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Dedication

To the joyful and curious seekers—

in music, in science, and in life
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Abstract

Recent advances in artificial intelligence (AI) have enabled music generation systems that can

produce fluent and stylistically convincing pieces within seconds. Yet, despite its plausibility at

the surface level, such systems often feel musically hollow—unable to explain their choices, adapt

to nuanced prompts, or engage in meaningful creative exchange with humans. From a scientific

perspective, this limitation arises because current models, guided primarily by data-driven ob-

jectives, lack the ability to understand and manipulate the underlying concepts necessary for

music-making.

This dissertation introduces the framework of concept alignment, the methodologies that en-

able machines to manipulate musical concepts in ways that resemble human creative processes.

Rather than treating deep generative models as “black boxes”, concept alignment reveals and

structures the internal mechanisms of these models in terms of human-understandable concepts,

enabling more interpretable and controllable AI systems for music creation.

The work focuses on three core capacities. First, concept representation investigates whether

models can internalize music concepts without explicit labels, through disentanglement meth-

ods that learn representations such as pitch contour, accompaniment texture, and audio groove.

Second, concept organization addresses how concepts are structured and coordinated across a

composition. I develop hierarchical models that depict the generation process both in terms of

its temporal elaboration (compositional hierarchy) and its progression from abstract to concrete

music ideas (concept hierarchy). Third, concept emergence explores whether new concepts can
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arise naturally from data. I propose a domain-general framework that utilizes statistical induc-

tive biases to guide models in discovering symbolic structures, such as pitch classes or visual

digits, directly from raw inputs like audio or images.

Across these three directions, the dissertation develops and evaluates methods that enable

deep generative models to be aligned with human concept manipulation. The results demon-

strate that with appropriate architectures and learning objectives, models can exhibit behaviors

consistent with human-like concept manipulation, achieving controllability, interpretability, and

generalizability in downstream applications. This offers both practical benefits for music creation

and deeper insights into the computational foundations of creativity.
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1 | Introduction

We live in an age where artificial intelligence (AI) refines our essays, plans our schedules,

plays games with us, and even drives our cars. Music, too, has joined the trend. AI systems can

now compose pieces in seconds. Yet, unlike other domains where these technologies translate into

intuitive applications, the experience of using AI in music composition often leaves us unfulfilled.

Consider a few familiar scenarios:

- You give the model a few measures from the opening of a Bach prelude and ask it to con-

tinue. It produces several fluent versions—each different, yet all somehow shallow and

arbitrary. Which one should you choose? Do any of them actually mean anything?

- You prompt the model to compose a piece in a happy mood. You sample many times, only

to realize that the model treats “happy” as nothing more than “fast tempo and major key,”

which is far short of the emotional depth you had in mind.

- You offer a creative idea like “make a techno-pipa track,” a prompt that blends timbre and

genre. The model responds with techno sounds and something vaguely resembling pipa,

but the nuance is gone. After repeated attempts, you abandon the exploration.

In all these cases, music AI feels hollow, as if every output were equally plausible, equally indiffer-

ent. The model never defends its choices, never explains what it was trying to express, nor how

your input has shaped its direction. Where is the musicianship? And how can such an interaction

ever fulfill our creative or emotional needs?
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Maybe we are asking too much of AI. After all, music is part of what makes us human. But

that’s precisely why music AI is such a challenging problem of intelligence. Like other AI sys-

tems, music models are trained to match patterns in data. Yet the actual aim of music-making

goes far beyond pattern imitation. As an art form, music requires exploration, expression, and

interaction—music AI should be able to propose ideas, to respond to subtle prompts, to become

creative partners who can discuss music with us in meaningful ways. These goals are inherently

abstract and hard to quantify. However, if AI scientists must define something close to measur-

able, our goals should not just be about musical output, but about the underlying process—whether

AI can understand and act on the underlying meaning of music in a human-like way.

This thesis explores one path toward that goal by treating musical concepts as the funda-

mental elements underlying the process of music-making. These concepts range from concrete

features such as pitch and timbre, to more nuanced ones like texture and style, and even to higher-

level abstractions that shape the overall structure of a piece. I investigate whether music models

can learn to manipulate such internal concepts in ways similar to humans, e.g., learning represen-

tations of concepts, organizing them into hierarchies, and discovering entirely new ones. I refer

to this capability as concept alignment. Grounding music generation in concept alignment makes

intention, interaction, and control over the concepts intrinsic to the model—qualities absent in

systems focused solely on matching output patterns. While this work does not claim to fully

answer the question of machine musicianship, it opens a way toward meeting human creative

and emotional needs.

1.1 Concept Manipulation in Music-Making

Let us now see how concepts function in the process of music composition. Consider an over-

simplified workflow: when composing a piece, one might begin with a rough idea and gradually

elaborate it into finer details, drawing on concepts across different levels of granularity—much
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like building a house from a draft to finer details. This process is, of course, idealized, which

implies levels of concepts from top to bottom. In reality, a piece may emerge in many ways: from

a motif or chord progression at the start, or from some intuitive spark whose relation to exist-

ing theories seems unknown—purely emotional and personal. Yet in all these processes, levels of

concepts are still present. Concepts are not a predefined dictionary but a fluid and evolving set. A

motif or chord progression may first invoke low-level intervals, pitches, keys, and other concepts;

soon, we may turn to high-level structural concerns, and then back again. Likewise, new “sparks”

often become new concepts in themselves, which we carry forward and weave into the rest of

the composition. Concepts can be numerous and nuanced, but their existence is undeniable, and

they form a structure—not of compositional order, but of relationships and hierarchies between

ideas—that persists throughout creation.

I have found it helpful to consider how these concepts can be broadly categorized. In partic-

ular, I distinguish between two types of concepts involved in music creation:

1. Concepts of music: structural and time-based elements within the piece itself (e.g., chord,

pitch, phrase, form).

2. Concepts about music: external abstractions we use to describe or interpret music (e.g.,

melancholic, jazzy, minimalist, or Debussy-like).

From this distinction emerge two corresponding hierarchies:

1. Compositional hierarchy: built from concepts of music. It organizes ideas across scales:

notes form phrases, phrases form sections, and so on.

2. Concept hierarchy: built from concepts about music, connecting more abstract notions,

such as emotion, style, or influence, to more concrete ones, such as themes and motifs, and

showing how musical ideas are elaborated during composition.

Figure 1.1 offers a rough sketch of this layered space of concepts. In any finished compo-

sition, the compositional hierarchy shows how the music unfolds over time, while the concept
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Figure 1.1: Concepts and concept manipulation in music composition. Solid rectangles represent explicit
concepts; dashed rectangles indicate implicit concepts that are not explicitly defined; and cloud shapes
denote unnameable and deeply implicit concepts. Colored blocks indicate concept groups.

hierarchy guides and influences it. The compositional hierarchy is internal to the piece and uses

concepts of music to carry on the progression of the piece at various time scales, whereas the con-

cept hierarchy forms a knowledge graph of concepts about music and can be informed by prior
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works, textual prompts, or even other modalities, which is not detailed in the current figure. For

human composers, these two hierarchies interact naturally. In the most simplified case, com-

position might begin by shaping the concept hierarchy—from an overall mood down to specific

musical elements—which then grounds itself in music structure, giving rise to the compositional

hierarchy. In more realistic cases, attention flows fluidly between the two hierarchies, whether

consciously or not. In either case, composition involves manipulating concepts—encoding, orga-

nizing, comparing, combining, and discovering them. These concept manipulation capabilities

are what we aim for AI to learn in a human-like way.

The diagram is intentionally rough: it is not meant to define precise terms or rigid categories,

but to suggest how concepts might be organized in a human mind. Some concepts are explicit,

such as cadence and swing rhythm, while others are implicit, such as pitch contour or texture—

hard to name yet deeply felt. Many emerge only when triggered by examples or contexts, and

some may never be verbalized at all. The hierarchy itself is also approximate, as the boundaries

between levels are not fixed. Later in this thesis, I will refer to this diagram in more detail and

highlight the aspects of concept manipulation most critical for machines to learn.

1.2 Background: How AI Handles Concepts

Having considered how concepts operate in human music creation, we now turn to how they

are embedded in existing AI systems. Historically, prior to the deep learning era, AI research

placed greater emphasis on white-box approaches, which explicitly encode known concepts and

workflows into model design. Rule-based systems and small-scale, interpretable statistical mod-

els were designed to describe the composition process in explicit, human-readable terms [67, 213,

256]. However, such methods often fell short in capturing the full complexity and variability of

musical patterns. Deep learning took a different path: rather than specifying concepts directly, it

adopted a uniform architecture, the neural network, that learns to match patterns in data, with
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the expectation that relevant concepts would emerge implicitly. For example, in machine transla-

tion, deep learning models map inputs to outputs without relying on explicit linguistic rules [241].

Similarly, the music transformer trained on piano music may implicitly learn patterns of repe-

tition and long-term dependency, such as attending more strongly to earlier similar passages,

without being told what a “motif” is [106].

Although neural networks are composed of units that mimic neurons in our brains, this simi-

larity remains at a low level. Human-like understanding of concepts is far from guaranteed. Even

when deep generative models are trained on massive datasets and produce impressively realistic

outputs, their grasp of concepts is often unstable. For example, they frequently struggle with

geometry and physics, logical reasoning, self-consistency, and structures made of nested concept

structures, such as the relationship between a human body and its parts, or between an orchestra

and its sections and musicians [21, 255, 277].

Beyond their unstable grasp of concepts, current models also lack effective mechanisms for

concept manipulation. A representative example is analogy-making—or, in music composition,

style transfer—which requires identifying the appropriate level of abstraction, altering selected

concepts, and keeping the rest intact and compatible. While supervised training is possible when

paired examples exist, achieving this naturally and without supervision demands flexible concept

manipulation capabilities. This thesis will demonstrate how enabling such capabilities can make

style transfer possible, yet the overall problem remains a major challenge.

There are several relevant approaches for improving the transparency of neural networks,

such as introducing inductive biases [13, 78, 125], applying regularization [11, 98, 218], incorpo-

rating causal and probabilistic frameworks [194, 212], and building world models that represent

hierarchies and dynamics in the environment [84, 140, 266]. Similar to this thesis, these methods

also aim to enhance interpretability, and some are adopted in this thesis. However, the focus here

is distinct: the goal is to make AI systems behave more like humans, whereas these methods are

general tools that can serve many other purposes.
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1.3 Concept Alignment

The core idea of this thesis is to treat concept manipulation as the central mechanism driv-

ing the composition process. This differs from standard controllable music generation, where all

concepts are predefined and models are simply conditioned on them. Here, I focus on concepts

that are nuanced, hard to define, hierarchical, or emergent. I refer to the approach as concept

alignment—the design of AI methodologies that enable artificial systems to manipulate concepts

in ways that mirror human creative processes.

In this thesis, I examine three types of concept alignment problems: representation, organiza-

tion, and emergence. Each corresponds to a key operation in human concept manipulation and

involves challenges that make it nontrivial. These challenges are best understood in the context

of the overall concept structure shown in Figure 1.1. The three problems are outlined below:

1. Concept Representation: Some musical concepts, like emotion, key, chord, or textual

tags, can be labeled and embedded in neural networks as vectors. But many important

concepts are implicit, such as “pitch contour,” which we intuitively recognize but cannot

easily define or annotate. These unlabeled, felt concepts are abundant in music. Concept

learning addresses how to represent such concepts without relying on explicit labels, often

requiring disentangling certain concepts from the whole.

2. Concept Organization: Music concepts are difficult to enumerate, yet, as illustrated in

Figure 1.1, they naturally form compositional and concept hierarchies in the creative pro-

cess. This thesis explores how such hierarchies can be defined and used in generative mod-

els without explicitly defining all underlying concepts. We demonstrate that capturing

these hierarchical structures is essential for maintaining the structure of long-term music

generation.

3. Concept Emergence: Not all concepts are predefined—some arise spontaneously from the
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data or emerge only temporarily within specific contexts. This aspect of concept manip-

ulation involves discovering new concepts under general learning assumptions, without

relying on predefined musical or domain-specific knowledge. The key focus here is to de-

velop domain-general inductive biases, enabling machines to form abstract representations

from raw data alone.

Together, these three aspects form the core capabilities of concept manipulation. Each cap-

tures a distinct facet of how humans engage with ideas during the creative process and re-

quires different modeling strategies and assumptions. Together, they enable controllability, in-

terpretability, and the ability to create with intent, such as analogy-making, within the scope of

the concepts studied in this work. This leads to the central claim of the thesis:

Thesis Statement. This dissertation proposes that artificial intelligence can be designed to approx-

imate human-like concept manipulation, particularly in terms of learning, organization, and emer-

gence, so that it demonstrates controllability and interpretability in collaborative music creation with

humans.

Admittedly, concept manipulation in the human mind is far more complex than what this

dissertation addresses. Even within the studies presented here, certain concepts, such as music

texture, prove difficult to generalize across genres, and the emergence of more abstract or deeply

nested concepts remains out of reach. It is also unclear how well these methods scale to larger

or more complex models, and whether structural clarity must be traded off against generation

quality. Finally, this approach inevitably simplifies many nuances of creative behavior: people

manipulate concepts differently, experience modalities differently, and develop conceptual flu-

ency across age, culture, and personal history. These aspects are not explicitly modeled in this

thesis. Nonetheless, by framing creativity through the lens of concept alignment, this dissertation

offers a concrete starting point for connecting AI generation with human creativity.
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1.4 Dissertation Outline

This dissertation is organized into three parts, corresponding to three types of concept align-

ment and further divided into nine chapters in total, each addressing a specific aspect of the

concept alignment problem. Below is an outline of the content and contributions of each chap-

ter:

Chapter 1 outlines the concept alignment problem of this thesis and the background of music

composition and artificial intelligence research.

Part I includes Chapters 2–5 and focuses on concept representation. Chapter 2 investigates

concept representation in monophonic music. It introduces the EC2-VAE model, which disen-

tangles pitch contour and rhythm for interpretable control and style transfer. Chapter 3 extends

the concept representation framework to polyphonic textures and chord progression. It presents

a model for learning disentangled latent chord and texture representations of piano accompani-

ments. Chapter 4 considers representation disentanglement in a multimodal setting where a rep-

resentation of audio texture is learned to control music generation. Chapter 5 further considers

representation learning problems in a large language model (LLM) setting and uses cross-modal

fine-tuning techniques to achieve learning piano accompaniment style from audio.

Part II includes Chapters 6–7 and focuses on concept organization. Chapter 6 addresses com-

positional hierarchy through the task of whole-song generation. It proposes a four-level hierar-

chical music language and a cascaded diffusion framework for structurally coherent composition.

Specific concepts can be added at each level for additional control. Chapter 7 explores concept

hierarchy in the context of electronic music generation. It defines a structured representation of

a musical piece, illustrating how ideas can be selected, transformed, and arranged at specific po-

sitions within the composition. A text-based LLM is used to guide the generation of this structure

with in-context learning.

Part III contains a single Chapter 8 and focuses on concept emergence. Chapter 8 investigates
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a fundamental problem in concept emergence: emerging content like “digits” or “pitches” from

raw observations. It introduces a domain-general statistical inductive bias based on the variance

and invariance of content and style. This bias enables the unsupervised disentanglement of latent

factors and is applicable across modalities, for example, extracting digit and color in handwritten

images or pitch and timbre in monophonic instrument audio.

Chapter 9 concludes the dissertation by summarizing key findings, open questions, and di-

rections for future research on concept alignment.

Additional supporting materials, including extended experiments, implementation details,

and supplementary figures, are provided in the appendices.
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Part I

Concept Representation
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2 | Disentangling Pitch and Rhythm in

Monophonic Music

We begin our discussion of concept alignment with its most fundamental aspect: concept rep-

resentation. For a given concept, representation refers to the ability of a model to form an internal

structure that corresponds to that concept and influences the model’s behavior accordingly. This

representation is often realized as a latent, vectorized encoding within a neural network, though

it may take other forms [7, 144, 228, 281]. A common example of concept representation is an em-

bedding. In music generation, for instance, when models are trained on music paired with control

attributes (e.g., genre, mood, or instrumentation), these attributes can be viewed as concepts, and

their corresponding embeddings serve as the internal representations of these concepts. These

embeddings are meaningful in that they can be manipulated to control specific aspects of the

generated music [160, 205].

The real challenge in concept representation lies in capturing implicit concepts, such as pitch

contour, texture, or timbre, as illustrated by the dashed boxes in Figure 1.1. These concepts cannot

be precisely defined or directly labeled, making it difficult to construct explicit objective functions

for learning them. For instance, pitch contour might be approximated using features such as pitch

range, interval sequences, or frequency-domain coefficients [53], yet it ultimately remains some-

thing intuitively perceived rather than strictly quantifiable. From a cognitive science perspective,

these concepts are rooted in perceptual experience and often shaped through multiple sensory
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modalities, making them subtle and difficult to define in symbolic terms [12]. Yet concepts like

pitch contour are considered basic and universal aspects of musical understanding, recognizable

even by infants before they acquire language or formal musical knowledge [237].

The ability to represent concepts gives rise to a special capability of analogy-making. For ex-

ample, consider the task of generating a new melody that preserves the pitch contour but applies

a different rhythm. Without an internal representation of pitch contour as a distinct concept, a

model cannot preserve it. This contour-preserving transformation is also challenging to approach

in a supervised manner, as it is nearly impossible to curate large datasets of paired melodies where

the contour remains the same while other aspects, such as rhythm, vary in controlled ways.

The general methodology I use is called disentanglement, which involves encouraging spe-

cific parts of a representation to correspond to ideal concepts by regularizing the neural net-

work with appropriate inductive biases. In Chapters 2–4, we explore disentanglement primarily

within a variational autoencoder framework. Chapter 2 focuses on disentangling pitch contour

and rhythmic pattern from 8-beat melodies. Chapter 3 extends this idea to disentangle chord and

texture from 8-beat piano accompaniments. Chapter 4 investigates learning texture representa-

tions from both audio and symbolic data, applying them to symbolic arrangement. In contrast,

Chapter 5 presents disentanglement in the context of fine-tuning a modern multimodal language

model, where the goal is to learn accompaniment style representations from audio for symbolic

arrangement.

In this chapter, we begin with the problem of disentangling pitch and rhythm in monophonic

melodies and introduce the perspective on analogy-making. This chapter is based on the pub-

lished work Deep Music Analogy Via Latent Representation Disentanglement [271], conducted in

collaboration with Ruihan Yang, Dingsu Wang, Tianyao Chen, Junyan Jiang, and Gus Xia.
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2.1 Analogy-Making and Disentanglement

For intelligent systems, an effective way to generate high-quality art is to produce analogous

versions of existing examples [97]. In general, two systems are analogous if they share common

abstractions, i.e., high-level representations and their relationships, which can be revealed by the

paired tuples A : B :: C : D (often spoken as A is to B as C is to D). For example, the analogy “the

hydrogen atom is like our solar system” can be formatted as Nucleus : Hydrogen atom :: Sun :

Solar system, in which the shared abstraction is “a bigger part is the center of the whole system.”

For generative algorithms, a clever shortcut is to make analogies by solving the problem of “A :

B :: C : ?”. In the context of music generation, if A is the rhythm pattern of a very lyrical piece B,

this analogy can help us realize the imaginary situation of “what if B is composed with a rather

rapid and syncopated rhythm C” by preserving the pitch contours and the intrinsic relationship

between pitch and rhythm. In the same fashion, other types of “what if” compositions can be

created by simply substituting A and C with different aspects of music (e.g., chords, melody, etc.).

A great advantage of generation via analogy is the ability to produce both natural and cre-

ative results. Naturalness is achieved by reusing the representations (high-level concepts such

as “image style” and “music pitch contour”) of human-made examples and the intrinsic relation-

ship between the concepts, while creativity is achieved by recombining the representations in a

novel way. However, making meaningful analogies also requires disentangling the representa-

tions, which is effortless for humans but non-trivial for computers. We already see that making

analogies is essentially transferring the abstractions, not the observations—simply copying the

notes or samples from one piece to another would only produce a casual re-mix, not an analogous

composition [74].

In this chapter, we contribute an explicitly-constrained conditional variational autoencoder

(EC2-VAE), a conditional VAE with explicit semantic constraints on intermediate outputs of the

network, as an effective tool for learning disentanglement. To be specific, the encoder extracts
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(a) Vanilla sequence VAE. (b) EC2-VAE model.

Figure 2.1: A comparison between vanilla sequence VAE [272] and our model with condition and disen-
tanglement.

latent representations from the observations; the semantic constraints disentangle the represen-

tations so that each part has a unique interpretation, and the decoder maps the disentangled

representations back to actual music while preserving the intrinsic relationship between the rep-

resentations. In producing analogies, we focus on disentangling and transferring the pitch and

rhythm representations of 8-beat music clips when chords are given as the condition (an extra

input) of the model. We show that EC2-VAE has three desired properties as a generative model.

First, the disentanglement is explicitly coded, i.e., we can specify which latent dimensions denote

which semantic factors in the model structure. Second, the disentanglement does not sacrifice

much of the reconstruction. Third, the learning does not require any analogous examples in the

training phase, but the model is capable of making analogies in the inference phase. For evalua-

tion, we propose a new metric and conduct a survey. Both objective and subjective evaluations

show that our model significantly outperforms the baselines.
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2.2 Methodology

In this section, we introduce the data representation and model design in detail. We fo-

cus on disentangling the latent representations of pitch and rhythm, the two fundamental as-

pects of composition, over the duration of 8-beat melodies. All data come from the Nottingham

dataset [72], regarding a 1
4

beat as the shortest unit.

2.2.1 Data Representation

Each 8-beat melody is represented as a sequence of 32 one-hot vectors, each with 130 dimen-

sions, where each vector denotes a 1
4
-beat unit. As in [203], the first 128 dimensions denote the

onsets of MIDI pitches ranging from 0 to 127 with one unit of duration. The 129th dimension is

the holding state for longer note duration, and the last dimension denotes rest. We also designed a

rhythm feature to constrain the intermediate output of the network. Each 8-beat rhythm pattern

is also represented as a sequence of 32 one-hot vectors. Each vector has 3 dimensions, denoting:

an onset of any pitch, a holding state, and a rest.

Besides, chords are given as a condition, i.e., an extra input, of the model. The chord condition

of each 8-beat melody is represented as a chromagram with equal length, i.e., 32 multi-hot vectors

each with 12 dimensions, where each dimension indicates whether a pitch class is activated.

2.2.2 Model Architecture

Our model design is based on the previous studies of [203, 272], both of which used VAEs to

learn the representations of fixed-length melodies. Figure 2.1 shows a comparison between the

model architectures, where Figure 2.1(a) shows the model designed in [272] and Figure 2.1(b)

shows the model design in this study. We see that both use bi-directional GRUs [48] (or

LSTMs [100]) as the encoders (in blue) to map each melody observation to a latent representa-
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tion z, and both use uni-directional GRUs (or LSTMs) (with teacher forcing [234] in the training

phrase) as the decoders (in yellow) to reconstruct melodies from z.

The key innovation of our model design is to assign a part of the decoder (in orange) with a

specific subtask: to disentangle the latent rhythm representation zr from the overall z by explicitly

encouraging the intermediate output of zr to match the rhythm feature of the melody. The other

part of z is therefore everything but rhythm and interpreted as the latent pitch representation, zp.

Note that this explicitly coded disentanglement technique is quite flexible — we can use multiple

subparts of the decoder to disentangle multiple semantically interpretable factors of z simultaneously

as long as the intermediate outputs of the corresponding latent factors can be defined, and the

model shown in Figure 2.1(b) is the simplest case of this family.

It is also worth noting that the new model uses chords as a condition for both the encoder and

decoder. The advantage of chord conditioning is to free z from storing chord-related information.

In other words, the pitch information in z is “detrended” by the underlying chord for better

encoding and reconstruction. The cost of this design is that we cannot learn a latent distribution

of chord progressions.

Encoder A single layer bi-directional GRU with 32 time steps is used to modelQθ(z|x, c), where

x is the melody input, c is the chord condition, and z is the latent representation. Chord conditions

are given by concatenating with the input at each time step.

Decoder The global decoder models Pϕ(x|z, c) by multiple layers of GRUs, each with 32 steps.

For disentanglement, z is splitted into two halves zp and zr(z = concat[zr, zp]), each being a 128-

dimensional vector. As a subpart of the global decoder, the rhythm decoder models Pϕt(r(x)|z)

by a single layer GRU, where r(x) is the rhythm feature of the melody. Meanwhile, the rhythm

is concatenated with zp and chord condition as the input of the rest of the global decoder to

reconstruct the melody. We used cross-entropy loss for both rhythm and melody reconstruction.

Note that the overall decoder is supposed to learn non-trivial relationships between pitch and
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rhythm, rather than naively cutting a pitch contour by a rhythm pattern.

2.2.3 Theoretical Justification of the ELBO Objective with Disentangle-

ment

One concern about representation disentanglement techniques is that they sometimes sacri-

fice reconstruction power [122]. In this section, we prove that our model does not suffer much of

the disentanglement-reconstruction paradox, and the likelihood bound of our model is close to

that of the original conditional VAE, and in some cases, equal to it.

Recall the Evidence Lower Bound (ELBO) objective function used by a typical conditional

VAE [61] constraint on input sample x with condition c:

ELBO(ϕ, θ) = EQ[logPϕ(x|z, c)] (2.1)

−KL[Qθ(z|x, c)||Pϕ(z|c)] ≤ logPϕ(x|c). (2.2)

For simplicity, D denotes KL[Qθ(z|x, c)||Pϕ(z|c)] in the rest of this section. If we see the in-

termediate rhythm output in Figure 2.1(b) as hidden variables of the whole network, the new

ELBO objective of our model only adds the rhythm reconstruction loss based on the original one,

resulting in a lower bound of the original ELBO. Formally,

ELBOnew(ϕ, θ)

= EQ[logPϕ(x|z, c)]−D + EQ[logPϕt(r(x)|zr)]

= ELBO(ϕ, θ) + EQ[logPϕt(r(x)|zr)],

where ϕt denotes parameters of the rhythm decoder. Clearly, ELBOnew is a lower bound of the

original ELBO because EQ[logPϕt(r(x)|zr)] ≤ 0.

Moreover, if the rest of global decoder takes the original rhythm rather than the intermediate
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output of rhythm decoder as the input, the objective can be rewritten as:

ELBOnew(ϕ, θ)

= EQ[logPϕ(x|r(x), zp, c) + logPϕ(r(x)|zr, c)︸ ︷︷ ︸
with x |= zr|r(x),c and r(x) |= zp|zr,c

]−D

= EQ[logPϕ(x, r(x)|z, c)]−D

= EQ[logPϕ(x|z, c) + logPϕ(r(x)|x, z, c)]−D

= ELBO(ϕ, θ).

The second equal sign holds for a perfect disentanglement, and the last equal sign holds since r(x)

is decided by x, i.e., Pϕ(r(x)|x, z, c) = 1. In other words, we show that under certain assumptions

ELBOnew with disentanglement is identical to the ELBO.

2.3 Experiments

We present the objective metrics to evaluate the disentanglement in Section 2.3.1, show sev-

eral representative examples of generation via analogy in Section 2.3.2, and use subjective eval-

uations to rate the artistic aspects of the generated music in Section 2.3.3.

2.3.1 Objective Measurements

Upon a successful pitch-rhythm disentanglement, any changes in pitch of the original melody

should not affect the latent rhythm representation much, and vice versa. Following this assump-

tion, we developed two measurements to evaluate the disentanglement: 1) ∆z after transposition,

which is more qualitative, and 2) F-score of an augmentation-based query, which is more quan-

titative.
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Visualizing ∆z After Transposition

We define Fi as the operation of transposing all the notes by i semitones, and use theL1-norm

to measure the change in z. Figure 2.2 shows a comparison between Σ|∆zp| and Σ|∆zr|when we

apply Fi to a randomly chosen piece (where i ∈ [1, 12]) while keeping the rhythm and underlying

chord unchanged.

Figure 2.2: A comparison between ∆zp and ∆zr after transposition.

Here, the black bars stand forΣ|∆zp| and the white bars stand for theΣ|∆zr|. It is conspicuous

that when augmenting pitch, the change of zp is much larger than the change of zr, which well

demonstrates the success of the disentanglement.

It is also worth noting that the change of zp to a certain extent reflects human pitch perception.

Given a chord, the change in zp can be understood as the “burden” (or difficulty) to memorize

(or encode) a transposed melody. We see that such a burden is large for tritone (very dissonant),

relatively small for major third, perfect fourth & fifth (consonant), and very small for perfect

octave.

Due to the space limit, we only show the visualization of the latent space when changing the

pitch. According to the data representation in Section 2.2.1, changing the rhythm feature of a

melody would inevitably affect the pitch contour, which would lead to complex behavior of the

latent space hard to interpret visually. We leave the discussion for future work, but will pay more
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attention to the effect of the rhythm factor in Section 2.3.3.

F-Score of Augmentation-Based Query

The explicitly coded disentanglement enables a new evaluation method from an information-

retrieval perspective. We regard the pitch-rhythm split in z defined by the model structure as the

reference (the ground truth), the operation of factor-wise data augmentation (keeping the rhythm

and only changing pitch randomly, or vice versa) as a query in the latent space, and the actual

latent dimensions having the largest variance caused by augmentation as the result set. In this

way, we can quantitatively evaluate our model in terms of precision, recall, and F-score.

Figure 2.3: Evaluating the disentanglement by data augmentation.

Figure 2.3 shows the detailed query procedure, which is a modification of the evaluation

method in [122]. After pitch or rhythm augmentation for each sample, v⃗ is calculated as the

average (across the samples) variance (across augmented versions) of the latent representations,

normalized by the total sample variance s⃗. Then, we choose the first half (128 dimensions) with

the largest variances as the result set. The precision, recall, and F-score of this augmentation-

based query result are shown in Table 2.1. (Here, precision and recall are identical since the size

of the result set equals the dimensionality of zp and zr.) As this is the first tailored metric for

explicitly coded disentanglement, we use a random guess as our baseline.
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Pitch Rhythm
pre. rec. F -s. pre. rec. F -s.

EC2-VAE 0.88 0.88 0.88 0.80 0.80 0.80
Random 0.5 0.5 0.5 0.5 0.5 0.5

Table 2.1: The evaluation results of pitch- and rhythm-wise augmentation-based query.

2.3.2 Examples of Generation via Analogy

We present several representative“what if” examples by swapping or interpolating the la-

tent representations of different pieces. Throughout this section, we use the following example

(shown in Figure 2.4), an 8-beat melody from the Nottingham Dataset [72] as the source, and the

target rhythm or pitch will be borrowed from other pieces.1

Figure 2.4: The source melody.

Analogy by Replacing zp

Two examples are presented. In both cases, the latent pitch representation and the chord

condition of the source melody are replaced with new ones from other pieces. In other words,

the model answers the analogy question: “source’s pitch : source melody :: target’s pitch : ?”

(a) Target’s pitch and chord.

(b) The generated target music, using the pitch and chord from (a) and the rhythm from the source.

Figure 2.5: The first example of analogy via replacing zp.

1MIDI demos are available at https://github.com/cdyrhjohn/Deep-Music-Analogy-Demos.
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Figure 2.5 shows the first example, where Figure 2.5(a) shows the piece from which the pitch

and chords are borrowed, and Figure 2.5(b) shows the generated melody. From Figure 2.5(a), we

see the target melody is in a different key (D major) with a larger pitch range than the source and

a big pitch jump in the beginning. From Figure 2.5(b), we see the generated new melody captures

such pitch features while keeping the rhythm of the source unchanged.

(a) Target’s pitch and chord.

(b) The generated target, using the pitch and chord from (a) and the rhythm from the source.

Figure 2.6: The second analogy example via replacing zp.

Figure 2.6 shows another example, whose subplots share the same meanings with the previous

one. From Figure 2.6(a), we see the first measure of the target’s melody is a broken chord of Gmaj,

while the second measure is the G major scale. From Figure 2.6(b), we see the generated new

melody captures these pitch features. Moreover, it retains the source’s rhythm and ignores the

dotted eighth and sixteenth notes in Figure 2.6(a).

(a) Target’s rhythm pattern.

(b) The generated target music, using the rhythm of (a) while keeping the source’s pitch and chord.

Figure 2.7: The first example of analogy via replacing zr.

Analogy by Replacing zr

Similar to the previous section, this section shows two example answers to the ques-

tion:“source’s rhythm : source melody :: target’s rhythm : ?” by replacing zr. Figure 2.7 shows
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the first example, where Figure 2.7(a) contains the new rhythm pattern quite different from the

source, and Figure 2.7(b) is the generated target. We see that Figure 2.7(b) perfectly inherited the

new rhythm pattern and made minor but novel modifications based on the source’s pitch.

(a) Target’s rhythm pattern.

(b) The generated target music, using the rhythm of (a) while keeping the source’s pitch and chord.

Figure 2.8: The second analogy example via replacing zr.

Figure 2.8 shows a more extreme case, in which Figure 2.8(a) contains only 16th notes of

the same pitch. Again, we see the generated target in Figure 2.8(b) maintains the source’s pitch

contour while matching the given rhythm pattern.

Analogy by Replacing Chord

(a) Changing all the chords down a semitone, resulting in the key change from G major to Bb minor.

(b) Changing the key from G major to G minor.

Figure 2.9: Two examples of replacing the original chord.

Though chord is not our main focus, here we show two analogy examples in Figure 2.9 to an-

swer “what if” the source melody is composed using some other chord progressions. Figure 2.9(a)

shows an example where the key is B♭ minor. An interesting observation is that the new melody

contour indeed adds some reasonable modification (e.g., flipping the melody) rather than simply

transposing down all the notes. It brings us a little sense of Jazz. Figure 2.9(b) shows an example
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where the key is changed from G major to G minor. We see melody also naturally transforms

from major mode to minor mode.

Two-Way Pitch-Rhythm Interpolation

Figure 2.10: An illustration of two-way interpolation.

The disentanglement also enables a smooth transition from one music to another. Figure 2.10

shows an example of two-way interpolation, i.e., a traversal over a subspace of the learned latent

representations zr and zp along two axes respectively, while keeping the chord as NC (no chord).

