can disagree with events in 𝛼 .

In our new inductive invariant, 𝛼 · l’ can now be treated as a constant. We convert our pen-

and-paper algorithmic reasoning to the following inner induction hypothesis:

H_inner: forall (w': FinAsyncWord), prefix w' w ->

(exists (beta ': FinSyncWord),

possible_run_prefix S (alpha ++ [Event p q m] ++ beta ') w')).

We prove H_inner directly by induction on prefixes of w using rev_ind from the standard

List library. Fig. 7.6 visualizes the simplified inductive argument: the red symbols in w depict

disagreeing events in w as a result of removing the suffix from rho.

To prove send_preserves_run_prefixes_finite, we needed to consider cases glossed over

in our pen-and-paper proof, and in some case develop arguments from scratch. For example, in

the special case when alpha is a possible run prefix for participant p for trace w, but prescribes

148

exactly as many events as are in w, we needed to show that either w is a maximal CLTS trace, or

a different alpha can be found which prescribes more events, by appealing to the sink-finality of

S.

7.3 Related Work

Most closely related to our mechanization effort are the works [Castro-Perez et al. 2021] and

[Tirore et al. 2023]. Zooid [Castro-Perez et al. 2021] is a mechanized domain-specific language for

specifying and implementing asynchronous multiparty session types. [Tirore et al. 2023] mech-

anizes the soundness and completeness proofs for the projection operator for synchronous mul-

tiparty session types proposed in [Ghilezan et al. 2019a]. A key conceptual difference is that our

proofs follow a semantic argument grounded in formal language theory whereas both [Castro-

Perez et al. 2021] and [Tirore et al. 2023] follow more standard syntactic arguments. More funda-

mentally, the class of protocol specifications considered in this paper generalizes that of [Castro-

Perez et al. 2021; Tirore et al. 2023] along several dimensions: [Tirore et al. 2023] considers syn-

chronous rather than asynchronous communication and both works, internal choice syntacti-

cally disallows a sender from choosing among multiple receivers. Moreover, both papers restrict

specifications to finitely many participants and states, and abstract message values in terms of

simple types without data refinements. Finally, the notion of completeness considered in [Tirore

et al. 2023] is defined relative to the coinductive definition of endpoint projection introduced

in [Ghilezan et al. 2019a]. The latter is itself incomplete for our semantically defined notion of

implementability. The end-point projection of [Castro-Perez et al. 2021] is likewise incomplete.

Pirouette [Hirsch and Garg 2022] introduces a language of functional choreographies that are

converted to a distributed implementation via endpoint projection. The language supports ses-

sion delegation and higher-order functions, neither of which we include in our model of GCLTS.

However, functional coreographies are much more restricted in their distributed behavior than

149

the protocols in our model: communication is synchronous and all participants must remain in

lock step. The latter is enforced by requiring that the programmer inserts potentially redundant

synchronization messages into the coreography. A proof that the implementations obtained by

projection are deadlock-free has beenmechanized in Rocq. Similar to [Tirore et al. 2023], the com-

pleteness theorem is stated relative to completeness of syntactic projection rather than semantic

implementability.

There is a large number of other recent mechanization efforts for session type languages [Hin-

richsen et al. 2020, 2022; Jacobs et al. 2023; Hinrichsen et al. 2024; Thiemann 2019; Rouvoet et al.

2020; Hinrichsen et al. 2021; Jacobs et al. 2022; Tassarotti et al. 2017; Ekici and Yoshida 2024].

However, these focus on the formalization of language semantics, compiler correctness, or on

proving soundness of session type systems that check implementations against local types. The

latter describe the behavior of individual participants or communication channels and may be ob-

tained by prior endpoint projection from a global type or specified directly by the programmer.

We therefore consider these efforts orthogonal to our work.

150

8 | SPROUT

8.1 Introduction

In this chapter, we present Sprout, the first sound and complete implementability checker for

symbolic, multiparty protocols. Sprout takes as input a symbolic protocol, and first checks

whether the protocol is GCLTS-eligible. If so, it proceeds to generate 𝜇CLP instances corre-

sponding to the Symbolic Coherence Conditions from Chapter 3, which it then discharges to

the 𝜇CLP solver MuVal [Unno et al. 2023]. If all instances return invalid, Sprout reports that

the protocol is implementable; if one instance returns valid, Sprout reports non-implementable

along with the specific states and transitions that violate implementability; otherwise Sprout

returns inconclusive. Sprout is sound and complete relative to the completeness and soundness

of MuVal.

Sprout extends the results from Chapter 3 with explicit GCLTS checking, optimized 𝜇CLP

encodings of the Symbolic Coherence Conditions, and support for verification of functional cor-

rectness properties beyond implementability. We evaluate Sprout’s expressivity, precision and

efficiency against comparable tools [Zhou et al. 2020; Vassor and Yoshida 2024] on an expanded

benchmark suite containing both implementable and non-implementable examples. Sprout is

able to correctly classify protocols that are out of reach of its competitors, outperforming them in

terms of expressivity and precision. In terms of efficiency, Sprout’s performance is competitive.

On multiparty protocols, its verification times vary with the size of the protocol and are largely

151

𝑞0 𝑞1 𝑞2 𝑞3

𝑞4

𝑞5

𝑞6

𝑞7

𝑞8

{
𝑟𝑦 = 0 ∧ 𝑟𝑐 = 0
∧ 𝑟𝑧1 = 0 ∧ 𝑟𝑧2 = 0

}
B1→S :𝑦

{
ISBN(𝑦)
∧ 𝑟𝑦′ = 𝑦

}
B1→B2 :𝑦{𝑦 = 𝑟𝑦}

S→B1 :𝑧
{

𝑧 > 0
∧ 𝑟𝑐′ = 𝑧

}

B1→B2 :𝑏1

{
𝑏1 > 𝑟𝑧1
∧ 𝑟𝑧′1 = 𝑏1

}

B2→S :𝑥 {𝑥 = quit}

S→B1 :𝑥 {𝑥 = quit}

B2→B1 :𝑏2

{
𝑏2 > 𝑟𝑧2 ∧ 𝑏2 < 𝑟𝑐

∧ 𝑟𝑧′2 = 𝑏2

}

B1→S :𝑥
{

𝑥 = succ

∧ 𝑟𝑧1 + 𝑟𝑧2 ≥ 𝑟𝑐

}
S→B2 :𝑥 {𝑥 = succ}

B1→B2 :𝑥
{

𝑥 = cont

∧ 𝑟𝑧1 + 𝑟𝑧2 < 𝑟𝑐

}

Figure 8.1: Candidate specification for the two-bidder protocol.

bottlenecked by the efficiency of MuVal, although remaining in the order of seconds in most

cases. We envision Sprout as a complementary intermediate step in existing top-down code

generation toolchains for multiparty protocols whose implementability checks are incomplete.

8.2 Overview

We introduce Sprout using the running example of the two-bidder protocol from Chapter 1.

A candidate specification for the two-bidder protocol is depicted in Fig. 8.1. Sprout’s input format

closely follows the definition of symbolic protocols, formally defined over a set of participants P

in Chapter 2. The input file for our candidate specification is given in Fig. 8.2.

Initial state: (0)
Initial register assignments: ry=0, rc=0, rz1=0, rz2=0
(0) B1->S:y{(y>987000000000/\y<9880000000000)/\ry'=y} (1)
(1) B1->B2:y{y=ry} (2)
(2) S->B1:z{z>0/\rc'=z} (3)
(3) B1->B2:b1{b1>rz1/\rz1'=b1} (4)
(4) B2->S:quit{quit=0} (5)
(5) S->B1:quit{quit=0} (6)
(4) B2->B1:b2{b2>rz2/\b2<rc/\rz2'=b2} (7)
(7) B1->S:succ{succ=1/\rz1+rz2>=rc} (8)
(8) S->B2:succ{succ=1} (6)
(7) B1->B2:cont{cont=2/\rz1+rz2<rc} (3)
Final states: (6)

Figure 8.2: Sprout input file for protocol specification in Fig. 8.1.

Before checking implementability, Sprout first determines GCLTS eligibility. GCLTSs satisfy

152

four assumptions: sink-finality, sender-driven choice, determinism, and deadlock-freedom. Sink-

finality states that only non-final states have outgoing transitions, sender-driven choice states

that all outgoing transitions from the same state have a unique sender, determinism states that

no transition can lead to two distinct post-states, and deadlock freedom states that every protocol

run can be extended to a maximal run.

After confirming that our protocol is GCLTS-eligible, Sprout proceeds to generate 𝜇CLP

instances corresponding to our three Symbolic Coherence Conditions: Symbolic Send Coherence,

Symbolic Receive Coherence and Symbolic No Mixed Choice. Sprout generates the queries in

negation form, and discharges them to the 𝜇CLP solver MuVal [Unno et al. 2023]. Sprout reports

implementable if and only if all instances return invalid, indicating that all conditions are satisfied.

Unfortunately, Sprout reports a violation to Symbolic Send Coherence for B2 and the tran-

sition: (4) B2->B1:b2{b2>rz2/\b2<rc/\rz2'=b2} (7). The violation indicates the existence

of two global protocol states both with control state 𝑞4 that are indistinguishable from B2’s point

of view, and a message value, such that sending the value to B1 follows the protocol in one case

but violates the protocol in the other. Closer inspection of this transition’s constraint reveals

that B2 is required to send a bid that is strictly less than the price of the book 𝑐 . However, 𝑐 is

not disclosed to B2 during the protocol: B2 is bidding in the dark. Thus, depending on the initial

exchanges between B1 and S, which are not observable to B2, a bid could either satisfy or violate

the middle conjunct, subsequently following or violating the entire protocol.

We can repair our candidate protocol by either omitting b2<rc from the aforementioned tran-

sition constraint, or by including a transition informing B2 of the book’s price before the bidding

loop begins. Upon incorporating either fix, we find that all instances now return invalid as ex-

pected, and Sprout reports that the repaired two-bidder protocol is implementable in ∼19s.

Sprout also provides support for the verification of functional correctness properties beyond

implementability. For example, we can verify that the sum of B1 and B2’s bids never decreases

once they enter the bidding loop. This verification problem can be expressed in negation form as

153

a 𝜇CLP instance as follows, where stcon is a least fixpoint predicate describing st-connectivity

between two states in the global protocol:

exists (s1: int) (ry1: int) (rc1: int) (rza1: int) (rzb1: int)

(s2: int) (ry2: int) (rc2: int) (rza2: int) (rzb2: int).

s1 > 3 /\

s2 > 3 /\

stcon s1 ry1 rc1 rza1 rzb1 s2 ry2 rc2 rza2 rzb2 /\

rza2 + rzb2 < rza1 + rzb1

s.t.

stcon (s1: int) ... : bool =mu

...

Sprout provides a suite of least and greatest fixpoint predicate definitions for defining custom

verification queries that are then discharged to MuVal. MuVal confirms that this instance is

indeed invalid in ∼9s.

8.3 Implementation

Sprout is implemented in ∼3500 lines of OCaml code. In this section, we describe aspects of its

implementation, focusing on differences from the theory.

8.3.1 GCLTS Eligibility

Our Coherence Conditions are precise for the GCLTS fragment of symbolic protocols, namely

protocols that satisfy sink-finality, sender-driven choice, determinism and deadlock-freedom.

Sink-finality and sender-driven are syntactic conditions that are checked on the input protocol

straightforwardly using OCaml functions. Determinism and deadlock freedom are undecidable

in general. Sprout encodes the latter two as 𝜇CLP instances and discharges them to MuVal. We

present the formal definition and 𝜇CLP encoding of each property below, assuming a symbolic

protocol S = (𝑆, 𝑅,Δ, 𝑠0, 𝜌0, 𝐹) in the remainder of the section.

154

Determinism states that from a reachable protocol state, no transition can simultaneously

satisfy two transition constraints that lead to two distinct post-states. Reachability is expressed

as a least fixpoint in 𝜇CLP as follows:

Definition 8.1 (Reachability in symbolic protocol). Let 𝑠 ∈ 𝑆 . Then,

reach(𝑠′, 𝒓 ′) ≔𝜇 (𝑠′ = 𝑠0 ∧ 𝒓 ′ = 𝜌0) ∨(
∨

(𝑠, p→q:𝑥 {𝜑 }, 𝑠′) ∈Δ
∃𝑥 𝒓 . reach(𝑠, 𝑟) ∧ 𝜑) .

The reach predicate takes as its arguments a control state 𝑠′ and a set of registers 𝒓′, which

together constitute a symbolic protocol state. The first disjunct covers the base case in which 𝑠′

is the initial state, and 𝒓′ satisfy the initial register assignments. The second disjunct ranges over

all transitions with 𝑠′ as the post-state, and represents following a transition to reach 𝑠′, which

requires the transition predicate 𝜑 to hold in addition to 𝑟𝑒𝑎𝑐ℎ on the pre-state 𝑠 .

Equipped with the predicate reach, determinism is defined as follows.

Definition 8.2 (Determinism of symbolic protocol). S is deterministic when for each pair of

transitions 𝑠
p→q:𝑥1{𝜑1}−−−−−−−−−→ 𝑠1, 𝑠

p→q:𝑥2{𝜑2}−−−−−−−−−→ 𝑠2 ∈ Δ, the following is valid:

∀𝑥 𝒓 𝒓 ′1 𝒓
′
2. reach(𝑠, 𝒓) ∧ 𝜑1 [𝑥/𝑥1, 𝒓

′
1/𝒓 ′] ∧ 𝜑2 [𝑥/𝑥2, 𝒓

′
2/𝒓 ′] =⇒ 𝑠1 = 𝑠2 ∧ 𝒓 ′1 = 𝒓 ′2 .

Deadlock freedom states that every run in the protocol can be extended to a maximal run,

meaning that it is either infinite or ends in a final state. Equivalently, we require that every

reachable protocol state has an enabled outgoing transition, stated as follows.

Definition 8.3 (Deadlock freedom of symbolic protocol). S is deadlock-free when for each non-

final state 𝑠 ∈ 𝑆 \ 𝐹 , the following is valid:

∀𝒓 . reach(𝑠, 𝒓) =⇒
∨

(𝑠, p→q:𝑥 {𝜑 }, 𝑠′) ∈Δ
∃𝑥 . 𝜑 .

For determinism, Sprout generates one 𝜇CLP query per state; for deadlock freedom, Sprout

generates one 𝜇CLP query per pair of transitions sharing a pre-state. If the input protocol is

155

not GCLTS-eligible, Sprout reports specifically which assumption is violated by which state or

transitions.

The GCLTS checking step of Sprout is sound and relatively complete with respect to the

completeness of MuVal, and Sprout only checks implementability of GCLTS-eligible protocols.

8.3.2 Optimizations

Binary protocols. By Lemma 3.18, protocols involving only two participants represent a spe-

cial case that are always implementable if they satisfy GCLTS assumptions. Sprout thus elides

implementability checking for binary protocols, After checking GCLTS eligibility and before gen-

erating 𝜇CLP instances for checking implementability, Sprout checks whether the input proto-

col is binary, and if so, returns implementable immediately. This optimization enables Sprout to

achieve performance within the same order of magnitude as existing tools on binary protocols,

which represent a large subset of benchmarks in the multiparty protocol literature.

Decomposition of 𝜇CLP instances. The second and primary Sprout optimization decom-

poses the intractably large naive 𝜇CLP encoding of the Symbolic Coherence Conditions into

smaller instances. We briefly revisit the conditions and explain their naive encoding before de-

scribing our decomposition.

The conditions universally quantify over participants in the protocol, and then universally

quantify over pairs of simultaneously reachable protocol states from the perspective of a partici-

pant. Together, the conditions rely on three recursive predicates: prodreachp(𝑠1, 𝒓1, 𝑠2, 𝒓2), which

captures simultaneous reachability from a participant’s local perspective, unreach𝜀p,q(𝑠2, 𝒓2, 𝑥1),

which captures send transitions that are disabled from 𝜀-reachable states, and availp,q,B (𝑥1, 𝑠2, 𝒓2),

which captures messages that can be asynchronously reordered to be available in the present

state. We recall Symbolic Send Coherence (Definition 8.4, Chapter 3) below.

156

Definition 8.4 (Symbolic Send Coherence). S satisfies Symbolic Send Coherence when for each

participant p, transition 𝑠1
p→q:𝑥1{𝜑1}−−−−−−−−−→ 𝑠′1 ∈ Δ1 and state 𝑠2 ∈ 𝑆 , the following is valid:

prodreachp(𝑠1, 𝒓1, 𝑠2, 𝒓2) ∧ 𝜑1 ∧ unreach𝜀p,q(𝑠2, 𝒓2, 𝑥1) =⇒ ⊥ .

A 𝜇CLP instance is a pair (𝜙,R) of a query 𝜙 , which is a first order formula over a background

theory, and a body R, which is a sequence of inductive predicates with least or greatest fixpoint

semantics. Symbolic Send Coherence in negation form thus naturally corresponds to one 𝜇CLP

instance per participant. Each instance’s query existentially quantifies over control states and

registers, and is a series of |𝑄 | ∗ |𝑄 | disjuncts that perform case analysis over pairs of control

states, i.e. each disjunct is of the form

𝑠1 = 𝑞1 ∧ 𝑠2 = 𝑞2 ∧ prodreachp(𝑠1, 𝒓1, 𝑠2, 𝒓2) ∧ 𝜑1 ∧ unreach𝜀p,q(𝑠2, 𝒓2, 𝑥1)

where 𝑞1
p→q:𝑥1{𝜑1}−−−−−−−−−→ 𝑞2 ∈ Δ. Each instance’s body comprises the inductive predicates prodreach

and unreach, defined as least and greatest fixpoints respectively:

prodreachp(𝑠1, 𝒓1, 𝑠2, 𝒓2) =𝜇 . . . ; unreach
𝜀
p,q(𝑠2, 𝒓2, 𝑥1) =𝜈 . . . ;

Naively encoding the three Symbolic Coherence Conditions results in only 3∗ |P| 𝜇CLP instances

per protocol. Each instance, however, is orders of magnitude larger than the average benchmark

in MuVal’s benchmark suite1, and the verification time for our running example using this naive

approach exceeds 10 minutes. Thus, Sprout takes a different approach to structuring the Sym-

bolic Coherence Conditions as 𝜇CLP instances. First, Sprout distributes each disjunct into a

separate instance, yielding |P | ∗ |𝑄 | ∗ |𝑄 | instances for each condition. Next, Sprout decomposes

the prodreach and unreach predicates by “currying” state arguments, generating one prodreach

predicate per participant per pair of states, amounting to |P | ∗ |𝑄 | ∗ |𝑄 | predicate definitions, and

one unreach predicate per pair of participants per state, amounting to |P | ∗ |P| ∗ |𝑄 | predicate
1https://github.com/hiroshi-unno/coar/tree/main/benchmarks/muCLP/popl2023mod

157

https://github.com/hiroshi-unno/coar/tree/main/benchmarks/muCLP/popl2023mod

definitions. We show in Section 8.4 that decomposing large instances into multiple instances with

smaller queries and more inductive predicates improves the running time of MuVal by over two

orders of magnitude for most protocols.

Overapproximating simultaneous reachability. Thirdly, Sprout implements an overap-

proximation of simultaneous reachability that pre-filters pairs of control states before generating

𝜇CLP instances. Approximate simultaneous reachability disregards message values, only consid-

ering the sender and receiver of each event in a trace, e.g. p ⊲ q!4 · p ⊳ r?7 · s ⊲ q!5 is abstracted

to p ⊲ q!- · p ⊳ r?- · s ⊲ q!-. This optimization preserves soundness and completeness of the tool:

if two states are not approximately simultaneously reachable, then the Coherence Conditions

say nothing about them; if two states are approximately simultaneously reachable, then the cor-

responding instances will be generated and checked, and in the case that they are not actually

simultaneously reachable, will simply return invalid due to the prodreach conjunct being false.

Constraining simultaneously reachable control states. Finally, for Send Coherence in-

stances concerning simultaneously reachable states that share a control state, we add a conjunct

to the 𝜇CLP query requiring that not all register values in the two simultaneously reachable states

are equal. This eliminates quantifier instantiations that simplify to the trivially false formula:

prodreachp(𝑠, 𝒓, 𝑠, 𝒓) ∧ 𝜑 ∧ unreach𝜀p,q(𝑠, 𝒓, 𝑥).

Bugs found in MuVal While implementing Sprout, we discovered a soundness bug in Mu-

Val’s parallel and parallel_exc modes that led its output to depend on the order of least

and greatest fixpoint predicates in 𝜇CLP instances containing only one kind of fixpoint. We also

discovered a minor bug in MuVal’s constraint simplifier when optimizing queries containing

negation or implication. Both bugs were reported to and subsequently fixed by MuVal’s devel-

opers.2

2https://github.com/hiroshi-unno/coar/commit/bbe75fe7d5d4dcfc4b2eace94329a56bce9490e7,
https://github.com/hiroshi-unno/coar/commit/1d49999975b00f1430b3c9d10b90ab00b561e836

158

https://github.com/hiroshi-unno/coar/commit/bbe75fe7d5d4dcfc4b2eace94329a56bce9490e7
https://github.com/hiroshi-unno/coar/commit/1d49999975b00f1430b3c9d10b90ab00b561e836

Example |P | |Δ| Sprout time Naive[Li et al. 2025b] time
figure12-yes 3 2 impl. 0.6s impl. 2.4s
figure12-no 3 2 non-impl. 0.6s non-impl. 2.3s
TwoBuyer 3 9 impl. 3.2s timeout (300s) 311.2s

higher-lower-ultimate 3 9 impl. 17.9s out of memory 610.4s
higher-lower-no 3 9 non-impl. 24.5s non-impl. 349.8s

symbolic-two-bidder-yes 3 10 impl. 17.0s timeout (300s) 648.4s
symbolic-two-bidder-no 3 11 non-impl. 17.7s out of memory 891.5s

Table 8.1: Comparison of verification times with and without optimizations.

8.4 Evaluation

All experiments in this section are run on a 2024 MacBook Air with an Apple M3 chip and 16GB

of RAM. Verification times reported are the sum of GCLTS checking time and implementability

checking time, with timeouts for individual 𝜇CLP instances specified separately.

8.4.1 Optimization efficacy

We first evaluate the efficacy of Sprout’s optimizations, detailed in Section 8.3. We compare the

verification times of Sprout’s pre-filtered, optimized 𝜇CLP instances against the naive encod-

ing of definitions in Section 3.4. We benchmark on examples of various sizes, measured by the

number of transitions in the protocol specification. All examples are non-binary so as to reflect a

difference in implementability checking time. The results in Table 8.1 show that naively encoding

our conditions from Section 3.4 renders verification intractable for protocols with more than 2

transitions, and that Sprout’s optimizations yield a speedup by over two orders of magnitude.

8.4.2 Evaluation and comparison against Session*

Next, we evaluate Sprout in terms of expressivity, precision and efficiency.

Expressivity. To evaluate expressivity, we took the union of two benchmark suites from tools

most closely related to Sprout: Session* [Zhou et al. 2020] and Rumpsteak with refinements

159

[Vassor and Yoshida 2024]. Both works target multiparty protocols with refinements, however

both differ from Sprout in that they provide code generation functionality. Session*’s bench-

mark suite contains 11 examples, all of which utilize refinements. Despite the title of [Vassor and

Yoshida 2024], Rumpsteak’s suite of 10 examples contains only 5 with refinements, and 4 that are

multiparty, for a total of 2/10 multiparty examples with refinements. We omitted finite, binary

protocols that can be handled by existing sound and complete tools for finite multiparty session

types, such as [Li et al. 2023a], leaving us with 6 examples from Rumpsteak. Sprout was able to

express all 17 examples from the literature. We then attempted to translate Session*’s examples

into Rumpsteak’s syntax, and vice versa, in an attempt to compare all three tools. Although both

Session* and Rumpsteak adopt a Scribble-like syntax, we found that Session* could express all

6 of Rumpsteak’s examples, whereas Rumpsteak could only express 3/11 of Session*’s examples,

even after accommodating minor discrepancies that were immaterial to the high-level protocol

intent. The key expressivity gap lay in the fact that Sprout and Session* both support loop re-

cursion variables, e.g. in the two-bidder protocol, 𝑧1 and 𝑧2 that track B1 and B2’s respective last

bids, whereas Rumpsteak does not.

Precision. The benchmark suites of both Session* and Rumpsteak exclusively contain im-

plementable examples. In evaluating precision, we are interested in both the soundness and

completeness of the tool: does it correctly accept implementable protocols, and correctly reject

non-implementable ones? Thus, we expand our benchmark suite with a new set of examples

based on protocols from prior works [Li et al. 2023a, 2025b; Cruz-Filipe et al. 2022], where for

each protocol we include both an implementable and non-implementable version. We also in-

troduce implementable and non-implementable variations on common protocols in the literature

(e.g. two-bidder, higher lower guessing game). Some of the non-implementable examples were

inspired by bugs inadvertently introduced in the process of translating examples into Sprout,

and most non-implementable examples have a small edit distance to their implementable coun-

160

terpart. In translating our new examples to Session* and Rumpsteak, we found a similar pattern

as before: Session* could express 20/21 examples, whereas Rumpsteak could only express 10/21.

Calculator was not expressible in Session* due to lack of support for multiplication, whereas

higher-lower-no’s implementability bug was ruled out by Session*’s type checker.

The result of evaluating Session* and Sprout on the overall set of 37 examples is given in

Table 8.2. We omitted evaluation results from Rumpsteak due to the tool’s lack of formal guar-

antees and limited expressivity. To achieve a faithful comparison, verification times reported for

Session* are only for checking projectability of global types and computing local types for each

role.

The incompleteness of Session* is made apparent by our evaluation: of the 20 new examples

expressible in Session*, containing an even mix of implementable and non-implementable proto-

cols, Session* rejected all but 3/20. The source of incompleteness is twofold. For one, Session*’s

notion of implementability is relative to local types, whose syntax a priori rules out communi-

cation patterns such as receiver choice from different senders. In contrast, Sprout’s notion of

implementability is relative to the more expressive semantic model of communicating labeled

transition systems. For two, Session* implements the merge-based projection operator from

[Honda et al. 2008]. This projection operator is inherently incomplete even for global types with-

out refinements (see [Li et al. 2023a] for a detailed discussion), and thus the refinement type

system presented in [Zhou et al. 2020] inherits all sources of incompleteness.

