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Abstract

Finding causal relationships among biological entities is a core goal of systems biology. In

molecular biology, causal relationships are often encoded as simple graphs called gene regulatory

networks (GRNs). The nodes of a GRN are genes and its directed edges represent positive or

negative influences of a regulatory gene and its targets.

To infer a network, researchers often develop a machine learning model and then evaluate the

model based on their match with experimentally verified "gold standard" edges. The hoped-for

result of such a model is a network that may extend the gold standard edges.

Chapter 2 introduces EnsInfer, a novel approach to infer GRNs from RNA-seq data. Following

a systematic evaluation of the performance of various existing base network inference methods

and ensemble techniques across different datasets, we found that: (i) base inference methods

exhibit varying performances across datasets, with a method performing poorly on one dataset

potentially excelling on another; (ii) a non-homogeneous ensemble method, specifically a Naive

Bayes classifier, achieves overall performance on par with or better than the best individual method

or other ensemble approaches; (iii) integrating all methods satisfying a statistical normality test on

training data yields optimal results. Motivated by these insights, EnsInfer combines state-of-the-art

inference algorithms using a Naive Bayes classifier. EnsInfer outperforms individual methods,

providing a robust and flexible framework for integrating diverse data types and seamlessly

incorporating new inference algorithms. Notably, by treating predictions from different algorithms

as priors for each network edge, EnsInfer readily accommodates heterogeneous data sources (e.g.,
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bulk and single-cell RNA-seq) and facilitates the integration of emerging inference techniques.

Our second contribution proposes a simple answer to what might seem to be a naive question:

are GRNs useful models of causality? Since networks are a form of visual representation, one

can compare their utility with architectural or machine blueprints. Blueprints are clearly useful

because they give precise guidance to builders in construction. If the primary role of GRNs is to

characterize causality, then such networks should be good tools for prediction because prediction

is the actionable benefit of knowing causality.

Chapter 3 explores this question by asking how good GRNs are at prediction. We compare

nonlinear machine learning models inferred from time-series data across four species against

"gold standard" regulatory edges from previous experiments. The nonlinear models achieve better

predictive performance, with more reductions in root mean square error (RMSE) compared to

models based solely on the gold standard edges. This finding suggested that conventional GRNs

fail to fully characterize causality. To address this limitation, we introduced a bipartite network

representation, where nodes represent either genes and models, to better capture the synergistic

regulatory effects of multiple transcription factors on target genes.

Further, we propose that the causality in regulation should focus on four key goals and we

provide algorithms for all goals: (i) predictive accuracy, (ii) parsimonious enumeration of predictive

regulatory genes for each target, (iii) identification of disjoint sets of predictive regulatory genes

with roughly equal accuracy for each target, and (iv) construction of a bipartite network representa-

tion of causality. Our bipartite network framework offers an actionable and interpretable paradigm

for investigating causal gene regulation. In addition to modeling transcriptional causality, the

bipartite network framework may have far broader applicability, providing a powerful approach to

causality research across diverse domains.
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1 | Introduction

1.1 Background

Biological systems are inherently intricate, exhibiting emergent properties such as nonlinearity,

feedback loops, and adaptation, arising from the intricate interplay between system components

and their environment [Artime and De Domenico 2022]. Gene regulatory networks (GRNs)

constitute one representation of the interrelationships among genes. These networks, particularly

those focusing on transcriptomics, attempt to characterize the intricate web of interactions

between transcription factors (TFs) and their target genes [Vijesh et al. 2013; Emmert-Streib et al.

2014]. GRNs are also abstract mathematical representations, depicting the relationships between

biological entities as directed graphs, where vertices represent genes, mRNAs, or TFs, and edges

denote regulatory interactions. The network’s topological structure provides potentially valuable

insights into the temporal dynamics and key regulatory hierarchies governing biological processes

at the cellular level.

A crucial challenge for GRNs is inferring the underlying network structure from experimental

data, a task known as GRN inference. GRN inference seeks to reverse-engineer the network

topology from high-throughput omics data, such as gene expression profiles, protein-DNA bind-

ing affinity measurements, or chromatin accessibility assays [Madhamshettiwar et al. 2012]. By

integrating these diverse data sources, researchers aim to decipher the complex web of interactions

between regulatory elements and their target genes. However, this endeavor faces numerous
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challenges, including the inherent noise and variability present in biological data, the high dimen-

sionality of the search space, and the potential for incomplete or indirect measurements [Liang

et al. 1998].

GRN inference process can be broadly categorized into two groups of approaches: steady-state

and time-series gene expression methods [Liang et al. 1998]. While steady-state methods rely on

gene expression data from a single time point, time-series data offer a more informative perspective

by capturing the dynamic nature of gene expression over time. Time-series transcriptomics

involves measuring gene expression at multiple time points, providing a comprehensive view

of the temporal dynamics and regulatory mechanisms governing gene regulation [Bar-Joseph

et al. 2012]. Time-series transcriptomics data have the potential to unravel the intricate temporal

patterns and causal relationships underlying gene regulation. Although generating high-quality

time-series data can be experimentally challenging and resource-intensive, often requiring careful

experimental design and sophisticated data normalization and preprocessing techniques [Spies

and Ciaudo 2015], the wealth of information provided by time-series data has proven invaluable

in advancing our understanding of complex biological processes, such as development, stress

response, and disease progression.

GRN Inference methods based on time-series data aim to assign weights or scores to putative

interactions between genes, reconstructing GRNs that best reflect the observed expression profiles.

These weights quantify the strength and directionality of regulatory interactions, enabling the

identification of key regulators and their target genes [Greenfield et al. 2010]. Over the years,

various inference methods have been developed, which can be broadly categorized as model-free

or model-based approaches. Model-free methods, such as correlation measures [Kim 2015] and

mutual information [Qiu et al. 2018], rely on statistical dependencies between gene expression

profiles to infer regulatory relationships. On the other hand, model-based approaches employ

explicit mathematical models to describe the dynamics of gene regulation. These include ordinary

differential equations [Bonneau et al. 2006], Bayesian reasoning [Kharchenko et al. 2014], and
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decision-tree-based models [Huynh-Thu et al. 2010]. In real-world applications, it has been

demonstrated repeatedly that no single inference method can universally fit different inference

tasks [Androulakis et al. 2007; Delgado and Gómez-Vela 2019; Huynh-Thu and Sanguinetti 2019;

Pratapa et al. 2020]. The performance of these methods can vary depending on factors such as

the complexity of the underlying network, the quality and quantity of the available data, and

the specific biological context. This lack of a unanimous solution to the inference problem has

prompted researchers to explore more sophisticated and adaptive approaches.

Therefore, the absence of a one-size-fits-all solution to the GRN inference challenge has become

a major motivation for this thesis. It underscores the need for a more comprehensive and high-level

approach that can leverage the strengths of multiple inference methods while mitigating their

individual limitations. By embracing the diversity of available techniques and exploring novel

ways to integrate them, we aim to provide algorithmic enhancements to help solve some important

network causal inference problems.

1.2 EnsInfer: Non-Homogeneous Ensemble Network

Inference

In Chapter 2, we propose a novel non-homogeneous stacking ensemble learning framework

that harnesses the diversity of existing GRN inference methods. Through our research, we

demonstrate the following key findings:

(i) Base network inference methods exhibit varying performance across different datasets,

indicating that a method that performs poorly on one dataset may excel on another. This variability

highlights the inherent challenges posed by the complexity and heterogeneity of biological network

systems, underscoring the need for a more flexible and adaptive approach.

(ii) The non-homogeneous ensemble method that we propose, based on a Naive Bayes classifier,

leads to overall performance that equals or surpasses the best single base method or any other
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ensemble method evaluated. This finding emphasizes the potential of ensemble learning tech-

niques to leverage the strengths of multiple inference algorithms while mitigating their individual

limitations.

(iii) To achieve these good results, the ensemble method should integrate all base methods

that satisfy a statistical test of normality on the training data. This selective integration ensures

that the ensemble leverages only those base methods that exhibit a consistent and well-behaved

performance, thereby enhancing the robustness and reliability of the overall inference process.

Our proposed ensemble learning framework, dubbed EnsInfer, can be easily constructed by

leveraging existing network inference methods through the following steps:

1. Base Method Execution: Execute a diverse set of individual base network inference

algorithms on the data of interest. This step allows us to harness the unique strengths

and perspectives offered by different inference approaches, ranging from correlation-based

methods to advanced machine-learning techniques.

2. Feeding the Ensemble Model: Utilize the outputs obtained from the individual inference

algorithms as input features for a second-level ensemble learning algorithm.

3. Ensemble Learning: Employ a robust ensemble learning algorithm, such as a Naive

Bayes classifier or a random forest model, to combine the features extracted from the

base methods. This integration step leverages the collective wisdom of multiple inference

approaches, enabling the ensemble to capture complex patterns and dependencies that may

be overlooked by individual methods.

4. Network Prediction: The ensemble learning algorithm trained on the integrated features

predicts the regulatory edges of the GRN.

By following this modular and extensible framework, EnsInfer can seamlessly incorporate

new or improved inference algorithms as they become available, continuously enhancing its
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predictive capabilities. Moreover, the ensemble learning approach enables the flexible integration

of additional data sources, such as prior biological knowledge or complementary omics data,

further refining the inferred regulatory networks.

Through benchmarking on real-world experimental data, we demonstrate the significant

benefits offered by the proposed

1.3 Bipartite Networks: Towards a Better Representation

of Causality

The GRN abstraction oversimplifies the underlying biological complexities, failing to capture

the combinatorial synergistic effects that causal factors can exert [Reiter et al. 2017].

In Chapter 3, we compare the prediction quality based on "gold standard" regulatory edges

from previous experimental work with non-linear models inferred from time-series data across

four different species. Our findings suggest that the non-linear machine learning models, trained

on time-series data, consistently outperform models based solely on the gold standard edges, with

improvements ranging from 5.3% to 25.3% in terms of reduction in root mean squared error (RMSE).

These results indicate that networks derived from gold standard edges alone fail to adequately

capture the complexities of causal relationships governing gene regulation. Consequently, we

propose that causality research should focus on the following four goals:

(i) Achieving high predictive accuracy by leveraging the power of machine learning models

trained on expression data.

(ii) Identifying a parsimonious set of predictive regulatory genes for each target gene, reducing

redundancy and improving interpretability.

(iii) Uncovering disjoint sets of predictive regulatory genes for each target gene, each offering

comparable predictive accuracy, thereby capturing the potential existence of multiple redundant

regulatory mechanisms.
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(iv) Constructing a bipartite network representation of causality, with nodes representing genes

and predictive models, to provide a holistic and multifaceted view of regulatory relationships.

Chapter 3 describes the details of our proposed algorithms and methodologies designed to

address these four goals, paving the way for a more comprehensive and actionable understanding

of causality in transcriptional networks and other applications.

