

Program Unrolling by Abstract Interpretation for Probabilistic Proofs

By

Daniel Noah Feldan

A thesis submitted in partial fulfillment

Of the requirements for the degree of

Master of Science

Courant Institute of Mathematical Sciences

New York University

September, 2022

Patrick Cousot

Abstract
Zero-knowledge proofs are cryptographic protocols that enable one party to prove
the validity of a statement to another party while revealing no additional informa-
tion beyond the statement’s truth. These protocols have a myriad of applications,
especially within the realm of cloud computing. Zero-knowledge protocols can be
used to probabilistically verify cloud-computed program by first converting an input
program into a Boolean circuit, then using this circuit in a zero-knowledge proof
system to show the correctness of the computed output. This work focuses on en-
hancing zero-knowledge proofs for practical implementation, as many of the current
protocols are currently very computationally expensive.

The primary contribution of this thesis is a formalization of a program transfor-
mation technique that combines abstract interpretation and program unrolling to
analyze, transform and optimize a program before transforming it into a Boolean
circuit. By analyzing a program with an abstract interpreter while simultaneously
unrolling it, we achieve a significantly more precise static analysis without the need
for traditional widening and narrowing operations. This approach enables aggressive
optimization of the unrolled program, reducing both the cost of transforming the
program into a circuit, and the resulting circuit’s size.

1

Contents
1 Introduction 5

1.1 Context . 5
1.2 Objective . 6
1.3 Content . 6
1.4 Future Work . 7

2 The Language 7
2.1 Syntax . 7
2.2 Labelling . 8

3 Abstract Values 11
3.1 Variables . 11
3.2 Values . 12
3.3 Environments . 12
3.4 Evaluation . 12
3.5 States . 12
3.6 Actions . 12
3.7 Initialization . 13
3.8 Arrays . 13

4 Abstract Domain 14

5 Abstract Interpreter 15

6 Prefix Abstract Interpreter 16
6.1 Prefix Abstract Domain . 16
6.2 Prefix Abstract Functor . 17
6.3 Prefix Abstract Interpreter . 20

7 Prefix Trace Semantics 20
7.1 Traces . 20
7.2 Prefix Trace Abstract Domain . 21
7.3 Prefix Trace Semantics . 21

8 Maximal Abstract Interpreter 22
8.1 Maximal Abstraction . 22
8.2 Maximal Abstract Domain . 22

2

8.3 Maximal Abstract Interpreter . 25

9 Maximal Trace Semantics 25

10 Relational Semantics 25
10.1 Properties . 25
10.2 Relational Abstraction . 25
10.3 Relational Semantic Domain . 26

11 Boundedness Hypothesis 26

12 Program Equivalence 27

13 The Poset of Program Components 27

14 Program Optimization 28

15 Full Unrolling 28
15.1 Bounding Unrolling . 28
15.2 Unrolling Abstract Domain . 29
15.3 Unroller . 31

16 Semantic Equivalence of the Program and Its Full Unrolling 31

17 Static Program Analysis 31
17.1 Abstract Domain of a Static Analysis 32
17.2 Specification of a Static Analyzer . 32
17.3 Soundness of a Static Analysis . 32

18 Abstract Domain and Their Implementations 33
18.1 Apron and Elina . 34
18.2 Polyhedra Domain . 34
18.3 Octagonal Domain . 34
18.4 Constancy Domain . 35

19 Direct Product of Unrolling and Analysis 36

20 Reduced Product by Program Transformation 37

21 Unrolling, Analysis, and Transformation All Together 37

3

22 Program Optimizing Transformations and Corresponding Abstract
Domains 40
22.1 Communication of the Transformer with Abstract Domains 40
22.2 Evaluation of Expressions . 40
22.3 Elimination of Dead Code . 42
22.4 Changing Breakable to Compound 42

23 Future Work 42
23.1 Gadgets and Widgets . 42
23.2 Expanding Numerical Types . 42
23.3 Tracking Specific Variables . 43
23.4 Streaming . 43
23.5 Piecewise Partial Unrolling . 44

4

1 Introduction
1.1 Context
With the advent of cloud computing, remote computation has become more and
more popular. Service providers (SPs) can now give users the opportunity to rent
clusters of machines for the purpose of computing programs normally too large to
process with their own devices. This has opened up the possibility of researchers
analyzing and solving problems which normally would be prohibitively expensive.
However, this new age of remote computation comes with major pitfalls. It is very
difficult to trust that computation done by a SP is correct. Because they utilize large
amounts of interconnected devices, each of those devices is a liability and can cause
some error to occur, either because of configurations, corruption of data, hardware
issues, malicious operations, and more [20]. Furthermore, since the computation
done through a SP is done in a black box fashion, any issues that do occur are very
difficult to trace.

There have been many proposed solutions to this problem – such as repeating the
computation, auditing solutions, and ensuring the SP is using trusted hardware –
however each proposed solution has major pitfalls. A new area of research attempts
to remove these pitfalls through what is called proof-based verifiable computation. In
this model, the SP does not only return the results to the requested program, but they
also return a proof affirming that everything was done correctly. Furthermore, as long
as a user can frame their computation as a mathematical assertion, then the proof
can be constructed as a protocol similar to a Probabilistic Proof System from the field
of cryptography. In this protocol a prover, in our case the SP, creates a statement
that it wants a verifier, the user, to accept, using knowledge that will remain hidden
from the verifier. Once this protocol is established, the field of cryptography gives
us the tools to verify this proof very efficiently.

This type of Probabilistic Proof System protocol, specifically where the prover
wants to be able to keep knowledge hidden from the verifier, is known as a zero-
knowledge (ZK) proof. However, currently the process of creating a ZK protocol
is not efficient enough to be practically used. Therefore, DARPA’s “Securing In-
formation for Encrypted Verification and Evaluation” (SIEVE) wishes to enhance
zero-knowledge proofs. In this case, the input program executions are assumed to
be bounded (depending on the bounded size of the inputs or depending on the par-
ticular input x), so the program can be transformed into a finite Boolean-arithmetic
circuit, which is needed so that the computation can be checked with probabilistic
methods. Formally, we want the prover to efficiently convince the verifier that

5

“the program P, when executed on this input x, produces that output y such
that y = SrJPK(x) (with an arbitrary small probability of being unsound,
where SrJPK is the relational input-output semantics of the deterministic
program P).” 1

(1)

By the boundedness hypothesis, the certification technique involves a front-end which
compiles the program P in the language P into a finite Boolean and arithmetic cir-
cuit CJPK (with the same semantics), by unrolling of iterations and of function and
procedure calls; see [20, 17, 17, 19].

1.2 Objective
Our objective is to minimize the size of the generated circuit.

To be independent of the tool used to generate the circuit, we propose to unroll
the source program into a more efficient source program (which therefore should
yield a smaller circuit). Because the program is unrolled, its static analysis is much
more precise than the one of the original program (no extrapolation by widening
and interpolation by narrowing is necessary [2]). A transformer can then optimize
the unrolled program using the result of the static analysis in order to reduce the
unrolled program size and the size of the data that it manipulates.

The advantage of unrolling is that the analysis and optimization of the unrolled
program can be very aggressive. The inconvenient is of course the size of the unrolled
program which may not be manageable by a classical analyser2.

1.3 Content
We introduce an abstract interpretation-based methodology to formalize bounded-
ness, semantic equivalence of the original and transformed program, and the simulta-
neous unrolling, static analysis, and transformation of the program by instantiation
of a common abstract interpreter. We then discuss the usage and implementation of
several different abstract domains to be used for static analysis. Finally we suggest
a number of possible classes of optimizing transformations.

1This prover/verifier terminology is somewhat confusing in the context of program verification
and analysis.

2The size of the unrolled program is nevertheless smaller that the size of the generated Boolean
and arithmetic circuit, which is itself a severe limitation of the present-day verifiable computation
techniques.

6

1.4 Future Work
Soundness proofs remain to be done (and maybe to be checked with a proof assistant
such as Coq [9], as the style of [12]). Furthermore, the implementation created
only works with integers. Future work could allow machine integers or floats. The
transformations remain to be studied in greater details, proved correct following [6],
implemented, and experimented. These experiments should determine which pairs
of abstract domains and optimizations are effective for which classes of programs.
Notice that the implementation can only be a lightweight academic prototype with
limited scope. A professional-quality complex static analyzer like Astrée https:
//www.absint.com/astree/index.htm takes years in research and development by
a dozen of researchers and engineers, not even counting the user interface.

2 The Language
2.1 Syntax
We consider a small subset of the C programming language [13], as follows:

x, y, z[i] . . . ∈ V variables (V not empty)
A ∈ A ::= 1 | x | x[A1] | A1 op A2 arithmetic expressions

op ::= + | - | * | / binary operators
B ∈ B ::= Boolean expressions

A3

| A1 < A2
| A1 <= A2
| A1 > A2
| A1 >= A2
| A1 == A2
| A1 != A2
| B1 nand B2

E ∈ E ::= A | B expressions

3In the C language, boolean values are represented by integers – 0 representing false and all
non-zero integers representing true.

7

https://www.absint.com/astree/index.htm
https://www.absint.com/astree/index.htm

S ::= statement S ∈ S
int x ; variable initialization

| x = A ; variable assignment
| ; skip
| if (B) S conditional
| if (B) S else S
| while (B) S iteration
| while [n] (B) S bounded iteration
| break ; iteration break
| { Sl } compound statement
| {| Sl |} breakable statement

Sl ::= Sl S | ϵ statement list Sl ∈ Sl, ϵ is the empty string

P ::= Sl program P ∈ P
Pc ≜ S ∪ Sl ∪ P program component S ∈ Pc

2.2 Labelling
For discussing the semantics and correctness of programs it is necessary to introduce
labelled program points.

ℓ, ℓ1, ℓ′, . . . ∈ L labelled program point (L denumerably infinite)

We postulate the following labelling:

atJSK the program point at which execution of program component S starts;
afterJSK the program exit point after program component S, at which execution

of S is supposed to normally terminate, if ever;
escapeJSK a Boolean indicating whether or not the program component S contains

a break ; statement escaping out of that component S;
break-toJSK the program point to which execution of the program component S goes

when a break ; statement escapes out of that component S;
breaks-ofJSK the set of labels of all break ; statements that can escape out of com-

ponent S;
inJSK the set of program points inside program component S (including atJSK

but excluding afterJSK and break-toJSK);
8

labsJSK the potentially reachable program points while executing S either in or
after the statement (excluding reachability by a break) and

labxJSK the potentially reachable program points while executing program com-
ponent S at, in, or after the program component, or resulting from a
break.