Efficiency. In terms of efficiency, Session*’s verification times were mostly below 5s, whereas

Sprout’s verification times varied widely depending on the number of transitions in the protocol,

and whether the protocol is binary. For binary protocols, the verification times of Sprout are

competitivewith those of Session*. Formultiparty protocols, most examples returned in less than

10s, with the exception of 3 timeouts, whose timeout limits were set to 30s per 𝜇CLP instance.3 As
3Note that when Sprout returns non-implementable for protocols containing instances that timeout, the verifi-

cation time may increase directly with the timeout limit.

161

Source Example | P | Impl. Sprout Time Session* Time

[Zhou et al. 2020]

Calculator 2 ✓✓✓ ✓✓✓ 0.6s N/A 2.0s
Fibonacci 2 ✓✓✓ ✓✓✓ 0.5s ✓✓✓ 1.8s
HigherLower 3 ✓✓✓ ✓✓✓ 15.2s ✓✓✓ 3.9s
HTTP 2 ✓✓✓ ✓✓✓ 0.4s ✓✓✓ 1.9s
Negotiation 2 ✓✓✓ ✓✓✓ 1.0s ✓✓✓ 1.9s
OnlineWallet 3 ✓✓✓ ✓✓✓ 9.4s ✓✓✓ 3.3s
SH 3 ✓✓✓ ✓✓✓ 237.1s ✓✓✓ 5.6s
Ticket 2 ✓✓✓ ✓✓✓ 0.6s ✓✓✓ 1.9s
TravelAgency 2 ✓✓✓ ✓✓✓ 9.2s ✓✓✓ 3.1s
TwoBuyer 3 ✓✓✓ ✓✓✓ 3.8s ✓✓✓ 2.8s

[Vassor and Yoshida 2024]

DoubleBuffering 3 ✓✓✓ ✓✓✓ 1.5s ✓✓✓ 2.3s
OAuth 3 ✓✓✓ ✓✓✓ 6.2s ✓✓✓ 2.3s
PlusMinus 3 ✓✓✓ ✓✓✓ 5.2s × 2.1s
RingMax 7 ✓✓✓ ✓✓✓ 3.7s ✓✓✓ 4.7s
SimpleAuth 2 ✓✓✓ ✓✓✓ 0.5s ✓✓✓ 2.0s
TravelAgency2 2 ✓✓✓ ✓✓✓ 1.7s ✓✓✓ 1.8s

[Li et al. 2023a]

send-validity-yes 4 ✓✓✓ ✓✓✓ 1.9s × 2.1s
send-validity-no 4 × × 1.9s × 2.1s
receive-validity-yes 3 ✓✓✓ ✓✓✓ 5.1s × 2.3s
receive-validity-no 3 × × 3.6s × 2.0s

[Li et al. 2025b]

symbolic-two-bidder-yes 3 ✓✓✓ ✓✓✓ 27.4s × 2.0s
symbolic-two-bidder-no1 3 × × 30.0s × 2.1s
figure12-yes 3 ✓✓✓ ✓✓✓ 2.0s ✓✓✓ 2.0s
figure12-no 3 × × 3.0s ✓✓✓ 3.0s
symbolic-send-validity-yes 4 ✓✓✓ ✓✓✓ 6.5s × 2.5s
symbolic-send-validity-no 4 × × 5.3s × 2.6s
symbolic-receive-validity-yes 3 ✓✓✓ ✓✓✓ 6.6s × 2.8s
symbolic-receive-validity-no 3 × × 7.6s × 2.8s

[Cruz-Filipe et al. 2022] fwd-auth-yes 3 ✓✓✓ ✓✓✓ 10.3s × 2.3s
fwd-auth-no 3 × ? T/O × 2.2s

new

symbolic-two-bidder-no2 3 × × 23.9s × 2.8s
higher-lower-ultimate 3 ✓✓✓ ✓✓✓ 11.1s × 2.4s
higher-lower-winning 3 ✓✓✓ ? T/O ✓✓✓ 229.8s
higher-lower-no 3 × × 7.3s N/A 2.2s
higher-lower-encrypt-yes 4 ✓✓✓ ✓✓✓ 9.3s × 2.3s
higher-lower-encrypt-no 4 × × 177.3s × 2.4s
higher-lower-mixed 3 × × 19.3s × 2.3s

Table 8.2: Comparison of verification times with [Zhou et al. 2020]. For each example, we report

the number of participants (|P |), ground truth implementability (✓✓✓ or ×), verification times for Ses-

sion* [Zhou et al. 2020] and Sprout with a 30s timeout per 𝜇CLP instance (T/O), and the result: ✓✓✓ for

implementable/projectable, × for non-implementable/non-projectable, and ? for inconclusive due to time-

out. Examples not expressible in Session* are marked with N/A.

mentioned in Section 8.3, the verification bottleneck of Sprout lies in the efficiency of MuVal–

instance generation introduces negligible overhead. Themodularity of our Coherence Conditions

means Sprout’s efficiency could be improved by running all generated 𝜇CLP instances in parallel.

162

A | Appendix

Lemma 3.27. Implementability of global types is co-NP-complete.

Proof. The arguments for co-NP membership of implementability for global types are identical

to those for general finite protocols, and are thus omitted.

As in the proof of Theorem 5.8, we showNP-hardness of non-implementability via a reduction

from the 3-SAT problem. Assume a 3-SAT instance𝜑 =𝐶1∧ . . .∧𝐶𝑘 . Let 𝑥1, . . . , 𝑥𝑛 be the variables

occurring in 𝜑 and let 𝐿𝑖 𝑗 be the 𝑗th literal of clause𝐶𝑖 , with 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ 3. We construct

a global typeG𝜑 over participants P = {p, q, r, x1, x1, . . . , xn, xn}, such that 𝜑 is satisfiable iffG𝜑 is

implementable. In particular, we ensure that G𝜑 is implementable iff availp,q,{q} (𝑚,𝐺′) does not

hold for some subterm 𝐺′ in G𝜑 .

The construction idea for G𝜑 is identical to that for S𝜑 from Theorem 5.8, but with several

modifications to yield a tree-shaped protocol which corresponds to a global type. First, for each

branching state from which r selects variables or clauses, represented as 𝜇𝑡 terms, we introduce a

new branch that acts as a forward edge connecting to the next branching state. Because branches

in a global type can only join at a single state via recursion variables, and recursion variables must

appear in scope of their 𝜇𝑡 terms, variable and clause selection proceeds by recursing “backwards”

towards the top-level global type. Due to this reversal of traversal order, the initial choice by r

and the message exchange p→ q : 𝑚 potentially violating Receive Coherence swap places in the

protocol. The construction of global type G𝜑 is detailed below:

1. Define for every variable 𝑥𝑖 with 2 < 𝑖 < 𝑛 a global type𝐺𝑥𝑖 representing a truth assignment

163

to variable 𝑥𝑖 as follows:

𝐺𝑥𝑖 ≔ 𝜇𝑡𝑥𝑖 . +


r→ xi : ⊥. r→ xi : ⊤. r→ q : 𝑚𝑥𝑖 . q→ xi : 𝑚. 𝑡𝑥𝑖+1

r→ xi : ⊥. r→ xi : ⊤. r→ q : 𝑚𝑥𝑖 . q→ xi : 𝑚. 𝑡𝑥𝑖+1

r→ xi : 𝑛𝑒𝑥𝑡 . r→ xi : 𝑛𝑒𝑥𝑡 . r→ q : 𝑛𝑒𝑥𝑡 .𝐺𝑥𝑖−1

For 𝑥2 and 𝑥𝑛 , the construction is modified as follows. For𝐺𝑥𝑛 , the recursion variable in the

first and second branches is replaced with 𝑡𝐶1 . For𝐺𝑥2 , the following is added before𝐺𝑥1 in

the third branch:

r→ q : last. r→ p : last. r→ x1 : last. r→ x1 : last. q→ p : 𝑚. q→ x1 : 𝑚. q→ x1 : 𝑚.

2. Define for every clause 𝐶𝑖 = 𝐿𝑖1 ∨ 𝐿𝑖2 ∨ 𝐿𝑖3 with 2 ≤ 𝑖 < 𝑘 a global type 𝐺𝐶𝑖
as follows,

where 𝑥𝑖 𝑗 is defined as x if 𝐿𝑖 𝑗 = 𝑥 and x if 𝐿𝑖 𝑗 = ¬𝑥 :

𝐺𝐶𝑖
≔ 𝜇𝑡𝐶𝑖

. +

Σ 𝑗=1..3 r→ 𝑥𝑖 𝑗 : 𝑚. r→ p : 𝑚𝑥𝑖 𝑗 . 𝑥𝑖 𝑗 → p : 𝑚. 𝑡𝐶𝑖+1

r→ 𝑥𝑖1 : next. r→ 𝑥𝑖2 : next. r→ 𝑥𝑖3 : next. r→ p : next. 𝐺𝐶𝑖−1

For 𝐶1 and 𝐶𝑘 , the construction is modified as follows. For 𝐺𝐶1 , the last branch continues

with 𝐺𝑥𝑛 . For 𝐺𝐶𝑘
, the recursion variable in the first three branches is replaced with 𝑡 .

3. Define 𝐺𝑥1 for variable 𝑥1 as follows:

𝐺𝑥1 ≔ +

r→ p : 𝑚1. r→ q : 𝑚.𝐺

r→ p : 𝑚2. p→ q : 𝑚. 0

𝐺 ≔ +


r→ x1 : ⊥. r→ x1 : ⊤. r→ q : 𝑚𝑥1 . q→ x1 : 𝑚. 𝑡𝑥2

r→ x1 : ⊥. r→ x1 : ⊤. r→ q : 𝑚𝑥1 . q→ x1 : 𝑚. 𝑡𝑥2

The global type G𝜑 is thus defined as:

G𝜑 ≔ 𝜇𝑡 . r→ q : top. p→ q : 𝑚.𝐺𝐶𝑘

164

Observe that G𝜑 is linear in the size of 𝜑 .

We first establish that availp,q,{q} (𝑚,𝐺) holds in G𝜑 iff 𝜑 is satisfiable. Observe that the 𝐺𝑥𝑖 ’s

contain two branches that recurse “backwards” to the previous 𝐺𝑥𝑖+1 , and one branch that pro-

ceeds “forwards” towards 𝐺𝑥1 . Each time a backward branch is taken, either xi or xi is added

to the blocked set B along the path. Forward branches do not change the blocked set, as partic-

ipant q does not send messages in them. Thus, the path computed by availp,q,{q} (𝑚,𝐺) from 𝐺

to 𝐺𝐶1 must contain for each variable 𝑥𝑖 either xi or xi. The blocked set B thus encodes a truth

assignment 𝜌B for the 𝑥𝑖 ’s where 𝜌B (𝑥𝑖) = ⊤ iff xi ∉ B. By construction of 𝐺𝑥𝑖 , for every truth

assignment 𝜌 , there exists at least one path between𝐺 and𝐺𝐶1 such that 𝜌 = 𝜌B for the blocked

set B computed along that path.

The𝐺𝐶𝑖
terms allow p to proceed backwards towards G𝜑 by selecting a branch whose partic-

ipant 𝑥 is not in B, i.e. 𝐶𝑖 is satisfied by 𝜌B . Thus, a path from 𝐺𝐶1 to G𝜑 adds p to B at 𝑡𝑖 iff 𝜌B

does not satisfy at least one of the clauses 𝐶𝑖 . Therefore,𝑚 is available in 𝐺 iff there exists a B

such that 𝜌B satisfies 𝜑 .

The reasoning that G𝜑 is implementable iff availp,q,{q} (𝑚,𝐺) does not hold again follows that

for S𝜑 , and below we only discuss new behavior introduced by the structural changes to S𝜑 .

Participant r still dictates the control flow in the global type, but now additionally sends next

messages to inform participants in the branch when a forward edge is taken, last messages to

inform p, q, x1 and x1 when the last forward edge is taken, and top to q to inform q to receive𝑚

from q. Receiving nextmessages means inaction for all other participants. Receiving last prompts

q to send a message to p, x1 and x1, which they anticipate by receiving last first from r.

As before, the only potential source of non-implementability lies in participant q, who can

violate Receive Coherence for transitions labeled with r → q : 𝑚 and p → q : 𝑚 in 𝐺𝑥1 when

availp,q,{q} (𝑚,𝐺) does not hold, and the message from p can be received out of order.

We obtain thatG𝜑 is non-implementable iff availp,q,{q} (𝑚,𝐺) holds inG𝜑 iff𝜑 is satisfiable. □

Lemma 3.7 (NoMixed Choice). LetS be a protocol satisfying NMC (Definition 3.3) and let {{𝑇p}}p∈P

165

be a canonical implementation for S. Let 𝑤𝑥1,𝑤𝑥2 ∈ pref (L(𝑇p)) with 𝑥1 ≠ 𝑥2 for some p ∈ P.

Then, 𝑥1 ∈ Σ! iff 𝑥2 ∈ Σ!.

Proof. Suppose by contradiction that 𝑥1 ∈ Σ? and 𝑥2 ∈ Σ!. Let 𝜌1 be a run in S such that 𝑤𝑥1 ≤

split(trace(𝜌1))⇓Σp
. Let 𝛼1 · 𝑠1

𝑙1−→ 𝑠′1 · 𝛽1 be the unique splitting of 𝜌 for p with respect to 𝑤 .

Then, p is the receiver in 𝑙1 and split(trace(𝛼1 · 𝑠1))⇓Σp
= 𝑤 . Let 𝜌2 be a run in S such that

𝑤𝑥2 ≤ split(trace(𝜌2))⇓Σp
. Let 𝛼2 · 𝑠2

𝑙2−→ 𝑠′2 · 𝛽2 be the unique splitting of 𝜌2 for p with respect

to 𝑤 . Then, p is the sender in 𝑙2 and split(trace(𝛼2 · 𝑠2))⇓Σp
= 𝑤 . If 𝑠1 = 𝑠2, then we find a

violation to the assumption that S is sender-driven. Hence, 𝑠1 ≠ 𝑠2 and we can instantiate NMC

(Definition 3.3) with 𝑠2
𝑙2−→ 𝑠′2, 𝑠1 and𝑤 to obtain a contradiction. □

Lemma A.1 (Channel compliance and intersection set non-emptiness implies prefix). Let S =

(𝑆, Γsync,𝑇 , 𝑠0, 𝐹) be a protocol and let𝑤 ∈ Σ∗async be a word such that (i)𝑤 is channel-compliant, and

(ii) 𝐼 (𝑤) ≠ ∅. Then,𝑤 ∈ pref (L(S)).

Proof. Let 𝜌 be a run in 𝐼 (𝑤), and let 𝑤 ′ = split(trace(𝜌)) ∈ L(S). In the case that 𝐼 (𝑤)

contains finite runs, we can pick a finite 𝜌 . Otherwise, 𝜌 is infinite. We reason about each case in

turn.

Case: 𝜌 is a finite run. In the case that 𝜌 is a finite run, to show that𝑤 ∈ pref (L(S)) we need

to show the existence of a 𝑤 ′′ ∈ L(S) such that 𝑤 ≤ 𝑤 ′′. We construct such a 𝑤 ′′ by construct-

ing a 𝑢 such that in 𝑤𝑢, all participants have completed their actions in 𝜌 , and furthermore 𝑤𝑢

is channel-compliant. Then, because𝑤 ′ is channel-compliant by construction, and for all partic-

ipants p ∈ P, it holds that 𝑤𝑢⇓Σp
=𝑤 ′⇓Σp

, by [Majumdar et al. 2021a, Lemma 23] it follows that

𝑤𝑢 ∼ 𝑤 ′, and thus𝑤𝑢 ∈ L(S).

For each participant p ∈ P, let 𝑦p be defined such that 𝑤⇓Σp
· 𝑦p = 𝑤 ′⇓Σp

. We construct 𝑢

from the 𝑦p for each participant, starting with 𝑢 = 𝜀. If there exists some participant in P such

that 𝑦p [0] ∈ Σp,!, append 𝑦p to 𝑢 and update 𝑦p. If not, for all participants p ∈ P, 𝑦p [0] ∈ Σp,?.

166

Each symbol 𝑦p [0] for all participants appears in 𝑣 . Let 𝑖p denote for each participant the index

in 𝑤 ′ such that 𝑤 ′[𝑖] = 𝑦p [0]. Let r be the participant with the minimum index 𝑖r: append 𝑦r

to 𝑢 and update 𝑦r. Termination is guaranteed by the strictly decreasing measure of
∑

p∈P |𝑦p |.

Furthermore, it is clear that upon termination, for all participants p ∈ P,𝑤𝑢⇓Σp
=𝑤 ′⇓Σp

.

We argue that 𝑤𝑢 satisfies the inductive invariant of channel compliancy. In the case where

𝑢 is extended with a send action, channel compliancy is trivially re-established. In the receive

case, channel compliancy is re-established by the fact that the append order for receive actions

follows that in 𝑣 , which is channel-compliant by construction.

Case: 𝜌 is an infinite run. In the case that 𝜌 is a infinite run, to show that𝑤 ∈ pref (L(S)) we

likewise need to show the existence of a𝑤 ′′ ∈ L(S) such that𝑤 ≤ 𝑤 ′′. Like before, we construct

a 𝑢 and show that 𝑤𝑢 ∈ L(S). However, unlike before, we cannot rely on the fact that 𝑤𝑢 ∼ 𝑤 ′

to show that𝑤𝑢 ∈ L(S), because𝑤 ′ is an infinite word and [Majumdar et al. 2021a, Lemma 23]

applies only to finite words. Instead, we must prove that𝑤𝑢 ∈ L(S) by the definition of infinite

word membership in L(S), namely: 𝑤𝑢 ⪯𝜔∼ 𝑤 ′. By the definition of ⪯𝜔∼ , it further suffices to

show that:

∀𝑣 ≤ 𝑤𝑢, ∃𝑣′ ≤ 𝑤 ′, 𝑢′ ∈ Σ∗async . 𝑣𝑢′ ∼ 𝑣′ .

For each participant p ∈ P, let 𝜌p be the largest prefix of 𝜌 with split(trace(𝜌p))⇓Σp
=𝑤⇓Σp

.

Let s be the participant with the maximum |𝜌s | in P. Clearly, 𝜌s ≤ 𝜌 . Let 𝛽 be defined such that

𝜌 = 𝜌s · 𝛽 . We split the construction of 𝑢 into two parts: let 𝑢 = 𝑢1𝑢2. We construct 𝑢1 as

above, by appending uncompleted actions in 𝜌s, ordering send events before receive events, and

further ordering receive events by the order in which they appear in 𝜌s. Then, upon termination,

𝑤𝑢1 is channel-compliant and satisfies for all p ∈ P, 𝑤𝑢1⇓Σp
= split(trace(𝜌s))⇓Σp

. Let 𝑢2 =

split(trace(𝛽)).

We now show that𝑤𝑢1𝑢2 ⪯𝜔∼ 𝑤 ′.

Let 𝑣 be an arbitrary prefix of 𝑤𝑢1𝑢2. If 𝑣 ≤ 𝑤𝑢1, we pick 𝑣′ = split(trace(𝜌s)) ≤ 𝑤 ′

167

and 𝑢′ ∈ Σasync∗ to be such that 𝑣𝑢′ = 𝑤𝑢1. Otherwise, if 𝑤𝑢1 < 𝑣 , let 𝜌′ be defined as the

smallest prefix of 𝜌 such that for all participants p ∈ P, 𝑣⇓Σp
= split(trace(𝜌′))⇓Σp

. We pick

𝑣′ = split(trace(𝜌′)). Because 𝑣 is channel-compliant, we can repeat the reasoning in the

finite case to extend 𝑣 with 𝑢′ and apply [Majumdar et al. 2021a, Lemma 23] to conclude that

𝑣𝑢′ ∼ 𝑣′. □

Lemma 3.8 (Canonical implementation language contains protocol language). Let S be an LTS

and let {{𝑇p}}p∈P be a canonical implementation for S. Then, L(S) ⊆ L({{𝑇p}}p∈P).

Proof. Let𝑤 be a word in L(S). Prior to case splitting on whether𝑤 is a finite or infinite word,

we establish a claim that is used in both cases.

Claim 1. pref (L(S)) ⊆ pref (L({{𝑇p}}p∈P)).

Let 𝑤 ∈ pref (L(S)). We prove that 𝑤 ∈ pref (L({{𝑇p}}p∈P)) via structural induction on 𝑤 .

The base case, 𝑤 = 𝜀, is trivial. For the inductive step, let 𝑤𝑥 ∈ pref(L(S)). From the induction

hypothesis,𝑤 ∈ pref(L{{𝑇p}}p∈P). It suffices to show that the transition labeled with 𝑥 is enabled

for the active participant in 𝑥 . Let (®𝑠, 𝜉) denote the {{𝑇p}}p∈P configuration reached on 𝑤 . In the

case that 𝑥 ∈ Σ!, let 𝑥 = p ⊲ q!𝑚. The existence of an outgoing transition
p⊲q!𝑚−−−−→ from ®𝑠p follows

from the fact that pref (L(S))⇓Σp
⊆ pref (L(𝑇p)) (??). The fact that 𝑤𝑥 ∈ pref(L{{𝑇p}}p∈P)

follows immediately from this and the fact that send transitions in a CLTS are always enabled. In

the case that 𝑥 ∈ Σ?, let 𝑥 = p⊳q?𝑚. We obtain an outgoing transition
p⊳q?𝑚−−−−→ from ®𝑠p analogously.

We additionally need to show that 𝜉 (q, p) contains𝑚 at the head. This follows from the fact that

𝑤 is channel-compliant (Proposition A.2) and the induction hypothesis. This concludes our proof

of prefix set inclusion. End Proof of Claim 1.

Case: 𝑤 ∈ Σ∗async . In the finite case, it remains to show that {{𝑇p}}p∈P reaches a final configura-

tion on𝑤 . From the canonicity of {{𝑇p}}p∈P , it holds that all states in ®𝑠 are final. From the fact that

all finite words in L(S) contain matching receive events, all channels in 𝜉 are empty.

168

Case: 𝑤 ∈ Σ𝜔async . The infinite case when𝑤 ∈ Σ𝜔async is immediate from Claim 1. □

Lemma 3.9 (Global protocol language contains canonical implementation language). Let S be

a protocol satisfying CC and let {{𝑇p}}p∈P be a canonical implementation for S such that for all

𝑤 ∈ Σ∗async , if𝑤 is a trace of {{𝑇p}}p∈P , then 𝐼 (𝑤) ≠ ∅. Then, L({{𝑇p}}p∈P) ⊆ L(S).

Proof. Let𝑤 ∈ L{{𝑇p}}p∈P . We again case split on whether𝑤 is a finite or infinite word.

Case: 𝑤 ∈ Σ∗. First, we establish that 𝑤 is terminated. Let (®𝑠, 𝜉) be the {{𝑇p}}p∈P configuration

reached on𝑤 . Because𝑤 is a finite, maximal word in L({{𝑇p}}p∈P), it holds that all states in ®𝑠 are

final, and all channels in 𝜉 are empty. Therefore, no receive transitions are enabled from (®𝑠, 𝜉). We

argue that no send transitions are enabled from (®𝑠, 𝜉) either. Suppose by contradiction that there

exists an outgoing transition ®𝑠p
p⊲q!𝑚−−−−→ 𝑠′ ∈ 𝑇p for participant p. Then,𝑤⇓Σp

·p⊲q!𝑚 ∈ pref (L(𝑇p)),

and by the canonicity of 𝑇p, 𝑤⇓Σp
· p ⊲ q!𝑚 ∈ pref (L(S))⇓Σp

. Then, there exists a maximal run

𝜌′ in S such that 𝑤⇓Σp
· p ⊲ q!𝑚 ≤ split(trace(𝜌′))⇓Σp

. Furthermore, there exists a finite,

maximal run 𝜌 𝑓 𝑖𝑛 in S such that 𝑤⇓Σp
= split(trace(𝜌))⇓Σp

. Let 𝑠 𝑓 𝑖𝑛 be the last state in 𝜌 𝑓 𝑖𝑛 .

By assumption, 𝑠 𝑓 𝑖𝑛 ∈ 𝐹 . Let 𝛼 · 𝑠1
p→q:𝑚−−−−−→ 𝑠2 · 𝛽 be the unique splitting of 𝜌′ for p with respect to

𝑤 . Then, 𝑠1 and 𝑠 𝑓 𝑖𝑛 are simultaneously reachable for p on prefix𝑤⇓Σp
. From SC, there exists a 𝑠′2

such that 𝑠 𝑓 𝑖𝑛
p→q:𝑚
======⇒

p

∗ 𝑠′2. We find a contradiction to the assumption that final states in S do not

have outgoing transitions.

Next, we show that for every 𝜌 ∈ 𝐼 (𝑤) and every p ∈ P, 𝑤⇓Σp
= split(trace(𝜌))⇓Σp

. This

implies that there exist no infinite runs in 𝐼 (𝑤). Suppose by contradiction that there exists a

run 𝜌 ∈ 𝐼 (𝑤) and a non-empty set of participants Q such that for every r ∈ Q, it holds that

𝑤⇓Σr
<

(
split(trace(𝜌))

)
⇓Σr

(*). Given a participant p, let 𝜌p denote the largest prefix of 𝜌 that

contains p’s local view of𝑤 . Formally,

𝜌p =𝑚𝑎𝑥{𝜌′ | 𝜌′ ≤ 𝜌 ∧ split(trace(𝜌′))⇓Σp
=𝑤⇓Σp

} .

169

Note that due to maximality, the next transition in 𝜌 after 𝜌p must have p as its active participant.

Let q be the participant in S for whom 𝜌q is the smallest. From the canonicity of 𝑇q and (*),

it follows that ®𝑠q has outgoing transitions. If ®𝑠q has outgoing send transitions, then we reach a

contradiction to the fact that 𝑤 is terminated. If ®𝑠q has outgoing receive transitions, it must be

the case that the next transition in 𝜌 after 𝜌q is of the form p→ q :𝑚 for some p and 𝑚. From

the fact that q is the participant with the smallest 𝜌q, we know that 𝜌q < 𝜌p, and from the FIFO

property of CLTS channels it follows that𝑚 is in 𝜉 (p, q). Then, the receive transition is enabled

for q, and we again reach a contradiction to the fact that𝑤 is terminated.

Thus, we can pick any finite run 𝜌 ∈ 𝐼 (𝑤) which is maximal by definition, and invoke [Ma-

jumdar et al. 2021a, Lemma 23] to conclude that split(trace(𝜌)) ∼ 𝑤 , and thus𝑤 ∈ L(S).

