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Abstract

The combination of deep learning and internet-scale data with supervised learning has led to

impressive progress in recent years. However, the potential of this progress has yet to be realized

in the context of control problems beyond games that are easy to simulate. This thesis attempts to

bridge this gap so as to leverage tools from supervised learning to solve control problems. To do

this, we focus on the offline reinforcement learning setting which attempts to learn a control policy

from a fixed dataset rather than requiring the policy to learn and collect data at the same time.

This removes issues of non-stationary training data and exploration from the control problem,

which allows the more straightforward application of tools from supervised learning.

We study this intersection between supervised learning and control from several angles. In the

first part of the thesis, we present work on policy learning, focusing on simplified algorithms that

look more like standard supervised algorithms. In the second part, we move one step earlier in

the pipeline and consider how to best collect datasets for offline reinforcement learning. And

in the last part, we consider how to design pretraining objectives to learn representations for

downstream offline policy learning. Taken together, these contributions present a nuanced view

of the promise and challenges that face the application of machine learning to control problems.
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1 | Introduction

Supervised learning is the dominant paradigm in modern machine learning as most major break-

throughs using deep learning in the last ten years have come from using supervised learning

(except for playing board games [Silver et al. 2017]). For example, breakthrough results in image

recognition [Krizhevsky et al. 2012], language modeling [Brown et al. 2020], and protein structure

prediction [Jumper et al. 2021] all rely on supervised learning as the core algorithmic technique.

However, not all problems where we may want to apply machine learning can be neatly cast as

supervised learning problems. In particular, control problems, where an algorithm must interact

with the environment by making decisions that affect the state of the world, necessitate going

beyond supervised learning for several reasons. First, in a standard control problem we are not

handed a dataset sampled from the data generating distribution, but rather must interact with

the environment to collect our own data. Second, control problems often require temporal credit

assignment (usually accomplished via dynamic programming) to determine which action in a

sequence of actions was responsible for an outcome. In contrast, supervised learning problems

usually come with a dataset sampled i.i.d. from the target distribution and rely on predicting one

observed target variable without needing to worry about credit assignment.

In this thesis, we will instead focus on a middle ground between supervised learning and control:

the offline reinforcement learning problem. This setting allows us to approach control problems

from fixed datasets where tools from supervised learning are more directly applicable. Of course,
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this simplification of the control problem comes with a loss of generality, and we will examine

when exactly this approach makes sense in practice. Before going into the main contributions in

more detail, this introductory section will present some background and motivation for the work

presented in this thesis.

1.1 Defining terms: the supervised and control settings

Dataset Learner Model Env Learner

Figure 1.1: Diagrams of the supervised learning (left) and control (right) pipelines. In the supervised

pipeline, a fixed dataset is ingested by the learner to produce a model. In the control pipeline, the learner

interacts online with an environment (“Env”) to produce a policy.

First, we need to define the two settings that we hope to bridge in this thesis. It is instructive

to begin at the absolute highest level of abstraction as to how data moves through the learning

pipeline in each of the two settings. As seen in Figure 1.1 supervised learning is a paradigm where

our learning algorithm ingests a static dataset and produces a model. In contrast, learned control

(e.g. reinforcement learning [Sutton and Barto 2018]) is traditionally viewed as an online process

where a learner is continually collecting data from an environment and updating its learned model

or models.

To be more rigorous, we can more precisely define each of the two settings as follows:

• A supervised learning pipeline is defined by a dataset D and a learner. The dataset contains

labeled pairs of inputs 𝑥 ∈ X and labels 𝑦 ∈ Y. The learner contains a parametric model

class F = {𝑓𝜃 : 𝜃 ∈ Θ}, a loss function ℓ (𝑦,𝑦), and an optimization algorithm A (usually

stochastic gradient descent). Learning then proceeds by using the optimization algorithm to

minimize the empirical loss over the dataset: �̂�(𝜃 ) :=
∑

(𝑥,𝑦)∈D ℓ (𝑓𝜃 (𝑥), 𝑦).
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• A control pipeline instead involves an environment and a learner. The environment is

typically a Markov Decision Process (MDP) where at each timestep the environment yields

a state 𝑠 ∈ S to the learner, which returns an action 𝑎 ∈ A and then the environment

subsequently returns the next state 𝑠′ ∈ S according to some dynamics𝑇 so that 𝑠′ ∼ 𝑇 (·|𝑠, 𝑎)

and a reward 𝑟 (𝑠, 𝑎). The goal is to maximize cumulative reward over some horizon 𝐻 . The

learner selects actions according to some parametric policy 𝜋𝜃 , and in doing so builds up

a dataset D of historical experience of transitions (𝑠, 𝑎, 𝑟, 𝑠′) (this dataset is also known

as a replay buffer). Simultaneously, the learner is updating parametric policy 𝜋𝜃 so as to

maximize reward. The selected actions must balance the need to “explore” new states and

actions while learning how to “exploit” the maximum expected return. We will leave precise

details of the algorithm vague for now since, unlike supervised learning, there are very

many options for the internal workings of the learner (e.g. model-based vs. model-free,

policy-gradient vs. actor-critic, etc.).

Note: each chapter may consider slight variations of these and related settings, but we will be

explicit about the specific setting and notation considered within each chapter.

There is a clear tension between these two high level learning paradigms. Most importantly,

the control setting emphasizes the closed loop feedback between the learning algorithm and the

environment while the supervised setting cleanly separates the data collection process from the

learning process. This fundamental difference yields substantial differences in the methods that

are traditionally used in the two settings. Resolving these tensions will be key to accomplishing

the main goal of this thesis to understand how to leverage tools from supervised learning to solve

control problems.
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1.2 Key components of success in supervised learning

So as to leverage the successes of supervised learning, it is important to have a high level under-

standing of which components of the standard supervised learning pipeline described above are

crucial to success, with a special focus on those components that are difficult to achieve in control

problems. We argue that the key components of a successful recipe for a supervised learning

pipeline are good datasets, simple learning algorithms, and pretraining. We now discuss each in

turn.

Datasets. One of the most fundamental components of the success of supervised learning

in the last ten years or so has been the creation of better datasets in terms of both quality and

quantity. This perhaps began with ImageNet for image classification [Deng et al. 2009] and

has steadily improved since then. For example, datasets used in the pipeline of training image

classifiers now can have billions of images [Sun et al. 2017; Yalniz et al. 2019]. Advances in

natural language processing, and particularly language modeling, have also been facilitated by

internet-scale datasets [Raffel et al. 2019; Radford et al. 2019; Brown et al. 2020]. And in other

application areas like protein structure prediction where data cannot be scraped from the internet,

a consortium of scientists collecting data together to build large datasets has been key to recent

progress [wwPDB consortium 2018]. Simply put, large and high quality datasets are a prerequisite

and key ingredient to all of the recent progress in applying supervised learning.

Simple learning algorithms. On top of the aforementioned datasets, supervised learning

relies on simple learning algorithms that are easily scaled up. This begins with simple model

architecture building blocks like convolutional neural nets [LeCun et al. 2015] or transformers

[Vaswani et al. 2017] which facilitate the creation of large models. Then the standard recipe for

supervised learning simply runs stochastic gradient descent or moderately more complicated
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variants like Adam [Kingma and Ba 2014] to train the models. This simple recipe is easy to scale

up as larger datasets and compute resources become available, an intuition which has recently

been formalized into scaling laws for neural net training [Kaplan et al. 2020]. The simplicity and

stability of the overall supervised learning pipeline has facilitated the impressive scaling up that

has led to recent successes.

Pretraining. One component of the modern supervised learning pipeline that we have yet to

discuss is pretraining. Rather than directly training on the target task (where data may be scarce),

it is often useful to pretrain a supervised (or self-supervised) model on some pretraining task

on much larger datasets. This has been incredibly effective in NLP using variants of language

modeling as the supervised pretraining objective [Devlin et al. 2018; Raffel et al. 2019] and in

computer vision with pretraining objectives like contrastive loss or masked reconstruction [Chen

et al. 2020a; He et al. 2022]. The ability to easily transfer pretrained features from large pretraining

datasets to target tasks where data may be more scarce has also been important for widespread

application of advances in supervised learning.

These three components of datasets, algorithms, and pretraining give a high level explanation of

much of the success in supervised learning. But, in this thesis we want to instead consider how to

solve control problems. The question then becomes whether we can set up control problems in

such a way as to gain access to high quality datasets, simple algorithms, and pretraining.

1.3 Challenges for applying learning to control

As explained earlier, control problems require dealing with closed loop feedback between the

learner and the environment. This yields a host of issues when attempting to apply tools from

supervised learning since these tools do not work well out of the box in systems with feedback.

Specifically, and in direct contrast to the components of success in supervised learning discussed
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above, this can cause issues due to non-stationary data, the need for exploration, the need to

perform temporal credit assignment, and challenges to the pretraining-finetuning paradigm. We

now discuss each in turn.

Non-stationary data. In a standard reinforcement learning setup, the learner interacts with

the environment while simultaneously updating the learned policy. This leads to a constantly

shifting distribution of data, since the distribution of data is induced by the learned policy. This is

a major departure from supervised learning where the dataset is carefully curated by human data

collectors and then held fixed during learning. As a result it is not possible to have the same sort

of curated data as an input to the learner in the standard control setup. This is a major issue since

one of the most effective ways of guiding what a model will learn is being able to curate what goes

into the training data. Moreover, since the data that is being collected online in a non-stationary

way, it is difficult to apply standard supervised learning algorithms that often struggle in the face

of a shifting distribution [Quinonero-Candela et al. 2008].

Exploration. Another issue that arises due to the simultaneous collection of data and learning

is the need to explore the environment. Unlike supervised learning where the data distribution of

interest is given to the learner by the dataset, the learner in a control problem must essentially

discover the optimal distribution over trajectories (out of all possible distributions) in the course

of learning the policy. This problem is substantially harder since it may require being able to visit

every possible state of the world in the worst case.

Temporal credit assignment. Adding to the complexity of the control setting is the issue of

credit assignment. The learner must reason about how a sequence of actions affects the state of

the environment and which actions are most responsible for the outcomes of interest. The most

common approach to perform this reasoning is to use variants of dynamic programming where
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the model estimates the value of each state-action pair (usually denoted 𝑄 (𝑠, 𝑎)) by iteratively

propagating estimated values backwards in time over observed transitions (i.e. moving 𝑄 (𝑠, 𝑎)

towards 𝑟 +𝑄 (𝑠′, 𝑎′)) [Sutton 1988]. This yields learning algorithms that look far different from

simply running gradient descent to minimize a loss. Dynamic programming algorithms are instead

seeking a fixed point of the Bellman equation and rely on repeatedly constructing regression

problems where the targets themselves are defined by the model, which can cause instability

[van Hasselt et al. 2018; Achiam et al. 2019; Brandfonbrener and Bruna 2020]. Moreover, this

often results in algorithms with multiple neural models (e.g. actor, critic, and target network

[Haarnoja et al. 2018]) all trained simultaneously with complicated dependence on each other.

These substantially more complicated algorithms that are needed to perform credit assignment

have proven more difficult to tune and scale than the standard gradient descent recipe used in

supervised learning.

Pretraining. While pretraining has been an important component of supervised learning

pipelines, it has been less clear how to incorporate pretraining for control problems. There

have been many proposed methods, e.g. Stooke et al. [2020]; Liu and Abbeel [2021a]; Yarats

et al. [2021a]; Agarwal et al. [2022]. However, there have yet to be similar breakthroughs as in

supervised learning. Much of this is likely downstream of the two issues listed above, namely that

it is unclear how to generate and use large, high quality datasets in control problems and that

dealing with temporal credit assignment adds a layer of algorithmic complexity. The lack of a

standard way to apply pretraining methods, or to transfer pretrained policies and representations

to new tasks has made it difficult to apply learning more broadly to new control problems.

Comparing control and supervised learning, we see that there are substantial roadblocks towards

applying tools from supervised learning in control problems, even as subroutines. Instead of nicely

curated datasets we have non-stationary data that is collected by the learner, shifts as the policy is

updated, and requires exploration. Instead of simple gradient descent we have more complicated
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dynamic programming algorithms. Instead of well established pretraining techniques we have a

much less well-explored space of pretraining possibilities. To begin to resolve these differences,

we will instead change the setting to a simplified version of the control problem that removes

some of these issues.

1.4 Offline reinforcement learning: a middleground

So far we have seen that control problems yield several undesirable characteristics for applying

techniques from supervised learning. To begin to resolve this divide, we will introduce a third

setting which is a sort of middleground between supervised learning and control, namely offline

reinforcement learning. Offline RL [Levine et al. 2020], as illustrated in Figure 1.2, splits a control

problem into two phases. First, there is a data collection phase where some algorithm, human,

or system collects a dataset by interacting with an environment. Then, there is a policy learning

phase where a learner ingests this dataset of interactions and learns a policy that could then be

deployed in the environment.

Env Data
Collector Dataset Learner Policy

Figure 1.2: A schematic diagram of the offline RL pipeline.

The offline RL setting has several desirable qualities. By explicitly breaking the dependence

between data collection and policy learning, we can resolve the non-stationarity issues that arise

in the online control setting and separate exploration from learning. But, the setting still maintains

the idea from control of using interaction data to perform temporal credit assignment to learn

policies that can interact with a system in a closed loop in a meaningful way that goes beyond

supervised learning. In this way, offline RL provides an interesting testbed to attempt to use

supervised learning methods as subroutines to solve control problems.
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As presented here, this setting still does not include any separate pretraining and finetuning phases,

which have often been beneficial to practical application of supervised learning techniques. Figure

1.3 illustrates a larger training pipeline that incorporates separate pretraining and finetuning

phases for offline RL. We will also study this more general setting to get a better idea of how to

relate pretraining to finetuning when the data is structured as MDP transitions rather than labeled

datapoints and when the downstream finetuning task is to solve a control problem rather than

classification or regression.

Env

Data
Collector Dataset Pretrainer Representation

Data
Collector Dataset Finetuner Policy

Figure 1.3: A schematic diagram of an offline RL pipeline with pretraining and finetuning phases.

1.5 Summary of contributions

Now that the setting and motivation are clear, we can preview the main contributions of this

thesis. We break the results into three parts: policy learning, data collection, and pretraining.

These can be mapped onto the learner component of Figure 1.2, the data collector component of

Figure 1.2, and the pretrainer component of Figure 1.3 respectively.

Policy learning. First we consider how ideas from supervised learning can be relevant to

control via offline RL in the policy learning phase. In this section we assume access to a fixed

dataset of experience and try to learn a policy. The first chapter in this part presents work from

9



Brandfonbrener et al. [2021] which illustrates how the standard approach of running iterative RL

algorithms that were designed for online learning in the offline setting can often fail. Instead, a

simpler baseline of training for only one step of policy iteration (so that the policy improvement

step looks much more like standard supervised learning) can often be as effective if not more so,

while being substantially simpler. The second chapter presents work from Brandfonbrener et al.

[2022a] which considers whether offline RL problem can be solved directly with return-conditioned

supervised learning. We find that while this supervised approach is sometimes sufficient, it often

fails to perform adequate credit assignment.

Data collection. Next we examine data collection for offline RL. Data collection must resolve a

tension between the desire for coverage of all possible behaviors for generality and demonstrations

of expert behaviors for efficiency. We consider two extreme settings: trying to collect fully

exploratory data for maximum coverage and trying to leverage an expert demonstrator with

maximum efficiency. The first chapter of this part presents Yarats et al. [2022] which studies

exploratory data collection. While we find that exploratory data facilitates multitask learning with

simple policy learning algorithms, it is difficult to scale this technique to complicated environments.

The second chapter presents Brandfonbrener et al. [2022b] which attempts to leverage an expert

demonstrator as efficiently as possible to solve a single task. We find it is important to collect

failures that are as similar as possible to successes so as to isolate the decision boundary and

present a method for actualizing this in a specific robotic manipulation task.

Pretraining. Finally, we step back to the larger pretraining-finetuning pipeline presented in

Figure 1.3. We present results from Brandfonbrener et al. [2023] which compare a variety of

pretraining objectives for representation learning for downstream control. For simplicity we

consider imitation learning rather than the more general reinforcement learning problem, but we

emphasize learning from diverse multitask pretraining data. Through empirical and theoretical

10



analysis, we find that modeling the inverse dynamics of a system (predicting the action given

observations from before and after the action was taken) makes for a good pretraining objective

for representation learning.

Cumulatively, these results paint a picture of how to begin to bring tools from supervised learning

into control settings in well-motivated ways. Of course the results are often nuanced and which

method works best depends on the precise nature of each problem and dataset. But, taken as a

whole, the contributions indicate a variety of principles that can be incorporated into designing

learning systems for control problems by being cognizant of the strengths and limitations of the

tools from deep supervised learning.
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Part I

Policy learning
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2 | Offline reinforcement learning

without off-policy evaluation

2.1 Introduction

An important step towards effective real-world RL is to improve sample efficiency. One avenue

towards this goal is offline RL (also known as batch RL) where we attempt to learn a new policy

from data collected by some other behavior policy without interacting with the environment.

Recent work in offline RL is well summarized by [Levine et al. 2020].

In this paper, we challenge the dominant paradigm in the deep offline RL literature that primarily

relies on actor-critic style algorithms that alternate between policy evaluation and policy improve-

ment [Fujimoto et al. 2018a, 2019a; Peng et al. 2019; Kumar et al. 2019a, 2020; Wang et al. 2020c;

Wu et al. 2019; Kostrikov et al. 2021b; Jaques et al. 2019; Siegel et al. 2020; Nachum et al. 2019].

All these algorithms rely heavily on off-policy evaluation to learn the critic. Instead, we find that

a simple baseline which only performs one step of policy improvement using the behavior Q

function often outperforms the more complicated iterative algorithms. Explicitly, we find that

our one-step algorithm beats prior results of iterative algorithms on most of the gym-mujoco

[Brockman et al. 2016] and Adroit [Rajeswaran et al. 2017] tasks in the the D4RL benchmark suite

[Fu et al. 2020].
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Figure 2.1: A cartoon illustration of the difference between one-step andmulti-stepmethods. All algorithms

constrain themselves to a neighborhood of “safe” policies around 𝛽 . A one-step approach (left) only uses

the on-policy 𝑄𝛽
, while a multi-step approach (right) repeatedly uses off-policy 𝑄𝜋𝑖

.

We then dive deeper to understand why such a simple baseline is effective. First, we examine

what goes wrong for the iterative algorithms. When these algorithms struggle, it is often due

to poor off-policy evaluation leading to inaccurate Q values. We attribute this to two causes: (1)

distribution shift between the behavior policy and the policy to be evaluated, and (2) iterative error

exploitation whereby policy optimization introduces bias and dynamic programming propagates

this bias across the state space. We show that empirically both issues exist in the benchmark tasks

and that one way to avoid these issues is to simply avoid off-policy evaluation entirely.

Finally, we recognize that while the the one-step algorithm is a strong baseline, it is not always the

best choice. In the final section we provide some guidance about when iterative algorithms can

perform better than the simple one-step baseline. Namely, when the dataset is large and behavior

policy has good coverage of the state-action space, then off-policy evaluation can succeed and

iterative algorithms can be effective. In contrast, if the behavior policy is already fairly good, but

as a result does not have full coverage, then one-step algorithms are often preferable.

Our main contributions are:

• A demonstration that a simple baseline of one step of policy improvement outperforms more

complicated iterative algorithms on a broad set of offline RL problems.

14



• An examination of failure modes of off-policy evaluation in iterative offline RL algorithms.

• A description of when one-step algorithms are likely to outperform iterative approaches.

2.2 Setting and notation

We will consider an offline RL setup as follows. LetM = {S,A, 𝜌, 𝑃, 𝑅,𝛾} be a discounted infinite-

horizon MDP. In this work we focus on applications in continuous control, so we will generally

assume that both S and A are continuous and bounded. We consider the offline setting where

rather than interacting with M, we only have access to a dataset 𝐷𝑁 of 𝑁 tuples of (𝑠𝑖, 𝑎𝑖, 𝑟𝑖)

collected by some behavior policy 𝛽 with initial state distribution 𝜌 . Let 𝑟 (𝑠, 𝑎) = E𝑟 |𝑠,𝑎 [𝑟 ] be

the expected reward. Define the state-action value function for any policy 𝜋 by 𝑄𝜋 (𝑠, 𝑎) :=

E𝑃,𝜋 |𝑠0=𝑠, 𝑎0=𝑎 [
∑∞
𝑡=0 𝛾

𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 )]. The objective is to maximize the expected return 𝐽 of the learned

policy:

𝐽 (𝜋) := E
𝜌,𝑃,𝜋

[ ∞∑︁
𝑡=0

𝛾 𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 )
]
= E

𝑠∼𝜌
𝑎∼𝜋 |𝑠

[𝑄𝜋 (𝑠, 𝑎)] . (2.1)

Following [Fu et al. 2020] and others in this line of work, we allow access to the environment to

tune a small (< 10) set of hyperparameters. See [Paine et al. 2020] for a discussion of the active

area of research on hyperparameter tuning for offline RL. We also discuss this further in Appendix

A.3.

2.3 Related work

Iterative algorithms. Most prior work on deep offline RL consists of iterative actor-critic

algorithms. The primary innovation of each paper is to propose a different mechanism to ensure
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that the learned policy does not stray too far from the data generated by the behavior policy.

Broadly, we group thesemethods into three camps: policy constraints/regularization, modifications

of imitation learning, and Q regularization:

1. The majority of prior work acts directly on the policy. Some authors have proposed explicit

constraints on the learned policy to only select actions where (𝑠, 𝑎) has sufficient support under

the data generating distribution [Fujimoto et al. 2018a, 2019a; Laroche et al. 2019]. Another

proposal is to regularize the learned policy towards the behavior policy [Wu et al. 2019] usually

either with a KL divergence [Jaques et al. 2019] or MMD [Kumar et al. 2019a]. This is a very

straighforward way to stay close to the behavior with a hyperparameter that determines just

how close. All of these algorithms are iterative and rely on off-policy evaluation.

2. [Siegel et al. 2020; Wang et al. 2020c; Chen et al. 2020b] all use algorithms that filter out

datapoints with low Q values and then perform imitation learning. [Wang et al. 2018; Peng

et al. 2019] use a weighted imitation learning algorithm where the weights are determined by

exponentiated Q values. These algorithms are iterative.

3. Another way to prevent the learned policy from choosing unknown actions is to incorporate

some form of regularization to encourage staying near the behavior and being pessimistic about

unknown state, action pairs [Wu et al. 2019; Nachum et al. 2019; Kumar et al. 2020; Kostrikov

et al. 2021b; Gulcehre et al. 2021]. However, being able to properly quantify uncertainty about

unknown states is notoriously difficult when dealing with neural network value functions

[Buckman et al. 2020].

One-step algorithms. Some recent work has also noted that optimizing policies based on

the behavior value function can perform surprisingly well. As we do, [Goo and Niekum 2020]

studies the continuous control tasks from the D4RL benchmark, but they examine a complicated

algorithm involving ensembles, distributional Q functions, and a novel regularization technique.
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In contrast, we analyze a substantially simpler algorithm and get better performance on the D4RL

tasks. We also focus more of our contribution on understanding and explaining this performance.

[Gulcehre et al. 2021] studies the discrete action setting and finds that a one-step algorithm (which

they call “behavior value estimation”) outperforms prior work on Atari games and other discrete

action tasks from the RL Unplugged benchmark [Gulcehre et al. 2020]. They also introduce a novel

regularizer for the evaluation step. In contrast, we consider the continuous control setting. This is

a substantial difference in setting since continuous control requires actor-critic algorithms with

parametric policies while in the discrete setting the policy improvement step can be computed

exactly from the Q function. Moreover, while [Gulcehre et al. 2021] attribute the poor performance

of iterative algorithms to “overestimation”, we define and separate the issues of distribution shift

and iterative error exploitation which can combine to cause overestimation. This separation helps

to expose the difference between the fundamental limits of off-policy evaluation from the specific

problems induced by iterative algorithms, and will hopefully be a useful distinction to inspire

future work. Finally, a one-step variant is also briefly discussed in [Nadjahi et al. 2019], but is not

the focus of that work.

There are also important connections between the one-step algorithm and the literature on

conservative policy improvement [Kakade and Langford 2002; Schulman et al. 2015; Achiam et al.

2017], which we discuss in more detail in Appendix A.2.

2.4 Defining the algorithms

In this section we provide a unified algorithmic template for model-free offline RL algorithms as

offline approximate modified policy iteration. We show how this template captures our one-step

algorithm as well as a multi-step policy iteration algorithm and an iterative actor-critic algorithm.

Then any choice of policy evaluation and policy improvement operators can be used to define

one-step, multi-step, and iterative algorithms.
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Algorithm 1: OAMPI
input :𝐾 , dataset 𝐷𝑁 , estimated behavior 𝛽
Set 𝜋0 = 𝛽 . Initialize 𝑄𝜋−1 randomly.
for k = 1, . . . , K do

Policy evaluation: 𝑄𝜋𝑘−1 = E(𝜋𝑘−1, 𝐷𝑁 , 𝑄
𝜋𝑘−2)

Policy improvement: 𝜋𝑘 = I(𝑄𝜋𝑘−1, 𝛽, 𝐷𝑁 , 𝜋𝑘−1)
end

2.4.1 Algorithmic template

We consider a generic offline approximate modified policy iteration (OAMPI) scheme, shown in

Algorithm 1 (and based off of [Puterman and Shin 1978; Scherrer et al. 2012]). Essentially the

algorithm alternates between two steps. First, there is a policy evaluation step where we estimate

the Q function of the current policy 𝜋𝑘−1 by 𝑄𝜋𝑘−1 using only the dataset 𝐷𝑁 . Implementations

also often use the prior Q estimate 𝑄𝜋𝑘−2 to warm-start the approximation process. Second, there

is a policy improvement step. This step takes in the estimated Q function 𝑄𝜋𝑘−1 , the estimated

behavior 𝛽 , and the dataset 𝐷𝑁 and produces a new policy 𝜋𝑘 . Again an algorithm may use 𝜋𝑘−1

to warm-start the optimization. Moreover, we expect this improvement step to be regularized

or constrained to ensure that 𝜋𝑘 remains in the support of 𝛽 and 𝐷𝑁 . Choices for this step are

discussed below. Now we discuss a few ways to instantiate the template.

One-step. The simplest algorithm sets the number of iterations 𝐾 = 1. We learn 𝛽 by maximum

likelihood and train the policy evaluation step to estimate 𝑄𝛽 . Then we use any one of the policy

improvement operators discussed below to learn 𝜋1. Importantly, this algorithm completely avoids

off-policy evaluation.

Multi-step. The multi-step algorithm now sets 𝐾 > 1. The evaluation operator must evaluate

off-policy since 𝐷𝑁 is collected by 𝛽 , but evaluation steps for 𝐾 ≥ 2 require evaluating policies

𝜋𝑘−1 ≠ 𝛽 . Each iteration is trained to convergence in both the estimation and improvement steps.
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Iterative actor-critic. An actor critic approach looks somewhat like the multi-step algorithm,

but does not attempt to train to convergence at each iteration and uses a much larger 𝐾 . Here

each iteration consists of one gradient step to update the Q estimate and one gradient step to

improve the policy. Since all of the evaluation and improvement operators that we consider are

gradient-based, this algorithm can adapt the same evaluation and improvement operators used by

the multi-step algorithm. Most algorithms from the literature fall into this category [Fujimoto

et al. 2018a; Kumar et al. 2019a, 2020; Wu et al. 2019; Wang et al. 2020c; Siegel et al. 2020].

2.4.2 Policy evaluation operator

Following prior work on continuous state and action problems, we always evaluate by simple

fitted Q evaluation [Fujimoto et al. 2018a; Kumar et al. 2019a; Siegel et al. 2020; Wang et al. 2020c;

Paine et al. 2020; Wang et al. 2021]. In practice this is optimized by TD-style learning with the use

of a target network [Mnih et al. 2015] as in DDPG [Lillicrap et al. 2015]. We do not use any double

Q learning or Q ensembles [Fujimoto et al. 2018b]. For the one-step and multi-step algorithms we

train the evaluation procedure to convergence on each iteration and for the iterative algorithm

each iteration takes a single stochastic gradient step. See [Voloshin et al. 2019; Wang et al. 2021] for

more comprehensive examinations of policy evaluation and some evidence that this simple fitted

Q iteration approach is reasonable. It is an interesting direction for future work to consider other

operators that use things like importance weighting [Munos et al. 2016] or pessimism [Kumar

et al. 2020; Buckman et al. 2020].

2.4.3 Policy improvement operators

To instantiate the template, we also need to choose a specific policy improvement operator I. We

consider the following improvement operators selected from those discussed in the related work

section. Each operator has a hyperparameter controlling deviation from the behavior policy.
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Behavior cloning. The simplest baseline worth including is to just return 𝛽 as the new policy

𝜋 . Any policy improvement operator ought to perform at least as well as this baseline.

Constrained policy updates. Algorithms like BCQ [Fujimoto et al. 2018a] and SPIBB [Laroche

et al. 2019] constrain the policy updates to be within the support of the data/behavior. In favor of

simplicity, we implement a simplified version of the BCQ algorithm that removes the “perturbation

network” which we call Easy BCQ. We define a new policy 𝜋𝑀
𝑘

by drawing𝑀 samples from 𝛽 and

then executing the one with the highest value according to 𝑄𝛽 . Explicitly:

𝜋𝑀
𝑘
(𝑎 |𝑠) = 1[𝑎 = arg max

𝑎 𝑗
{𝑄𝜋𝑘−1 (𝑠, 𝑎 𝑗 ) : 𝑎 𝑗 ∼ 𝜋𝑘−1(·|𝑠), 1 ≤ 𝑗 ≤ 𝑀}] . (2.2)

Regularized policy updates. Another common idea proposed in the literature is to regularize

towards the behavior policy [Wu et al. 2019; Jaques et al. 2019; Kumar et al. 2019a]. For a general

divergence 𝐷 we can define an algorithm that maximizes a regularized objective:

𝜋𝛼
𝑘
= arg max

𝜋

∑︁
𝑖

E
𝑎∼𝜋 |𝑠

[𝑄𝜋𝑘−1 (𝑠𝑖, 𝑎)] − 𝛼𝐷 (𝛽 (·|𝑠𝑖), 𝜋 (·|𝑠𝑖)) (2.3)

A comprehensive review of different variants of this method can be found in [Wu et al. 2019]

which does not find dramatic differences across regularization techniques. In practice, we will use

reverse KL divergence, i.e. 𝐾𝐿(𝜋 (·|𝑠𝑖)∥𝛽 (·|𝑠𝑖)). To compute the reverse KL, we draw samples from

𝜋 (·|𝑠𝑖) and use the density estimate 𝛽 to compute the divergence. Intuitively, this regularization

forces 𝜋 to remain within the support of 𝛽 rather than incentivizing 𝜋 to cover 𝛽 .

Variants of imitation learning. Another idea, proposed by [Wang et al. 2018; Siegel et al.

2020; Wang et al. 2020c; Chen et al. 2020b] is to modify an imitation learning algorithm either

by filtering or weighting the observed actions to incentivize policy improvement. The weighted
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version that we implement uses exponentiated advantage estimates to weight the observed actions:

𝜋𝜏
𝑘
= arg max

𝜋

∑︁
𝑖

exp(𝜏 (𝑄𝜋𝑘−1 (𝑠𝑖, 𝑎𝑖) −𝑉 (𝑠𝑖))) log𝜋 (𝑎𝑖 |𝑠𝑖). (2.4)

With these definitions, we can now move on to testing various combinations of algorithmic

template (one-step, multi-step, or iterative) and improvement operator (Easy BCQ, reverse KL

regularization, or exponentially weighted imitation).