A formal definition is provided in [4, chapter 4]. We change and add some defi-
nitions in order to extend the definition to the updated syntax, as well as have the
labels better reflect an unrolled program.
All rules (atJSK, afterJSK, ect...) for variable and array initialization are the same as
assignments.
Furthermore, to include break statements out of compound statements we use the
following rules:

Sl ::= Sl′ S break-toJSl′K ≜ break-toJSK ≜ break-toJSlK
S ::= if (B) St break-toJStK ≜ break-toJSK
S ::= if (B) St else Sf break-toJStK ≜ break-toJSfK ≜ break-toJSK
S ::= while (B) Sb break-toJSbK ≜ afterJSK
S ::= { Sl } break-toJSlK ≜ break-toJSK
S ::= {| Sl |} break-toJSlK ≜ afterJSK

9

Finally we change the labels themselves. Original Code

([],0) int x;
([],1) int y;
([],2) x = 0;
([],3) y = 0;
([],4) while(x<2)

{
([],5) x = x+1;
([],6) while(y=0)
([],7) y = 1;
([],8) y = 0;

}

Unrolled Code

([],0) int x;
([],1) int y;
([],2) x = 0;
([],3) y = 0;
([],4) if(x<2)

{
([1],5) x = x+1;
([1,1],6) if(y=0)
([1,1],7) y = 1;
([1],8) y=0;

}
([],4) if(x<2)

{
([2],5) x = x+1;
([1,2],6) if(y=0)
([1,2],7) y = 1;
([2],8) y=0;

}

10

To be more formal, we define a label ℓ as a tuple such that ℓ.l is an integer list
and ℓ.n is an integer. The first time a while () statement is unrolled into an if ()
statement, we append atJif () K.l with a 1. Then every future time we unroll the
same while () statement, we increment the head of the list by 1. We can see from
the example code above that since we have a nested loop, there are labels that have
2 elements, the head corresponding to the inner loop and the tail corresponding to
the outer loop. Furthermore, at the second iteration of the unrolling, the element
corresponding to the outer loop becomes 2.
Regarding ℓ.n, we provide the following definition:
Sl ::= ℓ1Sl′ ℓ2 Sℓ3 ℓ2.l = ℓ3.l; ℓ3.n = ℓ2.n+ 1

S ::= ℓ1if (B) ℓ2St ℓ1.l = ℓ2.l; ℓ2.n = ℓ1.n+ 1

S ::= ℓ1if (B) ℓ2St else ℓ3Sf ℓ1.l = ℓ2.; = ℓ3.l; ℓ2.n = ℓ1.n+ 1; ℓ3.n = afterJStK.n+ 1

S ::= ℓ1while (B) ℓ2St ℓ1.l = ℓ2.l; ℓ2.n = ℓ1.n+ 1

For all other statements not specified, labels work as defined in [4, chapter 4]

The axiomatic definition of labels leaves open different possible interpretations.
We explicitly decorate programs with labels, as in [11, sect. 4.2.3]. Notice that
labels in [35] are the program remaining to be executed when execution reaches
that program point and that this involve a one-unrolling of iterations (there are no
breaks). These labels also satisfy our labelling requirements.

3 Abstract Values
The C language has a concrete semantics that contains concrete values which it uses
when executing a program. However, in order to statically analyze a program, we
instead use an abstract semantics with abstract values. For the purposes of this
paper we will not be discussing the concrete semantics of C, and will only discuss
the abstract semantics.

3.1 Variables
We let V to be the set of variables (of the language, program, or a parameter of the
semantics; see [4]). Furthermore, we delineate two types of variables for this project.
Simple variables and arrays. Simple variables would be handled like the variables
in [4]. Arrays on the other hand, are more complicated and therefore which will be
discussed in further detail below.

11

3.2 Values
We let ν ∈ V to be the set of abstract values. These abstract values can include inte-
gers, a symbolic value, top (unknown, denoted by ⊤), or bot (unreachable, denoted
by ⊥).

3.3 Environments
We let E ≜ V → V to be the set of environments ρ ∈ E, mapping variables x ∈ V
to their abstract values ρ(x) ∈ V. The assignment of a value ν to a variable x in
environment ρ is

ρ[x← ν](x) ≜ ν

ρ[x← ν](y) ≜ ρ(y) when y ̸= x

3.4 Evaluation
We denote AJAKρ as the abstract value of arithmetic expression A in environment ρ
and BJBKρ the abstract Boolean value of Boolean expression B in environment ρ; see
[4, chapter 3]. For the purpose of this project, AJAKρ can be one of three values: ⊤
(unknown), an integer (exactly known), ⊥ (Not able to be evaluated).
To evaluate Boolean expressions, we use ternary logic. Due to the limitations of
static verification it is impossible to always precisely evaluate Boolean expressions.
However, due to abstractions, we may be able to see if a Boolean expression will
always be true (T), sometimes be true (TF) or always be false (F). This information
will be very important when exploring different optimizations that can be done to a
program.

3.5 States
States are pairs σ = ⟨ℓ, ρ⟩ ∈ S of a program label ℓ recording the program point
reached during a computation and an environment ρ recording the values of variables
at that point in the computation.

3.6 Actions
Actions (or events) a ∈ (L×V× L)∪ (L×V× E× L)∪ (L×{;}× L)∪ (L×B× L)∪
(L×¬B×L)∪(L×{break ;}×L) record the execution of initialization, assignments,
skips, true and false tests, and breaks.

12

3.7 Initialization
Initially in an environment ρ, ∀x ∈ V, ρ(x) = ⊥. Once a variable is initialized
using an int x ; statement, that variable is assigned an initial value. We use three
different possible initial values, which we use as parameters that can change:

1. A numeric initial values. Usually this is set to zero. This is equivalent to the
statement int x = C ; for some integer constant C.

2. A symbolic value. We denote this initial value with ”_0”. For example given
a variable x, it would be assigned an initial value x_0 (We reserve ’_’ as a
special character in our syntax for this purpose). These variables cannot be
assigned to any value, and are just used to delineate a symbolic initial value for
variables. This is a relational value, as the values of variables are now functions
of initial symbolic values.

3. ⊤. This means that the variables can have any initial value, but the exact
value is unknown. It also implies that if two different variables initialized to
⊤, they may not have the same initial concrete value. Furthermore, if a single
variable is initialized multiple times, it could theoretically have a different
initial concrete value at each initialization.

For simplicity, we will assume in this paper that all variables are assumed to be
initialized to a symbolic value unless explicitly stated otherwise.

3.8 Arrays
Arrays are more difficult to handle than simple variables, because we allows arrays
to be indexed through any valid arithmetic expression. This means, that given an
array x[i], where AJiKρ ≜ ⊤, we do not know which index of the array we are refer-
ring to. This can cause many issues, especially if we attempt to assign a value to an
unknown index to an array. To circumvent this issue, we employ array expansion,
or the assignment of a simple variable to each array index. This tactic is commonly
used to handle arrays during unrolling.
Practically we implement array expansion by doing the following: Initially an envi-
ronment ρ does not contain any reference to any array variables. When an array a[i]
is initialized in an environment ρ, we let n ≜ AJiKρ. If n is an integer, we add n+1
variables to the V such that {a., a.0, a.1, . . . a.(n− 1)} ∈ V. Just like ”_”, we reserve
”.” as a special character in our syntax. The first variable a. is a sentinel variable
that stores the length of the array in our environment. Each of the other variables

13

a.0, a.1, . . . a.(n− 1) correspond to a single index in the array. When n is ⊤, we only
add the single sentinel variable to the V.
Once an array has been initialized, given an expression A = a[i] in environment ρ,
and n ≜ AJiKρ:

AJAK ≜ ⊥ when n ≜ ⊥ or testJn < 0K or testJn ≥ ρ(a.)K
AJAK ≜ ⊤ when n ≜ ⊤ or ρ(a.) = ⊤

AJAK ≜ ρ(a.n) otherwise

We note that when the upper bound of the array is ⊤, then the value of any
reference to that array will be either ⊤ or ⊥.
As stated above, a big issue is when there is an array assignment to an index that
evaluates to ⊤. In this case, we simply change the value of all the elements of the
array to ⊤, as now the contents of the array cannot be precisely known.

4 Abstract Domain
An abstract domain [4, sect.4.2.3] is an algebra D defining the semantic domain P
and basic operations on elements of the semantic domain (formalizing the effect of
executing a program component), of the following type:

D ≜ ⟨P, program, stmtlist, empty, init, assign, skip, if, ife, iter,
break, compound , breakable⟩

(2)

The abstract domain D is well defined when P is a set and the abstract operations
satisfy the following conditions:

program ∈ P→ P → P 4

stmtlist ∈ Sl→ P × P → P
empty ∈ Sl→ P

init, assign, skip, break ∈ S→ P
if, iter, compound, breakable ∈ S→ P → P

ife ∈ S→ P × P → P

(A more precise specification would further restrict the type of admissible program
components for each operation, for example, empty ∈ { ϵ } → P.)

4A→ B defines the total maps from A to B, it is right associative since function application is
left associative.

14

5 Abstract Interpreter
The abstract interpreter S LDM ∈ Pc ̸→ P is a partial function specifying the abstract
semantics S LDMJSK of a program component S. It is parameterized by an abstract
domain D (2). We write S for S LDM afterwards, when the abstract domain D is
implicitly known from the context.

The abstract interpreter proceeds by structural induction on the program syntax,
applying the operations of the abstract domain to each program subcomponent.
The abstract interpreter is the common skeleton of all semantics, analyses, program
transformations, and unrolling.