Here, each square is a piano-roll of an 8-beat music. The top-left (source) and bottom-right (target)

squares are two samples created manually, and everything else is generated by interpolation using

SLERP [251]. Note that the rhythmic changes are primarily observed moving along the “rhythm

interpolation” axis, and likewise for pitch and the vertical “pitch interpolation” axis.
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2.3.3 Subjective Evaluation

Besides objective measurement, we conducted a subjective survey to evaluate the quality of

generation via analogy. We focus on changing the rhythm factors of existing music since this

operation leads to an easier identification of the source melodies.

Each subject listened to two groups of five pieces each. All the pieces had the same length

(64 beats at 120 bpm). Within each group, one piece was an original, human-composed piece

from the Nottingham dataset, having a lyrical melody consisting of longer notes. The remaining

four pieces were variations upon the original with more rapid rhythms consisting of 8th and 16th

notes. Two of the variations were produced in a rule-based fashion by naively cutting the notes

in the original into shorter subdivisions, serving as the baseline. The other two variations were

generated with our EC2-VAE by merging the zp of the original piece and the zr decoded from

two pieces having the same rhythm pattern as the baselines but with all notes replaced with C4

(similar to Figure 2.8(a). The subjects always listened to the original first, and the order of the

variations was randomized. In sum, we compare three versions of music: 1) the original piece, 2)

the variation created by the baseline, and, 3) the variation created by our algorithm. The subjects

were asked to rate each sample on a 5-point scale from 1 (very low) to 5 (very high) according to

three criteria:

1. Creativity: how creative the composition is.

2. Naturalness: how human-like the composition is.

3. Overall musicality.

A total of 30 subjects (16 female and 14 male) participated in the survey. Figure 2.11 shows

the results, where the heights of bars represent means of the ratings the and error bars represent

the MSEs computed via within-subject ANOVA [208]. The result shows that our model performs

significantly better than the rule-based baseline in terms of creativity and musicality (p < 0.05),

and marginally better in terms of naturalness. Our proposed method is even comparable to the
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original music in terms of creativity, but remains behind human composition in terms of the other

two criteria.

Figure 2.11: Subjective evaluation results.

2.4 Related Work

2.4.1 Generation Via Analogy

The history of generation via analogy can trace back to the studies of non-parametric “image

analogies” [97] and “playing Mozart by analogy” using case-based reasoning [257]. With recent

breakthroughs in artificial neural networks, we see a leap in the quality of produced analogous

examples using deep generative models, including music and image style transfer [56, 77], image-

to-image translation [111], attribute arithmetic [32], and voice impersonation [73].

Here, we distinguish between two types of analogy algorithms. In a broad sense, an anal-

ogy algorithm is any computational method capable of producing analogous versions of existing

examples. A common and relatively easy approach is supervised learning, i.e., to directly learn

the mapping between analogous items from labeled examples [111, 236]. This approach requires

little representation learning but needs a lot of labeling effort. Moreover, supervised analogy

does not generalize well. For example, if the training analogous examples are all between lyrical
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melodies (the source domain) and syncopated melodies (the target domain), it would be difficult

to create other rhythmic patterns, much less the manipulation of pitch contours. (Though im-

provements [22, 123, 290] have been made, weak supervision is still needed to specify the source

and target domains.) On the other hand, a strict analogy algorithm requires not only learning the

representations but also disentangling them, which would allow the model to make domain-free

analogies via the manipulation of any disentangled representations. Our approach belongs to

this type.

2.4.2 Representation Learning and Disentanglement

Variational auto-encoders (VAEs) [125] and generative adversarial networks (GANs) [78] are

so far the two most popular frameworks for music representation learning. Both use encoders

(or discriminators) and decoders (or generators) to build a bi-directional mapping between the

distributions of observation x and latent representation z, and both generate new data via sam-

pling from p(z). For music representations, VAEs [30, 69, 203, 272] have been a more successful

tool so far compared with GANs [274], and our model is based on the previous study [272].

The motivation of representation disentanglement is to better interpret the latent space gen-

erated by VAE, connecting certain parts of z to semantic factors (e.g., age for face images, or

rhythm for melody), which would enable a more controllable and interactive generation process.

InfoGAN [39] disentangles z by encouraging the mutual information between x and a subset of

z. β-VAE [98] and its follow-up studies [38, 122, 272] imposed various extra constraints and

properties on p(z). However, the disentanglement above is still implicit, i.e., though the model

separates the latent space into subparts, we cannot define their meanings beforehand and have

to “check it out” via latent space traversal [32]. In contrast, the disentanglement in Style-based

GAN [120], Disentangled Sequential Autoencoder [147], and our EC2-VAE are explicit, i.e., the

meanings of different parts of z are defined by the model structure, so that the controlled genera-

tion is more precise and straightforward. The study Disentangled Sequential Autoencoder [147]
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is most related to our work and also deals with sequential inputs. Using a partially time-invariant

encoder, it can approximately disentangle dynamic and static representations. Our model does

not directly constrain z but applies a loss to intermediate outputs associated with latent factors.

Such an indirect but explicit constraint enables the model to further disentangle the representa-

tion into pitch, rhythm, and any semantic factors whose observation loss can be defined. As far

as we know, this is the first disentanglement learning method tailored for music composition.

2.5 Summary

In summary, we contributed an explicitly-constrained conditional variational autoencoder

(EC2-VAE) as an effective disentanglement learning model. This model generates new music via

making analogies, i.e., to answer the imaginary situation of “what if” a piece is composed using

different pitch contours, rhythm patterns, and chord progressions via replacing or interpolating

the disentangled representations. Experimental results showed that the disentanglement is suc-

cessful and the model is able to generate interesting and musical analogous versions of existing

music. We see this study as a significant step in music understanding and controlled music gen-

eration. The model can also be generalized to other tasks and domains, shedding light on the

general scenario of generation via analogy.
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3 | Disentangling Chord and Texture

in Polyphonic Accompaniment

In this chapter, we address the problem of concept learning in polyphonic music. Building

on the idea of representation disentanglement and analogy-making introduced in Chapter 2, we

propose a novel architecture that learns two interpretable latent factors from polyphonic piano

music: chord and texture. The focus of this chapter is on the controllable generation capabilities

enabled by these disentangled representations.

This chapter is based on the published work Learning Interpretable Representation for Control-

lable Polyphonic Music Generation [247], conducted in collaboration with Dingsu Wang, Yixiao

Zhang, and Gus Xia.1 This work also builds upon prior research in representation learning for

polyphonic music, the PianoTree VAE with a hierarchical encoding and decoding structure, which

is introduced in Appendix A.

3.1 Disentanglement for Controllable Music Generation

With the development of artificial neural networks, deep learning has become one of the most

popular techniques for automated music generation. In particular, we see recurrent and attention-

based models being able to generate creative and human-like music without heavily handcrafted

1Code and demos are available at https://github.com/ZZWaang/polyphonic-chord-texture-disentanglement.
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rules [37, 106, 108]. However, the main drawback of these deep generative models is that they

behave like “black boxes”, and it is difficult to interpret the musical meaning of their internal latent

variables [28]. Consequently, it remains a challenging task to control the generation process (i.e.,

to guide the music flow by manipulating the high-level compositional factors such as melody

contour, accompaniment texture, style, etc.). This limitation restricts the application scenario of

the powerful deep generative models.

In this chapter, we improve the model interpretability for music generation via constrained

representation learning. Inspired by the content-style disentanglement idea [56], we enforce

the model to learn two fundamental factors of polyphonic music: chord (content) and texture

(style). The former refers to the representation of the underlying chord progression, and the

latter includes chord arrangement, rhythmic pattern, and melody contour. The current design

focuses on learning 8-beat long piano composition segments under a variational autoencoder

(VAE) framework.

The core of the model design lies in the encoder. We incorporate the encoder with two induc-

tive biases for a successful chord-texture disentanglement. The former applies a rule-based chord

recognizer and embeds the information into the first half of the latent representation. The latter

regards music as 2-D images and uses a chord-invariant convolutional network to extract the

texture information, storing it in the second half of the latent representation. As for the decoder,

we adopt the design from PianoTree VAE [248], an architecture that can reconstruct polyphonic

music from the latent representation in a hierarchical manner.

We further show that the interpretable representations are general-purpose, empowering a

wide spectrum of controllable music generation. In this study, we explore the following three

scenarios:

1. Task 1: Compositional style transfer by swapping the chord and texture factors of

different pieces of music, which can help us re-harmonize or re-arrange a music piece fol-

lowing the style of another piece.
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2. Task 2: Texture variation by sampling the texture factor while keeping the chord factor,

which is analogous to the creation of “theme and variations” form of composition.

3. Task 3: Accompaniment arrangement by predicting the texture factor given the melody

using a downstream encoder-decoder generative model.

In sum, the contributions of the chapter are as follows:

1. We design a representation disentanglement method for polyphonic music, which learns

two interpretable factors: chord and texture.

2. We show that the interpretable factors are general-purpose features for controllable mu-

sic generation, which reduces the necessity to design heavily engineered control-specific

model architectures. As far as we know, this is the first attempt to explicitly control the

compositional texture feature for symbolic polyphonic music generation.

3. We demonstrate that control methods are effective and the quality of generated music is

high. Some style-transferred pieces are rated even higher than the original ones composed

by humans.

3.2 Model

In this section, we introduce the model design and data representation in detail. The goal is

to learn the representations of 8-beat long piano compositions (with 1
4

beat as the shortest unit)

and disentangle the representations into two interpretable factors: chord and texture.

Figure 3.1 shows the overall architecture of the model. It adopts a VAE framework and con-

tains four parts: 1) a chord encoder, 2) a chord decoder, 3) a texture encoder, and 4) a PianoTree

decoder. The chord encoder and chord decoder can be seen as a standalone VAE, which extracts

the latent chord representation zchd. On the other hand, the texture encoder aims to extract the
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Figure 3.1: The model diagram of polyphonic disentanglement.

texture representation ztxt using a chord-invariant convolutional mapping. Finally, the PianoTree

decoder takes in both zchd and ztxt and outputs the original music in a tree-structured data format.

3.2.1 Chord Encoder

The chord encoder first applies rule-based methods [190, 201] to extract the chord progression

under one-beat resolution. Each extracted chord progression is a 36 × 8 matrix, where each

column denotes a chord of one beat. Each chord is a 36-D vector consisting of three parts: a

12-D one-hot vector for the pitch class of the root, a 12-D one-hot vector for the bass, and a 12-D

multi-hot chroma vector.

The chord progression is then fed into a bi-directional GRU encoder [203], and the last hidden

states on both ends of the GRU are concatenated and used to approximate the posterior distribu-
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tion of zchd. Following the assumption of a standard VAE, zchd has a standard Gaussian prior and

follows an isotropic Gaussian posterior.

Note that although the chord progression here is extracted using algorithms, it can also be

provided by external labels, in which case the whole model becomes a conditional VAE [269].

3.2.2 Chord Decoder

The chord decoder reconstructs the chord progression from zchd using another bi-directional

GRU. The reconstruction loss of a chord progression is computed as a summation of 8 beat-

wise chord loss using cross entropy functions [19]. For each beat, the chord loss is defined as

the product of three parts: 1) the root loss, 2) the bass loss, and 3) the chroma loss. The root

and bass are both considered 12-way categorical distributions, and the chroma is regarded as 12

independent Bernoulli distributions.

3.2.3 Texture Encoder

The input of the texture encoder is an 8-beat segment of a polyphonic piece represented by

an image-like data format slightly modified from the piano-roll [65]. Each 8-beat segment is

represented by a 128× 32 matrix, where each row corresponds to a MIDI pitch and each column

corresponds to 1
4

beat. The data entry at (p, t) records the duration of the note if there is a note

onset, and zero otherwise.

The texture encoder aims to learn a chord-invariant representation of texture by leveraging

both the translation invariance property of convolution and the blurry effect of max-pooling

layers [133]. We use a convolutional layer with kernel size 12 × 4 and stride 1 × 4, which is

followed by a ReLU activation [177] and max-pooling with kernel size 4 × 1 and stride 4 × 1.

The convolutional layer has one input channel and 10 output channels. The convolutional layer

design aims at extracting a blurry “concept sketch” of the polyphonic texture, which contains
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minimum information about the underlying chord. Ideally, when the blurry sketch is combined

with the chord representation, the decoder can identify its concrete pitches in a musical way.

The output of the convolutional layer is then fed into a bi-directional GRU encoder to extract

the texture representation ztxt, similar to how we encode zchd introduced in Section 3.2.1.

3.2.4 PianoTree Decoder

The PianoTree decoder takes the concatenation of zchd and ztxt as input and decodes the

music segment using the same decoder structure invented in PianoTree VAE [248], a hierarchical

model structure for polyphonic representation learning. The decoder works as follows. First, it

generates 32 frame-wise hidden states (one for each 1
4

beat) using a GRU layer. Then, each frame-

wise hidden state is further decoded into the embeddings of individual notes using another GRU

layer. Finally, the pitch and duration for each note are reconstructed from the note embedding

using a fully-connected layer and a GRU layer, respectively. For more detailed derivation and

model design, we refer the readers to [248].

3.2.5 Training Objective

Let x denote the input music piece and c = f(x) denote the chord progression extracted by

algorithm f(·). We assume standard Gaussian priors of p(zchd) and p(ztxt), and denote the output

posteriors of chord encoder and texture encoder by qϕ(zchd|c), qψ(ztxt|x), the output distributions

of chord decoder and PianoTree decoder by pρ(c|zchd) and pθ(x|zchd, ztxt). The objective of the

model is:

L(ϕ, ψ, ρ, θ;x) =

− Ezchd∼qϕ
ztxt∼qψ

[
log pρ(c|zchd) + log pθ(x|zchd, ztxt)

]
+KL(qϕ||p(zchd)) + KL(qψ||p(ztxt)).
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3.3 Controlled Music Generation

In this section, we show some controlled generation examples of the three tasks mentioned

in the introduction.

3.3.1 Compositional Style Transfer

By regarding chord progression content and texture style, we can achieve compositional style

transfer by swapping the texture representations of different pieces. Figure 3.2 shows the trans-

ferred results ((c) & (d)) based on two 16-bar samples ((a) & (b)) in the test set by swapping ztxt

every 2 bars (without overlap).2

We see that such long-term style transfer is successful: The generated segment (c) follows

the chord progression of (b) while mimicking the texture of (a), while (d) follows the chord pro-

gression of (a) while mimicking the texture of (b). As shown in the marked scores, the style

transfer is effective. For example, the cut-offs, melody contours, and the shape of the left-hand

accompaniment are all preserved.

3.3.2 Texture Variation by Sampling

We can make variations of texture by sampling from ztxt while keeping zchd. Here, we in-

vestigate two sampling strategies: sampling from the posterior qψ(ztxt|x), and sampling from the

prior p(ztxt).

Sampling from the posterior distribution qψ(ztxt|x) yields reasonable variations as shown in

Figure 3.3(a). The variations of the right-hand melody can be seen as an improvisation following

the chord progression and the melody. On the contrary, there is only a small variation in the

left-hand part, showing that the model regards the left-hand accompaniment as the dominant

2The presented excerpts are converted from MIDI by the authors. The chord labels are inferred from the origi-
nal/generated samples.
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(a) A real piece.

(b) The other real piece.

(c) The generated piece by combining ztxt from (a) and zchd from (b).

(d) The generated piece by combining ztxt from (b) and zchd from (a).

Figure 3.2: An example of compositional style transfer of 16-bar-long samples.
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(a) An example of posterior sampling of ztxt of the first 8 bars of the segment (a) in Figure 3.2

(b) An example of prior sampling of ztxt under given chord progression C-Am-F-G. Each two-bar segment
is independently sampled, having different texture.

Figure 3.3: Examples of texture variations via posterior sampling and prior sampling.

feature of texture.

Sampling from the prior distribution p(ztxt) changes the texture completely. Figure 3.3(b)

shows a series of examples of prior sampling under the same chord progression C-Am-F-G. The

resulting generations follow exactly the chord progression but with new textures.

3.3.3 Accompaniment Arrangement

We use a downstream predictive model to achieve accompaniment arrangement. For this

task, we provide extra vocal melody tracks paired with the piano samples, and the model learns

to generate 16-bar piano accompaniment conditioned on melody in a supervised fashion.

We encode the music every 2 bars (without overlap) into latent representations. For the ac-

companiment, we use the proposed model to compute the latent chord and texture representa-

tion, denoted by zchd = [z
(1)
chd, ..., z

(4)
chd] and ztxt = [z

(1)
txt, ..., z

(4)
txt]. For the melody, we use the EC2-

VAE [271] to compute the latent pitch and rhythm representations, denoted by zp = [z
(1)
p , ..., z

(4)
p ]

and zr = [z
(1)
r , ..., z

(4)
r ]. Then, we adopt a vanilla transformer [241] to model p(ztxt, zchd|zp, zr),

in which the encoder takes in the condition and the decoder’s input is a shifted right version
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[zchd, ztxt]. Both encoder and decoder inputs are incorporated with a positional encoding indi-

cating the time positions and a learned factor embedding indicating the representation type (i.e.,

pitch, rhythm, chord, or texture).

Figure 3.4: An example of accompaniment arrangement conditioned on melody, chord progression, and
first 2 bars of accompaniment.

Figure 3.4 shows an example of accompaniment arrangement, where the first staff shows the

melody and the second staff shows the piano accompaniment. In this case, the whole melody,

together with the complete chord progression and the first two bars of the accompaniment, is

given. The chord conditioning is achieved by forcing the decoded chord representation to match

the given input during inference time. (A similar method is used in [64].) From Figure 3.4, we

see that the model predicts a similar texture to the given accompaniment. Moreover, it fills in a

secondary melody line as a transition when the lead melody is at rest.

Note that the arrangement can be generated in a flexible way by conditioning on different

sets of latent factors.

3.4 Experiments

3.4.1 Dataset and Training

We train our model on the POP909 dataset [250], which contains about 1K MIDI files of pop

songs (including paired vocal melody and piano accompaniment). We further extract the chord
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annotations using [190, 201]. We only keep the pieces with 2
4

and 4
4

meters and cut them into

8-beat music segments (so that each data sample in our experiment contains 32 time steps under

16th note resolution). In all, we have 66K samples. We randomly split the dataset (at song-level)

into the training set (90%) and the test set (10%). All training samples are further augmented by

transposing to all 12 keys.

In our experiment, the VAE model uses 256, 512, and 512 hidden dimensions for the GRUs

in the chord encoder, the chord decoder, and the texture encoder, respectively. The latent di-

mension of zchd and ztxt are both 256. The model size of the PianoTree decoder is the same as

the implementation in the original paper [248]. The transformer model has the following size:

hidden dimension = 256, number of layers = 4, and number of heads = 8.

For both models, we use Adam optimizer [124] with a scheduled learning rate from 1e-3 to

1e-5. Moreover, for the VAE model, we use KL-annealing [25], i.e., setting a weight parameter for

the KL-divergence loss starting from 0 to 0.1. We set the batch size to be 128, and the training

converges within 6 epochs. For the downstream transformer model, we use 12K warmup steps

for learning rate update [267]. We use the same batch size, and the model converges within 40

epochs.

3.4.2 Objective Measurement

When zchd and ztxt are well disentangled, small variations over the note pitches of the original

music should lead to a larger change on zchd, while variations of rhythm will have more influence

on ztxt. Following this assumption, we adopt a disentanglement evaluation via data augmentation

method used in [122] and further developed in [271].

We define Fi as the operation of transposing all the notes by i semitones, and use theL1-norm

to measure the change of latent z after augmentation. Figure 3.5(a) shows a comparison between

Σ|∆zchd| and Σ|∆ztxt|when we apply Fi to all the music pieces in the test set (where i ∈ [1, 12]).

It is conspicuous that when augmenting pitch in a small range, the change of zchd is much
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(a) A comparison between ∆zchd, ∆ztxt after pitch transposition on all notes.

(b) A comparison among ∆zchd, ∆ztxt after beat-wise pitch transposition and texture augmentation with
different probabilities.

Figure 3.5: Results of objective measurement.

larger than the change of ztxt. At the same time, the change of ztxt gets higher as the augmentation

scale increases. Similar to the result in [271], the change of zchd reflects human pitch perception

as zchd is very sensitive to a tritone transposition, and least sensitive for a perfect octave.

We further define Pi as the function to randomly transpose all the notes in one beat either up

or down one semitone under a certain probability i, and Ri as the function to randomly reduce

the note duration by half. Figure 3.5(b) shows a comparison between Σ|∆zchd| and Σ|∆ztxt|when

we apply Pi and Ri to all the music pieces in our test set (where i ∈ [0.1, 1.0]).

For each value of i in the figure 3.5(b), the first and second bars demonstrate Σ|∆zchd| and

Σ|∆ztxt| caused by Pi function, while the third bar indicates Σ|∆ztxt| caused byRi function. (We

did not show Σ|∆zchd| caused by Ri since they are all zero.) It again proves that the chord rep-
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resentation is more sensitive than texture representation under pitch variations, and conversely,

texture representation is more sensitive than chord representation under rhythm variations.

3.4.3 Subjective Evaluation

Besides objective measurement, we conduct a survey to evaluate the musical quality of com-

positional style transfer (see Section 3.3.1). Each subject listens to ten 2-bar pieces with different

chord progressions, each paired with 5 style-transfer versions generated by swapping the texture

representation with a random sample from the test set. In other words, each subject evaluates 10

groups of samples, each of which contains 6 versions of textures (1 from the original piece and 5

from other pieces) under the same chord progression. Both the order of groups and the sample

order within each group are randomized. After listening to each sample, the subjects rate them

based on a 5-point scale from 1 (very low) to 5 (very high) according to three criteria: creativity,

naturalness, and musicality.

Figure 3.6: Subjective evaluation results. Here “TFRed: xth largest” denotes the xth (largest) order statis-
tic of the transferred segments.

A total of 36 subjects (26 females and 10 males) participated in the survey. Figure 3.6 shows the

comparison result among the original pieces (indicated by the orange bars) and the transferred

pieces in terms of their mean and order statistics. The heights of bars represent averaged ratings

across the subjects, and the error bars represent the confidence intervals computed via paired
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t-test [102]. The result shows if we randomly transfer a piece’s texture 5 times, the best result is

significantly better than the original version (with p-value < 0.005), and there are only marginal

differences between the second-largest statistics and the original (with p-value > 0.05) in terms

of creativity and musicality. We also see that, on average, the transferred results are still rated

lower than the original ones. How to automatically decide the quality of a transferred result is

considered future work.

3.5 Related Work

We review two techniques of automated music generation related to this chapter: controlled

generation (Section 3.5.1) and representation disentanglement (Section 3.5.2). For a more general

review of deep music generation, we refer readers to [26, 27].

3.5.1 Controlled Music Generation

Most existing learning-based methods regard controlled music generation as a conditional

estimation problem. That is, to model p(music|control), in which both music and control are

usually time-series features. Another approach closely related to conditional estimation is first

to learn the joint distribution p(music, control) and later on force the value of control during the

generation process.

The above two methods have been used in various tasks, including generating chords based on

the melody [213], creating the melody based on the chords [37, 270], completing the counterparts

or accompaniment based on the melody or chord [64, 65, 83, 108, 215, 289], and producing the

audio waveform based on timbre features [107, 136].

However, many abstract music factors, such as texture and melody contour, could hardly be

explicitly coded by labels. Even if such labels are provided, the control still does not allow contin-

uous manipulation, such as sampling and interpolation. Consequently, it remains a challenging
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task to control music by more abstract factors without complex heuristics [139].

3.5.2 Music Representation Disentanglement

Learning disentangled representations is an ideal solution to the problem above, since: 1) rep-

resentation learning embeds discrete music and control sequences into a continuous latent space,

and 2) disentanglement techniques can further decompose the latent space into interpretable sub-

parts that correspond to abstract music factors. Recent studies show that VAEs [125, 203] are in

general an effective framework to learn the representations of discrete music sequences, and the

key to a successful disentanglement is to incorporate proper inductive biases into the represen-

tation learning models [157].

Under a VAE framework, an inductive bias can be realized in various forms, including con-

straining the encoder [5, 162, 260], constraining the decoder [43], imposing multitask loss func-

tions [30, 271], and enforcing transformation invariant results during the learning process [138,

171]. This study is based on our previous work [271] in which we disentangle pitch and rhythm

factors for monophonic segments. We extend this idea to polyphonic composition, while the

model design is more similar to [260].

3.6 Summary

In summary, we contributed an effective algorithm to disentangle polyphonic music repre-

sentation into two interpretable factors, chord and texture, under a VAE framework. Such inter-

pretable representations serve as an intuitive human-computer co-creation interface, by which

we can precisely manipulate individual factors to control the flow of the generated music. In this

paper, we demonstrated three ways to interact with the model, including compositional style

transfer via swapping the latent codes, texture variation by sampling from the latent distribu-

tion, and accompaniment arrangement using downstream conditional prediction, among other
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possibilities. We hope this work can shed light on the field of controllable algorithmic composi-

tion in general, especially on the paradox between model complexity and model interpretability.

We acknowledge that the learned music factors are still very basic. In the following chapters, we

plan to extract more abstract and longer-range features using hierarchical models. We also plan

to explore more ways to control the music generation for practical usage.
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4 | Multimodal Disentanglement for

Audio-to-Symbolic Music

Generation

The previous chapters introduced methods for learning concept representations from sym-

bolic music data. In this chapter, we explore how these concepts can be applied in a practical

setting: can we automatically generate a piano accompaniment score from the audio of a pop

song? This is the audio-to-symbolic arrangement task that we tackle in this chapter. If approached

from a utility-based perspective, one might attempt to first transcribe the audio into a multi-track

score and then apply piano reduction. However, this pipeline is highly challenging and usually

lacks sufficient labels to guide the process effectively. From the perspective of concept manip-

ulation, a more direct and interpretable approach is to transfer shared concepts, such as music

texture, that are expressed differently across modalities, but correspond to the same underlying

representation. This approach allows the arrangement to sound like the original audio, rather

than strictly replicating it.

The multimodal model we propose builds upon the polyphonic disentanglement framework

introduced in the previous chapter. It jointly encodes information about chord and texture from

both audio and symbolic inputs. To enable audio-driven generation, we further introduce a tai-

lored training strategy that gradually shifts the source of information from a corrupted symbolic
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score to the audio signal. By the end of training, the texture posterior conditioned on the score

is reduced to a standard normal distribution, allowing the model to rely solely on audio during

inference.

This chapter is based on the published work Audio-to-Symbolic Arrangement via Cross-Modal

Music Representation Learning [245], conducted in collaboration with Dejing Xu, Gus Xia, and

Ying Shan.1

4.1 Audio-to-Symbolic Arrangement

Piano arrangement is widely used in practice to reproduce various complex music signals. The

key idea is to transform the original music, usually represented by an audio mixture or full score

of a band, into a piano score (that can be performed using only two or four hands) without loss of

major music information. For example, piano reductions are made for classical orchestral music,

and piano covers are created for pop songs. A good arrangement is not merely a transcription of

the original audio mapped onto the keyboard, but also a realization of the original content that

makes musical sense as a composition in the new instrument.

In this chapter, our focus is on automatic audio-to-symbolic arrangement. Unlike automatic

music transcription [16, 17], the task aims at the symbolic generation according to the audio

content, which consists of an arbitrary set of instruments and may contain timbral effects that

cannot be easily transcribed. Existing systems mainly rely on rule-based or simple statistical

models [8, 195, 222, 223], where audio-analysis and symbolic-generation modules are more or

less independent and loosely connected by some bottleneck audio features. Such design often

suffers from two limitations. First, the arrangement patterns are usually very rigid since both

the bottleneck audio features and the accompaniment patterns are largely pre-defined. Second,

nuanced features such as groove patterns and bass lines are difficult to be modeled using existing

1Code and demos can be accessed via https://github.com/ZZWaang/audio2midi.

47

https://github.com/ZZWaang/audio2midi


MIR techniques.

We consider end-to-end audio-to-symbolic deep generative modeling a better choice, as

neural-based modeling potentially enables more flexible symbolic generation and an end-to-end

architecture allows nuanced features to flow from audio to symbolic modal. On the other hand,

we are faced with a great challenge—the relation between audio and its possible symbolic ar-

rangement is essentially one-to-many and the prior knowledge of a good piano composition is

only partially present in the audio. In other words, a naive supervised-learning model would eas-

ily get confused by the noisy audio-symbolic pairs and collapse to certain specific accompaniment

patterns.

To solve the problem, we propose a cross-modal representation learning framework, in which

the input is the audio of a pop-song accompaniment under arbitrary instrumentation, while the

output is an arrangement in MIDI format. The model encodes a cross-modal representation from

both audio and symbolic modals and decodes the information back to the symbolic domain. The

latent representation contains the audio content and reflects prior knowledge about symbolic

composition. During pre-training, we initialize the model to be an almost pure symbolic-to-

symbolic variational autoencoder. By gradually corrupting the input and strengthening the vari-

ational constraints, the model is trained to lean more towards the audio. During the fine-tuning,

we could provide the symbolic side with either Gaussian noise or information from previous bars

to make the model fully dependent on audio or autoregressive.

In sum, we contribute the first end-to-end approach for automatic audio-to-symbolic arrange-

ment. The quality of the generated samples is significantly higher than baselines and even rated

higher than human compositions in terms of creativity. Moreover, the arrangement problem is

tackled by a tailored training strategy that optimizes the supervised objective under an unsuper-

vised cross-modal representation learning framework, which can be potentially generalized to

other one-to-many supervised training tasks.
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Figure 4.1: The proposed model architecture and training strategy.

4.2 Method

We aim to learn chord representation, audio-texture representation from audio, and symbolic-

texture representation from its paired symbolic arrangement. In this chapter, we consider 2-bar

audio segments (provided with beat annotation) and symbolic arrangement in 4
4

time signature.

The symbolic arrangement is represented under 1
4

beat resolution.

4.2.1 Model Architecture

Figure 4.1(a) shows the overall model architecture, which adopts an encoder-decoder archi-

tecture and contains five parts: 1) a chord encoder, 2) a chord decoder, 3) an audio encoder, 4) a

symbolic encoder, and 5) a symbolic decoder. We consider our model a cross-modal extension of

a symbolic-domain chord and texture disentanglement study [247].
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The chord encoder adopts a GRU layer to encode a 128-d chord representation zchd from a

chord progression, which is extracted from the audio using an existing chord extraction algo-

rithm [114]. The chord decoder, which reconstructs the input chord progression, is introduced as

a mechanism to avoid posterior collapse of zchd.

The input to the audio encoder is an 8-beat-long audio segment, time-stretched and resampled

to 95 BPM with a sample rate of 16kHz. We first use a piano transcriber architecture [91] to embed

the audio feature into a stack of piano-roll-like matrices of onset, frame, and velocity predictions.

Then, we use a 2D convolution layer followed by a GRU layer to encode 192-d audio-texture

representation zaudtxt . The same model structure is applied to the symbolic encoder to extract a

192-d symbolic-texture representation zsymtxt from a corrupted ground truth piano-roll. The data

corruption is controlled by a tailored training strategy introduced in Section 4.2.3.

The symbolic decoder takes in the concatenation of zchd, zaudtxt , and zsymtxt and decodes the sym-

bolic arrangement in a hierarchical manner using the decoder module of PianoTree VAE [248],

the state-of-the-art polyphonic representation learning model. Besides the latent codes, the Pi-

anoTree decoder also takes in a time series of symbolic features, which is predicted from zaudtxt

only to enhance audio information retrieval. Specifically, we explicitly constrain zaudtxt to predict

three symbolic features: bass onset, melody onset, and rhythmic intensity, which usually strongly

correlate with audio rhythmic information of bass drum, lead melody, and groove patterns, re-

spectively. Both bass onset and melody onset are time series of onset probabilities, and rhythmic

intensity is a time series of scalar values. The predicted features are fed to the corresponding time

steps of the time-axis GRU in the PianoTree decoder. A similar method is also used to achieve

disentanglement in [271].

4.2.2 Training Objective

The loss terms in our model include 1) reconstruction losses of chord, arrangement, and sym-

bolic features, and 2) KL losses between all three latent factors with standard normal distributions.
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Our model is essentially a conditional variational autoencoder, since the loss function can be for-

malized as the evidence lower bound (ELBO) of the conditional probability p(y|x), where x is the

audio and y is the arrangement.

The posterior distribution of the conditional VAE is defined as the product of the three encoder

models:

qϕ(z|x, y) := qϕ1(zchd|c)qϕ2(zaudtxt |x)qϕ3(z
sym
txt |y),

where z := [zchd, z
aud
txt , z

sym
txt ], and ϕ := [ϕ1, ϕ2, ϕ3] denotes the encoder parameters. Note that the

chord progression c is a deterministic transform from x and is therefore absent in qϕ(z|x, y). The

reconstruction distribution is defined as the product of the three reconstruction terms:

pθ(x|z) := pθ1(c|zchd)pθ2(y|z, r)pθ3(r|zaudtxt ),

where θ := [θ1, θ2, θ3] denotes the decoder parameters, r denotes the ground truth symbolic

features, and pθ1(c|zchd) is interpreted as a regularizer to the output distribution. Finally, the loss

function is:

Lβ(θ,ϕ;x) =− Ez∼qϕ(z|x,y)

[
log pθ(x|z)

]
+ β KL(qϕ(z|x, y)||p(z)),

where p(z) is a 512-d standard normal prior and β is the KL annealing parameter.

4.2.3 Training Strategy

We propose a training strategy (shown in Figure 4.1(b)) to balance information from the audio

encoder and the symbolic encoder so that the training starts with the unsupervised symbolic
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reconstruction task and shifts to the supervised audio-to-symbolic task. Particularly, there are

three stages:

Stage 1, Warm-up: The lead voice of the ground truth arrangement is masked, and β increases

from 0 to 0.01 for all three latent factors. The model is therefore enforced to predict melody solely

from the audio.

Stage 2, Pre-training: Besides melody, the rest of the notes are randomly masked under the

probability ranging from 0.5 to 0.8, where lower pitches have a higher probability to be masked.

Meanwhile, β increases from 0.01 to 0.5 for zsymtxt and keeps 0.01 for the other two factors. The

model is expected to learn more information from the audio.

