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Abstract

Machine learning has advanced tremendously this past decade. Object detection systems rou-

tinely perform beyond human-level accuracy with no loss in speed [210], game-playing agents

play at superhuman level in real time [177; 196; 178], and generative models write language useful

enough for downstream products [26]. And yet, autonomous vehicles (AV) crash due to surpris-

ing mistakes, the best gaming agents lose to simple strategies, and our language models produce

nonsensical utterances at a surprisingly high rate. I could have chosen examples from any field

because these failures are not endemic to just vision, games, or language. There are always chal-

lenging cases remaining after training our system, and these cases are where the systems fail.

This thesis focuses on the challenging cases in a machine learning system in order to improve

its overall capabilities. In the first part, we study methods for identifying the challenging cases,

an important precursor for improving the system. In the second part, we then study methods

for addressing the challenging cases, arguably the most important part of this thesis for real-

world applicability. And in the third part, we study methods for understanding the root cause of

challenging cases, an important step in attaining guarantees about our system’s capabilities. As

machine learning is practiced in many different settings, our study does too. We explore these

questions in the context of computer vision, language learning, and task learning. The connect-

ing thread among them is the drive towards creating a communicative and visually aware robot

that can capably complete household tasks. In that context, we present in parallel the Machine

Learning Application Framework that highlights where our contributions improve downstream
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applications.

All together, this work studies how to identify, address, and understand the most challenging

cases over a diverse array of machine learning systems. This research is imperative towards

deploying many systems that we care about, including most autonomous vehicles and health

assistants. Consequently, it represents an important step towards society’s technological goals.
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1 | Introduction

It has been a long standing goal in society to have household robots that can safely and de-

lightfully handle real world tasks. Rosie from the Jetsons, Irona from Richie Rich, and Robby

from Hazel were all robot maids depicted in mass media from the early 1960s. With little need

for human-guided teaching, they could learn and perform the expected servile tasks like folding

laundry, gracefully dusting the shelves, and even cooking dinner. They did this while intelli-

gently receiving instructions, replying coherently in conversational form, and never had any

demonstrated issues with new objects in the scene or unusual patterns due to light or orienta-

tion. Either the fiction writers of the time had a disproportionate expectation of our technological

pace or a diminutive ability to project the difficulties inherent in building such a complex agent.

Thiry years later, some of the top robotics minds established the iRobot company and debuted

the residential floor cleaning robot ‘Roomba’ a decade later. Twenty years hence, there have been

nine versions and 20 million units sold, however they are still incapable of doing much more than

cleaning floors in an unobstructed space. They do not receive instruction, they cannot tell us

when there is a failure or what is the failure, and they sweep up objects that should not be swept.

It was only the most recent version in September 2021 that provided faculties for avoiding dog

excrement. They still commonly trip over power cords and confuse rugs with black stripes for

cliffs1. In the factory setting, there have been spectacular robots built by companies like Kuka.

Their cost is justified in that they can complete challenging tasks with very high precision and
1https://twitter.com/DimaKrotov/status/1436150021792149506
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for a long time without tiring. However, they can only perform rote mechanical tasks and must

be adapted to each factory setting.

Little of the vision dreamed of more than half a century ago has come to fruition. We do

not expect our robots to converse coherently; We expect them to have trouble generalizing their

visual understanding of scenes; And while they can learn new tasks, doing so requires dense

signal in order to reduce the sample complexity, an unattainable condition inmost settings. These

issues are not just a matter of reality being a more challenging environment than simulation [165;

86]; even there do we have these difficulties [87; 102; 170].

We see these challenges expressed clearly by top modern-day roboticists in the primacy given

to the rather banal challenge of rearrangement. The Rearrangement Challenge [13] asks agents

to bring a physical environment into a specified goal state and was presented recently as the

next grand direction for Embodied AI. It is pragmatic and overarching, encompassing diverse

settings like cleaning the bedroom, loading the dishwasher, picking and placing orders in a ful-

fillment center, and rearranging the furniture. It also is a generalization of many other scenar-

ios: the Amazon Robotics Challenge [76] asks agents to move items from a shelf into a bag and

RoboCup@Home [184] asks agents to perform tasks like opening and shutting a refrigerator door,

both of which lay under the umbrella goal of rearrangement. That we cannot reliably solve even

simple versions of this challenge demonstrates how limited we are in our research understanding

and consequently our engineering capabilities.

1.1 The Most Challenging Cases

Enjoining together all of the tasks embedded in that early vision and trying to build a commu-

nicative and capably rearranging robot is a worthwhile (albeit Herculean) goal. However, we

can also consider each of them in isolation as individual research questions. The common result

when doing so is similar to the parable of the blind men and the elephant [207]:
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A group of blind men heard that a strange animal had been brought to the town, but

none were aware of its shape and form. Out of curiosity, they said: "We must inspect

and know it by touch, of which we are capable". The first person, whose hand landed

on the trunk, said, "This being is like a thick snake". For another whose hand reached

its ear, it seemed like a fan. As for another, whose hand was upon its leg, the elephant

is a pillar like a tree-trunk. The blind man who placed his hand upon its side said the

elephant, "is a wall". Another who felt its tail described it as a rope. The last felt its

tusk, stating the elephant is that which is hard, smooth and like a spear.

In other words, every discipline becomes ingrained in its own pursuit and the drawn borders

make it difficult to see what is common amongst them. When we take a step back, we see that

these individual research questions all share a similar phenomenon - a major aspect prevent-

ing their progress is the prominence of the most challenging cases. While I define this concept

rigorously in Section 2.2, colloquially they are the data who hold membership in a semantically-

defined group that is, on average, much more difficult for the model than data selected at random

from commonly encountered examples. Additionally, group membership is defined according to

semantics that humans care about, like where the can opener is positioned relative to the can

rather than, say, the number of blue pixels in the image. We accordingly refer to the cases by the

decision criteria of their most challenging group. The following enumeration describes how this

applies to each isolated research goal.

• Learning new sequential tasks is typically a problem in the Reinforcement Learning

domain. Performing this capability in a real world setting requires the agent to understand

what behavior to change after a long chain of steps. In industry parlance, the problem is

that there are long range dependencies in sparse reward episodic environments stemming

from the agent’s starting state being distant from the goal state. An example is the entire

chain of events that leads to correctly locating a can opener lying on the counter and placing
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it into the proper draw.

The agent typically receives high reward in states close to the goal state. Reward diminishes

as we move farther away and, coupled with the sparse signal, the learning agent’s ability to

correct their behavior diminishes. Consequently, the error rate increases inordinately, and

we commonly see groups of states where the error patterns are similar. Returning to the can

opener task, one challenging group might be the set of states encountered when locating

the tool while next to the fridge; another may be those involved with placing it in the right

drawer. Improving the ability of agents to address their hard cases (at the group level) in

sparse environments would help the field make headway on a wide class of problems in

sparse exploration.

• Visual scene understanding is usually under Supervised Learning. To reliably under-

stand scenes, an agent would need to gauge where its model is weak. By identifying such

cases, it can learn about them and their interactions before calamities occur. In vision, these

cases are often related to the rarity of their joint class. Examples abound where the model

has seen each aspect of a case independently but not in concert, for example motorcycles

at night lit just so by the moon’s reflection off of a puddle. The model may have low er-

ror detecting motorcycles, low error detecting vehicles in night weather, and similarly low

error when there are puddles involved. However, the model may have difficulty when all

three are expressed together, regardless of the model family. One reason why is because

of biases expressed in the photography hardware, famously so for race [119; 176]. Another

reason is due to machine learning training biases [187]. Identifying these challenging vi-

sual cases quickly, capably, and online would help us more confidently place agents in the

field because they would have the faculties to gauge when they are in an uncertain regime.

• Conversing coherently with humans requires that the robot understands language to

such a degree that the latency between utterances is small, the words expressed are mean-
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ingful in context, and that its communication expresses systematic generalization2. Our

best modern example of talking robots are assistants like the Amazon Alexa, who have

trouble with the first and third aspects.

We focus on systematic generalization, or compositionality, because the most challenging

cases of conversation are frequently related to this attribute. As illuminated in Roller et al.

[163], compositionality is at the core of the ability to transfer to new tasks, which is a

fundamental open problem in machine learning today. Without this capability, our agents

are limited in how quickly they can adapt to new conversational topics or even amend their

prior built-in notions of language. An example of a challenging case are text with specific

unknown words strewn amongst known words, e.g. if the model first encounters ‘cyan’ in

a discussion about the ocean. This would have high error unless the model understood the

word in context of the rest of the sentence. Agents trained to exhibit compositionality in

their language understanding would see the new meaning as arising from a composition

of concepts in context.

Understanding the root causes of compositionality in language and why they arise will help

us build languages that exhibit this property. That will then help us address the challenging

cases related to poor systematic generalization in language.

Of course, the issue of the challenging cases being inhibitory extends beyond the robot ap-

plication we described. We know, from the No Free Lunch Theorem [175], that we cannot find

one algorithm that will solve these issues for us; corner cases, tail events, and transfer learning

is inherently hard and will always exist no matter how much compute we use. In light of these

limitations, what we are asking in this thesis are the following questions:

• How can we advance our ability to identify semantic groups of challenging cases?
2Defined as the capacity to understand and produce a potentially infinite number of novel combinations from

known components [131; 42]
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• How can we better understand the underlying reasons for the existence of the challenging

cases?

• How can we best address broad swaths of challenging cases without having the experience

be akin to whack-a-mole?

In concert – how we can mitigate the problem of the challenging cases so that we can directly

attain the benefits in downstream applications? Progress occurs when we figure out how to

mitigate their effect. While the No Free Lunch Theorem implies that we must ask each of these

questions in context of a singular application, the techniques that we develop would ideally be

applicable across applications. With that in mind, advancing research that identifies, addresses,

or understands the challenging cases will have a broad effect on the field of machine learning,

both in theory and application.

1.2 Overview

Following Section 1.1, this thesis presents researchwork on themost challenging cases inmachine

learning. The work tries to either identify such cases, address them, or understand them on a

deeper level. As this concern spans the field, so do our works. They range from task learning

(with reinforcement learning) to language learning and vision.

I present this work through two parallel concepts. The first uses the machine learning appli-

cation framework to both contextualize each work’s results in practice, as well as unify them on

the same view. The second shows how the works are, under the banner of engaging the chal-

lenging cases, all advancing a single important engineering goal - the aforementioned intent to

create a communicative and visually aware robot that can learn a new rearrangement task. The

thesis is organized as follows:

• Chapter 2 introduces background understanding for our settings and places the challenging
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cases in the context of the machine learning application framework. Towards this, we

introduce rigorous notation for episodic reinforcement learning, multi-agent learning, and

supervised learning, as well as properly defining the most challenging cases.

• In Part I, we seek to identify challenging cases in machine learning. Chapter 4 presents

our work [161] focusing on object detection in vision that pseudo-automatically identifies

challenging semantic groups of data for robotic systems, with an emphasis on autonomous

vehicles. This is related to the robot directive in that it is integral that we are aware of a

robot’s visual shortcomings in advance of deploying them.

• In Part II, we study how to address themost challenging cases. Chapter 5 presents our work,

an algorithm [162] for task learning via episodic reinforcement learning. It was originally

a direct response to the challenging cases found in training agents for the Pommerman

environment [158; 159], a benchmark designed for multi-agent research but also applicable

to single-agent studies.

• Part III focuses on understanding the root cause of challenging cases, with an emphasis on

language learning in multi-agent settings. Chapter 6 presents our work [160] illustrating

the central role of agent capacity in determining whether the learned language is actually

compositional, an important and desired attribute of the learned language that is correlated

with the most challenging cases.

• Finally, Chapter 7 concludes by showing how we can synthesize the presented contribu-

tions as a new research direction in order to make effective progress on the rearrangement

task.
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2 | The challenging cases in the

context of the machine learning

application framework

2.1 Notation

Work presented in this thesis spans across many disciplines within machine learning. In this

section, we introduce notation to provide suitable background for each.

Reinforcement Learning commonly assumes that the environment is aMarkovDecision Pro-

cess (MDP) and learning occurs via episodic MDPs. An MDP consist of a tuple (S, A, R, P, 𝛾 )

representing the state space S, the action space A, the reward function R : S × A → [0, 1],

the discount factor 𝛾 ∈ (0, 1], and the transition probability function P. The domain of P is

S × A and the range is a distribution on S. The markovian assumption of an MDP implies that

P satisfies P(𝑠𝑡 |𝑠𝑡−1, . . . , 𝑠0, 𝑎𝑡−1, . . . , 𝑎0) = P(𝑠𝑡 |𝑠𝑡−1, 𝑎𝑡−1). Observe that R could be either dense,

meaning that reward is frequently given, or sparse, meaning that it is most often zero. In the

latter case, reward is frequently given only at the end of a long sequence of actions (an episode).

There is also an underlying probability distribution of the states determined by the transition

probability function and the start state.
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A policy 𝜋 : S → A is the conduit through which agents produce a distribution over actions

from a state. The value of a state 𝑠 ∈ S for a policy 𝜋 is defined as the discounted sum of rewards

when running that policy starting from 𝑠:

𝑉𝜋 (𝑠) = E
[ ∞∑︁

𝑡

𝛾 𝑡𝑅(𝑠𝑡 , 𝑎𝑡 )
��𝑆0 = 𝑠, 𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡 ), 𝑠𝑡 ∼ P(𝑠𝑡−1, 𝑎𝑡−1)

]
(2.1)

When using policy gradients as our algorithm of choice for finding an optimal 𝜋∗, we traditionally

maximize the following cumulative return function instantiated from a specific starting state 𝑠0:

𝐽 (𝜋𝜃 ) = 𝑉𝜋𝜃 (𝑠0) = E
[ ∞∑︁

𝑡

𝛾 𝑡𝑅(𝑠𝑡 , 𝑎𝑡 )
��𝑆0 = 𝑠0, 𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡 ), 𝑠𝑡 ∼ P(𝑠𝑡−1, 𝑎𝑡−1)

]
(2.2)

Ideally, the learned agent should be able to generalize to new environments, however most

reinforcement learning setups test the agent on a very similar, if not the same, distribution upon

which it was trained. For example, agents trained on the Arcade Learning Environment [16] will

be tested on the same game. One reason that the (aforementioned) Rearrangement Challenge is

so difficult is because of the ask that the agent generalizes to new environment settings [72].

Multi-Agent Learning extends the Reinforcement Learning setting to have more than one

agent. The singular policy 𝜋 becomes a vector 𝜋 = [𝜋0, . . . , 𝜋𝑛−1] of agent policies 𝜋𝑖 . Each 𝜋𝑖 is

drawn from a policy space
∏
𝑖 . The space

∏
is the joint policy of all

∏
𝑖 and

∏
−𝑖 =

∏ \∏
𝑖 is

the joint policy for all agents except agent 𝑖 . Similarly, the vector 𝜋−𝑖 is of policies in 𝜋 \ 𝜋𝑖 . The

optimal 𝜋∗
𝑖 for a given agent is then given by:

argmax
𝜋𝑖∈

∏
𝑖

∫
𝜋−𝑖∈

∏
−𝑖

E
[ ∞∑︁

𝑡

𝛾 𝑡𝑅(𝑠𝑡 , 𝑎𝑡 )
��𝑆0 = 𝑠0, 𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡 ), 𝑠𝑡 ∼ P(𝑠𝑡−1, 𝑎𝑡−1)

]
(2.3)

There are two common approaches to solve multi-agent problems. If we assume that all of the

other agents are static agents of the world that do not learn, then we really only care about the
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singular agent that we are training and the Markovian assumption remains true. Consequently,

we can use the reinforcement learning framework.

Where the ‘multi-agent’ modifier is differentiating is when the agents have their own disjoint

observations that influence their learning. This breaks the Markovian assumption because it is

no longer true that the transition function depends only on the agent of interest’s policy, but also

on the observations, actions, and learning of all other agents. That this information is rarely in

the pool of common knowledge is one of the central challenges of multi-agent learning and why

it is so much more difficult than single-agent reinforcement learning. This naturally leads to the

Partially Observable Markov Decision Process (POMDP), which modifies the MDP by adding in

Ω and𝑂 representing, respectively, the set of observations and the set of conditional observation

probabilities. At each turn, the agent does not receive the state but instead a partial observation

𝑜 ∈ Ω of the new state 𝑠′ with probability 𝑂 (𝑜 |𝑠′).

Supervised Learning operates in a very different regime that assumes independence in our

training predictions. This is in contrast to Reinforcement Learning where the cumulative training

reward at state 𝑠𝑡 is dependent on the decisions taken up to time 𝑡 .

Specifically, it assumes two random variables 𝑋,𝑌 where 𝑥 ∈ 𝑋 ⊆ R𝑑𝑋 are feature vectors for

which there is an associated label𝑦 ∈ 𝑌 ⊆ R𝑑𝑌 . For example, 𝑥 could be an image of a number and

𝑦 could bewhich of the ten digits is𝑥 . Just like the states in reinforcement learning, these also have

accompanying distributions 𝑝 (𝑋 ), 𝑝 (𝑌 ), and the joint distribution 𝑝 (𝑋,𝑌 ). There is a training set

𝑇 train from which we sample training examples
{
(𝑥1, 𝑦1), . . . , (𝑥𝑁 , 𝑦𝑁 )

}
∼ 𝑇 train, test sets 𝑇 test

𝑖

from which we sample test examples, and a loss function L : 𝑌 × 𝑌 → R that measures the

difference between the actual label and the predicted label. The individual training and test sets

have their own probability distributions that may not be the same. The goal is to use the training

set to learn a predictor 𝑓 : 𝑋 → 𝑌 such that the expected error for the held out test distributions,

R𝑖 (𝑓 ) = E
(𝑥,𝑦)∼𝑇 test

𝑖

L(𝑦, 𝑓 (𝑥)), is low. This expression is referred to as the risk. It is challenging to
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compute the risk in general, so we use an empirical estimate R𝑖 (𝑓 ) = 1
𝑀

∑𝑀
𝑗=1 L(𝑦 𝑗 , 𝑓 (𝑥 𝑗 )) where

each (𝑥 𝑗 , 𝑦 𝑗 ) ∼ 𝑇 test
𝑖 .

In training, we only have access to𝑇 train and so we optimize the model towards its risk. That

frequently overfits, and so we apply a regularizer C that penalizes model complexity, culminating

in an objective to minimize the regularized empirical risk [191] where samples (𝑥 𝑗 , 𝑦 𝑗 ) ∼ 𝑇 train:

R(𝑓 ) = 1
𝑀

𝑀∑︁
𝑗=1

L(𝑦 𝑗 , 𝑓 (𝑥 𝑗 )) + 𝜆C(𝑓 ) (2.4)

Most commonly, there are three disjoint sets - a training set, a validation set, and a test set.

While iterating, the validation set is used to gauge the model’s generalization capabilities and its

position on the bias-variance trade-off. The test set measures final performance. The goal is to

have 𝑓 generalize beyond the training set and learn an underlying representation of the data that

allows it to do well on not just samples drawn from 𝑇 train but also on samples drawn from all

𝑇 test
𝑖 . This is exhibited in object detection for autonomous vehicles where we want the agent to

see pedestrians all the same in clear California skies, foggy London, and snowy Norway settings.

Bridging the settings In order to bridge reinforcement learning and supervised learning, we

define concepts 𝑢𝑖 ∈ 𝑈 , a predictor 𝑓 : 𝑈 → 𝑌 , and a function Y(𝑢𝑖) representing the true value

of 𝑢𝑖 . In supervised learning, 𝑋 = 𝑈 , 𝑌 is our label prediction range, and the ground truth label

𝑦𝑖 = Y(𝑢𝑖). In reinforcement learning, S = 𝑈 , 𝑌 is our state value range, and the optimal value

of the state 𝑉𝜋★ (𝑢𝑖) = Y(𝑢𝑖). We retain the same underlying probability distributions.

Define a conceptual groupG𝑘 = {𝑢𝑖 : 1 ≥ W𝑘 (𝑢𝑖) > 𝜏𝑘 ≥ 0}where 𝜏𝑘 is a threshold parameter

associated with a W𝑘 function that decides membership. An example W𝑘 decides whether an

RGB image scene includes both a jeep and rain, in which case 𝜏𝑘 = 0 because it is binary. Another

example W𝑗 decides whether an agent’s state is a part of the kitchen. There, 𝜏 𝑗 > 0 because the

state of being in a kitchen is not always binary in a house setting. Observe that G𝑘 is a truncated
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set of concepts of the original set𝑈 . Where 𝑝𝑈 (𝑥) was the probability density function for𝑈 , the

probability density function for G𝑘 is:

𝑝G𝑘
(𝑥) ∝ 𝑝𝑈 (𝑥)1{𝑊𝑘 (𝑥) > 𝜏𝑘} (2.5)

2.2 Defining the most challenging cases

We now define the most challenging cases and how they coincide with each setting. Recall the

colloquial definition presented in Chapter 1 – the most challenging cases are data (training exam-

ples or states) who hold membership in a semantically-defined group that is, on average, much

more difficult for the model than is commonly encountered data selected at random.

For a target task, we consider a set 𝑈 of either examples in supervised learning or states in

reinforcement learning and consider a family of groups G1, . . . ,G𝑛 where each associated W𝑖

labels a notion of human semantics. Although it is not always a requirement, this often implies

thatW𝑖 has a human in the loop as part of its process. If the task was for a reinforcement learning

agent to navigate a constrained maze, then one family of groups would cover the positions of the

maze according to location. If the task was supervised object detection, then a family of groups

would cover the (large number of) combinatorial class interactions in the scenes.

Elements of the G𝑖 are our cases. However, when we discuss them, we describe them in terms

of their deciding function W𝑖 , which serves as an aggregating concept conveying the common

feature amongst the cases. In practice, we would ask if the model has difficulty with a) Jeeps b)

when it is raining c) at night. This combination would be its own group.

The most challenging cases are contained within groups whose risk is much greater than the
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risk over the original distribution𝑈 :

Ḡ = {G𝑘 : E
[
L(Y(𝑢𝑖), 𝑓 (𝑢𝑖)) |𝑢𝑖 ∼ G𝑘

]
≫ E

[
L(Y(𝑢𝑖), 𝑓 (𝑢𝑖)) |𝑢𝑖 ∼ 𝑈

]
} (2.6)

= {G𝑘 : E
[
L(Y(𝑢𝑖), 𝑓 (𝑢𝑖)) |𝑢𝑖 ∼ G𝑘] − 𝛼𝑘 = E

[
L(Y(𝑢𝑖), 𝑓 (𝑢𝑖)) |𝑢𝑖 ∼ 𝑈

]
} (2.7)

For L, euclidean distance suffices in reinforcement learning. For supervised learning, we use

the target task’s evaluation criterion, commonly either euclidean distance or log loss.

We list the groups in descending order according to the positive 𝛼𝑘 and find our most chal-

lenging cases listed first. Equation 2.5 shows that changing the cases from 𝑈 to G𝑘 changes the

distribution, which, as we know from the No Free Lunch Theorem, will lead to performance dif-

ficulties on some group. Equation 2.6 then restricts the cases to those that are detrimental to the

model. That these cases are semantically defined groups of data examples according to W𝑘 and

𝜏𝑘 means that it is trivial for a human to describe the case. For the model, which only ever sees

the individual examples and not the bigger picture grouping, the difficulties lay in the examples

within the set –
⋃

G𝑘∈Ḡ
{𝑢 ∈ G𝑘}.