• Abstract semantics of a program P ::= Sl
SJPK ≜ programJPK(SJSlK) (3)

• Abstract semantics of a statement list Sl ::= Sl′ S
SJSlK ≜ stmtlistJSlK(SJSl′K,SJSK) (4)

• Abstract semantics of an empty statement list Sl ::= ϵ

SJSlK ≜ emptyJSlK (5)

• Abstract semantics of an initialization statement S ::= int x ;
SJSK ≜ initJSK (6)

• Abstract semantics of an assignment statement S ::= x = A ;
SJSK ≜ assignJSK (7)

• Abstract semantics of a skip statement S ::= ;
SJSK ≜ skipJSK (8)

• Abstract semantics of a conditional statement S ::= if (B) St
SJSK ≜ ifJSK(SJStK) (9)

• Abstract semantics of a conditional statement S ::= if (B) St else Sf
SJSK ≜ ifeJSK(SJStK,SJSfK) (10)

• Abstract semantics of an iteration statement S ::= while (B) Sb
SJSK ≜ iterJSK(SJSbK) (11)

15

• Abstract semantics of a break statement S ::= break ;
SJSK ≜ breakJSK (12)

• Abstract semantics of a compound statement S ::= { Sl }
SJSK ≜ compoundJSK(SJSlK) (13)

• Abstract semantics of a breakable statement S ::= {| Sl |}
SJSK ≜ breakableJSK(SJSlK) (14)

The advantage of this abstract interpreter parameterized by an abstract domain is
that it can be reasoned upon by structural induction (that is induction on the pro-
gram syntax) as opposed to reasoning on graphs with usual intermediate program
representations. Moreover, it can be easily implemented with a functional program-
ming language with modules and module functors.

6 Prefix Abstract Interpreter
Given a prelude R, that is a precondition when arriving at a program component
S or just atJSK, the prefix abstract semantics SpJSK R of this program component S
returns a continuation, specifying at each program point ℓ of S, a description of the
execution from atJSK when arriving at ℓ.

The prefix abstract interpreter is classically used as the concrete semantics for
the abstract reachability analysis; see [4, chapter 42]

6.1 Prefix Abstract Domain
The prefix abstract domain Dp has type:

Dp ≜ ⟨Pp, ⊑, ⊥, ⊔, initp, assignp, skipp, testp, testp, breakp⟩ (15)

This prefix abstract domain Dp is well defined when ⟨Pp, ⊑⟩ is a poset of properties
with infimum ⊥ and the partially defined least upper bound (lub) ⊔.

emptyp, skipp, breakp ∈ Pc→ (L× L)→ Pp ↗→ Pp 5

initp ∈ Pc→ (L× V× L)→ Pp ↗→ Pp

assignp ∈ Pc→ (L× V× A× L)→ Pp ↗→ Pp

testp, testp ∈ Pc→ (L× B× L)→ Pp ↗→ Pp

16

The poset ⟨Pp, ⊑, ⊥, ⊔⟩ is extended pointwise to ⟨L→ Pp, ⊑̇, ⊥̇, ⊔̇⟩ and ⟨Pp ↗→ L→
Pp, ⊑̈, ⊥̈, ⊔̈⟩. An additional requirement may be that

the lub ⊔ is well defined both for pairs of elements of Pp and for
⊑-increasing chains.

(16)

In that case, ⟨Pp, ⊑⟩ is both a join-lattice and a complete partial order (CPO), and
this extends to the preceding pointwise definitions.

6.2 Prefix Abstract Functor
The prefix abstract functor Dp, maps a prefix abstract domain of type (15) into an
abstract domain

DpLDpM ≜ ⟨P, program, stmtlist, empty, init, assign, skip, if, ife, iter,
break, compound , breakable⟩

(17)

of type (2), defined, assuming (16), as follows:

• Abstract prefix semantic domain P ≜ Pp ↗→ L→ Pp (⟨P, ⊑̈⟩ satisfies (2))
• Abstract prefix semantics of a program ℓ0 P ℓ1 ::= ℓ0 Sl ℓ1 (where ℓ0 = atJSlK = atJPK

and ℓ1 = afterJSlK = afterJPK))
programJPK Sl R ℓ ≜ Sl (R)ℓ (18)

• Abstract prefix semantics of a statement list ℓ0 Sl ℓ2 ::= ℓ0 Sl′ ℓ1 S ℓ2 (where
ℓ0 = atJSlK = atJSl′K, ℓ1 = atJSK = afterJSl′K, and ℓ2 = afterJSK = afterJSlK) 6

stmtlistJSlK(Sl ′, S) R ℓ ≜ (ℓ ∈ labsJSl′K \ {atJSK} ? Sl ′ R ℓ (19)
| ℓ ∈ labsJSK ? S(Sl ′ R atJSK) ℓ

: ⊥)

• Abstract prefix semantics of an empty statement list ℓ0Slℓ0 ::= ℓ0 ϵ ℓ0 (where ℓ0 =
atJSlK = afterJSlK)

emptyJSlK R ℓ ≜ (ℓ = atJSlK ? emptypJℓ0, ℓ0KR : ⊥) (20)
5A

↗→ B defines the increasing/isotone maps when A and B are posets.
6(. . . ? . . . | . . . ? . . . : . . .) is the conditional expression (as in C)

17

• Abstract prefix semantics of an initialization statement ℓ0Sℓ1 ::= ℓ0 int x ;ℓ1 (where
ℓ0 = atJSK and ℓ1 = afterJSK)

initJSK R ℓ ≜ (ℓ = ℓ0 ? R (21)
| ℓ = ℓ1 ? initpJℓ0, x, ℓ1KR
: ⊥)

• Abstract prefix semantics of an assignment statement ℓ0Sℓ1 ::= ℓ0x = A ;ℓ1 (where
ℓ0 = atJSK and ℓ1 = afterJSK)

assignJSK R ℓ ≜ (ℓ = ℓ0 ? R (22)
| ℓ = ℓ1 ? assignpJℓ0, x, A, ℓ1KR
: ⊥)

• Abstract prefix semantics of a skip statement ℓ0Sℓ1 ::= ; (where ℓ0 = atJSK and
ℓ1 = afterJSK)

skipJSK R ℓ ≜ (ℓ = ℓ0 ? R | ℓ = ℓ1 ? skippJℓ0, ℓ1KR : ⊥) (23)

• Abstract prefix semantics of a conditional statement ℓ0Sℓ2 ::= ℓ0if (B) ℓtStℓ2 (where
ℓ0 = atJSK, ℓt = atJStK, and ℓ2 = afterJSK = afterJStK)

ifJSK(S) R ℓ ≜ (ℓ = ℓ0 ? R (24)
| ℓ ∈ inJStK ? S (testpJℓ0, B, ℓtK R) ℓ

| ℓ = ℓ2 ? S (testpJℓ0, B, ℓtK R) ℓ ⊔ testpJℓ0, B, ℓ2K R
: ⊥)

• Abstract prefix semantics of a conditional statement ℓ0Sℓ2 ::= ℓ0if (B) ℓtSt else ℓfSf ℓ2
(where ℓ0 = atJSK, ℓt = atJStK, ℓf = atJSfK, and ℓ2 = afterJSK = afterJStK = afterJSfK)

ifeJSK(St, Sf) R ℓ ≜ (ℓ = ℓ0 ? R (25)
| ℓ ∈ inJStK ? St (testpJℓ0, B, ℓtK R) ℓ

| ℓ ∈ inJSfK ? Sf (testpJℓ0, B, ℓfK R) ℓ

| ℓ = ℓ2 ? St (testpJℓ0, B, ℓtK R) ℓ ⊔ Sf (testpJℓ0, B, ℓfK R) ℓ

: ⊥)

18

• Abstract prefix semantics of an iteration statement ℓ0Sℓ2 ::= while ℓ0 (B) ℓ1Sb ℓ2

(where ℓ0 = atJSK = afterJSbK, ℓ1 = atJSbK, and ℓ2 = afterJSK) 7

iterJSK(Sb) R ℓ ≜ lfp⊑̇ (FpJSbK R) ℓ (26)

FpJSbK ∈ Pp → ((L→ Pp)→ (L→ Pp))

FpJSbK R X ℓ =

(ℓ = ℓ0 ? R ⊔ Sb (testpJℓ0, B, ℓ1KX(ℓ0)) ℓ

| ℓ ∈ inJSbK \ {ℓ0} ? Sb (testpJℓ0, B, ℓ1KX(ℓ0)) ℓ

| ℓ = ℓ2 ? testpJℓ0, B, ℓ2KX(ℓ0) ⊔
⊔

ℓ′∈breaks-ofJSbK
Sb (testpJℓ0, B, ℓ1KX(ℓ0)) ℓ′

: ⊥)

• Abstract prefix semantics of a break statement S ::= ℓ0 break ; (where ℓ0 = atJSK)
breakJSK R ℓ ≜ (ℓ = ℓ0 ? breakpJℓ0, break-toJSKKR : ⊥) (27)

• Abstract prefix semantics of a compound statement S ::= ℓ0{ Sl }ℓ1 (where ℓ0 =
atJSlK = atJSK and ℓ0 = afterJSK = afterJSlK)

compoundJSK(Sl) R ℓ ≜ Sl (R)ℓ (28)

• Abstract prefix semantics of a breakable statement S ::= ℓ0{| Sl |}ℓ1 (where ℓ0 =
atJSlK = atJSK and ℓ1 = afterJSK = afterJSlK)

breakableJSK(Sl) R ℓ ≜ (ℓ ∈ inJSK ? Sl (R)ℓ (29)
| ℓ = afterJSK ? Sl (R)ℓ ⊔

⊔
ℓ
′
∈breaks-ofJSbK

Sl (R)ℓ
′

: ⊥)

where
⊔
∅ = ⊥.

7lfp⊑ f denotes the ⊑-least fixpoint of an operator f on a poset ⟨P, ⊑⟩, if any; for example [16].

19

6.3 Prefix Abstract Interpreter
The prefix abstract interpreter SpLDpM ∈ Pc → Pp ↗→ L → Pp specifies the prefix
abstract semantics SpJSK of a program component S ∈ Pc. If any execution of S is
started with precondition R satisfied, and later reaches program point ℓ of S, then
SpJSK R ℓ holds at that point. This prefix abstract interpreter is generic, meaning
that it is parameterized by a prefix abstract domain Dp(15). It is the instance of the
abstract interpreter S for the abstract domain DpLDpM:

SpLDpM ≜ S LDpLDpMM (30)

It follows from this definition that

∀S ∈ Pc . ∀ℓ∈L . ℓ ̸∈ labsJSK ⇒ SpJSK R ℓ ≜ ⊥ (31)

meaning that no execution of a program component ever reaches a program point
outside this program component and therefore there is no information at such exterior
points (as denoted by ⊥ meaning empty/void/…).

