
Diagnosing AI Misbehavior: Why Do Models Fail?

by

Anqi Zhang

A dissertation submitted in partial fulfillment

of the reqirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

August, 2025

Dr. Jinyang Li

Dr. Aurojit Panda



© Anqi Zhang

All rights reserved, 2025



Dedication

To those ordinary days that quietly shimmer with brilliance

iii



Acknowledgements

I would like to express my deepest gratitude to my advisors, Professor Jinyang Li and Pro-

fessor Aurojit Panda, for their invaluable guidance throughout these six years. At the beginning

of my doctoral journey, Jinyang provided me with the intellectual freedom to explore different

research directions and discover the areas and projects that truly sparked my interest. Through

our collaborative exploration of various projects and countless progress discussions, I gradually

absorbed the essential mindset for conducting research and learned the nuances of academic

writing from both of them.

Our countless meetings were filled with brainstorming sessions about fascinating problems,

discussions on how to evaluate whether a question is worth pursuing, debates over whether

our solutions were rigorous, robust, and efficient, and deep dives into what our experiments -

successful or not - were telling us. Every "aha!" moment brought me genuine excitement and

joy. Equally memorable were those intense discussions where we passionately defended our

viewpoints, particularly when facing Panda’s precise and challenging questions. Initially, I of-

ten felt overwhelmed and uncertain, but over time, these intense discussions gradually taught

me how to stay calm, think about whether I was expressing myself clearly, and engage in real

back-and-forth academic discussions. Looking back, this was such valuable growth. Through

these processes, I have gradually internalized a systematic approach to conducting research —

how to frame problems, analyze their significance, and work toward solutions. This intellectual

framework represents one of the most precious gifts from my doctoral experience.

iv



I am grateful to the many collaborators and committee members who contributed to the work

that culminated in this dissertation. I would like to thank Siddhartha Sen and Mathias Lécuyer

(now professor at UBC) from Microsoft Research NYC, along with my teammate Jinkun Lin,

for our collaboration on the AME project. The brainstorming sessions were filled with creative

sparks, and everyone’s hard work made the project truly rewarding. I’m especially grateful to Sid

for serving on my committee and providing continuous guidance throughout my PhD journey.

I also want to thank my collaborators on the reasoning model project: Professor He He, Yulin

Chen, Jane Pane, and Chen Zhao (Professor from NYU Shanghai). Especially He — our conver-

sations were incredibly enlightening and helped me discover valuable new research directions

that genuinely excited me. This came at a time when I was feeling quite lost and struggling

to find my path, and her insights brought much-needed clarity and renewed enthusiasm to my

work. Throughout my dissertation proposal and defense, my committee memebers - Jinyang,

Panda, Sid, He, and Professor Saining Xie - all provided invaluable feedback, suggestions, and

guidance. I’m deeply grateful for everyone’s encouragement, affirmation, and the time and effort

they invested in helping me succeed.

Beyond my academic journey, I am deeply grateful to the family and friends who provided

unwavering support throughout these years. I want to especially thank my boyfriend, Chaofeng

Wu, for his companionship and emotional support during my doctoral studies. Whether serving

as a thoughtful listener and advisor in my academic discussions, sitting side by side with me as we

worked through countless ordinary days, offering comfort and encouragementwhen experiments

weren’t yielding results and stress was overwhelming, or celebrating and sharing in my joy when

breakthroughs finally came — his presence has been my sanctuary and the gentle constant that

made even the most challenging days feel manageable.

I am profoundly grateful to my parents for their unwavering understanding of my choices

and for the love and care they’ve conveyed across the distance. Even from afar, their care and

support reaches me like warm sunlight, perfectly attuned to what I needed. This love has been

v



my inexhaustible wellspring of strength.

I also want to thank my friends, whose gatherings and laughter have been like stars illumi-

nating this phase of my life. I also want to thank all my colleagues and labmates including Jinkun

Lin, Tao Wang, Lingfan Yu, Ding Ding, Zhanghan Wang, and many others. I’m grateful that we

shared part of this journey together.

To everyone who has been part of this journey — thank you. Your contributions, big and

small, have made this work possible and my doctoral experience truly unforgettable.

vi



Abstract

As artificial intelligence systems become increasingly pervasive across critical domains, un-

derstanding and diagnosing their failures has become paramount for ensuring safety, reliability,

and trust. This dissertation addresses the fundamental challenge of diagnosing AI misbehavior

across shifting deep learning paradigms – from classifiers to Graph Neural Networks (GNNs) to

Large Reasoning Models (LRMs) – each exhibiting distinct failure problems that demand special-

ized diagnostic approaches.

This thesis presents three complementary contributions that develop targeted diagnostic frame-

works for each major model paradigm. First, for classifiers, we introduce the Average Marginal

Effect (AME), a scalable data attribution method that traces prediction errors back to problematic

training data, achieving efficient attribution with only 𝑂 (𝑘𝑙𝑜𝑔𝑁 ) evaluations under sparsity as-

sumptions. Second, for GNNs, we develop MimicLDT, a novel long-distance targeted poisoning

attack that reveals critical blind spots in GNN-explainer tools, and demonstrate how AME can

be adapted to graph structures for diagnosing these stealthy attacks. Third, for large reasoning

models, we design self-verification probes that uncover latent correctness signals in intermediate

reasoning steps, achieving ROC-AUC scores above 0.7 with remarkably low expected calibration

error below 0.1, and enable confidence-based early-exit strategies that reduce inference tokens

by up to 24% without compromising accuracy. This work establishes a comprehensive frame-

work for model-aware diagnostics that advances both our understanding of AI misbehavior and

practical tools for building more trustworthy, efficient, and interpretable AI systems.

vii



Contents

Dedication iii

Acknowledgments iv

Abstract vii

List of Figures xiii

List of Tables xviii

List of Appendices xxiii

1 Introduction 1

1.1 The Shifting of Deep Learning Models . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Important Questions among Three Model Paradigms . . . . . . . . . . . . . . . . 6

1.3 Challenges of Diagnosing Model Misbehaviors . . . . . . . . . . . . . . . . . . . . 9

1.3.1 General Challenges – The Black Box Problem . . . . . . . . . . . . . . . . 9

1.3.2 Other Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.1 Classifiers – Scalable Data Attribution . . . . . . . . . . . . . . . . . . . . 10

1.4.2 GNNs - Vulnerability & Poisoning Diagnosis . . . . . . . . . . . . . . . . 11

1.4.3 Reasoning Models - Probing for Self-Verification & Efficient Inference . . 12

viii



2 Diagnosing Classifiers: From Data Attribution 14

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Our Metric for Data Attribution: AME . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 Defining the Average Marginal Effect (AME) . . . . . . . . . . . . . . . . . 18

2.2.3 Connection to the Shapley Value . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Efficient Sparse AME Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 A Sparse Regression Estimator for the AME . . . . . . . . . . . . . . . . . 21

2.3.2 Efficient Sparse SV Estimator . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Practical Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Controlling False Discoveries . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.2 Hierarchical Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Detecting Poisoned Training Data . . . . . . . . . . . . . . . . . . . . . . 31

2.5.2 Data Attribution for Non-poisoned Predictions . . . . . . . . . . . . . . . 35

2.5.3 Shapley Value Estimation from AME . . . . . . . . . . . . . . . . . . . . . 35

2.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Revealing and Diagnosing GNN Vulnerabilities: through Stealthy Attacks 38

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Attack Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Attack Design: MimicLDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 MimicLDT Overview: via Embedding Collision . . . . . . . . . . . . . . . 47

ix



3.4.2 Determining Graph Structure . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.3 Determining Injected Node Features . . . . . . . . . . . . . . . . . . . . . 49

3.5 Evaluation on MimicLDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.2 Evaluation on MimicLDT Attack . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.3 Comparing with Short-distance Baselines . . . . . . . . . . . . . . . . . . 56

3.5.4 Ablation Studies of MimicLDT . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.5 End-to-end attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 Diagnosing Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.1 Local Diagnosis Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.2 Apply AME to MimicLDT . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7 Adapting AME to Diagnose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7.1 Approach: Identify Poisoned Subgraphs . . . . . . . . . . . . . . . . . . . 62

3.7.2 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.7.3 Ablation Studies and Lessons Learned . . . . . . . . . . . . . . . . . . . . 65

3.7.4 Broader Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Reasoning Models Diagnostic: Probe as Hidden Verifier 67

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Motivation and Novelty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Probe for Intermediate Answer Correctness . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.2 Training the Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.2 Reasoning models encode answer correctness . . . . . . . . . . . . . . . . 73

x



4.4.3 Probes generalize to some out-of-distribution datasets . . . . . . . . . . . 74

4.4.4 Encoding of correctness is related to long CoT reasoning abilities . . . . . 75

4.4.5 Correctness can be detected before the answer is generated . . . . . . . . 76

4.5 Efficient Inference: Early-exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5.1 Probe as a Verifier for Early-exit . . . . . . . . . . . . . . . . . . . . . . . 78

4.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Conclusion 84

5.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A Appendix: Supplementary Materials for Chapter 2 87

A.1 Convergence Rate when Using LASSO to compute AME . . . . . . . . . . . . . . 87

A.2 An AME Estimator with 𝑝-featurization . . . . . . . . . . . . . . . . . . . . . . . . 89

A.3 Sparse Estimators for the Shapley Value from the AME . . . . . . . . . . . . . . . 92

A.4 Efficient Sparse Beta-Shapley Estimator . . . . . . . . . . . . . . . . . . . . . . . . 99

A.5 Extending to Approximate Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.6 Evaluation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.7 Extended Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

B Appendix: Supplementary Materials for Chapter 3 133

B.1 Design details of MimicLDT and MetaLDT . . . . . . . . . . . . . . . . . . . . . . 133

B.2 The MetaLDT Attack via Optimization . . . . . . . . . . . . . . . . . . . . . . . . 137

B.3 Details of experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

B.4 Additional evaluations on MetaLDT . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B.5 Additional evaluations on MimicLDT . . . . . . . . . . . . . . . . . . . . . . . . . 144

xi



B.6 Comparison to short-distance baselines . . . . . . . . . . . . . . . . . . . . . . . . 148

B.7 Detailed results over different datasets and short-distance baselines . . . . . . . . 154

B.8 Design and evaluation of end-to-end attacks . . . . . . . . . . . . . . . . . . . . . 155

C Appendix: Supplementary Materials for Chapter 4 159

C.1 Additional details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Bibliography 167

xii



List of Figures

2.1 Utility vs. the subset size, measured on CIFAR10-50 dataset (see §2.5), where each

point denotes a subset. Each subset is obtained by first drawing an inclusion

probability 𝑝 from a uniform distribution with range from 0.01 to 0.99, and then

including each datapoint with probability 𝑝 . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Estimation Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Poison data examples, with clean data (top) and poisoned data (bottom) for: the

red-square trigger attack on CIFAR10; the watermark trigger attack on ImageNet;

the Poison Frogs attack; and the NLP trigger. . . . . . . . . . . . . . . . . . . . . . 32

2.4 Effect of growing 𝑐 (and corresponding 𝑀). Both use warm-staring. Prec+Pure

(Rec+Pure) is the precision (recall) for LASSO without knockoffs. . . . . . . . . . 33

2.5 Hierarchical design on the NLP dataset, showing the LASSO+Knockoffs preci-

sion and recall for top-level (blue), second-level (orange), and non hierarchical

(purple). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Queries for wrong predictions. Pre is the model’s prediction, gt is the ground truth. 34

2.7 Queries for correct predictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8 Precision v.s. recall curves for comparison with prior poison detection work.

“Repr.” denotes Representer Points. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.9 Est. error vs sample size on synthetic dataset. The shaded area shows 95% confi-

dence intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.10 Est. error vs sample size on Poisoned MNIST dataset. . . . . . . . . . . . . . . . . 35

xiii



3.1 Targeted poisoning attack via long distance node injection. . . . . . . . . . . . . . 39

3.2 The embedding space distance between the target node and existing nodes whose

ground-truth label is the same as the attack’s target label, as MetaLDT’s optimiza-

tion progresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Poison success rate with varying number of attack points for GraphSAGE on ArXiv. 58

3.4 Similarity between injected nodes (varying 𝛽), their attack points, and between

neighboring and non-neighboring nodes for GraphSAGE on ArXiv. . . . . . . . . 58

3.5 Effect of GNNExplainer on various short-distance attacks over Cora dataset under

detection rate (precision/recall) and attack success rate (ASR) after removing the

selected adversarial edges and retraining for prediction. GNNExplainer selects

only those edges whose importance scores are above the user-specified threshold.

See details about settings of budget and ninf (number of influencer) in §B.6.1. . . 60

4.1 An illustration of the probing method. On the left side, long CoT is parsed into

multiple chunks, each corresponding to a reasoning path and contains an inter-

mediate answer as termination. On the right side, representations for each chunk

are obtained and probe is used to predict the probability of answer being correct. 69

4.2 ROC-AUC scores for each probe trained on hidden states from different reason-

ing models and datasets. We train a separate probe on each probing dataset and

evaluate it on in-distribution test set. . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Comparison on the performance on reasoning models (i.e., R1-Distill-Llama-8B,

fine-tuned on the base Llama-3.1-8Bmodel using longCoT data) and non-reasoning

models (i.e., Llama-3.1-8B-Instruct) on MATH. For reasoning models, we show

both the performance on predicting the correctness of intermediate answers (blue)

and the final answers (green). For non-reasoning models, the data only contains

the final answers (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xiv



4.4 Performance on predicting the correctness of the upcoming intermediate answers

midway through a reasoning chunk. The results are obtained at different percent-

ages of all paragraphs within each chunk. The task dataset and reasoning model

used are MATH dataset and R1-Distill-Llama-8B. . . . . . . . . . . . . . . . . . . . 78

4.5 Final answer accuracy versus inference token cost with different early-exit strate-

gies. For confidence-based early-exit, the curve is obtained by varying the confi-

dence threshold for answer correctness. For static early-exit, the curve is gener-

ated by varying the chunk number𝑚. . . . . . . . . . . . . . . . . . . . . . . . . 80

A.1 Effect of𝑞 in Knockoffs on CIFAR10-50. Left: training-from-scratch; Right: warm-

start training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.2 LASSO results run only on observations from a single 𝑝 value, we highlight the 𝑝

value providing the best result. Avg is the result from using the entire 𝑝 value grid. 107

A.3 Effect of growing 𝑐 . “Prec+Pure” is the precision of LASSO without knockoffs;

“Prec+Knockoff” is the precision of LASSOwith knockoffs. “Rec+Pure” and “Rec+Knockoff”

show the recall for both setups. Poison Frogs uses transfer learning and is not

amenable to fine-tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.4 Average run times of LASSO on the queries as we grow 𝑐 on training-from-scratch

and warm-starting benchmarks. The error bar draws the standard deviation.

CIFAR10-20 results are almost identical and thus omitted. . . . . . . . . . . . . . . 111

A.5 The counterpart of Fig. 2.8 with AME using the regularization parameter choice

of 𝜆𝑚𝑖𝑛 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.6 Experiment of the influence function on CIFAR10-20. The loss function is defined

as the average loss on 20 query inputs. We use the parameter configuration of

𝑟 = 10, 𝑡 = 1000, damping term 𝜆 = 0.01, and scale term=25. . . . . . . . . . . . . . 116

A.7 Precision vs Recall curve comparison. . . . . . . . . . . . . . . . . . . . . . . . . . 118

xv



A.8 Queries for correct predictions. The last row only shows a subset since they are

too long to fit in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.9 Queries for wrong predictions. Pre is model’s prediction and gt is the ground

truth. The last row only shows a subset since they are too long to fit in. . . . . . 121

A.10 Quantitative comparison of model explanation through the drop in the confi-

dence scores. Y-axis shows the average confidence scores across all correct/wrong

queries. The 95% confidence interval is drawn as the vertical bars. . . . . . . . . . 122

A.11 Additional comparison against other baselines on SV estimation. . . . . . . . . . . 124

A.12 Compressive Sensing with different choices of 𝜖 . . . . . . . . . . . . . . . . . . . . 124

A.13 𝑝-featurization vs 1/𝑝-featurization (§A.2). Both use truncated uniform distribu-

tion𝑈𝑛𝑖 (𝜀, 1 − 𝜀). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.14 Beta vs truncated uniform distribution. Our approaches (Beta* and Uni*) all use

𝑝-featurization (§A.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.15 Correct-prediction queries and their results, where each row shows two queries

and each query starts with the query input followed by images selected. . . . . . 126

A.16 Wrong-prediction queries and their results, where each row shows two queries

and each query starts with the query input followed by images selected. . . . . . 127

B.1 Poison success rate as the rounds of optimization increases. . . . . . . . . . . . . 144

B.2 Attack success rate of varying Φ, which is the upper bound number of injected

nodes for each attack point. keep other settings and hyperparameters to be the

same. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

B.3 Homophily distribution for clean and poisoned graph over ArXiv. MimicLDT-

homo refers to a variant of MimicLDT that uses the node-centric homophily met-

ric for its loss function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

xvi



B.4 Attack success rate when varying the edge perturbation budget for direct Nettack,

indirect Nettack with 2 or 10 influencers, FGA and IG-FGSM. . . . . . . . . . . . . 150

B.5 Attack success rate as a function of the number of edges connecting injected

nodes and attack points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B.6 Effect of GNNExplainer on various short-distance attacks over Cora dataset under

the metrics of NDCG/F1 scores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

B.7 An example text generated for a fake node. The attack manages to flip the target

node’s label from Numerical Analysis to Logic in Computer Science. . . . . . . . . 155

B.8 An example of successfully poisoned end-to-end attack: the CDF of the 1-CosineSimilarity

loss of 𝑓𝑜𝑝𝑡 and 𝑓 ′𝑜𝑝𝑡 for all injected nodes. . . . . . . . . . . . . . . . . . . . . . . . 157

C.1 T-SNE visualization of chunk representations for different datasets. 1000 chunks

are randomly sampled from each training set and R1-Distill-Llama-8B is used to

obtain the representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

xvii



List of Tables

2.1 Datasets, models, and attacks summary: 𝑁 is the number of sources, 𝑁 ′ is the

overall size of the training data, 𝑘 is the number of poisoned sources, and 𝑘′ is the

number of poisoned training examples. . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Average precision and recall of LASSO+Knockoffs. The column 𝑐 denotes the

constant in 𝑂 (𝑘 log2 𝑁 ), i.e., we use𝑀 = 𝑐𝑘 log2 𝑁 subset models. . . . . . . . . . 32

3.1 Success rate of MimicLDT, MetaLDT, short-distance attacks (including modifica-

tion attacks: Nettack, FGA and IG-FGSM; and the node-injection poisoning at-

tack: AFGSM) over Cora, PubMed and ArXiv datasets. Numbers in parentheses

indicate cases where MetaLDT could not complete, and we instead ran a variant

where inner-training runs for 50 epochs. Numbers with a star sign indicate some

attacks are OOM and we only show the range of attacks that are not OOM. More

detailed numbers are in Appendix§B.7. . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Total running time (in seconds) andGPUmemory cost of generating one poisoned

graph for various datasets on GCN model. . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Changes in the distribution of graph node degrees and homophiliy, measured us-

ing Earth Mover’s Distance, for the Cora dataset. The values represent the average

distance between each poisoned graph and the original input. We report on other

datasets in Appendix. B.5.2 and B.5.3. . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Results of diagnosing MimicLDT using adapted AME. . . . . . . . . . . . . . . . . 64

3.5 Results of applying AME directly for dependent data sources. . . . . . . . . . . . 65

xviii



4.1 Expected Calibration Error (ECE) and Brier score for the in-distribution perfor-

mance of each probe trained on each probing dataset. . . . . . . . . . . . . . . . . 75

4.2 ROC-AUC scores and ECE of trained probes on out-of-distribution test set. The

numbers in red and green denote performance decrease and increase relative to

the probe trained on in-distribution training set, respectively. R1-Distill-Llama-

8B is used as the reasoning model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.1 Single-𝑝 LASSO results for 𝑝 = 0.4 and 𝑝 = 0.6 on selected queries, CIFAR10-20

training-from-scratch. 𝑝 = 0.4 has better average results (see Fig. A.2), but 𝑝 = 0.6

outperforms for some queries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.2 Experiment results of using fixed 𝑝 = 0.5. “tfs” denotes training-from-scratch and

“ws” denotes warm-starting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.3 Average precision and recall of pure LASSO and diff-in-mean. tfs and ws denote

training-from-scratch and warm-starting respectively. . . . . . . . . . . . . . . . . 109

A.4 Precision and recall comparison for training-from-scratch vswarm-starting under

the same number of observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.5 Comparison with Representer Points at the same recall level. Representer Points

use best tuned 𝜆 assuming knowledge of ground truth. . . . . . . . . . . . . . . . 112

A.6 Full result of SCAn, where “*” indicates the dataset is supplemented, “_dis” indi-

cates the distance-based score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.7 Full result of Representer Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.1 Dataset statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

B.2 Hyperparameters for MimicLDT. . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

B.3 Hyperparameters for MetaLDT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

B.4 Poison success rate with varying 𝑞 for GCN over Cora. 𝐼 = 68. . . . . . . . . . . . 143

B.5 caption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xix



B.6 The average graph degree distribution changes for different datasets according to

the EMD metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

B.7 The average graph homophily distribution changes for different datasets accord-

ing to the EMD metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B.8 caption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B.9 Hyperparameter setups for short-distance modification attacks. Direct attacks in-

cludes Nettack-direct, FGA and IG-FGSM; Indirect attack includes Nettack-indirect. 149

B.10 Detailed Results on Cora. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

B.11 Detailed Results on PubMed. OOM means out-of-memory under the GPU limitation. 154

B.12 Detailed Results on ArXiv. OOM means out-of-memory under the GPU limitation. 155

B.13 More examples (Part-1) of target node, one base node, and one of the generated

fake-text link to this base. The category (i.e., labels) of the base/target node shown

in first column, generated injected node is unlabelled. Due to space limit, only

show partial of the contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

B.14 More examples (Part-2) of target node, one base node, and one of the generated

fake-text link to this base. The category (i.e., labels) of the base/target node shown

in first column, generated injected node is unlabelled. Due to space limit, only

show partial of the contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

C.1 Keywordswe use for identifying reasoning path switch and segmenting reasoning

trace into chunks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

xx



C.2 Statistics for obtained probing dataset across task datasets and reasoning models.

The inconsistency in training examples and test examples number comes from

discard of examples with truncated model completion. The average chunk length

is calculated by sampling 1000 chunks from each training dataset and measured

by number of tokens. The positive chunk ratio is calculated based on the training

set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

C.3 Prompt used for inference with reasoning models. . . . . . . . . . . . . . . . . . . 162

C.4 Prompt used for answer extraction and evaluation with Gemini 2.0 Flash. . . . . . 162

C.5 Hyperparameter search space for classifier training. . . . . . . . . . . . . . . . . . 163

C.6 Results of grid search across reasoning models and datasets. . . . . . . . . . . . . 163

C.7 Accuracy, precision, recall, and macro F1 score for probes trained and test on

GSM8K and MATH datasets in in-distribution setting. . . . . . . . . . . . . . . . . 164

C.8 Accuracy, precision, recall, and macro F1 score for probes trained and test on

AIME and KnowLogic datasets in in-distribution setting. . . . . . . . . . . . . . . 164

C.9 ROC-AUC scores and ECE of trained probes on out-of-distribution test set. The

numbers in red and green denote performance decrease and increase relative to

the probe trained on in-distribution training set, respectively. R1-Distill-Qwen-

1.5B is used as the reasoning model. . . . . . . . . . . . . . . . . . . . . . . . . . . 164

C.10 ROC-AUC scores and ECE of trained probes on out-of-distribution test set. The

numbers in red and green denote performance decrease and increase relative to

the probe trained on in-distribution training set, respectively. R1-Distill-Qwen-7B

is used as the reasoning model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

C.11 ROC-AUC scores and ECE of trained probes on out-of-distribution test set. The

numbers in red and green denote performance decrease and increase relative to

the probe trained on in-distribution training set, respectively. R1-Distill-Qwen-

32B is used as the reasoning model. . . . . . . . . . . . . . . . . . . . . . . . . . . 165

xxi



C.12 ROC-AUC scores and ECE of trained probes on out-of-distribution test set. The

numbers in red and green denote performance decrease and increase relative to

the probe trained on in-distribution training set, respectively. R1-Distill-Llama-

70B is used as the reasoning model. . . . . . . . . . . . . . . . . . . . . . . . . . . 165

C.13 ROC-AUC scores and ECE of trained probes on out-of-distribution test set. The

numbers in red and green denote performance decrease and increase relative to

the probe trained on in-distribution training set, respectively. QwQ-32B is used

as the reasoning model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

xxii



List of Appendices

Appendix A Supplementary Materials for Chapter 2 . . . . . . . . . . . . . . . . . . . . . 87

Appendix B Supplementary Materials for Chapter 3 . . . . . . . . . . . . . . . . . . . . . 133

Appendix C Supplementary Materials for Chapter 4 . . . . . . . . . . . . . . . . . . . . . 159

xxiii



1 | Introduction

Artificial Intelligence (AI) and Deep Learning (DL) models have become pervasive across ev-

ery domain of human activity, from healthcare and finance to autonomous systems and scientific

discovery. Duringmy PhD, the landscape of AI research and deployment has shifted dramatically:

the focus has moved from classifiers tackling specific recognition tasks, to Graph Neural Net-

works (GNNs) handling complex relational data, and now to Large Language Models (LLMs) and

Large Reasoning Models (LRMs) powering sophisticated generation and reasoning tasks. Each

paradigm brought unique capabilities, evolving needs of AI applications, and correspondingly

distinct failure modes that demanded targeted diagnostic approaches.

Despite their remarkable performance across diverse tasks, DL models do not always work

reliably, and their failures can have significant real-world consequences. Modelmisbehaviorman-

ifests in various forms, for examples: classifiers may misclassify critical medical images due to

biased training data, leading to misdiagnosis; GNNs can be manipulated through carefully crafted

graph structures, potentially compromising fraud detection systems; and reasoning models may

generate plausible but incorrect solutions to mathematical problems, undermining educational or

scientific applications. Such failures may lead to financial losses, safety risks, privacy violations,

and diminished public confidence in AI systems. Therefore, as AI models grow more powerful

and pervasive, understanding why they fail – diagnosing misbehavior – becomes critical for safety,

trust, and improvement. The challenge of diagnosing model misbehavior is further complicated

by the fact that different model paradigms exhibit fundamentally different failure problems and

1



vulnerabilities, requiring specialized diagnostic attention and approaches tailored to their unique

characteristics.

This thesis explores DLmodels misbehavior and addresses the challenges of diagnosing across

the shifting landscape of AI paradigms, developing targeted and scalable diagnostic methods. The

work encompasses three complementary projects that correspond to the major model paradigms

encountered during my PhD: (1) For classifiers, we introduce the estimation of Average Marginal

Effect (AME), a scalable data attribution method that traces prediction errors back to problematic

training data, overcoming the computational limitations of traditional Shapley value approaches;

(2) For GNNs, we develop MimicLDT, a stealthy long-distance targeted attack that reveals diag-

nostic blind spots in current GNN-explainer tools, and demonstrate how AME can be adapted to

locate poisoned subgraphs in graph structures; (3) For large reasoning models, we design self-

verification probes that uncover latent correctness signals in intermediate reasoning steps and

leverage them to save tokens usage through the confidence-based early exit strategy. This thesis

establishes a comprehensive framework for model-aware diagnostics that advances our under-

standing of DL models misbehavior across paradigms and contributes to building more trustwor-

thy and efficient AI systems. The work demonstrates that diagnostic attention and approaches

must evolve with the shifting landscape of AI models, while principled tools can transcend spe-

cific domains when their core assumptions are properly reconsidered for new contexts.

The remainder of this dissertation is organized as follows: Section 1.1 introduces the shifting

landscape of deep learning models, Section 1.3 details the challenges of diagnosing model misbe-

havior, and Section 1.4 summarizes the contributions of this thesis. Chapters 2, 3, and 4 present

the three main contributions corresponding to classifiers, GNNs, and reasoning models respec-

tively, each containing detailed methodology, experimental validation, and analysis of results.

Chapter 5 concludes with discussions on broader implications, limitations, future directions, and

reflections on the evolving relationship between model paradigms and diagnostic needs.

2



1.1 The Shifting of Deep Learning Models

The landscape of artificial intelligence has undergone rapid and transformative changes over

the past decade, fundamentally altering howwe approach machine learning problems and deploy

AI systems in real-world applications. During my PhD (2019–2025), the focus of AI research and

deployment pivoted decisively. This chapter describes the shifted model paradigm, each bringing

revolutionary capabilities while simultaneously introducing new complexities and failure modes

that demand sophisticated diagnostic approaches.

FromClassicalMachine Learning to Deep Learning. The transition from traditionalMachine

Learning (ML) algorithms toDeepNeural Networks (DNNs)marked the firstmajor paradigm shift

in modern AI. Classical machine learning algorithms generally rely heavily on feature engineer-

ing approaches. Traditional algorithms like Support Vector Machines [79], Random Forests [17],

and linear models required careful manual feature selection, transformation and domain exper-

tise, while deep learning models promised to learn meaningful representations directly from raw

data. These early DNNs, though revolutionary in their automatic feature learning capabilities,

were primarily focused on supervised learning tasks with relatively straightforward input-output

mappings.

TheDeep LearningClassification Era. The period from 2012 to 2020witnessed an explosion in

deep learning applications across multiple domains, fundamentally reshaping how we approach

classification problems. In computer vision, Convolutional Neural Networks (CNNs) achieved

breakthrough performance on image recognition tasks, with architectures like AlexNet [107],

VGGNet [160], and ResNet [77] progressively pushing the boundaries of accuracy while intro-

ducing concepts like skip connections and very deep architectures. These models demonstrated

unprecedented ability to learn hierarchical visual features, from low-level edges and textures to

high-level semantic concepts.

Simultaneously, the natural language processing domain experienced its own deep learning

3



revolution through Recurrent Neural Networks (RNNs) and their sophisticated variants. Long

Short-Term Memory (LSTM) networks and Gated Recurrent Units (GRUs) addressed the vanish-

ing gradient problem in sequential modeling, enabling effective processing of long text sequences.

The introduction of word embeddings like Word2Vec and GloVe, followed by contextualized rep-

resentations from models like BERT (Bidirectional Encoder Representations from Transformers)

[45], marked a progression toward more nuanced understanding of language semantics.

Beyond vision and language, deep learning classifiers found applications in diverse domains

including speech recognition with deep neural networks [1, 140], recommendation systems with

deep collaborative filtering [134, 184], and structured data analysis with deep feedforward net-

works [173]. However, this proliferation of deep learning models also introduced new challenges

in model interpretability and reliability [117, 170, 217]. Unlike their classical predecessors, these

models operated as "black boxes" with millions or billions of parameters [121], making it difficult

to understand why they made specific predictions or how they might fail.

The Rise of Graph Neural Networks. As AI applications expanded beyond the domains of

images and text, the need to process relational and structured data became increasingly appar-

ent. People pay more attention to Graph Neural Networks (GNNs), a powerful paradigm for

handling data where relationships between entities are as important as the entities themselves.

This architectural innovation was driven by the recognition that many real-world problems in-

volve graph-structured data: social networks, molecular structures, knowledge graphs, citation

networks, and transportation systems.

The foundational GNN architectures, including Graph Convolutional Networks (GCNs) [101],

GraphSAGE [71] and Graph Attention Networks (GATs) [179], introduced the concept ofmessage

passing, where nodes iteratively aggregate information from their neighbors to update their rep-

resentations. This approach enabled models to capture both local neighborhood structures and

global graph properties. More sophisticated variants like Graph Isomorphism Networks (GINs)

[201] addressed theoretical limitations around the expressive power of GNNs, while models like

4



Graph Transformer Networks [209] incorporate attention mechanisms into graph processing.

The applications of GNNs proved to be remarkably diverse: drug discovery throughmolecular

property prediction, social media analysis through user interaction modeling, fraud detection

in financial networks, and knowledge graph completion for semantic reasoning. However, this

architectural sophistication came with new vulnerabilities that were not present in traditional

deep learning models. We refer in detail to § 1.2.

The Large Language Model and Reasoning Revolution. The most recent and perhaps most

breathtaking shift has been the emergence of Large Language Models (LLMs), which demon-

strate unprecedented capabilities in natural language understanding and generation through

transformer-based architectures [177] trained on vast corpora of text data. Models such as GPT-3

[19], PaLM [69], and LLaMA [172] showcased remarkable few-shot learning [19] abilities and

cross-domain knowledge transfer, establishing the foundation for modern AI systems. However,

despite their impressive linguistic fluency and broad knowledge base, LLMs exhibited fundamen-

tal limitations in systematic reasoning, logical consistency, and complex problem-solving tasks

that require multi-step analytical processes.

The recognition of these limitations catalyzed the development of Large Reasoning Models

(LRMs), such as OpenAI o1 [143] and DeepSeek-R1[44] models series, which represent the cur-

rent frontier in deep learning evolution. LRMs extend beyond the pattern matching and statisti-

cal associations that characterize traditional language models, they can articulate their reasoning

steps, searchmultiple solution approaches via backtrackings, and even verify their own reasoning

solutions. Models like DeepSeek-R1 and specialized reasoning architectures have shown signifi-

cantly improved performance on challenging reasoning benchmarks inmathematics, science, and

logical reasoning that require multi-step analytical inference and sophisticated problem-solving

strategies. These models integrate techniques such as chain-of-thought prompting [191], tool

usage, retrieval-augmented generation [115], and multi-agent reasoning frameworks[56, 187] to

enable more robust logical inference and complex problem-solving capabilities. This transition

5



from language modeling to reasoning represents a crucial step toward artificial general intelli-

gence (AGI) [66], where models can not only understand and generate text but also engage in the

kind of systematic, logical thinking that characterizes human cognitive processes.

However, this reasoning capability introduces new forms of complexity and failure modes

(§ 1.2). The opacity of their internal reasoning processes, despite their ability to articulate rea-

soning steps, creates new challenges for understanding when and why they fail.

1.2 ImportantQuestions among Three Model Paradigms

Despite the remarkable capabilities of modern AI systems, understanding why they fail and

diagnosing why they misbehave – producing wrong or biased predictions, succumbing to ad-

versarial attacks, generating hallucinations and reasoning errors, or wasting computational re-

sources – remains a critical unsolved challenge. Crucially, the very nature of "misbehavior" as

well as how to diagnose it evolve with notable shifts of AI’s paradigm during my PhD journey,

leading us to explore interesting questions that target different models throughout this progres-

sion.

Classifiers: Deep learning classificationmodels, such as Convolutional Neural Networks (CNNs),

Multilayer Perceptrons (MLPs), and Recurrent Neural Networks (RNNs), demonstrated remark-

able capabilities in pattern recognition but were fundamentally opaque. When predictions failed,

people were often left without effective tools to trace errors back to problematic training inputs.

Central and pressing questions emerged: how do training data influence model predictions?

In terms of the failed prediction, which training data points caused this specific error? The

theoretical foundation for addressing this challenge existed in the form of Shapley value-based

[157] attribution methods, which promised to quantify the contribution of individual training ex-

amples tomodel predictions. However, the practical application of thesemethods to deep learning

6



faced severe scalability problem. Computing exact Shapley values requires evaluating themodel’s

performance on all possible subsets of the training data, resulting in 𝑂 (2𝑁 ) complexity that was

computationally prohibitive for datasets containing millions of examples. This revealed a critical

diagnostic gap: the need for scalable, causal frameworks to trace and audit training data influence

on model (mis)behavior. The method could operate efficiently on large-scale deep learning sys-

tems while providing stable, actionable insights.

GNNs: The emergence of Graph Neural Networks (GNNs) introduced a fundamentally new

class of diagnostic challenges, stemming from the intricate interplay between graph structure

and model behavior. The fundamental of GNN computation lies themessage-passing mechanism,

whereby information is propagated across graph edges. In node classification tasks, this implies

that nodes are no longer independent units, but part of an interdependent structure – altering

a single node or edge can have cascading effects throughout the graph’s topology.

This structural dependency gives rise to adversarial attack surfaces that differ substantially

from those in computer vision or NLP. For example, adversaries can manipulate a target node’s

features or its immediate connections, or perturbwithin its local neighborhood. Correspondingly,

most existing GNN explanation methods (i.e., GNNExplainer and PGExplainer) operate under the

assumption that model behavior is locally grounded, i.e., interpretable through analysis of sub-

graph structures centered on the node of interest. However, it remains unclear whether adversar-

ial manipulations must be confined to a target’s local neighborhood, or if such attacks can be

conducted inmore stealthy, non-local ways. Diagnosing these subtler manipulations is partic-

ularly difficult without controlled test cases that intentionally induce misbehavior. And question

emerged: are current diagnostic tools (e.g., explainers) blind to novel attacks? These chal-

lenges are further compounded by the limitations of traditional data attribution techniques, such

as Shapley values and their derivatives. These methods assume i.i.d. (independent and identi-

cally distributed) training examples that could be added or removed without affecting other data

7



points. In GNN settings, however, the removal or modification of a node or edge can fundamen-

tally restructure the graph, making it unclear how to properly attribute influence.

LLMs/LRMs: Large language models and the rise of large reasoning models (e.g., DeepSeek-R1

and OpenAI o1 model series) introduced new and complex diagnostic challenges in the history

of AI. First, these models are trained on vast, uncurated datasets, and their outputs are inherently

non-deterministic (i.e., there are no explicit “ground-truth labels” for reasoning generation). This

makes it difficult to trace individual model behaviors back to specific training data or modeling

process. Nonetheless, the reasoning trajectories observed during inference may reflect patterns

encoded during training, offering a valuable window into what and how these models have im-

plicitly learned.

One perplexing challenge of reasoning models was the observed phenomenon of "overthink-

ing," wheremodels would continue reasoning even after generating correct intermediate answers,

leading to unnecessary computation and, in some cases, arriving at incorrect final answers which

degraded output quality. This raises a pressing diagnostic question: do reasoningmodels know

when they reason correctly? This question is crucial to the success of the unique search behavior

(characterized by backtracking to previous steps during reasoning) exclusively present in reason-

ing models. If internal states encode latent correctness signals, identifying and leveraging them

could unlock mechanisms for early exit—enabling faster, cheaper, and potentially more reliable

responses. Yet, this latent self-awareness remains largely untapped. Most current studies focus on

final output accuracy, without probing whether intermediate reasoning steps internally flag their

own validity. Additionally, without the ability to introspect on reasoning confidence, these mod-

els are susceptible to over-generation, underthinking, hallucination, and low-efficiency inference.

Addressing this limitation calls for deeper interrogation into the dynamics of reasoning trajec-

tories. Methods are needed to probe internal reasoning states and harness them for real-time

self-verification, efficiency, and robustness in large reasoning models.

8



1.3 Challenges of Diagnosing Model Misbehaviors

1.3.1 General Challenges – The Black Box Problem

The fundamental challenge of model diagnosis lies in the inherent opacity of deep neural net-

works. As model complexity continues to grow – from relatively simple classifiers with millions

of parameters to Transformer-based language models with hundreds of billions – their decision-

making processes become increasingly opaque. This "black-box" nature makes it difficult to trace

the causal pathways from input to output, let alone pinpoint where and why failures occur. In

response to this challenge, traditional interpretability methods have focused on post-hoc expla-

nations, which – despite being retrospective – offer valuable insights into model behavior by

identifying influential features, highlighting patterns in model outputs, and helping people build

intuition about how the model operates.

1.3.2 Other Challenges

Here, we outline several broader challenges that continue to hinder scalable and reliable di-

agnosis across model types and task domains.

Scalability challenges: Modern AI systems operate at unprecedented scales that introduce

significant practical challenges for diagnosis. Training datasets containing millions or billions

of examples make it computationally prohibitive to exhaustively analyze data influence. Many

diagnostic methods were developed in the era of small models and curated datasets, but often

break down when applied to large-scale architectures or web-scale corpora. Moreover, the com-

putational cost of running comprehensive diagnostic procedures can be enormous.

Architecture-specific limitations: Diagnostic tools are often tightly coupled to the assump-

tions of a specific model paradigm. Methods developed for one generation of models may become

obsolete as new paradigms emerge – what works for CNNs may not apply to GNNs; what ap-

9



plies to classification may not translate to generative settings. This lack of generalization creates

a perpetual arms race where diagnostic methodsmust constantly evolve to keep pace with rapidly

advancing model architectures.

Evaluation and Ground Truth Challenges: Effective diagnosis requires clear metrics for

success and failure, yet defining ground truth for model behavior can be surprisingly difficult.

In classification tasks, labels may be noisy or subjective. In generation tasks, multiple valid out-

puts may exist, making it unclear when a model has truly "failed." For reasoning tasks, evaluating

correctness may require sophisticated verification procedures. This evaluation challenge com-

pounds the diagnostic problem, and highlights the need for more precise definitions of failure –

pushing researchers to refine how diagnostic tasks are framed and interpreted.

1.4 Contributions

We argue that diagnosing why models fail is essential for building AI systems that are safe,

trustworthy, and improvable. Yet, understanding model misbehavior remains critical challenges.

As AI research and development shifted over the course of my PhD, this thesis follows that tra-

jectory – exploring the misbehavior and developing targeted, scalable diagnostic tools along the

way. This thesis makes three key contributions:

1.4.1 Classifiers – Scalable Data Attribution

The first contribution of this thesis introduces a novel framework for diagnosing deep learn-

ing classifiers by attributing model behavior to individual training data points. Specifically, we

develop the Average Marginal Effect (AME), a principled and scalable data attribution method

that addresses a fundamental challenge in the classifier era: understanding how individual train-

ing examples influence model predictions and tracing prediction errors back to their training

data origins. Unlike existing influence function [102] approaches that suffer from computational

10



complexity (requiring 𝑂 (𝑁 2) operations for 𝑁 training points), AME leverages causal inference

principles and randomized experiments to achieve efficient attribution with only𝑂 (𝑘𝑙𝑜𝑔𝑁 ) eval-

uations under sparsity assumptions.

The key innovation lies in AME’s experimental design: rather than computing expensive

second-order derivatives, we train multiple submodels on different random subsets of the train-

ing data and use LASSO regression to estimate each data point’s marginal contribution. This

approach not only scales to large datasets but also provides more reliable estimates than tradi-

tional Shapley value [157] methods, which can be prohibitively expensive and unstable for deep

networks.

Our extensive evaluation across multiple domains – including data poisoning detection, pre-

diction explanation, and Shapley value estimation – shows that AME consistently outperforms

existing methods while requiring orders of magnitude fewer computations.

This contribution advances the interpretability and robustness of deep learning models by

enabling fine-grained, query-specific diagnosis of model behavior through data attribution.

1.4.2 GNNs - Vulnerability & Poisoning Diagnosis

The second contribution of this thesis addresses the diagnostic challenges that emerged as

AI systems evolved toward Graph Neural Networks (GNNs), where the interdependent nature of

graph data in node classification tasks renders traditional diagnostic methods inadequate. This

project consists of two complementary parts that together demonstrate how diagnostic frame-

works must adapt to new model paradigms.

First, we develop MimicLDT, a novel long-distance targeted poisoning attack for the node

classification task, that reveals critical blind spots in GNN robustness. Unlike existing attacks that

manipulate nodes within the target’s immediate 𝑘-hop neighborhood, MimicLDT demonstrates

that attackers can successfully poison GNN predictions by injecting malicious nodes and edges

far from the target and connecting them through long-distance paths. This attack is particularly

11



stealthy because it operates outside regions typically monitored by existing local explainability

tools (e.g., GNNExplainer [206]), exposing fundamental assumptions in current GNN diagnostic

mechanisms that focus primarily on local perturbations.

Second, we adapt our AME framework to diagnose this graph-based stealthy attack, demon-

strating the cross-domain applicability of principled diagnostic tools. The key challenge lies in

adapting AME’s independence assumption to graph data, where nodes exhibit complex depen-

dencies. Our solution modifies the sampling strategy to work with conditionally independent

subgraphs rather than individual nodes, treating labeled nodes and their neighborhoods as fun-

damental attribution units. This graph-adapted AME successfully diagnoses MimicLDT attacks

with perfect recall (1.0) while maintaining reasonable precision (0.739), enabling complete elimi-

nation of poisoning effects once attack points (i.e., perturbed subgraphs) are identified.

This contribution forms an end-to-end pipeline – from attack to diagnosis to mitigation –

revealing structural vulnerabilities in GNNs while pioneering new directions for interpretable

graph learning. The adaptation of AME from independent data points (classifiers) to dependent

graph structures (GNNs) demonstrates that principled tools can transcend specific domains when

their core assumptions are properly reconsidered for new contexts.

1.4.3 Reasoning Models - Probing for Self-Verification & Efficient

Inference

The third contribution of this thesis develops a novel diagnostic framework for large rea-

soning models by uncovering and leveraging their latent self-verification capabilities. This work

investigates whether reasoning models encode information about the correctness of their inter-

mediate answers in their hidden states, and whether such information can be extracted and used

to guide inference-time decisions.

The key innovation lies in our self-verification probe design: we parse long Chain-of-Thought

12



(CoT) reasoning into chunks that end with intermediate answers, extract hidden state representa-

tions at each reasoning chunk, and train a lightweight two-layer MLP to predict answer correct-

ness from these internal representations. This approach reveals that reasoning models implic-

itly encode correctness information, with our probe achieving high accuracy and well-calibrated

(e.g., ECE < 0.1) confidence scores. The probe generalizes across reasoning datasets (e.g., GSM8K,

MATH, AIME, KnowLogic), and reveals that correctness signals are present even before an inter-

mediate answer is fully generated – suggesting a form of “look-ahead” self-awareness in model

representations.

Our work reveals that reasoning models exhibit internal awareness of their own correct-

ness, opening new possibilities for computational efficiency. We demonstrate that this latent

correctness information can be effectively leveraged through a confidence-based early-exit strat-

egy, achieving up to 24% reduction in inference tokens without compromising accuracy, outper-

forming static early-exit baselines. Unlike traditional approaches that rely on external verifiers,

our method exploits the model’s intrinsic signals encoded during the reasoning process itself.

The findings highlight that reasoning models possess latent self-verification abilities that are

underutilized during inference. This opens new directions for on-policy control and adaptive

reasoning strategies that leverage internal model signals for more efficient and reliable reasoning.

This contribution bridges interpretability and efficiency, showing that reasoning models not

only “know when they’re right,” but can be guided to act on that knowledge, paving the way for

more introspective and resource-aware AI systems.

13



2 | Diagnosing Classifiers: From Data

Attribution

This chapter presents measuring the effect of training data on deep learning predictions via

randomized experiments.

We develop a new, principled algorithm for estimating the contribution of training data points

to the behavior of a deep learning model, such as a specific prediction it makes. Our algorithm

estimates the AME, a quantity that measures the expected (average) marginal effect of adding a

data point to a subset of the training data, sampled from a given distribution. When subsets are

sampled from the uniform distribution, the AME reduces to the well-known Shapley value. Our

approach is inspired by causal inference and randomized experiments: we sample different sub-

sets of the training data to train multiple submodels, and evaluate each submodel’s behavior. We

then use a LASSO regression to jointly estimate the AME of each data point, based on the subset

compositions. Under sparsity assumptions (𝑘 ≪ 𝑁 datapoints have large AME), our estimator

requires only𝑂 (𝑘 log𝑁 ) randomized submodel trainings, improving upon the best prior Shapley

value estimators.

14



2.1 Overview

Machine Learning (ML) is now ubiquitous, with black-box models such as deep neural net-

works (DNNs) powering an ever increasing number of applications, yielding social and economic

benefits. However, these complex models are the result of long, iterative training procedures over

large amounts of data, which make them hard to understand, debug, and protect. As an impor-

tant first step towards addressing these challenges, we must be able to solve the problem of data

attribution, which aims to pinpoint training data points with significant contributions to specific

model behavior. There are many use cases for data attribution: it can be used to assign value

to different training data based on the accuracy improvements they bring [92, 104], explain the

source of (mis)predictions [11, 102], or find faulty data points resulting from data bugs [23] or

malicious poisoning [155].