2.3 Uniting the settings with an application framework

In this section, we present theMachine Learning Application Framework in order to further unite

the three settings under one umbrella view as well as help bridge theory into practice.

The framework posits a model trained to optimize results on training data and evaluated on

held out test data. The model is improved by looping, wherein each loop we collect more data

to address poor evaluation results and retrain or finetune the model accordingly. While each of

the italicized parts are not independent - we are very unlikely to use a Support Vector Machine

(SVM) [46] with Q-learning [205] - they are to a large extent modular. For example, the model

could be an SVM or it could be a neural network, within which there are many choices as well;
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Model
ArchitectureOptimizer

Data
Collection

Training Data

Evaluation
Data 1, ..., N

Training 
Procedure

Evaluation 
Procedure

Training and evaluation 
distributions same or different.

Trained 
Model

What data improves 
the model?

Classification success,
Linear probe

[Un]Supervised SGD,
Evolutionary approaches

Actor-critic,
Q-Learning

Support vector machine,
Neural network

Figure 2.1: A graphic interpretation of the Machine Learning Application Framework. There is a data
collection process that feeds both training and evaluation datasets. The training data, along with the
model architecture and the optimizer, feed the training procedure and yields a trained model. That model
is evaluated with the evaluation procedure, which is chosen independently from the training procedure.
Finally, evaluation informs what new data to collect, which then results in more data and either retraining
or fine-tuning, completing the loop. Observe that while the optimizer, the architecture, and the training/e-
valuation procedures are not completely independent, they can be mixed and matched. For example, we
could use supervised or evolutionary approaches with neural networks or support vector machines.

the training data could come from the same distribution as the test data or they could differ; the

evaluation procedure could be a linear probe on a model trained with self-supervision or they

could both be results on the same game; the optimizer could be an Actor-Critic [103] method or

it could be from the Q-learning family. See Figure 2.1 for a generic graphical representation.

An instantiation of the framework engenders a system, and these systems have improved

dramatically over the past decade. And yet, as we outlined in Section 1, there remain copious and

debilitating challenging cases upon which these models fail.

Figure 2.2 represents the framework for the multi-agent system that engineered OpenAI’s

recent DoTA agent [20]. This game-playing bot had more experience than all humans combined

14



Model
ArchitectureOptimizer

Data
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Training Data

Evaluation
Data 1, ..., N

Training 
Procedure

Evaluation 
Procedure

Trained 
Model

Does the current policy
beat the prior one more

than 55% of games?

DoTA (Defense of the 
Ancients) 5v5 team games

Games against prior
winning agents

Self-Play 
with PPO

Adam LSTM

Self-play 
games

Average win 
percentage

Figure 2.2: Machine Learning Application Framework for the algorithm powering the agent made by
OpenAI to play Defense of the Ancients. While the agent was able to beat top-level players at the game,
it was beat handily shortly after being released publicly.

and yet it still lost because of holes in its understanding and an inability to creatively adapt.

The failure lies in that it was not exposed in training to opponents that could challenge it in the

way that humans did. That, coupled with the expansive DoTA gamescape [12] meant that even

amateur humans could find strategies that beat it. These strategies were the challenging cases

where error was much higher than expected. In other words, the joint policy space
∏

−𝑖 over

which it tried to maximize its capabilities was too small.

Figure 2.3 shows another framework presenting a color coded interpretation of all three of

the research directions involved in engineering a robot maid. Honing in on the system in red,

the framework shown for the detection module is almost identical to what powers modern day

autonomous L2 detection solutions as found in Tesla systems [Karpathy]. These modules are

crucial to achieving autonomy and are fed more data than any human ever sees. Regardless,
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they still succumb to challenging cases and mistake the moon for a traffic light1 or assume that

traffic lights must remain static2. It is not an exaggeration to say that these challenging cases

are preventing these applications from being used more widely. In AV, they are preventing the

industry from reaching Level 5 and ushering in a large technological shift.
1https://twitter.com/JordanTeslaTech/status/1418413307862585344
2https://twitter.com/haltakov/status/1400797882891091970

Model
ArchitectureOptimizer

Data
Collection

Training Data Evaluation
Data 1, ..., N

Training  
Procedure

IID

Sampled from 
replay buffer

Subset of Language

Evaluation  
Procedure

Trained  
Model

Which semantic groups 
have the worst error?

In which settings 
is the policy poor?

Where is the 
density incorrect?

Adam

Supervised SGD

Fast RCNN

Mean Average Precision
(mAP) over the dataset.

Driving scenes. Features X are images;
labels Y are ground truth boxes.

IID, Snow, Night, Motorcyles

Episodic PPO

Adagrad 2-layer CNN +
Value/Policy heads

Simulated scenes of a robot taking
actions conditioned on policy.

Average reward over
many seeds.

Instantiations of same  
task in different settings.

Maximize the ELBO

Adam VAE with LSTMs

Words generated from the actual
language L* with generator G*

Disjoint subsets of  
the language

Precision, Recall, and
Compositionality metrics

Figure 2.3: AMachine Learning Application Framework for all three of the tasks: Object Detection (red),
Task Learning (blue), and Language Learning (green). This graphic highlights how we can perceive each
of the three tasks as being of the same template. We investigate this and their connections to the hard ex-
amples further within each chapter. Note that the example approaches for each category have competing
approaches not shown here, e.g. a competing object detection approach called DETR [33] uses hungarian
matching in their training procedure and transformers for their model architecture.
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Interpreting these problems overlaid on each other (like in Figure 2.3) within the context of the

framework demonstrates how they are highly interrelated. Improving our research understand-

ing of the challenging cases - the central goal of this thesis - directly improves the mechanisms

of this loop and consequently catalyzes progress. In Chapter 4, Chapter 5, and Chapter 6, I return

to this framework and show which parts are improved by my work.

2.4 Summary

We have now defined everything we need to understand the most challenging cases as well as

the rest of this thesis, and can move on in the following chapters to how my work has advanced

the field. In particular, I will present practical work on important applications like autonomous

driving and language learning. Each chapter will focus on either identifying the most challenging

cases, addressing them, or understanding their root causes.
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3 | Related Work

In this section, we provide background on related work from areas adjacent to the topic of the

most challenging cases. This is in addition to the related work sections within each chapter,

which focus on our specific contributions.

3.1 Out of Distribution Generalization

The most challenging cases are prominent in Out of Distribution Generalization (OOD). The clas-

sical definition for OOD generalization [199; 5] assumes that the test distribution belongs to an

infinite family {P𝑒} where 𝑒 ∈ 𝜉 are the set of environments, and R𝑒 := E
[
L(𝑦𝑒, 𝑓 (𝑥𝑒)) | (𝑥𝑒, 𝑦𝑒) ∼

P𝑒
]
is the risk for environment 𝑒 . The goal is to minimize worst case risk over all test distribu-

tions: R(𝑓 ) = max
𝑒∈𝜉

R𝑒 (𝑓 ). Arjovsky [5] characterizes this definition as the simplest quantity that

captures the relevant phenomena of the field, because it only requires high performance over all

test distributions. Our topic dovetails with that notion as we seek to get high performance on the

most challenging cases, which are the semantic groups with outsized risk.

In contrast to most work in this literature [56; 17], we are not trying to solve OOD general-

ization in theory and at large, but instead narrow the focus to practical applications and the cases

to which we most want to generalize. While the larger goal of generalization would help us, e.g.

learning to driving autonomously in California transferring to environments in India, we focus

directly on those practical applications.
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A subfield within OOD generalization - distributional robust optimization (DRO)1 is more

in line with this objective, with works like Sagawa et al. [166]; Oren et al. [140]. Sagawa et al.

[166] assumes the groups have already been identified and then addresses them via strong reg-

ularization or group adjustments to explicitly handle the difference in group risk; that work is

particularly of note in the modern machine learning error as it explores DRO in the context of

highly over-parameterized models and shows that it compares favorably to empirical risk mini-

mization. Oren et al. [140] focuses on language and proposes a procedure that minimizes training

loss over the worst-casemixture of topics, where a topic is an umbrella groupG𝑘 containing utter-

ances similar with respect to their subject matter, e.g. ‘politics’, ‘business’, or ‘food’. They require

that the topics have sufficient overlap with the training distribution and view the problem in the

context of population shift at test time.

3.2 Fairness & Bias

There exists a common concern when deploying ML systems in the wild about how sensitive

they are to protected attributes such as race, gender, or disabilities. This concern increases when

those models are used in sensitive environments to make important life decisions. The infamous

Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) software mea-

sured case-by-case recidivism, and the investigation [89] into this software found that it exhibited

higher false positive rates for African-Americans on trial than for Caucasians. Unfortunately, due

to the systemic biases in data, algorithms, and even themechanisms in howwe design algorithms,

this calamity is not uncommon in machine learning.

The field of Fairness & Bias2 focuses on these issues and surfaces relevant work addressing

the most challenging cases where groups G𝑘 are decided by𝑊𝑘 related to protected attributes.

These works can be delineated by the type of bias involved or the type of fairness that we demand.
1See Rahimian and Mehrotra [152] for a thorough review of the DRO literature.
2See Mehrabi et al. [129] for a thorough review of the fairness literature.
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Some example types of bias are:

• Representation bias arises when the training dataset is not representative of the diversity

of the population. Examples are the commercial face recognition software biased against

darker skin tones [28], which each serve as the challenging groups G𝑘 . This results in

a poor recognition of dark-skinned populations throughout the world and is especially

problematic for African countries.

• Algorithmic Bias occurs when bias is a consequence of the choices that influenced the

model design, such as optimization, architecture, regularization, or feedback loops. An

example are modern social feeds, which favor highly engaging news items. This has a

direct effect on societal discourse and polarizes politics in a two-party system [99].

• Historical bias is the existing bias in society that seeps into our models even with perfect

sampling in place. Example are plentiful in language where associations between names,

careers, and beliefs have propagated from media into models through data [31]. Examples

include women being more likely than men to be caretakers or nurses and much less likely

than men to be doctors. This has a dangerous feedback loop in that it promotes incorrect

views that certain subgroups are less capable than others.

3.3 Heterogenous Treatment Effects

In medicine, Randomized Control Trials (RCT) are the gold standard for comparing treatment

efficacy. We want RCTs to generalize their results to broader parts of the population. How-

ever, frequently their results will not be true for patients that differ from those in the clinical

trial [32; 93]. Generalization requires assuming the stable unit treatment value, which says that

a medicinal outcome is unaffected by how the treatment was assigned or the treatment expo-

sure of the individuals involved. To attain more statistical precision, practitioners usually turn

20



to heterogeneity of treatment effect (HTE), an analysis that illuminates non-random variation

in a treatment for population subgroups. Further, the ultimate goal of HTE is to predict optimal

treatments for individuals. We thus see a qualitative connection betweenHTE and identifying the

most challenging cases in that HTE strives to delineate which subgroups are the most challenging

for the predictive model defined by the RCT.

For a thorough understanding of HTE, please see Velentgas et al. [193]; Varadhan et al. [192].

In short, it relies on subgroup analysis where the groups are selected based on the mechanism and

their plausibility, taking into account priors related to the treatment itself. However, it is insuffi-

cient to do only that because we lose too much statistical power when splitting the samples into

subgroups. One problem that arises is ‘p-hacking’ - even if some split suggests a strong statisti-

cal difference, this may be random noise. This follows as a result of there being many potential

ways to split the sample and researchers generally striving to find something of consequence in

the data. The common answer to this is to register a pre-analysis plan, but it is not a catch-all

solution. Another problem is that it is challenging to pre-define splits that adequately capture

the interactions, because the most affected group might be found at the intersection of multiple

attributes.

HTEmethods have recently begun incorporating machine learning [198; 40]. This is encapsu-

lated well by the method proposed by Ali et al. [2], which is not exactly HTE but takes inspiration

from it. They assume a fitted model 𝑓 : 𝑋 → 𝑌 , a validation set 𝑇 val, a test set 𝑇 test, a class of

subgroups G𝑘 , and an error measure L. Observe that both the regions defined by G𝑘 are known

in advance as well as which of the elements of the validation and test sets are in each G𝑘 . The

core of their algorithm is as follows:

1. For each (𝑥,𝑦) ∈ 𝑇 val ∪𝑇 test, compute L𝑓 (𝑥,𝑦).

2. For each group G𝑘 , compute𝑊 (G𝑘) =
∑

(𝑥𝑡 ,𝑦𝑡 )∈𝑇 test

(𝑥𝑣,𝑦𝑣)∈𝑇 val

𝑇 (L𝑓 (𝑥𝑡 , 𝑦𝑡 ),L𝑓 (𝑥𝑣 , 𝑦𝑣 )) where𝑇 (𝑎, 𝑏) = 1

if 𝑎 < 𝑏, 𝑇 (𝑎, 𝑏) = 1
2 if 𝑎 ≈ 𝑏, and 𝑇 (𝑎, 𝑏) = 0 if 𝑎 > 𝑏.
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3. Return argmaxG𝑘
𝑊 (G𝑘).

This procedure identifies the most challenging cases as an ordered list of subgroups G𝑘 with

degraded model performance. They experimentally evaluate this in three application settings:

disease forecasting, classifying satellite imagery by country, and distribution shifts in sentiment

analysis. Their approach differs from our contribution in the area of identifying challenging

subgroups (Part I) in that they do not admit a causal interpretation and that all potential subgroups

must be decided in advance.
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Part I

Identifying the Most Challenging Cases
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4 | Object Detection

4.1 Introduction

Object detection is an important task in computer vision that focuses on detecting instances of

visual objects of specified classes from a scene. Usually, that scene is manifested as a 2D digital

image. The goal is to predict tight bounding boxes for more exact class predictions at higher

confidence scores. Fundamentally, object detection is answering the question ‘what in the scene

is where?’

Object detection is driven by benchmark datasets where each datum𝐷 = (𝐼 , 𝐿)with 𝐼 an image

and 𝐿 a set of ground truth bounding boxes 𝑏𝑘 . Each 𝑏𝑘 = (𝑐𝑘 , 𝑥𝑘 , 𝑦𝑘 ,𝑤𝑘 , ℎ𝑘), where 𝑐𝑘 is the class

of the object in this box, (𝑥𝑘 , 𝑦𝑘) is the position of the top left corner of the box in the image, and

(𝑤𝑘 , ℎ𝑘) is the width and height respectively of the box in the image. A per-prediction attribute

that we care about is intersection over union (IOU). For a predicted box 𝑏𝑘 , its intersection is the

highest overlap it has with a ground truth box 𝑔 𝑗 that has not been claimed. Its union is the total

combined area of 𝑏𝑘 and 𝑔 𝑗 , accounting for their overlap. Its IOU is then the intersection divided

by union, which is bounded between 0 and 1. After a 𝑔 𝑗 has been used by some 𝑏𝑘 , it is considered

claimed and unavailable to other 𝑏𝑘 .

What metric do we use? To evaluate improvements, we need a metric that correlates well

with whether the bounding boxes are getting tighter and whether the class accuracy is improv-
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ing. The aforementioned IOU metric works well for single boxes, however we care most about

understanding performance over an entire test dataset. IOU is poor for that objective because

there is too much variability in images based on the number of ground truth boxes they have.

Instead, the field has settled on mean Average Precision (mAP). It ranges from 0 to 100, the higher

the better. It works by first taking all detections over all test images and drawing class-specific

precision-recall curves. For each class, the average precision is the area under the curve. ThemAP

is the mean of these scores. However, we usually are evaluating mAP@x, where ‘x’ is threshold,

typically 0.5. This threshold is used to gate true positive detections by their IOU. Consequently,

mAP@0.5 would be mean Average Precision but where the only positives are those with IOU

⩾ 0.5.

Modern deep learning approaches For an extensive background on the subject, please see

Zou et al. [220]. In this section, we present background understanding on modern deep learning

methods for object detection in order to better position our contribution. The first major modern

milestone was Girshick et al. [69], or RCNN.

Figure 4.1: Visual description of how RCNN [69] works. The second step is performed by selective search
and the fourth step by a Support Vector Machine.

In RCNN, we first assume access to a convolutional neural network (CNN) pre-trained for

classification on ImageNet. For each of our images, we then use selective search [189] to find

a set of potential object bounding boxes. In order to be fed into the CNN, we then warp these

bounding boxes to be a fixed size. That requires fine-tuning the CNN to work with these warped
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images. After fine-tuning, each proposal is fed into the CNN to get a feature vector. These vectors

are then used to train a binary Support Vector Machine [46] (SVM) for each class independently.

Additionally, a regression model is trained to adjust the predicted bounding boxes, also using the

CNN features as input. This paper jumped the field forward immensely, advancing mAP from

33% to 58%.

RCNN was slow because the number of proposals offered by selective search was very high,

we needed to generate a CNN vector for every image region, and the fine-tuning was a manual

process. It was also challenging to extend because a new SVM would need to be trained for each

class of interest. From the same team, Fast RCNN [68] was 200x faster and improved the mAP

score to 70%. It works by unifying the three models into one joint framework. The CNN features

were now aggregated in one forward pass on the image, and the same trunk is used for the object

classifier and the bounding-box regressor. To do this last step, they debuted ROI Pooling.

Figure 4.2: Visual description of Fast RCNN [68]. It unifies the models from RCNN into one joint frame-
work that, assuming selective search for the proposals, is able to do both classification and bounding box
regression in one step.

While this was a great improvement, it meant that we still had not solved a core speed problem

with RCNN – the use of selective search. Faster RCNN [157] addresses this issue by replacing it

with a Region Proposal Network (RPN) to generate the proposals. The RPN is a CNN by design

and so the result was the first real-time object detector trained end-to-end. The succession from

RCNN to Fast RCNN to Faster RCNN was by no means the only object detectors at the time, but

they represent well the progression of classical object detection being subsumed by modern deep

learning techniques. We use Faster RCNN in all of our experiments.
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Figure 4.3: Faster RCNN [157] improved upon Fast RCNN by proposing the Region Proposal Network to
generate the proposals, thereby replacing the prior bottleneck - the selective search module. With this in
place, we could train deep object detection models end-to-end.

Further advances While we use Faster RCNN, we include an amendment that is similarly in-

tegrated across the board in object detection modules - Feature Pyramid Networks (FPN, [122]).

The insight in FPN is that the deeper levels of a CNN are not conducive to localizing objects, only

to classifying them. This is because much of that localizing information is lost as we progress in

depth. Before FPN, most approaches would only use the last layer’s features for both localiza-

tion and classification. FPN added lateral connections to take advantage of high-level semantics

learned by intermediate layers.

We would be remiss not to mention Mask RCNN [74]. While we do not use it, it represents

how the field advanced to do image segmentation at the pixel level and not just bounding boxes. It

did this by adding a third branch that predicted the object mask in parallel with the bounding box

and object classification predictions. It had to improve the ROI Pooling layer because it requires

finer alignment in the pixels than is required when predicting only bounding boxes.

4.2 The most challenging cases

Consider an example scene where a model failed to detect a truck. Many explanations exist,

ranging from the scene composition to the weather conditions to the way the light reflects off of

a puddle and into the camera. The actual cause is unclear. This may be true even if the model

is strong in general at detecting trucks, at detecting given puddles, and detecting when there are
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Figure 4.4: Mask RCNN [74] extends Faster RCNN to additionally perform instance level image segmen-
tation by outputting the pixels where an object can be found.

light issues with the camera. It is the group defined by their intersection that is causing this error

and it is imperative that we identify this group in order to both a) gather like training data and

b) know if we have actually fixed the issue at test time. Real world examples of this abound for

all perceptual object detection systems in the wild.

Formalizing within the framework from Section 2.1, our challenging cases are contained

within the union of the family of groups G𝑘 and membership functions W𝑘 :

Ḡ = {G𝑘 : E
[
L(Y(𝑢𝑖), 𝑓 (𝑢𝑖)) |𝑢𝑖 ∼ G𝑘

]
≫ E

[
L(Y(𝑢𝑖), 𝑓 (𝑢𝑖)) |𝑢𝑖 ∼ IID

]
} (4.1)

In the above example, theW that decides a challenging group is whether the scene has pud-

dles, trucks, and light of a certain type. A familiar pattern for scenes in thewild are that they prove

difficult for our neural network models for a long time until they are addressed at the group-level

by gathering a dataset and retraining and/or fine-tuning. A notable reason for this is because

current data-driven approaches trained to minimize expected error are sensitive to imbalanced

data distributions. As a result, models with low expected error can still exhibit large errors on

atypical groups of data that are nonetheless important for safe driving.
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4.3 Overview of our contribution

The status quo approach to finding G𝑘 in the AV stack operates by first running it in real-world

conditions and recording everything. When there is a disengagement, we save that recording

with enough metadata so that humans can parse the metadata and videos to then categorize

what went wrong. It is at this point that we start to gain understanding on which groups G𝑘

does the model perform poorly. We attain this understanding because the humans in the loop

can pattern-match to understand the W𝑘 associated with the failures. With the constituent G𝑘

in hand, the data collection team then gathers a new large quantity of data representing the

challenging cases contained in Ḡ. We feed this new data into the model’s training, either from

scratch or fine-tuning, and retest the model on all categories gathered thus far. This approach

operates in hindsight by analyzing real-world scenes requiring driver intervention. It is also very

expensive and time-consuming, because identifying the causal factors in the failures requires

human experts to comb through the data and group commonalities.

We propose an alternative method to identify challenging groups in foresight. As

shown in Figure 4.5, instead of finding failures from previously collected data, we perform inter-

ventions on existing data to find those interventions that are detrimental to the performance of

an AV stack. We focus on perception, and object detection specifically, and identify interventions

that consistently cause performance drops as challenging groups.

If, in the prior example with the truck, we had arrived at the scene counterfactually by per-

forming a single intervention on another scene, e.g. changing a car to the truck, we would have

some clue that the underlying causal error is related to the truck itself. We can duplicate this in-

tervention across many scenes and see if it consistently remains a problem. While the exact cause

is still opaque, this method provides automatic insight into what interventions cause consistent

errors without collecting new data to analyze or manual scrubbing of failures.

Performing such interventions requires the ability tomanipulate scenes and re-render images.
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We demonstrate this in simulation, although recent advances [142] show promise in migrating

our approach to real-world scenes. We assume access to a scene graph representation of the

underlying scene on which we perform interventions. These interventions include changing

agent properties like position, rotation, or asset type, as well as global weather conditions. While

many interventions can potentially fail the detector, not all are useful. A scene with a flying

truck could drop perception performance, but it is unlikely to occur in the real world. Ideally,

interventions should be from the data distribution. We achieve this by training a density model of

scenes (represented as flattened scene graphs) using a masked language model (MLM), a keystone

in modern natural language processing pipelines. Taking interventions using the MLM amounts

to masking a part of the scene graph and re-sampling from the predicted distribution.

We verify that the prioritized groups we find via intervention are indeed challenging for the

base object detector and show that retraining with data collected from these groups helps in-

ordinately compared to adding more IID data. We additionally confirm our hypothesis that in-

terventions on the data distribution are preferred vis a vis data efficiency by comparing against

random interventions. The latter are confounded by their propensity to stray from the data dis-

tribution. We compare these results against an important baseline we call ‘Cause-agnostic Data

Collection’, which are scenes for which the model performs poorly according to the same cus-

tom scoring function used for the interventions. Finally, we examine what happens when we

take a second intervention using the MLM and find new veins in which we could mine specific

problematic groups, suggesting that there is room to continue this process.