1.4 Overall Contribution

The studies presented in this thesis demonstrate that both ensemble methods and bipartite

network representations offer significant complementary benefits to traditional network inference

workflows. Specifically, our proposed ensemble learning framework EnsInfer presents superior

performance compared to individual network inference methods. By intelligently integrating

diverse approaches, EnsInfer leverages the collective strengths of multiple algorithms while

mitigating their individual limitations. This synergistic combination results in more accurate and

robust GRN predictions, underscoring the value of embracing ensemble learning techniques in

the field of systems biology.

Complementing the ensemble learning approach, the introduction of bipartite networks offers

a robust and versatile framework for representing and analyzing complex causal relationships in

biological systems. These contributions pave the way for new discoveries and practical applications

in areas such as disease biology, drug development, and synthetic biology, ultimately advancing

our understanding of the complex orchestra of life.
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2 | Ensemble of Network Inference

2.1 Introduction

Network Inference

A gene regulatory network (GRN) consists of molecular regulators (including deoxyribonucleic

acid (DNA) segments, messenger ribonucleic acid (RNA), and transcription factors) in a cell and

the causal links between regulators and gene targets. Causality here means that the regulator

influences the RNA expression of the gene target. Network inference is the problem of identifying

such causal links. In machine learning terms, since the set of regulator genes and target genes are

given, the network inference problem can be viewed as a binary classification task to determine

whether or not a potential regulatory edge between any pair of regulator and target gene exists.

Because network inference facilitates the understanding of the biological systems at the level

of molecular interactions, it potentially enables the designed repression or enhancement of groups

of molecules. This has applications ranging from drug design and medical treatment to the reduced

use of fertilizer in agriculture. Accurate network inference and functional validation is an ongoing

challenge for systems biology. Over the past two decade, numerous gene regulatory network

inference technologies have been proposed to tackle this problem from different perspectives

([Bonneau et al. 2006; Huynh-Thu et al. 2010; Matsumoto et al. 2017; Zheng et al. 2019; Shu et al.

2021; Zhao et al. 2021]).
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Individual Methods Feed an Ensemble Method

Pratapa et al., ([Pratapa et al. 2020]) presented a framework called BEELINE to evaluate state-

of-the-art network inference algorithms. The vast majority of the inference algorithms including

the ones we are going to incorporate into the ensemble approach can be roughly categorized into

three types below:

1. Pairwise correlation models make use of various kinds of correlations between a target

gene’s expression and potentially causal transcription factor expressions. PPCOR ([Kim

2015]) computes the partial and semi-partial correlation coefficients for each gene pair.

LEAP ([Specht and Li 2017]) calculates the Pearson coefficient of each gene pair in a time-

series background that considers a time-delay in regulatory response. PIDC ([Chan et al.

2017]) looks at the distribution of the gene expression and calculates the gene pair-wise

mutual information between distributions. SCRIBE ([Qiu et al. 2018]) also looks at mutual

information between gene expression distributions, and, like LEAP, considers time-lagged

correlation in time-series data. Finally, there is a correlation on any set of steady-state data.

2. Tree-based models use random forests (or their close variants) to predict the gene expression

of each target gene based on the expression of regulator genes (transcription factors).

Such models then use feature importance to determine the weight of each regulator-target

interaction. High weights correspond to regulatory edges. Examples include GENIE3

([Huynh-Thu et al. 2010]), a faster alternative GRNBoost2 ([Moerman et al. 2019]), and the

inference method OutPredict ([Cirrone et al. 2020]). OutPredict also takes prior information

(e.g., binding data) into account during training and testing.

3. Ordinary differential equation (ODE)-based regression approaches model the target gene

expression as a dependent on the time derivative of the expression of regulatory genes.

Inferelator ([Bonneau et al. 2006]) is a regularized regression model that focuses on feature
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selection. Its latest iteration, Inferelator 3.0 ([Gibbs et al. 2021]), makes use of single-cell data

to learn regulatory networks. SCODE ([Matsumoto et al. 2017]) is a direct application of fast

ODE-based regression. SINCERITIES ([Papili Gao et al. 2018]) utilizes Kolmogorov-Smirnov

test-based ridge regression. GRISLI ([Aubin-Frankowski and Vert 2020]) is an ODE solver

that accounts for gene expression velocity.

The BEELINE benchmark of 12 different inference algorithms showed that while some algo-

rithms generally perform better than others, there is no definitive best solution that can be applied

to all datasets. Our approach complements theirs: in addition to studying the performance of

individual algorithms (including some promising ones that they did not study), we show that

an ensemble method that we call EnsInfer can obtain as good or better results than any single

method and improves upon previous ensemble methods ([Marbach et al. 2012; Hill et al. 2016;

Saint-Antoine and Singh 2020]). In vision and language applications, some work, such as [Jan and

Verma 2020; Shahabadi et al. 2021], uses clustering-based ensemble on large data to create balanced

sets which are then sent to distinct learners. In addition to showing the benefits of combining

multiple inference methods, our pipeline also provides a practical combination strategy.

Materials and methods

Underlying Network Inference Algorithms

Here we introduce the inference algorithms we used in this ensemble workflow. Our workflow

and the open-source code we provide allow the easy incorporation of new inference algorithms.

Experimental Setup: the Data

All level 1 network inference algorithms take gene expression level data as input, there are

two main sources for these data: synthetic data generated by simulation software with a given

9



regulatory network or transcriptome-wide RNA sequencing (RNA-seq) data from living organisms.

These data can be measured in a temporal manner to constitute time-series data or measured in

temporally unrelated discrete states to constitute steady-state data. RNA-seq data can also be

classified into two categories: bulk RNA-seq data which is obtained using all cells inside a sample

tissue and single-cell RNA-seq data which examines the transcriptome information of a single cell

([Stark et al. 2019]). Details about the gene expression datasets used in our experiments are listed

below:

1. Synthetic data from the DREAM3 and DREAM4 in silico challenges consists of ten datasets

each with 100 genes and varying regulatory network structures. ([Prill et al. 2010; Schaffter

et al. 2011]) The gene expression data was generated by GeneNetWeaver, the software which

provided data for the DREAM3 and DREAM4 challenges. Simulation settings were kept as

the default DREAM4 challenge settings except that we generated five different time intervals

between data points: 10 minutes, 20 minutes, 25 minutes, 50 minutes (default value), and 100

minutes. The benefit of using this synthetic data is that the underlying network is precisely

known by construction.

2. Bacterial experimental RNA-seq data from B.subtilis (bulk RNA) containing 4218 genes and

239 TFs. The training and testing sets came from a network consisting of 154 TFs and 3144

regulatory edges. ([Arrieta-Ortiz et al. 2015])

3. Plant experimental RNA-seq data (bulk RNA, time-series) from Arabidopsis shoot tissue

consisting of 2286 genes and 263 transcription factors (TFs). Both the training and testing

sets came from a network consisting of 29 TFs and 4247 regulatory edges. ([Varala et al.

2018])

4. Mouse Embryonic Stem Cell (mESC) experimental single-cell RNA-seq data containing 500

genes and 47 TFs. The training and testing sets came from a functional interaction network

consisting of 47 TFs and 3226 regulatory edges. ([Hayashi et al. 2018])
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5. Human Embryonic Stem Cell (hESC) experimental single-cell RNA-seq data containing 1115

genes and 130 TFs. The training and testing sets came from a ChiP-Seq network consisting

of 130 TFs and 3144 regulatory edges. ([Chu et al. 2016])

In this work, we have focused on either temporal time-series bulk RNA-seq or single cell RNA-

seq data for which pseudo-time information is available. One reason is that some of the inference

algorithms in the BEELINE framework require temporal information input. The other is the

well-known epistemiological reason: steady state data gives simultaneous correlation information,

but does not clarify the causal relationship. By contrast, because causation moves forward in time,

time series datasets are more useful for causal network inference.

Ensemble Approach

Because one single inference method may not (and, in fact, does not) suit all scenarios, we

propose EnsInfer, an ensemble approach to the network inference problem: each individual network

inferencemethodwill work as a first level learning algorithm that gives a set of predictions from the

gene expression input. Then we train a second-level ensemble learning algorithm that combines

results from those first level learners. As first level inference methods are all different from each

other, this forms a heterogeneous stacking ensemble process. ([Wolpert 1992; Aburomman and

Reaz 2017]) The end goal is the binary classification task of determining whether or not a potential

regulating edge from transcription factor gene to target gene exists.

Thus, base network inference methods such as GENIE3 or Inferelator will work as Level 1

inference methods and individually predict whether some transcription factor 𝑇𝐹 regulates some

target gene 𝑔 by giving each possible edge a confidence score. The resulting edge predictions

of all the level 1 inference methods can be fed into the second level ensemble learner. Previous

ensemble approaches include a voting method ([Marbach et al. 2012; Hill et al. 2016], but other

approaches have been used for other applications: a random forest classifier, or a Naive Bayesian
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classifier. The pipeline is shown in Figure 2.1.

Gene 1 Gene 2 … … Gene N

Time t_1 0.125 0.344 0.617

Time t_2 0.554 0.667 0.758

… … … … … … … …

Time t_n 0.642 0.355 0.823

Possible edges GS Prior GENIE3 LEAP … … OutPredict

G_1->G_2 0 0.321 0.784 0.471

G_1->G_3 1 0.663 0.841 0.512

… …

G_N -> G_N-1 0 0.124 0.311 0.732

Level 1 GRN Inference algorithms

Level 2 Ensemble Model

Possible edges Reference Ensemble

G_1->G_2 0 0.321

G_1->G_3 1 0.537

G_1->G_4 0 0.936

G_1->G_5 0 0.884

… … … …

G_1->G_N 0 0.749

… … … …

G_N -> G_N-1 0 0.358

Figure 2.1: A diagram showing how EnsInfer works (i) All level 1 network inference algorithms are executed
using time-series expression data. (ii) Every level 1 inference method assigns confidence values to all possible
edges in the network. All the outputs are then curated into a tabular form with each algorithm’s prediction as a
feature column. (iii) The outputs of the level 1 inference methods are then used as input data for the level 2
ensemble model, which makes predictions of regulatory edges.

Each level 1 inference method infers regulation based on all the given gene expression data.

By contrast, the ensemble learner takes a training set consisting of a randomly chosen subset

of regulators from gold standard (normally, experimentally verified present/absent) edges and

creates a model whose input is the confidence score output of each level 1 inference method and

whose output is a prediction about whether each potential edge regulates or not. One thing to

note is that, for the sake of consistency across different methods, we use the confidence scores on

all regulatory edges of each level 1 inference method not just the highly confident edges. This

benefits the level 2 ensemble efforts because all information inferred from level 1 methods is

preserved for level 2 models.

The ensemble method uses this model and the outputs of the level 1 inference methods to

12



predict for each transcription factor in the test set, whether a given possible edge leaving that

transcription factor corresponds to a true regulatory relation. This process translates well to real

world applications, where EnsInfer learns from the known regulatory relations within an organism

or tissue structure, and makes predictions for untested transcription factors.

