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Abstract

Speech recognition research has been focused for several years on the incorporation of

unpaired speech and text data alongside conventional supervised datasets. Dominant

methods have emphasized auxiliary tasks for refining speech and/or text representa-

tions during model training. These methods have generally performed strongly when

paired with very small supervised datasets, but do not yield the same improvements

against strong, supervised baselines.

We argue in this thesis that the path to scaling these methods lies in the speech and

text representations themselves. We investigate statistical properties of these repre-

sentations, and show that downstream ASR performance corresponds to a model’s

ability to jointly represent speech and text. We analyze existing methods for semisu-

pervised ASR, and develop an algorithm to improve them at scale by aligning speech

and text in representation space.
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Chapter 1

Introduction

The introduction of deep learning into speech recognition was made possible by

the existence of large, paired speech datasets Hinton et al. (2012) used for conven-

tional supervised learning. Recent years, however, have seen a shift in focus from

supervised machine learning to semi-supervised methods that make use of large un-

paired corpora. This has been true across domains, with semi-supervised methods

setting benchmarks in image tasks Liu et al. (2023), machine translation and NLP

Edunov et al. (2018), and acoustic modeling Zhang et al. (2022).

In speech recognition a number of methods have emerged to incorporate both

unpaired audio Schneider et al. (2019) and text Toshniwal et al. (2018). These tech-

niques have achieved impressive results when very little supervised data is available,

even allowing for performant ASR in the strictly unsupervised setting Baevski et al.

(2021). However, the relative performance improvements shown by these methods

significantly decreases in settings in which a large supervised corpus is available and
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is to be augmented by unpaired data.

At the same time, the field of multimodal deep learning has shown that different

types of information may be mapped by a neural network to a common represen-

tation. This has been used with images and text for visually-grounded language

modeling Alayrac et al. (2022) and image generation from text Ramesh et al. (2022).

The same ideas have begun to be explored in ASR to create shared representations

for speech and text to improve unpaired text injection Chen et al. (2022a); Sainath

et al. (2022).

In this thesis, we argue that a shared representation of speech and text is key

to scaling semi-supervised methods to large-scale ASR systems trained with a large

supervised dataset. Specifically:

• We begin in Chapter 3 with a comparison of several state-of-the-art semi-

supervised learning methods at industrial scale. We show that in this setting

the methods are useful, but for reasons other than raw WER improvements.

In terms of WER, the methods largely do not scale.

• Suspecting that the failure in scaling is due to a lack of encoder adaptation,

we proceed in Chapter 4 to assess the usefulness of a specific method, called

dual learning, which specifically aims to refine the encoder. We measure this

method in a setting with a large supervised dataset and show how the gains

attributable to the method are largely redundant with language model fusion,

demonstrating the failure of dual learning to leverage the unsupervised data to

improve the encoder representation.
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• Having developed a hypothesis on what is failing in the methods we’ve stud-

ied, in Chapter 5 we undertake an abstract study that accumulates evidence

that the strength of the shared representation translates to downstream WER

improvement.

• Applying the lessons of Chapter 5 to the failure of Chapter 3, in Chapter 6

we develop an algorithm on top of a contemporary text-injection framework

that strengthens the shared speech/text representation in the encoder. We

demonstrate that this method scales text injection to several large-data set-

tings, addressing the limitations of text injection that we developed in the first

two chapters.

1.1 List of Contributions

• Cal Peyser, Ronny Huang, Andrew Rosenberg, Tara N. Sainath, Michael

Picheny, Kyunghyun Cho.

Towards Disentangled Speech Representations, INTERSPEECH, 2022

• Cal Peyser, Ronny Huang, Tara N. Sainath, Michael Picheny, Kyunghyun

Cho.

Dual Learning for Large Vocabulary On-Device ASR, SLT, 2022

• Cal Peyser, Michael Picheny, Kyunghyun Cho, Rohit Prabhavalkar, Ronny

Huang, Tara N. Sainath.

A Comparison of Semi-Supervised Learning Techniques for Streaming ASR at
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Scale, ICASSP, 2023 (recognized as a top 3% paper in the conference)

• Cal Peyser, Kevin Hu, Zhong Meng, Andrew Rosenberg, Rohit Prabhavalkar,

Tara N. Sainath, Michael Picheny, Kyunghyun Cho.

Improving Joint Speech-Text Representations Without Alignment, INTER-

SPEECH 2023
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Chapter 2

Background

2.1 Automatic Speech Recognition

The problem of automatic speech recognition (ASR) is conventionally defined

as the prediction of a text sequence y = y0, ..., ym corresponding to audio inputs

x = x0, ..., xn. Preparing a system capable of this prediction usually involves the use

of supervised dataset Dsup = {(x0, y0), (x1, y1), ...} consisting of a large number of

corresponding audio and text samples. We generally phrase our predictive system as

a probability distribution over possible text transcripts conditioned on input audio,

subject to some parameters θ:

y∗θ = argmaxy(P (y|x, θ))

where y∗θ is the model’s text prediction given the audio input x and parameters

θ. The procedure of “training” such a system aims to find the parameters θ that
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maximize the model’s performance on the dataset Dsup.

θ∗ = argminθ

∑
Dsup

L(y∗θ, y)

That is, we seek a parameterization θ∗ for which the model’s predictions minimize

some loss function L that measures the difference between the model’s predictions

and the ground truth. The evolution of speech recognition over the past three decades

can be seen as a series of increasingly powerful models for the posterior P (y|x, θ)

and techniques for determining the associated parameterization θ.

2.1.1 GMM-HMMs: An Explicit Relationship between Speech

and Text

Speech recognition differs from many other machine learning problems in that it

is fundamentally concerned with two modalities - speech and text. We might imagine

that a strong speech model must “understand” three things:

1. The speech modality, in order to parse phonetic information from raw audio.

2. The text modality, in order to emit coherent transcripts.

3. The relationship between speech and text, in order to emit the most likely

coherent transcript given phonemic information derived from the input.

The earliest ASR systems based on statistical models (see Roe and Wilpon (1993)

for a survey) were premised on this understanding and explicitly decomposed the

posterior according to Bayes’ Rule:
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P (y|x) ∝ P (y)P (x|y)

where the prior P (y) can be determined by a language model (LM) and the

conditional likelihood of the audio P (x|y) can be determined by an acoustic model

(AM). In practice, n-gram LMs have been combined with AMs implemented by

looking up phoneme pronunciations in a lexicon, and connecting a series of phone-

dependant hidden Markov models (HMMs), for which states can be modeled as

Gaussian mixture models (GMMs). To achieve deployable performance levels, fitting

these models required on the order of hundreds of millions of words of text for the LM

and tens of thousands of audio utterances Young (1996). For example, the standard

training set for the 1993 ARPA benchmark contained 30,000 utterances Pallett et al.

(1994).

2.1.2 DNN-HMMs: The Introduction of Neural Networks

ASR research leading up to the deep learning boom was marked by slow adop-

tion of neural networks into components of the conventional HMM-based system,

while still preserving the fundamental separation between speech and text model-

ing implied by Bayes’ Rule. While applications of single-layer neural networks for

the prediction of HMM states date back to the late 1990s Ding (1999), ASR using

neural networks that exceeded the previous state-of-the-art systems emerged in the

early 2010s with the application of deep belief networks (DBNs) as an alternative

to GMMs Mohamed et al. (2010, 2012). As deep learning began to emerge, even

stronger results were achieved replacing the DBNs with multi-layered feed-forward
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neural networks (DNNs) trained from scratch using backpropagation Hinton et al.

(2012).

2.1.3 End-to-End Neural Models

During the mid 2010s, advances in algorithms and hardware yielded large im-

provements in the state-of-the-art for several classic machine learning problems, us-

ing entirely neural systems trained end-to-end by backpropagation Bahdanau et al.

(2014); Krizhevsky et al. (2012). At the core of these breakthroughs was the discov-

ery that performance gains emerge from many neural layers stacked on top of each

other to perform “deep” learning.

Such advances quickly made their way into speech recognition, with the core

enabling technology being the LSTM-RNN from the language modeling literature

Hochreiter and Schmidhuber (1997). One key difference between language model-

ing and speech recognition with respect to end-to-end neural modeling is the large

space of possible alignments between audio frames and text outputs, which was first

addressed for this class of model in Graves et al. (2006) using “connectionist tempo-

ral classification” (CTC). This work showed for the first time substantial word-error

rate (WER) improvements in a end-to-end neural system over a hybrid HMM-based

system.

If the alignment problem is one major distinction between speech recognition

and language modeling, the inherent distinction between the input domain of audio

and the output domain of text is the other. While this distinction was modeled

explicitly in the GMM-HMM systems described above, the advent of end-to-end

8



neural systems blurred the line, relying on the deep architecture to decide internally

which components model audio and which model text. While Graves et al. (2006) did

away with the explicit distinction, it quickly became clear that the prior of domain

separation still had value. Graves et al. (2013), for example, showed that an end-

to-end CTC model was still outperformed by the older hybrid systems in tasks that

emphasized acoustic modeling, such as on noisy test sets.

The superiority of end-to-end neural systems was eventually cemented by re-

asserting the separation between audio and text modeling, borrowing in particular

the “encoder-decoder” architecture from machine translation. In this formulation,

the end-to-end system in fact consists of two connected components: an “encoder”,

which learns a representation of the input domain, and “decoder” which consumes

the encoder representation and autoregressively predicts the output sequence Cho

et al. (2014). In the latter half of the 2010s encoder-decoder systems became the

clear state-of-the-art across numerous speech benchmarks. Some systems such as Sak

et al. (2017) made use of RNN-T Graves (2012a) decoders to capture the inherent

language modeling capacity of the decoder, while others such as Chan et al. (2015a)

used an attention mechanism to learn alignments between the output text and the

encoder representation. It was the combination of both of these ideas that eventually

led to productionizable end-to-end ASR, and systems like this are widely deployed

in industry today Chiu et al. (2017); Prabhavalkar et al. (2017).
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2.2 Semi-Supervised ASR

The progress made with end-to-end encoder-decoder speech recognition systems

cannot be credited to advances in neural architecture alone. It has been long under-

stood that the performance of large models scales as a power law with the amount

of data that it is trained on Banko and Brill (2001); Goodman (2001); Kaplan et al.

(2020), and speech models are no exception Hestness et al. (2017). As neural speech

models became larger and more sophisticated, the data sets on which they were

trained grew as well. For example, while we have mentioned that Pallett et al.

(1994) used 30,000 utterances (each probably being a few seconds long), Google

documented a system in Narayanan et al. (2018) trained on 162,000 hours of speech.

In single-modality tasks like language modeling, the usefulness of more data has

led to a near-exponential growth in dataset size over time Zhao et al. (2023). This is

largely powered by the availability of near-unlimited free text data available on the

internet Radford et al. (2019). By contrast, cross-modality tasks require supervision,

and for ASR in particular labeling speech recordings with transcripts is a time-

consuming and expensive process. However, the individual domains involved each

lend themselves to large-scale unpaired corpora. This has given rise to research

interest in semi-supervised ASR with unpaired data from either or both modalities.