4.4 Background

Notation Our objective is to ascertain the capabilities of a given object detection model 𝜙 . We

represent a scene 𝑥 as a triplet 𝑥 = (𝐺, 𝐼, 𝐿) of a scene graph (includes the camera parameters),

scene image, and a set of bounding box labels, respectively. We flatten and discretize 𝐺 to get
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Perception ModelLearned scene 
graph edit

BERT

Interventional discovery of consistent failure ‘causes’ which forms a challenging group

Perception Model

Discovery of failures at the scene level

Figure 4.5: Instead of retrospectively discovering individual failure cases for perception, we actively
search for causal interventions (edits) to existing scenes that consistently result in perception failures.
The middle shows an example of a single intervention causing perception failure, which we attribute to
the intervention, as opposed to the left where a combinatorial set of factors could explain the error. Con-
sistent failures through this type of intervention constitute a challenging group for the perception model
as seen on the right.

the corresponding sequence 𝑆 ∈ N𝑂 (𝑑) where 𝑑 is the variable number of objects in the scene.

The scene image 𝐼 ∈ R3 is the RGB image of the scene as observed by the ego car and is deter-

ministically defined by 𝐺 . The label 𝐿 is a set of ground truth bounding boxes 𝑙𝑘 ∈ R4, where

𝑘 < 𝑑 is the number of objects to identify in the scene. Scenes are drawn from a distribution

𝑝𝑅 (𝑥) dictated by the scene generation process 𝑅. Examples of 𝑅 include driving scenes from a

particular city or simulations from AV simulators. We also define a per-example scoring function

𝑓 : (𝜙, 𝐼, 𝐿) → 𝑦 ∈ [0, 1] as well as a threshold 𝜏 with which to gauge whether an intervention

was detrimental.

Scene Graphs are 3D world representations, with nodes corresponding to entities and edges to

hierarchical relationships between nodes, where the hierarchy is determined by physical presence

(e.g. road is a parent of the vehicles on the road). Entities include the vehicles and pedestrians,

the weather, the ego agent, and the camera parameters. Each node has associated attributes,

exemplified by continuous rotation, continuous position, discrete asset type, etc.
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Object Detection in images reached a milestone with Faster RCNN [157]. We use their ap-

proach as the representative state of the art detection module via the Detectron2 library [208].

Simulation is crucial to our method. We need a simulator that can initialize from 𝐺 , have

satisfactory traffic policies for autonomous vehicles, and return the current𝐺 on command. The

chosen CARLA [53] simulator satisfies these constraints and is ubiquitous in the field.

Masked Language Models (MLM) are density models for sequential data. Devlin et al. [52]

showed their tremendous efficacy in language generation. They are trained by receiving se-

quences of discrete tokens, a few of which are masked, and predicting what tokens are in the

masked positions. Through this process, they learn the data distribution [137; 200] of those se-

quences. At inference, they are fed a sequence with a chosen token masked and replace the mask

with their prediction. We perform causal intervention on scenes by asking a pre-trained MLM to

re-sample a single position from a scene graph - see Section 4.7.1 for details.

4.5 Understanding scenes through intervention

We aim to improve object detection models by utilizing the advantages of AV simulators over

collecting real world data, namely that they quickly synthesize scenes in parallel; that we have

fine control over the synthesis; and that they grant us supervisory labels automatically. A naive

approach is to generate lots of random scenes, test detection on those scenes, and set aside the

hard ones for retraining. A more advanced approach is to use adversarial techniques to find hard

scenes. Both approaches share two downsides: a) we are much more interested in scenes drawn

from a distribution that is similar to the distribution of real-world vehicle scenes and b) there is a

combinatorial challenge of understanding what in the scenes was the problem; only if we know

why the error is happening can we find test scenes having similar challenges and thus understand

if the issue is fixed after retraining.
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We propose an efficient procedure that tackles both concerns. We find hard groups of data for

a trained model 𝜙 by taking interventions on scene graphs with an MLM pre-trained on natural

scene distributions. The resulting scenes are grouped according to their generating intervention

type. We assess the model performance on each group with our surrogate scoring function 𝑓 .

The rationale behind this procedure is that solely identifying challenging scenes does not provide

insight into how to improve 𝜙 . However, asserting that a type of intervention is consistently

challenging narrows greatly where the model’s difficulties lay. After finding challenging groups,

we utilize hard negative mining [201; 106; 203], a common technique for improving models by

first seeking the hardest examples and then emphasizing those examples through retraining or

fine-tuning. Our approach notably achieves this without human labelers. See Figure 4.6 for a

complete diagram of our approach and Figure 4.9 for qualitative examples. We now explain in

detail each of the components of our method.

4.5.1 Per-scene scoring function

The scoring function 𝑓 should delineate between interventions that were minimal and those that

caused a significant change in perception performance, with the assumption being that large

negative (positive) changes imply that the intervention (reverse intervention) was detrimental to

𝜙 .

Our goal in designing 𝑓 is to replicate the average precision (AP) score’s intent, which values

having few predictions with high intersection over union (IOU) to ground truth targets. Another

goal was to evaluate entire scenes and not just target assets. This is important because even

though our interventions can be local to a node (weather is of course global), theymay still impact

detecting any scene constituent. We choose not to use the popular mAP because it is defined

over a dataset and thus is not suitable for identifying individual challenging scenes, which our

method requires before aggregating at the intervention level. To compute 𝑓 , we get the model’s

predictions and order them by descending confidence. We sequentially align each prediction with
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the highest IOU ground truth. If IOU > .05, an empirically chosen threshold, then we mark this

ground truth as claimed. The per prediction score is the product of the prediction’s confidence

and its IOU. We then take the mean over all predictions to get the model’s final score on this

example. The result is that predictions with low confidence or poor IOU reduce the model’s

score, while predictions with high confidence on quality boxes increase the score.

4.5.2 Causal interventions on simulated scenes

We draw from causal inference where interventions allow us to assess the causal links between

the scene and the model’s score. We change an aspect of a scene sequence 𝑆𝑖 , such as a rotation or

location of a specific vehicle, render this new scene 𝑆′𝑖 as 𝐼
′, and then compute the 𝛿 = 𝑓 (𝜙, 𝐼 ′, 𝐿′)−

𝑓 (𝜙, 𝐼, 𝐿) ∈ [−1, 1]. We decide sufficiency by whether |𝛿 | ⩾ 𝜏 , the aforementioned threshold

parameter. After performing this procedure 𝑁 times, filtering by sufficiency, and then grouping

by the intervention type, we arrive at a prioritized list of challenging groups defined by either

rotation, vehicle type, or weather pattern.

Generating interventions Uniformly random interventions produce unlikely scenes under

the true data distribution1. Even if such an interventionwould identify a weakness in the detector,

its utility in improving our model is unclear because such a weakness may be very far from a

realistic setting. We should favor finding groups that have higher probability under the data

distribution. This is especially important for a limited model capacity because learning to detect

flying cars and other unrealistic low-priority scenarios might take capacity away from pressing

needs.

Formally, with 𝑝R(𝑥) as the generation process, 𝑦 our surrogate score, and 𝑧 a confounder

that affects both 𝑥 and𝑦, we need to draw a counterfactual 𝑥′ that is independent of 𝑧 with which

we can causally probe the model’s weaknesses. Sampling from 𝑝R(𝑥) is challenging because
1Empirically, so do interventions sampled uniformly over the categories of interest.
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retrieving the same scene again with just one change is difficult. We could act directly on the

scene graph and model the conditional distributions of a single node change, then select changes

via Gibbs sampling, and define interventions as sampling from these conditional distributions.

Instead, we choose to discretize the scene [190; 60; 154] and use masked language models [54; 94]

because of their resounding recent success modeling distributions of combinatorial sequences

relative to other approaches, as demonstrated clearly in language. Specifically, we train an MLM

as a denoising autoencoder (DAE) to sample from 𝑝R(𝑥) [19; 127; 195], where the MLM operates

on discretized scene graphs, flattened to be sequential. This provides a mechanism to sample

counterfactuals from the data distribution DAE [137; 200].

For each scene drawn from the original training distribution, theMLM infers a new scene close

to the original distribution bymaking a singular semantic change overweather, vehicle asset type,

rotation, or location. For example, it may choose a vehicle instance and change that vehicle to

a different vehicle type. Or it may rotate that vehicle some non-zero amount. For weather, the

semantic changes could be over cloudiness, precipitation, precipitation deposits (puddles), wind

intensity, or the angle of the sun (light). We never add or delete a node, only semantically change

them. Because the MLM was trained to a low perplexity on data drawn from the distribution, it

samples scenes that are likely under the original distribution 𝑝R(𝑥). Because it is not the exact

distribution and errors will accumulate when applying many interventions sequentially, we in-

tervene for just one step in most of our experiments, equivalent to a single node change in the

scene graph. We expand this with an investigation into what happens when we take a second

successive intervention step.
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Figure 4.6: A complete diagram of our approach: We intervene on the scene by performing transfor-
mations like the pictured yellow truck becoming a white car and then evaluating the delta change in the
object detection model’s efficacy. The interventions are guided by a trained MLM. Repeat 𝑁 times and
group the scores to attain an ordered list of challenging groups drawn from vehicle type, weather, and
rotation.

4.6 Related Work

4.6.1 MLM as a generator

While we believe we are the first to propose using an MLM as a generator in order to take causal

interventions, Ng et al. [137] generates from an MLM in order to augment natural language task

training with generated examples. Mansimov et al. [127] and Wang and Cho [200] do so in order

to generate high quality examples for use in downstream examples, with the former producing

molecules closer to the reference conformations than traditionalmethods and the latter producing

quality and diverse sentences. None of these operate on scene graphs.

4.6.2 AV Testing and Debugging

See Corso et al. [45] for a detailed survey on black-box safety validation techniques. We believe

that we are the first to take causal interventions in static scenes to test AV detection systems, al-

though multiple approaches [67; 1; 104; 44; 139; 155] test AV systems through adversarial manip-

ulation of actor trajectories and operate on the planning subsystem. Wang et al. [202] generates
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Ground truth boxes Object detector’s output

Figure 4.9: Interventions taken by the MLM. The first row is the original scene, the second after an
intervention changing the red car to a biker, and the third after an intervention on the weather. The
left side shows ground truth and the right shows the detector’s predictions. Observe that the model’s
predictions deteriorate from being essentially perfect to missing the biker to missing every object. See
Figure 4.25 in the Supplementary for a rotation example.

adversarial scenarios for AV systems by black-box optimization of actor trajectory perturbations,

simulating LiDAR sensors in perturbed real scenes. Prior research has focused on optimization

techniques for adversarial scenario generation through the manipulation of trajectories of vehi-

cles and pedestrians. They either test only the planning subsystem in an open-loop manner or

the whole AV system in a closed-loop fashion. Unlike our work, they do not allow for causal

factor error interpretation. We focus on open-loop evaluation of AV perception and attempt to
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find causal factors for performance degradation through the generation of in-distribution coun-

terfactuals with a masked language model trained on scene graphs. Concurrently, Leclerc et al.

[112] proposed a configurable system to diagnose vulnerabilities in perception systems through

synthetic data generation. We show how to generate complex scene manipulations using the

MLM and study scenes of significantly higher complexity, although it is possible in theory to

implement our method within their framework.

4.6.3 Scene manipulation

Ost et al. [142] learn neural scene graphs from real world videos via a factorized neural radiance

field [130], while Kar et al. [91]; Devaranjan et al. [51] generate scene graphs of AV scenes that

match the image-level distribution of a real AV dataset as a means to produce realistic synthetic

training data. All three can be seen as a precursor to our method for handling real world data.

Dwibedi et al. [57] generate synthetic training data for object detectors by learning to cut and

paste real object instances on background images, which elicits a confounder because of how

artificial the pasted scenes appear.

4.6.4 Adversarial detection

Another way of viewing our work is through the lens of adversarial detection. Xie et al. [209]

showed that we should consider the detection task differently from the perspective of adversarial

attacks, but did not explore finding root causes. Liu et al. [124] use a differentiable renderer

to find adverse lighting and geometry. Consequently, images appear stitched, a confounder to

the natural distribution. Athalye et al. [7] synthesizes real 3D objects that are adversarial to 2D

detectors. They are limited to single objects, moving in the location, rotation, or pixel space, and

do not identify causal factors. Zeng et al. [213]; Tu et al. [188] synthesize 3D objects for fooling AV

systems, both camera and LIDAR, with a goal to demonstrate the existence of one-off examples.
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4.6.5 Challenging groups

Improving the model to recognize found groups, potentially sourced from the distribution’s long

tail, is an important goal. Numerous methods [156; 3] do this by re-weighting or re-sampling the

training set, with Chang et al. [37] focusing on detection. Sagawa et al. [166] uses regularization

and Wang et al. [204] uses dynamic routing and experts. All of these approaches require us to

know the problematic groups in advance, which would only happen after applying our method.

Further, they do not assess why the model is weak, but only seek to fix the problem. This makes

it challenging to understand if the core issue has been addressed. Gulrajani and Lopez-Paz [71]

suggests that these approaches are not better than ERM, which is how we incorporate our found

groups in Section 4.7.

4.7 Experiments

We run experiments to analyze our method and compare it against both taking random inter-

ventions and collecting cause-agnostic data. We then go on to assess what happens if we take a

second intervention step.

4.7.1 Setup

Model We selected six battle-tested models from Detectron2: 18C4, 18FPN, 34C4, 34FPN, 50C4,

and 50FPN. These are common ResNet [75] architectures that include a litany of other attributes

such as Feature Pyramid Networks [122]. We created additional configurations that are 2x, 3x, 4x,

and 5x wider versions of 50FPN, exemplified by 50FPN2x, for a total of ten tested architectures.

The C4 and FPN mix provided variation in model configuration, while the 18, 34, and 50 layer

counts and their widths vary in parameters. We made minimal changes to account for training

on our dataset and with 4 gpus instead of 8. All models were trained for 90000 steps (8-9 hours)
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without pre-training; none reached zero training loss.

Datasets We first selected the CARLA preset map – Town03 or Town05. Town03 is the most

complex town, with a 5-lane junction, a roundabout, unevenness, a tunnel, and more. Town05 is

a squared-grid town with cross junctions, a bridge, and multiple lanes per direction. Both have

ample space to drive around in a scene and discover novel views. Then we randomly chose from

among the pre-defined weather patterns. We sampled the camera calibration and the number

𝑉 of vehicle assets according to the Nuscenes [30] distributions, then placed those 𝑉 vehicles,

the ego agent, and 𝑃 = 20 pedestrian assets, at random town waypoints suitable for the asset

type. Finally, we attached the calibrated camera to the ego agent and enabled autopilot for all

agents. We stabilized the scene for 50 timesteps after spawning, then recorded for 150 steps

and saved every 15th frame. We needed the 2D ground truth boxes for each asset, but found

the suggested approach2 lacking because it frequently had trouble with occlusions and other

challenging scenarios. See the Supplementary (Section 4.10) for heuristics we developed to help

filter the ground truth boxes. For detection results on all charts, we report average precision (AP)

over vehicle datasets.

MLM We used the MaskedLMModel architecture3 from the FairSeq [143] library for our MLM.

We train and validate on held out IID datasets of sequences converted from scene graphs, where

the dataset was created as described in the prior paragraph. Encoding the scene graph language

required us to translate 𝐺 with continuous node attributes into discrete sequence 𝑆 . The first

10 tokens corresponded to weather attributes (cloudiness, precipitation, sun altitude angle, etc),

the next 5 to camera intrinsics, and the following 15 to the ego agent. After these 30, we had a

variable number of agents, each sequentially represented by 17 tokens. The two extra tokens for

the non-ego agents were related to vehicle type, which was fixed for the ego agent. Although the
2See client_bounding_boxes.py in the CARLA library, commit 4c8f4d5f191246802644a62453327f32972bd536.
3See masked_lm.py#L30 in the FairSeq library, commit 1bba712622b8ae4efb3eb793a8a40da386fe11d0
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Intervention Percent > 0.2 Total
Tier 1: Likely Challenging Groups

DiamondbackBike 24.4 123
Cloudy Dark 19.4 36
GazelleBike 18.9 122

Cloudy Dark Puddles 17.2 29
CrossBike 16.5 121

Rotation - 178 15 20
Rotation - 121 13.0 23

Tier 2: Borderline Groups
KawasakiBike 6.5 92
Cybertruck 6.4 94
Carla Cola 6.0 198

Sunny Puddles 5.4 56
Tier 3: Easy Groups

Citroen C3 1.6 188
Mercedes CCC 1.0 206

Table 4.1: Illustrative table of interventions, ordered by percent of times they were involved in a high
magnitude 𝛿 edit. Section 4.7.3 suggests our cutoff resides between 6.0 and 6.4.

10 weather attributes were each continuous, we selected these vectors from 15 weather choices

during training and so, with regards to the encoding, they each corresponded to discrete choices.

Because the camera intrinsics were drawn from the (realistic) discrete Nuscenes distribution, their

encoding was also discrete.

The agent tokens had a set order: discrete type (blueprint), then continuous (𝑥,𝑦, 𝑧) locations,

then (roll, yaw) rotations. To discretize the locations, we first subtracted their minimum possible

value. The resulting 𝑣 ∈ [0, 600) was encodedwith𝑤0 ∈ [0, 5] for the hundreds place,𝑤1 ∈ [0, 99]

the ones, and𝑤2 ∈ [0, 9] the decimal, so 𝑣 = 100𝑤0 + 10𝑤1 + 0.1𝑤2. This small precision sacrifice

marginally impacted scene reproduction. We encoded rotation similarly, albeit in [0, 360).

4.7.2 Interventions

In this section, we investigate the relative ordering of groups by the MLM, where the order is

determined by the degree to which that group is involved in a detrimental intervention.
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Table 4.1 shows selected ordered results from the intervention procedure described in Sec-

tion 4.5. We performed the procedure on 𝑁 = 10000 test scenes 𝐺𝑘 where our 𝜙 was an 18C

model trained on the base 10000 subset from Town03 and 𝜏 = 0.2. We additionally filtered the

groups to those that occurred at least 20 times in the procedure.

On the left side we see the intervention taken, for example changing a single agent type to

a Cybertruck (a large truck made by Tesla) or changing the weather such that it is now sunny

with reflective puddles. The second column shows the percentage of scenes that the intervention

produced a 𝛿 ⩾ 0.2. We include both when the change was to that target and the delta was

negative as well as when it was from that target and the delta was positive. The last column in

the table reports how many times in total this intervention occurred in the 10000 scenes.

Summarizing the table, we find that a handful of asset switches appear to be detrimental for

the model according to this metric. Small bikes had an outsized effect, as did cloudy weather and

the rotations where a car faced the ego agent or turned to the left. Just after the last bike are two

large vehicles, the Cybertruck and the Cola Car. The specificity of the weathers and rotations are

because they are translations of our discretization. Practically, there is a range of rotation and

weather values around the group that would all suffice. Finally, we do not include location results

in the table because the MLM frequently re-positioned the asset outside the camera’s view. This

said more about the asset than it did about the location and was rife with confounders based on

what was behind that asset. We could have localized the location interventions more by masking

MLM options, but leave that for future work.

4.7.3 Analysis of single-step interventions

After obtaining candidate groups from the designed interventions, we investigated the effect of

modifying the data sampling procedure to increase the prevalence of these groups by building

and evaluating datasets sampled from the MLM training set. For asset groups, for each datum,

we uniformly sampled 𝑛v ∈ [3, 6] vehicles selected from the scene. We then randomly chose
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vehicles 𝑣0, 𝑣1, . . . , 𝑣𝑛v in that scene, including vehicles that may not be in the camera’s purview,

and changed them to be the target group. So as to not accidentally introduce a bias through the

random process, we selected the same vehicles 𝑣𝑘 for all group datasets. For rotation groups, we

chose those same vehicles but rotated them to be the target rotation instead of switching their

asset. For weather groups, we changed those scenes to have the target weather instead.

Does our method correlate with AP score? Figure 4.10 shows evaluation results on these

groupswhen training 18C4 on four disjoint 10000 sized subsets of the data. Themodels performed

best on the IID data from Town03 and just a little bit worse on the same from Town05. Further,

they did exceptionally well on those two datasets, validating that they were trained sufficiently.

The group results are mostly in line with our expectations from the interventions - the models did

well on Citroen and Mercedes, poorly on the rotations, and terribly on the bikes. There is a large

jump from the reasonable results on ColaCar and SunnyPuddles to the mediocre results on Cy-

bertruck, which is directionally correct per Table 4.1. However, the strong results on CloudyDark

are surprising.

Summarizing, if the threshold for choosing a group is between 5.5% and 6.5% and we focus

Figure 4.10: Test results with config 18C4 when training on disjoint IID subsets. Results are consistent,
suggesting that the harder groups - bikes, rotations, and cybertruck - are ubiquitously hard.
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on interventions affecting vehicles directly (rotation and type), then our method correlates well

with empirical results. We have likely not found the exact causes plaguing the model, but we have

narrowed them greatly. The model’s regression when changing a car to a bike may be because it

performed poorly on bikes. It may also be because the car was occluding another vehicle or that

it itself was not occluded. This is especially true in light of the weather results suggesting that

weather is not a conclusive factor. Finding the exact cause is difficult, even in simple settings [6].

We leave such improvements for future work.

Figure 4.11: Results of training 18C4 on the base IID 10000 training set plus additional group data.
The five groups in the top left (Cybertruck, Cola Car, Diamondback, Gazelle, and Crossbike) were added
equally. For all charts, adding any one group improved all of the other evaluation scores, and at no point
did we lose efficacy on the IID data as a whole. Figure 4.20 (Supplementary) zooms in on the initial jump.

Can we address these issues by increasing capacity? Recent papers [214; 10] suggest that

scaling our models will improve results. An affirmative answer would mean we would not need

to collect more data. The left side of Figure 4.12 suggests a negative answer when testing over

a range of model sizes and types. We see that no model was distinguished with respect to their

final values when training on 10000 IID examples.
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Figure 4.12: Independently increasing the model capacity (left) and increasing the data size (right). No
model distinguished themselves and we quickly taper in how effectively the model utilizes the data. We
consider the dip in the capacity chart to be an artifact of the training procedure and using the same
settings for all models.

What if we increased IID data? This is preferable because IID data is easier to collect than

group specific data. The right side of Figure 4.12 suggests this will not be sufficient. Test efficacy

on town and group data jumped from 1000 to 10000 IID examples, but then slowed precipitously.

Figure 4.19 (Supplementary) affirms that this is unlikely to change by suggesting that the per-

centage of representation of the group is what matters, rather than absolute count.

What if we increase data and capacity simultaneously? Results remained negative, as

seen in Figures 4.13 and 4.21 (Supplementary). The left graphic in Figure 4.13 evaluates all models

on 85000 examples and the right one shows results for just the 34C4 model across a range of IID

data counts. First, observe that all of the models have similar evaluation scores. Second, they all

struggled on the harder groups. And third, as seen more clearly in Figure 4.21, more data yielded

a small accretive effect. All else equal, adding data may be better than adding model capacity.

Using group data We expect that adding data from the groups to the training set will improve

performance on that group. The top left plot in Figure 4.11 confirms this. We added an even
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Figure 4.13: Increasing both data and model capacity at the same time. The left side ranges over model
capacity with maximum IID data size (85000), while the right side ranges over IID data size with a bigger
model - 34C4.