Existing principled approaches to explain how training data points influence DNN behavior

either measure Influence functions [102] or Shapley values [65, 92]. Influence provides a local

explanation that misses complex dependencies between data points as well as contributions that

build up over time during training [11]. While Shapley values account for complex dependencies,

they are prohibitively expensive to calculate: exact computation requires O(2𝑁 ) model evalua-

tions, and the best known approximation requires𝑂 (𝑁 log log𝑁 ) model evaluations, where 𝑁 is

the number of data points in the training set [92].

In this paper, we propose a new, principled metric for data attribution. Our metric, called

AME, measures the contribution of each training data point to a given behavior of the trained

model (e.g., a specific prediction, or test set accuracy). AME is defined as the expected marginal

effect contributed by a data point to the model behavior over randomly selected subsets of the

data. Intuitively, a data point has a large AME when adding it to the training data affects the

behavior under study, regardless of which other data points are present. We show that the AME

can be efficiently estimated using a carefully designed LASSO regression under the sparsity as-

15



sumption (i.e., there are 𝑘 ≪ 𝑁 data points with large AME values). In particular, our estimator

requires only 𝑂 (𝑘 log𝑁 ) evaluations, which makes it practical to use with large training sets.

When using AME to detect data poisoning/corruption, we also extend our estimator to provide

control over the false positive rate using the Knockoffs method [21].

When the size of subsets used by our algorithm is drawn uniformly, the AME reduces to the

Shapley value (SV). As a result, our AME estimator provides a newmethod for estimating the SVs

of all training data points; under the same sparsity and monotonicity assumptions, we obtain a

better rate than the previous state-of-the-art [92]. Interestingly, our causal framing also supports

working with groups of data points, which we call data sources. Many datasets are naturally

grouped into sources, such as by time window, contributing user, or website. In this setting, we

extend the AME and our estimator to support hierarchical estimation for nested data sources. For

instance, this enables joint measurement of both users with large contributions, and the specific

data points that drive their contribution.

We empirically evaluate the AME quantity and our estimator’s performance on three impor-

tant applications: detecting data poisoning, explaining predictions, and estimating the Shapley

value of training data. For each application, we compare our approach to existing methods.

In summary, we make the following contributions:

• We propose a newquantity for the data attribution problem, AME, with roots in randomized

experiments from causal inference (§2.2). We also show that SV is a special case of AME.

• We present an efficient estimator for AME with an𝑂 (𝑘 log𝑁 ) rate under sparsity assump-

tions (§2.3). This also yields an 𝑂 (𝑘 log𝑁 ) estimator for sparse and monotonic SV, a sig-

nificant improvement over the previous 𝑂 (𝑁 log log𝑁 ) state-of-the-art [92].

• We extend the AME and our estimator to control false discoveries (§2.4.1) and support

hierarchical settings of nested data sources (§2.4.2).

16



2.2 Our Metric for Data Attribution: AME

At a high level, our goal is to understand the impact of training data on the behavior of

a trained ML classification model, which we call a query. Queries of interest include a specific

prediction, or the test set accuracy of amodel. Below, we formalize our setting (§2.2.1) and present

our metric for quantifying data contributions (§2.2.2).

2.2.1 Notations

LetM𝑆 denote the classification model trained on dataset 𝑆 that we wish to analyze. In the

rest of the paper, we refer to this as themain model. We note thatM𝑆 belongs to a class of models

M (i.e.,M𝑆 ∈ M) with the same architecture, but trained on different datasets. M𝑆 maps each

example from the input space X to a normalized score in [0, 1] for each possible class Y, i.e.,

M𝑆 : X ↦→ [0, 1] |Y| . Since the normalized scores across all classes sum to one, they are often

interpreted as a probability distribution over classes conditioned on the input data point, giving

a confidence score for each class.

Let 𝑄 (M𝑆 ) be the query resulting in a specific behavior ofM𝑆 that we seek to explain. For-

mally, 𝑄 : M ↦→ [0, 1] maps a model to a score in [0, 1] that represents the behavior of the

model on that query. For example, we may want to explain a specific prediction, i.e., the score

for label 𝑙 given to an input data point 𝑛, in which case 𝑄 (M𝑆 ) = M𝑆 (𝑛) [𝑙]; or, we may want

to explain the accuracy on a test set with inputs 𝐼 and corresponding labels 𝐿, in which case

𝑄 (M𝑆 ) = 1
|𝐼 |

∑
(𝑛,𝑙)∈(𝐼 ,𝐿) 1{arg max[M𝑆 (𝑛)] = 𝑙}. Our proposed metric and estimator apply to any

query, but our experiments focus on explaining specific predictions.

We use the query score 𝑄 (M𝑆 ) to represent the utility of training data set 𝑆 , i.e., 𝑈 (𝑆) ≜

𝑄 (M𝑆 ). When describing our technique, we will need to calculate the utility of various training

data subsets, each of which is the result of the query 𝑄 when applied to a model trained on a

subset 𝑆′ of the data. Note that any approach for estimating the utility 𝑈 (𝑆′) may be noisy due

17



Figure 2.1: Utility vs. the subset size, measured on CIFAR10-50 dataset (see §2.5), where each point
denotes a subset. Each subset is obtained by first drawing an inclusion probability 𝑝 from a uniform
distribution with range from 0.01 to 0.99, and then including each datapoint with probability 𝑝 .

to the randomness in model training.

2.2.2 Defining the Average Marginal Effect (AME)

How do we quantify the contribution of a training data point 𝑛 to the query result? One

approach, commonly referred to as the influence of 𝑛, defines the contribution of 𝑛 as 𝑈 (𝑆) −

𝑈 (𝑆\{𝑛}), the marginal contribution of the data point when added to the rest of the data. This

quantity can be calculated efficiently using an approach presented in [102]. However, in practice,

the marginal effect of a datapoint on the whole training set of an ML model is typically close

to zero, a well-known shortcoming of influence [11], which we confirm empirically in Fig. 2.1.

(We compare influence functions to our proposal in more detail in Appendix A.6.5.3.) The figure

shows results from a data poisoning experiment run on the CIFAR10 dataset. It plots the utility

of models trained on various random subsets of the poisoned training dataset. The utility is

calculated as the score given to the wrongly predicted label for a poisoned test point. As we can

see, removing up to half of the training data at random has no impact on the utility, implying a

close to zero influence of each training example on a model trained on the full training set.

To alleviate this issue, we notice that at least some training data points have to influence the

utility (which goes from zero on very small subsets to one on large ones). This influence happens

18



on smaller subsets of the training data, around a size unknown in advance (between 10% and

50% of the whole dataset size in Fig. 2.1’s example). Taking inspiration from the causal inference

literature on measuring multiple treatment effects [50], we thus propose to average the marginal

contribution of adding data point 𝑛 to data subsets of different sizes. We refer to this as the data

point’s Average Marginal Effect (AME), defined as the expected marginal effect of 𝑛 on subsets

drawn from a distribution L𝑛: E𝑆𝑛∼L𝑛 [𝑈 (𝑆𝑛 + {𝑛}) − 𝑈 (𝑆𝑛)]. Here 𝑆𝑛 is a subset of training

data points that do not contain 𝑛, sampled from L𝑛 . The marginal effect of 𝑛 with respect to

𝑆𝑛 is calculated as the difference in the query result on a model trained with and without 𝑛, i.e.,

𝑈 (𝑆𝑛 + {𝑛}) −𝑈 (𝑆𝑛).

Clearly, the choice of sampling distribution L𝑛 affects what AME is measuring, and how

efficiently AME can be estimated (§??). When choosing L𝑛 , we need to ensure that subsets of

different sizes are well represented. To see why, consider Fig. 2.1 again: since the region with

non-zero marginal effect is unknown in advance, we must sample subsets across different subset

sizes. We hence propose to sample subsets by including each data point (except for data point 𝑛

being measured) with a probability 𝑝 sampled from a distribution P that ensure coverage across

subset sizes (e.g., we use a uniform distribution over a grid of values P = 𝑈𝑛𝑖{0.2, 0.4, 0.6, 0.8} in

most experiments). Denoting L𝑛
P as the subset distribution induced by P, we have:

AME𝑛 (P) = E𝑆𝑛∼L𝑛
P
[𝑈 (𝑆𝑛 + {𝑛}) −𝑈 (𝑆𝑛)] . (2.1)

In what follows, we use the shorthand AME𝑛 for AME𝑛 (P) when P is clear from context.

2.2.3 Connection to the Shapley Value

Interestingly, pushing the above proposal further and sampling 𝑝 uniformly over [0, 1] re-

duces the AME to the Shapley value (SV), a well known but costly to estimate metric from game

theory that has been proposed as a measure for data value [65, 92]:

19



Proposition 2.1. P = Uni(0, 1) ⇒ AME𝑛 (P) = SV𝑛 .

Proof. When 𝑝 is fixed, the subset size follows a binomial distribution with 𝑁 − 1 trials and

probability of success 𝑝 . When 𝑝 ∼ Uni(0, 1), the compound distribution is a beta-binomial

with 𝛼 = 𝛽 = 1, and the subset size follows a discrete uniform distribution, each subset size

having a probability of 1/𝑁 . Since by symmetry each possible subset of a given size is equally

likely, 𝐴𝑀𝐸𝑛 =
∑

𝑆𝑛⊆[𝑁 ]\{𝑛}
1
𝑁

(𝑁−1
|𝑆𝑛 |

)−1 (𝑈 (𝑆𝑛 + {𝑛}) −𝑈 (𝑆𝑛)) which is precisely the definition of

Shapley value SV𝑛 . □

In concurrent work, [110] also highlight this relationship and propose Beta(𝛼 , 𝛽)-Shapley as a

natural and practically useful extension to the SV, enabling variable weighting of different subset

sizes to integrate domain knowledge. The AME can be seen as a generalization of Beta Shapley,

which corresponds to AME(P) with P = Beta(𝛼, 𝛽). In this work, we focus on a discrete grid for

P, but also study the symmetric Beta and truncated uniform distributions as SV approximations

(§??).

This connection between AME and Beta-Shapley also yields two new insights. First, Equation

4 and Theorem 2 of [110] imply that the AME is a semivalue. That is, it satisfies three of the SV

axioms: linearity, null player, and symmetry, but not the efficiency axiom (i.e., the AME𝑛 do not

sum to 𝑈 (𝑆)). Second, our AME estimator yields a scalable estimator for the Beta(𝛼 > 1, 𝛽 > 1)-

Shapley values of a training set (using P = Beta(𝛼, 𝛽)), answering a question left to future work

in [110].

2.3 Efficient Sparse AME Estimator

Computing the AME exactly would be costly, as it requires computing𝑈 (𝑆) for many different

data subsets 𝑆 , and each such computation requires training a modelM𝑆 to evaluate the query

𝑄 (M𝑆 ). Furthermore, measurements of 𝑄 (M𝑆 ) are noisy due to randomness in model training,

and can require multiple samples. However, for the use cases we target (§2.1), we expect that data

20



points with large AMEs will comprise only a sparse subset of the training data for a given query

𝑄 . Hence, for the rest of this paper, we make the following strong sparsity assumption:

Assumption 2.2. Let 𝑘 be the number of data points with non-zero AME’s. 𝑘 is small compared to

𝑁 , or 𝑘 ≪ 𝑁 .

All results in this section (§2.3) hold under a weaker, approximate sparsity assumption: that

there exists a good sparse approximation to the AME. However, the results are cumbersome to

state without adding much intuition, so we defer the details of this setting to Appendix A.5. In

practice, the sparsity assumption (and the relaxed version to a stronger degree) holds for use cases

such as corrupted data detection, which typically impacts only a small portion of the training data;

or when the predictions under scrutiny arise from queries on the tails of the distribution, which

are typically strongly influenced by only a few examples in the training data [54, 65, 92].

Under this assumption, we can efficiently estimate the AME of each training data point with

only𝑂 (𝑘 log(𝑁 )) utility computations, by leveraging a reduction to regression and LASSO based

estimation (§2.3.1). We then characterize the error in estimating Shapley values using this ap-

proach (§2.3.2), and show that under a commonmonotonicity assumption, our estimator achieves

small 𝐿2 errors.

2.3.1 A Sparse Regression Estimator for the AME

Our key observation is that we can re-frame the estimation of all AME𝑛’s as a specific linear

regression problem. While a regression-based estimator for the SVs is known [126, 194], it is based

on a weighted regression with constraints. Instead, we propose a featurization-based regression

formulation without weights or constraints, which enables efficient estimation under sparsity

using LASSO, a regularized linear regression method.

Regression formulation. To compute the AME𝑛 values, we begin by producing 𝑀 subsets

of the training data, 𝑆1, 𝑆2, ..., 𝑆𝑀 . Each subset 𝑆𝑚 is sampled by first selecting a 𝑝 (drawn from

21



Algorithm 1: Overall Workflow
Input: number of data points 𝑁 , number of subsets𝑀 to draw, probabilities

P = 𝑈𝑛𝑖{𝑝1, . . . , 𝑝𝑏}, query 𝑄
// offline phase

1 M𝑆 ,X← sampleSubsets(𝑀)
// online phase

2 while 𝑄 ← new query do
3 𝛽𝑙𝑎𝑠𝑠𝑜 ← estimate(M𝑆 ,X, 𝑄,𝑀)
4

5 Function sampleSubsets(𝑀):
6 M𝑆 ← [] // subset models
7 X← 𝑧𝑒𝑟𝑜𝑠 (𝑀, 𝑁 ) // source covariates
8 for𝑚 ← 1 to𝑀 do
9 𝑆 ← {}

10 𝑝 ∼ P
11 for 𝑛 ← 1 to 𝑁 do
12 𝑟 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝)
13 if 𝑟 = 1 then 𝑆 ← 𝑆 + {𝑛}
14 X[𝑚,𝑛] ← 𝑟

𝑝
− 1−𝑟

1−𝑝
15 M𝑆 .append(trainOnSubset (𝑆))
16 returnM𝑆 ,X
17

18 Function estimate(M𝑆 ,X, 𝑄,𝑀):
19 𝑦 ← 𝑧𝑒𝑟𝑜𝑠 (𝑀) // outcome vector
20 for𝑚 ← 1 to𝑀 do
21 𝑦 [𝑚] ← 𝑄 (M𝑆 [𝑚]) // inference

22 return 𝛽𝑙𝑎𝑠𝑠𝑜 ← LASSO(X, 𝑦, 𝜆) // 𝜆 is chosen by cross validation.

P) and then including each training data point with probability 𝑝 . Observation X is a 𝑀 × 𝑁

matrix, where row X[𝑚, :] consists of 𝑁 features, one for each training data point, to represent

its presence or absence in the sampled subset 𝑆𝑚 . 𝑦 is a vector of size 𝑀 , where 𝑦 [𝑚] represents

the utility score measured for the sampled subset 𝑆𝑚 , i.e., 𝑦 [𝑚] = 𝑈 (𝑆𝑚) = 𝑄 (M𝑆𝑚 ).

How should we design X (i.e., craft its features) such that the fit found by linear regression,

𝛽∗, corresponds to the AME? Let us first examine the simple case where subsets are sampled

using a fixed 𝑝 . In this case, we can set X[𝑚,𝑛] to be +1 when data point 𝑛 is included in 𝑆𝑚

and −1 otherwise. Intuitively, because all data points are assigned to the subset models indepen-

dently, features X[:, 𝑛] do not “interfere” in the regression and can be fitted together, re-using

22



computations of𝑈 (𝑆𝑚) across training data points 𝑛.

Supporting different values of 𝑝 (each row’s subset is sampled with a different probability) is

more subtle, as the different probabilities of source inclusion induce both a dependency between

source variables X[:, 𝑛], and a variance weighted average between 𝑝s, whereas AME𝑛 is defined

with equal weights for each 𝑝 . To address this, we use a featurization that ensures that variables

are not correlated, and re-scales the features based on 𝑝 to counter-balance the variance weight-

ing. Concretely, for each observation (row) X[𝑚, :] in our final regression design, we sample a

𝑝 from P, and sample 𝑆𝑚 by including each training data point independently with probability

𝑝 . We set X[𝑚,𝑛] = 1√
𝑣𝑝

if 𝑛 ∈ 𝑆𝑚 and X[𝑚,𝑛] = −1√
𝑣 (1−𝑝) otherwise; where 𝑣 = E[ 1

𝑝 (1−𝑝) ] is

the normalizing factor ensuring that the distribution of 𝑋 [𝑚,𝑛] has unit variance. Algorithm 1,

sampleSubsets(), summarizes this. In what follows, we use 𝑋 to denote the random variables

from which the X[𝑚, :]’s are drawn (since each row is drawn independently from the same dis-

tribution), subscripts 𝑋𝑛 to denote the random variable for feature 𝑛 (i.e., from which X[𝑚,𝑛] is

drawn), and 𝑌 for the random variable associated with 𝑦 [𝑚]. Under our regression design, we

have that:

Proposition 2.3. Let 𝛽∗ be the best linear fit on (𝑋,𝑌 ):

𝛽∗ = arg min
𝛽∈R𝑁

E
[
(𝑌 − ⟨𝛽, 𝑋 ⟩)2

]
, (2.2)

then 𝐴𝑀𝐸𝑛/
√
𝑣 = 𝛽∗𝑛, ∀𝑛 ∈ [𝑁 ], where 𝑣 = E𝑝 [ 1

𝑝 (1−𝑝) ].

Proof. For a linear regression, we have (see, e.g., Eq. 3.1.3 of [4]): 𝛽∗𝑛 =
𝐶𝑜𝑣 (𝑌,𝑋̃𝑛)
𝑉𝑎𝑟 [𝑋̃𝑛]

, where 𝑋̃𝑛 is the

regression residual of 𝑋𝑛 on all other covariates 𝑋−𝑛 = (𝑋1, . . . , 𝑋𝑛−1, 𝑋𝑛+1, . . . , 𝑋𝑁 ). By design,

E[𝑋𝑛 |𝑋−𝑛] = E𝑝 [𝑋𝑛 |𝑝] = 0, implying 𝑋̃𝑛 = 𝑋𝑛 − E[𝑋𝑛 |𝑋−𝑛] = 𝑋𝑛 . Therefore:

𝛽∗𝑛 =
𝐶𝑜𝑣 (𝑌, 𝑋̃𝑛)
𝑉𝑎𝑟 [𝑋̃𝑛]

=
𝐶𝑜𝑣 (𝑌,𝑋𝑛)
𝑉𝑎𝑟 [𝑋𝑛]

=
E[𝑋𝑛𝑌 ]
𝑉𝑎𝑟 [𝑋𝑛]

.

23



Notice that E[𝑋𝑛𝑌 ] = E𝑝 [E[𝑋𝑛𝑌 |𝑝]] with:

E[𝑋𝑛𝑌 |𝑝]

= 𝑝 · E[𝑋𝑛𝑌 |𝑝, 𝑛 ∈ 𝑆] + (1 − 𝑝) · E[𝑋𝑛𝑌 |𝑝, 𝑛 ∉ 𝑆]

= 𝑝
1
√
𝑣𝑝

E[𝑌 |𝑝, 𝑛 ∈ 𝑆] + (1 − 𝑝) −1
√
𝑣 (1 − 𝑝)

E[𝑌 |𝑝, 𝑛 ∉ 𝑆]

=
1
√
𝑣
(E[𝑌 |𝑝, 𝑛 ∈ 𝑆] − E[𝑌 |𝑝, 𝑛 ∉ 𝑆])

Combining the two previous steps yields:

𝛽∗𝑛 =
E𝑝 [E[𝑌 |𝑝, 𝑛 ∈ 𝑆] − E[𝑌 |𝑝, 𝑛 ∉ 𝑆]]

𝑉𝑎𝑟 [𝑋𝑛] ·
√
𝑣

=
𝐴𝑀𝐸𝑛

𝑉𝑎𝑟 [𝑋𝑛] ·
√
𝑣
.

Noticing that 𝑉𝑎𝑟 [𝑋𝑛] = E[𝑉𝑎𝑟 [𝑋𝑛 |𝑝]] +𝑉𝑎𝑟 [E[𝑋𝑛 |𝑝]] = E[ 1
𝑝 (1−𝑝) ]/𝑣 = 1 concludes the proof.

□

Proposition 2.3 shows that, by solving the linear regression of𝑦 onXwith infinite data, 𝛽𝑛 , the

linear regression coefficient associated with 𝑋𝑛 , becomes equal to the 𝐴𝑀𝐸𝑛 we desire re-scaled

by a known constant. Of course, we do not have access to infinite data. Indeed, each row in this

regression comes from training a model on a subset of the original data, so limiting their number

(𝑀) is important for scalability. Ideally, this number would be smaller than the number of features

(the number of training data points𝑁 ), even though this leads to an under-determined regression,

making existing regression based approaches [126, 194] challenging to scale to large values of 𝑁 .

Fortunately, in our design we can still fit this under-determined regression by exploiting sparsity

and LASSO.

Efficient estimation with LASSO. To improve our sample efficiency and require fewer subset

models for a given number of data points 𝑁 , we leverage our sparsity assumption and known

results in high dimensional statistics. Specifically, we use a LASSO estimator, which is a linear

24



regression with an 𝐿1 regularization:

𝛽𝑙𝑎𝑠𝑠𝑜 = arg min
𝛽∈R𝑁

(
(𝑦 − ⟨𝛽,X⟩)2 + 𝜆∥𝛽 ∥1

)
.

LASSO is sample efficient when the solution is sparse [112]. Recall that 𝑘 is the number of non-

zero AME𝑛 values, and𝑀 is the number of subset models. Our reduction to regression in combi-

nation with a result on LASSO’s signal recovery lead to the following proposition:

Proposition 2.4. If 𝑋𝑛’s are bounded in [𝐴, 𝐵], 𝑁 ≥ 3 and 𝑀 ≥ 𝑘 (1 + log(𝑁 /𝑘)), there exist a

regularization parameter 𝜆 and a constant 𝐶 (𝐵 −𝐴, 𝛿) such that

∥𝛽𝑙𝑎𝑠𝑠𝑜 −
1
√
𝑣
AME∥2 ≤ 𝐶 (𝐵 −𝐴, 𝛿)

√︂
𝑘 log(𝑁 )

𝑀

holds with probability at least 1 − 𝛿 , where 𝑣 = E𝑝 [ 1
𝑝 (1−𝑝) ].

Proof. We provide a proof sketch here. From Proposition 2.3, we know that AME√
𝑣

is the best linear

estimator of the regression of 𝑌 on 𝑋 . Applying Theorem 1.4 from [112] directly yields the error

bound. The bulk of the proof is showing that our setting satisfies the assumptions of Theorem

1.4, which we argue in Appendix A.1.2. □

As a result, LASSO can recover all AME𝑛’s with low𝐿2 error 𝜀 using𝑀 = 𝐶 (𝐵−𝐴, 𝛿)2/𝜀2𝑣𝑘 log(𝑁 ) =

𝑂 (𝑘 log(𝑁 )) subest models. Eliminating a linear dependence on the number of data points (𝑁 ) is

crucial for scaling our approach to large datasets.

2.3.2 Efficient Sparse SV Estimator

Following Prop. 2.1, it is tempting to estimate the SV using our AME estimator by sampling

𝑝 ∼ 𝑈𝑛𝑖 (0, 1). However, Prop. 2.4 would not apply in this case, because the 𝑋𝑛’s are unbounded

due to our featurization. Indeed 𝑣 = ∞ when 𝑝 is arbitrarily close to 0 and 1. We address this

25



problem by sampling 𝑝 ∼ 𝑈𝑛𝑖 (𝜀, 1 − 𝜀), truncating the problematic edge conditions. While this

solves our convergence issues, it leads to a discrepancy between the SV and AME.

Under such a truncated uniform distribution for 𝑝 , we can show that |SV𝑛−AME𝑛 | is bounded,

and applying our AME estimator yields the following 𝐿∞ bound when the AME is sparse (details

in Appendix A.3.2, and the intuition behind the proof is similar to that of Corollary 2.8):

Corollary 2.5. When AME𝑛 ∈ [0, 1], for every constants 𝜀 > 0, 𝛿 > 0, 𝑁 ≥ 3, there exist con-

stants 𝐶1(𝜀, 𝛿), 𝜀′, and a LASSO regularization parameter 𝜆, such that when the number of sam-

ples 𝑀 ≥ 𝐶1(𝜀, 𝛿)𝑘 log𝑁 , ∥
√
𝑣𝛽𝑙𝑎𝑠𝑠𝑜 − SV∥∞ ≤ 𝜀 holds with a probability at least 1 − 𝛿 , where

𝑣 = E𝑝∼𝑈𝑛𝑖 (𝜀′,1−𝜀′) [ 1
𝑝 (1−𝑝) ].

However, the implied 𝐿2 bound introduces an uncontrolled dependency on 𝑁 through 𝐶 in

Prop. 2.4, or a 𝑘 term even when the SV is also sparse. To achieve an 𝐿2 bound, we focus on a

sparse and monotonic SV. Monotonicity is a common assumption [92, 146], under which adding

training data never decreases the utility score:

Assumption 2.6. Utility function𝑈 (·) is said to be monotone if for each 𝑆,𝑇 , 𝑆 ⊆ 𝑇 : 𝑈 (𝑆) ≤ 𝑈 (𝑇 ).

Under this monotonicity assumption and a sparsity assumption, prior work has obtained a

rate of 𝑂 (𝑁 log log𝑁 ) for estimating the SV under an 𝐿2 error [92]. Here, we show that we can

apply our AME estimator to yield an𝑂 (𝑘 log𝑁 ) rate in this setting, a vast improvement over the

previous linear dependency on the number of data points 𝑁 . To prove this result, we start by

bounding the 𝐿2 error between the AME and SV with the following:

Lemma 2.7. If 𝑝 ∼ 𝑈𝑛𝑖 (𝜀, 1 − 𝜀), ∥AME − SV∥2 ≤ 4𝜀 + 2
√

2𝜀.

We prove this lemma in Appendix A.3.2. Crucially, the error only depends on 𝜀, and remains

invariant when 𝑁 and 𝑘 change. This is important to ensure that the bounds on our design

matrix’s featurization do not depend on 𝑘 or 𝑁 , leading to the following SV approximation:

26



Corollary 2.8. For every constant 𝜀 > 0, 𝛿 > 0, 𝑛 ≥ 3, there exists constants 𝐶1(𝜀, 𝛿), 𝜀′, and a

LASSO regularization parameter 𝜆, such that when the number of samples 𝑀 ≥ 𝐶1(𝜀, 𝛿)𝑘 log𝑁 ,

∥
√
𝑣𝛽𝑙𝑎𝑠𝑠𝑜 − SV∥2 ≤ 𝜀 holds with probability at least 1 − 𝛿 , where 𝑣 = E𝑝∼𝑈𝑛𝑖 (𝜀′,1−𝜀′) [ 1

𝑝 (1−𝑝) ].

Proof. ∥
√
𝑣𝛽𝑙𝑎𝑠𝑠𝑜 − SV∥2 ≤ ∥

√
𝑣𝛽𝑙𝑎𝑠𝑠𝑜 − AME∥2 + ∥AME − SV∥2. By noticing that a monotonic

and 𝑘-sparse SV implies a 𝑘-sparse AME with 𝑝 ∼ 𝑈𝑛𝑖 (𝜀′, 1 − 𝜀′) (details in Corollary A.7 of

the Appendix), we apply Proposition 2.4 to bound the first term by 𝜀/2, and Lemma 2.7 with

𝜀′ = 1
8 (
√
𝜀 + 1 − 1)2 to bound the second term by the same, concluding the proof. □

In the Appendix, we study different featurizations for our design matrix (A.2, A.3.2) and using

a Beta distribution for 𝑝 (A.3.3), which yield the same error rates as Corollary 2.8 and may be of

independent interest. Empirically, we found that the truncated uniform distribution with the al-

ternative featurization yield the best results for SV estimation (see Appendix A.6.8). Interestingly,

this different featurization directly yields a regression estimator with good rates under sparsity

assumptions for Beta(𝛼 , 𝛽)-Shapley when 𝛼 > 1 and 𝛽 > 1, the setting considered in [110] (details

in Appendix A.4).

2.4 Practical Extensions

When estimating the AME in practice, trainingM𝑆 is the most computationally expensive

step of processing a query 𝑄 (M𝑆 ). However, since the sampled subsets 𝑆 do not depend on

the query 𝑄 , we can precompute our subset models offline, and re-use them to answer multiple

queries (e.g., for explaining multiple mispredictions). This yields the high-level workflow shown

in Fig. 2.2, which is summarized in Alg. 1 (lines 1-3). We further improve training efficiency by

using warm-starting, in which the main model is fine-tuned on each subset 𝑆 to create the subset

models, instead of training them from scratch. Warm-starting has implications on our choice of

P, as discussed in Appendix A.6.1.

We now develop two techniques that improve the practicality of our approach, by allowing

27



Dataset

Query

Sample subsets and
train on each subset

<Subsets, 
Models>

<Subsets, 
Utility>

Estimated 
AMEs 

Training data 
points selected

OnlineOffline

Knockoffs
LASSO

Inference on query 
input(s) and retr ieve 

utility

Figure 2.2: Estimation Workflow

us to control the false discovery rate (§2.4.1), and allowing us to leverage hierarchical data for

more efficient, multi-level analysis (§2.4.2).

2.4.1 Controlling False Discoveries

A typical use case for our approach is to find training data points that are responsible for a

given prediction. Following [149], We refer to such data points as proponents, and define them as

those having AME > 0. Data points with AME < 0 are referred to as opponents, and the rest are

neutrals.

Proponents can be identified by choosing a threshold 𝑡 over which we deem the 𝐴𝑀𝐸𝑛 value

significant. Care needs to be taken when choosing 𝑡 so that it maximizes the number of selected

proponents while limiting the number of false-positives. Formally, if 𝑆+ are the data points se-

lected and 𝑆+ is the true set of proponents, then precision ≜ |{𝑛∈𝑆+∩𝑆+}|
|𝑆+ |

. We therefore need to

choose a 𝑡 that can control the false discovery rate (FDR): E[1 − 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛].

To this end, we adapt the Model-X (MX) Knockoffs framework [21] to our setting. In our

28



regression design, we add one-hot (“dummy”) features for the value of 𝑝 , and for each 𝑋𝑛 we

add a knockoff feature sampled from the same conditional distribution (in our case, the features

encoding 𝑝). Because knockoff features do not influence the data subset 𝑆 , they are independent

of 𝑌 by design. We then compare each data point’s coefficient 𝛽𝑛 to the corresponding knockoff

coefficient 𝛽′𝑛 to compute𝑊𝑛:

𝑊𝑛 ≜ max(𝛽𝑛, 0) −max(𝛽′𝑛, 0).

𝑊𝑛 is positive when 𝛽𝑛 is large compared to its knockoff—a sign that the data point significantly

and positively affects 𝑌—and negative otherwise.

Finally, we compute the threshold 𝑡 such that the estimated value of 1 − 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is below

the desired FDR 𝑞:

𝑡 = min
{
𝜏 > 0 :

# {𝑛 : 𝑊𝑛 ≤ −𝜏}
# {𝑛 : 𝑊𝑛 ≥ 𝜏} ≤ 𝑞

}
,

and select data points with a𝑊𝑛 above this threshold. We use 𝑆+ to denote selected data points.

Under the assumption that neutral data points are independent of the utility conditioned on

𝑝 and other data points—that is, 𝑈 (𝑆) ⊥⊥ 1{𝑛 ∈ 𝑆}|
(
(1{ 𝑗 ∈ 𝑆}) 𝑗≠𝑛, 𝑝

)
, we control the following

relaxation of FDR [21]:

𝑚𝐹𝐷𝑅 = E

[ ��{𝑛 ∈ (𝑆+ ∩ 𝑆+)}��
|𝑆+ | + 1/𝑞

]
≤ 𝑞.

Although there exists a knockoff variation controlling the exact FDR, this relaxed guarantee

works better when there are few proponents and does well in our experiments (§2.5).

2.4.2 Hierarchical Design

Our methodology can be extended so it leverages naturally occurring hierarchical structure

in the data, such as when data points are contributed by users, to improve scalability. By chang-

ing our sampling algorithm, LASSO inputs, and knockoffs design, we can support proponent

29



detection at each level of the hierarchy using a single set of subset models. As §2.5 shows, this

approach significantly reduces the number of subset models required, with gracefully degrading

performance along the data hierarchy. Next, we describe our hierarchical estimator for a two

level hierarchy, in which 𝑁2 second-level data sources (e.g., reviews contributed by users) are

grouped into 𝑁1 top-level sources (e.g., users).

First, we sample each observation (row) data subset 𝑆 following the hierarchy: each top-level

source is included independently with probability 𝑝1, forming subset 𝑆1, and each second-level

source of an included top-level source is included with probability 𝑝2 to form 𝑆2.

Then, we run two estimations: we start by finding top-level proponents only, running our

estimator on 𝑁 = 𝑁1 features, featurized with 𝑝 = 𝑝1 (and identical knockoffs), to obtain the set

of top-level proponents Prop1. Then, we find the second-level proponents using a design matrix

that includes all top-level source variables, and one variable for each second-level source under

a Prop1 source, featurized as:

𝑋𝑛 =



1
𝑝1𝑝2

if 𝑠 (𝑛) ∈ Prop1 ∩ 𝑆1, 𝑛 ∈ 𝑆2

− 1
𝑝1 (1−𝑝2) if 𝑠 (𝑛) ∈ Prop1 ∩ 𝑆1, 𝑛 ∉ 𝑆2

0 otherwise (𝑖 .𝑒 ., 𝑠 (𝑛) ∉ 𝑆1)

(2.3)

Where 𝑠 (𝑛) denotes the top-level source that the second-level source 𝑛 comes from (note that

𝑠 (𝑛) ∉ 𝑆1 ⇒ 𝑛 ∉ 𝑆2). This featurization ensures that 𝐸 [𝑋𝑛 |𝑋−𝑛] = 𝐸 [𝑋𝑛 |𝑝1, 𝑝2, 𝑋𝑠 (𝑛)] = 0, yielding

a similar interpretation as Proposition 2.3 for the hierarchical design. Running LASSO on this

second design matrix either confirms that a whole source is responsible, or selects individual

proponents within the source. Note that both analyses run on the same set of subset modelsM𝑆 :

thanks to our hierarchical sampling design, the same offline phase supports all levels of the source

hierarchy.

Finally, we adapt the knockoffs in the second-level regression. The dummy features now

30



name dataset model 𝑁 𝑘 𝑁 ′ 𝑘′
poison
approach

hierarchy
partition

Poison Frogs CIFAR10 [106] VGG-11 [108] 4960 10 4960 10 Poison Frogs [155] example
CIFAR10-50 CIFAR10 [106] ResNet9 [6] 50000 50 50000 50 trigger [29] example
CIFAR10-20 CIFAR10 [106] ResNet9 [6] 49970 20 49970 20 trigger [29] example
EMNIST EMNIST [35] CNN [150] 3578 10 252015 6600 label-flipping user
ImageNet ImageNet [154] ResNet50 [78] 5025 5 ∼1.2m 100 trigger [29] URL
NLP Amazon reviews [142] RNN [175] 1000 11 ∼1m 1030 trigger [29] user

Table 2.1: Datasets, models, and attacks summary: 𝑁 is the number of sources, 𝑁 ′ is the overall size of the
training data, 𝑘 is the number of poisoned sources, and 𝑘 ′ is the number of poisoned training examples.

encode tuples (𝑝1, 𝑝2), and knockoffs are created for second-level sources only, sampled for in-

clusion with probability 𝑝2, which reflects the conditional distribution of including them in the

data subset. We then use Equation 2.3 to compute the feature.

2.5 Evaluation

We evaluate our approach along three main axes. First, in §2.5.1, we use the AME and our

estimator to detect poisoned training data points designed to change a model’s prediction to

an attacker-chosen target label for a given class of inputs. Since we carry out the attacks, we

know the ground truth proponents, and can control the sparsity level. We evaluate our precision

and recall as the number of subset models (𝑀) increases, compare with existing work in poison

detection, and evaluate the gains from our hierarchical design. Second, in §2.5.2, we present a

qualitative evaluation of data attribution for non-poisoned predictions and show example data

points that have been found to be proponents for various queries. Third, in §2.5.3, we evaluate

our AME-based SV estimator and compare it to prior work.

2.5.1 Detecting Poisoned Training Data

We study various models and attacks on image classification and sentiment analysis, summa-

rized in Table 2.1. Fig. 2.3 shows a few concrete attack examples. Appendix A.6.2 provides more

details, as well as the hyperparameters used.

31



Figure 2.3: Poison data examples, with clean data (top) and poisoned data (bottom) for: the red-square
trigger attack on CIFAR10; the watermark trigger attack on ImageNet ; the Poison Frogs attack; and the NLP
trigger.

Prec Rec 𝑐

Poison Frogs 96.1 100 8
CIFAR10-50 96.9 54.4 16
CIFAR10-20 95.3 58.8 8
EMNIST 100 78.9 16

a Training-from-scratch

Prec Rec 𝑐

NLP 99.0 97.3 24
CIFAR10-50 97.5 87.1 24
CIFAR10-20 99.0 64.8 48
ImageNet 100 78.0 12

bWarm-starting

Table 2.2: Average precision and recall of LASSO+Knockoffs. The column 𝑐 denotes the constant in
𝑂 (𝑘 log2 𝑁 ), i.e., we use𝑀 = 𝑐𝑘 log2 𝑁 subset models.

Precision and recall. Given a query for a mis-classified example at test time, we use our AME

estimator to pinpoint those training data points that contribute to the (mis)prediction. A detection

is correct if its corresponding training data point has been poisoned. Table 2.2 shows the average

precision and recall across multiple queries, for each scenario presented in Table 2.1. To make the

number of subset models 𝑀 comparable across tasks (and because we know 𝑘), we report 𝑐 and

use𝑀 = 𝑐𝑘 log2(𝑁 ) subset models. Precision is not counted when nothing is selected to avoid an

upward bias. Our largest experiments only run with warm-starting, for computational reasons.

Table 2.2 shows that our method (LASSO+Knockoff) achieves very high precision and reasonable

recall, and that warm-starting achieves good performance by enabling more utility evaluations.

32



24
18732

12
9366

6
4683

3
2342

c
M

0%

50%

100%
Pr

ec
iso

in
 (R

ec
al

l) CIFAR10-50

12
738

6
369

3
185

1
93

ImageNet
Prec+Pure Prec+Knockoff Rec+Pure Rec+Knockoff

Figure 2.4: Effect of growing 𝑐 (and corresponding 𝑀). Both use warm-staring. Prec+Pure (Rec+Pure) is
the precision (recall) for LASSO without knockoffs.

Figure 2.4 shows the precision and recall for two image classification scenarios with and with-

out knockoffs. We see that knockoffs are important for ensuring a consistently high precision

(solid blue lines). And the recall (dashed orange lines) grows as the number of subset models

grows with 𝑐 . Appendix A.6 shows the figures for all scenarios (Fig. A.3), as well as other ab-

lation and sensitivity studies for different parts of the methodology and parameters (A.6.3). We

also discuss the impact of those choices on running time (A.6.4).

Comparison with prior work. We compare against two recent works: SCAn [163], a poison

(outlier) detection technique that requires a set of clean data, and Representer Points [205], a

more quantitative approach that measures an influence-like score for training data. We delay

the evaluation of other SV algorithms to §2.5.3, as existing methods are not able to run on our

large experiments, in which𝑀 < 𝑁 . We compare the precision of each method at different recall

levels, by varying internal decision thresholds (see Appendix A.6.5 for details on SCAn). Fig. 2.8

summarizes the results and shows that AME performs as well or better than both approaches.

AME is particularly efficient when there are very few poisoned training data points, which ex-

isting approaches fail to handle (CIFAR10-20). We also see a sharp decrease in precision when

recall exceeds a certain level for AME, unlike SCAn. This is because we chose the LASSO regu-

larization parameter as 𝜆1𝑠𝑒 to favor sparsity in coefficients, in order to minimize false positives.

33



198 396 793 1190 1588
Number of Observations M

0%

20%

40%

60%

80%

100%
Pr

ec
is

io
n 

(R
ec

al
l)

Top Level Precision
Top Level Recall
Second Level Precision
Second Level Recall
Non-Hierarchy Precision
Non-Hierarchy Recall

Figure 2.5: Hierarchical design
on the NLP dataset, showing the
LASSO+Knockoffs precision and
recall for top-level (blue), second-level
(orange), and non hierarchical (pur-
ple).

Query Input Examples Selected

pre: lock; gt: snoek lock lock lock

pre: mower; gt: lock mower mower mower

Figure 2.6: Queries for wrong
predictions. Pre is the model’s
prediction, gt is the ground
truth.

crayfish crayfish

lock lock locklock

Query Input Examples Selected

Figure 2.7: Queries for correct
predictions.

Fig. A.5 in the Appendix shows the result of another common choice, 𝜆𝑚𝑖𝑛 , with less sparsity. The

overall findings are similar, with a more graceful drop in precision-recall curve observed. In our

approach, the knockoffs automatically control the false discovery rate to ensure that we remain

in the high precision regime.

To show that the AME is able to work at a finer granularity than SCAn, we ran a mixed attack

setup on CIFAR10, where we simultaneously use 3 different attacks: each attack has a different

trigger and poisons 20 different images. We found that SCAn clusters nearly all poisoned images

together (along with many clean images), regardless of the attack used in the query𝑄 ; while the

AME selects the correct attack for each query, and achieves an average precision (recall) of 96.3%

(65.5%), 97.4 (89.5%) and 97.1% (71.3%), respectively for 20 random queries from each attack.

Appendix A.6.5 provides more details and evaluation of SCAn, Representer Points, influence

functions, and Shapley values.

Improvements under hierarchical design. We group the 300K users of the NLP dataset into

300 time-based groups or 1K users each. We poison two top-level sources, with 5 and 10 poi-

sons, respectively (details in Appendix A.6.6). Figure 2.5 shows the AME precision and recall

in finding the poisons, averaged over 20 different queries (poisoned test points). We find that

(a) top-level sources are detected with few observations; and (b) recall for second-level sources

34



0.0

0.5

1.0

Pr
ec

isi
on

CIFAR10-20 CIFAR10-50

0.00 0.25 0.50 0.75 1.00
Recall

0.0

0.5

1.0

Pr
ec

isi
on

ImageNet

0.00 0.25 0.50 0.75 1.00
Recall

EMNIST

SCAn Repr. AME

Figure 2.8: Precision v.s. recall curves
for comparison with prior poison de-
tection work. “Repr.” denotes Repre-
senter Points.

103 104 105

Sample Size

0.0

0.1

0.2

0.3

0.4

0.5

L2
-N

or
m

 E
rro

r

AME = 0.01
Compr. Sensing
KernelSHAP (L1)
Paired Sampling

Figure 2.9: Est. error vs sample
size on synthetic dataset. The
shaded area shows 95% confi-
dence intervals.

103 104 105 106

Sample Size

0.00

0.05

0.10

0.15

0.20

0.25

L2
-N

or
m

 E
rro

r

AME = 0.001
Compr. Sensing
KernelSHAP (L1)
KernelSHAP

Figure 2.10: Est. error vs sam-
ple size on Poisoned MNIST
dataset.

degrades gracefully as the number of observations (submodels) decreases. The hierarchical split

is also efficient: it achieves ∼100% precision and 60% recall with 1.5K observations, before our

non-hierarchical method detects anything.

2.5.2 Data Attribution for Non-poisoned Predictions

We next measure what training data led to a specific prediction in the absence of poisoned

data. Figs. 2.6 and 2.7 show examples from a subset of ImageNet, for correct and incorrect predic-

tions, respectively. Qualitatively, explanation images share similar visual characteristics. Quan-

titatively, Figure A.10 in Appendix A.6.7 shows that removing the detected inputs significantly

reduces the target prediction’s score (compared to a random removal baseline), showing that we

detect inputs with significant impact. Additional results, and a comparison to a random baseline,

can be found at https://enola2022.github.io/. Appendix A.6.7 details the setting, and shows

results for CIFAR10.

2.5.3 Shapley Value Estimation from AME

Finally, we showcase our SV estimator from AME using simulated data and a subset of MNIST

with poisoning, which are small enough to study the 𝑀 > 𝑁 case where known estimators are

applicable. In both setups, we know the ground truth or can approximate it closely enough, re-

35

https://enola2022.github.io/


spectively (details in Appendix A.6.8). We compare the AME to KernelSHAP [126], Paired Sam-

pling [37], and two sparsity-aware methods: “KernelSHAP (L1)” [126] that uses LASSO heuristi-

cally to filter out variables before fitting a linear regression, and Compressive Sensing [92]. We

use 𝑝-featurization (§A.3.2) without knockoffs, and 𝑝 ∼ 𝑈𝑛𝑖 (𝜀, 1 − 𝜀).

The results in Figure 2.9 (simulated data – KernelSHAPwithout 𝐿1 regularizationmostly over-

laps with Paired Sampling and thus is not shown) and Figure 2.10 (MNIST data – Paired Sampling

omitted due to prohibitive memory and computation costs) show that AME delivers the fastest

rate among these baselines on small sample sizes, and remains competitive when sample sizes

become larger, though with a slightly larger final error than KernelSHAP onMNIST (likely due to

approximate sparsity). This larger error, however, is for a large sample size (𝑀 > 50𝑁 ) a regime

unlikely to be practical for SV given the cost of utility evaluations (model training). Notably, on

MNIST, “KernelSHAP (L1)” error is as low as the AME when the sample size is small, while it di-

verges with more samples. This seems to be due to incorrect filtering in the heuristic LASSO step,

which misses one of the 𝑘 poisoned datapoints (variables) on large sample sizes. AME does not

have this instability as LASSO is the final estimate of the SV. Appendix A.6.8 shows comparisons

to additional baselines, as well as ablation studies.

2.6 Related Work

We focus on the closest related work, and refer the reader to Appendix A.7 for a broader dis-

cussion. Efficient Shapley value (SV) [157] estimation is an active area, and is closest to our work.

Recent proposals also reduce SV estimation to regression, although differently than we do [37, 90,

126, 194]. Beta-Shapley [110] proposes a generalization of SV that coincides with the AME when

𝑝 ∼ Beta (we found the truncated uniform to be better in practice, but provide error bounds for

both). None of these works study the sparse setting, or provide efficient 𝐿2 bounds in this setting.

This may stem from their focus on SV for features, in smaller settings than we consider for train-

36



ing data, and in which sparsity may be less natural. The most comparable work to ours is that

of Jia et.al [92], which provides multiple estimators, including under sparse, monotonic utility

assumptions. Their approach uses compressive sensing (closely related to LASSO) and yields an

𝑂 (𝑁 log log𝑁 ) rate. We significantly improve on this rate with an 𝑂 (𝑘 log𝑁 ) estimator, which

is much more efficient in the sparse (𝑘 ≪ 𝑁 ) regime.

Other principled model explanation approaches exist, based on influence functions [54, 102,

104], Representer Points [205], or loss tracking [73, 149]. They either focus on marginal influence

on the whole dataset [102, 104]; make strong assumptions (e.g., convexity) that disallow their use

with DNNs [11, 102, 104]; cannot reason about data sources or sets of training samples [23, 73,

149]; or subsample training data but focus on a single inclusion probability, and thus cannot

explain results in all scenarios [54].

37



3 | Revealing and Diagnosing GNN

Vulnerabilities: through Stealthy

Attacks

This chapter is about revealing and diagnosing GNN Vulnerabilities in node classification

tasks. GNNs are vulnerable to targeted poisoning, in which an attacker manipulates the graph to

cause a target node to be mis-classified to a label of the attacker’s choosing. For a 𝑘-layer GNN

model, existing attacks modify the target’s𝑘-hop neighborhood to achievemaximal effectiveness.