2.5 Benchmark Results

Our main empirical finding is that one step of policy improvement is sufficient to beat state of the

art results on much of the D4RL benchmark suite [Fu et al. 2020]. This is striking since prior work

focuses on iteratively estimating the Q function of the current policy iterate, but we only use one

step derived from 𝑄𝛽 . Results are shown in Table 2.1. Full experimental details are in Appendix

A.3 and code can be found at https://github.com/davidbrandfonbrener/onestep-rl.

As we can see in the table, all of the one-step algorithms usually outperform the best iterative

algorithms tested by [Fu et al. 2020]. The one notable exception is the case of random data

(especially on halfcheetah), where iterative algorithms have a clear advantage. We will discuss

potential causes of this further in Section 2.7.

To give a more direct comparison that controls for any potential implementation details, we use

our implementation of reverse KL regularization to create multi-step and iterative algorithms. We

are not using algorithmic modifications like Q ensembles, regularized Q values, or early stopping

that have been used in prior work. But, our iterative algorithm recovers similar performance to

prior regularized actor-critic approaches. These results are shown in Table 2.2.

Put together, these results immediately suggest some guidance to the practitioner: it is worthwhile
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Table 2.1: Results of one-step algorithms on the D4RL benchmark. The first column gives the best results

across several iterative algorithms considered in [Fu et al. 2020]. Each algorithm is tuned over 6 values

of their respective hyperparameter. We report the mean and standard error over 10 seeds of the training

process and using 100 evaluation episodes per seed. We bold the best result on each dataset and blue any

result where a one-step algorithm beat the best reported iterative result from [Fu et al. 2020]. We use m

for medium, m-e for medium-expert, m-re for medium-replay, r for random, and c for cloned.

Iterative One-step

[Fu et al. 2020] BC Easy BCQ Rev. KL Reg Exp. Weight

halfcheetah-m 46.3 42.1 ± 0.1 52.6 ± 0.1 55.6 ± 0.2 48.6 ± 0.0
walker2d-m 81.1 70.2 ± 1.3 86.9 ± 0.4 85.6 ± 0.4 80.3 ± 1.1
hopper-m 58.8 49.8 ± 0.6 69.7 ± 2.1 83.3 ± 1.4 56.7 ± 0.8

halfcheetah-m-e 64.7 60.1 ± 0.8 77.0 ± 0.9 93.5 ± 0.1 91.7 ± 0.9
walker2d-m-e 111.0 93.6 ± 5.6 111.8 ± 0.2 110.9 ± 0.1 112.9 ± 0.2
hopper-m-e 111.9 48.1 ± 1.5 81.4 ± 1.9 102.1 ± 1.3 83.1 ± 7.0

halfcheetah-m-re 47.7 34.9 ± 0.3 38.4 ± 0.3 42.4 ± 0.1 38.6 ± 0.5
walker2d-m-re 26.7 23.9 ± 1.6 66.4 ± 2.0 71.6 ± 3.1 49.3 ± 3.5
hopper-m-re 48.6 21.2 ± 1.3 77.3 ± 2.7 71.0 ± 8.1 94.1 ± 2.4

halfcheetah-r 35.4 2.2 ± 0.0 5.4 ± 0.1 6.9 ± 1.0 3.7 ± 0.2
walker2d-r 7.3 0.7 ± 0.1 4.2 ± 0.2 6.1 ± 0.3 5.2 ± 0.2
hopper-r 12.2 2.6 ± 0.4 6.7 ± 0.1 7.8 ± 0.3 5.6 ± 0.6

pen-c 56.9 49.3 ± 2.2 67.0 ± 1.1 55.3 ± 1.9 54.7 ± 2.3
hammer-c 2.1 0.5 ± 0.1 2.8 ± 0.5 0.2 ± 0.0 1.2 ± 0.2
relocate-c -0.1 0.0 ± 0.0 0.3 ± 0.0 0.1 ± 0.0 0.1 ± 0.0
door-c 0.4 0.0 ± 0.0 0.4 ± 0.2 0.0 ± 0.1 0.1 ± 0.1

to run the one-step algorithm as a baseline before trying something more elaborate. The one-step

algorithm is substantially simpler than prior work, but frequently achieves better performance.

2.6 What goes wrong for iterative algorithms?

The benchmark experiments show that one step of policy improvement often beats iterative and

multi-step algorithms. In this section we dive deeper to understand why this happens. First,

by examining the learning curves of each of the algorithms we note that iterative algorithms

require stronger regularization to avoid instability. Then we identify two causes of this instability:
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Table 2.2: Results of reverse KL regularization on the D4RL benchmark across one-step, multi-step, and

iterative algorithms. Again we run 6 hyperparameters and report the mean and standard error across 10

seeds using 100 evaluation episodes.

One-step Multi-step Iterative

halfcheetah-m 55.6 ± 0.2 40.8 ± 8.6 47.4 ± 3.5
walker2d-m 85.6 ± 0.4 75.9 ± 0.5 75.4 ± 0.8
hopper-m 83.3 ± 1.4 53.0 ± 1.0 54.2 ± 0.6

halfcheetah-m-e 93.5 ± 0.1 93.6 ± 0.3 93.6 ± 0.2
walker2d-m-e 110.9 ± 0.1 76.3 ± 15.9 108.2 ± 0.3
hopper-m-e 102.1 ± 1.3 101.3 ± 3.9 82.7 ± 7.4

halfcheetah-r 6.9 ± 1.0 13.7 ± 1.7 16.3 ± 1.6
walker2d-r 6.1 ± 0.3 5.0 ± 0.3 5.1 ± 0.3
hopper-r 7.8 ± 0.3 15.4 ± 2.9 9.7 ± 0.1

distribution shift and iterative error exploitation.

Distribution shift causes evaluation error by reducing the effective sample size in the fixed dataset

for evaluating the current policy and has been extensively considered in prior work as discussed

below. Iterative error exploitation occurs when we repeatedly optimize policies against our Q

estimates and exploit their errors. This introduces a bias towards overestimation at each step

(much like the training error in supervised learning is biased to be lower than the test error).

Moreover, by iteratively re-using the data and using prior Q estimates to warmstart training at

each step, the errors from one step are amplified at the next. This type of error is particular to

multi-step and iterative algorithms.

2.6.1 Learning curves and hyperparameter sensitivity

To begin to understand why iterative and multi-step algorithms can fail it is instructive to look at

the learning curves. As shown in Figure 2.2, we often observe that the iterative algorithm will

begin to learn and then crash. Regularization can help to prevent this crash since strong enough

regularization towards the behavior policy ensures that the evaluation is nearly on-policy.
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Figure 2.2: Learning curves and final performance on halfcheetah-medium across different algorithms and

regularization hyperparameters (all using the reverse KL regularized improvement operator). Error bars

show min and max over 3 seeds. Similar figures for other datasets from D4RL can be found in Appendix

A.4.

In contrast, the one-step algorithm is more robust to the regularization hyperparameter. The

rightmost panel of the figure shows this clearly. While iterative and multi-step algorithms can

have their performance degrade very rapidly with the wrong setting of the hyperparameter,

the one-step approach is more stable. Moreover, we usually find that the optimal setting of the

regularization hyperparameter is lower for the one-step algorithm than the iterative or multi-step

approaches.

2.6.2 Distribution shift

Any algorithm that relies on off-policy evaluation will struggle with distribution shift in the

evaluation step. Trying to evaluate a policy that is substantially different from the behavior

reduces the effective sample size and increases the variance of the estimates. Explicitly, by

distribution shift we mean the shift between the behavior distribution (the distribution over

state-action pairs in the dataset) and the evaluation distribution (the distribution that would be

induced by the policy 𝜋 we want to evaluate).

Prior work. There is a substantial body of prior theoretical work that suggests that off-policy

evaluation can be difficult and this difficulty scales with some measure of distribution shift. [Wang
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et al. 2020b; Amortila et al. 2020; Zanette 2021] give exponential (in horizon) lower bounds on

sample complexity in the linear setting even with good feature representations that can represent

the desired Q function and assuming good data coverage. Upper bounds generally require very

strong assumptions on both the representation and limits on the distribution shift [Wang et al.

2021; Duan et al. 2020; Chen and Jiang 2019]. Moreover, the assumed bounds on distribution

shift can be exponential in horizon in the worst case. On the empirical side, [Wang et al. 2021]

demonstrates issues with distribution shift when learning from pre-trained features and provides

a nice discussion of why distribution shift causes error amplification. [Fujimoto et al. 2018a] raises

a similar issue under the name “extrapolation error”. Regularization and constraints are meant to

reduce issues stemming from distribution shift, but also reduce the potential for improvement

over the behavior.

Empirical evidence. Both the multi-step and iterative algorithms in our experiments rely on

off-policy evaluation as a key subroutine. We examine how easy it is to evaluate the policies

encountered along the learning trajectory. To control for issues of iterative error exploitation

(discussed in the next subsection), we train Q estimators from scratch on a heldout evaluation

dataset sampled from the behavior policy. We then evaluate these trained Q function on rollouts

from 1000 datapoints sampled from the replay buffer. Results are shown in Figure 2.3.

The results show a correlation betweed KL and MSE. Moreover, we see that the MSE generally

increases over training. One way to mitigate this, as seen in the figure, is to use a large value

of 𝛼 . We just cannot take a very large step before running into problems with distribution shift.

But, when we take such a small step, the information from the on-policy 𝑄𝛽 is about as useful

as the newly estimated 𝑄𝜋 . This is seen, for example, in Figure 2.2 where we get very similar

performance across algorithms at high levels of regularization.
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Figure 2.3: Results of running the iterative algorithm on halfcheetah-medium. Each checkpointed policy is

evaluated by aQ function trained from scratch on heldout data. MSE refers toE𝑠,𝑎∼𝛽 [(�̂�𝜋𝑖 (𝑠, 𝑎)−𝑄𝜋𝑖 (𝑠, 𝑎))2]
and KL refers to E𝑠∼𝛽 [𝐾𝐿(𝜋 (·|𝑠)∥𝛽 (·|𝑠)]. Left: 90 policies taken from various points in training with various

hyperaparmeters and random seeds. Center: MSE learning curves. Right: KL learning curves. Error bars

show min and max over 3 random seeds.

2.6.3 Iterative error exploitation

The previous subsection identifies how any algorithm that uses off-policy evaluation is funda-

mentally limited by distribution shift, even if we were given fresh data and trained Q functions

from scratch at every iteration. But, in practice, iterative algorithms repeatedly iterate between

optimizing policies against estimated Q functions and re-estimating the Q functions using the

same data and using the Q function from the previous step to warm-start the re-estimation. This

induces dependence between steps that causes a problem that we call iterative error exploitation.

Intuition about the problem. In short, iterative error exploitation happens because 𝜋𝑖 tends

to choose overestimated actions in the policy improvement step, and then this overestimation

propagates via dynamic programming in the policy evaluation step. To illustrate this issue more

formally, consider the following: at each 𝑠, 𝑎 we suffer some Bellman error 𝜀𝜋
𝛽
(𝑠, 𝑎) based on our

fixed dataset collected by 𝛽 . Formally,

𝑄𝜋 (𝑠, 𝑎) = 𝑟 (𝑠, 𝑎) + 𝛾 E
𝑠 ′ |𝑠,𝑎
𝑎′∼𝜋 |𝑠 ′

[𝑄𝜋 (𝑠′, 𝑎′)] + 𝜀𝜋
𝛽
(𝑠, 𝑎). (2.5)
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Intuitively, 𝜀𝜋
𝛽
will be larger at state-actions with less coverage in the dataset collected by 𝛽 . Note

that 𝜀𝜋
𝛽
can absorb all error whether it is caused by the finite sample size or function approximation

error.

All that is needed to cause iterative error exploitation is that the 𝜖𝜋
𝛽
are highly correlated across

different 𝜋 , but for simplicity, we will assume that 𝜀𝜋
𝛽
is the same for all policies 𝜋 estimated from

our fixed offline dataset and instead write 𝜀𝛽 . Now that the errors do not depend on the policy we

can treat the errors as auxiliary rewards that obscure the true rewards and see that

𝑄𝜋 (𝑠, 𝑎) = 𝑄𝜋 (𝑠, 𝑎) +𝑄𝜋
𝛽
(𝑠, 𝑎), 𝑄𝜋

𝛽
(𝑠, 𝑎) := E

𝜋 |𝑠0,𝑎0=𝑠,𝑎

[ ∞∑︁
𝑡=0

𝛾 𝑡𝜀𝛽 (𝑠𝑡 , 𝑎𝑡 )
]
. (2.6)

This assumption is somewhat reasonable since we expect the error to primarily depend on the

data. And, when the prior Q function is used to warm-start the current one (as is generally the

case in practice), the approximation errors are automatically passed between steps.

Now we can explain the problem. Recall that under our assumption the 𝜀𝛽 are fixed once we have

a dataset and likely to have larger magnitude the further we go from the support of the dataset.

So, with each step 𝜋𝑖 is able to better maximize 𝜀𝛽 , thus moving further from 𝛽 and increasing the

magnitude of𝑄𝜋𝑖
𝛽
relative to 𝑄𝜋𝑖 . Even though 𝑄𝜋𝑖 may provide better signal than 𝑄𝛽 , it can easily

be drowned out by 𝑄𝜋𝑖
𝛽
. In contrast, 𝑄𝛽

𝛽
has small magnitude, so the one-step algorithm is robust

to errors1.

An example. Now we consider a simple gridworld example to illustrate iterative error exploita-

tion. This example fits exactly into the setup outlined above since all errors are due to reward

estimation so the 𝜀𝛽 is indeed constant over all 𝜋 . The gridworld we consider has one determin-

1We should note that iterative error exploitation is similar to the overestimation addressed by double Q learning
[Van Hasselt et al. 2016; Fujimoto et al. 2018b], but distinct. Since we are in the offline setting, the errors due to
our finite dataset can be iteratively exploited more and more, while in the online setting considered by double Q
learning, fresh data prevents this issue. We are also considering an algorithm based on policy iteration rather than
value iteration.
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Figure 2.4: An illustration of multi-step offline regularized policy iteration. The leftmost panel in each

row shows the true reward (top) or error 𝜀𝛽 (bottom). Then each subsequent panel plots 𝜋𝑖 (with arrow

size proportional to 𝜋𝑖 (𝑎 |𝑠)) over either 𝑄𝜋𝑖
(top) or 𝑄𝜋

𝛽
(bottom), averaged over actions at each state. The

one-step policy (𝜋1) has the highest value. The behavior policy here is a mixture of optimal 𝜋∗
and uniform

𝑢 with coefficient 0.2 so that 𝛽 = 0.2 · 𝜋∗ + 0.8 ·𝑢. We set 𝛼 = 0.1 as the regularization parameter for reverse

KL regularization.

istic good state with reward 1 and many stochastic bad states that have rewards distributed as

N(−0.5, 1). We collect a dataset of 100 trajectories, each of length 100. One run of the multi-step

offline regularized policy iteration algorithm is illustrated in Figure 2.4.

In the example we see that one step often outperforms multiple steps of improvement. Intuitively,

when there are so many noisy states, it is likely that a few of them will be overestimated. Since the

data is re-used for each step, these overestimations persist and propagate across the state space

due to iterative error exploitation. This property of having many bad, but poorly estimated states

likely also exists in the high-dimensional control problems encountered in the benchmark where

there are many ways for the robots to fall down that are not observed in the data for non-random

behavior. Moreover, both settings have larger errors in areas where we have less data. So even

though the errors in the gridworld are caused by noise in the rewards, while errors in D4RL are

caused by function approximation, we think this is a useful mental model of the problem.
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Figure 2.5: Histograms of overestimation error (𝑄𝜋𝑖 (𝑠, 𝑎) −𝑄𝜋𝑖 (𝑠, 𝑎)) on halfcheetah-medium with the

iterative algorithm. Left: errors from the training Q function. Right: errors from an independently trained

Q function.

Empirical evidence. In practice we cannot easily visualize the progression of errors. However,

the dependence between steps still arises as overestimation of the Q values. We can track the

overestimation of the Q values over training as a way to measure how much bias is being induced

by optimizing against our dependent Q estimators. As a control we can also train Q estimators

from scratch on independently sampled evaluation data. These independently trained Q functions

do not have the same overestimation bias even though the squared error does tend to increase

as the policy moves further from the behavior (as seen in Figure 2.3). Explicitly, we track 1000

state, action pairs from the replay buffer over training. For each checkpointed policy we perform

3 rollouts at each state to get an estimate of the true Q value and compare this to the estimated Q

value. Results are shown in Figure 2.5.

2.7 When are multiple steps useful?

So far we have focused on why the one-step algorithm often works better than the multi-step

and iterative algorithms. However, we do not want to give the impression that one-step is always

better. Indeed, our own experiments in Section 2.5 show a clear advantage for the multi-step and

iterative approaches when we have randomly collected data. While we cannot offer a precise

delineation of when one-step will outperform multi-step, in this section we offer some intuition
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Figure 2.6: Performance of all three algorithms with reverse KL regularization across mixtures between

halfcheetah-random and halfcheetah-medium. Error bars indicate min and max over 3 seeds.

as to when we can expect to see benefits from multiple steps of policy improvement.

As seen in Section 2.6, multi-step and iterative algorithms have problems when they propagate

estimation errors. This is especially problematic in noisy and/or high dimensional environments.

While the multi-step algorithms propagate this noise more widely than the one-step algorithm,

they also propagate the signal. So, when we have sufficient coverage to reduce the magnitude of

the noise, this increased propagation of signal can be beneficial. The D4RL experiments suggest

that we are usually on the side of the tradeoff where the errors are large enough to make one-step

preferable.

In Appendix A.1 we illustrate a simple gridworld example where a slight modification of the

behavior policy from Figure 2.4 makes multi-step dramatically outperform one-step. This modified

behavior policy (1) has better coverage of the noisy states (which reduces error, helping multi-step),

and (2) does a worse job propagating the reward from the good state (hurting one-step).

We can also test empirically how the behavior policy effects the tradeoff between error and signal

propagation. To do this we construct a simple experiment where we mix data from the random

behavior policy with data from the medium behavior policy. Explicitly we construct a dataset 𝐷

out of the datasets 𝐷𝑟 for random and 𝐷𝑚 for medium such that each trajectory in 𝐷 comes from

the medium dataset with probability 𝑝𝑚 . So for 𝑝𝑚 = 0 we have the random dataset and 𝑝𝑚 = 1

we have the medium dataset, and in between we have various mixtures. Results are shown in
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Figure 2.6. It takes surprisingly little data from the medium policy for one-step to outperform the

iterative algorithm.

2.8 Discussion

This paper presents the surprising effectiveness of a simple one-step baseline for offline RL. We

examine the failure modes of iterative algorithms and the conditions where we might expect them

to outperform the simple one-step baseline. This provides guidance to a practitioner that the

simple one-step baseline is a good place to start when approaching an offline RL problem.

But, we leave many questions unanswered. One main limitation is that we lack a clear theoretical

characterization of which environments and behaviors can guarantee that one-step outperforms

multi-step or visa versa. Such results will likely require strong assumptions, but could provide

useful insight. We don’t expect this to be easy as it requires understanding policy iteration which

has been notoriously difficult to analyze, often converging much faster than the theory would

suggest [Sutton and Barto 2018; Agarwal et al. 2019]. Another limitation is that while only using

one step is perhaps the simplest way to avoid the problems of off-policy evaluation, there are

possibly other more elaborate algorithmic solutions that we did not consider here. However, our

strong empirical results suggest that the one-step algorithm is at least a strong baseline.
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3 | Return conditioned supervised

learning for offline reinforcement

learning

3.1 Introduction

In recent years, deep learning has proven to be an exceptionally powerful generic algorithm for

solving supervised learning (SL) tasks. These approaches tend to be stable, and scale well with

compute and data [Kaplan et al. 2020]. In contrast, deep reinforcement learning algorithms seem to

lack these nice properties; results are well known to be sensitive to hyperparameters and difficult

to replicate. In spite of this, deep reinforcement learning (RL) has achieved impressive feats,

such as defeating human champions at Go [Silver et al. 2016]. This juxtaposition of success and

instability has inspired researchers to explore alternative approaches to reinforcement learning

that more closely resemble supervised learning in hopes of making deep RL as well-behaved as

deep SL.

One family of algorithms that has garnered great interest recently is return-conditioned supervised

learning (RCSL). The core idea of RCSL is to learn the return-conditional distribution of actions in

each state, and then define a policy by sampling from the distribution of actions that receive high
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return. This was first proposed for the online RL setting by work on Upside Down RL [Schmidhuber

2019; Srivastava et al. 2019] and Reward Conditioned Policies [Kumar et al. 2019b]. The idea was

extended to the offline RL setting using transformers that condition on the entire history of states

rather than just the current Markovian state in the Decision Transformer (DT) work [Chen et al.

2021b; Furuta et al. 2021]. Recent work on RL via Supervised Learning (RvS) [Emmons et al. 2021]

unifies and simplifies ideas from these prior works with ideas about goal-conditioned policies.

Importantly, none of this prior work provides theoretical guarantees or analysis of the failuremodes

of the return-conditioning approach. In contrast, the more established dynamic programming

(DP) algorithms for RL are better understood theoretically. This paper attempts to address this gap

in understanding, in order to assess when RCSL is a reliable approach for offline RL. Specifically,

we answer the following questions:

• What optimality guarantees can we make for RCSL? Under what conditions are they

necessary and sufficient?

• In what situations does RCSL fail in theory and in practice?

• How does RCSL relate to other approaches, such as DP and behavior cloning (BC)?

We find that although RCSL does select a near-optimal policy under certain conditions, the

necessary assumptions are more strict than those for DP. In particular, RCSL (but not DP) requires

nearly deterministic dynamics in the MDP, knowledge of the proper value to condition on, and for

the conditioning value to be supported by the distribution of returns in the dataset. We provide

simple tabular examples to demonstrate the necessity of these assumptions. The shortcomings

of RCSL that we identify in theory are verified empirically with some simple experiments using

neural models on ad-hoc example problems as well as benchmark datasets. We conclude that

RCSL alone is unlikely to be a general solution for offline RL problems, but does show promise in

some specific situations such as deterministic MDPs with high-quality behavior data.
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3.2 Preliminaries

3.2.1 Setup

We will consider an offline RL setup where we are given a dataset D of trajectories 𝜏 where

each 𝜏 = (𝑜1, 𝑎1, 𝑟1, · · · , 𝑜𝐻 , 𝑎𝐻 , 𝑟𝐻 ) contains observations 𝑜𝑡 ∈ O, actions 𝑎𝑡 ∈ A, and rewards

𝑟𝑡 ∈ [0, 1] generated by some behavior policy 𝛽 interacting with a finite horizon MDP with horizon

𝐻 . Let 𝑔(𝜏) = ∑𝐻
𝑡=1 𝑟𝑡 denote the cumulative return of the trajectory (we will just use 𝑔 when the

trajectory is clear from context). And let 𝐽 (𝜋) = E𝜏∼𝜋 [𝑔(𝜏)] be the expected return of a policy 𝜋 .

We then let the state representation 𝑠𝑡 ∈ S be any function of the history of observations, actions,

and rewards up to step 𝑡 along with 𝑜𝑡 . To simplify notation in the finite horizon setting, we will

sometimes drop the timestep from 𝑠 to refer to generic states and assume that we can access the

timestep from the state representation as 𝑡 (𝑠). Let 𝑃𝜋 denote the joint distribution over states,

actions, rewards, and returns induced by any policy 𝜋 .

In this paper, we focus on the RCSL approach that learns by return-conditioned supervised learning.

Explicitly, at training time this method minimizes the empirical negative log likelihood loss:

�̂�(𝜋) = −
∑︁
𝜏∈D

∑︁
1≤𝑡≤𝐻

log𝜋 (𝑎𝑡 |𝑠𝑡 , 𝑔(𝜏)) . (3.1)

Then at test time, an algorithm takes the learned policy 𝜋 along with a conditioning function 𝑓 (𝑠)

to define the test-time policy 𝜋𝑓 as:

𝜋𝑓 (𝑎 |𝑠) := 𝜋 (𝑎 |𝑠, 𝑓 (𝑠)) . (3.2)

Nota bene: the Decision Transformer [Chen et al. 2021b] is captured in this framework by defining

the state space so that the state 𝑠𝑡 at time 𝑡 also contains all past 𝑜𝑡 ′ , 𝑎𝑡 ′ , and 𝑟𝑡 ′ for 𝑡 ′ < 𝑡 . In prior
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work, 𝑓 is usually chosen to be a constant at the initial state and to decrease with observed reward

along a trajectory, which is captured by a state representation that includes the history of rewards.

3.2.2 The RCSL policy

To better understand the objective, it is useful to first consider its optimum in the case of infinite

data. It is clear that our loss function attempts to learn 𝑃𝛽 (𝑎 |𝑠, 𝑔) where 𝛽 is the behavior policy

that generated the data (and recall that 𝑃𝛽 refers to the distribution over states, actions, and returns

induced by 𝛽). Factoring this distribution, we quickly see that the optimal policy 𝜋RCSL
𝑓

for a

specific conditioning function 𝑓 can be written as:

𝜋RCSL
𝑓

(𝑎 |𝑠) = 𝑃𝛽 (𝑎 |𝑠, 𝑓 (𝑠)) =
𝑃𝛽 (𝑎 |𝑠)𝑃𝛽 (𝑓 (𝑠) |𝑠, 𝑎)

𝑃𝛽 (𝑓 (𝑠) |𝑠)
= 𝛽 (𝑎 |𝑠)

𝑃𝛽 (𝑓 (𝑠) |𝑠, 𝑎)
𝑃𝛽 (𝑓 (𝑠) |𝑠)

. (3.3)

Essentially, the RCSL policy re-weights the behavior based on the distribution of future returns.

Connection to distributional RL. In distributional RL [Bellemare et al. 2022], the distribu-

tion of future returns under a policy 𝜋 from state 𝑠 and action 𝑎 is defined as: 𝐺𝜋 (𝑠, 𝑎) ∼ 𝑔 =∑𝐻
𝑡=𝑡 (𝑠) 𝑟𝑡 | 𝜏 ∼ 𝜋, 𝑠𝑡 (𝑠) = 𝑠, 𝑎𝑡 (𝑠) = 𝑎. The RCSL policy is precisely proportional to the product of

the behavior policy and the density of the distributional Q function of the behavior policy (i.e.

𝑃𝛽 (𝑔 |𝑠, 𝑎)).

3.2.3 Related work

As noted in the introduction, our work is in direct response to the recent line of literature on

RCSL [Schmidhuber 2019; Srivastava et al. 2019; Kumar et al. 2019b; Chen et al. 2021b; Furuta

et al. 2021; Emmons et al. 2021]. Specifically, we will focus on the DT [Chen et al. 2021b] and

RvS [Emmons et al. 2021] formulations in our experiments since they also focus on the offline RL
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setting. Note that another recent work introduced the Trajectory Transformer [Janner et al. 2021]

which does not fall under the RCSL umbrella since it performs planning in the learned model to

define a policy.

Another relevant predecessor of RCSL comes from work on goal-based RL [Kaelbling 1993].

Compared to RCSL, this line of work replaces the target return 𝑔 in the empirical loss function by

a goal state. One instantiation is hindsight experience replay (HER) where each trajectory in the

replay buffer is relabeled as if the observed final state was in fact the goal state [Andrychowicz

et al. 2017]. Another instance is goal-conditioned supervised learning [GCSL, Ghosh et al. 2019],

which provides more careful analysis and guarantees, but the guarantees (1) are not transferable to

the return-conditioned setting, (2) assume bounds on 𝐿∞ errors in TV distance instead of dealing

with expected loss functions that can be estimated from data, and (3) do not provide analysis of

the tightness of the bounds.

Concurrent work [Štrupl et al. 2022; Paster et al. 2022; Yang et al. 2022] also all raise the issue

of RCSL in stochastic environments with infinite data, and present some algorithmic solutions.

However, none of this work addresses the potentially more fundamental issue of sample complexity

that arises from the requirement of return coverage that we discuss in Section 4.

3.3 When does RCSL find the optimal policy?

We begin by exploring how RCSL behaves with infinite data and a fully expressive policy class.

In this setting, classic DP algorithms (e.g. Q-learning) are guaranteed to converge to the optimal

policy under coverage assumptions [Sutton and Barto 2018]. But we now show that this is not the

case for RCSL, which requires additional assumptions for a similar guarantee. Our approach is

to first derive a positive result: under certain assumptions, the policy which optimizes the RCSL

objective (Section 3.2.2) is guaranteed to be near-optimal. We then illustrate the limitations of
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RCSL by providing simple examples that are nonetheless challenging for these methods in order

to demonstrate why our assumptions are necessary and that our bound is tight.

Theorem 3.1 (Alignment with respect to the conditioning function). Consider an MDP, behavior

𝛽 and conditioning function 𝑓 . Assume the following:

1. Return coverage: 𝑃𝛽 (𝑔 = 𝑓 (𝑠1) |𝑠1) ≥ 𝛼 𝑓 for all initial states 𝑠1.

2. Near determinism: 𝑃 (𝑟 ≠ 𝑟 (𝑠, 𝑎) or 𝑠′ ≠ 𝑇 (𝑠, 𝑎) |𝑠, 𝑎) ≤ 𝜖 at all 𝑠, 𝑎 for some functions 𝑇 and 𝑟 .

Note that this does not constrain the stochasticity of the initial state.

3. Consistency of 𝑓 : 𝑓 (𝑠) = 𝑓 (𝑠′) + 𝑟 for all 𝑠 .1

Then

E
𝑠1
[𝑓 (𝑠1)] − 𝐽 (𝜋RCSL

𝑓
) ≤ 𝜖

(
1
𝛼 𝑓

+ 2
)
𝐻 2. (3.4)

Moreover, there exist problems where the bound is tight up to constant factors.

The proof is in Appendix B.3.1. Note that the quantity E𝑠1 [𝑓 (𝑠1)] is specific to the structure of

RCSL algorithms and captures the notion that the ideal RCSL policy will be able to reproduce

policies of any value when given different conditioning functions (with appropriate data). The

theorem immediately yields the following corollaries (with proof in Appendix B.3.1).

Corollary 3.2. Under the assumptions of Theorem 3.1, there exists a conditioning function 𝑓 such

that

𝐽 (𝜋∗) − 𝐽 (𝜋RCSL

𝑓
) ≤ 𝜖

(
1
𝛼 𝑓

+ 3
)
𝐻 2. (3.5)

1Note this can be exactly enforced (as in prior work) by augmenting the state space to include the cumulative
reward observed so far.
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Corollary 3.3. If 𝛼 𝑓 > 0, 𝜖 = 0, and 𝑓 (𝑠1) = 𝑉 ∗(𝑠1) for all initial states 𝑠1, then 𝐽 (𝜋RCSL

𝑓
) = 𝐽 (𝜋∗).

The corollaries tell us that in near determinisitc environments with the proper conditioning

functions and data coverage, it is possible for RCSL to recover near optimal policies. These

assumptions are somewhat strong compared to those needed for DP-based approaches, so we will

now explain why they are necessary for our analysis.

Tightness. To demonstrate tightness we will consider the simple examples in Figure 3.1. These

MDPs and behavior policies demonstrate tightness in 𝜖 and 𝛼 𝑓 up to constant factors, and provide

insight into how stochastic dynamics lead to suboptimal behavior from RCSL algorithms.