Figure 4.14: How much IID data is required to match a small amount of extra hard group data. Top left
shows 20000 more IID data was required to reach par on IID with 250 group data. Bottom left shows that
we never reached the same level on Diamondbacks with IID data as with adding Cybertrucks, let alone
actual bikes.

amount of each group to the base 10000 IID subset and see that every group improved without

impacting the Town03 and Town05 results. The other plots in Figure 4.11 show what happens

when we add in training data from any one group 𝑀 . This predictably improved the model’s

results on 𝑀’s validation set. It surprisingly also improved results on all of the other 𝑀′ and
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the Town data. The improvement to 𝑀′ is smaller than that to 𝑀 , but it is notable. The gains

for a specific group were more pronounced for like groups - adding data from a biker group

(Diamondback, Omafiets, Crossbike) improved the other biker groups more than adding data

from the heavy car groups (Cybertruck, Colacar), and vice versa. Adding rotation groups helped

ubiquitously albeit not as much as adding a bike group did for the other bikes. The least effective

fix was adding the CloudyDark weather mode. Figure 4.19 shows that these trends persisted for

a base of 85000 IID data as well.

4.7.4 Comparison with random interventions

As we alluded to in Section 4.5, taking random interventions is problematic because whether the

group is reasonable for the distribution will be a confounder. We wish to prioritize the found

groups to be those that are more likely seen in the wild. We show here that this is true by taking

the 10000 source scenes used for the MLM interventions and applying random manipulations

of the same type. For example, if we changed agent 𝑎 𝑗 ’s vehicle type in 𝐺𝑘 → 𝐺MLM
𝑘

, then we

changed 𝑎 𝑗 to a random vehicle type in 𝐺𝑘 → 𝐺Random
𝑘

.

Table 4.2 shows results for random and MLM interventions over the same assets from Ta-

ble 4.1. Observe that the assets were ordered incorrectly with CarlaCola higher than both Cy-

bertruck and Kawasaki Bike. Random also had a higher percent of high magnitude threshold

events; In general, 13.2% of random interventions impacted the model versus 10.2% of MLM in-

terventions. We hypothesize this is because random re-sampling of elements of the scene graphs

corresponded to sampling from a data distribution that does not faithfully represent the original

training distribution. A 3% difference is large with respect to how much extra work would be re-

quired by humans combing through the data for plausibility and whether to include in retraining.

Figure 4.15 shows density plots for rotation and cloudiness interventions, conditioned on

the intervention having been detrimental. We use density plots to demonstrate the differences

between Random andMLM because these interventions are continuous for Random. For rotation,
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there was a mostly steady plateau for Random while MLM showed a clear single group aligned

with the bi-modal humps in Original. For weather, Original and MLM were almost overlapping

and, while Random was similarly bi-modal, its shape was less pronounced and more even as

expected. These both reinforce our claim that the advantage of MLM is that it gears us towards

higher priority groups to fix that are in line with the actual data distribution.

Figure 4.15: Comparing rotation andweather results forMLMandRandom intervention strategies. MLM
aligns with Original much better than Random does. Further, Random has a much wider berth of possible
problematic modes, a concern given practical limits to model capacity and data budgets.

Intervention MLM Rand Rand Total
CrossBike 16.5 19.0 126
GazelleBike 18.9 18.7 171

DiamondbackBike 24.4 15.8 152
Carla Cola 6.0 8.1 210
Cybertruck 6.4 6.8 176

KawasakiBike 6.5 6.6 121
Citroen C3 1.6 3.5 197

Mercedes CCC 1.0 3.8 183

Table 4.2: Results for MLM and Random asset intervention strategies, ordered by the percent of times
that they were involved in a high magnitude 𝛿 random event. While the top three are the same, Random
flubbed the dividing line by placing a) Cybertruck above Kawasaki and b) Carla Colawell ahead of both. Its
failure rate for the easy cars wasmuch higher and, in general, posited 3%more failures thanMLM. All told,
its results created more need for human verification and testing and reduced the degree of automation
that we could employ to find hard groups.
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4.7.5 Comparison with cause-agnostic data collection

We saw in Figures 4.11 and 4.19 (Supplementary) that adding group data into training not only

addresses the issue for that group but even improves the performance on other groups. The cost

is that we have to perform the entire described procedure to find our interventions and then cast

a net for data of those types in order to retrain the model. An important baseline comparison

would be to find data instances where the model performs poorly on the aforementioned scoring

function (Section 4.5) and retrain by including those alongside IID data. This approach, which we

christen cause-agnostic data collection, would save us the need to take interventions or gather

type-specific data to retrain.

Figures 4.16 and 4.22 (Supplemetary) show grids of results with this approach, respectively

for each of our two configurations, covering four threshold values - 0.2, 0.4, 0.6, and 0.84. We

test all thresholds because we do not know which will be best a priori. We then randomly draw

150000 IID scenes, test on these scenes, and filter into buckets based on whether the resulting

score was less than the given threshold. We randomly choose 10000 scenes from each bucket and

add them in tranches to the original 10000 IID data training set.

Observe first that the model’s performance increases across the board with this data. For

example, on the bikes, which were the most challenging groups, the model increases from below

30 to hover around 40 as more data is added. Next, as expected, the 34C4 model is a bit better

than the 18C4 model for all thresholds. Third, as the threshold increases, the results improve. One

hypothesis why is because the lower threshold datasets have fewer annotations and consequently

emptier scenes than the higher threshold datasets.

Most importantly, how does this compare to our proposed approach? The best results for

this baseline are found in threshold 0.8. Compared against the first chart in Figure 4.11 - ‘Adding

Five Groups’ - we see that the IID Town03 and Town05 results are about the same, the easier
4We did not include results on thresholds below 0.2 because they showed the same trend.
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Figure 4.16: Baseline cause-agnostic data collection results. We train 18C4 on the original IID 10000
training set plus additional cause-agnostic data. The latter is chosen by first selecting a threshold from
[0.2, 0.4, 0.6, 0.8], then randomly selecting simulated data for which the model gets at most that score
using our scoring function from Section 4.5. The graphs suggest a slight AP increase as the threshold
increases, likely because lower threshold scores lean disproportionately towards fewer annotations and
emptier scenes. Comparing these results with Figure 4.11, we see that this baseline is comparable for
arbitrary groups, like the Rotations, but unsurprisingly much worse for data-specific improvements. For
example, the first and second charts of Figure 4.11 show that our method achieves much higher gains in
the bike classes.

classes (Mercedes and Citroen) slightly surpass our strong results, and the Rotation results are

better than ours (high 50s versus low 50s). However, for the classes where we actually add data,

our method’s results are much better than the cause agnostic results. For example, the most

challenging groups - the bikes - reach only an AP score of 43 with cause-agnostic collection but
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go above 50 with our method. This is not surprising as adding group-specific data should boost

the performance. In this light, our method’s advantages over this baseline are clear. First, we can

ascertain which of the groups are actually problematic. This is no small feat; without our method,

we would not have actually known which groups to track when performing cause-agnostic data

collection. And second, we still produce a large gain over cause-agnostic data collection when we

add in group-specific data. That this effect is even more pronounced for the challenging groups

suggests that our method is integral for understanding on which groups we should spend the

additional capital necessary to produce representative datasets.

Why do these groups exist? With causal groups in hand, we can ascertain why our models

failed: The bikes are underrepresented in Nuscenes; The model rarely saw turning cars (Rotation

121) due to the town layout; The model rarely saw cars facing it (Rotation 178) due to the traffic

policy and car quantity; The large cars cause occlusion labeling issues, Cybertruck more so than

Cola car. Without the groups, these issues can only be hypothesized.

4.7.6 Analysis of two-step interventions

We analyze what happens when we take a successive intervention step with the MLM to refine

our causal understanding. We consider the following, where 𝛿𝑘 𝑗 = 𝑓 (𝜙, 𝐼 𝑗 , 𝐿 𝑗 ) − 𝑓 (𝜙, 𝐼𝑘 , 𝐿𝑘), the

change in the model’s efficacy from when it evaluates scene 𝑘 to when it evaluates scene 𝑗 .

1. Which second steps are detrimental to the one-step edited scene with threshold of 𝜏2 = 0.2?

This assesses which refinements are impactful to first edits that have a minor effect. Here,

𝛿10 ≥ 𝜏1 = 0.2 and 𝛿21 ≥ 𝜏2 = 0.2, which together imply that 0.8 ≥ 𝛿10 because all 𝛿 < 1.

2. Which pairs are detrimental to the original scene with a threshold of 𝜏2 = 0.2, regardless of

the first step’s result? This is assessing which pair of refinements are most worth exploring.

Here, 𝛿20 ≥ 𝜏2 = 0.2.
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3. Conditioned on the one-step scene passing a threshold of 𝜏1 = 0.2, which two-step scenes

are as bad, i.e. they pass a threshold of 𝜏2 = 0.05? Here, 𝛿21 ≥ 0 and 𝛿10 ≥ 𝜏1 = 0.2.

So that the search space is not prohibitively large, we limit the possible first step we take to be

uniformly randomly chosen from a set 𝐽 that we previously analyzed and which represent a wide

cross section of the challenging interventions - 𝐽 =
{
Diamondback Bike, Gazelle Bike, Crossbike,

Cybertruck, Carla Cola, Cloudy Dark (CD), Sunny Puddles (SP), Rotation 178, Rotation 121
}
.

We further limit the second step to be from a different category than the first, e.g. if the first

choice was an asset change, then the second step must be either a random rotation or weather

change. This second step is performed similarly to how we did the original interventions, albeit

𝑁 = 60000 times instead of 10000 . After producing these scenes, we then score them on the same

18C4 model trained on the base 10000 subset from Town03.

Results in Table 4.3 address each question. For Question 1, the small vehicles are again the

most problematic interventions, with four bikes, the Isetta (small car), and the two motorcycles

(Harley and Yamaha) all in the top eight. After Rotation 10, which is a new addition, there are no

second edits for which at least 9% pass the threshold. Because this question requires that the first

intervention was not (too) detrimental - otherwise the second intervention would not be able to

pass the 𝜏2 = 0.2 threshold - that these results are similar to the prior results in Table 4.1 is not

surprising.

For Question 2, we see very high probability detrimental pairs. Additionally, the first time

a non-weather appears as the initial intervention is not until index 113. That the weathers are

appearing first is explainable by there being only two weather options possible in the first inter-

vention (by fiat), which makes it easier for them to be selected first than asset changes. There are

many more weathers possible in the second intervention, and so any one of them has a hard time

distinguishing itself, which makes it challenging for a (rotation, weather) or (asset, weather) pair
5We do not report where strictly 𝜏2 > 0.0 because those results disproportionately tilt towards scenarios where

the first edit was only somewhat detrimental. This is because if the first edit brought the score to 𝜏2 or less, then the
second edit would not pass muster regardless of its efficacy.
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Intervention Percent > 𝜏1,2 Total
Question 1

GazelleBike 21.4 229
CrossBike 20.2 282
Carla Cola 18.9 355

DiamondbackBike 18.3 218
BMW Isetta 16.9 438
KawasakiBike 16.3 282

Harley Davidson 16.2 321
Yamaha YZF 15.6 257
Rotation 10 13.2 120

Question 2
(CD, KawasakiBike) 62.5 72
(SP, Harley Davidson) 61.5 91
(SP, Rotation 30.0) 60.4 53
(SP, KawasakiBike) 60.3 73

(SP, Isetta) 58.7 121
(SP, Grand Tourer) 56.6 129

(CD, Harley Davidson) 54.3 92
. . . First non-weather starting edit at 113 . . .

(Cybertruck, Rotation 160) 41.3 63
Question 3

(SP, Rotation 162) 20.9 67
(Carla Cola, Rotation 79) 20.8 48

(CD, Volkswagen) 20.8 125
(CD, CrossBike) 20.3 64

(CD, Rotation 290) 19.8 81
(SP, Jeep) 19.4 103

(CD, DiamondBike) 19.3 57
(CD, Patrol) 17.8 107

Table 4.3: Illustrative table of second-step interventions, ordered by the percent of time that they were
involved in a high magnitude 𝛿 intervention. See the ‘What happens if we take another step?’ paragraph
in Section 4.7.6 for analysis.

to appear.

However, we are not actually sure why the probabilities are so high. They suggest that it is

quite easy for a pair of interventions to confuse the model. Figure 4.17 suggests that the MLM is

already off of the data manifold given that the second-step rotations it is choosing have such a

different distribution than the selections we see in Figure 4.15. That being said, it is surprising to
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Figure 4.17: Rotation density plot for second interventions, conditioned on the intervention being detri-
mental. That the shape of this plot is very different from the MLM and Original plots in Figure 4.15
suggests that the MLM is applying a different distribution on the second intervention. In other words, it
has already drifted.

us that making the weather sunnier and then changing an asset to a bike for example has such a

detrimental effect.

Question 3 is asking which second interventions do not improve the score given that the first

intervention was sufficient detrimental. We see a high concentration of first-step weathers in the

top, but it is not as ubiquitous as it was in Question 2. While not shown, the results continue to

have higher than 10% probabilities up to place 113, with an asset change usually mixed in in at

least one intervention.

4.8 Conclusion

Combining causal interventions, MLMs, and simulation, we presented a novel method that finds

challenging groups for a detection model in foresight by having the MLM resample scene con-

stituents. These interventions help identify and prioritize groups with poor performance without

humans in the loop. We demonstrate our advantage against a baseline using cause-agnostic data

upon which the model performs poorly. Our approach is a significant step towards addressing

safety-critical concerns in AV. Beyond AV, we think the associated will benefit the causality com-
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munity because the current state of the art [101] involves static datasets with low complexity

tasks.

Our method has limitations. We cannot yet apply it to real world data because we need full

control over the scenes for the MLM to properly operate. Ost et al. [142] is a step towards over-

coming this concern. Until then, the so-called sim2real gap [165; 86] is ever-present. Another

limitation is that while we do show compelling results when taking a second step, these results

also suggest that the MLM is already drifting from the data distribution and so its utility is re-

duced. In light of this, we do not expect our method to continue to work for many steps without

further research because the samples will inevitably drift from the data distribution. Intervening

multiple times is necessary for understanding complicated causal interactions. Each of these two

limitations are of course also potential future directions. A final one is understanding better why

many groups improved when adding a single group, which remains a compelling question.

4.9 What did we learn about the most challenging cases?

We learned that we could come up with methods that capably identify what are the challenging

cases well before they are illuminated through hindsight analysis. We did this by proposing

and verifying a strong approach for causal understanding of what are the challenging cases. We

then pushed on our method to deepen our understanding of the causes and found that further

interventions are likely no better than random interventions in terms of improving the model.

The result is that while our initial approach is sound, more research is needed to extend it to finer

causal understanding.

While our approach is applicable to many domains, we focused our study on applications in

robotics systems, specifically object detection in the service of autonomous vehicles. Figure 4.18

displays how it fits into the machine learning application framework from Section 2.3. This con-

tribution addresses the data loop and lets us better understand the root causes of the model’s
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problems, which improves our data collection efficiency. It does this by letting us better priori-

tize what data to collect in order to most improve the model each time we traverse the framework.

Model
ArchitectureOptimizer

Data
Collection

Training Data

Evaluation
Data 1, ..., N

Training  
Procedure

IID from Simulator

Evaluation  
Procedure

Trained  
Model

Driving scenes. Features X
are images; labels Y are

ground truth boxes.

IID; Snow; Night;
Motorcyles

Supervised SGD

Adam Faster RCNN
with FPN

Mean Average
Precision (mAP)
over the dataset.

Which semantic groups 
are challenging for f? 

Figure 4.18: The Machine Learning Application Framework for this contribution. Observe that the mAP
scores are computed over each evaluation dataset. This lets us prioritize what data to acquire next, thereby
improving the efficiency of the whole process because each loop capably improves the model.

Finally, this contribution is vital towards building a communicative and visually aware robot

that can capably learn new tasks. This is because the status quo approach relies on hindsight un-

derstanding of errors in the wild. That is unsatisfactory given the reasonable demands of having

robots in every locale across the globe. In order for them to understand the visual scene, they

either will need to have much more capable online learning or will need means to predict where

they will likely fail so that we can fix them before they do. The former, online learning, is notably

challenging in modern machine learning with trillions of parameters and massive datasets. The

latter is the approach that we take and about which we are very excited.
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4.10 Supplementary

4.10.1 Table of notation

Symbol Description
𝜙 Detection model
𝑥 Scene
𝐺 Scene graph

𝑑 ∈ N Number of objects in scene
𝑆 ∈ N𝑂 (𝑑) Sequence encoding of scene graph
𝐼 ∈ R3 Scene image
𝐿 ∈ R4×𝑑 Scene bounding box labels

𝑙𝑘 ∈ R4, 𝑘 < 𝑑 The bounding box of the 𝑘th object
𝑅 Scene generation process

𝑝𝑅 (𝑥) Distribution over scenes
𝑓 : (𝜙, 𝐼, 𝐿) → R Per-example scoring function

𝛿 ∈ R The change in score by intervention: 𝛿 = 𝑓 (𝜙, 𝐼 ′, 𝐿′) − 𝑓 (𝜙, 𝐼, 𝐿)
𝜏 ∈ R Threshold value for classifying interventions as detrimental

Table 4.4: Table of notation

4.10.2 Dataset details

CARLA does not spawn agents that collide with the environment, even the ground. To ensure

agents are grounded, for any agent spawn collision, we increase its Z coordinate and try respawn-

ing. This allows us to place every agent on the map, albeit some of the conflicting agents have to

‘drop’ from above, and consequently we wait for 50 timesteps so those agents can settle. In that

duration, the autopilot policy guides the agents to satisfactory positions. After those 50 steps, we

then record for another 150 steps and save every 15th frame. The resulting episodes each have

ten frames with an initial distribution influenced by Nuscenes and CARLA, and a traffic policy

influenced by CARLA.

We found the existing suggested approach for getting 2D ground truth boxes lacking because

it frequently has trouble with occlusions and other challenging scenarios, so we developed the
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following heuristics to help filter the boxes. While not airtight, the resulting ground truths were

qualitatively more reliable.

• Filter Height: We require that the final 2𝑑 box is at least 30 pixels. This is in between the

easy (40) and medium/hard (25) settings on KITTI [66].

• Max Distance: We require that the ground truth detection not be more than 250 meters

away. We enforce this through the use of a depth camera attached to the ego agent.

• Visible Pixel Percent (VPP) andMin Visible Count (MVC): The 2D box is attained by pairing

the 3D box with the camera’s calibration. With the latter, we get the closest point 𝑃 to the

ego agent. We then get the depth camera’s output at the 2D box. VPP asks what percent 𝑡

of that box is closer than 𝑃 and filters it if 𝑡 ⩾ 80, ensuring that at least 20% of the object

is not occluded. MVC asks how many pixels 𝑞 are further than 𝑃 and filters it if 𝑞 < 1300,

ensuring that the occluded object is big enough.
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4.10.3 Supporting charts

Figure 4.19: Performance of 18C4 on select test sets when adding mode data from the three bikes, the
ColaCar, and the Cybertruck on top of either 10000 or 85000 base IID data. Towards improving the results,
these two charts show that it is not the absolute count of the mode data that is important but rather the
percent of it relative to the IID data. We see that in how the trendlines for the two bases are only consistent
in the percent chart. The other modes are not shown for clarity but it holds in general.
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Figure 4.20: Results adding mode data to the base IID 10000 training set. This is the same as Figure 4.11
but zoomed into just [0, 1000]. The five modes in the top left are the Cybertruck, Cola Car, Diamondback,
Gazelle, and Crossbike, each added in equal proportion.

Figure 4.21: We can see that the model size does matter in that for every group the 34C4 model improves
over the 18C4 model. However, the increase is quite small and the data quality and quantity appear to
matter much more.
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Figure 4.22: Baseline results training 34C4 on the base IID 10000 training set plus additional cause-
agnostic data. As specified in Figure 4.16, the additional data is chosen by first selecting a threshold from
[0.2, 0.4, 0.6, 0.8], then randomly selecting simulated data for which the model gets at most that score
using our scoring function from Section 4.5. This graphic is included for completeness - the results align
with what we expect in that they are a little bit better than when using Config 18C4 for the same task and
that they are worse than when performing our proposed method.
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Ground truth boxes

Object detector’s output

Figure 4.25: Interventions taken by the MLM. The first row is the original scene, the second after
an intervention changing the police car to a biker, and the third after an intervention rotating the biker.
The left side shows ground truth and the right shows model predictions. The model’s predictions were
very good for the first scene; in the second scene, it preferred a blank space on the left side to the biker,
although the biker did get an 87% confidence. After rotating the biker, that confidence reduces to 34%
while the model still hallucinates a vehicle on the left side with 95% confidence.
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Part II

Addressing the Most Challenging Cases
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5 | Episodic Reinforcement Learning

5.1 Introduction

As discussed in Section 2.1, reinforcement learning traditionally assumes that an agent is learning

in an episodic Markov Decision Process (MDP) consisting of a tuple (S,A, R, P, 𝛾 ) representing

the state space S, the action space A, the reward function R, the discount factor 𝛾 , and the

transition probability function P. That it is episodic means that there is a limit on the number of

steps that we allow the agent to learn before resetting the environment back to an initial state.

Most commonly, that state is a fixed special 𝑠0 ∈ S. To remain Markovian, episodic MDPs must

include the step count in their state. In practice, while training agents we do not include this

detail and, further, we also ignore the last transition that occurs when we reset the environment

from 𝑠𝑇 → 𝑠0.

The goal is to learn an optimal policy function 𝜋 : S → A that expresses the distribution

over actions from a state. Frequently, algorithms also learn an accompanying value function 𝑣 :

S → R1 that expresses the perceived discounted sum of rewards starting in that state. Formally,

the value of a state 𝑠 ∈ S when using policy 𝜋 is given by:

𝑉𝜋 (𝑠) = E
[ ∞∑︁
𝑡=0

𝛾 𝑡𝑅(𝑠𝑡 , 𝑎𝑡 )
��𝑆0 = 𝑠, 𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡 ), 𝑠𝑡 ∼ P(𝑠𝑡−1, 𝑎𝑡−1)

]
(5.1)

1The range of 𝑣 is often restricted further to [0, 1].
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Value functions are widespread even when they have no bearing on inference, such as in

popular algorithms like Proximal Policy Optimization [173]. This is because they help stabilize

the expected return computation via Generalized Advantage Estimation [172].

While it is not a requirement to use episodic reinforcement learning when training agents to

learn tasks, it is a baseline approach for other methods because it directly expresses the concrete

motivation of an agent having to decide what action to take in a given state in order to attain the

highest task-driven reward.

5.2 The most challenging cases

The nature of this learning means that there is a heavy bias towards the initial start state. Con-

sider the task of opening a tin can. If we always start our agents with the can opener just to their

right, then starting it inside of a drawer poses an unexpected challenge. This becomes especially

concerning in environments with sparse rewards and long episode lengths. In those conditions,

the agent rarely sees a reward and can struggle to update its understanding of the environment.

Instead, it learns that almost everything near 𝑠0 gives it zero signal. Without said signal, it be-

comes inordinately challenging to satisfy the credit assignment problem. As a result, the sample

complexity to learn the long range dependencies necessary to the chain of events in a non-trivial

task is too high.

A core problem is that the agent typically receives high reward only in states close to the

goal state. Reward diminishes as we move farther away and, coupled with the sparse signal, the

agent’s ability to correct their behavior diminishes. Consequently, the error rate increases, and

we commonly see groups of states where the error patterns are similar.