Case: 𝑤 ∈ Σ∞. By the semantics of L(S), to show𝑤 ∈ L(S) it suffices to show:

∃𝑤 ′ ∈ Σ𝜔 . 𝑤 ′ ∈ split(L(S)) ∧𝑤 ⪯𝜔∼ 𝑤 ′ .

Claim.
⋂

𝑢≤𝑤 𝐼 (𝑢) contains an infinite run.

First, we show that there exists an infinite run in S. We apply König’s Lemma to an infinite

tree where each vertex corresponds to a finite run. We obtain the vertex set from the intersection

sets of𝑤 ’s prefixes; each prefix “contributes” a set of finite runs. Formally, for each prefix 𝑢 ≤ 𝑤 ,

let 𝑉𝑢 be defined as:

𝑉𝑢 ≔
⋃

𝜌𝑢∈𝐼 (𝑢)
min{𝜌′ | 𝜌′ ≤ 𝜌𝑢 ∧ ∀p ∈ P . 𝑢⇓Σp

≤ split(trace(𝜌′))⇓Σp
} .

By the assumption that 𝐼 (𝑢) ≠ ∅,𝑉𝑢 is guaranteed to be non-empty. We construct a tree T𝑤 (𝑉 , 𝐸)

with 𝑉 ≔
⋃

𝑢≤𝑤 𝑉𝑢 and 𝐸 ≔ {(𝜌1, 𝜌2) | 𝜌1 ≤ 𝜌2}. The tree is rooted in the empty run, which is

included in 𝑉 by the prefix 𝜀. 𝑉 is infinite because there are infinitely many prefixes of 𝑤 . T𝑤

is finitely branching due to the fact that S is deterministic: while there can be infinitely many

170

transitions from a given state in 𝑆 , there are only finitely many transitions from a given state in 𝑆

on a particular transition label. In fact, there is only a single transition. Therefore, we can apply

König’s Lemma to obtain a ray in T𝑤 representing an infinite run in S.

Let 𝜌′ be such an infinite run. We now show that 𝜌′ ∈ ⋂
𝑢≤𝑤 𝐼 (𝑢). Let 𝑣 be a prefix of 𝑤 . To

show that 𝜌′ ∈ 𝐼 (𝑣), it suffices to show that one of the vertices in 𝑉𝑣 lies on 𝜌′. In other words,

𝑉𝑣 ∩ {𝑣 | 𝑣 ∈ 𝜌′} ≠ ∅ .

Assume by contradiction that 𝜌′ passes through none of the vertices in 𝑉𝑣 . Then, for any 𝑢′ ≥ 𝑢,

because intersection sets are monotonically decreasing, it must be the case that 𝜌′ passes through

none of the vertices in 𝑉 ′𝑢 . Therefore, 𝜌′ can only pass through vertices in 𝑉 ′′𝑢 , where 𝑢′′ ≤ 𝑢.

However, the set
⋃

𝑢′′≤𝑢 𝑉
′′
𝑢 has finite cardinality. We reach a contradiction, concluding our proof

of the above claim.

Let 𝜌′ ∈ ⋂
𝑢≤𝑤 𝐼 (𝑢), and let 𝑤 ′ = split(trace(𝜌′)). It is clear that 𝑤 ′ ∈ Σ𝜔async and 𝑤 ′ ∈

split(L(S)). It remains to show that 𝑤 ⪯𝜔∼ 𝑤 ′. By the definition of ⪯𝜔∼ , it further suffices to

show that:

∀𝑢 ≤ 𝑤, ∃𝑢′ ≤ 𝑤 ′, 𝑣 ∈ Σ∗async . 𝑢𝑣 ∼ 𝑢′ .

Let 𝑢 be an arbitrary prefix of𝑤 . Because 𝜌′ ∈ 𝐼 (𝑢), it holds that 𝑢⇓Σp
≤ split(trace(𝜌′))⇓Σp

.

For each participant p ∈ P, let 𝜌′p be the largest prefix of 𝜌′with split(trace(𝜌′p))⇓Σp
= 𝑢⇓Σp

.

Such a run is well-defined by the fact that 𝑢 is a prefix of an infinite word 𝑤 , and there exists a

longer prefix 𝑣 such that 𝑢 ≤ 𝑣 and 𝑣⇓Σp
≤ split(trace(𝜌′))⇓Σp

.

Let s be the participant with the maximum |𝜌′s | in P. Let 𝑢′ = split(trace(𝜌′s)). Clearly,

𝑢′ ≤ 𝑤 ′. Because 𝑢′ is split(trace(𝜌′s)) for the participant with the longest 𝜌′s, it holds for all

participants p ∈ P that 𝑢⇓Σp
≤ 𝑢′⇓Σp

. Then, there must exist 𝑦p ∈ Σ∗p such that

𝑢⇓Σp
· 𝑦p = 𝑢′⇓Σp

.

171

Let 𝑦p be defined in this way for each participant. We construct 𝑣 ∈ Σ∗async such that 𝑢𝑣 ∼ 𝑢′.

Let 𝑣 be initialized with 𝜀. If there exists some participant in P such that 𝑦p [0] ∈ Σp,!, append

𝑦p to 𝑣 and update 𝑦p. If not, for all participants p ∈ P, 𝑦p [0] ∈ Σp,?. Each symbol 𝑦p [0] for all

participants appears in𝑢′. Let 𝑖p denote for each participant the index in𝑢′ such that𝑢′[𝑖] = 𝑦p [0].

Let r be the participant with the minimum index 𝑖r. Append 𝑦r to 𝑣 and update 𝑦r. Termination

is guaranteed by the strictly decreasing measure of
∑

p∈P |𝑦p |.

We argue that 𝑢𝑣 satisfies the inductive invariant of channel compliancy. In the case where 𝑣

is extended with a send action, channel compliancy is trivially re-established. In the receive case,

channel compliancy is re-established by the fact that the append order for receive actions follows

that in 𝑢′, which is channel-compliant by construction. We conclude that 𝑢𝑣 ∼ 𝑢′ by applying

[Majumdar et al. 2021a, Lemma 22]. □

Lemma 3.12 (Intersection set non-emptiness). Let S be a protocol satisfying CC, and let {{𝑇p}}p∈P

be a canonical implementation for S. Then, for every trace 𝑤 ∈ Σ∗async of {{𝑇p}}p∈P , it holds that

𝐼 (𝑤) ≠ ∅.

Proof. We prove the claim by induction on the length of𝑤 .

Base Case. 𝑤 = 𝜀. The trace 𝑤 = 𝜀 is trivially consistent with all maximal runs, and 𝐼 (𝑤)

therefore contains all maximal runs. By assumption, S contains at least one maximal run. Thus,

𝐼 (𝑤) is non-empty.

Induction Step. Let𝑤𝑥 be an extension of𝑤 by 𝑥 ∈ Σasync .

The induction hypothesis states that 𝐼 (𝑤) ≠ ∅. To re-establish the induction hypothesis, we

need to show 𝐼 (𝑤𝑥) ≠ ∅. We proceed by case analysis on whether 𝑥 is a receive or send event.

Send Case. Let 𝑥 = p ⊲ q!𝑚. By Lemma 7.1, there exists a run in 𝐼 (𝑤𝑥) that shares a prefix with

a run in 𝐼 (𝑤). 𝐼 (𝑤𝑥) ≠ ∅ again follows immediately.

172

Receive Case. Let 𝑥 = p ⊳ q?𝑚. By Lemma 3.13, 𝐼 (𝑤𝑥) = 𝐼 (𝑤). 𝐼 (𝑤𝑥) ≠ ∅ follows trivially from

the induction hypothesis and this equality. □

Proposition A.2 (CLTS traces are channel-compliant). Let {{𝑇p}}p∈P be a CLTS, and let𝑤 ∈ Σ∗async
be a trace of {{𝑇p}}p∈P . Let (®𝑠, 𝜉) be the {{𝑇p}}p∈P configuration reached on 𝑤 . Then, 𝑤 is channel-

compliant, and for every pair of participants p ≠ q ∈ P,V(𝑤⇓p⊲q!-) =V(𝑤⇓q⊳p?-) · 𝜉 (p, q).

The proof of the same proposition for communicating state machines can be generalized di-

rectly to CLTSs, and thus we refer the reader to [Majumdar et al. 2021a, Lemma 19].

Lemma 3.13 (Receive events do not shrink intersection sets). Let S be a protocol satisfying CC,

and let {{𝑇p}}p∈P be a canonical implementation forS. Let𝑤𝑥 be a trace of {{𝑇p}}p∈P such that 𝑥 ∈ Σ?.

Then, 𝐼 (𝑤) = 𝐼 (𝑤𝑥).

Proof. Let 𝑥 = p ⊳ q?𝑚. Because 𝑤𝑥 is a trace of {{𝑇p}}p∈P , there exists a run (®𝑠0, 𝜉0)
𝑤−→∗ (®𝑠, 𝜉) 𝑥−→

(®𝑠 ′, 𝜉′) such that𝑚 is at the head of 𝜉 (q, p).

We assume that 𝐼 (𝑤) is non-empty; if 𝐼 (𝑤) is empty then 𝐼 (𝑤𝑥) is trivially empty. To show

𝐼 (𝑤) = 𝐼 (𝑤𝑥), let 𝜌 ∈ 𝐼 (𝑤) and we show that 𝜌 ∈ 𝐼 (𝑤𝑥). Recall that 𝐼 (𝑤𝑥) is defined as⋂
r∈P RSr (𝑤𝑥). Because RSr (𝑤𝑥) = RSr (𝑤) for every r ∈ P with r ≠ p, it suffices to show that

𝜌 ∈ RSp (𝑤𝑥) to show 𝜌 ∈ 𝐼 (𝑤𝑥).

We proceed via proof by contradiction so let 𝜌 ∉ RSp (𝑤𝑥) for 𝜌 ∈ 𝐼 (𝑤).

Let 𝛼 · 𝑠pre
𝑙−→ 𝑠post · 𝛽 be the unique splitting of 𝜌 for p matching 𝑤 . By definition of unique

splittings, p is the active participant in 𝑙 . Because 𝜌 ∉ RSp (𝑤𝑥), it follows that 𝑙 ≠ q→ p :𝑚. By

Lemma 3.7, p is the receiver in 𝑙 , and 𝑙 is of the form r→p :𝑚′, where r ≠ q or𝑚′ ≠𝑚.

Before performing case analysis, we first establish a claim that is used in both cases. Let

𝜌p denote the largest prefix of 𝜌 that is consistent with 𝑤 for p. Formally, 𝜌p = max{𝜌 | 𝜌 ≤

𝜌 ∧
(
split(trace(𝜌))

)
⇓Σp
≤ 𝑤⇓Σp

}. Let 𝜌q be defined analogously. It is clear that 𝜌p = 𝛼 · 𝑠𝑝𝑟𝑒 .

Claim I. 𝜌q > 𝜌p.

173

From Proposition A.2, V(𝑤⇓q⊲p!-) = V(𝑤⇓p⊳q?-) · 𝜉 (q, p). Because 𝜌p = 𝛼 · 𝑠𝑝𝑟𝑒 , it follows

that V(𝑤⇓p⊳q?-) = V(split(trace(𝛼 · 𝑠𝑝𝑟𝑒))⇓p⊳q?-). Because 𝑚 is at the head of 𝜉 (q, p) by

assumption, there exists 𝑢 ∈ V∗ such thatV(𝑤⇓q⊲p!-) =V(split(trace(𝛼 · 𝑠𝑝𝑟𝑒)))⇓p⊳q?- ·𝑚 ·𝑢.

Thus,V(𝑤⇓q⊲p!-) > V(split(trace(𝛼 · 𝑠𝑝𝑟𝑒)))⇓p⊳q?- and 𝜌q > 𝜌p follows. End Proof of Claim I.

Case: r = q and𝑚′ ≠𝑚.

We discharge this case by showing a contradiction to the assumption that𝑚 is at the head of

𝜉 (q, p). Because 𝛼 ·𝑠𝑝𝑟𝑒 ≤ 𝜌p and 𝜌p < 𝜌q from Claim I, it must be the case that 𝛼 ·𝑠𝑝𝑟𝑒
𝑙−→ 𝑠𝑝𝑜𝑠𝑡 ≤ 𝜌q

and q ⊲ p!𝑚′ is in 𝑤⇓Σq
. From Proposition A.2, it follows thatV(𝑤⇓q⊲p!-) =V(𝑤⇓p⊳q?-) ·𝑚′ · 𝑢′

and 𝜉 (q, p) = 𝑚′ · 𝑢′, i.e. 𝑚′ is at the head of 𝜉 (q, p). We find a contradiction to the assumption

that𝑚′ ≠𝑚.

Case: r ≠ q.

We discharge this case by showing a contradiction to RC. First, we establish the existence of a

transition 𝑠1
q→p:𝑚−−−−−→ 𝑠2 ∈ 𝑇 such that 𝑠1 ≠ 𝑠𝑝𝑟𝑒 and 𝑠1 is reachable by p on split−1(𝑤⇓Σp

). By the

assumption that𝑤𝑥 is a trace of {{𝑇p}}p∈P , it follows that𝑤𝑥⇓Σp
is a prefix ofL(𝑇p). By the canon-

icity of {{𝑇p}}p∈P , it holds that pref (L(𝑇p)) ⊆ pref (L(S)⇓Σp
), and thus𝑤𝑥⇓Σp

∈ pref (L(S)⇓Σp
).

Thus, there exists a maximal run 𝜌′ in S such that𝑤𝑥⇓Σp
≤ split(trace(𝜌′))⇓Σp

and 𝑠1
q→p:𝑚−−−−−→

𝑠2 ∈ 𝜌′. BecauseS is sender-driven, there does not exist a state 𝑠 ∈ 𝑆 with two outgoing transition

labels with different senders. Therefore, 𝑠1 ≠ 𝑠𝑝𝑟𝑒 .

By the fact that 𝛼 · 𝑠𝑝𝑟𝑒
𝑙−→ 𝑠𝑝𝑜𝑠𝑡 · 𝛽 is the unique splitting of 𝜌 for p matching 𝑤 , it holds that

𝑠𝑝𝑟𝑒 is also reachable by p on split−1(𝑤⇓Σp
).

We instantiate RC with 𝑠1
q→p:𝑚−−−−−→ 𝑠2, 𝑠𝑝𝑟𝑒

r→p:𝑚−−−−−→ 𝑠𝑝𝑜𝑠𝑡 and split−1(𝑤⇓Σp
) to obtain:

¬(∃𝑣 ∈ pref (L𝑠𝑝𝑜𝑠𝑡). 𝑣⇓Σp
= 𝜀 ∧V(𝑣⇓q⊲p!_) =V(𝑣⇓p⊳q?_) ·𝑚) .

174

We show, on the contrary, that

∃𝑣 ∈ pref (L𝑠𝑝𝑜𝑠𝑡). 𝑣⇓Σp
= 𝜀 ∧V(𝑣⇓q⊲p!_) =V(𝑣⇓p⊳q?_) ·𝑚 .

It is clear that 𝑠𝑝𝑜𝑠𝑡 · 𝛽 is a maximal run in S𝑠𝑝𝑜𝑠𝑡 . By Lemma A.1, to show that a witness 𝑣 ∈

pref (L𝑠𝑝𝑜𝑠𝑡), it suffices to show that 𝑣 is channel-compliant and furthermore, that for all partici-

pants s ∈ P, 𝑣⇓Σs
≤ split(trace(𝑠𝑝𝑜𝑠𝑡 · 𝛽))⇓Σs

.

Recall that 𝑤 is a trace of {{𝑇p}}p∈P and is thus channel-compliant. Intuitively, we obtain a

witness for 𝑣 by deleting from𝑤 symbols that belong to split(trace(𝛼 ·𝑠𝑝𝑟𝑒
𝑙−→ 𝑠𝑝𝑜𝑠𝑡)). Formally,

let 𝑣 be initialized to 𝑤 and let 𝑙1 . . . 𝑙𝑛 = trace(𝛼 · 𝑠𝑝𝑟𝑒
𝑙−→ 𝑠𝑝𝑜𝑠𝑡). For each 𝑖 ∈ {1, . . . , 𝑛}, let

𝑙𝑖 ≔ p𝑖→q𝑖 :𝑚𝑖 . We check whether p𝑖 ⊲ q𝑖 !𝑚𝑖 ≤ 𝑤⇓Σp𝑖
, and if so, we delete the symbol p𝑖 ⊲ q𝑖 !𝑚𝑖

from 𝑤 . We then check whether q𝑖 ⊳ p𝑖?𝑚𝑖 ≤ 𝑤⇓Σq𝑖
, and again delete the symbol if so. Note that

due to the channel-compliancy of 𝑣 , either both symbols are deleted, or only the send action is

deleted. We argue that the inductive invariant of channel-compliancy is satisfied: if a matching

pair of send and receive actions are found in 𝑣 and deleted, each ofV(𝑣⇓q𝑖⊳p𝑖?_) andV(𝑣⇓p𝑖⊲q𝑖 !_)

lose their headmessage, andV(𝑣⇓q𝑖⊳p𝑖?_) ≤ V(𝑣⇓p𝑖⊲q𝑖 !_) continues to hold; if only the send action

is found and deleted, then it must be the case that V(𝑣⇓q𝑖⊳p𝑖?_) = 𝜀 and the invariant is trivially

re-established. Thus, we establish that upon termination, 𝑣 is channel-compliant. Furthermore,

it holds that 𝑠𝑝𝑜𝑠𝑡 · 𝛽 ∈ 𝐼S𝑠𝑝𝑜𝑠𝑡 (𝑣).

Recall thatV(𝑤⇓q⊲p!_) =V(𝑤⇓p⊳q?_) ·𝑚. It remains to show thatV(𝑣⇓q⊲p!_) =V(𝑣⇓p⊳q?_) ·𝑚.

This holds from the fact that 𝛼 · 𝑠𝑝𝑟𝑒 = 𝜌p < 𝜌q, which means that any labels of the form q→p : -

in 𝑙1 . . . 𝑙𝑛 must find and delete a matching pair of send and receive actions in 𝑣 , thus preserving

the above equality.

□

Lemma 3.14 (Send events preserve run prefixes). Let S be a protocol satisfying CC and {{𝑇p}}p∈P

be a canonical implementation for S. Let 𝑤𝑥 be a trace of {{𝑇p}}p∈P such that 𝑥 ∈ Σp,! for some

175

p ∈ P. Let 𝜌 be a run in 𝐼 (𝑤), and 𝛼 · 𝑠𝑝𝑟𝑒
𝑙−→ 𝑠𝑝𝑜𝑠𝑡 · 𝛽 be the unique splitting of 𝜌 for p with respect

to𝑤 . Then, there exists a run 𝜌′ in 𝐼 (𝑤𝑥) such that 𝛼 · 𝑠𝑝𝑟𝑒 ≤ 𝜌′.

Proof. Let 𝑥 = p ⊲ q!𝑚. We prove the claim by induction on the length of𝑤 .

Base Case. 𝑤 = 𝜀. By definition, 𝐼 (𝜀) contains all maximal runs in S. Then, split(trace(𝛼 ·

𝑠𝑝𝑟𝑒))⇓Σp
= 𝜀 and it holds that 𝑠0

𝜀
=⇒
p

∗ 𝑠𝑝𝑟𝑒 . We argue that there exists 𝑠1 ∈ 𝑆 such that 𝑠0
𝜀
=⇒
p

∗

𝑠1. From the canonicity of {{𝑇p}}p∈P and the fact that 𝑥 ∈ pref (L(𝑇p)), it follows that 𝑥 ∈

pref (L(S)⇓Σp
). Thus, there exists 𝑤 ∈ L(S) such that 𝑥 ≤ 𝑤⇓Σp

, and consequently there

exists a run 𝜌′ such that 𝑥 ≤ split(trace(𝜌′))⇓Σp
. The unique splitting of 𝜌′ for p with respect

to 𝜀 gives us a candidate for 𝑠1. By Definition 3.1, there exists a 𝑠2 such that 𝑠1
𝑙
=⇒
p

∗ 𝑠2. By the

assumption that every run in S extends to a maximal run, there exists a maximal run in 𝐼 (𝑥).

Induction Step. Let 𝑤𝑥 be an extension of 𝑤 by 𝑥 ∈ Σp,!. To re-establish the induction

hypothesis, we need to show the existence of a run 𝜌 in 𝐼 (𝑤𝑥) such that 𝛼 · 𝑠𝑝𝑟𝑒 ≤ 𝜌 . Since p is

the active participant in 𝑥 , it holds for any r ≠ p that RSr (𝑤) = RSr (𝑤𝑥). Therefore, to prove the

existential claim, it suffices to construct a run 𝜌 that satisfies:

1. 𝜌 ∈ RSp (𝑤𝑥),

2. 𝜌 ∈ 𝐼 (𝑤), and

3. 𝛼 · 𝑠𝑝𝑟𝑒 ≤ 𝜌 .

In the case that 𝑙⇓Σp
= 𝑥 , we are done: Property 3 and 2 hold by construction, and Property 1

holds by the definition of possible run sets.

In the case that 𝑙⇓Σp
≠ 𝑥 , we show the existence of a different continuation such that the

resulting run satisfies all three conditions.

First, we establish that p is the sender in 𝑙 . By definition of unique splitting, we know that p

is active in 𝑙 . Assume towards a contradiction that p is the receiver in 𝑙 . Then, 𝑙 is of the form

176

q→p :𝑚. Because 𝛼 · 𝑠𝑝𝑟𝑒
q→p:𝑚−−−−−→ 𝑠𝑝𝑜𝑠𝑡 · 𝛽 is a maximal run in S, we have that (𝑤 · p ⊳ q?𝑚)⇓Σp

∈

pref (L(S)⇓Σp
). By the canonicity of {{𝑇p}}p∈P , it holds that pref (L(S)⇓Σp

) ⊆ pref (L(𝑇p)), and

therefore (𝑤 · p ⊳ q?𝑚)⇓Σp
∈ pref (L(𝑇p)). By assumption that 𝑤𝑥 is a trace of {{𝑇p}}p∈P , it holds

that (𝑤𝑥)⇓Σp
∈ pref (L(𝑇p)). From the fact that p⊳q?𝑚 ∈ Σp,? and 𝑥 ∈ Σp,!, we find a contradiction

to Lemma 3.7. Therefore, 𝑙 must be of the form p→q′ :𝑚′, with q′ ≠ q or𝑚′ ≠𝑚.

By assumption that 𝑤𝑥 is a trace of {{𝑇p}}p∈P , it holds that 𝑤𝑥⇓Σp
∈ pref (L(𝑇p)). By the

canonicity of {{𝑇p}}p∈P (??(ii)), we have pref (L(𝑇p)) ⊆ pref ((L(S)⇓Σp
)) and hence, 𝑤𝑥⇓Σp

∈

pref (L(S)⇓Σp
). Thus, there exists 𝑣 ∈ L(S) such that 𝑤𝑥⇓Σp

≤ 𝑣⇓Σp
, and consequently there

exists a run 𝜌′ such that 𝑤𝑥⇓Σp
≤ split(trace(𝜌′))⇓Σp

. The unique splitting of 𝜌′ for p with

respect to𝑤 gives us a transition 𝑠1
p→q:𝑚−−−−−→ 𝑠2 ∈ 𝑇 .

If 𝑠1 = 𝑠𝑝𝑟𝑒 , then 𝛼 · 𝑠𝑝𝑟𝑒
p→q:𝑚−−−−−→ 𝑠2 is a run in S. Otherwise, we instantiate SC (Definition 3.1)

with 𝑠1
p→q:𝑚−−−−−→ 𝑠2, 𝑠𝑝𝑟𝑒 and the witness 𝑤⇓Σp

. Then, there exists 𝑠′ such that 𝑠𝑝𝑟𝑒
p→q:𝑚
======⇒

p

∗ 𝑠′. We

argue that, in fact, 𝑠𝑝𝑟𝑒
p→q:𝑚−−−−−→ 𝑠′ ∈ 𝑇 . This follows from the fact established above that p is the

sender in 𝑙 , and that 𝑠𝑝𝑟𝑒
𝑙−→ 𝑠𝑝𝑜𝑠𝑡 ∈ 𝑇 . By the assumption that S is sender driven, there does not

exist a state with outgoing transitions that do not share a sender. Therefore, 𝛼 · 𝑠𝑝𝑟𝑒
p→q:𝑚−−−−−→ 𝑠′ is

a run in S.

Either way, we have found a run that thus far satisfies Property 1 and 3 regardless of its

choice of maximal suffix. Let 𝛼 · 𝑠𝑝𝑟𝑒
p→q:𝑚−−−−−→ 𝑠′ be a run in S. Then, for all choices of 𝛽 such

that 𝛼 · 𝑠𝑝𝑟𝑒
p→q:𝑚−−−−−→ 𝑠′ · 𝛽 is a maximal run, both 𝑤𝑥⇓Σp

≤ split(trace(𝛼 · 𝑠𝑝𝑟𝑒
p→q:𝑚−−−−−→ 𝑠′)) and

𝛼 · 𝑠𝑝𝑟𝑒 ≤ 𝛼 · 𝑠𝑝𝑟𝑒
p→q:𝑚−−−−−→ 𝑠′ · 𝛽 hold.

Property 2, however, requires that the projection of𝑤 onto each participant is consistent with

𝜌 , and this cannot be ensured by the prefix alone.

We construct the remainder of 𝜌 by picking an arbitrary maximal suffix to form a candidate

run, and iteratively performing suffix replacements on the candidate run until it lands in 𝐼 (𝑤).

Let 𝛽 be a run suffix such that 𝛼 · 𝑠𝑝𝑟𝑒
p→q:𝑚−−−−−→ 𝑠′ · 𝛽 is a maximal run in S. Let 𝜌𝑐 denote this

candidate run.

177

If 𝜌𝑐 ∈ 𝐼 (𝑤), we are done. Otherwise, 𝜌𝑐 ∉ 𝐼 (𝑤) and there exists a non-empty set of processes

Q ⊆ P such that for each r ∈ Q,

𝑤⇓Σr
≰ split(trace(𝜌𝑐))⇓Σr

. (A.1)

By the fact that 𝜌 ∈ 𝐼 (𝑤),

𝑤⇓Σr
≤ split(trace(𝜌))⇓Σr

. (A.2)

We can rewrite (A.1) and (A.2) above to make explicit their shared prefix 𝛼 · 𝑠𝑝𝑟𝑒 :

𝑤⇓Σr
≰ split(trace(𝛼 · 𝑠𝑝𝑟𝑒

p→q:𝑚−−−−−→ 𝑠′ · 𝛽))⇓Σr
(A.3)

𝑤⇓Σr
≤ split(trace(𝛼 · 𝑠𝑝𝑟𝑒

p→q′:𝑚′−−−−−−→ 𝑠𝑝𝑜𝑠𝑡 · 𝛽))⇓Σr
. (A.4)

We can further rewrite (A.3) and (A.4) to make explicit their point of disagreement:

𝑤⇓Σr
≰ (split(trace(𝛼 · 𝑠𝑝𝑟𝑒)) . p ⊲ q!𝑚. q ⊳ p?𝑚. split(trace(𝛽)))⇓Σr

(A.5)

𝑤⇓Σr
≤ (split(trace(𝛼 · 𝑠𝑝𝑟𝑒)) . p ⊲ q′!𝑚′. q′ ⊳ p?𝑚′. split(trace(𝛽)))⇓Σr

(A.6)

It is clear that in order for both A.5 and A.6 to hold, it must be the case that split(trace(𝛼 ·

𝑠𝑝𝑟𝑒))⇓Σr
< 𝑤⇓Σr

.