(a) An example where the bound

is tight. B denotes the Bernoulli

distribution.

(b) An example where RCSL also

has large regret.

(c) An example where RCSL also

has large regret for any condition-

ing function.

Figure 3.1: Failure modes of RCSL in stochastic environments with infinite data.

First, consider the example in Figure 3.1(a) with conditioning 𝑓 (𝑠1) = 1. There is only one possible

policy in this case, and it has 𝐽 (𝜋) = 𝜖 so that E[𝑓 (𝑠1)] − 𝐽 (𝜋) = 1 − 𝜖 . Note that 𝛼 𝑓 = 𝜖 , so

we have that 𝜖/𝛼 𝑓 = 1. Thus, the bound is tight in 𝜖/𝛼 𝑓 . This example shows that the goal of

achieving a specific desired return is incompatible with stochastic environments.

This first example is somewhat silly since there is only one action, so the learned policy does not

actually suffer any regret. To show that this issue can in fact lead to regret, consider the example

in Figure 3.1(b), again with conditioning 𝑓 (𝑠1) = 1. Then applying the reasoning from Section

3.2.2,

𝜋RCSL
𝑓

(𝑎1 |𝑠1) = 𝛽 (𝑎1 |𝑠1)
𝑃𝛽 (𝑔 = 1|𝑠1, 𝑎1)
𝑃𝛽 (𝑔 = 1|𝑠1)

= 0.5 · 0
0.5 · 𝜖 = 0. (3.6)
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So we get that E[𝑓 (𝑠1)] − 𝐽 (𝜋RCSL
𝑓

) = 1− 𝜖 , while 𝜖/𝛼 𝑓 = 𝜖/(𝜖/2) = 2 (which is on the same order,

up to a constant factor). However, in this case the learned policy 𝜋RCSL
𝑓

suffers substantial regret

since the chosen action 𝑎2 has substantially lower expected value than 𝑎1 by 1 − 2𝜖 .

The issue in the second example could be resolved by changing the conditioning function so

that 𝑓 (𝑠1) = 1 − 𝜖 . Now we will consider the example in Figure 3.1(c) where we will see that

there exist cases where the bias of RCSL in stochastic environments can remain regardless of the

conditioning function. In this MDP, the only returns that are supported are 𝑔 = 0 or 𝑔 = 1. For

𝑓 (𝑠1) = 1, plugging in to the formula for 𝜋𝑓 yields

𝜋RCSL
𝑓

(𝑎1 |𝑠1) = 𝛽 (𝑎1 |𝑠1)
𝑃𝛽 (𝑔 = 1|𝑠1, 𝑎1)
𝑃𝛽 (𝑔 = 1|𝑠1)

= 𝜖
1 − 𝜖

𝜖 (1 − 𝜖) + (1 − 𝜖)𝜖 =
1
2
. (3.7)

Thus, E[𝑓 (𝑠1)] − 𝐽 (𝜋RCSL
𝑓

) = 1/2 and 𝐽 (𝜋∗) − 𝐽 (𝜋RCSL
𝑓

) = 1/2−𝜖 . This shows that merely changing

the conditioning function is not enough to overcome the bias of the RCSL method in stochastic

environments.

These examples show that even for MDPs that are 𝜖-close to being deterministic, the regret of

RCSL can be large. But, in the special case of deterministic MDPs we find that RCSL can indeed

recover the optimal policy. And note that we still allow for stochasticity in the initial states in

these deterministic MDPs, which provides a rich setting for problems like robotics that requires

generalization over the state space from finite data. In the next section, we will consider more

precisely what happens to RCSL algorithms with finite data and limited model classes.

Trajectory stitching. Another issue often discussed in the offline RL literature is the idea

of trajectory stitching [Wang et al. 2020c; Chen et al. 2021b]. Ideally, an offline RL agent can

take suboptimal trajectories that overlap and stitch them into a better policy. Clearly, DP-based

algorithms can do this, but it is not so clear that RCSL algorithms can. In Appendix B.2 we provide

theoretical and empirical evidence that in fact they cannot perform stitching in general, even with
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infinite data. While this does not directly affect our bounds, the failure to perform stitching is an

issue of practical importance for RCSL methods.

3.4 Sample complexity of RCSL

Now that we have a better sense of what policy RCSL will converge to with infinite data, we can

consider how quickly (and under what conditions) it will converge to the policy 𝜋𝑓 when given

finite data and a limited policy class, as will occur in practice. We will do this via a reduction from

the regret relative to the infinite data solution 𝜋𝑓 to the expected loss function 𝐿 minimized at

training time by RCSL, which is encoded in the following theorem.

Theorem 3.4 (Reduction of RCSL to SL). Consider any function 𝑓 : S → R such that the following

two assumptions hold:

1. Bounded occupancy mismatch:

𝑃
𝜋RCSL
𝑓

(𝑠)

𝑃𝛽 (𝑠) ≤ 𝐶 𝑓 for all 𝑠 .

2. Return coverage: 𝑃𝛽 (𝑔 = 𝑓 (𝑠) |𝑠) ≥ 𝛼 𝑓 for all 𝑠 .

Define the expected loss as 𝐿(𝜋) = E𝑠∼𝑃𝛽 E𝑔∼𝑃𝛽 (·|𝑠) [𝐷KL(𝑃𝛽 (·|𝑠, 𝑔)∥𝜋 (·|𝑠, 𝑔))]. Then for any estimated

RCSL policy 𝜋 that conditions on 𝑓 at test time (denoted by 𝜋𝑓 ), we have that

𝐽 (𝜋RCSL

𝑓
) − 𝐽 (𝜋𝑓 ) ≤

𝐶 𝑓

𝛼 𝑓
𝐻 2

√︁
2𝐿(𝜋). (3.8)

The proof can be found in Appendix B.3.3. Note that we require a similar assumption of return

coverage as before to ensure we have sufficient data to define 𝜋𝑓 . We also require an assumption

on the state occupancy of the idealized policy 𝜋𝑓 relative to 𝛽 . This assumption is needed since

the loss 𝐿(𝜋) is optimized on states sampled from 𝑃𝛽 , but we care about the expected return of the

learned policy relative to that of 𝜋𝑓 , which can be written as an expectation over states sampled

from 𝑃𝜋𝑓 .
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This gives us a reduction to supervised learning, but to take this all the way to a sample complexity

bound we need to control the loss 𝐿(𝜋) from finite samples. Letting 𝑁 denote the size of the

dataset, the following corollary uses standard uniform convergence results from supervised

learning [Shalev-Shwartz and Ben-David 2014] to yield finite sample bounds.

Corollary 3.5 (Sample complexity of RCSL). To get finite data guarantees, add to the above

assumptions the assumptions that (1) the policy classΠ is finite, (2) | log𝜋 (𝑎 |𝑠, 𝑔)−log𝜋 (𝑎′|𝑠′, 𝑔′) | ≤ 𝑐

for any (𝑎, 𝑠, 𝑔, 𝑎′, 𝑠′, 𝑔′) and all 𝜋 ∈ Π, and (3) the approximation error of Π is bounded by 𝜖𝑎𝑝𝑝𝑟𝑜𝑥 ,

i.e. min𝜋∈Π 𝐿(𝜋) ≤ 𝜖𝑎𝑝𝑝𝑟𝑜𝑥 . Then with probability at least 1 − 𝛿 ,

𝐽 (𝜋RCSL

𝑓
) − 𝐽 (𝜋𝑓 ) ≤ 𝑂

(
𝐶 𝑓

𝛼 𝑓
𝐻 2

(
√
𝑐

(
log |Π |/𝛿

𝑁

)1/4
+ √

𝜖𝑎𝑝𝑝𝑟𝑜𝑥

))
. (3.9)

The proof is in Appendix B.3.4. Analyzing the bound, we can see that the dependence on 𝑁 is

in terms of a fourth root rather than the square root, but this comes from the fact that we are

optimizing a surrogate loss. Namely the learner optimizes KL divergence, but we ultimately care

about regret which we access by using the KL term to bound a TV divergence and thus lose a

square root factor. A similar rate appears, for example, when bounding 0-1 classification loss of

logistic regression [Bartlett et al. 2006; Boucheron et al. 2005].

This corollary also tells us something about how the learner will learn to generalize across

different values of the return. If the policy class is small (for some notion of model complexity)

and sufficiently structured, then it can use information from the given data to generalize across

values of 𝑔, using low-return trajectories to inform the model on high-return trajectories.

Note that a full sample complexity bound that competes with the optimal policy can be derived by

combining this result with Corollary 3.2 as follows:

Corollary 3.6 (Sample complexity against the optimal policy). Under all of the assumptions of
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Figure 3.2: An example where RCSL has exponential sample complexity in a deterministic environment.

Corollary 3.2 and Corollary 3.5 we get:

𝐽 (𝜋∗) − 𝐽 (𝜋𝑓 ) ≤ 𝑂
(
𝐶 𝑓

𝛼 𝑓
𝐻 2

(
√
𝑐

(
log |Π |/𝛿

𝑁

)1/4
+ √

𝜖𝑎𝑝𝑝𝑟𝑜𝑥

)
+ 𝜖

𝛼 𝑓
𝐻 2

)
. (3.10)

Tightness. To better understand why the dependence on 1/𝛼 𝑓 is tight and potentially expo-

nential in the horizon 𝐻 , even in deterministic environments, we offer the example in Figure 3.2.

Specifically, we claim that any value of 𝑓 (𝑠1) where the policy 𝜋RCSL
𝑓

prefers the good action 𝑎1

from 𝑠1 will require on the order of 10𝐻/2 samples in expectation to recover as 𝜋𝑓 2.

To see why this is the case, we consider the MDP illustrated in Figure 3.2 with horizon 𝐻 ≫ 4.

The MDP has four states each with two actions. All transitions and rewards are deterministic. The

only actions with non-zero reward are 𝑟 (𝑠2, 𝑎1) = 1 and 𝑟 (𝑠3, 𝑎1) = 0.5. The interesting decision is

at 𝑠1 where 𝑎1 is better than 𝑎2.

Note that for any integer 1 ≤ 𝑘 < 𝐻/2, we have that 𝑃𝛽 (𝑔 = 𝑘 |𝑠1, 𝑎2) = 0.5 · 0.52𝑘 = 0.5 · (0.25)𝑘 ,

while 𝑃𝛽 (𝑔 = 𝑘 |𝑠1, 𝑎1) = 0.5 · (0.1)𝑘 . Conditioning on any such 𝑘 will make us more likely to choose

the bad action 𝑎2 from 𝑠1. The only way to increase the likelihood of the good action 𝑎1 from

𝑠1 and 𝑠2 is to condition on 𝑓 (𝑠1) > 𝐻/2. Unfortunately for RCSL, the probability of observing

𝑔 > 𝐻/2 is extremely small, since for any such 𝑓 we have 𝑃𝛽 (𝑔 = 𝑓 (𝑠1)) ≤ 0.5 · (0.1)𝐻/2 ≤ 10−𝐻/2.

2Except for 𝑓 (𝑠1) = 0, which will yield a policy substantially worse than the behavior.
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Thus, both 𝛼 𝑓 and the sample complexity of learning for any 𝑓 that will yield a policy better than

the behavior is exponential in the horizon 𝐻 .

Fundamentally, the problem here is that RCSL uses trajectory-level information instead of per-

forming dynamic programming on individual transitions. But, collecting enough trajectory-level

information can take exponentially many samples in the horizon. In contrast, DP merely requires

coverage of transitions in the MDP to perform planning and thus avoids this issue of exponential

sample complexity. In the next section we will delve deeper into this comparison with DP-based

approaches as well as the simple top-% BC baseline.

3.5 Comparing RCSL with bounds for alternative methods

Now that we understand the rate at which we expect RCSL to converge, we briefly present the

convergence rates of two baseline methods for comparison. In particular, we will leverage an

existing analysis of a DP-based algorithm, and conduct a novel analysis of top-% BC. We find that

the sample complexity of RCSL has a similar rate to top-% BC, and is worse than DP due to the

potentially exponential dependence on horizon that stems from return coverage.

3.5.1 Comparison to dynamic programming.

We will compare to the state of the art (to our knowledge) bound for a DP-based offline RL

algorithm. Namely, we will look at the results of [Xie et al. 2021] for pessimistic soft policy

iteration. Similar results exist for slightly different algorithms or assumptions [Chen and Jiang

2019; Wang et al. 2020b], but we choose this one since it is both the tightest and more closely

aligns with the practical actor-critic algorithms that we use for our experiments. Their bound

makes the following assumptions about the function class 𝐹 and the dataset (letting T 𝜋 represent

the Bellman operator for policy 𝜋 ):
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1. Realizability: for any policies 𝜋, 𝜋 ′ there exists 𝑓 ∈ 𝐹 with ∥ 𝑓 − T 𝜋 𝑓 ∥2
2,𝑃𝜋 ′

≤ 𝜖1.

2. Bellman completeness: for any 𝜋 and 𝑓 ∈ 𝐹 there exists 𝑓 ′ ∈ 𝐹 such that ∥ 𝑓 ′ − T 𝜋 𝑓 ∥2
2,𝑃𝛽 ≤ 𝜖2.

3. Coverage: 𝑃𝜋∗ (𝑠,𝑎)
𝑃𝛽 (𝑠,𝑎) ≤ 𝐶 for all 𝑠, 𝑎3.

With these assumptions in place, the sample complexity bound takes the form4:

𝐽 (𝜋∗) − 𝐽 (𝜋) ≤ 𝑂
(
𝐻 2

(√︂
𝐶 log |𝐹 | |Π |/𝛿

𝑁

)
+ 𝐻 2

√︁
𝐶 (𝜖1 + 𝜖2)

)
(3.11)

Note: this is the result for the “information-theoretic” form of the algorithm that cannot be

efficiently implemented. The paper also provides a “practical” version of the algorithm for which

the bound is the same except that the the square root in the first term is replaced with a fifth root.

There are several points of comparison with our analysis (specifically, our Corollary 3.6). The first

thing to note is that for RCSL to compete with the optimal policy, we require nearly deterministic

dynamics and a priori knowledge of the optimal conditioning function. These assumptions are

not required for the DP-based algorithm; this is a critical difference, since it is clear that these

conditions often do not hold in practice.

Comparing the coverage assumptions, our𝐶 𝑓 becomes nearly equivalent to𝐶 . Themajor difference

is that our analysis of RCSL also requires dependence on return coverage 1/𝛼 𝑓 . This is problematic

since as seen in Section 3.4, this return coverage dependence can be exponential in horizon in

cases where the state coverage does not depend on horizon.

Comparing the approximation error assumptions, we see that the realizability and completeness

assumptions required for DP are substantially less intuitive than the standard supervised learning

approximation error assumption needed for RCSL. These assumptions are not directly comparable,

but intuitively the RCSL approximation error assumption is simpler.
3The original paper uses a slightly tighter notion of coverage, but this bound will suffice for our comparison.
4The original paper considers an infinite horizon discounted setting. For the purposes of comparison, we will just

assume that 1
1−𝛾 can be replaced by 𝐻 .
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Finally, dependence on 𝐻 is the same for both methods and dependence on 𝑁 depends on which

version of the DP algorithm we compare to. For the information-theoretic algorithm DP has

better dependence on 𝑁 , but for the practical algorithm RCSL has better dependence. It is not

clear whether the dependence on 𝑁 in either the RCSL analysis or in the analysis of the practical

algorithm from [Xie et al. 2021] is tight, and it is an interesting direction for future work to resolve

this issue.

3.5.2 Comparison to top-% behavior cloning.

The closest algorithm to RCSL is top-% BC, which was introduced as a baseline for Decision

Transformers [Chen et al. 2021b]. This algorithm simply sorts all trajectories in the dataset by

return and takes the top 𝜌 fraction of trajectories to run behavior cloning (for 𝜌 ∈ [0, 1]). The most

obvious difference between this algorithm and RCSL is that RCSL allows us to plug in different

conditioning functions at test time to produce different policies, while top-% BC learns only one

policy. However, if we want to achieve high returns, the two algorithms are quite similar.

The full statements and proofs of our theoretical results for top-% BC are deferred to Appendix

B.3.5. The results are essentially the same as those for RCSL except for two key modifications:

Defining coverage. The first difference in the analysis is the notion of coverage. For RCSL we

needed the return distribution to cover the conditioning function 𝑓 . For top-% BC we instead let

𝑔𝜌 be the 1 − 𝜌 quantile of the return distribution over trajectories sampled by the behavior 𝛽 and

then define coverage as 𝑃𝛽 (𝑔 ≥ 𝑔𝜌 |𝑠) ≥ 𝛼𝜌 for all 𝑠 . This modification is somewhat minor.

Sample size and generalization. The main difference between RCSL and top-% BC is that the

RCSL algorithm attempts to transfer information gained from low-return trajectories while the

top-% BC algorithm simply throws those trajectories away. This shows up in the formal bounds
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since for a dataset of size 𝑁 the top-% BC algorithm only uses 𝜌 · 𝑁 samples while RCSL uses all

𝑁 . Depending on the data distribution, competing with the optimal policy may require setting 𝜌

very close to zero (exponentially small in 𝐻 ) yielding poor sample complexity.

These bounds suggest that RCSL can use generalization across returns to provide improvements

in sample complexity over top-% BC by leveraging all of the data. However, the RCSL model

is attempting to learn a richer class of functions that conditions on reward, which may require

a larger policy class negating some of this benefit. Overall, RCSL should expect to beat top-%

BC if the behavior policy is still providing useful information about how to interact with the

environment in low-return trajectories that top-% BC would throw away.

3.6 Experiments

We have illustrated through theory and some simple examples when we expect RCSL to work, but

the theory does not cover all cases that are relevant for practice. In particular, it is not clear how

the neural networks trained in practice can leverage generalization across returns. Moreover, one

of the key benefits to RCSL approaches (as compared to DP) is that by avoiding the instabilities of

non-linear off-policy DP in favor of supervised learning, one might hope that RCSL is more stable

in practice. In this section we attempt to test these capabilities first through targeted experiments

in a point-mass environment and then by comparisons on standard benchmark data.

Throughout this section we will consider six algorithms, two from each of three categories:

1. Behavior cloning (BC): standard behavior cloning (BC) and percentage behavior cloning

(%BC) that runs BC on the trajectories with the highest returns [Chen et al. 2021b].

2. Dynamic programming (DP): TD3+BC [Fujimoto and Gu 2021] a simple DP-based offline

RL approach and IQL [Kostrikov et al. 2021a] a more stable DP-based offline RL approach.
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3. Return-conditioned supervised learning (RCSL): RvS [Emmons et al. 2021] an RCSL approach

using simple MLP policies, and DT [Chen et al. 2021b] an RCSL approach using transformer

policies.

All algorithms are implemented in JAX [Bradbury et al. 2018] using flax [Heek et al. 2020]

and the jaxrl framework [Kostrikov 2021], except for DT which is taken from the original pa-

per. Full details can be found in Appendix B.4 and code can be found at https://github.com/

davidbrandfonbrener/rcsl-paper.

3.6.1 Point-mass datasets

First, we use targeted experiments to demonstrate how the tabular failure modes illustrated above

can arise even in simple deterministic MDPs that may be encountered in continuous control.

Specifically, we will focus on the issue of exponential sample complexity discussed in Section 3.4.

We build our datasets in an environment using the Deepmind control suite [Tassa et al. 2018] and

MuJoCo simulator [Todorov et al. 2012a]. The environment consists of a point-mass navigating in

a 2-d plane.

To build an example with exponential sample complexity we construct a navigation task with a

goal region in the center of the environment. The dataset is constructed by running a behavior

policy that is a random walk that is biased towards the top right of the environment. To construct

different levels of reward coverage, we consider the environment and dataset under three different

reward functions (ordered by probability of seeing a trajectory with high return, from lowest to

highest):

(a) The “ring of fire” reward. This reward is 1 within the goal region, -1 in the ring of fire region

surrounding the goal, and 0 otherwise

(b) The sparse reward. This reward is 1 within the goal region and 0 otherwise.
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(c) The dense reward. This reward function is 1 within the goal region and gradually decays

with the Euclidean distance outside of it.

(a) Ring of fire (b) Sparse (c) Dense

Figure 3.3: RCSL fails under reward functions that lead to exponentially small probability of sampling

good trajectories, but can generalize when the reward is dense. Error bars show standard deviation across

three seeds. BC methods are in blue, DP methods in brown, and RCSL methods in green.

Intuitively, the ring of fire reward will cause serious problems for RCSL approaches when combined

with the random walk behavior policy. The issue is that any random walk which reached the goal

region is highly likely to spend more time in the region of negative rewards than in the actual goal

states, since the ring of fire has larger area than the goal. As a result, while they are technically

supported by the distribution, it is unlikely to find many trajectories (if any at all) with positive

returns in the dataset, let alone near-optimal returns. As a result, the RCSL-based approaches are

not even able to learn to achieve positive returns, as seen in Figure 3.3.

The sparse reward is also difficult for the RCSL-based algorithms, for similar reasons; however

the problem is less extreme since any trajectory that gets positive reward must go to the goal, so

there is signal in the returns indicating where the goal is. In contrast, the dense reward provides

enough signal in the returns that RCSL approaches are able to perform well, although still not as

well as IQL. It is also worth noting that because the datset still does not have full coverage of the
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Figure 3.4: Data from antmaze-umaze, antmaze-medium-play, halfcheetah-medium-replay, and pen-

human. Error bars show standard deviation across three seeds. Each algorithm is tuned over 4 values and

best performance is reported.

state-space, simple DP-based algorithms like TD3+BC can struggle with training instability.

3.6.2 Benchmark data

In addition to our targeted experiments we also ran our candidate algorithms on some datasets

from the D4RL benchmark [Fu et al. 2020]. These are meant to provide more realistic and larger-

scale data scenarios. While this also makes these experiments less targeted, we can still see that the

insights that we gained in simpler problems can be useful in these larger settings. We attempt to

choose a subset of the datasets with very different properties from eachother. For example, the play

data on the ant-maze environment is very diverse and plentiful while the human demonstration

data on the pen environment has poor coverage but high values. Results are shown in Figure 3.4.

And additional results leading to similar conclusions can be found in Appendix B.1.

We find that for most of the datasets DP-based algorithms TD3+BC and IQL outperform both

the BC-based algorithms and RCSL-based algorithms. This is especially stark on the antmaze

datasets where the behavior policy is highly stochastic, requiring the learner to stitch together

trajectories to achieve good performance. While none of these tasks has stochastic dynamics, the

issues of return coverage and trajectory stitching persist.

In contrast, RCSL performs well when the behavior policy is already high quality, but not optimal
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(as in the pen-human task). Since the data is suboptimal and reward is dense, there is opportunity

for RCSL to outperform the BC-based methods. Moreover, since the data has poor coverage,

standard DP approaches like TD3+BC are highly unstable. IQL is more stable and performs

similarly to the RCSL-based algorithms, but is outperformed by DT (perhaps due to the use of

history-dependent policies).

3.7 Discussion

Looking back at our results, we can better place RCSL in relation to the more classical BC and

DP algorithms. Like BC, RCSL relies on supervised learning and thus inherits its simplicity,

elegance, and ease of implementation and debugging. However, it also inherits BC’s dependence

on the quality of the behavior policy. This dependence can be somewhat reduced in (nearly)

deterministic environments, where conditioning on high returns can break the bias towards

the behavior policy. But, the reliance on trajectory-level information still means that RCSL is

fundamentally limited by the quality of the best trajectories in the dataset, which can require a

sample complexity exponential in horizon in order to compete with the optimal policy, even in

deterministic environments.

In contrast, DP methods are capable of learning good policies even when the dataset does not

contain any high-return trajectories and the environment is stochastic. This represents a fun-

damental gap between the two approaches that cannot be bridged within the RCSL paradigm.

However, empirically, current deep DP algorithms are not well-behaved. These algorithms are

often unstable and difficult to debug, although recent work has started to alleviate these issues

somewhat [Kostrikov et al. 2021a].

In sum, for tasks where the requirements for RCSL to perform well are met, it is an excellent

practical choice, with great advantages in simplicity over DP. Since many real-world tasks of
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relevance have these attributes, RCSL techniques could have substantial impact. But as a general

learning paradigm, RCSL is fundamentally limited in ways that DP is not.
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Part II

Data collection
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4 | Exploratory data for offline

reinforcement learning

4.1 Introduction

Large and diverse datasets have been the cornerstones of many impressive successes at the frontier

of machine learning, such as image recognition [Deng et al. 2009; Krizhevsky et al. 2012; Radford

et al. 2021b], natural language processing [Radford et al. 2019; Raffel et al. 2019; Wang et al.

2019; Brown et al. 2020], and protein folding [Consortium 2020; Jumper et al. 2021]. Training on

diverse datasets often dramatically improves performance and enables impressive generalization

capabilities.

In reinforcement learning (RL), however, the potential of large and diverse datasets has not yet

been fully realized. The historically dominant approach in RL has been to train online from scratch

by interacting with a task-specific environment [Sutton and Barto 2018; Mnih et al. 2013]. More

recently there has been increased interest in learning offline from fixed datasets [Levine et al.

2020; Fujimoto et al. 2019b]. This line of offline RL research has been accelerated by benchmark

datasets such as D4RL [Fu et al. 2020] and RL Unplugged [Gulcehre et al. 2020].

Currently, offline RL datasets are collected by training task-specific RL algorithms and saving the

data visited during the training process. Offline RL algorithms are then evaluated on the same
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(a) The three phases of ExORL: data collection
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(b)Offline RL evaluation using vanilla TD3 of super-
vised data (the replay buffer of a TD3 agent trained

on Walker Stand) versus unsupervised exploratory

data (collected reward-free on Walker with Proto).

Figure 4.1: Summary of the ExORL framework.

task that the dataset was created with. As a result, very strong performance on these benchmarks

can often be achieved with simple methods like behavior cloning [Pomerleau 1988; Chen et al.

2021c] or one step of policy iteration [Brandfonbrener et al. 2021; Gulcehre et al. 2021] without

requiring substantial amounts of planning. This raises a fundamental question for offline RL –

What happens when your data does not come from the same task?

In this work, we propose a new framework for offline RL that can test the ability of offline RL

algorithms to generalize to tasks that are not observed during the creation of the dataset. This

framework, which we call Exploratory data for Offline RL (ExORL), has three steps: collect, relabel,

and learn. To instantiate ExORL, we collect datasets using nine different unsupervised exploration

strategies [Laskin et al. 2021] on several environments from the DeepMind control suite [Tassa

et al. 2018]. Then, we relabel the data with different reward functions. Finally, we learn a policy

by running several different offline RL algorithms for each relabeled dataset. A schematic of

the framework can be found in Figure 4.1(a) and an instantiation in a simple pointmass maze

environment in Figure 4.2.

We provide a thorough analysis of current offline RL methods by running large-scale experiments

with ExORL. The main findings of these experiments are:

1. With sufficiently diverse exploratory data, vanilla off-policy RL agents can effectively learn
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offline, and even outperform carefully designed offline RL algorithms. This suggests that

advances in data collection are as important as algorithmic advances for offline RL.

2. Compared to data collected in a supervised manner (i.e. for a task-specific reward function),

the unsupervised exploratory data allows offline RL algorithms to learn multiple behaviors

from a single ExORL dataset. For example, unsupervised exploration yields a 106% perfor-

mance increase over supervised data on multi-task learning in the Walker environment

(Figure 4.1(b)).

4.2 Related Work

4.2.1 Datasets for offline RL

The most closely related line of work is that of data-collection and benchmarking in offline RL.

Both the D4RL [Fu et al. 2020] and RL Unplugged [Gulcehre et al. 2020; Mathieu et al. 2021]

benchmark suites consist of datasets collected by policies attempting to optimize task-specific

rewards. These datasets are either replay buffers of the training run or trajectories collected by a

snapshot from somewhere in training. D4RL also includes some demonstration and goal-directed

data. Importantly, the datasets are then tested on the same reward they were trained on (or the

demonstrations they were targeting).

In contrast, our contribution is to use unsupervised exploratoy data collection to test offline RL

algorithms. This creates datasets that facilitate multi-task offline RL from a single dataset and

poses a very different challenge for offline RL than prior benchmarking work.
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4.2.2 Unsupervised pre-training for RL

Recently, URLB [Laskin et al. 2021] proposed a benchmarking protocol for unsupervised pre-

training algorithms in RL. In that work, each pre-training algorithm is allowed a fixed budget

of unsupervised interactions with the environment and then oututs a pre-trained policy that is

used to initialize an online RL algorithm at test time. In our work, instead of using a pre-trained

policy as the output of the pre-training phase and then training online, we use the dataset as the

output of the pre-training phase and then train entirely offline. To perform this data collection,

we consider the same eight pre-training algorithms as in URLB [Pathak et al. 2017; Burda et al.

2019; Eysenbach et al. 2019; Pathak et al. 2019; Lee et al. 2019; Liu and Abbeel 2021b,a; Yarats et al.

2021a] as well as a uniformly random data collector.

There is also a line of purely theoretical work that studies the “reward-free RL” problem in the

tabular and linear cases [Jin et al. 2020; Wang et al. 2020a]. Much like the goal of our protocol,

these papers focus on collecting a dataset that allows for offline learning of a near optimal policy

for any reward function. Our work can be viewed as an empirical evaluation of several different

ways to scale up these reward-free RL algorithms to large domains with neural networks.

4.2.3 Multi-task reinforcement learning

Another important related line of work focuses on sharing data across tasks. Here, data collection

is generally directed at multiple different goals with some combination of demonstrations and

standard RL with task-specific rewards [Riedmiller et al. 2018; Cabi et al. 2019; Kalashnikov et al.

2021; Yu et al. 2021; Chen et al. 2021a]. In contrast, we focus on studying the capabilities of purely

unsupervised data collection. We view these two research directions as complementary. For

example, they could potentially be combined in future work, where unsupervised data could be

added to multi-task data to facilitate transfer.
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Another line of work generates goal-based multi-task data using different goals as the different

tasks where the goals can be generated in an unsupervised manner [Andrychowicz et al. 2017;

Ecoffet et al. 2019; Dendorfer et al. 2020; Mendonca et al. 2021]. Endrawis et al. [2021] in particular

uses goal-based task generation to collect exploratory data to use with offline RL on robotic tasks.

In contrast, we do not use any goal-based and focus our efforts on understanding how offline RL

methods perform in the exploratory setting.

We should also note that our relabeling procedure is not novel and similar ideas have been used

widely in the multi-task and goal-based RL literature [Andrychowicz et al. 2017; Riedmiller et al.

2018; Sekar et al. 2020; Eysenbach et al. 2020; Li et al. 2020; Kalashnikov et al. 2021].

4.2.4 Decoupling exploration and exploitation

A few recent position papers argue for separating the exploration and exploitation problems to

facilitate scalable reinforcement learning [Levine 2021; Riedmiller et al. 2021]. Ideally, collecting

large datasets in an unsupervised manner and re-using the data across many downstream tasks

can dramatically improve data-efficiency on a per-task basis. Moreover, by splitting the problem

into two, we can more effectively isolate the effects of each component of the algorithm. Our

paper can be seen as taking a first step towards instantiating this vision of effectively decoupling

exploration and exploitation.

4.2.5 Concurrent work

Concurrently to our paper, [Lambert et al. 2022] proposes a similar framework for unsupervised

exploration followed by offline RL. In contrast to our work, they focus on proposing a novel MPC-

based exploration technique and do not compare multiple offline RL algorithms in the exploratory

setting, instead they only use CRR.
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4.3 Our framework: ExORL

In this section we explicitly define our framework for exploratory data collection for offline RL

(ExORL). The framework consists of three steps: collect, relabel, and learn. The rest of this section

goes through each step in detail and the protocol is summarized in Algorithm 2.