We provide a brief overview of this literature here, and go into more detail on several

lines of research in Chapter 3.
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2.2.1 Unpaired Audio Injection

A natural analog exists between speech and image recognition, since in both prob-

lems we seek to map from a high dimensional data distribution into relatively more

constrained text labels. As such, autoencoders, which have been influential in image

modeling Gogoi and Begum (2017) presented a natural place to start for incorporat-

ing a large unpaired speech corpus into ASR training. However, speech recognition

differs from image recognition in two key ways that hamper effective feature extrac-

tion with conventional convolutional autoencoders: the sequential nature of both the

input and the target, and the need to discard large parts of the audio signal to arrive

at relevant representations (e.g. background noise). Chorowski et al. (2019) ad-

dressed these issues by adapting the WaveNet autoregressive decoder van den Oord

et al. (2016) from the text-to-speech literature and introducing a quantized varia-

tional bottleneck after encoding. While this work did not measure downstream ASR

performance, it was the first to show that discriminative acoustic features could be

learned from unpaired audio using a reconstruction task.

At the same time, increasingly sophisticated constrastive criteria were developed

for image problems, yielding strong results on image classification Chen et al. (2020);

Gidaris et al. (2018). Early applications to audio include Contrastive Predictive

Coding van den Oord et al. (2018), which exploits the temporal structure in audio

with a task to distinguish nearby samples in an audio clip from distractors. Like

Chorowski et al. (2019), this work also did not directly assess downstream ASR

performance. However, it did show that representations arising from this contrastive

task separates speakers as well as phonemes neatly in its representation space.
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The ideas of CPC were famously applied the next year in Wav2Vec Schneider

et al. (2019), which used the CPC contrastive loss in ASR pretraining. This work

was followed by several Wav2Vec variants Baevski et al. (2019, 2020) that for the

first time demonstrated the ability to train a strong ASR system with very little

supervised data. For example, Baevski et al. (2020) achieved 4.8/8.2 WER on Lib-

rispeech test-clean/test-other with only ten minutes of supervised audio when 60,000

hours of unsupervised audio are provided for contrastive pre-training. However, these

methods offered little gain in the setting where a substantial supervised dataset is

available. Baevski et al. (2020) in particular achieved 2.1/4.8 WER on Librispeech

when using the all 960 hours of supervised data together with the same 60,000 hour

pretraining set. This is compared to 1.9/3.9 achieved by the contemporary Con-

former model on the supervised data alone Gulati et al. (2020).

This trend largely continued with the successors to the Wav2Vec series of mod-

els. HuBERT Hsu et al. (2021) replaces the quantized CPC-like targets of Wav2Vec

2.0 with acoustic clusters. WavLM Chen et al. (2021a) further introduces a de-

noising task into the HuBERT recipe. As before, these methods show very strong

improvements without a large supervised corpus, but the improvements are much

less substantial when a such a dataset is available.

2.3 Unpaired Text Injection

On its surface, using unpaired text in ASR training is a simpler proposition

than using unpaired audio. Modern end-to-end ASR systems (e.g. Chan et al.
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(2015b); Graves (2012b)) are separated into an encoder and decoder, where the

encoder is concerned with speech inputs and the decoder essentially functions as a

language model that autoregressively emits a text sequence. This structure creates

a natural opportunity to perform conventional language modeling on unpaired text

and incorporate the resulting LM into the ASR system.

The first unpaired text injection methods for encoder-decoder ASR models in-

volved directly integrating an external LM into the ASR system. In shallow fusion,

which was originally proposed for machine translation Gülçehre et al. (2015), a lan-

guage model is run during beam search at inference time, and its logits are directly

interpolated into the decoder logits. More sophisticated, training-time methods in-

clude cold fusion and deep fusion, in which hidden LM states are fused with decoder

states during training Sriram et al. (2018). Direct comparisons of language model

fusion for ASR have shown that the simpler shallow fusion is generally the most per-

formant Toshniwal et al. (2018). Shallow fusion has been proven effective for ASR

even against large supervised baselines, but requires careful tuning of beam search

settings Peyser et al. (2020).

The success of shallow fusion over training-time methods begs the question: can

unpaired text be used only to inform an ASR system’s modeling of language during

decoding, or can it be incorporated more deeply into the model’s parameters them-

selves to refine how it encodes audio? Recent systems have taken a multi-modal

approach, attempting to project unpaired text into the acoustic encoder’s represen-

tation space so that downstream parameters may learn agnostically from the two

domains. JOIST Sainath et al. (2022) includes a text encoder with random input

13



upsampling alongside the model’s audio encoder, and performs conventional super-

vised training alongside an unsupervised masked text reconstruction task. MAE-

STRO Chen et al. (2022a) includes a learned duration model to further match the

unpaired text representation to the acoustic representation.
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Chapter 3

Investigating the Scaling of

Semi-Supervised Learning

Our summary of contemporary semi-supervised learning methods in Chapter 2

cites a large number of methods that have each been shown to benefit ASR training

in the low-resource setting. The natural question that arises when considering these

results is how these methods scale to the high-resource setting. Some of the cited

works, like Baevski et al. (2020) and Chen et al. (2021a) include specific results on

large supervised baselines showing that these methods in fact do not scale. Others,

like Sainath et al. (2022), show improvements over large supervised baselines on tail

sets, but do not clearly demonstrate the same against the head of the distribution.

However, as of the beginning of this study there lacked a comprehensive comparison

of state-of-the-art semi-supervised methods as they scale in the size of the supervised

dataset.
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We therefore begin our investigation with a comparison of several leading semi-

supervised methods in a controlled setting geared towards production implementa-

tion. Unlike previous work, we apply these methods to a state-of-the-art, 160M-

parameter streaming Conformer Gulati et al. (2020) model that is already trained

on a very large supervised corpus. We further depart from previous work by train-

ing supervised and unsupervised tasks jointly, which is being increasingly shown to

be preferable to the conventional fine-tuning approach on very large datasets Bai

et al. (2021). We find that under these conditions, none of the studied methods

improve general WER at all. However, we report improvements in the decoder’s

computational load and in lattice density, as well as in several targeted WER mea-

surements assessing performance on known categories of particularly difficult utter-

ances. Through this comparison and analysis, we hope to offer a more nuanced and

comprehensive view of the usefulness of unpaired audio and text in industrial ASR.

3.1 Selected Methods

For this study, we specify three state-of-the-art semi-supervised ASR methods

encompassing both unpaired audio and unpaired text. In this section, we go into

more detail about some of the lines of research referenced in Chapter 2 in order to

contextualize these three methods.
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3.1.1 Text Injection

As described in Chapter 2, text injection in ASR is traditionally done with lan-

guage model “fusion”, either at inference time Gülçehre et al. (2015) or training

time Sriram et al. (2018); Variani et al. (2020). These methods involve the explicit

separation of the model parameters into an acoustic model trained on paired data

and a language model trained on unpaired text. The improvements yielded by these

methods come at the cost of the additional language model parameters at inference

time.

A simultaneous line of work has sought an alternative to fusion in which unsu-

pervised text is used to train an acoustic model directly. One major line of work

focuses on creating pseudolabels for unpaired text through synthesized audio. This

has been studied by generating a raw audio signal Xu et al. (2020) or higher level

lexical features Chen et al. (2021c). Work adapting cycle consistency losses from

machine translation have trained ASR and TTS together with a fully end-to-end ob-

jective Baskar et al. (2019); Hori et al. (2019). We choose TTS-based augmentation

as the first method to study in this work (see Section 3.2.2.1).

Finally, a third class of methods for unpaired text injection makes use of auxiliary,

text only objectives to train an ASR encoder without generating TTS pseudolabels.

Most such works have sought to train an ASR encoder to agnostically represent either

audio or text, such that unpaired text is processed similarly to audio Bapna et al.

(2021); Tang et al. (2022); Yusuf et al. (2022). As described above, JOIST Sainath

et al. (2022) is a recent method which does this using a masked language modeling

task in the spirit of BERT Devlin et al. (2018). We study JOIST in this work since it
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is one of the few methods that has been studied with very large supervised datasets

and with on-device sized streaming models (see Section 3.2.2.2).

3.1.2 Audio Injection

We briefly introduced the literature on audio injection in Chapter 2, and a de-

tailed review is available in Mohamed et al. (2022). As we’ve described, recent work

is largely built on the success of the Wav2Vec series of models Baevski et al. (2020);

Schneider et al. (2019), which work by modeling masked segments of audio using

a contrastive loss. One line of further work investigated audio clustering to gen-

erate targets for the contrastive loss Chen et al. (2021a); Hsu et al. (2021) while

another investigated methods for computing that signal by quantizing the audio in-

puts Baevski et al. (2019). BEST-RQ Chiu et al. (2022) in particular finds that fixed

random projection to a pre-initialized codebook works effectively as a quantizer. We

choose BEST-RQ as the third method to study in this work (see Section 3.2.2.3).

3.2 Model

We require a framing of the semi-supervised ASR problem that encompasses all

three of the methods in question. In this section, we provide such a framing, develop

our model architecture, and specify the multi-task optimization problem that it is

trained for.
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3.2.1 Architecture

We are interested in the setting in which unsupervised data in both the speech

and text domains is available alongside a large supervised corpus. We denote as

(x, y) ∈ S the supervised pair of a speech utterance x and text label y in the

supervised dataset S. We similarly denote unsupervised speech examples as x ∈ US

and unsupervised text examples y ∈ UT .

We extend the cascading conformer proposed in Narayanan et al. (2021) to sup-

port semi-supervised multitask training. This model supports “causal” (streaming)

prediction, as well as “non-causal” (full-context) prediction. To this end, we define

four neural modules:

1. EC , the “causal” encoder, which consumes streamed audio features with no

right-context.

2. ENC , the “non-causal” encoder, which consumes the outputs of EC with 900ms

of right-context.

3. DC , a decoder for the causal encoder. During inference, this decoder may be

used to generate immediate predictions as the user speaks.

4. DNC , a decoder for the non-causal encoder. During inference, this decoder may

be used to revise the predictions of the causal decoder with short latency.

Unlike Narayanan et al. (2021), we would like our model to consume represen-

tations of either audio or text. For this we follow JOIST, seeking mechanisms to

cause the EC to be agnostic to the input modality. We choose to include two neural
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“frontends”, one for audio features and one for text. As in JOIST, we upsample

text frontend outputs by repetition so that audio and text representations will be of

approximately the same length.
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Figure 3.1: A high-level model architecture supporting multiple semi-supervised methods for both streaming (blue
paths) and non-streaming prediction (green paths). Solid paths represent BEST-RQ, dashed paths represent JOIST,
and dotted paths represent TTS augmentation.
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3.2.2 Tasks

In this framework, causal and non-causal ASR are trained as they are in Narayanan

et al. (2021). In particular, for causal ASR, x is processed by the audio frontend,

encoded by EC , and decoded by DC , while non-causal ASR is processed analogously

with the non-causal modules ENC and DNC . The model is trained end-to-end with

an RNN-T Graves (2012a) loss. This is represented by the solid blue (causal) and

solid green (non-causal) paths in Figure 3.1. For semi-supervised tasks we require

different formulations.