We formalize the point of disagreement between𝑤⇓Σr
and 𝜌𝑐 using an index 𝑖r representing

the position of the first disagreeing symbol in trace(𝜌𝑐):

𝑖r ≔ max{𝑖 | split(trace(𝜌𝑐) [0..𝑖 − 1])⇓Σr
≤ 𝑤⇓Σr

} .

By the maximality of 𝑖r, it holds that r is the active participant in trace(𝜌𝑐) [𝑖r]. By the fact that

178

split(trace(𝛼 · 𝑠𝑝𝑟𝑒))⇓Σr
< 𝑤⇓Σr

we know that

𝑖r > |trace(𝛼 · 𝑠𝑝𝑟𝑒) | .

We identify the participant in Q with the earliest disagreement in split(trace(𝜌𝑐)): let r̄

be the participant in Q with the smallest 𝑖r̄. If two participants that share the same small-

est index, then by the fact that both participants are active in trace(𝜌𝑐) [𝑖r̄], it must be the

case that one is the sender and one is the receiver: we pick the sender to be r̄. Let 𝑦r̄ denote

split(trace(𝜌𝑐 [𝑖r̄]))⇓Σr̄
.

Claim I 𝑦r̄ is a send event.

Assume by contradiction that𝑦r̄ is a receive event. We identify the symbol in𝑤 that disagrees

with 𝑦r̄: let 𝑤 ′ be the largest prefix of 𝑤 such that 𝑤 ′⇓Σr̄
≤ split(trace(𝜌𝑐))⇓Σr̄

. By definition,

𝑤 ′⇓Σr̄
= split(trace(𝜌𝑐) [0..𝑖r̄−1])⇓Σr̄

. Let 𝑧 be the next symbol following𝑤 ′ in𝑤 ; then𝑤 ′𝑧 ≤ 𝑤

and 𝑧 ∈ Σr̄ with 𝑧 ≠ 𝑦r̄. Furthermore, by No Mixed Choice (3.7) we have that 𝑧 ∈ Σr̄,?.

By assumption, 𝑤 ′𝑧 ≰ split(trace(𝜌𝑐) [0..𝑖r̄]). Therefore, any run with a trace that begins

with 𝜌𝑐 [0..𝑖r̄] cannot be contained in RSr̄ (𝑤 ′𝑧), or consequently in 𝐼 (𝑤 ′𝑧). We show however, that

𝐼 (𝑤 ′𝑧) must contain some runs that begin with 𝜌𝑐 [0..𝑖r̄]. From Lemma 3.13 for traces𝑤 ′ and𝑤 ′𝑧,

we obtain that 𝐼 (𝑤 ′) = 𝐼 (𝑤 ′𝑧). Therefore, it suffices to show that 𝐼 (𝑤 ′) contains runs that begin

with 𝜌𝑐 [0..𝑖r̄].

Claim II ∀𝑤 ′′ ≤ 𝑤 ′. 𝐼 (𝑤 ′′) contains runs that begin with 𝜌𝑐 [0..𝑖r̄].

We prove the claim via induction on𝑤 ′.

The base case is trivial from the fact that 𝐼 (𝜀) contains all maximal runs.

For the inductive step, let𝑤 ′′𝑦 ≤ 𝑤 ′.

In the case that 𝑦 ∈ Σ?, we know 𝐼 (𝑤 ′′𝑦) = 𝐼 (𝑤 ′′) from Lemma 3.13 and the witness from

𝐼 (𝑤 ′′) can be reused.

179

In the case that𝑦 ∈ Σ!, let s be the active participant of𝑦 and let 𝜌′ be a run in 𝐼 (𝑤 ′′) beginning

with 𝜌𝑐 [0..𝑖r̄] given by the inner induction hypothesis. Let 𝛼′ · 𝑠3
𝑙 ′−→ 𝑠4 · 𝛽′ be the unique splitting

of 𝜌′ for s with respect to𝑤 ′′. If split(𝑙′)⇓Σs
= 𝑦, then 𝜌′ can be used as the witness. Otherwise,

split(𝑙′)⇓Σs
≠ 𝑦, and 𝜌′ ∉ RSs (𝑤 ′′𝑦).

The outer induction hypothesis holds for all prefixes of𝑤 : we instantiate it with𝑤 ′′ and 𝑦 to

obtain:

∃ 𝜌′′ ∈ 𝐼 (𝑤 ′′𝑦). 𝛼′ · 𝑠3 ≤ 𝜌′′ .

Let 𝑖s be defined as before; it follows that 𝜌′[𝑖s] = 𝑠3. It must be the case that 𝑖s > 𝑖r̄: if 𝑖s ≤ 𝑖r̄,

because 𝜌𝑐 and 𝜌′ share a prefix 𝜌𝑐 [0..𝑖r̄] and 𝑤 ′′𝑦 ≤ 𝑤 , s would be the earliest disagreeing

participant instead of r̄.

Because 𝑖s > 𝑖r̄, 𝜌𝑐 [0..𝑖r̄] = 𝜌′[0..𝑖r̄] ≤ 𝜌′[0..𝑖s]. Because 𝜌′[0..𝑖s] = 𝛼′ · 𝑠3 ≤ 𝜌′′, it follows

from prefix transitivity that 𝜌𝑐 [0..𝑖r̄] ≤ 𝜌′′, thus re-establishing the induction hypothesis for𝑤 ′′𝑦

with 𝜌′′ as a witness run that begins with 𝜌𝑐 [0..𝑖r̄].

This concludes our proof that 𝐼 (𝑤 ′) contains runs that begin with 𝜌𝑐 [0..𝑖r̄], and in turn our

proof by contradiction that 𝑦r̄ must be a send event.

Having established that 𝑙𝑖r̄ is a send event for r̄, we can now reason from the canonicity of

{{𝑇p}}p∈P and SC and conclude that there exists an outgoing transition from 𝜌𝑐 [𝑖r̄] and a maximal

suffix such that the resulting run no longer disagrees with𝑤⇓Σr̄
. The reasoning is identical to that

which is used to construct our candidate run 𝜌𝑐 , and is thus omitted. We update our candidate

run 𝜌𝑐 with the correct transition label and maximal suffix, update the set of states Q ∈ P to

the new set of participants that disagree with the new candidate run, and repeat the construction

above on the new candidate run until Q is empty.

Termination is guaranteed in at most |𝑤 | steps by the fact that the number of symbols in 𝑤

that agree with the candidate run up to 𝑖r̄ must increase.

Upon termination, the resulting 𝜌𝑐 serves as our witness for 𝜌 and 𝜌 thus satisfies the final

180

remaining property 3: 𝜌 ∈ 𝐼 (𝑤). This concludes our proof by induction of the prefix-preservation

of send transitions. □

Lemma 3.17 (Completeness). Let S be a protocol. If S is implementable, then S satisfies CC.

Proof. Let communicating LTS {{𝐵p}}p∈P implement S. Specifically, we contradict protocol fi-

delity, and show that L(S) ≠ L({{𝐵p}}p∈P) by constructing a witness 𝑣0 satisfying:

(a) 𝑣0 is a trace of {{𝐵p}}p∈P , and

(b) 𝐼 (𝑣0) = ∅.

The reasoning for the sufficiency of the above two conditions is as follows. To prove the

inequality of the two languages, it suffices to prove the inequality of their respective prefix sets,

i.e.

pref (L(S)) ≠ pref (L({{𝐵p}}p∈P)) .

Specifically, we show the existence of a 𝑣 ∈ Σ∗async such that

𝑣 ∈ {𝑢 | 𝑢 ≤ 𝑤 ∧𝑤 ∈ L({{𝐵p}}p∈P)} ∧

𝑣 ∉ {𝑢 | 𝑢 ≤ 𝑤 ∧𝑤 ∈ L(S)} .

Because {{𝐵p}}p∈P is deadlock-free by assumption, every trace can be extended to a maximal trace.

Therefore, every trace 𝑣 ∈ Σ∗async of {{𝐵p}}p∈P is a member of the prefix set of {{𝐵p}}p∈P , i.e.

∃ (®𝑠, 𝜉). (®𝑠0, 𝜉0)
𝑣−→∗ (®𝑠, 𝜉) =⇒ 𝑣 ∈ {𝑢 | 𝑢 ≤ 𝑤 ∧𝑤 ∈ L({{𝐵p}}p∈P)} .

For any 𝑤 ∈ L(S), it holds that 𝐼 (𝑤) ≠ ∅. Because 𝐼 (-) is monotonically decreasing, if 𝐼 (𝑤) is

non-empty then for any 𝑣 ≤ 𝑤 , 𝐼 (𝑣) is non-empty. By the following, to show that a word 𝑣 is not

181

a member of the prefix set of L(S) it suffices to show that 𝐼 (𝑣) is empty:

∀𝑣 ∈ Σ∗. 𝐼 (𝑣) = ∅ =⇒ ∀𝑤. 𝑣 ≤ 𝑤 =⇒ 𝑤 ∉ L(S) .

Send Coherence. Assume that SC does not hold for some transition 𝑠1
p→q:𝑚−−−−−→ 𝑠2 ∈ 𝑇 . The

negation of SC says that there exists a simultaneously reachable state with no post-state reachable

on p→q :𝑚. Formally, let 𝑠 ∈ 𝑆 be a state with 𝑠 ≠ 𝑠1 and 𝑢 ∈ Σ∗p be a word such that 𝑠0
𝑢
=⇒
p

∗ 𝑠1, 𝑠 .

Then, there does not exist 𝑠′ ∈ 𝑆 such that 𝑠
p→q:𝑚
======⇒

p

∗ 𝑠′.

Because 𝑠0
𝑢
=⇒
p

∗ 𝑠 , there exists a run 𝛼 · 𝑠 such that split(trace(𝛼 · 𝑠))⇓Σp
= 𝑢.

Let 𝑤̄ be split(trace(𝛼 · 𝑠)). Let 𝑤̄ · p ⊲ q!𝑚 be our witness 𝑣0; we show that 𝑣0 satisfies (a)

and (b).

Because {{𝐵p}}p∈P implementsS, 𝑤̄ is a trace of {{𝐵p}}p∈P and there exists a configuration (®𝑡, 𝜉)

of {{𝐵p}}p∈P such that (®𝑡0, 𝜉0)
𝑤̄−→∗ (®𝑡, 𝜉). Because 𝑠0

𝑢
=⇒
p

∗ 𝑠1, there again exists a run 𝛼1 · 𝑠1 such

that split(trace(𝛼1 · 𝑠1))⇓Σp
= 𝑢. Thus, split(trace(𝛼1 · 𝑠1

p→q:𝑚−−−−−→ 𝑠2)) is a prefix of L(S) and

consequently, split(trace(𝛼1 ·𝑠1
p→q:𝑚−−−−−→ 𝑠2))⇓Σp

is a prefix ofL(𝐵p). In other words,𝑢 ·p⊲q!𝑚 is

a prefix of L(𝐵p). Because 𝐵p is deterministic, there exists an outgoing transition from ®𝑠p labeled

with p ⊲ q!𝑚. Because send transitions are always enabled in a communicating LTS, 𝑤̄ · p ⊲ q!𝑚 is

a trace of {{𝐵p}}p∈P . Thus, (a) is established for 𝑣0.

It remains to show that 𝑣0 satisfies (b), namely 𝐼 (𝑤̄ · p ⊲ q!𝑚) = ∅.

Claim. All runs in 𝐼 (𝑤̄) begin with 𝛼 · 𝑠 .

Proof of Claim. This claim follows from the fact that S is deterministic and sender-driven.

Assume by contradiction that 𝜌′ ∈ 𝐼 (𝑤̄) and 𝜌′ does not begin with 𝛼 ·𝑠 . Because 𝛼 ·𝑠 ≠ 𝜌′, and S

is deterministic, trace(𝛼 · 𝑠) ≠ trace(𝜌′). Let 𝑙 = trace(𝛼 · 𝑠) and let 𝑙′ = trace(𝜌′). Moreover,

let 𝑙 be the largest common prefix of 𝑙 and 𝑙′. From the assumption that S is sender-driven, the

first divergence between the traces of any two runs must correspond to a send action by some

participant. Let p′ be the sender in the first divergence between 𝑙 and 𝑙′. Because 𝜌′ ∈ RSp′ (𝑤̄),

182

it holds that 𝑤̄⇓Σp′ ≤ split(trace(𝜌′))⇓Σp′ . We can rewrite the inequality as split(𝑙)⇓Σp′ ≤

split(𝑙′)⇓Σp′ .

Because 𝑙 is the largest common prefix shared by 𝑙 and 𝑙′, split(𝑙)⇓Σp′ and split(𝑙
′)⇓Σp′ are

respectively of the form 𝑙⇓Σp′ · p
′ ⊲ q𝑖 !𝑚′𝑖 · 𝑧′ and 𝑙⇓Σp′ · p

′ ⊲ q 𝑗 !𝑚′𝑗 · 𝑦′, with q𝑖 ≠ q 𝑗 or𝑚′𝑖 ≠ 𝑚′𝑗 .

From this and 𝑙⇓Σp′ · p
′ ⊲ q𝑖 !𝑚′𝑖 · 𝑧′ ≤ 𝑙⇓Σp′ · p

′ ⊲ q 𝑗 !𝑚′𝑗 · 𝑦′, we arrive at a contradiction.

End Proof of Claim.

Because 𝐼 (-) is monotonically decreasing, 𝐼 (𝑣0) ⊆ 𝐼 (𝑤̄). With Claim, every run in 𝐼 (𝑣0) begins

with 𝛼 · 𝑠 . From the negation of SC, there does not exist 𝑠′ ∈ 𝑆 such that 𝑠
p→q:𝑚
======⇒

p

∗ 𝑠′, and thus

there does not exist a maximal run 𝜌 ∈ S such that 𝑣0⇓Σp
≤ split(trace(𝜌))⇓Σp

.

Therefore, RSp (𝑤̄ · p ⊲ q!𝑚) = ∅, and 𝐼 (𝑤̄ · p ⊲ q!𝑚) = ∅ follows.

This concludes our proof by contradiction for the necessity of SC.

Receive Coherence. Assume that RC does not hold for a pair of transitions 𝑠1
p→q:𝑚−−−−−→ 𝑠2, 𝑠

r→q:𝑚−−−−−→

𝑠′ ∈ 𝑇 . Then, 𝑠 ≠ 𝑠1, r ≠ p and let 𝑢 ∈ Σ∗q be a word such that 𝑠0
𝑢
=⇒
q

∗ 𝑠1, 𝑠 . Furthermore there

exists𝑤 ∈ pref (L(S𝑠′)) with𝑤⇓Σq
= 𝜀 ∧V(𝑤⇓p⊲q!_) =V(𝑤⇓q⊳p?_) ·𝑚.

Because 𝑠0
𝑢
=⇒
q

∗ 𝑠1, 𝑠 and 𝑠
r→q:𝑚−−−−−→ 𝑠′, there exists a run 𝛼 ·𝑠 r→q:𝑚−−−−−→ 𝑠′ such that split(trace(𝛼 ·

𝑠))⇓Σq
= 𝑢.

Let split(trace(𝛼 · 𝑠)) · r ⊲ q!𝑚 ·𝑤 · q ⊳ p?𝑚 be our witness 𝑣0; we show that 𝑣0 satisfies (a)

and (b).

First, we show that 𝑣0 is a trace of {{𝐵p}}p∈P . We reason about each extension of 𝑣0 in turn,

starting with split(trace(𝛼 · 𝑠)). It is clear that split(trace(𝛼 · 𝑠)) is a trace of {{𝐵p}}p∈P : this

follows immediately from the assumption that {{𝐵p}}p∈P implements S. Let (®𝑠, 𝜉) be the {{𝐵p}}p∈P

configuration reached on split(trace(𝛼 · 𝑠)):

(®𝑠0, 𝜉0)
split(trace(𝛼 ·𝑠))
−−−−−−−−−−−−−−→∗ (®𝑠, 𝜉)

Next, we reason about the extension r ⊲ q!𝑚 · 𝑤 together. We first establish that r ⊲ q!𝑚 · 𝑤 ∈

183

pref (L(S𝑠)). Because𝑤 ∈ pref (L(S𝑠′)), there exists a maximal run 𝑠′ · 𝛽 such that 𝑠′ · 𝛽 ∈ 𝐼 (𝑤).

Observe that 𝑠
r→q:𝑚−−−−−→ 𝑠′ · 𝛽 ∈ 𝐼 (r ⊲ q!𝑚 ·𝑤) and that r ⊲ q!𝑚 ·𝑤 remains channel-compliant due

to the assumption that 𝑤⇓Σq
= 𝜀. Thus, by Lemma A.1 it holds that r ⊲ q!𝑚 · 𝑤 ∈ pref (L(S𝑠)).

Therefore, split(trace(𝛼 · 𝑠)) · r ⊲ q!𝑚 ·𝑤 ∈ pref (L(S)), and by the assumption that {{𝐵p}}p∈P

implements S, split(trace(𝛼 · 𝑠)) · r ⊲ q!𝑚 ·𝑤 is a trace of {{𝐵p}}p∈P :

(®𝑠0, 𝜉0)
split(trace(𝛼 ·𝑠))
−−−−−−−−−−−−−−→∗ (®𝑠, 𝜉) r⊲q!𝑚·𝑤−−−−−−→ (®𝑠 ′, 𝜉′)

Finally, we reason about the extension q⊳p?𝑚. We show that there exists a {{𝐵p}}p∈P configuration

(®𝑠 ′′, 𝜉′′) such that (®𝑠 ′, 𝜉′) q⊳p?𝑚−−−−→ (®𝑠 ′′, 𝜉′). To do so, we need to show that

(1) there exists an outgoing transition labeled with q ⊳ p?𝑚 from ®𝑠 ′q, and

(2) 𝜉′(p, q) =𝑚 · 𝑢′, with 𝑢′ ∈ V∗.

We know that 𝑠0
𝑢
=⇒
q

∗ 𝑠1 and 𝑠1
p→q:𝑚−−−−−→ 𝑠2, so there exists a run 𝛼1 ·𝑠2 such that split(trace(𝛼1 ·

𝑠2))⇓Σq
= 𝑢 ·q⊳p?𝑚. Because split(trace(𝛼1·𝑠2))⇓Σq

∈ pref (L(S))⇓Σq
and {{𝐵p}}p∈P implements

S, it follows that 𝑢 · q ⊳ p?𝑚 ∈ pref (L(𝐵q)). Let 𝑡 ∈ 𝑄q be the state reached on 𝑢 in 𝐵q. The state

𝑡 is unique since 𝐵q is deterministic. Because 𝑢 · q ⊳ p?𝑚 is a prefix in 𝐵q, there exists a transition

𝑡
q⊳p?𝑚−−−−→ 𝑡1 ∈ 𝛿q. It holds that (split(trace(𝛼 · 𝑠)) · r ⊲ q!𝑚 ·𝑤)⇓Σq

= 𝑢, so it follows that ®𝑠′q = 𝑡

and there exists an outgoing transition from ®𝑠′q labeled with q ⊳ p?𝑚. This establishes (1).

(2) is established from the fact that send actions are immediately followed by their matching

receive action in split(trace(𝛼 ·𝑠)), and therefore all channels in 𝜉 are empty, including 𝜉 (p, q).

Because r ⊲ q!𝑚 does not concern 𝜉 (p, q),𝑚 remains the first unmatched send action from p to q

in split(trace(𝛼 · 𝑠)) · r ⊲ q!𝑚 ·𝑤 , and thus𝑚 is at the head of channel 𝜉′(p, q):

(®𝑠0, 𝜉0)
split(trace(𝛼 ·𝑠))
−−−−−−−−−−−−−−→∗ (®𝑠, 𝜉) r⊲q!𝑚·𝑤−−−−−−→ (®𝑠′, 𝜉′) q⊳p?𝑚−−−−→ (®𝑠′′, 𝜉′′) .

This concludes our proof of (a).

184

Next, we argue that 𝐼 (𝑣0) = ∅. This claim follows trivially from the observation that every

run in 𝐼 (𝑣0) must begin with 𝛼 · 𝑠 r→q:𝑚−−−−−→ 𝑠′, and therefore 𝑣0 must satisfy 𝑣0⇓Σq
≤ 𝑢 · q ⊳ r?𝑚, yet

𝑣0⇓Σq
= 𝑢 · q ⊳ p?𝑚 and we find a contradiction.

NoMixed Choice. Assume that NMC does not hold for transitions 𝑠1
p→q:𝑚−−−−−→ 𝑠2, 𝑠

r→p:𝑚−−−−−→ 𝑠′ ∈ 𝑇 .

The negation of NMC says that 𝑠1 and 𝑠 are simultaneously reachable. Let 𝑢 ∈ Σ∗q be a word such

that 𝑠0
𝑢
=⇒
q

∗ 𝑠1, 𝑠 .

Because 𝑠0
𝑢
=⇒
p

∗ 𝑠 , there exists a run 𝛼 · 𝑠 such that split(trace(𝛼 · 𝑠))⇓Σp
= 𝑢.

Let 𝑤̄ be split(trace(𝛼 · 𝑠)). Let 𝑤̄ · r ⊲ p!𝑚 · p ⊲ q!𝑚 be our witness 𝑣0; we show that 𝑣0

satisfies (a) and (b).

The reasoning is similar to that for the witness constructed for Send Coherence Condition,

and is thus omitted. □

Lemma 6.9. Let 𝐴p = (𝑄p, Σp, 𝛿p, 𝑠0,p, 𝐹p) denote the state machine for p in A. Then, Transition

Exhaustivity and Final State Validity imply L(G)⇓Σp
⊆ L(𝐴p).

Proof. First, we show that every trace inL(G)⇓Σp
is a trace in𝐴p. Let𝑢 be a trace inL(G)⇓Σp

. We

proceed by induction on the length of 𝑢. In the base case, 𝑢 = 𝜀, and 𝜀 is trivially a trace of every

statemachine. In the induction step, let𝑢𝑥 be a prefix inL(G)⇓Σp
. From the induction hypothesis,

we know that 𝑢 is a prefix in L(𝐴p). Let 𝑠 ∈ 𝑄p be the state reached on 𝑢 in 𝐴p. Because 𝑢𝑥 is

a prefix in L(G)⇓Σp
, there exists a run 𝑞0,G

𝑢−→∗ 𝐺 𝑥−→∗ 𝐺′ in the projection by erasure automaton

for p. By the definition of state decoration, it holds that 𝐺 ∈ 𝑑G(𝑠). By Transition Exhaustivity, it

holds that there exists a state 𝑠′ ∈ 𝑄p such that 𝑠
𝑥−→ 𝑠′ ∈ 𝛿p, and therefore 𝑢𝑥 is also a prefix in

L(𝐴p). This concludes our proof by induction that every prefix in L(G)⇓Σp
is a prefix in L(𝐴p).

Let 𝑤 ∈ L(G)⇓Σp
. To show that 𝑤 ∈ L(𝐴p) for 𝑤 ∈ Σ∗, it remains to show that 𝑤 reaches a

final state in 𝐴p. Let 𝐺′′ ∈ 𝐹G be the state reached on 𝑤 in the projection by erasure automaton,

and let 𝑠′′ be the state reached on 𝑤 in 𝐴p. By the state decoration function it holds that 𝐺′′ ∈

𝑑G(𝑠′′), and therefore by Final State Validity, 𝑠′′ ∈ 𝐹p and 𝑤 is a word in L(𝐴p). The case for

185

𝑤 ∈ Σ∞ follows from the fact that every trace of L(G)⇓Σp
is a trace of L(𝐴p) and the fact that

𝐴p is deterministic. □

Lemma 6.13. LetA be a CSM, q be a role, and𝑤 ,𝑤𝑥 be traces ofA such that 𝑥 = q ⊳r?𝑚. Let 𝑠 be

the state of q’s state machine in the A configuration reached on𝑤 . Let 𝜌 be a run that is consistent

with 𝑤 , i.e. for all p ∈ P . 𝑤⇓Σp
≤ split(trace(𝜌))⇓Σp

. Let 𝛼 ·𝐺 𝑙−→ 𝐺′ · 𝛽 be the unique splitting

of 𝜌 for q matching𝑤 . If r ⊲ q!𝑚 ∉ 𝑀
q
(𝐺 ′ ...) , then 𝑥 = split(𝑙)⇓Σq

.

Proof. Suppose by contradiction that 𝑥 ≠ split(𝑙)⇓Σq
. By the definition of unique splittings, q

is the active role in 𝑙 . We proceed by case analysis on 𝑙 : (1) either 𝑙 is of the form r −→ q : 𝑚′,

with r sending q a different message𝑚′ ≠ 𝑚, or (2) 𝑙 is of the form s −→ q : 𝑚, with a different

role s ≠ r sending q a message, or 𝑙 is of the form q
_−→: _, with q sending a message. We prove a

contradiction in each case.

First, we establish a claim that is used in both cases, and relies only on the fact that 𝜌 is

consistent with𝑤 and𝑤𝑥 is a trace of A.

Let 𝜌q denote the largest consistent prefix of 𝜌 for q; it is clear that 𝜌q = 𝛼 ·𝐺 . Formally,

𝜌q =𝑚𝑎𝑥{𝜌′ | 𝜌′ ≤ 𝜌 ∧
(
split(trace(𝜌′))

)
⇓Σq
≤ 𝑤⇓Σq

} .

Let 𝜌r be defined analogously.