We evaluated eight different models to function as level 2 ensemble models using synthetic

data. Those models include: voting ([Marbach et al. 2012]), logistic regression, logistic regression

with stochastic gradient descent (SGD), Naive Bayes with a Gaussian kernel, support vector

machines, k-nearest neighbors, random forest, adaptive boost trees, and XGBoost ([Chen and

Guestrin 2016]). All models except XGBoost are provided by the scikit-learn python package

([Pedregosa et al. 2011]). We used a separate DREAM4 dataset with 100 genes to perform hyper-

parameter tuning for all level 2 ensemble models. For each of the tunable ensemble models, a

discrete set of hyper-parameter combinations spanned by the common selections of core model

parameters were cross-validated on this DREAM4 dataset For each method, the best performing

hyper-parameter combination was used for the later level 2 comparison experiments. Details

about the hyper-parameter grid search and resulting best parameter settings for each model can

be found in this Google Drive Link.

We compare the area under the precision-recall curve on the test data of the ensemble learner

against that of the level 1 inference methods that have access to the same training data.

Algorithmic Workflow of the Ensemble Approach

All underlying inference algorithms were executed through the BEELINE framework proposed

by [Pratapa et al. 2020] to which we added OutPredict and Inferelator which weren’t included in

the original BEELINE package.

The confidence scores of the underlying algorithms for each potential edge in the regulatory

network became inputs to the level 2 ensemble model, as illustrated in Fig 2.1. To compare

the performance of different inference methods, we use Area Under the Precision-Recall Curve
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(AUPRC) as the primary metric in all experiments. The reason for choosing AUPRC is that

experimentalists can choose a high-confidence cutoff to identify themost likely causal transcription

factors for a given target gene. A comprehensive summary of the results can be found in Tables

2.1 and 2.2 for experiments on the DREAM in silico datasets and Figure 2.2 for the three real-world

species.

For the In silico DREAM datasets, the underlying gold standard priors that define each regula-

tory network were divided into a 2:1 training/testing split, so there were twice as many regulators

in training as in testing. Because the split was done with respect to the regulators, the training and

testing sets share no common transcription factors. We believe splitting based on transcription

factors is the correct approach because experimental assays commonly over-express or repress par-

ticular transcription factors. The practical goal is that if a species has some TFs with experimentally

validated edges, then edges from untested TFs can be inferred.

For each dataset, we first applied 11 base-level inference methods to the training data both to

determine a promising single method to apply to the test data and as an input to the construction

of the ensemble model. Out of the 12 methods included in BEELINE, SINCERITIES, SINGE, and

SCNS either produced no output or exceeded the time limit of one week for one or more of the

datasets. We applied those individual level 1 inference methods (not only the most promising ones

from the training data) as well as the level 2 non-homogeneous ensemble models to the test set.

To assess ensemble models, we compared them with one another and with the best level 1

inference methods in both training and testing evaluations. As [Marbach et al. 2012] have pointed

out for the DREAM challenge, one simple yet (in DREAM at least) effective way to integrate

multiple inference results is to rank potential edges according to their average rank given by all

inference methods. We will also include this "community" method as a reference point for our

ensemble models.

The experiments on the DREAM in silico datasets focused on three objectives: (i) for each

dataset, how well did the level 1 inference methods that performed best on the training set perform
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Table 2.1: Summary of the different gene regulatory networks used in 10 DREAM simulation experiments.
The best level 1 inference methods for five different time interval settings (measurements every 10 minutes,
every 20 minutes, every 25 minutes, 50 minutes, and 100 minutes) for the time series. Often, the best model
on the training set is also the best model on the test set. Qualitatively, when the intervals are shorter,
differential equation-style methods are best. When the intervals become larger, random forest methods
are often superior.

Number
of Edges

10 minutes intervals 20 minutes intervals 25 minutes intervals
Best model
in training

Best model
in testing

Best model
in training

Best model
in testing

Best model
in training

Best model
in testing

125 SCRIBE LEAP OutPredict Inferelator OutPredict GRISLI
119 OutPredict OutPredict Inferelator Inferelator Inferelator OutPredict
166 Inferelator Inferelator Inferelator Inferelator Inferelator Inferelator
389 Inferelator Inferelator Inferelator Inferelator Inferelator Inferelator
551 Inferelator Inferelator Inferelator Inferelator Inferelator Inferelator
176 Inferelator LEAP Inferelator GRNVBEM Inferelator Inferelator
249 Inferelator GRNBoost Inferelator GRNBoost Inferelator Genie3
195 Inferelator Inferelator Inferelator Inferelator Inferelator Inferelator
211 Inferelator Inferelator Inferelator SCRIBE Inferelator Inferelator
193 Genie3 Inferelator Inferelator Inferelator Inferelator Inferelator

a Results for 10, 20, and 25 minutes intervals

Number
of Edges

50 minutes intervals 100 minutes intervals
Best model
in training

Best model
in testing

Best model
in training

Best model
in testing

125 OutPredict OutPredict OutPredict OutPredict
119 OutPredict OutPredict OutPredict Inferelator
166 Inferelator Inferelator OutPredict Inferelator
389 Inferelator Inferelator Inferelator OutPredict
551 Inferelator Inferelator Inferelator Inferelator
176 Inferelator Inferelator OutPredict PIDC
249 OutPredict OutPredict Inferelator Inferelator
195 Inferelator Inferelator Inferelator Inferelator
211 Inferelator Inferelator OutPredict Genie3
193 Inferelator Inferelator OutPredict Inferelator

b Results for 50 and 100 minutes intervals
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on the test set? (ii) how well did the ensemble learners perform on the test set? (iii) how did

the level 1 inference method that performed best on the test set compare to the level 2 ensemble

models? Note that the comparison of (iii) is unfair to the ensemble models, because there is no

way to know a priori which level 1 inference method will perform best on a given test set, so

choosing the best one gives an unfair advantage to the level 1 inference methods.

On the experimental datasets from real-world species, similarly, four level 1 methods from

BEELINE: GRNVBEM, GRISLI, SINGE, and SCNS were not able to produce proper inference results

due to time or memory constraints on the larger datasets (e.g. they did not finish after a week),

hence were not included in the ensemble approach. We then applied the best-performing level 2

ensemble models from the DREAM experiments to the available 10 base-level inference methods.

Furthermore, we varied the input to the level 2 ensemble models by including or excluding the

results from the three most poorly performing level 1 inference methods.

2.2 Results

Base Inference Method Performance

On theDREAMdatasets, the performance of the algorithms featured in the BEELINE framework

is consistent with the original paper ([Pratapa et al. 2020]). GENIE3, GRNBOOST, and PIDC

performed the best among the algorithms the BEELINE authors tested. As it happened, the

methods we added to the framework (Inferelator and OutPredict) outperformed those methods in

many cases. Nevertheless, no individual level 1 inference method dominated the others, as seen in

Table 2.1. We also note that while the best level 1 inference method in training is often the best

algorithm in testing, that is not always the case.
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Ensemble Performance

The Naive Bayes model we used works on the assumption that the likelihood distribution of

edge presence is Gaussian-like with respect to any given input’s confidence score. On the DREAM

datasets, two of the eleven level 1 inference methods (GRISLI and PIDC) produced outputs that did

not have a Gaussian like distribution (reflected as a negative kurtosis). We therefore experimented

using all level 1 inference methods as input as well as using only the level 1 inference methods

whose output distribution has positive kurtosis as inputs to better accommodate the Naive Bayes

model. The combined results are presented in Table 2.2. For most ensemble methods, using all 11

level 1 inference methods versus using 9 does not change the result. However, for Naive Bayes and

Logistic Regression with Stochastic Gradient Descent, eliminating those level 1 inference methods

that produce non-Gaussian like output helps. In fact, Naive Bayes is overall the winner across all

tested models and configurations when the input is limited by the positive kurtosis filter, while

logistic regression, random forest, and adaptive boosting also performed favorably compared to

the best-performing level 1 inference methods in training as well as compared to the average rank

of level 1 inference methods of [Marbach et al. 2012].

Hence, for real-world experimental datasets, the four models: logistic regression, Naive Bayes,

random forest, and adaptive boosting were selected as level 2 ensemble models for analysis (see

Figure 2.2). Here the likelihood distributions of all results from the level 1 inference methods have

a positive kurtosis measure, so all 10 of them were utilized for the level 2 ensemble methods.
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Table 2.2: Relative performance of different ensemble methods using all level 1 inference methods’
results (i.e., regardless of kurtosis) as ensemble inputs and the same models while only using level 1
inference methods’ results with positive kurtosis, marked by plus signs (corresponding to positive kurtosis).
Experiments were done across five different DREAM simulation settings for time-series intervals. The
performance metric is the ratio of AUPRC score of the ensemble method compared to that of the best
performing level 1 inference method in testing. Each cell is the mean value and standard deviation across
the ten DREAM datasets with varying regulatory networks. The bold number in each column is the best
performing value in that time interval setting. Logistic regression, random forest and adaptive boosting
models yielded top level inference performance among all ensemble options when there was no filtering
based on kurtosis. With kurtosis filtering, the Naive Bayes and logistic regression approaches yield the
best overall results while performances from random forest and adaptive boosting are still competitive.

Ensemble Model Interval between time-series data points
10 min 20 min 25 min 50 min 100 min

Logistic Regression 1.11±0.45 0.99±0.21 0.92±0.34 1.33±0.56 1.25±0.44
Logistic Regression+ 1.13±0.48 1.12±0.43 0.95±0.35 1.31±0.54 1.24±0.46
Logistic Regression
with SGD 0.25±0.06 0.4±0.47 0.2±0.11 0.2±0.14 0.26±0.19

Logistic Regression
with SGD+ 0.71±0.23 0.63±0.19 0.54±0.08 0.55±0.15 0.57±0.21

Naive Bayes 0.83±0.23 0.71±0.17 0.65±0.15 0.67±0.16 0.68±0.26
Naive Bayes+ 1.33±0.58 1.09±0.26 1.19±0.5 1.14±0.48 1.13±0.35
Support Vector Machine 0.21±0.09 0.29±0.14 0.26±0.09 0.25±0.15 0.26±0.22
Support Vector Machine+ 0.47±0.2 0.51±0.19 0.43±0.12 0.86±0.6 0.47±0.25
K-Nearest Neighbors 0.59±0.24 0.45±0.22 0.51±0.2 0.39±0.34 0.57±0.41
K-Nearest Neighbors+ 0.58±0.23 0.68±0.54 0.71±0.47 0.6±0.46 0.65±0.31
Random Forest 1.12±0.56 0.9±0.21 0.99±0.29 1.73±1.03 1.09±0.38
Random Forest+ 1.1±0.51 0.97±0.42 1.04±0.37 1.73±1.1 1.08±0.34
Adaptive Boosting 1.12±0.5 1.13±0.76 0.73±0.26 1.27±0.65 0.95±0.46
Adaptive Boosting+ 1.07±0.43 1.11±0.65 0.82±0.27 1.3±0.7 1.03±0.49
XGBoost 0.65±0.34 0.56±0.16 0.61±0.28 1.35±0.86 0.66±0.24
XGBoost+ 0.6±0.25 0.58±0.23 0.78±0.63 1.31±0.86 0.67±0.26