3.2.2.1 TTS Augmentation: Text Injection

Using a pre-trained TTS system with frozen parameters, we generate an audio

clip x̂ corresponding to each unsupervised text segment y ∈ UT . We then treat (x̂, y)

as a supervised audio-text pair and train the causal and non-causal ASR tasks. This

is represented by the dotted blue (causal) and dotted green (non-causal) paths in

Figure 3.1.

We found that in order to achieve reasonable training speed it is important that

the TTS system convert input word-pieces not into raw audio but instead into the

(much shorter) sequence of acoustic features that is consumed by the audio frontend.

This is due to the fact that since the decoder of our TTS system which produces

audio features is autoregressive, audio sequence length has critical implications for

training speed and quickly becomes a bottleneck.
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3.2.2.2 JOIST: Text Injection

Following the design of JOIST in Sainath et al. (2022), we pass masked unpaired

text examples through a text frontend, which consists simply of a learned projection.

The results are treated identically to audio features; that is, they are passed in turn

to the causal (EC and DC) and non-causal (ENC and DNC) encoders and compared

to the original text sequence via an RNN-T loss. This is represented by the dashed

blue (causal) and dashed green (non-causal) paths in Figure 3.1.

We find that it is critical for WER that JOIST consume phonemic representations

of y, as opposed to text tokens, corroborating the findings of Sainath et al. (2022). We

include a text-to-phoneme lookup in the model which processes text before masking.

The JOIST loss still operates with respect to the standard word-piece representation

- that is, the JOIST loss learns to generate word pieces from a masked phoneme

sequence.

3.2.2.3 BEST-RQ: Audio Injection

We model our audio injection after BEST-RQ as presented in Chiu et al. (2022).

Audio features are masked and processed by the frontend. They are then encoded by

the casual and non-causal encoders of the ASR stack. Additionally, audio features

are processed by a randomly initialized projection with frozen weights and then

discretized by rounding to the nearest entry in a fixed codebook. The encoder is

then trained to predict the quantized targets inside the masked region. This is

represented by the dashed red path in Figure 3.1.
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3.2.3 Training Scheme

There are many approaches to multi-task semi-supervised learning, mostly fo-

cused on the pretrain-finetune paradigm Baevski et al. (2019, 2020); Chen et al.

(2021a); Schneider et al. (2019). While this methodology has achieved state of the

art results on datasets such as Librispeech, we found that on our large dataset it is

prone to forgetting representations learned in pretraining during finetuning, which

is consistent with the findings in Bai et al. (2021) for very large training sets. We

therefore restrict our study to joint training of ASR together with the unsupervised

tasks. Note that even though joint training includes ASR, we find that it is still

beneficial and convenient to initialize from a strong ASR baseline.

At each iteration during training we sample a separate batch from each dataset,

bS ∈ S, bUS ∈ US, and bUT ∈ UT . We then propagate each batch through the model,

performing the preprocessing specified for TTS augmentation and JOIST on bUT and

that specified for BEST-RQ on bUS . We apply the relevant losses to each task and

sum them according to preset weights.

3.3 Experiments

This section details the implementation, training, and evaluation of the architec-

ture described above.

3.3.1 Model

Following the components in Figure 3.1 the architecture of our model is as follows.
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The causal audio encoder EC consists of six conformer Gulati et al. (2020) layers

with model dimension 2048 and eight attention heads. The noncausal audio encoder

ENC adds a further nine such conformer layers. The decoders DC and DNC are each

HAT Variani et al. (2020) decoders with prediction and joint networks with model

dimension 640. These four components and the audio frontend, which together make

up the inference-time model, contain about 164M parameters.

The TTS system is based on Tacotron 2 Shen et al. (2017). The encoder consists

of three convolutions followed by a single RNN layer, while the decoder consists of

a single RNN layer with attention to the encoder outputs followed by a post-net

consisting of five convolutional layers.

3.3.2 Training

We train our model with a supervised dataset S consisting of about 4M utter-

ances, totalling about 200k hours of speech. We also use an unsupervised audio

set US of about 600M utterances and an unsupervised text set UT of about 230B

examples.

At timestep t, the audio head of our model consumes 512-dimensional features

consisting of four 128-dimensional log-mel features representing the range [t − 2, t +

1]. The log-mel features are computed at 10ms intervals and on 32ms frames. We

subsample stacked features by a factor of 3, so that each feature represents 30ms in

the input. During BEST-RQ, we mask a single span consisting of 15% of the input

features. Text inputs are represented by a wordpiece model of size 4096.

Our baseline model is trained for 800k steps with a batch size of 2048 for each of
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S, US, and UT . Our semi-supervised experiments are trained for a further 35k steps,

using task splits specified in Section 6.4.

3.3.3 Evaluation

We evaluate our models on several test sets, seeking to measure performance

under the acoustic and language conditions which are typically targeted using un-

supervised data. Our voice search test set (VS) is sampled from anonymized traffic

to Google production services. The NOISY set consists of anonymized traffic with

artificial noise added. Our remaining test sets are synthesized using a TTS system

from anonymized text traffic to Google services, and are selected according to a

criterion meant to target difficult language conditions. The rare proper nouns set

(RPN) consists of examples that contain a proper noun (as determined by a neural

proper noun tagger) that occurs fewer than five times in S. The Rare-LM set (R_-

LM) consists of examples containing a unigram that occurs fewer than five times in

both S and UT , while the (C_LM) consists of examples containing a unigram that

occurs fewer than five times in S but at least 150 times in UT . RPN and C_LM

measure tail performance, while C_LM is intended to measure the degree to which

information from UT has been incorporated into the model.

3.4 Results

We denote JOIST with the letter A, TTS augmentation with B, and BEST-RQ

with C. We find the best results when each of these experiments are trained with
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40% task weighting each on causal and non-causal ASR, with the remaining 20%

split across unsupervised tasks. The weightings of the unsupervised tasks are given

in Table 3.1.

Model C-JOIST NC-JOIST TTS BEST-RQ
E-A 1/2 1/2 0 0
E-B 0 0 1 0
E-C 0 0 0 1

E-AB 1/4 1/4 1/2 0
E-AC 1/4 1/4 0 1/2

E-ABC 1/6 1/6 1/3 1/3

Table 3.1: Task Weights. C-JOIST and NC-JOIST refer to the causal and non-causal
variants.

We denote our baseline experiment E-0, which splits its weight equally between

causal and non-causal supervised ASR.

We give our WER results in Table 3.2. We are unsurprised to find that given a

very large supervised corpus and limited model capacity, none of our methods im-

prove performance on the unspecialized voice search test set. We find considerable

improvement, however, under tail conditions. JOIST consistently performs best on

the acoustically clean but linguistically difficult TTS tail-word test sets, which agrees

with the intuition that JOIST acts to improve the model’s text representation. How-

ever, JOIST in fact degrades performance on the acoustically challenging Noisy test

set. BEST-RQ seems beneficial only when combined with JOIST, where it appears

to recover lost performance on noisy data while retaining some of the improvements

on the tail-word sets.

In production systems, model performance goes beyond raw WER, since it is
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Model VS Noisy RPN R_LM C_LM
E-0 6.0 8.2 21.2 38.3 55.8
E-A -0.0% +1.2% -4.7% -5.0% -2.3%
E-B -0.0% -1.2% -0.5% -2.1% -0.7%
E-C -0.0% +1.2% +0.1% -0.0% -0.4%

E-AB -0.0% +1.2% -3.8% -4.2% -2.0%
E-AC -0.0% -0.0% -2.8% -2.9% -1.2%

E-ABC -0.0% +2.4% -3.3% -3.7% -1.4%

Table 3.2: Word Error Rate measurements for all task combinations.

often not a 1-best hypothesis but rather the produced lattice that is used to generate

predictions or fed directly to a downstream NLU task. In Table 3.4, we measure the

richness of the lattice by computing “lattice density”, which we define as the number

of arcs in the lattice divided by the number of wordpieces in the ground truth.

On this measure, we find that all three methods offer considerable improvement in

voice search. For difficult utterances, we find that combinations of methods largely

outperform single methods. This agrees with the intuition that many training criteria

lead to a greater diversity of plausible predictions, and invites investigation into the

combination of these methods for applications like biasing or intent classification

which can benefit from a rich lattice.

Finally, since an autoregressive decoder is often a computational bottleneck in

on-device systems, we seek to determine the impact of our methods on the work

the decoder has to do. In Table 3.3, we measure the average number of states

expanded by the decoder during beam search. We find that all three methods provide

meaningful improvements over the baseline on this metric, with the best results

coming from JOIST. This suggests, unsurprisingly, that the decoder explores the
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Model VS Noisy RPN R_LM C_LM
E-0 162 187 297 357 325
E-A -7.2% -5.3% -11.1% -10.1% -8.9%
E-B -7.2% -5.3% -9.8% -8.4% -7.4%
E-C -9.9% -6.9% -6.3% -5.8% -4.9%

E-AB -7.2% -4.8% -6.1% -5.0% -4.0%
E-AC -9.9% -6.4% -10.8% -9.2% -8.3%

E-ABC -8.5% -5.9% -9.8% -8.7% -7.7%

Table 3.3: The average number of states traversed by the decoder for each method. Fewer
states reflects more pruned paths, in turn reflecting more confident decoder decisions.

Model VS Noisy RPN R_LM C_LM
E-0 3.2 3.3 6.2 8.1 9.7
E-A +12.5% +15.2% +3.2% +3.7% +3.1%
E-B +12.5% +12.1% +3.2% +3.7% +3.1%
E-C +12.5% +12.1% +3.2% +3.7% +3.1%

E-AB +12.5% +12.1% +1.6% +3.7% +3.1%
E-AC +12.5% +12.1% +3.2% +4.9% +4.1%

E-ABC +12.5% +12.1% +3.2% +4.9% +3.1%

Table 3.4: The average decoding lattice density for each method. Denser lattices are
generally more useful for downstream NLU tasks.
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fewest states when the model has a strong language representation.

3.5 Conclusions

We begin our investigation with the application of several contemporary semi-

supervised training methods to a realistic, state-of-the-art production ASR system.

We find that unlike in the conventional setting, with a large full-context model and

only a small amount of supervised data, these methods do not offer improvement

on unspecialized WER. Having shown this, we articulate the core questions of this

work: why do these methods fail to scale, and how might they be improved?