Claim: 𝜌q < 𝜌r. Intuitively, p is ahead of q in 𝜌 due to the half-duplex property of CSMs and the

fact that r is the sender. Formally, [Majumdar et al. 2021a, Lemma 19] implies 𝜉 (r, q) = 𝑢 where

V(𝑤⇓r⊲q!_) =V(𝑤⇓q⊳r?_).𝑢. Because 𝜉 (r, q) contains at least𝑚 by assumption, |V(𝑤⇓r⊲q!_) | >

|V(𝑤⇓q⊳r?_) |. Because V(𝑤⇓q⊳r?_) < V(𝑤⇓r⊲q!_) and traces of CSMs are channel-compliant

[Majumdar et al. 2021a, Lemma 19], it holds that 𝜌r contains all |V(𝑤⇓q⊳r?_) | transition labels of

the form r −→ q : _ that are contained in 𝜌r, plus at least one more of the form r −→ q : 𝑚. Because

both 𝜌q and 𝜌r are prefixes of 𝜌 , it must be the case that 𝜌q < 𝜌r. This concludes the proof of the

above claim.

186

Case: 𝑙 = r −→ q : 𝑚′ and𝑚′ ≠ 𝑚. We discharge this case by showing a contradiction to the fact

that𝑚 is at the head of the channel between r and q.

Because 𝛼 ·𝐺 ≤ 𝜌q and 𝜌q < 𝜌r from the claim above, it must be the case that 𝛼 ·𝐺 𝑙−→ 𝐺′ ≤ 𝜌r

and r ⊲ q!𝑚′ is in 𝑤⇓Σr
. From [Majumdar et al. 2021a, Lemma 19], it follows that V(𝑤⇓r⊲q!_) =

V(𝑤⇓q⊳r?_).𝑚′.𝑢′ and 𝜉 (r, q) = 𝑚′.𝑢′, i.e. 𝑚′ is at the head of the channel between r and q. We

reach a contradiction.

Case: ∀𝑚′. 𝑙 ≠ r −→ q : 𝑚′. It follows that split(𝑙)⇓Σq
≠ q ⊳ r?𝑚′ for any𝑚′. We discharge this

case by showing that

r ⊲ q!𝑚 ∈ 𝑀q
(𝐺 ′ ...) .

Recall that 𝛼 ·𝐺 𝑙−→ 𝐺′ ≤ 𝜌r. Then, there exists a transition labeled r −→ q : 𝑚 that occurs in the

suffix 𝐺′ · 𝛽 . Let 𝐺0
r−→q:𝑚−−−−−→ 𝐺′0 be the earliest occurrence of such a transition in the suffix, then:

𝜌r = 𝛼 ·𝐺 𝑙−→ 𝐺′ . . . 𝐺0
r−→q:𝑚−−−−−→ 𝐺′0

Note that 𝐺0 must be a syntactic subterm of 𝐺′. In order for r ⊲ q!𝑚 ∈ 𝑀q
(𝐺 ′ ...) to hold, it suffices

to show that r ∉ B in the recursive call to 𝑀B(𝐺 ′ ...) . We argue this from the definition of 𝑀 and

the fact that 𝜌q = 𝛼 ·𝐺 . Suppose for the sake of contradiction that r ∈ B. Because 𝑀 only adds

receivers of already blocked senders to B and 𝑀
q
(𝐺 ′ ...) starts with B = {q}, there must exist a

chain of message exchanges s𝑖+1 −→ s𝑖 : 𝑚𝑖 in𝐺′ with 1 ≤ 𝑖 < 𝑛, q = s𝑛 , and r = s1. That is,𝐺′ · 𝛽

must be of the form

𝐺′ . . . 𝐺𝑛−1
q−→s𝑛−1:𝑚𝑛−1−−−−−−−−−−→ 𝐺′𝑛−1 . . . 𝐺1

s2−→r:𝑚1−−−−−−−→ 𝐺′1 . . . 𝐺0
r−→q:𝑚−−−−−→ 𝐺′0

Let𝑚0 =𝑚 and s0 = q. We show by induction over 𝑖 that for all 𝑖 ∈ [1, 𝑛]

𝛼 ·𝐺 𝑙−→ 𝐺′ . . . 𝐺𝑖

s𝑖−→s𝑖−1:𝑚𝑖−1−−−−−−−−−−→ 𝐺′𝑖 ≤ 𝜌s𝑖 .

187

We then obtain the desired contradiction with the fact that 𝜌s𝑛 = 𝜌q = 𝛼 · 𝐺′. The base case of

the induction follows immediately from the construction. For the induction step, assume that

𝛼 ·𝐺 𝑙−→ 𝐺′ . . . 𝐺𝑖

s𝑖−→s𝑖−1:𝑚𝑖−1−−−−−−−−−−→ 𝐺′𝑖 ≤ 𝜌s𝑖 .

From the definition of 𝜌s𝑖 and the fact that s𝑖 is the active role in s𝑖 ⊳ s𝑖+1?𝑚𝑖 , it follows that

s𝑖 ⊳ s𝑖+1?𝑚𝑖 ∈ 𝑤 . Hence, we must also have s𝑖+1 ⊲ s𝑖 !𝑚𝑖 ∈ 𝑤 . Since s𝑖+1 is the active role in

s𝑖+1 ⊲ s𝑖 !𝑚𝑖 , we can conclude

𝛼 ·𝐺 𝑙−→ 𝐺′ . . . 𝐺𝑖

s𝑖+1−→s𝑖 :𝑚𝑖−−−−−−−−−→ 𝐺′𝑖+1 ≤ 𝜌s𝑖+1 .

This concludes the proof of Lemma 6.13. □

Lemma 6.15. If A violates Transition Exhaustivity or Final State Validity, then it does not hold

that {{P (G, p)}}p∈P refines A.

Proof. From the negation of Transition Exhaustivity, we find a witness trace 𝑣 such that 𝑣 is a trace

in {{P (G, p)}}p∈P but not a trace inA, thus contradicting the fact that {{P (G, p)}}p∈P refinesA.

Let p be a role that violates Transition Exhaustivity. Let 𝑠 be a state such that there exists𝐺 ∈ 𝑑G(𝑠)

with 𝐺
𝑥−→∗ 𝐺′ ∈ 𝛿↓ but no transition outgoing from 𝑠 labeled with 𝑥 . By the definition of state

decoration, there exists𝑢 ∈ Σ∗p such that𝐴p reaches 𝑠 on𝑢 from its initial state, and the projection

by erasure automaton for p reaches 𝐺 on 𝑢 from its initial state. Because 𝐺
𝑥−→∗ 𝐺′ ∈ 𝛿↓, it holds

that 𝑞0,G
𝑢−→∗ 𝐺 𝑥−→∗ 𝐺′ ∈ 𝛿↓ is a run in the projection by erasure automaton for p. Let 𝜌 denote

this run, and let 𝑤 = split(trace(𝜌)). Then, it holds that 𝑢𝑥 ≤ 𝑤⇓Σp
. Because {{P (G, p)}}p∈P

implements G, 𝑤 is a trace of {{P (G, p)}}p∈P . Consequently, 𝑤⇓Σp
is a prefix of 𝐴p. Because 𝑢𝑥

is a prefix of 𝑤⇓Σp
, 𝑢𝑥 is thus also a prefix of 𝐴p. Because 𝐴p is deterministic, 𝐴p reaches 𝑠 on

𝑢. However, there does not exist an outgoing transition labeled with 𝑥 from 𝑠 , and we reach a

contradiction to the fact that 𝑢𝑥 is a prefix of 𝐴p.

188

From the negation of Final State Validity, we find a witness trace 𝑣 that is maximally ter-

minated in {{P (G, p)}}p∈P , but not maximally terminated in A, thus contradicting the fact that

{{P (G, p)}}p∈P refines A. Let p be a role that violates Final State Validity. Let 𝑠 be a state such

that there exists 𝐺 ∈ 𝑑G(𝑠) with 𝐺 ∈ 𝐹G but 𝑠 ∉ 𝐹p. Let 𝑤 ∈ L(G) such that 𝑤⇓Σp
reaches

𝐺 in the projection by erasure automaton on 𝑤⇓Σp
; such a word is guaranteed to exist. Because

{{P (G, p)}}p∈P refinesA,𝑤 ∈ L(A). Because𝐴p is deterministic,𝐴p reaches 𝑠 on𝑤⇓Σp
. In other

words, in theA configuration reached on𝑤 ,𝐴p is in state 𝑠 . However, 𝑠 ∉ 𝐹p. Therefore,𝑤 is not

terminated in A and𝑤 ∉ L(A). We reach a contradiction. □

Lemma 6.16. IfA violates Send Decoration Validity or Receive Decoration Validity, then it does

not hold that A and {{P (G, p)}}p∈P are equivalent.

Proof. Because G is implementable, P (G, p) satisfies Send Validity and Receive Validity [Li et al.

2023a, Theorem 7.1]. For each condition, we assume the violation of the condition and the fact

thatA and {{P (G, p)}}p∈P are equivalent, and show a contradiction to Send Validity and Receive

Validity in turn.

Let p be a role that violates Send Decoration Validity. Let 𝑠 be a state and 𝑠
p⊲q!𝑚−−−−→ 𝑠′ be a

transition in 𝐴p such that

tr-orig(𝑑 (𝑠) p⊲q!𝑚−−−−→ 𝑑 (𝑠′)) ≠ 𝑑 (𝑠) .

Let 𝐺 be a state in 𝑑 (𝑠) \ tr-orig(𝑑 (𝑠) p⊲q!𝑚−−−−→ 𝑑 (𝑠′)). Such a 𝐺 exists by the negation of Send

Decoration Validity. Let 𝛼 · 𝐺 be a run in GAut(G); such a run must exist by the fact that 𝐺 is a

syntactic subterm of G. Let 𝑤 = split(trace(𝛼 · 𝐺)). Because 𝑤 ∈ pref(L(G)), it holds that

𝑤 is a trace of {{P (G, p)}}p∈P . Because {{P (G, p)}}p∈P refines A by assumption, 𝑤 is a trace in

A, and there exists an A configuration reached on 𝑤 in which 𝐴p is in state 𝑠 . Because send

actions are always enabled,𝑤𝑥 is a trace inA. Now becauseA refines {{P (G, p)}}p∈P ,𝑤𝑥 is also

a trace in {{P (G, p)}}p∈P . By definition, let 𝑡 be the state of p in the {{P (G, p)}}p∈P configuration

reached on 𝑤 . Because 𝑤 = split(trace(𝛼 · 𝐺)), it holds that 𝑤⇓Σp
∈ pref(L(P (G, p))), and

189

by Definition 5.2, it holds that 𝐺 ∈ 𝑡 . Then, there exists a 𝑡 ′ such that 𝑡
𝑥−→ 𝑡 ′ is a transition in

P (G, p). We find a contradiction to Send Validity for this transition by using 𝐺 as a witness.

Let p be a role that violates Receive Decoration Validity. Let 𝑠 be a state and let 𝑠
p⊳q1?𝑚1−−−−−−→ 𝑠1,

𝑠
𝑥−→ 𝑠2 be two transitions in 𝐴p, with 𝐺2 ∈ tr-dest(𝑑 (𝑠) 𝑥−→ 𝑑 (𝑠2)) such that

𝑥 ≠ p ⊳ q1?_ ∧ q1 ⊲ p!𝑚1 ∈ 𝑀p
(𝐺2 ...) .

Following the construction in[Li et al. 2023a, Theorem 7.1], we can construct a witness trace 𝑤

in A such that both 𝑤 · p ⊳ q1?𝑚1 and 𝑤 · 𝑥 are traces in A. Because A refines {{P (G, p)}}p∈P

by assumption, both 𝑤 · p ⊳ q1?𝑚1 and 𝑤 · 𝑥 are also traces in {{P (G, p)}}p∈P . Let 𝑡 be the state

reached by {{P (G, p)}}p∈P on 𝑤 . Then, there must exist two transitions 𝑡
p⊳q1?𝑚1−−−−−−→ 𝑡 ′ and 𝑡

𝑥−→ 𝑡 ′′

in P (G, p). Either 𝑥 ∈ Σp,! and No Mixed Choice [Li et al. 2023a, Corollary 5.5] is violated, or

𝑥 ∈ Σp,? and Receive Validity is violated. □

Lemma 6.18. The Monolithic Protocol Refinement problem is PSPACE-hard.

Proof. We show the PSPACE-hardness of the monolithic refinement problem by a reduction from

the PSPACE-hard problem of deciding deadlock freedom for 1-safe Petri nets [Esparza andNielsen

1994]. Let (𝑁,𝑀0) be a 1-safe Petri net, with 𝑁 = (𝑆,𝑇 , 𝐹).

We construct a CSM A𝑁 and a global type G𝑁 such that A𝑁 refines G𝑁 if and only if the

Petri net is deadlock-free.

We first describe the construction of A𝑁 . A𝑁 consists of one state machine per place in 𝑆 ,

one state machine per transition in𝑇 , and one special coordinator role, which we denote p. Each

place state machine tracks whether its place is marked by 0 or 1, and responds to messages to

increment or decrement its marking. Each transition state machine communicates with its input

and output place state machines to check whether its transition is enabled, and to update place

markings. The coordinator p first asks each transition state machine whether its transition is

enabled. This querying can be performed in an arbitrary fixed order on𝑇 . If at least one transition

190

is enabled, p then non-deterministically picks a transition to fire. Depending on whether the

picked transition is enabled, the input and output place state machines update the configuration,

and the transition state machine returns the control flow to p, which repeats this process with the

new configuration. If no transition is enabled, p enters a sink state with no outgoing transitions,

thus causing a deadlock in A𝑁 .

Eachmessage exchange between roles is echoedwith an acknowledgement, and the CSM thus

constructed is 1-bounded: there is at most one message in flight at any point during its execution.

Intuitively, A𝑁 simulates the firing of transitions in the Petri nets via message exchanges, and

represents all valid execution traces of the Petri net as CSM traces.

Correspondingly, we construct a global type G𝑁 whose language includes not only all ex-

ecution traces of A𝑁 , but also traces that do not correspond to valid execution traces in the

Petri net. G𝑁 achieves this by mimicing the control flow of the A𝑁 , but decoupling the mes-

sage contents from the underlying Petri net configuration: at each control flow point, roles non-

deterministically choose a message to send.

If the Petri net is deadlock-free, then A𝑁 is also deadlock-free and L(A𝑁) includes only

infinite words: because each configuration has at least one enabled transition, p’s sink state will

never be reached. Because L(A𝑁) ⊆ L(G𝑁) by construction, it holds that A𝑁 refines G𝑁 . On

the contrary, ifA𝑁 refines G𝑁 and is thus deadlock-free, then the Petri net is also deadlock-free,

as A𝑁 can simulate all valid execution traces of the Petri net.

□

Lemma 6.30 (Soundness of 𝐶2). If 𝐶2 holds, then for all well-behaved contexts A[·]p, A[𝐴]p

refines A[𝐵]p.

Proof. First, we prove that any trace in A[𝐴]p is a trace in A[𝐵]p:

Claim 1: ∀𝑤 ∈ Σ∗.𝑤 is a trace in A[𝐴]p =⇒ 𝑤 is a trace in A[𝐵]p.

We prove the claim by induction on𝑤 . The base case, where𝑤 = 𝜀, is trivially discharged by

191

the fact that 𝜀 is a trace of all CSMs. In the inductive step, assume that𝑤 is a trace ofA[𝐴]p. Let

𝑥 ∈ Σ such that𝑤𝑥 is a trace of A[𝐴]p. We want to show that𝑤𝑥 is also a trace of A[𝐵]p.

From the induction hypothesis, we know that𝑤 is also a trace ofA[𝐵]p. Let 𝜉 be the channel

configuration uniquely determined by 𝑤 . Let (®𝑠, 𝜉) be the A[𝐴]p configuration reached on 𝑤 ,

and let (®𝑡, 𝜉) be the A[𝐵]p configuration reached on𝑤 .

Let q be the role such that 𝑥 ∈ Σq, and let 𝑠 , 𝑡 denote ®𝑠q, ®𝑡q from the respective CSM configu-

rations reached on𝑤 for A[𝐴]p and A[𝐵]p.

To show that 𝑤𝑥 is a trace of A[𝐵]p, it suffices to show that there exists a state 𝑡 ′ and a

transition 𝑡
𝑥−→ 𝑡 ′ in 𝐵.

By the definition of state decoration (Definition 6.27), it follows that 𝑡 ∈ 𝑑𝐵 (𝑠). BecauseA[𝐵]p

refines G and is deadlock-free, it holds that all traces of A[𝐵]p are prefixes of L(G). In other

words, 𝑤 ∈ pref(L(G)). Let 𝜌 be a run such that 𝜌 ∈ 𝐼 (𝑤); such a run must exist from [Li et al.

2023a, Theorem 6.1] and [Li et al. 2023a, Lemma 6.3]. Let 𝛼 ·𝐺 𝑙−→ 𝐺′ · 𝛽 be the unique splitting of

𝜌 for q matching𝑤 . From Definition 6.6, it holds that 𝐺 ∈ 𝑑 (𝑡).

We proceed by case analysis on whether 𝑥 is a send or receive event.

• Case 𝑥 ∈ Σp,!. Let 𝑥 = p ⊲ q!𝑚. By assumption, there exists 𝑠
p⊲q!𝑚−−−−→ 𝑠′ in 𝛿𝐴. We instantiate

Send Decoration Subtype Validity from 𝐶2 with this transition to obtain:

tr-orig𝐵 (𝑑𝐵 (𝑠)
p⊲q!𝑚−−−−→ 𝑑𝐵 (𝑠′)) = 𝑑𝐵 (𝑠) .

From 𝑡 ∈ 𝑑𝐵 (𝑠), it follows immediately that there exists 𝑡 ′ such that 𝑡
𝑥−→ 𝑡 ′ is a transition in

𝐵.

• Case 𝑥 ∈ Σp,?. Let 𝑥 = p ⊳ q?𝑚.

We proceed by case analysis on split(𝑙)⇓Σp
. When split(𝑙)⇓Σp

∈ Σp,?, from Lemma 6.26

there exists a transition 𝑡
split(𝑙)⇓Σp−−−−−−−−−→ 𝑡 ′ in 𝛿𝐵 , and from Receive Subtype Exhaustivity there

192

exists a transition 𝑠
split(𝑙)⇓Σq−−−−−−−−−→ 𝑠′′ in 𝛿𝐴. We can apply Lemma 6.13 with 𝜌 to conclude

that split(𝑙)⇓Σp
= 𝑥 : we satisfy the assumption that q ⊲ p!𝑚 ∉ 𝑀

p
(𝐺 ′ ...) by instantiating

Receive Decoration Subtype Validity with 𝑠
𝑥−→ 𝑠′, 𝑠

split(𝑙)⇓Σq−−−−−−−−−→ 𝑠′′, and 𝐺′. The fact that 𝑡 ′ ∈

tr-dest𝐵 (𝑑𝐵 (𝑠)
split(𝑙)⇓Σp−−−−−−−−−→ 𝑑𝐵 (𝑠′′)) follows from the existence of 𝑡

split(𝑙)⇓Σp−−−−−−−−−→ 𝑡 ′ in 𝛿𝐵 and the

definition of state decoration (Definition 6.27). The fact that 𝐺′ ∈ tr-dest𝐵 (𝑑 (𝑡)
split(𝑙)⇓Σp−−−−−−−−−→

𝑑 (𝑡 ′)) follows from the fact that 𝛼 ·𝐺 𝑙−→ 𝐺′ · 𝛽 is a run in G and Definition 6.6.

In the case that split(𝑙)⇓Σp
∈ Σp,!, we again prove a contradiction. Because 𝐺 is a send-

originating global state, Send Subtype Preservation guarantees that there exists a transition

𝑠
𝑥 ′−→ 𝑠′′ in 𝐴 such that 𝑥′ ∈ Σp,!. By Send Decoration Validity, 𝑥′ originates from 𝐺 in the

projection by erasure, and we can find another run 𝜌′ such that 𝛼′ · 𝐺 𝑙 ′−→ 𝐺′′ · 𝛽′ is the

unique splitting for p matching𝑤 , and split(𝑙′)⇓Σp
= 𝑥′.

We can instantiate Lemma 6.13 with 𝜌′ and q ⊲ p!𝑚 ∉ 𝑀
p
(𝐺 ′′ ...) to yield split(𝑙′)⇓Σp

= 𝑥 ,

which is a contradiction: 𝑥 is a receive event and split(𝑙′)⇓Σp
is a send event.

This concludes our proof of Claim 1.

Next, we show that any trace that terminates inA[𝐴]p also terminates inA[𝐵]p and is max-

imal in A[𝐴]p.

Claim 2: ∀𝑤 ∈ Σ∗. 𝑤 is terminated in A[𝐴]p =⇒ 𝑤 is terminated in A[𝐵]p and 𝑤 is maximal

in A[𝐴]p.

Let𝑤 be a terminated trace inA[𝐴]p. Let 𝜉 be the channel configuration uniquely determined

by𝑤 . Let (®𝑠, 𝜉) be theA[𝐴]p configuration reached on𝑤 , and let (®𝑡, 𝜉) be theA[𝐵]p configuration

reached on 𝑤 . Let 𝑠 , 𝑡 denote ®𝑠p, ®𝑡p. First suppose by contradiction that 𝑤 is not terminated in

A[𝐵]p. Because the state machines for all non-p roles are identical between the two CSMs, and

because A[𝐵]p is deadlock-free by assumption, it must be the case that p witnesses the non-

termination of𝑤 , in other words, 𝐵 can perform an action that 𝐴 cannot. Let 𝑥 be the action that

p can perform from 𝑡 . Let 𝐺 be a state in 𝑑 (𝑡), such a state is guaranteed to exist by Claim 1 and

193

the fact that no reachable states in 𝐵 have empty decorating sets. Then, 𝑤⇓Σp
reaches 𝐺 from

the initial state in the projection by erasure automaton. By the fact that𝑤 is a trace of A[𝐴]p, it

holds that there exists a run with trace𝑤⇓Σp
in𝐴. By the definition of state decoration, 𝑡 ∈ 𝑑𝐵 (𝑠).

• If 𝑥 ∈ Σ!, it follows that 𝐺 is a send-originating global state. By Send Subtype Preservation,

for any state in𝐴 that is decorated by a state in 𝐵 that itself is decorated by at least one send-

originating global state, of which 𝑡 is one, there exists a transition 𝑠
𝑥 ′−→ 𝑠′ such that 𝑥′ ∈ Σp,!.

Because send transitions in a CSM are always enabled, role p can take this transition in

A[𝐴]p. We reach a contradiction to the fact that𝑤 is terminated in A[𝐴]p.

• If 𝑥 ∈ Σ?, it follows that 𝐺 is a receive-originating global state. From Receive Subtype

Exhaustivity, any receive action that originates from any global state in 𝑑 (𝑡) for any state

𝑡 ∈ 𝑑𝐵 (𝑠) must also originate from 𝑠 . Therefore, there must exist 𝑠′ such that 𝑠
𝑥−→ 𝑠′

is a transition in 𝐴. Thus, role p can take this transition in A[𝐴]p. We again reach a

contradiction to the fact that𝑤 is terminated in A[𝐴]p.

To see that every terminated trace in A[𝐴]p in maximal, from the above we know that 𝑤 is

terminated in A[𝐵]p. From the fact that A[𝐵]p is deadlock-free, 𝑤 is maximal in A[𝐵]p: all

states in ®𝑡 are final and all channels in 𝜉 are empty. Because 𝑡 is a final state, by that fact that

A[𝐵]p refines G there exists a global state 𝐺 ∈ 𝑡 such that the projection erasure automaton

reaches𝐺 on𝑤⇓Σp
and𝐺 is a final state. Because 𝐴 reaches 𝑠 on𝑤⇓Σp

, by the definitions of state

decorations (Definitions 6.6 and 6.27), it holds that𝐺 ∈ ⋃
𝑡∈𝑑𝐵 (𝑠)

𝑑 (𝑡). By Final State Validity, it holds

that 𝑠 is a final state in 𝐴. This concludes our proof that any terminated trace in A[𝐴]p is also a

terminated trace in A[𝐵]p, and is maximal in A[𝐴]p.

Together, Claim 1 and 2 establish that A[𝐴]p satisfies language inclusion with respect to

A[𝐵]p (Item ii), and deadlock freedom (Item iii). It remains to show that A[𝐴]p also satisfies

subprotocol fidelity (Item i). This follows immediately from [Majumdar et al. 2021a, Lemma 22],

which states that all CSM languages are closed under ∼. □

194

Bibliography

S. Akshay, Ionut Dinca, Blaise Genest, and Alin Stefanescu. Implementing realistic asynchronous

automata. In Anil Seth and Nisheeth K. Vishnoi, editors, IARCS Annual Conference on Foun-

dations of Software Technology and Theoretical Computer Science, FSTTCS 2013, December 12-14,

2013, Guwahati, India, volume 24 of LIPIcs, pages 213–224. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2013. doi: 10.4230/LIPICS.FSTTCS.2013.213. URL https://doi.org/10.4230/

LIPIcs.FSTTCS.2013.213.

Rajeev Alur and Mihalis Yannakakis. Model checking of message sequence charts. In Jos C. M.

Baeten and Sjouke Mauw, editors, CONCUR ’99: Concurrency Theory, 10th International Confer-

ence, Eindhoven, The Netherlands, August 24-27, 1999, Proceedings, volume 1664 of Lecture Notes

in Computer Science, pages 114–129. Springer, 1999. doi: 10.1007/3-540-48320-9_10. URL

https://doi.org/10.1007/3-540-48320-9_10.

Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Inference of message sequence charts.

IEEE Trans. Software Eng., 29(7):623–633, 2003. doi: 10.1109/TSE.2003.1214326. URL https:

//doi.org/10.1109/TSE.2003.1214326.

Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. Realizability and verification of MSC

graphs. Theor. Comput. Sci., 331(1):97–114, 2005. doi: 10.1016/J.TCS.2004.09.034. URL https:

//doi.org/10.1016/j.tcs.2004.09.034.

Lorenzo Bacchiani, Mario Bravetti, Julien Lange, and Gianluigi Zavattaro. A session subtyp-

195

https://doi.org/10.4230/LIPIcs.FSTTCS.2013.213
https://doi.org/10.4230/LIPIcs.FSTTCS.2013.213
https://doi.org/10.1007/3-540-48320-9_10
https://doi.org/10.1109/TSE.2003.1214326
https://doi.org/10.1109/TSE.2003.1214326
https://doi.org/10.1016/j.tcs.2004.09.034
https://doi.org/10.1016/j.tcs.2004.09.034

ing tool. In Ferruccio Damiani and Ornela Dardha, editors, Coordination Models and Lan-

guages - 23rd IFIP WG 6.1 International Conference, COORDINATION 2021, Held as Part of

the 16th International Federated Conference on Distributed Computing Techniques, DisCoTec

2021, Valletta, Malta, June 14-18, 2021, Proceedings, volume 12717 of Lecture Notes in Com-

puter Science, pages 90–105. Springer, 2021. doi: 10.1007/978-3-030-78142-2_6. URL https:

//doi.org/10.1007/978-3-030-78142-2_6.

