
On Efficient Instantiations of Secure Multi-Party

Computation in Practice

by

Alexander Bienstock

A dissertation submitted in partial fulfillment

of the reqirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

January, 2024

Professor Yevgeniy Dodis

Professor Marshall Ball

© Alexander Bienstock

all rights reserved, 2024

Dedication

To Sarah, with love.

iii

Acknowledgments

First, I would like to thank Yevgeniy Dodis, who took me on as a student at NYU and brought to

me several interesting problems that would end up being the basis of my �rst research papers.

Yevgeniy always pushed me to go beyond my comfort zone, and for that, I am thankful. I would

also like to thank Marshall Ball, who only came to NYU at the start of my third year, but introduced

me to new and exciting areas of cryptography and kindly advised me for the rest of my studies. I

always look forward to the fun and low stress, but also productive, meetings I have with Marshall.

To the rest of my committee — Joe Bonneau, Sanjam Garg, and Antigoni Polychroniadou — thank

you for joining me for the end of this journey.

Next, I would like to thank several of my other mentors throughout the years. Allison Bishop

was the one who introduced me to the wonderful world of cryptography in my undergraduate

studies. Only through Allison was I able to discover my love for cryptography. Paul Rösler gave

me much needed advice on how to actuallly write a research paper when we were collaborating

on my �rst paper. He has been a valued coauthor ever since. My summer working with Sanjam

Garg at Berkeley in 2021 was a turning point in my PhD. I was able to truly �nd my footing as

a researcher with Sanjam and for that, I am forever grateful. Sanjam spent hours working with

me and was always there for me even when I had the most trivial of questions. The summer of

2022 was when I discovered my passion for MPC. This would not have been possible without the

support of Daniel Escudero and Antigoni Polychroniadou at JPMorgan. I learned the basics of

MPC from Antigoni and Daniel and could always count on them to answer my various questions.

iv

Finally, I would like to thank Kevin Yeo for mentoring me at Google in the Fall of 2022. Kevin

revealed to me many of the aspects of cryptography in practice which were unbenknownst to me

beforehand. Kevin was also always open to me about his current thoughts on several research

problems.

I would now like to thank all of the wonderful coauthors I have had throughout the years

— Jaiden Fairoze, Garrison Grogan, Mohammad Hajiabadi, Lisa Kohl, Pierre Meyer, Pratyay

Mukherjee, Sarvar Patel, Srinivasan Raghuraman, Joon Young (Mike) Seo, and Yi Tang. I would

also like to express my gratitude for the support that I received from the members of the various

research groups of which I have been a part (who I have not mentioned above). At NYU — Arasu

Arun, Eli Goldin, Peter Hall, Daniel Jost, and Harish Karthikeyan. At Berkeley/NTT — James

Bartusek, Alex Lombardi, Fermi Ma, and Willy Quach. At JPMorgan — Laasya Bangalore, Yue Guo,

Eysa Lee, Yiping Ma, Lisa Masserova, Sahar Mazloom, Nikolas Melissaris, and Chenkai Weng. At

Google — Ben Kreuter, Mariana Raykova, Phillip Schoppmann, Karn Seth, and Moti Yung.

I am also very grateful for the support that my family — Mom, Dad, Dennis, and Doug —

and various friends have given me throughout the PhD process, even if they could not always

understand what I was doing or why I was doing it.

Last but not least I would like to thank my girlfriend, Sarah, to whom this thesis is dedicated.

As you well know, the PhD has been a rollercoaster of ups and downs for me, and you have been a

solid anchor of support throughout. After my greatest achivements, you always gave me the most

enthusiastic congratulations; during my biggest struggles, you always assured me that everything

would be okay. Without you, none of this would have been possible.

v

Abstract

Secure Multi-Party Computation (MPC) is an area of cryptography that has been studied ex-

tensively since the 1980s. In full generality, MPC allows a set of mutually distrusting parties to

privately compute a function of their inputs. That is, the parties interact in some protocol, and at

the end obtain the output of the function, and nothing else. In the decades since the inception

of MPC, great strides have been made towards making it more e�cient. However, despite this

progress, the use of MPC in practice still faces some shortcomings.

In this thesis, we take steps to mitigate two such shortcomings. The �rst de�ciency we study

is related to the communication networks in which such MPC protocols operate. MPC protocols

are usually designed assuming that all parties have pairwise secure communication channels

which are stable; i.e., nodes never crash, messages always arrive on time, etc. However, in the

real-world, this is rarely the case—it is hard to sustain a stable connection between parties over

long periods of time. One such model that has been introduced to address this de�ciency is called

Fluid MPC (Choudhuri et al., CRYPTO 2021). In this model, parties are not mandated to stay online

for long periods of time. Instead, parties come online for short periods of time and work together

in committees to compute some function. The bene�t is that individual committees are much more

likely to be able to sustain stable connections for these shorter interactions. However, existing

protocols in this model do not match the level of e�ciency that is obtained by traditional MPC

protocols. In the �rst part of this thesis, we study Fluid MPC, and in particular, introduce Fluid

MPC protocols with e�ciency that matches those of traditional MPC.

vi

The second de�ciency of MPC which we study in this thesis is that general-purpose protocols

often are still not e�cient enough to be used in practice. One way to resolve this is by using

protocols that are tailor-made for speci�c applications. One such application that has gained

recent attention is called Private Join and Compute (PJC). In this application, two parties come

together with input sets and associated values for each item in their sets. The goal is to privately

compute a function over the associated values of the intersection of the two sets. In practice, the

size of the intersection is quite small, and therefore the private computation of the intersection

is actually much more expensive than whatever computation that needs to be done over it. In

the second part of this thesis, we improve the e�ciency of tailor-made state-of-the-art protocols

that are used to privately compute the intersection, thus improving the e�ciency of prior PJC

protocols.

vii

Contents

Dedication iii

Acknowledgments iv

Abstract vi

List of Figures xii

List of Tables xv

1 Introduction 1

1.1 Fluid Secure Multi-Party Computation . 6

1.1.1 Our Results . 7

1.1.2 Related Work . 10

1.2 Private Information Retrieval and its Application to Private Join and Compute . . 12

1.2.1 Our Results . 14

1.2.2 Related Work . 19

2 Preliminaries 22

2.1 Notation . 22

2.2 Universal hashing. 23

2.3 Probability and Information Theory . 23

viii

2.4 Functionalities, Protocols and Procedures . 24

3 SecureMulti-Party Computation in the FluidModel with Linear Communication 25

3.1 Security Model and Preliminaries . 26

3.1.1 Modelling Fluid MPC . 26

3.1.2 Security Model . 29

3.1.3 Preliminaries . 30

3.2 Dishonest Majority Protocol . 33

3.2.1 Technical Overview . 33

3.2.1.1 Our Starting Point: Le Mans [Rachuri and Scholl 2022] 34

3.2.1.2 The “King Idea” in the Fluid Setting 36

3.2.2 Formal Protocol . 40

3.2.2.1 Dishonest Majority Preprocessing 41

3.2.2.2 E�cient Resharing for Dishonest Majority 44

3.2.2.3 Checking and Maintaining MACs 46

3.2.2.4 Secure Multiplication and Veri�cation 52

3.2.2.5 Dishonest Majority Main Protocol 60

3.3 Dishonest Majority Preprocessing Size is Tight . 64

3.3.1 Technical Overview . 64

3.3.2 Formal Bound . 66

3.3.2.1 Secure Message Transmission with Two Committees 66

3.3.2.2 Lower Bound on Per-Party Preprocessing for Linear SMT 68

3.4 Honest Majority Protocol . 72

3.4.1 Technical Overview . 72

3.4.2 Formal Protocol . 75

3.4.2.1 Initial building blocks. 76

ix

3.4.2.2 E�cient Resharing for Honest Majority 78

3.4.2.3 Incremental Checks . 81

3.4.2.4 Secure Multiplication . 86

3.4.2.5 Honest Majority Main Protocol 88

3.5 Two-Thirds Honest Majority Protocol . 93

3.5.1 Technical Overview . 93

3.5.1.1 Challenges of our multiplication protocol. 94

3.5.1.2 Parties in Ci generate random sharings towards Ci+1. 95

3.5.1.3 Parties in Ci+1 use the random sharings. 96

3.5.1.4 Committee Ci+3 gets the triple - Resharing protocol based on

packed secret sharing. 97

3.5.1.5 Achieving active security. 98

3.5.1.6 Final remarks . 100

3.5.2 Formal Protocol . 101

3.5.2.1 Basic Functionalities . 101

3.5.2.2 Robust Linear-Overhead Resharing 112

3.5.2.3 Two-Thirds Honest Majority Main Protocol 132

4 Batch PIR and Labeled PSI with Oblivious Ciphertext Compression 144

4.1 Preliminaries . 144

4.1.1 Homomorphic Encryption . 144

4.1.2 Oblivious Ciphertext Compression . 147

4.1.3 Oblivious Ciphertext Decompression . 148

4.1.4 Batch PIR and Labeled PSI . 150

4.2 Oblivious Ciphertext Compression . 153

4.2.1 First Attempt: Balls-into-Bins . 153

x

4.2.2 Second Attempt: Random Matrices . 155

4.2.3 LSObvCompress: Random Band Matrices 156

4.2.4 Comparison with Sparse Random Linear Codes [Kaufman and Sudan 2007;

Liu and Tromer 2022] . 163

4.3 Oblivious Ciphertext Decompression . 164

4.4 Batch PIR . 167

4.4.1 Single-Server: Compressed Responses . 167

4.4.2 Single-Server: Compressed Requests . 172

4.4.3 Single-Server Batch PIR with Request and Response Compression 173

4.4.4 Single-Server: Vectorized Responses . 174

4.4.5 Two-Server: Compressed Responses . 180

4.5 Labeled PSI . 182

4.5.1 Labeled PSI from Batch Keyword PIR and Oblivious PRF 182

4.5.1.1 OPRF with Malicious Security 183

4.5.1.2 Unbalanced Labeled PSI Transformation 185

4.5.2 Improving Oblivious Polynomial Evaluation with LSObvDecompress . . . 189

4.5.2.1 Overview of [Cong et al. 2021] 189

4.5.2.2 Applying LSObvDecompress . 190

4.6 Experimental Evaluation . 191

4.6.1 Oblivious Ciphertext Compression . 192

4.6.2 Single-Server Batch PIR . 194

4.6.3 Two-Server Batch PIR . 196

4.6.4 Labeled PSI . 197

5 Conclusion 199

Bibliography 201

xi

List of Figures

3.1 Functionality FDABB . 30

3.2 Functionality Fcommit . 41

3.3 Functionality Fprep . 42

3.4 Procedure πget-combined-prep . 43

3.5 Procedure πe�-reshare-dm . 44

3.6 Procedure πconvert . 45

3.7 Procedure πMAC-check-dm . 47

3.8 Procedure πe�-key-switch . 51

3.9 Procedure πget-x-comm-shrs . 52

3.10 Procedure πmult-dm . 53

3.11 Procedure πmult-verify-dm . 56

3.12 Protocol Πmain-dm . 61

3.13 Functionality Frand-hm . 76

3.14 Functionality Fcoin . 76

3.15 Functionality Fdouble-rand-hm . 77

3.16 Functionality Fzero . 77

3.17 Procedure πget-rand-sharing . 78

3.18 Procedure πe�-reshare-hm . 79

3.19 Procedure πine�-reshare-hm . 80

xii

3.20 Procedure πMAC-check-hm . 82

3.21 Procedure πmult-verify-hm . 84

3.22 Procedure πmult-hm . 87

3.23 Protocol Πmain-hm . 89

3.24 Functionality Frand-2/3-hm . 101

3.25 Protocol Πrand-2/3-hm . 102

3.26 Functionality Finput . 108

3.27 Protocol Πinput . 108

3.28 Functionality Foutput . 110

3.29 Protocol Πoutput . 111

3.30 Functionality Frobust-packed-reshare . 113

3.31 Protocol Πrobust-packed-reshare . 115

3.32 Functionality Frobust-standard-reshare . 123

3.33 Protocol Πrobust-standard-reshare . 124

3.34 Procedure πmult . 133

3.35 Protocol Πmain-2/3-hm . 137

4.1 Experiment for batch keyword PIR client query privacy 150

4.2 Functionality Ful-psi . 152

4.3 Example of a random band column matrix construction with band width w = 4.

Second diagram shows the matrix after sorting the columns by the band start posi-