Stage 3, Fine-tuning: The model can be purely audio-dependent at this stage: we completely

abandon the symbolic encoder by sampling zsymtxt from a standard normal distribution. Alterna-

tively, we can also feed the arrangement of the previous two measures to the symbolic encoder

to make the model autoregressive.

4.3 Experiments

4.3.1 Implementation Detail

We train our model on the POP909 dataset [250], which contains about 1K MIDI files of pop

song arrangements with time-aligned audios. We use the piano accompaniment MIDI tracks and

keep the pieces with 2
4

and 4
4

meters and cut them into 8-beat music segments. The audio is also

sliced into 8-beat segments, and the vocal is removed by the Spleeter source separation algo-

rithm [95]. In all, we have 66K samples. We randomly split the dataset (at song level) into the

training set (90%) and the test set (10%). All training samples are further augmented by transpos-

ing to all 12 keys. The chord, beat, and melody track annotations are all included in the dataset,
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while the ground truth bass onset is defined to be the occurrence of a MIDI pitch lower than 48,

and rhythmic intensity is the number of simultaneous onsets normalized by a constant.

The piano transcriber used in our model is pre-trained on the MAESTRO dataset [90]. The

model contains 62M trainable parameters in total, including 26M parameters in the piano tran-

scriber. We use a batch size of 64 and Adam optimizer [124] with a scheduled learning rate from

4e− 4 to 4e− 6.

Borrow !!"!#$% from 

Use !&'( of [Am Dm G C]

bass ost.

mel ost.

intensity

bass ost.

mel ost.

intensity

Use !&'( of [Am Dm G C]

Borrow !!"!
#$% from 

  

(a) Mel-spectrogram of an example input audio x.
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(b) Predicted symbolic features of x.
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(c) Arrangement result of x and examples of compositional style transfer.

Figure 4.2: An example of automatic arrangement based on the audio of an 8-bar excerpt from 1001 Nights
by Samuel Tai.
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4.3.2 Arrangement Example

A 16-bar arrangement example (by predicting every 2 bars independently) is shown in Fig-

ure 4.2. The audio has a lead instrument and frequent bass note changes at the beginning, and a

less intense groove halfway to the end (Figure 4.2(a)). These features are captured in the symbolic

feature prediction (Figure 4.2(b)), as well as the symbolic arrangement (Figure 4.2(c), where we

see melody with arpeggio texture in mm. 1–4, and arpeggio with decreasing intensity in mm. 5–8.

We also demonstrate that the model (after the pre-training stage) is capable of the composi-

tional style transfer tasks [56] via replacement of the disentangled factors [247]. First, we change

the chords in mm. 1-2 to another chord progression [Am, Dm, G, C] represented by zchd (indicated

by the blue arrow), and the generation changes to the desired progression while maintaining the

original texture. Then, we replace mm. 3-4 with a new symbolic texture represented by zsymtxt (indi-

cated by the green arrow), and the left-hand texture changes correspondingly while the harmony

and the right-hand melody contour are kept unchanged.

4.3.3 Subjective Evaluation

We compare our proposed method with three baselines. The first two baselines adopt the

common supervised approach, implemented with only the audio encoder and the PianoTree de-

coder with or without KL loss. The third baseline is solely chord-dependent, by setting zaudtxt to

zero.

We invite people to subjectively rate the generation quality through a double-blind online

survey. During the survey, the subjects listen to 6 groups of samples. In each group, the original

audio is played, followed by the generated samples and the ground truth composition in random

order. Both the order of groups and the sample order within each group are randomized. After

listening to each sample, the subjects rate them based on a 5-point scale from 1 (very low) to 5

(very high) according to four criteria: faithfulness (to the original audio), creativity, naturalness,
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Figure 4.3: Subjective evaluation results.

and overall musicality.

A total of 26 subjects (8 females and 18 males) with different musical backgrounds have com-

pleted the survey. Figure 4.3 shows the result where the heights of the bars represent the means

of the ratings and the error bars represent the confidence interval computed via within-subject

ANOVA. The result shows that the proposed model is significantly better than the baseline models

in terms of all four criteria, and the creativity is even significantly better than human composition

(with p-value < 0.005).

4.4 Related Work

Automatic arrangement tasks can be conducted based on either symbolic or audio sources.

Pure symbolic arrangement is commonly studied using deep generative models and has achieved

considerable progress [27, 35, 215, 247]. In contrast, audio-to-symbolic arrangement, which is

more related to this chapter, is still underresearched. Existing methods are mostly rule-based or

rely on hand-crafted statistics. E.g., Takamori et al. extract chords and melodies from audio and

pre-define several accompaniment textures [222, 223]. Song2Quartet [195] and Song2Guitar [8]

further introduce matching probabilities between audio and score and use dynamic programming

to search the notes. These models often lead to rigid patterns, and the musicality cannot yet serve
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for practical purposes.

An alternative shortcut to achieve arrangement is timbre style transfer [56, 68, 110, 150, 242],

in which a latent timbre space is first learned and then transferred to piano timbre during infer-

ence. However, existing models are either constrained to monophonic instruments or based on

synthetic audio data. Real-world audio is more complicated in instrumentation, and the integra-

tion of audio content with piano composition techniques is still an open problem.

4.5 Summary

We have contributed a cross-modal representation learning framework as the first end-to-end

approach to accomplish the audio-to-symbolic automatic arrangement problem. Experimental

results show that our model is able to capture harmonies, melody lines, and groove patterns from

the audio without loss of musicality. The main novelty lies in the cross-modal training strategy

that gradually shifts the input source from one modality to the other. We see this kind of tailored

self-supervision control as a bridge between unsupervised learning tasks and supervised training.

In the next chapter, we explore more flexible cross-modal methods using large language models

to improve the quality and controllability of audio-to-symbolic conversion.
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5 | Disentangling Style in Large

Language Models

In previous chapters, we explored how musical concepts can be learned through disentangled

representations, typically within a variational autoencoder framework. While these methods

offer interpretable latent spaces corresponding to concepts, they often come at the cost of gen-

eration quality and flexibility. In contrast, large generative models have demonstrated superior

fluency, structure, and coherence [3, 52, 160]. This raises a question: can we incorporate disentan-

gled concept representations into large generative models, thereby combining interpretability with

high-quality generation?

Among the concepts most relevant to music generation, style remains one of the most im-

plicit and difficult to define. Though often described using text labels such as “swing,” “classical,”

or “emotional,” music style is not directly observable and hidden in concrete examples. In this

chapter, we address this challenge by leveraging large pre-trained models to learn implicit styles

from raw audio and apply the styles to symbolic music generation. Inspired by BLIP-2 [80], our

model uses a Querying Transformer (Q-Former) to extract style representations from an audio

LLM and further apply them to condition a symbolic LLM for generating piano arrangements.

This approach can be viewed as a form of representation disentanglement in a broader sense, and

we show that it achieves stronger results in audio-to-symbolic arrangement tasks compared to

the method introduced in the previous chapter.
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This chapter is based on original, unpublished work conducted in collaboration with Jingwei

Zhao, Gus Xia, and Ye Wang.1

5.1 Representation Learning via Bootstrapping

Automatic music generation is often controlled by explicit content such as melody, chords,

and text labels [18, 160, 247, 271, 286]. But music concepts can be more nuanced than we often

realize. When musicians learn a style, instead of relying on abstract definitions like “romantic”

or “jazz” alone, they absorb patterns from music examples that share common stylistic traits. The

commonality across these examples forms a style—an implicit one that cannot be fully described

with words or labels but only understood through the music itself. This chapter explores how

this implicit style can be internalized from music examples and used to control music generation

in a deep learning framework.

Large language models (LLMs) have shown strong capabilities in learning explicit music con-

tent, as demonstrated by probing studies [33, 165, 166, 240, 252] and adapter-based designs [151,

152, 259, 283]. Yet, control over implicit style remains limited. For example, when using audio to

guide symbolic music generation, existing models can extract melody and chords [63, 245], but

capturing stylistic traits like comping patterns or voicing preferences remains a greater challenge.

This requires disentangling style from music content, which current LLM-based studies have yet

to explore.

In this chapter, we explore learning implicit music style in a cross-modal setting for symbolic

piano arrangement. Our goal is to generate an arrangement conditioned on two inputs: an audio

example (providing style) and a lead sheet (melody and chords as content). To achieve this, we

connect pre-trained LLMs in the audio and symbolic domains using a Querying Transformer

(Q-Former), a lightweight Transformer originally designed for vision-language alignment [143].

1Demo page can be accessed via https://anonymous55aht.github.io/.
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Q-Former
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⋯
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ArrangementStyle

Representation

(providing music content) 

(in ragtime) 

(e.g., a ragtime song)

Stage 1
Cross-Modal Representation Learning

Stage 2
Generative Modeling

Figure 5.1: A Q-Former module bridges the modality gap between a frozen audio LLM and a symbolic
music LLM. It extracts cross-modal music style from the hidden representations of the audio LLM and,
together with a lead sheet providing music content, conditions the symbolic LLM for piano arrangement.
The Q-Former is trained in a two-stage process, effectively bootstrapping audio-to-symbolic arrangement
without re-training either LLM backbone.

As shown in Figure 5.1, we extend its role to capture abstract music style, extracting a style

representation from the hidden states of the audio LLM. The symbolic LLM then conditions on

this representation, along with the lead sheet, to generate an arrangement. The Q-Former enables

style transfer between two unimodal LLMs without re-training them—a process we refer to as

bootstrapping.

In our design, we treat the Q-Former as a bottleneck to transfer only style-related information

and adopt a two-stage training strategy. The first stage employs contrastive learning, training the

Q-Former to extract auditory representations that are musically relevant, expressible in piano

composition, and independent of explicit music content. The second stage focuses on generative

modeling, where the Q-Former’s output conditions the symbolic LLM to arrange the desired piano

performance. Experiments show that the complete system generates more stylistically accurate

cover songs compared to existing audio-to-symbolic arrangement methods, besides achieving

piano style transfer by specifying audio examples.

In sum, the contributions of this chapter are threefold:
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1. We use the Q-Former to align audio and symbolic modalities through abstract music

style, extending its role beyond content alignment in vision-language tasks.

2. We demonstrate a new methodology to disentangle music style from pre-trained

LLMs, offering a more scalable alternative to traditional latent-variable disentanglement

methods.

3. Our model achieves style-preserving audio-to-symbolic piano cover arrangement

and enables style transfer based on audio examples. Experiments show that it outper-

forms existing audio-to-symbolic models, including both disentanglement-based methods

and standard LM approaches.

5.2 Method

Our goal is to learn music style representations from the audio and leverage these represen-

tations to arrange symbolic piano performances. To bridge the modality gap from audio to sym-

bolic music, we adopt the Q-Former [143] under a two-stage training strategy. Stage 1 focuses

on audio-symbolic representation learning with a frozen audio LLM, while Stage 2 addresses

audio-to-symbolic arrangement with a symbolic LLM. In Section 5.2.1, we first introduce our

audio-symbolic data pairing method that facilitates style learning. We illustrate the Q-Former

architecture in Section 5.2.2, followed by the details of the two-stage training procedure in Sec-

tions 5.2.3 and 5.2.4.

5.2.1 Data Pairing for Style Learning

Training an audio-to-symbolic alignment model requires paired audio–MIDI data. In this

chapter, we use 10s audio clips paired with 4-bar MIDI segments. Our goal is not to model low-

level note-to-note correspondence, but to extract style—and only style—from the audio modality.
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Therefore, the audio and MIDI pairs are loosely aligned in the center of the segment but are

not necessarily synchronized at the note level. This setup prevents the model from learning note

transcription. To further encourage style abstraction, each MIDI segment is randomly transposed

to all 12 keys during training.

We represent music audio as raw waveforms sampled at 32kHz. MIDI is tokenized into note

event sequences quantized at 1/12-beat resolution. We include various symbolic features, includ-

ing time signature (quadruple and triple meters), tempo curve, note pitch, duration, and velocity.

5.2.2 Q-Former Architecture

The Q-Former is a Transformer encoder architecture with two parallel, modality-specific

streams that share the self-attention layers. As shown in Figure 5.2, it accepts both audio and sym-

bolic inputs and aims to learn cross-model music style representation. The left stream interacts

with the audio LLM to extract auditory music features. The right stream encodes symbolic music

representations. A set of querying embeddings (randomly initialized) is fed to the left stream

and serves as the bridge between the two modalities. These queries participate in three types

of interactions: among themselves through self-attention, attending to the audio LLM via cross-

attention, and attending to the symbolic stream to the right through the shared self-attention

layers. To control the cross-modal interactions, we apply different self-attention masks accord-

ing to specific training objectives, as detailed further in Section 5.2.3.

We initialize the Q-Former weights using the pre-trained MusicBERT-Base model [278]. The

added cross-attention layers are randomly initialized. Following Blip-2 [143], we use 32 queries

with dimension 768. Symbolic notes are embedded in the OctMIDI format [278], which learns a

joint note-wise embedding by summing up the embeddings of individual note attributes. Overall,

the Q-Former comprises 186M parameters, including the learnable queries and symbolic note

embeddings.
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Figure 5.2: The Q-Former is a Transformer encoder with two parallel, modality-specific streams that
share the self-attention layers. The left stream queries music style from an audio LLM via cross-attention,
and the right stream encodes symbolic music. Cross-modal interactions are regulated by self-attention
masks specific to training objectives.

5.2.3 Stage 1: Audio-Symbolic Representation Learning

In the representation learning stage, we leverage cross-attention to integrate Q-Former with

MusicGen [52], one of the leading general music audio LLMs available today. The primary goal

is for the queries to capture, from the audio, cross-modal representations that reflect music style.

To bridge the modality gap between audio and symbolic music, we jointly train the Q-Former

using three complementary objectives, each employing a distinct attention mask controlling the

cross-modal interaction.

The primary objective is Audio-Symbolic Contrastive Learning, which enforces a higher

audio-symbolic similarity for positive pairs compared to negative ones. Let Z ∈ R32×768 be

the query outputs from the audio stream of Q-Former, and t ∈ R1×768 be the output embed-

ding of the start token (<s>) from the symbolic stream. We define the audio-symbolic similarity

as maxk(cos(Zk, t)) for k = 1, 2, · · · , 32, where cos(·, ·) denotes the cosine similarity. The con-

trastive loss pulls closer aligned audio and symbolic clips in the representation space, while push-
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ing apart unrelated pairs. To prevent information leakage, we employ a unimodal self-attention

mask, ensuring queries and symbolic notes do not attend to each other. For details on mask

configurations, we refer readers to BLIP-2 [143].

The second objective is Audio-Symbolic Matching. It is formulated as a binary classification

task, where the model predicts whether a given audio-symbolic pair corresponds to each other.

On top of contrastive loss, the matching loss aims to capture a finer cross-modal correspondence.

In this case, we apply no masking, allowing the queries to attend across modalities. Each query

output Zk is fed into a binary linear classifier to produce a logit, and the logits from all queries are

averaged to compute the final matching score. To create informative negative pairs, we employ

the hard negative mining strategy in [142].

The final objective, Audio-Grounded Symbolic Generation, trains the Q-Former to au-

toregressively generate piano arrangement conditioned on an input audio and lead sheet. We

implement a cross-model causal self-attention mask, allowing the symbolic notes to see the queries

but not vice versa. This generative loss ensures that the auditory music style extracted by the

queries can be translated to the symbolic modality. To signify a decoding task, we replace the

starting <s> token with a <DEC> token prepended by a sequence of lead sheet note embeddings.

5.2.4 Stage 2: Audio-to-Symbolic Generative modeling

In the generative modeling stage, we take advantage of the generative capability of MuseC-

oco [160], a symbolic music LLM. As illustrated in Figure 5.3, MuseCoco is used to reconstruct

a piano arrangement based on two concatenated conditional inputs: 1) the query output embed-

dings Z from the Q-Former, and 2) a lead sheet. The Q-Former is pre-trained at Stage 1 to extract

cross-modal music style from the audio, thus providing style guidance. The lead sheet defines

the theme melody and harmony as the content.

To enable compatibility with MuseCoco, we project Z into the same embedding dimension

as MuseCoco’s token embeddings using a linear layer. Symbolic note tokens are converted to the
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Figure 5.3: A symbolic music LLM is used to generate piano arrangement based on two inputs: the query
output Z from the Q-Former with cross-modal music style, and a lead sheet providing music content.
A LoRA adapter is incorporated to reweight self-attention and accommodate the newly introduced lead
sheet condition.

REMI [108] format. Since MuseCoco does not natively support lead sheet conditioning and the

inclusion of the lead sheet alters its input format, we incorporate a LoRA adapter [104] of rank

16 into each self-attention layer. This allows the model to reweight attention and accommodate

the added conditioning inputs. Notably, MuseCoco itself remains frozen throughout this process.

5.3 Experiments

In this section, we evaluate the performance of our proposed audio-to-symbolic arrangement

model. Section 5.3.1 describes the datasets used, and Section 5.3.2 details the model configura-

tions. Our model takes as input a lead sheet and an audio reference. When the lead sheet and

audio are paired, the task is piano cover generation; when they are unpaired, the task is style

transfer. Section 5.3.3 presents qualitative demonstrations for both tasks. Given that prior work

has primarily focused on piano cover generation, we benchmark our model on this task in Sec-

tion 5.3.4. Finally, Section 5.3.5 presents an ablation study on the three pre-training objectives in

the first stage of model training.
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5.3.1 Datasets

Our model is trained on two dual-modal music datasets: POP909[249] and PIAST [10]. Specif-

ically, POP909 contains 1K piano cover arrangements created by professional musicians. The

music genre is primarily Chinese pop, while the accompanying audio features diverse band in-

strumentation, which can help the model learn generalizable audio representations of pop mu-

sic. PIAST, on the other hand, contains 8K piano performance recordings along with symbolic

transcriptions across a variety of genres, including pop, jazz, and classical. This diversity encour-

ages the model to produce more expressive and stylistically varied performances. We split both

datasets at the song level into training (90%), validation (5%), and test (5%) sets. Each symbolic

MIDI file is clipped into 4-bar segments with a 2-bar hop size, transposed to all 12 keys, and

center-aligned with the corresponding 10s audio clip.

We also test on two out-of-domain datasets: Ballroom [79, 132] and GTZAN [60, 238]. Both

datasets feature audio recordings with diverse band and orchestral instrumentation, as well as

fine-grained music genres such as jive and bossa nova. Since they lack paired symbolic annota-

tions, we use them for inference only. This allows us to assess the model’s generalization ability

and its capacity to accommodate styles beyond pop music.

5.3.2 Model Configuration and Training Details

We use MusicGen-Large [52] as our audio LLM. We discard the text encoder and retain only

the music decoder, a 48-layer Transformer. Audio codecs are fed to the decoder and we extract

the hidden representations from the 25th layer, as prior probing studies [33, 165, 166, 240, 252]

suggest that middle layers capture more musically meaningful features. This setup retains 1.7B

frozen parameters from MusicGen.

For symbolic music arrangement, we adopt MuseCoco-xLarge [160], which is a 24-layer

Transformer decoder pre-trained on large-scale symbolic music corpora. We remove its text-
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related components and keep 1.2B frozen parameters from the music decoder.

The Q-Former comprises 186M learnable parameters, which is significantly smaller than the

billion-scale backbone models. In Stage 1, it is pre-trained in FP16 using a batch size of 128 for

10 epochs (130K iteration). The LoRA adaptor in Stage 2 adds 5M parameters, and we fine-tune

the model for another 5 epochs using a batch size of 32. Both training stages are conducted on

four RTX A40 GPUs (48GB each). We use the AdamW optimizer [158] with an initial learning

rate of 1e-4, a linear warm-up over the first 1k steps, and a cosine decay schedule to a final rate

of 1e− 5. During inference, we use top-k sampling with k = 15.

5.3.3 Arrangement Demonstration

In this section, we demonstrate the performance of our audio-to-symbolic arrangement model

under freely manipulated audio style references. Figure 5.4(a) shows an 8-bar lead sheet excerpt

from the musical The Sound of Music. The selected passage features harmonically rich chords,

including diminished and seventh chord qualities, which present suitable complexity for arrange-

ment experiments. Figures 5.4(b) to 5.4(d) showcase the arrangement results conditioned on var-

ied audio references. The 8-bar arrangement is generated using windowed sampling, wherein a

4-bar context window progresses forward every 2 bars and continues sampling conditioned upon

the preceding 2 bars.

Figure 5.4(b) shows the piano cover from the original The Sound of Music soundtrack,2 which

features lush orchestration dominated by string ensembles. Our arrangement captures this or-

chestral essence through dense, block-chord voicing that emulates the sonority of string sections.

Additionally, ornaments such as arpeggios and trills are found to complement the sweeping har-

monic textures, which contribute to the free-flowing character of the music.

Figure 5.4(c) shows an arrangement conditioned on the ragtime classic The Entertainer.3 Fol-

2Original audio: https://youtu.be/6f0T6UV-HiI&t=57
3Ragtime audio: https://youtu.be/jKlfNfRZL9I&t=11
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(d) Piano arrangement in bossa nova.

Figure 5.4: Audio-to-symbolic arrangement for an 8-bar excerpt from The Sound of Music. Figures 5.4(b)
to 5.4(d) are arranged based on the lead sheet in 5.4(a) and an audio reference from the original soundtrack,
a ragtime piece, and a bossa nova piece, respectively. Preserved music contents are highlighted in blue
note heads. Synthesized audio is submitted in supplementary.

lowing the audio recording, the arrangement’s tempo is “not fast,” and the piano texture distinctly

adopts a ragtime rhythm, featuring steady bass notes on downbeats and syncopated chordal ac-

cents on upbeats. Figure 5.4(d) shows an arrangement conditioned on the bossa nova piece The

Girl from Ipanema.4 In this interpretation, the arrangement is characterized by a moderate tempo

and distinctive left-hand syncopated patterns characteristic of the bossa nova genre.

Across all three piano arrangements, while distinct music styles are effectively captured from

the audio references, the theme melody and harmonic structures remain faithfully preserved. In

Figure 5.4, we highlight melody notes preserved from the lead sheet using blue note heads.

4Bossa nova audio: https://youtu.be/DvA_wDOVD10&t=12
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5.3.4 Evaluation on Piano Cover Generation

We evaluate our model both objectively and subjectively on the piano cover generation task,

where the input is an audio clip and the output is a symbolic piano performance. To ensure a

fair comparison with baseline models, we use Sheetsage [62, 63] to transcribe lead sheets from

the audio, making audio the sole input for all methods. We consider two evaluation settings: 1)

in-distribution evaluation on 46 test samples from the POP909 dataset, and 2) out-of-distribution

evaluation on 96 tracks from the Ballroom and GTZAN datasets, reflecting the model’s general-

ization to unseen genres and instrumentation. We use 16-bar audio excerpts for evaluation on

POP909, and full 30s audio clips for Ballroom and GTZAN.

Baseline Models

We compare our model against two representative piano cover generation models: PiCo-

Gen2 [225] and Audio-to-MIDI [245], as well as one ablation variant of our method.

PiCoGen2 (PCG2) is a Transformer-based language model that builds on the hidden repre-

sentations of Sheetsage, which itself is derived from Jukebox [58], a large-scale music language

model. Leveraging Jukebox’s internalized understanding of music content, PiCoGen2 generates

symbolic piano arrangements directly from audio.

Audio2MIDI (A2M) is a disentanglement framework, using separate modules to extract pi-

ano texture and chord from the audio. The texture extractor is initialized from a pre-trained piano

transcription model [91]. The extracted components are then merged to form a piano arrange-

ment.

Ours w/o Pre-Training (w/o PT) is an ablation variant of our model in which the Q-Former

is trained directly in Stage 2, without undergoing the representation learning phase in Stage 1.

This setup tests the validity of the two-stage training strategy we applied in this work.
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Objective Evaluation

We evaluate our model’s performance in terms of audio-to-symbolic coherence, specifically

assessing how well the generated piano covers preserve the feel of the original audio recordings.

To do this, we repurpose the pre-trained Q-Former in Section 5.2.3 as a cross-modal retrieval

model: for each audio clip in the test set, the Q-Former computes the similarity between the audio

and all generated symbolic pieces. If the closest (i.e., most similar) symbolic output corresponds

to the one generated from that audio input, we count it as a correct match.

Based on this setup, we report two metrics: 1) Retrieval Accuracy: the proportion of audio

references for which the corresponding symbolic output is ranked closest. Higher values indicate

stronger coherence; 2) Mean Rank: the average rank position of the correct audio-symbolic pair

in all candidates. Lower values indicate better alignment.

POP909 Ballroom/GTZAN
Accuracy ↑ Rank ↓ Accuracy ↑ Rank ↓

Ours 0.31 ± 0.02 6.57 ± 0.34 0.22 ± 0.01 13.56 ± 0.54
w/o PT 0.14 ± 0.01 8.91 ± 0.29 0.14 ± 0.01 21.59 ± 0.58
PCG2 0.21 ± 0.01 9.15 ± 0.36 0.06 ± 0.01 27.25 ± 0.32
A2M 0.33 ± 0.01 5.24 ± 0.28 0.10 ± 0.01 21.80 ± 0.23

Table 5.1: Objective evaluation on audio-to-symbolic coherence. Ballroom and GTZAN serve as out-of-
distribution datasets to assess cross-domain arrangement capabilities.

We conduct experiments separately on POP909 test set and Ballroom/GTZAN dataset. For

each test piece, we randomly select a 4-bar segment from the full-length generation and the cor-

responding 10s audio clip. This process is repeated over 10 independent sampling rounds and we

report the mean and standard error. As shown in Table 5.1, while our model performs comparably

to Audio2MIDI on the in-distribution POP909 dataset, ours significantly outperforms all baselines

on the out-of-distribution Ballroom and GTZAN datasets. This highlights our model’s capability

to generalize across styles and genres, enabling effective style transfer and cross-domain piano

arrangement.
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Figure 5.5: Subjective evaluation on music quality, conducted on Ballroom and GTZAN datasets to assess
the musicality for diverse music genres and styles.

Subjective Evaluation

We conduct a double-blind online listening survey to evaluate the music quality. The survey

comprises 6 test pieces of varied genres drawn from the Ballroom and GTZAN datasets. Each

test piece is accompanied by 4 piano covers interpreted by different models. For each model, we

select the best result from 3 generated samples. All samples are 16 bars long and rendered to audio

using the default Cakewalk soundfont, resulting in ~40s audio per sample. Both the order of the

test pieces and the order of the samples are randomized. Participants are asked to complete 3 test

pieces by rating each piano cover on a 5-point Likert scale across 4 criteria: 1) Audio-to-Symbolic

Coherence, 2) Naturalness, 3) Creativity, and 4) Overall Musicality.

A total of 21 participants with diverse music backgrounds have completed our survey, with

an average completion time of 12 minutes. The mean ratings and standard errors, computed by

within-subject ANOVA [208], are presented in Figure 5.5. Significant differences are observed

across all criteria (p-value p < 0.05). While our model performs comparably to the state-of-the-

art PiCoGen2 in terms of Naturalness, it consistently outperforms all baselines across criteria by a

clear margin. These results align with the objective evaluation and suggest that our model more

effectively captures music style and produces coherent, high-quality piano arrangements.
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5.3.5 Ablation Study on Pre-Training Objectives

To evaluate the contribution of each pre-training objective to cross-modal representation

learning, we conduct an ablation study on the Q-Former’s audio-to-symbolic retrieval perfor-

mance after Stage-1 training. We test three configurations: contrastive loss only (C), contrastive

+ matching losses (C+M), and contrastive + matching + generative losses (C+M+G). We compute

Retrieval Accuracy and Mean Rank using the Q-Former on 128 randomly sampled audio-symbolic

4-bar pairs from the test sets. Each experiment is repeated over 10 independent rounds, and we

report the mean and standard error.

PIAST POP909
Accuracy ↑ Rank ↓ Accuracy ↑ Rank ↓

C 0.95 ± 0.00 2.60 ± 0.33 0.35 ± 0.01 5.18 ± 0.31
C+M 0.96 ± 0.00 2.19 ± 0.24 0.42 ± 0.01 4.94 ± 0.39
C+M+G 0.96 ± 0.00 2.26 ± 0.26 0.45 ± 0.01 4.64 ± 0.37

Table 5.2: Ablation study on the impact of individual pre-training objectives to cross-modal representa-
tion learning. C, M, and G denote the use of the Audio-to-Symbolic Contrastive, Matching, and Genera-
tive losses, respectively.

Evaluation is conducted separately on PIAST and POP909. The former involves piano-only

music, while the latter includes multi-instrumental accompaniments, requiring the model to ex-

tract style from richer audio textures. As shown in Table 5.2, the performance difference is rel-

atively small on PIAST, suggesting that contrastive learning alone may suffice for simpler pi-

ano alignment. However, on POP909, we observe that both the matching and generative losses

contribute meaningfully to improved retrieval accuracy and lower mean rank. These findings

indicate that all three objectives are important for learning robust, generalizable cross-modal

representations.
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5.4 Related Work

We review two areas of key relevance to our work. Section 5.4.1 discusses recent advances in

LLMs for music generation. Section 5.4.2 focuses on piano cover generation, which is the primary

task addressed in this chapter.

5.4.1 Music LLMs

Rapid progress in large language models (LLMs) has transformed how we interact with vari-

ous forms of media, including text, image, and music [6, 130, 143, 235, 276]. In particular, music

LLMs [3, 18, 173, 230] have notably influenced creative practices and user experiences. Models

like MusicGen [52] can generate music audio with rich timbres directly from text, while MuseC-

oco [160] produces symbolic compositions with well-structured textures in varied genres. These

advancements are driven by training large-scale neural networks on extensive data, scaling up

to billions of model parameters to enhance controllability and musicality.

Despite these successes, most existing music LLMs operate in an unimodal setting, focusing

solely on either audio or symbolic representations. Although text-to-music generation has be-

come increasingly effective [3, 18, 52, 160, 173], text descriptions often fall short in expressing

nuanced music styles and performance subtlety. In contrast, our work explores a cross-modal

framework that bridges audio and symbolic modalities. By leveraging the strong perceptual un-

derstanding of audio LLMs and the expressive composition capabilities of symbolic LLMs, we

bootstrap a system for audio-to-symbolic arrangement. This approach enables more intuitive

and fine-grained control over music style beyond what can be conveyed through text alone.
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5.4.2 Piano Cover Generation

Piano cover generation aims to reinterpret an audio recording as a symbolic piano perfor-

mance. Unlike traditional music transcription, which primarily analyzes note-level content such

as pitch and timing [76, 82, 129, 187, 279], a piano cover often targets higher-level, more struc-

tured music elements that shape the feel of a performance. The goal is to generate symbolic

arrangements that not only sound correct but also feel musically aligned with the original audio.

Existing approaches to piano cover generation often leverage pre-trained transcription mod-

els, primarily extracting melodic and harmonic content from the audio [42, 178, 224, 225, 245].

However, such models tend to overlook stylistic nuances, resulting in outputs accurate in har-

mony but lacking the expressive character of the source performance. In this chapter, we re-frame

piano cover generation through the lens of content-style disentanglement, acquiring content in

the symbolic form (i.e., melody and chord progression) while learning style from the audio. This

approach bridges the audio-symbolic gap more effectively, capturing not just what is played, but

how it is played.

5.5 Summary

In this chapter, we introduce a cross-modal framework for audio-to-symbolic arrangement

that extracts and applies implicit music style in pre-trained music LLMs. By repurposing the

Q-Former to align audio and symbolic modalities through abstract style, our model enables ex-

pressive piano arrangement conditioned on both a lead sheet and an audio reference. Through a

bootstrapping process, we extract stylistic features from an audio LLM and guide a symbolic LLM

without re-training either backbone. Our experiments on piano cover generation and style trans-

fer demonstrate improved audio-to-symbolic quality, highlighting the potential of this framework

for controllable, style-aware music generation beyond explicitly labeled content.
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Part II

Concept Organization
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6 | Compositional Hierarchy

In Part I, we focus on learning specific representations corresponding to individual concepts

of interest. Revisiting Figure 1.1, this corresponds to learning the individual concepts inside the

broader ontology of music. However, music involves an abundance of concepts, which cannot be

exhaustively enumerated. Rather than learning every concept in isolation, we must first address

how to organize them.

This leads us to the second concept alignment problem explored in this thesis: concept orga-

nization. As illustrated in Figure 1.1, there are two complementary types of organizations. The

first is compositional hierarchy, which captures how musical content is abstracted and structured

across time. The second is concept hierarchy, which reflects how high-level ideas, such as mood

or style, are gradually transformed into concrete musical material.

Chapter 6 focuses on building compositional hierarchy, while Chapter 7 addresses concept

hierarchy. These chapters investigate whether explicitly modeling these hierarchies with music

domain knowledge can produce longer-term, better-structured music with greater computational

efficiency.

In this chapter, we explore compositional hierarchy through the task of pop music generation

with a vocal melody and a piano accompaniment. We define a hierarchical language of pop songs,

in which each level of hierarchy focuses on the semantics and context dependency at a certain

music scope. The high-level languages reveal whole-song form, phrase, and cadence, whereas the

low-level languages focus on notes, chords, and their local patterns. A cascaded diffusion model
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is trained to model the hierarchical language, where each level is conditioned on its upper levels.

This chapter is based on the published work Whole-Song Hierarchical Generation of Symbolic

Music Using Cascaded Diffusion Models [243], conducted in collaboration with Lejun Min and Gus

Xia.1 This chapter builds on a melody reduction algorithm, which is discussed in Appendix B.

Additional experimental details and extended discussions are provided in Appendix C.

6.1 Compositional Hierarchy in Music Composition

In recent years, we have witnessed a lot of progress in the field of deep music generation.

With significant improvements on the quality of generated music [52, 230] on short segments

(typically ranging from a measure up to a phrase), researchers start to put more emphasis on

long-term structure as well as how to control the generation process in a musical way. The cur-

rent mainstream approach of structural generation involves first learning disentangled latent

representations and then constructing a predictive model that can be controlled by the learned

representations or external labels [36, 247, 254, 271]. However, generating an entire song remains

an unresolved challenge. As compositions extend in length, the number of involved music rep-

resentations and their combinations grow exponentially, and therefore, it is crucial to organize

various music representations in a structured way.