Franco Barbanera and Ugo De’Liguoro. Sub-behaviour relations for session-based client/server

systems. Mathematical Structures in Computer Science, 25(6):1339–1381, 2015. doi: 10.1017/

S096012951400005X.

Samik Basu and Tevfik Bultan. Choreography conformance via synchronizability. In Sadagopan

Srinivasan, Krithi Ramamritham, Arun Kumar, M. P. Ravindra, Elisa Bertino, and Ravi Kumar,

editors, Proceedings of the 20th International Conference onWorldWideWeb, WWW2011, Hyder-

abad, India, March 28 - April 1, 2011, pages 795–804. ACM, 2011. doi: 10.1145/1963405.1963516.

URL https://doi.org/10.1145/1963405.1963516.

Giovanni Tito Bernardi and Matthew Hennessy. Modelling session types using contracts. Math.

Struct. Comput. Sci., 26(3):510–560, 2016. doi: 10.1017/S0960129514000243. URL https://doi.

org/10.1017/S0960129514000243.

Nathalie Bertrand, Amélie Stainer, Thierry Jéron, and Moez Krichen. A game approach to

determinize timed automata. Formal Methods Syst. Des., 46(1):42–80, 2015. doi: 10.1007/

S10703-014-0220-1. URL https://doi.org/10.1007/s10703-014-0220-1.

Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, and Pierre Carlier. When are stochastic

transition systems tameable? J. Log. Algebraic Methods Program., 99:41–96, 2018. doi: 10.1016/

J.JLAMP.2018.03.004. URL https://doi.org/10.1016/j.jlamp.2018.03.004.

196

https://doi.org/10.1007/978-3-030-78142-2_6
https://doi.org/10.1007/978-3-030-78142-2_6
https://doi.org/10.1145/1963405.1963516
https://doi.org/10.1017/S0960129514000243
https://doi.org/10.1017/S0960129514000243
https://doi.org/10.1007/s10703-014-0220-1
https://doi.org/10.1016/j.jlamp.2018.03.004

Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A theory of design-by-

contract for distributed multiparty interactions. In Paul Gastin and François Laroussinie, edi-

tors, CONCUR 2010 - Concurrency Theory, 21th International Conference, CONCUR 2010, Paris,

France, August 31-September 3, 2010. Proceedings, volume 6269 of Lecture Notes in Computer

Science, pages 162–176. Springer, 2010. doi: 10.1007/978-3-642-15375-4_12. URL https:

//doi.org/10.1007/978-3-642-15375-4_12.

Laura Bocchi, Romain Demangeon, and Nobuko Yoshida. A multiparty multi-session logic. In

Catuscia Palamidessi and Mark Dermot Ryan, editors, Trustworthy Global Computing - 7th In-

ternational Symposium, TGC 2012, Newcastle upon Tyne, UK, September 7-8, 2012, Revised Se-

lected Papers, volume 8191 of Lecture Notes in Computer Science, pages 97–111. Springer, 2012.

doi: 10.1007/978-3-642-41157-1_7. URL https://doi.org/10.1007/978-3-642-41157-1_7.

Benedikt Bollig, Cinzia Di Giusto, Alain Finkel, Laetitia Laversa, Étienne Lozes, and Amrita

Suresh. A unifying framework for deciding synchronizability. In Serge Haddad and Daniele

Varacca, editors, 32nd International Conference on Concurrency Theory, CONCUR 2021, August

24-27, 2021, Virtual Conference, volume 203 of LIPIcs, pages 14:1–14:18. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2021. doi: 10.4230/LIPICS.CONCUR.2021.14. URL https:

//doi.org/10.4230/LIPIcs.CONCUR.2021.14.

Ahmed Bouajjani, Constantin Enea, Kailiang Ji, and Shaz Qadeer. On the completeness of verify-

ing message passing programs under bounded asynchrony. In Hana Chockler and GeorgWeis-

senbacher, editors, Computer Aided Verification - 30th International Conference, CAV 2018, Held

as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings,

Part II, volume 10982 of Lecture Notes in Computer Science, pages 372–391. Springer, 2018. doi:

10.1007/978-3-319-96142-2_23. URL https://doi.org/10.1007/978-3-319-96142-2_23.

Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. J. ACM, 30(2):323–

342, 1983. doi: 10.1145/322374.322380. URL https://doi.org/10.1145/322374.322380.

197

https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1007/978-3-642-41157-1_7
https://doi.org/10.4230/LIPIcs.CONCUR.2021.14
https://doi.org/10.4230/LIPIcs.CONCUR.2021.14
https://doi.org/10.1007/978-3-319-96142-2_23
https://doi.org/10.1145/322374.322380

Mario Bravetti and Gianluigi Zavattaro. Relating session types and behavioural contracts: The

asynchronous case. In Peter Csaba Ölveczky and Gwen Salaün, editors, Software Engineering

and Formal Methods, pages 29–47, Cham, 2019. Springer International Publishing. ISBN 978-3-

030-30446-1.

Mario Bravetti and Gianluigi Zavattaro. Asynchronous session subtyping as communicating

automata refinement. Softw. Syst. Model., 20(2):311–333, apr 2021. ISSN 1619-1366. doi: 10.

1007/s10270-020-00838-x. URL https://doi.org/10.1007/s10270-020-00838-x.

Mario Bravetti, Marco Carbone, and Gianluigi Zavattaro. On the boundary between decidability

and undecidability of asynchronous session subtyping. Theor. Comput. Sci., 722:19–51, 2018.

doi: 10.1016/j.tcs.2018.02.010. URL https://doi.org/10.1016/j.tcs.2018.02.010.

Mario Bravetti, Marco Carbone, Julien Lange, Nobuko Yoshida, and Gianluigi Zavattaro. A sound

algorithm for asynchronous session subtyping and its implementation. Log. Methods Comput.

Sci., 17(1), 2021a. URL https://lmcs.episciences.org/7238.

Mario Bravetti, Julien Lange, and Gianluigi Zavattaro. Fair refinement for asynchronous ses-

sion types. In Stefan Kiefer and Christine Tasson, editors, Foundations of Software Science

and Computation Structures - 24th International Conference, FOSSACS 2021, Held as Part of

the European Joint Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg

City, Luxembourg, March 27 - April 1, 2021, Proceedings, volume 12650 of Lecture Notes in

Computer Science, pages 144–163. Springer, 2021b. doi: 10.1007/978-3-030-71995-1_8. URL

https://doi.org/10.1007/978-3-030-71995-1_8.

Matthew Alan Le Brun and Ornela Dardha. Mag𝜋 : Types for failure-prone communication. In

Thomas Wies, editor, Programming Languages and Systems - 32nd European Symposium on

Programming, ESOP 2023, Held as Part of the European Joint Conferences on Theory and Practice

of Software, ETAPS 2023, Paris, France, April 22-27, 2023, Proceedings, volume 13990 of Lecture

198

https://doi.org/10.1007/s10270-020-00838-x
https://doi.org/10.1016/j.tcs.2018.02.010
https://lmcs.episciences.org/7238
https://doi.org/10.1007/978-3-030-71995-1_8

Notes in Computer Science, pages 363–391. Springer, 2023. doi: 10.1007/978-3-031-30044-8_14.

URL https://doi.org/10.1007/978-3-031-30044-8_14.

Luís Caires and Jorge A. Pérez. Multiparty session types within a canonical binary theory, and

beyond. In Elvira Albert and Ivan Lanese, editors, Formal Techniques for Distributed Objects,

Components, and Systems - 36th IFIPWG 6.1 International Conference, FORTE 2016, Held as Part of

the 11th International Federated Conference on Distributed Computing Techniques, DisCoTec 2016,

Heraklion, Crete, Greece, June 6-9, 2016, Proceedings, volume 9688 of Lecture Notes in Computer

Science, pages 74–95. Springer, 2016. doi: 10.1007/978-3-319-39570-8_6. URL https://doi.

org/10.1007/978-3-319-39570-8_6.

Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propositions as session types.

Math. Struct. Comput. Sci., 26(3):367–423, 2016. doi: 10.1017/S0960129514000218. URL https:

//doi.org/10.1017/S0960129514000218.

Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and Philip Wadler. Coher-

ence generalises duality: A logical explanation of multiparty session types. In Josée Desharnais

and Radha Jagadeesan, editors, 27th International Conference on Concurrency Theory, CONCUR

2016, August 23-26, 2016, Québec City, Canada, volume 59 of LIPIcs, pages 33:1–33:15. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi: 10.4230/LIPIcs.CONCUR.2016.33. URL

https://doi.org/10.4230/LIPIcs.CONCUR.2016.33.

Marco Carbone, Fabrizio Montesi, Carsten Schürmann, and Nobuko Yoshida. Multiparty ses-

sion types as coherence proofs. Acta Informatica, 54(3):243–269, 2017. doi: 10.1007/

s00236-016-0285-y. URL https://doi.org/10.1007/s00236-016-0285-y.

Filipe Casal, AndreiaMordido, and Vasco T. Vasconcelos. Mixed sessions. Theor. Comput. Sci., 897:

23–48, 2022. doi: 10.1016/j.tcs.2021.08.005. URL https://doi.org/10.1016/j.tcs.2021.08.

005.

199

https://doi.org/10.1007/978-3-031-30044-8_14
https://doi.org/10.1007/978-3-319-39570-8_6
https://doi.org/10.1007/978-3-319-39570-8_6
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.4230/LIPIcs.CONCUR.2016.33
https://doi.org/10.1007/s00236-016-0285-y
https://doi.org/10.1016/j.tcs.2021.08.005
https://doi.org/10.1016/j.tcs.2021.08.005

Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of contracts for web services.

ACM Trans. Program. Lang. Syst., 31(5):19:1–19:61, 2009. doi: 10.1145/1538917.1538920. URL

https://doi.org/10.1145/1538917.1538920.

Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. On global types and

multi-party session. Log. Methods Comput. Sci., 8(1), 2012. doi: 10.2168/LMCS-8(1:24)2012.

URL https://doi.org/10.2168/LMCS-8(1:24)2012.

Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini, and Ross Horne. Global types

with internal delegation. Theor. Comput. Sci., 807:128–153, 2020. doi: 10.1016/j.tcs.2019.09.027.

URL https://doi.org/10.1016/j.tcs.2019.09.027.

Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Paola Giannini. Asynchronous ses-

sions with input races. In Marco Carbone and Rumyana Neykova, editors, Proceedings of

the 13th International Workshop on Programming Language Approaches to Concurrency and

Communication-cEntric Software, PLACES@ETAPS 2022, Munich, Germany, 3rd April 2022, vol-

ume 356 of EPTCS, pages 12–23, 2022. doi: 10.4204/EPTCS.356.2. URL https://doi.org/10.

4204/EPTCS.356.2.

Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Paola Giannini. Global types and event

structure semantics for asynchronous multiparty sessions. Fundam. Informaticae, 192(1):1–75,

2024. doi: 10.3233/FI-242188. URL https://doi.org/10.3233/FI-242188.

David Castro-Perez and Nobuko Yoshida. Dynamically updatable multiparty session protocols:

Generating concurrent go code from unbounded protocols. In Karim Ali and Guido Sal-

vaneschi, editors, 37th European Conference on Object-Oriented Programming, ECOOP 2023, July

17-21, 2023, Seattle, Washington, United States, volume 263 of LIPIcs, pages 6:1–6:30. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi: 10.4230/LIPICS.ECOOP.2023.6. URL

https://doi.org/10.4230/LIPIcs.ECOOP.2023.6.

200

https://doi.org/10.1145/1538917.1538920
https://doi.org/10.2168/LMCS-8(1:24)2012
https://doi.org/10.1016/j.tcs.2019.09.027
https://doi.org/10.4204/EPTCS.356.2
https://doi.org/10.4204/EPTCS.356.2
https://doi.org/10.3233/FI-242188
https://doi.org/10.4230/LIPIcs.ECOOP.2023.6

David Castro-Perez, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and Nobuko Yoshida. Dis-

tributed programming using role-parametric session types in go: statically-typed endpoint apis

for dynamically-instantiated communication structures. Proc. ACM Program. Lang., 3(POPL):

29:1–29:30, 2019. doi: 10.1145/3290342. URL https://doi.org/10.1145/3290342.

David Castro-Perez, Francisco Ferreira, Lorenzo Gheri, and Nobuko Yoshida. Zooid: a DSL for

certified multiparty computation: from mechanised metatheory to certified multiparty pro-

cesses. In Stephen N. Freund and Eran Yahav, editors, PLDI ’21: 42nd ACM SIGPLAN In-

ternational Conference on Programming Language Design and Implementation, Virtual Event,

Canada, June 20-25, 2021, pages 237–251. ACM, 2021. doi: 10.1145/3453483.3454041. URL

https://doi.org/10.1145/3453483.3454041.

Minas Charalambides, Peter Dinges, and Gul A. Agha. Parameterized, concurrent session types

for asynchronous multi-actor interactions. Sci. Comput. Program., 115-116:100–126, 2016. doi:

10.1016/j.scico.2015.10.006. URL https://doi.org/10.1016/j.scico.2015.10.006.

Tzu-Chun Chen. Lightening global types. J. Log. Algebraic Methods Program., 84(5):708–729, 2015.

doi: 10.1016/J.JLAMP.2015.06.003. URL https://doi.org/10.1016/j.jlamp.2015.06.003.

Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. On the preciseness

of subtyping in session types: 10 years later. In Alessandro Bruni, Alberto Momigliano,

Matteo Pradella, Matteo Rossi, and James Cheney, editors, Proceedings of the 26th Interna-

tional Symposium on Principles and Practice of Declarative Programming, PPDP 2024, Milano,

Italy, September 9-11, 2024, pages 2:1–2:3. ACM, 2024. doi: 10.1145/3678232.3678258. URL

https://doi.org/10.1145/3678232.3678258.

Florent Chevrou, Aurélie Hurault, and Philippe Quéinnec. On the diversity of asynchronous

communication. Formal Aspects Comput., 28(5):847–879, 2016. doi: 10.1007/S00165-016-0379-X.

URL https://doi.org/10.1007/s00165-016-0379-x.

201

https://doi.org/10.1145/3290342
https://doi.org/10.1145/3453483.3454041
https://doi.org/10.1016/j.scico.2015.10.006
https://doi.org/10.1016/j.jlamp.2015.06.003
https://doi.org/10.1145/3678232.3678258
https://doi.org/10.1007/s00165-016-0379-x

Florent Chevrou, Aurélie Hurault, Shin Nakajima, and Philippe Quéinnec. A map of asyn-

chronous communication models. In Emil Sekerinski, Nelma Moreira, José N. Oliveira, Daniel

Ratiu, Riccardo Guidotti, Marie Farrell, Matt Luckcuck, Diego Marmsoler, José Creissac Cam-

pos, Troy Astarte, Laure Gonnord, Antonio Cerone, Luis Couto, Brijesh Dongol, Martin Kutrib,

Pedro Monteiro, and David Delmas, editors, Formal Methods. FM 2019 International Workshops

- Porto, Portugal, October 7-11, 2019, Revised Selected Papers, Part II, volume 12233 of Lecture

Notes in Computer Science, pages 307–322. Springer, 2019. doi: 10.1007/978-3-030-54997-8_20.

URL https://doi.org/10.1007/978-3-030-54997-8_20.

Lorenzo Clemente, Slawomir Lasota, and Radoslaw Piórkowski. Determinisability of register and

timed automata. Log. Methods Comput. Sci., 18(2), 2022. doi: 10.46298/LMCS-18(2:9)2022. URL

https://doi.org/10.46298/lmcs-18(2:9)2022.

Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. A gentle

introduction to multiparty asynchronous session types. In Marco Bernardo and Einar Broch

Johnsen, editors, Formal Methods for Multicore Programming - 15th International School on For-

mal Methods for the Design of Computer, Communication, and Software Systems, SFM 2015,

Bertinoro, Italy, June 15-19, 2015, Advanced Lectures, volume 9104 of Lecture Notes in Com-

puter Science, pages 146–178. Springer, 2015. doi: 10.1007/978-3-319-18941-3_4. URL https:

//doi.org/10.1007/978-3-319-18941-3_4.

Robert Cori, Yves Métivier, and Wieslaw Zielonka. Asynchronous mappings and asynchronous

cellular automata. Inf. Comput., 106(2):159–202, 1993. doi: 10.1006/INCO.1993.1052. URL

https://doi.org/10.1006/inco.1993.1052.

Luís Cruz-Filipe and Fabrizio Montesi. Choreographies in practice. In Elvira Albert and Ivan

Lanese, editors, Formal Techniques for Distributed Objects, Components, and Systems - 36th

IFIP WG 6.1 International Conference, FORTE 2016, Held as Part of the 11th International Fed-

erated Conference on Distributed Computing Techniques, DisCoTec 2016, Heraklion, Crete, Greece,

202

https://doi.org/10.1007/978-3-030-54997-8_20
https://doi.org/10.46298/lmcs-18(2:9)2022
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1006/inco.1993.1052

June 6-9, 2016, Proceedings, volume 9688 of Lecture Notes in Computer Science, pages 114–

123. Springer, 2016. doi: 10.1007/978-3-319-39570-8_8. URL https://doi.org/10.1007/

978-3-319-39570-8_8.

Luís Cruz-Filipe and Fabrizio Montesi. A core model for choreographic programming. Theor.

Comput. Sci., 802:38–66, 2020. doi: 10.1016/j.tcs.2019.07.005. URL https://doi.org/10.1016/

j.tcs.2019.07.005.

Luís Cruz-Filipe, Eva Graversen, Lovro Lugovic, Fabrizio Montesi, and Marco Peressotti. Func-

tional choreographic programming. In Helmut Seidl, Zhiming Liu, and Corina S. Pasare-

anu, editors, Theoretical Aspects of Computing - ICTAC 2022 - 19th International Colloquium,

Tbilisi, Georgia, September 27-29, 2022, Proceedings, volume 13572 of Lecture Notes in Com-

puter Science, pages 212–237. Springer, 2022. doi: 10.1007/978-3-031-17715-6_15. URL

https://doi.org/10.1007/978-3-031-17715-6_15.

Zak Cutner, Nobuko Yoshida, and Martin Vassor. Deadlock-free asynchronous message re-

ordering in rust with multiparty session types. In Jaejin Lee, Kunal Agrawal, and Michael F.

Spear, editors, PPoPP ’22: 27th ACM SIGPLAN Symposium on Principles and Practice of Paral-

lel Programming, Seoul, Republic of Korea, April 2 - 6, 2022, pages 246–261. ACM, 2022. doi:

10.1145/3503221.3508404. URL https://doi.org/10.1145/3503221.3508404.

Francesco Dagnino, Paola Giannini, and Mariangiola Dezani-Ciancaglini. Deconfined global

types for asynchronous sessions. In Ferruccio Damiani and Ornela Dardha, editors, Coor-

dination Models and Languages - 23rd IFIP WG 6.1 International Conference, COORDINATION

2021, Held as Part of the 16th International Federated Conference on Distributed Computing Tech-

niques, DisCoTec 2021, Valletta, Malta, June 14-18, 2021, Proceedings, volume 12717 of Lecture

Notes in Computer Science, pages 41–60. Springer, 2021. doi: 10.1007/978-3-030-78142-2_3.

URL https://doi.org/10.1007/978-3-030-78142-2_3.

203

https://doi.org/10.1007/978-3-319-39570-8_8
https://doi.org/10.1007/978-3-319-39570-8_8
https://doi.org/10.1016/j.tcs.2019.07.005
https://doi.org/10.1016/j.tcs.2019.07.005
https://doi.org/10.1007/978-3-031-17715-6_15
https://doi.org/10.1145/3503221.3508404
https://doi.org/10.1007/978-3-030-78142-2_3

Haitao Dan, Robert M. Hierons, and Steve Counsell. Non-local choice and implied scenarios.

In José Luiz Fiadeiro, Stefania Gnesi, and Andrea Maggiolo-Schettini, editors, 8th IEEE Inter-

national Conference on Software Engineering and Formal Methods, SEFM 2010, Pisa, Italy, 13-18

September 2010, pages 53–62. IEEE Computer Society, 2010. doi: 10.1109/SEFM.2010.14. URL

https://doi.org/10.1109/SEFM.2010.14.

Loris D’Antoni and Margus Veanes. The power of symbolic automata and transducers. In Rupak

Majumdar and Viktor Kuncak, editors, Computer Aided Verification - 29th International Confer-

ence, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I, volume 10426 of Lec-

ture Notes in Computer Science, pages 47–67. Springer, 2017. doi: 10.1007/978-3-319-63387-9_3.

URL https://doi.org/10.1007/978-3-319-63387-9_3.

Loris D’Antoni, Tiago Ferreira, Matteo Sammartino, and Alexandra Silva. Symbolic regis-

ter automata. In Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification - 31st

International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings,

Part I, volume 11561 of Lecture Notes in Computer Science, pages 3–21. Springer, 2019. doi:

10.1007/978-3-030-25540-4_1. URL https://doi.org/10.1007/978-3-030-25540-4_1.

Ankush Das and Frank Pfenning. Session types with arithmetic refinements. In Igor Konnov

and Laura Kovács, editors, 31st International Conference on Concurrency Theory, CONCUR 2020,

September 1-4, 2020, Vienna, Austria (Virtual Conference), volume 171 of LIPIcs, pages 13:1–13:18.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi: 10.4230/LIPICS.CONCUR.2020.

13. URL https://doi.org/10.4230/LIPIcs.CONCUR.2020.13.

AnkushDas and Frank Pfenning. Rast: A language for resource-aware session types. Log.Methods

Comput. Sci., 18(1), 2022. doi: 10.46298/LMCS-18(1:9)2022. URL https://doi.org/10.46298/

lmcs-18(1:9)2022.

Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani Santurkar. Resource-

204

https://doi.org/10.1109/SEFM.2010.14
https://doi.org/10.1007/978-3-319-63387-9_3
https://doi.org/10.1007/978-3-030-25540-4_1
https://doi.org/10.4230/LIPIcs.CONCUR.2020.13
https://doi.org/10.46298/lmcs-18(1:9)2022
https://doi.org/10.46298/lmcs-18(1:9)2022

aware session types for digital contracts. In 34th IEEE Computer Security Foundations Sym-

posium, CSF 2021, Dubrovnik, Croatia, June 21-25, 2021, pages 1–16. IEEE, 2021. doi: 10.1109/

CSF51468.2021.00004. URL https://doi.org/10.1109/CSF51468.2021.00004.

Jan deMuijnck-Hughes andWimVanderbauwhede. A Typing Discipline for Hardware Interfaces.

In Alastair F. Donaldson, editor, 33rd European Conference on Object-Oriented Programming

(ECOOP 2019), volume 134 of Leibniz International Proceedings in Informatics (LIPIcs), pages

6:1–6:27, Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN

978-3-95977-111-5. doi: 10.4230/LIPIcs.ECOOP.2019.6. URL https://drops.dagstuhl.de/

entities/document/10.4230/LIPIcs.ECOOP.2019.6.

Romain Delpy, Anca Muscholl, and Grégoire Sutre. An automata-based approach for synchro-

nizable mailbox communication. In Rupak Majumdar and Alexandra Silva, editors, 35th In-

ternational Conference on Concurrency Theory, CONCUR 2024, September 9-13, 2024, Calgary,

Canada, volume 311 of LIPIcs, pages 22:1–22:19. Schloss Dagstuhl - Leibniz-Zentrum für In-

formatik, 2024. doi: 10.4230/LIPICS.CONCUR.2024.22. URL https://doi.org/10.4230/

LIPIcs.CONCUR.2024.22.

Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.

Practical interruptible conversations: distributed dynamic verification with multiparty ses-

sion types and python. Formal Methods Syst. Des., 46(3):197–225, 2015. doi: 10.1007/

S10703-014-0218-8. URL https://doi.org/10.1007/s10703-014-0218-8.

Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet communicating au-

tomata. In Helmut Seidl, editor, Programming Languages and Systems - 21st European Sym-

posium on Programming, ESOP 2012, Held as Part of the European Joint Conferences on The-

ory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceed-

ings, volume 7211 of Lecture Notes in Computer Science, pages 194–213. Springer, 2012. doi:

10.1007/978-3-642-28869-2_10. URL https://doi.org/10.1007/978-3-642-28869-2_10.

205

https://doi.org/10.1109/CSF51468.2021.00004
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2019.6
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2019.6
https://doi.org/10.4230/LIPIcs.CONCUR.2024.22
https://doi.org/10.4230/LIPIcs.CONCUR.2024.22
https://doi.org/10.1007/s10703-014-0218-8
https://doi.org/10.1007/978-3-642-28869-2_10

Pierre-MaloDeniélou, Nobuko Yoshida, Andi Bejleri, and RaymondHu. Parameterisedmultiparty

session types. Log. Methods Comput. Sci., 8(4), 2012. doi: 10.2168/LMCS-8(4:6)2012. URL

https://doi.org/10.2168/LMCS-8(4:6)2012.

Volker Diekert and Grzegorz Rozenberg, editors. The Book of Traces. World Scientific, 1995. ISBN

978-981-02-2058-7. doi: 10.1142/2563. URL https://doi.org/10.1142/2563.

Burak Ekici and Nobuko Yoshida. Completeness of asynchronous session tree subtyping in Coq.

In 15th International Conference on Interactive Theorem Proving, ITP 2024, September 9-14, 2024,

Tbilisi, Georgia, volume 309 of LIPIcs, pages 13:1–13:20. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2024. doi: 10.4230/LIPICS.ITP.2024.13. URL https://doi.org/10.4230/LIPIcs.

ITP.2024.13.

Keith Ellul, Bryan Krawetz, Jeffrey O. Shallit, and Ming-wei Wang. Regular expressions: New

results and open problems. J. Autom. Lang. Comb., 10(4):407–437, 2005. doi: 10.25596/

jalc-2005-407. URL https://doi.org/10.25596/jalc-2005-407.

Javier Esparza and Mogens Nielsen. Decidability issues for petri nets - a survey. J. Inf. Process.

Cybern., 30(3):143–160, 1994.

Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen C. Hunt, James R. Larus,

and Steven Levi. Language support for fast and reliable message-based communication in

singularity OS. In Yolande Berbers and Willy Zwaenepoel, editors, Proceedings of the 2006

EuroSys Conference, Leuven, Belgium, April 18-21, 2006, pages 177–190. ACM, 2006. doi: 10.