tions. Third diagram shows the random band row matrix view of the constructed

matrix. In this example, the maximum band row width is 3. 157

4.4 Procedure πLSObvCompress.ObvCompress . 160

4.5 Procedure πGenRandVec . 160

4.6 Procedure πLSObvCompress.Decompress . 161

xiii

4.7 Procedure πSolveLinearSystem . 162

4.8 Procedure πLSObvDecompress.Compress . 165

4.9 Procedure πLSObvDecompress.ObvDecompress . 166

4.10 Procedure πLSObvCompress.ObvCompress . 179

4.11 Functionality Foprf . 182

4.12 Procedure πOPRFRequest . 183

4.13 Procedure πOPRFAnswer . 184

4.14 Procedure πOPRFProc . 184

4.15 Procedure πBuildPseudoDB . 185

4.16 Procedure πULPSI�ery . 186

4.17 Procedure πULPSIAnswer . 187

4.18 Procedure πULPSIDecrypt . 187

xiv

List of Tables

1.1 Comparison of ciphertext compression for n ciphertexts with ` non-zero values for

failure probability at most 2−λ. Encoding size is measured in number of ciphertexts. 15

1.2 Keyword batch PIR comparisons for retrieving ` entries from n-entry database. Re-

quest and response overhead is compared to baseline of performing ` independent

single-query PIR executions. We use r and d to denote the number of requests and

plaintext database entries that can �t into a single ciphertext. Asterisks(*) denote

two-server PIR protocols. 17

4.1 Evaluations of LSObvCompress and LSObvDecompress for di�erent values of t

(non-zero/relevant entries) and n (uncompressed input size). We �x the plaintext

size to 8 KB and ciphertext size to 20 KB for all our results. 193

4.2 Performance of vectorized LSObvCompress evaluated on various values of t and

n. We use �xed entry size of 256 B. 194

4.3 Evaluations of Spiral Batch PIR [Angel et al. 2018; Menon and Wu 2022] with and

without our compression techniques, LSObvCompress and LSObvDecompress

with ϵ = 0.05. We �x the number of entries to n = 1 million for all our results. . . 195

4.4 Comparison of DPF based two server batch PIR protocol [DPF 2021] with and

without LSObvCompress (ϵ = 0.05). We �x the number of database entries to

n = 1 million and each entry size to 288 B for all our results. 196

xv

4.5 Comparisons of Cong et al. [Cong et al. 2021]’s labeled PSI and our LSObvCompress-

based PSI with ϵ = 0.05. We �x the size of the sender’s set to 1 million and the

receiver’s set to 512. 197

xvi

1 | Introduction

Secure Multi-Party Computation (MPC) is a �eld of cryptography that has been studied extensively

since the 1980s [Yao 1986; Goldreich et al. 1987; Chaum et al. 1987]. Broadly speaking, MPC allows

a set of mutually distrusting parties to privately compute a function of their inputs; i.e., leaking

nothing beyond the output of the function. Parties in an MPC protocol communicate with one

another in order to make progress on computing the desired function of their private inputs, until

they obtain the output. MPC has tremendous potential to make various real-world distributed

computations private. Indeed MPC has been deployed in pratice for several applications—(i) J.P.

Morgan Privacy-Preserving Inventory Matching, in which potential buyers and sellers of various

stocks are paired without revealing their orders to anyone else [Polychroniadou et al. 2023]; (ii)

Google Private Join and Compute, in which companies and ad providers can measure the success

of ad campaigns without revealing sensitive user information [Private Join and Compute 2019]; (iii)

Coinbase Wallet as a Service, in which user cryptocurrency transactions are signed in a distributed

fashion by the user and several Coinbase servers such that no single server (or even a few) can

produce signatures themselves [Wallet as a Service 2023]; and many more (see [MPC Deployments

2023]).

More formally, MPC protocols typically assume that all parties have point-to-point communi-

cation channels with one another that are private and authenticated (i.e., anything that is delivered

to one party was in fact sent by the other),1 and they provide varying levels of privacy guarantees.
1How to actually achieve this is a more fundamental (but non-trivial) question of cryptography [Di�e and Hellman

1976].

1

Privacy in MPC must hold even if an unknown subset of the parties up to a certain size act together

to try to undermine the privacy of the other (honest) parties. We call such algorithms controlling

the collusion of a subset of corrupt parties trying to learn the private information of honest

parties the adversary. Most generally, such an adversary may act arbitrarily on behalf of the

corrupt parties to try to learn private information of the honest parties; in particular, the corrupt

parties may not follow the speci�ed steps of the MPC protocol in which they act. We call such

an adversary active. Some protocols also consider a passive adversary, which requires that even

corrupt parties follow the protocol speci�cation, while the adversary tries to break the privacy of

honest parties. Such protocols of course are not considered as secure as those that protect against

active adversaries, yet are more e�cient. We will focus on active adversaries in this thesis.

As mentioned above, MPC protocols are speci�cally designed to tolerate corruption subsets of

the parties up to a certain size:

• In the dishonest majority setting, MPC protocols are able to provide security for honest

parties even if an arbitrary number of other parties are corrupted. While the dishonest

majority setting provides the greatest resilience in terms of number of corrupted parties, it is

known that protocols in this setting can only be secure against computationally-bounded ad-

versaries2 and moreover require computational assumptions for security [Rabin and Ben-Or

1989]. These protocols are also generally less e�cient than protocols in the other settings.

However, protocols in this setting can have a circuit- and input-independent preprocessing

phase (which can be performed at any time before the actual function computation) that

is secure against only computationally-bounded adversaries and relies on computational

assumptions, but then an online phase which is statistically-secure—that is, unconditionally

secure against computationally-unbounded adversaries except with some very small proba-

bility that is inverse-super-polynomial in some security parameter λ.3 The online phase is
2I.e., those that run in time poly(λ), where λ is some security parameter.
3I.e., protocols in this setting may be insecure with probability at most λ−ω(1).

2

thus typically more e�cient than the preprocessing phase.

A special case of MPC in the dishonest majority setting is Secure Two-Party Computation

(2PC), in which only one of the parties may be corrupted. We will focus on this setting in

the second part of the thesis.

• In the honest majority setting, MPC protocols are able to provide security for honest parties as

long as if less than half of the parties are corrupted. Protocols in this setting are more e�cient

than the dishonest majority and can be statistically-secure. However, protocols in this

setting cannot be perfectly-secure—that is, unconditionally secure against computationally-

unbounded adversaries with probability 1 [Lamport et al. 1982].

• In the two-thirds honest majority setting, MPC protocols are able to provide security for

honest parties as long less than a third of the parties are corrupted. Protocols in this setting

typically are more e�cient than those in the honest majority settings and can be perfectly

secure.

Throughout this thesis, we will only consider protocols in these three settings achieving the best

possible security guarantee—i.e., computational, statistical and perfect security, respectively.

It is easy to see that an active adversary may somehow disrupt the execution of MPC protocols

(e.g., by not sending messages for corrupt parties). In this case, the honest parties may not be able

to actually obtain outputs of the function being computed. Indeed, there are di�erent types of

output guarantees which MPC protocols can achieve:

• The strongest guarantee is guaranteed output delivery or G.O.D. for short. In this case,

despite arbitrary behavior from the adversary, the honest parties always obtain the output of

the function. Unfortunately, G.O.D. cannot always be achieved—in fact, it is impossible for

dishonest majority protocols to achieve it [Cleve 1986]. However, both honest and two-thids

honest majority protocols can achieve it.

3

• The next strongest guarantee is called fairness. In protocols with fairness, corrupt parties

obtain the output only if honest parties do too. However, it may still be the case that no one

gets output. It is still impossible for dishonest majority protocols to achieve fairness [Cleve

1986]! Yet, the notion is still meaningful for honest and two-thirds honest majority protocols

despite the ability to achieve G.O.D. in these settings—protocols with fairness are generally

more e�cient than those with G.O.D.

• The weakest guarantee that can be provided is security with abort. In this case, the protocol

execution may abort at any time. However, it may still be the case that the adversary learns

the output of the function, even if none of the honest parties learn it. Dishonest majority

protocols can indeed achieve security with abort. But, again, this notion is still meaningful

for the honest and two-thirds honest majority settings, since protocols that achieve security

with abort are more e�cient than those with fairness and G.O.D.

Since this thesis focuses on e�ciency, we will only construct protocols that achieve security with

abort.

Theoretical feasibility results for MPC in all settings have been known since the inception of the

�eld (e.g., [Ben-Or et al. 1988; Chaum et al. 1987] for perfect security with G.O.D., [Rabin and Ben-Or

1989] for statistical security with G.O.D., and [Yao 1986; Goldreich et al. 1987] for computational

security with abort). In the meantime, protocols for MPC have seen great improvements in

e�ciency, through works including [Damgård et al. 2012; Ben-Efraim et al. 2019] for dishonest

majority, [Damgård and Nielsen 2007; Genkin et al. 2014; Chida et al. 2018; Goyal and Song 2020;

Boyle et al. 2020; Goyal et al. 2021a; Escudero et al. 2022] for honest majority, and [Beerliová-

Trubíniová and Hirt 2008; Abraham et al. 2023] for two-thirds honest majority. In fact, MPC is

now deployed in the real world in various settings (see [MPC Deployments 2023]).