Algorithm 2: ExORL: Collect-Relabel-Learn
Input: budget 𝐵, environment E, data collection alg C, reward function 𝑟 , offline RL alg O
Collect: Run C on E to collect 𝐵 trajectories into a dataset D of (𝑠, 𝑎, 𝑠′) tuples.
Relabel: Update each tuple in D to (𝑠, 𝑎, 𝑟 (𝑠, 𝑎), 𝑠′). Call the relabeled dataset D𝑟 .
Learn: Run O on the labeled data in D𝑟 .

We assume that we have access to a reward-free episodic MDP environment E with state space S,

action space A, and stochastic transition dynamics determined by 𝑃 (·|𝑠, 𝑎). In our problem setup

we are given an interaction budget 𝐵 that limits the number of trajectories that we can collect in

the collection phase. Rewards for relabeling can be defined by any function 𝑟 : S × A → R.

Collect. The first phase of ExORL is to collect the unlabeled exploratory data. To do this, we

can use any algorithm C that at each episode 𝑘 outputs a policy 𝜋𝑘 conditioned on the history of

prior interactions. Each episode collected by C is stored in the dataset D as a series of (𝑠, 𝑎, 𝑠′)

tuples. We run the collection algorithm C until we have collected 𝐵 episodes into the dataset D.

In practice, we evaluate nine different unsupervised data collection algorithms as C in this phase.

The first is a simple baseline that always outputs the uniformly random policy. The remaining

eight are taken from URLB [Laskin et al. 2021] and can be sorted into three groups:

• Knowledge-based methods that maximize error of a predictive model: ICM [Pathak et al.

2017], Disagreement [Pathak et al. 2019], RND [Burda et al. 2019].

• Data-based algorithms that maximize some estimate of coverage of the state space: APT

[Liu and Abbeel 2021b] and ProtoRL [Yarats et al. 2021a].
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• Competence-based algorithms that learn a diverse set of skills: DIAYN [Eysenbach et al.

2019], SMM [Lee et al. 2019], and APS [Liu and Abbeel 2021a].

Relabel. Having collected a dataset D of (𝑠, 𝑎, 𝑠′) tuples, the next phase of our protocol relabels

the data using the given reward function 𝑟 . This simply requires evaluating 𝑟 (𝑠, 𝑎) at each tuple in

the dataset and then adding (𝑠, 𝑎, 𝑟 (𝑠, 𝑎), 𝑠′) to the relabeled dataset D𝑟 .

In practice, we use either standard or hand-designed reward functions in each environment [Tassa

et al. 2018; Laskin et al. 2021], and are detailed in Section C.7. We note, however, that our

framework also allows for learning reward function (i.e. inverse RL or successor features).

Learn. Finally, we can learn a policy by running an offline RL algorithm O on our labeled dataset

D𝑟 . The offline RL algorithm learns entirely offline by sampling tuples from the dataset and then

outputs the final policy to be evaluated online in the environment E by calculating the return

with respect to the reward function 𝑟 .

In practice, we run five different offline RL algorithms for each reward function on each dataset.

As a baseline we run simple behavior cloning. Then we run three different state of the art offline

RL algorithms that each use a different mechanism to prevent extrapolation beyond the actions

in the data. These algorithms are: CRR [Wang et al. 2020c] which uses filtered behavior cloning,

CQL [Kumar et al. 2020] which uses pessimistic Q estimates, and TD3+BC [Fujimoto and Gu

2021] which regularizes toward the behavior. Finally, we run standard TD3 [Fujimoto et al. 2018b]

as a baseline to test what happens when we run an off-policy RL algorithm that was originally

designed for the online setting and has no mechanism explicitly designed to prevent extrapolation

in the offline setting.
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4.4 Experiments

In this section we conduct an empirical study to answer the following questions: Q1: Can the

diversity of unsupervised data collected by ExORL enable vanilla off-policy RL agents to work

in the offline setting? Q2: Is it possible to relabel this unsupervised data to facilitate multi-task

offline RL? Q3: Is exploratory data necessary for multi-task offline RL? Q4: Would it be useful to

mix exploratory data with task-specific data? Q5: How effective is ExORL as we scale the data

collection budget?

4.4.1 Setup

We evaluate our framework on a set of challenging environments from the DeepMind control

suite [Tassa et al. 2018]. Each environment has several different rewards that we use to evaluate

multi-task generalization. See Section C.7 for detailed overview of the environments. We use

URLB [Laskin et al. 2021] for unsupervised data collection with a budget of 1M reward-free

environment interactions (1000 episodes) unless stated otherwise. The transitions in these datasets

are then relabeled under a specific reward and used for offline RL. For offline RL we use five

algorithms: BC, TD3+BC, CRR, CQL, and TD3. We adhere closely to the original hyper-parameter

settings for each algorithm, but in several cases we perform hyper-parameter tuning to achieve

best possible performance. See Section C.1 for more details. We train offline RL algorithms for

500k gradient updates and then evaluate by rolling out 10 episodes in the environment. We report

mean and standard error across 10 random seeds. A description of computational requirements is

provided in Section C.6.
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4.4.2 Comparing offline RL algorithms on ExORL

Q1: Can the diversity unsupervised data collected by ExORL enable vanilla off-policy RL agents to

work in the offline setting? A1: Yes, vanilla off-policy RL agents can perform well from ExORL data,

in particular vanilla TD3 outperforms the other offline RL algorithms..

To verify this, we took three environments (Cartpole, Cheetah, and Jaco) and one reward for

each environment (Swingup, Run, and Reach respectively). For each environment we run all nine

exploration algorithm, but for clarity only present four in the main text that represent each of the

main families of algrithms (ICM: knowledge-based, Proto: data-based, APS: competence-based,

and Random as a baseline). We then evaluate with five different offline RL algorithms. Results are

in Figure 4.3 and Section C.3.

Specifically, comparing the results on these datasets we see that vanilla TD3 consistently outper-

forms more sophisticated offline RL algorithms (TD3+BC, CRR, and CQL). This is a somewhat

surprising result because the offline RL algorithms were designed specifically for the offline setting

while TD3 was not. This emphasizes how the unsupervised data collected by ExORL provides a

substantially different setting than the traditional offline RL problems that the algorithms were

designed for. We hypothesize that this difference occurs because ExORL produces diverse datasets

that allow for more aggressive trajectory stitching and less severe extrapolation than prior datasets.

While the relative strength of TD3 is consistent, the results are somewhat more varied across the

different data collection algorithms. For example, in Jaco, the random data collection surprisingly

outperforms all of the unsupervised exploration algorithms. This is due to over-exploration

by the unsupervised algorithms which causes the arm to explore low-reward positions outside

of the workspace, while the random agent keeps the hand closer to initialization. Also, while

ExORL achieves performance comparable to or exceeding online RL in Cartpole Swingup and

Jaco Reach, the performance on Cheetah Run is still not competitive with the optimal policy. This
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is likely due to insufficient exploration of the higher-dimensional state space in regions of high

reward, suggesting there is still room to improve unsupervised exploration algorithms.

4.4.3 Multi-task learning with ExORL

Q2: Is it possible to relabel this unsupervised data to facilitate multi-task offline RL? A2: Yes,

multi-task offline RL can perform well from ExORL data.

To confirm this we evaluate on one environment (Walker) across three different tasks (Stand,

Walk, and Run). This means that each data collection algorithm only collects one dataset and we

relabel it with three different rewards. Results are in Figure 4.4.

In particular, we are able to nearly solve both the Stand and Walk tasks from a single dataset

collected with no knowledge of the rewards. Performance on Run is further away from optimal,

but still strong enough to suggest meaningful progress towards the desired behavior. So, while

there is room for improvement of the unsupervised exploration, the ExORL framework has clear

promise to learn multiple tasks from a single task-agnostic dataset.

Again, we observe consistently strong performance of vanilla TD3 on exploratory data, confirming

the result from the prior experiment. And comparing the different exploration algorithms, we

see similar performance across each of the three representative algorithms (ICM, Proto, and APS)

with each of them being much stronger than random.

4.4.4 Comparing ExORL to supervised data collection

Q3: Is exploratory data necessary for multi-task offline RL? A3: Yes, the unsupervised exploratory

data facilitates transfer where the supervised data does not.

To demonstrate this, we consider different data-collection strategies ranging from unsupervised to

supervised. Unsupervised corresponds to our standard ExORL approach with the Proto exploration
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algorithm. Supervised is similar to the approach in D4RL [Fu et al. 2020] and RL Unplugged [Gul-

cehre et al. 2020] of using the replay buffer of a policy trained for a task-specific reward. We use

TD3 as the data collection agent and refer to the reward during training as the “data task”. We

then evaluate three offline RL agents (BC, TD3+BC, and TD3) on both the data task and a different

“transfer task” that was not seen during training. Results in the Walker environment with Stand

as the data task and Walk, Run, and Flip as the transfer tasks, see Figure 4.1(b).

For a second experiment we also add a semi-supervised strategy as a baseline. This strategy

uses a TD3 agent to maximize the sum of the extrinsic reward from the data task as well as the

task-agnostic intrinsic reward from Proto. We run this procedure on Cheetah and Walker using

Run and Stand respectively as the data tasks and Run Backward and Walk as the transfer tasks,

see results in Figure 4.5.

As we hypothesized, unsupervised data allows for strong performance on both data and transfers

tasks while supervised data only facilitates strong performance on the data task while failing

to transfer. Semi-supervised data was capable of facilitating transfer on the easier Stand-Walk

pair, but failed more clearly on the Run-Run Backward task. This is likely because Stand is

a pre-requisite to Walk, while successful Run and Run Backward behaviors cover much more

different parts of the state space.

Examining the offline RL algorithms, we find that TD3+BC is the strongest on the supervised

data, but struggles to transfer from unsupervised data. This makes sense because the TD3+BC

algorithm was designed for the D4RL benchamrk that consists of supervised-style datasets. In

contrast, vanilla TD3 performs stronger on the unsupervised data. Unsurprisingly, BC can work

fairly well on supervised data, but fails on the unsupervised data and the transfer tasks.

Interestingly, vanilla TD3 outperforms TD3+BC on the semi-supervised data, suggesting that data

diversity can facilitate standard TD learning without offline modifications. We will build on this

insight in the next subsection.
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4.4.5 Combining ExORL with supervised data

Q4: Would it be useful to mix exploratory data with task-specific data? A4: Yes, it is useful to mix

even a small amount of unsupervised data to facilitate transfer.

To support this, we consider mixing datasets rather than modifying the data collection algorithms.

We consider the same pairs of data and transfer tasks as in the prior subsection, but this time wemix

the supervised and unsupervised datasets themselves. To do this, we randomly sample trajectories

from the supervised and unsupervised datasets with varying proportions of unsupervised data

while keeping the size of the resulting mixed dataset constant at 1M transitions (1000 episodes).

We can then see the performance of BC, TD3+BC, and TD3 on datasets with varying proportions

of unsupervised data in Figure 4.6.

Specifically, on the transfer tasks, TD3 achieves nearly the same performance with 25% unsu-

pervised data as with 100%. Similarly, on the data task adding a relatively small amount of

unsupervised data allows TD3 to match the performance of TD3+BC on the fully supervised data.

This sends a very hopeful message that even adding a small amount of unsupervised exploratory

data can facilitate both transfer to novel tasks and prevention of issues of extrapolation error for

vanilla RL algorithms in the offline setting.

Comparing the offline RL algorithms more directly, we see that TD3 effectively takes advantage

of the mixed datasets while TD3+BC and BC do not. By attempting to constrain to be near the

behavior policy, algorithms like TD3+BC and BC can struggle to deal with data that is generated by

a mixture of different behaviors, especially when these behaviors are not optimizing the test-time

task.
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4.4.6 Scaling of ExORL

Q5: How effective is ExORL as we scale the data collection budget? A1: In general, all algorithms

see improved performance with increased data collection budget.

To confirm, this we collect datasets in the Walker domain with data collection budgets ranging

from 100k to 10M transitions (100 to 10k episodes) using all nine unsupervised data collection

algorithms. We then run offline RL on these datasets for two different rewards: Walk and Run. To

compare the different datasets we run offline TD3 on each (since TD3 was the strongest performer

in prior experiments). Then to compare the offline RL algorithms, we run each of our five offline

RL algorithms on the datasets generated by ICM (since ICM was the strongest performing dataset

with TD3). Results are in Figure 4.7.

First, we evaluate the results across the different exploration algorithms. All algorithms see returns

to scale, but we do observe gains beginning to saturate by 10M transitions on the Run task before

reaching optimal performance suggesting there is still room for improved algorithms. In low-data

settings we see the best performance from DIAYN while in the high-data regime ICM begins to

dominate. We note that the random agent also sees return to scale, suggesting that the Walk task

is not a difficult exploration problem.

We can also compare across the different offline RL algorithms on the ICM data. Again we see

clear returns to scale as performance improves with dataset size. As in previous experiments we

see that TD3 is the strongest algorithm and this holds true across dataset sizes.

4.5 Discussion

In this paper we propose ExORL – a novel framework for exploratory data collection for offline

RL. Through an extensive empirical evaluation we conclude that using diverse data can greatly
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simplify offline RL algorithms by removing the need to fight the extrapolation problem. We then

demonstrate that exploratory data is more suitable for efficient multi-task offline RL than standard

task-directed offline RL data. Finally, we release ExORL’s datasets as well as the experimentation

code to encourage future research in this area. Now we will discuss a few of the possible directions

for future research with ExORL.

Designing adaptive offline RL algorithms. Our dataset release provides a new testbed

for improving offline RL algorithms. Our results suggest that previously designed offline RL

algorithms perform well on supervised data, but are beaten by TD3 on unsupervised ExORL data.

Ideally, an offline RL algorithm would be able to automatically adapt to the given dataset to recover

the best of both worlds. There is a growing literature on offline hyperparameter tuning for offline

RL that may be useful for approaching this challenge [Paine et al. 2020; Kumar et al. 2021b; Zhang

and Jiang 2021; Fu et al. 2021a; Lee et al. 2021].

Improving unsupervised data collection. Our approach also yields a novel evaluation proto-

col for unsupervised RL by evaluating the generated dataset directly via offline RL. This differs from

prior work on unsupervised RL [Laskin et al. 2021] by emphasizing the dataset rather than the pre-

trained policy. This allows for comparisons across different unsupervised RL algorithms without

having to fine-tune online. In future work we hope to explore how to optimize the unsupervised

exploration algorithms to improve performance of the downstream offline RL. ExORL provides a

useful starting point and framework for this problem.

Adding exploratory data to improve stability. Our preliminary experiments suggest that

adding even a small amount of unsupervised data can allow vanilla TD3 to outperform other

offline RL algorithms. Future work in this direction could take this insight further. For example,

currently most offline RL algorithms are essentially incorporating some sort of regularization into
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the algorithm, but our results suggest it could be fruitful to instead “regularize” the data itself by

mixing in some exploratory data. This is potentially a useful technique that is under-explored in

the literature.

Scaling ExORL to more challenging environments. While we offer a large scale study on

several domains from the DeepMind control suite, we do acknowledge that it would be fruitful

to scale our framework to more complicated environments and settings. Specifically, we would

be interested to extend these ideas into challenging exploration problems like manipulation, and

higher-dimensional or even image-based observation spaces.
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(a) Collect: an unsupervised RL agent interacts with the environment in a reward-free manner and

stores the acquired transitions into a dataset D of (𝑠, 𝑎, 𝑠 ′) tuples. We visualize state distributions of the

pointmass for each collected dataset D.
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(b) Relabel and Learn: Each tuple in D is relabeled by a task-specific reward function to yield a new

dataset D𝑟 of (𝑠, 𝑎, 𝑟, 𝑠 ′) tuples (there are 4 different rewards in this example, one for each goal). Finally,

we run an offline RL algorithm on each dataset D𝑟 in order to learn a policy to maximize the specified

reward. Here, offline RL is performed by various state of the art offline RL algorithms as well as standard

supervised learning (BC) and off-policy RL (TD3).

Figure 4.2: Our ExORL framework exploratory data collection for offline RL consists of three phases:

collect (a), relabel and learn (b). Here we showcase our method on a pointmass maze environment to

demonstrate that it is possible to collect exploratory data in a completely unsupervised manner that

enables effective multi-task offline RL.

BC TD3+BC CRR CQL TD30

200

400

600

800

Ep
iso

de
 R

et
ur

ns Online RL

Cartpole Swingup

BC TD3+BC CRR CQL TD30

200

400

600
Online RL

Cheetah Run

BC TD3+BC CRR CQL TD30

50

100

150

200

Online RL

Jaco Reach

Random ICM Proto APS

Figure 4.3: Offline evaluation of unsupervised datasets on one task for each of three different domains.

Here we choose four representative unsupervised exploration algorithms, for full results see Section C.3.

Vanilla TD3 usually outperforms all three offline RL algorithms.
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Figure 4.4: Offline evaluation of datasets for the Walker environment under three different rewards

(Stand, Walk, and Run). We observe that ExORL allows for data relabeling to enable multi-task offline RL.

See Section C.4 for full results across all exploration algorithms.
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Figure 4.5: A comparison of three different data-collection strategies: unsupervised (intrinsic reward only),

semi-supervised (intrinsic reward plus data task reward), and supervised (data task reward only). Data

diversity is key to enable more aggressive trajectory stitching and task transfer.
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Figure 4.6: The effect of mixing supervised data (collected by TD3 on the data tasks) with unsupervised data

(collected reward-free by Proto). Unsupervised data allows easier transfer and more efficient generalization

to unseen tasks.
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(a) Correlation between TD3 performance and the unsupervised data collection transition budget.
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(b) Correlation between performance of various offline RL algorithms and unsupervised data collection

transition budget for ICM.

Figure 4.7: Testing the impact of the size of unsupervised data collection budget on downstream offline RL

performance. Figure 4.7(a) provides a breakdown by datasets, while Figure 4.7(b) provides a breakdown by

offline RL algorithms. Generally, larger datasets demonstrate better performance across both exploration

and offline RL algorithms.
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5 | Visual Backtracking Teleoperation

5.1 Introduction

A common approach to control from images is to collect demonstrations of task success and train

a behavioral cloning (BC) agent [Pomerleau 1988; Ahn et al. 2022; Jang et al. 2022]. This can

lead to policies that are able to succeed on many tasks, particularly when mistakes do not cause

the policy to move too far from the distribution of state-action transitions seen in the dataset

of successful demonstrations. But, for many tasks (like T-shirt grasping) a mistake will take the

policy out of this distribution and then the learned BC policy will fail to recover [Ross et al. 2011].

Such failures occur in part because a dataset of only successes does not contain enough information

to recognize failures or learn recovery behaviors. To remedy this issue, we propose a novel data

collection method called Visual Backtracking Teleoperation (VBT). Specifically, VBT leverages the

teleoperator to collect visually similar failures, recoveries, and successes as seen in Fig. 5.1.

VBT data collection is designed to combine well with offline reinforcement learning (OffRL) rather

than BC. VBT data contains the necessary coverage of the state action space to learn accurate value

functions as well as recovery behaviors. Then OffRL can leverage sparse rewards to automatically

emulate the advantageous actions (including recovery behaviors) while avoiding the sub-optimal

actions that led to the initial task failure.

It is crucial to the VBT method that the failures, recoveries, and successes are visually similar.
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attention to relevant features.
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https://cnsviewer.corp.google.com/cns/lu-d/home/brandfon/mars/ssot_to_video/TShirt
Lift3DDoublePick_v1/ReachSessionToSteps4ViewsRelativePoseTerminateConverter
/NoOpAdapter/ReachSSOTTShirtPolicyIQLRLOverlayEpisodeVideoWriter/2022_08_
23_16_08_46/shards_0-5_video_11.webm?user=

Approach Fail-Grasp Fail-Lift

Recover Successful-Grasp Successful-Lift

Figure 5.1: An illustration of our VBT method on a T-shirt grasping task. The method asks the teleoperator

to demonstrate failure (red), recovery (blue), and success (green) within each trajectory. This provides

the necessary coverage of failure and recovery to learn accurate value functions and robust policies while

also preventing overfitting by ensuring that failures and successes are visually similar except for the

task-relevant details.

Without this visual similarity, the OffRL learner can overfit to non-task-relevant elements of the

image such as background clutter, leading to useless value functions. To easily maintain visual

similarity, VBT collects each of failure, recovery, and success within the same trajectory (Fig. 5.1).

Thus, VBT avoids overfitting, even on small, image-based datasets, by ensuring that differences

between observations of failure and success are task-relevant.

Concretely, our contributions are:

1. We propose the novel VBT protocol for data collection to leverage human teleoperation to

collect image-based datasets for use with OffRL. VBT resolves the two main issues with
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naive methods: (a) lack of coverage of failures and recoveries and (b) overfitting caused by

visually dissimilar failures and successes.

2. We discuss how and why VBT can enable better policy learning via learning more accurate

𝑄 functions and present empirical evidence of the improvement in𝑄 functions learned from

VBT data compared to several baselines for data collection.

3. We present real robot results on a deformable grasping task to demonstrate the effectiveness

of VBT data. When training from scratch on just one hour of robot time for data collection

and image-based observations, a policy trained with OffRL on VBT data succeeds 79% of the

time while BC trained on successful demonstrations has a success rate of 66%.

5.2 Related Work

Our work falls into the broader category of learning from demonstrations [Schaal 1996]. But,

rather than taking a more traditional approach of BC from demonstrations of success [Pomerleau

1988; Ahn et al. 2022; Jang et al. 2022; Argall et al. 2009], we propose a novel method for collecting

demonstrations of failure and recovery as well as success. The inclusion of failures in our dataset

leads us to use OffRL [Levine et al. 2020; Fujimoto et al. 2019c] to ensure that we do not imitate

the failures. Specifically, we use the IQL [Kostrikov et al. 2021b] and AWAC [Nair et al. 2020]

algorithms for OffRL. Some theoretical motivation for the use of OffRL rather than BC when

learning from suboptimal data can be found in [Kumar et al. 2021a].

The insight that observations of failures is useful for policy learning has been made before in work

on using success detectors to compute rewards in RL [Kalashnikov et al. 2021]. In contrast, VBT

does not attempt to learn an explicit success detector, but provides a mechanism for collecting

data that is especially useful for learning policies by capturing the salient differences between

failure and success in visually similar observations.
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While we consider a setting where training happens entirely offline (i.e., the data collection step is

separated from the policy learning), there is a related line of work that collects examples of failures

and recoveries by moving to an interactive setting where actions from partially trained policies

are executed on the robot and judged by the human teleoperator. In particular the DAgger line of

work exemplifies this pattern [Ross et al. 2011; Kelly et al. 2019; Mandlekar et al. 2020; Hoque et al.

2021, 2022]. In contrast, VBT operates completely offline and does not require the teleoperator to

interact with the learning process or to deploy learned policies on the robot during training.

VBT also is particularly suited to efficiently learn image-based value functions for sparse reward

tasks. This capability could be especially useful in architectures like SayCan [Ahn et al. 2022]

that require image-based affordances for a variety of manipulation tasks, and it is an interesting

direction for future work to use VBT as a component in training such larger systems.

5.3 Motivation

VBT is designed to solve two issues that arise from simpler data collection methods: (1) lack of

coverage of failure and recovery behaviors, and (2) overfitting issues that arise in the low-data

and high-dimensional observation setting. Here we describe both of these issues in more detail

before explaining how VBT resolves them.

5.3.1 Lack of coverage of failure and recovery

Any offline learning algorithm will be fundamentally limited by the quality of the dataset. We can

only expect the algorithm to reproduce the best behaviors in the dataset, not to reliably extrapolate

beyond them. So, when collecting datasets for offline learning of value functions and policies, we

want to ensure sufficient coverage of the relevant states and actions. We argue that for sparse

reward robotics tasks this requires including failures and recoveries in the dataset.
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Figure 5.2: An illustration of each of the four types of datasets that we consider in a gridworld environment

with a sparse reward for reaching the green goal. The Success Only dataset contains two successful

trajectories. The Coverage+Success and LfP+Success datasets each contain one success and one failure.

Our VBT dataset contains one trajectory that fails, then recovers, and then succeeds. Full descriptions of

the datasets are in Section 5.5.
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Value functions require coverage. Most OffRL algorithms involve estimating the𝑄 and𝑉 value

functions of a learned policy 𝜋 that is different from the policy (in our case the teleoperator) that

collected the dataset. Explicitly, letting 𝛾 ∈ [0, 1) be a discount factor and 𝑟 be the reward function

they estimate 𝑄𝜋 (𝑠, 𝑎) = E𝜋 [
∑∞
𝑡=0 𝛾

𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 ) |𝑠0 = 𝑠, 𝑎0 = 𝑎] and 𝑉 𝜋 (𝑠) = E𝑎∼𝜋 |𝑠 [𝑄𝜋 (𝑠, 𝑎)], where

expectations are taken over actions sampled from 𝜋 . For the rest of the paper we will omit the

superscript 𝜋 when clear from context.

The key issue with learning value functions for a policy 𝜋 that did not collect the data is that we

can only reliably estimate value functions at states and actions that are similar to those seen in

the training set [Levine et al. 2020]. This is born out by theoretical work which often requires

strong coverage assumptions to learn accurate value functions, such as assuming that the data

distribution covers all reachable states and actions [Chen and Jiang 2019].

While this sort of assumption is too strong to satisfy in practice, we argue that for the sparse

reward robotic tasks that we consider, the relevant notion of coverage is to include failures and

recoveries, as well as successes, in the dataset. These failures and recoveries can provide coverage

of the task-relevant states and behaviors necessary to learn useful value functions. Without

failures the learned value functions will not be able to identify the “decision boundary” between

failure and success that is necessary for reliably accomplishing the specified task. Much as in

supervised learning it is difficult to train a binary classifier without any examples of the negative

class, we conjecture that it is difficult to learn accurate𝑄 functions for sparse reward tasks without

any failures.

Consider the example datasets shown in Fig. 5.2. If we use the Success Only dataset to train a 𝑄

function and then query the 𝑄 function at the location of the red agent during evaluation we will

get inaccurate 𝑄 values. The learned 𝑄 function does not have any indication that the presence of

the wall between the agent and the goal exists since there is no training data from the left side

of the wall. In contrast, any of the other datasets that contain failure examples where the agent
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enters the room to the left of the wall will allow the learned 𝑄 function to assign lower values to

states left of the wall compared to those right of the wall.

Policies require coverage. Much as with value functions, learned policies should not be expected

to produce behaviors that are not present in the training set. This can be seen by looking at the

policy loss function used in OffRL algorithms like IQL [Kostrikov et al. 2021b] and AWAC [Nair

et al. 2020] which take the following form (where D is the distribution that generates the dataset

and 𝑄,𝑉 are the learned 𝑄 and 𝑉 value functions):

𝐿(𝜋) = E𝑠,𝑎∼D [exp(𝑄 (𝑠, 𝑎) −𝑉 (𝑠)) · (− log𝜋 (𝑎 |𝑠))] (5.1)

Notice that this is simply the standard negative log likelihood loss that is used for BC, except that

each term is weighted by the exponentiated advantage function. This loss leads to policies that

imitate actions with high advantages and ignore actions with low advantages. The key takeaway

is that OffRL can only produce policies that choose actions that are already covered by the data

distribution. So, if we want a robust policy that can recover from failures, we need to see recovery

actions in the training set.

Note the DAgger line of work [Ross et al. 2011] raises a similar issue and resolves it by introducing

online learning where the policy 𝜋 is executed on the system to expand coverage. Instead, we

are considering an entirely offline setting where we want to produce the necessary coverage of

failure states and recovery behavior a priori from teleoperation.

To see an example of why coverage of failures and recoveries is necessary for robust policy

learning, again consider the datasets shown in Fig. 5.2. Imagine that at evaluation time, the agent

reaches the red triangle. If the agent was trained on the Success Only dataset, it must rely on

extrapolation to select an action, but there are never any examples of “down” in the dataset. As a

result, the agent is stuck in the room to the left of the wall and cannot recover. In contrast, the

other datasets may allow for the agent to learn a useful recovery behavior since they have better
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coverage.

5.3.2 Overfitting in the low-data and image observation setting

When collecting data via teleoperation we are usually in the low-data regime since we are

bottlenecked by teleoperator time on the real robot. Moreover, in the tasks that we consider

here, the observation space is image-based and thus very high-dimensional. This combination of

low-data and high-dimensional observations makes overfitting likely.

As explained above, in sparse reward tasks it is important for the 𝑄 functions and policies to

accurately represent the “decision boundary” between failure and success in the task. In simple

observation spaces like the gridworld in Fig. 5.2, this may be fairly easy, e.g., as in identifying a

failure by recognizing that the (𝑥,𝑦) coordinated of the position are in the room to the left of the

wall. However, in high-dimensional image-based observation spaces that are encountered in real

robotic tasks, this can become much more challenging.

Figure 5.3: Datasets that include visually dissimilar successes and failures like Dataset A can cause

overfitting. For example, a learned 𝑄 function could learn to attend background distractions (like the pen)

instead of the task-relevant details. In contrast, in Dataset B the only differences between success and

failure are task-relevant.
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Fig. 5.3 illustrates the challenges of image observations in our grasping task. If successes and

failures are collected naively in separate episodes (Dataset A), there will be many visual differences

between success and failure beyond the salient details about the gripper and shirt. For example,

background clutter like the presence of a pen or the exact configuration of the folds of the shirt

can spuriously correlate with failure. In contrast, Dataset B reduces the chances of overfitting by

eliminating the spurious correlations. Separating the examples in Dataset B requires learning a

model that is attuned to the subtle task-relevant visual differences between failure and success

that can generalize well. Our method aims to collect data like Dataset B.

5.4 Our Method: Visual Backtracking Teleoperation (VBT)

Our main contribution is a novel method for data collection called Visual Backtracking Teleop-

eration (VBT). This method is particularly suited to collecting small image based datasets. The

main idea is that in order to learn useful 𝑄 functions and robust policies, we need a dataset that

contains failures and recoveries as well as successes. Moreover, when learning from visual inputs

we need the failures and recoveries to be as visually similar to the successes as possible to prevent

overfitting and to encourage 𝑄 functions and policies to use only the task-relevant information in

the images.

Explicitly, VBT data collection consists of three steps for the teleoperator within each trajectory:

1. Failure: the teleoperator first fails at the desired task.

2. Recovery: the teleoperator recovers from the failure and begins to attempt the task again.

3. Success: the teleoperator successfully finishes the task.

Then the data is labeled with a sparse reward signal: 1 for the final transition and a small penalty

for all other transitions.
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VBT is a general recipe that can be applied to any sparse-reward task that has well-defined failure

modes and is amenable to teleoperation. The failure modes need not be unique and the data could

consist of several different types of failures.

For our example task of deformable grasping these steps can be implemented as depicted in Fig.

5.1:

1. Failure: the teleoperator fails to grasp the shirt and begins to lift the arm.

2. Recovery: the teleoperator opens the gripper and moves the arm back towards the shirt.

3. Success: the teleoperator grasps and lifts the shirt.

Compared to a dataset that contains only demonstrations of success, VBT contains better coverage

of failure and recovery behaviors. As explained in Section 5.3, this coverage is necessary to learn

robust policies capable of recovery and 𝑄 functions that can recognize failure.

Compared to a dataset that naively mixes failures and successes that are collected separately,

VBT has the benefit of visually similar failures and successes. As explained in Section 5.3, this

prevents the learned 𝑄 functions and policies from overfitting based on visual details that are not

task-relevant and instead forces the models to learn the task-relevant features that can generalize

better.