Best level 1 method
in training 0.88±0.23 0.88±0.2 0.88±0.24 1±0 0.81±0.22

Best level 1 method
evaluated on all samples 0.93 ± 0.26 1.11 ± 0.58 1.08 ± 0.34 1.03 ± 0.49 0.95 ± 0.44

Average rank
of level 1 methods 0.95±0.42 0.88±0.52 0.78±0.39 0.69±0.16 0.61±0.22
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Figure 2.2: The performance of various network inferencemethods on three different species, from
top to bottom: a B. subtilis gene regulatory network using bulk RNA-seq expression data[Arrieta-
Ortiz et al. 2015]; an Arabidopsis network using bulk RNA-seq expression data[Varala et al.
2018]; a mouse Embryonic Stem Cell functional interaction network using single-cell RNA-seq
data[Hayashi et al. 2018] and a human Embryonic Stem Cell ChIP–seq network using single-cell
RNA-seq expression data[Chu et al. 2016]. Inference performance was measured using the ratio
of the AUPRC of each inference method divided by that of a random predictor. Gold standard
priors from each of the three species were split into a random 2:1 training/testing configuration.
Ensemble models along with base inference methods that are able to incorporate prior information
were trained using training gold standard priors. Then all inference results were applied using the
testing subset of the gold standard data yielding an AUPRC ratio using 20 random training/testing
split setups. The mean AUPRC ratio of each method on the test data among these 20 experiments
is represented in the bar chart. All four ensemble models were evaluated here with base inference
methods, and each of themwas trained with the three worst performing base inference methods in
the training set (see the A series histogram) or without the three worst performing base inference
methods (B series histogram). Asterisks indicate a statistically significant (p-value below 0.05 in
non-parametric paired tests) improvement compared to the best level 1 inference method (and
compared to the average ranking approach). Overall, Naive Bayes performs best, but in some
cases Adaptive Boosting and Random Forests do almost as well.
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Figure 2.2 shows that

• The Naive Bayes approach on inputs having positive kurtosis outperforms the other three

ensemble methods, so our system EnsInfer uses Naive Bayes as the default option.

• Including results from weak learners has a marginal impact (sometimes positive and some-

times negative) on the final ensemble performance. For the sake of simplicity, therefore,

EnsInfer includes inputs from all available inference methods having positive kurtosis, even

the weak ones.

Figure 2.3 shows that the Naive Bayes ensemble approach significantly (p-value < 0.05) out-

performed the best level 1 method on B.subtilis and Arabidopsis. The ensemble method with

all level 1 methods still had an advantage in mESC data although the performance gain was

less statistically significant with a p-value of 0.133. To calculate the p-value, we conservatively

chose a non-parametric paired resampling approach ([Shasha and Wilson 2010]) because we did

not want to assume any particular distribution on the data. We used a paired test because we

measured the AUPRC gain for each training/test split. (That is, the set of training/testing splits

were established randomly and initially. Then, for the numerical experiments, each method used

that set.) In the hESC case, the Naive Bayes ensemble method achieved approximately the same

level of performance as the best level 1 method on the test set. As noted above, the best level 1

inference method for the test set cannot be known a priori (and not even looking at each method’s

performance in training), so using an ensemble method gives high performance without having

to know which level 1 inference method is best. The Naive Bayes approach also consistently

outperformed the average voting ensemble approach ([Marbach et al. 2012]).

EnsInfer: Compared to running a single inference method, the ensemble approach requires an

amount of computation resources equal to the sum of the time to run all base inference algorithms,

plus the ensemble effort itself. However, all base inference methods can be executed in parallel, so

the wall clock time of executing level 1 inference process is just the time of the slowest method
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Figure 2.3: The AUPRC improvement of the Naive Bayes ensemble model (restricting inputs to those with
positive kurtosis, but including weak learners) compared to the single best base inference method. In the
B.subtilis and Arabidopsis datasets, the improvement had a p-value < 0.05 using a non-parametric paired
test.[Shasha and Wilson 2010] The test should be paired, because the same set of training and testing
splits were used for every method. In the human dataset, the ensemble method was about equal to the
best base inference method. As noted in the text, the best base method cannot be known a priori, so these
comparisons understate the advantage of the ensemble method.

which often is also single-threaded. The level 2 ensemble effort itself is less than 1/10 the time of

the slowest base method as shown in Table 2.3. We can therefore conclude that EnsInfer’s wall

clock time is close to that of the slowest base inference method.

2.3 Discussion

Consistently with [Pratapa et al. 2020], we find that no one inference method is best for all

datasets tested in our study. However, a Naive Bayes level 2 ensemble model built from level 1

inference methods having positive kurtosis holds great promise as a general ensemble network
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Table 2.3: Execution time of all the inference methods used in the study, across different datasets. All
computation programs were executed in a Ubuntu 20.04 environment with a single AMD Ryzen™ 9 5900X
processor and 64 GB of system memory.

Inference Method Execution time, measured in seconds
mESC hESC Arabidopsis Bsubtilis

OutPredict 95.72 134.46 182.03 793.85
Inferelater 21.48 44.05 58.31 172.74
GRNBoost 2 22.46 38.07 106.38 312.51
Genie3 148.53 387.93 1174.46 3652
PIDC 40.89 166.18 1376.25 3764
LEAP 8.42 124.54 35.78 705.23
SCODE 1883.54 7705 8288 11252
SCRIBE 1672.2 25206 29090 46829
SINCERITIES 38.47 275.71 2749.83 38641
PPCOR 2.07 10.45 47.79 280.00
Level 2 Random Foreset Ensemble 2.74 11.87 18.10 128.57
Level 2 Logistic Regression Ensemble 0.24 1.28 9.09 9.93
Level 2 Adaboost Ensemble 2.68 19.06 33.28 156.47
Level 2 Naive Bayes Ensemble 0.05 0.35 8.46 4.32

inference approach and is thus the basis of EnsInfer. Naive Bayes may work better than more

sophisticated Bayesian methods because at the core of the Bayesian method, we need to estimate

the likelihood distribution of 𝑝 (𝑥 |𝑒) where 𝑥 is the score given by a level 1 inference method and

𝑒 is the existence of an edge. Since this generative process varies dramatically across different

datasets and inference methods, the Gaussian assumption used by Naive Bayes is as good as any

and keeps the model simple.

Please note, however, that there are cases when Naive Bayes does not improve on the best

single inference method. This happens primarily when the results are a little better than random.

For example, the inferred regulatory networks from single-cell human embryonic stem cell data

from [Pratapa et al. 2020] were barely better than random using any base method in BEELINE.

The ensemble does not improve that.

Naive Bayes works particularly well in a sparse data environment, which is often the case when

experimental data is hard to come by. For example, there are only 29 experimentally validated

22



transcription factors for Arabidopsis and 154 for B. Subtilis. Another point in favor of Naive Bayes

is that the size of the feature space (the number of outputs of the level 1 inference methods) is

small. If the training dataset and feature space were larger, Random Forest-based approaches

might do better. Our current investigation used roughly a dozen level 1 inference methods. Other

promising new inference ones could be added such as BiXGBoost and DeepSEM [Zheng et al.

2019; Shu et al. 2021]. A level 2 ensemble method might potentially require a feature selection

step if many more inference algorithms were included.

Conclusion

The main overall benefit of the ensemble method EnsInfer is its robust and flexible nature.

Instead of picking a network inference method and hoping that it will perform well on a dataset,

EnsInfer uses a combination of state-of-the-art inference approaches and combines them using

a simple Naive Bayes ensemble model. Because the ensemble approach essentially turns all the

predictions from different inference algorithms into priors about each edge in the network, EnsInfer

easily allows the integration of diverse kinds of data (e.g. bulk RNA-seq, single-cell RNA-seq) as

well as new inference methods.
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3 | Bipartite Networks

3.1 Background and Motivation

A frequent goal of expression-based causality research is to construct a directed graph of

genes having some inductive and some repressive edges. One of the popular approaches to

solving the gene regulatory inference problem is to build some kind of regression models to fit

the gene expression data and make regulatory relation inferences based on the model parameters.

Some of these regression-based methods use linear regression like TIGRESS [Haury et al. 2012],

SCODE [Matsumoto et al. 2017] and Inferelator [Skok Gibbs et al. 2022]. While others like GENIE3

[Huynh-Thu et al. 2010], Bixgboost [Zheng et al. 2019], OutPredict [Cirrone et al. 2020] and

SCENIC [Van de Sande et al. 2020] chose non-linear regression models for the same goal. The

main metric of these methods is conformance to some gold standard network. But let’s consider

the actionable result of such research: to influence the behavior of an organism to make it more

useful (e.g. more drought-tolerant crop or one with higher nutrient yield).

This paper asks the question “Are networks a good representation for actionable insights?"

Because the edges are simple edges between pairs of regulatory and target genes, the network

representation does not suggest any kind of synergy between the putative causal regulatory genes,

e.g., transcription factors. So the natural model choice for a given target gene 𝑔 given the network

is a linear model on the genes pointing to 𝑔.

Any causality model should be able to make reasonably accurate predictions. In Newtonian
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mechanics, for example, a model involving mass and gravity will be able to predict the speed

curve of a ball on an inclined plane. Predictive accuracy is not sufficient to establish causality.

Some mysterious force might cause the ball to move in that way, but a causal model should be

predictive. We consider predictive accuracy to be a necessary condition of a causal model.

We now consider several approaches to prediction.

1. Starting with all transcription factors (TFs) as possible causal features, try both a non-linear

random forest-style model𝑀𝑛𝑜𝑛𝑙𝑖𝑛 and a linear model𝑀𝑙𝑖𝑛 .

2. Based on the random forest model above, iteratively search for a minimal set of transcription

factors (TFs) that could produce similar regression results in a model𝑀𝑚𝑖𝑛𝑖𝑚𝑎𝑙

3. On the edges from a gold standard network for some target gene 𝑔, use a non-linear model

𝑀𝑛𝑜𝑛𝑙𝑖𝑛 or a linear model𝑀𝑙𝑖𝑛 .

4. Form a random forest model that uses the same number of TFs for each target 𝑔 as known

from the gold standard network. Choose those TFs according to their feature importance

starting from𝑀𝑛𝑜𝑛𝑙𝑖𝑛 in approach 1 above.

As we will see: (i) the non-linear models work better than the linear models, and (ii) starting

with all transcription factors and then shrinking that set based on model accuracy is better than

using the gold standard network.