However, MPC still only enjoys a somewhat limited set of applications in practice. This

is because even though the e�ciency of MPC protocols has vastly improved, MPC in general

4

does have some shortcomings. First, MPC protocols are inherently distributed protocols that

must utilize communication over some network, such as the internet, and thus must make some

assumptions about this network. On one hand, real-world networks can be unstable, nodes can

drop in and out of networks via crashes/disconnections, messages can take di�erent amounts of

time to be sent from one node to another, etc. Yet, on the other hand, most MPC protocols are

speci�cally designed to interact over stable networks. One crucial consequence of this is that if a

party’s device crashes or a message from them does not arrive on time, then this party is treated as

corrupted. This is bad for several reasons. One, protocols only have a limited budget of corrupted

parties they can tolerate, before privacy of honest parties can be compromised. Therefore, using

up this budget for honest parties who may just crash, etc, is unsatisfactory. Two, once a party

is considered corrupt, privacy is no longer provided for them, from a de�nitional standpoint.

Therefore, honest parties who crash, etc, may have their privacy violated.

There has been a line of works that attempt to address this issue with MPC [Choudhuri et al.

2021; Gentry et al. 2021b; Badrinarayanan et al. 2020; Damgård et al. 2021; Guo et al. 2019; Rachuri

and Scholl 2022]. In the �rst part of this thesis, we focus on MPC protocols in the so-called Fluid

model [Choudhuri et al. 2021], upon which we will elaborate below.

Another shortcoming of (general-purpose) MPC is that protocols aim to compute any given

function and as a result, despite the great improvements in e�ciency over the past few decades,

there are some tasks for which (general-purpose) MPC protocols are just too slow or expensive

in terms of communication. Yet, in practice many use cases must of course be low-latency to be

viable for use. Moreover, computation and communication costs must not be prohibitively high in

order to enable adoption by participants in the real-world. Fortunately, many MPC applications

can be precisely de�ned, and there has been a push in recent years to craft tailor-made protocols

for these applications, instead of always relying on general-purpose MPC protocols. For example,

in the second part of this thesis, we focus on protocols for Private Join and Compute [Private Join

and Compute 2019], upon which we will elaborate below.

5

1.1 Fluid Secure Multi-Party Computation

We now discuss the Fluid MPC model, introduced by [Choudhuri et al. 2021]. This model reduces

the e�ects of unstable networks on parties by not requring them to be online and participating in

the entire protocol. Instead, parties may come and go, more or less as they please, participating in

the protocol for as little as just one communication round.4 More speci�cally, parties from some

global pool form committees which are subsets of the pool and come online to participate in the

protocol for a given number of rounds. Once such a committee reaches their �nal round, they

afterwards transfer the state of the computation to the next committee, who then continues the

computation. Importantly, the parties in one committee only know the identities of the parties in

the immediately following committee, and not those of any future committees.

The original work of [Choudhuri et al. 2021] studies Fluid MPC with maximal �uidity. With

maximal �uidity, each committee only comes online for a single round of interaction. That is, each

committee receives the state of the computation from the previous committee, performs some

local computation, and then forwards the new state to the next committee. Their work provides a

protocol that achieves statistical security with abort in the setting in which each committee has

an honest majority of parties. Later, [Rachuri and Scholl 2022] provide a protocol for Fluid MPC

with maximal �uidity that has an online phase that achieves statistical security with abort in the

setting in which each committee has a dishonest majority of parties. Since each committee has a

dishonest majority of parties and the online phase is statistically-secure, this protocol requires a

preprocessing phase to be performed by all of the N members of the global pool of parties that

may participate in committees during the online phase of the protocol. This pool is much bigger

than the n members that participate in each committee (i.e., N � n). Note that importantly, this

is because the identity of the committees is not necessarily decided ahead of time, before the
4A communication round is de�ned as a set of messages �rst being sent (simulatenously) from some of the

participants in one direction along network channels, and then being delivered to their recipients.

6

preprocessing phase. More recently, [David et al. 2023] provide a protocol for Fluid MPC with

maximal �uidity that achieves G.O.D. in the setting in which each committee has a two-thirds

honest majority of parties.

All three of these works make great strides towards e�cient Fluid MPC protocols that can

be used in practice. However, they all do not realize the same e�ciency as their counterparts in

the traditional MPC setting. Traditional MPC protocols for all three corruption settings we have

discussed, with maximal security and output guarantees, exist with communication complexity

linear in the number of participants (such as [Damgård et al. 2012; Ben-Efraim et al. 2019] for

dishonest majority, [Damgård and Nielsen 2007; Genkin et al. 2014; Chida et al. 2018; Goyal

and Song 2020; Boyle et al. 2020; Goyal et al. 2021a; Escudero et al. 2022] for honest majority,

and [Beerliová-Trubíniová and Hirt 2008; Abraham et al. 2023] for two-thirds honest majority).

That is, as the number of participants grows, the communication per party stays constant in

these protocols. Unfortunately, the three aforementioned works do not achieve the analogue for

(maximally) Fluid MPC. For [Choudhuri et al. 2021] and [Rachuri and Scholl 2022], the protocols

achieve communication complexity quadratic in the size of each committee. That is, as the size

of each committee grows, the communication per party grows proportionally. For [David et al.

2023], the protocol achieves communication complexity that grows with n9, where n is the size

of each committee (note that they achieve the strongest output guarantee—G.O.D.). Thus, there

is an unsatisfactory gap between the asymptotic communication complexity of traditional MPC

prtocols and those in the (maximally) Fluid setting. Indeed, the communication complexity of

existing Fluid MPC protocols may be prohibitively high for scaling to large number of parties.

1.1.1 Our Results

In this thesis, we close the gap in communication complexity between traditional MPC protocols

and Fluid MPC protocols with maximal �uidity in all three corruption settings. Therefore, we

achieve MPC that can handle some instability of the underlying communication network (by not

7

requiring all parties to have reliable access to it for the entire protocol), while still achieiving

great e�ciency. Our protocols work over layered arithmetic circuits over a �nite �eld F with

|C | gates. A layered circuit is composed of input, addition, multiplication, and identity gates,

where all output wires of a given layer go only to the immediately next layer. We let w` be the

width of the `-th layer of C and for some gate д in C , we let `(д) be the index of the layer that

д belongs to in C . As with many traditional MPC protocols that achieve linear communication

complexity [Damgård et al. 2010; Damgård and Nielsen 2007], we assume that the width of all

layers of considered circuits is at least proportional to the committee size, n. We remark, however,

that even if this is not the case, our protocols are still a strict improvement over the prior works.

In the dishonest majority setting, we provide a Fluid MPC protocol with maximal �uidity that

achieves security with abort and has communication complexity O(n |C |) during the statistically-

secure online phase, where n is the size of each committee (assuming each committee is the same

size). This protocol works given some global preprocessing among the whole global pool of parties,

without knowing the future assignment of parties to committees:

Theorem 1.1 (Informal [Bienstock et al. 2023a]). For a layered arithmetic circuitC over a �nite �eld

F, there exists a statistically-secure �uid MPC protocol with maximal �uiditiy in the preprocessing

model which securely computes C , with abort, in the presence of an active adversary controlling up

to t ≥ n/2 parties, where n is the size of each committee. The amount of preprocessed data used per

party is Ω(N · |C |), where N is the number of parties in the global pool. The communication cost

per gate д is O(n2/w`(д)). In particular, if the width of all layers is w = Ω(n), then the total cost is

O(n |C |) elements of communication.

The amount of preprocessed data per party, Ω(N · |C |), may indeed seem prohibitively large

for practice. Unfortunately, we show that for linear communication complexity, such a large

amount of preprocessing is necessary. More speci�cally, we show that the amount of preprocessing

per party required in the statistically-secure dishonest majority setting to securely transfer the

8

protocol execution state st from one committee to the next (which is an essential building block

of Fluid MPC) is Ω(N · |st|):

Theorem 1.2 (Informal [Bienstock et al. 2023a]). A secure message transmission protocol for

messages of length λ with two n-party committees that uses o(n2 · λ) total communication must have

Ω(N · λ) preprocessed data.

In particular, if each committee computes the output of at most one circuit layer at a time,

and each party may participate in a constant fraction of committees in the worst-case, then the

total preprocessing per party must be Ω(N · |C |). Note that such large preprocessing for secure

state transfer is not needed if quadratic communication complexity can be tolerated, as then

committees can just use a trivial resharing protocol [Ben-Or et al. 1988]. However, the existing

Fluid MPC protocol with O(n2 |C |) communication in this setting [Rachuri and Scholl 2022] still

requires Ω(N |C |) preprocessing per party.5

In the honest majority setting, we provide a Fluid MPC protocol with maximal �uidity that

achieves security with abort and has communication complexity O(n |C |). This protocol requires

no preprocessing among the parties and is statistically-secure:

Theorem 1.3 (Informal [Bienstock et al. 2023a]). For a layered arithmetic circuit C over a �nite

�eld F, there exists a statistically-secure �uid MPC protocol with maximal �uiditiy which securely

computesC , with abort, in the presence of an active adversary controlling up to t < n/2 parties, where

n is the size of each committee. The communication cost per gate д isO(n2/w`(д)). In particular, if the

width of all layers isw = Ω(n), then the total cost is O(n |C |) elements of communication.

Finally, in the two-thirds honest majority setting, we provide a Fluid MPC protocol with

maximal �uidity that achieves security with abort and has communication complexity O(n |C |).

This protocol requires no preprocessing among the parties and is perfectly-secure:
5This is due to generating preprocessed correlations between parties which enables secure computation of

multiplication gates in the online phase.

9

Theorem 1.4 (Informal [Bienstock et al. 2023b]). For a layered arithmetic circuit C over a �nite

�eld F, there exists a perfectly-secure �uid MPC protocol with maximal �uiditiy which securely

computesC , with abort, in the presence of an active adversary controlling up to t < n/3 parties, where

n is the size of each committee. The communication cost per gate д isO(n2/w`(д)). In particular, if the

width of all layers isw = Ω(n), then the total cost is O(n |C |) elements of communication.

1.1.2 Related Work

Our work expands upon the work of [Choudhuri et al. 2021; Rachuri and Scholl 2022; David et al.

2023] in the Fluid MPC setting. However, in the broader direction of MPC in unstable networks,

several other references exist. We survey them here.

Fail-stop adversaries. A series of works have studied the setting of MPC, where the adversary

is allowed to not only corrupt some parties passively/actively, but also cause some parties to fail

(e.g. [Fitzi et al. 1998] and subsequent works). This can be seen as similar to the Fluid setting,

where parties who participate in one committee may never participate again in another committee.

However, one main di�erence is that unlike in the committee approach of Fluid, the set of parties

that fail and thus exit the computation are not known to the rest of the parties. Second, and most

crucially, once a party is set to fail by the adversary, it does not return to the computation, whereas

parties in Fluid can arbitrarily be placed in several non-consecutive committees.