5.5 Experimental Setup

5.5.1 Robot and Environment

Our setup consists of a reach-enabled [Wong et al. 2022] UR5 arm with a pneumatic powered

3-fingered gripper. We control the robot with a 5 dimensional action space: displacements in

(𝑥,𝑦, 𝑧) no larger than 5cm, a gripper toggle to either an open or closed position, and a termination
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indicator that immediately terminates an episode. The orientation of the end-effector is fixed. If

the agent does not select the terminate action within 100 steps, we automatically terminate the

episode.

The workspace consists of the same blue T-shirt, with various distractor objects and variations

in lighting. The robot observation space consists of 2 camera images (360x640x3) from a wrist

camera and overhead camera, as well as the Cartesian position of the end-effector (𝑥,𝑦, 𝑧) and an

indicator of whether the gripper is currently open or closed. We stack a sequence of 4 consecutive

timesteps of observations as the input for our learning algorithms.

The task is to lift the T-shirt more than 80% off a table. During training, as explained in Section

5.4, we automatically label each successful trajectory collected by the teleoperator with a terminal

reward of 1. We give all other transitions a reward of -0.01 to encourage faster completion of the

task. This environment is illustrated in Fig. 5.4.

5.5.2 Datasets

To understand the performance of VBT, we collect several different baseline datasets of robotic

T-shirt grasping by human teleoperators. Each dataset contains 60 minutes of data from the real

robot which equates to approximately 10, 000 steps in the environment.

Success demonstrations (Success): The success dataset consists of demonstrations of task

success. These episodes demonstrate efficient successful executions of the task with minimal

recovery behaviors collected by a human teleoperator instructed to complete the task successfully.

The episodes always terminate in success.

Visual Backtracking Teleoperation (VBT-Ours): Each episode in this dataset demonstrates

failure, then recovery, and then task success as described in Section 5.4. The visuals of the

background, lighting, and positions of scene objects are shared with both optimal behavior, bad
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Figure 5.4: A description of the observation and actions spaces we use for our real robot experiments. The

agent receives an observation of 4 timesteps of images, cartesian coordinates of the end effector, gripper

status, and reward from the robot and sends back a 5 dimensional action of cartesian displacements and

gripper and terminate commands.

behavior, and recoveries. The episodes always terminate in success.

Success mixed with failures and recoveries (Coverage+Success): This dataset is a mixture of

two datasets containing 30 minutes of robot data from each one. The first is the Success dataset

described above. The second is a dataset containing repeated failures and recoveries and intended

to provide coverage of task-relevant behaviors. This dataset consists of many attempted grasps

and retries in quick succession as well as many examples where the shirt is grasped, released, and

then attempted to be re-grasped. The goal of this dataset is to provide coverage of failures and

recoveries.

Success mixed with learning from play (LfP+Success): This dataset is also a mixture of two

datasets containing 30 minutes of robot data from each one. The first is again the Success dataset.

The second is a learning from play [Lynch et al. 2020] dataset which contains data of the robot
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demonstrating rich interactions such as rolling lifting, dragging, and pushing, between the robot

arm and a variety of different objects beyond the T-shirt.

5.5.3 Learning algorithms

We run several different policy learning algorithms to understand utility of our datasets. Be-

haviour Cloning (BC) where policy is trained directly to imitate the actions in the dataset.

AWAC [Nair et al. 2020] where an advantaged weighted actor-critic method is used to train both

a policy 𝜋 and critic able to evaluate 𝑉 𝜋 and 𝑄𝜋 . IQL [Kostrikov et al. 2021b] where implicit

Q-Learning is used to train both a policy 𝜋 and critics 𝑉 𝜋 and 𝑄𝜋 .

All policies and value functions are parameterized by the same neural architecture and trained

using JAX [Bradbury et al. 2018] and Flax [Heek et al. 2020]. The image inputs are passed through

a ResNet [He et al. 2016] encoder and then the features are concatenated along with the Cartesian

coordinates of the gripper and the gripper indicator (as well as the action for 𝑄 functions). These

features are then passed through a simple multi-layer perceptron to output either an action or

value.

All policies and value functions are trained from 700K gradient steps using the Adam [Kingma

and Ba 2014] optimizer. During training images are aggressively augmented using changes in

brightness, sharpness, color, contrast, artificial shadows, rotation, and cropping. This allows us to

train the encoders from scratch on relatively small datasets. We use an inverse temperature of 0.1

for both IQL and AWAC, and we use expectile 0.9 for IQL, following [Kostrikov et al. 2021b].

5.6 Experimental Results

We now present experimental results on our deformable grasping task that attempt to answer the

following questions:
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1. Are 𝑄 functions trained on VBT data more accurate than those trained on other datasets?

And if so, why?

2. Are policies trained on VBT data more successful than those trained on other datasets? And

if so, why?

5.6.1 VBT data leads to improved value functions

To see the improvement in 𝑄 functions when training on VBT data we present examples of the

learned 𝑄 functions on representative trajectories. From these examples we show that training 𝑄

functions on VBT data resolves each of the issues raised in Section 5.3. Namely, the 𝑄 functions

trained on VBT data (1) correctly identify failures while those trained on Success data do not and

(2) resolve the overfitting issues that can arise when using Coverage+Success data.

First, we will show how𝑄 functions trained on VBT data correctly identify failures and recoveries.

To do this we illustrate the 𝑄 functions trained on Success, Coverage+Success, LfP+Success and

VBT data on a single trajectory that contains failure, recovery, and success in Fig. 5.5. As explained

in Section 5.3, the Success dataset does not provide sufficient information to understand failures.

As a result, the 𝑄 function trained on Success does not use the image observation to recognize

failure. Instead it uses the proprioceptive state to correlates “gripper closed and moving up” with

higher values regardless of whether the shirt is in hand. Training on VBT data resolves this issue

by forcing the 𝑄 function to attend to the information in the image to recognize when a failure

has occurred. As a result, the 𝑄 function trained on VBT drops dramatically precisely when the

missed grasp happens.

To ensure that these results generalize beyond this single trajectory, we compute averages of the

relevant value functions across a held-out test of VBT-style trajectories. The results are shown in

Fig. 5.6. Each trajectory contains three gripper toggles: is a missed grasp, an open gripper recovery
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behavior, and a successful grasp. The key observations are that as in Fig. 5.5, the value functions

trained on VBT correctly identify that the 𝑄 value of the missed grasp is substantially lower than

the 𝑉 value of the state from which the grasp occurs. This means that the OffRL algorithms using

these value functions will correctly learn to avoid missed grasps. In contrast, training on any of

the baseline datasets leads to 𝑄 values that are above the 𝑉 value for the missed grasp (meaning

they will learn to miss). And similarly, training IQL on the baseline datasets yields 𝑄 values for

the recovery behavior that are substantially below the 𝑉 values while training on VBT does not.

The above results indicate that the Coverage+Success does not resolve the coverage issues that

are preventing us from learning accurate 𝑄 functions. This may be somewhat surprising since

this dataset was designed to have good coverage. We claim that this issue is due to overfitting in

our low-data and high-dimensional observation setting. Essentially, the 𝑄 function trained on

Coverage+Success data uses the image observation to classify the trajectory as either “success”

or “failure”. If the trajectory is classified as “success” then the 𝑄 function behaves just like a

𝑄 function trained only on Success and associates “gripper closed and moving up” with higher

𝑄 values. However, if the trajectory is classified as “failure” then the 𝑄 function trained on

Coverage+Success data behaves differently and assigns uniformly lower𝑄 values to the trajectory.

Some hint of this can be seen in Fig. 5.6 where the values learned on Coverage+Success have

substantially higher variance caused by some of the trajectories being classified as failures (note

that LfP+Success behaves much more like Success alone since the classification problem between

the two datasets is easy enough that the LfP data is completely ignored).

To isolate this issue, we plot histograms of the learned 𝑄 values on the train datasets and held out

test datasets for both the Coverage+Success and VBT data in Fig. 5.7. The histograms confirm that

the 𝑄 function trained on Coverage+Success assigns low values to Coverage transitions from the

training set and high values to Success transitions from the training set. But, these 𝑄 functions do

not generalize. The test set yields a very different distribution of values. In contrast, VBT data
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Dataset Policy Task Success

Success BC 66 ± 4%
Success AWAC 67 ± 3%
Success IQL 69 ± 3%

Coverage+Success AWAC 52 ± 4%
Coverage+Success IQL 64 ± 3%

LfP+Success AWAC 62 ± 4%
LfP+Success IQL 58 ± 4%

VBT-Ours BC 73 ± 3%
VBT-Ours AWAC 73 ± 3%
VBT-Ours IQL 79 ± 3%

Table 5.1: Evaluation of grasping on an AB test of 1437 total episodes. Error bars report standard error.

resolves the overfitting issue by ensuring that the only visual differences between failure and

success are task-relevant, which facilitates better generalization.

5.6.2 VBT data leads to improved policies

To measure the impact of switching to VBT data on policy performance we perform an AB test.

Specifically, we train policies using each of the three learning algorithms (BC, AWAC, IQL) on each

of the four types of datasets (Success, Coverage+Success, LfP+Success, VBT-Ours), but excluding

BC on the datasets that contain episodes that do not terminate in success (Coverage+Success,

LfP+Success). For the AB test, each episode a policy is chosen at random and executed until either

the policy sends the “terminate” action or the maximum number of steps per episode is reached.

Success is determined by the majority vote out of three human labelers based on the final image in

the episode. The randomness of the AB test ensures a valid comparison between all of the trained

policies. Results are reported in Table 5.1.

There are several takeaways from these results:

1. Training IQL on VBT outperforms standard BC on Success data by 13% and outperforms IQL
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on Success data by 10%. These are significant gains, especially given that we are training

each policy from scratch on very small datasets with image-based observations.

2. Due to overfitting, OffRL algorithms trained on Coverage+Success and LfP+Success under-

perform those same algorithms trained on Success data alone.

3. Even BC on VBT data outperforms BC on Successes for this task since training BC on

VBT leads to retrying behaviors. OffRL provides further benefits beyond BC by effectively

filtering out the suboptimal actions that are present in VBT data.

Overall, the experimental results paint a picture that VBT is able to improve coverage and prevent

overfitting. This allows for more effective OffRL in terms of qualitatively better value functions

and quantitatively better policies than we get from simple Success data or naively mixing in

failures as in the Coverage+Success or LfP+Success data.

5.7 Discussion

In this paper, we introduced VBT, a protocol for robot data-collection for offline policy learning.

We showed how value functions learned using VBT data tend to be more accurate, leading to robust

policy learning with OffRL. We compared VBT to a number of other data collection protocols, and

found that policies learned using VBT result in superior performance. We demonstrated these

results on a real world, vision-based deformable manipulation task.

While our method significantly outperforms other data-collection protocols, it has certain limita-

tions. VBT requires a teleoperator to understand the relevant failure modes for the task (in our

grasping task, this corresponds to narrowly missing the T-shirt), and the ability to recover and

re-attempt.

In future work, it would be interesting to apply VBT to tasks with more variety, such as collecting
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a dataset consisting of interactions with many different objects, instead of just one object. Finally,

while we studied a relatively short-horizon task, future work can look into applying VBT to

long-horizon tasks.
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Figure 5.5: Evaluation of various 𝑄 functions on a single held out evaluation trajectory that is not seen

during training. The trajectory consists of a failure followed by recovery and a successful grasp. The 𝑄

functions are trained by running IQL on different datasets (Success, Coverage+Success, LfP+Success or

VBT). Notice that the VBT-trained 𝑄 function is the only one to drop precisely at the point of the missed

grasp instead of the open gripper action that is necessary for recovery.
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Figure 5.6: Visualization of the average 𝑄 and 𝑉 values at each of the three key steps highlighted in Fig.

5.5 across a held-out test set of 35 trajectories. Error bars show standard error. Note that VBT has much

lower 𝑄 than 𝑉 for the missed grasp, while the baseline datasets have much lower 𝑄 than 𝑉 for the open

gripper, meaning the VBT value functions are more accurate.
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Figure 5.7: Histograms of the 𝑄 values of IQL trained on Coverage+Success (Top) and VBT (Bottom) on

both the data that the respective 𝑄 functions were trained on (Left) and held out test sets from the same

distribution (Right). The 𝑄 function trained on Coverage+Success demonstrates substantial overfitting in

the mismatch between the distribution of 𝑄 values between train and test while the one trained on VBT

does not.
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Part III

Pretraining
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6 | Inverse dynamics pretraining for

multitask imitation

6.1 Introduction

Pipelines in image recognition and natural language processing commonly use large datasets

to pretrain representations that are then transferred to downstream tasks where data is limited

[Devlin et al. 2018; Chen et al. 2020a; Radford et al. 2021a]. In this paper, we consider how this

paradigm can be applied to imitation learning [Pomerleau 1991; Ho and Ermon 2016; Kostrikov

et al. 2019]. In contrast to supervised learning domains where datasets consist of input-output

pairs, imitation learning datasets consist of trajectories with both the input-output mapping to

be learned (namely, observation-action pairs) as well as information about the dynamics of the

environment. Given this additional structure, it is worthwhile to study pretraining approaches that

can incorporate this structure to improve beyond methods from traditional supervised learning

domains.

To formalize the precise notion of transfer between pretraining and finetuning phases, we consider

a multitask imitation setting where the environment (i.e., the transition dynamics) is fixed and data

is comprised of trajectories of task experts acting in this environment. A task is defined by a latent

context variable that is observed by an expert demonstrator, but is not contained in the dataset, as
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shown in Figure 6.1. During pretraining, we have access to a large number of trajectories from

various tasks, while during finetuning we have access to a small number of trajectories from a

single task. The goal is thus to use the pretraining dataset to learn representations that contain

information about the environment that facilitates efficient learning of the finetuning task.

A number of existingworks have proposed objectives for representation learning that are applicable

in this setting [Schwarzer et al. 2021; Stooke et al. 2021; Yang and Nachum 2021; Yang et al. 2023],

and we consider a variety of algorithms and modes of analysis to determine which approach is the

most promising. Algorithmically, we consider four generic classes of objectives for pretraining:

inverse dynamics, behavior cloning, forward dynamics, and static observation modeling (Figure

6.1). We conduct two types of analysis. First, we conduct an extensive empirical evaluation and

introspection of the candidate algorithms along with several strong baselines. Second, we present

a simple but general theoretical model of the multitask representation learning problem and

analyze the relative merits of the candidate algorithms under this model.

Our main results from these analyses are summarized as follows:

1. Across a broad array of experiments from visual observations in six environments, out of all

approaches considered, inverse dynamics is the only one that consistently outperforms the

baseline of training a model from scratch. The performance of inverse dynamics even matches

that of finetuning from ground truth low-dimensional states on in-distribution contexts. More-

over, we find that inverse dynamics scales the best with pretraining dataset size and most

effectively maintains relevant information about the observation in its learned representation.

2. In our simplified model of representation learning, we show that inverse dynamics pretraining

efficiently recovers the ideal representation while behavior cloning can suffer from confounding

and forward dynamics can suffer from poor sample efficiency. These results provide intuition

for the empirical results and motivate why inverse dynamics pretraining is so performant and

robust.
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𝑜 𝑜′

𝑎

(e) Cont (f) Experimental results

Figure 6.1: (a) A graphical models of the setting. Shaded nodes indicate observed variables. The expert

behavior (i.e., 𝑜𝑖 → 𝑎𝑖 ) is determined by an unobserved context variable 𝑐 while the transition dynamics (i.e.,

(𝑜𝑖 , 𝑎𝑖) → 𝑜𝑖+1) are determined by the environment dynamics. (b)-(e) illustrate the candidate algorithms.

We use blue to indicate inputs to the algorithm and green to indicate prediction targets. ID = inverse

dynamics, BC = behavior cloning, FD = forward dynamics, Cont = contrastive learning. (f) Shows success
of policies finetuned on top of various representations averaged across all datasets in our suite for default

dataset sizes. Inverse dynamics (shown in green) is the only method to substantially outperform the

baseline of training from scratch (shown in black). Further details about the experimental protocol and

results are in Sections 6.4 and 6.5.

6.2 Related work

As explained above, pretraining a representation has become a dominant paradigm in computer

vision and natural language processing [Devlin et al. 2018; Chen et al. 2020a; Radford et al. 2021a].

Determining how to best leverage similar pretraining techniques in decision making problems

is an important step towards extending the success of supervised learning into more temporally

extended problems like those in robotics [Yang et al. 2023].

Prior work proposes several possible pretraining objectives for learning features for decision-

making (and illustrated in Figure 6.1). First, inverse dynamics modeling has been proposed in

several settings, although never as a representation learning algorithm for multitask imitation.

Most directly related to our work is Efroni et al. [2021]; Lamb et al. [2022] which use multi-step

inverse dynamics for feature extraction for exploration in reinforcement learning (RL) in the

presence of exogenous noise. Later work from Islam et al. [2022] extended this approach to offline

RL. Less closely related are Pathak et al. [2017] which uses inverse dynamics in the context of
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exploration and Baker et al. [2022]; Venuto et al. [2022] which use an inverse dynamics model to

label video data with actions for imitation.

Another, perhaps simpler approach is to use behavior cloning as a pretraining algorithm. Arora

et al. [2020] shows that this can be a well-motivated approach to pretraining a representation

when the task variable is observed. Other work uses behavior cloning objectives to pretrain

representations of temproally extended actions [Ajay et al. 2020] or priors for offline RL [Zang

et al. 2022].

A third approach is to model the forward dynamics of the system as a pretraining objective.

Most directly related to our work, Nachum and Yang [2021] show that this is a well-motivated

technique for imitation learning and provide empirical evidence on single task atari games, but do

not compare to inverse dynamics. This technique has also been explored in empirical work for

online and offline RL [Schwarzer et al. 2021; Laskin et al. 2020; Aytar et al. 2018; Lee et al. 2022;

Wu et al. 2023].

Finally, a method which we will refer to as static observation modeling does not leverage infor-

mation about dynamics and rather directly uses self-supervised methods from computer vision

[Pari et al. 2021; Chen et al. 2020a; Grill et al. 2020]. This approach does not take advantage of any

additional structure in an imitation learning setting, but has nevertheless worked well in some

settings.

Several empirical studies of representation learning for decision-making already exist. Most

closely related to this work, [Chen et al. 2022] conducts an empirical evaluation of representations

for imitation and finds that none of them consistently outperform training directly from pixels.

However, this prior work (a) considers much larger finetuning datasets which can dramatically

reduce the benefits of pretraining, and (b) considers different environments than we do, where

the gap between pretraining and finetuning tasks is less controlled. Another line of work like

Nair et al. [2022] attempts to pretrain general representations using large human-collected video
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datasets like Ego4d [Grauman et al. 2022]. In contrast, we focus on a more carefully controlled

(albeit smaller scale) experimental settings where we can derive a more clear understanding of

the relative merits of different pretraining objectives. Another empirical study from Stooke et al.

[2021] considers representations in online reinforcement learning. Meanwhile, Yang and Nachum

[2021] considers representations for imitation but does not consider image-based or multitask

problems. Moreover, none of these works includes a theoretical understanding for the findings

presented therein.

A further discussion of pretraining in the context of imitation can be found in Appendix D.1.

6.3 Problem setup

Here we present the formal setup for our problem setting of reward free pretraining frommultitask

expert data . We formalize this as a contextual MDP with rich (i.e., visual) observations where the

latent context determines the initial state and reward functions.

Environment. We model the environment as a contextual MDP with context-independent

dynamics:

𝑐 ∼ 𝑃𝑐, 𝑜0 ∼ 𝜌𝑐, 𝑟𝑖 = 𝑟𝑐 (𝑠𝑖, 𝑎𝑖), 𝑜𝑖+1 ∼ 𝑇 (𝑜𝑖, 𝑎𝑖). (6.1)

Importantly, we consider the context variable 𝑐 and rewards 𝑟𝑐 to be latent, i.e., they are not

available during training, and only used to evaluate a learned policy. At a high level, this captures

the setting where the task (defined by the context variable) may change, but the dynamics of the

world do not. For example, the context variable could be a continuous variable like a goal position

that the expert is navigating towards or a discrete variable representing a behavior like locking a

door.
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Data generation. Data is generated by executing policies 𝜋 that map observations to actions

in the environment. We consider two different datasets for any given problem. First there is a

large multi-context pretraining dataset that will be used for representation learning, specifically

to learn an observation encoder. Second, there is a small single-context finetuning dataset for

policy learning on top of the pretrained representation. The multi-context pretraining data is

generated as follows:

𝐷𝑝𝑟𝑒 = {𝜏𝑖}
𝑁𝑝𝑟𝑒

𝑖=1 : 𝑐 ∼ 𝑃𝑐, 𝜏 = (𝑜0, 𝑎0, 𝑜1 . . . ) ∼ 𝑃𝜋𝑐 , 𝜋𝑐 ≈ 𝜋∗
𝑐 = arg max

𝜋
𝐽𝑟𝑐 (𝜋), (6.2)

where 𝐽𝑟𝑐 (𝜋) denotes the expected return of 𝜋 when the reward is 𝑟𝑐 . Note that the demonstration

policy has access to the latent context 𝑐 , but this latent context is not observed in the data.

Then the single-context finetuning data is generated for context 𝑐 𝑓 𝑖𝑛𝑒 as follows:

𝐷 𝑓 𝑖𝑛𝑒 = {𝜏𝑖}
𝑁𝑓 𝑖𝑛𝑒

𝑖=1 : 𝜏 = (𝑜0, 𝑎0, 𝑜1 . . . ) ∼ 𝑃𝜋𝑐𝑓 𝑖𝑛𝑒 . (6.3)

Pretraining. The goal of the paper is to analyze different methods for pretraining feature

extractors. Training of the encoders 𝜙 to minimize a loss ℓ proceeds as follows:

𝜙 : O → R𝑑 = arg min
𝜙
E
𝐷𝑝𝑟𝑒

[ℓ (𝜙, 𝜏𝑖)] . (6.4)

A full description of the losses ℓ used by different algorithms will come in Section 6.4.2. For

simplicity (and in keeping with prior work [Nachum and Yang 2021; Chen et al. 2022]) we will

consider ℓ to only be a function of transitions (𝑜 𝑗
𝑖
, 𝑎

𝑗

𝑖
, 𝑜
𝑗 ′

𝑖
) rather than full trajectories to leverage the

Markovian structure. We also run some ablations of including multistep information in Appendix

D.2 and find little difference.
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Finetuning. Features are evaluated by finetuning a small policy head on top of the frozen

features:

𝜋
𝜙

: R𝑑 → A = arg min
𝜋
E

𝐷 𝑓 𝑖𝑛𝑒

[ℓ (𝜋, 𝑎 𝑗
𝑖
, 𝜙 (𝑜 𝑗

𝑖
))] . (6.5)

We elect to use frozen features to allow for simple and clear evaluation of the representations.

This is in keeping with prior work on representations for imitation [Nachum and Yang 2021; Chen

et al. 2020a; Nair et al. 2022] as well as computer vision [Chen et al. 2020a].

Evaluation. Finally, we evaluate the finetuned policy by performing rollouts in the finetuning

environment with context 𝑐 𝑓 𝑖𝑛𝑒 to estimate 𝐽𝑟𝑐𝑓 𝑖𝑛𝑒 (𝜋𝜙 ). In our tasks we usually consider 𝑟𝑐 𝑓 𝑖𝑛𝑒 to be

a binary indicator of successful completion of the finetuning task.

6.4 Experimental setup

6.4.1 Environments and Datasets

We design a suite of tasks and datasets to probe the capabilities of various representation learners

for downstream imitation. We focus on robotic manipulation from vision as this is an important

sequential decision making task that depends on learning task-relevant visual representations

where pretraining deep visual feature extractors is a popular approach. Our suite consists of

six different pretraining datasets on varied tasks and of varied size. Each pretraining dataset

has several associated finetuning datasets and simulation environments that allow for online

evaluation of learned policies.

All tasks are performed from visual inputs, as shown in Figure 6.2. Each pair of pretraining-

finetuning datasets requires a slightly different type of generalization as dictated by the different
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(a) Pointmass (b) Pick + place (c) Door (d) Kitchen (e)Metaworld (ML45/R3M)

Figure 6.2: Our six datasets: (a) Pointmass navigation with latent goals. (b) Pick and place with latent goals.

(c) Multitask manipulation of a door. (d) Sequential kitchen manipulation. (e) Multitask manipulation of

diverse objects, where we consider two different train-eval splits ML45 and R3M.

types of context variable and is described in detail in Appendix D.3.

Table 6.1: Description of the different datasets used in the experiments. Dataset sizes are measured in

number of trajectories (𝑁
𝑝𝑟𝑒

𝑡𝑟𝑎 𝑗
for pretraining and 𝑁

𝑓 𝑖𝑛𝑒

𝑡𝑟𝑎 𝑗
for finetuning) and given as ranges with default

values in bold. Trajectory lengths vary from 50 to 400 steps. These default sizes may vary in each experiment

when indicated. Each datasets contains a certain number of latent contexts (𝑁
𝑝𝑟𝑒

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 and 𝑁
𝑓 𝑖𝑛𝑒

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ). For

each finetuning context, we sample datasets with 𝑁
𝑓 𝑖𝑛𝑒

𝑠𝑒𝑒𝑑
different seeds.

Environment 𝑁
𝑝𝑟𝑒

𝑡𝑟𝑎 𝑗
𝑁
𝑓 𝑖𝑛𝑒

𝑡𝑟𝑎 𝑗
𝑁
𝑝𝑟𝑒

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑁
𝑓 𝑖𝑛𝑒

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑁
𝑓 𝑖𝑛𝑒

𝑠𝑒𝑒𝑑

Pointmass (1e1, 1e2, 1e3) (1, 2, 5, 10) 𝑁
𝑝𝑟𝑒

𝑡𝑟𝑎 𝑗
5 1

Pick + place (1e1, 1e2, 1e3) (2, 5, 10, 20) 𝑁
𝑝𝑟𝑒

𝑡𝑟𝑎 𝑗
5 1

Door (1e1, 1e2, 1e3) (2, 5, 10, 20) 3 1 5
Kitchen (50, 150, 450) (2, 5, 10, 15) 21 3 5
MW-ML45 (1e2, 1e3, 1e4) (2, 5, 10, 20) 45 5 5
MW-R3M (1e2, 1e3, 1e4) (2, 5, 10, 20) 45 5 5

6.4.2 Algorithms

We consider nine different representations across our suite of experiments. These representations

include baseline and skyline/oracle performance as well as five representations that are pretrained

on our own pretraining datasets described above. Each of the representations will be referred to

by its bolded name after it is described.

All algorithms (except for the Imagenet and R3M baselines) share the exact same encoder archi-

tecture to control as best we can for variation in architecture between methods. Each method
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is pretrained for the same number of gradient steps. Additional training details can be found in

Appendix D.3.

Skyline/oracle. As a skyline or oracle representation we directly use the low dimensional states

(States) from the simulator. Depending on the task, this representation includes the position of

the robot, position of the object to be manipulated, and/or position of the goal. A full description

of the per environment state variables can be found in Appendix D.3.

Baselines. We consider three baseline representations that are not trained on our pretraining

datasets. The first is to directly use the pixels with image augmentations (Pixels + Aug) to train an

encoder and a policy from scratch on the finetuning data. It is essential to use the augmentations

to ensure that this a strong baseline. The second is features of a ResNet18 pretrained on Imagenet

(Imagenet). The last consists of the features of a ResNet18 that is specifically pretrained for

robotic manipulation by [Nair et al. 2022] on the Ego4d dataset (R3M).

Inverse dynamics. The primary representation learning objective that we consider is inverse

dynamics (ID) which models the distribution 𝑃 (𝑎 |𝑜, 𝑜′) using an architecture that first encodes

𝑜, 𝑜′ with an encoder 𝜙 and then predicts 𝑎 with a small MLP 𝑓 :

𝜙∗
𝐼𝐷 = arg min

𝜙
min
𝑓
E

𝑜,𝑎,𝑜 ′
[(𝑎 − 𝑓 (𝜙 (𝑜), 𝜙 (𝑜′)))2] . (6.6)

Behavior cloning. A simpler alternative objective is to directly apply behavior cloning (BC) to

the multitask actions in the pretraining dataset conditioned on the observations using MSE loss.

The learner is parameterized as an encoder 𝜙 followed by a small MLP 𝜋 :

𝜙∗
𝐵𝐶 = arg min

𝜙
min
𝜋
E
𝑜,𝑎
[(𝑎 − 𝜋 (𝜙 (𝑜)))2] . (6.7)
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Forward dynamics. We consider two representation learners that predict the forward dynamics

of the system. The first is explicit forward dynamics (FD-e) which explicitly constructs a model of

the forward dynamics in the space of observations by encoding the current observation and then

attempting to reconstruct the next observation 𝑜′ using a decoder 𝑑 :

𝜙∗
𝐸𝐹𝐷 = arg min

𝜙
min
𝑑
E

𝑜,𝑎,𝑜 ′
[(𝑜′ − 𝑑 (𝜙 (𝑜), 𝑎))2] . (6.8)

The second objective is implicit forward dynamics (FD-i) which implicity constructs a model of

the forward dynamics using contrastive learning. Explicitly, we consider a form of contrastive

learning where an energy function is defined as the inner product of L2-normalized projected

embeddings (given by projection MLPs 𝑓1, 𝑓2) which is then passed into an InfoNCE loss:

𝐸 (𝑜, 𝑎, 𝑜′) = exp(𝑓1(𝜙 (𝑜), 𝑎)⊤𝑓2(𝜙 (𝑜′))), (6.9)

𝜙∗
𝐼𝐹𝐷 = arg min

𝜙
min
𝑓1,𝑓2

E
𝑜,𝑎,𝑜 ′

[− log(𝐸 (𝑜, 𝑎, 𝑜′)) + logE
𝑜 ′
[𝐸 (𝑜, 𝑎, 𝑜′)]] . (6.10)

Static observation modeling Finally, we consider a baseline that simply models 𝑃 (𝑜). Rather

than modeling this explicitly with reconstruction, we use a contrastive loss (Cont) where we

use image augmentations to construct pairs of 𝑜 and 𝑜 that do not rely on the dynamics of the

environment at all. Again we use the InfoNCE loss, in what can be seen as a variant of SimCLR:

𝐸 (𝑜, 𝑜𝑎𝑢𝑔) = exp(𝑓 (𝜙 (𝑜))⊤𝜋 (𝜙 (𝑜𝑎𝑢𝑔))), (6.11)

𝜙∗
𝐶𝑜𝑛𝑡 = arg min

𝜙
min
𝑓
E

𝑜,𝑜𝑎𝑢𝑔
[− log(𝐸 (𝑜, 𝑜𝑎𝑢𝑔)) + log E

𝑜𝑎𝑢𝑔
[𝐸 (𝑜, 𝑜𝑎𝑢𝑔)]] . (6.12)
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6.5 Experiments

We want to determine which representation learning objective is best, but the precise answer will

depend on the situation. To get a clearer understanding of this sometimes ambiguous performance

we conduct a variety of controlled experiments on our diverse suite of datasets. We focus on the

following questions to guide our empirical analysis:

1. How do factors of the datasets impact performance of algorithms?

2. How are the learned representations similar to and different from each other?

Note: we will focus on presenting aggregate statistics across all datasets in the main text, but full

results can be found in Appendix D.2. Full details about the methodology are in Appendix D.3 and

code is at https://github.com/davidbrandfonbrener/imitation_pretraining.