1145/1217935.1217953. URL https://doi.org/10.1145/1217935.1217953.

Azadeh Farzan. Commutativity in automated verification. In 38th Annual ACM/IEEE Symposium

on Logic in Computer Science, LICS 2023, Boston, MA, USA, June 26-29, 2023, pages 1–7. IEEE,

2023. doi: 10.1109/LICS56636.2023.10175734. URL https://doi.org/10.1109/LICS56636.

2023.10175734.

206

https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.1142/2563
https://doi.org/10.4230/LIPIcs.ITP.2024.13
https://doi.org/10.4230/LIPIcs.ITP.2024.13
https://doi.org/10.25596/jalc-2005-407
https://doi.org/10.1145/1217935.1217953
https://doi.org/10.1109/LICS56636.2023.10175734
https://doi.org/10.1109/LICS56636.2023.10175734

Azadeh Farzan, Dominik Klumpp, and Andreas Podelski. Stratified commutativity in verification

algorithms for concurrent programs. Proc. ACM Program. Lang., 7(POPL):1426–1453, 2023. doi:

10.1145/3571242. URL https://doi.org/10.1145/3571242.

Alain Finkel and Étienne Lozes. Synchronizability of communicating finite state machines is not

decidable. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors,

44th International Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-

14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 122:1–122:14. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2017. doi: 10.4230/LIPIcs.ICALP.2017.122. URL https://doi.org/

10.4230/LIPIcs.ICALP.2017.122.

Alain Finkel and Étienne Lozes. Synchronizability of communicating finite state machines is

not decidable. Log. Methods Comput. Sci., 19(4), 2023. doi: 10.46298/LMCS-19(4:33)2023. URL

https://doi.org/10.46298/lmcs-19(4:33)2023.

Robert G. Gallager, Pierre A. Humblet, and Philip M. Spira. A distributed algorithm for minimum-

weight spanning trees. ACM Trans. Program. Lang. Syst., 5(1):66–77, 1983. doi: 10.1145/357195.

357200. URL https://doi.org/10.1145/357195.357200.

Joshua Gancher, Sydney Gibson, Pratap Singh, Samvid Dharanikota, and Bryan Parno. Owl:

Compositional verification of security protocols via an information-flow type system. In 44th

IEEE Symposium on Security and Privacy, SP 2023, San Francisco, CA, USA, May 21-25, 2023,

pages 1130–1147. IEEE, 2023. doi: 10.1109/SP46215.2023.10179477. URL https://doi.org/

10.1109/SP46215.2023.10179477.

Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi calculus. Acta Informat-

ica, 42(2-3):191–225, 2005. doi: 10.1007/s00236-005-0177-z. URL https://doi.org/10.1007/

s00236-005-0177-z.

207

https://doi.org/10.1145/3571242
https://doi.org/10.4230/LIPIcs.ICALP.2017.122
https://doi.org/10.4230/LIPIcs.ICALP.2017.122
https://doi.org/10.46298/lmcs-19(4:33)2023
https://doi.org/10.1145/357195.357200
https://doi.org/10.1109/SP46215.2023.10179477
https://doi.org/10.1109/SP46215.2023.10179477
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/s00236-005-0177-z

Thomas Gazagnaire, Blaise Genest, Loïc Hélouët, P. S. Thiagarajan, and Shaofa Yang. Causal

message sequence charts. In Luís Caires and Vasco Thudichum Vasconcelos, editors, CON-

CUR 2007 - Concurrency Theory, 18th International Conference, CONCUR 2007, Lisbon, Portugal,

September 3-8, 2007, Proceedings, volume 4703 of Lecture Notes in Computer Science, pages 166–

180. Springer, 2007. doi: 10.1007/978-3-540-74407-8_12. URL https://doi.org/10.1007/

978-3-540-74407-8_12.

Blaise Genest and Anca Muscholl. Message sequence charts: A survey. In Fifth International

Conference on Application of Concurrency to System Design (ACSD 2005), 6-9 June 2005, St. Malo,

France, pages 2–4. IEEE Computer Society, 2005. doi: 10.1109/ACSD.2005.25. URL https:

//doi.org/10.1109/ACSD.2005.25.

Blaise Genest, Anca Muscholl, and Doron A. Peled. Message sequence charts. In Jörg Desel,

Wolfgang Reisig, and Grzegorz Rozenberg, editors, Lectures on Concurrency and Petri Nets,

Advances in Petri Nets [This tutorial volume originates from the 4th Advanced Course on Petri

Nets, ACPN 2003, held in Eichstätt, Germany in September 2003. In addition to lectures given

at ACPN 2003, additional chapters have been commissioned], volume 3098 of Lecture Notes in

Computer Science, pages 537–558. Springer, 2003. doi: 10.1007/978-3-540-27755-2_15. URL

https://doi.org/10.1007/978-3-540-27755-2_15.

Blaise Genest, Dietrich Kuske, and Anca Muscholl. A kleene theorem and model checking al-

gorithms for existentially bounded communicating automata. Inf. Comput., 204(6):920–956,

2006a. doi: 10.1016/J.IC.2006.01.005. URL https://doi.org/10.1016/j.ic.2006.01.005.

Blaise Genest, Anca Muscholl, Helmut Seidl, and Marc Zeitoun. Infinite-state high-level mscs:

Model-checking and realizability. J. Comput. Syst. Sci., 72(4):617–647, 2006b. doi: 10.1016/j.jcss.

2005.09.007. URL https://doi.org/10.1016/j.jcss.2005.09.007.

Blaise Genest, Hugo Gimbert, Anca Muscholl, and Igor Walukiewicz. Optimal zielonka-type

208

https://doi.org/10.1007/978-3-540-74407-8_12
https://doi.org/10.1007/978-3-540-74407-8_12
https://doi.org/10.1109/ACSD.2005.25
https://doi.org/10.1109/ACSD.2005.25
https://doi.org/10.1007/978-3-540-27755-2_15
https://doi.org/10.1016/j.ic.2006.01.005
https://doi.org/10.1016/j.jcss.2005.09.007

construction of deterministic asynchronous automata. In Samson Abramsky, Cyril Gavoille,

Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors, Automata, Lan-

guages and Programming, 37th International Colloquium, ICALP 2010, Bordeaux, France, July

6-10, 2010, Proceedings, Part II, volume 6199 of Lecture Notes in Computer Science, pages 52–

63. Springer, 2010. doi: 10.1007/978-3-642-14162-1_5. URL https://doi.org/10.1007/

978-3-642-14162-1_5.

Lorenzo Gheri, Ivan Lanese, Neil Sayers, Emilio Tuosto, and Nobuko Yoshida. Design-by-contract

for flexible multiparty session protocols. In Karim Ali and Jan Vitek, editors, 36th European

Conference on Object-Oriented Programming, ECOOP 2022, June 6-10, 2022, Berlin, Germany,

volume 222 of LIPIcs, pages 8:1–8:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

doi: 10.4230/LIPICS.ECOOP.2022.8. URL https://doi.org/10.4230/LIPIcs.ECOOP.2022.8.

Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, Alceste Scalas, and Nobuko Yoshida. Precise

subtyping for synchronous multiparty sessions. J. Log. Algebraic Methods Program., 104:127–

173, 2019a. doi: 10.1016/J.JLAMP.2018.12.002. URL https://doi.org/10.1016/j.jlamp.

2018.12.002.

Silvia Ghilezan, Svetlana Jakšić, Jovanka Pantović, Alceste Scalas, and Nobuko Yoshida. Precise

subtyping for synchronous multiparty sessions. Journal of Logical and Algebraic Methods in

Programming, 104:127–173, 2019b. ISSN 2352-2208. doi: https://doi.org/10.1016/j.jlamp.2018.12.

002. URL https://www.sciencedirect.com/science/article/pii/S2352220817302237.

Silvia Ghilezan, Jovanka Pantovic, Ivan Prokic, Alceste Scalas, and Nobuko Yoshida. Precise

subtyping for asynchronous multiparty sessions. Proc. ACM Program. Lang., 5(POPL):1–28,

2021. doi: 10.1145/3434297. URL https://doi.org/10.1145/3434297.

Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, David Richter, Guido Salvaneschi, and

Pascal Weisenburger. Multiparty languages: The choreographic and multitier cases (pearl).

209

https://doi.org/10.1007/978-3-642-14162-1_5
https://doi.org/10.1007/978-3-642-14162-1_5
https://doi.org/10.4230/LIPIcs.ECOOP.2022.8
https://doi.org/10.1016/j.jlamp.2018.12.002
https://doi.org/10.1016/j.jlamp.2018.12.002
https://www.sciencedirect.com/science/article/pii/S2352220817302237
https://doi.org/10.1145/3434297

In Anders Møller and Manu Sridharan, editors, 35th European Conference on Object-Oriented

Programming, ECOOP 2021, July 11-17, 2021, Aarhus, Denmark (Virtual Conference), volume

194 of LIPIcs, pages 22:1–22:27. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:

10.4230/LIPIcs.ECOOP.2021.22. URL https://doi.org/10.4230/LIPIcs.ECOOP.2021.22.

Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. Choral: Object-oriented choreo-

graphic programming. ACM Trans. Program. Lang. Syst., 46(1):1:1–1:59, 2024. doi: 10.1145/

3632398. URL https://doi.org/10.1145/3632398.

Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987. doi: 10.1016/0304-3975(87)

90045-4. URL https://doi.org/10.1016/0304-3975(87)90045-4.

Cinzia Di Giusto, Davide Ferré, Laetitia Laversa, and Étienne Lozes. A partial order view of

message-passing communication models. Proc. ACM Program. Lang., 7(POPL):1601–1627, 2023.

doi: 10.1145/3571248. URL https://doi.org/10.1145/3571248.

Patrice Godefroid and Mihalis Yannakakis. Analysis of boolean programs. In Nir Piterman and

Scott A. Smolka, editors, Tools and Algorithms for the Construction and Analysis of Systems

- 19th International Conference, TACAS 2013, Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings,

volume 7795 of Lecture Notes in Computer Science, pages 214–229. Springer, 2013. doi: 10.1007/

978-3-642-36742-7_16. URL https://doi.org/10.1007/978-3-642-36742-7_16.

Hannah Gommerstadt, Limin Jia, and Frank Pfenning. Session-typed concurrent contracts. In

Amal Ahmed, editor, Programming Languages and Systems - 27th European Symposium on Pro-

gramming, ESOP 2018, Held as Part of the European Joint Conferences on Theory and Practice of

Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, volume 10801 of Lec-

ture Notes in Computer Science, pages 771–798. Springer, 2018. doi: 10.1007/978-3-319-89884-1\

_27. URL https://doi.org/10.1007/978-3-319-89884-1_27.

210

https://doi.org/10.4230/LIPIcs.ECOOP.2021.22
https://doi.org/10.1145/3632398
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/3571248
https://doi.org/10.1007/978-3-642-36742-7_16
https://doi.org/10.1007/978-3-319-89884-1_27

Dennis Griffith and Elsa L. Gunter. Liquidpi: Inferrable dependent session types. In Guillaume

Brat, Neha Rungta, and Arnaud Venet, editors, NASA Formal Methods, 5th International Sym-

posium, NFM 2013, Moffett Field, CA, USA, May 14-16, 2013. Proceedings, volume 7871 of Lecture

Notes in Computer Science, pages 185–197. Springer, 2013. doi: 10.1007/978-3-642-38088-4_13.

URL https://doi.org/10.1007/978-3-642-38088-4_13.

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. Actris: session-type based

reasoning in separation logic. Proc. ACM Program. Lang., 4(POPL):6:1–6:30, 2020. doi: 10.1145/

3371074. URL https://doi.org/10.1145/3371074.

Jonas Kastberg Hinrichsen, Daniël Louwrink, Robbert Krebbers, and Jesper Bengtson. Machine-

checked semantic session typing. In Catalin Hritcu and Andrei Popescu, editors, CPP ’21: 10th

ACM SIGPLAN International Conference on Certified Programs and Proofs, Virtual Event, Den-

mark, January 17-19, 2021, pages 178–198. ACM, 2021. doi: 10.1145/3437992.3439914. URL

https://doi.org/10.1145/3437992.3439914.

Jonas Kastberg Hinrichsen, Jesper Bengtson, and Robbert Krebbers. Actris 2.0: Asynchronous

session-type based reasoning in separation logic. Log. Methods Comput. Sci., 18(2), 2022. doi:

10.46298/LMCS-18(2:16)2022. URL https://doi.org/10.46298/lmcs-18(2:16)2022.

Jonas Kastberg Hinrichsen, Jules Jacobs, and Robbert Krebbers. Multris: Functional verification

of multiparty message passing in separation logic. 2024. URL https://jihgfee.github.io/

papers/multris_manuscript.pdf.

Andrew K. Hirsch and Deepak Garg. Pirouette: Higher-order typed functional choreographies.

CoRR, abs/2111.03484, 2021. URL https://arxiv.org/abs/2111.03484.

Andrew K. Hirsch and Deepak Garg. Pirouette: higher-order typed functional choreographies.

Proc. ACM Program. Lang., 6(POPL):1–27, 2022. doi: 10.1145/3498684. URL https://doi.org/

10.1145/3498684.

211

https://doi.org/10.1007/978-3-642-38088-4_13
https://doi.org/10.1145/3371074
https://doi.org/10.1145/3437992.3439914
https://doi.org/10.46298/lmcs-18(2:16)2022
https://jihgfee.github.io/papers/multris_manuscript.pdf
https://jihgfee.github.io/papers/multris_manuscript.pdf
https://arxiv.org/abs/2111.03484
https://doi.org/10.1145/3498684
https://doi.org/10.1145/3498684

Kohei Honda. Types for dyadic interaction. In Eike Best, editor, CONCUR ’93, 4th Interna-

tional Conference on Concurrency Theory, Hildesheim, Germany, August 23-26, 1993, Proceed-

ings, volume 715 of Lecture Notes in Computer Science, pages 509–523. Springer, 1993. doi:

10.1007/3-540-57208-2_35. URL https://doi.org/10.1007/3-540-57208-2_35.

Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and

type discipline for structured communication-based programming. In Chris Hankin, edi-

tor, Programming Languages and Systems - ESOP’98, 7th European Symposium on Program-

ming, Held as Part of the European Joint Conferences on the Theory and Practice of Software,

ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings, volume 1381 of Lecture

Notes in Computer Science, pages 122–138. Springer, 1998. doi: 10.1007/BFb0053567. URL

https://doi.org/10.1007/BFb0053567.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. In

George C. Necula and Philip Wadler, editors, Proceedings of the 35th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California, USA,

January 7-12, 2008, pages 273–284. ACM, 2008. doi: 10.1145/1328438.1328472. URL https:

//doi.org/10.1145/1328438.1328472.

Kohei Honda, Eduardo R. B. Marques, Francisco Martins, Nicholas Ng, Vasco Thudichum Vascon-

celos, and Nobuko Yoshida. Verification of MPI programs using session types. In Jesper Larsson

Träff, Siegfried Benkner, and Jack J. Dongarra, editors, Recent Advances in the Message Passing

Interface - 19th European MPI Users’ Group Meeting, EuroMPI 2012, Vienna, Austria, Septem-

ber 23-26, 2012. Proceedings, volume 7490 of Lecture Notes in Computer Science, pages 291–

293. Springer, 2012. doi: 10.1007/978-3-642-33518-1_37. URL https://doi.org/10.1007/

978-3-642-33518-1_37.

Ross Horne. Session subtyping andmultiparty compatibility using circular sequents. In Igor Kon-

nov and Laura Kovács, editors, 31st International Conference on Concurrency Theory, CONCUR

212

https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1007/978-3-642-33518-1_37
https://doi.org/10.1007/978-3-642-33518-1_37

2020, September 1-4, 2020, Vienna, Austria (Virtual Conference), volume 171 of LIPIcs, pages 12:1–

12:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi: 10.4230/LIPIcs.CONCUR.

2020.12. URL https://doi.org/10.4230/LIPIcs.CONCUR.2020.12.

Raymond Hu and Nobuko Yoshida. Hybrid session verification through endpoint API generation.

In Perdita Stevens and Andrzej Wasowski, editors, Fundamental Approaches to Software Engi-

neering - 19th International Conference, FASE 2016, Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Pro-

ceedings, volume 9633 of Lecture Notes in Computer Science, pages 401–418. Springer, 2016. doi:

10.1007/978-3-662-49665-7_24. URL https://doi.org/10.1007/978-3-662-49665-7_24.

Raymond Hu and Nobuko Yoshida. Explicit connection actions in multiparty session types. In

Marieke Huisman and Julia Rubin, editors, Fundamental Approaches to Software Engineering

- 20th International Conference, FASE 2017, Held as Part of the European Joint Conferences on

Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings,

volume 10202 of Lecture Notes in Computer Science, pages 116–133. Springer, 2017. doi: 10.

1007/978-3-662-54494-5_7. URL https://doi.org/10.1007/978-3-662-54494-5_7.

Keigo Imai, Rumyana Neykova, Nobuko Yoshida, and Shoji Yuen. Multiparty session pro-

gramming with global protocol combinators. In Robert Hirschfeld and Tobias Pape, edi-

tors, 34th European Conference on Object-Oriented Programming, ECOOP 2020, November 15-

17, 2020, Berlin, Germany (Virtual Conference), volume 166 of LIPIcs, pages 9:1–9:30. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi: 10.4230/LIPICS.ECOOP.2020.9. URL

https://doi.org/10.4230/LIPIcs.ECOOP.2020.9.

International Telecommunication Union. ITU-T Recommendation Z.120: Message Sequence

Chart (MSC). ITU-T Recommendation Z.120, International Telecommunication Union, Geneva,

February 2011. URL https://www.itu.int/rec/T-REC-Z.120-201102-I/en.

213

https://doi.org/10.4230/LIPIcs.CONCUR.2020.12
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
https://www.itu.int/rec/T-REC-Z.120-201102-I/en

Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. Connectivity graphs: a method for proving

deadlock freedom based on separation logic. Proc. ACM Program. Lang., 6(POPL):1–33, 2022.

doi: 10.1145/3498662. URL https://doi.org/10.1145/3498662.

Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers. Dependent session protocols in

separation logic from first principles (functional pearl). Proc. ACM Program. Lang., 7(ICFP):

768–795, 2023. doi: 10.1145/3607856. URL https://doi.org/10.1145/3607856.

Jules Jacobs, Jonas Kastberg Hinrichsen, and Robbert Krebbers. Deadlock-free separation logic:

Linearity yields progress for dependent higher-order message passing. Proc. ACM Program.

Lang., 8(POPL):1385–1417, 2024. doi: 10.1145/3632889. URL https://doi.org/10.1145/

3632889.

Sung-Shik Jongmans and Petra van den Bos. A predicate transformer for choreographies -

computing preconditions in choreographic programming. In Ilya Sergey, editor, Program-

ming Languages and Systems - 31st European Symposium on Programming, ESOP 2022, Held

as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022,

Munich, Germany, April 2-7, 2022, Proceedings, volume 13240 of Lecture Notes in Computer

Science, pages 520–547. Springer, 2022. doi: 10.1007/978-3-030-99336-8_19. URL https:

//doi.org/10.1007/978-3-030-99336-8_19.

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, andDerekDreyer.

Iris from the ground up: A modular foundation for higher-order concurrent separation logic.

J. Funct. Program., 28:e20, 2018. doi: 10.1017/S0956796818000151. URL https://doi.org/10.

1017/S0956796818000151.

Shun Kashiwa, Gan Shen, Soroush Zare, and Lindsey Kuper. Portable, efficient, and practical

library-level choreographic programming, 2023. URL https://arxiv.org/abs/2311.11472.

214

https://doi.org/10.1145/3498662
https://doi.org/10.1145/3607856
https://doi.org/10.1145/3632889
https://doi.org/10.1145/3632889
https://doi.org/10.1007/978-3-030-99336-8_19
https://doi.org/10.1007/978-3-030-99336-8_19
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://arxiv.org/abs/2311.11472

Bernhard Kragl, Shaz Qadeer, and Thomas A. Henzinger. Synchronizing the asynchronous. In

Sven Schewe and Lijun Zhang, editors, 29th International Conference on Concurrency Theory,

CONCUR 2018, September 4-7, 2018, Beijing, China, volume 118 of LIPIcs, pages 21:1–21:17.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi: 10.4230/LIPICS.CONCUR.2018.

21. URL https://doi.org/10.4230/LIPIcs.CONCUR.2018.21.

Bernhard Kragl, Constantin Enea, Thomas A. Henzinger, Suha Orhun Mutluergil, and Shaz

Qadeer. Inductive sequentialization of asynchronous programs. In Alastair F. Donaldson

and Emina Torlak, editors, Proceedings of the 41st ACM SIGPLAN International Conference on

Programming Language Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020,

pages 227–242. ACM, 2020. doi: 10.1145/3385412.3385980. URL https://doi.org/10.1145/

3385412.3385980.

Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Stay safe under panic: Affine rust

programming with multiparty session types (artifact). Dagstuhl Artifacts Ser., 8(2):09:1–09:16,

2022. doi: 10.4230/DARTS.8.2.9. URL https://doi.org/10.4230/DARTS.8.2.9.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. In Concurrency:

the Works of Leslie Lamport, pages 179–196. 2019. doi: 10.1145/3335772.3335934. URL https:

//doi.org/10.1145/3335772.3335934.

Ivan Lanese, Jorge A. Pérez, Davide Sangiorgi, and Alan Schmitt. On the expressiveness and

decidability of higher-order process calculi. In Proceedings of the Twenty-Third Annual IEEE

Symposium on Logic in Computer Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA, pages

145–155. IEEE Computer Society, 2008. doi: 10.1109/LICS.2008.8. URL https://doi.org/10.

1109/LICS.2008.8.

Julien Lange and Nobuko Yoshida. Characteristic formulae for session types. In Marsha Chechik

and Jean-François Raskin, editors, Tools and Algorithms for the Construction and Analysis of Sys-

215

https://doi.org/10.4230/LIPIcs.CONCUR.2018.21
https://doi.org/10.1145/3385412.3385980
https://doi.org/10.1145/3385412.3385980
https://doi.org/10.4230/DARTS.8.2.9
https://doi.org/10.1145/3335772.3335934
https://doi.org/10.1145/3335772.3335934
https://doi.org/10.1109/LICS.2008.8
https://doi.org/10.1109/LICS.2008.8

tems - 22nd International Conference, TACAS 2016, Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Pro-

ceedings, volume 9636 of Lecture Notes in Computer Science, pages 833–850. Springer, 2016. doi:

10.1007/978-3-662-49674-9_52. URL https://doi.org/10.1007/978-3-662-49674-9_52.

Julien Lange and Nobuko Yoshida. On the undecidability of asynchronous session subtyping. In

Javier Esparza and Andrzej S. Murawski, editors, Foundations of Software Science and Compu-

tation Structures - 20th International Conference, FOSSACS 2017, Held as Part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,

2017, Proceedings, volume 10203 of Lecture Notes in Computer Science, pages 441–457, 2017. doi:

10.1007/978-3-662-54458-7_26. URL https://doi.org/10.1007/978-3-662-54458-7_26.

Julien Lange and Nobuko Yoshida. Verifying asynchronous interactions via communicating ses-

sion automata. In Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification - 31st

International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings,

Part I, volume 11561 of Lecture Notes in Computer Science, pages 97–117. Springer, 2019. doi:

10.1007/978-3-030-25540-4_6. URL https://doi.org/10.1007/978-3-030-25540-4_6.

Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. A static verification frame-

work for message passing in go using behavioural types. In Michel Chaudron, Ivica Crnkovic,

Marsha Chechik, and Mark Harman, editors, Proceedings of the 40th International Conference

on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, pages 1137–

1148. ACM, 2018. doi: 10.1145/3180155.3180157. URL https://doi.org/10.1145/3180155.

3180157.

Languages, Systems, and Data Lab, UC Santa Cruz. Chorus: Choreographic programming in rust.

https://lsd-ucsc.github.io/ChoRus/introduction.html. Accessed: 2025-07-10.

216

https://doi.org/10.1007/978-3-662-49674-9_52
https://doi.org/10.1007/978-3-662-54458-7_26
https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.1145/3180155.3180157
https://doi.org/10.1145/3180155.3180157
https://lsd-ucsc.github.io/ChoRus/introduction.html

Elaine Li and Thomas Wies. Implementability of global protocols modulo network architectures.

Under submission, 2025a.

Elaine Li and Thomas Wies. Certified implementability of global multiparty protocols. To appear

at Interactive Theorem Proving 2025, 2025b.

Elaine Li, Felix Stutz, Thomas Wies, and Damien Zufferey. Complete multiparty session type

projection with automata. In Constantin Enea and Akash Lal, editors, Computer Aided Veri-

fication - 35th International Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings,

Part III, volume 13966 of Lecture Notes in Computer Science, pages 350–373. Springer, 2023a. doi:

10.1007/978-3-031-37709-9_17. URL https://doi.org/10.1007/978-3-031-37709-9_17.

Elaine Li, Felix Stutz, Thomas Wies, and Damien Zufferey. Complete multiparty session type

projection with automata. CoRR, abs/2305.17079, 2023b. doi: 10.48550/ARXIV.2305.17079. URL

https://doi.org/10.48550/arXiv.2305.17079.

Elaine Li, Felix Stutz, and Thomas Wies. Deciding subtyping for asynchronous multiparty ses-

sions. In Stephanie Weirich, editor, Programming Languages and Systems - 33rd European Sym-

posium on Programming, ESOP 2024, Held as Part of the European Joint Conferences on Theory and

Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Proceedings,

Part I, volume 14576 of Lecture Notes in Computer Science, pages 176–205. Springer, 2024. doi:

10.1007/978-3-031-57262-3_8. URL https://doi.org/10.1007/978-3-031-57262-3_8.

Elaine Li, Felix Stutz, Thomas Wies, and Damien Zufferey. Sprout: A verifier for symbolic mul-

tiparty protocols. 2025a. doi: 10.1007/978-3-031-98682-6. URL https://doi.org/10.1007/

978-3-031-98682-6. 1st edition, ISBN for softcover and eBook.

Elaine Li, Felix Stutz, Thomas Wies, and Damien Zufferey. Characterizing implementability of

global protocols with infinite states and data. Proc. ACM Program. Lang., 9(OOPSLA1):1434–

1463, 2025b. doi: 10.1145/3720493. URL https://doi.org/10.1145/3720493.