To use the prefix abstract interpreter SpLDpM, we have to provide an abstract
domain Dp of type (15), as a parameter. This is what we do in the next section, to
define the prefix trace semantics.

7 Prefix Trace Semantics
The prefix trace semantics Spt is an instance of the prefix abstract interpreter Sp

(itself an instance of the abstract interpreter S , as shown by (30)).
Given a prelude R, that is execution traces arriving at a program component S or

just atJSK, the prefix trace semantics SptJSKR of this program component S returns a
continuation, specifying at each program point ℓ of S, a description of the execution
traces from atJSK when arriving at ℓ. Traces are finite sequences of states separated
by actions. The states are a pair of a program point and an environment assigning
values to variables. An action records an elementary step in the program.

7.1 Traces

Traces π ∈ T are nonempty finite sequences π = σ0

a0
−−−→ σ1

a1
−−−→ σ2 . . . σn−1

an−1
−−−−−→

σn of states separated by actions, recording an execution of length n = |π| ⩾ 0.

20

7.2 Prefix Trace Abstract Domain
The prefix trace abstract domain is

Dpt ≜ ⟨Ppt, ⊆̇, ∅̇, ∪̇, initpt, assignpt, skippt, testpt, testpt, breakpt⟩ (32)

of type (15), such that

Ppt ≜ ℘(T) ↗→ ℘(T)

initptJℓ0, x, ℓ1KR ≜ {π
a
−−→ ⟨ℓ′0, ρ⟩

ℓ′0, x, ℓ1
−−−−−−−→ ⟨ℓ1, ρ[x← x_0]⟩ |

π
a
−−→ ⟨ℓ′0, ρ⟩ ∈ R ∧ ℓ′0 = ℓ0}

assignptJℓ0, x, A, ℓ1KR ≜ {π
a
−−→ ⟨ℓ′0, ρ⟩

ℓ′0, x, A, ℓ1
−−−−−−−−−→ ⟨ℓ1, ρ[x← AJAKρ]⟩ |

π
a
−−→ ⟨ℓ′0, ρ⟩ ∈ R ∧ ℓ′0 = ℓ0}

skipptJℓ0, ℓ1KR ≜ {π
a
−−→ ⟨ℓ′0, ρ⟩

ℓ′0, ;, ℓt
−−−−−−→ ⟨ℓt, ρ⟩ | π

a
−−→ ⟨ℓ′0, ρ⟩ ∈ R ∧ ℓ′0 = ℓ0}

testptJℓ0, B, ℓtK R ≜ {π
a
−−→ ⟨ℓ′0, ρ⟩

ℓ′0, B, ℓt
−−−−−−→ ⟨ℓt, ρ⟩ |

π
a
−−→ ⟨ℓ′0, ρ⟩ ∈ R ∧ BJBKρ ∧ ℓ′0 = ℓ0}

testptJℓ0, B, ℓtK R ≜ {π
a
−−→ ⟨ℓ′0, ρ⟩

ℓ′0,¬B, ℓt
−−−−−−−−→ ⟨ℓt, ρ⟩ |

π
a
−−→ ⟨ℓ′0, ρ⟩ ∈ R ∧ ¬BJBKρ ∧ ℓ′0 = ℓ0}

breakptJℓ0, ℓ1KR ≜ {π
a
−−→ ⟨ℓ′0, ρ⟩

ℓ′0, break ;, ℓt
−−−−−−−−−−−−→ ⟨ℓt, ρ⟩ |

π
a
−−→ ⟨ℓ′0, ρ⟩ ∈ R ∧ ℓ′0 = ℓ0}

Notice that ⟨Ppt, ⊆̇⟩ is a complete lattice hence both a join-lattice and a CPO.

7.3 Prefix Trace Semantics
The finite prefix trace semantics Spt ∈ Pc → ℘(T) ↗→ L → ℘(T) (as defined in [4,
chapter 42]) is the instance of the prefix abstract interpreter Sp for the abstract
domain

Spt ≜ SpLDptM = S LDpLDptMM (33)

Notice that by composition, the finite prefix trace semantics Spt is an instance of the
abstract interpreter S . The prefix trace semantics allows us to define precisely what
we mean by bounded execution.

21

8 Maximal Abstract Interpreter
A source code program transformation is correct whenever the transformed program
is semantically equivalent to the original. The maximal abstract interpreter, which is
an abstraction of the prefix abstract interpreter will help us define which particular
formal semantics is considered when defining that equivalence.

The maximal abstract interpreter Sm ∈ Pc→ Pp ↗→ Pp×Pp is an instance of the
abstract interpreter S ∈ Pc→ P.

The maximal abstract interpreter Sm specifies the maximal abstract semantics
⟨T, B⟩ = SmJSK R of a program component S when execution of S starts with the
precondition R being satisfied and reaches the exit program point afterJSK of S, thus
terminating execution. T describes normal termination (with a test which is false
for an iteration) and B termination through a break ; for an iteration (and ⊥
otherwise).

Potential nonterminating executions are all abstracted away (so this is partial
correctness not total correctness for programs that may not terminate; partial and
total correctness coincide under the boundedness hypothesis (53)).

8.1 Maximal Abstraction
The maximal abstraction is αp→m ∈ (Pc → Pp ↗→ L → Pp)

↗→ (Pc → Pp ↗→ Pp × Pp)
such that

αp→mJSK S R ≜ ⟨SJSK R afterJSK, ⊔
ℓ∈breaks-ofJSK

SJSK R ℓ⟩ (34)

This is a Galois connection ([4, ex.11.21 and 11.20]). When applied to the prefix
abstract interpreter Sp ∈ Pc → Pp ↗→ L → Pp, it yields the maximal abstract
interpreter Sm ∈ Pc→ Pp ↗→ Pp:

SmJSK R ≜ αp→mJSK (SpJSK) R (35)

Since the prefix abstract interpreter Sp is parameterized by the abstract domain
Dp (15), the maximal abstract interpreter Sm is also parameterized by this same
abstract domain Dp.

8.2 Maximal Abstract Domain
The maximal abstract domain

22

DmLDpM ≜ ⟨Pm, programm, stmtlistm, emptym, initm, assignm, skipm, ifm,
ifem, iterm, breakm, compoundm, breakablem⟩

(36)

is defined as a function Dm of Dp, as follows:

• Abstract maximal semantic domain Pm ≜ Pp ↗→ Pp

• Abstract maximal semantics of a program ℓ0 P ℓ1 ::= ℓ0 Sl ℓ1

programmJPK Sl R ≜ let ⟨T, B⟩ = Sl (R) in ⟨programpJℓ0, ℓ1K (T), ⊥⟩ (37)

• Abstract maximal semantics of a statement list ℓ0 Sl ℓ2 ::= ℓ0 Sl′ ℓ1 S ℓ2

stmtlistmJSlK(Sl ′, S) R ≜ let ⟨T ′, B′⟩ = Sl ′(R) in
let ⟨T, B⟩ = S(T ′) in (38)
⟨T, B′ ⊔ B⟩

• Abstract maximal semantics of an empty statement list ℓ0Slℓ0 ::= ℓ0 ϵ ℓ0

emptymJSlK ≜ ⟨emptypJℓ0, ℓ0KR, ⊥⟩ (39)

• Abstract maximal semantics of an intilzation statement ℓ0Sℓ1 ::= ℓ0 int x ;ℓ1

initmJSK R ≜ ⟨initpJℓ0, x, ℓ1KR, ⊥⟩ (40)

• Abstract maximal semantics of an assignment statement ℓ0Sℓ1 ::= ℓ0x = A ;ℓ1

assignmJSK R ≜ ⟨assignpJℓ0, x, A, ℓ1KR, ⊥⟩ (41)

• Abstract maximal semantics of a skip statement ℓ0Sℓ1 ::= ;

skipmJSK R ≜ ⟨skippJℓ0, ℓ1KR, ⊥⟩ (42)

• Abstract maximal semantics of a conditional statement ℓ0Sℓ2 ::= ℓ0if (B) ℓtStℓ2

ifmJSK(S) R ≜ let ⟨T, B⟩ = S (testpJℓ0, B, ℓtK R) in (43)
⟨T ⊔ testpJℓ0, B, ℓ2K R, B⟩

23

• Abstract maximal semantics of a conditional statement ℓ0Sℓ2 ::= ℓ0if (B) ℓtSt
else ℓfSf ℓ2

ifemJSK(St, Sf) R ≜ let ⟨Tt, Bt⟩ = St (testpJℓ0, B, ℓtK R) in (44)
let ⟨Tf , Bf⟩ = Sf (testpJℓ0, B, ℓfK R) in
⟨Tt ⊔ Tf , Bt ⊔ Bf⟩

• Abstract maximal semantics of an iteration statement ℓ0Sℓ2 ::= while ℓ0 (B) ℓ1Sbℓ2

itermJSK(SJSbK) R ≜ let ⟨T, B⟩ = lfp⊑2 (FmJSbK R) in ⟨T ⊔ B, ⊥⟩ (45)

FmJSbK ∈ Pp → Pp × Pp → Pp × Pp

F JSbK R ⟨T, B⟩ = let ⟨T ′, B′⟩ = Sb (testpJℓ0, B, ℓ1KT) in
⟨testpJℓ0, B, ℓ2KT ′, B ⊔B

′⟩

where the partial order ⟨Pp × Pp, ⊑2⟩ is componentwise and there is no break in
an iteration that can break an outer loop.

• Abstract maximal semantics of a break statement S ::= ℓ0 break ; (where ℓ0 =
atJSK)

breakmJSK R ≜ ⟨⊥, breakpJℓ0, break-toJSKKR⟩ (46)

• Abstract maximal semantics of a compound statement S ::= ℓ0{ [}m]Slℓ1

compoundJSK(Sl)R ≜ let ⟨T, B⟩ = Sl (R) in (47)
⟨compoundpJℓ0, ℓ1K(T), B⟩

• Abstract maximal semantics of a breakable statement S ::= ℓ0{| Sl |}ℓ1

breakablemJSK(Sl)R ≜ let ⟨T, B⟩ = Sl (R) in (48)
⟨breakablepJℓ0, ℓ1K(T ⊔B), ⊥⟩

A breakable statement prevents internal breaks going outside this statement.
They all go after the breakable statement.