As a first step, we note with interest that despite failure to improve WER on the

head, these methods are hardly useless. Instead, these techniques offer meaningful

utility for tail-condition performance, lattice density, and decoder computational

load. These results suggest that the primary function of the studied techniques is

not to refine the audio encoder, as might be thought from the design the of the

methods, but rather to improve language modeling capacity in the decoder. In this

sense, these methods overlap with shallow fusion, which as we’ve noted in Chapter

2 is a method of text injection that has been shown to reliably scale against strong

baselines.
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Chapter 4

Dual Learning

The results of Chapter 3 suggest that mainstream semi-supervised ASR methods,

when applied at scale, are largely constrained to refining language modeling in the

decoder. In this chapter, we test that theory against a less-known semi-supervised

method that is specifically designed to leverage both unpaired audio and text in order

to refine the encoder representation. We will, for the first time, determine how this

method performs in the high-resource, high-parameter, streaming setting. We will

find that while the method remains useful even against a baseline trained on all 960

hours of Librispeech, improvements are largely redundant with shallow fusion, which

is strictly confined to the decoder computation. As we will see, the design of dual

learning emphasizes the encoder representation by training parallel encoders for both

modalities, and including the encoder in all training tasks. That even a method so

targeted at the encoder as dual learning should only significantly effect the decoder

will refine our understanding of why contemporary semi-supervised methods for ASR

31



scale poorly.

4.1 Background: Dual Learning

The literature on semi-supervised ASR largely involves separate methods for un-

paired text and audio, as described above. While works such as Bapna et al. (2021)

have incorporated methods from both categories into the same system, few individual

methods make use of unpaired audio and text together.

Dual learning Qin (2020) is a notable exception. Originally proposed as back-

translation for machine translation Xia et al. (2016), dual learning exploits the “dual”

nature of speech-to-text and text-to-speech, co-training models for the two tasks.

Staring with Ren et al. (2020) and continuing with Xu et al. (2020), dual learn-

ing systems for speech use the TTS component to provide supervision for unpaired

text examples and the ASR component to provide supervision for unpaired audio

examples, permitting training in both domains. These systems have achieved strong

performance on as little as few minutes of paired data. However, they have yet to

demonstrate large gains against a strong supervised baseline.

4.2 Methods

In this section, we describe our implementation of ASR pretraining based on dual

learning.
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4.2.1 Architecture

In order to perform ASR, TTS, and reconstruction in both domains, our im-

plementation must include encoders and decoders for both audio and text. As in

Chapter 3 we imitate Narayanan et al. (2021) and implement streaming with an

architecture that can emit a provisional hypothesis immediately and then revise it

after a short delay. We do this to in order to make a fair comparison to our previous

study and in order to examine the method in a production-like setting. In order to

improve the likelihood of success on the two more difficult tasks (ASR and TTS), we

adapt these components from existing ASR and TTS architectures. Our audio en-

coders and text decoder are adapted from conformer Gulati et al. (2020); Narayanan

et al. (2021). Our text encoder and audio decoder are adapted from Tacotron 2 Shen

et al. (2017).

Formally, we frame our problem around the same three datasets as in Chapter 3.

First, S consists of paired text and audio examples (x, y), where x = (x0, ..., xm) is an

audio sample of length m and y = (y0, ..., yn) is the corresponding text transcript of

length n. Second, UT gives unpaired text examples y, and finally UA gives unpaired

audio examples x. We then define the components of the model as functions. We

define the audio encoders EC
A, which has only left-context and ENC

A , which has 900ms

of right-context. We also define the text encoder ET , the decoders DA and DT ,

and the linear transformations TA→T which maps an audio embedding to a text

embedding and TA←T which maps a text embedding to an audio embedding.

We may then proceed to define the model’s objectives.
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Figure 4.1: The architecture of our dual learning model. Blue components participate in
audio reconstruction, while green components participate in text reconstruction.
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4.2.1.1 Supervised ASR and TTS

We follow Narayanan et al. (2021) to build a model capable of emitting an ASR

hypothesis in real time while streaming finalized predictions with 900ms latency.

To this end, we split ASR training into two losses. For (x, y) ∈ S, the immediate

streaming task is given by:

LC
ASR = Lxent(y, DT ◦ EC

A(x))

while the delayed task is given by:

LNC
ASR = Lxent(y, DT ◦ ENC

A ◦ EC
A(x))

where ◦ denotes function composition. That is, the streaming task uses only the

first, left-context encoder while the delayed task adds a further encoder with 900ms

of right-context. Here we have defined Lxent as the cross-entropy loss over text units.

Since this work focuses on pretraining for ASR systems, we do not seek to stream

the TTS task. Instead we define the single full-context task:

LTTS = LMSE(x, DA ◦ ET (y))

where we have defined LMSE as the mean squared error loss over continuous audio

features.
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4.2.1.2 Unsupervised ASR and TTS

Dual learning for speech and text involves the use of the TTS system to provide

pseudo-labels for the ASR system and visa versa. Specifically, for an unpaired audio

example x ∈ UA we derive the pseudo-label ŷ by beam search over the outputs of

the ASR model. We may then define the objectives:

LU-TTS = LMSE(x, DA ◦ ET (x̂))

Similarly, for an unpaired text example y ∈ UT we may derive the pseudo-label

x̂ by performing inference in the TTS system. We may then define the objective:

LC
U-ASR = Lxent(y, DT ◦ EC

A(ŷ))

and

LNC
U-ASR = Lxent(y, DT ◦ ENC

A ◦ EC
A(ŷ))

4.2.1.3 Reconstruction

To perform text reconstruction, we must pass representations from the ASR en-

coder to the TTS decoder and visa versa. We find that when initializing using

pre-trained ASR and TTS systems, the components struggle to adapt to each other

and the model fails to converge. We find that this problem is alleviated simply by

placing a single linear transformation TA→T between the audio encoder and audio de-
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coder, and another transformation TA←T between the text encoder and text decoder.

With this in mind, we define the text reconstruction task:

LText Recon = LMSE(y, DT ◦ TA←T ◦ ET (y))

for (x, y) ∈ S, with LU-Text Recon defined analogously for x ∈ UT . We similarly define

the audio reconstruction task:

LAudio Recon = Lxent(x, DA ◦ TA→T ∗ ENC
A ◦ EC

A(x))

for (x, y) ∈ S, with LU-Audio Recon defined analogously for x ∈ UA.

4.2.2 Training

We might naively seek to train the above tasks together by alternating tasks

across sequences of batches. As in Chapter 3, we find that such a training scheme

fails to achieve convergence, as each task is forgotten during the training of the

others, and we again instead combine all tasks in a single batch. This time the batch

is split in thirds, the first coming from S, the second from UA, and the last from UT .

For the first third, we jointly optimize the supervised tasks:

LS = LC
ASR + LNC

ASR
2 + LT T S + LText Recon + LAudio Recon

for the second third, we optimize the unsupervised audio tasks:

LA = LU-TTS + LU-Audio Recon

37



for the last third, we optimize the unsupervised text tasks:

LS = LC
U-ASR + LNC

U-ASR
2 + LU-Text Recon

We find that this method achieves convergence, so long as we initialize the model’s

components from an ASR and TTS system trained on S. Otherwise, the model

generates incorrect pseudo-labels early in training, preventing progress.

4.2.3 Language Modeling

Since dual learning involves the incorporation of unpaired text at training time,

we naturally want to compare our method to the incorporation of unpaired text at

inference time. To this end we evaluate our models with shallow fusion Gülçehre

et al. (2015) with a pretrained LM. We also use a Hybrid Autoregressive Transducer

(HAT) Variani et al. (2020) text decoder, which permits the factorization of our

models’ internal LM. Ultimately, at inference time for audio sample x we seek:

y∗ =y log P (y|x) + αPELM(y) − βPILM(y)

where P (y|x) gives our acoustic model posterior, PELM(y) gives the likelihood of a

transcript in the external LM, PILM(y) gives the likelihood of the transcript in the

internal LM (as formulated in HAT), and α and β are hyperparameters.
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Model Baseline Shallow
Fusion

Internal
LM

BASELINE 8.4 6.3 5.8
E-ALL 7.5 5.6 5.5
E-DL 8.1 6.2 6
E-RECON 10.3 7.4 7.2

(a) Test Clean

Model Baseline Shallow
Fusion

Internal
LM

BASELINE 22.9 19.5 18.3
E-ALL 20.4 16.3 16.2
E-DL 21.9 18.3 17.9
E-RECON 27 22.5 21.9

(b) Test Other

Table 4.1: WER percentage results on the Librispeech test sets. Baseline evals include
no language model. Shallow Fusion evaluations include LM interpolation with α = 0.2.
Internal LM evaluations further subtract out the internal LM with β = 0.1.
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4.3 Experimental Setup

In this section, we give the details of our experimental setup.

4.3.1 Model

The ASR branch of our model is a cascading conformer adapted from Narayanan

et al. (2021), specifically sized to be realistic for an on-device streaming application.

The streaming encoder is small to ensure fast inference. It consists first of 3 convo-

lutional layers followed by 7 conformer layers with a 512-dimensional representation

for a total of 56M parameters. The delayed encoder is larger, and is parameterized

by 10 conformer layers with a 640-dimensional representation for a total of 99M pa-

rameters. Following Botros et al. (2021), the HAT decoder consists of an embedding

network and joint network, contributing another 9M parameters.

The TTS branch of our model is adapted from Tacotron 2 Shen et al. (2017). The

text encoder first maps wordpieces into a 512-dimensional embedding space, followed

by three convolutional layers and a single bidirectional LSTM layer, totalling 8M

parameters. The audio decoder consumes the audio sample autoregressively through

a “pre-net”, which consists of two fully-connected layers with 50% dropout at each

layer. We find that this aggressive dropout is critical to convergence, since during

multi-task training with teacher forcing the TTS decoder has a strong tendency

to rely entirely on the autoregressive signal instead of the encoder representation.

This yields poor performance at inference, which in turn creates poor pseudo-labels

for unpaired text. Scheduled sampling Bengio et al. (2015) was investigated as an
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alternative, but was found to be less effective than simple dropout. The audio sample

is then passed to two LSTM layers, which also consume the encoder representation

via cross-attention. After the LSTM has generated an audio prediction, that result is

further processed by a full-context “post-net” consisting of five convolutional layers.

In total, the TTS decoder has about 26M parameters.

4.3.2 Data

We use 960 hours of supervised audio from Librispeech as S, 60k hours of unsu-

pervised audio from Librilight Kahn et al. (2020) as UA, and 80M transcripts from

the Librispeech LM set as UT . We process the audio into a 128-dimensional log-mel

feature per 10ms of audio. We stack every third such feature with the three fea-

tures before it, yielding 512-dimensional features at 30ms intervals. We then apply

SpecAugment Park et al. (2019) with mask parameter F = 27 and ten time masks,

as in Gulati et al. (2020). This forms the inputs to the audio encoder.