However, from a practical standpoint, it is much more convenient to launch a long distance attack

that can manipulate graph locations outside the target’s 𝑘-hop neighborhood which contains

many more nodes to choose from. Furthermore, long distance attacks are not susceptible to be

diagnosed by existing postmortem GNN explanability tools which only investigate the target’s

k-hop neighborhood. Although some existing attacks (such as meta-attack) can be modified to

be long distance, they are too computationally expensive to work on a large scale graphs. In

this paper, we propose a practical long distance poisoning attack called MimicLDT that can scale

to large graphs while achieving competitive attack success rates compared to a modified meta-

attack on small graphs. To the best of our knowledge, MimicLDT is the first long distance GNN

targeted poisoning that can successfully attack large graphs, motivating the need to find scalable

GNN poisoning diagnosis and detection tools.

38



Target’s k-hop 
neighborhood 

    Target’s predicted label: y

    Attacker injected nodes
    Long distance attack points 
    Target

label: y
label: y

Unlabeled

GNN training

Target

Unlabeled

Figure 3.1: Targeted poisoning attack via long distance node injection.

3.1 Overview

Many recent papers have proposed attacks on GNNs that lead to mis-predictions. To use

these attacks, an attacker must either modify the structure of the graph [15, 24, 26, 27, 40, 62,

137, 180, 181, 200, 210, 227], modify features of graph nodes [125, 128, 195, 226], or inject new

nodes with carefully crafted features [30, 93, 96, 141, 162, 168, 185, 188, 225]. Depending on when

the adversarial perturbation occurs, these attacks can be classified as poisoning (training time)

attacks or evasion (test time) attacks. Furthermore, depending on the attacker’s aim, these attacks

can also be either targeted attacks (where that goal is to change the prediction of one or a few

nodes) or untargeted (where the goal is to reduce overall prediction accuracy). In this paper, we

seek to generalize targeted poisoning attacks on GNNs used for node classification, i.e., we seek

to generalize training time attacks that allow the attacker to change a selected target node’s label

to an attacker’s chosen label.

Our goal is to generalize targeted poisoning attacks to remove restrictions on how attackers

39



must change the graph, in particular allowing changes outside of the target’s immediate neigh-

borhood. Existing attacks require changes within the target’s 𝑘-hop neighborhood (where 𝑘 is the

number of layers in the GNN), requiring attackers to add edges or change node features within

this neighborhood [15, 24, 26, 40, 62, 180, 200, 210, 226], or create a new fake node that is con-

nected directly to the target node [30, 39, 185, 197]. In this paper we ask if there exists a more

general efficient long-distance targeted poisoning attack, i.e. an efficient targeted-poisoning at-

tack that only requires changes outside the target’s 𝑘-hop neighborhood. We seek an

efficient attack to ensure that it can be used with the large graphs that today’s GNNs are com-

monly trained on. Making the attack long-distance can provide attackers with greater flexibility

in changing the graph. Increased efficiency and long-distance attacks can also limit the ability of

GNN diagnosis tools to identify the attackers changes: GNN diagnosis tools built using state of

the art GNN explanation algorithms [49, 84, 127, 206, 208] that measure influence by only looking

at nodes within a target’s k-hop neighborhood, while specialized GNN poisoning detection and

avoidance tools such as FocusedCleaner [224] cannot easily scale to large graphs.

We show that efficient long-distance poisoning exists by proposing MimicLDT, a heuristic

based attack that inserts (injects) new nodes and edges outside the target node’s 𝑘-hop neighbor-

hood. We developed the MimicLDT algorithm by observing the behavior of a meta-learning [14,

57] based targeted long-distance node-injection attack, MetaLDT, that we developed and that

could only be applied to small graphs (e.g., Cora). We observed that MetaLDT injects nodes that

make the target node’s embedding (i.e., the output of the last GNN layer before the softmax clas-

sifier) the same as the embedding of nodes with the target label (we refer to these nodes as attack

points). MetaLDT does so by injecting nodes in the neighborhood of existing nodes with the

target label, and adjusting injected node features. MimicLDT uses the same process, but adopts

two approaches to reduce time: first, rather than trying to search for an optimal set of attack

points, MimicLDT chooses a random set of attack points; and second, MimicLDT uses a cheaper

surrogate loss function when optimizing the injected node’s features. In combination these tech-

40



niques allow MimicLDT to be used with graphs that had hundreds-of-thousands of nodes (e.g.,

the ArXiv graph [83]) and achieve reasonable poison success rate (> 55%) without changing the

target node’s 𝑘-hop neighborhood.

In summary, we make the following contributions:

• We study whether long distance attacks that modify nodes and edges outside of the target’s

k-hop neighborhood can poison a GNN, and show that they can.

• We propose a heuristic optimization approach, MimicLDT, that can perform targeted poi-

soning by injecting fake nodes that lie beyond the target node’s k-hop neighborhood. To

the best of our knowledge, MimicLDT is the only long distance targeted poisoning attack

that scales to large scale graphs like ArXiv.

• We evaluate our attack on different graphs and defenses. To the best of our knowledge,

we are the first to show the existence and effectiveness of long distance targeted poisoning

attacks.

3.2 Background

We discuss related work that attack GNN-based node classification, with a focus on targeted

attacks. For more comprehensive surveys, we refer readers to [94, 221].

GNN attacks. Targeted attacks can occur during training time (poisoning attacks) or test time

(evasion attacks). For any given 𝑘-layer GNN model architecture, the target node’s label pre-

diction is a function of (1) model weights, (2) the input features of the target node itself, and

(3) the input features of the target’s 𝑘-hop neighbors. Thus, in order to manipulate the target’s

label prediction, the attacker can try to corrupt any of these three factors. Attacks of type (2),

aka corrupting the target’s input features, is a well-studied problem in non-graph domains [67,

130, 156] such as images, text, and time series, and can be straightforwardly extended to the

41



graph setting. Thus, existing GNN attacks, including both poisoning and evasion attacks, focus

on the adversarial manipulation of (3), aka the target’s k-hop neighborhood, achieved through

adding/removing edges (referred to as structure perturbation attacks), or adding fake nodes (re-

ferred to as injection attacks). The manipulation of (3) can be further categorized into direct

vs. indirect attacks depending on whether the target’s direct or k-hop neighborhood is modified.

There is a vast collection of attacks of type (3); most perturb graph structure, e.g. NetAttack [226],

FGA [26], MGA [27], PGD [200], DICE [190], GUA [210], RL-S2V [40], Bojchevski et al. [15], GF-

Attack [24], GAFNC [93], IG-JSMA [195], Wang et al. [181] and PR-BCD/GR-BCD [62]. Some

also modify existing nodes’ labels or features, e.g. [125, 195, 226]. Others inject fake nodes, e.g.,

Wang et al. [188], TDGIA [225], AFGSM [185], G2A2C [96] and G-NIA [168].

Our work differs from the above attacks in two aspects. One, we aim for the attack for work

at long distance, by avoiding modification to the target’s k-hop neighborhood. Two, we want the

attack to be able to scale to large graphs, at the cost of reduced attack success rate compared to

existing work. A recent work, G-FairAttack [212], also aims to accelerate the computation needed

for attacks, but it is designed to attack the fairness of fairness-aware GNNs while preserving pre-

diction accuracy while our work attacks a targeted node’s label prediction through long-distance

poisoning.

Making attacks stealthy. Recent work such as HAO [30] and ADIMA [167] aim to make attacks

hard to detect; the former adds a homophily constraint and the latter uses a GAN-style frame-

work to train a discriminator to distinguish subgraphs that include fake nodes from those that

don’t. Like HAO, our attack also tries to preserve homophily. Existing attacks all assume that

the attacker can add/remove edges to any existing node. A recent proposal tries to make attacks

more realistic by assuming that the attacker can only use a subset of nodes as attack points [128].

Our work can also be extended to this setting by restricting the set of attack points.

GNN Defenses. Since poisoning attacks manipulate the training graph, defenses aim to avoid

learning from perturbed graph structure. Two major approaches exist: graph cleaning as part of

42



pre-processing (e.g., JaccardGCN [195], SVDGCN [51], GNNGuard [216], and FocusedCleaner [223]),

which finds and eliminates adversarial perturbations before training; graph learning (e.g. ProGNN [95],

Soft-Median-GDC [61]), which leverages the characteristics of adversarial attacks to guide the

graph learning process to be more robust. Besides empirical defenses through more robust train-

ing, there are also certified defenses aiming to provide formal robustness guarantees. Some work

[182] provides certified robustness to graph evasion attacks by utilizing randomized smooth-

ing [36, 116]. Some work[165] selects a fraction of existing node pairs in advance for immuniza-

tion with the assumption that immunized links cannot be modified by attacks, so that the graph

can be made certifiably robust. More recently, GNNCert [198] utilizes a hash function to divide

the graph into multiple sub-graphs and uses majority voting for each sub-graph as the final pre-

diction to provide a deterministic robustness guarantee for graph classification. None of above

mentioned certified defenses handle node injection attacks. A more recent follow-on work [166]

proposes node-level immunization to defend against node injection. However, immunizing the

target node cannot defend against long distance attack.

Explainability tools, such as GNNExplainer [206] and others [49, 53, 127, 207, 208, 214], can-

not be directly used to detect attacks. However, they can be used to provide post-mortem analysis

of a misprediction due to an attack. Recent work [52] has used GNNExplainer to diagnose adver-

sarial perturbations that lead to given bad predictions. Long-distance attacks like ours have the

advantage of being stealthy against existing GNN explainability tools.

3.3 Problem Definition

In this section, we define the terminology we use, formalize our setting, and state our assump-

tions about the attacker’s capabilities. We use the standard terminology and notation for graphs

and GNNs:

Graphs. We use G = (V, E) to denote a graph with nodes V = {𝑣1, 𝑣2, .., 𝑣𝑛} and edges

43



E = {𝑒1, 𝑒2, ..𝑒𝑚}, A ∈ {0, 1}𝑛×𝑛 to denote G’s adjacency matrix, and X ∈ R𝑛×𝑑 to denote the

𝑑-dimensional feature matrix for each node 𝑣 ∈ V .

GNN based node classification. We target the setting where a GNN uses transductive learning

to classify graph nodes. In this setting, the GNN, 𝑓𝜃 ’s training data consists of a graph G, a subset

of whose nodes are labeled, denoted asV𝐿 ⊂ V . The training process aims to learnmodel weights

𝜃 so that the mode 𝑓𝜃 can can predict labels for unlabeled nodesV𝑈 := V \V𝐿 .

Node classification using a GNN 𝑓𝜃 can be viewed as requiring two computational steps: in

the first, the GNN is used to compute an embedding for the node; and in the second step this em-

bedding is used as input to a classification layer which outputs a set of logits for label prediction.

The embedding computed in the first step represents the node’s features and its neighborhoods,

and in what follows we use the term node embedding to refer to the first step’s output.

3.3.1 Attack Model

Attacker’s goal. We consider targeted label-flipping attacks, where the attacker selects a target

node 𝑣𝑡 and target label 𝑦𝑡 , and the attack aims to alter the graph used to train the GNN 𝑓𝜃 so that

it predicts label 𝑦𝑡 for node 𝑣𝑡 .

Attacker’s knowledge. We assume the attacker has access to the training data, including the

original graph𝐺 , node features, and labels, and also knows the training procedure (including any

changes made to the training to improve model robustness). Note that we do not assume knowl-

edge of model weights, but if available this can be used to further reduce the cost of MimicLDT.

Attacker’s capability. We focus on long-distance node injection attacks. Consequently, we

constrain attackers so they cannot modify or remove existing nodes, cannot remove edges, and

cannot add any edge that connects two nodes that are already in the graph. The attacker can

add (inject) one or more new nodes, and add edges connecting injected nodes to each other,

or connecting existing nodes to injected nodes. Finally, in order to allow us to evaluate attack

efficiency, we limit the number of nodes and edges the attacker can add.

44



Node injection attacks. Formally, a node injection attack takes as input a target node 𝑣𝑡 and

graph 𝐺 (with adjacency matrix 𝐴), and generates a poisoned graph G′ = (V′, E′) by injecting

a set of malicious nodesV𝑖𝑛 𝑗 . Graph G′ has the adjacency matrix A′ =


A B𝑖𝑛 𝑗

B𝑇𝑖𝑛 𝑗 O𝑖𝑛 𝑗

 , and feature

matrix X′ =


X

X𝑖𝑛 𝑗

 , where X𝑖𝑛 𝑗 are the injected nodes features, B𝑖𝑛 𝑗 is the adjacency matrix

between injected and existing nodes in G. We refer to an existing node that connects to any

injected node as an attack point. In our evaluation, we constrain the number of injected nodes

and the degree of each injected nodes, that is, we require that |V𝑖𝑛 𝑗 | ≤ △ ∈ Z and 1 ≤ 𝑑𝑒𝑔(𝑖) ≤

𝑏 ∈ Z,∀𝑖 ∈ V𝑖𝑛 𝑗 for some threshold △ and 𝑏.

We focus on long-distance node injection attacks, where injected nodes can lie outside the

𝑘-hop neighborhood of the target node 𝑣𝑡 , where 𝑘 is a user supplied threshold, usually equal to

the number of layers in the GNN. This in contrast to existing node injection attacks that require

nodes to be placed within the target node’s 𝑘-hop neighborhood.

This paper aims to demonstrate that there exist efficient, long-distance node injection attacks.

To do so, we develop efficient attacks that enforce a stronger condition: they make no changes to

the target’s 𝑘-hop neighborhood. We refer to attacks that meet this stronger condition as strong

long-distance node injection attacks, and formally define them as follows:

Definition 3.1.1 (Strong Long-distance Node Injection). A node injection attack where no

attack point is within the target node 𝑣𝑡 ’s 𝑘-hop neighborhood where 𝑘 equals to the num-

ber of GNN model layers. More formally, in a strong long distance attack on a 𝑘-layer GNN,

∀𝑣𝑎 ∈ V𝑎, 𝑑 (𝑣𝑎, 𝑣𝑡 ) > 𝑘 whereV𝑎 is the set of existing-graph nodes connected to injected nodes

(aka attack points), and 𝑑 (𝑣𝑎, 𝑣𝑡 ) is the path length from 𝑣𝑎 to 𝑣𝑡 .

45



3.3.2 Problem Formulation

Our approach expresses the attack as an optimization problem. GNN attacks that modify

graph structure can be formalized as the following optimization problem:

min
G′

L𝑎𝑡𝑘 (𝑓𝜃∗ (G′)) 𝑠 .𝑡 . 𝜃 ∗ = arg min
𝜃

Ltrain(𝑓𝜃 (G′)) . (3.1)

where L𝑡𝑟𝑎𝑖𝑛 is the general loss function used when training model 𝑓𝜃 , which we assume the

attacker knows. Therefore, our goal is to find a graph, G′, that minimizes the attacker’s loss L𝑎𝑡𝑘 .

A targeted label-flipping attack requires incorporating the target node and desired label into

the loss-function. More precisely, we need a loss function that maximize the target node’s logit

(i.e., the model’s confidence score for a label) for the attacker-chosen label. Therefore, we use

L𝑎𝑡𝑘 = −MG′ (𝑣𝑡 ) [𝑦𝑡 ], whereMG′ (𝑣𝑡 ) = 𝑓𝜃∗ (𝑣𝑡 ;G′), which maximizes the probability that target

node 𝑣𝑡 has label 𝑦𝑡 . Beyond this, and similar to prior work [30], we want to ensure that the

attack is stealthy and injected nodes do not differ significantly from existing nodes. To do so,

we incorporate a homophily term in L𝑎𝑡𝑘 that minimizes feature differences between an injected

node and its neighbors. Our final attacker loss function, L𝑎𝑡𝑘 , is thus:

L𝑎𝑡𝑘 = −MG′ (𝑣𝑡 ) [𝑦𝑡 ] − 𝛽𝐶 (G′) (3.2)

𝐶 (G′) = 1
|V𝑖𝑛 𝑗 |

∑︁
𝑢∈V𝑖𝑛 𝑗

𝑠𝑖𝑚(𝑟𝑢, 𝑋𝑢), where 𝑟𝑢 =
∑︁

𝑗∈N (𝑢)

1√︁
𝑑 𝑗
√
𝑑𝑢

𝑋 𝑗 (3.3)

where 𝛽 is a hyperparameter that controls how important homophily is, 𝑠𝑖𝑚(·) measures cosine

similarity,N(𝑢) is the set of nodes neighboring node𝑢, and𝑑𝑢 is the node degree. The homophily

formulation above is based on [30].

46



3.4 Attack Design: MimicLDT

3.4.1 MimicLDT Overview: via Embedding Collision

A natural approach to demonstrating the feasibility of strong long-distance attacks would

be to extend meta-attack [227] and incorporate the distance constraints. We tried this approach

(which we call MetaLDT), and found that it does not scale to most graph datasets (including com-

mon datasets, e.g., ArXiv). The lack of scalability made it hard for use to analyze the generality

of long-distance attacks and prompted us to design a faster and more scalable heuristic attack,

MimicLDT.

We model any attack framework as a procedure that takes as input a graph G and produces

an attack graph G′. The MimicLDT attack framework’s heuristics are derived from the follow-

ing observations about the meta-attack framework: (a) We found that each meta-attack iteration

reduces the embedding space distance (as determined by the surrogate GNN) between 𝑣𝑡 and

existing nodes with the attacker’s chosen target label 𝑦𝑡 . We empirically demonstrate this phe-

nomenon in Figure 3.2 using MetaLDT to attack a GCN that uses the Cora dataset. We give more

details about this setting in §3.5. The graph shows how the average L2-distance, in each itera-

tion’s surrogate model’s embedding space, between 𝑣𝑡 and nodes whose ground truth label is 𝑦𝑡

varies across iterations, and we observe that the optimization minimizes this distance.

(b) The attack graph G′ produce by meta-attack tends to add edges between injected nodes and

nodes with the target label 𝑦𝑡 . We hypothesize that this is in support of the previous observation:

an injected node, that connects to a node 𝑣 labeled𝑦𝑡 , can reduce the embedding distance between

𝑣𝑡 (the target) and 𝑣 .

(c) The edges connecting pairs of injected nodes in G′ do not appear to have any noticeable pat-

terns. This leads us to hypothesize that it is sufficient to randomly connect injected nodes with

each other.

47



Similar to meta-attack, MimicLDT assumes knowledge of how the target model is trained,

and takes as input the original graph G, a target node 𝑣𝑡 , and a target label 𝑦𝑡 . MimicLDT is an

optimization based approach, and evaluates the quality of each intermediate graph using a model

trained using the same procedure (i.e., algorithm) as the target model. In what follows, we refer

to the model used by MimicLDT as a surrogate model. Given these inputs, MimicLDT produces

the attack graph G′ as follows: (a) First, it trains a surrogate model 𝑓𝜃 using G, which is used

for the entire optimization. Much of MimicLDT’s performance improvement is because it only

needs to train one surrogate model. (b) Next, MimicLDT generates the structure of the attack

graph G′ based on heuristics. (c) Finally, it optimizes injected node features in G′ to produce the

final attack graph.

3.4.2 Determining Graph Structure

MimicLDT starts by generating an initial attack graph G′ from G. To construct G′, MimicLDT

first randomly selects a set of nodes,V𝑎 , in G whose label is𝑦𝑡 . We refer to the nodesV𝑎 as attack

points, and a hyperparameter 𝑟 determines |V𝑎 |, the number of attack points chosen.1

Next, for each attack point, 𝑣𝑎 ∈ V𝑎 , MimicLDT injects Φ nodes V𝑔𝑣 and connects them

(directly or indirectly) to 𝑣𝑎 . To do so, MimicLDT iterates over possible edges connecting nodes

in the setV𝑔𝑣 ∪ {𝑣𝑎} (i.e., edges that either connect injected nodes to each other or to the attack

point), and add each edge to the graph with probability 𝑝 = 0.5. Finally, it prunes any nodes in

V𝑔𝑣 not reachable to any 𝑣𝑎 . Therefore, the final set of injected nodes may have fewer than Φ

nodes.

The final graph structured produced by MimicLDT thus consists of all nodes and edges in G,

and a set of injected nodes that are connected to each other and attack points. In the rest of this

section, we useV𝑖 to refer to the set of injected nodes in G′, and 𝐵(𝑣𝑖) to refer to the attack point

whose k-hop neighborhood contains the injected node 𝑣𝑖 ∈ V𝑖 .
1In the evaluation we use 0 < 𝑟 < 1, and select 𝑟 |V𝐿 | points (V𝐿 is the set of labeled training nodes in G).

48



0 10 20 30 40 50 60 70
Iterative Optimization Rounds

2.5

3.0

3.5

4.0

4.5

Lo
ss

 --
 L

2-
no

rm
 d

ist
an

ce

Figure 3.2: The embedding space distance between the target node and existing nodes whose ground-
truth label is the same as the attack’s target label, as MetaLDT’s optimization progresses.

3.4.3 Determining Injected Node Features

The algorithm above generates a graph G′ that contains all nodes in G and the set V𝑖 of

injected nodes. We do not assign labels to any of the injected nodes, and formulate the problem of

assigning feature vectors to these injected nodes as an optimization problem, which we describe

below.

Optimization formulation. Our feature optimization problem aims to meet two goals. First,

based on our observations from meta-attack, we try to ensure that the final node embedding for

any selected attack point 𝑣𝑎 ∈ V𝑎 , h(𝐿)𝑣𝑎 , is close to the target’s final node embedding h(𝐿)𝑣𝑡 . Second,

same with extending meta-attack, we try to ensure that an injected node 𝑣𝑖 ’s feature vector X𝑣𝑖

is similar to that of its attack point 𝐵(𝑣𝑖).

49



Taken both optimization goals into account, our final optimization formulation is:

X∗V𝑖
= arg min

XV𝑖

L𝑎𝑡𝑘 , (3.4)

L𝑎𝑡𝑘 = −
(

1
|V𝑎 |

∑︁
𝑣𝑎

𝑆𝑖𝑚 𝑓 (h(𝐿)𝑣𝑎 , h(𝐿)𝑣𝑡 ) + 𝛽 ∗
1
|V𝑖 |

∑︁
𝑣𝑖

𝑆𝑖𝑚𝑖𝑛 (X𝑣𝑖 ,X𝐵(𝑣𝑖 ))
)

(3.5)

In this formulation, XV𝑖
represents a |V𝑖 | ×𝑑 dimensional matrix whose columns are features

of nodes in V𝑖 ; 𝑆𝑖𝑚 𝑓 is a metric function (specific to the GNN used) that measures similarity

between a pair of final node embeddings; and 𝑆𝑖𝑚𝑖𝑛 is a metric function (specific to the input

graph G) that measures similarity between a pair of nodes’ feature vectors.

The second term of the optimization in Eq 3.4 aims to preserve homophilly, but differs from

the formulation used in prior work [30]: rather than maximizing the node-centric homophily

score which aggregating with neighborhood for all injected nodes, this formulation maximizes

similarity between the attack points and injected nodes. We found that this change in formula-

tion improved our performance, and our empirical results (in Appendix B.1.3) show that it does

not noticeably impact the homophily scores for injected nodes. The 𝛽 hyperparameter allows

attackers to decide how much the generated attack prioritizes homophily.

Computing feature vectors. We use a stochastic gradient descent based optimizer to compute

feature vectors. Our evaluation uses GNNs to classify nodes in citation graphs, and consequently

we use cosine similarity to measure similarity between node features (i.e., 𝑆𝑖𝑚𝑖𝑛 is cosine simi-

larity), and we use 𝐿2-norm to measure similarity between final node embeddings (𝑆𝑖𝑚 𝑓 ).

We considered various initial values for XV𝑖
, including using the input features of the neigh-

boring attack point (𝑋𝑣𝑖 = 𝑋𝐵(𝑣𝑖 )), input features of a random neighbor, and the target’s input

features. Empirically, we found no noticeable difference between these options, and found that

the embedding space distance and feature space distance convereged to similar values, regardless

of how they were initialized. During the optimization, we use the surrogate model 𝑓𝜃 to compute

50



h(𝐿)𝑣𝑎 and h(𝐿)𝑣𝑡 .

3.5 Evaluation on MimicLDT

We run experiments on NVIDIA V100 GPUs, with 32GB memory limitation. Our evaluation

aims to answer the following questions:

• Can our attacks poison existing GNN models and their fortified versions?

• How effective is MimicLDT compared to a meta-learning based attack? For this evalua-

tion we depend on MetaLDT, a meta-learning based long distance node-injection that we

developed for this paper.

• How does MimicLDT’s scalability compare to MetaLDT when targeting large graphs?

• How does MimicLDT compare to existing short-distance ones?

• How does MimicLDT impact graph homophily and degree distribution, i.e., is MimicLDT

stealthy?

• Can we launch effective end-to-end attacks?

3.5.1 Setup

We start by describing the datasets, models and baselines used in our experiments.

Datasets. We use three datasets of varying sizes: Cora [204] (2708 nodes, 5429 edges), PubMed

[204] (19717 nodes, 44338 edges) and Ogbn-arXiv [82] (169343 nodes, 1157799 edges). The largest

graph, ArXiv, is almost two orders of magnitude larger than the smallest, Cora. Appendix§B.3

provides details.

GNNmodels. Weuse three popular GNNmodels: GCN [101],GraphSAGE [72],GAT [179]. We

use 3-layer models for most datasets, the exception is Cora, which is a small graph and for which

51



we use a 2-layer model. We provide detailed model settings, the training process, and hyper-

parameters in Appendix§??. In addition to vanilla models, we also evaluate our attacks against

models that use the following 5 GNN defense mechanisms: ProGNN [95], GNNGuard [216],

Soft-Median-GDC [61], Jaccard GCN [195] and SVD GCN [51].

Baselines: We compared MimicLDT against two baselines:

• MetaLDT, an extension to meta-attack [85], that incorporates the constraints used by Mim-

icLDT, and thus performs long-distance node-injection attacks; and

• several previously published short-distance attacks.

We compare against both node-injection and modification short-distance attacks. We provide

details for these baselines below.

MetaLDT. MetaLDT is a meta-learning based long-distance node injection attack that we de-

veloped by extending meta-attack [85]. We provide a brief description here, a more complete

description can be found in Appendix B.2.

MetaLDT takes the same inputs as MimicLDT, i.e., the graph G, target node 𝑣𝑡 , target label

𝑦𝑡 , and information about how the GNN is trained. Given this input, it first generates an initial

attack graph G′0 by injecting Δ new nodes into the input graph G. The injected nodes initially

have a feature vector of 0 and are not connected to existing nodes in G.

Starting from the initial attack graph G′0, MetaLDT uses an iterative process to produce the

final attack graph. Each iteration 𝑖 (𝑖 ≥ 1) produces an output graph G′𝑖 , and alternates [86] be-

tween updating injected node features or updating the graph by adding or removing edges (and

thus altering the adjacency matrix). When updating the adjacency matrix, MetaLDT uses the

standard meta-learning approach to minimize the attacker’s loss function L𝑎𝑡𝑘 . For efficiency,

MetaLDT uses an alternate gradient descent based approach when updating injected node fea-

tures, since this allows us to change the features of all nodes in a single optimizations step, rather

52



than requiring that we change a single node and feature dimension in each optimization. The gra-

dient based approach prevents changes to existing nodes in their input graph 𝐺 by zeroing-out

gradients corresponding to them.

Finally, to ensure that the same constraints apply to bothMimicLDT andMetaLDT, we restrict

MetaLDT from adding edges connecting two nodes in the input graph 𝐺 , limit the number of

edges and nodes that can be injected, and impose a constraint on the distance from the target

node to an injected node. More details can be found in Appendix B.2. We also report on how

hyperparameters affect MetaLDT’s behavior in Appendix B.4.4 and evaluate its design in the

appendix.

Short-distance attacks. Existing attacks perturb the target’s k-hop neighborhood and are thus

short-distance attacks. We compare against three short-distancemodification attacks: Nettack [226],

FGA [26] and IG-FGSM [195] as well as the node-injection poisoning attack: AFGSM [186]. In

all cases, we use a loss function designed for our goal of changing a target node’s label to a

specified one (details in Appendix. §B.6).

3.5.2 Evaluation on MimicLDT Attack

Table. 3.1 showsMimicLDT’s poison success rate over Cora, PubMed and ArXiv datasets. The

attacks are evaluated against vanilla models as well as robust models that use different defense

mechanisms. The poison success rate is calculated over 200 experiments, each with a randomly

chosen target node and target poison label. Our evaluation focuses on the strong long-distance

scenario, and all attack points are outside the target’s 𝑘-hop neighborhood.

In our evaluation, we use hyperparameter 𝑟 to control the number of attack points: in each

experiment we used 𝑟 × |V𝐿 | attack points, where V𝐿 is the set of labeled training nodes. For

ArXiv and PubMed we set 𝑟 = 0.005, while for Cora (which is smaller, and thus has fewer labeled

nodes) we set 𝑟 = 0.01. We limit MimicLDT to inject a maximum of Δ = Φ ∗ 𝑟 |V𝐿 | (Φ = 4) nodes.

Due to time constraint, instead of training a surrogate model, our experiments directly use the

53



Table 3.1: Success rate of MimicLDT, MetaLDT, short-distance attacks (including modification attacks:
Nettack, FGA and IG-FGSM; and the node-injection poisoning attack: AFGSM) over Cora, PubMed and
ArXiv datasets. Numbers in parentheses indicate cases where MetaLDT could not complete, and we in-
stead ran a variant where inner-training runs for 50 epochs. Numbers with a star sign indicate some
attacks are OOM and we only show the range of attacks that are not OOM. More detailed numbers are
in Appendix§B.7.

Cora (2708 nodes) PubMed (19717 nodes) ArXiv (169343 nodes)

MimicLDT MetaLDT Short-Dis. MimicLDT MetaLDT Short-Dis. MimicLDT MetaLDT Short-Dis.

Va
ni
lla GCN 0.67 0.96 0.64—1.00 0.71 OOM 0.28—1.00 0.74 OOM OOM

GraphSAGE 0.63 0.87 0.42—0.96 0.69 OOM 0.45—1.00* 0.73 OOM OOM
GAT 0.60 0.84 0.53—0.97 0.69 OOM 0.42—1.00* 0.70 OOM OOM

Ro
bu

st

GNNGuard 0.70 (0.53) 0.61—1.00 0.70 OOM 0.45—1.00* 0.64 OOM OOM
SoftMedianGDC 0.55 (0.58) 0.46—1.00 0.56 OOM 0.38—1.00* 0.59 OOM OOM
JaccardGCN 0.66 0.91 0.33—1.00 0.67 OOM 0.10—1.00 0.63 OOM OOM
SVDGCN 0.74 0.83 0.03—1.00 0.60 OOM 0.09—1.00 0.62 OOM OOM
ProGNN 0.59 (0.55) 0.57—1.00 0.57 OOM 0.44—1.00* 0.58 OOM OOM

weights of models under attack. We have evaluated both ways over Cora and found they result in

similar success rates. As shown in Table. 3.1, MimicLDT can achieve reasonable poison success

rate, for vanilla models (60%∼74%) as well as robust models (55%∼70%).

Comparing with the extendedMeta-Attack long-distance attacks. We compare MimicLDT

to MetaLDT. While we attempted to use MetaLDT to attack all of the graphs we evaluate, we

found it impractical to run on large datasets, and could only attack the Cora dataset. Table. 3.1

reports MetaLDT’s poison success rate for different GNN models, both vanilla ones as well as

the their fortified versions. The poison success rate is calculated over 200 experiments, each

with a randomly chosen target node and target poison label. We used Δ = 68 as a budget, i.e.,

MetaLDT could perform up to 68 changes to the adjacency matrix. For each step of adjacency

matrix optimization, MetaLDT performs 𝑞 = 1000 optimization steps on injected nodes’ feature.

Table. 3.1 shows that MetaLDT can achieve high attack success rate (84%∼96%) over vanilla

GNNmodels. When evaluating MetaLDT against robust models, we assume the attacker is aware

of the defensive mechanism used and adapt MetaLDT accordingly [137]. However, doing so

comes at the cost of increased memory consumption and computational overhead. Hence, for

some robust models (GNNGuard, SoftMedianGDC, ProGNN), we stop MetaLDT’s inner-training

54



loop early before its convergence after 50 instead of the regular 200 epochs, in order to avoid

OOM. From Table. 3.1, we can see that when MetaLDT’s inner training loops is allowed converge

(JaccardGCN, SVDGCN), its success rate remains high. However, stopping the inner training

loop early comes at a significant cost of poison success rate. It is crucial that MetaLDT adapts to

the underlying GNN defense. We report the results of nonadaptive MetaLDT in §B.4.5.

MetaLDT is more expensive than MimicLDT.MetaLDT requires a lot of compute and mem-

ory resources due to its extensive unrolling process. Table. 3.2 compares the running time (on

a V100) and the memory cost of MetaLDT and MimicLDT for the GCN model over various

datasets. We found that MetaLDT takes 3 orders-of-magnitude than longer that MimicLDT on

small graphs. Furthermore, when applied to graphs larger than Cora, we found that MetaLDT ran

out-of-memory. We observed that much of the time and memory was spent in the inner-training

step used by meta-learning. Therefore, we estimated the time of running MetaLDT on larger

graphs by running 20 inner training epochs only for each optimization iteration. We estimate

that MetaLDT runtime for Cora, PubMed and ArXiv are 8465.39s, 114515.46s and 2396240.51s

respectively. We conclude that MetaLDT costs grow significantly as graph sizes increase, and it

is thus impractical to use this attack with larger graphs.

One might wonder if reducing the hyperparameters such as the number of optimization itera-

tions for MetaLDT would allow it to scale to larger graphs and achieve better poison success rate

than MimicLDT. We evaluated this by measuring the number of optimization rounds required by

MetaLDT to achieve the same poison success rate as MimicLDT on the Cora dataset. We reports

these results in Appendix B.4.4, where Figure B.1 shows that MetaLDT requires 8 optimization

rounds and 9670.46s to achieve the same poison success rate as MimicLDT can in 43.17 seconds.

This is because MimicLDT considers a smaller search space (only considering a fixed set of ran-

domly selected attack points) and uses a cheaper surrogate metric for loss. These differences also

contribute to the MimicLDT’s lower poison success rate.

More analysis onMetaLDT.Ablation studies about the design ofMetaLDT are left in Appendix,

55



Table 3.2: Total running time (in seconds) and GPU memory cost of generating one poisoned graph for
various datasets on GCN model.

Graph size MimicLDT MetaLDT

Dataset Nodes Edges Time(s) Mem. Time(s) Mem.

Cora 2708 5429 43.17 1.38GB 82198.92 2.91GB
PubMed 19717 44338 105.82 1.89GB — OOM
ArXiv 169343 1157799 692.44 9.51GB — OOM

such as exploring the design rationale of the optimization process (§B.4.1) and optimization con-

straints (§B.4.3). Discussion about the benefits to optimizing the adjacency matrix is in §B.4.2.

And we study the effects of hyperparameters (§B.4.4).

3.5.3 Comparing with Short-distance Baselines

For comparing with short-distance baselines, we consider two different types of the short-

distance attacks: short-distance modification attacks, and the node injection poisoning attacks.

Comparing with short-distance modification attacks. Table. 3.1 also shows the range of

performance achieved by existing short-distance modification attacks, including Nettack-direct

(modifying the target’s immediate neighbors), Nettack-indirect(modifying the target’s k-hop neigh-

borhood), FGA and IG-FGSM. Detailed results are in §B.7 (Table B.10, B.11). We set the short-

distance attack budget to be 34 for Cora and 182 for PubMed (i.e., 𝑝 ∗ Δ, see details of setups

in §B.6.1) and leave experiments with varying perturbation budgets in §B.6.2. From the results,

we can see that short-distance modification attacks can achieve higher success rate, especially

for direct attacks, often at 100%. For indirect attacks, they usually show higher success rate on

vanilla models (53-79% for Cora, 82-100% for PubMed), however their success rate can greatly

drop on some robust models (e.g., 18% for SVD and 46% for SoftMedianGDC on Cora). Moreover,

short-distance attacks are susceptible to GNN analysis tools such as GNNExplainer [206]. Later

(Figure. 3.5), we show that GNNExplainer could detect the short-distance attacks with reasonable

precision and recall, and break the attacks after the diagnosis.

56



Comparingwith node-injection poisoning attack. We also evaluated the efficacy of AFGSM

[185], a well cited recent node-injection poisoning attack. Unfortunately, we cannot compare our

systemwithmost existing injection attacks, including, TDGIA [225], GIA-HAO [30], CANA [164],

G2A2C [96], because these are test-time evasion attacks rather than training-time poisoning at-

tacks.

For our comparison, we modified the original implementation, which misclassified the target

nodes to be any arbitrary classes, to one that performs targeted label-flipping poisoning. We used

this modified version to perform both direct attacks (injected nodes can be direct neighbors of

the target node) and indirect attacks (injected nodes cannot be direct neighbors but can be 𝑘-hop

neighbors). For direct attacks, we allowed the attack to inject up to 2 nodes, and to add up to

2 times the average node degree edges to the graph. For the indirect attack, we used the same

hyper parameters as in our work, allowing the attack to add up to Φ× 𝑟 × |V𝐿 | (Φ = 4) nodes and

𝑝 × Φ × 𝑟 × |V𝐿 | edges.

We provide detailed results from this comparison in Appendix B.7 (Table B.10 and B.11), and

only provide a summary here. We found that the direct-attack when using vanilla GCN has a

poison success rate of 74% for Cora and 83% for PubMed, which is between 7–12% higher than

MimicLDT (67% and 71%). However, the direct attacks is also more easily defended against, and

we found that for robust models the poison success rate drops to between 3-69% for Cora and

10-79% for PubMed. By contrast, MimicLDT seems less affected by the use of robust approaches

(55-74% for Cora, 56-70% for PubMed).

MimicLDT outperforms the indirect-attack for both vanilla GC and robust variants: our eval-

uation found that the indirect-attack’s poison success rate varied between 30-64% for Cora and

15-45% for PubMed.

57



Table 3.3: Changes in the distribution of graph node degrees and homophiliy, measured using Earth
Mover’s Distance, for the Cora dataset. The values represent the average distance between each poisoned
graph and the original input. We report on other datasets in Appendix. B.5.2 and B.5.3.

MimicLDT MetaLDT

Degree changes 0.0393 ± 0.0021 0.0419 ± 0.0055
Homophily changes 0.0205 ± 0.0010 0.0142 ± 0.0015

0.001%
1

0.01%
10

0.05%
50

0.1%
90

0.3%
273

0.5%
454

Fraction/number of attack points

0.0

0.2

0.4

0.6

0.8

1.0

Po
iso

n 
Su

cc
es

s R
at

e MimicLDT

Figure 3.3: Poison success rate with varying
number of attack points for GraphSAGE on ArXiv.

Neighbors

Non-Neighbors
beta=1e-06

beta=0.1
beta=1

beta=5
beta=50

0.4

0.6

0.8

1.0

Co
sin

eS
im

ila
rit

y 
of

 N
od

es
 P

ai
rs

Figure 3.4: Similarity between injected nodes
(varying 𝛽), their attack points, and between
neighboring and non-neighboring nodes for
GraphSAGE on ArXiv.

3.5.4 Ablation Studies of MimicLDT

Effect of varying the number of attack points. We study the effect of varying the number of

attack points. Fig.3.3 shows poison success rate as 𝑟 varies (while keeping Φ fixed). Increasing 𝑟 ,

and thus the number of attack points, improves attack success rate. §B.5.1 studies the effects of

varying Φ. The total number of injected nodes is determined by both 𝑟 and Φ.

Attack stealthiness: degree distribution. We examine whether poisoned graphs can preserve

the node degree distribution. We measure the changes to degree distribution using the Earth

Mover’s Distance (EMD) metric. The average distance between each poisoned graph with origi-

nal clean graph for Cora is 0.039± 0.002. Statistics on other datasets can be found in § B.5.2. The

attacks only cause slight changes on the node degree distribution.

58



Attack stealthiness: homophily. The second term of MimicLDT’s loss function (Eq. 3.4) keeps

injected nodes similar to the attack points they attach to. It serves a similar goal as priorwork [30],

which is to ensure that injected nodes do not significantly impact graph homophily. The hyper-

parameter 𝛽 controls the importance of the second term. Figure 3.4 measures the similarity of

neighboring and non-neighboring nodes in the ArXiv graph, and compare them to the similarity

between injected nodes and their attack points with varying 𝛽 . Appendix§ B.5.3 gives the detailed

setup. We can observe that the larger the value of 𝛽 , the more similar injected nodes appear to

their attack points. As we note in §3.4, we use feature vector similarity as a proxy for the stan-

dard node-centric homophily metric [30]. In §B.5.3, we show this does not affect the homophily

results.

3.5.5 End-to-end attacks

The attacks generated by MetaLDT and MimicLDT inject fake nodes whose features lie in

continuous space. Thus, they are not end-to-end attacks for graphs with discrete features, such

as citation graphs whose raw node features are natural language texts. Thus, an end-to-end attack

needs to inject nodes with textual features. We extend our design to perform such an attack.

Suppose some language model such as SciBERT [13] is used to encode a node’s raw texts

to an embedding vector in continuous space. Our extension trains a decoder that can generate

texts given an embedding vector, which corresponds to some fake node’s feature as computed by

MimicLDT (or MetaLDT). We provide more details on the design and evaluation of end-to-end

attack in Appendix§B.8 and give example texts generated for the fake nodes (§B.8 Fig B.7).

59



0.8 0.6 0.0
Threshold

0.2

0.4

0.6

0.8

Pr
ec

isi
on

0.8 0.6 0.0
Threshold

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll

No-use 0.8 0.6 0.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

AS
R

Nettack_direct_budget34 Nettack_indirect_budget34_ninf10 FGA_direct_budget34 IG-FGSM_direct_budget34

Figure 3.5: Effect of GNNExplainer on various short-distance attacks over Cora dataset under detection
rate (precision/recall) and attack success rate (ASR) after removing the selected adversarial edges and
retraining for prediction. GNNExplainer selects only those edges whose importance scores are above the
user-specified threshold. See details about settings of budget and ninf (number of influencer) in §B.6.1.

3.6 Diagnosing Challenges

3.6.1 Local Diagnosis Tool

Short-distance attacks are susceptible to GNN diagnosis tools (e.g., GNNExplainer), but Mim-

icLDT cannot be diagnosed by such local explainability tools – since MimicLDT operates outside

the regions.

As shown in [52], diagnosis tools like GNNExplainer can provide great opportunities for

human (inspectors or system designers) to inspect the confused predictions from adversarial per-

turbations. By modifying the target node’s k-hop neighborhood, baseline short-distance attacks

are vulnerable to existing GNN explanability tools. We evaluate this by measuring the likelihood

that GNNExplainer can detect perturbations from the baseline attacks. In Figure. 3.5, we show

the precision and recall of using GNNExplainer to detect the adversarial perturbations by setting

different importance score thresholds. Also, the attack success rate drops from 79-100% (before

diagnosis) to 3-7% (for threshold 0.0) if we removed the detected malicious edges and retrained

the models for the target node’s prediction. Details about the tools and more metrics analysis

(NDCG score, F1 score) are in Appendix. B.6.4

60



3.6.2 Apply AME to MimicLDT

Fundamental challenge: node dependencies in graph data. The application of the Average

Marginal Effect (AME) (Chapter 2) to Graph Neural Networks (GNNs) presents unique challenges

that distinguish it from traditional ML/DL tasks. In conventional classification tasks involving

images, natural language processing, or multi-graph datasets, data points are typically treated as

independent samples. However, node classification tasks in graph neural networks fundamen-

tally violate this independence assumption.

In graph-structured data, nodes exhibit inherent dependencies and structural relationships

that are crucial for the learning process. This dependency structure is particularly evident in ad-

versarial scenarios such as the MimicLDT attack. In MimicLDT, the attack mechanism relies on

the coordinated interaction between multiple components: a long-distance attack point provides

the target label, while its connected attacker-injected unlabeled attachment nodes contribute poi-

soned features. These components must work synergistically to enable successful poisoning of

the target model.

Theoretical limitations of direct AME application. The original AME framework relies on

the fundamental assumption that data points are independent and identically distributed (i.i.d.).

This assumption is essential for the regression-based (i.e., LASSO) estimation procedure that un-

derlies AME’s diagnostic capabilities. When applied to node classification tasks, treating each

node as an independent data source directly violates this core assumption.

The violation occurs because the final hidden representation of any given node in a graph

neural network is not solely determined by its own features, but is influenced by the features and

representations of its neighbors through themessage-passing mechanism. This creates a complex

web of dependencies that renders the independence assumption untenable. Consequently, the

original AME framework cannot be directly applied to graph-based poisoning attacks without

significant modifications to account for the inherent structural dependencies in graph data.

61



3.7 Adapting AME to Diagnose

3.7.1 Approach: Identify Poisoned Subgraphs

Theoretical foundation: subgraph-based independence. To address the fundamental chal-

lenge of node dependencies while maintaining compatibility with the original AME theoretical

framework, we propose an approach that shifts the unit of analysis from individual nodes to

subgraphs. This approach is grounded in the observation that while individual nodes are inter-

dependent, the final hidden representations of different labeled nodes can be considered relatively

independent for the purpose of model parameter updates.

We define a subgraph for each labeled node 𝑣𝑖 as 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ(𝑣𝑖), which encompasses the labeled

attack point node 𝑣𝑖 and its 𝑘-hop neighborhood, where 𝑘 corresponds to the number of layers

in the GNN model. This definition is theoretically motivated by the fact that in a 𝑘-layer GNN,

the final hidden representation of a node 𝑣𝑖 is determined by the aggregation of information from

nodes within its 𝑘-hop neighborhood.

Rationale for subgraph-level analysis. The subgraph-based approach addresses the inde-

pendence assumption in the following way: for each labeled node, the final hidden representation

used to update model parameters is propagated and integrated only within its subgraph’s scope.

While nodes within a subgraph are interdependent, the final hidden representations of different

labeled nodes (and their corresponding subgraphs) can be considered sufficiently independent for

the purpose of model parameter updates. This reformulation allows us to maintain the theoret-

ical foundations of AME while adapting it to the graph domain. Instead of detecting individual

poisoned nodes, we focus on identifying poisoned subgraphs, which represents a more natural

unit of analysis for graph-based attacks.

Modified sampling strategy. To implement this subgraph-based approach, we modify the

original AME sampling strategy as follows:

62



• Restricted Sampling Domain: Randomly sample only from the original labeled (training)

nodes 𝑉𝐿 , rather than from the entire node set.

• Neighborhood Inclusion: When a labeled node is sampled, include its 𝑘-hop neighborhood

as well. All neighbors function as unlabeled nodes within the subgraph context.

• Parameter Update Scope: Use only the sampled nodes for updating model parameters when

training multiple submodels during the diagnostic process.

This modified sampling strategy ensures that the diagnostic process respects the natural

boundaries of information flow in GNNs while maintaining the statistical properties required

for AME estimation.

AME estimation procedure. Following the modified sampling strategy, we apply the standard

AME estimation procedure:

(a) Feature Matrix 𝑋 : Each row corresponds to a labeled node 𝑣𝑖 ∈ 𝑉𝐿 , and each column indicates

the include/exclude status of that labeled node in a particular submodel.

(b) Response Vector 𝑌 : The confidence score of the target node 𝑣𝑡 being predicted as the target

label 𝑦𝑡 .

(c) Regression Analysis: Apply AME estimation using LASSO regression (and other techniques)

to estimate the contribution of each labeled node (i.e., the 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ(𝑣𝑖)) to the model’s behavior.

3.7.2 Experiments and Results

We evaluate our approach on the Cora citation network dataset using Graph Convolutional

Networks (GCN) as the base model. The experimental configuration consists of 1, 708 labeled

nodes with 17 attack points, representing 1% of the labeled nodes. For the sampling parame-

ters, we use a total of 2, 937 submodels calculated as 𝑐𝑘𝑙𝑜𝑔(𝑠) with 𝑐 = 16, and set the sampling

probability 𝑞 to 0.

63



Table 3.4: Results of diagnosing MimicLDT using adapted AME.