We argue that compositional hierarchy of music is the key to the solution. In this study, we

focus on symbolic pop songs, proposing a computational hierarchical music language and model-

ing such language with cascaded diffusion models. The proposed music language has four levels.

The top-level language describes the phrase structure and key progression of the piece. The

second-level language reveals music development using a reduction of the melody and a rough

chord progression, focusing on the music flow within phrases. The third-level language consists

of the complete lead melody and the finalized chord progression, which is usually known as a

1We release the complete source code and model checkpoints at https://github.com/ZZWaang/whole-song-gen.
The demo page is available at https://wholesonggen.github.io.
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lead sheet, further detailing the local music flow. At the last level, the language is defined as

piano accompaniment. Intuitively, the language aims to characterize the intrinsic homophonic

and tonal features of most pop songs— a verse-chorus form, a chord-driven tonal music flow, and

a homophonic accompaniment texture.

We represent all levels of the symbolic languages as multi-channel images and train four

layers of image diffusion models in a cascaded fashion, one for each level of the music language.

The generation scope of the first layer is full song and up to 256 measures, the scope of the

second layer is 32 measures, and the third and fourth layers each have a scope of 8 measures.

Additional autoregressive controls are added to the low-level diffusion models to strengthen long-

term temporal coherence. Experimental results show that our model is capable of generating

well-structured full-piece music with recognizable verse-chorus structure and high music quality.

Moreover, at each level, optional external conditions can be added via the cross-attention

mechanism of diffusion models to control the generation process at each level of the hierarchy.

As a demonstration, we add long-term control of chord progression, local control of rhythmic

and accompaniment pattern to the corresponding levels of the hierarchy. All the external con-

trols use pre-trained latent codes from existing music representation learning models. We show

that these controls can effectively guide hierarchical generation in a more customizable way.

In summary, the contribution of the chapter is as follows:

1. We achieve high-quality and well-structured whole-song generation with cascaded

diffusion models. Objective and subjective measurements show that both monophonic

lead sheets and polyphonic accompaniment generated by our model have more identifi-

able phrase boundaries, better-structured phrase development in similarity and contrast,

and higher music quality compared to baselines.

2. We propose a computational hierarchical music language as a structural inductive

bias, making the training process decomposable and efficient in terms of data and com-
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puting power utilization. Also, the hierarchical languages can be extracted automatically

without manual annotation of music structure.

3. Our model enables flexible and interpretable controls, with not only our proposed hi-

erarchical language but also with external pre-trained latent representations, such as chord,

melodic rhythm, and accompaniment texture.

6.2 Methodology

Our model for whole-song generation is a realization of the music compositional hierarchy. In

this section, we first introduce the definition of our hierarchical music languages in Section 6.2.1.

Then, we discuss how to model these languages via cascaded diffusion models, where each level

of the language is conditioned on its upper levels. We show the data representation of these

languages in Section 6.2.2. The training and inference of the model are discussed in Section 6.2.3

and Section 6.2.4, respectively.

6.2.1 Definition of Hierarchical Music Languages

We define a hierarchical music language with four levels to reveal the generative procedure

of music, as shown in Table 6.1. The highest level, Form, includes music keys and phrases. This is

followed by Reduced Lead Sheet, which contains reduced melody and simplified chords. The third

level, Lead Sheet, includes the lead melody and chords. The final level, Accompaniment, consists

of the piano accompaniment. The key idea behind this hierarchical design lies in the relationship

among the four levels—more abstract music concepts at higher levels are realized by stylistic

specifications at lower levels. For example, a lead sheet is an abstraction implying many possible

ways to arrange the accompaniment that share the same melodic and harmonic structure, while

an instantiated accompaniment is one of the possible realizations showing the accompaniment

structure in more detail.
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Languages (res.) Specification Data Representation Structural Focus

Form (m)
Key changes

X1 ∈ R8×M×12 Music form
Phrases

Reduced Lead Sheet (b)
Melody reduction

X2 ∈ R2×γM×128 Phrase similarity, phrase
development & cadenceSimplified chord

Lead Sheet (s)
Lead melody

X3 ∈ R2×δγM×128 Melodic pattern, similarity
& coherenceChord

Accompaniment (s) Accompaniment X4 ∈ R2×δγM×128 Acc. pattern, similarity &
coherence, Mel-acc relations

Table 6.1: Definition of the four-level hierarchical music language. We use m for measure, b for beat, s
for step, to represent the temporal resolution. M denotes the number of measures in a piece, γ denote
the number of beats in a measure, and δ denotes the number of steps in a beat.

Note that for Form, Lead Sheet, and Accompaniment, there are established music information

retrieval algorithms for labeling. In contrast, the Reduced Lead Sheet is a unique design, which

we refer the readers to Appendix C.1 for details.

6.2.2 Data Representation

While music scores are inherently symbolic, we transform them into continuous, image-like

piano-roll representations for better compatibility with diffusion models. Specifically, languages

at all levels are represented by multi-channel images (examples are shown in Appendix C.1). The

image width represents sequence length under different resolutions, and the height represents 128

MIDI pitches or 12 pitch classes. We denote the piece length to be M measures, each measure

containing γ beats, and each beat containing δ steps. In this chapter, we consider γ ∈ {3, 4} and

δ = 4.

The language Form is a sequence of keys and phrases under the resolution of one measure.

Keys are represented by K ∈ R2×M×12, where tonic information and scale information are stored

on the two channels with binary values. For phrases, we use P ∈ R6×M×1, where six channels

correspond to six phrase types (e.g., verse and chorus, see Table C.1 for more detail), and the

pixel values indicate measure countdown. Formally, let m0, ...,m0 + L − 1 be the indices of a
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L-measure phrase of type i0, then for m0 ≤ m < m0 + L,

P [i,m, :] := 1{i=i0}(1−
m−m0

L
). (6.1)

We broadcast P to match the pitch-axis of K and define the first-level language Form as

X1 := concat(K,P ) ∈ R8×M×12. The other levels of languages use a piano-roll representa-

tion. Reduced Lead Sheet is represented by X2 ∈ R2×γM×128 under the resolution of one beat,

where two channels correspond to note onset and sustain. Both melody reduction and simplified

chord progression share the same piano-roll using different pitch registers. Similarly, Lead Sheet

uses X3 ∈ R2×δγM×128 to represent the actual melody and chords, and Accompaniment uses

X4 ∈ R2×δγM×128 to represent the accompaniment, both in the same resolution of one step.

Note that for the four levels k = 1, . . . , 4, Xk have different shapes. In the following sections,

we write {Xk|k ⊂ {1, 2, 3, 4}} to denote the concatenation along the channel axes with possible

broadcasting and repetition operations. For example, X1 can be expanded γ times in width and

repeated 11 times in height to be concatenated with X2, resulting in a tensor X≤2 ∈ R10×γM×128.

Additionally, we write the time-series expression Xk
t to denote Xk[:, t, :] for simplicity.

6.2.3 Model Architecture

Whole-song music generation is achieved by generating the four levels of hierarchical music

languages one after another in a top-down order (as shown in Figure 6.1). For each level, we

train a diffusion model to realize the current-level language based on the existing upper-level

languages. The actual scopes (image widths) of these diffusion models are generally the same,

yet the music scopes vary significantly since the resolution in lower-level languages is finer. In

this chapter, for level k = 1, ..., 4, we set the actual scope bk to be b1 = 256 and b2:4 = 128,

which means the music scopes for these levels are 256 measures, 128 beats, 128 steps, and 128

steps, respectively. In the usual setting when γ = δ = 4, the music scopes of the models are 256
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Stage 4: Accompaniment GenerationStage 3: Lead Sheet Generation

Stage 2: Reduced Lead Sheet GenerationStage 1: Form Generation
Form

Reduced Lead Sheet

Lead sheet

Accompaniment

Current Generation Segments

DM

Hierarchical Music Languages

Backbone model

Generated/Known Segments

Gaussian Noise

Diffusion Models

External Controls

Cross-attn. for 
autoregressive control
Cross-attn. for external 
control (optional)

Figure 6.1: The diagram of cascaded diffusion models for hierarchical symbolic music generation.

measures, 32 measures, 8 measures, and 8 measures, respectively. Consequently, except that the

first layer is an unconditional generation of the whole sequence, the generation at all the other

layers is essentially conditional generation of music segments sliced from the entire sequences.

The generation of a music language slice Xk
t:t+bk

at level k ̸= 1 can be conditioned on multiple

resources inside and outside the defined hierarchy. In this study, our model is designed to take in

three sources of structural conditions:

Background condition. We regard the generation as a realization of existing higher-level

languages at the corresponding scope X<k
t:t+bk

, where the higher-level language segments are

like sketch images directly guiding the current generation. Background condition is applied by

concatenating the input with X<k
t:t+bk

along the channel axis.

Autoregressive condition. The segment should not only be a realization of the background

condition, but also coherent with prior realizations X≤k
<t . For example, the realization of a verse

phrase at the end of the composition is usually similar to the realization in the beginning. In
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our model, we make an autoregressive assumption that Xk
<t are known. We select Sk relevant

music segments prior to t based on a defined similarity metric on X1. These music segments

are encoded into latent representations and are cross-attended in the diffusion models. See Ap-

pendix C.2 for more details about the selection process.

External condition. Besides the compositional hierarchy, music generation can be con-

trolled by other external conditions. These conditions can be stylistic controls of multiple

scopes [247, 253, 271], or cross-modality controls of text [282] or audio [245]. As an illustra-

tion of our model compatibility, we use pre-trained latent representations of chords, rhythmic

pattern, and accompaniment texture as the control for Reduced Lead Sheet, Lead Sheet, and Ac-

companiment generation, respectively. At each level k, we denote the array of external latent

codes by Zk
t:t+bk

, which are cross-attended in our diffusion models.

For all four levels, we adopt a 2D-UNet with cross-attention similar to [174] as the backbone

neural architecture and make several modifications. First, the input channels are increased to

allow background condition. Second, autoregressive and external conditions are fed through

cross-attention layers with classifier-free guidance [14]. In Appendix C.2, we include more details

on the model architecture and training. Mathematically, we use diffusion to model the conditional

probability of multiple levels of music segments. Let the backbone model at level k be denoted

by

ϵθk(xn, n, y
bg, yar, yext), (6.2)

where θk is the model parameter, n = 0, ..., N is the diffusion step, xn is the input image mixed

with Gaussian noise at diffusion step n, and ybg, yar, and yext are background, autoregressive, and

external control, respectively. Our training objective is to model the probability

pθk(X
k
t:t+bk
|X<k

t:t+bk
,X≤k

<t ,Z
k
t:t+bk

) (6.3)
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under the loss function

L(θk) = E
X,t

ℓθk(X
k
t:t+bk

,X<k
t:t+bk

,X≤k
<t ,Z

k
t:t+bk

), (6.4)

where

ℓθk(x, y
bg, yar, yext) = Eϵ,n||ϵ− ϵθk(xn, n, ybg, yar, yext)||22. (6.5)

Algorithm 1 Whole-song generation algorithm.
Constants: Resolution factor for each level r1 = 1, r2 = γ, r3 = r4 = δγ
Input: External control Zk(2 ≤ k ≤ 4) (optional)

1: X1 ∼ pθ1(·|∅, ∅, ∅)
2: M ← InferSongLength(X1)
3: for k = 2, . . . , 4 do
4: Xk

0:hk
∼ pθk(·|X<k

0:bk
, ∅,Zk

0:bk
)

5: for t = 0, hk, 2hk, . . . , rkM − bk do
6: Xk

t+hk:t+bk
∼ pθk(·|Xk

t:t+hk
;X<k

t:t+bk
,X≤k

<t ,Z
k
t:t+bk

)
7: end for
8: end for
9: return {Xk|1 ≤ k ≤ 4}

6.2.4 Whole-Song Generation Algorithm

At the inference stage, we leverage the conditional probability (see Equation 6.3) to achieve

whole-song generation by autoregressively inpainting the generated segments. Inpainting is

a commonly-used method in diffusion models for image editing, and is developed as a quasi-

autoregressive method for sequential generation [174]. In our algorithm, we use a hop length of

hk := bk � 2 for inpainting, and the algorithm is shown in Algorithm 1. Note that in training, we

zero-pad X1 to 256 measures, so during inference, we derive the actual song length by finding

the first all-zero entries of the generated X1. This process is denoted by InferSongLength(·).

Here, we use

Xk
t+hk:t+bk

∼ pθ0(·|Xk
t:t+hk

;X<k
t:t+bk

,X≤k
<t ,Z

k
t:t+bk

) (6.6)
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to indicate the distribution of the second half of the sequence conditioned on the first half via

inpainting, together with the background, autoregressive, and external conditions.

6.3 Analysis of Structural Music Generation

In this section, we show an example of whole-song music generation of 40 measures in

Figure 6.2. The given Form of the piece has a simple verse-chorus structure with 4-measure verse

and 8-measure chorus phrases appearing multiple times.

The generated music shows a clear music structure. The melodies of three verses all consist

of syncopated rhythm in a narrow pitch range, while the melodies of two choruses are both

relatively lyrical with a broader pitch range (indicated by shaded rectangles). The accompaniment

pattern predominantly features eighth notes in verses and sixteenth notes in choruses. Moreover,

the cadences at phrase boundaries are clearly indicated by the tonic or dominant chords and the

“fill” in the accompaniment (indicated by dotted red rectangles). Furthermore, we notice the

music intensity in the second half is stronger than in the first half, realized by more active pitch

and rhythm movements and higher pitches (indicated by shaded rectangles with dotted borders).

Such intensity changes make the composition go to a climax point before ending, showing a

well-formed chronological structure.

In Appendix C.3, we break down the hierarchical generation process and show examples of

structural controllability of each level. More generation results are available at the demo page.

6.4 Experiments

We focus our experiments on the generation of Lead Sheet and Accompaniment, the two lower

levels of languages. The rationale is that the information of higher-level languages is difficult to

evaluate directly, and they are implied at the lower levels. In this section, we first evaluate the
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Figure 6.2: An example of whole-song generation of 40 measures under a given Form (A♭ major key and
"i4A4A4B8b4A4B8o4" phrases). The three staves (from top to bottom) show the generated Reduced Lead
Sheet, Lead Sheet, and Accompaniment. Here, rectangles with colored background are used to indicate
the appearance of the same motifs in verse and chorus sections. Dashed border rectangles with colored
background indicate a variation of motifs. We use red dotted rectangles to show where the generated
score shows a strong implication of phrase boundary or cadence. The generated chord progressions in
Reduced Lead Sheet and Lead Sheet are identical, shown by the chord symbols.
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structure of full pieces based on a proposed objective metric, and then subjectively evaluate both

structure and quality on music segments (8-measure) and whole-song samples (32 measures). For

more evaluations, we refer the readers to Appendix C.

6.4.1 Dataset

We use the POP909 dataset to train our model [250]. POP909 is a pop song dataset of 909

MIDI pieces containing lead melodies, secondary melodies, piano accompaniment tracks, key

signatures, and chord annotations. We pad each song to 256 measures to train Stage 1, and seg-

ment each song into corresponding time scopes (128 beats for Stage 2 and 128 steps for Stage 3

and 4) with a hop size of one measure. 90% of the songs are used for training and the rest 10% are

used for testing. Training samples are transposed to all 12 keys. In Appendix C.1, we introduce

more details on data processing.

6.4.2 Baseline Settings

We construct two baseline models for whole-song Lead Sheet and Accompaniment generation

tasks. The two models are modified from two state-of-the-art phrase-level generation models: a

diffusion-based one and a transformer-based one.

Diffusion-based (Polyff.+ph.l.). We add phrase label control to Polyffusion [174] as the ex-

ternal condition, and use the iterative inpainting technique to generate full pieces. We train two

separate diffusion models for Lead Sheet and Accompaniment generation on POP909, both adopt-

ing the same data representations as the proposed method. This also serves as an ablation study

on the effectiveness of our cascaded model design.

Transformer-based (TFxl(REMI)+ph.l.). [180] enables phrase label control on the REMI rep-

resentation [108] with Transformer-XL as the model backbone. Similarly, we train two versions

for Lead Sheet and Accompaniment generation on POP909.
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6.4.3 Evaluation

Objective evaluation. For whole-song well-structuredness, we design the Inter-Phrase La-

tent Similarity (ILS) metric to measure music structure based on content similarity. The metric

encourages similarity between music with same phrase labels (e.g., two verses), and distinctive-

ness between music with different phrase labels (e.g., verse and chorus). We leverage pre-trained

disentangled VAEs that encode music notes into latent representations and compare cosine sim-

ilarities in the latent space. Given a similarity matrix showing pairwise similarity of 2-measure

segments within a song, ILS is defined as the ratio between the average similarity between phrases

of the same type and the average similarity between all phrases. Therefore, higher values indicate

better structure.

Lead Melody Chord Accompaniment
ILSp ↑ ILSr ↑ ILSchd ↑ ILStxt ↑

Ground Truth 2.28± 0.14 2.30± 0.13 1.42± 0.07 1.68± 0.09

Cas.Diff. (ours) 2.05± 0.14 1.49± 0.07 1.32± 0.05 1.19± 0.06
Polyff. + ph.l. 0.60± 0.12 0.76± 0.05 0.52± 0.06 0.61± 0.04
TFxl(REMI) + ph.l. 1.89± 0.15 1.71± 0.13 0.68± 0.06 0.74± 0.04

Table 6.2: Objective evaluation of music structure via the proposed inter-phrase latent similarity.

We compute ILS on lead melody, chord, and accompaniment. Using pre-trained VAEs

from [271] and [247], we compute the latent representations of pitch contour and rhythm (i.e.,

zp, zr) for lead melody, latent zchd for chord, and latent texture ztxt for accompaniment. We pre-

define four types of common phrases and let models generate 32 samples for each phrase type,

resulting in 128 full songs in total. ILSθ, θ ∈ {p, r, chd, txt} are calculated for each song, and we

show their mean and standard deviation in Table 6.2. The results show our model significantly

outperforms baselines on the phrase content similarity of chord and accompaniment, indicating

its effectiveness in preserving long-term structure.

Subjective evaluation. We design a double-blind online survey that consists of two parts:

a short-term (8 measures) evaluation of music quality, and a whole-song (32 measures) evalua-
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(a) Short-term lead sheet generation. (b) Short-term accompaniment generation.

(c) Whole-song lead sheet generation. (d) Whole-song accompaniment generation.

Figure 6.3: Subjective evaluation results on music quality and well-structuredness. GT indicates ground
truth samples composed by humans.

tion of both music quality and well-structuredness. Participants rate Creativity, Naturalness, and

Musicality for short-term music segments. For whole-song evaluation, we drop Creativity but

introduce two more criteria: Boundary Clarity and Phrase Similarity to focus on the structure of

the generation. All metrics are rated based on a 5-point scale. We constrain whole-song length

to 32 measures so that the participants can better memorize the samples and the survey can have

a reasonable duration. These generated pieces still preserve a condensed pop-song structure by

specifying Form to contain intro, outro, and repetitive verses or choruses.

Additionally, for short-term evaluation, we use two more reference models: Polyff. model and

TFxl(REMI) model, two baseline models without phrase label conditions. This is to investigate

whether the introduction of phrase control causes degradation in music quality. For each model,

we select three samples for both short-term and whole-song evaluation as well as both lead sheet

and accompaniment generation, resulting in 3 × 2 × 2 = 12 groups of samples. Each group

of samples shares the same prompt (2 measures for 8-measure samples, and 4 measures for 32-
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measure samples) and phrase labels (for whole-song evaluation). In the survey, both the group

order and the sample order are randomized.

A total of 57 people participated in our survey, and the evaluation result is shown in Figure 6.3.

The bar height shows the mean rating, and the error bar shows the 95% confidence interval (com-

puted by within-subject ANOVA). We show that our model significantly outperforms baselines

in the structural metrics of whole-song generation, especially in accompaniment generation. Our

model consistently outperforms baselines in terms of music quality in both short-term and whole-

song generation, proving that the introduction of compositional hierarchy does not hinder the

generation quality.

6.5 Related Work

In this section, we first review music structure in musicology in Section 6.5.1, followed by

music structure modeling in deep music generation approaches in Section 6.5.2. Finally, in Sec-

tion 6.5.3 we review the state-of-the-art deep generative methods relevant to the problem of

whole-song generation.

6.5.1 Music Structure Modeling

Traditional music theory focuses on the analysis of music structure in terms of counter-

point [49], harmony [211], forms [127], etc. In the early 20th century, a more comprehensive

theory, Schenkerian analysis [209], emerged with a focus on the generative procedure of music.

The theory introduces a compositional hierarchy of music, aiming to show how a piece is com-

posed from its background, the normal form of music, to its middle ground, where music form and

rough music development are realized, and finally to the foreground, the actual composition.

Nowadays, compositional hierarchy is still prevalent in modern musicology. Notable devel-

opments include [219], a general compositional hierarchy for pop music, and Generative Theory
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of Tonal Music (GTTM) [141], a theory focusing on the definition and analysis of formal musical

syntax. From a computational perspective, these studies provide more formal music features and

computer-friendly generative processes [87, 88]. The focus of this chapter is to further leverage

the compositional hierarchy of music to develop a fully computable language and to model it

with deep neural networks.

6.5.2 Structured Deep Music Generation

Recent advances in deep generative models have greatly improved music generation quality,

primarily by more effective modeling of the local musical structure in two ways: implicit and

explicit. Implicit approaches, exemplified by models such as Music Transformer [106], Muse-

BERT [244], and Jukebox [59], learn structures by predicting and filling musical events, often re-

vealing context dependencies via attention weights. Explicit approaches leverage domain knowl-

edge to define music features or extract interpretable music representations, allowing the learning

of structures like measure-level pitch contour and accompaniment [57, 247, 271, 287]. This study

aims to combine both explicit and implicit approaches and further model phrase and whole-song

structures. The explicit modeling lies in our definition of a computational hierarchical music

language, and the implicit modeling of the structure lies in the cascaded diffusion models.

6.5.3 Diffusion and Cascaded Modeling for Music Generation

Diffusion models, after their success in image and audio domains, have very recently been

applied to music generation [145, 174, 175]. Besides high sample quality, diffusion models natu-

rally lead to coherent local structures with the innate inpainting method [161], i.e., by generating

music segments conditioned on surrounding contexts. As for long-term structures, we recently

saw the design of cascaded diffusion modeling in Moûsai [210], which generates high-fidelity

audios using multi-scale sampling.
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In this study, our focus is on symbolic music, and we adopt the idea of multi-scale generation

with cascaded models. Additionally, we integrate the cascaded process with the proposed hierar-

chical music language so that each layer of the diffusion model focuses on a certain interpretable

aspect of music composition. In particular, all levels of music languages are defined as image-like

representations. Inspired by sketch- and stroke-based image synthesis [40], we model hierarchi-

cal music generation by regarding high-level and low-level music languages as the background

and foreground “strokes”, respectively.

6.6 Summary

In summary, we contribute the first hierarchical whole-song deep generative algorithm for

symbolic music. The current study focuses on the pop music genre, and experimental results

demonstrate that our model consistently generates more structured, natural, and musical out-

puts compared to baseline methods, both at the whole-song and the phrase scales. Additionally,

our model offers extensibility, allowing flexible external controls via pre-trained music embed-

dings. Our approach relies on two key components: a hierarchical music language that balances

human interpretability with computational tractability, and a cascaded diffusion architecture that

effectively captures the hierarchical structure of entire compositions through both top-down and

context-dependent mechanisms. It demonstrates that a strong structural inductive bias can lead

to more effective and efficient learning for deep music generative models, and such methodol-

ogy is potentially useful for other domains as well. We see this study shedding light on future

directions, such as extending our hierarchical language and generation approach to multi-track

symbolic music and audio-based music generation.
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7 | Concept Hierarchy

This chapter continues to explore the other challenge of concept organization: the concept

hierarchy. While compositional hierarchy has been commonly explored in existing works [59,

137, 203], concept hierarchy has received far less attention. It involves generating abstract ideas,

transforming them, and organizing them meaningfully across musical time and space to form a

complete composition. This chapter investigates the problem in the context of full-song electronic

music generation, where musical ideas are often associated with audio or MIDI samples from a

library, making them more tractable to manipulate and transform into a complete composition.

This chapter is based on the published work TOMI: Transforming and Organizing Music Ideas

for Multi-Track Compositions with Full-Song Structure [94], conducted in collaboration with Qi He

and Gus Xia.1

7.1 The TOMI Framework

Automatic music generation has advanced from producing short clips to composing entire

pieces, yet long-term structure remains a major challenge. Unlike short-term generation, which

focuses on capturing local patterns [3, 52, 71, 83, 109, 174], long-term generation requires han-

dling structure across multiple levels, from sectional repetition and cadence to the overall theme

and whole narrative flow. The most common approach is to scale up models and data [59, 276],

1The code is available at https://github.com/heqi201255/TOMI, and the demo page can be accessed via
https://tomi-2025.github.io/.
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Figure 7.1: Concept hierarchy in TOMI: music ideas developed from features to clips are transformed
and integrated into the composition, organized by sections and tracks.

yet even with vast training corpora, achieving truly structured compositions remains difficult. An

alternative is to model the temporal hierarchy of music, where it evolves at multiple time scales,

with different model components capturing context dependencies at each level [57, 59, 203, 243].

But have we fully captured the hierarchical nature of music? While temporal hierarchy is

essential, so is concept hierarchy, which often manifests in the development of motifs and music

materials. As noted in [54], most pop songs are composed with a sparse and small set of core

ideas, which are then evolved and repeated in an organized way. We illustrate this process in

Figure 7.1, where music ideas, initially appearing as abstract features, are concretized as music

clips, then transformed, and finally organized into a full composition. We refer to this concept

hierarchy in music as TOMI (Transforming and Organizing Music Ideas). TOMI shares a spirit

with David Cope’s recombinant music composition in EMI [51], an idea that deep learning has

yet to truly embrace.

In this chapter, we propose a TOMI-based music generation system for full-song and multi-

track electronic music composition, inspired by the prevalent use of MIDI and audio sample packs

among electronic music producers. The system is built around four key elements: clips, transfor-

mations, sections, and tracks. Sections and tracks are first created to serve as the canvas for com-

position, similar to a digital audio workstation (DAW) interface. The system then selects music

clips from a library of audio and MIDI samples. For each selected clip, a transformation function
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is defined and applied, then the transformed clip is placed in its designated section and track. On

the backend, a structured data representation parameterizes clips, transformations, sections, and

tracks, and links them dynamically to construct a full composition. We leverage a pre-trained

text-based large language model (LLM) to operate on this data structure, using in-context learn-

ing (ICL) to fill in the parameters and create dynamic links.

In sum, the contributions of this chapter are as follows:

1. We introduce TOMI to model music concept hierarchy and develop a deep learning-

based system for structured electronic music generation. The proposed data structure inte-

grates symbolic and audio representations and can be manipulated by text-based LLMs via

ICL.

2. We apply our system to generate high-quality electronic music with full-song struc-

ture. Objective and subjective evaluations show that songs generated by our model have

clearer phrase boundaries, better phrase development, and higher music quality than the

baselines.

3. We integrate TOMI with the REAPER digital audio workstation, providing seamless

connection with professional music software interface and enabling human-AI co-creation

with high-resolution audio rendering.

7.2 Methodology

In this section, we discuss TOMI in multi-track electronic music generation with full-song

structure. The implementation consists of two main components: (1) a graph data structure

named composition link that connects raw music ideas with the composition (Section 7.2.1), and

(2) in-context learning to compose music by following this data structure (Section 7.2.2). We also

demonstrate the integration with the REAPER DAW (Section 7.2.3).

94



(a) Example of an LLM output following our ICL
prompt structure. In clips, the LLM only gen-
erates features for clips, which are then used
to query the sample databases for actual MIDI
or audio clips. We also show three composition
links, each as a tuple of (section, track, clip, and
transformation).

(b) Music generation process with composition links,
illustrating how clips (top) are transformed and then
organized into the arrangement (bottom). Links (A)
and (C) each have two branches because section s2 ap-
pears twice in the section sequence, which means they
are identical and share the same composition links.

Figure 7.2: We show the structured LLM output in (a) with the corresponding music generation process
in (b). We distinguish node types by color and shape, with a detailed attribute example for each type
shown on the left of (a). We depict three composition link examples as colored arrows in (b), highlighting
their results with rectangles in corresponding colors.

7.2.1 TOMI Data Structure

The proposed data structure consists of four node types: clips, sections, tracks, and transfor-

mations. A composition link is a quadruple of these nodes, specifying a music clip (what) to be

placed in a particular section (when) and on a specific track (where), undergoing certain transfor-

mations (how). Nodes are reusable across links, forming a structured representation of the full

composition.

95



Clip Node

Clips are audio or MIDI samples sourced from databases. Each clip is a short music segment,

such as a chord progression or a drum loop, described by a set of features. A MIDI clip can

represent elements like chords, basslines, melodies, or arpeggios, with attributes such as tonality,

duration, and root progression. An audio clip can be either a sample loop or a one-shot sound,

with keywords describing its content. The blue-edged box in Figure 7.2(a) shows an example

feature set for a chord clip. Once the features are specified by the LLM (discussed in Section 7.2.2),

we can query the databases for the corresponding music material.

Section Node

The temporal divisions of a music composition are modeled by section nodes. A section node

involves a duration and a phrase label, such as verse and chorus. A section node can appear mul-

tiple times within a composition, meaning its music content remains identical across instances.

For example, as shown in Figure 7.2, the 16-bar verse section s2 is reused after the 16-bar chorus

section s3, resulting in two identical verses with the same content.

Track Node

Track nodes represent the vertical layering of a composition and organize clips into MIDI or

audio tracks (see the track axis in Figure 7.2(b)). MIDI tracks accept only MIDI clips and require

instruments to generate sound, while audio tracks accept only audio clips and play them directly.

Transformation Node

A transformation node transforms clips before placing them on specific tracks and sections.

Unlike pitch transposition and tempo adjustment, which are handled in the final stage (discussed

in Section 7.2.3), transformation nodes perform more semantically meaningful manipulations and
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mainly serve three roles. First (and most importantly), it can control rhythmic patterns of the

audio or MIDI clips with an action sequence of onsets, sustains, and rests (see f1 in Figure 7.2(a)).

For example, it can convert MIDI chord clips with whole notes into rich rhythmic patterns or

place a one-shot drum on each beat to create a four-on-the-floor rhythm. Second, it can handle

the riser or faller sound effects commonly used in electronic music composition, which are placed

either left- or right-aligned within a section, creating smooth transitions (see c3 in Figure 7.2(b)).

Lastly, it dynamically handles the looping of a clip, determining whether it plays once at a specific

time, loops throughout a section, or is trimmed to fit a shorter section. Our implementation

defines three subclasses of transformations: (1) Drum transform (for one-shot drums), (2) Fx

transform (for risers and fallers), and (3) General transform (for others), each following different

transformation rules. We refer the reader to our demo page for details.

Composition Link

A composition link comprises one node each of section, clip, transformation, and track,

showing the entire process of transforming and organizing a music idea in the composition.

Since nodes are independent of the composition link, they can be reused across multiple links.

Figure 7.2(b) shows the process of three composition links. Note that links (A) and (C) branches

in the final composition because section s2 is used twice. This is an efficient way to represent

complex arrangements, as a single clip can be referenced by multiple links, spanning different

sections and tracks while adapting to various transformations.

7.2.2 Music Generation with In-Context Learning

The TOMI data structure, as defined above, can be fully represented in text format. A complete

composition can be decomposed into a set of composition links, each represented as a quadruple

of nodes, where each node corresponds to a set of textual attributes. By leveraging a text-based

LLM with in-context learning, we can generate compositions directly as TOMI instances. Our
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ICL prompt systematically breaks down the data structure in steps, following the order: sections,

tracks, clips, transformations, and composition links. It guides the LLM from planning the overall

song structure and music ideas to organizing them into a full song. The LLM output follows these

steps accordingly, as shown in Figure 7.2(a).

In our implementation, we elaborate our data structure with detailed examples and define

a structured response schema in the prompt. We require the LLM to generate a unique name

attribute for each node to reference in composition links. Moreover, we can specify additional

contexts, such as tempo, mood, and custom song structures. To get robust results, we implement

a rule-based validation to check the LLM output for syntax errors and invalid values. If issues are

detected, an error report is generated, prompting the LLM to iteratively refine its output until no

errors remain. At this point, we obtain an abstract representation of the composition in TOMI

structure. To realize this, we initiate the sample retrieval process to get the actual clip materials.

Then, we set a global tempo and key to unify the keys and tempos of clips within the DAW.

7.2.3 Digital Audio Workstation Integration

To support audio rendering and interactivity, we integrate the TOMI framework with the

REAPER DAW. This allows the generated composition to be visualized in a professional DAW

while benefiting users from REAPER’s editing and rendering capabilities. The composition links

and nodes of a generated piece are converted to REAPER elements, including tracks, section

markers, and clips with applied transformations. We use REAPER to automatically time-stretch

loopable clips to fit the tempo setting and transpose melodic clips to align with the key setting.

7.3 Experiment

To implement the generation system, we prepare a MIDI database and an audio database for

clip sample retrieval and use GPT-4o [185] to generate compositions in the TOMI schema. We
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evaluate our approach with baseline methods and use both objective and subjective measure-

ments to compare the music quality and structural consistency.

7.3.1 System Preparation

We collect multiple licensed MIDI and audio sample packs in the electronic music genre

through online purchases.2 We process the raw datasets into separate MIDI and audio databases

using different feature extraction methods. For MIDI clips, we developed a script to analyze and

extract musical features from them. Moreover, it can also extract music stems, such as bass,

chord, and melody, from the source MIDI to augment the data. Then, we store the labeled data

in a SQLite3 [99] database as our MIDI database. For audio samples, we use ADSR Sample Man-

ager [2] to analyze and generate labels for them. The results are also exported as a SQLite3

database. The statistics of our MIDI database and audio database are shown in Table 7.1. Sample

retrieval involves constructing a search query based on the clip’s attributes to fetch matching

samples from the database. The clip node randomly selects one sample from the results. If no

matches are found, the clip and its associated composition links are discarded.