LazyMPC. The work of [Badrinarayanan et al. 2020] considers an adversary that can set parties

to be o�ine in any round (called “honest but lazy” in that work). This work di�ers from ours in

several places. First, the authors focus only on the case of computational security, making use of

rather strong techniques such as multi-key fully homomorphic encryption. Second, the parties

that are chosen to be “lazy” are not known to the other parties. Third, once a party becomes

o�ine, or “lazy”, in their model it is assumed not to come back.

10

Synchronous but with partition tolerance. Recently, the work of [Guo et al. 2019] designed

MPC protocol in the so-called “sleepy model”, which enables some of the parties to lag behind

the protocol execution, while not being marked as corrupt. This could be achieved with an

asynchronous protocol, naturally, but the main result of [Guo et al. 2019] is obtaining such

protocols without the strong threshold assumptions required to obtain asynchronous protocols.

In particular, the authors obtain computationally secure constant-round protocols, assuming that

the set of “fast”-and-honest parties in every round constitutes as majority, an assumption that is

shown to be necessary.

Phoenix. The work of [Damgård et al. 2021] proposes a model that is similar to the one in [Guo

et al. 2019] in that parties can go o�ine for short periods of time, but unlike [Guo et al. 2019], the

parties are not assumed to receive messages while they are o�ine ([Guo et al. 2019] considers

unstable parties as “slow”, meaning they still receive messages but they might not do so on time; in

contrast, [Damgård et al. 2021] considers these parties to be potentially entirely o�ine). The work

proposes solutions in their “Phoenix” model for MPC with perfect, statistical and computational

security, and prove exact conditions on the adversary under which these are possible.

YOSO. In the recent work of Gentry et al. [Gentry et al. 2021a], the “You Only Speak Once”

model for MPC is introduced. In this model, the basic assumption is that the adversary is able to

take a party down as soon as that party sends a message - using, say, a denial of service attack.

Although some number of parties are assumed to be alive and can receive messages, no particular

party is guaranteed to come back (which is the major di�erence to our model). Instead, the

YOSO model breaks the computation into small atomic pieces called roles where a role can be

executed by sending only one message. The responsibility of executing each role is assigned to a

physical party in a randomized fashion. The assumption is that this will prevent the adversary

from targeting the relevant party until it sends its (single) message. This means that one should

think of the entire set of parties as one “community” which as a whole is able to provide secure

11

computation as a service. In a sense, YOSO aims to make progress and keep the computation alive

without any guarantees for particular physical parties such as contributing inputs and receiving

the output. This makes good sense in the context of a blockchain, for instance. On the other

hand, the demand that the MPC protocol must be broken down into roles makes protocol design

considerably harder, particularly for information theoretically secure protocols. An additional

caveat with the YOSO model is that one can only have information theoretically or statistically

secure protocols assuming that the role assignment mechanism is given as an ideal functionality,

and an implementation of such a mechanism must inherently be only computationally secure. In

comparison, our model assumes a somewhat less powerful adversary who must allow a physical

party to come back after being o�ine. This allows for much easier protocol design, information

theoretic security based only on point-to-point secure channels, and allows termination such that

all parties can provide input and get output.

1.2 Private Information Retrieval and its Application to

Private Join and Compute

Some functionalities can be prohibitively expensive to compute using general-purpose MPC

protocols. For these functionalities, it is better to design tailor-made protocols which are designed

with the speci�c task in mind, to get better e�ciency. One functionality which is particularly

important in practice is called Private Join and Compute (PJC) [Private Join and Compute 2019]. In

general, PJC is a two-party functionality in which two parties input sets X and Y (possibly with

associated data for each set element), and then the functionality computes X ∩ Y and outputs

secret shares to the two parties of the elements in X ∩ Y (along with the associated data, if any).

There are more speci�c variants of PJC, in which some computation is also performed on the

elements of X ∩ Y , before the output is sent to one or both of the parties. For example, in Inner

Product PJC [Lepoint et al. 2021], each element xi of X for i ∈ [`] has some associated data wi

12

and each element yj of Y for j ∈ [n]] has some associated data vi , then the functionality computes

and outputs to one or both of the parties
∑

i∈[`],j∈[n],xi=yj wivj . Note that typically ` � n. Usually

for PJC, the cost of the compute part of the protocol is determined by the size of the intersection,

which is often quite small, and thus the dominant costs come from determining the intersection.

Thus, it is important to design constructions speci�cally-built for the intersection part, in order to

maximize the e�ciency.

There are several applications of Inner Product PJC. One such application is for privately

computing the e�ectiveness of advertising campains [Ion et al. 2020; Lepoint et al. 2021]. In this

application one party, typically some company selling products, has a database of parties who

have bought some products with associated values of how much money they spent, and the other

party is an ad supplier, which has a database of parties who have seen some ads, potentially with

associated values that can be e.g., how long they spent watching an ad, or just associated values

equal to 1. Inner Product PJC can thus be used to privately compute aggregate statistics such as

how much users who saw an ad spent in total on the company’s products.

A primary building block of PJC protocols, which is used to compute the intersection X ∩Y of

the two parties’ sets, is batch Private Information Retrieval (batch PIR) [Lepoint et al. 2021]. To

de�ne batch PIR, we start with de�ning single-query PIR. In single-query PIR, there is a server

with a database of n items and a client who wants to retrieve the i-th item of the database. For

security, the server should not learn anything about the index, i , for which the client queries. In

batch PIR, the client asks for a set I of size |I | = ` � n of items of the database, and the server

should not learn anything about the set I . There is also a keyword (batch) PIR variant, in which the

server holds a database of key-value pairs (where the key space is sparse) and the client’s queries

are keys. Batch PIR protocols can be easily adapted so that the client and server get secret shares

of those items of I that are in the database, and thus are used as a building block for computing

the intersection X ∩ Y in PJC protocols [Lepoint et al. 2021]. There are also versions of PIR in

which two servers hold the database and independently compute responses for the client, which

13

the client uses together to determine the answer. These protocols have the bene�t of being more

e�cient, while requiring the strong assumption that the two servers do not collude with each

other to break the security of the client.

Other Applications of PIR. PIR and its variants also enjoy several other applications beyond

PJC. Some examples include anonymously retrieving encrypted messages from a central delivery

server [Angel and Setty 2016], privately fetching advertisements relevant to user interests, and

more. Furthermore, using the classical composition with Oblivious Pseudo-Random Functions

(OPRFs) due to [Freedman et al. 2005], PIR can be used to build (unbalanced) labeled Private Set

Intersection (PSI). Labeled PSI is actually the same as PIR with the exception that also all server

database items that are not in the intersection should remain private from the client (which is not

required in PIR). Unbalanced Labeled PSI is particularly for the case in which the client’s query

set is much smaller than the server’s database (as in typical in PIR). Labeled PSI can then be used

for several applications. For example, Labeled PSI can be used to build contact discovery [Contact

Discovery 2017] protocols in which a user registers for some service, and privately queries the

server for its contacts (via e.g., phone numbers) who also use the service, and their corresponding

pro�les. Labeled PSI can also be used for password leak checks [Password Checkup 2019; Password

Monitor 2021] in which a user creating a username and password for some service privately checks

their password against a database of passwords (stored on the server) known to be leaked on the

dark web. There are many other applications of PIR and PSI besides those mentioned above.

1.2.1 Our Results

In this thesis we improve the communication complexity of state-of-the-art batch PIR protocols,

thus improving the communication complexity of the main step of state-of-the-art PJC and labeled

PSI protocols. Recall that in a single query of batch PIR, the client asks for a set of ` entries

from the database of size n � `. The naive approach to solve this problem would be to simply

14

Encoding
Size

Encoding
Time

Decoding
Time

Choi et al. [Choi et al. 2021] O(`λ) O(nλ) O(`λ)

Liu and Tromer [Liu and Tromer 2022] O(` log2 ` log λ) O(n`) O(`3)

Fleischhacker et al. [Fleischhacker et al. 2023] O(`) O(n logn) O(`
√
n)

Fleischhacker et al. [Fleischhacker et al. 2023] O(`λ) O(nλ) O(`λ)

Ours: LSObvCompress (1 + ϵ)` O(nλ) O(`λ)

Table 1.1: Comparison of ciphertext compression for n ciphertexts with ` non-zero values for failure
probability at most 2−λ . Encoding size is measured in number of ciphertexts.

run ` independent queries of a single-query PIR protocol. However, this incurs a high total

computational overhead of Ω(`n) for the server, as single-query PIR protocols must incur Ω(n)

server computational complexity for answering each query [Beimel et al. 2004]. Instead, state-

of-the-art batch PIR protocols opt to reduce the total server computational overhead to O(n),

while slightly increasing the communicaction complexity. Indeed, [Angel et al. 2018] presented

a solution that reduces server computation to 3n while requiring 1.5` independent queries of a

single-query PIR protocol on smaller databases. Thus, unfortunately, the size of requests and

responses for the batch PIR are 50% larger than the naive approach of ` single-query PIR executions

on the server’s database of size n.

Single-query PIR schemes typically work by encrypting some item query in a ciphertext as the

request sent to the server, and then using this ciphertext on the server side to (homomorphically)

compute a ciphertext containing the corresponding database entry, which is sent to the client

as the response. While prior works attempted to reduce communication by packing multiple

single-query PIR requests into a single ciphertext [Angel et al. 2018; Ali et al. 2021], as well as

packing multiple responses (for small database entries) into a single ciphertext [Mughees and

Ren 2023], these solutions still explicitly require 0.5` single-query PIR requests and responses,

which the client ultimately discards as garbage. Moreover, packing responses only works for

small database entries. In this chapter, we present two novel compression techniques that avoid

the unecessary communication that arises from these 0.5` dummy queries. As a result, we get

improved state-of-the-art single- and two-server batch PIR, PJC, and labeled PSI protocols.

15

Oblivious Ciphertext Compression. The �rst compression problem that we study we call

oblivious ciphertext compression. In this problem, there is a client and a server. The server has n

(ordered) ciphertexts encrypted under the client’s key, of which ` < n encrypt non-zero values

(the rest encrpypt zero). Moreover, the client knows the locations of the ` ciphertexts that encrypt

non-zero values, while these locations are unknown to the server. The goal is to enable the server

to compress the n ciphertexts to as close to ` ciphertexts as possible, before sending them to the

client, who can then correctly decode the n ciphertexts.

We present a scheme for this problem that produces encodings as small as 1.05` ciphertexts,

while only requiring homomorphic addition of ciphertexts. Furthermore, the server only needs to

do O(nλ) homomorphic additions and the client only needs to perform O(`λ) plaintext additions:

Theorem 1.5 (Informal [Bienstock et al. 2024]). There exists an oblivious ciphertext compression

protocol for compressing some n additively-homomrphic ciphertexts such that ` < n plaintexts are

non-zero, which outputs (1 + ϵ)` ciphertexts, for any ϵ > 0, requires O(nλ) homomorphic additions

by the server and O(`λ) plaintext additions by the cilent.

Our scheme uses novel techniques to compress the ciphertexts by encoding them with random

linear systems that are e�ciently solvable.