Our models are all based on time series in which we predict the mRNA expression level of the

target gene based on the state of regulatory genes at the previous time point. This accords with

the biological intuition that the state of causal regulatory genes takes at least minutes to affect

their targets. One implication of this approach to model building is that if a transcription factor 𝑇

and a target gene 𝑔 are correlated (e.g. they rise in the same time points and fall in the same time

points), 𝑇 will not be identified as causal. On the other hand, if 𝑇 rising (respectively, falling) at

one time point were associated with 𝑔 rising (respectively, falling) at the next time point, then

causality might be hypothesized.
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3.1.1 Contributions

Our novel contribution is a framework, algorithms, and software for encoding possible causality

in transcriptional settings into a bipartite directed graph. Our framework consists of the following

workflow:

1. Choose a machine learning method𝑀 that predicts the behavior of a target gene 𝑔 starting

with all possible causal regulatory elements (transcription factors for genomic networks) as

candidates. 𝑀 may be statistical, a neural network, a forest, or a linear model. We do not

advocate any particular model, though non-linear models generally have lower errors than

linear ones.

2. Reduce the set of possible causal regulatory elements for 𝑔 to a smaller set 𝑆1 that gives

statistically equal (based on p-value) accuracy still based on𝑀 .

3. Inspired by an observation of the statistician Efron [Efron 2020], find a set 𝐷 of mutually

disjoint sets 𝑆1, 𝑆2...𝑆𝑛 that all give statistically the same accuracy as 𝑆1 in predicting the

expression of some target gene 𝑔, possibly by training a new model for each 𝑆𝑖 . 𝐷 may

contain 𝑆1 alone or may contain many sets.

4. Provide a visual representation of these mutually disjoint subsets of regulatory elements

for each given target gene 𝑔. The visualization consists of a bipartite graph in which each

transcription factor of the disjoint subsets (𝑆1, 𝑆2...𝑆𝑛) of transcription factors feeds a model

node whose output is the target gene 𝑔.
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3.2 Materials and methods

3.2.1 Expression Prediction Setup

For all the experiments carried out in this study, we focus on time series RNA-seq data, because

gene regulation through transcription factors is a temporal causal process. Following this logic,

we build regression models that predict each target gene’s expression based on the TF expression

levels from a previous time point in the time series. Formally, suppose we are given a time series

RNA-seq data consisting of sequencing data from time points 𝑡0, 𝑡1, 𝑡2, ...., 𝑡𝑖, ..., 𝑡𝑛 . We use RNA-seq

data at time 𝑡𝑖 to predict the expression of a target gene at 𝑡𝑖+1 (𝑖 ≥ 0, 𝑖 < 𝑛).

In order to split the whole time series into training/testing sets for validating the prediction

quality of different methods. We chose to always reserve the tail end of the time series for testing

while using the preceding part in training. More specifically, if 𝑛 < 5, then only 𝑡𝑛 will be used as

a test sample with 𝑡𝑛−1 being the input. If 5 ≤ 𝑛 < 10, 𝑡𝑛 and 𝑡𝑛−1 are reserved for testing with 𝑡𝑛−1,

𝑡𝑛−2 as model input. If 𝑛 ≥ 10, then the final three in the series constitute the testing set.

3.2.2 RNA Seqencing Data Used

Bulk time-series RNA-seq data from four different species with varying experimental setups

were used, totaling more than 100 data points for each species. Here are the experimental sources

for each species. For the training/testing setups below, we train on a prefix of the time points and

test on the remaining time points.

1. Saccharomyces cerevisiae (yeast): data from GSE145936 [Feder et al. 2021], GSE153609

[Mitra et al. 2021; Tran et al. 2021], GSE168699 [Li et al. 2021] and GSE226769[Harris and

Ünal 2023] were aggregated into a gene expression dataset with 144 training samples and

58 testing samples.
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2. Bacillus subtilis (strain 168) (B.subtilis): data from GSE108659 [Krawczyk et al. 2015],

GSE128875 [Pisithkul et al. 2019] and GSE224332 were aggregated into a gene expression

dataset with 84 training samples and 18 testing samples

3. Arabidopsis thaliana (Arabidopsis): data from GSE97500 [Varala et al. 2018; Heerah et al.

2021] was used with 72 training samples and 24 testing samples.

4. Mus musculus (mouse): data from GSE115553 [Graham et al. 2018], GSE151173 [Greenwell

et al. 2020] and GSE171975 [Aviram et al. 2021] aggregated into a gene expression dataset

with 208 training samples and 121 testing samples.

5. Homo sapiens (human): data from GSE221103 and GSE221173 [Cazarin et al. 2023] were

aggregated into a gene expression dataset consisting of 109 training samples and 40 testing

samples.

Thus, our study derives from four well-studied living organisms ranging from bacteria to

humans. We sought data sets having time series RNA-seq data with relatively tight timing

intervals (no greater than 4 hours in all cases) and suitably long series ( ≥ 4 time points) to form

training/testing splits. We collected as much public bulk RNA-seq data about the four species as

possible given the above constraints. Because the data came from widely different species (from

bacteria to humans), we expect that our qualitative conclusions will be generalizable. For each

species, we obtained a Gold Standard (GS) regulatory network from the sources listed in Table 3.1.

3.2.3 Metrics

Because RNA-seq counts are strongly dependent on the amount of cellular material that is read,

relative expression is a better metric to determine induction or repression than absolute expression.

For that reason, we measure expression based on the z-score of the normalized RNA-seq counts in
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Table 3.1: Information on the Gold Standard (GS) networks used in this study. The number of target genes
and transcription factors are for genes that are both present in the regulatory network and the RNA-seq
data, for each species respectively.

Species GS Network
Source

Number of
Target Genes

Number of
TFs

Number of
Regulations

Yeast Yeastract[Teixeira et al. 2023] 4794 213 162100
B.subtilis SubtiWiki[Pedreira et al. 2022] 1878 146 3973
Arabidopsis ConnecTF[Brooks et al. 2021] 18855 57 141445
Mouse RegNetwork[Liu et al. 2015] 8211 780 40331
Human RegNetwork[Liu et al. 2015] 17533 1351 132259

the form of TPM (Transcripts Per Kilobase Million):

𝑧 =
𝑇𝑃𝑀 − 𝜇

𝜎
(3.1)

To compare the performance of each method, we measure how accurate the regression results

were by checking the error of the prediction on the test set for each of the target genes. More

specifically, the root mean square error (RMSE) of the model prediction in the test set for each target

gene’s expression was compared across different regression models. Because every regression

model was trained/fitted to make predictions on the same set of time series expression samples

for each target gene in question, the performance metrics can be compared based on a paired test.

For this purpose, we use a non-parametric paired test [Katari et al. 2021].

3.2.4 Methods Compared

For the purpose of predicting each target gene’s expression on a future unseen time point, we

fitted four different types of regression models, as described above:

1. A random forest (RF) model that takes the expression of all transcription factors (TFs) as

input.

2. A ridge regression (linear regression with L2 regularization) model that takes the expression
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of all transcription factors (TFs) as input.

3. A random forest model that takes only the expression of TFs known from the gold standard

(GS) network for each particular target gene as input.

4. A ridge regression model that takes only the expression of TFs known from the gold standard

(GS) network for each particular target gene as input.

Next, we test how good the transcription factors from the gold standard network are compared

to the same number of transcription factors derived from a non-linear model. For each target

gene 𝑔, let 𝑘𝑔 be the number of transcription factors in the gold standard network that point to 𝑔.

In addition to the tests above, we compare a random forest on those gold standard transcription

factors against a random forest for 𝑔 based on the top 𝑘𝑔 transcription factors found using method 1

above. The idea is to test the usefulness of gold standard edges for prediction. One may argue that

gold standard edges are inferred using different methods – usually by modifying single regulatory

genes and seeing their effect – and therefore should not necessarily be useful for prediction, but

could still be useful if modifying a single gene is all that is possible for practical reasons. We do

not contest their utility for such purposes. We do however want to evaluate their predictive power

in a synergistic setting (i.e. when potentially several regulatory genes can be simultaneously

modified).

Finally, using the method of section 3.3, we construct a minimal random forest model for

each target gene 𝑔 on the training set and view its result on the test set. We chose random forest

because decision tree-based regression models have proven to be among the best methods in gene

regulatory tasks.[Huynh-Thu et al. 2010; Moerman et al. 2019; Zheng et al. 2019] We didn’t expand

our model selection, because the main focus of our work is not to find the best-fitted machine

learning model for the task but rather to demonstrate a novel approach to the representation of

potential causality in gene regulation.
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3.3 Algorithms to Construct Bipartite Causality Graphs

Having chosen prediction as the metric for causality, we now turn to the other three goals of

our proposed framework:

1. Find minimal sets of predictive TFs

2. Find disjoint minimal sets that have p-value-indistinguishable predictive accuracy.

3. Create a bipartite visual representation of causality.

3.3.1 Feature Importance of Random Forest

One fundamental part for our proposed bipartite representation of causality is the feature

importance metric used in random forest models. It refers to the measures that quantify how

much each feature contributes to the predictive performance of the model. The most common

one being the built-in Gini importance that measures the total decrease in Gini impurity when a

feature is used for splitting across all trees in the forest. First we start with the definition of the

Gini index at each tree node 𝜈 :

𝐺𝑖𝑛𝑖 (𝜈) =
𝐶∑︁
𝑐=1

𝑝𝜈𝑐 (1 − 𝑝𝜈𝑐 ) (3.2)

Where 𝑝𝜈𝑐 is the proportion of samples of class 𝑐 at node 𝜈 . A lower Gini impurity indicates

a purer node (more samples of a single class). If node 𝜈 uses feature 𝑋𝑖 for the split of its two

children nodes 𝜈𝐿 and 𝜈𝑅 , the Gini impurity gain of feature 𝑋𝑖 at this node is then given by:

𝐺𝑎𝑖𝑛(𝑋𝑖, 𝜈) = 𝐺𝑖𝑛𝑖 (𝑋𝑖, 𝜈) − 𝜌𝐿𝐺𝑖𝑛𝑖 (𝑋𝑖, 𝜈𝐿) − 𝜌𝑅𝐺𝑖𝑛𝑖 (𝑋𝑖, 𝜈𝑅) (3.3)

Where 𝜌𝐿 and 𝜌𝑅 are the proportions of samples going to each child.
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Then for each feature, its Gini importance is simply calculated by summing the Gini gains for

all nodes where that feature is used to split, across all trees in the forest. Features that are used

for splits more often and/or result in larger Gini gains will have higher importance scores. Often,

these raw importance scores are normalized so that they sum to 1 or 100%, making them easier to

interpret as relative importances.

Gini importance is computationally efficient as it’s calculated during the training process, thus

providing a measure of feature importance immediately after the random forest model is fitted

to the training data. As the importance metric ranks all the features based on their individual

influence on the model, it forms the basis of our iterative feature selection process that leads to

the minimal sets of predictive TFs. It can also capture non-linear relationships and interactions

between features which is themain advantage of a bipartite representation over traditional network

representation.