These groups are the challenging cases. With the aforementioned can opener example,

one group G𝑘 are the states defined by W𝑘 deciding that the tool is in a drawer; the agent has

to learn about that possibility. Another G𝑗 is defined by W𝑗 deciding that the tool is in the
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dishwasher. A third could be one that is traditionally found later in an episode - the can opener

has been dropped on the floor. Each of these are semantically different states, or groups of data.

Agents typically learn on a fixed start state, which is equivalent to having their initial start state

𝑠 ∈ G𝑆0 . This leaves them ill prepared when they encounter states that are off the beaten path,

like those in G𝑗 above. This is especially true with sparse rewards and/or long episode lengths.

5.3 Overview of our contribution

There are many solutions that have been posited to address this problem. One solution is to re-

frain from using reinforcement learning until after the agent has a good starting policy. That

policy is often instilled with behavioral cloning [11; 164; 50] from an already existing policy that

is satisfactory but not optimal. Human demonstrations are frequently used, such as in AlphaS-

tar [196].

Another solution is to use curiosity-driven learning. In Pathak et al. [146], ‘curiosity’ is

formulated as the error in an agent’s ability to predict the consequence of its actions. That error

is determined by the visual feature output from a learned self-supervised inverse dynamics model

and compared against the actual visual ground truth, a surrogate measure for surprise. These

approaches [29; 169] do not produce an optimal policy directly, but instead suggest a different

route to exploration by first understanding the environment sufficiently and only then trying to

produce a working policy for the task at hand.

We propose an alternative solution to address the most challenging cases. The idea is to cre-

ate a curriculum for the agent via reversing a single trajectory (i.e. state sequence) of reasonably

good, but not necessarily optimal, behavior. That is, we start our agent at the end of a demon-

stration and let it learn a policy in this easier setup. We then move the starting point backward

until the agent is training only on the initial state of the task. We call this technique Backplay

and display a graphical interpretation in Figure 5.1. As we show in Section 5.7, it vastly decreases
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the number of samples required to learn a good policy. Notably, the Backplay-trained agent is

able to learn just as well in environments with a single sparse reward as in those with a dense

shaped reward.

This solution is advantageous over traditional behavioral cloning because it does not require

the demonstrator’s actions at any step, but instead just the states. This allows for the Backplay-

trained agent to design a policy whose efficacy is far greater than that of the demonstrator’s

policy, which is challenging to do with behavioral cloning.

It is advantageous over curiosity-driven learning because it directly optimizes the policy on

the task we care about. Consequently, our resulting policy has higher efficacy when utilized at

test time. Curiosity-driven approaches try tomake up for this by beingmore robust to generalized

downstream tasks, which is within our scope.

5.4 Backplay Algorithm

5.4.1 Formalization

We use the standard formalism of a single agent Markov Decision Process (MDP) defined by a

set of states S, a set of actions A, and a transition function T : S × A → P(S) which gives

the probability distribution of the next state given a current state and action. The agent chooses

actions by sampling from a stochastic policy 𝜋 : S → P(A), and receives reward 𝑟 : S×A → R

at every time step.

The agent’s goal is to construct a policy which minimizes its discounted expected return

𝑅𝑡 = E
[∑∞

𝑘=0 𝛾
𝑘𝑟𝑡+𝑘+1

]
where 𝑟𝑡 is the reward at time 𝑡 and 𝛾 ∈ [0, 1] is the discount factor, and

the expectation is taken with respect to both the policy and the environment.

The final component of an MDP is the distribution B ∈ S of initial starting states 𝑠0. This

is usually a fixed state 𝑠0 ∈ S. The key idea in Backplay is that we do not initialize the MDP
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Figure 5.1: Backplay: We first collect a demonstration, from which we build a curriculum over the states.
We then sample a state according to that curriculum and initialize our agent accordingly.

in only a fixed 𝑠0. Instead, we assume access to a demonstration which reaches a sequence of

states {𝑠𝑑0 , 𝑠𝑑1 , . . . , 𝑠𝑑𝑇 }. For each training episode, we uniformly sample starting states from the sub-

sequence {𝑠𝑑
𝑇−𝑘 , 𝑠

𝑑
𝑇−𝑘+1, . . . , 𝑠

𝑑
𝑇− 𝑗 } for some window [ 𝑗, 𝑘]. Note that this training regime requires

the ability to reset the environment to any state. As training continues, we ‘advance’ the window

according to a curriculum by increasing the values of 𝑗 and 𝑘 until we are training on the initial

state in every episode ( 𝑗 = 𝑘 = 𝑇 ). In this manner, our hyperparameters for Backplay are the

windows and the training epochs at which we advance them.

5.4.2 Quantitative Analysis

Next, we formally explore the conditions underwhich Backplay can improve the sample-efficiency

of RL training. More specifically, we will derive an estimate for the sample complexity of a Q-

learning agent trained with Backplay in a sparse reward navigation environment and we will

show that it is significantly better than that of standard RL. Note that we simplify to a setup

using a single starting state for each training stage instead of sampling from a window. In the

notation from Section 5.4, 𝑘 = 𝑗 . One can verify that the general setup where 𝑘 > 𝑗 is a more

favorable regime, and therefore our approach provides an upper bound on the sample complexity.

Consider a connected, undirected graph𝐺 = (𝑉 , 𝐸). An agent is placed at a fixed node 𝑣0 ∈ 𝑉

and moves to neighboring nodes at a negative reward of −1 for each step. Its goal is to reach a

target node 𝑣∗ ∈ 𝑉 , terminating the episode. This corresponds to an MDPM = (S,A, 𝑃, 𝑅) with
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state space S ∼ 𝑉 , action space A ∼ 𝐸, deterministic transition kernel corresponding to

𝑃 (𝑠𝑡+1 = 𝑗 | 𝑠𝑡 = 𝑖, 𝑎𝑡 = (𝑙, 𝑘)) = 𝛿 ( 𝑗 = 𝑘)𝛿 (𝑙 = 𝑖) + 𝛿 ( 𝑗 = 𝑖)𝛿 (𝑙 ≠ 𝑖)

and uniform reward 𝑅(𝑠𝑡 , 𝑎𝑡 ) = −1 for 𝑠𝑡+1 ≠ 𝑣∗. Observe that the first term, 𝛿 ( 𝑗 = 𝑘)𝛿 (𝑙 = 𝑖),

occurs in a normal setting where actions proceed from state to state. The second term, 𝛿 ( 𝑗 =

𝑖)𝛿 (𝑙 ≠ 𝑖), accounts for a degenerate case where there are no valid actions and the agent remains

in one state. These are disjoint due to the 𝛿 (𝑙 ≠ 𝑖) and 𝛿 (𝑙 = 𝑖) terms.

Assume that 𝜋 is a fixed policy on M, such that the underlying Markov chain is irreducible

and aperiodic:

𝐾𝜋 (𝑠′, 𝑠) =
∑︁
𝑎∈A

𝑃 (𝑠′ = 𝑗 | 𝑠0 = 𝑠, 𝑎0 = 𝑎)𝜋 (𝑎 |𝑠0 = 𝑠)

Note that 𝑠′ = 𝑗 and 𝑠0 = 𝑠 because we are evaluating 𝐾𝜋 as if we are starting state 𝑠 and trying

to reach 𝑠′.

𝐾𝜋 has a single absorbing state at 𝑠 = 𝑠∗ := 𝑣∗. Our goal is to estimate the value function of

this policy, equivalent to the expected first-passage time of the Markov chain 𝐾𝜋 from 𝑠0 = 𝑠 to

𝑠∗:

𝑉𝜋 (𝑠) = E𝜏 (𝑠, 𝑠∗) = Emin{ 𝑗 ≥ 0 ; 𝑠 .𝑡 . 𝑠 𝑗 = 𝑠∗, 𝑠0 = 𝑠, 𝑠𝑖+1 ∼ 𝐾𝜋 (·, 𝑠𝑖)} .

Wemake a simplifying assumption that the function approximation is completely determined

by projecting this chain into the process 𝑧𝑡 = dist𝐺 (𝑠𝑡 , 𝑠∗) ∈ {0, 1, . . . , 𝑀}, with 𝑀 = diam(𝐺).

That is, we consider a latent variable at each state indicating its distance to the target. Since 𝑧𝑡 ’s

transition probabilities are not a function of only 𝑧𝑡 , it is in general not Markovian. Its Markov

approximation 𝑧𝑡 is defined as the Markov chain 𝐾 given by the expected transition probabilities

Pr(𝑧𝑡+1 = 𝑙 − 1|𝑧𝑡 = 𝑙) = 𝛼𝑙 := Pr𝜇 (𝑧𝑡+1 = 𝑙 − 1 | 𝑧𝑡 = 𝑙) , (5.2)

Pr(𝑧𝑡+1 = 𝑙 |𝑧𝑡 = 𝑙) = 𝛽𝑙 := Pr𝜇 (𝑧𝑡+1 = 𝑙 | 𝑧𝑡 = 𝑙) , 𝑙 = 0 . . . 𝑀 (5.3)
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and thus Pr(𝑧𝑡+1 = 𝑙 + 1|𝑧𝑡 = 𝑙) = 1 − 𝛼𝑙 − 𝛽𝑙 = Pr𝜇 (𝑧𝑡+1 = 𝑙 + 1 | 𝑧𝑡 = 𝑙) under the stationary

distribution 𝜇 of 𝐾𝜋 . In other words, we create an equivalence class given by the level sets of the

optimal value function 𝑉𝑜𝑝𝑡 (𝑠), the shortest-path distance in 𝐺 .

The analysis of Backplay in the 1D chain𝐾 is now tractable. Given a demonstration d = (𝑑0 =

𝑠0, . . . , 𝑑𝐿 = 𝑠∗), 𝑑𝑙 ∈ S, we sample it using a step size𝑚 > 0 (such that 𝑗 = 0 mod𝑚, where 𝑗 is

defined in Section 5.4) to obtain 𝑑𝑙 := dist𝐺 (𝑑𝐿−𝑚𝑙 , 𝑠∗), 𝑙 = 0, 1, . . . , 𝐿
𝑚
, which satisfies 𝑑𝑙 ≤ 𝑙𝑚 for

all 𝑙 . For fixed 𝑙 , we initialize the chain 𝐾 at 𝑑𝑙 : 𝑧0 = 𝑑𝑙 . Since 𝑃𝑟 (𝑧𝑚 = 0) ≥ ∏𝑚−1
𝑗=0 𝛼 𝑗 := 𝛾0,𝑚 , after

𝑂 (𝛾−1
0,𝑚) trials of length ≤ 𝑀 , we will reach the absorbing state and finally have a signal-carrying

update for the Q-function at the originating state.

We can consequently merge that state into the absorbing state and reduce the length of the

chain by one. Repeat the argument 𝑚 times so that after 𝑂 (∑𝑚
𝑗=0 𝛾

−1
𝑗,𝑚) = 𝑂 (𝑚𝛾−1

0,𝑚) trials, the

Q-function is updated at 𝑧0. Repeat at Backplay steps 𝑙𝑚, 𝑙 = 1, . . . 𝑀
𝑚
, and we reach a sample

complexity of

𝑇𝑚 =

𝑀
𝑚
−1∑︁

𝑘=0
𝑂

(
𝑀

𝑚∑︁
𝑗=0
𝛾−1
𝑘𝑚,(𝑘+1)𝑚− 𝑗

)
.

In the case where 𝛼𝑙 = 𝛼 for all 𝑙 , we obtain 𝛾−1
𝑘𝑚,(𝑘+1)𝑚− 𝑗 = 𝛾0,𝑚− 𝑗 = 𝛼−𝑚+ 𝑗 and therefore 𝑇𝑚 =

𝑂

(
𝑀2 (1−𝛼𝑚+1)
𝑚(1−𝛼) 𝛼−𝑚

)
, where the important term is the rate 𝑀2

𝑚
𝛼−𝑚 .

On the other hand, [80] shows that the first-passage time 𝜏 (0, 𝑀) in a skip-free finite Markov

chain of 𝑀 states with a single absorbing state is a random variable whose moment-generating

function 𝜑 (𝑠) = E𝑠𝜏 (𝑠,𝑠∗) is given by

𝜑 (𝑠) =
𝑀∏
𝑗=1

(1 − 𝜆 𝑗 )𝑠
1 − 𝜆 𝑗𝑠

, (5.4)

where 𝜆1, . . . , 𝜆𝑀 are the non-unit eigenvalues of the transition probability matrix. It follows that

E𝜏 (0, 𝑀) = 𝜑′(1) = ∑𝑀
𝑗=1

1
1−𝜆 𝑗 ≈ (1−𝜆1)−1, which corresponds to the reciprocal spectral gap. [38]

further shows that this reciprocal spectral gap is Ω(𝛼−𝑀/2) in our case, and therefore the model
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without Backplay will on average take 𝑇𝑀 = Ω(𝛼−𝑀/2) trials to reach the absorbing state and

receive information.

Hence, in this simple birth-death scenario, the sample complexity gains are expo-

nential in the diameter of the graph - 𝑂 (𝑀2

𝑚
𝛼−𝑚) vs Ω(𝑀𝛼−𝑀/2).

We can analyze the uniform strategy similarly. The probability that a trajectory initialized at

one of the uniform samples will reach the absorbing state is lower bounded by

𝑀∑︁
𝑗=1

𝛼 𝑗𝑃 (𝑧0 = 𝑗) = 1
𝑀

𝑀∑︁
𝑗=1

𝛼 𝑗 =
𝛼 − 𝛼𝑀+1

𝑀 (1 − 𝛼) , (5.5)

which is approximately 𝛼
𝑀
when 𝛼 is small, leading to a sample complexity of𝑂 (𝑀2𝛼−1) to update

the value function at the originating state, and 𝑂 (𝑀3𝛼−1) at the starting state. Comparing this

rate to Backplay with𝑚 = 1, observe that the uniform strategy is slower by a factor of 𝑀 (and

one can verify that the same is true for generic step size𝑚 by imagining that we first sampled

a window of size𝑚 and then sub-sampled our state from that window), suggesting that it loses

efficiency on environments with large diameter.

This analysis relies on the projection into the 1D skip-free process given by the distance to

the target and makes two strong simplifying assumptions. First, we assume that the level sets

of our estimated value functions correspond to the level sets of the true value function, ie, for

all 𝜃 , 𝑉𝜃 (𝑠) = 𝑉𝜃 (𝑠′) whenever dist𝐺 (𝑠′, 𝑠∗) = dist𝐺 (𝑠, 𝑠∗). Second, we assume that the projected

process is well described by its Markovian approximation. The first assumption is related to the

ability of our function approximator to generalize from visited states 𝑠 to unvisited states 𝑠′ such

that dist𝐺 (𝑠′, 𝑠∗) = dist𝐺 (𝑠, 𝑠∗), and is generally violated unless one leverages prior information.

The second assumption has an impact on the derived bounds and could be relaxed by replacing

conditional probabilities with infima over the level sets.

As Figure 5.2 suggests, Backplay is not a universal strategy to improve sample complexity.

Even in the navigation setting, if the task randomizes the initial state 𝑠0, a single demonstration
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trajectory does not generally improve the coverage of the state-space outside an exponentially

small region around said trajectory. For example, imagine a binary tree and a navigation task

that starts at a random leaf and needs to reach the root. A single expert trajectory will be disjoint

from half of the state space (because the root is absorbing), thus providing no sample complexity

gains on average.

The preceding analysis suggests that a full characterization of Backplay is a fruitful direction

for reinforcement and imitation learning theory, albeit beyond the scope of our contribution.

5.4.3 Qualitative Analysis

The previous section gives formal conditions under which Backplay is guaranteed to (exponen-

tially) improve learning speed over standard RL. Here we provide some intuitive examples of

environments where Backplay can improve sample-efficiency or lead to a better policy than that

of the demonstrator.

In addition, these environments allow us to highlight the differences between Backplay and

other methods of reducing sample complexity for deep RL.We hope that this intuition helps guide

practitioners on when to choose one or the other.

Figure 5.2 contains three grid worlds. In each, the agent begins at 𝑠0, receives +1 when it

reaches 𝑠∗, and otherwise incurs a per step cost. They each pose a challenge to model free RL

and highlight advantages and disadvantages of Backplay compared to other approaches like be-

havioral cloning (BC, [11]), generative adversarial imitation learning (GAIL, [78]), and reverse

curriculum generation (RCG, [62]). See Table 5.1 for a direct comparison of these algorithms.

The left grid world shows a sparse reward environment in which Backplay can decrease the

requisite training time compared to standard RL. Using the sub-optimal demonstration will po-

sition the Backplay agent close to high value states. In addition, the agent will likely surpass the

expert policy because, unlike in BC approaches, Backplay does not encourage the agent to imitate

expert actions. Rather, the curriculum forces the agent to first explore states with large associated
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(a) Backplay Helps

Demonstration
s∗

s0

(b) Backplay Helps

Demonstration
s∗
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(c) Backplay Hinders

Figure 5.2: Three environments illustrating when Backplay can help or hinder learning an optimal policy.
Backplay is expected to learn faster than standard RL on the first and second mazes, but perform worse
on the third maze.

value and, consequently, estimating the value function suffers less from the curse of dimension-

ality. And finally, we expect it to also surpass results from RCG because randommovements from

the goal state will progress very haphazardly in such an open world.

The middle grid illustrates a maze with bottlenecks. Backplay will vastly decrease the explo-

ration time relative to standard RL, because the agent will be less prone to exploring the errant

right side chamber where it can get lost if it traverses to the right instead of going up to the goal. If

we used BC, then the agent will sufficiently learn the optimal policy, however it will suffer when

placed in nearby spots on the grid as they will be out of distribution; Backplay-trained agents

will not have this problem as they also explore nearby states. When an RCG agent reaches the

first fork, it has an even chance of exploring the right side of the grid and wasting lots of sample

time.

On the rightmost grid world, while Backplay is still likely to surpass its demonstrator, it will

have trouble doing better than standard RL because the latter always starts at 𝑠0 and consequently

is more likely to stumble upon the optimal solution of going up and right. In contrast, Backplay

will spend the dominant amount of its early training starting in states in the sub-optimal demon-

stration. Note that BC will be worse off than Backplay because by learning the demonstration,

it will follow the trajectory into the basin instead of going up the right side. Finally, observe

that RCG will likely outperform here given that it has a high chance of discovering the left side

shortcut and, if not, it would more likely discover the right side shortcut than be trapped in the
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basin.

5.5 Related Work

Method Requirements Main Idea Main Weakness

BC
(State, Action) pairs
from expert trajec-
tory.

Learn policy that imi-
tates the expert demon-
stration.

Sub-optimal expert can
yield a very poor learned
policy.

GAIL
(State, Action) pairs
from expert trajec-
tory.

Learn a policy that
matches the distribution
of expert trajectory
pairs.

Difficult to tune; Requires
more world interactions;
Can perform worse than
BC.

RCG

Reversable transition
function of environ-
ment; Resettable en-
vironment.

Take random walks
from goal state to build
curriculum of initial
starting states.

Complexity may increase
if random walks reach
parts of state space irrel-
evant to a good policy.

Backplay

State sequence from a
‘good enough’ trajec-
tory; Resettable envi-
ronment.

Sample starting state
from given trajectory
by walking backward
along trajectory.

If states in ‘good enough’
trajectory are not opti-
mal, then can slow learn-
ing the optimal policy.

Table 5.1: Comparison of Backplay with related work: Behavioral Cloning (BC), Generative Adversarial
Imitation Learning (GAIL), and Reverse Curriculum Generation (RCG).

The most related work to ours is a blog post describing a method similar to Backplay used

to obtain state-of-the-art performance on the challenging Atari game Montezuma’s Revenge that

was later published at the NeurIPS Deep RL Workshop [167; 168]. This work was independent of

and concurrent to our own. In addition to reporting results on a complex stochastic multi-agent

environment, we provide an analytic characterization of themethod and an in-depth discussion of

what kinds of environments a practitioner can expect Backplay to outperform relative to existing

methods.

Hosu and Rebedea [82] is equivalent to our Uniform baseline. They use uniformly random

states of an expert demonstration as starting states for a policy. Like Backplay, they show that us-

ing a single loss function to learn a policy from both demonstrations and rewards can outperform
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the demonstrator and is robust to sub-optimal demonstrations. However, they do not impose a

curriculum over the demonstration.

5.5.1 Behavioral Cloning

Apopularmethod for improving RLwith access to expert demonstrations is behavioral cloning/im-

itation learning. These methods explicitly encourage the learned policy to mimic an expert pol-

icy [11; 164; 50; 215; 109; 135; 77; 78; 8; 117; 147]. Imitation learning requires access to both state

and expert actions (whereas Backplay only requires states) and is designed to copy an expert, thus

it cannot, without further adjustments (e.g. as proposed by Gao et al. [65]), surpass a sub-optimal

expert. See Table 5.1 for a comparison of these approaches.

Other algorithms [153; 120; 48; 49], primarily in dialog, use a Backplay-like curriculum, albeit

they utilize behavioral cloning for the first part of the trajectory. This is a major difference as

we show that for many classes of problems, we only need to change the initial state distribution

and do not see any gains from warm-starting with imitation learning. Backplay is more similar

to Conservative Policy Iteration [90], a theoretical paper which presents an algorithm designed

to operate with an explicit restart distribution.

5.5.2 Automatic Reverse Curriculum Generation

Also related to Backplay are automatic reverse curriculum generation methods [62]. These ap-

proaches assume that the final goal state is known and that the environment is both resettable

and reversible. The curricula are generated via random walks starting at the goal state [128].

These methods do not require an explicit ‘good enough’ demonstration as Backplay does. How-

ever, they require the environment to be reversible, an assumption that doesn’t hold in many

realistic tasks such as a robot manipulating breakable objects or complex video games such as

Starcraft. In addition, they may fare poorly when the random walks reach parts of the state space
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that are not actually relevant for learning a good policy. Thus, whether a practitioner wants to

generate curricula from a trajectory or a random walk depends on the environment’s properties.

We discuss this in more detail in Section 5.4.2.

Zhu et al. [218] use a curriculum but manually tune it for each ‘stage’ of the environment.

Within each stage, they use what we call Uniform training, which fails in our most challenging

environments.

5.5.3 Using another model

Goyal et al. [70] and Edwards et al. [58] simultaneously proposed the use of a learned backtracking

model to generate traces that lead to high value states. Their methods rely on either having the

agent visit high reward states or learning a model of the environment capable of generating the

states. Both of these are challenging in environments in which the dynamics near starting states

are very different from those near goal states.

Finally, Ivanovic et al. [85] use a known (approximate) dynamics model to create a backwards

curriculum for continuous control tasks. Their approach requires a physical prior which is not

always available and often not applicable in multi-agent scenarios. In contrast, Backplay auto-

matically creates a curriculum fit for any resettable environment with accompanying demonstra-

tions.

Table 5.1 summarizes the discussion above and compares Backplay with other popular meth-

ods for speeding up RL. This is also done explicitly in our experiments.

5.6 Pommerman environment

Historically, amajority ofmulti-agent research has focused on zero-sum two player games. Promi-

nent computer competitions for Poker and Go over the past fifteen years have been vital for

developing methods culminating in recent superhuman performance [132; 138; 24; 177]. These
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benchmarks have also lead to the discovery of new algorithms and approaches like Monte Carlo

Tree Search [197; 27; 100; 47] and Counterfactual Regret Minimization [219].