Our scheme signi�cantly outperforms any prior compression schemes that can be used in our

setting. In particular, all prior schemes with e�cient encoding and decoding compress to O(`λ)

ciphertexts, which is much larger than 1.05` in practice. Only one previous solution produces

encodings with O(`) ciphertexts [Fleischhacker et al. 2023], but the decoding requires computing

O(`
√
n) discrete logarithms, which is far too expensive. See Table 1.1 for more comparisons.

We remark, however, that prior works study a more challenging version of this problem (see

Section 1.2.2).

Oblivious Ciphertext Decompression. The second compression problem that we study we

call oblivious ciphertext decompression. In this problem there is also a client and a server. However,

16

Client
Storage

Request
Overhead

Response
Overhead

Baseline O(1) 1x 1x
Cuckoo Hashing [Angel et al. 2018] O(n) d1.5/rex 1.5x
Vectorized [Mughees and Ren 2023] O(n) d1.5/rex d1.5/dex
Keyword [Patel et al. 2023] O(1) d1.5/rex 1.5x
Distributed Point
Function (DPF)* [Boyle et al. 2016] O(1) 1.5x 1.5x

Ours: Single-Server O(1) d(1 + ϵ)/rex 1.5x
Ours: Single-Server O(1) d1.5/rex d(1 + ϵ)/dex
Ours: Two-Server* O(1) 1.5x (1 + ϵ)x

Table 1.2: Keyword batch PIR comparisons for retrieving ` entries from n-entry database. Request and
response overhead is compared to baseline of performing ` independent single-query PIR executions. We
use r and d to denote the number of requests and plaintext database entries that can fit into a single
ciphertext. Asterisks(*) denote two-server PIR protocols.

this time the client has n (ordered) plaintext values, of which ` < n are non-dummy values (the

rest are dummy values). The client must compress and encrypt the n plaintext values into as close

to ` ciphertexts as possible, before sending them to the server, who can then correctly decompress

these ciphertexts back into n new ciphertexts such that for the ` locations that originally had

non-dummy plaintext values, the corresponding ciphertexts encrypt these values. Moreover, the

server must perform this decompression without knowledge of the ` non-dummy locations, and

must not learn anything about these ` non-dummy locations nor their values.

We present a scheme for this problem that produces encodings as small as 1.05` ciphertexts,

while only requiring homomorphic addition of ciphertexts. Furthermore, the server only needs to

do O(nλ) homomorphic additions, and the client only needs to perform O(`λ) plaintext additions:

Theorem 1.6 (Informal [Bienstock et al. 2024]). There exists an oblivious ciphertext decompression

protocol for compressing some n plaintexts such that ` < n plaintexts are non-dummy, which outputs

(1 + ϵ)` additively-homomorphic ciphertexts, for any ϵ > 0, requires O(nλ) homomorphic additions

by the server and O(`λ) plaintext additions by the cilent.

To our knowledge, no prior works are applicable to this speci�c problem.

17

Batch PIR. We apply our compression techniques to state-of-the-art batch PIR schemes to

achieve new schemes with reduced communication in both the single- and two-server settings. Our

techniques work for both small and large database entries. See Table 1.2 for detailed comparisons

to prior work.

The framework of [Angel et al. 2018] introduces 0.5` dummy queries of a single-query PIR

protocol, as part of the overall batch PIR query. This therefore results in 0.5` dummy responses of

a single-query PIR protocol, as part of the overall batch PIR response. If r single-query PIR requests

�t into a single ciphertext (resp. d database entries �t into a single ciphertext), then this is 0.5`/r

ciphertexts that contain dummy requests (resp. 0.5`/d ciphertexts that contain dummy reponses).

We note that state-of-the-art batch PIR protocols use underlying single-query PIR protocols which

work with additively-homomorphic encryption schemes (in fact, somewhat-homomorphic). Thus,

we can apply our compression schemes to these protocols.

First, we apply our oblivious ciphertext compression to obtain batch PIR with response size

as small as 1.05`/d , regardless of database entry size. Indeed, since ` of the batch PIR responses

encrypt non-zero values, whose location the client knows, and the remaining 0.5` encrypt zero

values,6 we can apply our oblivious ciphertext compression scheme:

Theorem 1.7 (Informal [Bienstock et al. 2024]). There exists a batch PIR protocol for databases of

n b-bit entries and batch size `, that has query size proportional to 1.5`/r , response size proportional

to (1 + ϵ)`/d · b, for any ϵ > 0, and server computation O(n).

Next, we apply our oblivious ciphertext decompression to obtain batch PIR with request size

as small as 1.05`, regardless of database entry size. Indeed, since ` of the batch PIR requests are

non-dummy, whose location the client knows, and the remaining 0.5` are dummy, we can apply

our oblivious ciphertext decompression scheme:

Theorem 1.8 (Informal [Bienstock et al. 2024]). There exists a batch PIR protocol for databases of

6We can easily enforce this.

18

n b-bit entries and batch size `, that has query size proportional to (1+ ϵ)`/r , for any ϵ > 0, response

size proportional to 1.5`/d · b, and server computation O(n).

While theoretically we can apply both oblivious ciphertext compression and decompression

simultaneously to state-of-the-art batch PIR protocols, we show that this does not lead to any

concrete gains in practice. Indeed, the noise that results from applying the extra operations of

these two schemes to the underlying somewhat-homomorphic encryption scheme of the batch

PIR protocols is such that the ciphertexts need to be too large (see Section 4.4.3).

Finally, we also show that similar response reduction may be obtained in state-of-the-art

two-server batch PIR protocols, by applying our oblivious ciphertext compresssion scheme to

them.

As a result of these improvements to batch PIR, we conjecture that we can obtain concrete

e�ciency improvements when applied to PJC. We also see concrete improvements to labeled PSI.

In particular, if one combines our state-of-the-art batch PIR with oblivious ciphertext compression

and a state-of-the-art OPRF scheme, we obtain a labeled PSI protocol [Freedman et al. 2005] with

a 65-88% reduction in communication and comparable computation to prior solutions [Chen et al.

2018; Cong et al. 2021].

1.2.2 Related Work

Ciphertext Compression. Variants of ciphertext compression have been studied in the past.

Liu and Tromer [Liu and Tromer 2022] implicitly studied oblivious ciphertext compression without

explicitly de�ning the primitive. In their scheme, they use sparse linear random codes that result in

larger encodings and slower decoding time (see Figure 1.1), and, if instantiated with a FHE scheme,

larger parameters for that scheme. Angel et al. [Angel et al. 2018] used packing and vectorization

techniques to reduce request communication in PIR. Mughees and Ren [Mughees and Ren 2023]

also showed vectorization techniques may be used to reduce response communication in batch

19

PIR. Fleischhacker et al. [Fleischhacker et al. 2023] studied a more challenging variant of our

setting where neither the decompressor (client) nor the compressor (server) know the identity of

the the non-zero ciphertexts. As a result, their schemes have worse compression rate and more

expensive compression and decompression algorithms. The same problem was implicitly studied

in [Choi et al. 2021].

PIR. Single-server PIR was �rst studied by Kushilevitz and Ostrovsky [Kushilevitz and Ostrovsky

1997]. Follow-up works constructed PIR from various other assumptions [Cachin et al. 1999;

Paillier 1999; Damgård and Jurik 2001; Lipmaa 2005; Gentry and Ramzan 2005]. More recent works

have studied concretely e�cient protocols from lattice-based homomorphic encryption [Aguilar

Melchor et al. 2016; Angel and Setty 2016; Angel et al. 2018; Gentry and Halevi 2019; Park and

Tibouchi 2020; Ali et al. 2021; Mughees et al. 2021; Ahmad et al. 2021; Menon and Wu 2022;

Mahdavi and Kerschbaum 2022; Patel et al. 2023].

PIR has also been studied in the setting of multiple, non-colluding servers. A line of work

has studied the communication e�ciency with information-theoretic security (see [Chor et al.

1998; Efremenko 2009; Dvir and Gopi 2015] and references therein). Recent works have studied

concretely e�cient two-server PIR with computational security using distributed point func-

tions [Gilboa and Ishai 2014; Boyle et al. 2016; Ha�z and Henry 2019].

Batch PIR. Batch PIR has been studied heavily in the past. Beimel et al. [Beimel et al. 2000]

presented a method to reduce server computation using matrix multiplication. Groth et al. [Groth

et al. 2010] presented a communication-optimal scheme adapting the scheme in [Gentry and

Ramzan 2005]. Another line of work (see [Ishai et al. 2004; Lueks and Goldberg 2015; Henry 2016;

Yeo 2023] and references therein) presented batch codes that transforms any single-query PIR into

a batch PIR. More recent work [Angel and Setty 2016; Angel et al. 2018] introduced probabilistic

batch codes that result in the most concretely-e�cient batch PIR schemes to date. Mughees and

Ren [Mughees and Ren 2023] introduced vectorization techniques to reduce server responses for

20

small database entries. Patel et al. [Patel et al. 2023] presented keyword PIR schemes that can

remove the client mapping.

Labeled PSI. Labeled PSI is a variant where each identi�er has an associated data label that

should be retrieved. Labeled PSI is most often studied in the unbalanced setting where the receiver’s

set is much smaller than the sender’s set. Many recent works [Chen et al. 2017, 2018; Demmler

et al. 2018; Kales et al. 2019; Cong et al. 2021] studied labeled PSI with sub-linear communication

in the larger set. The same setting where the receiver only queries for a single item has been

studied as symmetric PIR [Gertner et al. 1998; Ali et al. 2021].

21

2 | Preliminaries

2.1 Notation

We will use λ as the security parameter throughout. We will use x ← y for assignment of variable

x toy. Sometimes we will assign a variable x to the output of some algorithmA, denoted, x ← A(·).

We use x ←$ X to denote sampling x randomly from distribution X. Sometimes we will sample x

based on a randomized algorithm A, denoted, x ←$ A(·). If A is run on explicit randomness r , we

will write x ← A(·; r).

Linear algebra. We denote column vectors as v and row vectors as vT . We denote the i-th

entry of v by vi . For two vectors n-length vectors v and u, we denote the dot product operator

as v · u =
∑n

i=1 vi · ui. We de�ne a n ×m matrix using its column vectors as M = (v1, . . . , vm)

where the i-th column vector is vi of length n. We may also de�ne a matrix using its row vectors

as M = (vT1 , . . . , v
T
n) where vTi is the i-th row vector of length m. We denote the matrix-vector

product M · u = (v1 · u, . . . , vn · u) where u is a m-length vector. We solve the linear system

associated with n ×m matrix M and n-length vector u by computing m-length vector v such that

M · v = u.

For a vector v of length n and subset I = {i1, . . . , ik} ⊆ [n], we denote by vI = (vi1, . . . , vik)

containing the entries of v with indices in I . For n ×m matrix M = (vT1 , . . . , v
T
n) and subset

I = {i1, . . . , ik} ⊆ [n], we denote the sub-matrix consisting of row vectors with indices in I as

22

Mr(I) = (vTi1, . . . , v
T
ik
). Similarly, for a n ×m matrix M = (v1, . . . , vm) and subset I = {i1, . . . , ik} ⊆

[m], we denote the sub-matrix consisting of column vectors with indices in I as Mc(I) = (vi1, . . . , vik).