We limit all generated sections to the 4/4 time signature to simplify implementation. When

exporting audio via REAPER, we randomly assign each MIDI track to one of eight virtual instru-

ment presets (5 for chords, 2 for melody, and 1 for bass). We keep all REAPER settings at their

defaults and apply no mixing plug-ins except for a limiter on the master track to prevent audio

clipping.

7.3.2 Baseline Method and Ablations

We compare our approach with MusicGen [52] and two ablations in electronic music gen-

eration. Since our system integrates both audio and MIDI data, there is no directly comparable

baseline. However, as our final output is rendered as audio, MusicGen is a suitable comparison,
2We obtain sample packs from two music asset platforms: https://splice.com/ and https://www.loopmasters.com/.
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Content Type Count
Chord 2604
Bass 209
Melody 1392
Arpeggio 227
Total 4432

(a) MIDI content types.

Duration Count
4-bar 2947
8-bar 1417
16-bar 68

Total 4432

(b) MIDI durations.
Sample Type Count
Loop 104493
One-Shot 170187

Total 274680

(c) Audio sample types.

Loop Duration Count
2-bar 24922
4-bar 27214
8-bar 24638
16-bar 27719
Total 104493

(d) Audio loop durations.

Table 7.1: Statistics of sample databases.

which is capable of generating long-term and high-quality electronic music. This allows us to

evaluate our method against state-of-the-art music generation systems. The ablations help us as-

sess the individual contributions of the composition link representation and the LLM integration.

MusicGen We use the MusicGen-Large-3.3B model as the baseline with prompts specifying key,

tempo, and section sequence. To generate longer audio beyond its duration limit, we apply a slid-

ing window approach, where a 30-second window slides in 10-second chunks, using the previous

20 seconds as context. We modify its inference process to include the current generation’s po-

sition within the full composition and its corresponding phrase notations in the prompt at each

step, guiding the model to align its output with the given structure.

Standalone LLM (TOMI w/o Composition Links) We remove the composition links repre-

sentation from our system. We redesign the prompt to let the LLM generate a sequence of tracks

and clip descriptions with position information (time point and track location) conditioned on a

section sequence. The sample retrieval mechanism is also applied for clips.

Random (TOMI w/o LLM) We replace the LLM operations in our system with a rule-based

method that uses randomized operations to generate music within the composition-links struc-
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Method FADVGGish ↓ FADCLAP ↓ ILSMERT ↑ ILSMS ↑ ILSWF ↑

TOMI 3.51 0.38 0.28 ± 0.12 0.36 ± 0.33 1.14 ± 0.73
MusicGen 5.31 0.62 0.06 ± 0.04 0.12 ± 0.07 0.28 ± 0.09
Standalone LLM 5.84 0.46 0.16 ± 0.11 0.10 ± 0.12 0.09 ± 0.16
Random 6.92 0.47 0.16 ± 0.09 0.22 ± 0.16 0.48 ± 0.28

Table 7.2: Objective evaluation results of FAD with two models and ILS with three latent representations.

Figure 7.3: ILS similarity matrices example, where all four compositions are generated under the section
sequence: i (intro), v1 (verse 1), p1 (pre-chorus 1), c1 (chorus 1), v2 (verse 2), p2 (pre-chorus 2), c2 (chorus
2), b (bridge), c3 (chorus 3), and o (outro). Darker colors indicate higher segment similarity. The blocks
marked as yellow-edge boxes are same-label similarities, with diagonal values marked as red lines being
excluded, and the remaining parts are different-label similarities.

ture. The system creates 15–25 track nodes, populates sections with clips stochastically, and

determines for each track whether to place, reuse, or generate a new clip. MIDI clips are assigned

a random type (chord, bass, or melody) with bass derived from chords, while audio clips are se-

lected from tonal, percussion, and sound effect feature labels. Each clip is then linked to one of

four predefined transformations: general, drum, riser Fx, or faller Fx.

We define 4 keys and 4 distinct section sequences, each consisting of 8 to 10 sections. Each

section has a name, a phrase label, and a duration ranging from 4 to 16 bars. Then, using each

method, we generate 4 sets of electronic music pieces at 120 BPM, with each set containing 8

pieces (2 per key), all conditioned on the same section sequence. In total, we generate 32 compo-

sitions for each method.
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7.3.3 Objective Evaluation

We evaluate the music quality and structural consistency of generated compositions. For mu-

sic quality, we use the Fréchet Audio Distance metric (FAD) [121, 227] with a VGGish model [96]

and a CLAP model [261] to compare human-composed electronic music and the music gener-

ated by each method. We randomly collected 329 songs as references from the Spotify Mint

playlist [115], one of the most popular curated playlists dedicated to the electronic music genre.

A lower FAD score indicates that the generated music is closer to human-composed music in

quality.

For structural consistency, we use the Inter-Phrase Latent Similarity metric (ILS) refined

from [243]. ILS aims to compute a self-similarity matrix of musical features and evaluate if the

average similarity between segments sharing the same phrase label is higher than those with

different labels. Instead of measuring the ratio of same-label to overall similarities in the original

metric, we use Cohen’s d [50] to compute the effect size of the difference between same-label

and different-label similarities, excluding diagonal elements to avoid biases. This offers a scale-

independent measure that robustly captures the separation between groups. We extract latent

representations from audio while preserving temporal structure, then compute a self-similarity

matrix of them using cosine similarity. We evaluate ILS with MERT embeddings [148], Mel spec-

trograms, and raw waveforms, denoted as ILSMERT, ILSMS, and ILSWF, respectively. To compute

the ILS score, we denote the cosine similarity between time-related latent elements i and j as

Sij , the phrase label of element i as li, and the sizes of same-label and different-label elements

as Nsame and Ndiff , respectively, excluding diagonal elements. A higher ILS score indicates better

and more effective structural consistency. The formula is defined as:

ILS =
X̄same − X̄diff

s
, (7.1)

where X̄same and X̄diff are the mean similarities of same-label and different-label groups, respec-
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tively, defined as:

X̄same =

∑
i ̸=j Sij · δ(li = lj)

Nsame

, (7.2)

X̄diff =

∑
i,j Sij · δ(li ̸= lj)

Ndiff

. (7.3)

and s is the pooled standard deviation derived from the variances s2same and s2diff of the two groups,

defined as:

s =

√
(Nsame − 1)s2same + (Ndiff − 1)s2diff

Nsame +Ndiff − 2
. (7.4)

We show the FAD scores and ILS with means and standard deviations in Table 7.2. The results

show that our method achieves the lowest FAD scores and the highest ILS scores across all mea-

surements, outperforming the baseline methods in both music quality and structural consistency.

Notably, the ablation results show that even with high-quality music samples, lacking sufficient

arrangement logic can still lead to poor FAD scores. This proves the ability of our approach to

generate music with improved flow naturalness and arrangement coherence while preserving

the expected long-term structures. Figure 7.3 provides a comparative visualization of ILS ma-

trices for four compositions, with phrase labels on both axes, yellow-edged boxes highlighting

regions of same-label similarities, the red line marking the main diagonal, and the remaining

areas representing different-label similarities.

7.3.4 Subjective Evaluation

We conduct a double-blind online survey to compare the music quality and structural con-

sistency of compositions generated by the four methods. Since each composition is a full 3- to

4-minute song, which is too long to be evaluated in a single question, we assess four compositions

(one per method) throughout the survey. To ensure a comprehensive evaluation, we create three
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Figure 7.4: Subjective evaluation results of mean score with within-subject confidence intervals, where
p1-p4 corresponds to four parts of our survey: p1. Local Music Quality, p2. Consistency Among Same-Label
Phrases, p3. Contrast Between Different-Label Phrases, and p4. Overall Full-Song Evaluation.

distinct question sets with the same survey structure but different compositions, resulting in a

total of 12 compositions being evaluated. The survey is divided into four parts, each containing 4

to 12 questions, aiming to evaluate the piece from section-level music quality to overall structural

alignment. All metrics are measured on a 5-point rating scale. The details are as follows:

Part 1. Local Music Quality This part consists of 3 subparts, each selecting the same section

(e.g., intro) from each composition. Participants rate Naturalness to evaluate the similarity to

human-composed music and the conformity to the typical electronic music style.

Part 2. Consistency Among Same-Label Phrases This part consists of 2 subparts, each se-

lecting two sections with the same phrase label (e.g., verse 1 and verse 2) from each composition.

Participants rate Similarity between the two sections.

Part 3. Contrast Between Different-Label Phrases This part consists of 2 subparts, each se-

lecting two consecutive sections from the same position in each composition (e.g., intro and verse

1). Participants rate Transition Naturalness based on boundary clearness, transition smoothness,

and phrase alignment.

Part 4. Overall Full-Song Evaluation This part shows the complete composition audios. Par-

ticipants rate Structure Clarity for how well each section aligns with the given structure, Creativity
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for how creative the music is, Naturalness for how humanlike the music sounds, and Musicality

for the overall music quality.

We insert an intermediate page between evaluation parts to inform participants of their

progress and help reduce listening fatigue. Additionally, we show the input conditions for mu-

sic generation on each question page to remind participants of the expected song structure and

tonality. We distributed the survey on multiple social media platforms and received a total of 73

responses. The demographic statistics of participants are as follows:

Age (<18: 0%, 18-29: 69.86%, 30-44: 19.18%, 45-59: 5.48%, ≥60: 5.48%);

Gender (Female: 30.14%, Male: 65.75%, Non-binary: 2.74%, Prefer not to say: 1.37%);

Music background (Amateur: 34.25%, Intermediate: 41.1%, Professional: 24.66%);

Years spent on studying music (None: 26.03%, 1 year: 6.85%, 2 years: 10.96%, 3-5 years: 13.7%,

6-10 years: 16.44%, >10 years: 26.03%).

The subjective evaluation results are shown in Figure 7.4, where the bar height represents

the mean score, and the error bar represents the confidence intervals computed by within-subject

ANOVA. The results show that our method significantly outperforms the baseline in most subjec-

tive metrics, proving the effectiveness of our system in generating high-quality electronic music

with solid long-term structural consistency.

7.4 Related Work

In automatic music generation, many studies focus on generating coherent music segments [3,

52, 71, 83, 109, 174], while fewer focus on modeling long-term structure under the temporal hi-

erarchy of music. Jukebox [59] uses hierarchical VQ-VAE with time conditioning to enhance

long-term coherence; Wang et al. [243] applies cascaded diffusion models for structured sym-

bolic music generation. Some methods introduce structure encoding in neural networks [34, 37],

employ efficient sampling techniques to generate structured variations [188], or explore multi-
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track joint modeling via latent diffusion [118, 119]. However, the application of TOMI concepts in

music generation remains largely unexplored. Related works include a rule-based recombinant

music method [51], which reorganizes existing music elements based on stylistic constraints,

and MELONS [291], which uses a structure graph to enforce long-term dependencies in melody

generation but offers limited flexibility in musical transformation.

In the context of co-creative music systems, existing generative models produce data in either

symbolic (e.g., [83, 109, 174, 243, 291]) or waveform (e.g., [3, 52, 71]) format. Furthermore, these

models lack intuitive interfaces for user co-creation and fine-grained control over musical ele-

ments, as found in modern DAWs. Composer’s Assistant [168] and its successor [167] integrate

with REAPER to support co-creation but focus on generating symbolic phrases rather than full

pieces. Our approach generates complete compositions containing both MIDI and audio phrases

while also enabling user co-creation directly within REAPER.

With recent advances in AI, text-based LLMs have emerged as a promising alternative for mu-

sic creation. Previous studies like ChatMusician [275] and MuPT [200] employ ABC Notation [1]

to represent music in text format and fine-tune LLaMA models [235]. While these approaches

outperform generic LLMs in music tasks, their performance remains limited compared to LLMs

trained exclusively on music data [106, 160, 229]. Other works have leveraged text-based LLMs

for music analysis [131, 154], showing their capability to interpret music concepts through natu-

ral language. This motivates us to develop a textual hierarchical representation of music concepts

to better integrate with text-based LLMs.

7.5 Summary and Future Work

We contribute TOMI, a concept hierarchy paradigm for music representation, and combine it

with an ICL approach to achieve the first system for generating long-term, multi-track electronic

music with both MIDI and audio clips. Experimental results show that our approach achieves
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high-quality generation with robust structural consistency. In addition, we integrate it with

REAPER to support audio rendering and co-creation. However, harmonic coherence in our re-

sults can occasionally be disrupted by randomness and limited features during sample retrieval.

Our system currently selects samples from local collections using a small feature set, which can

lead to empty results or highly divergent samples. To improve this, we plan to integrate gen-

erative models for clips or use ML-based embedding models for MIDI and audio. Then, we aim

to extend our model with a more sophisticated structural hierarchy to support advanced sound

design and mixing. Lastly, we plan to train a TOMI-based neural network on music project files

to enhance generation quality and scalability.
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Part III

Concept Emergence
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8 | Concept Emergence via

Unsupervised Disentanglement

In Part III, we turn to the final type of concept alignment explored in this thesis: emergence.

While Part I focused on learning implicit concepts from data, and Part II addressed how these

concepts can be organized into compositional and conceptual hierarchies, the picture remains

incomplete. As shown in Figure 1.1, many concepts, especially those at higher levels, are vague,

unnameable, and represented as clouds. Consider, for example, the question: what governs the

flow of music? This is an inherently abstract notion with no single answer. The governing concept

may shift dramatically depending on the genre, context, or even personal interpretation, making

it difficult to define explicitly or model directly [219].

This leads us to the notion of emergence—the ability of a model to discover and form new con-

cepts from raw observations without relying on prior domain-specific knowledge. In this chapter,

we investigate how AI systems can be equipped with inductive biases that support such emergent

behavior. We begin with a basic problem: learning disentangled representations of content and

style from sequences, such as distinguishing digit from handwriting style, or pitch from timbre

in audio. In these settings, concepts like digits or pitches are not labeled in advance. Instead,

we discover that a fundamental, domain-general inductive bias lies in a statistical asymmetry

between content and style, leading to the emergence of content and style in various domains.

This chapter is based on the published work Unsupervised Disentanglement of Content and
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Style via Variance-Invariance Constraints [262], conducted in collaboration with Yuxuan Wu,

Bhiksha Raj, and Gus Xia.1 Additional experimental details and extended discussions are pro-

vided in Appendix D.

8.1 Emergence and Content-Style Disentanglement

Learning abstract concepts is an essential part of human intelligence. Even without any la-

bel supervision, we humans can abstract rich observations with great variety into a category,

and such capability generalizes across different domains and modalities. For example, we can

effortlessly perceive a picture of a “cat” captured at any angle or set against any background, we

can perceive the symbolic number “8” from an image irrespective of its color or writing style

variations, and we can perceive an abstract pitch class “A” from an acoustic signal regardless of

its timbre. These concepts form the fundamental vocabulary of our languages—be they natural,

mathematical, or musical—and underpin effective and interpretable communication in everyday

life.

Our goal is to emulate such abstraction capability using machine learning. We choose a

content-style representation disentanglement approach as we believe that representation disen-

tanglement offers a more complete picture of abstraction—concepts that matter more in commu-

nication, such as an “8” in a written phone number or a note pitch “A” in a folk song, are usually

perceived as content, while the associated variations that often matter less in context, such as the

written style of a digit or the singing style of a song, are perceived as style. In addition, content

is usually symbolized and associated with rigid labels, as we need precise control over it during

communication. E.g., to write “8” as “9” in a phone number or to sing an “A” as “B” in a perfor-

mance can be a fatal error. In comparison, though style can also be described discretely, such as

an “italic” writing or a “tenor” voice, a variation over it is usually much more tolerable.

1Demo can be found at https://v3-content-style.github.io/V3-demo/.
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Figure 8.1: An illustration of the variance-versus-invariance constraints of content and style.

In the machine learning literature, significant progress has recently been made in content-

style disentanglement for various tasks, including disentangling objects from backgrounds [101],

characters from fonts [156, 265], pitch from timbre [20, 159], and phonemes from speaker iden-

tity [146, 197]. However, most existing models are either limited to specific domains [9, 147, 163]

or rely heavily on domain-specific knowledge as implicit supervision. The supervision forms can

be explicit content or style labels [20, 44, 120, 135, 153, 191, 192, 290], pre-trained content or

style representations [197, 199], or paired data showcasing the same content rendered in differ-

ent styles or vice versa [111, 206]. In addition, the disentangled representations often fell short

in generalizing to new contents or styles, and they lack interpretability at a symbolic level and

do not align well with human perceptions [181, 285].

To address the aforementioned challenges, achieving more generalizable and interpretable

disentanglement in an unsupervised manner, we introduce V3 (variance-versus-invariance). V3

disentangles content and style by leveraging meta-level prior knowledge about their inherent

statistical differences. As shown in Figure 8.1, our design principle is based on the observation that

content and style display distinct patterns of variation—content undergoes frequent changes

within different fragments of a sample yet maintains a consistent vocabulary across data samples,

whereas style remains relatively stable within a sample but exhibits more significant variation across
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different samples.

In this chapter, we adopt the vector-quantized autoencoder architecture and incorporate

variance-versus-invariance constraints to guide the learning of latent representations that cap-

ture content-style distinctions. We demonstrate that V3 effectively generalizes across distinct ar-

eas: disentangling pitches and timbres from musical data, disentangling numbers and ink colors

from images of digits, and disentangling character actions and appearances from game video clips.

Experimental results show that our approach achieves more robust content-style disentanglement

than unsupervised baselines, and outperforms even supervised methods in out-of-distribution

(OOD) generalization and few-shot learning for discriminative tasks. Lastly, symbolic-level in-

terpretability emerges with a near one-to-one alignment between the vector-quantized codebook

and human knowledge, an outcome not yet seen in previous studies. In summary, our contribu-

tions are as follows:

1. Unsupervised content-style disentanglement: We introduce V3, an unsupervised

method leveraging meta-level inductive bias to disentangle content and style representa-

tions, without requiring paired data, content or style labels, or domain-specific assumptions.

2. Out-of-distribution generalization: As a result of successful content-style disentangle-

ment, V3 shows better out-of-distribution generalization capabilities compared to super-

vised methods in few-shot settings, that is, recognizing content when presented with only

a few examples of unseen styles.

3. Emergence of interpretable symbols: Given the availability of semantic segmentations,

V3 can foster the development of interpretable content symbols that closely align with hu-

man knowledge.
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8.2 Methodology

Considering a dataset consisting ofN data samples, where each sample containsL fragments,

we aim to learn each fragment’s content and style representation with the inductive bias illus-

trated in Figure 8.1. Intuitively, the fragments within each data sample have a relatively frequently

changing content and a relatively stable style. For different data samples, the style exhibits sig-

nificant variations and their content more or less keeps a consistent vocabulary. In the following,

we first introduce the autoencoder architecture V3 is built upon, then the variability statistics to

quantify the changing patterns of content and style, and the proposed variance-versus-invariance

constraints.

8.2.1 Model Architecture

The model architecture of V3 is illustrated in Figure 8.2. Let X = {xij}N×L be the dataset,

where xij corresponds to the j-th fragment of the i-th sample. We use an autoencoder archi-

tecture to learn the representations of xij . The encoder encodes the input data xij to the latent

space, which is split into to zc
ij and zs

ij . We use vector quantization as the dictionary learning

method for content. Every content representation zc
ij is quantized to the nearest atom in a code-

book of size K as z̃c
ij . The decoder integrates z̃c

ij and zs
ij and reconstructs the fragment x̂ij . The

overall loss function is the weighted sum of three terms:

L = Lrec + αLvq + βLV3. (8.1)

Here, Lrec is the reconstruction loss of X and Lvq is the VQ commit loss [184]:
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Figure 8.2: The model architecture of V3. Left: The autoencoder has two branches for content and style,
respectively, where the content branch has a VQ layer at the encoder output. Right: the V3 constraints,
where double-dashed arrows represent measuring the variability by νk(·), and solid arrows represent
taking the average.

Lrec =
1

N × L

N∑
i=1

L∑
j=1

∥xij − x̂ij∥2, (8.2)

Lvq =
1

N × L

N∑
i=1

L∑
j=1

∥zc
ij − sg(z̃c

ij)∥2, (8.3)

where sg(·) is the stop gradient operation of the straight-through optimization. The final term

LV3 is the proposed regularization method to ensure unsupervised content-style disentangle-

ment, which we introduce in the rest of this section.

8.2.2 Variability Statistics

We define four statistics to measure the degree of variability in accordance with the four edges

of Figure 8.1. These statistics are based on a backbone variability measurement νk(·), where k
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represents the dimension along which variability is computed. In this chapter, we define νk(·) as

the mean pairwise distance (MPD). Formally, for a vector z of length D,

νDi=1(zi) := MPDD
i=1(zi) =

1

D(D − 1)

D∑
i=1

D∑
j=1,j ̸=i

∥zi − zj∥2. (8.4)

The motivation for using MPD is that it is more sensitive to multi-peak distributions than standard

deviation, which is preferred when learning diverse content symbols in a sample.

Content variability within a sample (Vc
f ). We first compute the variability of content along

the fragment axis and take the average along the sample axis. The value is the average of content

codes before and after vector quantization:

Vc
f =

1

2N

N∑
i=1

νLj=1(z
c
ij) +

1

2N

N∑
i=1

νLj=1(z̃
c
ij). (8.5)

Content variability across samples (Vc
s ). Theoretically, we aim to measure the consistency

of codebook usage distribution along the sample axis, which is not differentiable. In practice, we

compute the center of the content code along the fragment axis and measure the variability of

the centers along the sample axis. It serves as a proxy of codebook utilization. Also, we consider

both content codes before and after vector quantization:

Vc
s =

1

2
νNi=1

( 1
L

L∑
j=1

zc
ij

)
+

1

2
νNi=1

( 1
L

L∑
j=1

z̃c
ij

)
. (8.6)

Style variability within a sample (Vs
f ). We compute the variability of style representations

among fragments and take their mean across all samples:

Vs
f =

1

N

N∑
i=1

νLj=1(z
s
ij). (8.7)

Style variability across samples (Vs
s ). We compute the average style representation along
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the fragment axis and measure its variability along the sample axis:

Vs
s = νNi=1

( 1
L

L∑
j=1

zs
ij

)
. (8.8)

8.2.3 Variance-Versus-Invariance (V3) Constraints

With the variability statistics, we can formalize the general relationship between content and

style along the sample or fragment axis:

• Content should be more variable within samples than across samples, i.e., Vc
f ≫ Vc

s .

• Style should be more variable across samples than within samples, i.e., Vs
s ≫ V f

s .

• Within a sample, content should be more variable than style, i.e, Vc
f ≫ Vs

f .

• Across samples, style should be more variable than content, i.e., Vs
s ≫ Vc

s .

We quantify the above contrasts as regularization terms, using the hinge function to cut off gradi-

ent back-propagation when the ratio between two variability statistics reaches a certain threshold

r > 1, which stands for relativity [11]:

Lcontent = max(0, 1− Vc
f

r · Vc
s

), (Vc
f ≫ Vc

s ) (8.9)

Lstyle = max(0, 1− Vs
s

r · Vs
f

), (Vs
s ≫ Vs

f ) (8.10)

Lfragment = max(0, 1− Vc
f

r · Vs
f

), (Vc
f ≫ Vs

f ) (8.11)

Lsample = max(0, 1− Vs
s

r · Vc
s

). (Vs
s ≫ Vc

s ) (8.12)

We obtain the V3 regularization term (used in Equation 8.1) by summing up the four terms:

LV3 = Lcontent + Lstyle + Lfragment + Lsample. (8.13)
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8.3 Experiments

We evaluate V3 on both synthetic and real data to evaluate its effectiveness and generaliz-

ability in different domains and scenarios, covering audio, image, and video data. The highlight

of this section is that V3 effectively learns disentangled representations of content and style, per-

forms well on out-of-distribution generalization, and the discrete content representations mani-

fest symbolic-level interpretability that aligns well with human knowledge.

We compare V3 with three unsupervised baselines: 1) an unsupervised content-style disentan-

glement based on MINE [232], and 2) a 2-branch autoencoder similar to our architecture choice,

but trained with the cycle consistency loss after decoding and encoding shuffled combinations of

z̃c and zs [290]. 3) a vanilla β-VAE [98]. Additionally, we compare with two methods with label

supervision: 1) a weakly-supervised method for disentanglement named EC2-VAE, in which the

model is trained to predict the correct content labels from zc
ij as a replacement of the VQ layer,

and the decoder is trained to reconstruct inputs from zs
ij and ground truth content labels [247,

271], and 2) a fully supervised variant of EC2-VAE provided with both content and style labels, in

which the model learns to predict both content and style from their latent representations. We

denote them as EC2-VAE (c) and EC2-VAE (c & s) respectively. All reported results are the average

of the three best-performing checkpoints on validation sets.

8.3.1 Datasets

Written Phone Numbers Dataset (PhoneNums): We synthesize an image dataset of writ-

ten digit strings on light backgrounds using 8 different ink colors, mimicking a scenario of hand-

written phone numbers. The order of digits is random. All images are diversified with noises, blur,

and foreground and background color jitters. Models should learn digits and colors as content

and style.

Monophonic Instrument Notes Dataset (InsNotes): We synthesize a dataset consisting
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of 16kHz monophonic music audio of 12 different instruments playing 12 different pitches in an

octave. Every pitch is played for one second with a random velocity and amplitude envelope. The

audio files are then normalized and processed to magnitude spectrograms. Models should learn

pitches and timbres as content and style, respectively.

Street View House Numbers (SVHN) [182]: We select all images with more than one digit

from the SVHN dataset. We crop the images to the bounding boxes of the digits and resize them

to 32×48. Models should learn digits as content, their fonts, texture, and colors as style. Note

that the styles can be seen as from a continuous space, and the fonts in SVHN are very diverse.

Sprites with Actions Dataset (Sprites) [147, 149]: The Sprites dataset contains animated

cartoon characters with random appearances. We use a modified version of the dataset taking

video sequences of characters performing 9 different actions in random order. Models should

learn the actions as content and appearances as style. Note that the styles can be seen as from a

continuous space.

8.3.2 Results of Content-Style Disentanglement

On PhoneNums and InsNotes where concrete style labels are available, we evaluate the mod-

els’ content-style disentanglement ability by conducting a retrieval experiment to examine the

nearest neighbors of every input zc and zs using ground truth content and style labels, evaluated

by the area under the precision-recall curve (PR-AUC) and the best F1 score. We experiment with

different codebook sizes K to allow different levels of vocabulary redundancy. The results are

shown in Table 8.1 and Table 8.2. We see that V3 outperforms unsupervised baselines on both

datasets, and the performance is consistent across different codebook sizes K . V3 also outper-

forms EC2-VAE (c) in the style retrieval task, which indicates that V3 learns better-disentangled

style representations containing less content information.

On SVHN and Sprites where there are no style labels, we evaluate the models’ disentangle-

ment ability by linear probing on the learned representations to predict content labels. We also
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Method K

Content Style

PR-AUC Best F1 PR-AUC Best F1

zc ↑ zs ↓ zc ↑ zs ↓ zc ↓ zs ↑ zc ↓ zs ↑

V3
10 83.2 12.8 84.1 18.5 14.9 95.4 22.6 91.0
20 93.0 11.6 92.9 18.2 11.9 93.9 22.7 89.9
40 86.3 10.9 83.4 18.0 15.5 95.3 22.9 93.0

MINE-based
10 33.8 21.6 36.0 30.8 14.0 35.5 22.7 38.6
20 41.9 25.0 49.5 25.4 22.2 37.5 33.2 39.0
40 46.8 23.8 49.8 28.0 26.6 37.7 27.6 48.8

Cycle loss
10 55.1 25.4 64.3 27.8 17.0 33.1 22.6 37.4
20 52.0 23.6 58.5 29.2 18.2 35.9 23.4 38.8
40 53.8 20.7 62.8 22.4 19.3 31.6 24.5 35.8

β-VAE - 24.9 27.0 25.6 30.5

EC2-VAE (c) - 95.2 11.5 95.1 18.0 16.8 57.7 22.6 57.2
EC2-VAE (c & s) - 95.2 13.6 95.1 19.6 25.2 96.2 31.0 91.0

Table 8.1: Evaluation of digit and color disentanglement on PhoneNums using latent retrieval. Values
are reported in percentage.

compare with a linear classifier on raw input features. The classifier layer is trained for one epoch

before being evaluated on the test set. On both datasets, we allow a 100% content vocabulary re-

dundancy, resulting in K = 20 for SVHN and K = 18 for Sprites. The resulting accuracies are

shown in Table 8.3 and Table 8.4. V3 outperforms unsupervised baselines on both datasets, only

trailing behind the weakly supervised EC2-VAE (c) as the latter’s zc space is optimized for the

discriminative task.

8.3.3 Content Classification on Out-of-distribution Styles

We further evaluate the generalization ability of V3 on PhoneNums and InsNotes by testing

the models’ content classification performance on a special test set with only unseen styles, pro-

vided with few-shot examples. We focus on comparing V3 with the weakly supervised method

EC2-VAE (c) and a pure CNN classifier to evaluate the generalization ability introduced by latent
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Method K

Content Style

PR-AUC Best F1 PR-AUC Best F1

zc ↑ zs ↓ zc ↑ zs ↓ zc ↓ zs ↑ zc ↓ zs ↑

V3
12 89.9 8.9 90.1 15.1 9.3 87.5 15.0 88.0
24 76.2 8.7 80.0 14.2 12.8 68.9 20.3 70.0
48 72.2 8.4 74.4 14.2 12.3 72.2 22.0 71.5

MINE-based
12 56.4 7.61 62.0 14.2 10.3 61.4 16.9 63.7
24 50.5 8.5 59.1 14.9 14.7 53.4 19.5 51.4
48 44.6 10.2 54.0 16.5 13.8 52.1 18.3 49.7

Cycle loss
12 49.7 8.7 57.9 15.2 10.7 12.7 18.2 19.0
24 47.0 8.7 54.5 15.2 14.2 18.9 19.4 23.1
48 42.4 8.0 49.4 14.5 16.2 20.0 22.4 24.4

β-VAE - 18.1 20.8 12.2 19.0

EC2-VAE (c) - 83.2 8.0 86.2 14.2 10.7 60.0 16.9 62.8
EC2-VAE (c & s) - 90.4 7.9 90.4 14.2 11.1 90.5 18.0 90.4

Table 8.2: Evaluation of pitch and timbre disentanglement on InsNotes using latent retrieval. Values are
reported in percentage.

disentanglement. In the n-shot settings, models are presented with n samples of each content

and new style combination. All models are continuously trained on new samples until perfor-

mance stops improving. For V3, we choose the V3 versions with no codebook redundancy for

comparison (K = 10 for PhoneNums, K = 12 for InsNotes) as they show a one-to-one mapping

from codebook entries to content labels (see Section 8.3.4 for details). We first align the learned

codebook entries to ground truth content labels, and obtain classification results by the encoded

content representations zc. For EC2-VAE, we try two different continuous training strategies: 1)

using pseudo content labels from its own predictions for self-boosting, as well as training the

reconstruction loss, and 2) only optimizing the reconstruction loss. Additionally, we compare

with EC2-VAE and the CNN classifier provided with labels in continuous training. The results

are shown in Table 8.5. Although V3 might fall behind supervised methods in the 0-shot setting, it

comes to the lead in few-shot settings on both datasets as the number of extra samples increases.
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Method K zc ↑ zs ↓

V3 20 40.6 18.5
MINE-based 20 36.0 20.8
Cycle loss 20 16.8 21.2
β-VAE - 21.8
Raw input - 21.4

EC2-VAE (c) - 97.0 21.2

Table 8.3: Linear probing accuracies (in %) for
content (digit) classification on SVHN.

Method K zc ↑ zs ↓

V3 18 88.2 20.2
MINE-based 18 79.1 22.2
Cycle loss 18 86.4 39.7
β-VAE - 33.2
Raw input - 99.0

EC2-VAE (c) - 99.8 15.7

Table 8.4: Linear probing accuracies (in %) for
content (action) classification on Sprites.

This indicates that V3 can learn by itself to make sense of unseen styles with only a few examples,

an ability that emerges from learning representations and disentangled interpretable factors.

Pretraining Continuous Training PhoneNums InsNotes

Method Supervision Supervision Self-boost 0-shot 1-shot 5-shot 10-shot 0-shot 1-shot 5-shot 10-shot

V3 No No No 57.8 91.3 97.1 99.0 90.5 97.6 97.8 99.2
EC2-VAE (c) Yes No No 84.2 92.1 92.2 92.7 87.1 87.2 89.4 91.2
EC2-VAE (c) Yes No Yes 84.2 91.8 92.1 92.4 87.1 94.6 95.0 95.1
CNN Classifier Yes No No 59.5 59.5 59.5 59.5 92.6 92.6 92.6 92.6
CNN Classifier Yes No Yes 59.5 80.2 82.2 82.7 92.6 87.6 85.9 85.3

EC2-VAE (c) Yes Yes No 84.2 94.6 98.8 99.2 87.1 97.7 98.9 99.8
CNN Classifier Yes Yes No 59.5 81.2 82.4 83.5 92.6 91.9 91.3 89.1

Table 8.5: Content classification accuracies (in %) on data with OOD styles.

8.3.4 Results of Symbolic Content Interpretability

We notice that interpretable symbols emerge in the learned codebook of V3, showing its abil-

ity of abstracting concepts from information. To evaluate the interpretability of learned content

representations quantitatively, we propose two metrics: the learned content codebook accuracy

and standard deviation among styles. We first align codebook entries to the ground truth content

labels by their distributions on content labels, and then calculate the accuracy of codebook en-

tries’ distribution regarding their aligned labels. A well learned, interpretable codebook should

have entries concentrated on content labels they are aligned with, thus showing high accuracy.
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Method
PhoneNums InsNotes

K Acc. ↑ σ ↓ K Acc. ↑ σ ↓

V3
10 89.2 0.6 12 99.8 0.1
20 99.7 1.8 24 92.9 2.2
40 99.9 4.5 48 90.2 4.5

MINE-based
10 40.9 8.1 12 13.8 3.8
20 25.6 9.8 24 29.4 8.9
40 50.6 6.2 48 26.9 3.6

Cycle loss
10 71.0 3.7 12 27.5 11.4
20 89.6 4.3 24 28.5 11.9
40 99.9 4.1 48 18.2 6.2

Table 8.6: Quantitative results of codebook interpretability on datasets with discrete style labels. Values
are reported in percentage.