3.3.2 Minimal Sets of Predictive Transcription Factors

In [Efron 2020], Efron notes that disjoint sets of causal factors often enjoy similar predictive

accuracy. Inspired by this observation, we propose the following strategy. For a given target

gene, start by fitting a random forest predictor that takes the expression levels of all known TFs

to predict the expression of the target. Then the number of TFs are iteratively cut in half based

on their feature importance in the fitted model until a further reduction results in a statistically

significant (p-value < 0.05) worse performing random forest. We refer to the final remaining set

of TFs as “Minimal TF Set per Target". The pseudo-code for this feature selection process is shown

in Algorithm 1.

The histograms in Figure 3.1 show the distribution of the size of minimal TF sets yielded for

each target gene for the four species we investigated. From these size distributions, we can see

that most of the minimal sets consist of a rather small number of TFs. When compared with

the distribution of gold standard network coverage for each target gene in Table 3.2, we see that
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an accurate regression model constructed this way usually has fewer input transcription factors

compared to the gold standard networks.

Algorithm 1 Minimal Transcription Factor (TF) set per Target: For each target gene 𝐺 , initial
set of TFs, and Root Mean Squared Error 𝐸, repeatedly reduce the set of necessary transcription
factors by half until the error grows significantly with respect to 𝐸. Minimal set of TFs for a given
target gene 𝐺 will be a call to this function MinimalSet(𝐺, 𝑎𝑙𝑙 𝑇 𝐹𝑠, 0)
1: functionMinimalSet(𝐺,𝑇𝐹𝑠, 𝐸)
2: 𝐹 ← 𝑇𝐹𝑠

3: 𝑀𝑎𝑙𝑙 ← initialized regression model
4: Fit𝑀𝑎𝑙𝑙 with 𝐹 to predict 𝐺
5: if 𝐸 > 0 then
6: 𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ← 𝐸

7: else ⊲ 𝐸 == 0 implies that no error value has been calculated yet
8: 𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ← training Error of𝑀𝑎𝑙𝑙

9: 𝐹ℎ𝑎𝑙 𝑓 ← top half most influential TFs used in𝑀𝑎𝑙𝑙

10: 𝑓 𝑙𝑎𝑔← 𝑇𝑟𝑢𝑒

11: while 𝑓 𝑙𝑎𝑔 == 𝑇𝑟𝑢𝑒 do
12: 𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← initialized regression model
13: Fit𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡 with 𝐹ℎ𝑎𝑙 𝑓 to predict target gene 𝐺
14: 𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← training Error of𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡

15: if not 𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡 > 𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 with statistical significance then
16: 𝐹 ← 𝐹ℎ𝑎𝑙 𝑓
17: 𝐹ℎ𝑎𝑙 𝑓 ← top half most influential TFs used in𝑀𝑐𝑢𝑟𝑟𝑒𝑛𝑡

18: else
19: 𝑓 𝑙𝑎𝑔← 𝐹𝑎𝑙𝑠𝑒

20: return 𝐹

3.3.3 Finding Disjoint Sets of Predictive Transaction Factors

After finding a minimal set of predictive transcription factors, our algorithm performs a new

round of TF searches to discover disjoint sets of roughly equally predictive TFs. Algorithm 2

describes the process for finding all such disjoint sets of a given target gene. Similar to the minimal

set search algorithm, we based our iterative search on the random forest regression that takes all

available TFs𝑈 as input. Rather than stopping after a minimal set 𝑆1 is found, we test if using all

remaining TFs (𝑈 − 𝑆1) could also produce a regression prediction as good as the baseline. If that
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Table 3.2: Gold standard network edge coverage per target gene for different RNA-seq species compared
with the size of minimal transcription factor set sizes per target gene, derived using random forest regression.
Distributions are presented as the median followed by the interquartile range (IQR) which is the range
between the 25th and 75th percentile of the data. The one exception is yeast, where the gold standard
edges are much more numerous. As shown in the tables above, the minimal sets generally have better
predictive power than the gold standard sets and roughly the same number of edges per target.

Median [IQR] Yeast B.subtilis Arabidopsis Mouse Human

Size of TF set per Target
in the Gold Standard Network 51 [41, 63] 1 [1, 2] 13 [6, 19] 4 [2, 7] 8 [4, 14]

Size of Minimal TF Set Per
Target Using RF Regression 3 [3, 3] 2 [2, 9] 3 [3, 3] 5 [2, 10] 3 [3, 3]

Number of Target Genes 385 733 1373 310 698

is the case, we carry on a similar feature reduction process that ends with a new "minimal set" 𝑆2

from 𝑈 − 𝑆1. This process then repeats with 𝑈 − (𝑆1 ∪ 𝑆2) and continues until the baseline

performance cannot be beaten or there are no TFs left. For each target gene 𝑔, we define the

discovered collection of minimal sets discovered this way as the minimal disjoint sets of predictive

transcription factors for 𝑔 or MinDisjoints(𝑔) for short.

We then surveyed the distribution of how many MinDisjoints are found for each target gene

across the four species. The histograms in Figure 3.2 show that most of the target genes have a small

number of disjoint sets of TFs associated with them, while some target genes have a large number

of MinDisjoints. Our analysis does not yield biological mechanisms for predictability/causality, so

we have no mechanistic explanation for how multiple disjoint sets of transcription factors might

control the same target gene. However, the result is not wholly unexpected given the well-known

redundancy in biological systems.

3.3.4 Bipartite Network Representation

Networks have a pleasing visual representation, especially when focussing on one or a few

target genes. What we have shown though is that the network itself is a poor basis for prediction.

Now that we have constructed multiple disjoint sets of predictive TFs for each target gene 𝑔, we
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Algorithm 2 Disjoint sets of Transcription Factors (TFs): Find minimal sets of disjoint TFs
(MinDisjoints) where each minimal set has the same error as using all TFs.
1: 𝐷 ← empty list
2: 𝐹 ← All TFs
3: 𝑀𝑎𝑙𝑙 ← initialized regression model
4: Fit𝑀𝑎𝑙𝑙 with 𝐹 to predict target gene 𝐺
5: 𝐸𝑎𝑙𝑙 ← training Error of𝑀𝑎𝑙𝑙

6: 𝐹𝑚 ←MinimalSet(𝐺, 𝐹, 𝐸𝑎𝑙𝑙 )
7: Add 𝐹𝑚 to 𝐷
8: 𝐹𝑟 ← 𝐹 \ 𝐹𝑚
9: 𝑓 𝑙𝑎𝑔← 𝑇𝑟𝑢𝑒

10: while 𝐹𝑟 ≠ and 𝑓 𝑙𝑎𝑔 == 𝑇𝑟𝑢𝑒 do
11: 𝑀𝑟 ← initialized regression model
12: Fit𝑀𝑟 with 𝐹𝑟 to predict target gene 𝐺
13: 𝐸𝑟 ← training Error of𝑀𝑟

14: if 𝐸𝑟 > 𝐸𝑎𝑙𝑙 , with statistical significance then
15: 𝑓 𝑙𝑎𝑔← 𝐹𝑎𝑙𝑠𝑒

16: break
17: 𝐹 ←MinimalSet(𝐺, 𝐹𝑟 , 𝐸𝑎𝑙𝑙 )
18: Add 𝐹 to 𝐷
19: 𝐹𝑟 ← 𝐹𝑟 \ 𝐹
20: For a given target gene 𝐺 , 𝐷 will be the set of disjoint sets of TFs 𝐺 .
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propose a bipartite representation for them. The bipartite representation for each target gene 𝑔

consists of a model node𝑚 corresponding to each disjoint set 𝑑𝑚 from D(𝑔). The TFs from 𝑑𝑚 in

turn point to𝑚.

Suppose that TFs A, B, and C through model M(A,B,C) give good predictions regarding target

gene 𝑔. Suppose further that TFs D, E, F, and H give roughly equally good predictions on 𝑔. The

classic gene regulatory approach would be a graph with arrows from A, B, C, D, E, F, and H all

pointing to 𝑔. The Bipartite approach would suggest instead to show a bipartite graph that would

have A, B, and C point to a model node which in turn points to g, and have D, E, F, and H point to

a different model node which also points to g.

To demonstrate this new representation, we picked one example for each species we studied,

as shown in Figure 3.3. Here we specifically highlighted one interesting scenario: a set of TFs

were found to form one of the disjoint sets for more than one target gene. Such a relationship

between two genes would not have been found in a simple network representation. The bipartite

representation reveals group effects that would not otherwise be evident.

3.4 Results

3.4.1 Comparison of Approaches

Figure 3.4 shows the accuracy of the six different modeling approaches listed in Section 3.2.4.

Basically feeding expression information from all the TFs into a random forest (“RF with all TFs")

yielded the best outcome. Relying solely on known Gold Standard edges (“RF with GS TFs") usually

performed poorly, even compared to using the same number of TFs for each target gene from the

random forest model (“RF with top TFs").

We note that linear models on all TFs are competitive and sometimes better than Random

Forests onminimal TF sets for B subtilis andmouse. Still, over all, given the same input information,
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Random Forests perform better than linear models, which is the main point of that comparison.

Table 3.3, 3.4, 3.5, 3.6 and 3.7 lists the detailed pairwise non-parametric results comparing the

performance of all possible pairs of models. The tables show that using all TFs in the regression

yields the highest prediction accuracy. Finding a minimal set of the most important TFs yields

almost the same accuracy as using all TFs.

Table 3.3: S. cerevisieae (Yeast): Paired non-parametric results for the performance comparison on the
test set between the model in blue and orange measured using root mean square error (RMSE) on target
gene expressions in the test datasets. Entry (𝑖, 𝑗) shows the 95% confidence interval as the difference of
the 𝑖th blue modeling method minus the 𝑗th orange modeling method. When the difference in the blue
method 𝑖 with the orange method 𝑗 has a p-value below 0.05 based on a non-parametric paired test, the
(𝑖, 𝑗)th confidence interval will be colored accordingly. A negative number means the method in blue has a
lower error so is better, and vice versa. Otherwise the (𝑖, 𝑗)th entry will be black.

Glossary: (i) TF = transcription factor, (ii) GS = gold standard edges, (iii) RF = Random Forest,
(iv) linear = ridge regression, (v) RF with top TFs = for each target gene g, use the same number of TFs
from the random forest model as there were gold standard edges for g, and (vi) minimal TF = minimal set
of most important TFs that gives p-value-indistinguishable results (on training set) using all TFs.