Additionally, given subset J ⊆ [n], we use Mc(I)
r(J) to denote the |J | × |I | matrix consistent of the

rows of M indexed by the set J , and the columns of M indexed by I .

2.2 Universal hashing.

We make use of universal hash function families in both our honest and dishonest majority

protocols. A family of hash functions H = {Hs : FTp → Fp} is universal if for all x , y ∈ FTp ,

Pr
s
[Hs(x) = Hs(y)] ≤ 1/p.

2.3 Probability and Information Theory

Here we present some additional notation and de�nitions from probability and information theory.

For a random variable X we use H(X) to represent its Shannon entropy. For two random variables

X and Y , we de�ne their mutual information as:

I(X ;Y) = H(X) − H(X |Y).

Also, for two random variables X and Y over the same spaceZ, we de�ne the statistical distance

between their probability distributions as:

SD(X ,Y) = max
Z⊆Z
| Pr[X ∈ Z] − Pr[Y ∈ Z]|.

23

Finally, we de�ne the Kullback-Leibler divergence of the probability distribution of X from that of

Y as:

DKL(X | |Y) =
∑
z∈Z

Pr[X = z] · log
(
Pr[X = z]

Pr[Y = z]

)
.

2.4 Functionalities, Protocols and Procedures

In this work we denote functionalities by F and some subscript, and protocols by Π and some

subscript. We also consider procedures, denoted by π and some subscript. These are similar to

protocols except that (1) they act like “macros” that can be called within actual protocols and

(2) they are not intended to instantiate a given functionality. Instead, security is proven in the

protocol where they are used.

24

3 | Secure Multi-Party Computation in

the Fluid Model with Linear

Communication

In this chapter, we study Fluid MPC. As described in the introduction, Fluid MPC demands less in

terms of the stability of communication channels between parties by only requiring them to be

online, and thus maintain stable connections, for short amounts of time. We give protocols with

linear communication in each of the dishonest majority with preprocessing, honest majority, and

two-thirds majority settings. We also prove a lower bound showing that for linear communication

in the dishonest majority with preprocessing setting, the amount of preprocessing per party, in

the global pool of parties that may be part of committees in the online phase, must be proportional

to the size of the global pool. This chapter is based (often verbatim) on two papers. The sections

containing the dishonest and honest majority protocols, as well as the dishonest majority lower

bound, are based on [Bienstock et al. 2023a]. The section containing the two-thirds honest majority

protocol is based on [Bienstock et al. 2023b].

25

3.1 Security Model and Preliminaries

We present some of the preliminaries required in this chapter. First we discuss the �uid model in

Section 3.1.1, and then in Section 3.1.2 we present our security model. We utilize the universal

composability framework of [Canetti 2001].

3.1.1 Modelling Fluid MPC

We �rst recall the modelling of Fluid MPC from [Rachuri and Scholl 2022; Choudhuri et al. 2021].

We consider the client-server model, where there is a universeU of parties, that includes both the

clients, who provide inputs, and servers, who perform computation. The goal of these clients is to

privately compute a function over their inputs. The clients delegate this computation to a set of

servers inU that can volunteer their computational resources for part of the computation and

then potentially go o�ine. That is, the set of servers is not �xed in advace, and can change from

time to time.

Computation is composed of an optional preprocessing stage among all clients and servers,

an input phase where clients privately provide inputs, an execution stage where the servers

compute the function, and an output phase where the clients receive output. Preprocessing is

typically only required to have a statistically-secure execution phase for the dishonest majority

setting (see below). In the preprocessing stage, all clients and servers in U interact to generate

information that will be used in the execution stage, but that is independent of the actual inputs

and the function to be computed (it may be required that enough information is generated for

some particular function). After the preprocessing stage, servers can go o�ine until the clients

wish to perform the computation. In the execution stage, only the servers participate to compute

the function. The execution step is itself divided into epochs, where each epoch i runs among a

�xed set of servers, or committee Ci . An epoch contains two parts, the computation phase, where

the committee performs some computation local to itself, followed by a hand-o� phase, where the

26

current committee securely transfers some current state to the next committee. We stress that

there is only one output stage, i.e., the clients get some �nal state from the servers once that allows

them to reconstruct the entire output all at that time. We assume that all parties have access to

only point-to-point channels. We refer to the set of clients as Cclnt and the last committee that

participates in the protocol as C` . For simplicity, we may assume in some places that n = ni = |Ci |

(i.e., each committee is of the same size).

Fluidity. Both the computation phase and hand-o� phase of each epoch in the execution stage

may require multiple rounds of interaction. Fluidity is de�ned as the minimum number of rounds

in any given epoch of the execution stage. We say a protocol achieves maximal �uidity if each

epoch i only lasts for one total round. I.e., the computation phase only consists of local computation

by the parties in committee Ci , and the hand-o� phase consists of only some local computation by

the parties in Ci , plus communication from Ci to Ci+1. In this paper, we only consider maximal

�uidity, as it is the optimal setting to consider and it is the setting considered in the previous

works [Rachuri and Scholl 2022; Choudhuri et al. 2021]. However, we stress that in our modelling

for maximal �uidity (as well as that of [Rachuri and Scholl 2022; Choudhuri et al. 2021]) the clients

in the input and output stage may interact for a constant number of rounds (i.e., independent of the

circuit depth) to reconstruct the output.

Committee formation. The committees used in each epoch may either be �xed ahead of time,

or chosen on-the-�y throughout the execution stage. While �xing committees ahead of time may

result in a simpler, more e�cient protocol, we focus on the less restrictive, more realistic setting

where committees are chosen on-the-�y. This model is more suitable for the goal of making MPC

protocols adequate for use over unsable networks since, intuitively, a given committee has better

chances of guaranteeing a stable connection if they do not need to commit to a speci�c online time

far in advance. See [Choudhuri et al. 2021] for more motivation and details on committee selection.

The model of [Choudhuri et al. 2021] speci�es the formation process via an ideal functionality that

27

samples and broadcasts committees according to the desired mechanism. However, as in [Rachuri

and Scholl 2022], we desire to divorce the study of committee selection from the actual MPC and

simply require that all parties of the current committee Ci somehow agree on the next committee

Ci+1. Speci�cally, the parties of committee Ci during the hand-o� phase of epoch i (and not before)

are informed by the environmentZ of its choice of committee Ci+1 (i.e., it is a worst-case choice

byZ). We make no assumptions or restrictions on the size of committees nor the overlap between

committees. In particular, committees may consist of a large number (possibly constant fraction)

of parties in the entire universe,U.

Corruptions. We study three di�erent settings for the number of parties that may be corrupted

for our model to still require security:

• For dishonest majority, the adversary A may corrupt all-but-one client and all-but-one

server in the committee of each epoch. This is the setting that [Rachuri and Scholl 2022]

studies.

• For honest majority, the adversary A may only corrupt any minority of servers in the

committee of each epoch.1 This is the setting that [Choudhuri et al. 2021] studies.

• For two-thirds honest majority, the adversary A may only corrupt less than a third of the

servers in the committee of each epoch, that is 3t + 1 = n.

We will sometimes refer to the honest parties of committee Ci asHCi , and the corrupt parties of

committee Ci as TCi .

We consider a malicious R-adaptive adversary from [Choudhuri et al. 2021] and used in [Rachuri

and Scholl 2022]. In short, if there is a preprocessing stage, the adversary statically chooses some

parties to corrupt beforehand. Then, the adversary statically chooses a set of clients to corrupt.

During each epoch i of the execution phase, after learning which servers are in committee Ci , the
1All-but-one client could be corrupted, however.

28

adversary adaptively chooses a subset of Ci to corrupt. Upon such a corruption, the adversary

learns the server’s entire past state and can send messages on its behalf in epoch i . Therefore,

when counting the number of corruptions for some epoch i , we must retroactively include those

servers in committee Ci that are corrupted in some later epoch j > i . Furthermore, if there is a

preprocessing stage, we count a server in committee Ci as corrupted also if they were corrupted

during the preprocessing phase.

3.1.2 Security Model

To model Fluid MPC, we adapt the dynamic arithmetic black box (DABB) ideal functionality FDABB

of [Rachuri and Scholl 2022]. First, we note that our protocols, as written, achieve security with

selective abort (same as [Rachuri and Scholl 2022; Choudhuri et al. 2021]), where the adversary can

prevent any clients of his or her choice from receiving output. However, similar to the protocol

of [Choudhuri et al. 2021] (c.f. Appendix A), our protocols can easily achieve unanimous abort

(in which honest clients either all receive the output or all abort) if the clients have access to a

broadcast channel in the last round or if they implement a broadcast over their point-to-point

channels. The same applies to the protocol of [Rachuri and Scholl 2022]. Functionality FDABB,

presented below, is parameterized by a �nite �eld Fp , and supports addition and multiplication

operations over the �eld. It keeps track of the current epoch number in a variable i and the

committee of the current epoch i in a variable Ci . The functionality receives the identity of the

�rst committee from the clients via input Init. During the execution stage, where the current

committee may change, the functionality receives the identity of the next committee from the

currently active parties via input Next-Committee (if it receives inconsistent committees for

either of these two inputs, we assume it aborts).

29

Figure 3.1: Functionality FDABB

Parameters: Finite �eld Fp , universeU of parties, and set of clients Cclnt ⊆ U. The functionality

assumes that all parties have agreed upon public identi�ers idx , for each variable x used in the

computation.

Init: On input (Init, C) from every party Pj ∈ Cclnt, where each Pj sends the same set C ⊆ U,

initialize i = 1, C1 = C as the �rst active committee. Send (Init, C1) to the adversary.

Input: On input (Input, idx , x) from some Pj ∈ Cclnt, and (Input, idx) from all other parties in Cclnt,

store the pair (idx , x). Send (Input, idx) to the adversary.

Next-Committee: On input (Next-Commi�ee, C) from every party Pj ∈ Ci , where each Pj sends

the same set C ⊆ U, update i = i + 1, Ci = C. Send (Next-Commi�ee, Ci) to the adversary.

Add: On input (Add, idz, idx , idy) from every party Pj ∈ Ci , compute z = x + y and store (idz, z).

Send (Add, idz, idx , idy) to the adversary.

Multiply: On input (Mult, idz, idx , idy) from every party Pj ∈ Ci , compute z = x ·y and store (idz, z).

Send (Mult, idz, idx , idy) to the adversary.

Output: On input (Output, {idzm }) from every party Pj ∈ Cclnt ∪Ci , where a value zm for each idzm

has been stored previously, retrieve {(idzm , zm)} and send (Output, {(idzm , zm)}) to the adversary.

Wait for input from the adversary, and if it is Deliver, send the output to every Pi ∈ Cclnt. Otherwise,

abort.