24

8.3 Maximal Abstract Interpreter
The maximal abstract interpreter Sm is the instance of the abstract interpreter S
for the abstract domain DmLDpM:

SmLDpM ≜ S LDmLDpMM
Using both structural and fixpoint induction, Sm yields the abstract version of

Hoare logic of [4, chapter 26].

9 Maximal Trace Semantics
By the boundedness hypothesis there are no infinite traces and so the maximal trace
semantics is the set of all maximal finite traces defined by the prefix trace semantics.
It follows from (34) and (a proof by calculational design similar to) [4, chapter
20] that the maximal trace semantics Smt is the instance of the maximal abstract
interpreter Sm for the abstract domain Dpt (32), the operations of which have been
defined in section 7.3.

SmtLDptM ≜ SmLDptM = S LDmLDptMM (49)

10 Relational Semantics
The relational semantics relates initial to final states of maximal computations.

10.1 Properties
Following [4, chapter 8], we represent properties by the set of elements which have this
property. We are interested in relations between initial and final values of variables,
that is properties in ℘(E× E).

10.2 Relational Abstraction
The abstraction is

αmt→r(⟨T, B⟩)R ≜ {⟨ρ, ρn⟩ | ⟨ρ, ρ0⟩ ∈ R ∧ ∃n ∈ N . ⟨ℓ0, ρ0⟩
a0
−−−→

. . .
an−1
−−−−−→ ⟨ℓn, ρn⟩ ∈ T ∪ B}

(50)

25

This is a Galois connection [4, ex.11.8]. Typically, R is the identity E on environ-
ments E, in which case αmt→r(S)E is the program input-output relation for the trace
semantics S .

The relational semantics is
SrJSKR ≜ αmt→r(SmtLDptMJSKR) (51)

It relates initial and final values of variables on maximal finite executions (so non-
termination is ignored).

10.3 Relational Semantic Domain
It follows from (50) and (a proof by calculational design similar to) [4, chapter 20]
that the relational semantics SrJSK is an instance of the maximal abstract interpreter
for the following abstract domain:

Dr ≜ ⟨℘(E× E), ⊆, ∅, ∪, initr, assignr, testr, testr⟩

such that
initrJxKR ≜ {⟨ρ, ρ′[x← x_0]⟩ | ⟨ρ, ρ′⟩ ∈ R}

assignrJx, AKR ≜ {⟨ρ, ρ′[x← AJAKρ′]⟩ | ⟨ρ, ρ′⟩ ∈ R}
testrJBK R ≜ {⟨ρ, ρ′⟩ | ⟨ρ, ρ′⟩ ∈ R ∧ BJBKρ′}
testrJBK R ≜ {⟨ρ, ρ′⟩ | ⟨ρ, ρ′⟩ ∈ R ∧ ¬BJBKρ′}

extended to the following abstraction of the prefix trace domain Dpt

DrLDrM ≜ ⟨Pr, ⊆̇2, ∅̇2, ∪̇2, programr, emptyr, initr, assignr, skipr,
testr, testr, breakr, compoundr, breakabler⟩

(52)

such that Pr ≜ ℘(E× E) ↗→ ℘(E× E), ⟨Pr, ⊆̇2, ∅̇2, ∪̇2⟩ is the pointwise extension of
the complete latice ⟨℘(E× E), ⊆̇2, ∅̇2, ∪̇2⟩ ordered componentwise, and

programrJℓ0, ℓ1KR = emptyrJℓ0, ℓ1KR
11 Boundedness Hypothesis
The boundedness hypothesis for a program component S states that there exists a
bound βJSK ∈ N+ on the length of any prefix trace of S for all possible preludes 8.
Formally, define

8A variant would require an hypothesis on input states.

26

βJSK ≜ max{n− 1 | σ0

a0
−−−→ σ1 . . . σn−1

an−1
−−−−−→ σn ∈ SptJSK R ∧ R ∈ ℘(T)}

where maxN+ =∞. The boundedness hypothesis is
S is bounded if and only if βJSK ∈ N+. (53)

Static analysis can be used to determine this value, or bound it; see for example [3,
18, 5].

12 Program Equivalence
The program transformations we consider must preserve the relational semantics,
either for all inputs

(P ≡ P′) ≜ (SrJPKE = SrJP′K)E (54)

or for some precondition R ∈ ℘(E× E)

(P ≡R P′) ≜ (SrJPKR = SrJP′KR)

or for given input data ρ ∈ E

(P ≡ρ P′) ≜ (SrJPK{⟨ρ, ρ⟩} = SrJP′K{⟨ρ, ρ⟩})
In all cases this is an equivalence relation.

13 The Poset of Program Components
We can define a partial order on program components by requiring they are seman-
tically equivalent and one is more efficient than the other:

P ⋞ P′ ≜ P ≡ P′ ∧ βJPK ⩽ βJP′K
P ≺ P′ ≜ P ≡ P′ ∧ βJPK < βJP′K

⟨Pc, ⋞⟩ is a poset (and ⟨Pc, ≺⟩ is a strict one). This poset has no infinite strictly
decreasing chain, so any subset has a minimum. In general we reason on a given
program P and we are interested in exploring the downset ↓⋞JPK of equivalent and
more efficient programs. ↓⋞JPK is a finite total order hence both a join-lattice and a
CPO.

27

14 Program Optimization
At this point, we have formalized our program optimization objective. Given a
program P, transform it into an optimized program P′ ∈ min⋞{P′′ | P′′ ⋞ P} which is
equivalent with a minimal cost that is the infimum of ↓⋞JPK. Because the problem is
not decidable, we must resort to a sound but maybe not optimal solution P′ ∈ ↓⋞JPK.
We compute P′ by unrolling program P. Then we discuss how to optimize the unrolled
program P′, and finally how to unroll and optimize simultaneously.

Note that the above formalization covers program size optimization. It can be
extended to include data size by defining the size of data in an environment. The
objective is to minimize the pair of program and data sizes. The ideal measure would
be the size of the generated circuit but it is difficult to relate it to these program and
data sizes.

15 Full Unrolling
We formalize full program unrolling as an instance of the abstract interpreter. Note
that we unroll a program into another program, but other transformations such as
SSA [15], which is an abstract interpretation, could be equally considered.

15.1 Bounding Unrolling
We augment the language with an error; statement in case the execution of the un-
rolled program Pu for some input requires more than βJPK steps, so that the unrolled
program will be prematurely terminated by executing the error; statement.

S ::= statement S ∈ Se

int x ; initilization
| x = A ; assignment
| ; skip
| if (B) S conditional
| if (B) S else S
| while (B) S iteration
| break ; iteration break
| { Sl } compound statement
| {| Sl |} breakable statement
| error; erroneous termination of an overthrown computation

28

Sl ::= Sl S | ϵ statement list Sl ∈ Sle, ϵ is the empty string

Pe ::= Sl program Pe ∈ Pe

For each loop we assume that a maximal number βJwhile (B) SK of iterations is
given, otherwise the loop is terminated in error. As stated in section 11, this can be
over approximated by a static analysis.

15.2 Unrolling Abstract Domain
Program unrolling is the instance of the abstract interpreter S for the unrolling
abstract domain

Du ≜ ⟨Pu, programu, stmtlistu, emptyu, initu, assignu, skipu, ifu,
ifeu, iteru, breaku, compoundu, breakableu⟩

(55)

defined as follows:

• Unrolling semantics domain Pu ≜ Pe × Z, partially ordered by ⟨P, n⟩ ⊑u ⟨P′,
m⟩ ≜ P ≡ P′ ∧ n ⩽ m.

• Unrolling semantics of a program P ::= Sl
programuJPK(Sl)⟨P, n⟩ ≜ let ⟨Sl′, m⟩ = Sl ⟨Sl, n⟩ in (56)

(m < 0 ? ⟨Sl′ error;, m⟩ : ⟨Sl′, m⟩)

• Unrolling semantics of a statement list Sl ::= Sl′ S
stmtlistuJSlK(Sl ′, S)⟨Sl, n⟩ ≜ let ⟨Sl′′, m⟩ = Sl ′⟨Sl′, n⟩ in (57)

let ⟨S′′, p⟩ = S⟨S, m⟩ in
⟨Sl′′ S′′, p⟩

• Unrolling semantics of an empty statement list Sl ::= ϵ

emptyuJSlK⟨Sl, n⟩ ≜ ⟨Sl, n⟩ (no computation is involved) (58)

• Unrolling semantics of an initialization statement S ::= int x ;
inituJSK⟨S, n⟩ ≜ ⟨S, n− 1⟩ (59)

• Unrolling semantics of an assignment statement S ::= x = A ;
assignuJSK⟨S, n⟩ ≜ ⟨S, n− 1⟩9 (60)

9Instead of a cost of 1, we can assign reflecting the complexity of the arithmetic expression A so
as to ensure that optimizations reduce the cost of evaluating this expression A.

29

• Unrolling semantics of a skip statement S ::= ;
skipuJSK⟨S, n⟩ ≜ ⟨S, n− 1⟩ (a NOP is generated) (61)

• Unrolling semantics of a conditional statement S ::= if (B) St
ifuJSK(St)⟨S, n⟩ ≜ let ⟨S′t, nt⟩ = St⟨St, n− 1⟩10 in (62)

⟨if (B) S′t, nt⟩

• Unrolling semantics of a conditional statement S ::= if (B) St else Sf
ifeuJSK(St, Sf)⟨S, n⟩ ≜ let ⟨S′t, nt⟩ = St⟨St, n− 1⟩ (63)

and ⟨S′f , nf⟩ = Sf⟨St, n− 1⟩ in
⟨if (B) S′t else S′f , max(nt, nf)⟩

• Unrolling semantics of an iteration statement S ::= while (B) Sb
FuJSK(Sb)⟨S, k⟩ ≜ ((k ⩽ 0) ? ⟨error;, 0⟩

: let ⟨S′b, m⟩ = Sb⟨Sb, k⟩ in
let ⟨S′, p⟩ = FuJSK(Sb)⟨S, m⟩ in
⟨if (B) {| S′b S′ |}, p− 1⟩)

iteruJSbK(Sb)⟨S, n⟩ ≜ let ⟨S′′, p⟩ = FuJSK(Sb)⟨S, βJSK⟩ in (64)
⟨S′′, n− (βJSK− p)⟩

(where βJSK ∈ Pc ̸→ N specifies a sound bound (53) on the number of steps in
the loop S which deduced from the global counter n)

• Unrolling semantics of a break statement S ::= break ;
breakJSK⟨S, n⟩ ≜ ⟨S, n− 1⟩ (65)

• Unrolling semantics of a compound statement S ::= { Sl }
compoundJSK(Sl)⟨S, n⟩ ≜ let ⟨Sl′, m⟩ = Sl (⟨Sl, n⟩) in (66)

⟨{ Sl′ }, m⟩

• Unrolling semantics of a breakable statement S ::= {| Sl |}
breakableJSK(Sl)⟨S, n⟩ ≜ let ⟨Sl′, m⟩ = Sl (⟨Sl, n⟩) in (67)

⟨{| Sl′ |}, m⟩
10Again the cost of 1 would better be refined to better reflect the complexity of evaluating B.