6.5.1 Impact of dataset on representation learning performance

Scaling with data size. The performance of each algorithm can be highly sensitive to both

pretraining and finetuning sizes. Thus, instead of producing one simple summary statistic, we

sweep over both the size of the finetuning data (for default pretraining size) and size of the

pretraining data (for default finetuning size). The results of these sweeps are presented in Figure

6.3.

The sweeps both suggest that inverse dynamics outperforms the alternatives. First, on the

finetuning size sweep, we see that the ID line is the only one that consistently outperforms

training from scratch on Pixels + Aug. This gap is largest at small finetuning sizes, which are

perhaps the most interesting case since that is when we expect pretraining to be useful. Second,

the pretraining size sweep indicated that ID is scaling the most efficiently with pretraining size.

Further results, including breakdowns across each dataset can be found in Appendix D.2.
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Figure 6.3: Average success rate after finetuning averaged across datasets, contexts, and seeds. Error bars

show the standard error across contexts and seeds, averaged across datasets. The plots show sweeps across

finetuning size with default pretraining size (left) or pretraining size with default finetuning size (right)

measured in units according to Table 6.1. Methods that do not depend on pretraining size are shown as

horizontal lines.

In distribution vs. out of distribution eval tasks. Theway that our datasets are constructed,

the door, kitchen, metaworld-ml45, and metaworld-r3m datasets only have a finite number of

possible contexts that is much smaller than the number of pretraining trajectories. For our default

datasets, we elected to construct a train-test split of contexts to ensure that the contexts used for

finetuning are not seen during pretraining. As a result, the default finetuning tasks can be in some

sense “out of distribution”, measuring extrapolation as opposed to in-distribution generalization.

For example, in the door dataset, we pretrain on door opening, closing, and unlocking (with varied

door position) and then finetune on door locking (again with varied position).

To test the impact of this gap between pretraining and finetuning, we created alternative pretraining

datasets, where we include the test contexts (but not the test trajectories) into the pretraining data.

For example, in the door domain we include door opening, closing, locking, and unlocking in the

pretraining data and still finetune on only unlocking (but with heldout initial conditions). These

datasets now require a much more limited notion of generalization from pretraining to finetuning.

Results are shown in Figure 6.4. We again see that ID is the strongest performer, but now the gap

is even larger. ID matches the skyline performance of training from ground truth low-dimensional
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Figure 6.4: Average performance on the four discrete context environments when the finetuning contexts

are included in the pretraining data. The finetuning data contains heldout initial conditions and trajectories

not seen during pretraining.

simulator states. BC also shows substantially stronger performance and outperfroms training from

scratch Pixels + Aug. None of the other pretraining algorithms benefit much from the substantially

easier type of generalization required on these datasets. This suggests that ID and BC are uniquely

able to benefit in easier settings, suggesting that they are better representation learners. If an

algorithm is not able to outperform training from scratch in this simplified setting, it is unlikely

to be a good representation learner.

Fully latent vs. inferrable context variables. Looking at our dataset suite, the datasets can

be divided into two groups: those where the context variable is not inferrable at all from the initial

state (pointmass, pick+place, and kitchen), and those where the effect of the context variable on

the initial state makes it possible to infer the context given the initial state (door, metaworld-ml45,

and metaworld-r3m). This split presents an interesting comparison in particular between ID and

BC (the best performing algorithms from the prior experiment). Figure 6.5 shows results for these

algorithms and the Pixels + Aug baseline on the datasets where the context is latent.

There is a large gap between ID and BC when the context is fully latent. In these cases, it is
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Figure 6.5: A comparison between ID and BC on the datasets where the context is not inferrable from the

observation.

Figure 6.6: Average train and validation action-prediction loss during finetuning. All losses are normalized

by the Pixels + Aug validation loss to maintain consistency across environments.

impossible to tell from the current state alone what the context is and thus what the optimal

action should be. As we will show in our simplified model (Section 6.6), in these settings BC is

confounded by the latent context (in the terminology of causal inference). As a result, BC can fail

to learn useful features. In contrast, ID uses the information about the future state to deconfound

the learning problem and still learns a good representation. Note that this gap largely disappears

when the context is observable, see Appendix D.2 for further details.

6.5.2 Predictive power of the representations

So far, we have focused on the success rate of the downstream finetuned policy as the main

metric of comparison between algorithms. Now we will instead consider a series of experiments

that assess the quality of the representations based on the ability to predict various quantities
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of interest from the representations. These experiments help to illustrate what information is

retained in the representations and how efficiently that information can be accessed.

Action prediction. First, we consider the ability to predict the expert actions in the finetuning

dataset. This is directly related to the success of the finetuned policy, but avoids the variance

of performing rollouts and allows us to compare train and validation errors to evaluate the

representations. Low train loss means the representations are not aliasing observations that

require different actions. Meanwhile the validation loss measures the simplicity of the function

that maps representations to targets, i.e. how well it generalizes.

The results in Figure 6.6 show the train and validation loss during finetuning using the default

pretraining and finetuning sizes from Table 6.1. Since losses vary across datasets, we normalize

by the Pixels + Aug validation loss so as to be able to present averages across all datasets. We

see that out of the learned representations, ID has both the lowest train and validation losses,

almost matching the performance of Pixels + Aug on train and almost matching the performance

of States on validation. In contrast, representations that attempt to predict forward dynamics

have substantially higher train loss, indicating aliasing of states in terms of their optimal actions.

Interestingly, the Imagenet pretrained features have very low train loss, indicating a lack of

aliasing, but very high validation loss, indicating that the function that maps representations to

actions does not generalize well.

State prediction. Since we perform all of our experiments in simulated environments, we

have access the the ground truth low dimensional states. So, we can measure the ability of each

representation to predict the ground truth low dimensional state and thus measure how well the

representation retains information about this ground truth state. Results are in Figure 6.7; here

we measure the train and validation loss on the pretraining distribution so as to isolate the effect

of the representation learning apart from the gap between pretraining and finetuning. Again we
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Figure 6.7: Average state prediction error on the pretraining distribution. Values are normalized by the ID

train loss.

normalize the losses for each dataset.

Again we see that ID and BC yield the best performance. This suggests that in these datasets,

pretraining objectives that attempt to predict the optimal action do indeed facilitate recovery of

the low-dimensional simulator state. In contrast, while the FD methods achieve approximately the

same training error, they generalize much more poorly. This suggests that the FD objectives are not

throwing away relevant information, but are keeping around too much extraneous information

about the observations, thus making the representations susceptible to overfitting. Standard

contrastive learning is substantially worse, even on train error, suggesting that it is throwing away

important information. Extended results are in Appendix D.2.

6.6 Analysis

To add a more theoretical understanding of the empirical results, we will consider a simplified

model of the data generating process based on linear dynamics in a latent space. We begin by

presenting the model and then show that under this model we can explain three key experimental

findings: (1) inverse dynamics is able to recover the low dimensional state, (2) forward dynamics

can be less efficient in some cases, and (3) BC can be confounded by the latent context. We present

a high level sketch here and more details along with discussion of related theoretical work are in
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Appendix D.4.

Model. Some of the key interesting properties of problems like visual manipulation that we

consider empirically are that (a) the observation is very high dimensional relative to the action,

(b) the actual state of the world (or simulator) can be summarized in a much lower dimensional

state variable, and (c) the dynamics are relatively simple if given the right representation. All of

these motivating properties can be captured in a simplified model that assumes linear dynamics

occurring in a hidden low-dimensional state space, as presented below.

For simplicity, we will only consider one step of the dynamics represented by a tuple (𝑜, 𝑎, 𝑜′, 𝑠, 𝑠′, 𝑐)

that is sampled iid from the joint distribution over those variables. Recall that we only observe

(𝑜, 𝑎, 𝑜′) and that (𝑠, 𝑠′, 𝑐) are latent. Formally, let O = R𝑑 , S = Rℓ , and A = R𝑘 with 𝑑 ≫ ℓ > 𝑘 .

Let 𝜙 : O → S be the ground truth encoder, which we assume is invertible by 𝜙−1. Let 𝜖 ∼ N(0, Σ)

in Rℓ and 𝐴, 𝐵 to be any matrices in Rℓ×ℓ and Rℓ×𝑘 . Then, assume that the dynamics are:

𝑜′ = 𝜙−1(𝐴𝜙 (𝑜) + 𝐵𝑎 + 𝜖). (6.13)

Note that we make no assumption on the policy 𝜋∗
𝑐 other than that it only depends on 𝑜 via 𝜙 (𝑜).

This model is similar to ones studied in the online control setting by Mhammedi et al. [2020];

Dean and Recht [2021], but is different from models where inverse dynamics have been studied

for online control with exogenous noise since the dynamics are entirely contained in the low

dimensional state space [Efroni et al. 2021; Lamb et al. 2022].

Inverse dynamics recovers the state. To get an intuition as to why inverse dynamics learning

is feasible in this model, note that if 𝐵+ is the pseudoinverse of 𝐵 that:

𝑎 = 𝐵+𝜙 (𝑜′) − 𝐵+𝐴𝜙 (𝑜) − 𝐵+𝜖. (6.14)
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Figure 6.8: An example where the decoder is more complicated than the encoder.

Thus the inverse dynamics are a simple linear function of the embeddings 𝜙 (𝑜), 𝜙 (𝑜′). As a

result, when we solve for 𝑎 with least squares regression, if the encoder 𝜙 is representable by our

function class, we will be able to recover it up to linear transformation, provided the matrix 𝐵 is

well-conditioned, so that the noise term 𝐵+𝜖 does not blow up.

Forward dynamics can be less statistically efficient. Intuitively, the potential problem

with learning forward dynamics is that it requires learning both an encoder and a decoder while

inverse dynamics only requires learning the encoder. This is not necessarily a problem a priori,

but we hypothesize that in practical problems of interest (like the ones in our experiments) the

decoder (mapping from low dimensional state to high dimensional observation) may be more

complicated than the encoder (mapping from observations to states).

To grasp why we might expect this, note that the set of possible observations is the manifold

represented by the image of the decoder, i.e. Im(𝜙−1). As a simple example, consider a toy 2d

example where the high dimensional observation is (𝑥, 𝑓 (𝑥)) ∈ R2 and the low dimensional state

is simply 𝑥 ∈ R1, as depicted in Figure 6.8. Here the encoder 𝜙 is very simple since it just needs to

recover 𝑥 , while the decoder must learn 𝑓 (𝑥). Of course this is a very toy example, but we find

it illustrative of the idea that it is possible that the encoder is much simpler than the decoder in

practice.
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BC can be confounded by the latent context. As we alluded to in the experimental section,

the latent context variable can confound BC. Now we will show an example in our model where

this problem arises. In this case, even with a linear encoder, infinite data, and a fully expressive

policy class, the Bayes optimal BC representation cannot be used to recover anything better than a

random policy. This example is extreme, but shows the shortcomings of a confounded pretraining

objective.

For simplicity, let ℓ = 𝑘 and 𝜖 = 0. Let R(R𝑘×𝑘) be the set of rotation matrices in R𝑘 . Let S𝑘−1 be

the unit sphere in R𝑘 ,𝑈 be the uniform distribution, and 𝛿 denote a Dirac delta. Now, assume:

𝑐 ∼ 𝑈 (R(R𝑘×𝑘)), 𝑜 ∼ 𝑈 (𝜙−1(S𝑘−1)), 𝜋∗
𝑐 (𝑎 |𝑜) = 𝛿 [𝑎 = 𝑐𝜙 (𝑜)] (6.15)

Note that 𝜙 (𝑜) returns a unit vector in R𝑘 and that a uniformly sampled rotation of a unit vector

is a uniformly sampled unit vector. Thus, we can marginalize over 𝑐 to get:

𝑃 (𝑎 |𝑜) =
∫
𝑐

𝑃 (𝑐)𝜋∗
𝑐 (𝑎 |𝑜) =

∫
𝑐

𝑃 (𝑐)𝛿 [𝑎 = 𝑐𝜙 (𝑜)] = 𝑃𝑈 (S𝑘−1) (𝑎) = 𝜂𝑘 , (6.16)

for a constant 𝜂𝑘 equal to the reciprocal of the surface area of the unit sphere in R𝑘 .

Thus, the Bayes optimal BC policy does not depend on 𝑜 at all. As a result, the optimal represen-

tation learned by BC can just map every observation to zero. This representation is not capable

of representing the optimal policy for any choice of 𝑐 . However, switching to inverse dynamics

pretraining where we condition on the outcome observation 𝑜′ breaks the confounding and allows

us to learn the true representation even without observing 𝑐 .
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6.7 Discussion

We have seen that inverse dynamics pretraining provides an effective method for learning features

from multitask demonstration data. We demonstrated this across a suite of datasets with visual

observations and provided analysis in a simplified model to understand the strong empirical

performance. Going forward, there are many interesting directions for future work such as:

scaling up inverse dynamics pretraining to larger real world tasks, going beyond the imitation

setting to consider learning from suboptimal data or in online settings, and comparing against

pretraining techniques that go beyond feature learning (such as goal conditioned and reward-based

policies).
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7 | Discussion

This thesis has presented a variety of work that attempts to bridge the gap between supervised

learning and control. In Part I we considered simplified algorithmic approaches to the offline

reinforcement learning problem that attempt to make the algorithms more similar to standard

supervised learning. While these algorithms have clear limitations in terms of attempting to

recover the optimal policy, they also have clear benefits in terms of stabilized and simplified

training that can make them useful components of broader systems for solving control problems.

In Part II we instead focused on the data for offline reinforcement learning, which is the limiting

factor in how well we can hope for any algorithm to do. We consider two extreme goals of

data collection, either maximal exploration without any supervision (Chapter 4) or maximal

supervision, i.e. expert teleoperation (Chapter 5). Both data collection scenarios raise interesting

questions and opportunities. The exploratory data has the possibility of solving many tasks from

one dataset, but is difficult to scale to hard-exploration tasks. Collecting datasets via teleoperation

can lead to good data efficiency and task success, but is limited by the capabilities and cost of

the teleoperation. Both chapters illustrate how thinking deeply about the data that is fed into a

learning algorithm can potentially yield large returns.

Finally, in Part III we consider how to use self-supervised pretraining approaches for downstream

control. Chapter 6 presents results in a multitask imitation setting where we find that modeling the

inverse dynamics as a self-supervised pretraining taskworks better than the alternatives. This work
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takes a first step towards bringing scalable self-supervised pretraining into control problems where

the datasets are often more structured (containing trajectories rather than single datapoints) than

in standard supervised settings, which opens the door for more targeted pretraining objectives.

There are of course many interesting directions for future work to continue to bridge the gap

from supervised learning to control. In particular, the understanding of how dataset collection

can impact downstream reinforcement learning is still understudied. We presented preliminary

work studying fully exploratory (Chapter 4) and fully expert (Chapter 5) data collection, but there

is clearly a lot of room in between these extremes that is likely to be very useful in practice. For

example, how can we use experts to guide effective exploration? Another important theoretical

direction is to get a better understanding of what is possible and what is optimal in terms of data

collection. With a fixed budget for collecting data, what sort of data should we be attempting

to collect? The VBT approach presents a heuristic answer to this question, but a more rigorous

answer could yield interesting practical insights.

Another interesting possible direction to build on the results in this thesis would be to extend

the ideas about pretraining presented in Part III. That chapter considers standard transition-

level pretraining objectives that have been studies in the literature before. Those transition-level

objective leverage the Markov structure of the problem, but they forgo much of the recent advances

in scalable sequence modeling with transformers. Some recent work has instead pretrained by

modeling the full sequence [Wu et al. 2023; Chen et al. 2021b; Yang and Nachum 2021]. This sort

of pretraining may look more similar to language modeling, which has recently seen much success

for natural language processing [Brown et al. 2020]. Perhaps the most interesting property of

the recent advances in large language models is that the models can be effectively prompted to

accomplish a massively diverse set of tasks without needing to finetune the weights. An interesting

future direction is to pretrain sequence models for control and to leverage prompting as well

as finetuning to effectively adapt to new problems. As we saw in Chapter 3, to effectively solve
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control problems, the prompting scheme likely needs to go beyond simply conditioning on returns.

Instead conditioning on language or sequences of states could yield richer generalization. Of

course, this approach will still run up against all of the issues with collecting broad and interesting

datasets for control problems discussed elsewhere in this thesis.

More speculatively, there is also an opportunity to bridge the gap in the other direction, by

bringing tools and ideas from control and reinforcement learning into regimes that are traditionally

approached with supervised learning alone. Large language models (LLMs) are a particularly

interesting case here. For starters, LLMs are already being finetuned with reinforcement learning

from human feedback because, while the models may be pretrained with supervised learning, the

ultimate use case is to have easily controllable generation which starts to look more like a control

problem (albeit with a somewhat ill-specified reward). But perhaps more interesting are directions

thinking about how to more actively collect and filter the data that models are trained on, an

issue that is often central for control problems. For example, the distribution of data observed in

deployed systems will be shaped by (and maybe shape) the distribution of text supplied by users.

Or alternatively, even the selection of pretraining data itself is now often shaped by intuitive

heuristics, but motivated by ideas like those discussed in Part II, it would be interesting to think

about how to shape the collection and curation of these datasets in automated ways to facilitate

downstream goals.

In sum, this thesis has presented several pieces of works that attempt to bridge the gap between

supervised learning and control, but there is clearly still much work to be done to leverage the

tools from these two subfields going forward.
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Part IV

Appendix
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A | Appendix for Offline RL without

off-policy evaluation

A.1 Gridworld example where multi-step outperforms

one-step

As explained in the main text, this section presents an example that is only a slight modification

of the one in Figure 2.4, but where a multi-step approach is clearly preferred over just one step.

The data-generating and learning processes are exactly the same (100 trajectories of length 100,

discount 0.9, 𝛼 = 0.1 for reverse KL regularization). The only difference is that rather than using a

behavior that is a mixture of optimal and uniform, we use a behavior that is a mixture of maximally

suboptimal and uniform. If we call the suboptimal policy 𝜋− (which always goes down and left in

our gridworld), then the behavior for the modified example is 𝛽 = 0.2 · 𝜋− + 0.8 · 𝑢, where 𝑢 is

uniform. Results are shown in Figure A.1.

By being more likely to go to the noisy states, this behavior policy allows us to get lower variance

estimates of the rewards. Essentially, the coverage of the behavior policy in this example reduces

the magnitude of the evaluation errors. This allows for more aggressive planning using multi-step

methods. Moreover, since the behavior is less likely to go to the good state, the behavior Q function
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Figure A.1: A gridworld example with modified behavior where multi-step is much better than one-step.

does not propagate the signal from the rewarding state as far, harming the one-step method.

A.2 Connection to policy improvement guarantees

The regularized or constrained one-step algorithm performs an update that directly inherits

guarantees from the literature on conservative policy improvement [Kakade and Langford 2002;

Schulman et al. 2015; Achiam et al. 2017]. These original papers consider an online setting where

more data is collected at each step, but the guarantee at each step applies to our one-step offline

algorithm.

The key idea of this line of work begins with the performance difference lemma of [Kakade and

Langford 2002], and then lower bounds the amount of improvement over the behavior policy. De-

fine the discounted state visitation distribution for a policy 𝜋 by 𝑑𝜋 (𝑠) := (1−𝛾)∑∞
𝑡=0 𝛾

𝑡P𝜌,𝑃,𝜋 (𝑠𝑡 =

𝑠). We will also use the shorthand𝑄 (𝑠, 𝜋) to denote E𝑎∼𝜋 |𝑠 [𝑄 (𝑠, 𝑎)]. Then we have the performance

difference lemma as follows.
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Lemma A.1 (Performance difference, [Kakade and Langford 2002]). For any two policies 𝜋 and 𝛽 ,

𝐽 (𝜋) − 𝐽 (𝛽) = 1
1 − 𝛾 E𝑠∼𝑑𝜋

[𝑄𝛽 (𝑠, 𝜋) −𝑄𝛽 (𝑠, 𝛽)] . (A.1)

Then, Corollary 1 from [Achiam et al. 2017] (reproduced below) gives a guarantee for the one-step

algorithm. The key idea is that when 𝜋 is sufficiently close to 𝛽 , we can use𝑄𝛽 as an approximation

to 𝑄𝜋 .

Lemma A.2 (Conservative Policy Improvement, [Achiam et al. 2017]). For any two policies 𝜋 and

𝛽 , let ∥𝐴𝛽𝜋 ∥∞ = sup𝑠 |𝑄𝛽 (𝑠, 𝜋) −𝑄𝛽 (𝑠, 𝛽) |. Then,

𝐽 (𝜋) − 𝐽 (𝛽) ≥ 1
1 − 𝛾 E𝑠∼𝑑𝛽

[(
𝑄𝛽 (𝑠, 𝜋) −𝑄𝛽 (𝑠, 𝛽)

)
− 2𝛾 ∥𝐴𝛽𝜋 ∥∞

1 − 𝛾 𝐷𝑇𝑉 (𝜋 (·|𝑠)∥𝛽 (·|𝑠))
]

(A.2)

where 𝐷𝑇𝑉 denotes the total variation distance.

Replacing𝑄𝛽 with𝑄𝛽 and the TV distance by the KL (using Pinsker’s inequality), we get precisely

the objective that we optimize in the one-step algorithm. This shows that the one-step algorithm

indeed optimizes a lower bound on the performance difference. Of course, in practice we replace

the potentially large multiplier on the divergence term by a hyperparameter, but this theory at

least motivates the soundness of the approach.

We are not familiar with similar guarantees for the iterative or multi-step approaches that rely on

off-policy evaluation.

A.3 Experimental setup

Code for our experimental setup can be found at https://github.com/davidbrandfonbrener/

onestep-rl.
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Table A.1: Hyperparameter sweeps for each algorithm.

Algorithm Hyperparameter set

Reverse KL (𝛼) {0.03, 0.1, 0.3, 1.0, 3.0, 10.0}
Easy BCQ (𝑀) {2, 5, 10, 20, 50, 100}
Exponentially weighted (𝜏) {0.1, 0.3, 1.0, 3.0, 10.0, 30.0}

A.3.1 Benchmark experiments (Tables 2.1 and 2.2, Figure 2.2)

Data. We use the datasets from the D4RL benchmark [Fu et al. 2020]. We use the latest versions,

which are v2 for the mujoco datasets and v1 for the adroit datasets.

Hyperparameter tuning. We follow the practice of [Fu et al. 2020] and tune a small set of

hyperparameters by interacting with the simulator to estimate the value of the policies learned

under each hyperparameter setting. The hyperparameter sets for each algorithm can be seen in

Table A.1. We tune hyperparameters using 3 seeds, but then evaluate the best hyperparameter by

training on an additional 7 seeds and then report results on the 10 total seeds.

This may initially seem like “cheating”, but can be a reasonable setup if we are considering

applications like robotics where we can feasibly test a small number of trained policies on the real

system. Also, since prior work has used this setup, it makes it easiest to compare our results if we

use it too. While beyond the scope of this work, we do think that better offline model selection

procedures will be crucial to make offline RL more broadly applicable. A good primer on this topic

can be found in [Paine et al. 2020].

Models. All of our Q functions and policies are simple MLPs with ReLU activations and 2

hidden layers of width 1024. Our policies output a truncated normal distribution with diagonal

covariance where we can get reparameterized samples by sampling from a uniform distribution

and computing the differentiable inverse CDF [Burkhardt 2014]. We found this to be more stable
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than the tanh of normal used by e.g. [Fu et al. 2020], but to achieve similar performance when

both are stable. We use these same models across all experiments.

One-step training procedure. For all of our one-step algorithms, we train our 𝛽 behavior

estimate by imitation learning for 500k gradient steps using Adam [Kingma and Ba 2014] with

learning rate 1e-4 and batch size 512. We train our 𝑄𝛽 estimator by fitted Q evaluation with a

target network for 2 million gradient steps using Adam with learning rate 1e-4 and batch size 512.

The target is updated softly at every step with parameter 𝜏 = 0.005. All policies are trained for

100k steps again with Adam using learning rate 1e-4 and batch size 512.

Easy BCQ does not require training a policy network and just uses 𝛽 and𝑄𝛽 to define it’s policy. For

the exponentially weighted algorithm, we clip the weights at 100 to prevent numerical instability.

To estimate reverse KL at some state we use 10 samples from the current policy and the density

defined by our estimated 𝛽 .

Each random seed retrains all three models (behavior, Q, policy) from different initializations. We

use three random seeds.

Multi-step training procedure. For multi-step algorithms we use all the same hyperparam-

eters as one-step. We initialize our policy and Q function from the same pre-trained 𝛽 and 𝑄𝛽

as we use for the one-step algorithm trained for 500k and 2 million steps respectively. Then we

consider 5 policy steps. To ensure that we use the same number of gradient updates on the policy,

each step consists of 20k gradient steps on the policy followed by 200k gradient steps on the Q

function. Thus, we take the same 100k gradient steps on the policy network. Now the Q updates

are off-policy so the next action 𝑎′ is sampled from the current policy 𝜋𝑖 rather than from the

dataset.
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Iterative training procedure. For iterative algorithms we again use all the same hyperpa-

rameters and initialize from the same 𝛽 and 𝑄𝛽 . We again take the same 100k gradient steps on

the policy network. For each step on the policy network we take 2 off-policy gradient steps on the

Q network.

Evaluation procedure. To evaluate each policy we run 100 trajectories in the environment

and compute the mean. We then report the mean and standard error over 10 training seeds.

A.3.2 MSE experiment (Figure 3)

Data. To get an independently sampled dataset of the same size as the training set, we use

the behavior cloned policy 𝛽 to sample 1000 trajectories. The checkpointed policies are taken at

intervals of 5000 gradient steps from each of the three training seeds.

Training procedure. The 𝑄𝜋𝑖 training procedure is the same as before so we use Adam with

step size 1e-4 and batch size 512 and a target network with soft updates with parameter 0.005. We

train for 1 million steps.

Evaluation procedure. To evaluate MSE, we sample 1000 state, action pairs from the original

training set and from each state, action pair we run 3 rollouts. We take the mean over the rollouts

and then compute squared error at each state, action pair and finally get MSE by taking the mean

over state, action pairs. The reported reverse KL is evaluated by samples during training. At each

state in a batch we take 10 samples to estimate the KL at that state and then take the mean over

the batch.
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A.3.3 Gridworld experiment (Figure 4)

Environment. The environment is a 15 x 15 gridworld with deterministic transitions. The

rewards are deterministically 1 for all actions taken from the state in the top right corner and

stochastic with distributionN(−0.5, 1) for all actions taken from states on the left or bottom walls.

The initial state is uniformly random. The discount is 0.9.

Data. We collect data from a behavior policy that is a mixture of the uniform policy (with

probability 0.8) and an optimal policy (with probability 0.2). We collect 100 trajectories of length

100.

Training procedure. We give the agent access to the deterministic transitions. The only thing

for the agent to do is estimate the rewards from the data and then learn in the empirical MDP. We

perform tabular Q evaluation by dynamic programming. We initialize with the empirical rewards

and do 100 steps of dynamic programming with discount 0.9. Regularized policy updates are

solved for exactly by setting 𝜋𝑖 (𝑎 |𝑠) ∝ 𝛽 (𝑎 |𝑠) exp( 1
𝛼
𝑄𝜋𝑖−1 (𝑠, 𝑎)).

A.3.4 Overestimation experiment (Figure 5)

This experiment uses the same setup as the MSE experiment. The main difference is we also

consider the Q functions learned during training and demonstrate the overestimation relative to

the Q functions trained on the evaluation dataset as in the MSE experiment.

A.3.5 Mixed data experiment (Figure 6)

We construct datasets with 𝑝𝑚 = {0.0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0} by mixing the random and medium

datasets from D4RL and then run the same training procedure as we did for the benchmark
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experiments. Each dataset has the same size, but a different proportion of trajectories from the

medium policy.
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A.4 Learning curves

In this section we reproduce the learning curves and hyperparameter plots across the one-step,

multi-step, and iterative algorithms with reverse KL regularization, as in Figure 2.2.

Figure A.2: Learning curves on the medium datasets.
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Figure A.3: Learning curves on the medium-expert datasets.
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Figure A.4: Learning curves on the random datasets.
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B | Appendix for Return Conditioned

Supervised Learning

B.1 Extended experimental results

Here we present extended versions of the D4RL experiments. We use the same setup as in

Section 3.6, but run each of the algorithms on three different datasets in each environment.

Explicitly we show results on antmaze-umaze, antmaze-medium-play, and antmaze-large-

play in Figure B.1. Then we show results on halfcheetah-medium, halfcheetah-medium-

replay, and halfcheetah-medium-expert in Figure B.2. Finally we show results on pen-human,

pen-cloned, and pen-expert in Figure B.3.

These experiments corroborate the story from the main text. Without return coverage (as in the

larger antmaze tasks), RCSL can fail dramatically. But in the case with return coverage but poor

state coverage (as in the pen human dataset that only has 25 trajectories), RCSL can beat DP.

However we see that with larger datasets that yield more coverage, DP recovers it’s performance

(as in pen expert which has 5000 trajectories, or 200x the amount of data as in the human dataset).
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Figure B.1: Experimental results on antmaze datasets.

Figure B.2: Experimental results on halfcheetah datasets.

B.2 Trajectory stitching

B.2.1 Theory

A common goal from the offline RL literature is to be able to stitch together previously collected

trajectories to outperform the behavior policy. This is in general not possible with RCSL. The

main issue here is that RCSL is using trajectory level information during training, which precludes

combining information across trajectories. In this example we show that even with infinite data,

when attempting to combine two datastreams using standard approaches to conditioning RCSL

can fail to recover the optimal policy.

Consider the MDP illustrated in Figure B.4 with three states 𝑠0, 𝑠1, 𝑠2 and horizon 𝐻 = 2. All

transitions and rewards are deterministic as shown. We consider the case where data has been
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Figure B.3: Experimental results on pen datasets.

Figure B.4: An example where RCSL fails to stitch trajectories.

collected by two different processes. One process (illustrated in red) consists of episodes that always

start at 𝑠0 and chooses the first action uniformly but chooses the bad action 𝑎0 deterministically

from 𝑠2. The other process (illustrated in blue) consists of trajectories that always start at 𝑠1

and deterministically go towards the good action, receiving reward of 1. We will consider what

happens to RCSL at test time when initialized at 𝑠0.

The data does not contain any trajectories that begin in 𝑠0 and select 𝑎1 to transition to 𝑠2 followed

by 𝑎1, which is the optimal decision. But, the data does have enough information to stitch together

the optimal trajectory from 𝑠0, and it is clear to see that DP-based approaches would easily find

the optimal policy.

For RCSL, if we condition on optimal return 𝑔 = 1, we get that 𝜋 (·|𝑠1, 𝑔 = 1) is undefined since we

only observe trajectories with 𝑔 = 0 that originate at 𝑠0. To get a well-defined policy, we must
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set 𝑓 (𝑠0) = 0, but then 𝜋 (𝑎1 |𝑠1, 𝑔 = 0) = 0.5. Thus, 𝜋 will never choose the optimal path with

probability larger than 0.5, for any conditioning function 𝑓 . Moreover, the conditioning function

that does lead to success is non-standard: 𝑓 (𝑠0) = 0, 𝑓 (𝑠2) = 1. For the standard approach to

conditioning of setting the initial value and decreasing over time with observed rewards, RCSL

will never achieve non-zero reward from 𝑠0.

Note that DT-style learning where we condition on the entire history of states rather than just the

current state can perform even worse since 𝑃𝑑𝑎𝑡𝑎 (𝑎1 |𝑠0, 𝑎0, 𝑠2, 𝑔 = 1) = 0, i.e. even using the non-

standard conditioning function described above will not fix things. Also, it is worth mentioning

that it is possible that conditioning on the out-of-distribution return 𝑔 = 1 from 𝑠0 could work due

to extrapolation of a neural network policy. However, as we will see in the experiments section,

this does not happen empirically in controlled settings.