The Pommerman environment was proposed in Resnick et al. [158] as a benchmark for re-

search into environments with more than two players. It is stylistically similar to Bomberman

[23], the famous game from Nintendo. At a high level, there are at least four agents all travers-

ing a grid world. Each agent’s goal is to have their team be the last remaining. They can plant

bombs that, upon expiration, destroy anything (but rigid walls) in their vicinity. It contains both

adversarial and cooperative elements. The Free-For-All (FFA) variant has at most one winner

and, because there are four players, encourages research directions that can handle situations

where the Nash payoffs are not all equivalent. The team variants encourage research with and

without explicit communication channels, including scenarios where the agent has to cooperate

with previously unseen teammates.

Every battle starts on a randomly drawn symmetric 11x11 grid (‘board’) with four agents, one

in each corner. Teammates start on opposite corners. In team variants, the game ends when both

players on one team have been destroyed. In FFA, it ends when at most one agent remains alive.

The winning team is the one that has at least one remaining agent. Ties can happen when the

game does not end before the max steps or if the last agents are destroyed on the same turn.

Besides the agents, the board consists of wooden and rigid walls. Although it is guaranteed

that the agents can reach each other, all paths are initially occluded by wooden walls. See Figure

5.3 for a visual reference.

The benchmark debuted in February 2018 and the first competition was run in June 2018. This

yielded eight entrants, of which two were clearly superior to the others. Those two were publicly

released for competitors in later competitions to both learn from and benchmark against. The

second competition was held at NeurIPS 2018 and is described in detail in Resnick et al. [159].

The agents from that competition were once again released publicly and available to entrants

into the third competition, which was held at NeurIPS 2019.

77



Figure 5.3: Pommerman start state. Each agent begins in one of four positions. Yellow squares are wood,
brown are rigid, and gray are passages.
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Figure 5.4: The Machine Learning Application Framework for Pommerman. The world works together
to identify the most challenging cases by hosting a large competition and relying on the human drive to
compete as the optimizer. Winning agents are then fed back into the system as the top competitors and
used as baseline agents in the next competition. The improvement to the framework is found in that Data
Collection is nowmore efficient because we can rely on everyone to create the challenging agents and not
just self-play.
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Notably, the agents’ capabilities grew with each successive competition, as they can be seen

as utilizing global manpower to identify the most challenging cases. As part of their training

algorithms, whether learned or not, the entrants into the next competition then address those

challenging cases. For example, while the first two competitions were dominated by tree-search

approaches [141], the third competition had competitive learned approaches that were well-

matched against the agents from the second competition. Figure 5.4 shows the machine learning

application framework for this work. With each global repetition of the loop, the research com-

munity solicits better agents (data collection), which then are used in training for the next round.

We highlight this because it serves as a great example of how important are the most challenging

cases to machine learning research.

This contribution improves the sample complexity of the green Training Procedure block and

consequently the efficiency of the entire application framework.

For understanding of how the environment interfaces with our learning process, please see

the code repository on Github [134]. In Section 5.7.3, we show Backplay results when training

on the purely adversarial FFA environment.

5.7 Experiments

We now move to evaluating Backplay empirically in two environments: a grid world maze and

Pommerman. The questions we study across both environments are the following:

• Is Backplay more efficient than training an RL agent from scratch?

• How does the quality of the given demonstration affect the effectiveness of Backplay?

• Can Backplay agents surpass the demonstrator when it is non-optimal?

• Can Backplay agents generalize?
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5.7.1 Training Details

We compare several training regimes. The first is Backplay, which uses the Backplay algorithm

corresponding to a particular sequence of windows and epochs as specified in 5.10. The sec-

ond, Standard is vanilla model-free RL with the agent always starting at the initial state 𝑠0. The

last, Uniform, is an ablation that considers how important is the curriculum aspect of Back-

play by sampling initial states randomly from the entire demonstration. In all these regimes, we

use Proximal Policy Optimization (PPO, [174]) to train an agent with policy and value functions

parameterized by convolutional neural networks.

On the Maze environment detailed in Section 5.7.2, we also ran comparisons against Behav-

ioral Cloning and Reverse Curriculum Generation. We chose BC over GAIL [78] for three

reasons. First, GAIL requires careful hyperparameter tuning and is thus difficult to train. Sec-

ond, GAIL requires more environment interactions. And third, GAIL has recently been shown to

perform significantly worse than BC [14].

Training details and network architectures for all the environments can be found in 5.10.3

and 5.10.6, while 5.7.4 contains empirical observations for using Backplay in practice.

5.7.2 Maze

We generated mazes of size 24 × 24 with 120 randomly placed walls, a random start position,

and a random goal position. We then used A* to generate trajectories. These included both

Optimal demonstrations (true shortest path) and N-Optimal demonstrations (N steps longer than

the shortest path). More details on this setup are given in 5.10.2.

Our model receives as input four 24 × 24 binary maps. They contain ones at the positions

of, respectively, the agent, the goal, passages, and walls. It outputs one of five options: Pass, Up,

Down, Left, or Right. The game ends when the agent has reached its goal or after a maximum of

200 steps, whereupon the agent receives reward of +1 if it reaches the goal and a per step penalty
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Algorithm Map Set % Optimal % 0-5 Optimal Avg Suboptimality Std Suboptimality
Standard All 0 0 N/A N/A
Uniform Optimal 27 91 8.26 32.92
Uniform 5-Optimal 51 98 2.04 17.39
Uniform 10-Optimal 49 98 2.04 16.79
Florensa Optimal 20 51 63.36 78.08
Florensa 5-Optimal 48 77 25.44 56.89
Florensa 10-Optimal 49 69 39.75 70.92
Backplay Optimal 31 100 0.64 4.96
Backplay 5-Optimal 37 94 7.94 33.35
Backplay 10-Optimal 54 99 0.37 3.49

Table 5.2: Results after 2000 epochs on 100 mazes. Note that for Backplay and Uniform, the Map Set
is also the type of demonstrator, where N-optimal has demonstrations N steps longer than the shortest
path. From left to right, the table shows: the percentage of mazes on which the agent optimally reaches
the goal, percentage on which it reaches in at most five steps more than optimal, and the average and
standard deviation of extra steps over optimal. Both Backplay and Uniform succeed on almost all mazes
and, importantly, can outperform the experts’ demonstrations. On the other hand, Standard does not
learn a useful policy and Florensa fails to learn more than 50 − 70% of the maps, which is why its sub-
optimality mean and std is so high. Results for Backplay were generally consistent across all seeds. For
others, we report their best score. See 5.10.4 for further details.

of -0.03.

Backplay, Uniform, Standard. Table 5.2 shows that Standard has immense trouble learning

in this sparse reward environment while both Backplay and Uniform find an optimal path approx-

imately 30-50% of the time and a path within five of the optimal path almost always. Thus, in this

environment, demonstrations of even sub-optimal experts are extremely useful, while the cur-

riculum created by Backplay is not necessary. That curriculum does, however, aid convergence

speed (5.10.4). We will see in 5.7.3 that the curriculum becomes vital as the environment increases

in complexity.

Behavioral Cloning. We trained an agent using behavioral cloning from the same trajecto-

ries as the ones used for Backplay. While the agent learns to perfectly imitate those trajectories,

we had immense difficult doing better than the expert. All of our attempts to use reward signal to

improve the agent’s performance (over that of the behaviorally cloned agent) were unsuccessful,

even after incorporating tricks in the literature such as those found in [171]. One possible reason
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is that the agent has no information about states outside of the demonstration trajectory. Because

of this, we do not include these results in the tables or graphs as they were not competitive.

Reverse Curriculum Generation. We also compared Backplay to the method proposed

by [62]. As illustrated in Table 5.2 and Section 5.10.4, Florensa agents perform significantly worse

with higher sample complexity variance compared to Backplay (or Uniform). This suggests that

having demonstrations helps inordinately. Further details can be found in 5.10.3.

5.7.3 Pommerman

In this section, we present our results on the Pommerman environment, previously described

in detail in Section 5.6. In our experiments, we use the purely adversarial Free-For-All (FFA)
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Figure 5.5: Pommerman results (5 seeds). The Backplay curves are shortened to show only those results
when starting from the initial state. The 100 Maps column is our starkest result and displays results on
games beginning from the initial state regardless of when training occurs. We can see here that Backplay
attains strong performance while Uniform and Standard fail to learn anything of note.
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environment where the winner of the game is the last agent standing.

The learner is a randomly chosen agent, the three opponents are copies of the winner of

the June 3rd 2018 FFA competition, a stochastic agent using a Finite State Machine Tree-Search

approach (FSMTS, [217]). To construct a Backplay demonstration we consider games of 4 FSMTS

agents and either use the trajectory of the winner or the 2𝑛𝑑 place player.

The observation state is represented by 19 11x11 maps, and we feed the concatenated last two

states to our agent as input. A detailed description of this mapping is given in 5.10.5. The game

ends either when the learning agent wins or dies, or when 800 steps have passed. Upon game end,

the agent receives +1 for winning and −1 otherwise (we refer to this as the Sparse environment).

Our first three scenarios follow the Sparse setup. We independently consider three Backplay

trajectories, one following the winner over 100 maps, one following the winner over four maps,

and one following the runner up over four maps, with the latter two set of maps being the same.

Figure 5.5 shows that Backplay can soundly defeat the FSMTS agents in sparse settings

when following the winner while standard RL struggles when there are many possible

maps. We see this also works when the expert is not the winner, but the second place agent.

Visit this link for an example gif of our trained Backplay agent, the red agent in the top left.

Note that our agent learned to ‘throw’ bombs, a unique playing style that no prior Pommerman

competitor had exhibited (including the FSMTS demonstrator).

Moreover, with enough data Backplay generalizes (to some extent) to novel environments.

When we train our agent with data from 100 maps, Backplay wins 416 / 1000 games on a

held out set of ten maps. We note this was in contrast to our Maze experiments where no

approach generalized. Thus, we believe that the lack of generalization was a consequence of not

including enough mazes during training.

We also compare Backplay to RL with reward shaping. After hand-tuning, we found that

giving the learning agent a reward of +0.1 whenever it collected an item led to better performing

agents (Dense). Figure 5.5 shows that reward shaping can improve the learning speed of RL agents
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when using a small set of maps but not when learning over 100 maps. We believe that Backplay’s

strong results even without the taxing human involvement accompanying reward shaping is a

major positive in its favor.

5.7.4 Practical Findings

We trained a large number of models through our research into Backplay. Though these findings

are tangential to our main points (and are mainly qualitative), we list some observations here that

may be helpful for other researchers working with Backplay.

First, we found that Backplay does not perform well when the curriculum is advanced too

quickly, however it does not fail when the curriculum is advanced ‘too slowly.’ Thus, researchers

interested in using Backplay should err on the side of advancing the window too slowly rather

than too quickly.

Second, we found that Backplay does not need to hit a high success rate before advancing the

starting state window. Initially, we tried using adaptive approaches that advanced the window

when the agent reached a certain success threshold. This worked but was too slow. Our hypoth-

esis is that what is more important is that the agent gets sufficiently exposed to enough states to

attain a reasonable barometer of their value rather than that the agent learns a perfectly optimal

policy for a particular set of starting states.

Third, Backplay can still recover if success goes to zero. This surprising and infrequent result

occurred at the juncture where the windowmoved back to the initial state and even if the policy’s

entropy over actions became maximal. We are unsure what differentiates these models from the

ones that did not recover.

We also explored using DAgger ([164]) for training our agent, but found that it achieved

approximately the same win rate (∼ 20%) as what we would expect when four FSMTS agents

played each other (given that there are also ties).
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5.8 Conclusion

We have introduced and analyzed Backplay, a technique which improves the sample efficiency

of model-free RL by constructing a curriculum around a demonstration. We showed that Back-

play agents can learn in complex environments where standard model-free RL fails, that they

can outperform the ‘expert’ whose trajectories they use while training, and that they compare

very favorably to related methods such as reversible curriculum generation. We also presented a

theoretical analysis of its sample complexity gains in a simplified setting.

An important future direction is combining Backplay with more complex and complementary

methods such as Monte Carlo Tree Search (MCTS, [27; 197]). There are many potential ways to

do so, for example by using Backplay to warm-start MCTS.

Another direction is to use Backplay to accelerate self-play learning in zero-sum games. How-

ever, special care needs to be taken to avoid policy correlation during training [108] and thus to

make sure that learned strategies are safe and not exploitable [25].

A third direction is towards non-zero sum games. It is well known that standard independent

multi-agent learning does not produce agents that are able to cooperate in social dilemmas [115;

116; 148; 64] or risky coordination games [211; 149]. In contrast, humans are much better at

finding these coordinating and cooperating equilibria [21; 98]. Thus, we conjecture that human

demonstrations can be combined with Backplay to construct agents that perform well in such

situations.

Other future priorities are to gain further understanding into when Backplay works well,

when it fails, and how we can make the procedure more efficient. Could we speed up Backplay

by ascertaining confidence estimates of state values? Do the gains in sample complexity come

from value estimation like our analysis suggests, from policy iteration, or from both? Is there an

ideal rate for advancing the curriculum window and is there a better approach than a hand-tuned

schedule?
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5.9 What did we learn about the most challenging cases?
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Figure 5.6: The Machine Learning Application Framework for this contribution. We change the tradi-
tional Reinforcement Learning objective function such that we now draw the starting state from a distri-
bution of states rather than a singular fixed state. The improvement to the framework is found in that
the Training Procedure is now made more efficient via the use of a curriculum over the states in the
demonstration.

We learned that as long as we can set the starting state of a scene, we can use sub-optimal

demonstrations to efficiently address the challenging cases in task learning. The efficiency gain is

from the sample complexity that our agentwould otherwise spend struggling in those challenging

parts of the state space Ḡ ∈ S. This gain is expressed clearly in Figure 5.5.

Observe that there is nothing domain specific about how we have addressed the challenging

cases. We just require at least one demonstration and the ability to reset the environment at will.

In our case, we focused on maze environments and the game environment Pommerman, but the
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generalized solution is appropriate for any task learning objective. Figure 5.6 highlights this in

the context of the Machine Learning Application Framework. This contribution improves the

sample complexity of the green Training Procedure block and consequently the efficiency of the

entire application framework.

The status quo learning approaches for creating robots that capably perform tasks in house-

hold or factory settings rely on human demonstrations that must be instilled before they reach

the end user. This is because of the required sample complexity of their algorithms. This contri-

bution is an important step towards building a robot that can manage that concern and fulfilling

the goal of creating a communicative and visually aware robot that can swiftly learn new tasks.
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5.10 Supplementary

5.10.1 Backplay Hyperparameters

As mentioned in Section 5.4, the Backplay hyperparameters are the window bounds and the fre-

quency with which they are shifted. Whenwe get to a training epoch represented in the sequence

of epochs, we advance to the corresponding value in the sequence of windows. For example, con-

sider training an agent with Backplay in the Maze environment (Table 5.3) and assume we are at

epoch 1000. We will select a maze at random, an 𝑁 ∈ [16, 32), and start the agent in that game

𝑁 steps from the end. Whenever a pair is chosen such that the game’s length is smaller than 𝑁 ,

we use the initial state.

There isn’t any downside to having the model continue training in a window for too long,

albeit the ideal is that this method increases the speed of training. There is however a downside to

advancing the window too quickly. A scenario common to effective training is improving success

curves punctured by step drops whenever the window advances.

Starting at training epoch Uniform window

0 [0, 4)

350 [4, 8)

700 [8, 16)

1050 [16, 32)

1400 [32, 64)

1750 [64, 64)

Table 5.3: Backplay hyperparameters for Maze.
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Starting at training epoch Uniform window

0 [0, 32)

50 [24, 64)

100 [56, 128)

150 [120, 256)

200 [248, 512)

250 [504, 800)

300 [800, 800]

Table 5.4: Backplay hyperparameters for Pommerman 4 maps.

Starting at training epoch Uniform window

0 [0, 32)

85 [24, 64)

170 [56, 128)

255 [120, 256)

340 [248, 512)

425 [504, 800)

510 [800, 800]

Table 5.5: Backplay hyperparameters for Pommerman 100 maps.

5.10.2 Maze: Demonstration Details

For N-Optimal demonstrations, we used a noisy A* where at each step, we follow A* with prob-

ability 𝑝 or choose a random action otherwise. We considered 𝑁 ∈ {5, 10}. In all scenarios, we

only selected maps in which there exists at least a path from the the initial state to the goal state,

we filtered any path that was less than 35 in length and stopped when we found a hundred valid

training games. Note that we held the demonstration length invariant rather than the optimal

89



length (i.e. all N-optimal paths have the same length regardless of N, which means that the length

of the optimal path of a N-optimal demonstration decreases with N). This could explain why the

results in Table 5.2 (column 1) show that Backplay’s performance increases with N (since the

larger the N, the smaller the true optimal path, so the easier it is to learn an optimal policy for

that maze configuration).

5.10.3 Maze: Network Architecture and Training Parameters

We use a standard deep RL setup for our agents. The agent’s policy and value functions are pa-

rameterized by a convolutional neural network with 2 layers each of 32 output channels, followed

by two linear layers with 128 dimensions. Each of the layers are followed by ReLU activations.

This body then feeds two heads, a scalar value function and a softmax policy function over the

five actions. All of the CNN kernels are 3x3 with stride and padding of one.

We train our agent using Proximal Policy Optimization (PPO, [174]) with 𝛾 = 0.99, learning

rate 1×10−3, batch size 102400, 60 parallel workers, clipping parameter 0.2, generalized advantage

estimation with 𝜏 = 0.95, entropy coefficient 0.01, value loss coefficient 0.5, mini-batch size 5120,

horizon 1707, and 4 PPO updates at each iteration. The number of interactions per epoch is equal

to the batch size (102400).

The hyperparameters used for training the agent with Reverse Curriculum Generation [62]

are: 104 rollout states for nearby sampling, 50 Brownian steps, 200 samples from new starts, 100

samples from old starts, interval for the expected return [0.1, 0.9].

5.10.4 Maze: Learning Curves

Below are our learning curves for the Maze challenge over five seeds. Note that we do not show

any results for Standard as it failed to learn much of anything in the time allotted (3500 epochs).

Also note that Backplay occasionally sees the actual grid starting position from epoch 1400, but it
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becomes the default starting state at epoch 1750. To alignwith this, our Florensa baseline switches

to training from the actual start position at epoch 1750, and we show results for Uniform only

over the initial starting state. Correspondingly, we show the graphs from epoch 1000 as all of the

methods have commensurately poor results before that time.

Figure 5.7: Maze results when training with demonstrations of length equal to the optimal path length.
Note that Backplay has a very small variance and a very high success rate as early as epoch 1800. On the
other hand, Florensa fails to break 70% and has a high variance, and Uniform doesn’t achieve a strong
success rate until epoch 3000.

Figure 5.8: Maze results when training with demonstrations that are five steps longer than the optimal
path length. Compared to the prior graph, Backplay doesn’t do as well, albeit it still performs favorably
compared to Florensa, with a consistently higher expected return. Its advantage over Uniform is a reduced
amount of necessary samples.
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Figure 5.9: Maze results when training with demonstrations that are ten steps longer than the optimal
path length. We again see that Backplay does very well compared to the Florensa baseline, with a much
stronger expected return and lower variance. We also see, however, that Uniform is an able competitor to
both of these as the expert becomes more suboptimal.

5.10.5 Pommerman: Observation State

There are 19 feature maps that encompass each observation. They consist of the following: the

agents’ identities and locations, the locations of the walls, power-ups, and bombs, the bombs’

blast strengths and remaining life counts, and the current time step.

The first map contains the integer values of each bomb’s blast strength at the location of that

bomb. The second map is similar but the integer value is the bomb’s remaining life. At all other

positions, the first two maps are zero. The next map is binary and contains a single one at the

agent’s location. If the agent is dead, this map is zero everywhere. The following two maps are

similar. One is full with the agent’s integer current bomb count, the other with its blast radius.

We then have a full binary map that is one if the agent can kick and zero otherwise.

The next maps deal with the other agents. The first contains only ones if the agent has a

teammate and zeros otherwise. This is useful for building agents that can play both team and

solo matches. If the agent has a teammate, the next map is binary with a one at the teammate’s

location (and zero if she is not alive). Otherwise, the agent has three enemies, so the next map

contains the position of the enemy that started in the diagonally opposed corner from the agent.

The following two maps contain the positions of the other two enemies, which are present in
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both solo and team games.

We then include eight feature maps representing the respective locations of passages, rigid

walls, woodenwalls, flames, extra-bomb power-ups, increase-blast-strength power-ups, and kicking-

ability power-ups. All are binary with ones at the corresponding locations.

Finally, we include a full map with the float ratio of the current step to the total number of

steps. This information is useful for distinguishing among observation states that are seemingly

very similar, but in reality are very different because the game has a fixed ending step where the

agent receives negative reward for not winning.

5.10.6 Pommerman: Network Architecture and Training Parameters

We use a similar setup to that used in the Maze game. The architecture differences are that we

have an additional two convolutional layers at the beginning, use 256 output channels, and have

output dimensions of 1024 and 512, respectively, for the linear layers. This architecture was not

tuned at all during the course of our experiments. Further hyperparameter differences are that

we used a learning rate of 3× 10−4 and a gamma of 1.0. These models trained for 72 hours, which

is ∼50M frames. 2

2In our early experiments, we also used a batch-size of 5120, whichmeant that the sampled transitions were much
more correlated. While Backplay would train without any issues in this setup, Standard would only marginally learn.
In an effort to improve our baselines, we did not explore this further.
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5.10.7 Pommerman: Action Distribution Analysis

(a) Standard Sparse (b) Backplay Sparse

Figure 5.10: Typical histograms for how the Pommerman action selections change over time. From left
to right are the concatenated counts of the actions (Pass, Up, Down, Left, Right, Bomb), delineated on the
y-axis by the epoch. Note how the Standard agent learns to not use bombs.

Pommerman can be difficult for reinforcement learning agents. The agent must learn to effec-

tively wield the bomb action in order to win against competent opponents. However, bombs

destroy agents indiscriminately, so placing one without knowing how to retreat often results in

negative reward for that agent. Since agents begin in an isolated area, they are prone to converg-

ing to policies which do not use the bomb action (as seen in the histograms in Figure 5.10), which

leads them to sub-optimal policies in the long-term.

5.10.8 Pommerman: Win Rates

Here we show the per-map win rates obtained by the agent trained with Backlpay on the 100

Pommerman maps.
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Win Maps

90% 24

80% 26

70% 6

60% 5

50% 5

Table 5.6: Aggregate per-map win rates of the model trained with Backplay on 100 Pommerman maps.
The model was run over 5000 times in total, with at least 32 times on each of the 100 maps. The Maps
column shows the number of maps on which the Backplay agent had a success rate of at least the percent
in the Win column. Note that this model has a win rate of > 80% on more than half of the maps and a
win rate of > 50% on all maps.
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Part III

Understanding the Most Challenging

Cases
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6 | Multi-Agent Language Learning.

6.1 Introduction

Multi-agent language learning is founded on a premise that agents learn as part of the need to

communicate with other agents. This is in contrast to single-agent language learning, exempli-

fied by the recent advances [150; 151; 26] that use unsupervised language modeling to train a

model and then speak utterances by generating conditionally from user-defined prompts. These

models learn without other agents and are instead trained on a large dataset of utterances to give

statistically meaningful responses to queries. On the other hand, the multi-agent approach has

the agent learn what to say in conjunction with a task that imparts meaning to the utterances.

Motivation for this is in part from observations on human learning. We clearly do not learn

from large utterance datasets, but more likely from interactions with our environment and agents

there-in. It is hypothesized that this learning is aided by natural curricula similar to how we

manually do the same with trained animals (‘shaping’) [144]. There is of course a wealth of

research into curriculum learning inmachine learning, particularly with neural networks [59; 18].