30

15.3 Unroller
The unrolling of a program component is

SuJPK ≜ S LDuMJPK (68)

The unrolling of a program P with bound β on the program and loops is SuJPK(⟨P,
βJPK⟩).
16 Semantic Equivalence of the Program and Its

Full Unrolling
The guarantee provided by the unrolling is that the program and its unrolling have
the same abstract prefix semantics:

∀S ∈ Pc . ∀n ∈ N+ . (⟨Su, m⟩ = SuJSK⟨S, n⟩ ∧m ⩾ 0)⇒ SpLDpMJSK = SpLDpMJSuK
The proof is by structural induction on the program component S.

So, by instantiation, S and Su have the same prefix trace semantics (33), and so,
by abstraction (35) the same maximal abstract semantics and by instantiation (49),
the same maximal trace semantics. It follows, by abstraction (51), that they have
the same relational semantics and so, by definition (54) of equivalence, that they are
equivalent Su ≡ S. In conclusion the informal requirement (1) is satisfied.

17 Static Program Analysis
Program analysis is an instance of an abstract interpreter for a reduced product [4,
chapter 36] of abstract domains. For example, Astrée [8] has more than 50 abstract
domains, that can be chosen on demand (e.g. filters for control/command programs,
quadruples for spatial programs, etc) with an efficient approximation of the reduced
product [7]. For this project we chose to use three different numerical domains,
namely the polyhedral domain, the octagonal domain, and the constancy domain.
The polyhedral and octagonal domains where built using the Apron [10] and Elina
[DBLP:journals/pacmpl/SinghPV18] libraries, while the constancy domain was
built specifically for this project.

31

17.1 Abstract Domain of a Static Analysis
A static analysis is fully specified by an abstract domain

Da ≜ ⟨Pa, ⊑a, ⊥a, ⊤a, ⊔a, inita, assigna, testa11, testa⟩ (69)

This abstract domain is in general complex and decomposed into many subdo-
mains composed, for example by a reduced product, whose effect is to present the
composition of these subdomains in the form (70).

The functor Da:

DaLDaM ≜ ⟨Pa, ⊑a, ⊥a, ⊤a, ⊔a, programa, emptya, inita, assigna,
skipa, testa, testa, breaka, compounda, breakablea⟩

(70)

defined (similarly to Dr at (52)) as:

programaJℓ0, ℓ1KR = emptyaJℓ0, ℓ1KR = skipaJℓ0, ℓ1KR = breakaJℓ0, ℓ1KR
= compoundaJℓ0, ℓ1KR = breakableaJℓ0, ℓ1KR ≜ R

initaJℓ0, x, ℓ1KR ≜ initaJxKR
assignaJℓ0, x, A, ℓ1KR ≜ assignaJx, AKR

testaJℓ0, B, ℓtK R ≜ testaJBK R
testaJℓ0, B, ℓtK R ≜ testaJBK R

provides an abstract domain of the same type as Dp in (15), and so, combined with
the functor Dm yields a static analyzer for properties Pa by instantiation of the
abstract interpreter.

17.2 Specification of a Static Analyzer

SaLDaM ≜ SmLDaLDaMM = S LDmLDaLDaMMM
17.3 Soundness of a Static Analysis
If the abstract domain defining the program semantics for a given abstract interpreter
Ss is

11We note that for static analysis, we use ternary logic to evaluate Boolean expressions and
therefore we augment test from having a type of Pc→ (L× B× L)→ Pp ↗→ Pp to having a type of
Pc→ (L× B× L)→ Pp ↗→ Pp ∗ T, where T = {t, f, tf}

32

Ds ≜ ⟨Ps, ⊑s, ⊥s, ⊤s, ⊔s, inits, assigns, tests, tests⟩ (71)
SsLDsM ≜ SmLDsLDsMM = S LDmLDsLDsMMM

and the abstract domain defining the program analysis for this same abstract inter-
preter Sa is (71) then, given an increasing concretization function:

γ ∈ Pa ↗→ Ps,

the following pointwise local soundness conditions:

initsJ int x ;K ◦ γ ⊑̇s
γ ◦ initaJ int x ;K

assignsJx = A ;K ◦ γ ⊑̇s
γ ◦ assignaJx = A ;K

testpJBK ◦ γ ⊑̇s
γ ◦ testpJBK

testpJBK ◦ γ ⊑̇s
γ ◦ testpJBK

ensure that the analysis is sound with respect to the semantics, that is:

∀S ∈ Pc . SsLDsMJSK ⊑̇s
γ(SaLDaMJSK)

(see the proof in [4, chapter 21]). It follows that any program component property
proved in the abstract is valid, after concretization, in the concrete.

Classical static analysis aims at inferring invariants at each program point by
abstraction of the prefix trace semantics, in which case SsLDsM is the prefix trace
semantics SptLDptM.

If any of these classical static analyzes is applied to the unrolled program, it will
produce (under the boundedness hypothesis) refined results because no extrapolation
(widening) / interpolation (narrowing) is necessary [4, chapter 34].

18 Abstract Domain and Their Implementations
One of the major benefits of using an abstract interpreter is that it is very modular.
One can develop many different abstract domains that they can parameterize the
abstract interpreter with in order to fit their needs. As stated above, for this project,
we have implemented three different abstract domains: A polyhedral domain, an
octagonal domain, and a constancy domain. Below we will discuss each one in more
detail, as well as go over some implementation details.

33

18.1 Apron and Elina
To implement the polyhedra and octagonal domains, we heavily utilize the Apron
[10] and Elina [DBLP:journals/pacmpl/SinghPV18] libraries in OCaml. While
these libraries are very efficient and useful, they do have some limitations. For
example, they do not support the ̸= operator, so we replace all statements of the form
B1 ̸= B2 with the equivalent Boolean expressions B1 < B2∨B1 > B2. Furthermore, the
provided polyhedra domain only allows loose comparisons, and therefore we soundly
approximate > and < with ≥ and ≤ respectively. Lastly, we chose to not support
Boolean statements with nand in these two domains, as it was difficult to implement
within the confines of the libraries. In future work, if we decide to implement these
domains from scratch, we will support Boolean statements that contain nand.

18.2 Polyhedra Domain
The polyhedra domain is one which uses the tools of static analysis in order to infer
linear relationships between variables in the program. To implement this domain,
we used Elina’s polyhedral domain, which interfaces with the Apron library. For this
domain, instead of having an environment which is a mapping of variables to values,
it abstracts the invariant of a program into a finite set of linear constraints of the form
Ax ≤ b, or a polyhedra, and stores them in its environment. Then, using these linear
constraints, the domain can infer values and perform the required abstract functions
like ⊔, assign, and test. This domain is very popular as a numerical abstract domain,
as it is very robust. However, the domain is very computationally expensive, with
the number of constraints growing exponentially as we analyze the program. Due to
this issue, and the other polyhedral domain specific problems that stem from using
the Apron library, we stopped using this domain.

18.3 Octagonal Domain
The octagonal domain is a subset of the polyhedral domain, where each invariant
is of the form ±x ± y ≤ c, where x and y are variables and c is a constant. This
domain is referred to as an octagon, because linear inequalities of this form will have
at most eight edges on a 2-dimensional plane. While not as precise as a general
polyhedral domain, an octagonal domain can be built to run in polynomial time.
For the implementation of this domain we again use the Elina library.
The octagon domain also uses a set of invariants instead of a mapping of values for
its environment. This allows great flexibility when testing inequalities as even if an
exact value of a variable is not known, there is still information known about the

34

possible values of a variable. Furthermore, in certain cases, we can even use the
linear relationships to infer the exact value of a variable.

One issue that arose from using the Apron library is that the function that tests
a given Boolean expression will only return true if for all possible assignments of the
variables in the statement the Boolean expressions is true. In every other case, the
function will return false. This is an issue because if there is a possible assignment of
variables which causes the statement to be false, even if there may also be a possible
assignment which causes the statement to be true, the function will return false.
This issue can clearly be seen in the code below.

([],0) int x; //[| T |]
([],1) if(x<10) { //[|-x+9.>=0|]
([],2) if(x>5){ //[|x-6.>=0; -x+9.>=0|]
([],4) x=6;

}
}

At the label ([],2), we know that [|-x+9.>=0|]. Therefore we know an assignment
of x=6...9 would satisfy the inequality of x>5. However, due to how the Apron li-
brary was implemented, for reasons that are correct in other usages of the library,
calling the function to see if x>5 is satisfiable would return false. This becomes
important for specific types of program simplifications which we conduct.
We circumvent this issue using the ternary logic discussed above. For a given Boolean
statement B, if we test both B and !B, we can determine the ternary result of the
expressions. If B is always satisfiable, then it is known that B is true for all assign-
ments of variables and therefore testJBK = T . If !B is always satisfiable, then it is
known that B is never true for any assignment of variables, and therefore testJBK = F .
Lastly if both B and !B are satisfiable for only some assignments of the variables, but
not for all assignments, then testJBK = TF

18.4 Constancy Domain
The constancy domain is a domain in which each variable is mapped to either Bot
(unreachable), an integer value, or Top (unknown). Unlike the other two domains we
used, no partial information about the value of a variable is stored in the environment
– Either the exact value of the variable is known or it is not. This makes the domain
very lightweight and fast, as there is no overhead from having a plethora of invariants.
The downside of this domain is that it is very imprecise as you lose any relation. For

35

example, consider the following code:

([],0) int x;
([],1) int y;
([],2) x = 1;
([],3) if(y<2) {
([],4) if(y<3){
([],5) x=1;

}
([],6) else {

x=2;
}

}

Since if y < 2 would imply that y < 3 it is trivial for a user, and a more complex
domain, to see that at the termination of the program ρ(x) should be equal to 1.
However when using the constancy domain, at program termination ρ(x) = ⊤ as
testJy < 2KR = R, meaning no information is learned after a test operation.
While a lot of information is lost in the abstraction, there are some optimizations
one can make. Consider the following example:

([],0) int x;
([],1) int y;
([],2) x = 0;
([],3) y = y * x;

Normally at program termination ρ(y) = ⊤. However, since we know that any
number multiplied by 0 is 0, we known that ρ(y) = 0. A similar optimization can be
done for dividing by 0, where the evaluation of an expressions which has division by
0 is ⊥, regardless of the value of anything else in the expression.