Pure LASSO LASSO+Knockoffs

Precision 0.481 0.739
Recall 1.0 1.0

We evaluate the effectiveness of the diagnosis across 50 queries using both pure-LASSO and

LASSO+Knockoffs, the results are shown in Table. 3.4.

The experimental results demonstrate a characteristic pattern: high recall with reasonable

(relatively lower) precision. This indicates that our approach successfully identifies all poisoned

subgraphs (perfect recall) but produces some false alarms (lower precision). The perfect recall is

particularly significant from a security perspective, as it ensures that no poisoned subgraphs go

undetected. The false alarm rate, while present, represents a manageable trade-off in security-

critical applications where false negatives (missed attacks) are usually more costly than false

positives (false alarms).

The improved precision with the Knockoffs (0.739 vs 0.481) suggests that the techniques ex-

plored and applied in our original AME framework continue to be effective when adapted to GNN

architectures.

Post-diagnosis defense effectiveness. After identifying poisoned subgraphs, we implement a

direct defense strategy by excluding the identified attack points during training. The effectiveness

of this approach is demonstrated through complete mitigation of the poisoning attack, with the

poisoning accuracy reduced to 0.0 after removal – ignoring during model parameters updates

– of the identified attack points. Importantly, this defense strategy has minimal impact on the

model’s performance on clean data, with clean node accuracy decreasing only marginally from

0.8795 before removal to 0.8786 after removal.

The results show that our diagnostic approach enables effective defense with minimal impact

on the model’s performance on clean data.

Fine-grained attack node localization. We can continue to consider implementing a more

64



Table 3.5: Results of applying AME directly for dependent data sources.

Strategy Precision (Knockoffs) Recall (Knockoffs)

S1 (Feature Zeroing) 0.333 0.573
S2 (Node Removal) 1.0 0.074
Our Approach 0.739 1.0

fine-grained approach to locate specific attachment nodes within identified poisoned subgraphs,

if needed. This approach leverages the design characteristics of MimicLDT. Leave-One-Out Anal-

ysis: Within each identified poisoned 𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ(𝑣𝑖), we systematically zero out each node’s fea-

tures and measure the change in distance between the final representations of the attack node 𝑣𝑎

and the target node 𝑣𝑡 . Nodes whose exclusion maximally increases this distance are identified

as likely malicious attachment nodes.

3.7.3 Ablation Studies and Lessons Learned

Towards applying AME directly for dependent data sources (nodes). To understand the

necessity of our subgraph-based approach, we conducted ablation studies exploring naive appli-

cations of AME that ignore node dependencies. These experiments involved directly sampling

nodes from the full graph and applying AME without accounting for structural relationships.

We tested several alternative sampling strategies:

• Strategy S1 - Feature Zeroing: Sample from the entire node set (both labeled and unlabeled),

and zero out the features of unsampled nodes while maintaining the graph structure.

• Strategy S2 - Node Removal: Sample from the entire node set, and completely remove

unsampled nodes along with their adjacent edges.

As shown in Table. 3.5, the results from these alternative strategies highlight the importance

of our subgraph-based approach.

65



Key insights and lessons learned:

(1) Lesson 1 - Dependency Awareness is Critical: The poor performance of naive approaches (S1

and S2) demonstrates that ignoring node dependencies fundamentally undermines the diagnostic

capability of AME in graph domains.

(2) Lesson 2 - Structural Preservation: Strategy S2’s extremely low recall (0.0735) despite perfect

precision (1.0) suggests that completely removing nodes destroys critical structural information

necessary for accurate diagnosis.

(3) Lesson 3 - Feature vs. Structure: Strategy S1’s more balanced but still poor performance indi-

cates that feature-level modifications alone are insufficient when structural dependencies remain

unaddressed.

3.7.4 Broader Implications

The lessons learned from this work extend beyond the specific application to MimicLDT and

graph neural networks. They highlight a general principle: when applying established machine

learning techniques to new domains with different structural assumptions, careful consideration

must be given to how fundamental assumptions translate to the new context. The success of

our subgraph-based approach demonstrates that with appropriate modifications, powerful tech-

niques like AME can be effectively adapted to new domainswhile preserving their core theoretical

foundations and practical utility.

66



4 | Reasoning Models Diagnostic: Probe

as Hidden Verifier

This chapter addresses whether reasoning models know when they’re right, using probes as

hidden verifiers. Reasoning models have achieved remarkable performance on tasks like math

and logical reasoning thanks to their ability to search during reasoning. However, they still suffer

from overthinking, often performing unnecessary reasoning steps even after reaching the correct

answer. This raises the question: can models evaluate the correctness of their intermediate answers

during reasoning? In this work, we study whether reasoning models encode information about

answer correctness through probing the model’s hidden states. The resulting probe can verify

intermediate answers with high accuracy and produces highly calibrated scores. Additionally,

we find models’ hidden states encode correctness of future answers, enabling early prediction

of the correctness before the intermediate answer is fully formulated. We then use the probe as

a verifier to decide whether to exit reasoning at intermediate answers during inference, reduc-

ing the number of inference tokens by 24% without compromising performance. These findings

confirm that reasoning models do encode a notion of correctness yet fail to exploit it, revealing

substantial untapped potential to enhance their efficiency.

67



4.1 Overview

Recent advances in reasoning models, such as OpenAI’s o1 [143] and DeepSeek-R1 [44], have

demonstrated significant progress in complex reasoning capabilities, particularly in domains such

as mathematical problem solving [43, 222] and logical reasoning [55, 111, 124]. A key advantage

of reasoning models lies in their ability to search: they often explore multiple reasoning paths

leading to different intermediate answers to the original problem before arriving at a final solution

(Figure 4.1, left). While this search-based reasoning is beneficial, it also introduces inefficiencies.

Previous studies [28, 161] show that reasoning models tend to overthink by exploring additional

reasoning paths even after reaching a correct answer.

This observation prompts the question: to what extent can models evaluate the correctness

of their intermediate answers during reasoning? The answer to this question is also crucial to

preventing overthinking, either through amore targeted design of the training strategy or a better

elicitation method. We investigate this question by probing the model’s hidden states for answer

correctness. Specifically, we segment the long Chain-of-Thought (CoT) into chunks containing

intermediate answers, and train a binary classifier to predict answer correctness from the model’s

hidden states at the answer positions (Figure 4.1).

We find that information about answer correctness is readily encoded in the model’s internal

representations. A simple probe can reliably extract this information, performing accurately on

both in-distribution and out-of-distribution examples. Moreover, the probe is highly calibrated,

with an expected calibration error (ECE) below 0.1. Our analysis also reveals that the model’s

hidden states contain "look-ahead" information: correctness can be predicted even before the

intermediate answer is fully articulated. Notably, when applying the same probing method to

traditional short CoT models, we observe a significant degradation in performance, suggesting

that the encoded correctness information is likely acquired during long CoT training.

We also investigate whether reasoning models effectively use this information on answer cor-

68



Let me make sure… Ah! Maybe the problem is asking how 

many he still has... So, he sold 11, has 2 left. The answer is 2.

Okay, so John has some toys …So, he sold all 13 toys. Wait... 

So, if he sold all 13, he should have none left, right?

Wait, let me go back… So, he sold 11 LEGO sets and got 165, 

so he has none left. But the problem ... 

Chunks in Long CoT Reasoning Probability of Answer Being Correct

Question: John plans to sell all his toys and use the money to buy video games. He has 13 lego sets and he sells them 

for $15 each. He ends up buying 8 video games for $20 each and has $5 left. How many lego sets does he still have?

Alternatively, let me verify this… So, the answer is 2. 

**Final Answer** He still has 2 LEGO sets left.

Long CoT Reasoning 

0.8

0.8

0.8

0.8

Probe 

?

Figure 4.1: An illustration of the probing method. On the left side, long CoT is parsed into multiple
chunks, each corresponding to a reasoning path and contains an intermediate answer as termination. On
the right side, representations for each chunk are obtained and probe is used to predict the probability of
answer being correct.

rectness during inference. Because the trained probe is well-calibrated, we use the output score

to measure the model’s confidence in the current intermediate answer. Ideally, the model should

reason at an optimal length if it is taking advantage of the well-encoded correctness information,

i.e. it should stop reasoning when the confidence about an intermediate answer is high enough.

We adopt the probe as a verifier and implement a confidence-based early-exit strategy by thresh-

olding confidence scores from the probe. The strategy achieves up to 24% reduction in inference

tokens without compromising accuracy. The improvement in efficiency with our verifier reveals

that while reasoningmodels encode information about answer correctness, they do not efficiently

use this internal knowledge during inference.

4.2 Motivation and Novelty

The question we want to study is whether reasoning models represent correctness of inter-

mediate answers during reasoning, which is crucial to the success of the unique search behavior

69



(characterized by backtracking to previous steps during reasoning) exclusively present in rea-

soning models. We note that the answer to the question is not obvious. Despite the overall

success in reasoning effectiveness, the observed overthinking phenomenon seems to suggest the

other way around (discussed in the Introduction Section). Existing works that report discrepancy

[<empty citation>] in model behavior and inner state information and the revealed information

in model hidden representation [<empty citation>] further blur the conclusion. Our results also

show that these models are distinct from non-reasoning models—exhibiting substantially better

calibration—and suggest that further research is essential for understanding what and how rea-

soning models learn during training.

As stated above, the motivation stems from search behavior and observed “overthink-

ing”, which is unique to reasoning models. We also demonstrate in Section ?? that reasoning

models exhibit significantly better-calibrated notions of correctness than their non-reasoning

counterparts. The universally low calibration error along with high accuracy (even on smaller

models like DS-Distill-Qwen-1.5B) is remarkable compared to previous works that probe non-

reasoning models’ hidden states to test models’ ability to know its own knowledge boundary

[<empty citation>] or detect hallucination [3]. The technique we adopt is also much simpler

than prior works on non-reasoning models’ representation [<empty citation>]. This observa-

tion further underscores the uniqueness of reasoningmodels and reinforces the necessity for dedicated

investigation into their distinctive properties.

4.3 Probe for Intermediate Answer Correctness

The long CoT output from a reasoningmodel often containsmultiple mentions of intermediate

answers. We aim to explore whether the notion of “correctness” is encoded in the representation

of each intermediate answer by probing. This section describes how we identify intermediate

answers, obtain their representations, and train a two-layer multilayer perceptron (MLP) probe.

70



4.3.1 Data Collection

We first collect responses from reasoning models for each problem in the task dataset. The

reasoning trace, which is encapsulated in <think> tokens, is extracted and split into paragraphs

with “\n\n” as delimiter. We identify the start of a new reasoning path by detecting keywords like

“wait”, “double-check” and “alternatively” in each paragraph. A complete list of the keywords is

shown in Table C.1 in the appendix. We merge paragraphs in the same reasoning path to form

a chunk. Then we use Gemini 2.0 Flash [63] to extract the intermediate answer in each chunk if

one exists, and judge its correctness against the true answer. Finally, adjacent chunks that do not

contain an intermediate answer are merged with the closest chunk that contains an answer. Each

merged chunk now has an intermediate answer and a label generated by Gemini, represented as

{(𝑐1, 𝑦1), (𝑐2, 𝑦2), ...(𝑐𝑘 , 𝑦𝑘)}, where each 𝑐𝑖 is part of the reasoning trace that contains an an-

swer to the original problem, and 𝑦𝑖 is a binary label indicating the correctness of the answer.

The next step is to obtain the model representation for each chunk. For each chunk 𝑐𝑖 , we

take the last-layer hidden states at the last token position as its representation 𝑒𝑖 . Finally, for

each task dataset, we collect a set of reasoning representations and their corresponding labels,

formulating the probing dataset D = {(𝑒𝑖, 𝑦𝑖)}𝑁𝑖=1 that will be finally used to train probes. Note

that the construction of probing dataset D depends on both the original task dataset and the

reasoning model we use to generate representations.

4.3.2 Training the Probe

After obtaining the probing dataset, we train a two-layer multilayer perceptron on D. Since

the datasets are often highly imbalanced, where most intermediate answers from a strong reason-

ing models are correct (see Table C.2 in Appendix ?? for detailed label statistics), we use weighted

71



binary cross-entropy loss:

𝑝𝑖 = 𝜎 (ReLU(𝑒𝑖W1 + b1)W2 + 𝑏2)

L(W, b) = − 1
𝑁

𝑁∑︁
𝑖=1
(𝑤𝛼𝑦𝑖 log𝑝𝑖 + (1 − 𝑦𝑖) log(1 − 𝑝𝑖))

(4.1)

where 𝜎 is the sigmoid function,𝑤 is the ratio of negative to positive samples in the training data,

and 𝛼 is a hyperparameter to scale the imbalance weight. The model parameters areW1 ∈ R𝑚×𝑑 ,

W2 ∈ R𝑑×1, b1 ∈ R𝑑 , and 𝑏2 ∈ R, where𝑚 is the hidden size of the language model and 𝑑 is the

hidden size of the MLP.

4.4 Experiments

Wefirst describe the basic experimental setup (§ 4.4.1). Then, we explore whether information

about answer correctness is encoded in reasoning models (§ 4.4.2) and if it generalizes across

datasets (§ 4.4.3), how such information is related to long CoT reasoning abilities (§ 4.4.4), and is

the information also well-encoded even before an explicit answer is formulated (§ 4.4.5).

4.4.1 Experimental setup

Task datasets. We select mathematical reasoning and logical reasoning tasks as their answers

are automatically verifiable. For mathematical reasoning, we use three datasets: GSM8K [34],

MATH [81], and AIME. For logical reasoning, we use KnowLogic [211], a logical reasoning bench-

mark of 5.4k multiple-choice questions synthesized with knowledge-driven methods. To ensure

the reliability of intermediate answer extraction, we filter the KnowLogic dataset to only retain

examples with a single correct answer. For ease of training, all training sets are down-sampled

to include no more than 1000 examples, which did not affect performance according to our pilot

experiment. See Appendix C.1.1 for more details regarding data processing.

72



Reasoning models. We use the open-source DeepSeek-R1-Distill series of models [44], includ-

ing R1-Distill-Llama-8B, R1-Distill-Llama-70B, R1-Distill-Qwen-1.5B, R1-Distill-Qwen-7B, and R1-

Distill-Qwen-32B. All the distilled models are supervised fine-tuned with reasoning data gener-

ated by DeepSeek-R1 model. We also use QwQ-32B [169, 203], an open-source reasoning lan-

guage model trained with reinforcement learning.

Implementation details. For probing data collection, we enumerate each combination of task

dataset and model to collect model representation and answer labels. The statistics of the col-

lected data can be found in Appendix C.1.1. For training, each dataset D is randomly split into a

training set and a validation setD𝑡𝑟𝑎𝑖𝑛 andD𝑣𝑎𝑙 , with a train-to-validation ratio of 8:2. The Adam

optimizer [100] is used for training, and we perform grid search for hyperparameter tuning. The

hyperparameters for search include learning rate, scaling factor for imbalance weight 𝛼 , weight

decay, and MLP hidden size 𝑑 . Each model is trained for at most 200 epochs with a batch size

of 64; the validation loss is used as the criterion for early stopping. Following grid search, the

probing models are first ranked based on their validation accuracy. From the top 10 performing

models, we select the probe with the least number of parameters, specifically the model with

the smallest hidden dimension 𝑑 . Details regarding the grid search setting and search results for

each probing dataset can be found in Appendix C.1.3. Note that most resulting models achieve

non-trivial performance when 𝑑 = 0 (see Appendix C.1.3), which means that correctness of the

intermediate answer can be easily extracted with a linear probe.

4.4.2 Reasoning models encode answer correctness

We first test in-distribution performance of trained probes by evaluating each probe on the

test set from the same dataset as the training set. Figure 4.2 reports the ROC-AUC scores on each

dataset, and Table 4.1 presents the corresponding Expected Calibration Error (ECE) [139] and

Brier score [18]. Other metrics including accuracy, precision, recall, and macro F1 are reported

in Appendix C.1.4.

73



GSM8K MATH AIME KnowLogic
0.00

0.25

0.50

0.75

1.00
RO

C
-A

U
C

R1-Distill-Llama-8B
R1-Distill-Qwen-1.5B

R1-Distill-Qwen-7B

R1-Distill-Qwen-32B

R1-Distill-Llama-70B
QwQ-32B

Figure 4.2: ROC-AUC scores for each probe trained on hidden states from different reasoning models
and datasets. We train a separate probe on each probing dataset and evaluate it on in-distribution test
set.

Overall, all probes perform satisfactorily in in-distribution setting, achieving ROC-AUC scores

above 0.7 and remarkably low Expected Calibration Error (ECE) scores below 0.1. This indicates

the reasoning models inherently encode information about answer correctness that can be ex-

tracted with a simple probe. Moreover, many of the probes converge to a linear probe after grid

search (hidden size 𝑑 = 0), suggesting that correctness information is linearly encoded in the

hidden states of the reasoning model (Appendix C.1.3). Across task datasets, probes trained on

mathematical reasoning data perform better than those trained on logical reasoning data. This

may correlate with the training data distributions of the reasoning models, where math problems

presumably play a larger role. Meanwhile, probes extracted from larger reasoning models work

better, with R1-Distill-Qwen-32B achieving over 0.9 ROC-AUC score on AIME. The Qwen fam-

ily models’ representations also exhibit stronger correctness signals, with Qwen-1.5B generally

surpassing Llama-8B model in the mathematical domain, potentially reflecting differences in the

base model training data distribution.

4.4.3 Probes generalize to some out-of-distribution datasets

Past studies have shown that probe performance can deteriorate significantly when applied to

out-of-distribution data [12, 98]. Since strong in-distribution results may not necessarily indicate

reliable generalization, we examine howwell the probes trained in § 4.4.2 perform across different

74



Reasoning Model GSM8K MATH AIME KnowLogic

ECE ↓ Brier ↓ ECE ↓ Brier ↓ ECE ↓ Brier ↓ ECE ↓ Brier ↓
R1-Distill-Llama-8B 0.05 0.17 0.03 0.14 0.10 0.11 0.07 0.23
R1-Distill-Llama-70B 0.03 0.07 0.07 0.10 0.10 0.18 0.03 0.19

R1-Distill-Qwen-1.5B 0.04 0.16 0.04 0.12 0.14 0.12 0.09 0.20
R1-Distill-Qwen-7B 0.02 0.11 0.03 0.10 0.09 0.15 0.06 0.21
R1-Distill-Qwen-32B 0.01 0.08 0.06 0.09 0.13 0.10 0.10 0.19

QwQ-32B 0.03 0.13 0.13 0.10 0.08 0.13 0.03 0.15

Table 4.1: Expected Calibration Error (ECE) and Brier score for the in-distribution performance of each
probe trained on each probing dataset.

domains and datasets.

Table 4.2 shows the ROC-AUC and ECE scores for probes evaluated on out-of-distribution

data, compared to those trained and tested on in-distribution data, using representations from

R1-Distill-Llama-8B. We find that probes exhibit generalizability across mathematical reason-

ing datasets. The probes trained on MATH and GSM8K transfer well between the two datasets,

demonstrating both high discriminative performance (ROC-AUC) and satisfactory calibration

(ECE). In contrast, for AIME, a more difficult dataset, the probes trained on GSM8K and MATH

are less calibrated. However, the probe does not stably generalize to out-of-domain data (e.g.,

from logical reasoning to mathematical reasoning), perhaps due to the difference in distribution

of the two domains (Figure C.1). More generalization results on other reasoning models can be

found in Appendix C.1.4.

4.4.4 Encoding of correctness is related to long CoT reasoning

abilities

We have shown information on answer correctness is encoded in reasoning model’s hidden

states; to what extent this encoding is related to the model’s ability to perform long CoT reason-

ing? To that end, we train a probe with the non-reasoning counterpart of the reasoning model.

Specifically, we use Llama-3.1-8B-Instruct [68] to obtain representations of reasoning chunks us-

75



Training
Data

GSM8K MATH AIME KnowLogic

AUC ↑ ECE ↓ AUC ↑ ECE ↓ AUC ↑ ECE ↓ AUC ↑ ECE ↓

GSM8K 0.82 0.05 0.80
(-0.04)

0.08
(+0.05)

0.69
(-0.11)

0.25
(+0.15)

0.56
(-0.11)

0.10
(+0.03)

MATH 0.83
(+0.01)

0.04
(-0.01) 0.84 0.03 0.76

(-0.04)
0.28
(+0.18)

0.63
(-0.04)

0.08
(+0.01)

KnowLogic 0.77
(-0.05)

0.17
(+0.12)

0.74
(-0.10)

0.19
(+0.16)

0.81
(+0.01)

0.31
(+0.21) 0.67 0.07

Table 4.2: ROC-AUC scores and ECE of trained probes on out-of-distribution test set. The numbers in
red and green denote performance decrease and increase relative to the probe trained on in-distribution
training set, respectively. R1-Distill-Llama-8B is used as the reasoning model.

ing theMATH dataset. As instruct models do not have long CoT reasoning abilities, each chunk is

just the full model output for one problem (i.e., including the short CoT and final answer), and the

representation is simply the hidden state of the last token for each problem output. To account

for this, we add an additional setting for reasoning model probes, where the probe is evaluated

on the correctness of the final answers (rather than the intermediate answers) of each reasoning

chain.

As shown in Figure 4.3, the probe trained on non-reasoning model representations performs

much worse than its reasoning counterpart, with lower classification scores and higher calibra-

tion errors. The fact that the encoded information on answer correctness is more prominent

in reasoning models may suggest that the self-verification ability is enhanced during long CoT

supervised training.

4.4.5 Correctness can be detected before the answer is generated

Section 4.4.2 shows that the hidden states at the end of reasoning chunks encode information

about intermediate answer correctness, we now investigate a further question: do hidden states

from earlier positions within the chunk also encode such signals? Specifically, we analyze hidden

states from varying positionsmidway through a reasoning chunk—before an intermediate answer

76



Accuracy ROC-AUC ECE Brier Score 
0.00

0.25

0.50

0.75

1.00
Sc

or
es

0.80 0.85

0.03
0.14

0.92 0.86

0.03 0.06

0.66
0.82

0.23 0.23

Reasoning model (Intermediate)
Reasoning model (Final)
Non-reasoning model (Final)

Figure 4.3: Comparison on the performance on reasoning models (i.e., R1-Distill-Llama-8B, fine-tuned on
the base Llama-3.1-8B model using long CoT data) and non-reasoning models (i.e., Llama-3.1-8B-Instruct)
on MATH. For reasoning models, we show both the performance on predicting the correctness of inter-
mediate answers (blue) and the final answers (green). For non-reasoning models, the data only contains
the final answers (red).

is fully generated—to determine if these earlier representations already encode predictive signals

about the forthcoming answer’s correctness.

As described in § 4.3.1, each reasoning trace is initially split into 𝑘 chunks with corresponding

correctness labels {(𝑐1, 𝑦1), (𝑐2, 𝑦2), ...(𝑐𝑘 , 𝑦𝑘)}. Each chunk 𝑐𝑖 can be subdivided into paragraphs.

We obtain the representation of each paragraph-level sequence, and assign each sequence within

chunk 𝑐𝑖 the label 𝑦𝑖 , corresponding to the correctness of the nearest upcoming intermediate

answer. We train a probe to predict the future answer correctness for R1-Distill-Llama-8B on

MATH (following § 4.3.2). We use hidden states at the end of different paragraphs to predict

chunk correctness. We report probing performance at different percentages of all paragraphs

within a chunk.

We observe that the reasoning model’s hidden states encode information about correctness

even before an intermediate answer has been explicitly generated. Moreover, the probe per-

formance is positively correlated with the paragraph’s proximity to the upcoming intermediate

answer. As shown in Figure 4.4, the probe’s classification accuracy improves primarily during

two critical phases: an initial steep increase in the 0-10% range, followed by minimal gains until a

second noticeable improvement near the chunk’s end (90-100%). Compared to the peak accuracy

77



of 79%, performance at the 10%, 50%, and 95% positions shows decrements of 14%, 10%, and 5%

respectively. This highlights that early positions contain significant correctness signals, while the

most predictive information emerges just before answer generation. On the other hand, calibra-

tion error is highest at the initial paragraph and then undergoes a sharp decline. ECE reaches its

minimum (0.03) relatively early—–at around the 60% position—–while the Brier score continues

improving until the final positions of the reasoning chunk.

0%5%10% 20% 30% 40% 50% 60% 70% 80% 90%95%100
%

Percentage (middle reasoning chunk position)

0.00

0.05

0.10

0.15

EC
E

ECE
Brier Score

0.15

0.20

0.25

Br
ier

 Sc
or

e

(a) ECE and Brier Score decrease as the paragraph
position approaches the answer at the end of the
reasoning chunk

0% 5%10% 20% 30% 40% 50% 60% 70% 80% 90%95%100
%

Percentage (middle reasoning chunk position)

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

Sc
or

e

ROC-AUC
Accuracy

(b) Accuracy and ROC-AUC increase as the para-
graph position approaches the generated answer at
the end of the reasoning chunk

Figure 4.4: Performance on predicting the correctness of the upcoming intermediate answers midway
through a reasoning chunk. The results are obtained at different percentages of all paragraphs within
each chunk. The task dataset and reasoning model used are MATH dataset and R1-Distill-Llama-8B.

4.5 Efficient Inference: Early-exit

4.5.1 Probe as a Verifier for Early-exit

While reasoning models are able to encode well-calibrated and accurate information about

intermediate answer correctness, do they fully utilize it during inference? We investigate this

by checking whether early exiting based on the probe’s confidence score on answer correctness

can improve reasoning efficiency. This approach allows us to determine whether models con-

tinue reasoning unnecessarily after the probe is highly confident that the answer is correct (i.e.,

overthinking).

78



paragraphExperimental setup

Following § 4.3, we obtain a classifier that takes a reasoning chunk 𝑐𝑖 ’s representation 𝑒𝑖

as input and outputs the probability 𝑝𝑖 of the intermediate answer 𝑦𝑖 being correct. Since the

estimated 𝑝𝑖 is highly calibrated (§ 4.4.2), we directly use it to guide confidence-based early-

exit during inference. Specifically, we first set a threshold 𝑇ℎ𝑟 for model confidence. Then,

we sequentially evaluate each intermediate answer in the full reasoning trace, using the probe

to compute confidence scores on the answer’s correctness. Once we encounter an intermediate

answer whose probed 𝑝𝑖 exceeds the threshold𝑇ℎ𝑟 , we truncate the reasoning trace at this chunk

and take the intermediate answer as the final answer.

We compare the intermediate answer selected by early exiting with the question’s ground-

truth answer to compute accuracy. Additionally, we record the inference token length at the

point of truncation to evaluate computational efficiency. We run R1-Distill-Llama-8B on MATH

dataset. In this experiment, the maximum token generation limit is set to be 10K across all test

examples.

For comparison, we implement static early-exit, where we predetermine a fixed number of

intermediate answers 𝑚 and terminate the reasoning process after 𝑚 chunks, taking the 𝑚-th

chunk’s intermediate answer 𝑦𝑚 as the final answer1.

4.5.2 Experimental Results

As shown in Figure 4.5, using the probe to perform confidence-based early exiting can im-

prove reasoning efficiency without accuracy degradation. When setting𝑇ℎ𝑟 to 0.85, our strategy

achieves roughly the same reasoning accuracy (88.2%) as no early-exit, while reducing the num-

ber of generated tokens by approximately 24%. Setting𝑇ℎ𝑟 to 0.9 (or higher) can achieve identical

reasoning accuracy (88.6%) as no early-exit and reduces the number of generated tokens by 19%.

In other words, without early exiting, the reasoning model continues to generate excess tokens
1Note that the static early-exit strategy degrades to no early-exit if the total number of chunks 𝑘 < 𝑚.

79



0.6 0.8 1.0 1.2 1.4 1.6
Total Tokens Length 1e6

0.75

0.80

0.85

0.90
Ac

cu
ra

cy

Thr: 0.2
Thr: 0.3

Thr: 0.4
Thr: 0.5

Thr: 0.6

Thr: 0.7

Thr: 0.8 Thr: 0.85 Thr: 0.9 Thr: 0.95 Thr: 0.98

m: 1

m: 2

m: 3
m: 4

m: 5

m: 6 m: 7
m: 8 m: 9m: 10 m: 20

m: 40

Confidence-based early-exit
Static early-exit
No early-exit

Figure 4.5: Final answer accuracy versus inference token cost with different early-exit strategies. For
confidence-based early-exit, the curve is obtained by varying the confidence threshold for answer cor-
rectness. For static early-exit, the curve is generated by varying the chunk number𝑚.

even when the probe indicates high confidence; this failure to fully utilize internal information

on answer correctness empirically leads to overthinking behavior.

Additionally, when saving equivalent numbers of tokens, our approach outperforms the static

early-exit strategy by achieving up to a 5% accuracy improvement. For instance, confidence-based

early exiting has 87.4% accuracy (Thr = 0.8), whereas the static early-exit strategy has approx-

imately 82.5% accuracy with similar total token usage. Controlling for the same accuracy score

(e.g. above 85%), confidence-based early-exit strategy (Thr = 0.8) consumes significantly fewer

tokens than static strategy (with𝑚 = 6). This demonstrates that leveraging the internal encoded

information of answer correctness as an exit strategy can lead to more efficient reasoning.

Overall, the improvements suggest that reasoning models fail to fully leverage this internal

encoded information of answer correctness during inference, and that more effective usage of the

information can reduce overthinking and enhance reasoning efficiency.

80



4.6 Related Work

Uncertainty estimation in LLMs. Black-box techniques for estimating LLM uncertainty over

their response have primarily focused on prompting the model to verbalize its confidence di-

rectly, often aggregating self-reported confidence scores over multiple samples [120, 171]. How-

ever, Kapoor et al. [98] and Xiong et al. [199] find that white-box methods, including those that

depend on internal model representations [135], tend to perform better than black-box methods

on confidence estimation. For instance, Azaria and Mitchell [5] and Burns et al. [20] show that

an LLM’s representation after processing a statement is highly predictive of the statement’s cor-

rectness; moreover, linear probes trained on these representations can classify correctness, even

without ground-truth labels. We extend this work to long CoT generated by reasoning mod-

els, demonstrating that the representations at intermediate stages of the CoT also capture key

information about the correctness of each intermediate stage.

Efficient reasoning during inference. Reasoning models demonstrate improved performance

on many tasks thanks to their ability to search while generating reasoning chains, which often

demand additional test-time compute in comparison to standard CoT [44]. Additionally, reason-

ing models often suffer from repeated and unnecessary reasoning steps—or “overthinking”—even

after a correct answer has been reached [28]. Recent work has explored training methods to make

reasoning more concise or to reduce the frequency of overthinking [28, 138]. Other inference-

time techniques focus on curtailing generations that are unlikely to be successful [118, 133, 219]

or dynamically adjusting the test-time compute budget based on input difficulty or other prop-

erties of the prompt [41, 59, 189, 202]. We find that while the model encodes information about

answer correctness, it fails to use it efficiently, which may contribute to overthinking. We lever-

age this to perform threshold-based early-exiting at inference time, reducing test-time compute

while preserving performance.

Learned verifiers. The ability to verify intermediate answers is also related to the line of works

81



on verifiers, which is an important technique used to regulate test-time scaling. Previous work

has focused on training verifiers to classify the correctness of amodel-generated solution or select

which of two model-generated responses is preferred [7, 34, 38, 119, 144, 215, 220]. However,

recent improvements in reasoning capabilities have enabled LLMs to critique and refine their

outputs without the aid of external verifiers, often using natural language prompt templates to

guide self-critique of model-generated output [122, 129, 159, 192, 218]. In contrast, we focus on

leveraging information about correctness which is encoded in the model representations of the

reasoning chain.

4.7 Discussion

In this study, we explore the existence of answer correctness information in reasoning mod-

els’ inner representation. With probing, we show that such information is readily accessible in

models’ hidden states. The trained probe demonstrate strong calibration performance, and can

be adopted as a lightweight verifier to improve reasoning efficiency. The significant reduction

in inference tokens suggest that reasoning models’ hidden states probably contain rich informa-

tion that are underexplored.Our findings contribute to the growing body of research on model

interpretability and open up several intriguing avenues for future investigation.

Self-verification ability of language models. Our study reveals that answer correctness is

encoded in reasoning models’ hidden states. The information can be easily extracted with a probe

and used as a verifier during inference. This indicates that strong self-verification abilities can

be elicited from reasoning models. Notably, these abilities are less pronounced in non-reasoning

models. However, given the intricate training processes and the diversity of training data these

models are exposed to, the precise origins of this ability remains unclear, suggesting a promising

avenue for future research into how andwhen such self-verification abilities emerge duringmodel

training.

82



Internal mechanisms of reasoning models. We uncover a surprisingly well-calibrated hid-

den verifier that enables models to autonomously assess intermediate reasoning correctness. This

finding suggests that models possess an ability to self-verify, which is an important step toward

understanding their internal decision-making processes. However, we still observe “overthink-

ing” phenomenon, where models perform unnecessary re-checks even after generating correct

answers with high confidence, as demonstrated in our early-exit experiment. This suggests that

while models can self-verify, they do not yet efficiently leverage this intrinsic capability. Further

study is needed to explore how reasoning models internally utilize the information encoded in

their representations, and how we can guide them to use this information more efficiently during

training or inference.

On-policy control of reasoning models. In contrast to previous LLM-based verifiers [34, 215,

218], the hidden verifier extracted in our work is much more lightweight. Our approach lever-

ages the hidden states of the reasoning model directly during inference, which not only improves

token efficiency but also makes the verifier more integrated with the model’s existing architec-

ture. Our finding highlights the potential of an on-policy perspective in model inference control.

We believe this opens new avenues for future research in designing more efficient and adaptive

control modules for reasoning models.

In summary, our study highlights the encoded answer correctness information in reasoning

models, indicating the latent capability of reasoningmodels to verify their own answers. Leverag-

ing this information through lightweight probing techniques, we show reasoning efficiency can

be further enhanced, implying an inadequate use of the information by reasoning models dur-

ing inference. Our findings underscore the potential of on-policy control for reasoning models,

offering a novel direction for more efficient and adaptive inference strategies. Future research

should further investigate the origins of the self-verification abilities and develop methods to

better harness them, ultimately improving reasoning efficiency and reliability.

83



5 | Conclusion

This dissertation has addressed the fundamental challenge of diagnosing AI misbehavior

across shifting deep learning paradigms through three complementary contributions. For clas-

sifiers, we introduced the Average Marginal Effect (AME), a scalable data attribution method

achieving efficient attribution with only O(k log N) evaluations. For Graph Neural Networks,

we developed MimicLDT, a long-distance targeted attack revealing blind spots in existing ex-

plainability tools, and demonstrated AME’s adaptability to graph structures. For large reasoning

models, we designed self-verification probes that uncover latent correctness signals, enabling

computational savings through confidence-based early-exit strategies.

This work establishes a comprehensive framework for model-aware diagnostics, demonstrat-

ing that diagnostic approaches must evolve alongside AI paradigms while principled tools can

transcend specific domains. The research advances both theoretical understanding of AI misbe-

havior and practical tools for building more trustworthy, efficient, and interpretable AI systems.

The broader impact extends beyond technical contributions to responsible AI development

across critical domains. By providing methods to understand and mitigate AI failures, this re-

search contributes to building public trust, ensuring regulatory compliance, and preventing costly

real-world failures. As AI systems become increasingly sophisticated, these diagnostic frame-

works provide essential tools for maintaining their safety, reliability, and accountability.

84



5.1 Future Directions

The work presented in this dissertation opens several promising avenues for future research

in AI diagnostics. The following directions emerge naturally from the limitations and insights

gained from our three complementary contributions.

Scalable Topology-Aware GNN Diagnostics. Our stress testing approach with MimicLDT re-

veals the need for more sophisticated diagnostic tools that can handle the complex topological

dependencies in graph neural networks. Future work should develop scalable topology-aware

diagnostic methods that can efficiently analyze large-scale graph structures and their influence

on model behavior. Additionally, topology-optimized AME sampling and estimation techniques

are needed to better handle dependent data sources in graph settings, moving beyond the current

adaptations that treat subgraphs as independent units.

Universal Self-Diagnostic Layers for Large Language Models. The success of our self-

verification probes suggests a natural extension toward embedding universal self-diagnostic ca-

pabilities directly into large language models. Rather than training separate probes post-hoc,

future research could explore integrating self-awareness mechanisms during model training, en-

abling models to continuously monitor and adjust their own reasoning processes. This could lead

to more robust and self-correcting AI systems that can dynamically adapt their behavior based

on internal confidence signals. This implementation would transform model diagnostics from

post-hoc diagnosis into a proactive and preemptive tool, enabling more real-time and effective

model monitoring.

Reasoning Models v.s. Non-reasoning Models. A fundamental question that emerges from

our work on reasoningmodels is understanding what and how these models learn during training

85



that differs from non-reasoningmodels. Future research should investigate the training dynamics

that give rise to the latent correctness signals we observed, exploring how different training objec-

tives, data compositions, and architectural choices influence the development of self-verification

capabilities. This understanding could inform the design of more effective training procedures

for reasoning-capable AI systems.

Diagnosing Other Advanced AI Model Paradigms. As AI continues to evolve, new model ar-

chitectures and paradigms will inevitably emerge, each bringing unique diagnostic challenges.

Future work should proactively develop diagnostic frameworks for increasingly advanced AI

models, including multimodal systems, agent-based models, and hybrid reasoning architectures.

The principles established in this thesis—adaptability, scalability, and model-awareness—provide

a foundation for extending diagnostic capabilities to these emerging paradigms.

86



A | Appendix: Supplementary Materials

for Chapter 2

A.1 Convergence Rate when Using LASSO to compute AME

We first state and prove a variant of the LASSO error bound result from [112] in a simpler

setting, which is sufficient for our application and will serve as the foundation of many of our re-

sults. We then apply this result to finish the proof of𝑂 (𝑘 log𝑁 ) sample rate of our AME estimator

left in Prop. 2.4 in the main body.

A.1.1 Simplified LASSO Error Bound

Proposition A.1. Consider a regression problem where one wants to approximate an unknown

random variable 𝑌 using a set of random variables 𝑋1, . . . , 𝑋𝑁 with 𝑁 ≥ 3. Let 𝛽𝑙𝑎𝑠𝑠𝑜 be the LASSO

coefficient when regressing 𝑌 on 𝑋 with 𝐿1 regularization, and 𝛽∗ be the best linear fit (detailed

definition in Prop. 2.3). Assume that ∀𝑛 ∈ [𝑁 ] : 𝛽∗𝑛 is finite, 𝑋𝑛 is bounded in [𝐴, 𝐵], 𝑌 is bounded in

[0, 1]. Further assume that ∀𝑖, 𝑗 ∈ [𝑁 ] : E[𝑋𝑖𝑋 𝑗 ] = 0 when 𝑖 = 𝑗 and otherwise 1. If 𝛽∗ has at most

𝑘 non-zeros and the sample size𝑀 ≥ 𝑘 (1 + log(𝑘/𝑁 )), then there exists a regularization parameter

87



𝜆 and a value 𝐶 (𝐵 −𝐴, 𝛿) such that with probability at least 1 − 𝛿 :

∥𝛽𝑙𝑎𝑠𝑠𝑜 − 𝛽∗∥2 ≤ 𝐶 (𝐵 −𝐴, 𝛿)
√︂

𝑘 log(𝑁 )
𝑀

.

The following terminology will be useful to facilitate its proof.

Definition A.2. 𝑋 is said to be a subgaussian random variable with variance property 𝜎2 if for

any 𝑠 ∈ R,E[exp(𝑠𝑋 )] ≤ exp
(
𝜎2𝑠2

2

)
. We write 𝑋 ∼ 𝑠𝑢𝑏𝐺 (𝜎2).

Definition A.3. The underlying measure of a random vector𝑋 ∈ R𝑁 is said to be 𝐿-subgaussian

if for every 𝑞 ≥ 2 and every 𝑢 ∈ R𝑁 ,

E1/𝑞 [|⟨𝑢,𝑋 ⟩|𝑞] ≤ 𝐿
√
𝑞E1/2 [|⟨𝑢,𝑋 ⟩|2] .

We now prove proposition A.1:

Proof. To apply Theorem 1.4 from [112] to bound the error, we need our setup to satisfy Assump-

tion 1.1 of that paper: that 𝑋 is an isotropic, 𝐿-subgaussian measure, and that the noise is in 𝐿𝑞

for 𝑞 > 2.

First, the isotropic requirement is thatE[⟨𝑢,𝑋 ⟩2] = ⟨𝑢,𝑢⟩ for all𝑢 ∈ R𝑁 . This can be shown by

observing that E[⟨𝑢,𝑋 ⟩2] = ∑𝑁
𝑖=1 E[𝑢2

𝑖 𝑋
2
𝑖 ] +

∑
𝑖≠ 𝑗 E[𝑢𝑖𝑢 𝑗𝑋𝑖𝑋 𝑗 ] =

∑𝑁
𝑖=1𝑢

2
𝑖 , where the last equality

comes from the fact that E[𝑋𝑖𝑋 𝑗 ] = 0 and E[𝑋 2
𝑖 ] = 1.

The second requirement is that the probabilitymeasure of the covariate vector𝑋 is𝐿-subgaussian

(Def. A.3). Let 𝜎 = (𝐵 − 𝐴)/2. Then 𝑋𝑛 ∼ 𝑠𝑢𝑏𝐺 (𝜎2) since they are bounded. Hence, ⟨𝑢,𝑋 ⟩ ∼

𝑠𝑢𝑏𝐺 (𝜎2) (see e.g., Theorem 2.1.2 in [145]). Applying Proposition 3.2 from [153], we haveE1/𝑞 [|⟨𝑢,𝑋 ⟩|𝑞] ≤

𝐿
√
𝑞 with 𝐿 > 0 a constant dependent only on 𝜎 . Noticing that Def. A.3 remains equivalent when

constraining ∥𝑢∥2 = 1, and that E1/2 [⟨𝑢,𝑋 ⟩2] = ∥𝑢∥2 = 1 concludes this part of proof.

Third the “noise”, defined as 𝜉 = ⟨𝛽∗, 𝑋 ⟩ − 𝑌 should be in 𝐿𝑞 , 𝑞 > 2. Notice that the best

estimator cannot be worse than a zero estimator that always return 0, thus E[𝜉2] ≤ 1. Hence,

88



|𝜉 | ≤ |⟨𝛽∗, 𝑋 ⟩| + |𝑌 | ≤ 𝐷𝑁 + 1, where 𝐷 is the upper bound of |𝛽∗𝑛𝑋𝑛 |, then there exists 𝑞 =

1/log(𝐷𝑁 + 1) + 2 > 2 such that E[|𝜉 |𝑞] ≤ E[|𝜉 |2] (𝐷𝑁 + 1)𝑞−2 ≤ E[|𝜉 |2] · 𝑒 ≤ 𝑒 .

Combined with the sparsity assumption on 𝛽∗, we can apply Theorem 1.4 from [112], which

directly yields the error bound.

□

A.1.2 Proof of Prop. 2.4

With this simplified bound, we can prove Prop. 2.4:

Proof. Recall that the best linear estimator 𝛽∗𝑛 = AME𝑛/
√
𝑣 , so applying Prop. A.1 directly yields

the bound. The remaining work is to verify the assumptions: Since the AME is an average of

utility differences, we know that 𝛽∗𝑛 = AME𝑛/
√
𝑣 ∈ [−1/

√
𝑣, 1/
√
𝑣] is finite. Furthermore, by

design E[𝑋𝑖𝑋 𝑗 ] = E𝑝 [E[𝑋𝑖𝑋 𝑗 |𝑝]] = E𝑝 [E[𝑋𝑖 |𝑝]E[𝑋 𝑗 |𝑝]] = 0 when 𝑖 ≠ 𝑗 , and E[𝑋𝑖𝑋 𝑗 ] = E[𝑋 2
𝑖 ] =

𝑉𝑎𝑟 [E[𝑋 2
𝑖 ]] + E[𝑋𝑖]2 = 1 when 𝑖 = 𝑗 . With the assumptions all verified, applying Prop. A.1

concludes proof. □

A.2 An AME Estimator with 𝑝-featurization

Recall that to estimate AME𝑛 (P) defined under some given distribution P, we have been us-

ing a featurizationwhere X[𝑚,𝑛] takes values of either 1√
𝑣𝑝

or −1√
𝑣 (1−𝑝) , depending onwhether data

point/source𝑛 is respectively included or excluded in the subset for row𝑚, with 𝑣 = E𝑝∼P [ 1
𝑝 (1−𝑝) ].

However, values for X[𝑚,𝑛] blow up quickly as 𝑝 approaches 0 or 1, which leads to unbounded

feature values for certain P that samples such 𝑝 values often. Unfortunately such distributions

can be useful in some cases, in particular to derive a low-error SV approximations (e.g., with the

beta(1+ 𝜀, 1+ 𝜀) with small 𝜀 (§A.3.3)). Below we propose a different featurization that solves this

issue while still ensuring an 𝑂 (𝑘 log𝑁 ) sample rate.

89



Specifically, we define 𝑋𝑛 =
√
𝑣 (1 − 𝑝) if 𝑛 ∈ 𝑆 and 𝑋𝑛 = −

√
𝑣𝑝 otherwise. These values are

clearly boundedwhen
√
𝑣 is finite. To ensure that the best linear fit still recovers AME (a.k.a. Prop.

2.3)—an important property we use to derive the𝑂 (𝑘 log𝑁 ) error bound—we adapt the distribu-

tion where samples (𝑋,𝑌 ) are drawn in LASSO. Recall that source inclusion is a compound distri-

bution, in which we first draw 𝑝 ∼ P for the entire subset, and then𝑋𝑛’s according to 𝑝 . Here, we

change they way 𝑝 is drawn, by imposing a 1
𝑝 (1−𝑝) -weighting over P. Formally, if we note 𝑓P (·)

the probability density function (PDF) of P which we used with the original 1/𝑝 featurization,

we now draw 𝑝 from the distribution with reweighted PDF 𝑓W (𝑝) = 𝑓P (𝑝) 1
𝑝 (1−𝑝)/E𝑝∼P [ 1

𝑝 (1−𝑝) ].

Denote this new sampling scheme by 𝑝 ∼ W, and note that the AME is still defined under

the original distribution P, whileW is only used to sample (𝑋,𝑌 ) for LASSO. We show that the

best linear fit on (𝑋,𝑌 ) is still AME𝑛 (P):

Proposition A.4. Let 𝛽∗ be the best linear fit on (𝑋,𝑌 ):

𝛽∗ = arg min
𝛽∈R𝑛

E
[
(𝑌 − ⟨𝛽, 𝑋 ⟩)2

]
, (A.1)

then AME𝑛 (P)/
√
𝑣 = 𝛽∗𝑛, ∀𝑛 ∈ [𝑁 ], with 𝑣 = E𝑝∼P [ 1

𝑝 (1−𝑝) ].

Proof. For a linear regression, we have (e.g. Eq. 3.1.3 of [4]):

𝛽∗𝑛 =
𝐶𝑜𝑣 (𝑌, 𝑋̃𝑛)
𝑉𝑎𝑟 [𝑋̃𝑛]

,

where 𝑋̃𝑛 is the regression residual of𝑋𝑛 on all other covariates𝑋−𝑛 = (𝑋1, . . . , 𝑋𝑛−1, 𝑋𝑛+1, . . . , 𝑋𝑁 ).

In our design E[𝑋𝑛 |𝑋−𝑛] = E𝑝∼P [𝑋𝑛 |𝑝] = 0, implying 𝑋̃𝑛 = 𝑋𝑛 − E[𝑋𝑛 |𝑋−𝑛] = 𝑋𝑛 . Therefore:

𝛽∗𝑛 =
𝐶𝑜𝑣 (𝑌, 𝑋̃𝑛)
𝑉𝑎𝑟 [𝑋̃𝑛]

=
𝐶𝑜𝑣 (𝑌,𝑋𝑛)
𝑉𝑎𝑟 [𝑋𝑛]

=
E[𝑋𝑛𝑌 ]
𝑉𝑎𝑟 [𝑋𝑛]

.