RF with
all TFs

Linear with
all TFs

RF with
GS TFs

Linear with
GS TFs

RF with
top TFs

RF with
minimal TF set

Mean RMSE 0.877 1.204 0.920 1.091 0.859 0.965

RF with
all TFs - (-0.397, -0.257) (-0.055, -0.031) (-0.263, -0.166) (0.008, 0.027) (-0.119, -0.058)

Linear with
all TFs (0.257, 0.397) - (0.214, 0.354) (0.047, 0.178) (0.275, 0.414) (0.169, 0.309)

RF with
GS TFs (0.031, 0.055) (-0.354, -0.214) - (-0.218, -0.124) (0.046, 0.076) (-0.075, -0.015)

Linear with
GS TFs (0.166, 0.263) (-0.178, -0.047) (0.124, 0.218) - (0.185, 0.279) (0.081, 0.172)

RF with
top TFs (-0.027, -0.008) (-0.414, -0.275) (-0.076, -0.046) (-0.279, -0.185) - (-0.133, -0.079)

RF with
minimal TF set (0.058, 0.119) (-0.309, -0.169) (0.015, 0.075) (-0.172, -0.081) (0.079, 0.133) -

A question to ask is what biological meaning the disjoint sets could have for a given target

gene 𝑔. Our computational analysis does not give a biological meaning other than predictive

ability. Experimentalists might take various disjoint sets of transcription factors and manipulate

them to achieve some desired effect on a target gene. The choice of such sets may depend on the
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Table 3.4: B.subtilis: Paired non-parametric results for the performance comparison between the model
in blue and orange measured using root mean square error (RMSE) on target gene expressions in the test
datasets. Entry (𝑖, 𝑗) shows the 95% confidence interval as the difference of the 𝑖th blue modeling method
minus the 𝑗th orange modeling method. When the difference in the blue method 𝑖 with the orange method
𝑗 has a p-value below 0.05 based on a non-parametric paired test, the (𝑖, 𝑗)th confidence interval will be
colored accordingly. A negative number means the method in blue has a lower error so is better, and vice
versa. Otherwise, the (𝑖, 𝑗)th entry will be black. Please see the caption of Table 3.3 for a glossary of terms.

RF with
all TFs

Linear with
all TFs

RF with
GS TFs

Linear with
GS TFs

RF with
top TFs

RF with
minimal TF set

Mean RMSE 0.454 0.469 0.599 0.675 0.556 0.489

RF with
all TFs - (-0.035, 0.003) (-0.168, -0.122) (-0.247, -0.196) (-0.124, -0.080) (-0.053, -0.017)

Linear with
all TFs (-0.003, 0.035) - (-0.161, -0.098) (-0.243, -0.168) (-0.113, -0.060) (-0.037, -0.001)

RF with
GS TFs (0.122, 0.168) (0.098, 0.161) - (-0.099, -0.054) (0.015, 0.071) (0.080, 0.141)

Linear with
GS TFs (0.196, 0.247) (0.168, 0.243) (0.054, 0.099) - (0.086, 0.153) (0.153, 0.221)

RF with
top TFs (0.080, 0.124) (0.060, 0.113) (-0.071, -0.015) (-0.153, -0.086) - (0.044, 0.091)

RF with
minimal TF set (0.017, 0.053) (0.001, 0.037) (-0.141, -0.080) (-0.221, -0.153) (-0.091, -0.044) -
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Table 3.5: Arabidopsis: Paired non-parametric results for the performance comparison between the
model in blue and orange measured using root mean square error (RMSE) on target gene expressions in
the test datasets. Entry (𝑖, 𝑗) shows the 95% confidence interval as the difference of the 𝑖th blue modeling
method minus the 𝑗th orange modeling method. When the difference in the blue method 𝑖 with the orange
method 𝑗 has a p-value below 0.05 based on a non-parametric paired test, the (𝑖, 𝑗)th confidence interval
will be colored accordingly. A negative number means the method in blue has a lower error so is better,
and vice versa. Otherwise, the (𝑖, 𝑗)th entry will be black. Please see the caption of Table 3.3 for a glossary
of terms.

RF with
all TFs

Linear with
all TFs

RF with
GS TFs

Linear with
GS TFs

RF with
top TFs

RF with
minimal TF set

Mean RMSE 0.851 1.157 0.964 0.978 0.874 0.919

RF with
all TFs - (-0.345, -0.268) (-0.135, -0.092) (-0.148, -0.108) (-0.032, -0.014) (-0.080, -0.057)

Linear with
all TFs (0.268, 0.345) - (0.159, 0.227) (0.142, 0.215) (0.245, 0.322) (0.203, 0.274)

RF with
GS TFs (0.092, 0.135) (-0.227, -0.159) - (-0.028, -0.001) (0.069, 0.112) (0.023, 0.067)

Linear with
GS TFs (0.108, 0.148) (-0.215, -0.142) (0.001, 0.028) - (0.086, 0.124) (0.039, 0.081)

RF with
top TFs (0.014, 0.032) (-0.322, -0.245) (-0.112, -0.069) (-0.124, -0.086) - (-0.057, -0.033)

RF with
minimal TF set (0.057, 0.080) (-0.274, -0.203) (-0.067, -0.023) (-0.081, -0.039) (0.033, 0.057) -
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Table 3.6: Mouse: Paired non-parametric results for the performance comparison between the model in
blue and orange measured using root mean square error (RMSE) on target gene expressions in the test
datasets. Entry (𝑖, 𝑗) shows the 95% confidence interval as the difference of the 𝑖th blue modeling method
minus the 𝑗th orange modeling method. When the difference in the blue method 𝑖 with the orange method
𝑗 has a p-value below 0.05 based on a non-parametric paired test, the (𝑖, 𝑗)th confidence interval will be
colored accordingly. A negative number means the method in blue has a lower error so is better, and vice
versa. Otherwise the (𝑖, 𝑗)th entry will be black. Please see the caption of Table 3.3 for a glossary of terms.

RF with
all TFs

Linear with
all TFs

RF with
GS TFs

Linear with
GS TFs

RF with
top TFs

RF with
minimal TF set

Mean RMSE 1.194 1.305 1.480 1.686 1.331 1.293

RF with
all TFs - (-0.217, -0.006) (-0.437, -0.136) (-0.669, -0.316) (-0.200, -0.074) (-0.169, -0.029)

Linear with
all TFs (0.006, 0.217) - (-0.261, -0.088) (-0.503, -0.259) (-0.110, 0.059) (-0.055, 0.080)

RF with
GS TFs (0.136, 0.437) (0.088, 0.261) - (-0.290, -0.122) (0.032, 0.266) (0.072, 0.303)

Linear with
GS TFs (0.316, 0.669) (0.259, 0.503) (0.122, 0.290) - (0.203, 0.508) (0.248, 0.539)

RF with
top TFs (0.074, 0.200) (-0.059, 0.110) (-0.266, -0.032) (-0.508, -0.203) - (-0.025, 0.101)

RF with
minimal TF set (0.029, 0.169) (-0.080, 0.055) (-0.303, -0.072) (-0.539, -0.248) (-0.101, 0.025) -
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Table 3.7: Human: Paired non-parametric results for the performance comparison between the model in
blue and orange measured using root mean square error (RMSE) on target gene expressions in the test
datasets. Entry (𝑖, 𝑗) shows the 95% confidence interval as the difference of the 𝑖th blue modeling method
minus the 𝑗th orange modeling method. When the difference in the blue method 𝑖 with the orange method
𝑗 has a p-value below 0.05 based on a non-parametric paired test, the (𝑖, 𝑗)th confidence interval will be
colored accordingly. A negative number means the method in blue has a lower error so is better, and vice
versa. Otherwise the (𝑖, 𝑗)th entry will be black. Please see the caption of Table 3.3 for a glossary of terms.

RF with
all TFs

Linear with
all TFs

RF with
GS TFs

Linear with
GS TFs

RF with
top TFs

RF with
minimal TF set

Mean RMSE 0.931 1.088 1.049 1.474 0.995 1.004

RF with
all TFs - (-0.192, -0.122) (-0.143, -0.093) (-0.616, -0.469) (-0.081, -0.047) (-0.088, -0.056)

Linear with
all TFs (0.122, 0.192) - (0.005, 0.073) (-0.457, -0.314) (0.060, 0.126) (0.052, 0.117)

RF with
GS TFs (0.093, 0.143) (-0.073, -0.005) - (-0.489, -0.361) (0.032, 0.076) (0.019, 0.072)

Linear with
GS TFs (0.469, 0.616) (0.314, 0.457) (0.361, 0.489) - (0.413, 0.545) (0.400, 0.541)

RF with
top TFs (0.047, 0.081) (-0.126, -0.060) (-0.076, -0.032) (-0.545, -0.413) - (-0.029, 0.012)

RF with
minimal TF set (0.056, 0.088) (-0.117, -0.052) (-0.072, -0.019) (-0.541, -0.400) (-0.012, 0.029) -
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side effects such manipulation might have on other genes. This is a direction for future work.

3.4.2 Batch Effects

While the z-score takes care of quantity bias in different tests, batch effects may cause predic-

tions on batch A based on data from batch A to be superior to predictions on batch A from data

on many batches. That is a limitation of any predictive model in biology.

To test this, we created our models based on multiple batches and tested them on the tail end of

all those batches. We compared that approach with batch-by-batch predictions. Figure 3.5 shows

that the same model trained on all batches of data achieves the same level or better predictive

performance compared to using batch X’s data on batch X’s tail, for each batch X.

3.4.3 Ensemble of Disjoint Sets of Transcription Factors

Another potential use of the identification of disjoint sets of predictive TFs stems from the

fact that each disjoint set represents a regression model for the prediction of the target gene. For

all the disjoint sets we found of a target gene 𝑔, the regression model of each disjoint set can give

a prediction about the expression of the target gene given the expression input of the TFs at the

previous time point. As has been shown in many past studies in both general machine learning

and gene network inference [Dietterich 2000; Marbach et al. 2012; Sagi and Rokach 2018; Ganaie

et al. 2022], an ensemble consisting of the arithmetic mean of these model predictions may lead to

an overall better performing prediction. Inspired by those results, we compared the predictive

performance of this ensemble of disjoint sets of TFs to all other RF-based regressions we discussed

before, the results are presented in Table 3.8. In most cases, this ensemble yielded regression

accuracies second only to the model that takes all TFs as input.

For a complete list of all the minimal sets and disjoint sets of TFs for each target gene we

surveyed in this study, please refer to supplementary tables S1 through S5, which are deposited in
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Table 3.8: Paired non-parametric results for the performance comparison between the model in blue and
orange measured using root mean square error (RMSE) on target gene expressions in the test datasets.
Each column is a comparison for one of the four species that compared the ensemble prediction from
disjoint sets of transcription factors (TFs) to other random forest (RF) based methods. Entry (𝑖, 𝑗) shows the
95% confidence interval as the difference of the 𝑖th blue modeling method minus the 𝑗th orange modeling
method. When the difference in the blue method 𝑖 with the orange method 𝑗 has a p-value below 0.05 based
on a non-parametric paired test, the (𝑖, 𝑗)th confidence interval will be colored accordingly. A negative
number means the method in blue has a lower error so is better, and vice versa. Otherwise the (𝑖, 𝑗)th
entry will be black. Please see the caption of Table 3.3 for a glossary of terms.