19 Direct Product of Unrolling and Analysis
The unrolling and static analysis are both instance of the abstract interpreter, respec-
tively for abstract domain Du and DmLDaLDaMM. Therefore, instead of first unrolling
and then analyzing (and then transforming), we can perform both simultaneously
thanks to a direct product Du × DmLDaLDaMM of the abstract domains [4, definition
36.1]. This does not brings in any gain in precision and performance, but is an
essential step to be able to perform reductions [4, chapter 29].

36

20 Reduced Product by Program Transformation
The unrolling domain Du cannot improve the static analysis domain DmLDaLDaMM
because the analysis is performed (simultaneously in the direct product) on the
already unrolled prefix of the unrolled program.

However, the static analysis domain DmLDaLDaMM can improve the unrolling do-
main Du by performing a program transformation, as discussed in section 14. It fol-
lows that the direct product can be replaced by the reduced product Du⊗DmLDaLDaMM
of the two domains [4, definition 36.7]. As shown by [4, theorem 36.23], the reduced
product is obtained by applying a meaning-preserving reduction operator r to the
elements of the direct product. However, because the optimal program transforma-
tion problem is undecidable, the reduced product is not effectively computable, and
so neither is this reduction operator r. The solution is to define a weaker reduction
operator t ∈ (Du × DmLDaLDaMM) → (Du × DmLDaLDaMM) which, given a statement
S ∈ S and an abstract property P ∈ Pa, returns an equivalent and more efficient
transformed statement

S′ = t(S, P)

such that S′ ⋞ S and preferably S′ ≺ S. Notice that in general, although S′ ≡ S
the property P ′ = SaLDaMJS′K of the transformed program may be different from
P = SaLDaMJSK. So the reduction operator can be defined as

t(S, P) = let S′ = t(S, P) in
⟨S′, P ⊓a SaLDaMJS′K⟩12

It follows that the pair ⟨S, P ⟩ can be replaced by t(S, P). Observe that if t is
sound, increasing, and reductive then, by [4, theorem 29.2], the transformation can
be improved by considering ť(S, P) ≜ gfp⊑2

⟨S, P ⟩ t where ⊑2 is the componentwise partial
order on the product domain Du×DmLDaLDaMM. Since the iterations to compute the
greatest fixpoint might be costly, [4, corollary 29.3] shows that it is sound, but less
precise, to stop at any iterate, including doing none. Applied at the program level,
ť essentially consists in iterating the abstract interpreter.

21 Unrolling, Analysis, and Transformation All
Together

The static analysis and transformation can be done during the unrolling. We consider
a static analysis which, given a precondition, returns the pair of a postcondition for

12⟨S′, P ⟩ is also sound, although less precise.

37

normal termination and for termination by a break ; (hence over approximating the
relational analysis of section 10). It is also possible to add an invariant based on a
reachability analysis [4, chapter 47] for the prefix trace semantics of section 7.3 and
moreover, to return a refined precondition, using a backward analysis [4, chapter 50]
or an iterated combination of a forward and backward analysis [4, chapter 51].

The reductive transformation tJSK of a program component S, take as parame-
ters its transformed components, the precondition and the pair of termination and
break postcondition resulting from the analysis, and returns the optimize program
component with the postconditions.

• Unrolling, analysis, and transformation semantics domain Puat ≜ (Pe × Z) →
Pa → ((Pe × Z)× (Pa × Pa)), partially ordered componentwise.

• Unrolling, analysis, and transformation semantics of a program P ::= Sl
programuatJPK⟨P, n⟩R ≜ let ⟨⟨Sl′, m⟩, ⟨T, B⟩⟩ = Sl ⟨Sl, n⟩ in (72)

(m < 0 ? tJPK(⟨Sl′ error;, m⟩,R, ⟨⊥, B⟩)
: tJPK(⟨Sl′, m⟩,R, ⟨T, B⟩))

• Unrolling, analysis, and transformation semantics of a statement list Sl ::= Sl′ S
stmtlistuatJSlK(Sl ′, S)⟨Sl, n⟩R ≜ (73)

let ⟨⟨Sl′′, m⟩, ⟨T ′, B′⟩⟩ = Sl ′⟨Sl′, n− 1⟩R in
let ⟨⟨S′′, p⟩, ⟨T ′′, B′′⟩⟩ = S⟨S, m⟩T ′ in

tJSlK(⟨Sl′′ S′′, p⟩,R, ⟨T ′′, B′ ⊔B′′⟩)

• Unrolling, analysis, and transformation semantics of an empty statement list
Sl ::= ϵ

emptyuatJSlK⟨Sl, n⟩R ≜ ⟨⟨Sl, n⟩, ⟨R, ⊥⟩⟩ (74)

• Unrolling, analysis, and transformation semantics of an initilization statement
S ::= int x ;

inituatJSK⟨S, n⟩R ≜ tJSK(⟨S, n− 1⟩,R, ⟨initaJxKR, ⊥⟩) (75)

• Unrolling, analysis, and transformation semantics of an assignment statement
S ::= x = A ;

assignuatJSK⟨S, n⟩R ≜ tJSK(⟨S, n− 1⟩,R, ⟨assignaJx, AKR, ⊥⟩) (76)

• Unrolling, analysis, and transformation semantics of a skip statement S ::= ;
skipuatJSK⟨S, n⟩R ≜ tJSK(⟨S, n− 1⟩,R, ⟨R, ⊥⟩) (77)

38

• Unrolling, analysis, and transformation semantics of a conditional statement S ::=
if (B) St

ifuatJSK(St)⟨S, n⟩R ≜ let ⟨⟨S′t, nt⟩, T , B⟩ = St⟨St, n⟩(testaJBK R) in (78)
tJSK(⟨if (B) S′t, nt⟩,R, ⟨T ⊔ testpJBK R, B⟩)

• Unrolling, analysis, and transformation semantics of a conditional statement S ::=
if (B) St else Sf

ifeuatJSK(St, Sf)⟨S, n⟩R ≜ (79)
let ⟨⟨S′t, nt⟩, Tt, Bt⟩ = St⟨St, n⟩(testaJBK R)

and ⟨⟨S′f , nf⟩, Tf , Bf⟩ = Sf⟨Sf , n⟩(testaJBK R) in
tJSK(⟨if (B) S′t else S′f , max(nt, nf)⟩,R, ⟨Tt ⊔ Tf , Bt ⊔ Bf⟩)

• Unrolling, analysis, and transformation semantics of an iteration statement S ::=
while (B) Sb

FuatJSK(Sb)⟨S, k⟩R ≜ ((k ⩽ 0) ? ⟨error;, 0⟩
: let ⟨⟨S′b, m⟩, ⟨Tb, Bb⟩⟩ = Sb⟨Sb, k⟩R in

let ⟨⟨S′, p⟩, ⟨T ′, B′⟩⟩ = FuatJSK(Sb)⟨S, m⟩Tb in
tJSK(⟨if (B) {| S′b S′ |}, p⟩,R, ⟨T ′, Bb ⊔ B′⟩))

iteruatJSbK(Sb)⟨S, n⟩R ≜ let ⟨⟨S′′, p⟩, ⟨T, B⟩⟩ = FuatJSK(Sb)⟨S, βJSK⟩R in
⟨⟨S′′, n− (βJSK− p)⟩, ⟨T, B⟩⟩ (80)

(where βJ∈KPc ̸→ N specifies a sound bound (53) on the number of steps in the
loop which deducted from the global counter n)

• Unrolling, analysis, and transformation semantics of a break statement S ::=
break ;

breakJSK⟨S, n⟩R ≜ tJSK(⟨S, n− 1⟩,R, ⟨⊥, R⟩) (81)

• Unrolling, analysis, and transformation semantics of a compound statement S ::=
{ Sl }

compoundJSK(Sl)⟨S, n⟩R ≜ (82)
let ⟨⟨Sl′, m⟩, ⟨T ′, B′⟩⟩ = Sl (⟨Sl, n⟩)R in

tJSK(⟨{ Sl′ }, m⟩,R, ⟨T ′, B′⟩)

• Unrolling, analysis, and transformation semantics of a breakable statement S ::=
{| Sl |}

39

breakableJSK(Sl)⟨S, n⟩R ≜ (83)
let ⟨⟨Sl′, m⟩, ⟨T ′, B′⟩⟩ = Sl (⟨Sl, n⟩)R in

tJSK(⟨{| Sl′ |}, m⟩,R, ⟨T ′ ⊔B′, ⊥⟩)

22 Program Optimizing Transformations and Cor-
responding Abstract Domains

The objective of the transformer reduction tJSK(⟨S′, m⟩,R, ⟨T, B⟩) is, knowing the
transformed components S′ of the program component S, as well as the precondition
R and pair ⟨T, B⟩ of postconditions on normal termination T and termination by
a break B13 must return a semantically equivalent transformed program component
S′′ of S which is equivalent S′′ ≡ S and more efficient either in the size of the code
(and ultimately of the corresponding circuit) and the necessary memory. Because
the problem is undecidable, the solution is necessarily an approximate but sound
compromise.

It is extremely difficult to provide a transformer reduction independently of the
application domain of the program. We review a few classical abstract domains
and the corresponding transformations. They subsume partial evaluation, dead code
elimination, and so forth [11].