90



Notice that E[𝑋𝑛𝑌 ] = E𝑝∼W [E[𝑋𝑛𝑌 |𝑝]] with:

E[𝑋𝑛𝑌 |𝑝] = 𝑝 · E[𝑋𝑛𝑌 |𝑝, 𝑛 ∈ 𝑆] + (1 − 𝑝) · E[𝑋𝑛𝑌 |𝑝, 𝑛 ∉ 𝑆]

=
√
𝑣𝑝 (1 − 𝑝)E[𝑌 |𝑝, 𝑛 ∈ 𝑆] +

√
𝑣 (1 − 𝑝) (−𝑝)E[𝑌 |𝑝, 𝑛 ∉ 𝑆]

=
√
𝑣𝑝 (1 − 𝑝) (E[𝑌 |𝑝, 𝑛 ∈ 𝑆] − E[𝑌 |𝑝, 𝑛 ∉ 𝑆])

Combining the two previous steps yields:

𝛽∗𝑛 =
E𝑝∼W [

√
𝑣𝑝 (1 − 𝑝) (E[𝑌 |𝑝, 𝑛 ∈ 𝑆] − E[𝑌 |𝑝, 𝑛 ∉ 𝑆])]

𝑉𝑎𝑟 [𝑋𝑛]

=

√
𝑣E𝑝∼P [E[𝑌 |𝑝, 𝑛 ∈ 𝑆] − E[𝑌 |𝑝, 𝑛 ∉ 𝑆]]

𝑣 ·𝑉𝑎𝑟 [𝑋𝑛]

=
𝐴𝑀𝐸𝑛√

𝑣 ·𝑉𝑎𝑟 [𝑋𝑛]
.

Noticing that

𝑉𝑎𝑟 [𝑋𝑛] = E[𝑉𝑎𝑟 [𝑋𝑛 |𝑝]] +𝑉𝑎𝑟 [E[𝑋𝑛 |𝑝]] =
∫ 1

0
𝑓W (𝑝) (𝑝𝑣 (1 − 𝑝)2 + (1 − 𝑝)𝑣 (−𝑝)2)𝑑𝑝

= 𝑣

∫ 1−𝜀

𝜀

1
𝑣 (1 − 2𝜀)𝑑𝑝 = 1

concludes the proof. □

Moreover, E[𝑋𝑖𝑋 𝑗 ] = 1{𝑖 = 𝑗} for the same reason as in §??. Hence, we can still apply Prop.

A.1 to derive the same LASSO error bound:

Proposition A.5. If 𝑋𝑛’s are bounded in [𝐴, 𝐵] and 𝑁 ≥ 3, there exist a regularization parameter

𝜆 and a constant𝐶 (𝐵−𝐴, 𝛿) such that when the sample size𝑀 ≥ 𝑘 (1+ 𝑙𝑜𝑔(𝑘/𝑁 )), with probability

at least 1 − 𝛿 :

∥𝛽𝑙𝑎𝑠𝑠𝑜 −
1
√
𝑣
AME∥2 ≤ 𝐶 (𝐵 −𝐴, 𝛿)

√︂
𝑘 log(𝑁 )

𝑀
,

91



with 𝑣 = E𝑝∼P [ 1
𝑝 (1−𝑝) ] and AME𝑛 defined under P.

Compared with the original, 1/𝑝-featurization, the difference only lies in the constant factor

𝐶 (𝐵 −𝐴, 𝛿), since 𝐵 −𝐴 has changed.

A.3 Sparse Estimators for the Shapley Value from the AME

Recall that the AME is the SV when P = 𝑈𝑛𝑖 (0, 1). However, this choice is incompatible with

our fast convergence rates for LASSO. To find a good estimator of the SV from the AME, it is

thus crucial to understand the discrepancy between the AME and the SV introduced by different

distributions P over 𝑝 , in order to bound the SV from the AME with a 𝑐𝑃 compatible with good

convergence rates. Here we first derive general error bounds between SV and AME that work for

all distributions. Then we apply it to two specific distributions: namely the truncated uniform

and Beta distributions. We mainly focus on sparse SV and/or AME under bounded or monotone

utility, but to make the discussion clearer, no assumptions are made on either the SV or AME

unless explicitly stated.

Throughout this section, we denote by 𝑃AME(𝑆) and 𝑃SV(𝑆) the probability of sampling subset

𝑆 when 𝑝 ∼ P and 𝑝 ∼ 𝑈𝑛𝑖 (0, 1), respectively (the 𝑃SV name is due to the fact that AME is SV

under this distribution, see Prop. 2.1). We also introduce the following notation:

Δ ≜ max
𝑆

𝑃AME(𝑆)
𝑃SV(𝑆)

− 1. (A.2)

A.3.1 General bounds

Lemma A.6. Assume a bounded utility function with range in [0, 1]. Then

∥AME − SV∥∞ ≤ 2Δ.

92



Further assume a monotone utility (Assumption 2.6). Then:

∥𝐴𝑀𝐸 − SV∥2 ≤ Δ +
√

2Δ.

Proof. The 𝐿∞ error bound is due to the following:

|AME𝑛 − SV𝑛 | =
���∑︁

𝑆

(
𝑃AME(𝑆) − 𝑃SV(𝑆)

) (
𝑈 (𝑆 + {𝑛}) −𝑈 (𝑆)

) ���
≤

∑︁
𝑆

|𝑃AME(𝑆) − 𝑃SV(𝑆) | = 2
∑︁

𝑆 :𝑃AME (𝑆)>𝑃SV (𝑆)
𝑃AME(𝑆) − 𝑃SV(𝑆) ≤ 2Δ.

(A.3)

For the 𝐿2 error, its square ∥AME − SV∥22 can be divided into two groups based on the sign of

AME𝑛 − SV𝑛 . Call those indices 𝑛 with positive (negative) sign N+ (N−). For all 𝑛 ∈ N+,

AME𝑛−SV𝑛 =
∑︁
𝑆

(
𝑃AME(𝑆)−𝑃SV(𝑆)

) (
𝑈 (𝑆+{𝑛})−𝑈 (𝑆)

)
≤

∑︁
𝑆

Δ𝑃SV(𝑆) (𝑈 (𝑆+{𝑛})−𝑈 (𝑆)) = ΔSV𝑛,

(A.4)

where the last inequality is due to 𝑈 (𝑆 + {𝑛}) > 𝑈 (𝑆) implied by monotonicity. For the same

reason, all SV𝑛’s are positive, implying SV𝑛 ≤ 𝑈 ( [𝑁 ]) ≤ 1. Thus (AME𝑛 − SV𝑛)2 ≤ Δ2SV𝑛 . On

the other hand, for all 𝑛 ∈ N−, we know that |AME𝑛 − SV𝑛 | is bounded by 2Δ; it is also bounded

by SV𝑛 since AME𝑛 cannot be negative under monotone utility. Summing up these bounds gives

∥AME− SV∥2 ≤
√︁∑

𝑛∈N+ Δ2SV𝑛 +
∑

𝑛∈N− 2ΔSV𝑛 ≤
√︁∑

𝑛∈N+ Δ2SV𝑛 +
√︁∑

𝑛∈N− 2ΔSV𝑛 ≤ Δ +
√

2Δ,

where the last inequality is due to ∥SV∥1 ≤ 1. □

In fact the bounded utility assumption is quite minor when we assume monotonicity: every

𝑈 (𝑆) is bounded between the empty set and full set utility. Given that by definition of SV𝑈 (∅) =

0, it reduces to an assumption of 𝑈 ( [𝑁 ]) ≤ 1. In practice as long as 𝑈 ( [𝑁 ]) is a known and

bounded constant (e.g., the accuracy on the validation set of the model trained on the full set),

one can simply scale the utility to meet this requirement. In what follows, whenwe saymonotone

utility we mean both monotone and bounded.

93



A.3.2 SV Estimator from the AME under a Truncated Uniform

distribution

We prove the results from the paper’s main body, before discussing 𝑝-featurization.

Proof of Lemma 2.7. As a reminder, Lemma 2.7 states an 𝐿2 error bound between the AME and

SV under monotone utility, when AME is defined with P = 𝑈𝑛𝑖 (𝜀, 1 − 𝜀).

Proof. Lemma A.6 already gives us ∥AME − SV∥2 ≤ Δ +
√

2Δ (Δ from Eq. A.2). All that remains

is to show that Δ ≤ 4𝜀:

Δ = max
𝑆

𝑃AME(𝑆)
𝑃SV(𝑆)

− 1 (A.5a)

( 𝑗 ← |𝑆 |) = max
𝑗

(
𝑁

∫ 1−𝜀

𝜀

1
1 − 2𝜀

(
𝑁 − 1

𝑗

)
𝑝 𝑗 (1 − 𝑝)𝑁− 𝑗−1𝑑𝑝 − 1

)
(A.5b)

≤ max
𝑗

(
𝑁 · 1

1 − 2𝜀

∫ 1

0

(
𝑁 − 1

𝑗

)
𝑝 𝑗 (1 − 𝑝)𝑁− 𝑗−1𝑑𝑝 − 1

)
(A.5c)

= max
𝑗

(
𝑁 · 1

1 − 2𝜀
· 1
𝑁
− 1

)
=

1
1 − 2𝜀

− 1 (A.5d)

≤ 4𝜀, (A.5e)

where the equality A.5d is due to the fact that the Binomial(p) with 𝑝 ∼ 𝑈𝑛𝑖 (0, 1) is a discrete

uniform. Hence, ∥AME − SV∥2 ≤ Δ +
√

2Δ ≤ 4𝜀 + 2
√

2𝜀. □

Lemma A.6 also yields to the following result, which fills in the missing piece in the proof of

Corollary 2.8—the one that states the 𝑂 (𝑘 log𝑁 ) bound for this SV estimator:

Corollary A.7. A 𝑘-sparse SV implies a 𝑘-sparse AME under monotone utility.

Proof. Under montone utility, both AME𝑛 and SV𝑛 are non-negative. By Eq. A.4, when SV𝑛 = 0,

AME𝑛 ≤ ΔSV𝑛 = 0. □

94



Non-monotoneutility. When the utility is no longermonotone, we can still derive an𝑂 (𝑘 log𝑁 )

rate in terms of 𝐿∞ error for SV estimation, under an additional assumption that the AME is 𝑘-

sparse. Indeed, first notice that the bound Δ ≤ 4𝜀 from Eq. A.5a does not require monotonicity.

Under utility bounded in [0, 1], applying the first part of Lemma A.6 yields:

∥AME − SV∥∞ ≤ 2Δ ≤ 8𝜀. (A.6)

Notice that this bound, as the 𝐿2 bound, does not depend on 𝑁 or 𝑘 . Hence, applying the same

arguments as in Corollary 2.8 yields an 𝐿∞ error bound we presented in the main body (Corollary

2.5). We reiterate it here for convenience of reading:

Corollary A.8. When AME is 𝑘-sparse and the utility is bounded in [0, 1], for every constant 𝜀 >

0, 𝛿 > 0, 𝑁 ≥ 3, there exists constants𝐶1(𝜀, 𝛿), 𝜀′, and a LASSO regularization parameter 𝜆, such that

when the number of samples 𝑀 ≥ 𝐶1(𝜀, 𝛿)𝑘 log𝑁 , ∥
√
𝑣𝛽𝑙𝑎𝑠𝑠𝑜 − SV∥∞ ≤ 𝜀 holds with a probability

at least 1 − 𝛿 , where 𝑣 = E𝑝∼𝑈𝑛𝑖 (𝜀′,1−𝜀′) [ 1
𝑝 (1−𝑝) ].

Proof. ∥
√
𝑣𝛽𝑙𝑎𝑠𝑠𝑜 −SV∥∞ ≤ ∥

√
𝑣𝛽𝑙𝑎𝑠𝑠𝑜 −AME∥2 + ∥AME−SV∥∞. By the sparsity of AME, we apply

Proposition 2.4 to bound the first term by 𝜀/2, and Eq. A.6 with 𝜀′ = 𝜀/4 to bound the second

term by the same, concluding the proof. □

The main obstacle to deriving an 𝐿2 bound in this more general setting comes from the lack

of an 𝐿2 error bound between the AME and the SV that is independent of 𝑁 . Note that one may

derive an 𝐿2 error bound from Eq. A.6 as follows: ∥AME − SV∥2 ≤
√
𝑁 ∥AME − SV∥∞ ≤ 4

√
𝑁𝜀.

However, this bound is now dependent on 𝑁 , which violates the precondition of applying the

LASSO error bound (see Prop. 2.4).

Using 𝑝-featurization. As pointed out in §A.2, 𝑝-featurization also achieves a𝑂 (𝑘 log𝑁 ) sample

rate to reach a low 𝐿2 error in estimating the AME. Since 𝑝-featurization has no effect on the

AME value, the bound between the AME and the SV remains the same. We thus reach the same

95



conclusion as for 1/𝑝-featurization:

Corollary A.9. For every constant 𝜀 > 0, 𝛿 > 0, 𝑁 ≥ 3, there exists constants 𝐶2(𝜀, 𝛿), 𝜀′, and a

LASSO regularization parameter 𝜆, such that with 𝑀 ≥ 𝐶2(𝜀, 𝛿)𝑘 log𝑁 , and with probability at

least 1 − 𝛿 :

(1) ∥
√
𝑣𝛽𝑙𝑎𝑠𝑠𝑜 − SV∥∞ ≤ 𝜀 holds when the utility is bounded in [0, 1] and the AME is 𝑘-sparse;

(2) ∥
√
𝑣𝛽𝑙𝑎𝑠𝑠𝑜 − SV∥2 ≤ 𝜀 holds when the utility is monotone and the SV is 𝑘-sparse,

where the AME is defined under P = 𝑈𝑛𝑖 (𝜀′, 1 − 𝜀′) and 𝑣 = E𝑝∼P [ 1
𝑝 (1−𝑝) ].

Proof. Conclusion (1) follows the same proof as Corollary A.8, and Conclusion (2) follows Corol-

lary 2.8. □

A.3.3 SV Estimator from the AME under a Beta Distribution

Another candidate to estimate the SV from the AME is to use P = Beta(1 + 𝜀, 1 + 𝜀) as the

distribution of 𝑝 , with 𝜀 ∈ (0, 0.5), and using 𝑝-featurization1. We show an 𝑂 (𝑘 log𝑁 ) sample

rate in this setting as well, after introducing two necessary lemmas.

Lemma A.10. For any 𝑥 ≥ 1, 𝑦 ≥ 1 and 𝜀 ∈ (0, 0.5), the following holds:

(𝑥 + 𝜀 − 1)𝜀 (𝑦 + 𝜀 − 1)𝜀
(𝑥 + 𝑦 + 2𝜀)2𝜀 <

B(𝑥 + 𝜀,𝑦 + 𝜀)
B(𝑥,𝑦) <

(𝑥 + 𝜀)𝜀 (𝑦 + 𝜀)𝜀
(𝑥 + 𝑦 + 2𝜀 − 1)2𝜀 ,

where B(·, ·) is the Beta function.

Proof. According to Gautschi’s inequality, for all 𝑎 > 0, 𝑠 ∈ (0, 1),

𝑎1−𝑠 <
Γ(𝑎 + 1)
Γ(𝑎 + 𝑠) < (𝑎 + 1)1−𝑠,

1The 1/𝑝-featurization in incompatible here, since this distribution can draw “𝑝”s arbitrarily close to 0 or 1 which
leads to unbounded feature values, violating the assumption of the 𝑂 (𝑘 log𝑁 ) LASSO rate (Prop. 2.4).

96



where Γ(·) is the Gamma function. For all 𝜀′ ∈ (0, 1) and 𝑏 ≥ 1, we can change variables with

𝑠 ← 1 − 𝜀′ ∈ (0, 1) and 𝑎 ← 𝑏 + 𝜀′ − 1 > 0 to obtain:

(𝑏 + 𝜀′ − 1)𝜀′ > Γ(𝑏 + 𝜀′)
Γ(𝑏) > (𝑏 + 𝜀′)𝜀′ . (A.7)

In addition, we have that:

B(𝑥 + 𝜀,𝑦 + 𝜀)/B(𝑥,𝑦) = Γ(𝑥 + 𝜀)
Γ(𝑥)

Γ(𝑦 + 𝜀)
Γ(𝑦) /

Γ(𝑥 + 𝑦 + 2𝜀)
Γ(𝑥 + 𝑦)

Plugging Eq. A.7 into the above concludes the proof. □

Lemma A.11. When 𝑝 ∼ Beta(1 + 𝜀, 1 + 𝜀) with 𝜀 < 0.5, then if the utility is bounded in [0, 1],

∥AME − SV∥∞ ≤ 2((1 + 1
𝜀
)2𝜀 − 1).

In addition, under a monotone utility,

∥AME − SV∥2 ≤ ((1 +
1
𝜀
)2𝜀 − 1) +

√︂
2((1 + 1

𝜀
)2𝜀 − 1).

Proof. With a small abuse of notation, we write

𝑃AME( 𝑗) =
∑

𝑆 :|𝑆 |= 𝑗 𝑃AME(𝑆) and 𝑃SV( 𝑗) =
∑

𝑆 :|𝑆 |= 𝑗 𝑃SV(𝑆) (see §A.3 for detailed definition of

𝑃AME(𝑆) and 𝑃SV(𝑆)). Notice that now 𝑃AME( 𝑗) is the PMF of a beta binomial distribution

97



BB(𝛼 = 1 + 𝜀, 𝛽 = 1 + 𝜀, 𝑛 = 𝑁 − 1). Let B(·, ·) denote the Beta function, then:

Δ + 1 = max
𝑗

𝑃AME( 𝑗)/𝑃SV( 𝑗) = max
𝑗

𝑁

(
𝑁 − 1

𝑗

)
B( 𝑗 + 𝛼, 𝑁 − 1 − 𝑗 + 𝛽)

B(𝛼, 𝛽)

= max
𝑗

𝑁 · 1
𝑁B(𝑁 − 𝑗, 𝑗 + 1) ·

B( 𝑗 + 𝛼, 𝑁 − 1 − 𝑗 + 𝛽)
B(𝛼, 𝛽)

(since B(1, 1) = 1) = max
𝑗

B( 𝑗 + 1 + 𝜀, 𝑁 − 𝑗 + 𝜀)
B( 𝑗 + 1, 𝑁 − 𝑗) · B(1, 1)

B(1 + 𝜀, 1 + 𝜀)

(by lemma A.10) ≤ max
𝑗

( 𝑗 + 1 + 𝜀)𝜀 (𝑁 − 𝑗 + 𝜀)𝜀
(𝑁 + 1 + 2𝜀)2𝜀 / 𝜀2𝜀

(2 + 2𝜀)2𝜀

(maximum reached when 𝑗 + 1 + 𝜀 = 𝑁 − 𝑗 + 𝜀) ≤ 1
4𝜀
(2 + 2𝜀)2𝜀

𝜀2𝜀

≤ (1 + 1
𝜀
)2𝜀,

(A.8)

Applying Lemma A.6 concludes the proof. □

Now we formally state the 𝑂 (𝑘 log𝑁 ) sample rate:

Corollary A.12. For every 𝜀 > 0, 𝛿 > 0, 𝑁 ≥ 3, there exists constants 𝐶3(𝜀, 𝛿) and 𝜀′, and a

regularization parameter 𝜆, such that when the number of samples 𝑀 ≥ 𝐶3(𝜀, 𝛿)𝑘 log𝑁 , with a

probability at least 1 − 𝛿 ,

(1) ∥
√
𝑣𝛽𝑙𝑎𝑠𝑠𝑜 − SV∥∞ ≤ 𝜀 holds when the utility is bounded in [0, 1] and AME is 𝑘-sparse;

(2) ∥
√
𝑣𝛽𝑙𝑎𝑠𝑠𝑜 − SV∥2 ≤ 𝜀 holds when the utility is monotone and SV is 𝑘-sparse,

where AME is defined by P = Beta(1 + 𝜀′, 1 + 𝜀′) and 𝑣 = E𝑝∼P [ 1
𝑝 (1−𝑝) ].

Proof. Observing that ∥
√
𝑣𝛽𝑙𝑎𝑠𝑠𝑜 − SV∥∞ ≤ ∥

√
𝑣𝛽𝑙𝑎𝑠𝑠𝑜 −AME∥2 + ∥

√
𝑣AME− SV∥∞ and ∥

√
𝑣𝛽𝑙𝑎𝑠𝑠𝑜 −

SV∥2 ≤ ∥
√
𝑣𝛽𝑙𝑎𝑠𝑠𝑜 −AME∥2 + ∥

√
𝑣AME− SV∥2, we proceed by bounding both ∥

√
𝑣𝛽𝑙𝑎𝑠𝑠𝑜 −AME∥2

and ∥
√
𝑣AME − SV∥∞ (or ∥

√
𝑣AME − SV∥2) by 𝜀/2.

Prop. A.5 directly yields the bound on the first term. In both cases (1) and (2), assumptions

are verified as follows. First, a 𝑘-sparse AME is assumed in Case (1) and implied in Case (2) by a

monotone utility plus a 𝑘-sparse SV (details in Corollary A.7). Second, the𝑋𝑛s are bounded, since

98



∀𝑛 ∈ [𝑁 ] : 𝑋𝑛 ∈ [−
√
𝑣,
√
𝑣] and 𝑣 is finite:

𝑣 =

∫ 1

0

1
𝑝 (1 − 𝑝)

𝑝𝜀 (1 − 𝑝)𝜀
B(1 + 𝜀, 1 + 𝜀)𝑑𝑝 =

B(𝜀, 𝜀)
B(1 + 𝜀, 1 + 𝜀) = 4 + 2

𝜀
, (A.9)

where the last equality comes from the fact that Γ(𝑧 + 1) = 𝑧Γ(𝑧).

To bound the second terms in both cases, notice that each version is given a bound in Lemma

A.11, and that both approach 0 when 𝜀′→ 0 and are positive when 𝜀′ > 0. In consequence, there

exists 𝜀′ > 0 dependent only on 𝜀 such that both are ≤ 𝜀/2, concluding the proof. □

A.4 Efficient Sparse Beta-Shapley Estimator

Recall that Beta(𝛼, 𝛽)-Shapley [110] is our AME defined on the distribution P = Beta(𝛼, 𝛽).

We show that our regression-based AME estimator with 𝑝-featurization (§A.2) can efficiently

estimate Beta(𝛼, 𝛽)-Shapley values when they are 𝑘-sparse, for all 𝛼 > 1 and 𝛽 > 1, i.e., achieving

low 𝐿2 error with high probability using 𝑂 (𝑘 log𝑁 ) samples. Prop. A.5 directly yields the result.

Its assumptions are verified given that:

𝑣 =

∫ 1

0

1
𝑝 (1 − 𝑝)

𝑝𝛼−1(1 − 𝑝)𝛽−1

B(𝛼, 𝛽) 𝑑𝑝 =
B(𝛼 − 1, 𝛽 − 1)

B(𝛼, 𝛽) =
(𝛼 + 𝛽 − 2) (𝛼 + 𝛽 − 1)
(𝛼 − 1) (𝛽 − 1) (A.10)

is finite (the last equality is due to Γ(𝑧 + 1) = 𝑧Γ(𝑧)) and ∀𝑛 ∈ [𝑁 ] : 𝑋𝑛 ∈ [−
√
𝑣,
√
𝑣] is also

bounded.

A.5 Extending to Approximate Sparsity

The above discussion assumes exactly 𝑘-sparse of the SVs, which in practice likely will not

hold. In this section we extend our result to the case when it is only approximately sparse [152].

In such a setting, small non-zeros are allowed in the remaining 𝑁 −𝑘 entries of the SVs. Formally,

99



it requires that the best 𝑘-sparse approximation 𝜎𝑘 (SV) = inf𝑠{∥SV− s∥1 : s is 𝑘-sparse} is small.

A.5.1 The LASSO Error Bound under Approximate Sparsity

First we extend the LASSO error bound in Prop. A.1. This is relatively easy since Theorem

1.4 from [112] that Prop. A.1 has simplified supports approximate sparsity. We incorporate it

by making two changes: a) 𝛽∗ is now allowed to be an approximately sparse vector verifying

𝜎𝑘 (𝛽∗) ≤ 𝐶4(𝛿)∥𝜉 ∥𝐿𝑞𝑘
√︃

log(𝑁 )
𝑀

, where 𝐶4(𝛿) is a constant, 𝜉 = ⟨𝛽∗, 𝑋 ⟩ − 𝑌 and 𝑞 is some constant

> 2; b) the result is accordingly rewritten to the following: there exists a regularization parameter

𝜆 and a value 𝐶5(𝐵 −𝐴, 𝛿) such that with probability at least 1 − 𝛿 ,

∥𝛽𝑙𝑎𝑠𝑠𝑜 − 𝛽∗∥2 ≤ 𝐶5(𝐵 −𝐴, 𝛿)∥𝜉 ∥𝐿𝑞

√︂
𝑘 log(𝑁 )

𝑀
. (A.11)

The proof is identical to that of Prop. A.1 thus omitted. Intuitively, the difference is that

a 𝑘-sparse approximation with small enough error needs to exist to arrive to a similarly small

enough error for the LASSO estimate. Another way to state this is that the sample size 𝑀 in

Eq. A.11 is upper bounded by the approximate sparsity requirement (the smaller error the best

𝑘-sparse approximation is, the larger 𝑀 can be). Denote the upper bound by 𝑀𝑚𝑎𝑥 = max{𝑀 :

𝜎𝑘 (𝛽∗) ≤ 𝐶4(𝛿)∥𝜉 ∥𝐿𝑞𝑘
√︃

log(𝑁 )
𝑀
} = 𝐶4(𝛿)2∥𝜉 ∥2𝐿𝑞/𝜎𝑘 (𝛽

∗)2𝑘2 log(𝑁 ). Approximate sparsity has two

implications. First, given that the error bound 𝜀 = E(𝑀) = 𝐶5(𝐵 − 𝐴, 𝛿)∥𝜉 ∥𝐿𝑞
√︃

𝑘 log(𝑁 )
𝑀

decreases

monotonically as𝑀 increases, the minimal error possibly achievable is lower bounded by a func-

tion of the “sparsity level” 𝜎𝑘 (𝛽∗):

𝜀 ≥ E(⌊𝑀𝑚𝑎𝑥⌋) ≈
𝜎𝑘 (𝛽∗)√

𝑘
· 𝐶4(𝛿)
𝐶5(𝐵 −𝐴, 𝛿)

. (A.12)

We note that [92] shares a similar lower bound on 𝜀. Second, recall that 𝑀 ≥ 𝑘 (1 + log(𝑁 /𝑘)) =

𝑀𝑚𝑖𝑛 is required, implying that the theorem is only applicable when ⌊𝑀𝑚𝑎𝑥⌋ ≥ 𝑀𝑚𝑖𝑛 . Because

100



𝑀𝑚𝑎𝑥 increases with lower error sparse approximations, this is equivalent to require that:

𝜎𝑘 (𝛽∗) ≤ 𝐶4(𝛿)∥𝜉 ∥𝐿𝑞𝑘

√︄
log(𝑁 )
⌈𝑀𝑚𝑖𝑛⌉

≈ 𝐶4(𝛿)∥𝜉 ∥𝐿𝑞

√︄
𝑘 log(𝑁 )

1 + log(𝑁 /𝑘) . (A.13)

Though this appears to be an extra requirement compared to [92], our empirical results sug-

gest that it is not limiting in the cases we studied. Indeed, this only rules out sample sizes

≤ 𝑘 (1 + 𝑙𝑜𝑔(𝑁 /𝑘)), smaller than the𝑀 needed for good performance across our evaluations.

We now restate the result as a form of (𝜀, 𝛿)-approximation to make the result more approach-

able.

CorollaryA.13. For every sufficiently sparse 𝛽∗ s.t. EquationA.13, and every𝛿 > 0, 𝜀 ≥ E(⌊𝑀𝑚𝑎𝑥⌋),

𝑁 ≥ 3, there exists some constant 𝐶7(𝐵 −𝐴, 𝜀, 𝛿) such that when the sample size

𝑀 = max(⌈𝑀𝑚𝑖𝑛⌉,min(⌊𝑀𝑚𝑎𝑥⌋, ⌈𝐶7(𝐵−𝐴, 𝜀, 𝛿)𝑘 log𝑁 ⌉)), with a probability at least 1−𝛿 , ∥𝛽𝑙𝑎𝑠𝑠𝑜 −

𝛽∗∥2 ≤ 𝜀.

Proof. Let E(𝑀) ≤ 𝜀, we have 𝑀 ≥ 𝐶5(𝐵 − 𝐴, 𝛿)2∥𝜉 ∥2𝐿𝑞𝑘 log𝑁 /𝜀2. Because of ∥𝜉 ∥𝑞
𝐿𝑞
≤ 𝑒 (a fact

proved in the proof of Prop. A.1), we can further simplify it to𝑀 ≥ 𝐶5(𝐵 −𝐴, 𝛿)2𝑒𝑘 log𝑁 /𝜀2. Let

𝐶7(𝐵−𝐴, 𝜀, 𝛿) = 𝐶5(𝐵−𝐴, 𝛿)2𝑒/𝜀2. Next, by clipping it with ⌊𝑀𝑚𝑎𝑥⌋, 𝜎𝑘 (𝛽∗) ≤ 𝐶4(𝛿)∥𝜉 ∥𝐿𝑞𝑘
√︃

log(𝑁 )
𝑀

is verified and 𝜀 ≥ E(𝑀) still holds due to 𝜀 ≥ E(⌊𝑀𝑚𝑎𝑥⌋); Equation A.13 further ensures that

there exists at least a choice of 𝑀 between ⌈𝑀𝑚𝑖𝑛⌉ and ⌊𝑀𝑚𝑎𝑥⌋. Finally, by further clipping with

⌈𝑀𝑚𝑖𝑛⌉, all preconditions are then satisfied and applying Equation A.11 concludes the proof. □

A.5.2 Extending the SV estimators

We first derive an 𝐿2 error bound assuming monotone utility, and later discuss an 𝐿∞ error

bound when utility is not monotone.

As a reminder, we chose a distribution P such that the AME under P is close enough to the

SV, and then apply LASSO to estimate the AMEwith a low error. The LASSO error bound requires

101



the sparsity of 𝛽∗, which utilizes the sparsity of the AME, which is derived from the sparsity of

the SV. When SV is instead approximately sparse, we can still derive an approximate sparsity

guarantee for the AME and consequently for 𝛽∗.

Lemma A.14. When the utility is bounded in [0, 1] and monotone, 𝜎𝑘 (𝛽∗) ≤
√

2𝜎𝑘 (AME) ≤

3
√

2𝜎𝑘 (SV) holds for both truncated uniform𝑈𝑛𝑖 (𝜀′, 1− 𝜀′) and 𝐵𝑒𝑡𝑎(1+ 𝜀′, 1+ 𝜀′) with 𝜀′ ∈ (0, 0.5).

Proof. Recall that 𝛽∗ = AME/
√
𝑣 , we have 𝜎𝑘 (𝛽∗) = 𝜎𝑘 (AME)√

𝑣
≤
√

2𝜎𝑘 (AME), where the inequality

is due to 𝑣 ≥ 1
2 for𝑈𝑛𝑖 (𝜀′, 1 − 𝜀′) (see Corollary A.8) and 𝑣 ≥ 4 for 𝐵𝑒𝑡𝑎(1 + 𝜀′, 1 + 𝜀′) (see (A.9)).

Next we connect𝜎𝑘 (AME) and𝜎𝑘 (SV). Monotonicity ensures that AME𝑛 > 0 and SV𝑛 > 0,∀𝑛.

By (A.4), either AME𝑛 ≤ SV𝑛 or AME𝑛 ≤ SV𝑛 (1 + Δ) holds. Thus 𝜎𝑘 (AME) ≤ (1 + Δ)𝜎𝑘 (SV).

Further applying (A.5a) for𝑈𝑛𝑖 (𝜀′, 1−𝜀′) and (A.8) for 𝐵𝑒𝑡𝑎(1+𝜀′, 1+𝜀′) concludes the proof. □

With a similar application of the LASSO error bound as previously done in e.g., Corollary 2.8,

we arrive at a similar (𝜀, 𝛿)-approximation:

Corollary A.15. For every constant 𝜀 > 0, 𝛿 > 0, 𝑁 ≥ 3, there exists constants 𝑞 > 2, 𝜀′, a LASSO

regularization parameter 𝜆, and an𝑀 = 𝑂 (𝑘 log𝑁 ), such that with probability at least 1 − 𝛿 :

(1) ∥
√
𝑣𝛽𝑙𝑎𝑠𝑠𝑜 − SV∥∞ ≤ 𝜀 holds when the utility is bounded in [0, 1] and

𝜎𝑘 (AME) ≤ 1√
2
𝐶4(𝛿)∥𝜉 ∥𝐿𝑞𝑘

√︃
log(𝑁 )
⌈𝑀𝑚𝑖𝑛⌉ ≈

1√
2
𝐶4(𝛿)∥𝜉 ∥𝐿𝑞

√︃
𝑘 log(𝑁 )

1+log(𝑁 /𝑘) and

𝜀 ≥ E(⌊𝑀𝑚𝑎𝑥⌋) ≈ 𝑂 (𝜎𝑘 (AME)/
√
𝑘);

(2) ∥
√
𝑣𝛽𝑙𝑎𝑠𝑠𝑜−SV∥2 ≤ 𝜀 holds when the utility ismonotone and𝜎𝑘 (SV) ≤ 1

3
√

2
𝐶4(𝛿)∥𝜉 ∥𝐿𝑞𝑘

√︃
log(𝑁 )
⌈𝑀𝑚𝑖𝑛⌉ ≈

1
3
√

2
𝐶4(𝛿)∥𝜉 ∥𝐿𝑞

√︃
𝑘 log(𝑁 )

1+log(𝑁 /𝑘) and 𝜀 ≥ E(⌊𝑀𝑚𝑎𝑥⌋) ≈ 𝑂 (𝜎𝑘 (SV)/
√
𝑘),

where the noise 𝜉 is defined as ⟨𝛽∗, 𝑋 ⟩ − 𝑌 , the AME is defined under P = 𝑈𝑛𝑖 (𝜀′, 1 − 𝜀′) and

𝑣 = E𝑝∼P [ 1
𝑝 (1−𝑝) ].

The result of Beta distribution is similar.

102



A.6 Evaluation Details

A.6.1 Warm-starting Optimization and Hyperparameter Tuning

Given the high cost of training deep learning models, we support an optimization that uses

warm-starting as a proxy for full model training. Specifically, instead of training each submodel

from scratch, we fine-tune the main model on each subset 𝑆 for a fixed number of iterations,

usually the number of iterations in one main model training epoch. Although this results in a

more noisy estimate of𝑈 (𝑆), our estimator is able to handle the noise, yielding an overall speedup

in wall clock time.

With warm-starting, instead of learning a model from the subset 𝑆 , we “unlearn” the signal

from the points not in 𝑆 . This has two implications on our choice of P. First, changing the

outcome of a given query usually requires removing all its contributors, as even a small number

of them is sufficient to maintain the signal learned in the main model. Hence, we only consider

lower inclusion probabilities (𝑝 ≤ 0.5). Second, warm-starting does not collapse model even on

very small data subsets, as opposed to learning the model from scratch. We can thus consider

smaller values of 𝑝 , and settle on the range P = 𝑈𝑛𝑖{0.01, 0.1, 0.2, 0.3, 0.4, 0.5}.

Hyperparameters of model training for warm-starting. Warm-start training requires spec-

ifying the hyper-parameters (e.g., batch size, learning rate, training time, etc.). If the original

learning rate changed adaptively during the course of training, e.g., when using a training ap-

proach such as Adam [99], we use the learning rate and batch size for the final epoch and run

fine-tuning for one epoch on the data subset.

Otherwise we fine-tune every subset model for the same fixed number of iterations, and vary

batch size proportionally to the number of training examples included, such that every datapoint

is iterated through roughly only once (i.e., one epoch on the data subset). Moreover we observe

that when batch size is below a certain number the models soon all collapse. Therefore, we

103



lower bound the batch size by that number, which is 100 for both CIFAR10 datasets and 20 for

the ImageNet dataset. The reason of such a co-design is the following. To make the numbers

comparable, the subset models should be all fine-tuned with the same number of steps. If we still

use a constant batch size, every datapoint will be visited different number of times across different

data subset sizes, making the impact of one source to be less comparable. Thus we decide to vary

the batch size accordingly such that each datapoint is visited roughly once. In addition, we choose

the learning rate such that the validation accuracy of most subset models drops by roughly 20%,

a not-too-large but still significant number. The reason is that the learning rate should be large

enough that when no or few poison is included, the subset model should have the poisoning

mostly erased, and vice versa.

A.6.2 Datasets and Attacks

We provide more context and details on the datasets, models, and attacks from Table 2.1.

Datasets. We evaluate our approach using the following four data sets and inference tasks:

• CIFAR10, an image classification task with ten classes [106]. We consider each individual

training sample as a single source, and use the ResNet9 model and training procedure

described in [6]. For one of the attacks (Poison Frogs [155]), we use VGG-11 instead of

ResNet9, and use transfer learning to specialize a model trained on the full CIFAR10 data

using the training procedure described in [108]. Transfer learning is used to specialize the

model for 10% of the CIFAR10 training data. We only re-train the last layer and freeze every

other layers.

• EMNIST, a hand-written digit classification task with examples from thousands of users

each with their own writing style [35]. Each user is a data source with multiple examples.

We use models and training procedures from [150].

• ImageNet, a one-thousand class image classification task [154]. The training data includes

104



more images than CIFAR10 (over 1 million vs 50000), and each image has a higher reso-

lution (average of 482x418 pixels vs 32x32 pixels), thus increasing the training overhead.

For ImageNet, we group training data into sources using the URL where the image was

collected. Specifically, we treat each URL path (excluding the item name) as a source, and

then combine all paths contributing fewer than 10 images into one source. This results in

a dataset with 5025 sources. We use a ResNet50 [78] model trained using the procedure

from [151].

• NLP, a sentiment analysis task on 1million book reviewswritten by 307kAmazon users [142].

Most users contribute fewer than 1000 reviews: we select and combine multiple such users

at random when producing sources. This results in 1000 sources, 7 of which contain re-

views from a single user, and the rest group random users into a single source. We use the

model and training procedure described in [175] to produce a binary classifier that uses the

review text to predict whether or not the review has a positive score (i.e., greater than 3).

Attacks. We evaluate our approach using three types of poisoning attacks. (1) Trigger attacks [29]

which rely on a human-visible trigger to poison models. On image detection tasks, we use a 5x5

red square added to the top of each image or a watermark as our trigger. Column 𝑘 in Table 2.1

lists the number of poisoned sources. For the NLP task we use a neutral sentence as a trigger. (2)

A label-flipping attack on EMNIST, where a poison source copies all the data from a benign user

(in our case user 171) and associates a single label (in our case 6) for all of this copied data. (3) The

Poison Frogs attack [155] on CIFAR10, which is a clean-label attack that introduces imperceptible

changes to training images that will poison a target model in a transfer learning setup, where

the last few layers of an existing pre-trained model are refined using additional training data to

improve inference performance. Figure 2.3 shows examples of trigger and poison frog attacks.

Hyperparameters. We evaluate the impact of hyperparameters using micro-benchmarks in

§A.6.3. Unless otherwise stated, we use 𝑞 = 0 for knockoffs. As we explain in §A.6.3, this is a con-

105



servative choice that seeks tominimize the false discovery rate. We also useP = 𝑈𝑛𝑖{0.2, 0.4, 0.6, 0.8}

for training-from-scratch and P = 𝑈𝑛𝑖{0.01, 0.1, 0.2, 0.3, 0.4, 0.5} for warm-start training.

We use Glmnet [8, 75] for the LASSO implementation. For the LASSO regularization parame-

ter 𝜆, a correct choice is required by our error bound (Prop. 2.4), which unfortunately we have no

information on. Bypassing this obstacle remains as an interesting future work. Indeed this has

been studied in [113] and other slightly weaker LASSO error bounds (e.g., Theorem 3.5.1. from

[145]) but with known 𝜆 exist. In practice we choose the 𝜆 using a common empirical proce-

dure [75] that runs 20-fold cross-validation (CV) and chooses the largest 𝜆 (sparsest model) with

errors within one standard deviation of the best CV error, which we denote as 𝜆1𝑠𝑒 . For the SV

estimation, we use 𝜆𝑚𝑖𝑛 that gives the best CV error, as we are not seeking a sparsest model here.

A.6.3 Ablation Study for Different Parts of the Methodology and

Parameters

Next we use microbenchmarks to evaluate the effect that different hyperparameters have on

our methods. Then, we show a discussion of hyperparameters for warm starting, the benefits of

using Knockoffs, and a comparison between LASSO and diff-in-means, a straight-forward AME

estimator that uses empirical means to estimate expectations. Finally, we discuss the tradeoff

between using training-from-scratch and warm-starting.

A.6.3.1 Effect of Hyperparameters

Effect of the Target FDR Level 𝑞. All results presented thus far were with 𝑞 = 0. Here, we

vary 𝑞, which allows us to trade-off precision to achieve higher recall. For this microbenchmark

we use 𝜆𝑚𝑖𝑛 , which we define as the 𝜆 with the best cross-validation error, instead of 𝜆1𝑠𝑒 which

we use in the rest of our evaluation. This is because the precision provided by LASSO imposes a

lower-bound on the precision achieved using Knockoffs’, and in our experiments we found that

106



0% 25% 50% 75% 100%
q

50%

100%

0% 25% 50% 75% 100%
q

precision
recall

Figure A.1: Effect of 𝑞 in Knockoffs on CIFAR10-50. Left: training-from-scratch; Right: warm-start train-
ing.

0.2 0.4 0.6 0.8 Avg
p

0.0

0.5

1.0

Av
g 

Pr
ec

 (R
ec

) CIFAR10-50
Prec+Knockoff
Rec+Knockoff

0.2 0.4 0.6 0.8 Avg
p

CIFAR10-20

0.2 0.4 0.6 0.8 Avg
p

EMNIST

(a) Training-from-scratch

0.010.1 0.2 0.3 0.4 0.5 Avg
p

0.0

0.5

1.0

Av
g 

Pr
ec

 (R
ec

) CIFAR10-50
Prec+Knockoff
Rec+Knockoff

0.010.1 0.2 0.3 0.4 0.5 Avg
p

CIFAR10-20

0.010.1 0.2 0.3 0.4 0.5 Avg
p

ImageNet

(b)Warm-starting

Figure A.2: LASSO results run only on observations from a single 𝑝 value, we highlight the 𝑝 value
providing the best result. Avg is the result from using the entire 𝑝 value grid.

LASSO alone can achieve high-precision when 𝜆1𝑠𝑒 is used, making it harder to observe effects at

lower values of 𝑞. Figure A.1 shows the results of varying 𝑞 in the CIFAR10-50 setting. We can

see that while increasing 𝑞 does lead to a small increase in recall, it comes at significant cost to

precision.

Effect of 𝑝. Next we address the question of how values of 𝑝 affect our method. Figure A.2

shows our metrics on subset models drawn with one single value of 𝑝 . We can see that no single

value of 𝑝 suffices across datasets and training algorithms. For instance, training-from-scratch

𝑝 = 0.2 works well for CIFAR10-50 and EMNIST, but not for CIFAR10-20. This difference between

CIFAR10-50 and CIFAR10-20 is likely due to the power of the attack: both use the same attack,

but CIFAR10-50 uses a larger number of poisoned sources. This means that smaller values of 𝑝

are more likely to select poisoned sources in CIFAR10-50, explaining our observations. For warm

starting, we confirm that small values of 𝑝 (𝑝 = 0.01) perform better than larger ones. These

results thus show that (a) no single value of 𝑝 suffices for all models, thus motivating our use of

a grid, and (b) the grid P can be tuned when a prior is available.

Effect of adding less informative 𝑝s. One might wonder how including sub-optimal 𝑝 values

107



Query Prec_0.4 Rec_0.4 Prec_0.6 Rec_0.6
#3 90.9 50.0 nan 0.0
#7 91.7 55.0 nan 0.0
#9 100.0 10.0 100.0 20.0
#10 100.0 15.0 100.0 25.0
#14 100.0 40.0 nan 0.0
#18 75.0 15.0 100.0 20.0

Table A.1: Single-𝑝 LASSO results for 𝑝 = 0.4 and 𝑝 = 0.6 on selected queries, CIFAR10-20 training-from-
scratch. 𝑝 = 0.4 has better average results (see Fig. A.2), but 𝑝 = 0.6 outperforms for some queries.

impacts our results? To answer this question, in Figure A.2, we compare the single 𝑝 results to

that of using all 𝑝s in the grid (shown as avg). We find that while very uninformative 𝑝s can hurt

our results (e.g., with EMNIST), this is rare and the effect is small. On the other hand, in many

cases the grid result is better than the result from just using the single best 𝑝 .

Effect of different 𝑝s on different queries. As discussed above, no single value of 𝑝 suffices

across all datasets. Surprisingly, as shown in Table A.1, we found that even within the same

dataset, the best 𝑝 can differ across queries.

Comparison against fixing 𝑝 = 0.5. We also compare with a simple distribution where each

subset is sampled with equal probability. This corresponds to using fixed 𝑝 = 0.5. The result is

much worse than our default sampling over a grid as shown in Table A.2.

precision recall 𝑐

CIFAR10-50-tfs 100 3.2 8
CIFAR10-50-ws 100 1.8 12
EMNIST 100 7.8 16

Table A.2: Experiment results of using fixed 𝑝 = 0.5. “tfs” denotes training-from-scratch and “ws” denotes
warm-starting.

A.6.3.2 Benefit of LASSO and Knockoffs

We evaluate the benefit of using LASSO over the more straight-forward diff-in-means that

replaces the expectation with empirical mean in Eq. 2.1, and the power of Knockoffs in control-

108



Prec+
Pure

Rec+
Pure

Prec+
Diff

Rec+
Diff 𝑐

Poison Frogs 84.0 100.0 100.0 100.0 8
CIFAR10-50-tfs 88.3 60.9 28.5 60.9 16
CIFAR10-20-tfs 79.9 64.0 76.7 64.0 8
EMNIST 98.9 84.4 62.9 84.4 16
NLP 97.9 98.2 5.6 98.2 24
CIFAR10-50-ws 76.4 89.6 41.6 89.6 24
CIFAR10-20-ws 98.2 66.0 9.2 66.0 48
ImageNet 100.0 77.0 94.2 77.0 12

Table A.3: Average precision and recall of pure LASSO and diff-in-mean. tfs and ws denote training-from-
scratch and warm-starting respectively.

ling the FDR. First, to have a clean comparison against diff-in-means, we only run LASSO purely

without adding the Knockoffs component. The selection is replaced with a procedure that selects

all positive coefficients; For diff-in-means we select a threshold such that the recall matches that

of pure LASSO for easy comparison. The result in Table A.3 shows that LASSO performs stably

with valid precisionwhile diff-in-means is fragile especially under high noise as in warm-starting.

Next we compare this pure LASSO result against LASSO+Knockoff with varying number of ob-

servations in Figure A.3. We can see that LASSO+Knockoffs ensure that precision remains high

even with a small number of samples. This is in contrast to LASSOwhich reduces precision when

the number of samples decrease. Thus LASSO+Knockoffs allow our technique to be safely used

even when an insufficient number of observations are available.