B.2.2 Experiments

The above example does not take into account the possibility of generalization out of distribution

(i.e. when conditioning on returns that were not observed in the data). To test whether generaliza-

tion could lead to stitching we construct two datasets: stitch-easy and stitch-hard. Both datasets

use the same simple point-mass environment with sparse rewards as before, but now we introduce

a wall into the environment to limit the paths to the goal. The stitch-easy dataset contains two

types of trajectories: some beginning from the initial state region and moving upwards (with

added Gaussian noise in the actions) and some beginning from the left side of the environment

and moving towards the goal (with added Gaussian noise in the actions). This is “easy” since just

following the behavior policy for the first half of the trajectory leads to states where the dataset

indicates how to reach the goal. We also create the stitch-hard dataset which includes a third

type of trajectory that begins from the initial state and goes to the right (mirroring the tabular

example). This is “hard” since the dominant action from the behavior in the initial state is now to
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go right rather than to move towards the goal-reaching trajectories. This acts as a distraction for

methods that are biased towards the behavior. Datasets and results are illustrated in Figure B.5.

(a) Stitch-easy (b) Stitch-hard

Figure B.5: Results on two datasets that require stitching.

We see that on the stitch-easy dataset RvS is able to perform almost as well as the DP algorithms

and better than %BC. This indicates that it is able to follow the behavior when conditioning on an

out-of-distribution return until it reaches a state where the return directs it to the goal. In contrast,

DT totally fails on this task since it conditions on the entire history of the trajectory. Since the

dataset only contains trajectories from the initial state that continue to the top of the board, DT

always reproduces such trajectories from the initial state and does not stitch together trajectories.

In the stitch-hard dataset, we see that RvS fails as well and does not outperform %BC. This

indicates that indeed, RvS can be distracted by the distractor trajectories from the initial state.

The conditioning itself was not what cause the stitching in the stitch-easy dataset, but rather

the learned policy simply defaults to the behavior. This can be beneficial in some problems, but

prevents trajectory stitching that might allow the learned policy to dramatically outperform the

behavior. TD3+BC also struggles here, likely due to some combination of instability and the BC

regularization causing issues due to the distractor actions.
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B.3 Proofs

B.3.1 Proof of Theorem 3.1

Proof. Let 𝑔(𝑠1, 𝑎1:𝐻 ) be the value of the return by rolling out the open loop sequence of actions

𝑎1:𝐻 under the deterministic dynamics induced by 𝑇 and 𝑟 . Then we can write

E
𝑠1
[𝑓 (𝑠1)] − 𝐽 (𝜋𝑓 ) = E

𝑠1

[
E

𝜋𝑓 |𝑠1
[𝑓 (𝑠1) − 𝑔1]

]
(B.1)

= E
𝑠1

[
E

𝑎1:𝐻∼𝜋𝑓 |𝑠1
[𝑓 (𝑠1) − 𝑔(𝑠1, 𝑎1:𝐻 )]

]
(B.2)

+ E
𝑠1

[
E

𝑎1:𝐻∼𝜋𝑓 |𝑠1
[𝑔(𝑠1, 𝑎1:𝐻 ) − 𝑔1]

]
(B.3)

≤ E
𝑠1

[
E

𝑎1:𝐻∼𝜋𝑓 |𝑠1
[𝑓 (𝑠1) − 𝑔(𝑠1, 𝑎1:𝐻 )]

]
+ 𝜖𝐻 2. (B.4)

where the last step follows by bounding the magnitude of the difference between 𝑔1 and 𝑔(𝑠1, 𝑎1:𝐻 )

by 𝐻 and applying a union bound over the 𝐻 steps in the trajectory (using the near determinism

assumption), namely:

𝐻 · sup
𝑠1

⋃
𝑡

𝑃𝑎𝑡∼𝜋𝑓 |𝑠1 (𝑟𝑡 ≠ 𝑟 (𝑠𝑡 , 𝑎𝑡 ) or 𝑠𝑡+1 ≠ 𝑇 (𝑠𝑡 , 𝑎𝑡 )) ≤ 𝜖𝐻 2. (B.5)

Now we consider the first term from eq. (B.4). Again bounding the magnitude of the difference by

𝐻 we get that

E
𝑠1

[
E

𝑎1:𝐻∼𝜋𝑓 |𝑠1
[𝑓 (𝑠1) − 𝑔(𝑠1, 𝑎1:𝐻 )]

]
≤ E

𝑠1

∫
𝑎1:𝐻

𝑃𝜋𝑓 (𝑎1:𝐻 |𝑠1)1[𝑔(𝑠1, 𝑎1:𝐻 ) ≠ 𝑓 (𝑠1)]𝐻 (B.6)

To bound this term, we will more carefully consider what happens under the distribution 𝑃𝜋𝑓 .

To simplify notation, let 𝑠𝑡 = 𝑇 (𝑠1, 𝑎1:𝑡−1) be the result of following the deterministic dynamics
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defined by 𝑇 up until step 𝑡 . Expanding it out, applying the near determinism, the consistency of

𝑓 , the coverage assumption, canceling some terms, and then inducting we see that:

𝑃𝜋𝑓 (𝑎1:𝐻 |𝑠1) = 𝜋𝑓 (𝑎1 |𝑠1)
∫
𝑠2

𝑃 (𝑠2 |𝑠1, 𝑎1)𝑃𝜋𝑓 (𝑎2:𝐻 |𝑠1, 𝑠2) (B.7)

≤ 𝜋𝑓 (𝑎1 |𝑠1)𝑃𝜋𝑓 (𝑎2:𝐻 |𝑠1, 𝑠2) + 𝜖 (B.8)

= 𝛽 (𝑎1 |𝑠1)
𝑃𝛽 (𝑔1 = 𝑓 (𝑠1) |𝑠1, 𝑎1)
𝑃𝛽 (𝑔1 = 𝑓 (𝑠1) |𝑠1)

𝑃𝜋𝑓 (𝑎2:𝐻 |𝑠1, 𝑠2) + 𝜖 (B.9)

≤ 𝛽 (𝑎1 |𝑠1)
𝜖 + 𝑃𝛽 (𝑔1 − 𝑟 (𝑠1, 𝑎1) = 𝑓 (𝑠1) − 𝑟 (𝑠1, 𝑎1) |𝑠1, 𝑎1, 𝑠2)

𝑃𝛽 (𝑔1 = 𝑓 (𝑠1) |𝑠1)
𝑃𝜋𝑓 (𝑎2:𝐻 |𝑠1, 𝑠2) + 𝜖 (B.10)

= 𝛽 (𝑎1 |𝑠1)
𝜖 + 𝑃𝛽 (𝑔2 = 𝑓 (𝑠2) |𝑠2)
𝑃𝛽 (𝑔1 = 𝑓 (𝑠1) |𝑠1)

𝑃𝜋𝑓 (𝑎2:𝐻 |𝑠1, 𝑠2) + 𝜖 (B.11)

≤ 𝛽 (𝑎1 |𝑠1)
𝑃𝛽 (𝑔2 = 𝑓 (𝑠2) |𝑠2)
𝑃𝛽 (𝑔1 = 𝑓 (𝑠1) |𝑠1)

𝑃𝜋𝑓 (𝑎2:𝐻 |𝑠1, 𝑠2) + 𝜖
(

1
𝛼 𝑓

+ 1
)

(B.12)

≤ 𝛽 (𝑎1 |𝑠1)𝛽 (𝑎2 |𝑠2)(((((((((
𝑃𝛽 (𝑔2 = 𝑓 (𝑠2) |𝑠2)
𝑃𝛽 (𝑔1 = 𝑓 (𝑠1) |𝑠1)

·
𝑃𝛽 (𝑔2 = 𝑓 (𝑠2) |𝑠2, 𝑎2)

(((((((((
𝑃𝛽 (𝑔2 = 𝑓 (𝑠2) |𝑠2)

𝑃𝜋𝑓 (𝑎3:𝐻 |𝑠1, 𝑠3)) (B.13)

+ 2𝜖
(

1
𝛼 𝑓

+ 1
)

(B.14)

≤
𝐻∏
𝑡=1

𝛽 (𝑎𝑡 |𝑠𝑡 )
𝑃𝛽 (𝑔𝐻 = 𝑓 (𝑠𝐻 ) |𝑠𝐻 , 𝑎ℎ)
𝑃𝛽 (𝑔1 = 𝑓 (𝑠1) |𝑠1)

+ 𝐻𝜖
(

1
𝛼 𝑓

+ 1
)

(B.15)

=

𝐻∏
𝑡=1

𝛽 (𝑎𝑡 |𝑠𝑡 )
1[𝑔(𝑠1, 𝑎1:𝐻 ) = 𝑓 (𝑠1)]
𝑃𝛽 (𝑔1 = 𝑓 (𝑠1) |𝑠1)

+ 𝐻𝜖
(

1
𝛼 𝑓

+ 1
)

(B.16)

where the last step follows from the determinism of the trajectory that determines 𝑠𝐻 and the

consistency of 𝑓 . Plugging this back into eq (B.6) and noticing that the two indicator functions

can never both be 1, we get that:

E
𝑠1

[
E

𝑎1:𝐻∼𝜋𝑓 |𝑠1
[𝑓 (𝑠1) − 𝑔(𝑠1, 𝑎1:𝐻 )]

]
≤ 𝐻 2𝜖

(
1
𝛼 𝑓

+ 1
)

(B.17)

Plugging this back into eq (B.4) yields the result. □
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B.3.2 Proof of Corollary 3.2

Proof. We need to define a function 𝑓 so that E[𝑓 (𝑠1)] is approximately 𝐽 (𝜋∗). To do this, note

that there exists a deterministic optimal policy 𝜋∗, and since the environment dynamics are nearly

deterministic we can set 𝑓 (𝑠1) to be the return of 𝜋∗ under the deterministic dynamics. To do this,

let 𝑇 𝜋∗ (𝑠1, 𝑡) represent the state reached by running 𝜋∗ from 𝑠1 for 𝑡 steps under the deterministic

dynamics defined by 𝑇 . Then:

𝑓 (𝑠1) =
𝐻∑︁
𝑡=1

𝑟 (𝑇 𝜋∗ (𝑠1, 𝑡), 𝜋∗(𝑇 𝜋∗ (𝑠1, 𝑡))) (B.18)

Now we have as in the proof of Theorem 3.1 that the probability that 𝑔 ≠ 𝑓 (𝑠) is bounded by 𝜖𝐻 ,

so that

E
𝑠1
[𝑓 (𝑠1)] − 𝐽 (𝜋∗) = E

𝑠1
[ E
𝑔∼𝜋∗ |𝑠1

[𝑓 (𝑠1) − 𝑔]] ≤ E
𝑠1
[𝑃𝜋∗ (𝑔 ≠ 𝑓 (𝑠1) |𝑠1) · 𝐻 ] ≤ 𝜖𝐻 2 (B.19)

Combining this with Theorem 3.1 yields the result. □

B.3.3 Proof of Theorem 3.4

First we prove the following Lemma. This can be seen as a finite-horizon analog to results from

Achiam et al. [2017].

Lemma B.1. Let 𝑑𝜋 refer to the marginal distribution of 𝑃𝜋 over states only. For any two policies

𝜋, 𝜋 ′ we have:

∥𝑑𝜋 − 𝑑𝜋 ′∥1 ≤ 2𝐻 · E
𝑠∼𝑑𝜋

[𝑇𝑉 (𝜋 (·|𝑠)∥𝜋 ′(·|𝑠))] (B.20)

Proof. First we will define a few useful objects. Let 𝑑ℎ𝜋 (𝑠) = 𝑃𝜋 (𝑠ℎ = 𝑠). Let Δℎ = ∥𝑑ℎ𝜋 (𝑠) −𝑑ℎ𝜋 ′ (𝑠)∥1.
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Let 𝛿ℎ = 2E𝑠∼𝑑ℎ𝜋 [𝑇𝑉 (𝜋 (·|𝑠)∥𝜋 ′(·|𝑠))].

Now we claim that Δℎ ≤ 𝛿ℎ−1 + Δℎ−1 for ℎ > 1 and Δ1 = 0.

To see this, consider some fixed ℎ. Note that 𝑑ℎ𝜋 (𝑠) =
∫
𝑠 ′
𝑑ℎ−1
𝜋 (𝑠′)

∫
𝑎′
𝜋 (𝑎′|𝑠′)𝑃 (𝑠 |𝑠′, 𝑎′). Then

expanding the definitions and adding and subtracting we see that

Δℎ =

∫
𝑠

|𝑑ℎ𝜋 (𝑠) − 𝑑ℎ𝜋 ′ (𝑠) | (B.21)

≤
∫
𝑠

���� ∫
𝑠 ′
𝑑ℎ−1
𝜋 (𝑠′)

∫
𝑎′
(𝜋 (𝑎′|𝑠′) − 𝜋 ′(𝑎′|𝑠′))𝑃 (𝑠 |𝑠′, 𝑎′)

���� (B.22)

+
∫
𝑠

���� ∫
𝑠 ′
(𝑑ℎ−1
𝜋 (𝑠′) − 𝑑ℎ−1

𝜋 ′ (𝑠′))
∫
𝑎′
𝜋 ′(𝑎′|𝑠′)𝑃 (𝑠 |𝑠′, 𝑎′)

���� (B.23)

≤ 2 E
𝑠∼𝑑ℎ−1

𝜋

[𝑇𝑉 (𝜋 (·|𝑠)∥𝜋 ′(·|𝑠))] + ∥𝑑ℎ−1
𝜋 − 𝑑ℎ−1

𝜋 ′ ∥1 = 𝛿ℎ−1 + Δℎ−1. (B.24)

Now applying the claim and the definition of 𝑑𝜋 we get that

∥𝑑𝜋 − 𝑑𝜋 ′∥1 ≤ 1
𝐻

𝐻∑︁
ℎ=1

Δℎ ≤ 1
𝐻

𝐻∑︁
ℎ=1

ℎ−1∑︁
𝑗=1

𝛿 𝑗 ≤ 𝐻
1
𝐻

𝐻∑︁
ℎ=1

𝛿ℎ = 2𝐻 · E
𝑠∼𝑑𝜋

[𝑇𝑉 (𝜋 (·|𝑠)∥𝜋 ′(·|𝑠))] . (B.25)

□

Now we can prove the Theorem.

Proof. Applying the definition of 𝐽 and Lemma B.1, we get

𝐽 (𝜋𝑓 ) − 𝐽 (𝜋𝑓 ) = 𝐻 ( E
𝑃𝜋𝑓

[𝑟 (𝑠, 𝑎)] − E
𝑃𝜋𝑓

[𝑟 (𝑠, 𝑎)]) (B.26)

≤ 𝐻 ∥𝑑𝜋𝑓 − 𝑑𝜋𝑓 ∥1 (B.27)

≤ 2 · E
𝑠∼𝑑𝜋𝑓

[𝑇𝑉 (𝜋𝑓 (·|𝑠)∥𝜋𝑓 (·|𝑠))]𝐻 2 (B.28)
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Expanding definitions, using the multiply and divide trick, and applying the assumptions:

2 · E
𝑠∼𝑑𝜋𝑓

[𝑇𝑉 (𝜋𝑓 (·|𝑠)∥𝜋𝑓 (·|𝑠))] = E
𝑠∼𝑑𝜋𝑓

[∫
𝑎

|𝑃𝛽 (𝑎 |𝑠, 𝑓 (𝑠)) − 𝜋 (𝑎 |𝑠, 𝑓 (𝑠)) |
]

(B.29)

= E
𝑠∼𝑑𝜋𝑓

[
𝑃𝛽 (𝑓 (𝑠) |𝑠)
𝑃𝛽 (𝑓 (𝑠) |𝑠)

∫
𝑎

|𝑃𝛽 (𝑎 |𝑠, 𝑓 (𝑠)) − 𝜋 (𝑎 |𝑠, 𝑓 (𝑠)) |
]

(B.30)

≤
𝐶 𝑓

𝛼 𝑓
E
𝑠∼𝑑𝛽

[
𝑃𝛽 (𝑓 (𝑠) |𝑠)

∫
𝑎

|𝑃𝛽 (𝑎 |𝑠, 𝑓 (𝑠)) − 𝜋 (𝑎 |𝑠, 𝑓 (𝑠)) |
]

(B.31)

≤
𝐶 𝑓

𝛼 𝑓
E
𝑠∼𝑑𝛽

[∫
𝑔

𝑃𝛽 (𝑔 |𝑠)
∫
𝑎

|𝑃𝛽 (𝑎 |𝑠, 𝑔) − 𝜋 (𝑎 |𝑠, 𝑔) |
]

(B.32)

= 2
𝐶 𝑓

𝛼 𝑓
E

𝑠∼𝑑𝜋𝑓 ,𝑔∼𝑃𝛽 |𝑠
[𝑇𝑉 (𝑃𝛽 (·|𝑠, 𝑔)∥𝜋 (·|𝑠, 𝑔))] (B.33)

≤
𝐶 𝑓

𝛼 𝑓

√︁
2𝐿(𝜋) (B.34)

where the last step comes from Pinsker’s inequality. Combining with the above bound on the

difference in expected values yields the result. □

B.3.4 Proof of Corollary 3.5

Proof. We may write 𝐿(𝜋) = 𝐿(𝜋) − 𝐻𝛽 , where 𝐻𝛽 = −E(𝑠,𝑎,𝑔)∼𝑃𝛽 [log 𝑃𝛽 (𝑎 |𝑠, 𝑔)] and

𝐿(𝜋) := − E
(𝑠,𝑎,𝑔)∼𝑃𝛽

[log𝜋 (𝑎 |𝑠, 𝑔)]

is the cross-entropy loss. Denoting 𝜋† ∈ arg min𝜋∈Π 𝐿(𝜋), we have

𝐿(𝜋) = 𝐿(𝜋) − 𝐿(𝜋†) + 𝐿(𝜋†) ≤ 𝐿(𝜋) − 𝐿(𝜋†) + 𝜖𝑎𝑝𝑝𝑟𝑜𝑥 .
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Denoting �̂� the empirical cross-entropy loss that is minimized by 𝜋 , we may further decompose

𝐿(𝜋) − 𝐿(𝜋†) = 𝐿(𝜋) − �̂�(𝜋) + �̂�(𝜋) − �̂�(𝜋†) + �̂�(𝜋†) − 𝐿(𝜋†)

≤ 2 sup
𝜋∈Π

|𝐿(𝜋) − �̂�(𝜋) |

Under the assumptions on bounded loss differences, we may bound this, e.g., using McDiarmid’s

inequality and a union bound on Π to obtain the final result. □

B.3.5 Top-% BC

Theorem B.2 (Alignment with respect to quantile). Let 𝑔𝜌 be the 1 − 𝜌 quantile of the return

distribution induced by 𝛽 over all initial states. Let 𝜋𝜌 = 𝑃𝛽 (𝑎 |𝑠, 𝑔 ≥ 𝑔𝜌). Assume the following:

1. Coverage: 𝑃𝛽 (𝑠1 |𝑔 ≥ 𝑔𝜌) ≥ 𝛼𝜌 for all initial states 𝑠1.

2. Near determinism: 𝑃 (𝑟 ≠ 𝑟 (𝑠, 𝑎) or 𝑠′ ≠ 𝑇 (𝑠, 𝑎) |𝑠, 𝑎) ≤ 𝜖 at all 𝑠, 𝑎 for some functions 𝑇 and 𝑟 .

Note that this does not constrain the stochasticity of the initial state at all.

Then

𝑔𝜌 − 𝐽 (𝜋𝜌) ≤ 𝜖
(

1
𝛼𝜌

+ 2
)
𝐻 2. (B.35)

Proof. The proof essentially follows the same argument as Theorem 3.1 with 𝑓 (𝑠1) replaced by 𝑔𝜌 .

The main difference comes from the fact that

𝜋𝜌 (𝑎 |𝑠) = 𝑃𝛽 (𝑎 |𝑠, 𝑔 ≥ 𝑔𝜌) = 𝛽 (𝑎 |𝑠)
𝑃𝛽 (𝑔 ≥ 𝑔𝜌 |𝑠, 𝑎)
𝑃𝛽 (𝑔 ≥ 𝑔𝜌 |𝑠)

(B.36)
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Explicitly, we have similar to before that:

𝑔𝜌 − 𝐽 (𝜋𝜌) = E
𝑠1
[ E
𝜋𝜌 |𝑠1

[𝑔𝜌 − 𝑔1]] (B.37)

≤ E
𝑠1

E
𝑎1:𝐻∼𝜋𝑓 |𝑠1

[𝑔𝜌 − 𝑔(𝑠1, 𝑎1:𝐻 )] + 𝜖𝐻 2. (B.38)

≤ E
𝑠1

E
𝑎1:𝐻∼𝜋𝑓 |𝑠1

[1[𝑔(𝑠1, 𝑎1:𝐻 ) < 𝑔𝜌]] · 𝐻 + 𝜖𝐻 2. (B.39)

We now define 𝑠𝑡 = 𝑇 (𝑠1, 𝑎1:𝑡−1) to be the state at step 𝑡 under the determinisitic dynamics and

similarly 𝑟𝑡 = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) the reward under deterministic dynamics. Then again mirroring the proof

above, we have that

𝑃𝜋𝜌 (𝑎1:𝐻 |𝑠1) ≤ 𝜋𝜌 (𝑎1 |𝑠1)𝑃𝜋𝜌 (𝑎2:𝐻 |𝑠1, 𝑠2, 𝑟1) + 𝜖 (B.40)

= 𝛽 (𝑎1 |𝑠1)
𝑃𝛽 (𝑔1 ≥ 𝑔𝜌 |𝑠1, 𝑎1)
𝑃𝛽 (𝑔1 ≥ 𝑔𝜌 |𝑠1)

𝑃𝜋𝜌 (𝑎2:𝐻 |𝑠1, 𝑠2, 𝑟1) + 𝜖 (B.41)

≤ 𝛽 (𝑎1 |𝑠1)
𝜖 + 𝑃𝛽 (𝑔1 ≥ 𝑔𝜌 |𝑠2, 𝑟1, 𝑎1)

𝑃𝛽 (𝑔1 ≥ 𝑔𝜌 |𝑠1)
𝑃𝜋𝜌 (𝑎2:𝐻 |𝑠1, 𝑠2, 𝑟1) + 𝜖 (B.42)

≤ 𝛽 (𝑎1 |𝑠1)
𝑃𝛽 (𝑔1 ≥ 𝑔𝜌 |𝑠1, 𝑎1)
𝑃𝛽 (𝑔1 ≥ 𝑔𝜌 |𝑠1)

𝑃𝜋𝜌 (𝑎2:𝐻 |𝑠1, 𝑠2, 𝑟1) + 𝜖 (B.43)

≤ 𝛽 (𝑎1 |𝑠1)
𝑃𝛽 (𝑔1 ≥ 𝑔𝜌 |𝑠2, 𝑟1, 𝑎1)
𝑃𝛽 (𝑔1 ≥ 𝑔𝜌 |𝑠1)

𝑃𝜋𝜌 (𝑎2:𝐻 |𝑠1, 𝑠2, 𝑟1) + 𝜖
(

1
𝛼𝜌

+ 1
)

(B.44)

≤ 𝛽 (𝑎1 |𝑠1)𝛽 (𝑎2 |𝑠2)(((((((((
𝑃𝛽 (𝑔1 ≥ 𝑔𝜌 |𝑠2, 𝑟1)
𝑃𝛽 (𝑔1 ≥ 𝑔𝜌 |𝑠1)

𝑃𝛽 (𝑔1 ≥ 𝑔𝜌 |𝑠2, 𝑟1, 𝑎2)

(((((((((
𝑃𝛽 (𝑔1 ≥ 𝑔𝜌 |𝑠2, 𝑟1)

𝑃𝜋𝜌 (𝑎3:𝐻 |𝑠1, 𝑠3, 𝑟1:2) (B.45)

+ 2𝜖
(

1
𝛼𝜌

+ 1
)

(B.46)

≤
𝐻∏
𝑡=1

𝛽 (𝑎𝑡 |𝑠𝑡 )
𝑃𝛽 (𝑔1 ≥ 𝑔𝜌 |𝑠𝐻 , 𝑟1:𝐻 )
𝑃𝛽 (𝑔1 ≥ 𝑔𝜌 |𝑠1)

+ 𝐻𝜖
(

1
𝛼𝜌

+ 1
)

(B.47)

=

𝐻∏
𝑡=1

𝛽 (𝑎𝑡 |𝑠𝑡 )
1[𝑔(𝑠1, 𝑎1:𝐻 ) ≥ 𝑔𝜌]
𝑃𝛽 (𝑔1 ≥ 𝑔𝜌 |𝑠1)

+ 𝐻𝜖
(

1
𝛼𝜌

+ 1
)

(B.48)

Plugging this into Equation B.39 we get the result. □

Theorem B.3 (Reduction of %BC to SL). Let 𝑔𝜌 be the 1 − 𝜌 percentile of the return distribution
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induced by 𝛽 . Let 𝜋𝜌 = 𝑃𝛽 (𝑎 |𝑠, 𝑔 ≥ 𝑔𝜌). Assume

1. Bounded mismatch:

𝑃𝜋𝜌 (𝑠)
𝑃𝛽 (𝑠 |𝑔≥𝑔𝜌 ) ≤ 𝐶𝜌 for all 𝑠 .

Define the expected loss as 𝐿𝜌 (𝜋) = E𝑠∼𝑃𝛽 |𝑔≥𝑔𝜌 [𝐾𝐿(𝜋𝜌 (·|𝑠)∥𝜋 (·|𝑠))]. Then we have that

𝐽 (𝜋𝜌) − 𝐽 (𝜋) ≤ 𝐶𝜌𝐻 2
√︃

2𝐿𝜌 (𝜋). (B.49)

Proof. Recall that 𝑑𝜋 refers to the marginal distribution of 𝑃𝜋 over states only. Applying the

definition of 𝐽 and Lemma B.1, we get

𝐽 (𝜋𝜌) − 𝐽 (𝜋) = 𝐻 ( E
𝑃𝜋𝜌

[𝑟 (𝑠, 𝑎)] − E
𝑃𝜋

[𝑟 (𝑠, 𝑎)]) (B.50)

≤ 𝐻 ∥𝑑𝜋𝜌 − 𝑑𝜋 ∥1 (B.51)

≤ 2 · E
𝑠∼𝑑𝜋𝜌

[𝑇𝑉 (𝜋𝜌 (·|𝑠)∥𝜋 (·|𝑠))]𝐻 2 (B.52)

Expanding definitions, using the multiply and divide trick, and applying the assumptions:

2 · E
𝑠∼𝑑𝜋𝜌

[𝑇𝑉 (𝜋𝜌 (·|𝑠)∥𝜋 (·|𝑠))] ≤ 𝐶𝜌 · 2 E
𝑠∼𝑃𝛽 (·|𝑔≥𝑔𝜌 )

[𝑇𝑉 (𝜋𝜌 (·|𝑠)∥𝜋 (·|𝑠))] (B.53)

≤ 𝐶𝜌
√︁

2𝐿(𝜋) (B.54)

where the last step comes from Pinsker’s inequality. Combining with the above bound on the

difference in expected values yields the result. □

Corollary B.4 (Sample complexity for %BC). To get finite data guarantees, add to the above

assumptions the assumptions that (1) the policy class Π is finite, (2) | log𝜋 (𝑎 |𝑠) − log𝜋 (𝑎′|𝑠′) | ≤ 𝑐

for any (𝑎, 𝑠, 𝑎′, 𝑠′) and all 𝜋 ∈ Π, and (3) the approximation error of Π is bounded by 𝜖𝑎𝑝𝑝𝑟𝑜𝑥 , i.e.
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min𝜋∈Π 𝐿𝜌 (𝜋) ≤ 𝜖𝑎𝑝𝑝𝑟𝑜𝑥 . Then with probability at least 1 − 𝛿 ,

𝐽 (𝜋𝜌) − 𝐽 (𝜋) ≤ 𝑂
(
𝐶𝜌𝐻

2

(
√
𝑐

(
log |Π |/𝛿
(1 − 𝜌)𝑁

)1/4
+ √

𝜖𝑎𝑝𝑝𝑟𝑜𝑥

)
+ 𝜖

𝛼𝜌
𝐻 2

)
. (B.55)

B.4 Experimental details

Data. Data for point-mass tasks was sampled from the scripted policies described in the text.

We sampled 100 trajectories of length 400 for each dataset, unless otherwise indicated. Data for

the benchmark experiments was taken directly from the D4RL benchmark [Fu et al. 2020].

Hyperparameters. Below we list all of the hyperparameters used across the various agorithms.

We train each algorithm on 90% of the trajectories in the dataset, using the remaining 10% as

validation. All algorithms are trained with the Adam optimizer [Kingma and Ba 2014]. We evaluate

each algorithm for 100 episodes in the environment per seed and hyperparameter configuration

and report the best performance for each algorithm for it’s relevant hyperparameter (All algorithms

were tuned across 3 values of the hyperparameter except for DT on pointmass where we tried

more values, but still got poor results). Error bars are reported across seeds, as explained in the

text.

Table B.1: Shared hyperparameters for all non-DT algorithms

Hyperparameter Value
Training steps 5𝑒5
Batch size 256
MLP width 256
MLP depth 2

Compute. All experiments were run on CPU on an internal cluster. Each of the non-DT algo-

rithms takes less than 1 hour per run (i.e. set of hyperparameters and seed) and the DT algorithm
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Table B.2: Algorithm-specific hyperparameters for all non-DT algorithms

Algorithm Hyperparameter Value(s)
%BC fraction 𝜌 [0.02, 0.10, 0.5]

learning rate 1e-3
RvS fraction of max return for conditioning [0.8, 1.0, 1.2]

learning rate 1e-3
TD3+BC 𝛼 [1.0, 2.5, 5.0]

learning rate (actor and critic) 3e-4
discount 0.99

𝜏 for target EWMA 0.005
target update period 2

IQL expectile [0.5, 0.7, 0.9]
learning rate (actor, value, and critic) 3e-4

discount 0.99
𝜏 for target EWMA 0.005

temperature 10.0

Table B.3: Hypereparameters for DT (exactly as in [Chen et al. 2021b])

Hyperparameter Value
Training steps 1𝑒5
Batch size 64
Learning rate 1e-4
Weight decay 1e-4
K 20
Embed dimension 128
Layers 3
Heads 1
Dropout 0.1

takes 5-10 hours per run.

Asset licenses. For completeness, we also report the licenses of the assets that we used in the

paper: JAX [Bradbury et al. 2018]: Apache-2.0, Flax [Heek et al. 2020]: Apache-2.0, jaxrl [Kostrikov

2021]: MIT, Decision Transformer [Chen et al. 2021b]: MIT, Deepmind control suite [Tassa et al.

2018]: Apache-2.0, mujoco [Todorov et al. 2012a]: Apache-2.0, D4RL [Fu et al. 2020]: Apache-2.0.

Code. Please see https://github.com/davidbrandfonbrener/rcsl-paper.

143

https://github.com/davidbrandfonbrener/rcsl-paper


Table B.4: Environment-specific reward targets for DT

Environment Values
Point-mass [300, 200, 100, 50, 10, 0]
Antmaze [1.0, 0.75, 0.5]
Half-cheetah [12000, 9000, 6000]
Pen [3000, 2000, 1000]
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C | Appendix for Exploratory Data

C.1 Hyper-parameters

In this section we comprehensively describe configuration of both unsupervised RL and offline RL

algorithms.