4.3.3 Evaluation

We evaluate our models using a beam search with a beam size of 8. For fusion

experiments, we use an external language model trained on UT . The LM is a causal

transformer Vaswani et al. (2017) with 8 layers, 16 attention heads, and a model

dimension of 1024, totaling about 100M parameters.
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4.4 Results

We evaluate our model relative to a baseline ASR system trained on 960 hours

of Librispeech (BASELINE). The difference between our baseline WER and those

reported in full-context works like Chen et al. (2021a) reflect the added difficulty of

streaming results as well as the reduced model size. We contrast this with a model

trained on all tasks defined above (E-ALL). We perform ablations by also training a

model on only the supervised and dual learning tasks (E-DL, excluding LText Recon,

LU-Text Recon, LAudio Recon, and LU-Audio Recon) and another only on the supervised and

reconstruction tasks (E-RECON, excluding LC
U-ASR, LNC

U-ASR, and LU-TTS). Results

are given in Table 4.1.

We find our method to improve performance on the test-clean/test-other test sets

by 10.7%/5.2% without an LM and 11.1%/16.4% with an LM included via shallow

fusion. Interestingly, we find that while dual learning alone (E-DL) yields improve-

ments, reconstruction alone (E-RECON) does not. Nevertheless, the combination

of dual learning and reconstruction (E-ALL) yields better results than either alone.

This suggests that reconstruction itself distracts from the ASR tasks but synergizes

with dual learning. This may reflect the fact that on the multi-speaker, long utter-

ances of Librispeech, a joint model benefits from extra exposure to the unsupervised

training data in order to produce strong pseudo-labels for dual learning.
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4.4.1 Effect of the Language Model

We note with interest that while the application of shallow fusion preserves the

gains yielded by our method, further subtracting out the internal language model

via HAT only partially preserves those gains. That is, subtracting out the internal

language model substantially closes the gap between the baseline and our method.

Figure 4.2 illustrates this effect by plotting WER for a parameter sweep of exter-

nal LM interpolation (shallow fusion) weights and internal LM interpolation (HAT)

weights. Quantitatively, subtracting out the internal LM with a factor of β = 0.1

from a model with shallow fusion improves BASELINE by 7.9%/6.2% while only

improving E-ALL by 1.2%/0.6%.

This result suggests that our method largely benefits the internal language rep-

resentation of the ASR system’s decoder. In doing so, it is mostly redundant to

contemporary language model fusion methods in the large-data regime. That’s not

to say that dual learning offers no benefits over fusion. Unlike conventional lan-

guage model fusion, our method bakes knowledge of that data into the parameters

of the decoder, providing much the same effect as combining the ASR system with

a pretrained language model with no modifications to the architecture.

This result also suggests that the improvements due to our method come mostly,

but not entirely, from the unsupervised text data, as opposed to the unsupervised

audio. This is consistent with our design; unsupervised text yields pseudo-labeled

examples for the ASR task, while unsupervised audio yields pseudo-labeled examples

for the TTS task.
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(a) Baseline, Test Clean (b) Baseline, Test Other (c) Baseline, LM Only

(d) Dual Learning, Test
Clean

(e) Dual Learning, Test
Other

(f) Dual Learning, LM Only

Figure 4.2: The effects of external LM (ELM) and internal LM (ILM) interpolation at
inference time for our supervised baseline and our dual learning model. WER on three test
sets is plotted for various settings of ELM and ILM interpolation weights.
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4.4.2 Tail Analysis

Since unsupervised data is often used to address parts of the data distribution

that are absent from the supervised training set, we seek to understand the effect

of our method on “tail” words, which we define as words that are underrepresented

in the training data relative to their frequency in the language as a whole. To this

end, we make use of the LM_C tail set from Chapter 3, consisting of synthesized

audio transcripts from a Tacotron TTS system as in Shen et al. (2017). Results on

this tail test set are given in Table 4.1, and measurements of internal and external

LM integration are included in Figure 4.2.

Model Baseline Shallow
Fusion

Internal
LM

BASELINE 16.1 13.8 12.9
E-ALL 15.3 12.6 12.4
E-DL 15.5 13.1 12.8
E-RECON 17.4 14.5 14.2

Table 4.2: WER percentage results on the synthesized Tail test set.

As above, we find that our method yields improvements across the board. How-

ever, we note that the improvements are smaller than they are on Librispeech test

sets. In particular, without an LM we improve by 5.0%, with shallow fusion we im-

prove by 8.7%, and with internal language model subtraction we improve by 3.9%.

This perhaps reflects a domain mismatch, since the tail sets are derived from Google

datasets instead of Librispeech’s audiobooks, as described in 3.
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4.5 Conclusion

On the surface, our experiments show that the usefulness of dual learning scales

to a scenario with 960 hours of supervised audio. However, upon looking closer we

see that the method is only marginally stronger then shallow fusion. This casts doubt

on the understanding that methods like dual learning use unpaired data to improve

encoder representations of audio, and suggests instead that they mostly improve the

decoder’s internal language model. It also leaves unsolved the problem of how to

improve encoder representations with unpaired data in a manner that scales to large

supervised datasets.
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Chapter 5

Disentanglement

After having carefully assessed several semi-supervised ASR methods encompass-

ing both speech and audio we have accumulated evidence that alternative loss criteria

based on unsupervised modeling yield refinement only in the function of a model’s

decoder. We hypothesize that scaling these methods will require a deeper refine-

ment that extends to the model’s encoder representations. We ask what properties

of encoder representations are both achievable with unpaired data and beneficial to

downstream ASR performance.

With this question in mind, we undertake an abstract study of the representations

formed by a dual learning model in a contrived, small learning setting. We provide

evidence that the strength of unsupervised learning comes not only from exposure

to new data, but also from the development of a joint representation with observ-

able statistical properties. This understanding will motivate our approach towards

improving semi-supervised ASR methods for the large-data setting.
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5.1 Introduction

Before the proliferation of large language models trained by simple next-word

prediction, advances in language processing were due mostly to auxiliary unsuper-

vised tasks that developed a representation of text. Methods like ELMo Peters et al.

(2018), GPT Radford and Narasimhan (2018), and BERT Devlin et al. (2018) work

by using an unsupervised task that develops a representation of text that is useful

for downstream tasks in a way that is agnostic to what that task is.

The jumping-off point for this study is the observation that in applying these

lessons to unsupervised pretraining in speech, great progress has been made with the

discovery that in a data-intensive domain like audio, it is best to learn a representa-

tion that discards unimportant parts of the signal. Contrastive estimation Gutmann

and Hyvärinen (2010), in which a full reconstruction is not learned, has yielded repre-

sentations that achieve strong results in speaker identification and speech recognition

van den Oord et al. (2018). State-of-the-art methods combine contrastive learning

with masked language modeling as in Wav2Vec 2.0 Baevski et al. (2020) and Adaptive

SpecAugment Zhang et al. (2022).

Such successes can be seen as signaling a movement away from task-agnostic

representations and towards “lossy” representations, in which a model learns not

only to summarize relevant portions of a signal but also to discard portions that are

irrelevant to the downstream task. This distinction is particularly clear in the world

of multi-modal representation learning, where we seek a representation specifically of

the intersection between two domains (e.g. audio and images Morgado et al. (2020);

Peri et al. (2021) or audio and text Chung (2019)). However, while there are several
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natural methods for learning a representation that models components of a signal

that are required for a task, it is difficult to craft a method that compels a model to

specifically exclude irrelevant components. Approaches in this space have commonly

relied on techniques like adversarial learning to exclude particular parts of a signal

thought to be irrelevant, as in Wang et al. (2021).

In this study, we develop a novel architecture specifically designed to learn a

measurably disentangled representation of audio using supervised data. Our model

is based on the paradigm of dual learning, which as described in Chapter 4 seeks to

exploit the “duality” between ASR and TTS. Traditionally, this is done by training

a model that performs both ASR and TTS with a shared encoder that is tasked with

representing inputs from both the speech and text domains Ren et al. (2020); Xu

et al. (2020). Our model adds a secondary encoder, which is intended to capture

specifically those parts of the audio signal that are irrelevant to the transcript. While

the primary encoder is utilized for both ASR and TTS, this secondary encoder is

used only for audio reconstruction, which is a task that requires both that part of

the audio signal that predicts the transcript and the “residual” signal that does not.

We argue that disentanglement is facilitated by the explicit modeling of the residual

signal by the secondary encoder, and demonstrate this disentanglement by training

a speaker-ID classifier on the outputs of both the primary and secondary encoders.

Other studies have shown that in scenarios where more than one solution to an

optimization problem is possible (such as generalized vs. overfit solutions Weber

et al. (2018) and selection of significant units in a DNN Frankle and Carbin (2018)),

the stochasticity of parameter initialization and minibatch selection can be decisive.
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We present empirical evidence that speech signal disentanglement is such a problem.

We find that both entangled and disentangled solutions to our dual learning problem

are possible, and that the superior, disentangled solution is arrived at randomly. We

then observe that the disentangled solution has the unique statistical property of

using a large amount of its variational capacity in both encoders. Finally, we show

that enforcing this property during training with an additional loss term substantially

improves ASR quality.

Possible immediate applications of our joint modeling task include refinement

of back-transcription based semi-supervised learning systems such as speech chains

Tjandra et al. (2017) and Sequential MixMatch Chen et al. (2021b). However, we

are most interested in probing to see what attributes of a joint speech and text

representation contribute to WER improvements. We will make the observation that

WER improvements in our setup come alongside greater “jointness” in the speech

and text representation.

5.2 Architecture

In this section, we describe a joint ASR, TTS, and reconstruction model built on

the dual-learning paradigm. Our architecture is depicted in Figure 5.1.

5.2.1 Architecture Summary

Our model is trained to consume either text or audio input, and to emit both

text and audio. In that way, for a given input the model either performs ASR and
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speech reconstruction (audio input) or TTS and text reconstruction (text input).

These tasks are performed by way of a pair of encoders, each of which yield a data

representation. The “joint” (or primary) encoder can consume either audio or text,

while the “audio-only” (or secondary) encoder consumes only audio input. There

are also two decoders, one corresponding to each of the domains. The text decoder

consumes the output of the joint encoder only, while the audio decoder consumes the

outputs of both the joint and audio-only encoders, combined by way of a “embedding

combination module”, which consists simply of three transformer layers.

For tasks which lack text input (ASR and audio reconstruction), the joint en-

coder consumes zeros instead of text. For tasks which lack audio input (TTS and

text reconstruction), the joint encoder consumes zeros instead of audio, and the em-

bedding combination module consumes zeros instead of the outputs of the audio-only

encoder.
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Figure 5.1: Our joint ASR/TTS model architecture, including an audio-only and joint encoder to support a
disentangled representation. Blue components are adapted from Conformer Gulati et al. (2020), green components
are adapted from Tacotron 2 Shen et al. (2017).
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5.2.2 Encoder Architecture

The joint encoder is split into two sub-encoders, one to encode audio and one

to encode text, each implementing a state-of-the-art encoding scheme. The audio

sub-encoder is based on Conformer Gulati et al. (2020), and consists of 17 conformer

blocks with sub-sampling so that the length of the audio input sequence is reduced

by a factor of four. The text sub-encoder is based on Tacotron 2 Shen et al. (2017),

and consists of a embedding projection and positional encoding followed by a pre-

net and transformer module. As in Shen et al. (2017), the pre-net consists of three

blocks of a 1D convolution with a 5x1 filter and a dropout layer that zeros out 10% of

its input. The transformer block borrows from the original transformer architecture

in Vaswani et al. (2017) and consists of three blocks of multi-headed self-attention

followed by a feed-forward layer.