Also, as a good symbol is a symbol of consensus, on datasets with discrete style labels, we also

quantify different styles’ discrepancy of codebook entries distribution on content labels using

the standard deviation (σ) of confusion matrices between codebook entries and content labels, as

shown in Table 8.6. For datasets with no discrete style labels, we report the accuracy of codebook

entries in Table 8.7.

From Table 8.6 and Table 8.7, we observe that V3 shows good codebook interpretability by

representing content labels with consistent codebook entries, and the consistency is kept well

among styles. Table 8.6 also shows that V3 shows good codebook interpretability with or without

vocabulary redundancy, indicating V3 does not rely on the knowledge of the number of content

classes to learn interpretable symbols.

Qualitatively, we perform content and style recombination by traversing all content code-

book entries and decoding them with a fixed style representation. If the learned codebook has

good interpretability, the decoding results of recombined content and style representations should

show meaningful content changes, and retain consistent styles. Here, we focus on comparing the

recombination results of V3 and baselines on SVHN, where we first encode zs from example

fragments, and then recombine it with all K content codebook entries.
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Method
SVHN Sprites

K Acc. ↑ K Acc. ↑

V3 20 47.6 18 98.5
MINE-based 20 26.0 18 38.3
Cycle loss 20 20.1 18 82.0

Table 8.7: Quantitative results of codebook interpretability on datasets without style labels. Values are
reported in percentage.

From Figure 8.3, we observe that V3 generates images with clear content changes and consis-

tent styles when recombining content and style representations. Although images generated by

V3 may not cover all possible contents, as many of them never appear in the training set in the

given styles, the contents are almost all recognizable digits, and V3 can even “imagine” reasonably

what a digit would look like in a new font and color. In contrast, the baselines generate images

with either mixed content and style information or very subtle changes in content that are hard

to interpret. This comparison not only validates the interpretability of V3’s learned codebook

resulting from successful content-style disentanglement but also demonstrates the potential of

V3 in style transfer and content editing tasks.

V3 MINE-based Cycle losssource

Figure 8.3: Comparison of generated images by recombining zs from given sources in SVHN and all zc

in the learned codebook.
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8.4 Related Work

The content-style disentanglement, as well as the related style transfer problem, has been

well explored in computer vision, especially in the context of image-to-image translation. Early

works mostly require paired data of the same content with different styles [111, 206], until the

introduction of domain transfer networks that can learn style transfer functions without paired

data [24, 44, 45, 120, 153, 191, 221, 263, 264, 290]. Although these methods are unsupervised in the

sense that they do not require paired data, they still require concrete labels of styles to identify

source and target domains, and there are no fully interpretable representations of either content

or style.

A similar trajectory of research has also been followed in other domains, including

speech [116, 117, 197, 261] and music [20, 150, 152, 159, 163, 284]. To mitigate the requirement for

supervision, some methods utilize domain-specific knowledge and have achieved better disentan-

glement results, including X-vectors of speakers [197, 198], the close relation between fundamen-

tal frequency and content in audio [198, 199], or pre-defined style or content representations [245,

247, 271].

Pure unsupervised learning for content and style disentanglement has not been well explored.

Notable attempts include mutual information-based methods such as InfoGAN and mutual infor-

mation neural estimation (MINE) [15, 39, 196, 232, 280], and low-dimensional representation

learning with physical symmetry [155]. But these methods often suffer from the training sta-

bility issue or have to follow a low-dimensionality setup. Disentangled Sequential Autoencoder

(DSAE) and its variants leverage the nature of content and style to learn their representations at

different scales, but their applications are limited to purely sequential data with a static style [9,

103, 147, 163, 164].

A technique often associated with learned content is vector quantization (VQ) [184]. Recent

efforts have built language models on top of VQ codes for long-term generation, indicating the
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association between VQ codebook and the underlying information content [52, 75, 226, 231, 232,

239, 268]. A noticeable characteristic of these studies is the use of large codebooks, which limits

the interpretability of representations. We borrow the idea of a small codebook size from categor-

ical representations [39, 113], targeting a more concise and unified content code across different

styles, while keeping the high-dimensional nature of VQ representations.

8.5 Limitation

We have identified several limitations in our V3 method that necessitate further investigation.

First, while V3 achieves good disentanglement and symbolic interpretability, it is not flawless—

samples of different contents (say images of “8" and “9") may be projected into the same latent

code. Inspired by human learning, which effectively integrates both mode-1 and mode-2 cogni-

tive processes, we aim to enhance V3 by incorporating certain feedback or reinforcement. This

adaptation could also facilitate the application of V3 to more complex domains, such as general

image or video. Additionally, V3 is currently optimized to disentangle content and style from

data samples that include defined fragments. Extending this capability to unsegmented data of

large vocabularies, such as continuous audio, represents a significant area for future development.

Furthermore, V3 assumes that content elements do not overlap, which does not hold in cases of

polyphonic music or mixed audio. Addressing this challenge will require a more sophisticated

approach that considers the hierarchical nature of content.

8.6 Summary

In summary, we contributed an unsupervised content-style disentanglement method named

V3. V3’s inductive bias is domain-general, intuitive, and concise, solely based on the meta-level in-

sight of the statistical difference between content and style, i.e., their distinct variance-invariance
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patterns reflected both within and across data samples. Experiment results showed that V3 not

only outperforms the baselines in terms of content-style disentanglement but also demonstrates

superior generalizability on OOD styles compared to supervised methods, and achieves high in-

terpretability of learned content symbols. The effectiveness of V3 generalizes across different

domains, including audio, image, and video. We believe that V3 has the potential to be applied to

emergent knowledge in general, and we plan to extend our method to more complex tasks and

domains in the future.
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9 | Conclusion

This dissertation set out to explore a fundamental question: Can machines possess musi-

cianship, so that they can engage with us meaningfully in the creative process? To answer this

question, we analyzed the role of concept manipulation in music creation and introduced the

framework of concept alignment: the idea that human-like musicianship in AI emerges from

aligning the model’s internal representations with music concepts through specialized learning

and generation methods.

Across music generation tasks, we explored how AI systems can achieve this alignment. In

concept representation, we developed methods to learn interpretable and disentangled repre-

sentations of music factors, such as pitch contour, rhythm, chord progression, and texture, sup-

porting nuanced control and style transfer. In concept organization, we introduced hierarchical

generative models that capture both the compositional hierarchy of musical structure and the

concept hierarchy of music ideas, enabling structured long-term generation. In concept emer-

gence, we proposed domain-general inductive biases that allow the unsupervised discovery of

symbolic abstractions, such as pitch and timbre or digit and color, across different modalities.

These contributions demonstrate that concept alignment can improve controllability and inter-

pretability in various generation tasks.

Over the years in which this thesis was developed, generative AI has advanced at an extraor-

dinary pace. Large language models (LLMs), diffusion architectures, self-supervised learning, and

new techniques for model grounding and multimodal understanding have reshaped the landscape
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of machine learning, making generative systems more capable than ever. As these capabilities

expand, so too does the need for models that act meaningfully and align more closely with human

creative intent. Concept alignment offers a path to bridge this gap.

Looking ahead, I see two main directions for advancing concept alignment. First, we can

investigate how aligned methods can incorporate the most powerful generative tools, combin-

ing their expressive capacity with stronger grounding on concepts. This includes both implicit

alignment—aligning the dynamics of models across different modalities without fully dissecting

their internal mechanisms (discussed in Section 9.1); and explicit alignment—ensuring that con-

cepts emerging within the model can be matched to and interpreted in human terms (discussed

in Section 9.2). Second, with these methods in place, we can focus on applications in human-

computer interaction, designing user interfaces that bring these models into the creative process

in ways that genuinely enhance human-AI co-creation (discussed in Section 9.3).

9.1 Implicit Alignment of Multimodal Dynamics

Current state-of-the-art generative models are often monolithic: breaking them into fully

interpretable components is difficult, let alone disentangling them into multiple concepts. Never-

theless, experiments suggest that many such concepts are already embedded within these models

and can be revealed or leveraged through methods such as probing, in-context learning, and

parameter-efficient fine-tuning. Building on this observation, the future direction of implicit

alignment treats models as given—assuming their internal representations and concept manipu-

lation abilities already exist—and focuses on aligning their capabilities across modalities, thereby

making concept understanding more reliable and mutually reinforcing. Existing multimodal fine-

tuning can be viewed as a step in this direction, but it should do more than just use one modality’s

embeddings to support another.

The most notable aspect of the proposal is not aligning embeddings, but rather the generation
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dynamics. For example, if an audio model and a symbolic music model were aligned in dynamics,

could the symbolic model offer richer theoretical or structural insights to guide audio prediction?

Conversely, could the audio model inspire more imaginative or stylistically nuanced symbolic

generation? Similarly, if a text LLM and a music LLM were aligned in dynamics, could concepts

of music (captured by the music LLM) and concepts about music (captured by the text LLM) be

shared and mutually reinforced? Such alignment could open the door to richer reasoning, even

back in the single modality, as the grounding of concepts is reinforced by other modalities.

9.2 Explicit Alignment in Cross-Domain Emergence

Despite the potential of implicit alignment, a fundamental question about intelligence re-

mains: how do abstract concepts, categories, and hierarchies emerge, and how do they evolve

and fade over time? Building on this thesis’s findings on concept emergence, future work will

investigate how symbols and higher-level concepts arise from raw observations. Examples range

from the emergence of notes from audio, text from speech, or objects from video, to more complex

semantics such as call-and-response patterns between musical phrases, narrative arcs in writing,

or shot transitions in film.

These processes, though different, appear to be driven by unified, domain-general inductive

biases, which I hypothesize give rise to a hierarchical disentanglement of content and style in a

self-supervised manner. Formalizing these biases could enable models to acquire more reliable

and generalizable planning abilities, discover new concepts in data-sparse settings, and adapt

to unfamiliar domains. Ultimately, these methods could be integrated with implicit alignment,

together yielding models that are more capable and interpretable.
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9.3 Human-AI Co-Creation

Lastly, concept alignment opens new opportunities for human-AI co-creation, and its real

value will only be revealed through direct exploration in human-computer interaction. A key

question is whether the compositional and concept hierarchies studied in this thesis not only

serve as effective representations for machines, but are also intuitive for human musicians to

interact with. AI-assisted composition tools provide a natural testbed for this investigation, par-

ticularly by integrating hierarchical models into interactive music generation interfaces, such as

digital audio workstations. In such environments, users could engage with AI at multiple levels:

providing examples, shaping musical ideas, controlling global structure, and even observing how

the system reasons about its choices.

Beyond composition tools, concept-aligned systems could extend to a variety of impactful ap-

plications. For example, they could enable interactive educational platforms that learn intuitive,

example-based concepts and express them in multiple styles; create embodied AI performers ca-

pable of meaningful, real-time exchange with human musicians; or support music therapy where

musical parameters are precisely controlled for targeted outcomes. In all of these scenarios, con-

cept alignment serves as a foundation for designing systems whose reasoning and output are

transparent, responsive, and capable of collaborating seamlessly with humans.

In summary, this dissertation proposed concept alignment and its future directions as a step

toward musicianship in AI. May it serve as a reminder that aesthetics and art are part of intelli-

gence, and as an invitation to explore how computational methods can find their path in harmony

with humanity.
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A | PianoTree VAE for Polyphonic

Representation Learning

This chapter is based on the published work PianoTree VAE: Structured Representation Learning

for Polyphonic Music [248], conducted in collaboration with Yiyi Zhang, Yixiao Zhang, Junyan

Jiang, Ruihan Yang, Junbo Zhao, and Gus Xia. The proposed model serves as the sub-module of

the models proposed in Chapter 3 and Chapter 4.

The dominant approach for music representation learning involves the deep unsupervised

model family variational autoencoder (VAE). However, most, if not all, viable attempts on this

problem have largely been limited to monophonic music. Normally composed of richer modality

and more complex musical structures, the polyphonic counterpart has yet to be addressed in the

context of music representation learning. In this work, we propose the PianoTree VAE, a novel

tree-structure extension upon VAE aiming to fit the polyphonic music learning.

The experiments prove the validity of the PianoTree VAE via (i)-semantically meaningful

latent code for polyphonic segments; (ii)-more satisfiable reconstruction aside of decent geometry

learned in the latent space; (iii)-this model’s benefits to the variety of the downstream music

generation.1

1Code and demos can be accessed via https://github.com/ZZWaang/PianoTree-VAE
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A.1 Introduction

Unsupervised machine learning has led to a marriage of symbolic learning and vectorized

representation learning [25, 47, 288]. In the computer music community, the MusicVAE [203]

enables the interpolation in the learned latent space to render smooth music transitions. The

EC2-VAE [271] manages to disentangle certain interpretable factors in music and also provides

a manipulable generation pathway based on these factors. Pati et al. [193] further utilizes the

recurrent networks to learned music representations for longer-term coherence.

Unfortunately, most of the success has been limited to monophonic music. The generalization

of the learning frameworks to polyphonic music is not trivial, due to its much higher dimension-

ality and more complicated musical syntax. The commonly-adopted MIDI-like event sequence

modeling or the piano-roll formats fed to either recurrent or convolutional networks have fell

short in learning good representation, which usually leads to unsatisfied generation results [65,

215, 270]. In this chapter, we hope to pioneer the development of this challenging task. To begin

with, we conjecture a proper set of inductive bias for the desired framework: (i)-a sparse en-

coding of music as the model input; (ii)-a neural architecture that incorporates the hierarchical

structure of polyphonic music (i.e., musical syntax).

Figure A.1: An illustration of the proposed polyphonic syntax.

Guided by the aforementioned design principles, we propose PianoTree VAE, a hierarchical

representation learning model under the VAE framework. We adopt a tree structured musical

syntax that reflects the hierarchy of musical concepts, which is shown in Figure A.1. In a top-
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down order: we define a score (indicated by the yellow rectangle) as a series of simu_note events

(indicated by the green rectangles), a simu_note as multiple note events sharing the same onset

(indicated by blue rectangles), and each note has several attributes such as pitch and duration. In

this chapter, we focus on a simple yet common form of polyphonic music—piano score, in which

each note has only pitch and duration attributes. For future work, this syntax can be generalized

to multiple instruments and expressive performance by adding extra attributes such as voice,

expressive timing, dynamics, etc.

The whole neural architecture of PianoTree VAE can be seen as a tree. Each node represents

the embedding of either a score, simu_note, or note, where a higher level representation has

larger receptive fields. The edges are bidirectional, where a recurrent module is applied to either

encode the children into the parent or decode the parent to generate its children.

Through extensive evaluations, we show that PianoTree VAE yields semantically more mean-

ingful latent representations and further downstream generation quality gains, on top of the cur-

rent state-of-the-art solutions.

A.2 Related Work

The complex hierarchical nature of music data has been studied for nearly a century (e.g.,

GTTM [141], Schenkerian Analysis [204], and their follow-up works [87, 89, 170, 217]). However,

the emerging deep representation-learning models still lack compatible solutions to deal with the

complex musical structure. In this section, we first review different types of polyphonic music

generation in Section A.2.1. After that, we discuss some popular deep music generative models

indexed by their compatible data structure from Section A.2.2 to Section A.2.4.
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A.2.1 Different Types of Polyphony

In the context of deep music generation, polyphony can refer to three types of music: 1)

multiple monophonic parts (e.g., a four-part chorus), 2) a single part of a polyphonic instrument

(e.g., a piano sonata), and 3) multiple parts of polyphonic instruments (e.g., a symphony).

The first type of polyphonic music can be created by simply extending the number of voices

in monophonic music generation with some inter-voice constraints. Some representative sys-

tems belonging to this category include DeepBach [83], XiaoIce [289], and Coconet [105]. Music

Transformer [106] and the proposed PianoTree VAE both focus on the generation of the second

type of polyphony, which is a much more difficult task. Polyphonic pieces under the second defi-

nition no longer have a fixed number of “voices” and consist of more complex textures. The third

type of polyphony can be regarded as an extension of the second type, and we leave it for future

work.

A.2.2 Piano-roll and Compatible Models

Piano-roll and its variations [29, 65, 128, 169] view polyphonic music as 3-D (one-hot) ten-

sors, in which the first two dimensions denote time and pitch, and the third dimension indicates

whether the token is an onset, sustain, or rest. A common way for deep learning models to

encode/decode a piano-roll is to use recurrent layers along the time-axis while the pitch-axis re-

lations are modeled in various ways [23, 29, 169]. Another method is to regard a piano-roll as an

image with three channels (onset, sustain, and rest) and apply convolutional layers [65, 128].

Through the proposal of PianoTree VAE, we argue that a major way to improve the current

deep learning models is to utilize the built-in priors (intrinsic structure) in the musical data. In

our work, we primarily use the sparsity and the hierarchical priors.
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A.2.3 MIDI-like Event Sequence and Compatible Models

MIDI-like event sequence is first used in deep music generation in performanceRNN [214]

and multi-track MusicVAE [215], and then broadly applied in transformer-based generation [64,

106, 108]. This direction of work leverages the sparsity of polyphonic data to efficiently flatten

polyphonic music into an array of events. The vocabulary size of events usually triples the vo-

cabulary size of MIDI pitches, including “note-on” and “note-off” events for 128 MIDI pitches,

“time shifts”, and so on.

However, the format of MIDI-like events lacks the proper flexibility. A few operations are

made difficult due to its very nature. For instance, during addition or deletion of notes, often

numerous “time shift” tokens must be merged or split with the “note-on” or “note-off” tokens

being changed all-together. This has caused the model being trained inefficient for the potential

generation tasks. In addition, this format has a risk of generating illegal sequences, say a “note

on” message without a paired “note off” message.

Similarly, we see the note-based approaches [92, 176], in which polyphonic music is repre-

sented as a sequence of note tuples, as an alternative to the MIDI-like methods. The representa-

tion has resolved the illegal generation problem but still not revealed much of the intrinsic music

structure. We argue that our work improves on the note-based approaches by utilizing deeper

musical structures implied by the data. (See Section 3.1 for details.)

A.2.4 GNN as a Novel Structure

Recently, we see a trend in using graph neural networks (GNN) [207] to represent polyphonic

score [112], in which each vertex represents a note and the edges represent different musical

relations. Although the GNN-based model offers sparse representation learning capacity, it is

limited by the specification of the graph structure design, and it is nontrivial to generalize it for

score generations.
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Figure A.2: An illustration of PianoTree data structure to encode the music example in Figure A.1.

A.3 Method

A.3.1 Data Structure

We first define a data structure to represent a polyphonic music segment, which contains two

components: 1) surface structure, a data format to represent the music observation, and 2) deep

structure, a tree structure (containing score, simu_note and note nodes) showing the syntactic

construct of the music segment.

Each music segment lasts T time steps with 1
4

beat as the shortest unit. We further use Kt,

where 1 ≤ t ≤ T , to denote the number of notes having the same onset t. The current model

uses T = 32, i.e., each music segment is 8-beat long.

Surface Structure

The surface structure is a nested array of pitch-duration tuples, denoted by {(pt,k, dt,k)|1 ≤

t ≤ T, 1 ≤ k ≤ Kt}. Here, (pt,k, dt,k) is the kth lowest note starting at time step t. The pitch

attribute pt,k is a 128-D one-hot vector corresponding to 128 MIDI pitches. The duration attribute

dt,k encodes the duration ranging from 1 to T using a log2 T -bit binary vector. For example, when

T = 32 (log2 T = 5), ‘00000’ represents a 16th note, ‘00001’ is an 8th note, ‘00010’ is a dotted 8th
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note, and so on so forth. The base-2 design is inspired by the similar binary relation among

different note values in western musical notation.

The bottom part of Figure A.2 illustrates the surface structure of the music example in

Figure A.1. We see that the data structure is a sparse encoding of music, and it eliminates il-

legal tokens since every possible nested array has a corresponding music.

Deep Structure

We further build a syntax tree to reveal the hierarchical relation of the observation. First, for

1 ≤ t ≤ T, 1 ≤ k ≤ Kt, we define notet,k as the summary (i.e., embedding) of (pt,k, dt,k), which

are the bottom layers of the tree. Then, for 1 ≤ t ≤ T , we define simu_notet as the summary of

notet,1≤k≤Kt , which are the middle layers of the tree. Finally, we define the score as the summary

of simu_note1≤t≤T , which is the root of the tree. The upper part of Figure A.2 illustrates the deep

structure built upon its surface structure.

The syntax tree, so-called the deep structure, has both musical and linguistic consideration.

In terms of music, note, simu_note, and score roughly reflect the musical concept of a note,

chord, and grouping. In terms of linguistics, the tree is analogous to a constituency tree, with

surface structure being the terminal nodes and deep structure being the non-terminals. Recent

studies in natural language processing have revealed that incorporating natural language syntax

results in better semantics modeling [66, 220].

A.3.2 Model Structure

We use the surface structure of polyphonic music as the model input. The VAE architecture

is built upon a structure.

We denote the music segment in the proposed surface structure as x and the latent code as

z, which conforms to a standard Gaussian prior denoted by p(z). The encoder models the ap-

proximated posterior qϕ(z|x) in a bottom-up order of the deep structure. First, note embeddings
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Figure A.3: An overview of the model architecture. The recurrent layers are represented by rectangles
and the fully-connected (FC) layers are represented by trapezoids. The note, simu_note, and score
events are represented by circles.

are computed through a linear transform of pitch-duration tuples. Second, the note embeddings

(sorted by pitch) are then embedded into simu_note using a bi-directional GRU [41] by con-

catenating the last hidden states on both ends. With the same method, the simu_note embed-

dings (sorted by onsets) are summarized into score by another bi-directional GRU. We assume

an isotropic Gaussian posterior, whose mean and log standard deviation are computed by a linear

mapping of score. Algorithm 2 shows the details.

The decoder models pθ(x|z) in a top-down order of the deep structure, almost mirroring the

encoding process. We use a uni-directional time-axis GRU to decode simu_note, another uni-
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Algorithm 2 The PianoTree Encoder. n, sn, sc are short for note, simu_note, score.
Input: PianoTree x = {(pt,k, dt,k) | 1 ≤ t ≤ T, 1 ≤ k ≤ Kt}

1: /* gru(·): passes a sequence to bi-directional GRU and outputs the

concatenation of hidden states from both ends. */

2: for all t, k do
3: nt,k ← embenc(pt,k, dt,k)
4: end for
5: for all t do
6: snt ← grupitch

enc (nt,1:Kt)
7: end for
8: sc← grutime

enc (sn1:T )
9: µ← fcµ(sc); σ ← exp(fcσ(sc))

10: return q(z|x) = N (µ, σ2)

directional (pitch-axis) GRU to decode note, a fully connected layer to decode pitch attributes,

and finally another GRU to decode duration attribute starting from the most significant bit. Al-

gorithm 3 shows the details.

We use the ELBO (evidence lower bound) [125] as our training objective. Formally,

L(ϕ, θ;x) = −Ez∼qϕ log pθ(x|z) + βKL
(
qϕ||p(z)

)
, (A.1)

where β is a balancing parameter used in β-VAE [98].

We denote the embedding size of note, simu_note and score as en, esn and esc; the dimension

of latent space as dz; and the hidden dimensions or pitch-axis, time-axis and dur GRUs as hp, ht

and hd respectively. In this work, we report our result on the following model size: en = 128,

esn = hp,dec = 2× hp,enc = 512, esc = ht,dec = 2× ht,enc = 1024, hd,dec = 64 and dz = 512.

A.4 Experiments

In this section, we compare PianoTree VAE with several baseline models. We present the

dataset in Section A.4.1, baseline models in Section A.4.2,and the training details in Section A.4.3.

We present the objective evaluation on reconstruction accuracy in Section A.4.4. In Section A.4.5,
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Algorithm 3 The PianoTree Decoder. We still use the abbreviation n, sn, and sc, defined in
Algorithm 2.
Input: latent representation z

1: /* gru(·), same as Algorithm 1. */

2: /* grucell(·, ·): updates the hidden state using the current input and the

previous hidden state. The output is replicated. */

3: sc← z
4: s̃n0, ñ:,0, d:,:,0 ← <SOS>
5: for t = 1 to T do
6: [snt, sc]← grucelltime

dec (s̃nt−1, sc)
7: for k = 1 to max pitch steps do
8: [nt,k, snt]← grucellpitch

dec (ñt,k−1, snt)
9: pt,k ← softmax(fc(nt,k))

10: for r = 1 to 5 do
11: h← [nt,k, pt,k]
12: [yt,k,r, h]← grucelldur

dec(dt,k,r−1, h)
13: dt,k,r ← softmax(yt,k,r)
14: end for
15: dt,k ← [dt,k,1:5]
16: if pt,k ̸= <EOS> then
17: Kt ← k
18: break
19: end if
20: ñt,k ← embenc(pt,k, dt,k)
21: end for
22: s̃nt ← grupitch

enc (nt,1:Kt)
23: end for
24: return {(pt,k, dt,k) | 1 ≤ t ≤ T, 1 ≤ k ≤ Kt}

we inspect and visualize the latent space of note and simu_note. After that, we present the

subjective evaluation on latent space traversal in Section A.4.6. Finally, we apply the learned

representation to downstream music generation task in Section A.4.7.

A.4.1 Dataset

We collect around 5K classical and popular piano pieces from Musicalion2 and the POP909

dataset [250]. We only keep the pieces with 2
4

and 4
4

meters and cut them into 8-beat music

2Musicalion: https://www.musicalion.com.
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segments (i.e., each data sample in our experiment contains 32 time steps under sixteenth note

resolution). In all, we have 19.8K samples. We randomly split the dataset (at song-level) into the

training set (90%) and the test set (10%). All training samples are further augmented by transpos-

ing to all 12 keys.

A.4.2 Baseline Model Architectures

We train four types of baseline models in total using piano-roll (Section A.2.2) and MIDI-like

events (Section A.2.3) data structures. As a piano-roll can be regarded as either a sequence or a

2-dimensional image, we couple it with three neural encoder-decoder architectures: a recurrent

VAE (pr-rnn), a convolutional VAE (pr-cnn), and a fully-connected VAE (pr-fc). For the MIDI-

like events, we couple it with a recurrent VAE model (midi-seq). All models share the same

latent space dimension (dz = 512). Specifically,

• The piano-roll recurrent VAE (pr-rnn) model is similar to a 2-bar MusicVAE proposed

in [203]. The hidden dimensions of the GRU encoder and decoder are both 1024.

• The piano-roll convolutional VAE (pr-cnn) architecture adopts a convolutional–

deconvolutional architecture. The encoder contains 8 convolutional layers with kernel size

3 × 3. Strided convolution is performed at the 3rd, 5th, 7th and 8th layer with stride size

(2 × 1), (2 × 3), (2 × 2) and (2 × 2) respectively. The decoder adopts the deconvolution

operations in a reversed order.

• The piano-roll fully-connected VAE (pr-fc) architecture uses a time-distributed 256-

dimensional embedding layer, followed by 3 fully-connected layers with the hidden dimen-

sions [1024, 768] for the encoder. The decoder adopts the counter-operations in a reversed

order.

• The MIDI-like event recurrent VAE (midi-seq) adopts the recurrent model structure similar
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to pr-rnn. Here, the event vocabulary contains 128 “note-on”, 128 “note-off” and 32 “time

shift” tokens. The embedding size of a single MIDI event is 128. The hidden dimensions of

the encoder GRU and decoder GRU are 512 and 1024 respectively.

A.4.3 Training

For all models, we set batch size = 128 and use Adam optimizer [124] with a learning rate

starting from 1e-3 with exponential decay to 1e-5. For PianoTree VAE, we use teacher forc-

ing [234] for the decoder time-axis and pitch-axis GRU, and for other recurrent-based baselines,

we use teacher forcing in the decoders. The teacher forcing rates start from 0.8 and decay to 0.0.

PianoTree VAE converges within 6 epochs, and the baseline models converge in approximately

40 to 60 epochs.

Models PianoTree midi-seq pr-rnn pr-cnn pr-fc
Onset Precision 0.9558 0.8929 0.9533 0.9386 0.9211
Onset Recall 0.9532 0.6883 0.9270 0.8818 0.8827
Onset F1 0.9545 0.7774 0.9399 0.9093 0.9015

Duration Precision 0.9908 0.3826 0.9777 0.9757 0.9688
Duration Recall 0.9830 0.9899 0.9891 0.9796 0.9743
Duration F1 0.9869 0.5519 0.9834 0.9777 0.9715

Table A.1: Objective evaluation results on reconstruction criteria. PianoTree is our proposed method.
Other columns correspond to the baseline models described in Section A.4.2.

A.4.4 Objective Evaluation of Reconstruction

The objective evaluation is performed by comparing different models in terms of their re-

construction accuracy of pitch onsets and note durations [91, 201], which are commonly used

measurements in music information retrieval tasks. For note duration accuracy, we only con-

sider the notes whose onset and pitch reconstruction is correct. Table A.1 summarizes the results

where we see that the PianoTree VAE (the 1st column) is better than others in terms of F1 score

for both criteria.
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A.4.5 Latent Space Visualization

Figure A.4: A visualization of note embeddings after dimensionality reduction using PCA.

Figure A.4 shows the latent note space by plotting different note embeddings after dimen-

sionality reduction by PCA (with the three largest principal components being reserved). Each

colored dot is a note embedding, and a total of 1344 samples are displayed; note pitch ranges

from C-1 to C-8, and note duration from a sixteenth note to a whole note.

We see that the note embeddings have the desired geometric properties. Figure A.4 (a) & (b)

show that at a macro level, notes with different pitches are well sorted and form a “helix” in the

3-D space. Figure A.4 (c) further shows that at a micro level, 16 different note durations (with the

same pitch) form a “fractal parallelogram” due to the binary encoding of duration attributes. One

of the advantages of the encoding method is the translation invariance property. For example,

the duration difference between the upper left cluster and the lower left cluster is 8 semiquavers,

and so is the difference between the upper right and lower right clusters. The same property also

applies to the four smaller-scale parallelograms.

Figure A.5 is a visualization of the latent chord space by plotting different simu_note embed-

dings under PCA dimensionality reduction. Each colored cluster corresponds to a chord label

realized in 343 different ways (we consider all possible pitch combinations within three octaves,

with a minimum of 3 notes and a maximum of 9 notes). The duration for all chords is one beat.
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Figure A.5: A visualization of simu_note embeddings after dimensionality reduction using PCA.

The geometric relationships among different chords are consistent and human-interpretable.

Specifically, Figure A.5 (a) shows the distribution of 12 different major chords, which are clustered

in four different groups. By unfolding the circle in a counterclockwise direction, we can observe

the existence of the circle of the fifth. Figure A.5 (b) is the visualization of seven C major triad

chords: forming a ring in the order of 1-3-5-7-2-4-6 degrees in the counterclockwise direction.

A.4.6 Subjective Evaluation of Latent Space Interpolation

Latent space traversal [203, 271, 272] is a popular technique to demonstrate model general-

ization and the smoothness of the learned latent manifold. When interpolating from one music

piece to another in the latent space, new pieces can be generated by mapping the representations

back to the signals. If a VAE is well-trained, the generated piece will sound natural and form a

smooth transition.

To this end, we invite people to subjectively rate the models through a double-blind online

survey. During the survey, the subjects first listen to a pair of music, and then listen to 5 ver-

sions of interpolation, each generated by a model listed in Table A.1. Each version is a randomly

selected pair of music segments, and the interpolation is achieved using SLERP[85]. Since the ex-

periment requires careful listening and a long survey could decrease the quality of answers, each

subject is asked to rate only 3 pairs of music, i.e., 3 × 5 = 15 interpolations in a random order.
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After listening to the 5 interpolations of each pair, subjects are asked to select two best versions:

one in terms of the overall musicality, and the other in terms of the smoothness of transition.

A total of n = 33 subjects (12 females and 21 males) with different music backgrounds have

completed the survey. The aggregated result (as in Figure A.6) shows that the interpolations

generated by our model are better than the ones generated by baselines, in terms of both overall

musicality and smoothness of transition. Here, different colors represent different models (with

the blue bars being our model and other colors being the baselines), and the height of the bars

represents the percentage of votes (on the best candidate).

Figure A.6: Subjective evaluation results of latent space interpolation.

A.4.7 Downstream Music Generation

In this section, we further explore whether the polyphonic representation helps with long-

term music generation when coupled with standard downstream sequence prediction models.

(Similar tasks have been applied to monophonic music in [35] and [193].)

The generation task is designed in the following way: given 4 measures of piano composition,

we predict the next 4 measures using a Transformer decoder (as in [241]). We compare three

different music representations: MIDI-like event sequence (Section A.2.1), pretrained (decoder)

simu_note embeddings, and latent vector z for every 2-measure music segment (without overlap).

Here z is the mean of the approximated posterior from the encoder. For all three representations,

we use the same Transformer decoder architecture (outputs of dimension = 128, number of layers
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= 6, and number of heads = 8) with the same training procedure. Only the loss functions are

correspondingly adjusted based on different representations: cross entropy loss is applied to midi-

event tokens and MSE loss is applied to both simu_note and latent vector z. We use the same

datasets mentioned in Section A.4.1 and cut the original piano pieces into 8-measure subsequent

clips for generation purposes. We still keep 90% for training and 10% for testing.

We then invited people to subjectively rate different music generations through a double-

blind online survey (similar to the one in Section A.4.6). Subjects are asked to listen to and rate

6 music clips, each of which contains 3 versions of 8-measure generation using different note

representations. Subjects are told that the first 4 measures are given and the rest are generated by

the machine. For each music clip, subjects rate it based on creativity, naturalness, and musicality.

A total of n = 48 subjects (20 females and 28 males) with different music backgrounds have

participated in the survey. Figure A.7 summarizes the survey results, where the heights of bars

represent means of the ratings and the error bars represent the confidence intervals computed

via within-subject ANOVA [208]. The result shows that simu_note and latent vector z perform

significantly better than the midi-event tokens in terms of all three criteria (p < 0.005).

Figure A.7: Subjective evaluation results of downstream music generation.