C.1.1 Unsupervised RL Hyper-parameters

We adhere closely to the parameter settings from URLB [Laskin et al. 2021]. We list the common

hyper-parameters in Table C.1 and per-algorithm hyper-parameters in Table C.2.

Table C.1: Common hyper-parameters for unsupervised RL algorithms.

Common hyper-parameter Value
Replay buffer capacity 106

Seed frames 4000
Mini-batch size 1024
Discount (𝛾 ) 0.99
Optimizer Adam
Learning rate 10−4

Agent update frequency 2
Critic target EMA rate (𝜏𝑄 ) 0.01
Hidden dim. 1024
Exploration stddev clip 0.3
Exploration stddev value 0.2
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Table C.2: Individual hyper-parameters for unsupervised RL algorithms.

Random hyper-parameter Value
Policy distribution uniform
ICM hyper-parameter Value
Reward transformation log(𝑟 + 1.0)
Forward net arch. ( |O| + |A|) → 1024 → 1024 → |O| ReLU MLP
Inverse net arch. (2 × |O|) → 1024 → 1024 → |A| ReLU MLP
Disagreement hyper-parameter Value
Ensemble size 5
Forward net arch: ( |O| + |A|) → 1024 → 1024 → |O| ReLU MLP
RND hyper-parameter Value
Predictor & target net arch. |O| → 1024 → 1024 → 512 ReLU MLP
Normalized observation clipping 5
APT hyper-parameter Value
Reward transformation log(𝑟 + 1.0)
Forward net arch. (512 + |A|) → 1024 → 512 ReLU MLP
Inverse net arch. (2 × 512) → 1024 → |A| ReLU MLP
𝑘 in NN 12
Avg top 𝑘 in NN True
Proto hyper-parameter Value
Predictor dim. 128
Projector dim. 512
Number of prototypes 512
Softmax temperature 0.1
𝑘 in NN 3
Number of candidates per prototype 4
Encoder target EMA rate (𝜏enc) 0.05
SMM hyper-parameter Value
Skill dim. 4
Skill discriminator learning rate 10−3

VAE lr 10−2

DIAYN hyper-parameter Value
Skill dim 16
Skill sampling frequency (steps) 50
Discriminator net arch. 512 → 1024 → 1024 → 16 ReLU MLP
APS hyper-parameter Value
Reward transformation log(𝑟 + 1.0)
Successor feature dim. 10
Successor feature net arch. |O| → 1024 → 1024 → 10 ReLU MLP
𝑘 in NN 12
Avg top 𝑘 in NN True
Least square batch size 4096
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C.1.2 Offline RL Hyper-parameters

In Table C.3 we present a common set of hyper-parameters used in our experiments, while

in Table C.4 we list individual hyper-parameters for each method. To select hyper-parameters

for offline RL algorithms we started with from the original hyper-parameters presented in the

corresponding papers. We then performed a grid search over the most important parameters (i.e.

learning rate, 𝛼 , mini-batch size, etc.) on a supervised dataset collected by TD3 [Fujimoto et al.

2018b] on Cheetah Run.

TD3+BC We swept over learning rate [10−3, 3 · 10−4, 10−4], mini-batch size [256, 512, 1024] and

𝛼 [0.01, 0.1, 1.0, 2.5, 5.0, 10.0, 50.0]. We also found it useful to increase the dimension of hidden

layers to 1024.

CRR We swept over the transformation function (indicator, exponent, identity), the number

of samples to estimate value function [5, 10, 20] as well as learning rate [10−3, 3 · 10−4, 10−4] and

mini-batch size [256, 512, 1024].

CQL We swept over 𝛼 [0.01, 0.1, 0.5, 1.0, 2.0, 5.0, 10.0], the number of sampled actions [3, 5, 10, 20],

learning rate [10−3, 3 · 10−4, 10−4] and mini-batch size [256, 512, 1024].

Table C.3: Common hyper-parameters for offline RL algorithms.

Common hyper-parameter Value
Replay buffer capacity 106

Mini-batch size 1024
Discount (𝛾 ) 0.99
Optimizer Adam
Learning rate 10−4

Agent update frequency 2
Training steps 5 × 105
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Table C.4: Individual hyper-parameters for offline RL algorithms.

BC hyper-parameter Value
Num hidden layers 2
Hidden dim. 1024
TD3+BC hyper-parameter Value
𝛼 2.5
Critic target EMA rate (𝜏𝑄 ) 0.01
Num hidden layers 2
Hidden dim. 1024
CRR hyper-parameter Value
Num samples to estimate 𝑉 10
Critic target EMA rate (𝜏𝑄 ) 0.01
Transformation indicator
Num hidden layers 2
Hidden dim. 1024
CQL hyper-parameter Value
𝛼 0.01
Critic target EMA rate (𝜏𝑄 ) 0.01
Lagrange False
Num sampled actions 3
Num hidden layers 2
Hidden dim. 1024
TD3 hyper-parameter Value
Stddev clip 0.3
Critic target EMA rate (𝜏𝑄 ) 0.01
Num hidden layers 2
Hidden dim. 1024
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C.2 Full Results on the PointMass Experiment
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Figure C.1: Extended figures from Figure 4.2.
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C.3 Full Results on Singletask Settings
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Figure C.2: Offline evaluation of unsupervised datasets on one task for each of three different domains.

Here we choose four representative unsupervised exploration algorithms.
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C.4 Full Results on Multitask Settings
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Figure C.3: Offline evaluation of datasets for the Walker environment under three different rewards

(Stand, Walk, and Run). We observe that ExORL allows for data relabeling to enable multi-task offline RL.
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C.5 Offline RL on Suffixes of Unsupervised Datasets

In Figure C.4 we demonstrate that it is important to use the entire replay buffers collected by ExORL,

rather than only training on the later parts of this data.

[0, 1]× 106 [1, 2]× 106 [2, 3]× 106 [3, 4]× 106 [4, 5]× 106 [5, 6]× 106
0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

ns

Online RL

Walker Walk

[0, 1]× 106 [1, 2]× 106 [2, 3]× 106 [3, 4]× 106 [4, 5]× 106 [5, 6]× 106
0

200

400

600

Ep
iso

de
 R

et
ur

ns

Online RL

Cheetah Run

BC TD3+BC TD3

Figure C.4: Instad of training on the full replay buffer collected by ICM, we perform offline RL training on

various suffixes of the replay buffer. The x-axis represents segments of the replay buffuer. We observe that

it is important to keep around early transitions.

152



C.6 Compute Resources

ExORL is designed to be accessible to the RL research community. We provide an efficient

implementation of our framework, including data collection, relabeling, and offline RL evaluation,

that requires a single GPU. For local debugging experiments we used NVIDIA RTX GPUs. For

large-scale runs used to generate all results in this manuscripts, we used NVIDIA Tesla V100

GPU instances. All experiments were run on internal clusters. Each offline RL algorithm trains in

roughly 2 hours for 500k gradient steps on the collected datasets.

C.7 The ExORL Environments and Tasks

We provide a summary of used environments and tasks in our paper in Table C.5.

Environment Task Traits dim(S) dim(A)
Walker Stand dense, easy exp, locomotion 18 6

Walk dense, medium exp, locomotion 18 6
Run dense, hard exp locomotion 18 6
Flip dense, medium exp, locomotion 18 6

Cheetah Run dense, hard exp, locomotion 24 6
Run Backward dense, hard exp, hard transfer 24 6

PointMass Maze Reach Top Left sparse, hard exp, hard transfer 4 2
Reach Top Right sparse, hard exp, hard transfer 4 2
Reach Bot Left sparse, hard exp, hard transfer 4 2
Reach Bot Right sparse, hard exp, hard transfer 4 2

Jaco Reach sparse, hard exp, manipulation 55 6
Cartpole Swingup dense, easy exp 4 1

Table C.5: A detailed description of used environments and tasks from the DeepMind control suite [Tassa

et al. 2018]. Note that “sparse” and “dense” refer to the reward and “exp” for exploration.
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D | Appendix for Inverse Dynamics

Pretraining

D.1 Extended related work

In this paper we focus specifically on pretraining methods that learn representations of high

dimensional observations from multitask demonstration data with latent contexts for the purpose

of imitation. There are many closely related problems that are studied in other papers that we did

not have space to address fully in the main text that we more fully describe here. These are all

very interesting and complementary lines of work, but are beyond the scope of this paper.

Perhaps the largest closely related line of work focuses on learning reward-directed representations

in the context of reinforcement learning. This is a different setting than ours and methods from

there are not applicable in our setting where we do not have access to rewards. Moreover, most of

these methods do not consider multitask settings [Zhang et al. 2020; Gelada et al. 2019; Fu et al.

2021b; Ghosh et al. 2018; Eysenbach et al. 2022; Sodhani et al. 2021].

Another line of work seeks to learn representations of actions or sequences of actions rather than

observations. This is a directly complementary line of work to the ideas presented in this paper

[Ajay et al. 2020; Yang et al. 2021; Lynch et al. 2020; Whitney et al. 2019].

Another body of literature focuses on learning representations that can be transferred across
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domain and embodiment gaps and even trained directly from videos without access to actions

at all [Oord et al. 2018; Aytar et al. 2018; Seo et al. 2022; Ma et al. 2022; Zakka et al. 2022; Ghosh

et al. 2023]. In this paper, we focus on the simpler task of pretraining a representation within one

MDP with consistent dynamics and access to demonstration actions, but with varied tasks. This

choice allows us to make more clear comparisons between algorithms and rigorous claims about

when representations will be effective, but also limits the generality of the representations that

are learned.

There are a variety of new methods that rely on transformer architectures to construct interesting

new pretraining objectives [Yang and Nachum 2021; Seo et al. 2023; Wu et al. 2023]. In this paper

we focus on simple methods that can all use the same simple convolutional architecture operating

on transition tuples to provide the most controlled comparison that we can. It is an interesting

direction for future work to see how our insights in the Markovian case could be leveraged to

inform sequence level models of partially observed problems.

Another line of work avoids pretraining representations directly and instead meta-learns a policy

that can adapt to new tasks [Duan et al. 2017; Finn et al. 2017a,b; Yu et al. 2018; Rakelly et al.

2019; Mitchell et al. 2021]. This approach is beyond the scope of this paper which focuses

on representation learning. Moreover, these meta-learning algorithms require the pretraining

trajectories to be partitioned by task so that each task has multiple trajectories. Since we focus

on pretraining data where we don’t have access to the latent context, it is unclear how to create

these meta-training datasets.

Finally, recent work has shown the promise of zero-shot generalization for multitask imitation,

especially when the task identifying information is expressed in natural language to leverage

advances in language models [Ding et al. 2019; Jang et al. 2022; Cui et al. 2022; Brohan et al. 2022].

This is an exciting line of work, but beyond the scope of this project where we focus on data where

the context information is latent. It is an interesting direction for future work to assess precisely
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how much performance can be improved via extra context information to gauge whether it is

worth the cost of labeling trajectories with context information.

It is an interesting direction for future work to try to better synthesize some of the findings from

across this broad array of approaches to pretraining in slightly different settings.

D.2 Extended experimental results

In this section we present the experimental results that were excluded from the main text due to

space constraints. In particular, Section D.2.1 presents representation analysis by predicting one

representation from another, Section D.2.2 presents the per-dataset results of various sweeps over

dataset size and type, Section D.2.3 presents per-dataset results for representation analysis, and

Section D.2.4 presents results of an ablation over multistep dynamics.

D.2.1 Cross-representation prediction

In the main text, we evaluated representation quality by measuring accuracy of small MLPs to

predict either the actions on the finetuning data or the low dimensional states on the pretraining

data. Here we present a similar analysis, but now where we use small MLPs to predict the other

representations themselves. This is interesting since it lets us assess which representations contain

enough information and shared structure to predict the other representations. Hypothetically,

a representation that is easily able to recover another representation may be preferable since it

retains more information.

Results presented in Figure D.1 show the average across datasets of the cross-representation

prediction error on a validation set from the pretraining distribution (normalized by the mean

prediction error on each dataset). There are several possible takeaways from this experiments.

First, looking a the rows, which correspond to the error when each method is used as the source,
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Figure D.1: Cross-representation prediction error of a small MLP on a validation set from the pretraining

distribution. Results are normalized per dataset by the mean error on that dataset and then averaged

across datasets.

we can see that inverse dynamics generally has the lowest average error for predicting the other

representations. This suggests that inverse dynamics is doing a good job of recovering the

information that is shared among all the representations. Second, looking at the columns, which

correspond to error when each representation is used as the target, we see that BC is the most

difficult to predict and inverse dynamics is second most difficult. This is a somewhat surprising

result, but suggests that these representations actually contain information that may have been

thrown away (or at made least difficult to access via small MLP) within the other representations.

Finally, note that the contrastive learner is both the worst source and easiest target, which is

consistent with the idea that those representations are losing important task-relevant information.

Full results on each dataset can be found in Appendix D.2.3 and full methodological details can be

found in Appendix D.3.

D.2.2 Per dataset evaluation success results

In the main text and Section D.2.1 we have only presented aggregate results that average across

datasets. These averages make it easier to summarize comparisons between methods, but they

sacrifice the precision of how the results vary across datasets. In this section we present per
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dataset results for all of the relevant sweeps across dataset variations including pretraining size,

finetuning size, and finetuning size when we ablate in distribution contexts or observability of the

context in the observation.

Figure D.2: The per dataset results of sweeping over pretraining size, corresponding to the right panel of

Figure 6.3. Error bars show standard error over seeds and contexts (as described in Table 6.1). Horizontal

lines indicate mean performance of algorithms that do not depend on pretraining size.

Pretraining size. First, we present the full ablation over pretraining size, corresponding to the

right panel of Figure 6.3. The full per dataset results are shown in Figure D.2.

There are several findings in the dataset-specific results that are not visible in the aggregate

reported in the main text:

• First, the kitchen environment is a clear outlier mainly due to the stochasticity in the

data generating process and smaller dataset size compared to the others (see Appendix

D.3.1 for more detailed description of the data). As a result of the noise added to the low
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dimensional states, training from States actually underperforms training from Pixels + Aug.

We hypothesize that this is due to some implicit regularization that arises from training from

the rendered noisy observations instead of the low dimensional noisy states. Importantly,

inverse dynamics is much better able to handle the stochasticity than the alternative methods

given the relatively small pretraining dataset and is the only method that is able to perform

comparably to training from scratch.

• Point mass is the only environment where the externally pretrained representations (R3M

and Imagenet) substantially outperform training from Pixels + Aug and they are substantially

outperformed on kitchen and the metaworld datasets. We hypothesize that this shows how it

is quite difficult to transfer features across domains and see consistent benefits on challenging

tasks.

• Note that performance of contrastive learning is substantially better relative to the al-

ternatives on point mass. We hypothesize that this is due to the fact that random crop

augmentations are actually a reasonable simulation of the dynamics in the pointmass envi-

ronment specifically so that contrastive learning becomes more similar to implicit forward

dynamics.

Finetuning size. Next, we present the full ablation over finetuning size, corresponding to the

left panel of Figure 6.3. The full per dataset results are shown in Figure D.3.

Again, as described above, Kitchen is a clear outlier due to stochasticity with inverse dynamics

the best performer. Inverse dynamics is also the clear winner on point mass and a slight winner

on pick and place. The other tasks are more ambiguous with many methods performing about

the same, and none substantially better than training from scratch (across all pretraining sizes).

Disaggregating the results here shows how even though inverse dynamics is clearly the best in

aggregate, this is not necessarily true on every dataset. As we will see in Figure D.4, we hypothesize
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Figure D.3: The per dataset results of sweeping over finetuning size, corresponding to the left panel of

Figure 6.3. Error bars show standard error over seeds and contexts (as described in Table 6.1).

that much of this weak performance can be attributed to the fact that the evaluation contexts

in door and the two metaworld variants are truly out of distribution, making it difficult for any

pretraining method to generalize.

Ablating in distribution contexts. Next, we present the full per dataset results when we

ensure that all the evaluation contexts are included in the pretraining distribution, corresponding

to Figure 6.4 in the main text. The full per dataset results are shown in Figure D.4.

It is important to compare these results to those that include out of distribution evaluation contexts

in Figure D.3. First, note that the evaluation contexts on point mass and pick and place were

already in distribution, so they are kept the same. However, on door and the two metaworld splits
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Figure D.4: The per dataset results of sweeping over finetuning size when we include the evaluation tasks

in the pretraining data, corresponding to Figure 6.4. Error bars show standard error over seeds and contexts

(as described in Table 6.1).

there is a substantial improvement, especially for inverse dynamics and BC. This shows how these

methods can benefit from being applied on tasks that are contained in the pretraining distribution.

Interestingly, even though the evaluation contexts are now in distribution, the forward dynamics

representations do not see substantial improvements and are still outperformed by training from

scratch on the more challenging datasets.

Aggregating based on context observability. Finally, we present the full results for ag-

gregations across whether the context is observable, corresponding to Figure 6.5 in the main

text. Context is latent in point mass, pick and place, and kitchen, but inferrable in door and both

metaworld splits. The results are shown in Figure D.5. Note that these results are just grouped
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averages over the results presented in Figure D.3.

Figure D.5: The full results of aggregating based on the observability of the context variable, corresponding
to Figure 6.5. Error bars show standard error over seeds and contexts (as described in Table 6.1) then

averaged across datasets.

Compared to Figure 6.5, we now include the results from all algorithms and also from the environ-

ments where the context is inferrable. As reported in the main text, there is a clear gap between

inverse dynamics and BC when the context is latent, likley due to confounding. Here we see

that this gap largely disappears in the datasets where the context is inferrable and generally the

disparities between methods shrink.

D.2.3 Per dataset representation analysis

Now we present the per dataset results of the various methods of representation analysis based

on predicting different target quantities of interest: the action, the low dimensional state, and the

other representations themselves.

Predicting action. First we present the per dataset results for train and validation action

prediction on the finetuning datasets using the default pretraining and finetuning size. These

results correspond to Figure 6.6 from the main text. Unlike in the main text, here we do not do

any normalization of the losses, so the losses occur at different scales on each dataset depending

162



Figure D.6: Full per dataset results of action prediction on the finetuning distribution.

on how difficult the prediction task is. Results are shown in Figure D.6.

Figure D.7: Full per dataset results for state prediction on the pretraining distribution.
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Predicting state. Next, we present the per dataset results for predicting the low dimensional

state on the pretraining distribution from the various learned representations. These results

correspond to Figure 6.7 in the main text. Again, unlike in the main text, results are not normalized,

so they occur at different scales across environments. Results are shown in Figure D.7.

Note that as mentioned before, there is stochasticity added to the low dimensional states in the

kitchen environment. This makes it difficult for any of the methods to substantially outperform

the floor set by the noise level.

Figure D.8: Per dataset results for cross-representation prediction on the pretraining distribution. Color

shows the validation error of predicting target from source.

Predicting across representations. Finally, we present the per dataset results for predict-

ing across the different learned representations on the pretraining distribution. These results

correspond to Figure D.1. Again, unlike in the averaged figure, this figure is not normalized, so

the scales vary across datasets. We truncate the color scale at 1e-4 on the low end for easier
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visualization.

D.2.4 Ablation of multistep dynamics

As mentioned in the main text, some work argues for multistep dynamics models [Efroni et al.

2021; Lamb et al. 2022]. Note that this work focuses on settings with exogenous noise which are

different from the simpler settings that we consider. To confirm that using multistep dynamics

models does not help to learn better representations, we run an ablation of the number of steps

included in the dynamics model on three environments: point mass, pick and place, and door and

two algorithms: inverse dynamics and implicit forward dynamics. Results are shown in Figure

D.9. At a high level, we basically find little difference when ablating the number of steps, so we

default to using one step models everywhere for simplicity.

Note: for inverse dynamics models, we learn a 𝑘 step model by predicting 𝑎𝑡 given 𝑜𝑡 and 𝑜𝑡+𝑘 . For

forward dynamics, we learn a 𝑘 step model by predicting 𝑜𝑡+𝑘 given 𝑜𝑡 and 𝑎𝑡 :𝑡+𝑘 .

Figure D.9: Sweep over the number of timesteps included in the dynamics models.
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D.3 Detailed experimental methodology

In this section we present a detailed account of out methodology. We also release our code that

was used to perform the experiments for full transparency. We split up the description into Section

D.3.1 which describes the environments and dataset generation, Section D.3.2 which describes the

details of the pretraining pipeline, and Section D.3.3 which describes the details of the finetuning

and evaluation pipeline.

All code is at https://github.com/davidbrandfonbrener/imitation_pretraining.

D.3.1 Envionment and dataset details

Software dependencies. All of our environments are based on the MuJoCo simulator [Todorov

et al. 2012b]. The point mass environment is derived from the DM control suite [Tunyasuvunakool

et al. 2020]. The kitchen environment and dataset was introduced in Gupta et al. [2019]. The rest

of the environments are taken from Metaworld [Yu et al. 2020]. We describe each environment in

detail and summarize the descriptions in Table D.1

Point mass. The point mass environment consists of an actuated point mass on a 2d plane. In

our version, the context 𝑐 ∈ R2 determines the goal location. Then, the demonstration policy 𝜋∗
𝑐 is

a PD controller that moves the point from the current position 𝑥 to the goal position 𝑐 . Because

the context variable is continuous, we sample an independent context for each trajectory in the

pretraining dataset from the uniform distribution over possible goal states. The context is fully

latent and not observable in the observation. The low dimensional state is the 2d position and the

high dimensional images are 84x84x3.
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Pick and place. The pick and place task is taken from the metaworld suite. In our version,

the context 𝑐 ∈ R3 determines the goal location for the block. The demonstration policy 𝜋∗
𝑐 is a

scripted policy from the metaworld repo. We remove the goal indicator from the image in this

environment so that the context is fully latent and not observable from the observation. The low

dimensional state is the 3d position of the gripper, 1d openness of the gripper, and 7d position and

orientation of the block. The high dimensional observations are images of size 120x120x3.

Door. The door environment is also taken from the metaworld suite. In our version, the context

𝑐 ∈ [4] determines the index of the environment from door-close, door-open, door-unlock, and

door-lock. For our default experiments we use door-close, door-open, and door-unlock as the

pretraining contexts and door-lock as the eval context. For the ablation where we ensure that

the eval context is in the pretraining distribution, we include door-lock in the pretraining data.

The demonstration policy 𝜋∗
𝑐 is a scripted policy from the metaworld repo. Given the context, the

initial position of the robot, initial position of the door, and goal position (which is visible in the

observation image) are all randomized. Note, the context is inferrable since the initial position

of the door and lock allow the learner to infer the context. The low dimensional state is the 3d

position of the gripper, 1d openness of the gripper, 7d position and orientation of two objects in

the scene, and 3d goal position. The high dimensional observations are images of size 120x120x3.

Kitchen. The kitchen environment and dataset are taken fromGupta et al. [2019]. Each trajectory

contains a sequence of four tasks in a simulated kitchen collected by a human demonstrator. In

our version, the context 𝑐 ∈ [24] is determined by the sequence of four tasks contained within

the demonstration trajectory (of which there are 24 possibilities). We evaluate on three contexts:

microwave-kettle-light switch-slide cabinet, bottom burner-top burner-slide cabinet-hinge cabinet,

and kettle-bottom burner-top burner-light switch. In our default setup, we pretrain on the other

21 contexts, and in the ablation of in distribution evaluation we pretrain on all 24 contexts. The
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context is fully latent and not observable from the initial state. The low dimensional state is a 9d

description of the arm position and a 21d description of the position of objects in the kitchen. The

high dimensional observations are images of size 120x120x3.

Note: the kitchen environment is the only one that we consider that has added noise. The raw

data from Gupta et al. [2019] contains gaussian noise added to the low dimensional states and

actions, so this noise cannot be removed without re-generating the data. We render the images

from the noisy states, so there is also noise present in the image observations. We also evaluate in

an environment with the same noise added, so there is no gap between training and eval.

Metaworld (ML45 and R3M). Finally, we consider two variants of the full metaworld suite.

Here the context 𝑐 ∈ [50] determines which metaworld task is used. We consider two different

train-eval splits for our default environments. The ML45 split takes the eval tasks from the original

metaworld ML45 task which are bin-picking, box-close, hand-insert, door-lock, and door-unlock.

The R3M split takes the eval tasks that were chosen in the R3M paper [Nair et al. 2022]: assembly,

bin-picking, button-press, drawer-open, and hammer. Given the context, the initial and goal

positions are randomized. The goal position is visible in the observation. The low dimensional

state is the 3d position of the gripper, 1d openness of the gripper, 7d position and orientation of

(potentially) two objects in the scene, and 3d goal position. The high dimensional observations

are images of size 120x120x3.

Table D.1: A summary of the description of datasets above. Inferrable refers to whether the context is

observable. OOD refers to whether the evaluation context is out of distribution.

Dataset Policy Context Inferrable OOD Noise State dim

Point mass PD controller R2 No No No 2
Pick and place Script R3 No No No 11
Door Script [4] Yes Yes No 21
Kitchen Human [24] No Yes Yes 30
Metaworld-ML45 Script [50] Yes Yes No 21
Metaworld-R3M Script [50] Yes Yes No 21
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D.3.2 Pretraining details

Software dependencies. We implement all of our training in JAX [Bradbury et al. 2018]. We

use flax for neural networks [Heek et al. 2020] and optax for optimization [Babuschkin et al. 2020].

Our code is loosely based on Kostrikov [2022].

Architecture. All of our pretraining algorithms share exactly the same encoder architecture

to ensure that we have a fair comparison. Since our tasks are relatively simple visually, and so as

to allow for large scale experiments without too much compute, we use a relatively small convnet

encoder. Specifically, we follow the architecture from Yarats et al. [2021b] which consists of a 4

layer convnet with 3x3 filters, number of channels of (32, 64, 128, 256), and strides of (2,2,1,1). We

add a modification to include a spatial softmax activation [Finn et al. 2016], which we found to be

important for the manipulation tasks we consider. This is followed by a linear layer to project

into the embedding dimension of 64 and finally a layernorm and tanh activation to normalize the

embedding. We use the gelu activation function throughout.

Now we will birefly describe the architecture used for each pretraining algorithm, following their

descriptions in Section 6.4.2:

• Inverse dynamics: the inverse dynamics head is an MLP that takes in 𝜙 (𝑜), 𝜙 (𝑜′) and

produces an estimated action. This MLP has two hidden layers of width 256 and dropout of

0.1 during training.

• BC: the BC policy head is an MLP with two hidden layers of width 256 and dropout of 0.1

during training.

• Implicit forward dynamics: the implicit forward dynamics model uses an action encoder

𝜙𝑎 (𝑎) which outputs a 64 dimensional normalized action embedding which is concatenated

to 𝜙 (𝑜) to form 𝜙 (𝑜, 𝑎). Then there are two projection heads 𝑓1, 𝑓2 that take in 𝜙 (𝑜, 𝑎) and
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𝜙 (𝑜′) respectively and produce 64 dimensional embeddings that are normalized to have unit

norm. All these networks (𝜙𝑎 , 𝑓1, and 𝑓2) are MLPs with two hidden layers of width 256 and

the relevant input and output dimensions.

• Explicit forward dynamics: the explicit forward dynamics model uses the same architecture

to encode 𝑎 with 𝜙𝑎 . Then, instead of projection heads, we require a convolutional decoder

to produce an image. Following Yarats et al. [2021b] we use an architecture that inverts

the encoder, having a dense projection layer followed by channels of (256, 128, 64, 32) and

strides of (1,1,2,2).

• Contrastive: the contrastive network is the same as the implicit forward dynamics network

except that there is no action input and 𝑜′ is replaced by an augmentation of 𝑜 .

Training hyperparameters. For pretraining, we split the datasets into two categories: easy

(point mass, pick and place, and door) and hard (kitchen, metaworld-ml45, and meatworld-r3m).

On the easy tasks we train for 100k gradient steps and on the hard tasks we train for 200k gradient

steps. Batch size is 256 for all methods except explicit forward dynamics where (due to the added

compute required for the decoder) we use batch size of 128 to even out computational requirements

across methods. All methods are trained with the adamw optimizer with learning rate 1e-3, a

cosine learning rate decay schedule, and default weight decay of 1e-4.

Data augmentation. Following [Chen et al. 2022] and others, we note that cropping augmenta-

tions are the most important for training policies in simulated visual domains. As such, all of our

pretraining algorithms (and the Pixels + Aug baseline) use random cropping augmentations, and

we found this to be an important implementation detail. The one exception is explicit forward

dynamics where we found it difficult to reconstruct images with augmentations, so we omit them

for that algorithm.
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Compute resources. Pretraining was all done on an internal cluster using RTX8000 GPUs. We

estimate that the final training run needed to produce the results in the paper took approximately

600 GPU hours.

D.3.3 Finetuning and evaluation details

Training hyperparameters. The policy is always an MLP with two hidden layers of width 256.

We use gelu activation and apply dropout with probability 0.1 during finetuning. We finetune on

every dataset for 10k gradient steps with batch size 256. All policies are trained with the adamw

optimizer with learning rate 1e-3, a cosine learning rate decay schedule, and default weight decay

of 1e-4.

As explained in Table 6.1 there are several seeds and evaluation contexts for each environment.

For example, for the default results in Figure 6.1 we end up having a total of 80 different finetuning

datasets per representation when sweeping across dataset, context, and seed so that Figure 6.1 is

reporting aggregate results across 720 finetuning and evaluation runs.

Evaluation hyperparameters. Each evaluation is run for 100 episodes in the environment to

estimate the success of the policy (except for the kitchen environment where we run 50 episodes

due to slow rendering of that environment).

Compute resources. Finetuning and evaluation was all done on an internal cluster on CPU

(since the finetuned policy network is small and environments run on CPU). We estimate that

all the finetuning and evaluation in the final runs used to produce results for the paper took

approximately 2000 CPU hours.
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D.4 Extended analysis discussion

Here we provide a more detailed discussion of related theoretical work.

One recent line of work focuses on learning representations for exploration [Efroni et al. 2021;

Lamb et al. 2022] and offline RL [Islam et al. 2022] in the presence of exogenous noise. The

exogenous noise setting means that the high dimensional observations contain information that

is not effected by the actions; e.g., background dynamics that appear in image observations but do

not affect the task. This line of work argues that inverse dynamics modeling is the best approach to

ignore exogenous noise. Our results are complementary to this line of work in showing that even

in settings without exogenous noise, inverse dynamics is still often preferable to alternatives for

representation learning. Moreover, we consider a multitask imitation setting with latent contexts

while they consider single task and reward-directed problems.

Another line of work proves that learning a forward dynamics model is a well-motivated approach

for multitask imitation [Nachum and Yang 2021]. While that work does not directly compare to

inverse dynamics pretraining, we find that inverse dynamics pretraining outperforms forward

dynamics modeling in our settings. Moreover, while this paper shows that if our representation

learns a good forward dynamics model that it works well for imitation, it does not discuss how

efficiently such a representation can be learned. So, while both methods are well-motivated, we

find inverse dynamics modeling to be more efficient than learning the forward dynamics.

Finally, another line of work studies multitask representation learning for imitation by directly

performing behavior cloning [Arora et al. 2019; Zhang et al. 2022]. These methods provide positive

results for the approach, but require algorithms that have access to the latent context information

which must be discrete so as to learn a separate policy for every pretraining context, thus avoiding

confounding. This method requires extra information and is difficult to scale to very large numbers

of contexts. In contrast, we find that inverse dynamics modeling is able to perform well without
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this extra information or added complexity of learning multiple models and naturally avoids

confounding by the latent context information.
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