22.1 Communication of the Transformer with Abstract Do-
mains

In general the abstract domain Pa is the reduced product of many elementary abstract
domains. In order to avoid modifying existing domains or the transformer each time
an abstract domain is introduced or withdrawn, one can use a common interface,
called a communication channel [7, 1], between abstract domains themselves and
with the transformer; see [4, sction 36.4.6].

22.2 Evaluation of Expressions
A major form of simplification that is done in this project is the simplification of
expressions (both arithmetic and Boolean) so that they are more easily evaluated at

13and maybe other analyzes as already mentioned.

40

runtime. Given an expression A we execute the following steps: 14 15

1. For each variable x, where ρ(x) is an integer, we replace all instances of that
variable with ρ(x). This includes all array indices as well.

2. We recursively distribute all negative signs, so that there is no subtractions,
only addition between negative numbers or negative constants. For example
the expression x− (y+ z+1) would become x+((−1y)+ (−1z)+ (−1)). This
is done so that the expressions become associative and commutative, allowing
us to freely move each addend in the expression. We note that we would not
be able to do this with the float data type, as it is not associative.

3. Once all the addends are able to be freely moved around in an expression, we
combine all equal addends. To do this, we create a hashmap, where the keys
are arithmetic expressions and the values are how many times those expressions
appear as an addend.
We note that if an arithmetic expression is a product not between a constant
and a variable, then we recursively simplify each factor of the product such
that they are in their simplest form, and then we take the entire multiplication
as a single addend.

4. We sum all constant values in the expression.

5. Using the hashmap generated in step 3 and the summation of the constants in
step 4, we rebuild a simplified expression in which all repeated expressions are
combined, and all constants are summed. For example x+3x+5+x∗y+x∗y+3
would simplify to the expression 4x+ 2x ∗ y+ 8.

6. We convert all negative coefficients back into subtraction operations. For ex-
ample, x + (−1 ∗ y) would become x − y. While this step provides very little
actual code optimization, it makes the expressions much easier to read.

7. If the expression is a Boolean expression, and if all values in the expression are
constants, we evaluate the expression; We replace the expression with 1 if it
evaluates to true and 0 if it is false.

14We note that practically some of these are done in parallel with one another, how ever the
relative order of these steps are kept (Meaning step 1 and 2 may happen in parallel, but step 2 will
not happen before step 1).

15Since array indices are themselves an expression, we first recursively evaluate each array index
in an expression before we attempt to evaluate an expression itself.

41

22.3 Elimination of Dead Code
Dead code is code which is never run. This can be because it is part of a conditional
statement which is never met, or it is after a break statement. Using ternary logic to
evaluate Boolean statements, we are able to statically check which branches condition
for a conditional will never be met for any assignment of initial values for a variable,
and then remove those branches. In a similar vein, we can also check which branches
have conditions that are always met, and remove everything but the body of that
branch, as there is no need to test an expression which will always be true. If a
condition is met for some initial values, but not all initial values, then we leave the
conditional statement as is.
In addition to the removal of dead code, we also remove unnecessary code. This
includes all skip statements, and empty compound or breakable statements.

22.4 Changing Breakable to Compound
As stated above, while unrolling we change all while (B) S to the following form:
if (B) {| S while (B) S |}. However, if escapeJSK = F , then there is no need to use
a breakable statement; a compound statement would work. Therefore, we make the
small optimization that if a we have a breakable statement of the form {| S |} and
escapeJSK = F , we convert the breakable statement to a compound statement.

23 Future Work
23.1 Gadgets and Widgets
Gadgets and widgets replace a code statement by a more efficient check of this
computation of the code specification rather than actually executing the statement.
So it is not the mere replacement of a computation by another one, as we have
considered in this work. We think that the present framework can be extended to
replace a computation by a check of their result and to automate the insertion of
gadgets and widgets, guided by an analysis, at least the simplest ones.

23.2 Expanding Numerical Types
Currently the unroller and transformer only work with integers. However it is an aim
to allow other types such as machine integers and floats. This becomes complicated
because while floats are sound in intervals, they are not always sound when using an

42

octagonal domain. Furthermore, as stated above, the process in which we simplify the
code does not work with floats as they are not associative under addition. Therefore,
it would require some retooling of the domain to make all approximations sound.

23.3 Tracking Specific Variables
In many programs, only a small number of variables contain useful information as
many variables are used as sentinel values or loop counters. Therefore we will suggest
that we remove all assignments to variables which do not effect the tracked variables.
For example, consider that we are only interested in x in the following code:

([],0) int x;
([],1) int y;
([],2) y = 0;
([],3) while(y<100){
([],4) x=x+1;
([],5) y=y+1;

}

After being unrolled and optimized, the code would look like:

([],0) int x;
([],1) int y;
([],2) y = 0;
([1],3) x=x+1;
([1],4) y=1;
([2],3) x=x+1;
([2],4) y=2;
...
([100],3) x=x+1;
([100],4) y=100;

In this code there are a lot of extraneous assignments to y. Therefore we propose the
remove all assignments to y, as they are not needed, shrinking the size of the code
in half.

23.4 Streaming
Observe that, in full generality, the optimizing transformation t at (72) is global
and performed on the whole unrolled program. This may be way too large to be

43

managed efficiently. In that case, we could keep the optimizing transformation t at
assignments (76), skips (77), tests (78), (79), and (80), and breaks (81) only. Then
theoretically the unrolled program can be streamed out, thus considerably reducing
memory consumption.

23.5 Piecewise Partial Unrolling
Once unrolled, it might be that the program is much too large to be accepted by
compilers. Usually, a compiler transforms a programs into an intermediate represen-
tation, which is analyzed and transformed into the output code. In that case, the
compiler will fail in combinatorial explosion because the unrolled input is much too
large.

The solution that we envision is piecewise unrolling into a sequence of loop iter-
ations where successive iterations correspond to different code optimizations. Con-
sider for example the unrolling 1000 times of for (i = 1; i<n; i=i+1) S where
an analysis has determined that n ⩾ 500 and S has no break and does not modify i.
Then a partial enrolling could be

for (i = 1; i<500; i=i+1) S
for (i = 500; i<min(n,1000); i=i+1) S
if (n>1000) error;

Trace partitioning can be used to decide on such decompositions [14].

Acknowledgements

This material is based upon work supported by DARPA under Agreement No.
HR00112020022. Any opinions, findings and conclusions or recommendations ex-
pressed in this material are those of the author(s) and do not necessarily reflect the
views of the United States Government or DARPA.

References
[1] Marc Chevalier. “Proving the Security of Software–Intensive Embedded Sys-

tems by Abstract Interpretation.(Analyse de la sécurité de systèmes critiques
embarqués à forte composante logicielle par interprétation abstraite)”. PhD
thesis. Université PSL – Paris, Nov. 2020.

44

[2] Maria Christakis and Valentin Wüstholz. “Bounded Abstract Interpretation”.
In: SAS. Vol. 9837. Lecture Notes in Computer Science. Springer, 2016, pp. 105–
125.

[3] Nathanaël Courant and Caterina Urban. “Precise Widening Operators for
Proving Termination by Abstract Interpretation”. In: TACAS (1). Vol. 10205.
Lecture Notes in Computer Science. 2017, pp. 136–152.

[4] Patrick Cousot. Principles of Abstract Interpretation. MIT Press, 2021.
[5] Patrick Cousot and Radhia Cousot. “An abstract interpretation framework for

termination”. In: POPL. ACM, 2012, pp. 245–258.
[6] Patrick Cousot and Radhia Cousot. “Systematic design of program transforma-

tion frameworks by abstract interpretation”. In: POPL. ACM, 2002, pp. 178–
190.

[7] Patrick Cousot et al. “Combination of Abstractions in the ASTRÉE Static
Analyzer”. In: ASIAN. Vol. 4435. Lecture Notes in Computer Science. Springer,
2006, pp. 272–300.

[8] Patrick Cousot et al. “Why does Astrée scale up?” In: Formal Methods Syst.
Des. 35.3 (2009), pp. 229–264.

[9] Gérard P. Huet and Hugo Herbelin. “30 Years of Research and Development
Around Coq”. In: POPL. ACM, 2014, pp. 249–250.

[10] Bertrand Jeannet and Antoine Miné. “Apron: A Library of Numerical Abstract
Domains for Static Analysis”. In: CAV. Vol. 5643. Lecture Notes in Computer
Science. Springer, 2009, pp. 661–667.

[11] Neil D. Jones. “An Introduction to Partial Evaluation”. In: ACM Comput.
Surv. 28.3 (1996), pp. 480–503.

[12] Jacques–Henri Jourdan et al. “A Formally–Verified C Static Analyzer”. In:
POPL. ACM, 2015, pp. 247–259.

[13] Brian W. Kernighan and Dennis Ritchie. The C Programming Language. 2nd ed.
Prentice–Hall, 1988.

[14] Laurent Mauborgne and Xavier Rival. “Trace Partitioning in Abstract Inter-
pretation Based Static Analyzers”. In: ESOP. Vol. 3444. Lecture Notes in Com-
puter Science. Springer, 2005, pp. 5–20.

[15] Barry K. Rosen, Mark N. Wegman, and F.Kenneth Zadeck. “Global Value
Numbers and Redundant Computations”. In: POPL. ACM Press, 1988, pp. 12–
27.

45

[16] Alfred Tarski. “A Lattice Theoretical Fixpoint Theorem and Its Applications”.
In: Pacific J. of Math. 5 (1955), pp. 285–310.

[17] Justin Thaler. Proofs, Arguments, and Zero-Knowledge. http://people.cs.
georgetown.edu/jthaler/ProofsArgsAndZK.html, Dec. 27, 2020.

[18] Caterina Urban and Antoine Miné. “Inference of ranking functions for proving
temporal properties by abstract interpretation”. In: Comput. Lang. Syst. Struct.
47 (2017), pp. 77–103.

[19] Riad S. Wahby et al. “Efficient RAM and control flow in verifiable outsourced
computation”. In: NDSS. The Internet Society, 2015.

[20] Michael Walfish and Andrew J. Blumberg. “Verifying computations without
reexecuting them”. In: Commun. ACM 58.2 (2015), pp. 74–84.

46

http://people.cs.georgetown. edu/jthaler/ProofsArgsAndZK.html
http://people.cs.georgetown. edu/jthaler/ProofsArgsAndZK.html