For simplicity, we omit committee selection and tracking from the description of the ideal

functionalities presented in the rest of this chapter. However, these components are (implicitly)

exactly as presented in FDABB.

3.1.3 Preliminaries

Notation. We �rst note that we will often use l ∈ Ci as shorthand to refer to some party Pl ∈ Ci ,

and same for some party Pl ∈ HCi+1 or Pl ∈ TCi+1 .

30

Layered circuits. We refer the reader to [Choudhuri et al. 2021] for a more precise description

on layered circuits. In short, these are arithmetic circuits composed of addition, multiplication and

identity gates. The circuit is divided in layers, and for each such layer, the inputs to each gate on

the layer come directly from the layer above. Every circuit can be made layered by adding enough

identity gates.

Secret Sharing. For our dishonest majority protocol, we use additive n-out-of-n secret sharings.

We use the notation [x]C to denote such a sharing of a value x between the parties of some

committee C.

For our honest and two-thirds honest majority protocols, we will also utilize Shamir secret

sharing. We let [x]Ci
d

denote a Shamir secret sharing of value x with degree d among the parties

of Ci . We let x j be the j-th share of a Shamir secret sharing [x]Ci
d

(typically held by party Pj of

committee Ci). As a special case, our protocol will sometimes have a party create a Shamir secret

sharing of a share they hold. In this case, we denote that Shamir secret sharing of x j with degree

d among the parties of Ci as
[
x j

]Ci
d

.

We also use the packed secret sharing technique introduced by Franklin and Yung [Franklin

and Yung 1992] for our two-thirds honest majority protocol. This is similar to Shamir secret

sharing, except a vector of ` di�erent values x = (x1, . . . , x`) are shared at once using a polynomial

that evaluates to x1, . . . , x` at ` distinct points (w.l.o.g., −1, . . . ,−`)2. For privacy, if t players are

corrupted, the polynomial must be random of degree at most d = t + ` − 1. Throughout this

chapter, we will use ` = t + 1, and thus d = 2t . In this case, similar to standard Shamir secret

sharing of degree d = 2t , from a set of n shares where at most t < n/3 shares are corrupt, their is

an algorithm that e�ciently either determines the correct vector of secrets, or outputs ⊥ (denoting

an error). We denote a packed secret sharing value of vector x = (x1, . . . , x`) with degree d among

the parties of Ci as [x]Ci
d

. We let xj be the j-th share of a packed secret sharing [x]Ci
d

(typically held

2The underlying �eld size therefore must be at least ` + n.

31

by party Pj of committee Ci). As a special case, our protocol will sometimes have a party create

a Shamir secret sharing of a share of a packed sharing they hold. In this case, we denote that

Shamir secret sharing of xj with degree d among the parties of Ci as
[
xj

]Ci
d

. Also, our protocol will

sometimes have a party create a packed secret sharing of a vector of shares, each from di�erent

Shamir secret sharings, that they hold. In this case, we denote the vector of shares corresponding

to sharings ([x1]
Ci
d
, . . . , [x`]

Ci
d
) that Party Pj in Committee Ci holds as xj

[1,`] = (x
j
1, . . . , x

j
`
) and their

packed secret sharing of the vector with degree d among the parties of Ci as
[
xj
[1,`]

]Ci
d

.

For our dishonest and honest majority protocols, we will also use authenticated secret sharing

schemes. For the dishonest majority protcol, we let

〈x〉i,j B ((xi,∆i,Mi,j,Ki,j), (x j,∆j,M j,i,K j,i))

represent a pairwise BeDOZa [Bendlin et al. 2011] (additive) sharing of x between parties Pi and

Pj (i.e., x = xi + x j), MAC’d under their respective local MAC keys Ki,j,K j,i and (additive) shares

of some global MAC key ∆i,∆j :

Mi,j = K j,i + ∆j · xi, M j,i = Ki,j + ∆i · x j .

We now let 〈x〉P,Q B
((
xi, {Mi,j}j∈Q

)
i∈P ,

(
∆j, {K j,i}j∈Q

)
i∈P

)
represent a pairwise BeDOZa [Bendlin

et al. 2011] sharing of x where each party Pi of set P holds an additive share xi of the secret x and

MACs Mi,j of this share under the local keys and shares of the global key K j,i,∆j of each party Pj

of set Q. Each Pj of Q indeed holds their share ∆j of the global MAC key and each local key K j,i .

These MACs are computed as above.

For both dishonest and honest majority protocols we use another form of authenticated

secret sharing, known as SPDZ sharings [Damgård et al. 2012]. For the dishonest majority

protocol, an authenticated SPDZ sharing of value x amongst Committee C has the form JxKC∆C B

([x]C ,
[
∆C · x

]C
,
[
∆C

]C
), where each sharing component [·]C is an additive sharing. In this setting,

32

as we will see, each committee C has its own shared MAC key ∆C =
∑

j∈Ci ∆j ; thus in the above

notation, we specify under which committee’s MAC key the sharing is authenticated in the

subscript. For honest majority, a SPDZ sharing of a value x among the parties of committee C,

JxKC contains a vector of degree-2t Shamir shares JxKC B ([x]2t , [∆]2t , [∆ · x]2t).

Parity Check Matrices. Given a vector x = (x1, . . . , xn) ∈ F
n, we say that x is d-consistent if

there exists a polynomial f of degree ≤ d such that f (i) = xi for i ∈ [n]. That is, x constitutes

valid sharings of some secret x = f (0). Testing if a vector x is d-consistent can be done by

interpolating a polynomial of degree ≤ d from the �rst d + 1 entries, and checking that the

remaining n − (d + 1) entries are consistent with this polynomial. This can be expressed as a

matrix product (xd+2, . . . , xn)
ᵀ = H′ · (x1, . . . , xd+1), which can itself be written as 0 = H ·x , where

H is a (n − d − 1) × n matrix. More formally, H is the parity check matrix of the Reed-Solomon

code of length n and dimension d + 1, and it satis�es that a vector x ∈ Fn is d-consistent if and

only if 0 = H · x ∈ Fn−(d+1). We will make use of this matrix throughout this chapter.

Super-Invertible and Hyper-Invertible Matrices. In this chapter we make use of super-

invertible matrices, and also hyper-invertible matrices [Beerliová-Trubíniová and Hirt 2008],

which satisfy that every of its square submatrices is invertible.

3.2 Dishonest Majority Protocol

3.2.1 Technical Overview

We begin by presenting the general idea of our �uid dishonest majority protocol with linear

communication complexity, in the preprocessing model. It turns out some of the ideas present

in this section will also be helpful for the construction of our �uid honest majority protocol. We

then provide a shorter overview for the honest majority protocol in Section 3.4.1.

33

3.2.1.1 Our Starting Point: Le Mans [Rachuri and Scholl 2022]

We �rst present the high level ideas of the protocol from [Rachuri and Scholl 2022], which achieves

�uid MPC in the dishonest majority setting with quadratic communication complexity. The overall

idea is the following. The circuit at hand is considered to be a layered circuit. As in [Choudhuri

et al. 2021], the invariant that will be kept is that the parties in committee Ci will hold certain

sharings of all the current intermediate values in layer i . Eventually, the last committee obtains

shares of the outputs of the circuit, which are then transmitted to the clients. Unlike [Choudhuri

et al. 2021] however, Le Mans makes use of additive secret-sharing in contrast to Shamir’s, due to

the setting being dishonest majority in contrast to honest majority.

Resharing and Openings. To maintain the aforementioned invariant, Le Mans makes use of

two major blocks. First, to preserve the invariant for addition and identity gates, the parties

make use of a resharing procedure which enables the parties in committee Ci to transfer additive

sharings of some given values [x1]
Ci , . . . , [xm]

Ci to committee Ci+1 so that, as long as there is at

least one honest party in each of these two committees, the adversary learns no information about

the underlying secrets, and the parties in Ci+1 obtain fresh-looking shares [x1]
Ci+1 , . . . , [xm]

Ci+1 .

As we will see later, this resharing can be achieved quite e�ciently (in particular, with linear

communication complexity) by preprocessing most of the shares that the receiving committee

Ci+1 should hold.

The second major block used in Le Mans is that of Beaver triples, which is preprocessed material

of the form ([a]Ci , [b]Ci , [c]Ci) where c = a · b, held by a committee Ci .3 This enables sharings

[x]Ci , [y]Ci held by Ci to be “multiplied”, so that committee Ci+1 obtains sharings [x · y]Ci+1 . This

is done by the parties in Ci locally computing [x + a]Ci and [y + b]Ci , followed by opening these
3Recall that a requirement in the �uid preprocessing model is that the correlations the parties receive have to

be agnostic to the speci�c committee assignments. It may not be clear now, but it turns out multiplication triples
are committee-agnostic, if the parties start with BeDOZa-style correlations [Bendlin et al. 2011]. This will be made
clearer.

34

sharings towards Ci+1 by each party in Ci revealing their shares to each party in Ci+1. Notice that

this takes quadratic communication, and in fact, opening shared values are in essence the exact

quadratic bottleneck in Le Mans.

Let us assume temporarily that committee Ci+1 has sharings of the same multiplication triple,

that is, ([a]Ci+1 , [b]Ci+1 , [c]Ci+1). After Ci+1 receives x + a and y + b, they can locally compute

[x · y]Ci+1 ← (x + a)(y + b) − (y + b) [a]Ci+1 − (x + a) [b]Ci+1 + [c]Ci+1 , as required. Now, one

way in which committee Ci+1 could have obtained the multiplication triple is by assuming they

obtain it from the preprocessing. However, notice that this triple has to coincide with the one

held by Ci , which is harder to achieve while maintaining the requirement of committee-agnostic

preprocessing. Instead, in Le Mans the following approach is taken: the parties in Ci reshare

their triple ([a]Ci , [b]Ci , [c]Ci) to committee Ci+1, which enables the latter committee to obtain

([a]Ci+1 , [b]Ci+1 , [c]Ci+1). In principle, using the resharing method sketched above, this can be

done with linear communication complexity. However, as we will discuss below, active security

demands that besides additive sharings the parties also hold sharings of certain MACs. In Le Mans

this is handled by using a di�erent resharing method named key-switching, which makes use of

openings and hence it su�ers from quadratic communication.