A.6.3.3 Training-from-scratch vs Warm-starting

Recall that warm-starting can greatly speed up the training procedure, but with a potential

drawback of introducing higher noise for LASSO. In our evaluation, training CIFAR10-50 from

scratch took 108.5 seconds, compared to 7.9 seconds when using warm-start training, represent-

ing a speedup of 13.8X. However, more observations might be required when using warm-start

training. For example, in Table A.4 we find that for CIFAR10-20 the warm-start model achieves

109



8
983

4
492

2
246

1
123

c
M

0%

50%

100%

Pr
ec

isi
on

 (R
ec

al
l) Poison Frogs

16
12488

8
6244

4
3122

2
1561

CIFAR10-50

8
2498

4
1249

2
625

1
313

CIFAR10-20

32
3778

16
1889

8
945

4
473

EMNIST
Prec+Pure Prec+Knockoff Rec+Pure Rec+Knockoff

(a) Training-from-scratch

24
2631

12
1316

6
658

3
329

c
M

0%

50%

100%

Pr
ec

isi
on

 (R
ec

al
l) NLP

24
18732

12
9366

6
4683

3
2342

CIFAR10-50

48
14985

24
7493

12
3747

6
1874

CIFAR10-20

12
738

6
369

3
185

1
93

ImageNet

(b) Warm-starting

Figure A.3: Effect of growing 𝑐 . “Prec+Pure” is the precision of LASSO without knockoffs;
“Prec+Knockoff” is the precision of LASSO with knockoffs. “Rec+Pure” and “Rec+Knockoff” show the
recall for both setups. Poison Frogs uses transfer learning and is not amenable to fine-tuning.

Training-from-scratch Warm-starting
𝑐Prec Rec Prec Rec

CIFAR10-50 96.9 54.4 97.0 77.6 16
CIFAR10-20 95.3 58.8 100.0 0.8 8

Table A.4: Precision and recall comparison for training-from-scratch vs warm-starting under the same
number of observations.

very low recall (0.8%), while training from scratch achieves reasonable recall (58.8%). We believe

this is because of noise due to the number of poison sources required to trigger the attack. On

the other hand, we see that CIFAR10-50 does not suffer from this problem, and in fact warm-start

provides better results than training from scratch. This is because lower values of 𝑝 work well

to trigger the attack for CIFAR10-50, and warm starting over-samples this region. Adding more

observations when using warm-start training with CIFAR10-20 improves this situation, and we

find that when using 𝑐 = 48 we can achieve a recall of 64.8%.

110



8421
c

5

10

Ti
m

e 
(s

)
Poison Frogs

16842
c

500

1000

CIFAR10-50

321684
c

0

20

40

60

EMNIST

(a) Training-from-scratch

241263
c

0

10

20

30

Ti
m

e 
(s

)

NLP

241263
c

500
1000
1500
2000

CIFAR10-50

12.06.03.01.5
c

2.5
5.0
7.5

10.0
ImageNet

(b)Warm-starting

Figure A.4: Average run times of LASSO on the queries as we grow 𝑐 on training-from-scratch and warm-
starting benchmarks. The error bar draws the standard deviation. CIFAR10-20 results are almost identical
and thus omitted.

A.6.4 Runtime Evaluation

Run times of LASSO. The time to run LASSO grows linearly with the number of observations,

as shown in Figure A.4. Together with Figure A.3 we can see that our technique can achieve good

precision using a small number of observations, which translates to a small query time. Precision

and recall improve with more observations, but this increases the time taken to execute a query.

Run times of inference. We report the total time of running ImageNet inference on a single

RTX8000 GPU for a batch of 40 queries on 739 models, which corresponds to 𝑐 = 12. We imple-

ment the inference of a model as three steps: allocating the model memory, loading the model

from disk to GPU, and the actual GPU computation. They take 293.6, 447.5, and 584.9 seconds

respectively for 739 models in total. The current throughput is 1.81 queries per minute, and the

latency is 22.1 minutes. We note that both numbers could be further optimized (e.g., the model

memory allocation can be done only once and reuse for every model; the model loading and ac-

tual computation can be pipelined, etc.), and one can also batch more queries together to further

improve throughput. In this paper we focus on improving precision and recall. We plan to focus

on further performance optimizations in the future.

111



Ours Repr.
Prec Rec Prec Rec

ImageNet 100 78.0 85.9 78.0
CIFAR10-50 96.9 54.4 99.9 54.4
CIFAR10-20 95.3 58.8 68.9 58.8
EMNIST 100 78.9 100 78.9

Table A.5: Comparison with Representer Points at the same recall level. Representer Points use best
tuned 𝜆 assuming knowledge of ground truth.

A.6.5 Additional Evaluation of Comparison with Existing Works

A.6.5.1 Additional Evaluation of SCAn

SCAn [163] is a state-of-the-art poison defense technique designed to identify whether or not

a given model is poisoned, and find the poisoned class when it is. It requires access to some clean

data (10% by default). SCAn computes an AI (Anomaly Index) score for each class, and reports

that a class is poisoned if its AI> 7.3891. In their “online setting”, it can also detect if a query

input is poisoned by clustering on features extracted from the last hidden layer’s activation. An

input is marked as poisoned if it belongs to a poisoned class and is clustered in the group with

fewer clean data. We modified SCAn to run on a training set to detect poisoned training data.

Modification of SCAn. Originally in the online setting, SCAn is designed to detect poison

in every incoming test datapoint. It trains an untangling model on a clean set of data, and on

receiving a test datapoint, it first fine-tunes the model and then use it to cluster with all the data

it has to decide if the given test datapoint is poisoned. To modify it to detect poison data in the

training set, instead of on the test data we train the untangling model on the training data. For

efficiency, we assume the whole training set is available in the beginning, so that we only need to

train the model once on the whole training set. This gives advantage to SCAn because originally

in the beginning the model is poorly fit and gives many false positives because of insufficient

data. SCAn also only gives a coarse-grained (poisoned v.s. clean) outcome to each datapoint,

preventing us from exploring its precision-recall tradeoff in evaluation. Thus we modify SCAn

112



to provide a score for each datapoint, using the distance to the hyper-plane (𝑣𝑇𝑟 in Eq 6 of the

paper).

The result. Outlier detection approaches like SCAn target a somewhat different problem than

data attribution. Outliers can represent not just attacks but also benign but rare data, and thus

outlier-detection cannot differentiate between attacks and benign data, nor between different at-

tacks on the same data. We evaluate this effect using a mixed attack setup on CIFAR10, where

we simultaneously use 3 different attacks, each of which poisons 20 images. The attacks used are

trigger attacks (similar to CIFAR10-20), except each attack places the trigger in a different loca-

tion. We found that SCAn clusters nearly all poisoned images (along with many clean images),

regardless of the attack used, into the same group, showing that it cannot differentiate between at-

tacks. In contrast, when using our approach with the same hyperparameters as CIFAR10-20 from

warm-starting, ours can select the correct attack for each query, and achieves an average preci-

sion (recall) of 96.3% (65.5%), 97.4 (89.5%) and 97.1% (71.3%), respectively for 20 random queries

from each attack.

Furthermore, evenwhen a single type of attack is used, SCAn cannot detect all of the poisoned

data. We evaluate this by using SCAn on CIFAR10-50, CIFAR10-20, EMNIST and ImageNet. To

make SCAn work for EMNIST and ImageNet, which are source-based datasets, we adapt it to

assign a score to a source equal to the number of selected datapoints within the source. The

results in Fig. 2.8 shows that SCAn falsely selects many clean data for both CIFAR10 benchmarks,

yielding very low precision. This is consistent with the results reported by SCAn authors, who

state that at least 50 poison datapoints are needed for SCAn to work robustly. On the other hand,

SCAn achieves perfect precision and recall on the other 2 benchmarks, since they are source-

based datasets that contain hundreds of poison datapoints. Further, we found that SCAn’s AI

fails to identify the poisoned class for all datasets other than EMNIST. Thus SCAn cannot be used

unless we are guaranteed to have a sufficiently large set of datapoints.

Additional evaluation for other variants of SCAn.

113



We also study if it helps SCAn to add more poison datapoints. We observe that SCAn starts

to work well when we run SCAn on 104 and 300 poison datapoints in CIFAR10-50 and CIFAR10-

20, respectively.2 The full result is shown in Table A.6, where the we show both the precision

and recall of the original SCAn and that of the variant after our distance modification. In the

distance-based variant, we compute the precision and recall with a threshold that makes the

recall match that of ours as closely as possible. This leads to an ad-hoc solution to this insufficient

data problem: because query inputs are likely to be poisoned data, the operator will wait for an

enough number of them to supplement the dataset before running SCAn. However, it is unclear

how many queries should s/he wait for since (a) the number of poison data needed can vary

across attacks and we do not know it in advance, and (b) even if we know it, we cannot know

if this query is an attack. The problem is even worse when multiple attacks coexist, in which

case the queries may spread across different attacks/classes, increasing the time needed for each

attack/classes to have accumulated sufficient poisons.

On the mixed attack, with more poison datapoints SCAn still clusters the three attacks to-

gether, though it stops falsely clustering clean data into the same group as poisoned data.

0.0

0.5

1.0

Pr
ec

isi
on

CIFAR10-20 CIFAR10-50

0.00 0.25 0.50 0.75 1.00
Recall

0.0

0.5

1.0

Pr
ec

isi
on

ImageNet

0.00 0.25 0.50 0.75 1.00
Recall

EMNIST

SCAn Repr. AME

Figure A.5: The counterpart of Fig. 2.8 with AME using the regularization parameter choice of 𝜆𝑚𝑖𝑛 .

2Note that the main model is still trained on the original dataset without additional poison datapoints added.

114



A.6.5.2 Additional Evaluation of Rrepresenter Point

Representer Points [205] provide an approach to quantify the contribution each training dat-

apoint has on a given query prediction. Given a query 𝑡 , this approach assigns a score 𝛼𝑖,𝑄𝐿
𝑓 𝑇𝑖 𝑓𝑡 to

each training datapoint 𝑖 , where 𝑓𝑖 is the feature extracted from the activation of the model’s last

hidden layer, 𝑓𝑡 is the query input’s feature, and 𝛼𝑖,𝑄𝐿
is a scalar computed from the model’s gradi-

ents. The query effect 𝑓 𝑇𝑖 𝑓𝑡 is interpreted as the similarity between 𝑖 and 𝑡 , while the model effect

𝛼𝑖,𝑄𝐿
represents 𝑖’s importance to the model. There is a hyperparameter 𝜆 to trade off between

the computation time and the result: smaller 𝜆s provide better results but are slower.

We compute a source-based score by summing up scores for all datapoints within a source,

and pick the threshold such that the recall matches AME’s recall as closely as possible. In our

evaluation, we used 𝜆 = 3𝑒 − 3; Figure 2.8 shows the results. While this approach performs better

than ours on EMNIST, it is worse on ImageNet and does not work on either of the CIFAR10

datasets. We note that 𝜆 is crucial to the result, but the paper’s suggestion of using a small 𝜆 like

3𝑒 − 3 does not always lead to good results because it tends to weight model effects over query

effects. The paper does not document this problem, so it is unclear how 𝜆 can be tuned to avoid

the problem. Indeed, finding a good 𝜆 requires prior knowledge of what sources are poisoned, as

we show next.

We discover that 𝜆 has a potential effect crucial to result: it balances between model effect v.s.

query effect, which is undocumented in the paper. The default 𝜆 gives bad result, so we manually

tune it per attack with a grid search assuming knowing the ground truth and report the best

result, as shown in Table A.5. It works better than ours on EMNIST and CIFAR10-50 but worse

on ImageNet and CIFAR10-20. We note that the best 𝜆 can vary across datasets: as shown in Table

A.7 the 𝜆 that works the best on CIFAR10-50 can be 30, which gives poor result on CIFAR10-20.

Therefore, it is unclear how to find the right 𝜆 that works against unknown attacks even on the

same dataset.

115



0.96

0.97

0.98

0.99

1.00

CD
F

0.2 0.0 0.2 0.4
Normalized Influence

48000

48500

49000

49500

50000

Ra
nk CDF

y=49966=n-4
y=49780=n-190
poisons

(a) Part of CDF of the influence scores.

Clean Poisoned

0.0

0.2

0.4

LO
O 

Ef
fe

ct

(b) True LOO effect in 𝑦-
axis of selected clean and
poisoned datapoints.

Figure A.6: Experiment of the influence function on CIFAR10-20. The loss function is defined as the
average loss on 20 query inputs. We use the parameter configuration of 𝑟 = 10, 𝑡 = 1000, damping term
𝜆 = 0.01, and scale term=25.

To investigate why the default 𝜆 falls apart, we look at what are selected and find that re-

gardless of the query, it tends to select many the same images: the selection results between two

random clean queries of the same predicted label often share > 70% of selections. This is likely

because small 𝜆 tends to overweight the model effect.

A.6.5.3 Additional Evaluation of Influence Functions

Influence functions provide an approach to estimating the leave-one-out (LOO) effect, defined

as 𝐿𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑑 −𝐿𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 where 𝐿 denote the model’s loss. We evaluated their efficacy for identifying

poison datapoint by computing the influence function for each training point in the CIFAR10-20

setup. We expect proponent points will have higher influence scores, and thus poisoned data

will have a higher influence score. In Figure A.6(a) we show a CDF of influence scores for each

training datapoint, as well as their rank by influence value. We observe that only 2 (out of 20)

of the poisoned data points show up in the top 190 elements. We can thus see that influence

functions do not suffice for detecting poisoned datapoints in this case.

We next examine the efficacy of directly using leave-out-one training to detect poisoning.

We do so by training 39 models where we leave out the 10 datapoints with the highest influence

116



scores, the 10 datapoints with the lowest influence scores, and any of the 20 poison datapoints

not included in these sets. In Figure A.6(b) we show the LOO effect for all of these models. We

can observe from this that many poisoned datapoints have LOO effects that are nearly as low as

those observed for correct datapoints. This shows that a more precise technique for estimating

LOO would still be insufficient for detecting poisoned sources.

A.6.5.4 Additional Evaluation of Shapley Value

Due to prohibitive costs of computation for running existing Shapley value estimators on our

large experiments, we instead provide an evaluation on a subset MNIST with data poisoning (see

details of the dataset in Appendix A.6.8.2). Unlike previous experiments in which each query

explains a single prediction on a test example, we now look at one query to explain the attack

success rate on an entire poisoned test set. The utility measurement is hence much less noisy than

in our main experiments (we expect the AME to be even better comparatively in a noisy setting,

except maybe for Compressive Sensing). The baselines are KernelSHAP [102], Monte Carlo [65],

Truncated Monte Carlo [65], and two sparsity-aware approaches “KernelSHAP (L1)” [102] and

Compressive Sensing [92] (implementation details in Appendix A.6.8). AME uses the training-

from-scratch setting with P = {0.2, 0.4, 0.6, 0.8}. The sample sizes (i.e., number of utility eval-

uations) are all fixed to 1024, a number that is small for consistency with the large experiment

setup, and still exceeds 𝑁 = 1000 so that permutation (Monte Carlo) and non-regularized regres-

sion (KernelSHAP) based approaches are applicable.

We again compare the precision of each method at different recall levels, by varying inter-

nal decision thresholds. The result in Figure A.7 shows that sparsity-aware approaches achieve

better performance than others. In particular, AME and “KernelSHAP (L1)” achieve the same per-

formance and outperform other approaches. We also compare them for SV estimation in §2.5.3,

and show that KernelSHAP (L1) is less suited in that case.

117



0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on AME

MC
Truncated MC
KernelSHAP
KernelSHAP (L1)
Compr. Sensing

Figure A.7: Precision vs Recall curve comparison.

A.6.6 Details of the Hierarchical Design

Our hierarchical design is as follows: we partition users into groups based on when they

first posted a review, which we treat as a proxy for when the user account was created. We

group users into partitions of 1000 users each (so groups span different time periods: we found

that fixed group sizes performed better than fixed time periods). Unlike the previous evaluation

with the NLP data set (§A.6.2), in this experiment we do not combine tail users, i.e., users with

a small number of review, into a single user. We use this process to partition the NLP dataset

into 𝑛1 = 308 top-level sources, each of which contains (up to) 1000 second-level sources. This

partition covers all 307,159 users in the NLP dataset (i.e., 𝑛2 = 307, 159). We poison 15 second-

level sources belonging to 2 randomly chosen top-level sources: putting 10 poisoned sources in

one top-level source, and 5 in the other. We compare the results of applying our hierarchical

approach in this setting, to the results of using the general approach on 307, 159 sources.

We use different 𝑝s when selecting top-level and second-level sources in the hierarchical ap-

proach, because top-level sources might contain multiple proponents and thus have a larger influ-

ence on inference results. In our experiment, we used P = 𝑈𝑛𝑖{0.2, 0.4, 0.6, 0.8}) for the first-level

118



(𝑝1) and trained models from scratch, and we used P = 𝑈𝑛𝑖{0.1, 0.2, 0.3, 0.4, 0.5} for the second

level (𝑝2) and used warm-start training.

Figure 2.5 shows the precision and recall achieved by the hierarchical approach on 20 differ-

ent queries, as we vary the number of subset models. We find that (a) the hierarchical approach

achieves good precision and recall in identifying top-level sources that contribute to data poi-

soning, even when fewer subset models are used than would allow second-level sources to be

detected; and (b) recall when identifying second-level sources degrades gracefully as fewer ob-

servations are used. The hierarchical approach is also more efficient: it can achieve near-perfect

precision and 60% recall with 1,588 observations. In comparison, the general method could not

identify any of the poisoned sources when using the same number of observations.

Finally, the hierarchical approach also reduces the time spent running LASSO+Knockoffs,

i.e., it reduces query runtime. To demonstrate this, we compare the running times for exe-

cuting a query with 1,588 observations, using 5 threads on a server with 256GB of memory.

The non-hierarchical approach takes 52.5s to construct the design matrix and 688.58s to run

LASSO+Knockoffs. The hierarchical approach takes 37.343s to construct two design matrices

(0.123s for the top level, and 37.220s for the second level) and 13.829s to run LASSO+Knockoffs

(2.369s for the top level, 11.460s for the second level). This corresponds to an overall query time

of 48.68s for the hierarchical approach versus 741.08s for the general approach, a reduction of

15×.

A.6.7 Details and Additional Evaluation of Data Attribution for

Non-poisoned Predictions

We randomly select 10 classes and their images from the ImageNet dataset and use the same

ResNet-9 model and training procedure. The main model achieves a top-1 accuracy of 89.2%

on the validation set, from which we randomly select 40 with correct predictions and 40 with

119



Query Input Examples Selected

birds birds birds

deer

frogs frogs frogs birds

ships ships ships ships ships ships

Figure A.8: Queries for correct predictions. The last row only shows a subset since they are too long to
fit in.

incorrect predictions, as the queries. We train roughly 2700 subset models (calculated from 𝑐 =

10, 𝑘 = 20, 𝑁 ≈ 10000) from scratch. We switch to using 𝜆𝑚𝑖𝑛 (with 𝑞 = 0) since empirically 𝜆1𝑠𝑒

is too conservative and selects few images, if any.

The results in Figure 2.6 and 2.7 (due to space constraints we show at most 3 selected images

for each query) show that many selected images share similar visual characteristics with the

query input, either in color, blur effect or texture. Some even are photos taken on the same place

from different time/angle. These results suggest that our approach can be used to understand

model behavior beyond the use case of data poisoning. Additional results for different queries,

and a comparison to a naive baseline, can be found at https://enola2022.github.io/.

We also evaluate model explanation on CIFAR10-50 dataset. We reuse subset models from the

CIFAR10-50 training-from-scratch experiments3, and randomly select 39 images from the vanilla,

non-poisoned test set as query inputs. Some queries with correct mainmodel predictions (4 out of

39 in our evaluation) still fail because LASSO does not converge in 3600 seconds, possibly because

no sparse solution exists. As a result we return an empty result set. Selected results are shown
3We did this to save time for model training. Though the training set includes poison, they should have little

effect on the non-poisoned query inputs.

120

https://enola2022.github.io/


Query Input Examples Selected

pre: airpl.; gt:
cats

airpl. airpl. airpl. airpl.

pre: cats; gt:
dogs

cats cats cats dogs

pre: deer gt:
horses

deer birds deer

pre: airpl. gt:
ships

airpl. airpl. airpl. airpl. airpl.

Figure A.9: Queries for wrong predictions. Pre is model’s prediction and gt is the ground truth. The last
row only shows a subset since they are too long to fit in.

in Figure A.8 and A.9, and we also draw all 39 queries we have ran and their result in grids, as

shown in Fig. A.15 and Fig. A.16, where each row consists of two queries, each starting with the

query input followed by images selected.

We also report a quantitative result on CIFAR10-50 by removing the images selected by ours

and retraining the model 6 times and measure the change in the predictions. We find that the

predicted labels are often not changed compared to the main model. This is expected because

our approach is designed to achieve good precision and as a result only a small number of pro-

ponents from the strongest are removed, and other proponents in the class generically support

the prediction. However, we still see the average confidence score is lower compare to the main

model’s when only removing the strongest proponents, as shown in Fig. A.10, while a baseline

that randomly selects datapoints in the class to remove fails to do so.

121



Correct prediction Wrong prediction
0.0

0.2

0.4

0.6

0.8

Confidence Score
No removal
Random removal
AME's removal

Figure A.10: Quantitative comparison of model explanation through the drop in the confidence scores.
Y-axis shows the average confidence scores across all correct/wrong queries. The 95% confidence interval
is drawn as the vertical bars.

A.6.8 Shapley Value Estimation Setting and Additional Evaluations

A.6.8.1 Simulated Dataset

Experimental Setup. We craft a two-valued threshold function as the utility, which evaluates

to 1 when there are at least 2 in the first 𝑘 sources are present. Formally,𝑈 (𝑆) = I( |𝑆 ∩ [𝑘] | ≥ 2).

We pick 𝑘 = 3 and 𝑁 = 1000 for this experiment. This design allows us to compute the estimation

error ∥
√
𝑣𝛽𝑙𝑎𝑠𝑠𝑜 − SV∥22 because the true value of Shapley values for the 𝑘 sources can be easily

known: by symmetry they are𝑈 ( [𝑁 ])/𝑘 = 1/𝑘 for the 𝑘 sources and 0 otherwise.

We compared ourAMEbased SV estimator toMonte Carlo [65, 92], TruncatedMonte Carlo [65],

Group Testing [92], Compressive Sensing [92], KernelSHAP [126], and Paired Sampling [37]. We

run each approach 6 times with different random seeds. We plot the 95% confidence interval in

the shaded area. The baseline is as follows:

• Truncated Monte Carlo. We adopt the implementation published by the author [65] and use

the default hyperparameters (e.g., truncation tolerance is set to 0.01).

• Group Testing. We adopt the implementation provided by the author [91]. We use hyper-

parameter 𝜖 = 2√
𝑁
as in the script. We also tried 𝜖 = 0.01 and 0.1 and the results remain the

122



same, thus omitted.

• Compressive Sensing. We implement the algorithm using CVXPY [2, 46]. The algorithm has

a hyperparameter “𝑀” that has no clear documentation for its choice. We therefore run one

set of the 6-trial experiment for every𝑀 ∈ {27, 28, . . . , 216} and report for each sample size

the best mean estimation error (the mean is taken on the 6 trials). This assesses its upper

limit. We use 𝜖 = 0.01 for the other hyperparameter “𝜖” when not specified. Unlike the

original algorithm that shifts the SVs by the average utility𝑈 ( [𝑁 ])/𝑁 (see 𝑠 in Algorithm

2 in their paper), we do not perform shifting because in a poisoning (thus sparse) setup

most SVs are more likely to be zero rather than the average.

• KernelSHAP.We use their official implementation with the default hyperparameter setting.

Note that by default KernelSHAP also uses 𝐿1 regularization in a heuristic way. We also

evaluate it with the regularization turned off to understand the effect.

• Paired Sampling. We use their official implementation with batch size equal to 128, no

convergence detection and non-stochastic cooperative game.

Additional evaluations and ablation study. In §2.5.3 in the main body we have shown a

condensed result comparing against part of the baselines. Nowwe present the comparison against

other baselines in Fig. A.11(a). High-level findings remain the same. We can also see that smaller

𝜀 leads to higher approximation precision at the cost of convergence speed. We also provide

additional results of other choices of 𝜖 for Compressing Sensing in Figure A.12(a). It shows that

𝜖 = 0.1 though has a marginal drop compared to 𝜖 = 0.01 in estimation error when the sample size

≤ 212 but with a (relatively big) sacrifice on the estimation error on large sample sizes, echoing a

tradeoff role 𝜀 plays in AME (see §2.5.3), while 𝜖 = 0.001 has almost identical result, suggesting a

saturation on one end of the tradeoff space. This may also explain another interesting finding: the

results are almost the same asMonte Carlo for the two smaller 𝜖’s. Recall that compressive sensing

123



utilizes 𝜖 to control the tradeoff between the sparsity and the accuracy (w.r.t. the measurements)

of the recovered solution. Jia et al.’s design implicitly makes use of Monte Carlo for measurement,

implying that the most accurate solution is Monte Carlo. The smaller the 𝜖 , the more accurate

the recovery and hence the closer the result is to Monte Carlo.

103 104 105

Sample Size

0.0

0.1

0.2

0.3

0.4

0.5

L2
-N

or
m

 E
rro

r

MC
Truncated MC
AME = 0.1
AME = 0.01
Group Testing
[Jia et al.]

(a) Simulated dataset.

103 104 105 106

Sample Size

0.00

0.05

0.10

0.15

0.20

0.25

L2
-N

or
m

 E
rro

r

MC
Truncated MC
AME = 0.01
AME = 0.001
Group Testing
[Jia et al.]

(b) MNIST dataset. We use as ground
truth the Monte Carlo (MC)’s result on a
sample size of 222.

Figure A.11: Additional comparison against other baselines on SV estimation.

103 104 105

Sample Size

0.0

0.1

0.2

0.3

0.4

0.5

L2
-N

or
m

 E
rro

r

MC
Compr. Sensing = 0.1
Compr. Sensing = 0.01
Compr. Sensing = 0.001

(a) Simulated dataset.

103 104 105 106

Sample Size

0.00

0.05

0.10

0.15

0.20

0.25

L2
-N

or
m

 E
rro

r

MC
Compr. Sensing = 0.1
Compr. Sensing = 0.01
Compr. Sensing = 0.001

(b)MNIST dataset.

Figure A.12: Compressive Sensing with different choices of 𝜖 .

We provide additional evaluations regarding the choice of featurization and distribution of

our SV estimator from AME. In Fig. A.13 we compare the impact of featurization and fix the

distribution to truncated uniform. It shows that they both workwell and 𝑝-featurization performs

slightly better (§A.2); In Fig. A.14 we compare beta distribution with truncated uniform𝑈𝑛𝑖 (𝜀, 1−

124



103 104 105

Sample Size

0.00

0.05

0.10

0.15

0.20

0.25

L2
-N

or
m

 E
rro

r

p featurization = 0.01
p featurization = 0.1
1/p featurization = 0.01
1/p featurization = 0.1

Figure A.13: 𝑝-featurization vs 1/𝑝-
featurization (§A.2). Both use truncated
uniform distribution𝑈𝑛𝑖 (𝜀, 1 − 𝜀).

103 104 105

Sample Size

0.00

0.05

0.10

0.15

0.20

0.25

L2
-N

or
m

 E
rro

r

KernelSHAP
Beta(1.84,1.84)
Beta(1.06,1.06)
Uni(0.01,0.99)
Uni(0.1,0.9)

Figure A.14: Beta vs truncated uniform
distribution. Our approaches (Beta* and
Uni*) all use 𝑝-featurization (§A.2).

𝜀). The parameters for beta distribution are chosen to match that of truncated uniform such that

their AMEs evaluate to the same value. In other words, they both converge to the same estimation

error on an infinite sample size. It shows that they both perform well, but truncated uniform

performs slightly better.

A.6.8.2 Poisoned MNIST dataset

Experimental Setup. For non-simulated case, given the prohibitive cost of computing the true

SV, we craft a tiny MNIST dataset by randomly subsampling 1000 datapoints from both the origi-

nal training set and test set. To create sparsity, we further poison 10 training datapoints randomly

by imposing a white square on the top-left corner and overwriting their labels to 0. We also craft

a poison test set by imposing the same trigger on the clean test set and use the attack success

rate as the utility function. We use logistic regression (with regularizaiton 0.02) as the model for

fast training. The resulting attack success rate of the full model is 65.7%, and the test accuracy

is 89.4%. Different from the simulation case, it is computationally infeasible to compute the true

SV. We instead use the estimation from the classic Monte Carlo method [65] as a proxy. We keep

doubling the sample size until the estimation converges with a consecutive 𝐿2 difference falling

below 0.01, and use the final estimation as the proxy.

We compare the same set of approaches as in the simulated experiment (except Paired Sam-

125



Figure A.15: Correct-prediction queries and their results, where each row shows two queries and each
query starts with the query input followed by images selected.

pling given the computational cost and its almost identical performance to KernelSHAP on the

simulated dataset). The configurations for these approaches mostly remain the same, except we

only run one trial to save computational cost.

Additional evaluations. Fig. A.11(b) shows the comparison against other baselines not shown

in §2.5.3 in the main body, with Monte Carlo, Truncated Monte Carlo and Group Testing added.

The qualitative findings hold.

A.7 Extended Related Work

The closest related works, model explanation, also aim to provide principled measures of

training data impact on the performance of an ML model. These techniques include Shapley

value, influence functions [102, 104] and Representer Point [205]. TracIn [149] and CosIn [73]

are two other recent proposals for measuring the influence of a training sample based on how it

126



Figure A.16: Wrong-prediction queries and their results, where each row shows two queries and each
query starts with the query input followed by images selected.

impacts the loss function during training. Existing model explanation approaches fall short. They

either focus onmarginal influence on the whole dataset [102, 104]; make strong assumptions (e.g.,

convex loss functions) that disallow their use with DNNs [11, 102, 104]; cannot reason about data

sources or sets of training samples [23, 73, 149]; or subsample training data but focus on a single

inclusion probability and thus cannot explain results in all scenarios[54, 87, 213].

Of those, the works focused on efficiently estimating the Shapley value (SV) are closest.

SV which was proposed in game theory [157], has been widely studied in recent years, with

applications to data valuation in ML [65, 92] and feature selection/understanding [37, 90, 123,

126], aswell as extensions such asD-Shapley [64]which generalizes SV bymodeling the dataset as

a random variable. The SV is notoriously costly to measure, and efficient estimators are the focus

ofmuch recent work since the early permutation algorithmwith 𝐿2 error bounds in𝑂 (𝑁 2 log(𝑁 ))

samples [131] under bounded utility. Recently proposed estimators also reduce SV estimation

to regression problems, although different than ours [37, 90, 110, 126]. Beta-Shapley [110] is

127



closest, as it generalizes data Shapley to consider different weightings based on subset size, which

coincides with our AME under 𝑝-induced distribution (e.g., Beta-Shapley is AME when 𝑝 ∼ beta

distribution). We also study this approach, and alternative distributions (including a truncated

uniform which we found a bit better in practice). None of these works study the sparse setting,

or provide efficient 𝐿2 bounds for estimators in this setting. This may stem from their focus on

explaining features, in smaller settings than we consider for training data and in which sparsity

may be less natural. The most comparable work is that of Jia et.al [92], which provides multiple

algorithms, including for the sparse, monotonous utility setting. Their approach uses compressive

sensing, which is closely related to our LASSO based approach, and yields an𝑂 (𝑁 log log𝑁 ) rate.

We significantly improve on this rate with an 𝑂 (𝑘 log𝑁 ) estimator, much more efficient in the

sparse (𝑘 ≪ 𝑁 ) regime. Other estimation strategies, use-cases, and relaxations have been recently

proposed for the SV. [136] study efficient sampling of permutations. However, each “permutation

sample” requires 𝑁 utility evaluations, and is thus incompatible with our setting. [58] focus on

feature SV’s, and leverage the causal structure over features (on the data distribution) to decide

value assignments. This is done by reweighing entire permutations of the features (e.g., giving

more weight to permutations where a given feature appears early). In contrast, the AME reweighs

the utility of different subsets of the data points, based on their size, which is orthogonal, and

seems more amenable to sparse estimators. [74] extend the SV axioms to consider the joint effect

of multiple players, prove the uniqueness of the solution, and derive its formulation. It measures

the contribution of all subsets up to a specified subset size, which is however incompatible to our

setup due to large 𝑁 (e.g., there will be𝑂 (𝑁 2) ≈ 2.5 billion contribution terms just for subset size

of two on our CIFAR-10 datasets). In contrast, the AME studies the contribution for individual

players, as does the regular SV, and focuses on efficient estimation in the sparse regime. Our

hierarchical setting considers fixed sources, and not all possible subsets.

Another related body of work is the work focused on defending against data poisoning at-

tacks. Reject On Negative Impact (RONI) [9, 10] describes an algorithm that measures the LOO

128



effect of data points on subsets of the data. However, RONI is sample-inefficient and the paper

does not prescribe a subset distribution to be used. As we explained previously, the choice of

subset distribution can impact precision and recall. Another line of work [25, 76, 158, 163, 174]

uses outlier detection to identify poisoned data. These are not query aware and thus can select

benign outliers. Other approaches [47, 163, 178] assume the availability of clean data, or make

strong assumptions about the model, e.g., assuming that linear models [89], or the attack, e.g.,

assuming that the attack is a source-agnostic trigger attacks [60], a trigger attack with small norm

or size [31, 176, 183], or a clean-label attack [147]. None of these approaches can generalize across

techniques.

Our work is also related to the existing literature on data cleaning andmanagement. How-

ever, data cleaning approaches are not query driven, and must rely on other assumptions. As a

result, many approaches depend on user provided integrity constraints [32, 33] or outlier detec-

tion [80, 132]. As a result these approaches cannot always identify poisoned data [103] and might

also identify benign outliers. Recent approaches [48, 105], have also used another downstream

DNN for data cleaning. However, these approaches assume that corrupt data has an influence

on test set performance, an assumption that may not hold in scenarios such as data poisoning.

Finally, Rain [196] is a recent query-driven proposal that proposes using influence function to

explain SQL query results. While Rain shares similar goals, we focus on DNNs, a different use

case.

Finally, our work leverages, and builds on, a large body of existing work from different fields.

First, our work is related to the causal inference literature if we regard the inclusion of a data

source as a treatment, from which AME is inspired. For instance, [88, 97] focuses on single treat-

ment AME (i.e. only one source). Multiple treatments are introduced in [42, 50, 70], though

their quantity uses different population distribution than ours, and different estimation tech-

niques. In the computer science filed, Sunlight [114] uses a similar approach but with only one

sampling probability and without knockoff procedure. Second, sparse recovery studies effi-

129



cient algorithms to recover a sparse signal from high dimensional observations. We leverage

LASSO [112] –with properties related to those of compressive sensing [22]– and knockoffs [21].

Other approaches to the important factor selection problem exist, such as the analysis of variance

(ANOVA) [16, 50, 148] used in [50], but we think LASSO is better suited to our use-case due to its

scalability guarantees. Third, our goal is related to group testing [3, 193] as discussed in §2.1,

and studying if and how group testing ideas could improve our technique is an interesting avenue

for future work.

130



name npoi prec_dis rec_dis prec rec AI
ImageNet 5 100 80.0 100 100 5.500744
CIFAR10-50 50 96.4 54.0 2.1 100 0.788898
CIFAR10-50* 100 100 54.0 6.2 100 1.682893
CIFAR10-50* 101 100 54.5 7.9 100 1.744635
CIFAR10-50* 102 100 53.9 10.0 100 1.832493
CIFAR10-50* 103 100 54.4 10.4 100 1.826089
CIFAR10-50* 104 100 54.8 100 99.0 8.742186
CIFAR10-50* 105 100 54.3 100 99.0 8.916950
CIFAR10-50* 106 100 54.7 100 98.1 8.926177
CIFAR10-50* 107 100 54.2 100 98.1 9.054615
CIFAR10-50* 108 100 54.6 4.1 100 0.716676
CIFAR10-50* 109 100 54.1 100 98.2 9.374960
CIFAR10-50* 110 100 54.5 100 98.2 9.583294
CIFAR10-50* 120 100 54.2 100 97.5 11.441413
CIFAR10-50* 130 100 54.6 100 97.7 12.932239
CIFAR10-50* 140 100 54.3 100 98.6 13.600518
CIFAR10-50* 150 100 54.7 100 98.7 15.521987
CIFAR10-20 20 11.1 60.0 0.9 100 0.700744
CIFAR10-20* 40 27.9 60.0 1.7 100 0.793756
CIFAR10-20* 60 46.1 58.3 2.5 98.3 0.894113
CIFAR10-20* 80 52.8 58.8 3.4 98.8 0.970892
CIFAR10-20* 100 74.7 59.0 4.3 99.0 1.093217
CIFAR10-20* 120 80.5 58.3 5.2 99.2 1.253165
CIFAR10-20* 140 87.2 58.6 6.0 98.6 1.419778
CIFAR10-20* 160 89.5 58.8 7.0 98.8 1.527789
CIFAR10-20* 180 93.0 58.9 7.9 98.3 1.746322
CIFAR10-20* 200 97.5 59.0 9.2 98.5 1.884684
CIFAR10-20* 300 100 58.7 99.6 92.7 4.334019
CIFAR10-20* 400 100 58.8 100 93.0 7.996566
CIFAR10-20* 500 100 58.8 100 92.2 10.964163
CIFAR10-20* 600 100 58.7 100 92.3 14.168781
CIFAR10-20* 700 100 58.7 100 92.0 17.779293
CIFAR10-20* 800 100 58.8 100 91.6 20.268145
CIFAR10-20* 900 100 58.8 100 91.7 24.644904
CIFAR10-20* 1000 100 58.8 100 91.5 26.829417
EMNIST 10 100 80.0 100 100 84.367889

Table A.6: Full result of SCAn, where “*” indicates the dataset is supplemented, “_dis” indicates the
distance-based score.

131



name lambda precision recall
CIFAR10-20 3000.0 4.8 58.8
CIFAR10-20 30.0 18.0 58.8
CIFAR10-20 12.0 68.5 58.8
CIFAR10-20 11.9 68.9 58.8
CIFAR10-20 11.0 64.9 58.8
CIFAR10-20 3.0 1.0 58.8
CIFAR10-20 0.003 0.6 58.8
CIFAR10-50 3000.0 95.2 54.4
CIFAR10-50 30.0 99.9 54.4
CIFAR10-50 11.9 97.8 54.4
CIFAR10-50 3.0 0.7 54.4
CIFAR10-50 0.003 0.7 54.4
EMNIST 3000.0 100 78.9
EMNIST 3.0 100 78.9
EMNIST 0.003 100 78.9
ImageNet 3000.0 80.8 78.0
ImageNet 3.0 80.8 78.0
ImageNet 0.003 80.8 78.0
ImageNet 0.0001 84.9 78.0
ImageNet 4e-05 85.9 78.0
ImageNet 3e-05 85.9 78.0
ImageNet 2e-05 84.9 78.0

Table A.7: Full result of Representer Point

132



B | Appendix: Supplementary Materials

for Chapter 3

B.1 Design details of MimicLDT and MetaLDT

In this section, we provide pseudocode for our proposed attacks and give a more detailed

explanation of MimicLDT.

B.1.1 Pseudocode of MimicLDT

As described in Sec.3.4, to generate a poison graph G′, we first inject fake nodes in G (Alg.

1) and then optimize the injected nodes’ features using the gradient method (Alg. 2).

133



Algorithm 1 Inject Nodes – MimicLDT
Input: G: benign graph; V𝑠 : list of attack points; Φ: upper bound of injected nodes per attack

point
Output: Modified graph G′ with injected nodes

1 G′← G
2 foreach 𝑣𝑠 ∈ V𝑠 do
3 Vsubg_s ← {𝑣1, 𝑣2, . . . , 𝑣Φ}; // Inject Φ nodes
4 G′← G′ ∪Vsubg_s
5 foreach pair (𝑣𝑖, 𝑣 𝑗 ) where 𝑣𝑖, 𝑣 𝑗 ∈ Vsubg_s do
6 Add edge 𝑒 (𝑣𝑖, 𝑣 𝑗 ) to G′ with probability 𝑝 = 0.5
7 repeat
8 link_to_ap← random.binomial(1, 𝑝,Δ); // 𝑝 = 0.5
9 until sum(link_to_ap) > 0;

10 for 𝑖 ← 1 to Δ do
11 if link_to_ap[i] == 1 then
12 Add edge 𝑒 (𝑣𝑠, 𝑣𝑖) to G′
13 foreach 𝑣𝑖 ∈ Vsubg_s do
14 if deg(𝑣𝑖) == 0 then
15 Remove 𝑣𝑖 from G′
16 return G′

Algorithm 2 Injected Nodes Feature Optimization – MimicLDT
Input : Graph G = (A,X); Injected nodesV𝑖 ; Attack pointsV𝑠 ; Target nodeV𝑡 ; Pretrained

GNN model 𝑓𝜃 (·); Loss function 𝐿𝑎𝑡𝑘

⊲ *[r]Each injected node 𝑣𝑖 is linked to its attack point 𝐵(𝑣𝑖)

Parameter: 𝛽 , MaxIters, learning rate 𝛼

1 Initialize X𝑣𝑖 ← X𝐵(𝑣𝑖 ), ∀𝑣𝑖 ∈ V𝑖

2 Define L𝑎𝑡𝑘 as: −
(

1
|V𝑠 |

∑
𝑣𝑠∈V𝑠

𝑆𝑖𝑚 𝑓 (h(𝐿)𝑣𝑠 , h(𝐿)𝑣𝑡 ) + 𝛽 · 1
|V𝑖 |

∑
𝑣𝑖∈V𝑖

𝑆𝑖𝑚𝑖𝑛 (X𝑣𝑖 ,X𝐵(𝑣𝑖 ))
)

3 for 𝑡 = 1 to MaxIters do

4 h(𝐿)𝑣𝑠 ← 𝑓𝜃 (𝑣𝑠 ;G (𝑡−1)) h(𝐿)𝑣𝑡 ← 𝑓𝜃 (𝑣𝑡 ;G (𝑡−1)) X(𝑡)V𝑖
← X(𝑡−1)

V𝑖
− 𝛼∇XV𝑖L𝑎𝑡𝑘 (X(𝑡−1)

V𝑖
) ⊲ *[r]For

𝑣 𝑗 ∉ V𝑖 , X(𝑡)𝑣 𝑗 = X(𝑡−1)
𝑣 𝑗

5 return G∗ = (A,X∗)

134



B.1.2 Pseudocode of MetaLDT

MetaLDT performs its alternating optimization in rounds (Alg. 3). Within each round, it does

one optimization step of the adjacency matrix optimization (Alg. 4) based on meta-gradient with

constraints, and 𝑞 optimization steps of the features matrix optimization (Alg. 5) based on the

gradient descent across all injected nodes’ all feature dimensions.

Algorithm 3 MetaLDT
Input: Graph G = (A,X);
Labeled node labels 𝐶𝐿; Injected nodesV𝑖𝑛 𝑗 ; Target node 𝑣𝑡 ;
Optimization rounds 𝐼 ; Feature optimization iterations 𝑞; Inner-training epochs 𝑇
Output: Optimized graph G′ = (A′,X′)

1 G′← inject Δ nodes into G X′𝑖𝑛 𝑗 ← ®0; // Initialize features of injected nodes

2 No linkages betweenV𝑖𝑛 𝑗 and nodes in G
3 for 𝑟𝑜𝑢𝑛𝑑𝑠 ← 1 to 𝐼 do
4 Adjacency_Matrix_Optimization(G′,𝐶𝐿, 𝑣𝑡 , 𝑦𝑡 ,𝑇 ) for 𝑖𝑡𝑒𝑟 ← 1 to 𝑞 do
5 Feature_Matrix_Optimization(G′,𝐶𝐿, 𝑣𝑡 , 𝑦𝑡 ,𝑇 )
6 return G′ = (A′,X′)

B.1.3 More Detailed Explanation for MimicLDT Attack

In MimicLDT attack, our feature optimization problem takes Eq.3.4 as the optimization for-

mulation and uses a stochastic gradient descent based optimizer to compute feature vectors.

Injected nodes influence the attack point’s embedding through message passing. The

first term of the loss function aims to make a attack point’s embedding close to the target node’s

embedding. The optimization can only change features for injected nodes, because we assume

that the attacker cannot modify others. But injected nodes are in the attack point’s k-hop neigh-

borhood, and can thus influence the attack point’s final embedding due to GNN message pass-

ing. More formally, given a pre-trained GNN classifier 𝑓𝜃 and graph G′, the embedding of nodes

are h(𝐿)𝑣𝑖 = 𝑓𝜃 (𝑣𝑖 ;G′),∀𝑣𝑖 ∈ V(G′). Our goal is to ensure that the target node’s embedding 𝑣𝑡 ,

h𝑣𝑡 = 𝑓𝜃 (𝑣𝑡 ;G′), is close to the attack point 𝑣𝑠 ’s embedding h𝑣𝑠 = 𝑓𝜃 (𝑣𝑠 ;G′). Concretely, if we

135



Algorithm 4 Adjacency_Matrix_Optimization(G′,𝐶𝐿, 𝑣𝑡 , 𝑦𝑡 ,𝑇 )
Data: N𝑘 (𝑣𝑡 ): 𝑘-hop neighbors of target node 𝑣𝑡

1 FLAG← True
2 for 𝑡 ← 1 to 𝑇 do
3 𝜃𝑡+1 ← step

(
𝜃𝑡 ,∇𝜃𝑡L𝑡𝑟𝑎𝑖𝑛 (𝑓𝜃𝑡 (V𝐿;G′);𝐶𝐿)

)
4 ∇𝑚𝑒𝑡𝑎

𝐴′ ← ∇𝐴′L
ℎ
𝑎𝑡𝑘
(𝑓𝜃𝑇 (𝑣𝑡 ;G′);𝑦𝑡 )

5 𝑆 (𝑢, 𝑣) ← ∇𝑚𝑒𝑡𝑎
𝑎𝑢,𝑣
(−2 · 𝑎𝑢,𝑣 + 1); // Scoring each edge for update

6 /* Apply structural constraints */ 𝑆 [V \ V𝑖𝑛 𝑗 , V \ V𝑖𝑛 𝑗 ] ← −∞ 𝑆 [V𝑖𝑛 𝑗 , N𝑘 (𝑣𝑡 )] ← −∞
𝑆 [N𝑘 (𝑣𝑡 ), V𝑖𝑛 𝑗 ] ← −∞

7 while FLAG do
8 𝑒 ← arg max 𝑆 (𝑢, 𝑣); // Edge proposal with highest score
9 if 𝑣 ∈ V then

10 if exists 𝑒 = (𝑢,𝑤) ∈ E′, where𝑤 ∈ V then
11 𝑒 ← arg max 𝑆 (𝑢, 𝑣) \ 𝑒
12 else
13 FLAG← False
14 else
15 FLAG← False
16 A′← Insert or remove 𝑒 in A

Algorithm 5 Feature_Matrix_Optimization(G′,𝐶𝐿, 𝑣𝑡 , 𝑦𝑡 ,𝑇 )
for 𝑡 ← 1 to 𝑇 do

𝜃𝑡+1 ← step
(
𝜃𝑡 ,∇𝜃𝑡L𝑡𝑟𝑎𝑖𝑛 (𝑓𝜃𝑡 (V𝐿;G′);𝐶𝐿)

)
∇𝑚𝑒𝑡𝑎
𝑋 ′ ← ∇𝑋 ′L

ℎ
𝑎𝑡𝑘
(𝑓𝜃𝑇 (𝑣𝑡 ;G′);𝑦𝑡 )

X′𝑖𝑛 𝑗 ← X′𝑖𝑛 𝑗 − 𝛼∇𝑚𝑒𝑡𝑎
𝑋 ′
𝑖𝑛 𝑗

; // Gradient update

1 X′← update X′𝑖𝑛 𝑗 , other nodes remain unchanged

consider a 2-layer GCN model, and attack point 𝑣𝑠 , we compute h𝑣𝑠 as:

h𝑣𝑠 = 𝜎
©­«
∑︁
𝑗∈N𝑣𝑠

1
𝑐𝑣𝑠 , 𝑗

𝜎
©­«
∑︁
𝑚∈N𝑗

1
𝑐 𝑗,𝑚

h(0)𝑣𝑠 𝜃
(0)ª®¬𝜃 (1)ª®¬ (B.1)

where 𝑐 𝑗,𝑚 =

√︃
𝑑 𝑗𝑑𝑚 , 𝑑 𝑗 = 1 + 𝑑𝑒𝑔( 𝑗). When injected nodes are within the 2-hop neighborhood

of the attack point 𝑣𝑠 , they will pass their information to their neighbors and finally the attack

point to influence the h𝑣𝑠 .