In order to produce a representation that is agnostic to the input domain, we

would like to ensure the joint encoder emits a representation of approximately equal

length for both domains. Otherwise, for example, the audio decoder might learn

to model audio reconstruction and TTS separately based on encoding length. To

this end, we adapt the length-transformation component from Shu et al. (2019) by

which a representation is compressed into a shorter sequence where each element is

a weighted average of elements from the original sequence. In particular, a sequence

z1, ..., zM is converted to to z̄1, ..., z̄N (with N < M) as:
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z̄j =
M∑

k=1
σ(αj

k)zk

αj
k = − 1

2s
(k − |x|

N
j)2

where s is a learnable spread parameter and σ represents softmax normalization

across all weights αj
k for fixed j.

The audio-only encoder consists simply of four conformer blocks. These blocks

do not include sub-sampling, so the output of the audio-only encoder is the same

length as the audio input.

5.2.3 Decoder Architecture

The audio and text decoders are adapted from Tacotron 2 Shen et al. (2017) and

Transformer Vaswani et al. (2017) respectively.

The audio decoder consists of a pre-net, autoregressive RNN, and post-net. The

autoregressive component consumes its own previous output, and passes it though

a simple audio pre-net which consists simply of a projection and dropout layer. We

then attend to the outputs of the embedding combination module and concatenate

the obtained context vector to the processed audio. This input is passed to a small

recurrent network (two LSTM layers) which emits the autoregressive prediction. As

in Wang et al. (2017), we find that tuning the dropout in the audio pre-net is critical

to convergence, since without dropout in the autoregressive input the model simply

learns to copy the previous frame. We find the best results with 10% dropout.
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As in Shen et al. (2017), we find significant improvement in TTS when the autore-

gressive decoder output is further processed by a non-autoregressive convolutional

post-net. We use a stack of five convolutions to refine the autoregressive prediction.

During training, we jointly optimize the cross-entropy of both predictions.

The text decoder is a conventional Transformer Vaswani et al. (2017) decoder,

consisting of two blocks each containing a projection, self-attention, and cross-attention.

5.3 Experiments

We’ve described how an audio input passed to our model is represented separately

by the joint encoder and audio-only encoder. When optimized to perform the four

tasks of ASR, TTS, and audio and text reconstruction, we may naturally imagine

two classes of solutions that the model might arrive at:

• A “disentangled” representation, in which the joint encoder output (which will

be consumed by the text decoder) represents that part of the audio signal

relevant to the transcript, while the audio-only encoder output (which is only

consumed by the audio decoder) represents that part of the audio signal that is

not relevant to the transcript. For example, the joint encoder might represent

phonetics, while the audio-only encoder might represent prosody, background

noise, and channel effects.

• An “entangled” representation, in which that part of the audio signal relevant

to transcription is not particularly favored by either representation.
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We seek to observe which of these two representations is learned by our model. To

this end, we train our model fifteen times on the given joint task, arriving at fifteen

different solutions to the optimization problem. We then freeze the parameters of

the model, and for each of the fifteen instances we train:

• A classifier to determine the speaker ID for a speech example given the model’s

joint encoder output.

• A classifier to determine the speaker ID for a speech example given the model’s

audio-only encoder output.

For a model that has learned a disentangled representation, we expect to be able

to predict speaker ID best from the audio-only encoder output, since speaker infor-

mation is ostensibly required for audio reconstruction but irrelevant to transcription.

5.3.1 Entanglement Classifiers

Speaker IDs are learned using a custom classifier that applies a positional em-

bedding to the selected encoder output followed by three transformer blocks with

multi-headed self-attention, five convolutions with a 3x3 filter and stride of 2 and

finally a projection and softmax layer.

5.3.2 Model Settings

As in Shen et al. (2017) and Wang et al. (2017), we process audio inputs into mel

spectrograms with a short-term Fourier transform (STFT) using a frame size of 50 ms
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and frame hop of 12.5 ms. We then apply a Han windowing function before applying

a mel filterbank, yielding 80-dimensional vectors for our model’s audio input.

For text, we choose to use grapheme-level inputs such that the outputs of the em-

bedding layers are 72-dimensional vectors. While a wordpiece representation might

have yielded stronger ASR results, we found that graphemes most reliably ensured

convergence of all tasks.

All components use a model dimension of 256, with the model containing about

68 million parameters in total. Each model is trained with a batch size of 256 split

across 16 third-generation tensor processing units (TPUs). After 150k steps, we

freeze the joint model and train each disentanglement classifier for 100k steps.

5.3.3 Training

To jointly optimize our four tasks, we split each batch into two halves. The first

half consists of text inputs and represents the TTS and text reconstruction tasks,

while the second half consists of audio inputs and represents the ASR and audio

reconstruction tasks. For all elements in the batch, we optimize the loss

L = Ltext + Laudio_ar

2 + Laudio_final

2

where Ltext is the cross-entropy loss for the text output, Laudio_ar is the cross-

entropy loss for the audio output before the convolutional post-net, and Laudio_final

is the cross-entropy loss for the audio output after the convolutional post-net. We
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find this setup to train more quickly and to converge better than regimens in which

tasks alternate across batches.

5.3.4 Data

As in Chapter 4 we train on Librispeech. We see Librispeech as ideal for this

experiment since it contains a diverse set of speakers such that there is a significant

part of the audio signal to represent outside of the transcript. We train our models

in particular on the “clean” subset of the training data, which contains about 460

hours of speech. As we will describe below, we do this in order to allow for many

training runs. For WER measurements we evaluate on the “clean” test set.

5.4 Results

In this section, we report the results of our experiments and analyze the learned

representations.

We point out that by the nature of this experiment, our model had to be trained

from scratch many times, leading to considerable resource constraints. These con-

straints forced us to simplify the training procedure by using only the clean Lib-

rispeech data, a small batch size, and a small number of training steps. This com-

bined with the additional TTS and reconstruction tasks leads to WER values con-

siderably worse than the state of the art for ASR only. With that in mind, we

draw conclusions based on the changes in WER and representation properties across

different solutions.
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5.4.1 Classification

Figure 5.2 plots the WER of the joint model against the two classification losses

described above after training with frozen encoder parameters. We quickly make the

observation that of our fifteen runs, one has an unusually strong result with a WER

of about 9%.

The speaker ID classification task shows a clear pattern. The strongest model

achieves a training loss that is more than ten times better than the next strongest

model on the task from its audio embedding, and more than two times better than

on its own joint embedding, suggesting that speaker information has been mostly

disentangled from the transcript and localized to the audio embedding.
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(a) Speaker ID from Audio (b) Speaker ID from Joint

Figure 5.2: The relationship between WER and classifier training loss on the four disentanglement tasks measured.
Each blue dot is a single converged solution for our architecture. The WER of that solution is plotted against the
training loss of a speaker-id classifier trained on either the audio-only or joint encoder output. We see that the
solution that achieves the best WER is also the only solution for which speaker ID is successfully derived from the
audio-only representation.
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5.4.2 Representation Properties

Having seen that our model can sometimes, subject to the randomness of training,

achieve a much better WER than average, we seek to understand the nature of that

stronger, disentangled representation. In particular, we suspect that in a model

without the desired disentanglement, the audio-only embedding is underused.

To this end, we sample the audio-only and joint representations of our best model

and of one of our other models. Since each input contains a large number of frames,

we are able to collect several thousand 256-dimensional vectors from just a few ex-

amples. For each representation, we perform an SVD on those vectors and normalize

the squared singular values. In this manner, we obtain a measurement of the propor-

tion of variance in the representation attributable to each of its 256 dimensions. We

consider a representation with significant variance in a large number of dimensions

to be more used by a model than one in which only a few dimensions vary.

The results of these measurements are plotted in Figure 5.3. We see a stark differ-

ence between the distribution of variance in a weak, non-disentangled representation

and our strong, disentangled representation. In particular, the disentangled solution

has very few significant dimensions in its audio-only embedding, with the first three

dimensions capturing more than 95% of the variance. By contrast, the disentan-

gled solution has a much larger number of significant dimensions, with almost 50

dimensions containing more than 0.1% of the total variance each.
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(a) Audio Embedding, high WER (b) Audio Embedding, low WER

(c) Joint Embedding, high WER (d) Joint Embedding, low WER

Figure 5.3: The distribution of the singular values of encoder output frames. Each
encoder is considered with a high WER and low WER solution. The squared values of
the singular values are plotted in decreasing order to illustrate the number of dimensions
explaining a significant portion of the embedding’s variance.
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5.4.3 Correlation Loss

Having observed that strong performance occurs together with a relatively uncor-

related audio-only embedding, we naturally wonder if optimizing for that property

at training time will yield better WER. To test this, we interpolate an additional

“correlation loss” into the the training of our joint model:

Lcorr = α
∑
b∈B

∑
|corr[A · X, A · X] − I|

where b ∈ B are the elements in the batch, X is the matrix formed by stacking

the audio representation of the batch element along the time axis, A is a learnable

linear projection, I is the identity matrix, and the inner summation adds up each

(unsigned) element of the given matrix. This loss is intended to act as regularization

that pushes the off-diagonal elements of the correlation matrix to zero, yielding a

representation with uncorrelated elements. We achieve the strongest results setting

the hyperparameter α = 10−5.

Model Average WER
Non-Disentangled 15.5%

Disentangled 9.8%
Correlation Loss 11.7%

Table 5.1: WER with and without the Correlation Loss

The distribution of singular values in Figure 5.4 shows clearly that the added loss

has the intended effect of decorrelating the audio embedding. It also suggests that

this is done by moving information over from the joint embedding, which has become

lower-dimensional. WER results are given in Table 5.1. We see that the correlation

loss yields on average a 24.5% reduction in WER.
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(a) Audio Embedding, with Lcorr (b) Joint Embedding, with Lcorr

Figure 5.4: Singular value distributions after training with the correlation loss.

5.5 Conclusions

In this chapter, we presented a novel dual-learning architecture capable of learning

a disentangled representation of audio. We associated disentanglement directly with

strong performance on the ASR task and with a high-dimensional audio embedding.

One can imagine future work in semi-supervised ASR that will train our dual-

learning model on supervised data to learn a disentangled audio representation which

can then be fine-tuned with both unpaired audio and text data via back-transcription.