217

https://doi.org/10.1007/978-3-031-37709-9_17
https://doi.org/10.48550/arXiv.2305.17079
https://doi.org/10.1007/978-3-031-57262-3_8
https://doi.org/10.1007/978-3-031-98682-6
https://doi.org/10.1007/978-3-031-98682-6
https://doi.org/10.1145/3720493

Elaine Li, Felix Stutz, Thomas Wies, and Damien Zufferey. Characterizing implementability of

global protocols with infinite states and data, 2025c. URL https://arxiv.org/abs/2411.

05722.

Richard J. Lipton. Reduction: A method of proving properties of parallel programs. Commun.

ACM, 18(12):717–721, 1975. doi: 10.1145/361227.361234. URL https://doi.org/10.1145/

361227.361234.

Barbara Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Trans. Program.

Lang. Syst., 16(6):1811–1841, 1994. doi: 10.1145/197320.197383. URL https://doi.org/10.

1145/197320.197383.

Markus Lohrey. Realizability of high-level message sequence charts: closing the gaps. Theor.

Comput. Sci., 309(1-3):529–554, 2003. doi: 10.1016/J.TCS.2003.08.002. URL https://doi.org/

10.1016/j.tcs.2003.08.002.

Rupak Majumdar, Marcus Pirron, Nobuko Yoshida, and Damien Zufferey. Motion session types

for robotic interactions (brave new idea paper). In Alastair F. Donaldson, editor, 33rd Euro-

pean Conference on Object-Oriented Programming, ECOOP 2019, July 15-19, 2019, London, United

Kingdom, volume 134 of LIPIcs, pages 28:1–28:27. Schloss Dagstuhl - Leibniz-Zentrum für Infor-

matik, 2019. doi: 10.4230/LIPIcs.ECOOP.2019.28. URL https://doi.org/10.4230/LIPIcs.

ECOOP.2019.28.

Rupak Majumdar, Nobuko Yoshida, and Damien Zufferey. Multiparty motion coordination: from

choreographies to robotics programs. Proc. ACM Program. Lang., 4(OOPSLA):134:1–134:30,

2020. doi: 10.1145/3428202. URL https://doi.org/10.1145/3428202.

Rupak Majumdar, Madhavan Mukund, Felix Stutz, and Damien Zufferey. Generalising projec-

tion in asynchronous multiparty session types. In Serge Haddad and Daniele Varacca, editors,

218

https://arxiv.org/abs/2411.05722
https://arxiv.org/abs/2411.05722
https://doi.org/10.1145/361227.361234
https://doi.org/10.1145/361227.361234
https://doi.org/10.1145/197320.197383
https://doi.org/10.1145/197320.197383
https://doi.org/10.1016/j.tcs.2003.08.002
https://doi.org/10.1016/j.tcs.2003.08.002
https://doi.org/10.4230/LIPIcs.ECOOP.2019.28
https://doi.org/10.4230/LIPIcs.ECOOP.2019.28
https://doi.org/10.1145/3428202

32nd International Conference on Concurrency Theory, CONCUR 2021, August 24-27, 2021, Vir-

tual Conference, volume 203 of LIPIcs, pages 35:1–35:24. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2021a. doi: 10.4230/LIPICS.CONCUR.2021.35. URL https://doi.org/10.4230/

LIPIcs.CONCUR.2021.35.

Rupak Majumdar, Madhavan Mukund, Felix Stutz, and Damien Zufferey. Generalising projection

in asynchronous multiparty session types. CoRR, abs/2107.03984, 2021b. URL https://arxiv.

org/abs/2107.03984.

Petar Maksimovic and Alan Schmitt. Hocore in coq. In Christian Urban and Xingyuan Zhang,

editors, Interactive Theorem Proving - 6th International Conference, ITP 2015, Nanjing, China,

August 24-27, 2015, Proceedings, volume 9236 of Lecture Notes in Computer Science, pages 278–

293. Springer, 2015. doi: 10.1007/978-3-319-22102-1_19. URL https://doi.org/10.1007/

978-3-319-22102-1_19.

Sjouke Mauw and Michel A. Reniers. High-level message sequence charts. In Ana R. Cavalli and

Amardeo Sarma, editors, SDL ’97 Time for Testing, SDL, MSC and Trends - 8th International SDL

Forum, Evry, France, 23-29 September 1997, Proceedings, pages 291–306. Elsevier, 1997.

Fabrizio Montesi. Introduction to Choreographies. Cambridge University Press, 2023. doi: 10.1017/

9781108981491.

Rémi Morin. Recognizable sets of message sequence charts. In Helmut Alt and Afonso Ferreira,

editors, STACS 2002, 19th Annual Symposium on Theoretical Aspects of Computer Science, Antibes

- Juan les Pins, France, March 14-16, 2002, Proceedings, volume 2285 of Lecture Notes in Computer

Science, pages 523–534. Springer, 2002. doi: 10.1007/3-540-45841-7_43. URL https://doi.

org/10.1007/3-540-45841-7_43.

Dimitris Mostrous and Nobuko Yoshida. Session-based communication optimisation for higher-

order mobile processes. In Pierre-Louis Curien, editor, Typed Lambda Calculi and Appli-

219

https://doi.org/10.4230/LIPIcs.CONCUR.2021.35
https://doi.org/10.4230/LIPIcs.CONCUR.2021.35
https://arxiv.org/abs/2107.03984
https://arxiv.org/abs/2107.03984
https://doi.org/10.1007/978-3-319-22102-1_19
https://doi.org/10.1007/978-3-319-22102-1_19
https://doi.org/10.1007/3-540-45841-7_43
https://doi.org/10.1007/3-540-45841-7_43

cations, 9th International Conference, TLCA 2009, Brasilia, Brazil, July 1-3, 2009. Proceed-

ings, volume 5608 of Lecture Notes in Computer Science, pages 203–218. Springer, 2009. doi:

10.1007/978-3-642-02273-9_16. URL https://doi.org/10.1007/978-3-642-02273-9_16.

Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. Global principal typing in partially com-

mutative asynchronous sessions. In Giuseppe Castagna, editor, Programming Languages and

Systems, 18th European Symposium on Programming, ESOP 2009, Held as Part of the Joint Euro-

pean Conferences on Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009.

Proceedings, volume 5502 of Lecture Notes in Computer Science, pages 316–332. Springer, 2009.

doi: 10.1007/978-3-642-00590-9_23. URL https://doi.org/10.1007/978-3-642-00590-9_

23.

Madhavan Mukund. From Global Specifications to Distributed Implementations, pages 19–35.

Springer US, Boston, MA, 2002. ISBN 978-1-4757-6656-1. doi: 10.1007/978-1-4757-6656-1_2.

URL https://doi.org/10.1007/978-1-4757-6656-1_2.

Madhavan Mukund and Milind A. Sohoni. Keeping track of the latest gossip in a distributed

system. Distributed Comput., 10(3):137–148, 1997. doi: 10.1007/S004460050031. URL https:

//doi.org/10.1007/s004460050031.

Anca Muscholl and Doron A. Peled. Message sequence graphs and decision problems on

mazurkiewicz traces. In Miroslaw Kutylowski, Leszek Pacholski, and Tomasz Wierzbicki,

editors, Mathematical Foundations of Computer Science 1999, 24th International Symposium,

MFCS’99, Szklarska Poreba, Poland, September 6-10, 1999, Proceedings, volume 1672 of Lecture

Notes in Computer Science, pages 81–91. Springer, 1999. doi: 10.1007/3-540-48340-3_8. URL

https://doi.org/10.1007/3-540-48340-3_8.

Rumyana Neykova and Nobuko Yoshida. Multiparty session actors. Log. Methods Comput. Sci., 13

220

https://doi.org/10.1007/978-3-642-02273-9_16
https://doi.org/10.1007/978-3-642-00590-9_23
https://doi.org/10.1007/978-3-642-00590-9_23
https://doi.org/10.1007/978-1-4757-6656-1_2
https://doi.org/10.1007/s004460050031
https://doi.org/10.1007/s004460050031
https://doi.org/10.1007/3-540-48340-3_8

(1), 2017. doi: 10.23638/LMCS-13(1:17)2017. URL https://doi.org/10.23638/LMCS-13(1:

17)2017.

RumyanaNeykova, Laura Bocchi, andNobuko Yoshida. Timed runtimemonitoring formultiparty

conversations. Formal Aspects Comput., 29(5):877–910, 2017. doi: 10.1007/S00165-017-0420-8.

URL https://doi.org/10.1007/s00165-017-0420-8.

RumyanaNeykova, RaymondHu, Nobuko Yoshida, and FahdAbdeljallal. A session type provider:

compile-time API generation of distributed protocols with refinements in f#. In Christophe

Dubach and Jingling Xue, editors, Proceedings of the 27th International Conference on Compiler

Construction, CC 2018, February 24-25, 2018, Vienna, Austria, pages 128–138. ACM, 2018. doi:

10.1145/3178372.3179495. URL https://doi.org/10.1145/3178372.3179495.

Nicholas Ng, Nobuko Yoshida, and Kohei Honda. Multiparty session C: safe parallel program-

ming with message optimisation. In Carlo A. Furia and Sebastian Nanz, editors, Objects, Mod-

els, Components, Patterns - 50th International Conference, TOOLS 2012, Prague, Czech Republic,

May 29-31, 2012. Proceedings, volume 7304 of Lecture Notes in Computer Science, pages 202–

218. Springer, 2012. doi: 10.1007/978-3-642-30561-0_15. URL https://doi.org/10.1007/

978-3-642-30561-0_15.

Xinyu Niu, Nicholas Ng, Tomofumi Yuki, Shaojun Wang, Nobuko Yoshida, and Wayne Luk. EU-

RECA compilation: Automatic optimisation of cycle-reconfigurable circuits. In Paolo Ienne,

Walid A. Najjar, Jason Helge Anderson, Philip Brisk, and Walter Stechele, editors, 26th Inter-

national Conference on Field Programmable Logic and Applications, FPL 2016, Lausanne, Switzer-

land, August 29 - September 2, 2016, pages 1–4. IEEE, 2016. doi: 10.1109/FPL.2016.7577359. URL

https://doi.org/10.1109/FPL.2016.7577359.

Object Management Group. Unified Modeling Language (UML) Website. https://www.uml.

org/. Accessed: 2025-07-10.

221

https://doi.org/10.23638/LMCS-13(1:17)2017
https://doi.org/10.23638/LMCS-13(1:17)2017
https://doi.org/10.1007/s00165-017-0420-8
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1007/978-3-642-30561-0_15
https://doi.org/10.1007/978-3-642-30561-0_15
https://doi.org/10.1109/FPL.2016.7577359
https://www.uml.org/
https://www.uml.org/

Catuscia Palamidessi. Comparing the expressive power of the synchronous and asynchronous

pi-calculi. Math. Struct. Comput. Sci., 13(5):685–719, 2003. doi: 10.1017/S0960129503004043.

URL https://doi.org/10.1017/S0960129503004043.

Giuseppe De Palma, Saverio Giallorenzo, Jacopo Mauro, Matteo Trentin, and Gianluigi Zavat-

taro. Towards a function-as-a-service choreographic programming language: Examples and

applications, 2024. URL https://arxiv.org/abs/2406.09099.

Kirstin Peters and Nobuko Yoshida. On the expressiveness of mixed choice sessions. In Valentina

Castiglioni and Claudio Antares Mezzina, editors, Proceedings Combined 29th International

Workshop on Expressiveness in Concurrency and 19thWorkshop on Structural Operational Seman-

tics, EXPRESS/SOS 2022, and 19thWorkshop on Structural Operational SemanticsWarsaw, Poland,

12th September 2022, volume 368 of EPTCS, pages 113–130, 2022. doi: 10.4204/EPTCS.368.7. URL

https://doi.org/10.4204/EPTCS.368.7.

Kirstin Peters and Nobuko Yoshida. Separation and encodability in mixed choice multiparty

sessions. In Pawel Sobocinski, Ugo Dal Lago, and Javier Esparza, editors, Proceedings of the

39th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2024, Tallinn, Estonia,

July 8-11, 2024, pages 62:1–62:15. ACM, 2024. doi: 10.1145/3661814.3662085. URL https:

//doi.org/10.1145/3661814.3662085.

Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes. Math.

Struct. Comput. Sci., 6(5):409–453, 1996. doi: 10.1017/s096012950007002x. URL https://doi.

org/10.1017/s096012950007002x.

Arjen Rouvoet, Casper Bach Poulsen, Robbert Krebbers, and Eelco Visser. Intrinsically-typed

definitional interpreters for linear, session-typed languages. In Jasmin Blanchette and Catalin

Hritcu, editors, Proceedings of the 9th ACM SIGPLAN International Conference on Certified Pro-

222

https://doi.org/10.1017/S0960129503004043
https://arxiv.org/abs/2406.09099
https://doi.org/10.4204/EPTCS.368.7
https://doi.org/10.1145/3661814.3662085
https://doi.org/10.1145/3661814.3662085
https://doi.org/10.1017/s096012950007002x
https://doi.org/10.1017/s096012950007002x

grams and Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020, pages 284–298. ACM,

2020. doi: 10.1145/3372885.3373818. URL https://doi.org/10.1145/3372885.3373818.

Abhik Roychoudhury, Ankit Goel, and Bikram Sengupta. Symbolic message sequence charts.

ACM Trans. Softw. Eng. Methodol., 21(2):12:1–12:44, 2012. doi: 10.1145/2089116.2089122. URL

https://doi.org/10.1145/2089116.2089122.

Alceste Scalas and Nobuko Yoshida. Less is more: multiparty session types revisited. Proc. ACM

Program. Lang., 3(POPL):30:1–30:29, 2019. doi: 10.1145/3290343. URL https://doi.org/10.

1145/3290343.

Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A linear decomposition of

multiparty sessions for safe distributed programming. In Peter Müller, editor, 31st European

Conference on Object-Oriented Programming, ECOOP 2017, June 19-23, 2017, Barcelona, Spain,

volume 74 of LIPIcs, pages 24:1–24:31. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

doi: 10.4230/LIPICS.ECOOP.2017.24. URL https://doi.org/10.4230/LIPIcs.ECOOP.2017.

24.

Gan Shen, Shun Kashiwa, and Lindsey Kuper. Haschor: Functional choreographic programming

for all (functional pearl). CoRR, abs/2303.00924, 2023. doi: 10.48550/ARXIV.2303.00924. URL

https://doi.org/10.48550/arXiv.2303.00924.

Felix Stutz. Asynchronous multiparty session type implementability is decidable - lessons learned

from message sequence charts. In Karim Ali and Guido Salvaneschi, editors, 37th European

Conference on Object-Oriented Programming, ECOOP 2023, July 17-21, 2023, Seattle, Washing-

ton, United States, volume 263 of LIPIcs, pages 32:1–32:31. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2023. doi: 10.4230/LIPICS.ECOOP.2023.32. URL https://doi.org/10.4230/

LIPIcs.ECOOP.2023.32.

223

https://doi.org/10.1145/3372885.3373818
https://doi.org/10.1145/2089116.2089122
https://doi.org/10.1145/3290343
https://doi.org/10.1145/3290343
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.48550/arXiv.2303.00924
https://doi.org/10.4230/LIPIcs.ECOOP.2023.32
https://doi.org/10.4230/LIPIcs.ECOOP.2023.32

Felix Stutz. Implementability of Asynchronous Communication Protocols - The Power of Choice.

PhD thesis, Kaiserslautern University of Technology, Germany, 2024a. URL https://kluedo.

ub.rptu.de/frontdoor/index/index/docId/8077.

Felix Stutz. Implementability of Asynchronous Communication Protocols - The Power of Choice. doc-

toralthesis, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, 2024b. URL

https://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-80778.

Felix Stutz and Damien Zufferey. Comparing channel restrictions of communicating state ma-

chines, high-level message sequence charts, and multiparty session types. In Pierre Ganty

and Dario Della Monica, editors, Proceedings of the 13th International Symposium on Games,

Automata, Logics and Formal Verification, GandALF 2022, Madrid, Spain, September 21-23,

2022, volume 370 of EPTCS, pages 194–212, 2022. doi: 10.4204/EPTCS.370.13. URL https:

//doi.org/10.4204/EPTCS.370.13.

Joseph Tassarotti, Ralf Jung, and Robert Harper. A higher-order logic for concurrent termination-

preserving refinement. In Hongseok Yang, editor, Programming Languages and Systems - 26th

European Symposium on Programming, ESOP 2017, Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings,

volume 10201 of Lecture Notes in Computer Science, pages 909–936. Springer, 2017. doi: 10.1007/

978-3-662-54434-1_34. URL https://doi.org/10.1007/978-3-662-54434-1_34.

Peter Thiemann. Intrinsically-typed mechanized semantics for session types. In Ekaterina

Komendantskaya, editor, Proceedings of the 21st International Symposium on Principles and

Practice of Programming Languages, PPDP 2019, Porto, Portugal, October 7-9, 2019, pages 19:1–

19:15. ACM, 2019. doi: 10.1145/3354166.3354184. URL https://doi.org/10.1145/3354166.

3354184.

Peter Thiemann and Vasco T. Vasconcelos. Label-dependent session types. Proc. ACM Program.

224

https://kluedo.ub.rptu.de/frontdoor/index/index/docId/8077
https://kluedo.ub.rptu.de/frontdoor/index/index/docId/8077
https://nbn-resolving.de/urn:nbn:de:hbz:386-kluedo-80778
https://doi.org/10.4204/EPTCS.370.13
https://doi.org/10.4204/EPTCS.370.13
https://doi.org/10.1007/978-3-662-54434-1_34
https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1145/3354166.3354184

Lang., 4(POPL):67:1–67:29, 2020. doi: 10.1145/3371135. URL https://doi.org/10.1145/

3371135.

Dawit Legesse Tirore, Jesper Bengtson, andMarco Carbone. A sound and complete projection for

global types. In Adam Naumowicz andL René Thiemann, editor, 14th International Conference

on Interactive Theorem Proving, ITP 2023, July 31 to August 4, 2023, Białystok, Poland, volume

268 of LIPIcs, pages 28:1–28:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. doi:

10.4230/LIPICS.ITP.2023.28. URL https://doi.org/10.4230/LIPIcs.ITP.2023.28.

Bernardo Toninho and Nobuko Yoshida. Certifying data in multiparty session types. J. Log.

Algebraic Methods Program., 90:61–83, 2017. doi: 10.1016/J.JLAMP.2016.11.005. URL https:

//doi.org/10.1016/j.jlamp.2016.11.005.

Bernardo Toninho, Luís Caires, and Frank Pfenning. Dependent session types via intuitionistic

linear type theory. In Peter Schneider-Kamp andMichael Hanus, editors, Proceedings of the 13th

International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming,

July 20-22, 2011, Odense, Denmark, pages 161–172. ACM, 2011. doi: 10.1145/2003476.2003499.

URL https://doi.org/10.1145/2003476.2003499.

Bernardo Toninho, Luís Caires, and Frank Pfenning. A decade of dependent session types. In

23rd International Symposium on Principles and Practice of Declarative Programming, PPDP 2021,

New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450386890. doi:

10.1145/3479394.3479398. URL https://doi.org/10.1145/3479394.3479398.

Thien Udomsrirungruang and Nobuko Yoshida. Top-down or bottom-up? complexity analyses

of synchronous multiparty session types. Proc. ACM Program. Lang., 9(POPL):1040–1071, 2025.

doi: 10.1145/3704872. URL https://doi.org/10.1145/3704872.

International Telecommunication Union. Z.120: Message sequence chart. Technical report,

225

https://doi.org/10.1145/3371135
https://doi.org/10.1145/3371135
https://doi.org/10.4230/LIPIcs.ITP.2023.28
https://doi.org/10.1016/j.jlamp.2016.11.005
https://doi.org/10.1016/j.jlamp.2016.11.005
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1145/3479394.3479398
https://doi.org/10.1145/3704872

International Telecommunication Union, October 1996. URL https://www.itu.int/rec/

T-REC-Z.120.

Hiroshi Unno, Tachio Terauchi, Yu Gu, and Eric Koskinen. Modular primal-dual fixpoint logic

solving for temporal verification. Proc. ACM Program. Lang., 7(POPL):2111–2140, 2023. doi:

10.1145/3571265. URL https://doi.org/10.1145/3571265.

Martin Vassor and Nobuko Yoshida. Refinements for multiparty message-passing protocols:

Specification-agnostic theory and implementation. In Jonathan Aldrich and Guido Salvaneschi,

editors, 38th European Conference on Object-Oriented Programming, ECOOP 2024, September 16-

20, 2024, Vienna, Austria, volume 313 of LIPIcs, pages 41:1–41:29. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2024. doi: 10.4230/LIPICS.ECOOP.2024.41. URL https://doi.org/

10.4230/LIPIcs.ECOOP.2024.41.

Margus Veanes and Nikolaj S. Bjørner. Symbolic automata: The toolkit. In Cormac Flanagan and

Barbara König, editors, Tools and Algorithms for the Construction and Analysis of Systems - 18th

International Conference, TACAS 2012, Held as Part of the European Joint Conferences on Theory

and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings,

volume 7214 of Lecture Notes in Computer Science, pages 472–477. Springer, 2012. doi: 10.1007/

978-3-642-28756-5_33. URL https://doi.org/10.1007/978-3-642-28756-5_33.

Margus Veanes, Peli de Halleux, and Nikolai Tillmann. Rex: Symbolic regular expression explorer.

In Third International Conference on Software Testing, Verification and Validation, ICST 2010,

Paris, France, April 7-9, 2010, pages 498–507. IEEE Computer Society, 2010. doi: 10.1109/ICST.

2010.15. URL https://doi.org/10.1109/ICST.2010.15.

Klaus von Gleissenthall, Rami Gökhan Kici, Alexander Bakst, Deian Stefan, and Ranjit Jhala.

Pretend synchrony: synchronous verification of asynchronous distributed programs. Proc.

226

https://www.itu.int/rec/T-REC-Z.120
https://www.itu.int/rec/T-REC-Z.120
https://doi.org/10.1145/3571265
https://doi.org/10.4230/LIPIcs.ECOOP.2024.41
https://doi.org/10.4230/LIPIcs.ECOOP.2024.41
https://doi.org/10.1007/978-3-642-28756-5_33
https://doi.org/10.1109/ICST.2010.15

ACM Program. Lang., 3(POPL):59:1–59:30, 2019. doi: 10.1145/3290372. URL https://doi.

org/10.1145/3290372.

Philip Wadler. Propositions as sessions. J. Funct. Program., 24(2-3):384–418, 2014. doi: 10.1017/

S095679681400001X. URL https://doi.org/10.1017/S095679681400001X.

Web Services Choreography Working Group. Web services choreography description language

version 1.0. W3c candidate recommendation, World Wide Web Consortium (W3C), November

2005. Available at http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109/.

Nobuko Yoshida. Programming language implementations with multiparty session types. In

Frank S. de Boer, Ferruccio Damiani, Reiner Hähnle, Einar Broch Johnsen, and Eduard Kam-

burjan, editors,Active Object Languages: Current Research Trends, volume 14360 of Lecture Notes

in Computer Science, pages 147–165. Springer, 2024. doi: 10.1007/978-3-031-51060-1_6. URL

https://doi.org/10.1007/978-3-031-51060-1_6.

Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The scribble protocol lan-

guage. In Martín Abadi and Alberto Lluch-Lafuente, editors, Trustworthy Global Computing

- 8th International Symposium, TGC 2013, Buenos Aires, Argentina, August 30-31, 2013, Revised

Selected Papers, volume 8358 of Lecture Notes in Computer Science, pages 22–41. Springer, 2013.

doi: 10.1007/978-3-319-05119-2_3. URL https://doi.org/10.1007/978-3-319-05119-2_3.

Tony Nuda Zhang, Travis Hance, Manos Kapritsos, Tej Chajed, and Bryan Parno. Inductive in-

variants that spark joy: Using invariant taxonomies to streamline distributed protocol proofs.

In Ada Gavrilovska and Douglas B. Terry, editors, 18th USENIX Symposium on Operating Sys-

tems Design and Implementation, OSDI 2024, Santa Clara, CA, USA, July 10-12, 2024, pages

837–853. USENIX Association, 2024. URL https://www.usenix.org/conference/osdi24/

presentation/zhang-nuda.

Fangyi Zhou. Refining Multiparty Session Types. PhD thesis, Imperial College London, 2024.

227

https://doi.org/10.1145/3290372
https://doi.org/10.1145/3290372
https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1007/978-3-031-51060-1_6
https://doi.org/10.1007/978-3-319-05119-2_3
https://www.usenix.org/conference/osdi24/presentation/zhang-nuda
https://www.usenix.org/conference/osdi24/presentation/zhang-nuda

Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida. Stat-

ically verified refinements for multiparty protocols. Proc. ACM Program. Lang., 4(OOPSLA):

148:1–148:30, 2020. doi: 10.1145/3428216. URL https://doi.org/10.1145/3428216.

Wieslaw Zielonka. Notes on finite asynchronous automata. RAIRO Theor. Informatics Appl.,

21(2):99–135, 1987. doi: 10.1051/ITA/1987210200991. URL https://doi.org/10.1051/ita/

1987210200991.

228

https://doi.org/10.1145/3428216
https://doi.org/10.1051/ita/1987210200991
https://doi.org/10.1051/ita/1987210200991

	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Introduction
	Preliminaries
	I Theory
	Implementability
	Introduction
	Overview
	Characterizing Protocol Implementability
	Soundness
	Completeness

	Checking Implementability
	Symbolic Protocols
	Finite Protocols
	Symbolic Finite Protocols

	Related Work

	Implementability Modulo Network Architectures
	Overview
	Implementability modulo network architectures
	Global specification compatibility
	Channel compliance: an alphabetic abstraction of network architectures
	Characterization of generalized implementability
	Decidability and Complexity

	Related Work
	Discussion

	Synthesis
	Introduction
	Synthesizing Finite Implementations
	Synthesizing General Implementations

	Subtyping
	Introduction
	Motivation
	Deciding Protocol Verification
	Deciding Protocol Refinement
	Protocol Refinement Relative to Subset Construction
	Protocol Refinement (General Case)

	Complexity Analysis
	Related Work

	II Implementation
	Rocq Mechanization
	Introduction
	Mechanization
	Protocols as Labeled Transition Systems
	Infinite Protocol Semantics
	Constructing Canonical Implementations
	Simplification of Soundness

	Related Work

	SPROUT
	Introduction
	Overview
	Implementation
	GCLTS Eligibility
	Optimizations

	Evaluation
	Optimization efficacy
	Evaluation and comparison against Session*

	Appendix
	Bibliography