Attack stealthiness. The second term of equation 3.4 tries to ensure that injected nodes are

136



similar to other nodes in their neighborhood. We use feature vector similarity 𝑆𝑖𝑚𝑖𝑛 as a proxy

for homophily [30], though we also used node-centric homophily [30] in §??. To formulate in

detail:

We use the following CosineSimilarity formulation:

𝑆𝑖𝑚𝑖𝑛 =
X𝑣𝑖 · X𝐵(𝑣𝑖 )

| |X𝑣𝑖 | |2 | |X𝐵(𝑣𝑖 ) | |2
(B.2)

We also did evaluation by using the following node-centric homophily formulation:

𝑆𝑖𝑚𝑖𝑛 =
1
|V𝑖 |

∑︁
𝑣𝑖

𝑠𝑖𝑚(
∑︁
𝑗∈N𝑣𝑖

1√︁
𝑑 𝑗

√︁
𝑑𝑣𝑖

X 𝑗 , X𝑣𝑖 ) (B.3)

where 𝑠𝑖𝑚(·) here is the CosineSimilarity and 𝑑 𝑗 represents the degree of node 𝑗 .

Our empirical evaluation shows that both similarity metrics perform similarly.

B.2 The MetaLDT Attack via Optimization

MetaLDT is a meta-learning based long-distance node injection attack that we developed by

extending meta-attack [227]. We provide a more complete description here.

We describe an optimization approach to solving the problem defined in section §3.3. Given

information about how the model is trained as well as access to the original graph G, a target

node 𝑣𝑡 , and a target label𝑦𝑡 , our optimization algorithm produces an attack graph G′. To do this,

we start with an initial attack graph G′0 and iteratively modify it to minimize the attacker’s loss

function L𝑎𝑡𝑘 .

Inspired but different from traditional Meta-Attack [14, 227], we design an iterative pipeline

that requires the optimization procedure to alternate between optimizing the adjacency matrix

and optimizing node features. At the start of the process, MetaLDT produces an initial graph G′0
by injecting Δ new nodes into the input graph G. These injected nodes have zeroed-out features,

137



and no edges connecting them to any other node. In each iteration 𝑖 (𝑖 ≥ 0), MetaLDT updates

graph G′𝑖 and produces the graph G′𝑖+1, which the next iteration operates on. When producing

G′𝑖+1, we can either alter G′𝑖 ’s adjacency matrix (thus adding or removing edges) or feature matrix

(thus changing node features), and MetaLDT uses alternating minimization [86] to update both.

Specifically, this means that our iterations alternate between changing the adjacency matrix and

changing the feature matrix.

In each iteration 𝑖 , we determine updates to the feature or adjacency matrix (as appropriate)

using a computed meta-gradient ∇𝑚𝑒𝑡𝑎
G′
𝑖

, which we compute by unrolling the model training loop

for 𝑇 epochs. Formally:

∇𝑚𝑒𝑡𝑎
G′
𝑖

= ∇G′
𝑖
L𝑎𝑡𝑘

(
𝑓𝜃𝑇

(
G′𝑖

) )
= ∇𝑓L𝑎𝑡𝑘

(
𝑓𝜃𝑇

(
G′𝑖

) )
·
[
∇G′

𝑖
𝑓𝜃𝑇

(
G′𝑖

)
+ ∇𝜃𝑇 𝑓𝜃𝑇

(
G′𝑖

)
· ∇G′

𝑖
𝜃𝑇

] (B.4)

where the last term is recursively defined as ∇G′
𝑖
𝜃𝑡+1 = ∇G′

𝑖
𝜃𝑡 − 𝛼∇G′

𝑖
∇𝜃𝑡L𝑡𝑟𝑎𝑖𝑛

(
𝑓𝜃𝑡

(
G′𝑖

) )
, and 𝛼

is the learning rate. Observe that computing this meta-gradient does not require access to the

model used by the attack’s victim, but requires running𝑇 training epochs, using the same training

setting (i.e., the same algorithm and approach) as used by the victim. In the rest of the paper, we

use the term surrogate model to refer to models trained by the attacker using the same process as

the victim.

B.2.1 Changing Graph Structure

Iterations that alter the adjacency matrix assume that the node feature matrix is a constant.

Consequently, we can treat ∇𝑚𝑒𝑡𝑎
G′
𝑖

as the meta-gradient for the graph G′𝑖 ’s adjacency matrix 𝐴𝑖 ,

and can compute a meta-score [227], 𝑆 (𝑢, 𝑣) = ∇𝑚𝑒𝑡𝑎
G′
𝑖

[𝑎𝑢𝑣 ] · (−2 · 𝑎𝑢𝑣 + 1) for each pair-of-nodes

(𝑢, 𝑣), where [𝑎𝑢𝑣 ] indicates that we indexed the value at position (𝑢, 𝑣) in ∇𝑚𝑒𝑡𝑎
G′
𝑖

’s adjacency

matrix. Our approach is predicated on the observation that altering the adjacency matrix for the

138



pair (𝑢, 𝑣) with the highest computed meta-score 𝑆 (𝑢, 𝑣) is likely to best decrease the attacker’s

loss L𝑎𝑡𝑘 .

However, our assumptions (§3.3) limit what adjacency matrix modifications the attacker can

perform, and so we only consider a subset of node pairs in this process. In particular, we impose

the following constraints on the node-pairs we consider: (a) either 𝑢 or 𝑣 must be an injected

node; (b) neither 𝑢 nor 𝑣 can be within 𝑣𝑡 ’s k-hop neighborhood, thus ensuring that the attacks

are long-distance; and (c) that an injected node 𝑢 has no more than one-edge connecting it to a

node in the original graph G, a constraint we add to avoid cases where the optimization spends

all of its time optimizing a single injected node. We evaluate the effect of the last optimization in

Appendix B.4.3.

Thus, iterations that change the adjacency matrix compute a score 𝑆 (𝑢, 𝑣) for any pair of

nodes (𝑢, 𝑣) that meet our constraints, identify the pair (𝑢𝑚, 𝑣𝑚) with the largest score, and then

adds edge (𝑢𝑚, 𝑣𝑚) if none exists or removes it if it already exists.

B.2.2 Changing Node Features

Similarly, iterations where node-features are changed assume that the adjacency matrix is a

constant, and therefore use ∇𝑚𝑒𝑡𝑎
G′
𝑖

as the meta-gradient for the feature matrix.

However, different from traditionalmeta-score based selection, we use a gradient descent based

feature optimizer, which allow us to change the feature of all injected nodes in a single feature-

optimization iteration (rather than requiring changes to a single feature dimension of a single

node at a time). in this case, we do not use ∇𝑚𝑒𝑡𝑎
G′
𝑖

to compute a scoring function to select and

then update node features for a single node. Instead, we use ∇𝑚𝑒𝑡𝑎
G′
𝑖

to compute feature gradients

which we use to update G𝑖 ’s feature matrix. Care must be taken when doing so, since we assume

attacker cannot change features for any nodes already present in the input graph G (§??). We

impose this constraint by zeroing out the corresponding elements in∇𝑚𝑒𝑡𝑎
G′
𝑖

’s featurematrix, and in

what followswe refer to the resultingmatrix as𝑋∇G′
𝑖

. Given this, we compute: 𝑋G′
𝑖+1

= 𝑋G′
𝑖
−𝛼𝑋∇G′

𝑖

139



Table B.1: Dataset statistics.

Dataset Nodes(|𝑉 |) Edges(|𝐸 |) Classes(|𝑌 |) Labeled nodes

Ogbn-ArXiv 169343 1157799 40 90941
SciBERT-embed-ArXiv 169343 1157799 40 90941
PubMed 19717 44338 3 18217
Cora 2708 5429 7 1708

where 𝑋G′
𝑖
is G′𝑖 ’s feature matrix, and 𝛼 is the learning rate.

Empirically, we found that a single gradient update is often insufficient, so in practice each

iteration repeats this process 𝑞 times (and we compute a new ∇𝑚𝑒𝑡𝑎
G′
𝑖

after each update).

B.3 Details of experimental setup

Dataset statistics Table. B.1 shows detailed statistics for the datasets used in the evaluation.

Model settings By default, all GNNs used in the experiments have 3 layers (except 2 layers GNN

models for Cora), a hidden dimension of 16 for Cora, PubMed, and a hidden dimension of 256

for the ArXiv dataset. We adopt dropout with dropout rate of 0.5 between each layer (i.e., 0.6 for

GAT model). We use 5𝑒 − 4 weight decay for models except the training for ArXiv graph. By

default, we set the maximum GNN models training epochs as 1000 and do the early stopping of

100 epochs by examining the validation accuracy.

Hyperparameter settings The hyperparameters for MimicLDT and MetaLDT are shown in

Table B.2 and Table B.3, respectively.

140



Table B.2: Hyperparameters for MimicLDT.

GNN Dropout Weight Decay LR Max epochs Patience Others

GCN 0.5 0.0005 0.01 1000 100
GraphSAGE 0.5 0.0005 0.01 1000 100
GAT 0.6 0.0005 0.01 1000 100

GNNGuard 0.5 0.0005 0.01 1000 50 𝜖 = 1𝑒 − 2
SoftMedianGDC 0.5 0.0005 0.01 1000 50 𝑘 = 64, 𝛼 = 0.15, 𝑇 = 1.0
JaccardGCN 0.5 0.0005 0.01 1000 50 𝜖 = 0.01
SVDGCN 0.5 0.0005 0.01 1000 50 Rank = 2000 (ArXiv) and 50 (others)
ProGNN 0.5 0.0005 0.01 1000 50 𝛼 = 5𝑒 − 4, 𝛽 = 1.5, 𝛾 = 1.0, 𝜆_ = 0, 𝜙 = 0, lr𝑎𝑑 𝑗 = 0.01

Table B.3: Hyperparameters for MetaLDT.

GNN Dropout Weight Decay Inner-train-epochs Others

GCN 0.5 0.0005 200
GraphSAGE 0.5 0.0005 200
GAT 0.6 0.0005 200

GNNGuard 0.5 0.0005 50 𝜖 = 1𝑒 − 6
SoftMedianGDC 0.5 0.0005 50 𝑘 = 64, 𝛼 = 0.15, 𝑇 = 1.0
JaccardGCN 0.5 0.0005 200 𝜖 = 0.01
SVDGCN 0.5 0.0005 200 Rank = 50
ProGNN 0.5 0.0005 50 𝛼 = 0.1, 𝛽 = 10.0, 𝛾 = 1.0, 𝜆_ = 0, 𝜙 = 0, lr𝑎𝑑 𝑗 = 0.01

141



B.4 Additional evaluations on MetaLDT

B.4.1 Alternating vs. combined optimization of adj. matrix and node

feature

Apart from adding constraints to enforce long-distance, a key difference of MetaLDT over ex-

isting meta-learning based GNN attack [227] is that MetaLDT performs alternating optimization

of the adjacent matrix and node features as opposed to combining both in one step. We also tried

the combined optimization used in [227] and achieved poison success rate of 65.5% for GCN on

Cora, which is significantly less than 96% achieved by the alternating optimization approach. We

find that the combined optimization is heavily biased towards modifying the adjacency matrix

as opposed to node feature, as the gain from changing a node feature dimension is much smaller

than that of adding/deleting an edge.

B.4.2 Benefits of optimizing the adjacency matrix

Compared to MetaLDT, our faster attack MimicLDT does not optimize the connections be-

tween injected and existing nodes but simply connects injected nodes to each other and to ran-

domly chosen attack points with the target label. To understand the additional benefits of opti-

mizing the adjacency matrix, we run MetaLDT over a fixed adjacency matrix like that used by

MimicLDT. MetaLDT is only allowed to optimize the fake nodes’ features, like MimicLDT. This

feature-only MetaLDT achieves poison success rate of 79.5% for GCN over Cora, compared to

96% achieved by the full MetaLDT. However, if we are to connect fake nodes to attack points

with random labels instead of target labels, the poison success rate drops dramatically to 22%.

This shows that MimicLDT’s heuristic of forming connections is a good, albeit still imperfect,

strategy.

142



Table B.4: Poison success rate with varying 𝑞 for GCN over Cora. 𝐼 = 68.

𝑞 1 10 1000
Poison Success Rate 40.5% 52% 96%

B.4.3 Importance of constraining edges between injected and existing

nodes

Apart from constraining each injected nodes to only connect to existing nodes outside of the

target’s k-hop neighborhood, MetaLDT also constrains each injected node to connect to at most

one existing node. We run experiments without this constraint. Not only the resulting poison

success rate is worse (71%), the generated poisoned graphs tend to connect only a very small

number of fake nodes (i.e, ≤ 3) each of which have a large number of connections with different

existing nodes. Thus, due to their high degree, the injected fake nodes are hardly inconspicuous.

B.4.4 Effects of hyperparameters

We evaluate the effects of 𝑞 and 𝐼 . Hyperparameter 𝑞 refers to the number of optimization

steps on node features for each optimization step of the adjacency matrix. Hyperparameter 𝐼

refers to the total number of rounds where each round takes one optimization step on adjacency

matrix and 𝑞 steps on node feature. Table. B.4 shows the effects of varying 𝑞 while keeping 𝐼 = 68

unchanged. As we can see, the success rate improves with larger 𝑞. We believe this is because

larger 𝑞 allows feature optimization to converge better for each given adjacency matrix change.

By default, our experiments use 𝑞 = 1000.

Increasing the rounds of optimization could make MetaLDT convergence to a higher poison

success rate at the cost of extra running time. As shown in Figure. B.1, MetaLDT’s optimization

is quite efficient: at 𝐼 = 68, the poison success rate has mostly converged. Since the number of

optimization rounds must match or exceed the number of allowed adjacency matrix modification

143



0 17 34 51 68
Number of Optimization Rounds

0.2

0.4

0.6

0.8

1.0

Po
iso

n 
Su

cc
es

s R
at

e

GCN GraphSAGE

Figure B.1: Poison success rate as the rounds of optimization increases.

(𝐼 ≥ Δ = 68), 𝐼 = 68 is the smallest sensible 𝐼 .

B.4.5 Importance of adapting MetaLDT to GNN defenses

In Section 3.5.2 (Table 3.1), we showMetaLDT’s performance when its inner training adapts to

the GNN defense mechanisms used. The implementation of the adaption follows the work [137].

We also experimented with non-adaptive MetaLDT its surrogate model is the vanilla GCN, no

matter what defense mechanism is. As shown in Table. B.5, non-adaptive MetaLDT fares much

worse than MetaLDT, e.g. lowering success rate to 14% from 62% for SVD. Our finding is consis-

tent with that reported by [137].

B.5 Additional evaluations on MimicLDT

B.5.1 Effect of Φ

We evaluate how the value of Φ, which determines the number of nodes injected per attack

point, affects poison success rate. We show the results in Figure B.2 show the poison success rate

with varying Φ for GraphSAGE over ArXiv. We observe that the success rate increases as the

144



Table B.5: Poison success rate of MetaLDT on Cora. In the adaptive setting, MetaLDT’s inner training
loops takes into account the GNN defense used, and vice versa. To handle OOM cases, we also evaluate
MetaLDT in a setting with fewer inner training epochs (50) instead of the default (200). This setting is
referred to as (ET, early termination).

Vanilla Robust

GCN GraphSAGE GAT GNNGuard SoftMedianGDC JaccardGCN SVDGCN ProGNN

MetaLDT
(non-
adaptive)

0.96 0.76 0.51 0.19 0.30 0.72 0.14 0.31

MetaLDT-
Adaptive. 0.96 0.87 0.84 OOM OOM 0.91 0.83 OOM

MetaLDT-
Adaptive
(ET)

0.69 0.73 0.68 0.53 0.58 0.86 0.62 0.55

Table B.6: The average graph degree distribution changes for different datasets according to the EMD
metric.

Dataset Cora PubMed ArXiv

EMD (degree) 0.0393 ± 0.0021 0.0550 ± 0.0008 0.1189 ± 0.0007

value of Φ increases, but the additional benefit is small beyond Φ = 4, which is our default value.

B.5.2 More on attack graph’s node degree distribution

Table. B.6 shows the node degree distribution change as a result of the MimicLDT attack for

different datasets. The change is measured in the Earth Mover’s Distance (EMD) metric.

B.5.3 More on attack graph homophily

In MimicLDT, we use feature vector similarity as a proxy for homophily. We also evaluate a

variant of MimicLDT, called MimicLDT-homo, that uses the original node homophily metric [30]

in the loss function. Figure B.3 shows that both MimicLDT and MimicLDT-homo can preserve

graph homophily well.

We additionally measure changes in node homophily distribution after the attack using the

145



1 2 3 4 5
Number (upper bound) of injected nodes for each attack point

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

Figure B.2: Attack success rate of varying Φ, which is the upper bound number of injected nodes for each
attack point. keep other settings and hyperparameters to be the same.

Clean Mimic-LDT Mimic-LDT+Homo

0.4

0.6

0.8

1.0

Hom
oph

ily D
istr

ibu
tion 0.90938 0.90998 0.91007

Figure B.3: Homophily distribution for clean and poisoned graph over ArXiv. MimicLDT-homo refers to
a variant of MimicLDT that uses the node-centric homophily metric for its loss function.

EMD metric for all datasets, shown in Table B.7. As can be seen, the attacks only result in slight

changes on graph homophily distribution.

B.5.4 Non-Adapting MimicLDT to GNN defenses

In Section 3.5.2 (Table 3.1), we show MimicLDT’s performance when the surrogate model

knows what the GNN defense mechanisms used. We also experimented with non-adaptive Mim-

icLDT, where the attacker who uses a GCN as the surrogate model either did not know what

model was being used (e.g. GAT) or was unaware of what defenses were in use, and measured

146



Table B.7: The average graph homophily distribution changes for different datasets according to the EMD
metric.

Dataset Cora PubMed ArXiv

EMD (homophily) 0.0205 ± 0.0010 0.0123 ± 0.0004 0.0008 ± 0.0003

Table B.8: Poison success rate of MimicLDT on Cora and ArXiv. Experiments about either the surrogate
model account for what GNN defenses are used, or does not account for GNN defenses and instead use
vanilla GCN as the surrogate model.

Vanilla Robust

GCN GraphSAGE GAT GNNGuard SoftMedianGDC JaccardGCN SVDGCN ProGNN

Cora
(Aware
the defense)

0.67 0.63 0.60 0.70 0.55 0.66 0.74 0.59

Cora
(Vanilla
GCN)

0.67 0.63 0.59 0.68 0.29 0.65 0.35 0.53

ArXiv
(Aware the
defense)

0.74 0.73 0.70 0.64 0.59 0.63 0.62 0.58

ArXiv
(Vanilla
GCN)

0.74 0.72 0.67 0.64 0.42 0.61 0.49 0.55

the efficacy of MimicLDT. We show results of Cora and ArXiv datasets in the Table. B.8 (the rows

corresponding to “vanilla GCN”). Basically, our proposed attack assumes knowledge of the victim

model, and we do not believe it can be generalized to unknown victimmodels in theory. However,

empirically, the situation is a bit more complex. As shown in Table. B.8, the results show that in

many cases (e.g. GAT) using a vanilla GCN based surrogate model can poison as successfully as

using a surrogate based on the correct victim model. However, we also see a significant drop in

poison success rate in other cases (e.g., SoftMedian, SVDGCN).

147



B.6 Comparison to short-distance baselines

We consider two different types of the short-distance attacks: short-distance modification

attacks, and the node injection poisoning attacks.

B.6.1 Comparing with short-distance modification attacks

We compare against three existing short-distance attacks in the targeted poisoning setting:

Nettack [226], FGA [26] and IG-FGSM [195].

We use the implementation from DeepRobust’s1, but modify the loss function so that the

attacker’s goal is the same as ours, which is to flip the target node’s label to a specific label of the

attacker’s choosing instead of any arbitrary incorrect label.

The baselines are modification attacks, aka they can either perturb the graph structure or

existing nodes’ features. By contrast, MimicLDT and MetaLDT are injection attacks. Thus, it

is impossible to directly compare them. Therefore, to make these baseline attacks somewhat

comparable to ours, we limit the existing attacks to perturb the graph structure only. From a

practical perspective, it is much harder (or even impossible) for an attacker to modify an existing

node’s features than to create a link to it.

Baseline attacks setups. In order to compare with MimicLDT attack, we did experiments on

baseline attacks (i.e., Nettack, FGA, IG-FGSM) according to the Table. B.9. Because for each graph

in MimicLDT attack, in expectation, the new edges created to link with the real nodes is 𝑝 ∗ Δ =

𝑝 ∗ Φ ∗ 𝑟 |V𝐿 |. In our experiment, Φ = 4, 𝑝 = 0.5, therefore the average newly created edges

is 2𝑟 |V𝐿 |. Thus, correspondingly, we allow the number of perturbations in each baseline attack

to be 2𝑟 |V𝐿 | (i.e., 𝑟 = 1% in Cora; 0.5% for ArXiv and PubMed). As for the indirect attack (i.e.,

Nettack-indirect), the number of influencers (i.e., the attack perturbs the edges that connect to

up to how many of the target’s neighbors) should be at least greater than average degree. As
1Open-sourced DeepRobust library: https://github.com/DSE-MSU/DeepRobust

148



Table B.9: Hyperparameter setups for short-distance modification attacks. Direct attacks includes
Nettack-direct, FGA and IG-FGSM; Indirect attack includes Nettack-indirect.

Mimic-LDT Direct attacks Indirect attacks

Dataset Avg. Degree 𝑟 perturbations perturbations influencers

Cora 3.84 0.01 34 34 10
PubMed 4.50 0.005 182 182 20
ArXiv 13.67 0.005 N/A N/A N/A

mentioned in [226], increasing the number of influencers will greatly increase the running time

for attacks. We set the number of influencers to be 10 for Cora and 20 for PubMed.

B.6.2 Comparing with short-distance modification attacks with

varying edge perturbation budgets

Here, we show a comparison by varying the edge perturbation budgets in baseline attacks

and MimicLDT attack for Cora dataset and GCN model. We used three settings (i.e., add one

more setting) for Nettack here: direct where the target node’s edges are perturbed; indirect with

2 influencers, where the attack perturbs the edges that connect to up to 2 of the target’s direct

neighbors; and indirect with 10 (which is more than Cora’s average node degree) influencers.

Figure B.4 shows baseline attacks’ poison success rate as we vary their edge perturbation

budget, while Figure B.5 showsMimicLDT’s success rate as we vary the number of edges between

attack points and injected nodes. As we probabilistically connect fake nodes to their associated

attack points, the number of edges between the two, as shown as the x-axis in Figure B.5, is

in expectation. We can see that all baseline attacks, especially direct attacks (Nettack-direct,

FGA, IG-FGSM), are much more efficient than our attack in terms of the number of edge budget

required. Indirect (aka influence) attacks are much less efficient than direct ones, but they can still

be more efficient than our attack under some settings (e.g., Nettack indirect with 10 influencers

when budget is 17). However, we note that an indirect attack is not a long-distance attack, since it

149



2 5 17 22 28 34 85
Edge Budgets

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

Nettack (direct)
Nettack-in-inf2
Nettack-in-inf10
FGA (direct)
IG-FGSM (direct)

Figure B.4: Attack success rate when varying the edge perturbation budget for direct Nettack, indirect
Nettack with 2 or 10 influencers, FGA and IG-FGSM.

must modify the target’s neighbors. This shows that long-distance attacks, which cannot change

the target neighborhood, carry an efficiency cost.

B.6.3 Comparing with node-injection poisoning attack

We also evaluated the efficacy of AFGSM [185], a well cited recent node-injection poisoning

attack. And we’d also like to note that most recent injection attacks, including, TDGIA [225],

GIA-HAO [30], CANA [164], G2A2C [96], are test-time evasion attacks, so we cannot directly

compare against them.

As comparison with [185], we used the author’s implementation, but modified it to perform

targeted label-flipping poisoning instead of misclassifying the target to be any arbitrary class. We

perform the results of direct attacks (injected nodes can be direct neighbors of the target node) as

well as indirect attacks (injected nodes cannot be direct neighbors but can be 𝑘-hop neighbors).

Baseline attacks setups. As for the experiments settings, the number of injected nodes and

the number of injected edges are two critical hyperparameters, however the paper itself does

150



2 5 17 22 28 34 85
E[# of edges to attack points]

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

Ours

Figure B.5: Attack success rate as a function of the number of edges connecting injected nodes and attack
points.

not provide clear guidance on parameter settings. For direct attacks, in order to avoid obvious

damage to the graph structure distribution, we make it could inject 2 nodes directly with each

target, and the budget of injected edges equal to the number of injected nodes times the average

node degree of the dataset. For indirect attacks, although AFGSM does not make it long-distance

attack, we use the same setting as that in our work to compare (i.e., Φ ∗ 𝑟 |V𝐿 | injected nodes and

𝑝 ∗ Φ ∗ 𝑟 |V𝐿 | injected edges).

Comparing the attacks performance. Detailed results are in §B.7 (Table B.10 and B.11). We

can see that the direct-attacks of AFGSM on vanilla GCN have poison success rate 74% for Cora

and 83% for PubMed, which is higher than what MimicLDT achieved (67% and 71%). However

this direct-attack showsmore easily to be destroyed by defenses, and have the poison success rate

over robust models ranging from 3-70% for Cora and 10-72% for PubMed, which are lower than

what we achieved (55-74% for Cora, 56-70% for PubMed). For comparing with indirect-attacks,

our MimicLDT outperforms AFGSM in both vanilla and robust models. The indirect-attacks have

a poison success rate ranging from 30-64% for Cora and 15-45% for PubMed, which are lower than

151



what we achieved (55-74% for Cora, 56-71% for PubMed).

B.6.4 Diagnosing baseline attacks using GNN explainability tools

By modifying the target node’s k-hop neighborhood, baseline attacks are vulnerable to ex-

isting GNN explainability tools. We evaluate this by measuring the likelihood that GNNEx-

plainer [206] can detect perturbations from the baseline attacks.

GNNExplainer takes as input a target node, graph and GNN model, and returns the subgraph

that has the largest influence on the target node’s prediction. Our experiments use the GNNEx-

plainer implementation included in the PyTorch-Geometric library2 to find this subgraph for the

targeted node, and we use this returned subgraph to compute precision and recall. The baseline

attacks can both add and remove edges. However, GNNExplainer cannot indicate removed edges

in its explanation. Therefore, we only consider edges added by the attack when computing preci-

sion and recall: recall is the fraction of edges added by the attack contained in the GNNExplainer

subgraph, while precision is the fraction of edges in the subgraph that were added by the attack:

𝑟𝑒𝑐𝑎𝑙𝑙 =
Number of attack-added edges exist in GNNExplainer subgraph

Number of total attack-added edges
(B.5)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
Number of attack-added edges exist in GNNExplainer subgraph

Number of total edges in GNNExplainer subgraph
(B.6)

Then F1 score is calculated based on the precision and recall.

Effect of varying threshold. GNNExplainer allows users to specify a threshold, and selects only

those edges whose importance score is above the specified threshold. We show results for three

thresholds: 0.0 (the default value), 0.6 and 0.8. By runnig GNNExplainer on various short-distance

attacks setups over Cora dataset, we find that GNNExplainer can find a significant fraction of the

perturbed edges, and that at higher thresholds (like 0.8) it has a recall that is around 0.5 (so it

finds basically half the added edges), while also having a precision ranging from 0.52 — 0.93

thus making it a feasible tool for inspection and defense against such attacks. When using lower
2https://pytorch-geometric.readthedocs.io/en/latest/modules/explain.html

152

https://pytorch-geometric.readthedocs.io/en/latest/modules/explain.html


0.8 0.6 0.0
Threshold

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65

F1

0.8 0.6 0.0
Threshold

0.70

0.75

0.80

0.85

0.90

0.95

1.00

ND
CG

Nettack_direct_budget34 Nettack_indirect_budget34_ninf10 FGA_direct_budget34 IG-FGSM_direct_budget34

Figure B.6: Effect of GNNExplainer on various short-distance attacks over Cora dataset under themetrics
of NDCG/F1 scores.

threshold (like 0.0), almost all added adversarial edges can be accurately selected (see Figure. 3.5

in §3.5.2).

Another important metrics people usually care about is NDCG scores, which we only check

the rank position (of truely perturbed edges) through the selected out edges (i.e., the subgraph

GNNExplainer returned after threshold). Because higher values of NDCG indicates that the ad-

versarial edges present at top ranks and could be more noticeable by people (such as system

inspectors or designers). So here in Figure. B.6, we show the effect of varying threshold under

the NDCG scores and F1 scores. We can see that at higher thresholds (like 0.8), the NDCG scores

are 0.87-1.0 for directed attacks and 0.72 for indirect attack, which shows the selected adversarial

perturbations are very noticeable.

Remove the detected edges and retrain. To even complete the pipeline, we examine the poison

success rate by removing these detected malicious edges and retraining the models for the target

node’s prediction. In Figure. 3.5 in §3.5.2, for different short-distance attacks settings, we show the

attack success rate(ASR) before detection and the ASR after the remove and retrain. The poison

success rate decreased from 100% to 4-7% for direct attacks, and decreased from 79% to 3% for

indirect attacks, which shows the short-distance attacks are defended against.

153



Table B.10: Detailed Results on Cora.

Long-distance Short-distance (targeted, modification) Node-injection (AFGSM)

MimicLDT MetaLDT Nettack-direct Nettack-indirect FGA IG-FGSM Direct Indirect

Va
ni
lla GCN 0.67 0.96 1.00 0.79 0.98 1.00 0.74 0.64

GraphSAGE 0.63 0.87 0.96 0.42 0.58 0.70 0.68 0.53
GAT 0.60 0.84 0.97 0.53 0.72 0.86 0.65 0.55

Ro
bu

st

GNNGuard 0.70 (0.53) 1.00 0.98 0.94 0.96 0.69 0.61
SoftMedianGDC 0.55 (0.58) 1.00 0.46 0.88 0.94 0.49 0.52
JaccardGCN 0.66 0.91 1.00 0.47 0.90 0.96 0.60 0.33
SVDGCN 0.74 0.83 1.00 0.18 0.96 1.00 0.03 0.30
ProGNN 0.59 (0.55) 1.00 0.60 0.90 0.97 0.57 0.58

Table B.11: Detailed Results on PubMed. OOM means out-of-memory under the GPU limitation.

Long-distance Short-distance (targeted, modification) Node-injection (AFGSM)

MimicLDT Nettack-direct Nettack-indirect FGA IG-FGSM Direct Indirect

Va
ni
lla GCN 0.71 1.00 1.00 1.00 1.00 0.83 0.28

GraphSAGE 0.69 1.00 0.84 1.00 OOM 0.72 0.45
GAT 0.69 1.00 0.82 1.00 OOM 0.71 0.42

Ro
bu

st

GNNGuard 0.70 1.00 1.00 1.00 OOM 0.79 0.45
SoftMedianGDC 0.56 1.00 0.45 1.00 OOM 0.52 0.38
JaccardGCN 0.67 1.00 1.00 1.00 1.00 0.10 0.15
SVDGCN 0.60 1.00 0.09 1.00 0.97 0.58 0.32
ProGNN 0.57 1.00 0.58 1.00 OOM 0.63 0.44

B.7 Detailed results over different datasets and

short-distance baselines

In this section, we give the detailed results of MetaLDT over Cora and MimicLDT over all

datasets, as well as the detailed results for short-distance baselines. We report the results by

datasets: Table B.10 (Cora), Table B.11 (PubMed), and Table B.12 (ArXiv). These tables correspond

to the same experiments as the summary table presented in §3.5 (Table 3.1).

154



Table B.12: Detailed Results on ArXiv. OOM means out-of-memory under the GPU limitation.

Long-distance Short-distance (targeted, modification) Node-injection (AFGSM)

MimicLDT Nettack-direct Nettack-indirect FGA IG-FGSM Direct Indirect

Va
ni
lla GCN 0.74 OOM OOM OOM OOM OOM OOM

GraphSAGE 0.73 OOM OOM OOM OOM OOM OOM
GAT 0.70 OOM OOM OOM OOM OOM OOM

Ro
bu

st

GNNGuard 0.64 OOM OOM OOM OOM OOM OOM
SoftMedianGDC 0.59 OOM OOM OOM OOM OOM OOM
JaccardGCN 0.63 OOM OOM OOM OOM OOM OOM
SVDGCN 0.62 OOM OOM OOM OOM OOM OOM
ProGNN 0.58 OOM OOM OOM OOM OOM OOM

A fast volume integral equation solver 
with linear basis functions...for the 
accurate and efficient computation of 
the electro- magnetic scattering from 
highly inhomogeneous ...Numerical 
experiments are conducted to study 
the accuracy and convergence 
properties of the proposed 
framework... 

Target Text
(Unlabeled)

Petri nets with time and cost. We 
consider timed Petri nets, i.e., 
unbounded Petri nets where each 
token carries a real-valued clock. 
Transition arcs are labeled with time 
intervals...

Attack Point Text 
(Label: Logic in Computer Science)

petri net reachability. we study the 
reachability problem for petri nets, i.e., 
the problem of computing the set of 
configurations reachable from a given 
initial state to a given target state... the 
costs incurred by the algorithms are 
bounded by a parameter that captures 
the complexity of the problem 
studied.we exhibit how to compute …

Injected attack text
(Unlabeled)

Figure B.7: An example text generated for a fake node. The attack manages to flip the target node’s label
from Numerical Analysis to Logic in Computer Science.

B.8 Design and evaluation of end-to-end attacks

We describe our extension to MimicLDT that allows it to generate textual features for fake

nodes to attack GNN models over citation graphs.

B.8.1 End-to-end attack design

We assume that the attacker has access to the encoder model weights used by the GNN to

embed textual node features. This assumption is reasonable as pretrained language models, such

as SciBERT [13], are widely available for embedding purpose.

Our design requires the attacker to use the encoder and some corpus of text to train a decoder

model that can be used to generate fake texts from arbitrary embedding. The decoder model is

modified from an existing encoder-decode architecture such as SciBERT. We change the decoder

155



to take a single embedding vector as input instead of an embedding matrix containing a vector

for each token. We also modify the overall encoder-decoder so that the encoder’s output is the

final embedding of the classification token ([CLS]) which is then used as the decoder’s input.

To train the decoder, we fine-tune a pre-trained encoder-decoder model. During the fine-

tuning process, we use the victim’s encoder weights (which are provided as an input) and freeze

them. The fine-tuning process can thus only update decoder weights, and must do so to ensure

that the output sequence is close to the input sequence.

Once we have trained the decoder model, we can use it for end-to-end attack as follows.

First, we generate the fake nodes using MimicLDT (or MetaLDT) and attach them to the existing

graph accordingly. Then, we take the continuous feature vectors of each injected node and pass

them as input to the decoder model, which generates text that the attacker can use to create the

corresponding fake nodes with raw textual features.

B.8.2 End-to-end attack evaluation

We evaluate the end-to-end attack for GraphSAGE over arXiv with SciBERT embedding. We

refer to this dataset as SciBERT-embed-arXiv which is generated by passing the title and abstract

of each paper in the Ogbn-arXiv dataset through SciBERT, and using the encoder’s output (i.e.,

the [CLS] token embedding after the final pooling layer) as the node’s feature in the graph. As

we previously stated (§3.4), across 50 experiments, we observed a poison success rate of 84%.

Furthermore, our manual inspection showed that the generated title and abstract are readable,

and we show examples in Table B.13 and Table B.14.

Finally, we also found that the text generated by the decoder lead to node features that are

close to what was generated by the attack optimization formulation: Figure B.8 shows a CDF of

node feature similarity between nodes injected by the end-to-end attack (after they have been

passed through an encoder) and injected node features generated by the attack optimization, and

over 80% of the nodes have a cosine distance smaller than 0.1.

156



0.0 0.1 0.2 0.3 0.4 0.5 0.6
1-CosineSimilarity Loss

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e 

Di
st

rib
ut

io
n

Figure B.8: An example of successfully poisoned end-to-end attack: the CDF of the 1-CosineSimilarity
loss of 𝑓𝑜𝑝𝑡 and 𝑓 ′𝑜𝑝𝑡 for all injected nodes.

Case study. In Fig B.7, we show an example text generated for an unlabeled fake node to flip

the target node’s label from “Numerical Analysis” to “Logic in Computer Science”. Addtional

examples can be found in Table B.13 and Table B.14.

157



Table B.13: More examples (Part-1) of target node, one base node, and one of the generated fake-text link
to this base. The category (i.e., labels) of the base/target node shown in first column, generated injected
node is unlabelled. Due to space limit, only show partial of the contents.

Generated fake-text
(link to base)

petri net reachability. we study the reachability problem for petri nets, i.e., the problem of computing the
set of configurations reachable from a given initial state to a given target state... the costs incurred by the
algorithms are bounded by a parameter that captures the complexity of the problem studied.we exhibit how
to compute optimal solutions...

Logic in Computer
Science

Base: Title and
Abstract

Petri nets with time and cost. We consider timed Petri nets, i.e., unbounded Petri nets where each token
carries a real-valued clock. Transition arcs are labeled with time intervals...

Numerical Analysis Target: Title and
Abstract

A fast volume integral equation solver with linear basis functions...for the accurate and efficient compu-
tation of the electromagnetic scattering from highly inhomogeneous ...Numerical experiments are con-
ducted to study the accuracy and convergence properties of the proposed framework...

Generated fake-text
(link to base)

on the performance of real time text and speech enhancement in mobile communication systems. in this
paper, we present a comprehensive study on the effectiveness of a real - time text - and - speech enhancement
technique for automatic speech recognition ( asr ) applications. we consider a scenario in which a mobile
phone communicates with a user through a background noise - free background noise channel, while the
phone continuously monitors the speech signal and provides feedback to the user about the quality of its
speech enhancement...as a complement to an extensive performance evaluation in real - life applications...

Information Theory Base: Title and
Abstract

On the performance of selection cooperation with imperfect channel estimation. In this paper, we in-
vestigate the performance of selection cooperation in the presence of imperfect channel estimation. In
particular, we consider a cooperative scenario with multiple relays and amplifyand-forward protocol over
frequency flat fading channels...outage probability and average capacity per bandwidth of the received
signal in the presence of channel estimation errors. A simulation study...

Multimedia Target: Title and
Abstract

High quality low delay music coding in the opus codec. The IETF recently standardized the Opus codec
as RFC6716. Opus targets a wide range of real-time Internet applications by combining a linear prediction
coder with a transform coder. We describe the transform coder, with particular attention to the psychoa-
coustic knowledge built into the format. The result out-performs existing audio codecs that do not operate
under real-time constraints.

Table B.14: More examples (Part-2) of target node, one base node, and one of the generated fake-text link
to this base. The category (i.e., labels) of the base/target node shown in first column, generated injected
node is unlabelled. Due to space limit, only show partial of the contents.

Generated fake-text
(link to base)

uncertainty quantification in automated planning and verification of automated control systems. this paper
presents an uncertainty quantification framework for automated control system verification. uncertainty
quantification is carried out in three steps ... verification of the generated probabilistic model against real -
world constraints. the uncertainty quantification problem is formulated as a mixed integer linear program
( milp ) and solved using a branch - and - bound approach. the results are applied to a case study of the
automated control of a heating, ventilation and air conditioning ( hvac ) system in a residential building...

Computational
Engineering

Base: Title and
Abstract

Heuristic optimization for automated distribution system planning in network integration studies. Net-
work integration studies try to assess the impact of future developments, such as the increase of Renewable
Energy Sources or the introduction of Smart Grid Technologies... This allows the estimation of the ex-
pected cost in massive probabilistic simulations of large numbers of real networks...

Numerical Analysis Target: Title and
Abstract

Numerical verification of affine systems with up to a billion dimensions. Affine systems reachability is
the basis of many verification methods. With further computation, methods exist to reason about richer
models with inputs, nonlinear differential equations, and hybrid dynamics... In this paper, we improve the
scalability of affine systems verification... this direct approach requires an intractable amount of memory
while using an intractable amount of computation time...

Generated fake-text
(link to base)

reactive planning and control of autonomous vehicles in uncertain environments. this paper deals with the
problem of reactively driving an autonomous vehicle in a uncertain environment. in particular, we assume that
the vehicle is equipped with a collision avoidance system, and that the environment is uncertain... the proposed
reactive strategy is able to perform reactively and reliably, while taking into consideration the uncertainties
of both the environment and the vehicle dynamics.

Machine Learning Base: Title and
Abstract

Neural networks trainedwith wifi traces to predict airport passenger behavior. The use of neural networks
to predict airport passenger activity choices inside the terminal is presented in this paper. Three network
architectures are proposed...A real-world case study exemplifies the application of these models, using
anonymous WiFi traces collected at Bologna Airport to train the networks...

Systems and Control Target: Title and
Abstract

An unconditionally stable first order constraint solver for multibody systems. This article describes an
absolutely stable, first-order constraint solverfor multi-rigid body systems that calculates (predicts) con-
straint forces for typical bilateral and unilateral constraints, contact constraints with friction, and many
other constraint types...I assess the approach on some fundamental multibody dynamics problems.

158



C | Appendix: Supplementary Materials

for Chapter 4

C.1 Additional details

C.1.1 Data collection details

Keywords for chunk segmentation

"wait", "double-check", "alternatively",

"make sure", "another way", "verify", "to

confirm"

Table C.1: Keywords we use for identifying reason-
ing path switch and segmenting reasoning trace into
chunks.

Table C.1 shows the keywords we use to

identify beginning of new reasoning paths to

help segmenting reasoning trace into chunks.

For AIME, we use AIME_1983_2024 1 for

training and AIME_2025 2 for testing. For

MATH, we use the original training set and

the 500-example test set released by Hugging-

Face 3. For KnowLogic dataset, we randomly

split the dataset into a training and test set by 80% and 20%, and collect probing data separately.

Table C.2 shows the statistics of collected chunks for each dataset. We use vLLM [109] for

inference and set maximum output length to 30K. Examples whose model completion goes over
1https://huggingface.co/datasets/di-zhang-fdu/AIME_1983_2024
2https://huggingface.co/datasets/yentinglin/aime_2025
3https://huggingface.co/datasets/HuggingFaceH4/MATH-500

159



the maximum output length are discarded.

Reasoning Model #Train
Examples

#Test
Examples

#Train
Chunks

#Test
Chunks

Avg.
Chunk Len.

Positive
Chunks (%)

GSM8K

R1-Distill-Llama-8B 1000 1317 7379 11228 328.0 70.97
R1-Distill-Llama-70B 998 1318 9030 6116 272.4 84.36
R1-Distill-Qwen-1.5B 995 1308 8599 11730 379.0 63.57
R1-Distill-Qwen-7B 1000 1316 5615 7568 302.8 75.87
R1-Distill-Qwen-32B 996 1317 4393 6381 293.1 84.25

MATH

R1-Distill-Llama-8B 1000 491 6259 3380 615.1 76.91
R1-Distill-Llama-70B 996 499 4865 2559 701.5 82.88
R1-Distill-Qwen-1.5B 988 495 7388 4089 996.7 68.46
R1-Distill-Qwen-7B 983 494 5062 2764 713.3 79.77
R1-Distill-Qwen-32B 991 497 4732 2460 678.5 84.40

AIME

R1-Distill-Llama-8B 922 30 7158 323 1652.0 35.24
R1-Distill-Llama-70B 923 30 5443 318 1528.0 50.78
R1-Distill-Qwen-1.5B 892 29 8358 314 1809.4 26.33
R1-Distill-Qwen-7B 922 29 5501 179 1841.8 42.50
R1-Distill-Qwen-32B 868 25 4181 104 1244.1 55.03

KnowLogic

R1-Distill-Llama-8B 986 320 7620 2596 1079.6 44.27
R1-Distill-Llama-70B 996 297 6529 2000 639.7 57.71
R1-Distill-Qwen-1.5B 762 245 6879 2036 1070.0 20.56
R1-Distill-Qwen-7B 938 306 7169 2430 1072.7 42.25
R1-Distill-Qwen-32B 979 315 6131 1827 818.8 57.40

Table C.2: Statistics for obtained probing dataset across task datasets and reasoning models. The incon-
sistency in training examples and test examples number comes from discard of examples with truncated
model completion. The average chunk length is calculated by sampling 1000 chunks from each training
dataset and measured by number of tokens. The positive chunk ratio is calculated based on the training
set.

Figure C.1 is a visualization of chunk representations obtained for different datasets with

R1-Distill-Llama-8B [44]. The domain difference between logical reasoning and mathematical

problems is evident.

160



AIME
GSM8K
KnowLogic
MATH

FigureC.1: T-SNE visualization of chunk representations for different datasets. 1000 chunks are randomly
sampled from each training set and R1-Distill-Llama-8B is used to obtain the representation.

C.1.2 Prompts

Table C.3 shows the prompt we used to elicit reasoning trace from all reasoning models. Note

that for Qwenmodels, the promptwe use is slightly different from its original prompt. We observe

the performance on the benchmark does degrade a little but within a reasonable range. To ensure

the extracted feature is on-policy, we also keep the same prompt when extracting representations

for each reasoning chunk.

Table C.4 is the evaluation prompt we use for Gemini 2.0 Flash [63] for answer extraction and

evaluation based on given reasoning chunks.

161



Inference Prompt

<BOS_TOKEN> <|User|> {instruction}
Please reason step by step, and put your final answer within \boxed{}.
<|Assistant|>

Table C.3: Prompt used for inference with reasoning models.

Evaluation Prompt

Given several chunks of a reasoning trace, along with a ground-truth answer, indepen-
dently evaluate each chunk. If a chunk reaches a result at the end, return the intermedi-
ate result; otherwise, return None if the chunk does not contain an intermediate result
(e.g., pure reflections).
Then, if an intermediate answer exists, compare it to the ground-truth answer. If the
intermediate result in the chunk equals the ground-truth answer, return True; if the
intermediate result in the chunk does not equal the ground-truth answer, return False;
if no intermediate answer exists, return None.
Output in JSON format:
[

{"id": "1", "result": "6 + 9i" / None, "correctness": True / False /
None},

...
]
Input chunks: {reasoning_trace}
Ground-truth answer: {answer}

Table C.4: Prompt used for answer extraction and evaluation with Gemini 2.0 Flash.

C.1.3 Grid search

We perform grid search over hyparameters include learning rate, loss weight scaling factor

𝛼 , weight decay for optimizer, and classifier hidden size 𝑑 . The specific search range for each

hyperparameter can be found in Table C.5, and the resulting optimal hyperparameter settings for

each probing dataset are shown in Table C.6.

162



Hyperparameter Search Space

Learning rate 1e-3, 1e-4, 1e-5
Scaling factor 𝛼 0.3, 0.5, 0.7, 0.9, 1.0, 1.5, 2.0, 3.0
Weight decay 0.001, 0.01, 0.1
Hidden size 𝑑 0, 16, 32

Table C.5: Hyperparameter search space for classifier training.

Model Dataset Learning rate Loss weight 𝛼 Weight decay Hidden size 𝑑

R1-Distill
-Llama-8B

GSM8K 1e-4 3.0 0.1 16
MATH 1e-5 2.0 0.001 0
AIME 1e-5 0.3 0.1 0
KnowLogic 1e-5 0.7 0.1 0

R1-Distill
-Qwen-1.5B

GSM8K 1e-5 2.0 0.1 16
MATH 1e-3 2.0 0.01 16
AIME 1e-5 0.5 0.01 16
KnowLogic 1e-4 0.3 0.001 0

R1-Distill
-Qwen-7B

GSM8K 1e-4 3.0 0.1 0
MATH 1e-4 3.0 0.1 0
AIME 1e-3 0.9 0.1 0
KnowLogic 1e-5 0.9 0.1 0

R1-Distill
-Qwen-32B

GSM8K 1e-3 3.0 0.001 16
MATH 1e-4 2.0 0.1 0
AIME 1e-5 1.0 0.01 16
KnowLogic 1e-5 0.9 0.1 0

R1-Distill
-Llama-70B

GSM8K 1e-4 2.0 0.001 0
MATH 1e-4 3.0 0.001 0
AIME 1e-4 2.0 0.001 0
KnowLogic 1e-3 1.0 0.01 32

QwQ-32B

GSM8K 1e-4 3.0 0.1 0
MATH 1e-3 2.0 0.001 16
AIME 1e-3 3.0 0.01 16
KnowLogic 1e-4 1.5 0.1 0

Table C.6: Results of grid search across reasoning models and datasets.