For the time being, however, we take a broader lesson from these results, which is

that exposing the model to more data is likely not the entire story of the usefulness of

unpaired data in ASR. Rather, the auxiliary tasks in fact lead to a unification of the

domain representations on the encoder level, and that the degree of jointness in the

representation directly corresponds to better ASR performance. This is a departure

from the conventional understanding of semi-supervision that the contribution made

by unpaired data is to expand coverage of the data distribution. It also brings to
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our attention a consideration that is not directly addressed in the design of the

semi-supervised methods we studied in Chapters 3 and 4.
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Chapter 6

The Best-Alignment Method

Our experiments in Chapter 5 offered an optimistic outlook on semi-supervised

ASR by offering evidence that unpaired data improves downstream WER to the

degree that an encoder learns to jointly represent speech and text. This motivates

the pursuit of such representations in the methods studied in Chapters 3 and 4.

In this chapter, we ask if the results of Chapter 5 offer a path towards scal-

ing WER improvements. Constraining ourselves to text injection in the context of

JOIST Sainath et al. (2022), we design a training algorithm that requires the acous-

tic encoder not only to represent text (as is required in JOIST), but to represent

it jointly with the speech domain. We find WER improvements over JOIST in the

large-data setting of Chapter 3 as well as in a large-data multilingual setting.
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6.1 Introduction

The power of very large models trained on vast unsupervised corpora in a single

modality has become increasingly clear. This has been demonstrated in the text

domain where language models have achieved unprecedented zero-shot capabilities

Brown et al. (2020); Chowdhery et al. (2022), as well as in the audio domain, in

which a single model has been shown to be adaptable to a surprisingly wide array of

acoustic tasks Borsos et al. (2022); Yang et al. (2021). These successes have given rise

to the question of how to apply these methods for problems involving two modalities,

which historically have depended on manually paired data.

One very promising solution to this problem is to train a large encoder on both

modalities, such that either modality may be provided as an unpaired example, but

which learns to map paired examples to similar points in representation space. In

the image/text domain, such a representation has proved achievable and capable of

attaining state-of-the-art performance on many image and text comprehension tasks

in a single model Alayrac et al. (2022); Cho et al. (2021).

In the audio/text domain, joint speech and text models have been utilized for

a wide range of tasks Huang et al. (2020); Mariooryad et al. (2022); Renduchintala

et al. (2018). In speech recognition, the past few years has seen a trend toward models

with a joint speech and text encoder to allow pretraining on unpaired speech and

text data Bapna et al. (2020); Chen et al. (2022a); Sainath et al. (2022); Tang et al.

(2021). However, speech recognition presents the particular challenge of two sequence

modalities, one of which (speech) is typically represented by a much longer sequence

than the other (text). This complicates the task of representing both modalities in
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the same embedding space, since we cannot make a direct, frame-wise comparison of

an encoder’s speech representation to its text representation.

This complication has largely been handled either by upsampling or an explicit

alignment model. Fixed upsampling of the text inputs has been applied successfully

for ASR in Sainath et al. (2022) and SLU in Thomas et al. (2022), proving that an

approximate alignment is sufficient for learning a joint representation. On the other

hand, Chen et al. (2022b) addresses the problem with a separately-trained alignment

model that aims for perfect alignment. In Chen et al. (2022a), it’s shown that such

an alignment model permits the use of “consistency” regularization in which the

encoder’s outputs on corresponding speech and text are compared frame-wise and

pushed together in representation space. Chen et al. (2022a) goes on to show that

“consistency” regularization yields a more closely joined representation space leading

to better WER.

Consistency regularization itself follows naturally from the literature on genera-

tive models. Systems like autoencoders applied to augmented data (e.g. Chadebec

et al. (2022)) explicitly push representations of matched examples together, while

contrastive systems like Chen et al. (2020) do the same implicitly. The success of

the same idea in speech using an explicit alignment begs the question of if the same

can be done with an implicit alignmentment; that is, without knowing the particular

alignment between speech and text.

In this paper, we ask if consistency regularization may be applied using the

implicit alignments learned in upsampling systems like Sainath et al. (2022) to

achieve the performance improvements seen with the explicit alignments in Chen
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et al. (2022a). To this end, we develop an algorithm inspired by dynamic time

warping Sakoe and Chiba (1978) that finds the best possible alignment between an

encoder’s representation of a paired speech and text example. We measure the qual-

ity of this best alignment in a system without an explicit alignment model and show

that that it is not only learned during training but in fact improves at deeper layers

of the network. Inspired by the improvements shown in Chen et al. (2022b) and

Chen et al. (2022a), we then show that by changing the criteria of the consistency

regularization to encourage consistency under some alignment, instead of a direct

frame-wise comparison, we can achieve robust WER improvements against strong,

semi-supervised baselines in both a monolingual and multilingual setting, all with-

out any learned alignment model. Our results suggest that enforcing consistency in

cross-modal representations can be done by simply forgiving misalignment.

6.2 Methods

In this section we present our setup for semi-supervised ASR by joint speech/text

modeling, for which we mostly follow Sainath et al. (2022). We then present our pro-

posed best-alignment algorithm and define a corresponding consistency loss inspired

by Chen et al. (2022b).

6.2.1 Model Architecture

Figure 6.1 gives our model architecture. Essentially, we perform supervised ASR

with streaming and non-streaming decoders, where the encoder is split into “audio-
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only”/“text-only” and “shared” components to permit text injection. The simulta-

neous ASR and text-injection tasks give rise to a joint representation in the shared

encoder. Specifically, given a corpus of supervised examples (x, y) ∈ S and an un-

paired text corpus y ∈ U , our model contains the following components:

• Ea: The audio encoder, which embeds audio features x.

• Et: The text encoder, which embeds text features y.

• EC
s : The shared streaming encoder, which may consume either Ea(x) or Et(y)

and maps them to a joint representation. Since this encoder is “streaming”, it

only receives past acoustic frames.

• ENC
s : The full-context encoder, which consumes the outputs of EC

s and which

is given forward acoustic frames.

• DC: The streaming decoder, which consumes the outputs of EC
s and emits

streaming ASR hypothesis.

• DNC
s : The non-streaming decoder, which consumes the outputs of ENC

s and

emits non-streaming ASR hypothesis.

Our model is trained simultaneously on two tasks: ASR, and masked text recon-

struction. For ASR, audio is passed into audio encoder, and hypotheses are compared

against ground truth text with the conventional cross-entropy loss. Masked text re-

construction makes use of unpaired text data. A mask (15% of the transcript) is
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applied to a phonemic representation of text, which is then passed into the text en-

coder. The hypothesis is compared to the masked portion of the input again with a

cross-entropy loss.

Figure 6.1: Our architecture for semi-supervised ASR, adapted from Sainath et al. (2022)
and Chen et al. (2022a).

6.2.2 Consistency Loss

Consider a paired example (x, y), where x = (x0, ..., xn) are speech inputs and y =

(y0, ..., ym) are text inputs and where n > m. Let us define the shared representations

of audio and text as

Ra = Es(Ea(x)) Rt = Es(Et(y))

where Es can represent either the application of only EC
s (for a streaming repre-

sentation) of EC
s followed by ENC

s (for a non-streaming representation). A “consis-

tency loss”, as developed in Chen et al. (2022a) and Chen et al. (2022b), is some loss

Lconsistency(Ra, Rt) that measures the similarity of the two representations.

Since the audio x and the text y are sequences of different lengths, we require

some notion of an alignment to define a meaningful consistency loss. By alignment,
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we mean a specific up-sampling of y such that each audio frame x[i] will correspond to

some text frame y[j]. With this in mind, we define an alignment A = (a0, a1, ..., an)

as a list of indexes into y, such that for any audio frame i, x[i] corresponds to y[ai]

in the alignment. We will also add the constraint that ai ≤ ai+1 for all i. That is,

we constrain A to be monotonically increasing, so that sequential audio frames may

not correspond to text backwards.

This formulation is one of many conceivable ways to define an “alignment” and

we’ve chosen it for the practicality it offers in efficiently computing the best alignment

(see Section 6.2.3 below). We note that in this formulation, each audio frame is

considered exactly once, while each text frame can be repeated or skipped over

entirely.

With this definition in mind, we define the consistency loss for a given alignment

as

Lconsistency
A (Ra, Rt) =

n∑
x=0

Lframe(Ra[x], Rt[A[x]])
n

where Lframe is some frame-wise similarity measure (in this work, we use L2).

That is, Lconsistency
A (Ra, Rt) gives the average frame-wise similarity between Ra and

the specific up-sampling of Rt given by A.

The setups in Chen et al. (2022a) and Chen et al. (2022b) use such a consis-

tency loss successfully, taking A from a neural alignment model. We propose, as an

alternative, to optimize the consistency over the best possible alignment:

Lconsistency(Ra, Rt) = min
A

Lconsistency
A (Ra, Rt)

72



In order to train with such a loss, we require an efficient algorithm to compute

the best alignment.

6.2.3 Computing the Best Alignment

Dynamic time warping Sakoe and Chiba (1978) relies on an inductive rule in order

to define a recursive algorithm to match two sequences based on a cost function. We

do the same, specifying the cost:

C(i, j) = min
A

Lconsistency(Ra[: i], Rt[: j])

That is, the cost C(i, j) gives the consistency loss under the best alignment be-

tween the prefix of the audio representation up to the index i and the prefix of the

text representation up to the index j. We may then specify an inductive rule:

C(i, j) = min
k≤j

[
C(i, k − 1) + Lframe(Ra[i], Rt[k])

]
That is, the best alignment for the prefixes Ra[: i] and Rt[: j] aligns the previous

i − 1 audio frames to some shorter prefix Rt[: k], and then appends to it the specific

alignment of Ra[i] to Rt[k].

We may back out the indexes of the best alignment from this computation. This

rule gives rise to a dynamic programming algorithm for finding the best alignment

in O(nm2) time and memory.

We note that the minimization across all alignments precludes differentiation

of the alignment-finding. Instead, we compute the best alignment during forward-
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propagation, and then differentiate Lframe as applied to the aligned frames. That is,

we use the pass-through approximation of the gradient:

∂Lconsistency(Ra, Rt)
∂θ

≈ ∂Lconsistency
A∗ (Ra, Rt)

∂θ

where

A∗ = arg min
A

Lconsistency
A (Ra, Rt)

6.3 Experiments

In this section, we provide details of our model settings and data.

6.3.1 Model Settings

We specify component’s parameterizations according to the list in Section 2.1:

• Ea: The audio encoder consists of a single conformer Gulati et al. (2020) layer

with 8 attention heads and dimension 2048. The audio encoder consumes 128

dimensional log-mels spanning 32ms each and spaced apart by 10ms. We then

stack each frame with the frame before it and the two frames after it to yield

512 dimensional representations. Finally, we subsample by taking each third

frame, yielding a final frame rate of 30ms.

• Et: The text encoder consists of a embedding projection followed by a con-

former layer. As in Sainath et al. (2022), we find it necessary to supply the
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text encoder with phonemic representations of text transcripts. We then con-

tinue to follow Sainath et al. (2022) by repeating each phoneme twice as an

alignment heuristic.