The agent to agent interactions in a normal human environment provide a template for what

we need to communicate in order to excel as a social creature. A baby does not need to have any

understanding of how to navigate scheduling requirements for a six person meeting and so there

is no expectation that it grasps the corresponding terms or how to string them together. On the

other hand, it does have need to express why it is upset or what it wants to eat. Consequently, the
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early interactions that babies have are all designed to elicit from nearby adults how to communi-

cate such primitive desires. When a newborn cries and its father frantically asks it if it’s hungry

or tired, the fact that the baby cannot respond in kind does not mean the father’s utterance was

for naught. On the contrary, multi-agent language learning posits that that exchange teaches the

baby that certain words are associated with this ‘game’. After enough interactions, it will learn

how to communicate its desire directly. This base then acts as primitives for the next rung of

learned communication, after which an ensuing cascade of learning takes place once the baby,

now toddler, has a grasp of the communicative blocks used by the agents in its vicinity.

That process happens on the order of biological time scales and takes roughly nine to fourteen

months before any coherent conversation commences [34]. We would of course like to fast-track

that learning and so we take advantage of modern machine learning methods like stochastic

gradient descent. However, the core of the solution that multi-agent language learning pursues is

the same in that there aremultiple agents that are together trying to solve a task for which aligned

communication would greatly improve the efficiency with which they could solve this task. As

long as we can increase the complexity of the task while still training agents to successfully solve

the task, the accompanying language should increase in complexity because otherwise the task

would be too difficult to solve. Chevalier-Boisvert et al. [41] exemplifies this notion of learning

language via a curriculum of multi-agent language tasks.

In the prior example, the task was to figure out what the baby needed. Observe that this expe-

rience is much more common than that and occurs well after language has been incepted as well.

Online learning of a new word in context of other known words is an example. The game there is

the back and forth exchange of asking what that words means and then clarifying the definition

received in response. Another example is explaining a concept to a crowd of people, each with

unknown expertise. First, the agent explaining the concept has to establish at what level is the

audience - the explanation changes greatly along the spectrum of the audience being experts in

the field versus them having no understanding at all. After that has been established, the speaker
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can lay the communication groundwork that has minimal friction for expositing the heart of the

matter. Along the way, the listeners ask questions and clarify their own understanding, which

additionally serves to refine the how the speaker conveys the material. Through this process, the

parties develop their own learned communication amongst the group.

The ReferIt game is a common platform for research in multi-agent language learning, dating

back to Lewis [118] and then continuing with works [183; 182] in the 1990s and more modern

investigations [63; 111; 73; 61; 110; 125].

The basic variation is that there are two agents, a sender and a receiver. The sender sees some

concept, perhaps an image, and must then communicate a message to the receiver. The receiver’s

job is to determine to which concept the sender’s message is referring, usually in the presence of

a set of distractor concepts. The agents are rewarded if the receiver is correct. Through this basic

game, the agents emerge a language defined by the stream of messages that the sender passes to

the receiver.

Advanced variations allow for more steps of communication, a bidirectional channel, a mix of

images and text descriptions, human languages in the loop, and so forth. However, at large they

are all trying to elicit an emergent language that carries characteristics of human languages.

6.2 The most challenging cases

Regardless of how we teach agents to communicate, it is a requirement that we do so in order to

build a robot that can coherently converse with humans. The most advanced language systems

today frequently fail because of the challenging cases that they encounter. Examples abound in

disparate sub-fields from model compression to fairness & bias.

For example, Hooker et al. [81] found that modern model compression techniques were

detrimental to underrepresented groups. Reducing the size of the model was only marginally
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impacting the overall score, but it was greatly impacting group level scores. After expanding

the test suite to account for poorly represented groups, they observed that the model performed

inordinately poorly on those groups. In other words, it is the most challenging cases, in this case

determined by dataset bias, that are at the core of the difficulties in model compression. Formally,

there were semantically important attributes with deciding functionsW𝑘 and corresponding G𝑘

such that

E
G𝑖∼Ḡ

|G𝑖 | ≫ |G𝑘 | (6.1)

𝛿 > 0 (6.2)

E
(𝑥,𝑦)∼𝑇 test

𝑓 (𝑥,𝑦) − E
(𝑥,𝑦)∼𝑇 test

𝑓compressed(𝑥,𝑦) < 𝛿 (6.3)

E
(𝑥,𝑦)∼G𝑘

𝑓 (𝑥,𝑦) − E
(𝑥,𝑦)∼G𝑘

𝑓compressed(𝑥,𝑦) ≫ 𝛿 (6.4)

In fairness & bias, Zhao et al. [216] found that datasets for semantic role labeling have sig-

nificant gender bias, and that models trained on these datasets further amplify the bias at test

time. Hutchinson et al. [84] exposes how these issues occur with ‘disability’ in common English

language models and further corroborates research [22] showing that these biases exacerbate

problems in downstream application problems due to the prevalence of neural embeddings in

modern real-world applications.

Observe that all these concerns in language are frequently related to compositionality. We

define this rigorously in Section 6.5, but it is roughly the ability to combine and recombine a rela-

tively small number of elements to create a vast number of complex meaningful expressions [35].

A related view is that the meaning of a complex expression is determined by its structure and

the meanings of its constituents [186]. That human communication is compositional helps us

inordinately with quickly grasping new concepts because we can grok them as a whole from the

word parts that explain them.
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Model compression is related to compositionality in that if the agent has truly learned a com-

positional view of the world, then proper compression will preserve those integral aspects as they

are the irreducible components of understanding. We do not see this both because our agents are

not learning compositional approaches and because our approaches to compression are arguably

not fine enough to distinguish what is or is not a principle element.

Dataset bias is related to compositionality in that the errors due to the inherent biases of our

dataset are diminished when there is an underlying compositional understanding of the world. In

other words, humans do notmake themistake of assuming all buildingsmust be three stories high

before they have ever seen a skyscraper. They understand that the height of the building is distinct

from the notion of a building and its affordances. They have an intuitive (likely learned [180; 179])

grasp of the building blocks underlying their world view and how to compose them together. Our

machines do not have this and they run into issues when the dataset from which they learn is

not sufficiently balanced.

Compositionality is a particularly challenging aspect of language learning to address and

frequently related to the most challenging cases in communication because it is at the core of the

ability to transfer to new tasks. Without this capability, agents are limited in how quickly they

can adapt to new conversational topics or even amend their prior built-in notions of language.

On the other hand, agents trained to exhibit compositionality in their language understanding

see new meaning as arising from a composition of concepts in context.

Understanding the root causes of compositionality in language and why they arise helps us

build languages that exhibit this property. That then helps us address the challenging cases related

to poor systematic generalization in language.
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6.3 Overview of our contribution

Our contribution was inspired by an observation of compositional languages documented vi-

sually in Figure 6.1. Consider the act of jointly communicating two concepts, color and shape,

each having five known entries. An agent that speaks compositionally would require six bits

to communicate a ‘red circle’ and four bits to store the concepts. An agent that speaks non-

compositionally requires only five bits to communicate that object but needs 5 bits to store the

concepts. This trade-off of storage in the agent for bits in the channel is representative of what

we ask of our agents today. Because they are computers with unlimited amounts of storage space

relative to the concepts we ask them to learn, they do not require a compositional understanding

in order to solve the tasks we put before them. However, in a world of infinite concepts, working

effectively with other agents (including humans) and learning those concepts quickly requires

that their approach with respect to this trade-off become more like the human approach.

In our work [160], published at the 19th International Conference on Autonomous Agents and

Multiagent Systems (AAMAS 2020), we try to bridge this gap. We focus on how a neural network,

specifically a generative one, can learn a compositional language. Moreover, we ask how this

can occur without task-specific constraints, hallmarks of prior works [105; 114]. To accomplish

this, we first define in Section 6.5 what is a language and what we mean by compositionality. In

tandem, we introduce precision and recall, twometrics that help us measure howwell a generative

model at large has learned a grammar from a finite set of training instances. In Section 6.6, we

then use a variational autoencoderwith a discrete sequence bottleneck to investigate howwell the

model learns a compositional language, in addition to what affects that learning. This allows us

to derive residual entropy, a third metric that reliably measures compositionality in our particular

environment. We use this metric to cross-validate precision and recall. While there may be a

connection between our study and human-level languages, we do not experiment with human

data or actual languages in this contribution.
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Figure 6.1: The grid above shows five shapes and five colors. Agents with a non-compositional language
can use this shared map to communicate "Red Circle" with only ⌈log2 52⌉ = 5 bits. If they instead used a
compositional language, it would require ⌈log2 5⌉ = 3 bits for each concept for a total of 6 bits to convey
the string. On the other hand, the agent needs 25 memory slots to store the concepts in the former case
but only 10 slots in the compositional case. This trade-off exemplifies the motivation for our investigation
because it suggests that a key driver of compositionality in language is the capacity of an agent relative
to the total number of objects in its environment.

Our environment lets us experiment with a syntactic, compositional language while varying

the channel width and the number of parameters, our surrogate for the capacity of a model.

Our experiments in Section 6.7 reveal that our smallest models are only able to solve the task

when the channel is wide enough to allow for a surface-level compositional representation. In

contrast, large models learn a language as long as the channel is large enough. However, large

models also have the ability to memorize the training set. We hypothesize that this memorization

would lead to non-compositional representations and overfitting, albeit this does not yet manifest

empirically. This setup allows us to test our hypothesis that there is a network capacity above

which models will tend to produce languages with non-compositional structure.
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6.4 Related Work

Our work is most similar to Kottur et al. [105], which showed that compositional language arose

only when certain constraints on the agents are satisfied. While the constraints they examined

were either making their models memoryless or having a minimal vocabulary in the language,

we hypothesized about the importance for agents to have small capacity relative to the number of

disentangled representations (concepts) to which they are exposed. This is more general because

both of the scenarios they described fall under the umbrella of reducing model capacity. To ask

this, we built a much bigger dataset to illuminate how capacity and channel width effect the

resulting compositionality in the language.

Other works studying compositionality in multi-agent learning include Liska et al. [123];

Spike et al. [181]; Verhoef et al. [194]; Kirby et al. [97]; Zaslavsky et al. [212]. Liska et al. [123]

suggests that the average training run for recurrent neural networks does not converge to a com-

positional solution, but that a large random search will produce compositional solutions. This

implies that the optimization approach biases learning, which is also confirmed in our experi-

ments. However, we further analyze other biases. Spike et al. [181] describes three properties

that bias models towards successful learned signaling: the creation and transmission of referen-

tial information, a bias against ambiguity, and information loss. This lies on a similar spectrum

to our work, but pursues a different intent in that they study biases that lead to optimal signaling;

we seek compositionality.

Each of Verhoef et al. [194]; Kirby et al. [97]; Zaslavsky et al. [212] examine the trade-off

between expression and compression in both emergent and natural languages, in addition to

how that trade-off affects the learners. We differ in that we target a specific aspect of the agent –

capacity – and ask how that aspect biases the learning.

Most other works studying compositionality in emergent multi-agent languages [4; 133; 36;

113] have focused on learning interpretable representations. See [83] for a broad survey of the
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different approaches. By and large, these are orthogonal to our work because none pose the

important question we ask – how does an agent’s capacity effect the resulting language’s com-

positionality?

6.5 Compositionality and Language Learning

(a) Precision (b) Recall (c) Entropy

Figure 6.2: Histograms for model A showing precision, recall (defined in § 6.5.3), and entropy (defined in
§ 6.7.1) over the test set. We show results for bits 19 to 25 and parameter range 72𝑘 to 1534𝑘 (details in
§ 6.7). Each bit/parameter combination is trained for 10 seeds over 200𝑘 steps. Precision and Recall are as
described in Eqs. equation 6.9 and equation 6.10 with𝑀 = |𝐷test | and 𝑁 = 10000.

In this section, we provide amathematical definition for a language and then use that to define

what it means for a language to be compositional. We find that it coincides with the above views,

which are more abstract. We then discuss what it means for a network to learn a compositional

language, based on which we derive evaluation metrics.
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6.5.1 Defining a language

A language 𝐿 is a subset of Σ∗, where Σ denotes an alphabet and 𝑠 denotes a string:

Σ∗ = {𝑠 | ∀𝑖 = 1, . . . , |𝑠 | 𝑠𝑖 ∈ Σ ∧ |𝑠 | ≥ 0} .

We constrain a language to contain only finite-length strings, i.e., |𝑠 | < ∞, implying that 𝐿 is

a finite language. We use 𝐾max to denote the maximum length of any 𝑠 ∈ 𝐿.

We define a generator 𝐺 from which we can sample one valid string 𝑠 ∈ 𝐿 at a time. It never

generates an invalid string and generates all the valid strings in 𝐿 in finite time such that

𝑠 ∼ 𝐺 ⇔ 𝑠 ∈ 𝐿. (6.5)

We define the length |𝐺 | of the description of 𝐺 as the sum of the number of non-terminal

symbolsN and the number of production rules P, where |N | < ∞ and |P | < ∞. Each production

rule 𝜌 ∈ P takes as input an intermediate string 𝑠′ ∈ (Σ ∪ N)∗ and outputs another string

𝑠′′ ∈ (Σ∪N)∗. The generator starts from an empty string ∅ and applies an applicable production

rule, selected uniformly at random, until the output string consists only of characters from the

alphabet. These are terminal symbols.

6.5.2 Defining compositionality of a language

When the number of such production rules |P | plus the number of intermediate symbols |N | is

smaller than the size |𝐿 | of the language that𝐺 generates, we call 𝐿 a compositional language. In

other words, 𝐿 is compositional if and only if |𝐿 | > |P | + |N |.

One such example is when we have sixty characters in the alphabet, Σ = {0, 1, 2, . . . , 59}, and

six intermediate symbols, N = {𝐶1,𝐶2, . . . ,𝐶6}, for a total of 6 × 10 + 1 production rules P:
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• ∅ → 𝐶1𝐶2𝐶3𝐶4𝐶5𝐶6.

• For each 𝑖 ∈ [1, 6], 𝐶𝑖 → 𝑤 , where𝑤 ∈ {10𝑖 − 10, . . . , 10𝑖 − 1}

From these production rules and intermediate symbols, we obtain a language of size 106 ≫

67 = |P | + |N |, and consequently consider it to be compositional. This is also the language that

we use in our experiments in Section 6.7.

Returning to the prior abstract definition, we see that the view of compositionality as ‘the

ability to combine and recombine a relatively small number of elements to create a vast number

of complex meaningful expressions’ coincides with this analytical one. The referenced elements

are the union of the symbols and production rules, and the meaningful expressions are the strings

in the language at large. That there are a ‘small’ number of the former ‘relative’ to the ‘vast’

number of the latter is important.

6.5.3 Learning a language

With that setting in mind, we consider the problem of learning an underlying language 𝐿★ from

a finite set of training strings randomly drawn from it:

𝐷 =
{
𝑠 |𝑠 ∼ 𝐺★

}
where 𝐺★ is the minimal length generator associated with 𝐿★. We assume |𝐷 | ≪ |𝐿★| and our

goal is to use 𝐷 to learn a language 𝐿 that approximates 𝐿★ as well as possible. We know that

there exists an equivalent generator𝐺 for 𝐿, and so our problem becomes estimating a generator

from this finite set rather than reconstructing an entire set of strings belonging to the original

language 𝐿∗.

We cast the problem of estimating a generator𝐺 as density modeling, in which case the goal

is to estimate a distribution 𝑝 (𝑠). Sampling from 𝑝 (𝑠) is equivalent to generating a string from
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the generator 𝐺 . Language learning is then

max
𝑝∈M

1
|𝐷 |

|𝐷 |∑︁
𝑛=1

log 𝑝 (𝑠𝑛) + 𝜆𝑅(𝑝), (6.6)

where 𝑅 is a regularization term, 𝜆 its strength, and M is a model space.

Evaluation metrics When the language was learned perfectly, any string sampled from the

learned distribution 𝑝 (𝑠) must belong to 𝐿★. Also, any string in 𝐿★ must be assigned a non-zero

probability under 𝑝 (𝑠). Otherwise, the set of strings generated from this generator, implicitly

defined via 𝑝 (𝑠), is not identical to the original language 𝐿★. This observation leads to twometrics

for evaluating the quality of the estimated languagewith the distribution 𝑝 (𝑠), precision and recall:

Precision(𝐿★, 𝑝) = 1
|𝐿★|

∑︁
𝑠∈𝐿
I(𝑠 ∈ 𝐿★) (6.7)

Recall(𝐿★, 𝑝) =
∑︁
𝑠∈𝐿★

log 𝑝 (𝑠) (6.8)

where I(𝑥) is the indicator function. These metrics are designed to be fit for any compositional

structure rather than one-off evaluation approaches. Because these are often intractable to com-

pute, we approximate them using Monte-Carlo by sampling 𝑁 samples from 𝑝 (𝑠) for calculating

precision and𝑀 uniform samples from 𝐿★ for calculating recall.

Precision(𝐿★, 𝑝) ≈ 1
𝑁

𝑁∑︁
𝑛=1
I(𝑠𝑛 ∈ 𝐿★) (6.9)

Recall(𝐿★, 𝑝) ≈
𝑀∑︁
𝑚=1

log 𝑝 (𝑠𝑚), (6.10)

where 𝑠𝑛 ∼ 𝑝 (𝑠) and 𝑠𝑚 is a uniform sample from 𝐿★.
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6.5.4 Compositionality, learning, and capacity

When learning an underlying compositional language 𝐿★, there are three possible outcomes:

Overfitting: 𝑝 (𝑠) could memorize all the strings that were presented when solving Eq. equa-

tion 6.6 and assign non-zero probabilities to those strings and zero probabilities to all others. This

would maximize precision, but recall will be low as the estimated generator does not cover 𝐿★.

Systematic generalization: 𝑝 (𝑠) could capture the underlying compositional structures of

𝐿★ characterized by the production rules P and intermediate symbols N . In this case, 𝑝 (𝑠) will

assign non-zero probabilities to all the strings that are reachable via these production rules (and

zero probability to all others) and generalize to strings from 𝐿★ that were unseen during training,

leading to high precision and recall. This behavior was characterized in Lake [107].

Failure: 𝑝 (𝑠) may neither memorize the entire training set nor capture the underlying pro-

duction rules and intermediate symbols, resulting in both low precision and recall.

We hypothesize that a major factor determining the compositionality of the resulting lan-

guage is the capacity of themost complicated distribution 𝑝 (𝑠) within themodel spaceM.1 When

the model capacity is too high, the first case of total memorization is likely. When it is too low,

the third case of catastrophic failure will happen. Only when the model capacity is just right will

language learning correctly capture the compositional structure underlying the original language

𝐿★ and exhibit systematic generalization [9]. We empirically investigate this hypothesis using a

neural network as a language learner, in particular a variational autoencoder with a discrete se-

quence bottleneck. This admits the interpretation of a two-player ReferIt game [118] in addition

to being a density estimator of 𝑝 (𝑠). Together, these let us use recall and precision to analyze the

resulting emergent language.
1As the definition of a model’s capacity heavily depends on the specific construction, we do not concretely define

it here but do later when we introduce a specific family of models with which we run experiments.
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6.6 Variational autoencoders and their capacity

A variational autoencoder [96] consists of two neural networks which are often referred to as an

encoder 𝑓𝜃 , a decoder 𝑔𝜙 , and a prior 𝑝𝜆 . These two networks are jointly updated to maximize the

variational lower bound to the marginal log-probability of training instances 𝑠:

L(𝜃, 𝜙, 𝜆; 𝑠) = E𝑧∼𝑓𝜃 (𝑧 |𝑠)
[
log𝑔𝜙 (𝑠 |𝑧)

]
− KL(𝑓𝜃 (𝑧 |𝑠)∥𝑝𝜆) . (6.11)

We use L as a proxy to the true 𝑝 (𝑠) captured by this model. Once trained, we can efficiently

sample 𝑧 from the prior 𝑝𝜆 and then sample a string from 𝑔𝜙 (𝑠 |𝑧).

The usual formulation of variational autoencoders uses a continuous latent variable 𝑧, which

conveniently admits reparametrization that reduces the variance in the gradient estimate. How-

ever, this infinitely large latent variable space makes it difficult to understand the resulting ca-

pacity of the model. We thus constrain the latent variable to be a binary string of a fixed length

𝑙 , i.e., 𝑧 ∈ {0, 1}𝑙 . Assuming deterministic decoding, i.e., argmax𝑠 log𝑔𝜙 (𝑠 |𝑧), this puts a strict

upperbound of 2𝑙 on the size of the language |𝐿 | captured by the variational autoencoder.

6.6.1 Variational autoencoder as a communication channel

As described above, using variational autoencoders with a discrete sequence bottleneck allows

us to analyze the capacity of the model in terms of computation and bandwidth. We can now

interpret this variational autoencoder as a communication channel in which a novel protocol

must emerge as a by-product of learning. We will refer to the encoder as the speaker and the

decoder as the listener when deployed in this communication game. If each string 𝑠 ∈ 𝐿★ in the

original language is a description of underlying concepts, then the goal of the speaker 𝑓𝜃 is to

encode those concepts in a binary string 𝑧 following an emergent communication protocol. The

listener 𝑔𝜙 receives this string and must interpret which set of concepts were originally seen by
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the speaker.

(a) Model A Training (b) Model A Testing

(c) Model A Recall (d)Model A Entropy

Figure 6.3: Results when running Model A with 𝑁 = 4 categories instead of 𝑁 = 6. We show results for
bits 12 to 18 and parameter range 124𝑘 to 1682𝑘 . We need at least ⌈log2 104⌉ = 14 bits to cover all the
input combinations. Observe that there is not much difference to the 𝑁 = 6 scenario show in fig 6.2. See
§ 6.5.3 and §6.7.1 for the definitions of recall and entropy.
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Figure 6.4: Main results for model A showing best and worst performances of the proposed metrics over
10 seeds. See Section 6.7.2 for detailed analysis. Panels (a) and (f) show the accuracy of the training data,
(b) and (d) show entropy, (e) and (g) show recall over the test data, and (c) plots the max difference in
accuracy between training and test.

Our setup We simplify and assume that each of the characters in the string 𝑠 ∈ 𝐿★ correspond

to underlying concepts. While the inputs are ordered according to the sequential concepts, our

model encodes them using a bag of words (BoW) representation.

The speaker 𝑓𝜃 is parameterized using a recurrent policy which receives the sequence of con-

catenated one-hot input tokens of 𝑠 and converts each of them to an embedding. It then runs

an LSTM [79] non-autoregressively for 𝑙 timesteps taking the flattened representation of the in-

put embeddings as its input and linearly projecting each result to a probability distribution over

{0, 1}. This results in a sequential Bernoulli distribution over 𝑙 latent variables:

𝑓𝜃 (𝑧 |𝑠) =
𝑙∏
𝑡=1

𝑝 (𝑧𝑡 |𝑠;𝜃 )

From this distribution, we can sample a latent string 𝑧 = (𝑧1, . . . , 𝑧𝑙 ). This interpretation of the

probability distribution as a weighted language was previously investigated and supported by

Chen et al. [39].