C.1.4 Further results

Table C.7 and Table C.8 show in-distribution probing performance measured by accuracy,

precision, recall, and macro F1 across reasoning models and datasets.

Table C.9 to Table C.13 show out-of-distribution probing performance trained and test on rep-

163



resentations from R1-Distill-Qwen-1.5B, R1-Distill-Qwen-7B, R1-Distill-Qwen-32B, and QwQ-

32B, respectively.

Reasoning Model GSM8K MATH

Accuracy Precision Recall Macro F1 Accuracy Precision Recall Macro F1

R1-Distill-Llama-8B 0.77 0.85 0.82 0.73 0.80 0.84 0.88 0.75
R1-Distill-Llama-70B 0.91 0.92 0.97 0.82 0.89 0.92 0.93 0.83

R1-Distill-Qwen-1.5B 0.76 0.81 0.81 0.74 0.84 0.84 0.88 0.83
R1-Distill-Qwen-7B 0.84 0.88 0.92 0.77 0.87 0.89 0.94 0.82
R1-Distill-Qwen-32B 0.89 0.91 0.95 0.79 0.89 0.94 0.92 0.85

QwQ-32B 0.83 0.83 0.99 0.49 0.87 0.95 0.89 0.79

Table C.7: Accuracy, precision, recall, and macro F1 score for probes trained and test on GSM8K and
MATH datasets in in-distribution setting.

Reasoning Model AIME KnowLogic

Accuracy Precision Recall Macro F1 Accuracy Precision Recall Macro F1

R1-Distill-Llama-8B 0.85 0.37 0.38 0.64 0.62 0.62 0.41 0.60
R1-Distill-Llama-70B 0.75 0.80 0.54 0.73 0.67 0.79 0.62 0.67

R1-Distill-Qwen-1.5B 0.83 0.45 0.62 0.71 0.72 0.23 0.53 0.42
R1-Distill-Qwen-7B 0.78 0.65 0.64 0.74 0.69 0.60 0.58 0.67
R1-Distill-Qwen-32B 0.91 0.88 0.96 0.91 0.70 0.80 0.67 0.69

QwQ-32B 0.82 0.84 0.85 0.82 0.78 0.82 0.88 0.74

Table C.8: Accuracy, precision, recall, and macro F1 score for probes trained and test on AIME and Know-
Logic datasets in in-distribution setting.

Training
Data

GSM8K MATH AIME KnowLogic

AUC ↑ ECE ↓ AUC ↑ ECE ↓ AUC ↑ ECE ↓ AUC ↑ ECE ↓

GSM8K 0.82 0.04 0.90
(+0.06)

0.07
(+0.04)

0.75
(-0.05)

0.14
(+0.04)

0.62
(-0.05)

0.08
(+0.01)

MATH 0.82
(-0.01)

0.10
(+0.06) 0.84 0.03 0.84

(+0.04)
0.18
(+0.08)

0.63
(-0.04)

0.14
(+0.08)

KnowLogic 0.67
(-0.16)

0.36
(+0.32)

0.73
(-0.11)

0.34
(+0.32)

0.68
(-0.12)

0.05
(-0.05) 0.67 0.07

Table C.9: ROC-AUC scores and ECE of trained probes on out-of-distribution test set. The numbers in
red and green denote performance decrease and increase relative to the probe trained on in-distribution
training set, respectively. R1-Distill-Qwen-1.5B is used as the reasoning model.

164



Training
Data

GSM8K MATH AIME KnowLogic

AUC ↑ ECE ↓ AUC ↑ ECE ↓ AUC ↑ ECE ↓ AUC ↑ ECE ↓

GSM8K 0.82 0.04 0.86
(+0.02)

0.06
(+0.03)

0.76
(-0.04)

0.15
(+0.05)

0.60
(-0.07)

0.17
(+0.10)

MATH 0.86
(+0.04)

0.06
(+0.02) 0.84 0.03 0.73

(-0.07)
0.18
(+0.08)

0.68
(+0.02)

0.17
(+0.10)

KnowLogic 0.81
(-0.02)

0.07
(+0.03)

0.83
(-0.01)

0.10
(+0.07)

0.72
(-0.08)

0.16
(+0.06) 0.67 0.07

Table C.10: ROC-AUC scores and ECE of trained probes on out-of-distribution test set. The numbers in
red and green denote performance decrease and increase relative to the probe trained on in-distribution
training set, respectively. R1-Distill-Qwen-7B is used as the reasoning model.

Training
Data

GSM8K MATH AIME KnowLogic

AUC ↑ ECE ↓ AUC ↑ ECE ↓ AUC ↑ ECE ↓ AUC ↑ ECE ↓

GSM8K 0.82 0.04 0.87
(+0.03)

0.04
(+0.01)

0.98
(+0.17)

0.17
(+0.07)

0.73
(+0.06)

0.06
(-0.01)

MATH 0.89
(+0.06)

0.03
(-0.01) 0.84 0.03 0.97

(+0.16)
0.10
(+0.00)

0.72
(+0.05)

0.15
(+0.08)

KnowLogic 0.83
(+0.00)

0.09
(+0.05)

0.89
(+0.05)

0.10
(+0.07)

0.91
(+0.10)

0.22
(+0.12) 0.67 0.07

Table C.11: ROC-AUC scores and ECE of trained probes on out-of-distribution test set. The numbers in
red and green denote performance decrease and increase relative to the probe trained on in-distribution
training set, respectively. R1-Distill-Qwen-32B is used as the reasoning model.

Training
Data

GSM8K MATH AIME KnowLogic

AUC ↑ ECE ↓ AUC ↑ ECE ↓ AUC ↑ ECE ↓ AUC ↑ ECE ↓

GSM8K 0.82 0.04 0.88
(+0.04)

0.09
(+0.06)

0.71
(-0.09)

0.17
(+0.07)

0.62
(-0.04)

0.25
(+0.18)

MATH 0.87
(+0.05)

0.06
(+0.02) 0.84 0.03 0.75

(-0.05)
0.16
(+0.06)

0.73
(+0.06)

0.20
(+0.13)

KnowLogic 0.84
(+0.01)

0.10
(+0.06)

0.87
(+0.03)

0.13
(+0.10)

0.70
(-0.10)

0.12
(+0.02) 0.67 0.07

Table C.12: ROC-AUC scores and ECE of trained probes on out-of-distribution test set. The numbers in
red and green denote performance decrease and increase relative to the probe trained on in-distribution
training set, respectively. R1-Distill-Llama-70B is used as the reasoning model.

165



Training
Data

GSM8K MATH AIME KnowLogic

AUC ↑ ECE ↓ AUC ↑ ECE ↓ AUC ↑ ECE ↓ AUC ↑ ECE ↓

GSM8K 0.82 0.04 0.74
(-0.10)

0.14
(+0.12)

0.73
(-0.07)

0.23
(+0.13)

0.61
(-0.06)

0.29
(+0.23)

MATH 0.55
(-0.27)

0.22
(+0.18) 0.84 0.03 0.87

(+0.07)
0.07
(-0.03)

0.76
(+0.09)

0.11
(+0.04)

KnowLogic 0.61
(-0.22)

0.14
(+0.11)

0.81
(-0.03)

0.05
(+0.02)

0.84
(+0.04)

0.07
(-0.03) 0.67 0.07

Table C.13: ROC-AUC scores and ECE of trained probes on out-of-distribution test set. The numbers in
red and green denote performance decrease and increase relative to the probe trained on in-distribution
training set, respectively. QwQ-32B is used as the reasoning model.

166



Bibliography

[1] Ossama Abdel-Hamid et al. “Convolutional neural networks for speech recognition”. In:

IEEE/ACM Transactions on audio, speech, and language processing 22.10 (2014), pp. 1533–

1545.

[2] Akshay Agrawal et al. “A rewriting system for convex optimization problems”. In: Journal

of Control and Decision 5.1 (2018), pp. 42–60.

[3] Matthew Aldridge, Oliver Johnson, and Jonathan Scarlett. “Group Testing: An Informa-

tion Theory Perspective”. In: Foundations and Trends® in Communications and Information

Theory 15.3-4 (2019), pp. 196–392. issn: 1567-2190. doi: 10.1561/0100000099.

[4] Joshua D Angrist and Jörn-Steffen Pischke. Mostly harmless econometrics: An empiricist’s

companion. Princeton university press, 2008.

[5] Amos Azaria and TomMitchell. The Internal State of an LLM Knows When It’s Lying. 2023.

[6] Woonhyuk Baek. wbaek/torchskeleton. Online; accessed 2021-02-07.

[7] Yuntao Bai et al. Constitutional AI: Harmlessness from AI Feedback. 2022.

[8] B. J. Balakumar. glmnet_python.

[9] Nathalie Baracaldo et al. “Mitigating poisoning attacks on machine learning models: A

data provenance based approach”. In: Proceedings of the 10th ACM Workshop on Artificial

Intelligence and Security. 2017, pp. 103–110.

167

https://doi.org/10.1561/0100000099


[10] Marco Barreno et al. “The security of machine learning”. In:Machine Learning 81.2 (2010),

pp. 121–148.

[11] Samyadeep Basu, Philip Pope, and Soheil Feizi. “Influence functions in deep learning are

fragile”. In: arXiv preprint arXiv:2006.14651 (2020).

[12] Yonatan Belinkov. Probing Classifiers: Promises, Shortcomings, and Advances. 2021.

[13] Iz Beltagy, Kyle Lo, and Arman Cohan. “SciBERT: A Pretrained Language Model for Sci-

entific Text”. In: arXiv 1903.10676 (2019).

[14] Yoshua Bengio. “Gradient-Based Optimization of Hyperparameters”. In: Neural Compu-

tation 12.8 (2000), pp. 1889–1900. doi: 10.1162/089976600300015187.

[15] Aleksandar Bojchevski and Stephan Günnemann. “Adversarial attacks on node embed-

dings via graph poisoning”. In: International Conference onMachine Learning (ICML). 2019.

[16] Howard D Bondell and Brian J Reich. “Simultaneous factor selection and collapsing levels

in ANOVA”. In: Biometrics 65.1 (2009), pp. 169–177.

[17] Leo Breiman. “Random Forests”. In: Mach. Learn. 45.1 (Oct. 2001), pp. 5–32. issn: 0885-

6125. doi: 10.1023/A:1010933404324.

[18] Glenn W Brier. “Verification of forecasts expressed in terms of probability”. In: Monthly

weather review 78.1 (1950), pp. 1–3.

[19] Tom Brown et al. “Language models are few-shot learners”. In: Advances in neural infor-

mation processing systems 33 (2020), pp. 1877–1901.

[20] Collin Burns et al. Discovering Latent Knowledge in Language Models Without Supervision.

2024.

[21] Emmanuel Candes et al. “Panning for gold: Model-X knockoffs for high-dimensional con-

trolled variable selection”. In: arXiv preprint arXiv:1610.02351 (2016).

168

https://doi.org/10.1162/089976600300015187
https://doi.org/10.1023/A:1010933404324


[22] Emmanuel J Candès et al. “Compressive sampling”. In: Proceedings of the international

congress of mathematicians. 2006.

[23] Aleksandar Chakarov et al. “Debugging machine learning tasks”. In: arXiv:1603.07292

(2016).

[24] Heng Chang et al. “A restricted black-box adversarial framework towards attacking graph

embeddingmodels”. In: Proceedings of the AAAI Conference onArtificial Intelligence. Vol. 34.

04. 2020, pp. 3389–3396.

[25] Bryant Chen et al. “Detecting backdoor attacks on deep neural networks by activation

clustering”. In: arXiv preprint arXiv:1811.03728 (2018).

[26] Jinyin Chen et al. “Fast gradient attack on network embedding”. In: arXiv:1809.02797

(2018).

[27] Jinyin Chen et al. “MGA: momentum gradient attack on network”. In: IEEE Transactions

on Computational Social Systems 8.1 (2020), pp. 99–109.

[28] Xingyu Chen et al. Do NOT Think That Much for 2+3=? On the Overthinking of o1-Like

LLMs. 2025.

[29] Xinyun Chen et al. “Targeted backdoor attacks on deep learning systems using data poi-

soning”. In: arXiv preprint arXiv:1712.05526 (2017).

[30] Yongqiang Chen et al. “Understanding and improving graph injection attack by promoting

unnoticeability”. In: International Conference on Learning Representations (ICLR). 2022.

[31] Edward Chou et al. “Sentinet: Detecting physical attacks against deep learning systems”.

In: (2018).

[32] Xu Chu, Ihab F Ilyas, and Paolo Papotti. “Discovering denial constraints”. In: Proceedings

of the VLDB Endowment 6.13 (2013), pp. 1498–1509.

169



[33] Xu Chu, Ihab F Ilyas, and Paolo Papotti. “Holistic data cleaning: Putting violations into

context”. In: 2013 IEEE 29th International Conference on Data Engineering (ICDE). IEEE.

2013, pp. 458–469.

[34] Karl Cobbe et al. Training Verifiers to Solve Math Word Problems. 2021.

[35] Gregory Cohen et al. “EMNIST: Extending MNIST to handwritten letters”. In: 2017 Inter-

national Joint Conference on Neural Networks (IJCNN). IEEE. 2017, pp. 2921–2926.

[36] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. “Certified Adversarial Robustness via

Randomized Smoothing”. In: Proceedings of the 36th International Conference on Machine

Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of

Machine Learning Research. PMLR, Sept. 2019, pp. 1310–1320.

[37] Ian Covert and Su-In Lee. “Improving KernelSHAP: Practical Shapley Value Estimation

Using Linear Regression”. In: International Conference on Artificial Intelligence and Statis-

tics. PMLR. 2021, pp. 3457–3465.

[38] Antonia Creswell andMurray Shanahan. Faithful Reasoning Using Large LanguageModels.

2022.

[39] Enyan Dai et al. “Unnoticeable Backdoor Attacks on Graph Neural Networks”. In: (2023).

[40] Hanjun Dai et al. “Adversarial attack on graph structured data”. In: International confer-

ence on machine learning (ICML). 2018.

[41] Mehul Damani et al. Learning How Hard to Think: Input-Adaptive Allocation of LM Com-

putation. 2024.

[42] Tirthankar Dasgupta, Natesh S Pillai, and Donald B Rubin. “Causal inference from 2 K

factorial designs by using potential outcomes”. In: Journal of the Royal Statistical Society:

Series B: Statistical Methodology (2015), pp. 727–753.

[43] DeepMind. AI solves IMO problems at silver medal level. Accessed: 2025-03-24. 2024.

170



[44] DeepSeek-AI. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement

Learning. 2025.

[45] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Un-

derstanding. 2019.

[46] Steven Diamond and Stephen Boyd. “CVXPY: A Python-embeddedmodeling language for

convex optimization”. In: Journal of Machine Learning Research 17.83 (2016), pp. 1–5.

[47] Bao Gia Doan, Ehsan Abbasnejad, and Damith C Ranasinghe. “Februus: Input purification

defense against trojan attacks on deep neural network systems”. In: Annual Computer

Security Applications Conference. 2020, pp. 897–912.

[48] Mohamad Dolatshah et al. “Cleaning Crowdsourced Labels Using Oracles for Statistical

Classification”. In: Proc. VLDB Endow. 12.4 (Dec. 2018), pp. 376–389. issn: 2150-8097. doi:

10.14778/3297753.3297758.

[49] Alexandre Duval and Fragkiskos D Malliaros. “Graphsvx: Shapley value explanations for

graph neural networks”. In:Machine Learning and Knowledge Discovery in Databases. Re-

search Track: European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021,

Proceedings, Part II 21. Springer. 2021, pp. 302–318.

[50] Naoki Egami and Kosuke Imai. “Causal interaction in factorial experiments: Application

to conjoint analysis”. In: Journal of the American Statistical Association (2018).

[51] Negin Entezari et al. “All you need is low (rank) defending against adversarial attacks

on graphs”. In: Proceedings of the 13th International Conference on Web Search and Data

Mining. 2020, pp. 169–177.

[52] Wenqi Fan et al. “Jointly Attacking Graph Neural Network and its Explanations”. In: 2023

IEEE 39th International Conference on Data Engineering (ICDE). 2023, pp. 654–667. doi:

10.1109/ICDE55515.2023.00056.

171

https://doi.org/10.14778/3297753.3297758
https://doi.org/10.1109/ICDE55515.2023.00056


[53] Junfeng Fang et al. “Evaluating Post-hoc Explanations for Graph Neural Networks via

Robustness Analysis”. In: Thirty-seventh Conference on Neural Information Processing Sys-

tems. 2023.

[54] Vitaly Feldman and Chiyuan Zhang. “What neural networks memorize and why: Discov-

ering the long tail via influence estimation”. In: arXiv preprint arXiv:2008.03703 (2020).

[55] Jiazhan Feng et al. Language Models can be Logical Solvers. 2023.

[56] Mohamed Amine Ferrag, Norbert Tihanyi, and Merouane Debbah. From LLM Reasoning

to Autonomous AI Agents: A Comprehensive Review. 2025.

[57] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-Agnostic Meta-Learning for Fast

Adaptation of Deep Networks”. In: Proceedings of the 34th International Conference on

Machine Learning. 2017.

[58] Christopher Frye, Colin Rowat, and Ilya Feige. “Asymmetric Shapley values: incorporating

causal knowledge into model-agnostic explainability”. In: Advances in Neural Information

Processing Systems (2020).

[59] Yichao Fu et al. Efficiently Serving LLM Reasoning Programs with Certaindex. 2024.

[60] Yansong Gao et al. “Strip: A defence against trojan attacks on deep neural networks”. In:

Proceedings of the 35th Annual Computer Security Applications Conference. 2019, pp. 113–

125.

[61] Simon Geisler et al. “Robustness of Graph Neural Networks at Scale”. In: Neural Informa-

tion Processing Systems (NeurIPS 2021). 2021.

[62] Simon Geisler et al. “Robustness of graph neural networks at scale”. In:Advances in Neural

Information Processing Systems. 2021.

[63] Gemini-Team. Gemini: A Family of Highly Capable Multimodal Models. 2024.

172



[64] Amirata Ghorbani, Michael Kim, and James Zou. “A distributional framework for data

valuation”. In: International Conference on Machine Learning. PMLR. 2020, pp. 3535–3544.

[65] Amirata Ghorbani and James Zou. “Data shapley: Equitable valuation of data for machine

learning”. In: International Conference on Machine Learning. PMLR. 2019, pp. 2242–2251.

[66] BenGoertzel. “Artificial general intelligence: concept, state of the art, and future prospects”.

In: Journal of Artificial General Intelligence 5.1 (2014), p. 1.

[67] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and Harnessing Ad-

versarial Examples”. In: ICLR. 2015.

[68] Aaron Grattafiori et al. The Llama 3 Herd of Models. 2024.

[69] Google Research Group. “PaLM: scaling language modeling with pathways”. In: J. Mach.

Learn. Res. 24.1 (Jan. 2023). issn: 1532-4435.

[70] Jens Hainmueller, Daniel J Hopkins, and Teppei Yamamoto. “Causal inference in conjoint

analysis: Understanding multidimensional choices via stated preference experiments”. In:

Political analysis 22.1 (2014), pp. 1–30.

[71] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation learning on

large graphs”. In: Advances in neural information processing systems 30 (2017).

[72] William L. Hamilton, Rex Ying, and Jure Leskovec. “Inductive Representation Learning

on Large Graphs”. In: Neural Information Processing Systems (NIPS 2017). 2017.

[73] Zayd Hammoudeh and Daniel Lowd. “Simple, Attack-Agnostic Defense Against Targeted

Training Set Attacks Using Cosine Similarity”. In: ().

[74] Chris Harris, Richard Pymar, and Colin Rowat. “Joint Shapley values: a measure of joint

feature importance”. In: International Conference on Learning Representations. 2022.

[75] Trevor Hastie, Junyang Qian, and Kenneth Tay. An Introduction to glmnet. 2016.

173



[76] Jonathan Hayase et al. “SPECTRE: Defending Against Backdoor Attacks Using Robust

Statistics”. In: arXiv preprint arXiv:2104.11315 (2021).

[77] Kaiming He et al. Deep Residual Learning for Image Recognition. 2015.

[78] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of the

IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

[79] M.A. Hearst et al. “Support vector machines”. In: IEEE Intelligent Systems and their Appli-

cations 13.4 (1998), pp. 18–28. doi: 10.1109/5254.708428.

[80] Joseph M Hellerstein. “Quantitative data cleaning for large databases”. In: United Nations

Economic Commission for Europe (UNECE) 25 (2008).

[81] Dan Hendrycks et al. Measuring Mathematical Problem Solving With the MATH Dataset.

2021.

[82] Weihua Hu et al. “Open Graph Benchmark: Datasets for Machine Learning on Graphs”.

In: arXiv 2005.00687 (2021).

[83] Weihua Hu et al. “Open graph benchmark: datasets for machine learning on graphs”. In:

Proceedings of the 34th International Conference on Neural Information Processing Systems.

NIPS ’20. Vancouver, BC, Canada: Curran Associates Inc., 2020. isbn: 9781713829546.

[84] Qiang Huang et al. “Graphlime: Local interpretable model explanations for graph neural

networks”. In: IEEE Transactions on Knowledge and Data Engineering (2022).

[85] W Ronny Huang et al. “Metapoison: Practical general-purpose clean-label data poison-

ing”. In: Advances in Neural Information Processing Systems (2020).

[86] G.Tusnady I. Csiszar. “Information Geometry and Alternating Minimization Procedures”.

In: (1984).

[87] Andrew Ilyas et al. “Datamodels: Predicting predictions from training data”. In: arXiv

preprint arXiv:2202.00622 (2022).

174

https://doi.org/10.1109/5254.708428


[88] Guido W Imbens and Donald B Rubin. Causal inference in statistics, social, and biomedical

sciences. Cambridge University Press, 2015.

[89] Matthew Jagielski et al. “Manipulating machine learning: Poisoning attacks and counter-

measures for regression learning”. In: 2018 IEEE Symposium on Security and Privacy (SP).

IEEE. 2018, pp. 19–35.

[90] Neil Jethani et al. “FastSHAP: Real-Time Shapley Value Estimation”. In: arXiv e-prints

(2021), arXiv–2107.

[91] Ruoxi Jia. Group Testing Implementation. Oct. 2021.

[92] Ruoxi Jia et al. “Towards efficient data valuation based on the shapley value”. In: The 22nd

International Conference on Artificial Intelligence and Statistics. PMLR. 2019, pp. 1167–1176.

[93] Chao Jiang et al. “Camouflaged poisoning attack on graph neural networks”. In: Proceed-

ings of the 2022 International Conference on Multimedia Retrieval. 2022, pp. 451–461.

[94] Wei Jin et al. “Adversarial Attacks and Defenses on Graphs: A Review and Empirical

Study”. In: CoRR abs/2003.00653 (2020).

[95] Wei Jin et al. “Graph Structure Learning for Robust Graph Neural Networks”. In: Knowl-

edge Discovery and Data Mining (KDD). 2020.

[96] Mingxuan Ju et al. “Let Graph be the Go Board: Gradient-free Node Injection Attack for

Graph Neural Networks via Reinforcement Learning”. In: Thirty-Seventh AAAI Conference

on Artificial Intelligence. 2023.

[97] Joseph DY Kang, Joseph L Schafer, et al. “Demystifying double robustness: A compari-

son of alternative strategies for estimating a population mean from incomplete data”. In:

Statistical science 22.4 (2007), pp. 523–539.

[98] Sanyam Kapoor et al. Large Language Models Must Be Taught to Know What They Don’t

Know. 2024.

175



[99] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In:

arXiv preprint arXiv:1412.6980 (2014).

[100] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2017.

[101] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph Convolu-

tional Networks”. In: International Conference on Learning Representations. 2017.

[102] PangWei Koh and Percy Liang. “Understanding black-box predictions via influence func-

tions”. In: International Conference on Machine Learning. PMLR. 2017, pp. 1885–1894.

[103] Pang Wei Koh, Jacob Steinhardt, and Percy Liang. “Stronger data poisoning attacks break

data sanitization defenses”. In: arXiv preprint arXiv:1811.00741 (2018).

[104] PangWei Koh et al. “On the accuracy of influence functions for measuring group effects”.

In: arXiv preprint arXiv:1905.13289 (2019).

[105] Sanjay Krishnan et al. “Boostclean: Automated error detection and repair for machine

learning”. In: arXiv preprint arXiv:1711.01299 (2017).

[106] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features from tiny

images”. In: (2009).

[107] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet classification with

deep convolutional neural networks”. In: Proceedings of the 26th International Conference

on Neural Information Processing Systems - Volume 1. NIPS’12. Lake Tahoe, Nevada: Curran

Associates Inc., 2012, pp. 1097–1105.

[108] Kuangliu. kuangliu/pytorch-cifar. Online; accessed 2021-02-07.

[109] Woosuk Kwon et al. Efficient Memory Management for Large Language Model Serving with

PagedAttention. 2023.

176



[110] Yongchan Kwon and James Zou. “Beta Shapley: a Unified and Noise-reduced Data Valu-

ation Framework for Machine Learning”. In: International Conference on Artificial Intelli-

gence and Statistics. 2022.

[111] Long Hei Matthew Lam, Ramya Keerthy Thatikonda, and Ehsan Shareghi. A Closer Look

at Logical Reasoning with LLMs: The Choice of Tool Matters. 2024.

[112] Guillaume Lecué, Shahar Mendelson, et al. “Regularization and the small-ball method i:

sparse recovery”. In: The Annals of Statistics 46.2 (2018), pp. 611–641.

[113] Guillaume Lecué and Shahar Mendelson. “Regularization and the small-ball method II:

complexity dependent error rates”. In: The Journal of Machine Learning Research 18.1

(2017), pp. 5356–5403.

[114] Mathias Lecuyer et al. “Sunlight: Fine-Grained Targeting Detection at Scale with Statis-

tical Confidence”. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security. CCS ’15. 2015.

[115] Patrick Lewis et al. “Retrieval-augmented generation for knowledge-intensive nlp tasks”.

In: Advances in neural information processing systems 33 (2020), pp. 9459–9474.

[116] Bai Li et al. “Certified adversarial robustness with additive noise”. In: Proceedings of the

33rd International Conference on Neural Information Processing Systems. Red Hook, NY,

USA: Curran Associates Inc., 2019.

[117] Xuhong Li et al. “Interpretable deep learning: Interpretation, interpretability, trustwor-

thiness, and beyond”. In: Knowledge and Information Systems 64.12 (2022), pp. 3197–3234.

[118] Yiwei Li et al. Escape Sky-high Cost: Early-stopping Self-Consistency for Multi-step Reason-

ing. 2024.

[119] Hunter Lightman et al. Let’s Verify Step by Step. 2023.

177



[120] Stephanie Lin, Jacob Hilton, and Owain Evans. Teaching Models to Express Their Uncer-

tainty in Words. 2022.

[121] Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. “Explainable ai: A

review of machine learning interpretability methods”. In: Entropy 23.1 (2020), p. 18.

[122] Zhan Ling et al. Deductive Verification of Chain-of-Thought Reasoning. 2023.

[123] Stan Lipovetsky and Michael Conklin. “Analysis of regression in game theory approach”.

In: Applied Stochastic Models in Business and Industry (2001).

[124] Hanmeng Liu et al. Logical Reasoning in Large Language Models: A Survey. 2025.

[125] Xuanqing Liu et al. “A unified framework for data poisoning attack to graph-based semi-

supervised learning”. In: (2019).

[126] Scott M Lundberg and Su-In Lee. “A unified approach to interpreting model predictions”.

In: Proceedings of the 31st international conference on neural information processing systems.

2017, pp. 4768–4777.

[127] Dongsheng Luo et al. “Parameterized explainer for graph neural network”. In: Advances

in neural information processing systems 33 (2020), pp. 19620–19631.

[128] Jiaqi Ma, Shuangrui Ding, and Qiaozhu Mei. “Towards more practical adversarial at-

tacks on graph neural networks”. In: Advances in neural information processing systems

(NeurIPS). 2020.

[129] Aman Madaan et al. Self-Refine: Iterative Refinement with Self-Feedback. 2023.

[130] Aleksander Madry et al. “Towards Deep Learning Models Resistant to Adversarial At-

tacks”. In: ICLR. 2018.

[131] SasanMaleki et al. Bounding the Estimation Error of Sampling-based Shapley Value Approx-

imation. 2014.

178



[132] Jonathan I Maletic and Andrian Marcus. “Data Cleansing: Beyond Integrity Analysis.” In:

Iq. Citeseer. 2000, pp. 200–209.

[133] Rohin Manvi, Anikait Singh, and Stefano Ermon. Adaptive Inference-Time Compute: LLMs

Can Predict if They Can Do Better, Even Mid-Generation. 2024.

[134] Guilherme BrandãoMartins, João Paulo Papa, andHojjat Adeli. “Deep learning techniques

for recommender systems based on collaborative filtering”. In: Expert Systems 37.6 (2020),

e12647.

[135] Sabrina J. Mielke et al. “Reducing Conversational Agents’ Overconfidence Through Lin-

guistic Calibration”. In: Transactions of the Association for Computational Linguistics 10

(2022). Ed. by Brian Roark and Ani Nenkova, pp. 857–872. doi: 10.1162/tacl_a_00494.

[136] Rory Mitchell et al. “Sampling permutations for Shapley value estimation”. In: (2022).

[137] Felix Mujkanovic et al. “Are Defenses for Graph Neural Networks Robust?” In: Advances

in Neural Information Processing Systems 35 (NeurIPS 2022). 2022.

[138] Tergel Munkhbat et al. Self-Training Elicits Concise Reasoning in Large Language Models.

2025.

[139] Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. “Obtaining well cal-

ibrated probabilities using bayesian binning”. In: Proceedings of the AAAI conference on

artificial intelligence. Vol. 29. 1. 2015.

[140] Ali Bou Nassif et al. “Speech recognition using deep neural networks: A systematic re-

view”. In: IEEE access 7 (2019), pp. 19143–19165.

[141] Toan Nguyen Thanh et al. “Poisoning GNN-based recommender systems with generative

surrogate-based attacks”. In: ACM Transactions on Information Systems 41.3 (2023), pp. 1–

24.

179

https://doi.org/10.1162/tacl_a_00494


[142] JianmoNi, Jiacheng Li, and JulianMcAuley. “Justifying Recommendations usingDistantly-

Labeled Reviews and Fine-Grained Aspects”. In: Proceedings of the 2019 Conference on

Empirical Methods in Natural Language Processing and the 9th International Joint Confer-

ence on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association

for Computational Linguistics, Nov. 2019, pp. 188–197. doi: 10.18653/v1/D19-1018.

[143] OpenAI. OpenAI o1 System Card. 2024.

[144] Debjit Paul et al. REFINER: Reasoning Feedback on Intermediate Representations. 2024.

[145] Edouard Pauwels. Lecture notes: Statistics, optimization and algorithms in high dimension.

2020.

[146] Bezalel Peleg and Peter Sudhölter. Introduction to the theory of cooperative games. Vol. 34.

Springer Science & Business Media, 2007.

[147] Neehar Peri et al. “Deep k-NN defense against clean-label data poisoning attacks”. In:

European Conference on Computer Vision. Springer. 2020, pp. 55–70.

[148] Justin B. Post and Howard D. Bondell. “Factor Selection and Structural Identification in

the Interaction ANOVA Model”. en. In: Biometrics 69.1 (2013), pp. 70–79. issn: 1541-0420.

doi: https://doi.org/10.1111/j.1541-0420.2012.01810.x.

[149] Garima Pruthi et al. “Estimating Training Data Influence by Tracing Gradient Descent”.

In: Advances in Neural Information Processing Systems 33 (2020).

[150] PyTorch. pytorch/examples. en. Online; accessed 2021-02-07.

[151] PyTorch. pytorch/torchvision/resnet. en. Online; accessed 2021-03-30.

[152] Holger Rauhut. “Compressive sensing and structured random matrices”. In: Theoretical

foundations and numerical methods for sparse recovery 9.1 (2010), p. 92.

[153] Omar Rivasplata. “Subgaussian random variables: An expository note”. en. In: (), p. 11.

180

https://doi.org/10.18653/v1/D19-1018
https://doi.org/https://doi.org/10.1111/j.1541-0420.2012.01810.x


[154] Olga Russakovsky et al. “Imagenet large scale visual recognition challenge”. In: Interna-

tional journal of computer vision 115.3 (2015), pp. 211–252.

[155] Ali Shafahi et al. “Poison frogs! targeted clean-label poisoning attacks on neural net-

works”. In: arXiv preprint arXiv:1804.00792 (2018).

[156] Ali Shafahi et al. “Poison frogs! targeted clean-label poisoning attacks on neural net-

works”. In: Advances in neural information processing systems 31 (2018).

[157] L. S Shapley. “A value for n-person games”. In: Contributions to the Theory of Games 2.28

(1953), pp. 307–317.

[158] Shiqi Shen, Shruti Tople, and Prateek Saxena. “Auror: Defending against poisoning attacks

in collaborative deep learning systems”. In: Proceedings of the 32nd Annual Conference on

Computer Security Applications. 2016, pp. 508–519.

[159] Noah Shinn et al. Reflexion: Language Agents with Verbal Reinforcement Learning. 2023.

[160] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-

Scale Image Recognition. 2015.

[161] Yang Sui et al. Stop Overthinking: A Survey on Efficient Reasoning for Large Language Mod-

els. 2025.

[162] Yiwei Sun et al. “Adversarial attacks on graph neural networks via node injections: A hier-

archical reinforcement learning approach”. In: Proceedings of theWeb Conference (WWW).

2020.

[163] Di Tang et al. “Demon in the variant: Statistical analysis of dnns for robust backdoor

contamination detection”. In: 30th {USENIX} Security Symposium ({USENIX} Security 21).

2021.

[164] Shuchang Tao et al. Adversarial Camouflage for Node Injection Attack on Graphs. 2023.

181



[165] Shuchang Tao et al. “Adversarial Immunization for Certifiable Robustness on Graphs”.

In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining.

WSDM ’21. Virtual Event, Israel: Association for Computing Machinery, 2021, pp. 698–

706. isbn: 9781450382977. doi: 10.1145/3437963.3441782.

[166] Shuchang Tao et al. “GraphAdversarial Immunization for Certifiable Robustness”. In: IEEE

Transactions on Knowledge and Data Engineering (2023).

[167] Shuchang Tao et al. “Rethinking the Imperceptibility of Node Injection Attack on Graphs”.

In: arXiv 2208.01819 ().

[168] Shuchang Tao et al. “Single node injection attack against graph neural networks”. In:

Proceedings of the 30th ACM International Conference on Information & Knowledge Man-

agement. 2021, pp. 1794–1803.

[169] Qwen Team. QwQ-32B: Embracing the Power of Reinforcement Learning. Mar. 2025.

[170] Qiaoying Teng et al. “A survey on the interpretability of deep learning in medical diag-

nosis”. In: Multimedia Systems 28.6 (2022), pp. 2335–2355.

[171] Katherine Tian et al. Just Ask for Calibration: Strategies for Eliciting Calibrated Confidence

Scores from Language Models Fine-Tuned with Human Feedback. 2023.

[172] Hugo Touvron et al. LLaMA: Open and Efficient Foundation Language Models. 2023.

[173] Hugo Touvron et al. “Resmlp: Feedforward networks for image classification with data-

efficient training”. In: IEEE transactions on pattern analysis and machine intelligence 45.4

(2022), pp. 5314–5321.

[174] Brandon Tran, Jerry Li, and Aleksander Madry. “Spectral signatures in backdoor attacks”.

In: arXiv preprint arXiv:1811.00636 (2018).

[175] Ben Trevett. bentrevett/pytorch-sentiment-analysis/. en. Online; accessed 2021-03-10.

182

https://doi.org/10.1145/3437963.3441782


[176] Sakshi Udeshi et al. “Model agnostic defence against backdoor attacks in machine learn-

ing”. In: arXiv preprint arXiv:1908.02203 (2019).

[177] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information pro-

cessing systems 30 (2017).

[178] Akshaj Kumar Veldanda et al. “NNoculation: Broad spectrum and targeted treatment of

backdoored DNNs”. In: arXiv preprint arXiv:2002.08313 (2020).

[179] Petar Veličković et al. “Graph Attention Networks”. In: International Conference on Learn-

ing Representations. 2018.

[180] Binghui Wang and Neil Zhenqiang Gong. “Attacking graph-based classification via ma-

nipulating the graph structure”. In: Proceedings of the 2019 ACM SIGSAC Conference on

Computer and Communications Security. 2019.

[181] Binghui Wang, Youqi Li, and Pan Zhou. “Bandits for Structure Perturbation-based Black-

box Attacks to Graph Neural Networks with Theoretical Guarantees”. In: Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022, pp. 13379–

13387.

[182] Binghui Wang et al. “Certified Robustness of Graph Neural Networks against Adversarial

Structural Perturbation”. In: Proceedings of the 27th ACM SIGKDD Conference on Knowl-

edge Discovery & Data Mining. KDD ’21. Virtual Event, Singapore: Association for Com-

puting Machinery, 2021, pp. 1645–1653. isbn: 9781450383325. doi: 10.1145/3447548.

3467295.

[183] Bolun Wang et al. “Neural cleanse: Identifying and mitigating backdoor attacks in neural

networks”. In: 2019 IEEE Symposium on Security and Privacy (SP). IEEE. 2019, pp. 707–723.

[184] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. “Collaborative deep learning for recom-

mender systems”. In: Proceedings of the 21th ACM SIGKDD international conference on

knowledge discovery and data mining. 2015, pp. 1235–1244.

183

https://doi.org/10.1145/3447548.3467295
https://doi.org/10.1145/3447548.3467295


[185] Jihong Wang et al. “Scalable attack on graph data by injecting vicious nodes”. In: Data

Mining and Knowledge Discovery 34 (2020), pp. 1363–1389.

[186] JihongWang et al. “Scalable attack on graph data by injecting vicious nodes”. In:DataMin.

Knowl. Discov. 34.5 (Sept. 2020), pp. 1363–1389. issn: 1384-5810. doi: 10.1007/s10618-

020-00696-7.

[187] Qineng Wang et al. “Rethinking the Bounds of LLM Reasoning: Are Multi-Agent Discus-

sions the Key?” In: Proceedings of the 62nd Annual Meeting of the Association for Computa-

tional Linguistics (Volume 1: Long Papers). Ed. by Lun-Wei Ku, Andre Martins, and Vivek

Srikumar. Bangkok, Thailand: Association for Computational Linguistics, Aug. 2024. doi:

10.18653/v1/2024.acl-long.331.

[188] Xiaoyun Wang et al. “Attack graph convolutional networks by adding fake nodes”. In:

arXiv preprint arXiv:1810.10751 (2018).

[189] XinglinWang et al.Make Every Penny Count: Difficulty-Adaptive Self-Consistency for Cost-

Efficient Reasoning. 2025.

[190] M. Waniek et al. “Hiding individuals and communities in a social network”. In: Nature

Human Behaviour 2 (2018).

[191] JasonWei et al. “Chain-of-thought prompting elicits reasoning in large language models”.

In: Advances in neural information processing systems 35 (2022), pp. 24824–24837.

[192] YixuanWeng et al. Large Language Models are Better Reasoners with Self-Verification. 2023.

[193] WikipediaContributors. Group testing. en. Online; accessed 2021-02-19. Jan. 2021.

[194] Brian Williamson and Jean Feng. “Efficient nonparametric statistical inference on popu-

lation feature importance using Shapley values”. In: International Conference on Machine

Learning. 2020.

184

https://doi.org/10.1007/s10618-020-00696-7
https://doi.org/10.1007/s10618-020-00696-7
https://doi.org/10.18653/v1/2024.acl-long.331


[195] Huijun Wu et al. “Adversarial examples on graph data: Deep insights into attack and

defense”. In: International Joint Conference on Artificial Intelligence. 2019.

[196] Weiyuan Wu et al. “Complaint-driven training data debugging for query 2.0”. In: Pro-

ceedings of the 2020 ACM SIGMOD International Conference on Management of Data. 2020,

pp. 1317–1334.

[197] Zhaohan Xi et al. “Graph Backdoor.” In: USENIX Security Symposium. 2021, pp. 1523–1540.

[198] zaishuo xia et al. “GNNCert: Deterministic Certification of GraphNeural Networks against

Adversarial Perturbations”. In: The Twelfth International Conference on Learning Represen-

tations. 2024.

[199] Miao Xiong et al. Can LLMs Express Their Uncertainty? An Empirical Evaluation of Confi-

dence Elicitation in LLMs. 2024.

[200] Kaidi Xu et al. “Topology attack and defense for graph neural networks: An optimization

perspective”. In: International Joint Conference on Artificial Intelligence. 2019.

[201] Keyulu Xu et al. “How Powerful are Graph Neural Networks?” In: International Conference

on Learning Representations. 2019.

[202] Mayi Xu et al. “Adaption-of-Thought: Learning Question Difficulty Improves Large Lan-

guage Models for Reasoning”. In: Proceedings of the 2024 Conference on Empirical Meth-

ods in Natural Language Processing. Ed. by Yaser Al-Onaizan, Mohit Bansal, and Yun-

Nung Chen. Miami, Florida, USA: Association for Computational Linguistics, Nov. 2024,

pp. 5468–5495. doi: 10.18653/v1/2024.emnlp-main.313.

[203] An Yang et al. “Qwen2.5 Technical Report”. In: arXiv preprint arXiv:2412.15115 (2024).

[204] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. “Revisiting Semi-Supervised

Learning with Graph Embeddings”. In: (2016).

185

https://doi.org/10.18653/v1/2024.emnlp-main.313


[205] Chih-Kuan Yeh et al. “Representer Point Selection for Explaining Deep Neural Networks”.

In: Proceedings of the 32nd International Conference on Neural Information Processing Sys-

tems. NIPS’18. Montréal, Canada: Curran Associates Inc., 2018, pp. 9311–9321.

[206] Rex Ying et al. “GNNExplainer: A tool for post-hoc explanation of graph neural networks”.

In: Advances in neural Information Processing Systems (NeurIPS). 2019.

[207] Zhaoning Yu and Hongyang Gao. “Motifexplainer: a motif-based graph neural network

explainer”. In: arXiv preprint arXiv:2202.00519 (2022).

[208] Hao Yuan et al. “On explainability of graph neural networks via subgraph explorations”.

In: International Conference on Machine Learning. PMLR. 2021, pp. 12241–12252.

[209] Seongjun Yun et al. “Graph transformer networks”. In: Advances in neural information

processing systems 32 (2019).

[210] Xiao Zang et al. “Graph universal adversarial attacks: A few bad actors ruin graph learning

models”. In: 2020.

[211] Weidong Zhan et al. KnowLogic: A Benchmark for Commonsense Reasoning via Knowledge-

Driven Data Synthesis. 2025.

[212] Binchi Zhang et al. “Adversarial Attacks on Fairness of Graph Neural Networks”. In: The

Twelfth International Conference on Learning Representations. 2024.

[213] Chiyuan Zhang et al. “Counterfactual Memorization in Neural Language Models”. In:

arXiv preprint arXiv:2112.12938 (2021).

[214] Jiaxing Zhang, Dongsheng Luo, and Hua Wei. “MixupExplainer: Generalizing Explana-

tions for Graph Neural Networks with Data Augmentation”. In: Proceedings of the 29th

ACM SIGKDD Conference on Knowledge Discovery and Data Mining. KDD ’23. Long Beach,

CA, USA:Association for ComputingMachinery, 2023, pp. 3286–3296. isbn: 9798400701030.

doi: 10.1145/3580305.3599435.

186

https://doi.org/10.1145/3580305.3599435


[215] Lunjun Zhang et al. Generative Verifiers: Reward Modeling as Next-Token Prediction. 2025.

[216] Xiang Zhang and Marinka Zitnik. “Gnnguard: Defending graph neural networks against

adversarial attacks”. In: Advances in neural information processing systems 33 (2020).

[217] Yu Zhang et al. “A survey on neural network interpretability”. In: IEEE Transactions on

Emerging Topics in Computational Intelligence 5.5 (2021), pp. 726–742.

[218] Yunxiang Zhang et al. Small Language Models Need Strong Verifiers to Self-Correct Reason-

ing. 2024.

[219] Zirui Zhao et al. Automatic Curriculum Expert Iteration for Reliable LLM Reasoning. 2025.

[220] Lianmin Zheng et al. “Judging LLM-as-a-judge with MT-bench and Chatbot Arena”. In:

Proceedings of the 37th International Conference on Neural Information Processing Systems.

2023.

[221] Qinkai Zheng et al. “Graph Robustness Benchmark: Benchmarking the Adversarial Ro-

bustness of Graph Machine Learning”. In: CoRR abs/2111.04314 (2021).

[222] Aojun Zhou et al. Solving Challenging Math Word Problems Using GPT-4 Code Interpreter

with Code-based Self-Verification. 2023.

[223] Yulin Zhu et al. “FocusedCleaner: Sanitizing Poisoned Graphs for Robust GNN-Based

Node Classification”. In: IEEE Transactions on Knowledge and Data Engineering (2024).

[224] Yulin Zhu et al. “FocusedCleaner: Sanitizing Poisoned Graphs for Robust GNN-Based

Node Classification”. In: IEEE Transactions on Knowledge and Data Engineering 36.6 (2024),

pp. 2476–2489. doi: 10.1109/TKDE.2023.3322129.

[225] Xu Zou et al. “Tdgia: Effective injection attacks on graph neural networks”. In: Proceed-

ings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2021,

pp. 2461–2471.

187

https://doi.org/10.1109/TKDE.2023.3322129


[226] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. “Adversarial attacks on neu-

ral networks for graph data”. In: ACM SIGKDD international conference on knowledge dis-

covery & data mining. 2018.

[227] Daniel Zügner and StephanGünnemann. “Adversarial Attacks onGraphNeural Networks

via Meta Learning”. In: International Conference on Learning Representations (ICLR). 2019.

188


	Dedication
	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	List of Appendices
	Introduction
	The Shifting of Deep Learning Models
	Important Questions among Three Model Paradigms
	Challenges of Diagnosing Model Misbehaviors
	Contributions

	Diagnosing Classifiers: From Data Attribution
	Overview
	Our Metric for Data Attribution: AME
	Efficient Sparse AME Estimator
	Practical Extensions
	Evaluation
	Related Work

	Revealing and Diagnosing GNN Vulnerabilities: through Stealthy Attacks
	Overview
	Background
	Problem Definition
	Attack Design: MimicLDT
	Evaluation on MimicLDT
	Diagnosing Challenges
	Adapting AME to Diagnose

	Reasoning Models Diagnostic: Probe as Hidden Verifier
	Overview
	Motivation and Novelty
	Probe for Intermediate Answer Correctness
	Experiments
	Efficient Inference: Early-exit
	Related Work
	Discussion

	Conclusion
	Future Directions

	Appendix: Supplementary Materials for Chapter 2
	Convergence Rate when Using LASSO to compute AME
	An AME Estimator with p-featurization
	Sparse Estimators for the Shapley Value from the AME
	Efficient Sparse Beta-Shapley Estimator
	Extending to Approximate Sparsity
	Evaluation Details
	Extended Related Work

	Appendix: Supplementary Materials for Chapter 3
	Design details of MimicLDT and MetaLDT
	The MetaLDT Attack via Optimization
	Details of experimental setup
	Additional evaluations on MetaLDT
	Additional evaluations on MimicLDT
	Comparison to short-distance baselines
	Detailed results over different datasets and short-distance baselines
	Design and evaluation of end-to-end attacks

	Appendix: Supplementary Materials for Chapter 4
	Additional details

	Bibliography