Ensemble of Disjoint Sets
in Yeast

Ensemble of Disjoint Sets
in B.subtilis

Ensemble of Disjoint Sets
in Arabidopsis

Ensemble of Disjoint Sets
in Mouse

Ensemble of Disjoint Sets
in Human

RF with
all TFs (-0.058, -0.017) (-0.009, 0.008) (-0.009, 0.001) (-0.038, 0.013) (-0.021, -0.003)

RF with
GS TFs (0.227, 0.366) (-0.003, 0.034) (0.270, 0.349) (0.034, 0.223) (0.115, 0.181)

RF with
top TFs (-0.010, 0.027) (0.122, 0.170) (0.090, 0.133) (0.169, 0.444) (0.085, 0.134)

RF with
minimal TF set (0.138, 0.231) (0.196, 0.249) (0.105, 0.146) (0.350, 0.681) (0.464, 0.610)

this following Google Drive link .

3.4.4 An Application: optimizing gene expression

Suppose our goal is to cause a gene g to be expressed at a certain level. We’ve seen that the

gold standard network, even when available, gives quite poor predictions. A better approach is to

start with a good predictive model for g on a small number of TFs T and then to determine values

of the TFs in T that might lead to the desired expression level of g. This goal is supported by the

three goals of our framework: find a good model, reduce the number of TFs while preserving

accuracy, and find possible alternative sets of TFs that also give high prediction accuracy. Gene

Regulatory Networks do not give natural guidance for any goal like this.

Thus, the Bipartite Network approach provides an actionable approach to causality. Along the

way, it provides (i) a visualization that shows alternative ways to manipulate a target gene, and

(ii) a simple ensemble approach to prediction.
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3.5 Empirical findings

The following are our empirical findings:

• We confirm previous observations [Pratapa et al. 2020; Zhao et al. 2021] that non-linear

models generally yield better results (as measured by Root Mean Squared Error) than linear

ones.

• Using all TFs yields better predictive results than using the TFs from Gold Standard edges.

For each target gene 𝑔, there often exist several disjoint minimal sets (mostly of size eight

or less) that give predictive accuracy nearly as high as all TFs.

• Using all batches of each species together for training yields results on the time series test

tails of each batch that are as good as or better than using each batch on its own test tail.

• For a given target gene 𝑔, forming a model consisting of the most influential 𝑘𝑔 Transcription

Factors in a non-linear model (e.g. random forests) as measured on the training set, where

𝑘𝑔 is the number of TFs in the gold standard network that point to 𝑔, yields better prediction

accuracy on the test set than using the same kind of model on the gold standard TFs. This

superiority holds for all the species we’ve tested from yeast with a mean value of 53 TFs for

each target gene to B. subtilis with a mean value of 1.9 TFs for each target gene.

3.6 Conclusion

Based on our empirical findings, we suggest a framework for studying causality in gene

regulation having three main features.

First, the figure of merit for causality should be predictive accuracy rather than conformance

with "gold standard" edges. One reason is epistemic: any causal model should be predictive.
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Another reason is pragmatic: prediction is useful if we want to manipulate some property such as

the expression of a target gene.

Second, the network representation of such causality should be a bipartite graph consisting of

gene (including transcription factor) nodes and model nodes. Such graphs encode the synergy of

multiple transcription factors in the model nodes.

Third, the bipartite representation may include many model nodes that point to the same

target gene, where each model node has a disjoint set of transcription factors as input. A single

transcription factor plays a role in disjoint sets of several target genes.

In addition to suggesting a modified approach to causality research for transcriptional regu-

lation, we assert that our framework applies beyond transcriptional causality. Our main future

work is to apply this form of analysis to other multifactor causality domains. We welcome other

researchers to try this approach and offer our software to help.
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Figure 3.1: Size distribution of minimal TF set for each target gene. For every species, the majority of
genes are best predicted by under eight transcription factors. That is 96.6% for yeast, 73.5% for b.subtilis,
98.7% for arabidopsis, 71.9% for mouse and 97.7% for human.
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(b) B.subtilis
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(c) Arabidopsis
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(d) Mouse
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(e) Human
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Figure 3.2: Distribution of disjoint set count for each target gene. Many target genes can be best modeled
by a handful of explanatory set of TFs. For yeast, 44.2% of the target genes are best modeled by fewer than
five explanatory disjoint sets of TFs. For B. Subtilis, 44.1%. For Arabidopsis, 15.2%. For Mouse, 25.5%. For
Human, 10.3%. Sometimes many disjoint sets of TFs are redundant. Bipartite graphs capture this causality
information, as we will see below.
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(b) B.subtilis
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(c) Arabidopsis
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(d) Mouse
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(e) Human
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Figure 3.3: Bipartite representation of causality. Light circular orange nodes represent non-linear models
that take transcription factors (dark orange rectangles) as inputs and produce predictions on a single target
gene (in blue). Here we show a particular case where disjoint sets of TFs can form high quality prediction
models for one target gene and the same TF can be in models for several target genes.
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Figure 3.4: Root Mean Squared Error (RMSE) performance (lower is better) of different regression models
compared across four species, error bars representing the standard error of each group. When we compare
all the models for each of the tested target genes, a paired non-parametric test can be applied between
each pair of models to see if the performance is statistically different. The best performing models that
are statistically indistinguishable this way are marked with ∗. “RF with all TFs" is always one of the best
performing models. Please see the caption of Table 3.3 for a glossary of terms.
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Figure 3.5: Random forest regression performance differences measured across different data batches for
different species. Here all batches results are the default and presented relists shown in this work where
random forest model using all TFs were trained on training data from all batches and tested on all the tail
testing parts from different batches. The same model was then trained and tested on individual batches
for their respective high variance target genes. Note that for arabidopsis, one singular batch was used, so
no need for such comparison. For b.subtilis, the first batch does not have high variance target genes in its
testing set so the comparison was also omitted.
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4 | Discussion

This thesis presents two contributions to the field of network casual inference in biological

systems, with the potential and ability to extend to other similar systems. First, we introduce

EnsInfer, a robust ensemble approach that combines multiple network inference methods using a

Naive Bayes model. Our findings demonstrate that this approach often outperforms individual

inference methods across various datasets, particularly in sparse data environments. Second, we

propose a novel framework bipartite network for studying causality in gene regulation, emphasizing

predictive accuracy, bipartite graph representation, and the consideration of multiple disjoint sets

of transcription factors. These contributions not only enhance our ability to infer gene regulatory

networks but also offer a new perspective on representing and analyzing causal relationships in

complex biological systems.

The following discussion elaborates on these two contributions, their implications, limitations,

and potential for broader applications beyond transcriptional regulation.

4.1 Effectiveness of Ensemble Methods in Inference

The effectiveness of ensemblemethods in network inference, particularly our EnsInfer approach,

addresses a key challenge in the field. As noted by Pratapa et al. [Pratapa et al. 2020], no single

inference method consistently outperforms others across all datasets. EnsInfer reflects this insight

by combining multiple inference methods using a Naive Bayes model. This approach proves
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particularly effective in sparse data environments, which are common in biological studies [Chen

and Guestrin 2016]. The simplicity of the Naive Bayes model often leads to robust performance

improvements compared to more complex models in practice [Rish et al. 2001]. Our results

demonstrate that EnsInfer frequently surpasses individual methods in predictive accuracy [Shen

et al. 2023], aligning with the growing recognition of ensemble approaches in bioinformatics

[Marbach et al. 2012]. Besides its robust improvement over individual inference algorithm shown

even in the most challenging cases. The way EnsInfer is constructed also makes it inherently

flexible to leverage future network inference approaches by utilizing their collective wisdom. Our

flexible framework promises to push the boundaries of our understanding of biological systems

and pave the way for new discoveries in diverse domains, including disease biology, developmental

processes, and synthetic biology.

4.2 Limitations and Considerations of EnsInfer

While EnsInfer demonstrates significant advantages, it’s important to acknowledge its limita-

tions and considerations. In some cases, particularly when individual inference methods perform

only marginally better than random, the ensemble approach may not yield substantial improve-

ments [Marbach et al. 2012]. This was observed in single-cell human embryonic stem cell data,

where base methods in BEELINE barely outperformed random predictions [Pratapa et al. 2020].

Additionally, the effectiveness of EnsInfer can be influenced by data sparsity and feature space

size. In sparse data environments, common in experimental biology, Naive Bayes tends to per-

form well [Rish et al. 2001]. However, as the feature space expands with the inclusion of more

inference algorithms, feature selection might become necessary to maintain performance [Guyon

and Elisseeff 2003].
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4.3 Proposed Framework Bipartite Network

Our proposed framework for studying causality in gene regulation represents a significant

shift from traditional approaches. First, we advocate for using predictive accuracy as the primary

figure of merit for causality, rather than conformance with "gold standard" edges. This aligns

with the fundamental principle that causal models should be predictive [Pearl 2009]. Moreover,

it offers practical advantages for researchers aiming to manipulate gene expression or other

biological properties [Alon 2019]. This approach is particularly relevant in the context of recent

advancements in single-cell genomics, where traditional bulk methods may fall short of capturing

the complexity of gene regulation [Wagner et al. 2016]. By focusing on predictive power, our

framework can potentially reveal causal relationships that might be overlooked by conventional

methods, especially in cases where gold standards are incomplete or biased [Schaffter et al. 2011].

Second, we propose representing causality using a bipartite graph structure, consisting of

gene nodes (including transcription factors) and model nodes. This representation offers several

advantages over traditional network models. It allows for the explicit encoding of synergistic

effects among multiple transcription factors within the model nodes, capturing complex regulatory

interactions that are often oversimplified in standard graphs [Davidson 2010]. Furthermore, our

framework accommodates multiple model nodes pointing to the same target gene, each with a

disjoint set of transcription factors as input. This feature enables the representation of diverse

regulatorymechanisms for a single gene, reflecting the biological reality of complex gene regulation

[Peter andDavidson 2015]. Concurrently, it allows for individual transcription factors to participate

in multiple, disjoint sets influencing various target genes, capturing the pleiotropic nature of many

regulatory factors [Boyle et al. 2017]. This bipartite representation not only enhances our ability

to model complex regulatory relationships but also provides a more intuitive visualization of these

interactions, potentially leading to new insights in gene regulation studies [Karlebach and Shamir

2008].
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4.4 Future Directions and Broader Applications

The Bipartite Network framework has potential applications beyond transcriptional regulation

[Shen et al. 2024]. Future work should focus on applying this approach to other multifactor

causality domains in biology and beyond [Barabasi and Oltvai 2004]. For instance, it could be

adapted to study metabolic networks [Nielsen 2017] or signaling pathways [Kitano 2002]. The

integration of new inference methods, such as those leveraging deep learning [Eraslan et al. 2019],

could further enhance the power of our ensemble approach.

We and other researchers should test and adapt this framework in their respective fields. To

facilitate this, we have made our software tools available to the scientific community, aiming to

foster collaborative advancements in causal inference across diverse domains. It can be found at

this following GitHub repository.
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