The listener 𝑔𝜙 receives 𝑧 and uses a BoW representation to encode them into its own embed-

ding space. Taking the flattened representation of these embeddings as input, we run an LSTM
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for |N | time steps, each time outputting a probability distribution over the full alphabet Σ:

𝑔𝜙 (𝑠 |𝑧) =
|N |∏
𝑗=1

𝑝 (𝑠 𝑗 |𝑧;𝜙)

To train the whole system end-to-end [185; 133] via backpropogation, we apply a continuous

approximation to 𝑧𝑡 that depends on a learned temperature parameter 𝜏 . We use the ‘straight-

through‘ version of Gumbel-Softmax [88; 126] to convert the continuous distribution to a dis-

crete distribution for each 𝑧𝑡 . This corresponds to the original discrete distribution in the zero-

temperature limit. The final sequence of one hot vectors encoding 𝑧 is our message, which is

passed to the listener 𝑔𝜙 . If 𝐺 𝑗 ∼ Gumbel(0, 1) and the Bernoulli random variable corresponding

to 𝑧𝑡 has class probabilities 𝑧𝑡0 and 𝑧𝑡1 , then 𝑧𝑡 = one_hot(arg max
𝑗

[𝐺 𝑗 + log 𝑧𝑡 𝑗 ]).

The prior 𝑝𝜆 encodes the message 𝑧 using a BoW representation. It gives the probability of 𝑧

according to the prior (binary) distribution for each 𝑧𝑡 and is defined as follows:

𝑝𝜆 (𝑧) =
𝑙∏
𝑡=1

𝑝 (𝑧𝑡 |𝜆).

This can be used both to compute the prior probability of a latent string and also to efficiently

sample from 𝑝𝜆 using ancestral sampling. Penalizing the KL divergence between the speaker’s

distribution and the prior distribution in Eq. equation 6.11 encourages the emergent protocol to

use latent strings that are as diverse as possible.

6.6.2 Capacity of a variational autoencoder with discrete seqence

bottleneck

This view of a variational autoencoder with discrete sequence bottleneck presents an opportu-

nity for us to separate the model’s capacity into two parts. The first part is the capacity of the

communication channel, imposed by the size of the latent variable. As described earlier, the size
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of the original language 𝐿★ that can be perfectly captured by this model is strictly upper bounded

by 2𝑙 , where 𝑙 is the preset length of the latent string 𝑧. If 𝑙 < log2 |𝐿★|, the model will not be

able to learn the language completely, although it may memorize all the training strings 𝑠 ∈ 𝐷 if

𝑙 ≥ log2 |𝐷 |. A resulting question is whether 2𝑙 ≥ |𝐿★| is a sufficient condition for the model to

learn 𝐿★ from a finite set of training strings.

The second part involves the capacity of the speaker and listener to map between the latent

variable 𝑧 and a string 𝑠 in the original language 𝐿★. Taking the parameter count as a proxy to the

number of patterns that could be memorized by a neural network,2 we can argue that the problem

can be solved if the speaker and listener each have Ω(𝑙 |𝐿★|) parameters, in which case they can

implement a hashmap between a string in the original language 𝐿★ and that of the learned latent

language defined by the 𝑧 strings.

However, when the underlying language is compositional as defined in §??, we can have a

much more compact representation of the entire language than a hashmap. Given the status

quo understanding of neural networks, it is impossible to correlate the parameter count with the

language specification (production rules and intermediate symbols) and the complexity of using

that language. It is however reasonable to assume that there is a monotonic relationship between

the number of parameters |𝜃 |, or |𝜙 |, and the capacity of the network to encode the compositional

structures underlying the original language [43]. Thus, we use the parameter count as a proxy

to measure the capacity.

In summary, there are two axes in determining the capacity of the proposed model: the length

of the latent sequence 𝑙 and the number of parameters |𝜃 | (|𝜙 |) in the speaker (listener).3 We vary

these two quantities in the experiments and investigate how they affect compositional language

learning by the model.
2This is true in certain scenarios such as radial-basis function networks.
3We design the variational autoencoder to be symmetric so that the parameter counts of the speaker and the

listener are roughly the same.
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6.6.3 Implications and hypotheses on compositionality

Under this framework for language learning, we can make the following observations:

• If the length of the latent sequence 𝑙 < log2 |𝐿★|, it is impossible for the model to avoid the

failure case because there will be |𝐿★| − 2𝑙 strings in 𝐿★ that cannot be generated from the

trained model. Consequently, recall cannot be maximized. However, this may be difficult to

check using the sample-based estimate as the chance of sampling 𝑠 ∈ 𝐿★\
∫
𝑔𝜙 (𝑠 |𝑧)𝑝𝜆 (𝑧)d𝑧

decreases proportionally to the size of 𝐿★. This is especially true when the gap |𝐿★| − 2𝑙 is

narrow.

• When 𝑙 ≥ log2 |𝐿★|, there are three cases. The first is when there are not enough parameters

𝜃 to learn the underlying compositional grammar given by P, N , and Σ, in which case 𝐿★

cannot be learned. The second case is when the number of parameters |𝜃 | is greater than

that required to store all the training strings, i.e., |𝜃 | = 𝑂 (𝑙 |𝐷 |). Here, it is highly likely for

the model to overfit as it can map each training string with a unique latent string without

having to learn any of 𝐿★’s compositional structure. Lastly, when the number of parameters

lies in between these two poles, we hypothesize that the model will capture the underlying

compositional structure and exhibit systematic generalization.

In short, we hypothesize that the effectiveness of compositional language learning is maximized

when both the length of the latent sequence is large enough (𝑙 ≥ log |𝐿★|), and the number of

parameters |𝜃 | is between𝑘 ( |P|+|N |+|Σ|) and𝑘𝑙 |𝐷 | for some positive integer𝑘 . Our experiments

test this by varying the length of the latent sequence 𝑙 and the number of parameters |𝜃 | while

checking the sample-based estimates of precision and recall (Eq. equation 6.9–equation 6.10).

6.7 Experiments
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Model A Model B

speaker Total 708k 670k
listener Total 825k 690k

speaker Embedding 100 40
speaker LSTM 200 300
speaker Linear 300 60

listener Embedding 300 125
listener LSTM 300 325

Table 6.1: The base hyperparameter counts used in our experiments for each of models A and B.

Data As described in §??, we run experiments where the size of the language is much larger

than the number of production rules. The task is to communicate 6 concepts, each of which have

10 possible values with a total dataset size of 106. We build three finite datasets 𝐷train, 𝐷val, 𝐷test:

𝑆train =
{
𝑠 ∈ 𝐿★ | 𝑠 ≠ (∗𝐶val

1 ∗𝐶val
2 ∗) ∧ 𝑠 ≠ (∗𝐶 test

1 ∗𝐶 test
2 ∗)

}
𝑆val =

{
𝑠 = (∗𝐶val

1 ∗𝐶val
2 ∗)

}
𝑆test =

{
𝑠 = (∗𝐶 test

1 ∗𝐶 test
2 ∗) ∧ 𝑠 ∉ 𝐷val

}
𝐷train = subsample (𝑆train, 𝑁train)

𝐷val = subsample (𝑆val, 𝑁val)

𝐷test = subsample (𝑆test, 𝑁val) ,

where subsample(𝑆, 𝑁 ) uniformly selects 𝑁 random items from 𝑆 without replacement. The

randomly selected concept values (𝐶val
1 ,𝐶val

2 ) and (𝐶 test
1 ,𝐶 test

2 ) ensure that concept combinations

are unique to each set. The ∗ symbol refers to any number of concepts, as in regular expressions.

Models and Learning We train the proposed variational autoencoder (described in §6.6.1) on

𝐷train, using the Adam optimizer [95] with a learning rate of 3× 10−3, weight decay coefficient of

10−4 and a batch size of 1000. The Gumbel-Softmax temperature parameter 𝜏 in is initialized to

1. Since systematic generalization may only happen in some training runs [206], each model is
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trained for each of 10 seeds over 200𝑘 steps. We trained our models using [145].

We train two sets of models. Each set is built from an independent base model, the architec-

tures of which are described in Table 6.1. We gradually decrease the number of LSTM units from

the base model by a factor 𝛼 ∈ (0, 1]. This is how we control the number of parameters (|𝜃 | and

|𝜙 |), a factor we hypothesize to influence the resulting compositionality. We obtain seven models

from each of these by varying the length of the latent sequence 𝑙 from {19, 20, 21, 22, 23, 24, 25}.

These were chosen because we both wanted to show a range of bits and because we need at least

20 bits to cover the 106 strings in 𝐿∗ (⌈log2 106⌉ = 20).

Note that results for the two models are similar and so we arbitrarily spotlight one of them -

model A. We additionally show the results for model B in Figs. 6.5, 6.6, and 6.8, but do not dive

into its results in the main section.

6.7.1 Evaluation: Residual Entropy

Our setup allows us to design a metric by which we can check the compositionality of the learned

language 𝐿 by examining how the underlying concepts are described by a string. For instance,

(2, 11, 24, 31, 44, 56) ∈ 𝐿★ describes that 𝐶1 = 2, 𝐶2 = 11, 𝐶3 = 24, 𝐶4 = 31, 𝐶5 = 44 and 𝐶6 = 56.

Furthermore, we know that the value of a concept 𝐶𝑖 is independent of the other concepts 𝐶 𝑗≠𝑖 ,

and so our custom generative setup with a discrete latent sequence allows us to inspect a learned

language 𝐿 by considering 𝑧.

Let 𝑝 be a sequence of partitions of {1, 2, . . . , 𝑙}. We define the degree of compositionality as

the ratio between the variability of each concept𝐶𝑖 and the variability explained by a latent subse-

quence 𝑧 [𝑝𝑖] indexed by an associated partition 𝑝𝑖 . More formally, the degree of compositionality

given the partition sequence 𝑝 is defined as a residual entropy

re(𝑝, 𝐿, 𝐿★) = 1
|N |

|N |∑︁
𝑖=1

H𝐿 (𝐶𝑖 |𝑧 [𝑝𝑖])/H𝐿★ (𝐶𝑖)
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where there are |N | concepts by the definition of our language. When each term inside the

summation is close to zero, it implies that a subsequence 𝑧 [𝑝𝑖] explains most of the variability

of the specific concept 𝐶𝑖 , and we consider this situation compositional. The residual entropy of

a trained model is then the smallest re(𝑝) over all possible sequences of partitions P and spans

from 0 (compositional) to 1 (non-compositional).

re(𝐿, 𝐿★) = min
𝑝∈P

re(𝑝, 𝐿, 𝐿★).

6.7.2 Analysis

(a) Model B Precision (b)Model B Recall

Figure 6.5: Precision and recall for model B. Like model A, model B has perfect precision. However, its
recall chart shows a different story. The first takeaway is that while there is still a strong region in the top
right bounded below by ∼ 360𝑘 parameters, it does not extend to 22 bits on the left side. This supports our
notion of a minimal capacity threshold but adds a wrinkle in that this architecture influences the model’s
ability to succeed with fewer bits.
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Figure 6.6: Entropy metric for model B as described in §6.7.1. Similar to model A, we see that model B’s
entropy supports the view we had of its recall in Figure 6.5 - there is a strong region in the top right that
supports the notion of a minimal capacity and bit threshold.

Fig. 6.4 shows the main findings of our research. In plot (a), we see the parameter counts at

the threshold. Below these values, the model cannot solve the task but above these, it can solve

it. Further, observe the curve delineated by the lower left corner of the shift from unsuccessful to

successful models. This inverse relationship between bits and parameters shows that the more

parameters in the model, the fewer bits it needs to solve the task. Note however that it could only

solve the task with fewer bits if it was forming a non-compositional code, suggesting that higher

parameter models are able to do so while lower parameter ones cannot.

Observe further that all of ourmodels above theminimum threshold (72,400) have the capacity
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to learn a compositional code. This is shown by the perfect training accuracy achieved by all of

those models in plot (a) for 24 bits and by the perfect compositionality (zero entropy) in plot (b)

for 24 bits. Together with the above, this validates that learning compositional codes requires

less capacity than learning non-compositional codes.

Plot (c) confirms our hypothesis that large models can memorize the entire dataset. The 24 bit

model with 971,400 parameters achieves a train accuracy of 1.0 and a validation accuracy of 0.0.

Cross-validating this with plots (d) and (g), we find that a member of the same parameter class is

non-compositional and that there is one that achieves unusually low recall. We verified that these

are all the same seed, which shows that the agents in this model are memorizing the dataset. This

is supplemented by Fig. 6.7 where we see the non-compositional behavior by plotting residual

entropy versus overfitting.

Figure 6.7: Model A Entropy vs Overfitting: Charts showing per-bit results for Entropy vs (Train -
Validation) over the parameter range. Observe the two models in bits 23 and 24 which were too successful
in producing a non-compositional code and consequently overfit to the data.

Plots (b) and (e) show that our compositionality metrics pass two sanity checks - high recall

and perfect entropy can only be achieved with a channel that is sufficiently large (i.e. 24 bits) to

allow for a compositional latent representation.
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Plot (f) shows that while the capacity does not affect the ability to learn a compositional

language across themodel range, it does change the learnability. Here we find that smaller models

can fail to solve the task for any bandwidth, which coincides with literature suggesting a link

between overparameterization and learnability [121; 55]. This is supported by the efficacy results

in Fig. 6.8.

Finally, as expected, we find that no model learns to solve the task with < 20 bits, validating

that the minimum required number of bits for learning a language of size |𝐿 | is ⌈log( |𝐿 |)⌉. We

also see that no model learns to solve it for 20 bits, which is likely due to optimization difficulties.

In Fig. 6.2, we present histograms showing precision, recall and residual entropy measured

for each bit and parameter combination over the test set. The histograms show the distributions

of these metrics, upon which we make a number of observations.

We first confirm the effectiveness of training by observing that almost all the models achieve

perfect precision (Fig. 6.2 (a)), implying that 𝐿 ⊆ 𝐿★, where 𝐿 is the language learned by the

model. This occurs even with our learning objective in Eq. equation 6.11 encouraging the model

to capture all training strings rather than to focus on only a few training strings.

A natural follow-up question is how large is 𝐿★\𝐿. We measure this with recall in Fig. 6.2 (b),

which shows a clear phase transition according to the model capacity when 𝑙 ≥ 22. This agrees

with what we saw in Fig. 6.4 and is equivalent to saying |𝐿★\𝐿 | ≫ 0 at a value that is close to

our predicted boundary of 𝑙 = ⌈log2 106⌉ = 20. We attribute this gap to the difficulty in learning

a perfectly-parameterized neural network.

In Fig. 6.7 we show the empirical relation between entropy and overfitting over the parameter

range. While it was hard for the models to overfit, there were some in bits 23 and 24 that did do

so. For those models, the entropy was also found to be higher relative to the other models.

Even when 𝑙 ≥ 22, we observe training runs that fail to achieve optimal recall when the num-

ber of parameters is ≤ 365800 (Fig. 6.2). Due to insufficient understanding of the relationship

between the number of parameters and the capacity in a deep neural network, we cannot make
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(a) Model A Training (b) Model A Testing

(c)Model B Training (d) Model B Testing

Figure 6.8: Efficacy results for models A and B.
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a rigorous conclusion. We however conjecture that this is the upperbound to the minimal model

capacity necessary to capture the tested compositional language. Above this threshold, the recall

is almost always perfect, implying that the model has likely captured the compositional struc-

ture underlying 𝐿★ from a finite set of training strings. We run further experiments up to 1.5𝑀

parameters, but do not observe the expected overfitting.

As shown in Fig. 6.3, we also run experiments with the number of categories reduced from

6 to 4 and similarly do not find the upperbound. It is left for future studies to determine why.

Two conjectures that we have are that it is either due to insufficient model capacity to memorize

the hash map between all the strings in 𝐿★ and 2𝑙 latent strings or due to an inclination towards

compositionality in our variational autoencoder.

These results clearly confirm the first part of our hypothesis - the latent sequence length

must be at least as large as log |𝐿★|. They also confirm that there is a lowerbound on the number

of parameters over which this model can successfully learn the underlying language. We have

not been able to verify the upper bound in our experiments, which may require either a more

(computationally) extensive set of experiments with even more parameters or a better theoretical

understanding of the inherent biases behind learning with this architecture, such as from recent

work on overparameterized models [15; 136].

6.8 Conclusion

In this contribution, we hypothesize a thus far ignored connection between learnability, capacity,

bandwidth, and compositionality for language learning. We empirically verify that learning the

underlying compositional structure requires less capacity than memorizing a dataset. We also

introduce a set of metrics to analyze the compositional properties of a learned language. These

metrics are not only well motivated by theoretical insights, but are cross-validated by our task-

specific metric.
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This contribution opens the door for a vast amount of follow-up research. All our models

were sufficiently large to represent the compositional structure of the language when given suf-

ficient bandwidth, however there should be an upper bound for representing this compositional

structure that we did not reach. We consider answering that to be the foremost question.

Furthermore, while large models did overfit, this was an exception rather than the rule. We

hypothesize that this is due to the large number of examples in our language, which almost forces

themodel to generalize, but note that there are likely additional biases at play that warrant further

investigation.

Model
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Training Data
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Data 1, ..., N
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Figure 6.9: The Machine Learning Application Framework for this contribution. With a goal of having
agents learn languages that are compositional, we investigated an hypothesis that constrains the model
architecture to be within certain bounds conditioned on the size of the training data. The resulting un-
derstanding lets us rule out classes of model architectures based on their capacity. The improvement to
the application framework is found in that our space of possible models to consider is now tighter.
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6.9 What did we learn about the most challenging cases?

We have acquired understanding into one of the root causes of compositionality - the agent’s

capacity - and how that relates to whether the learned language is actually compositional. As

described in Section 6.2, this principle is core to downstream learning such that we minimize

the difficulties faced with the most challenging cases. Agents with a better understanding of the

building blocks of the world and how they compose are agents that can quickly adapt to a new

and challenging group.

This work is firmly on the path towards our continued goal of building a communicative

and visually aware robot that can capably learn new tasks. The communicative part is exactly

the application in which we demonstrated our study. Even more important though is the under-

standing of model architecture and how that affects learning compositional structure because it

underlies not just communication but all forms of learning in real-world settings, including vision

and task-learning. The Machine Learning Application Framework for this contribution (Figure

6.9) highlights this. We see there how research that constrains the model architecture to be more

likely to elicit compositional structure positively effects learning efficiency and consequently the

entire application loop.
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7 | Conclusion

This dissertation began with a recognition of the long standing societal goal to have household

robots. The core of the thesis then focused on the topic of the challenging cases in machine

learning. Throughout, I drew a thread between the goal to have robots and the most challenging

cases by appealing to a need to identify, address, and understand the latter in order to make

headway on deploying such robotic systems in the wild. I specifically recognized three of my

contributions that target different parts of the stack with respect to solving for both the most

challenging cases and for producing communicative and visually aware robots who can capably

learn household tasks.

Before concluding, I am going to synthesize parts of my research into a new direction that I

think has exciting promise for the rearrangement task.

7.1 Eqivariant Scene Understanding

Assume a house scene with a robot that has to manipulate objects. The objects may be on or in a

counter or nearby, and the agent has a specified task such as ‘put the can opener on the counter.’

A baseline is to train a model-free agent to do just this task. This is hard because the sample

complexity of learning this task from RGB images is very large and simulated approaches have

a persistent sim2real gap [165; 86]. We posit that a better approach would be if we could learn

this unsupervised and, ideally, with online updates. I argue that we can do this if we had a model
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that was equipped with a scene graph, and we trained both the visual awareness and the task

learning at the same time.

We start with the following observation - scene graph generation from states is an equivariant

functionwith respect to a family of actions taken by the ego agent. Formally, we haveH : 𝑋 → P

a function that produces scene graphs P = (𝑉 , 𝐸) from state observations where𝑉 and 𝐸 are the

vertices and edges of the graph, 𝑥 ∈ 𝑋 a state observation, 𝜋agent : X → X a policy function

that acts on state observations and produces another state observation via an intermediate action

distribution, and 𝜋graph : P → P a policy function that acts on scene graphs and produces another

scene graph via an intermediate action distribution. The equivariant equation is then:

H(𝜋agent(𝑥)) = 𝜋graph(H (𝑥)) (7.1)

To ground the discussion, as well as a nod to our intent for the eventual robot to be visually

aware, we restrict our states to the visual domain as RGB images 𝑥 ∈ 𝑋 = R3. Intuitively, the

left-hand side of Equation 7.1 says that if we have an agent act on its image observation and take

an action, then we will be in a new state with a new corresponding image. The scene graph of

that new image will be equivalent to the right-hand side. The right-hand side formalizes a single

action being taken by a graph policy on the scene graph of the original image.

All together, this equivariance suggests that, for a pair of domain-specific action policies, first

acting on a scene and then taking the scene graph is equivalent to first taking the scene graph

and then acting on that scene graph. With this idea, we train a robot by equipping it with a

learned function for scene graph decomposition and two learned action policies, then simultane-

ously training all three with an equivariance loss. Denoting loss 𝐿equivariance = | |H (𝜋agent(𝑥)) −

𝜋graph(H (𝑥)) | |, we have a number of ways we can do this:

• Train a model to minimize 𝐿equivariance only. This has degenerate solutions such as when

H produces the empty graph. That concern diminishes when we use a contrastive loss,
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which we could do on the same scene or on different scenes. Because the policy has not

been trained on any task, we expect this to yield a valid but perhaps not complete scene

graph due to the policy’s random action distribution.

• Train a model to minimize 𝐿equivariance, but also add in other losses such as taking more

actions before optimizing: 𝐿𝑘equivariance = | |H (𝜋𝑘agent(𝑥)) − 𝜋𝑘graph(H (𝑥)) | |. This encourages

a more thorough understanding of the scene because more random actions will be taken

from the starting state that push us into new parts of the state space.

• Along with optimizing 𝐿equivariance, optimize the agent on the task directly using RGB input.

This adds in a gradient towards task reward and so we expect the agent to improve its

policies and not just take random actions in the world.

• Alongwith optimizing 𝐿equivariance, optimize the agent on the task directly using scene graph

input. It is likely that this will require a curriculum to succeed, but plausibly would be the

ideal type of signal to succeed at all of task learning, visual awareness, and scene graph

decomposition simultaneously.

Regardless of the specific training setup, the above paints a picture of this research direction

as an unsupervised approach to training a robot in the wild to both perform task learning and

be visually aware of its surroundings to the extent that it could decompose a scene. We would

likely start by doing it in simulation. I expect that we will run into the most challenging cases

frequently because most of the gradient will guide the model towards areas of the scene that it

does not understand. In any case, this is a research direction where the Backplay curriculum will

be very prescient because task demonstrations would be a fantastic way to bootstrap the learning.
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7.2 Parting words

To recap, Part I proposed a method for pseudo-automatically identifying the most challenging

cases. It focused on object detection in vision and finds which semantic groups of data are most

difficult for perception systems in robots, with an emphasis on autonomous vehicles.

Part II presented an algorithm for addressing the most challenging cases in task learning via

episodic reinforcement learning. This algorithm uses one potentially sub-optimal demonstration

from which we can train optimal policies with much better sample complexities than in vanilla

reinforcement learning.

Finally, Part III focused on understanding the root cause of challenging cases, with an em-

phasis on language learning in multi-agent settings. We presented work illustrating the central

role of agent capacity in determining whether the learned language is actually compositional, an

important and desired attribute of the learned language.

The work contained in this thesis is but a small step towards overcoming the difficulties asso-

ciated with the most challenging cases and a tiny hop towards building a task-learning, visually-

aware, and communicative robot. This echoes the goals in our field, which all have a long arc

and nonlinear progress. In other words, the path to the Emerald City is long but paved with gold

and adventure.
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