• EC
s : The shared streaming encoder consists of five conformer layers, with layer-

norm applied at the end.

• ENC
s : The full-context shared encoder consists of nine additional conformer

layers, with layer-norm applied at the end.

• DC: The streaming decoder is a HAT decoder Variani et al. (2020) in which

both the prediction and joint layers have dimension 640.

• DNC
s : The non-streaming decoder, is identical to the streaming decoder.

Together, our model contains about 165M parameters. Training is done in two

phases. First, the audio encoder, joint encoders, and decoders are all trained on

paired data for 800k steps with a batch size of 2048. The text encoder is then added

and the model is further trained with equally weighted supervised and unsupervised

loss as described in Section 2.1, with the best alignment loss from Section 2.3 option-

ally included. The model trains in this manner for 100k further steps with a batch

size of 2048 for both the supervised and unsupervised data.

All models are implemented in Tensorflow, with the best alignment algorithm

itself implemented as a CPU kernel. We find that the addition of the best alignment

computation does not significantly increase training time over the baseline model.
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6.3.2 Datasets

Text-injection methods in ASR have historically been applied in two broad set-

tings. Strong baselines are often fine-tuned with very large text corpora to improve

performance on difficult words. Alternatively, text-injection may be used for mod-

els trained on limited supervised data to improve the internal language model and

get closer to a viable system. With these two settings in mind, we study the best

alignment loss in two setups:

• A large English corpus consisting of about 200k hours of supervised speech,

together with an unsupervised text dataset of about 200B examples. Both

are internal Google datasets composed, with the supervised dataset largely of

voice-search transcriptions and the unsupervised text dataset gathered from

several domains.

We report results for a Main test set derived from the same distribution as

the training examples, and a Noisy test set of especially noisy examples.

• A multilingual corpus consisting of the following eleven languages: English

(En), French (Fr), Spanish (Sp), Arabic (Ar), Portuguese (Po), German (De),

Russian (Ru), Hindi (Hi), Italian(It), Mandarin, and Japanese.

This setting involves no unsupervised text, with the MLM objective applied

instead to the supervised transcripts. The dataset consists of about 140M

paired examples.

Bolded abbreviations are given above for languages for which we are able to

report WER in 6.3. For simplicity with the large number of test sets, we report
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only non-streaming WER from this model.

All datasets are anonymized and human transcribed.

6.4 Results

In this section, we seek to demonstrate that even without consistency regulariza-

tion, our model learns an alignment between paired speech and text examples. We

then seek to show that optimizing this alignment with our proposed best-alignment

consistency regularization improves WER.

6.4.1 Best-Alignment in an Unregularized Model

For this analysis, we use our baseline model from the monolingual setup as de-

scribed in Section 6.3.1. Our objective is to measure Lconsistency on a small set of

random development examples for Rs and Rt taken at each of the first five conformer

layers of the streaming joint encoder. We interpret a lower value for Lconsistency as

reflecting a stronger implicit alignment between speech and text.

For each layer l of the five-layer conformer encoder we sample 2000 random pairs

of audio and text embeddings and compute the mean µl and standard deviation σ2
l

of the distribution of distances between pairs. We then compare two alignments:

the naive frame-wise alignment and our computed best alignment. For each of these

alignments A, we report:

µl − Lconsistency
A (Rs, Rt)

σ2
l
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That is, we report the consistency in terms of the number standard deviations

away from the mean, such that a result of 0 suggests that the alignment is no better

than random and a result below 0 suggests that the alignment is stronger than

random.

Table 6.1: Consistency of the linear and best alignments at layers of the shared encoder.

Layer Frame-wise Alignment Best Alignment
1 -0.06 -1.47
2 -0.23 -2.15
3 -0.29 -2.61
4 -0.37 -2.67
5 -0.49 -3.06

Table 6.1 presents these measurements. We see that while the consistency of the

frame-wise alignment is close to that of the random alignment, the best alignment

is considerably better than random. Furthermore, the quality of the best alignment

improves steadily as we progress deeper into the model. That is, while text and

speech are not modeled jointly at the frame level, there is some alignment for which

paired speech and text are mapped to similar points in the embedding space, and

this alignment improves with the depth of the network.

To illustrate the presence of this alignment, we visualize the relationship between

shared encoder’s final representations of the speech and text from a single test exam-

ple. Figure 6.2a plots the distance between each pair of frames in the embeddings,

and demonstrates that is indeed a single alignment with low distance. Figure 6.2b

shows how the best alignment algorithm recovers this trajectory.
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Main Noisy

E_0 5.40 8.75
E_10 5.37 8.70
E_1 5.35 8.42

E_0.1 5.27 8.77
E_0.01 5.32 8.54

(a) Non-Streaming

Main Noisy

E_0 7.99 13.33
E_10 8.21 13.08
E_1 8.07 13.00

E_0.1 7.90 12.63
E_0.01 7.94 12.74

(b) Streaming

Table 6.2: Evaluation Results for the English-Only Setting.

6.4.2 Consistency Regularization Results

We present results for the best-alignment loss at different interpolation weights

and for both of the settings specified in Section 6.3.2. For ease of reading, we specify

each experiment by a letter and a number. The letter is either E for the English-

only setting of M for the multilingual setting. The number is the interpolation

weight of the best-alignment loss as a percentage. For example, E_0 is the baseline

English-only model with unregularized semisupervised finetuning, while M_0.1 is
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En Fr Sp Ar Po De Ru Hi It

M_0 9.1 10.6 6.4 12.6 7.9 14.8 13.0 19.7 10.3
M_10 8.5 10.4 5.8 11.8 7.7 13.4 12.5 19.4 9.8
M_1 8.5 10.5 6.1 11.9 8.1 13.9 12.7 19.3 10.0

M_0.1 8.6 10.3 6.2 12.1 8.0 13.9 12.9 19.5 9.9
M_0.01 8.8 10.5 6.3 12.2 7.9 14.0 13.0 19.6 10.3

Table 6.3: Evaluation Results for the multilingual setting. Each language is evaluated
for various interpolation weights of the best-alignment loss.

a multilingual model with the best alignment loss interpolated during finetuning at

0.1 percent.

Table 6.2 gives our results in the high-resource, English-only setting. There, we

see small but consistent WER improvements with the best-alignment loss, although

we note the necessity of selecting the correct interpolation weight. Table 6.3 gives

our results in the multilingual setting, where we see larger improvements. We believe

that the strength of the method in the multilingual setting is due to the increased

difficulty of the problem and the smaller dataset leaving more room for the model

to improve.

6.5 Conclusions

We’ve shown that a semi-supervised speech/text encoder learns a joint represen-

tation of the two modalities that can be observed by choosing the best alignment.

We’ve exploited that fact to enforce domain consistency with an extra loss term

which optimizes the modality match for the best alignment. We show consistent

improvements over an unregularized joint model across multiple large-data setups
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without adding any parameters.

We believe these results bear out the intuitions developed in Chapter 5 that a

joint speech and text representation is the effect of semi-supervised training that

yields downstream WER improvements. In demonstrating how this intuition applies

in practice, we hope to provide a mechanism for using unpaired text to improve

an acoustic encoder, even when that encoder is trained on a very large supervised

corpus.
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(a) Distances

(b) Best Alignment

Figure 6.2: Visualizations of embedding distances (a) and the best alignment (b) between
an audio embedding on the horizontal axis and the corresponding text embedding on the
vertical axis. Darker points in (a) represent pairs of audio and text frames with nearby
embeddings, and yellow points in (b) represent pairs in the recovered best alignment.
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Chapter 7

Conclusion

This work is premised on the observation that the literature on semi-supervised

ASR has largely focused on the small-data setting, and that many of the methods

that have been shown to be effective in that setting do not offer the same WER im-

provements against a strong supervised baseline. We began our study by explicitly

making this observation in a side-by-side implementation of leading methods applied

to a deployable, two-pass streaming model pre-trained on Google’s large English su-

pervised dataset. We found that none of the methods in question improved WER

on the head of the data distribution. However, we discovered several advantageous

properties of the models trained with semi-supervised data that not only offer justi-

fication to the use of the methods but also shed light on what effect they have. In

particular, our results suggest that semi-supervised training in the large-data setting

refines the decoder, but does not meaningfully improve encoder representations.

With this in mind, we moved off the beaten path to make a similar study of a semi-
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supervised method called dual learning that has seen success in other domains but

has only begun to be applied to speech recognition. This method is designed to pass

supervised data, unpaired text, and unpaired audio through the model’s encoder,

and we hypothesized in light of our previous observations that it would scale to the

large-data setting. We were, however, disappointed to find that it performs similarly

to other methods, and that the benefit it yields is largely redundant with a careful

application of shallow fusion. That is, contrary to the prevailing understanding of

dual learning, in the large-data setting it is mostly a decoder-only method.

This result forced us to step back and to try to understand what it means exactly

to refine an encoder representation. We made this study by attempting to disen-

tangle the encoder representation of a dual learning model, and observed that the

property of disentanglement, when it arises, substantially improves model perfor-

mance. This led us to the counter-intuitive hypothesis that in the large-data setting,

semi-supervised learning offers utility in the encoder not from exposure to yet more

data, but through the unification of the trained model’s representations of audio and

text.

With this hypothesis in mind, we reassessed one of the methods measured at the

beginning of our study and confirmed that it does not unify encoder representations

of audio and text. We designed a regularization to promote this unification, and after

retraining the model found that performance significantly improves even against a

baseline trained on Google’s large supervised dataset, and that this result holds true

in a large-scale multilingual experiment as well.

While we end our study here, this research direction has several promising contin-
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uations. One clear direction is the application of domain-consistency regularizations

to existing semi-supervised methods in order to scale them to the large-data setting.

While we emphasized JOIST, our findings apply to any method in which text is

encoded alongside audio, such as MAESTRO Chen et al. (2022a) and cold fusion

Sriram et al. (2018). It might also be applied to TTS augmentation by aligning and

matching the encoder’s representation of text with the corresponding representation

of the synthesized audio. Also, while our solution focused on the matching of audio

and text representations, our results suggest that aligned representation matching

would be useful in other methods in which two “views” of the same data are provided

with a goal of being processed similarly. For example, audio recordings modified via

SpecAugment Park et al. (2019) could be pushed together at the encoder represen-

tation level.

Since the bulk of this research was concluded in early 2023, the speech commu-

nity has moved even more towards semi-supervised learning, with foundation models

trained on large unsupervised audio corpora dominating novel architectures. The

unification of such representations with correspondingly sophisticated representa-

tions of text has the potential to power further advances in ASR. For example, we

believe that domain unification can provide a path forward in multi-lingual ASR by

improving the incorporation of low-resource languages based on only unpaired audio

and text. Unified audio and text representations can clear a path for the incorpo-

ration of large generative language models in ASR by projecting input audio into a

shared text representation. We hope that this work will contribute towards a richer

understanding of the potential in this unification of domains.
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