Besides the aforementioned generation task, we also iteratively feed the generated 4-measure

music clips into the model to get longer music compositions. Figure A.8 shows a comparison of

16-measure generation results using all three representations. The first 4 bars are selected from
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the test set, and the subsequent 12 bars are generated by the models. Generally speaking, using

simu_note and latent vector z as data representations yields more coherent music compositions.

Furthermore, we noticed that long generations using the simu_note representation tend to repeat

previous steps in terms of both chords and rhythms, while those generations using the latent

vector z usually contain more variations.

(a) A sample generated using midi-event tokens.

(b) A sample generated using simu_note.

(c) A sample generated using latent vector z.

Figure A.8: Long music generations given first 4 measures.

A.5 Summary and Future Work

In summary, we proposed PianoTree VAE, a novel representation-learning model tailored for

polyphonic music. The key design of the model is to incorporate both the music data structure

and model architecture with the sparsity and hierarchical priors. Experiments show that with

such inductive biases, PianoTree VAE achieves better reconstruction, interpolation, downstream

generation, and strong model interpretability. In the future, we plan to extend PianoTree VAE for

more general musical structures, such as motif development and multi-part polyphony.
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B | Automatic Melody Reduction

This chapter is based on the published work Automatic Melody Reduction via Shortest Path

Finding [246], conducted in collaboration with Yuxuan Wu, Roger B. Dannenberg, and Gus Xia.

The algorithm proposed in this chapter is used for extracting the reduced lead sheet, the second-

level hierarchical language of pop songs, as defined in Chapter 6.

Melody reduction, as an abstract representation of musical compositions, serves not only as a

tool for music analysis but also as an intermediate representation for structured music generation.

Prior computational theories, such as the Generative Theory of Tonal Music, provide insightful

interpretations of music, but they are not fully automatic and usually limited to the classical genre.

In this chapter, we propose a novel and conceptually simple computational method for melody

reduction using a graph-based representation inspired by principles from computational music

theories, where the reduction process is formulated as finding the shortest path. We evaluate our

algorithm on pop, folk, and classical genres, and experimental results show that the algorithm

produces melody reductions that are more faithful to the original melody and more musically

coherent than other common melody downsampling methods. As a downstream task, we use

melody reductions to generate symbolic music variations. Experiments show that our method

achieves higher quality than state-of-the-art style transfer methods.1

1Music samples of melody reduction and variation can be found at https://auto-melody-reduction.
github.io/AMRA-demo/. We release the code at https://github.com/ZZWaang/melody-reduction-algo.
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B.1 Introduction

Maintaining structural coherence in long-term music generation is a fundamental challenge.

One approach to addressing this challenge is through hierarchical models, which rely on ex-

tracting high-level abstractions to enable cascaded generative processes [57, 59, 243, 254]. These

abstractions provide a coarser-grained view of musical structure, capturing essential long-range

dependencies. In existing approaches, abstractions are typically explicitly defined (e.g., chord

progression or phrase labels) or learned through unsupervised methods (e.g., latent codes via an

autoencoder). Yet, so far, they have not been able to capture a fundamental musical structure: the

melodic flow—how a melody evolves and resolves within a phrase—which remains too nuanced

to be explicitly labeled and too challenging for unsupervised learning to reliably identify.

From a musicology perspective, melodic flow can be represented through melody reduction,

which preserves the structural essence of a melody [141, 209]. However, most existing approaches

regard melody reduction as a by-product of analysis, typically represented by hierarchical struc-

tures such as trees for further interpretation [186, 216]. In this context, reduction is not a fixed

transformation but rather a subjective and demonstrative projection of the analysis procedure.

This inherent ambiguity makes melody reduction not only difficult to evaluate but also challeng-

ing to use as a practical representation [81, 183, 233]. In this chapter, we explore how melody

reduction can be approximated using structural heuristics, aiming to make the concept more

accessible and useful for music generation.

To this end, we propose a fully automatic algorithm for melody reduction. The algorithm

uses the graph representation of a melody phrase and regards all possible reductions as graph

paths. The intuition behind the algorithm is that if we define a cost function consistent with

guiding principles underlying most reduction theories, an ideal melody reduction should be the

path having the least cost. Specifically, we consider two principles. First, the subsequent notes in

an ideal melody reduction usually reveal a simpler structure (e.g., a prolongation (unison), or a
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linear progression (step-wise motion) [209]. Second, an ideal melody reduction usually includes

notes of higher significance in terms of pitch, rhythm, and harmony [4, 141]. We define edge costs

based on these principles and use the shortest-path algorithm to find the melody reduction [273].

The resulting path is then post-processed into an actual melody. The algorithm is not restricted

to a specific genre, and it only requires annotations of MIDI pitches, onsets, durations, and the

chord chromagram as the input.

We evaluate the proposed algorithm in pop, folk, and classical music genres, showing that it

yields reductions that are often perceived as more faithful to the original melody and musically

coherent compared to other melody downsampling methods. We also introduce variation gen-

eration as a downstream application, in which we train a melody generation model conditioned

on reductions. The reductions extracted with our algorithm are shown to yield higher-quality

variations compared to baselines.

B.2 Related Work

In this section, we review three realms of related work: 1) cognitive theories about music

reduction, 2) the algorithmic implementation of music theories, and 3) the importance of melody

reduction in downstream applications.

In the history of cognitive music theory, a shared methodology of music analysis is to use

a reduced melody to represent the abstract melodic flow [141, 179, 209]. Schenkerian analysis

involves a recursive reduction process to turn a music composition into the fundamental struc-

ture [209]; and the Generative Theory of Tonal Music (GTTM) further formalizes the grammar

in Schenkerian analysis [141]. These studies highlight that melody reduction is an effective rep-

resentation in the cognition process, and reduction is highly related to the considerations of note

connection, harmonic context, pitch importance, etc., which usually imply tension and relaxation

in different music scopes.
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Figure B.1: The diagram of the proposed melody reduction algorithm.

There are several attempts to turn these theories into algorithms. Kirlin et al. propose a

framework for automatic Schenkerian analysis [126], and Hamanaka et al. design an interactive

software to implement GTTM using machine-learning techniques [87, 88, 233]. Other approaches

reduce melodies recursively by assigning weights to notes [186, 216]. However, a quality gap re-

mains between automatic analyses and human interpretations. Moreover, the algorithms usually

require score-notation level data (e.g., MusicXML format), are genre-specific, and are not open-

sourced. A recent computational music analysis points out that since our music preference is

hard to express in formal grammar, such formal systems tend to have a broad search space of
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music analyses [70]. This motivates us to pursue an intuitive alternative: we directly approxi-

mate melody reduction based on cognitive preference without building a formal system.

Although melody reduction is mostly studied in an analytical scope, recent advances in deep

learning also show that melody reduction representation is beneficial for structured long-term

music generation. Previously, melody reduction was usually implicitly modeled by surrogate

features such as down-sampled melody statistics [57], melody contour [36], or implicit latent

representations [205]. The recent hierarchical music generation methodology shows that using

an explicitly defined melody reduction, long-term music generation can be tackled more elegantly

and effectively [243]. The algorithm we propose aims to establish a foundation for such future

studies.

B.3 Methodology

In this section, we introduce the proposed melody reduction algorithm in detail. A diagram of

our algorithm is shown in Figure B.1. Section B.3.1 introduces the data attributes and the graph

representation of a melody. Section B.3.2 defines the edge types of the graph, and Section B.3.3

defines the edge cost. Finally, we discuss the melody reduction post-processing operations in

Section B.3.4.

B.3.1 Graph Representation of a Melody

The input to the algorithm is a sequence of notes, denoted by x1, ..., xN , and an underly-

ing chord progression, denoted by c1, ..., cK . A melody can be represented by a directed graph

G(V,E), where the melody notes are regarded as graph nodes V := {xi}Ni=1, and temporal rela-

tions of notes can be represented by edges E := {xi → xi+1}N−1
i=1 .

We consider the onset, pitch, and duration attributes of a note xi. These are denoted by

Onset(xi), Pitch(xi) and Dur(xi), respectively. The onset and duration should be quantized by
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beat locations, and the pitch is represented by MIDI note numbers from 0 to 127. Additionally, a

chord is represented by a 12-d binary chroma vector, i.e., ci ∈ {0, 1}12, and we define Chord(xi) ∈

{c1, ..., cK} to indicate chord membership of the note xi. In our algorithm, we heuristically detect

anticipation-like cases (a type of non-chord tone) and regard these notes as belonging to the next

chord.

B.3.2 Edge Definition

In the proposed algorithm, we regard both the original melody and reduced melodies as paths

from x1 to xN . The original melody uses edges in E, whereas a reduction uses shortcut edges.

To this end, we define an augmented edge set E∗ := {xi → xj|i < j}, representing all causal

edges. If an edge xi → xj is selected in the reduction process, it means the melodic movement

from xi → xj is more significant than all other movements xi′ → xj′ inside the time range, i.e.,

i ≤ i′ < j′ ≤ j and (i, j) ̸= (i′, j′).

We categorize an edge xi → xj ∈ E∗ into six categories. The first three categories are the

most fundamental, which correspond to three main ways of melody reduction in Schenkerian

analysis: prolongation, linear progression, and arpeggiation [31]. Note that the edges are strictly

defined below, and we only borrow the terms for implication:

• Prolongational Edge (PE): xj prolongs xi with the same pitch. For example, a PE can

potentially remove a neighbor tone. Mathematically, a PE satisfies Pitch(xi) = Pitch(xj)

and Onset(xj)− Onset(xi) < D.

• Linear Edge (LE): the interval between xi and xj is a second. For example, an LE

can potentially mark a significant melodic movement. Mathematically, an LE satisfies

|Pitch(xi)− Pitch(xj)| ∈ {1, 2} and Onset(xj)− Onset(xi) < D.

• Arpeggiation Edge (AE): the interval between xi and xj is larger than a (compound) second

and xi and xj are within the same chord. For example, an AE can potentially mark an
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elaboration of harmony. Mathematically, an AE satisfies |PitchClass(xi)−PitchClass(xj)| ∈

{3, 4, 5, 6, 7, 8, 9} and Chord(xi) = Chord(xj).

In some melody compositions, pitches that span an octave are also regarded as a smooth

connection. In Schenkerian analysis, this is explained by imaginary continuo—although the two

tones span an octave in the current realization, they are close in other imaginary realizations. We

define two types of imaginary edges accordingly:

• Imaginary Prolongational Edge (IPE): xj prolongs xi with the same pitch class. Mathe-

matically, an IPE (is not a PE) and satisfies PitchClass(xi) = PitchClass(xj) and Onset(xj)−

Onset(xi) < D.

• Imaginary Linear Edge (ILE): the interval between xi and xj (or its inversion) is a

compound second. Mathematically, an ILE (is not an LE) and satisfies |PitchClass(xi) −

PitchClass(xj)| ∈ {1, 2, 10, 11} and Onset(xj)− Onset(xi) < D.

Finally, all the rest of the edges in E∗ belong to the final category. This is to ensure the graph

is connected, so that there must exist at least one path from x1 to xN :

• Unclassified Edges (UE): the rest of the edges.

In the above definition, Pitch(·), Onset(·), and Chord(·) are previously defined in Section B.3.1.

PitchClass(x) := Pitch(x) mod 12 and Chord(xi) = Chord(xj) if and only if xi and xj are within

the interval of a single chord. In our experiment, the temporal threshold D is set to 2 measures.

B.3.3 Edge Cost Definition

We define the edge cost function of xi → xj so that a more significant edge will have a smaller

cost. The edge cost function considers three aspects: 1) the function of different edge types, 2)

the temporal distance of an edge, and 3) the note importance.2

2Currently, the costs are empirically specified based on domain knowledge and preliminary analysis. Estimating
them from data is left for future work.
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First, we define tonal cost, denoted by ctonal(xi → xj), prioritizing prolongational and linear

edges in the melody reduction. Formally,

ctonal(xi → xj) :=



0.1, if xi → xj is a PE,

0.3, if xi → xj is an LE,

1.5, if xi → xj is an AE,

1.0, if xi → xj is an IPE,

1.3, if xi → xj is an ILE,

3.0, if xi → xj is a UE.

(B.1)

Then, we define the temporal cost, denoted by ctemp(xi → xj), to measure the distance from

index i to index j. We set the hyper-parameter η = 1.6 to achieve an ideal degree of reduction.

A larger η results in too little reduction and a smaller η makes the reduction too coarse:

ctemp(xi → xj) := (j − i)η. (B.2)

Besides the two cost functions on edges, we introduce a note importance factor, denoted by

α(xi), to ensure structurally important notes are more likely to be selected. Particularly, α(xi) is

a product of four terms:

α(x) := αp(x)αo(x)αd(x)αh(x), (B.3)

where αp(xi) denotes pitch importance, αo(xi) denotes onset importance, αd(xi) denotes duration

importance, and αh(xi) denotes harmony importance.

1. Pitch Importance. Higher and lower pitches are usually more significant in a melody and
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should be given a smaller weight factor:

αp(xi) := 0.1×
(
0.5− |Pitch(xi)− pmid|

pmax − pmid

)
+ 1, (B.4)

where pmax and pmin are maximum and minimum pitch values and pmid = (pmax + pmin)/2.

2. Onset Importance. The notes having higher metrical importance should be given a smaller

weight factor:

αo(xi) :=



0.85, Onset(xi) ∈ DB,

0.95, Onset(xi) ∈ B,

1.05, Onset(xi) ∈ B/2,

1.15, Onset(xi) ∈ B/4.

(B.5)

Here, DB, B, B/2, and B/4 represent downbeat, beat, eighth-note, and sixteenth-note posi-

tions, respectively (if under the 4/4 time signature).

3. Duration Importance. Longer notes should be given a smaller weight factor:

αd(xi) :=



0.85, Dur(xi) ≥ half note,

0.95, Dur(xi) ≥ quarter note,

1.05, Dur(xi) ≥ 8th note,

1.15, Dur(xi) ≥ 16th note.

(B.6)

4. Harmony Importance. A chord tone should be given a smaller weight factor than non-

chord tones.

αh(xi) :=


0.85, xi is a chord tone,

1.15, otherwise.
(B.7)
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Here xi is a chord tone strictly means PitchClass(xi) is in Chord(xi). So, an anticipation is

regarded as a chord tone to the next chord (see Section B.3.1).

Finally, the total edge cost is defined as a summation of tonal and temporal cost, modulated

by the note importance factor:

c(xi → xj) = α(xj)[ctemp(xi → xj) + ctonal(xi → xj)]. (B.8)

Thus, the melody reduction can be achieved by running a shortest-path algorithm to find the

shortest path from x1 to xN .

B.3.4 Post-Processing

After we find the shortest path, we use a rule-based post-processing method to arrange the

selected notes in the path to melody reduction. The maximum resolution of the reduction is a

quarter note, in the style of a fifth-species counterpoint [49].

Figure B.2 shows the detailed procedure. First, the nodes in the shortest path are allocated

into chord bins, with each bin corresponding to a distinct chord. In each chord bin, the notes

are given a fixed rhythm template (see the table at the bottom of Figure B.2), ensuring the notes

within a bin collectively span the entire duration of their associated chord. In this process, notes

linked by a prolongational edge are merged into a single note. If the number of nodes in a chord

bin exceeds the length of the chord, a random selection of notes will be omitted. Finally, the

prolongational edges between two chords are marked with suspension. Note that notes serving

as anticipations are allocated to the bin of the subsequent chord.
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Figure B.2: An illustration of post-processing operations.

B.4 Experiments

In Section B.4.1, we evaluate the proposed algorithm through a subjective listening test. In

Section B.4.2, we show and evaluate a melody reduction example as a case study. Finally, we eval-

uate the effectiveness of melody reduction in downstream music generation tasks in Section B.4.3.

B.4.1 Subjective Evaluation of Melody Reduction

Unlike tasks with clear ground truths, melody reduction is inherently subjective and style-

dependent. Existing theories, such as GTTM or Schenkerian analysis, provide interpretive hier-

archies rather than prescriptive outcomes [31, 141]. Finding reduction typically involves pruning

a tree at variable depths, often informed by human judgment. Moreover, such theories are pri-

marily suited to classical music.
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Given these challenges, we adopt a subjective listening test to better capture the perceptual

and musical quality of melody reductions. We cover three music genres: pop, folk, and classical.

We sample melodies from the POP909 dataset [249], the Nottingham dataset [72], and the GTTM

database [86] for the pop, folk, and classical genres, respectively. We compare with two represen-

tative baselines commonly used for melody reduction as feature extraction in music generation:

• Downsampling on Observations (DS-OBS): From a statistical perspective, the melody is

downsampled to a sequence of half notes, each representing the most common pitch in the

2-beat music segment [57].

• Downsampling in Latent Space (DS-LS): EC2-VAE [271] learns disentangled latent repre-

sentations of the pitch contour and rhythmic pattern of 2-measure music segments as zp and

zr, respectively, which enables downsampling in the latent space of rhythm patterns. Specif-

ically, we encode the pitch contour zp of data and decode it together with a downsampled

rhythm zr to get the melody reduction for every 2-measure segment.

For the subjective test, we randomly select four 8-measure melodies from each genre. Each

participant listens to at least 3 groups of melody reductions for each genre. In each group, partic-

ipants are presented with the original melody first, followed by the melody reductions generated

by the proposed algorithm, downsampling, and latent representation recombination in a random-

ized order. Participants are asked to rate the quality of the melody reduction on a 5-point Likert

scale, where 1 indicates the worst quality and 5 indicates the best, in terms of three criteria: (1)

Melody Faithfulness: how well the melody reduction preserves the original music information.

(2) Harmonic Coherency: how well the melody reduction fits the underlying chord progression.

(3) Overall Musicality: the overall music quality of the melody reduction.

A total of 45 subjects (26 females & 19 males) participated in the survey, in which over 70%

have a music education experience of at least 2 years. The results are reported in Figure B.3, where

the heights of bars represent means of the ratings and the error bars represent the standard error

computed by within-subject ANOVA [208]. The results indicate that the proposed algorithm is
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Figure B.3: Subjective evaluation results of melody reduction quality across three genres.

preferred over the two baseline methods in all three genres (ppop < 0.075, pfolk < 0.05, pclassical <

0.05).

B.4.2 A Case Study of Melody Reduction

We provide a case analysis of melody reduction comparing the proposed algorithm and base-

lines introduced in Section B.4.1, as shown in Figure B.4. The original melody is shown in the top

row, followed by the three melody reductions generated by the proposed algorithm and baselines.

Phrase A Phrase B Phrase CTheoretical Correct Melody Reduction(s)

Ours

DS-OBS

DS-LS

Original

Theoretical Correct Melody Reduction(s)

Ours

DS-OBS

Figure B.4: Comparison of the original melody, melody reductions from the proposed method, and the
baselines. We highlight the phrases in the top row.

Both the proposed method and DS-OBS can mostly capture the correct melody flow, such
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as important passing tones like C4 in the first measure. In subtle situations such as the second

measure, where Phrase A ends its downward music flow with the downbeat chord tone B♭3 and

lingers at F4 until the transition to Phrase B, DS-OBS fails to preserve B♭3, as it is overshadowed by

the long duration of F4. In contrast, the proposed algorithm successfully captures B♭3 by paying

attention to its harmonic and rhythmic importance, as well as the imaginary prolongational edge

between B♭3 and B♭4 in the third measure. DS-LS only captures the pitch contour but introduces

several unwanted non-chord tones. This example demonstrates the effectiveness and robustness

of the proposed algorithm for melody reduction.

B.4.3 Downstream Task: Generating Melody Variations

We believe melody reduction can serve as a useful representation of structural information

in downstream tasks. In this section, we demonstrate one such application in a melody variation

generation task. The task uses the reduction of a melody as input, and outputs variations faithful

to the original melody. While we do not claim a strong causal link between reduction quality

and generation quality, our intuition is that an accurate reduction better reflects the underlying

melodic and harmonic context, which in turn supports more coherent and musically grounded

generation.

To this end, we train a diffusion model to generate melody variations from melody reductions

provided by the proposed algorithm. We use a similar model design and training settings as

the leadsheet generation model in [243] and train the model on the POP909 dataset. Similarly,

we train the model using melody reductions by DS-OBS. We also generate melody variations

by sampling in the latent space of zp and zr of EC2-VAE for comparison. For all methods, we

randomly sample four outputs per input and select the most representative one for use in listening

tests.

Figure B.5 shows a group of melody variation examples. It can be seen that the variation model

trained with the proposed melody reductions not only maintains the original melody flow but also
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DS-OBS + Diff. (Novel ideas about rhythm, flat pitch variations, abrupt non-scale tone)

Ours + Diff. (Novel ideas about pitch & rhythm, faithful melody flow)

EC2-VAE Sampling (Unfaithful melody flow, few pitch & rhythm variations)

Figure B.5: Comparison of variations of an example melody. Here Diff. denotes the conditional diffusion
model trained to generate melody variations from melody reductions. Positive comments are highlighted
in red, negatives in blue.

Naturalness Creativity Musicality
1

2

3

4

5 Ours + Diff.
DS-OBS + Diff.

EC2-VAE Sampling
Human Composition

Figure B.6: Subjective results of melody variations.

introduces novel ideas in pitch and rhythm. The model trained with DS-OBS also preserves the

pitch contour, but tends to have flat pitch variations. The variation generated by sampling from

the latent space of EC2-VAE changes the original melody flow in an unwanted way, and does not

introduce rich variations.

We evaluate the melody variations on the test set of POP909 using a subjective listening test

with the same participants as in Section B.4.1. Each participant listens to at least three groups

of melody variations, where participants are first presented with the original melody, followed
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by the three variations in random order. Participants are asked to rate the quality of melody

variations and the original melody by human composers in three criteria: Naturalness, Creativity,

and Musicality [46]. The results are reported in Figure B.6, with the same computation as in

Section B.4.1, including mean ratings and statistical significance tests. Our method is consistently

preferred over two baselines in terms of creativity and overall musicality (p < 0.05), and remains

competitive in naturalness.

B.5 Summary

To sum up, this chapter proposed a novel and useful algorithm for melody reduction, filling

the gap between the need to capture melody flow for long-term and hierarchical music genera-

tion and the lack of all-genre off-the-shelf tools for melody reduction. The proposed algorithm

finds the optimal melody reduction by finding the shortest path in a graph representation of the

melody, considering the tonal, temporal, and note importance factors. Subjective experiments

demonstrated that our method outperforms baselines in a variety of musical styles. We also

demonstrated the effectiveness of the melody reduction algorithm in melody variation genera-

tion through subjective evaluation. In the future, we plan to tackle reduction that captures latent

polyphony and hierarchical structure, and explore the application of the proposed algorithm in

a broader range of music generation tasks. While the current algorithm contains ad-hoc param-

eters, future work could also explore learning these directly from data.
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C | Supplementary Materials for

Chapter 6

This chapter provides more technical details, generation samples, and discussions about

Chapter 6. They are organized into three parts. Sections C.1–C.2 introduce more detailed in-

formation about data data representation and processing, model architecture, and training; Sec-

tion C.3 provides some more generation samples; and Sections C.4–C.7 include more discussions

on the external control efficacy, model’s memorization v.s. generation ability, model efficiency,

and limitations.

C.1 Data Representation and Processing Details

In this section, we introduce the methods to extract the four levels of music languages defined

in Section 6.2.1. We begin by quantizing MIDI files from the POP909 dataset using the provided

beat annotations. For the Form language, we simplify the phrase labeling from [55] to include

only six phrase types (see Table C.1 for reference), and extract keys by pitch profile matching,

similar to the method described in [134]. In the Reduced Lead Sheet language, melody reduction

is computed through a shortest path reduction algorithm discussed in Chapter B, and chords are

downsampled by merging consecutive chords that share the same triad structure (root, third, and

fifth) within one measure. The Lead Sheet language uses the vocal melody (i.e., “MELODY” track)
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(a) The first-level language Form. The six channels of phrases are shown at the top and brightness in-
dicates phrase countdown (see Equation 6.1). The two channels of keys are shown at the bottom and
brightness indicates one-hot tonic and multi-hot scale.
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(b) The second-level language Reduced Lead Sheet. Brightness indicates onset and sustain channels.
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(c) The third-level language Lead Sheet. Brightness indicates onset and sustain channels.
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(d) The fourth-level language Accompaniment. Brightness indicates onset and sustain channels.
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(e) Zoom-in views of the segments in Figure C.1(b) (left), Figure C.1(c) (middle), and Figure C.1(d) (right)
marked with rectangles.

Figure C.1: An example data representation of our proposed hierarchical music language.
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and the provided chord annotations. The Accompaniment language combines the secondary

melody (i.e., “BRIDGE” track) with the accompaniment (i.e., “PIANO” track).

As discussed in Section 6.2.2, the processed data is converted to image-like data representa-

tion. A visualization of the data representation is provided in Figure C.1.

Phrase Type Channel ID Meaning
"A" 0 Verse section phrases
"B" 1 Chorus section phrases
"X" 2 Other phrases with lead melody
"i" 3 Intro section phrases
"o" 4 Outro section phrases
"b" 5 Bridge section phrases

Table C.1: Definition of phrase type

C.2 Model Architecture and Training Details

In this section, we elaborate on the model architecture and training. We first discuss the three

conditioning methods introduced in Section 6.2.3 in more detail. The configurations of the four

generation stages are summarized in Table C.2.

Detail on background condition. At each level k > 1, the background condition X<k
t:t+bk

is represented by an image having the same width and height as the diffusion output. Thus,

the background condition can be concatenated with the input along channel axis at each step

of the diffusion process. The background condition will be set to all −1.0 under the probability

puncond = 0.2, following classifier-free guidance [14].

Detail on autoregressive condition. At each level k > 1, the generation of Xk
t:t+bk

is

dependent on past generation X≤k
<t . Here we select top-Sk past segments of length b′k based on

their phrase type similarity to the current segment. These music segments are embedded using

a 3-layer 2d-convolutional network and fed to the backbone diffusion models by cross attention

mechanism. In our implementation, we set S2 = 3, b′2 = 32, S3 = S4 = 2, and b′3 = b′4 = 64. The
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Form Red. Lead Sheet Lead Sheet Accompaniment
Time scope 256 measures 128 beats 128 steps 128 steps
Output shape (6, 256, 12) (2, 128, 128) (2, 128, 128) (2, 128, 128)

Background cond.: shape N/A (6, 128, 128) (8, 128, 128) (10, 128, 128)
Background cond.: puncond N/A 0.2 0.2 0.2

Autoreg. cond.: # of seg. N/A 3 2 2
Autoreg. cond.: shape N/A (8, 32, 128) (10, 64, 128) (12, 64, 128)
Autoreg. cond.: puncond N/A 0.1 0.1 0.1

Ext. cond.: # of latent codes N/A 4 4 4
Ext. cond.: latent dimension N/A 512 128 256
Ext. cond.: puncond N/A 0.2 0.2 0.2

Table C.2: Configuration of the conditioning methods in four stages of the proposed model.

Hyperparameter Configuration
Diffusion Steps (N ) 1000
Noise Schedule Linear from 1 to 1e− 4
UNet Channels 64
UNet Channel Multipliers 1, 2, 4, 4
Batch Size 16
Attention Levels 3, 4
Number of Heads 4
Learning Rate 5e− 5

Table C.3: The hyperparameter configuration of diffusion model training. The listed attributes are the
same across all four stages.

autoregressive condition will be set to all −1.0 under the probability puncond = 0.1.

Detail on external condition. The condition for Reduced Lead Sheet is four 8-measure

latent codes of chord progression encoded from the chord encoder in [174]. The condition for

Lead Sheet is four 2-measure latent codes of rhythmic pattern encoded from the EC2-VAE encoder

in [271]. The condition for Accompaniment is four 2-measure latent codes of accompaniment

texture encoded from the texture encoder in [247]. These latent codes are fed to the backbone

diffusion models by cross attention mechanism and set to all−1.0 under the probability puncond =

0.2.

The diffusion models for all four stages use the same noise schedule and training methods.

Similar to [174], the backbone model is a 2D-UNet model, the encoder and decoder of which con-
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tain 4 layers of 2d-convolution with spatial attention at the third and fourth layers. We summarize

these common details in Table C.3.

C.3 More Examples on Structural Generation

In this section, we break down each level of the hierarchical language and show more gen-

eration examples. For each level, we fix the upper level and demonstrate a variety of generation

results under the upper level control. We also show generation samples that are controlled by

external conditions.

Form generation. Below shows examples of Form generated by our model:

(i8)(A8B16A8B16)(b6)(B14)(o2)

(i12)(A4A4B12)(b4b4)(A4A4B12)(b4b4(B16)o4o1)

(i4)(A4A4B4X5)(b4)(A4b5B4X4X5)(o2)

(i4)(A8B9A8B9X18)(o2o1)

(i8)(A4A4B4B4)(b7)(A4A4B4B4B4B4)(o4)

(i8)(A4A4B4B4)(b7)(A4A4B4B4B4B4)(o4)

(i8)(A8B8X8X8)(b4b4)(A8B8X8X8X4)(o6o1)

(i4)(A4A4B9)(b3)(A4B10B9X1)(o2)

(i4)(A4A4B9)(b3)(A4B10B9X1)(o2)

(i12)(A16B16)(b4b4b4)(A16B16B16)(o10o1)

Here, we use parentheses to manually group music sections for better readability. The results

show the model captures verse-chorus form of pop songs: the composition usually starts with

intro and ends with outro; verses and choruses appear multiple times with bridge phrases in

between. Phrases are usually 4 or 8 measures long, similar to real music samples.

Reduced Lead Sheet generation with external harmony control. Figure C.2a-f show

examples of 8-measure generation of the Reduced Lead Sheet level. The results are all controlled
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Figure C.2: Examples of generated Reduced Lead Sheet of "A8" phrase in E♭ major. The samples marked
with * are controlled by the external condition, which represents “unchanging chord progression.”

by the same Form: an 8-measure verse phrase in E♭major key. The generated samples show many

ways to develop the melody (different contour and melodic climax positions) and the harmony

(different chord types and harmonic rhythm). Moreover, each of the samples has a consistent style

and usually ends in a tonic or dominant chord, indicating the ending of a phrase. Moreover, we

also apply the external control of “unchanging chord” to generate Figure C.2g-h. Such a control

is achieved by encoding the latent chord representation of a sequence of all Eb:maj chords using

the pre-trained VAE encoder [174]. The results have fewer changes in harmony, and the melody

reduction alters accordingly.

Lead Sheet generation with external rhythm control. Figure C.3b-g show examples of 8-

measure Lead Sheet generation controlled by the same Reduced Lead Sheet, shown in Figure C.3a.

The generated samples follow the pitch contour in the melody reduction and differ in local pitch

and rhythm patterns. At this level, we also use latent control of “sixteenth-note rhythm” to

generate Figure C.3h-i. Such a control is achieved by encoding the latent rhythm representation
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Figure C.3: Examples of generated Lead Sheet of "A8" phrase in E♭ major given the upper-level Reduced
Lead Sheet Figure C.3a. The samples marked with * are controlled by the external condition, which
represents “sixteenth-note rhythm.”

of the sample in Figure C.5(a) using the pre-trained VAE encoder [271]. The generation examples

show melody realization with more frequent onsets accordingly.

Accompaniment generation with external texture control. Figure C.4b-d show exam-

ples of 8-measure Accompaniment generation controlled by the same Lead Sheet, shown in Fig-

ure C.4a. The generated samples mainly use arpeggios but are different in the exact patterns.

Some of the generation has a “fill” in the fourth and eighth measures to indicate phrasing. At

this level, we also use latent control of “Alberti bass” to generate Figure C.4e. Such a control

is achieved by encoding the latent texture representation of the sample in Figure C.5(b) using

the pre-trained VAE encoder [247]. The generation adopts the Alberti bass figure and makes

reasonable variations.
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Figure C.4: Examples of generated Accompaniment of "A8" phrase in E♭major given the upper-level Lead
Sheet Figure C.4a. The sample marked with * is controlled by the external condition, which represents
“Alberti bass.”
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Figure C.5: The music samples for external control.

C.4 Evaluation of External Control Efficacy

In this section, we evaluate the efficacy of external controls. These controls are achieved by

feeding pre-trained representations as external condition to each layer of the cascaded diffusion

model (introduced in Section 6.2.3). Specifically, we evaluate three scenarios: (1) chord control in

Reduced Lead Sheet generation (Stage two), (2) rhythm control in Lead Sheet generation (Stage

three), and (3) texture control in Accompaniment generation (Stage four). In this section, we

let zext denote the external control in one of the three scenarios and let xext denote the actual

observation from which zext is encoded. Let xout denote the conditional generation results.

Efficacy of control can be evaluated by computing the similarity between the input control

and the generation result. We propose a rule-based metric and a latent metric. The rule-based met-

ric directly computes the distance between xout and xext in terms of the corresponding features.

In particular, for chord control, we compute the ℓ2 distance between the given chord condition

and the generated chord at each time step; and for rhythm or texture control, we compute the

ℓ2 distance of note onsets between the given control and the generated lead sheets or accom-

paniments. Such a distance-based metric has previously been used to evaluate control efficacy

in [202] and [174]. In the latent metric, we encode the generation xout back to the latent code zout

using the same pre-trained encoders and measure the cosine similarity between zout and zext.

There are two reference methods for comparison. First, we use the unconditional mode of

our method to serve as a baseline where control is ineffective. Second, we generate samples
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by sampling from the Variational Autoencoders (VAEs) that the pre-trained encoders belong to.

Specifically, we sample zext from the VAE posterior distribution and sample the rest of the la-

tent codes from a Gaussian prior to decode results. By the well-disentangled property shown in

the original paper [247, 271], this reference method indicates the maximum attainable level of

controllability.

For each of the three scenarios, we randomly select 32 versions of external control from the

test set and generate 128 music segments for each method. In Table C.4, we show the rule-based

distance (denoted by disrb) and latent similarity (denoted by simlt) for the three generation stages.

Experimental results show that the use of external condition significantly yields controllability

for all three scenarios.

Stage 1: Chord Stage 2: Rhythm Stage 3: Texture
disrb ↓ simlt ↑ disrb ↓ simlt ↑ disrb ↓ simlt ↑

Cas.Diff. (uncond) 2.09± 0.80 0.37± 0.09 2.27± 0.53 0.14± 0.23 3.94± 1.46 0.02± 0.11
VAE Sampling 0.19± 0.47 0.97± 0.07 0.14± 0.42 0.96± 0.04 0.33± 0.59 0.90± 0.06
Cas.Diff. (cond) 1.73± 1.02 0.48± 0.14 1.10± 0.74 0.75± 0.16 0.87± 0.80 0.89± 0.06

Table C.4: Objective evaluation of external control efficacy of chord, rhythm, and texture in the three dif-
fusion stages. disrb denotes the rule-based distance-based metric and simlt denotes the latent similarity-
based metric.

C.5 Does the Model Just Copy the Training Data?

In generative modeling, a critical consideration is whether the model overfits and the gen-

eration copies the training data. This section includes a quantitative evaluation focused on the

similarity between generated segments and the entire training set. We primarily focus on melody

similarity, a most recognizable aspect of music composition.

Our goal is to measure the Degree of Copying (DoC) with respect to a set of generated samples.

Let x be a two-measure melody segment from a generated piece. We define Similarity to the

Training Set of segment x as:
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S(x) := max
x′∈T

sim(x,x′), (C.1)

where T denotes the training set, x′ is a two-measure segment from the training set, and

sim(x,x′) computes the similarity between x and x′. Here S(x) ∈ [0, 1], and a larger S(x)

shows a higher degree of copying. The DoC can be represented by the histogram of S(x). In

our experiments, we report the mean and standard deviation of the histogram. We consider a

rule-based similarity metric and a latent similarity metric as follows:

Rule-based similarity metric. We compute the note-wise similarity between two segments

by matching the exact onsets and pitches. Let nx∩x′ denote the number of notes that appear in

both x and x′ with the same pitch class and onset, and let nx and nx′ denote the number of notes

in x and x′, respectively. The rule-based similarity metric is defined as:

simrb(x,x′) :=
2nx∩x′

nx + nx′
. (C.2)

Latent similarity metric. We also measure the melodic similarity in the latent space be-

cause rule-based methods cannot detect indirect copying (e.g., same pitch contour or rhythm).

We leverage the pre-trained EC2-VAE [271], which learns a semantically meaningful and disen-

tangled latent space of pitch contour and rhythmic pattern. We extract the latent code of pitch

(denoted as zx
p ) and rhythm (denoted as zx

r ) of melody segments and compute the cosine simi-

larity in terms of both pitch and rhythm:

simlt
p (x,x

′) :=
⟨zx

p , z
x′
p ⟩

||zx
p || · ||zx′

p ||
, (C.3)

simlt
r (x,x

′) :=
⟨zx

r , z
x′
r ⟩

||zx
r || · ||zx′

r ||
. (C.4)

For both of the metrics, the samples in the training set are transposed to 12 keys to account

for relative pitch similarity. Segments that only contain rests are discarded beforehand.
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Sample Source Sample Size Similarity Metric
simrb ↓ simlt

p ↓ simlt
r ↓

Test set (no plag.) 88 pieces 0.6567± 0.1141 0.8637± 0.0486 0.8320± 0.0680
Copy-bot 1 (plag.) 128 pieces 0.7108± 0.1159 0.8616± 0.0526 0.8276± 0.0699
Copy-bot 2 (plag.) 128 pieces 0.6888± 0.1628 0.9086± 0.0340 0.8555± 0.0411

Cas.Diff. (ours) 128 pieces 0.6530± 0.1321 0.8743± 0.0491 0.8180± 0.0710
Polyff. + ph.l. 128 pieces 0.6117± 0.1162 0.8639± 0.0487 0.8424± 0.0622
TFxl(REMI) + ph.l. 128 pieces 0.6088± 0.1053 0.8599± 0.0446 0.8154± 0.0642

Table C.5: Evaluation on whether the generative models copy the training data. The highlighted data in
red indicates potential copying the training set.

In Table C.5, we show the mean and standard deviation of S(x) on the data samples generated

using our proposed methods and other baselines used for whole-song generation. We compute

the statistics of the test set of POP909 as a reference for no risk of copying, since no song in the

training set (or their cover-song versions) appears in the test set. We also design two copy-bots

as references for potential risk of copying. The first copy-bot copies a different part of the training

set at each measure, which emulates a direct copying behavior. The second copy-bot encodes the

melodies from the training set and adds noise to the latent representation before reconstruction,

which emulates an indirect copying behavior. Experimental results show that our proposed method

(as well as the baseline whole-song generation methods) have similar DoC compared to that of the

test set. Also, the proposed metrics successfully detect both direct and indirect copying behaviors as

the DoCs of copy-bots are noticeably higher. Thus, we conclude that our model has a very low risk

of copying the training set.

C.6 Discussion: Efficiency of the Cascaded Method

In this section, we conduct a theoretical comparison between the efficiency of our cascaded

diffusion models and an alternative end-to-end approach, which generates a full-piece music with

a single diffusion model. We evaluate the time and model parameter complexities of both meth-

ods. As summarized in Table C.6, we demonstrate that end-to-end approaches exhibit quadratic
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complexities in both time and model parameters relative to data length, whereas the cascaded

approach achieves linear time complexity and logarithmic model parameter complexity.

We base our analysis on a diffusion architecture with a UNet backbone, identical to the pro-

posed architecture. We assume the sequential data has length T (corresponding to image width

in UNet), and the dimension of each time step is D (corresponding to image height in UNet).

The UNet will first embed the input image to have shape (C, T,D) regardless of the number of

input channels, where C is called the base channel size. Additionally, our computation assumes

a typical UNet configuration as follows:

1. In the contracting path of the UNet, the number of channels at each layer doubles, and the

width of the feature maps are halved due to max pooling.

2. The expanding path of the UNet mirrors the contracting path.

3. The number of the levels (or model depth) MT ′ scales logarithmically with the input se-

quence length T ′, i.e., MT ′ = log2 T
′ + c0, where c0 is a constant.

Complexity of end-to-end approach. At each level i = 0, . . . ,MT = log2 T+c0, the width

of the feature map is T
2i

, the number of input channels isC ·2i, and the number of output channels

is C · 2i+1. The time complexity of the convolution per layer can be computed as:

O
(
(
T

2i
·D) · (C · 2i) · (C · 2i+1)

)
= O(T ·D · C2 · 2i+1) = O(T · 2i+1). (C.5)

In Equation C.5, we regard D and C as constants, therefore removing from the complexity term.

Summing Equation C.5 over all levels results in the total time complexity:

MT∑
i=0

O(T · 2i+1) = O(T 2). (C.6)
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Similarly, at each level i = 0, . . . ,MT , the number of model parameters can be computed as:

O
(
(C · 2i) · (C · 2i+1)

)
= O(C2 · 22i+1) = O(22i+1), (C.7)

resulting in the total model parameter complexity:

MT∑
i=0

O(22i+1) = O(T 2). (C.8)

In conclusion, the time and model parameter complexity for end-to-end approach are bothO(T 2).

Complexity of cascaded approach.The cascaded models proposed in Chapter 6 is tailored

for music data. For the analysis in this section, we define a theoretical cascaded approach as

follows. To generate a sequential data of length T , we define a K-level compositional hierarchy,

and the resolution at each level is scaled by a factor η. The top-level (k = 1) has a resolution

of L, and for each level k = 2, . . . , K , the resolution is L · ηk−1, such that at the final level

K , the resolution is L · ηK−1 = T . We train K diffusion models in total, all having the same

generation scope L. Thus, the diffusion model at level k = 1 generates the whole sequence,

and the diffusion models for level k = 2, . . . , K generate only a slice of the sequence. The

model parameter complexity of a single level can be computed by substituting MT with ML in

Equation C.8:
log2L+c0∑

i=0

O(L · 2i+1) = O(L2). (C.9)

Summing up the parameters in K separate models results in the total model parameter complex-

ity:

O(L2 ·K) = O(L2 logη T ). (C.10)

Similarly, for time complexity, each model call is O(L2) (see Equation C.6); and at all levels, the

generation requires (2ηk−1 − 1) autoregressive iterations (see Algorithm 1). So, the total time
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complexity is:
K∑
k=1

O(L2 · ηk−1) = O(L2T ). (C.11)

Therefore, the cascaded approach has a time complexity ofO(L2T ) and a model parameter com-

plexity of O(L2 logη T ). The computation implies that the efficiency of the cascaded approach

will be more significant when T >> L. Theoretically, if L is a constant (e.g., bounded by the

computational resources available), the time and model parameter complexity will becomeO(T )

and O(logη T ), respectively.

Cascaded Approach End-to-End Approach

Time Complexity O(L2T ) O(T 2)
Model Parameter Complexity O(L2 logη T ) O(T 2)

Table C.6: Theoretical comparison of time and model parameter complexity between the cascaded ap-
proach and the end-to-end approach. η denotes the resolution scaling factor. L denotes the time scope
(i.e., receptive field) of cascaded models.

C.7 Limitations and Future Plan

Our current model supports a maximum generation scope of 256 measures, typically adequate

for pop songs, but insufficient for other genres (e.g., classical music), which may require longer

lengths. While our model can generate irregular phrase lengths and theoretically supports both

3/4 and 4/4 time signatures, it does not support meter change, and the capability of 3/4 song

generation is limited, since the proportion of 3/4 songs in the dataset is pretty low. Additionally,

we observe that the generated endings are sometimes not ideal, such as failing to resolve on the

tonic harmony. We suspect the issue is related to imprecise quantization in the POP909 dataset’s

outro sections. Moreover, there is room for improvement in overall music quality, as the model

occasionally produces flawed samples, such as blank measures. To address these issues, we plan to

enhance model performance with a more refined architecture and more extensive data training.
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D | Supplementary Materials for

Chapter 8

This chapter provides more technical details, results, and discussions about Chapter 8 and is

structured into 5 main parts. Section D.1 provides specifics about the datasets involved in the

study. Section D.2 presents implementation and training details of V3 and baseline methods.

Section D.3 provides additional experiment results and especially visualizations for better under-

standing. Section D.4 presents an ablation study on the V3 model. Finally, we provide an analysis

on learning content and style in Section D.5.

D.1 Dataset Details

D.1.1 PhoneNums

The written phone numbers dataset is designed to represent a clear content and style sep-

aration to humans. We use the Kristen ITC font for the style because its digits look similar to

handwritten digits and are easy to distinguish. We render the digits from 0 to 9 on a light back-

ground of RGB (10, 10, 10) using the foreground colors listed in Table D.1.

For more randomness, we first jitter the foreground and background colors by a noise from -2

to 2 along every channel, then add a small Gaussian noise. We then translate all digits vertically

or horizontally by a random number of pixels between -2 and 2. Lastly, we add a random Gaussian

180



RGB Values # Color

(8, 8, 8) Black
(8, 8, 248) Blue
(8, 128, 8) Green
(248, 8, 8) Red

(8, 128, 128) Teal
(128, 8, 128) Purple
(248, 163, 8) Orange
(163, 47, 47) Brown

(248, 188, 199) Pink *
(243, 128, 115) Salmon *
(248, 210, 8) Gold *
(8, 248, 8) Lime *

(8, 248, 248) Cyan *
(248, 8, 248) Magenta *

(128, 128, 128) Gray *
(200, 133, 67) Peru *

Table D.1: List of colors and their corresponding RGB values. Colors only used for out-of-distribution
experiments in Section 8.3.3 are marked with *.

blur effect. Our dataset contains 100000 images in total, each of which has 10 digits. The dataset

is split into the train set, validation set, and test set with a ratio of 8:1:1. Some samples of the

dataset can be viewed in Figure D.1

Figure D.1: Left: example training data in PhoneNums. Right: example data for out-of-distribution
evaluation in PhoneNums.

D.1.2 InsNotes

In InsNotes, we collect monophonic music audio played by different instruments. This dataset

is also designed based on the understanding that this domain exhibits content and style con-
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cepts that are clear to humans—music pitches and instrument timbres. The dataset consists of

monophonic music audio rendered from 12 instruments playing 12 different pitches in an oc-

tave, which corresponds to MIDI numbers from 60 to 71. All the instruments selected have little

exponential decay, so their timbres can be well represented with short audio samples. In the out-

of-distribution generalization experiment in Section 8.3.3, we select four unseen instruments:

two with slight exponential decays and two with strong attacks and distinct exponential decays,

making the task particularly challenging. We list the instruments involved as well as the specific

MIDI program selected in Table D.2.

Program # Instrument

19 Pipe organ
21 Accordion
22 Harmonica
41 Viola
52 Choir aahs
56 Trumpet
59 Muted trumpet
64 Soprano sax
68 Oboe
71 Clarinet
72 Piccolo
75 Pan flute
0 Grand piano *
4 Tine electric piano *
73 Flute *
78 Irish flute *

Table D.2: List of instruments and their corresponding MIDI program numbers. Instruments only used
for out-of-distribution generalization are marked with *.

For every instrument, we play every pitch for one second, one by one, with a random velocity

between 80 and 120 until every pitch is played 10 times. We synthesize 100 such takes at 16kHz

using a soundfont library for each instrument and further diversify every note by adding a random

amplitude envelope to each note. The added amplitude envelope is either a linear curve or a

sinusoidal curve, starting and ending at a random amplitude factor between 0.8 and 1.2. The
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audio files are then normalized and processed with short-time Fourier transform (STFT) with

the FFT size of 1024 and hop size of 512 to obtain the magnitude spectrograms, which results in

a 512 × 32 matrix for each note. To avoid possible overlap between adjacent notes, we add a

0.056-second pause in between, resulting in one transition frame in the spectrogram. Our dataset

contains 1200 audio files in total, each of which has 120 notes. The dataset is split into the train

set, validation set, and test set with a ratio of 8:1:1.

D.1.3 SVHN

The Street View House Numbers (SVHN) dataset is a real-world dataset that contains images

of house numbers collected from Google Street View, and digit-level bounding boxes [182]. Ex-

amples of the dataset can be viewed in Figure D.2. The dataset originally consists of 73257 digits

for training, 26032 digits for testing, and 531131 additional, somewhat less difficult samples, as the

extra partition. We split the extra partition into additional training, validation, and testing sets

with a ratio of 8:1:1. For the content-style disentanglement task, we select all images with at least

two labeled digits, and resize the bounding boxes to 32×48 pixels. The dataset is preprocessed by

normalizing the pixel values to the range of [0, 1]. Compared to PhoneNums, although both being

image datasets with digits as content, SVHN is significantly more challenging for the following

reasons: 1) The digits in SVHN can be very blurry compared to that in PhoneNums; 2) The digits

in SVHN come with more flexible styles in a totally continuous space, involving different fonts,

thicknesses, inclinations, colors, and so on; 3) In every SVHN image, the style variation among

digits can be more significant than that in PhoneNums, as there can be environmental factors like

shadows; 4) The bounding boxes are not always tight, clean and complete, and the digits are not

always centered in the image; 6) The classes are very imbalanced. Almost all images come with

a 0, 1, or 2, but very few of them have 8 or 9; 5) Most importantly, house numbers are generally

very short strings. Among images with at least two digits, 57.6% of them have exactly two digits,

which means for most styles, there is not full coverage of all digits, and during training, V3 only
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Figure D.2: Example data in the original SVHN dataset. The digits in the images are bounded by the red
boxes.

has a highly incomplete view of the full content vocabulary. We choose SVHN to demonstrate

the robustness of V3 in learning content and style disentanglement in a much more challenging

setting.

D.1.4 Sprites

The original Sprites dataset, collected from [149] and adopted by [147], contains animated

cartoon characters in the pixel graphic style with random appearances and actions. The original

Sprites dataset contains animations of six different actions in four perspectives. We collect the

Sprites with Actions dataset used in this study by selecting 3 distinct actions in 3 perspectives,

resulting in 9 different actions in total, and rendering videos of characters performing actions

from these 9 categories randomly, using the critical frames from each action animation. The

dataset contains 2160 videos in total, each of which has 9 frames. The characters differ in their

hair, body, top, and bottom, forming 2160 unique characters in total. We use 80% of the characters

for training and the rest for validation and testing. Examples of the dataset can be viewed on the

right of Figure 8.1.
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D.1.5 Libri100

The Libri100 dataset is a subset of the LibriSpeech dataset [189], containing the “train-clean-

100”, “dev-clean”, and “test-clean” subsets. There are 331 different speakers in total, in which 165

are female and 166 are male. There are no overlapping speakers between the train, validation,

and test divisions. Given audio files and ground truth transcriptions, we align the audio with the

39 phonemes used in English using the Montreal Forced Aligner [172]. After normalizing the

cropped fragments, we extract the mel spectrograms with a window size of 16ms, hop size of

5ms, and 80 mel bands. The 39 phonemes are indexed as shown in Table D.3.

Index Phoneme Index Phoneme Index Phoneme

0 eh 13 ao 26 l
1 z 14 ey 27 k
2 s 15 hh 28 m
3 uw 16 y 29 ch
4 aw 17 f 30 ng
5 oy 18 r 31 t
6 dx 19 g 32 w
7 dh 20 v 33 ae
8 uh 21 ah 34 iy
9 aa 22 er 35 th
10 d 23 ow 36 ay
11 p 24 sh 37 ih
12 n 25 b 38 jh

Table D.3: List of phonemes with their indices.

D.2 Implementation Details

D.2.1 Model Architecture

On InsNotes, we instantiate V3 model using a ResNet18 encoder and a ResNet18T decoder

with bottlenecks [93]. In the encoder, the number of channels in the first convolutional layer is
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set to 64, and gradually increases to 512 in the last layer. The first half of the encoder uses a kernel

size of 9, and the second half uses a kernel size of 5. The decoder is symmetric to the encoder.

The latent dimension is set to 512. The total number of trainable parameters is 55M.

On PhoneNums and Sprites, we instantiate V3 model using a ResNet encoder and a ResNetT

decoder half as deep as the pitch and timbre learning task. Similarly, the number of channels

in the first convolutional layer is set to 16, and gradually increases to 256 in the last layer. The

encoder uses a kernel size of 5. The decoder is symmetric to the encoder. The latent dimension is

set to 512. The total number of trainable parameters is 20M on PhoneNums and 25M on Sprites.

On SVHN, we add one more ResNet layer in every ResBlock on top of the ResNet encoder

used in PhoneNums and Sprites. The number of channels in the first convolutional layer is set to

32, and gradually increases to 512 in the last layer. The first half of the encoder uses a kernel size

of 5, and the second half uses a kernel size of 3. The decoder is symmetric to the encoder. The

latent dimension is set to 768. The total number of trainable parameters is 37M.

On Libri100, we use a similar architecture as InsNotes, but with a maximum number of chan-

nels of 256. We deepen the encoder with 2 more ResNet blocks in each layer. The total number

of trainable parameters is 24M.

We use the same neural network architecture as V3 for the MINE-based baseline and the cycle

loss-based baseline, except that the style branch of the MINE-based method has a variational la-

tent layer. For the MINE-based baseline, we use a 3-layer multi-layer perceptron with 512 hidden

units to estimate the mutual information. For the supervised baselines EC2-VAE (c), we replace

the VQ layer of the content branch with a linear layer projecting to the dimension of prediction

logits. Besides, the encoder output of the style branch is the mean and log variance vectors instead

of representation vectors, which means the style branch is a variational autoencoder (VAE) [125].

For the fully supervised baseline EC2-VAE (c/s), we project the reparameterized style vectors to

the dimension of prediction logits.
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D.2.2 Training Details

For all models, we use the Adam optimizer with a learning rate of 0.001 [124]. The fragment

sizes on PhoneNums, InsNotes, SVHN, and Sprites are set to 10, 12, 2, and 6, respectively. The

relativity r is set to 15, 15, 5, 10 and 5 on PhoneNums, InsNotes, SVHN, Sprites and Libri100,

respectively (Generally, we recommend setting a higher r, such as 15, on datasets with clean

content and style separation, and setting a lower r, such as 5, on more complex datasets where

reconstruction might need to be emphasized more.). The V3 loss weight β is defaultly set to 1 on

InsNotes task, and 0.1 in other datasets. For all VQ-based models, we update the codebooks using

an exponential moving average with a decay rate of 0.95 [184]. The commitment loss weight α is

set to 0.01. On PhoneNums and InsNotes, we set a threshold of n
10K

for dead code relaunching to

improve codebook utilization, where n is the total number of fragments in a batch. On SVHN, as

most images have only 2 or 3 digits, we concatenate fragments in different samples for a higher

content coverage in practice to stabilize training. Similarly, on Librispeech, as many consonant

phonemes do not exhibit distinct styles like vowels, we also smooth the styles by taking the

average of adjacent fragments in practice. For MINE-based baseline models, we update the MINE

network once every global iteration using the Adam optimizer and adaptive gradient scaling [15,

232]. The learning rate of the MINE network is set to 0.0002.

We train all models using an exponential decay learning rate scheduler, and take the model

with the best validation loss as the final model. All models are trained on a single Nvidia RTX

4090 GPU. The V3 loss should decay to zero within a few epochs after training starts. All super-

vised learning methods converge within 2 hours, while the converging time of all unsupervised

learning methods differs from 5 hours to 24 hours.
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Figure D.3: t-SNE visualization of the learned digit (content) and color (style) representations on Pho-
neNums when there is no codebook redundancy (K = 10).

Figure D.4: t-SNE visualization of the learned digit (content) and color (style) representations on Pho-
neNums when the codebooks are redundant.

D.3 More Experiment Results

In this part, we provide extra experiment results in addition to the results in Section 8.3. We

will focus more on the visualizations of the learned content and style representations, and the

alignment between the learned codebooks and the ground truth content labels.
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Figure D.5: t-SNE visualization of the learned pitch (content) and timbre (style) representations on In-
sNotes when there is no codebook redundancy (K = 12).

Figure D.6: t-SNE visualization of the learned pitch (content) and timbre (style) representations on In-
sNotes when the codebooks are redundant.

D.3.1 Results of Content-Style Disentanglement

This section provides 3-dimensional t-SNE visualization results of the learning content and

style representations in support of Section 8.3.2. We show that on different datasets and under
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Figure D.7: t-SNE visualization of the learned content (digit) representations on SVHN.

Figure D.8: t-SNE visualization of the learned content (action) representations on Sprites. The 10 colors
refer to 10 different actions.

differentK settings, content and style representations learned by V3 show the clearest groupings

compared to baselines, and the groupings match well with ground truth content and style labels.

On PhoneNums, we first visualize with t-SNE the learned content and style representations

when there is no codebook redundancy (K = 10), and color them by the ground truth content or

style labels. We set K = 12 for learning digits and colors. The results are shown in Figure D.3.

We can see that V3 learns clearer content and style representations in groups compared to unsu-

pervised baselines. When the codebooks contain redundancy, the results are shown in Figure D.4.

We can see that V3 still achieves the clearest content and style grouping.

On InsNotes, the visualizations of zc and zs when K = 12 are shown in Figure D.5, and the

visualizations when the codebook is redundant are shown in Figure D.6. Both results also show
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Figure D.9: Confusion matrices of learned codebooks on PhoneNums. The horizontal axes show digit
labels from “0” to “9”, and the vertical axes show codebook atoms sorted by ground truth digit labels.

V3 groups content and style better than baselines.

On SVHN, the visualizations of zc are shown in Figure D.7. Since SVHN does not have discrete

style labels, we only show the grouping of content representations. V3 is trained at K = 20.

Although not as good as the results shown in Figure D.3 on PhoneNums, V3 still achieves the

best grouping of digits with learned content representations among unsupervised methods.

On Sprites, there is no discrete style label either. Figure D.8 shows the t-SNE visualizations of

zc, and V3 is trained at K = 18. Both V3 and Cycle loss achieve good content grouping, but it is

observable that some clusters of the cycle loss zc have broken into several subclusters, indicating

that there is still content and style entanglement. This is also supported by Section 8.3.2.

D.3.2 Results of Symbolic Content Interpretability

This section provides intuitive visualizations about how the learned content codebook entries

align with ground truth content labels in Section 8.3.4. We first collect frequencies of every

content encoded to every codebook entry, and then permute the codebook to make the confusion
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Figure D.10: Confusion matrices of learned codebooks on InsNotes. The horizontal axes show pitch
labels from “C” to “B”, and the vertical axes show codebook atoms sorted by ground truth pitch labels.

matrix look like an eye for a clear alignment. Then we plot heatmaps of confusion matrices

between codebook entries (vertical axes) and content labels (horizontal axes).

On PhoneNums and InsNotes, we plot the confusion matrices under different K settings in

Figure D.9 and Figure D.10, respectively. The results show V3 achieves the clearest symbol in-

terpretability in all K settings. Results on SVHN and Sprites are shown in Figure D.11 and Fig-

ure D.12. On Sprites, both V3 and cycle loss learns codebooks with good interpretability, but V3

still has fewer misclassifications. Although V3 does not learn a clear one-to-one codebook en-

try to content label mapping on SVHN, it still shows a clearer alignment relationship than other

methods. An interesting fact is the order of learning we observe during training—V3 usually first

distinguish 0 and 1, then start to understand 2 is different, then 3. It often confuses between 5 and

6 and between 1 and 7, and it usually fails to learn 8 and 9. This human-like learning trajectory

might be subject to both the ratio of content classes and their pairwise similarities in shape. The
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Figure D.11: Confusion matrices of learned codebooks on SVHN. The horizontal axes show digit labels
from “0” to “9”, and the vertical axes show codebook atoms sorted by ground truth digit labels.

MINE-based Cycle lossV3 

Figure D.12: Confusion matrices of learned codebooks on Sprites. The horizontal axes are different action
labels, and the vertical axes show codebook atoms sorted by ground truth action labels.

similar phenomenon is observed in the confusion matrices on Libri100 as shown in Figure D.13.

V3 distinguishes between consonants and vowels pretty well, and confuses between “z” and “s”,

and between “n” and “ng”, which are phonetically similar.

To further investigate the disentanglement ability of models, we perform latent representation

recombination using the trained models. Figure 8.3 has already demonstrated the results on SVHN

of decoding a fixed zs with every zc. Here we show the results on PhoneNums, where instead of
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Figure D.13: Confusion matrices of learned codebooks on Libri100. The horizontal axes are different
phoneme labels, and the vertical axes show codebook atoms sorted by ground truth phoneme labels.

using a fixed zs encoded from an example, we compute the mean zs of all fragments from a class

as its style representations for decoding. We select the V3 model with K = 10, align codebook

entries with digit labels, and enumerate all combinations of zc and zs. We present the results

in Figure D.14. Compared to baselines, V3 can fairly well reconstruct the involved 8 colors and

the digits from 0 to 9, even though it is not informed with any discrete labels during training.

In contrast, the MINE-based baseline and the cycle loss baseline fail to distinguish the digits,

although the color reconstruction is not bad. They generate blurry digits that look like “5”, “8”

or “6”, which are the most conservative choices. As for results on the music dataset InsNotes, we

refer you to our web demo page for an interactive experience.

D.4 Ablation Study

For ablation, we experiment with another type of variability measurement νk(·), which is

standard deviation (SD). Besides, we train four variants of V3, each without one of the four

regularization terms defined in Equation 8.9-8.12. We conduct experiments on PhoneNums and

InsNotes, two datasets with style labels available, and evaluate the content and style disentan-
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Figure D.14: Comparison of generated digits by recombining content and style latents using unsuper-
vised methods trained on PhoneNums.

glement performances. The results are reported in Table D.4 and Table D.5. It can be seen that

νk = SD does not work as well as νk = MPD, which can be explained by its weakness in

constraining multi-peak content distributions within samples. It is also worth noting that V3

sometimes performs fairly well even when discarding one of its terms. In these cases, we observe

a decrease in the discarded loss even if we do not explicitly optimize for it. We suspect this is due

to the robustness of V3 constraints as reflected in the symmetric relationships among the four

losses—we can enforce three relations, and the fourth one may fall into the right place automati-

cally. However, in practice, it is difficult to tell the one term to free beforehand as it is also related

to detailed content and style variations in specific domains. As a result, the V3 constraints as a

whole show robust performance across domains.
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Method K

Content Style

PR-AUC Best F1 PR-AUC Best F1

zc ↑ zs ↓ zc ↑ zs ↓ zc ↓ zs ↑ zc ↓ zs ↑

V3 10 83.2 12.8 84.1 18.5 14.9 95.4 22.6 91.0
V3 (νk = SD) 10 42.7 17.9 53.5 21.5 18.2 49.9 24.7 51.6
V3 (w/o Lcontent) 10 43.8 13.8 51.2 18.9 18.1 90.8 22.4 87.5
V3 (w/o Lstyle) 10 64.6 13.2 70.3 18.7 17.7 87.8 24.5 83.9
V3 (w/o Lfragment) 10 96.3 11.7 98.9 17.9 15.9 90.1 23.2 88.5
V3 (w/o Lsample) 10 47.0 12.7 57.8 18.9 15.4 88.4 24.7 85.3

Table D.4: Ablation study of V3 settings on content-style disentanglement performance on PhoneNums.
Values are reported in percentage.

Method K

Content Style

PR-AUC Best F1 PR-AUC Best F1

zc ↑ vzs ↓ zc ↑ zs ↓ zc ↓ zs ↑ zc ↓ zs ↑

V3 12 89.9 8.9 90.1 15.1 9.3 87.5 15.0 88.0
V3 (νk = SD) 12 12.9 9.9 17.5 15.0 16.3 24.7 24.1 36.5
V3 (w/o Lcontent) 12 19.2 9.3 28.0 14.3 13.6 66.2 19.0 68.4
V3 (w/o Lstyle) 12 72.1 8.9 14.2 84.0 13.7 78.7 23.6 79.0
V3 (w/o Lfragment) 12 26.0 12.1 35.7 17.6 13.5 53.7 20.1 56.7
V3 (w/o Lsample) 12 86.4 7.9 89.3 14.2 11.3 50.7 19.4 56.2

Table D.5: Ablation study of V3 settings on content-style disentanglement performance on InsNotes.
Values are reported in percentage.

D.5 Discussion

Connection between Content-Style Disentanglement and OOD Generalizability: Dis-

entanglement can intuitively boost OOD generalization for several key reasons. By separating

different factors, like content and style, the model can focus on the important features with-

out getting distracted by irrelevant variations. This separation makes the model more robust to

changes. For instance, if the style changes in an OOD sample while the content remains similar,

the model might still recognize and process the content effectively. Additionally, disentangled

representations often lead to more generalized features, enabling the model to identify important
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patterns that are invariant across different distributions. This property facilitates easier transfer

learning because models with disentangled representations can be more readily fine-tuned for

new tasks, as supported by our experiments in Section 8.3.3.

Connection between Content-Style Disentanglement and Symbolic Interpretability:

In Section 8.3.2 and Section 8.3.4, we separately examined content-style disentanglement and

symbolic-level interpretability. This discussion now seeks to understand how these elements

are interconnected—specifically, whether V3’s disentangled representation space inherently im-

proves symbolic-level interpretability.

The transition from purely observational data to symbolic representation remains an open

question in cognitive science and artificial intelligence. We suggest that robust content-style

disentanglement is closely linked to better symbolic interpretability, as evidenced in Tables 8.1

to 8.4, 8.6 and 8.7. These figures show that both V3 and supervised methods, which achieve

better disentanglement, also provide superior interpretability compared to methods less effective

in disentanglement (supervised classification—while it is not—can here be viewed as another form

of interpretable VQ symbols). Additionally, as illustrated in Figures D.3 to D.8 , well-disentangled

style spaces (meaning they contain less content information) see well-formed clusters, which can

facilitate straightforward postprocessing for discrete and symbolic labeling.

Connection between Content-Style Disentanglement and Philosophy: The statistical

patterns and mutual relationship between content and style closely correspond to the philosoph-

ical concept of Yin and Yang, a fundamental duality in universal balance and dynamics. In the

famous Yin-Yang diagram, Yin and Yang are equally divided and composed of two identical shapes

(the fish-like swirl and the small dot) with opposing colors (light and dark), together forming the

completeness of the world [258].

We can interpret the two fundamental shapes as the two axes along which data is observed—

the swirl represents observation across samples, while the dot represents observation across frag-

ments within samples. The two colors signify two kinds of dynamics—light denotes variant, and
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Figure D.15: An illustration of the correspondence between the content-style duality and the Yin-Yang
duality.

dark denotes invariant. As a result, the duality of Yin and Yang becomes the duality of content

and style. Content shows variability within samples (the light dot) and invariability of vocabu-

lary across samples (the dark swirl), while style shows variability across samples (the light swirl)

and invariability within a sample (the dark dot). They can be disentangled from data as two

components, yet neither can exist alone.

V3 and related work: We explicate the difference and connection between V3 and several

other most relevant works as follows.

• InfoGAN [39]: InfoGAN is similar to our approach in that both models learn interpretable

representations and decouple these representations from the data. However, there are sev-

eral key differences: 1) Each representation in InfoGAN is of very low dimensionality; 3) The

specific aspects learned are less controllable, while V3 focuses on learning the distinctions

of content and style; 3) GAN is known to be less unstable in training than autoencoders and

VAEs, and it is a framework more for generative modeling than representation learning.

• DSAE and variants [9, 103, 147, 163, 164]: DSAE shares similar insights with V3 regard-

ing the intrinsic relationship between content and style, but it primarily focuses on the in-
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variability of style and the variability of content within a sample, giving less attention to

the invariability of content vocabulary and the variability of style across a broader scope.

Other distinctions include: 1) DSAE focuses on learning a fixed style representation for a

whole sample, which may struggle with samples where the style varies, such as singing

performances that feature both chest voice and falsetto, or instrument performances with

multiple articulations; 2) The DSAE family requires access to the entire sequence when en-

coding style; 3) Most importantly, the content learned in DSAE is context-dependent, while

V3 emphasizes on learning more universal content representations.

• VICReg [11]: V3 has a similar form of loss function as VICReg, and both models leverage

variance and invariance among entities to help train representation learning frameworks.

However, VICReg focuses on learning a single representation for each entity, while V3 fo-

cuses on learning disentangled representations. Also, VICReg learns discriminative repre-

sentations without clear interpretability, but V3 learns interpretable content symbols and

has a decoding ability to recombine content-style pairs. In fact, we draw on their mathe-

matical representations and the idea of using regularization to prevent latent representation

from collapsing, a concept also advocated by [140].
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