Authenticated Sharings. To prevent a corrupt party from breaking security, Le Mans, as all

of the dishonest majority MPC protocols, relies on the SPDZ paradigm [Damgård et al. 2012] of

adding authentication to every shared value. This consists of additive sharings of a global MAC

key [∆], and for each shared value [x], additive sharings of the MAC of this value, computed as

[∆ · x]. In the �uid setting, each committee Ci who has shares of a value [x]Ci must also have

shares of its MAC
[
∆Ci · x

]Ci , together with shares of the global key
[
∆Ci

]Ci .
The shared MAC key

[
∆Ci

]Ci can be preprocessed, but it may be di�erent from committee

to committee as a result of the committee-agnostic preprocessing condition. Due to this, if the

�rst committee has sharings ([x]Ci ,
[
∆Ci · x

]Ci , [∆Ci]Ci), and the second committee Ci+1 wants

35

to obtain authenticated sharings ([x]Ci+1 ,
[
∆Ci+1 · x

]Ci+1 ,
[
∆Ci+1

]Ci+1
) under the di�erent key ∆Ci+1 ,

this cannot be achieved with the simple resharing from before, given that the secret ∆Ci ·x changes

to ∆Ci+1 · x . This is addressed in Le Mans by using a key switching method (Protocol ΠKey-Switch in

[Rachuri and Scholl 2022]) that enables an authenticated value under one committee’s key to be

transferred to the next committee so that it remains authenticated, but under the key of the next

committee.

In a bit more detail, assume preprocessed sharings ([r]Ci ,
[
∆Ci+1 · r

]Ci+1
).4 With this, given[

∆Ci · x
]Ci , committee Ci+1 can obtain

[
∆Ci+1 · x

]Ci+1 by letting Ci �rst compute locally [x − r]Ci

and then opening this value towards committee Ci+1. Then, committee Ci+1 computes locally[
∆Ci+1 · x

]Ci+1
← (x − r) ·

[
∆Ci+1

]Ci+1
+

[
∆Ci+1 · r

]Ci+1 . Again, because this requires opening shared

values from one committee to another, the resulting communication complexity is quadratic.

3.2.1.2 The “King Idea” in the Fluid Setting

The reconstruction of a value d requires n2 communication if all parties just send shares to each

other, but it can be done with communication O(n) based on the “king idea” from [Damgård and

Nielsen 2007]. This is achieved as follows: in a �rst round, all share owners send their shares to a

single party, a “king”, who reconstructs d and sends this value to the intended receiving parties in

a second round.

Given that, as we have highlighted above, opening shared values is the bottleneck in Le Mans,

a natural approach to achieving linear communication complexity in that protocol is to replace

all-to-all openings, which have quadratic communication complexity, by the king idea above.

However, this imposes a major complication: all-to-all openings require quadratic communication,

but only make use of one single round, while in contrast, the king idea has linear communication

complexity but requires two rounds. As a result, using the king idea does not allow committee Ci
4This form of preprocessing is not committee-agnostic, but a simpler form of it is, and the actual tuple required is

obtained by adding an extra resharing step. This is not relevant for our discussion.

36

to open shared values to committee Ci+1, but rather, these can be opened towards a committee

Ci+2 (by making use of a king in Ci+1). At �rst sight, one may think that the techniques from

Le Mans carry over when using this king idea by simply using two committees per circuit layer,

instead of one, to accommodate for the extra round required for the reconstruction of shared

values. Unfortunately, as we will argue below, such approach is much more complicated than how

it looks at a high level.

Problems with key switching. Recall the key switching protocol from Le Mans sketched above.

In that protocol, the parties start with a pair ([r]Ci ,
[
∆Ci+1 · r

]Ci+1
), and this enables committee Ci

to “transfer” shares of MACs
[
∆Ci · x

]Ci to committee Ci+1 so that the latter obtains
[
∆Ci+1 · x

]Ci+1 .

This approach works for the one-round openings used in the key switching, but if instead we want

to use two-round openings with a king, the king would have to be a member of Ci+1 itself, and

the key switching would have to be done towards committee Ci+2 instead. This raises a number

of complications. First, such approach would require an initial pair ([r]Ci ,
[
∆Ci+2 · r

]Ci+2
), but

unfortunately such pair is not easily obtainable. The reason is that
[
∆Ci+1 · r

]Ci+1 for the ine�cient

key-switch protocol is obtained in part by the parties of committee Ci using preprocessed “local

MACs” of their shares of r under some keys that each party in committee Ci+1 has. This is allowed

in the �uid model, since committee Ci does learn the parties of committee Ci+1 at some point

(so that they know to whom to send their sharings of intermediate circuit values). However,

committee Ci never learns the parties of committee Ci+2, so we do not have the preprocessing

required to obtain
[
∆Ci+2 · r

]Ci+2 .

Instead, our approach is to let committee Ci+2 obtain sharings of the MAC of the secret x , but

under a MAC key corresponding to the previous committee Ci+1, that is,
[
∆Ci+1 · x

]Ci+2 . The Le

Mans key switching protocol is naturally extended to achieve this by using the king of committee

Ci+1 to reconstruct (x − r) to the parties of committee Ci+2 and also having committee Ci+1 reshare[
∆Ci+1 · r

]Ci+1 and
[
∆Ci+1

]Ci+1 with committee Ci+2. Committee Ci+2 can then perform the same

37

computation as committee Ci+1 did before with these sharings to obtain
[
∆Ci+1 · x

]Ci+2 . However,

with this key switching protocol, we need to take some extra care in our protocol to ensure that

MACs of intermediate circuit values do not “fall behind”.

In particular, we maintain the invariant that the inputs to the gates at the circuit layer which

some committee Ci processes must be authenticated under the MAC key of committee Ci−2. For

example, ([x]Ci+2 ,
[
∆Ci · x

]Ci+2
). This is achieved by preprocessing a multiplication triple where

the sharings of a and b are authenticated under the MAC keys of both committees Ci−2 and Ci−1.

For example, the a sharing is of the form: ([a]Ci−2 ,
[
∆Ci−2 · a

]Ci−2 ,
[
∆Ci−1 · a

]Ci−1
).5 Now, committee

Ci−2 can �rst reshare the triple that is authenticated under their MAC key ∆i−2 to committee Ci−1,

who can then reshare it to committee Ci . Assuming the invariant holds for committee Ci , it can

then successfully compute authenticated sharings of (x + a) and (y + b) under MAC key ∆i−2

needed to multiply x and y. Also, from the above resharing by committee Ci−2, and the MACs on

the triple that committee Ci−1 already holds, committee Ci−1 obtains the triple authenticated under

their MAC key ∆i−1. Committee Ci−1 can then key switch the triple with committee Ci+1 using a

king in committee Ci . From this key switching, committee Ci+1 receives the triple authenticated

under the MAC key of committee Ci , e.g., for the a part: ([a]Ci+1 ,
[
∆Ci · a

]Ci+1
). Committee Ci+1 can

then reshare this triple to committee Ci+2, who can then use the above multiplication technique

to obtain ([xy]Ci+2 ,
[
∆Ci · (xy)

]Ci+2
), also authenticated under the MAC key of committee Ci . Thus

the invariant is preserved.

Authenticating multiplication triples. There is a second and perhaps more subtle problem

that arises when using an intermediate king for linear reconstruction. Note that the above

preprocessed triples that we can obtain are such that the sharing [c]Ci is not authenticated. This is

addressed in Le Mans by letting committee Ci learn the authentication of [c]Ci , and in fact the

whole multiplication triple, from the previous committee Ci−1. In a bit more detail, Ci−1 obtains
5This kind of triple authenticated under the MAC keys of both committees Ci−2 and Ci−1 can indeed still be

computed from our actual committee-agnostic preprocessing.

38

([a]Ci−1 ,
[
∆Ci−1 · a

]Ci−1 , [b]Ci−1 ,
[
∆Ci−1 · b

]Ci−1 , [c]Ci−1) from the preprocessing, and they perform

key switching so that committee Ci obtains the multiplication triple with the MAC shares of the

factors, only missing the shares of the MAC of c . To obtain
[
∆Ci · c

]Ci , a pair ([v]Ci−1 ,
[
∆Ci · v

]Ci
)

is generated using the key switch protocol on a preprocessed pair ([v]Ci−1 ,
[
∆Ci−1 · v

]Ci−1
).6 With

the former pair at hand, the parties in Ci−1 can open [c −v]Ci−1 to Ci , who can then compute

locally
[
∆Ci · c

]Ci
← (c −v) ·

[
∆Ci

]Ci
+

[
∆Ci · v

]Ci .
We can easily enough tweak our multiplication procedure sketched above so that committee

Ci−2 instead uses a king in committee Ci−1 to open (c −v) to committee Ci . However, recall that

using our key-switch procedure, committee Ci can only obtain sharings from committee Ci−2 that

are authenticated under the MAC key of committee Ci−1. But, we need c to be authenticated under

the MAC key of committee Ci in order to preserve the invariant described above, since these

shares of c are used to compute the shares of the output. Thus, we must wait until committee Ci+1

to authenticate c under the key of committee Ci . However, since (x + a) and (y + b) are opened to

the (possibly corrupt) king of committee Ci+1, the adversary could then add errors dependent on x

and y to c while authenticating it. The adversary could thus mount a selective failure attack using

these errors. To solve this we still use the king technique so that committee Ci−2 can open (c−v) to

committee Ci . We then have only some king in committee Ci (to preserve linear communication)

again forward (c −v) to committee Ci+1, who can then authenticate c . To ensure that this king

does not cheat as above, we also have the parties of committee Ci hash the received (c −v) values

for all multiplication gates at this circuit layer, using a universal hash function. Then the parties

of committee Ci send these hashes to each party of Ci+1, who use them to check consistency of

their received openings. Since these hashes are short, in fact independent of the number of gates

at this layer, communication is still e�cient. We use a similar hashing technique as part of the

procedure that checks the MACs of shared values.
6[Rachuri and Scholl 2022] uses ‘l ’ instead of our ‘v’ here.

39

3.2.2 Formal Protocol

The protocol Le Mans from [Rachuri and Scholl 2022] is set in the dishonest majority setting, and

they show how to achieve maximal �uidity by relying on preprocessed partially-authenticated

multiplication triples, and using accumulators to both verify openings and multiplication correct-

ness. Le Mans, just like the protocol from [Choudhuri et al. 2021], achieves a communication

complexity that is quadratic in the size of the committees. However, interestingly, the source of

quadratic communication is di�erent for [Rachuri and Scholl 2022]. In [Choudhuri et al. 2021],

as we discussed in the previous section, quadratic communication appears in the resharing step,

where each committee reshares their status of the computation towards the next committee. In

contrast, resharing is not a problem in Le Mans, which stems from the fact that they make use of

additive secret sharing, which admits for a very e�cient resharing protocol if one is willing to

assume certain form of preprocessing. Instead, the quadratic complexity in Le Mans appears from

the approach they take to secure multiplication, which we expand on below.

As we have already mentioned Le Mans makes use of preprocessed multiplication triples to

make progress at every multiplication layer. This reduces the problem of secure multiplication to

that of reconstructing a shared value, which they do by letting each party in a given committee

send out their shares to every other party in the next committee, which leads to quadratic

communication. Instead, we achieve linear communication by handling these reconstructions in a

di�erent way: sharings are reconstructed to a single “king”, who sends the reconstructions to the

parties in the next committee. This is indeed the standard way in which openings are handled in

non-�uid dishonest majority such as SPDZ [Damgård et al. 2012], and its derivatives. The details

of our protocol are presented below.

Throughout this section we will always use additive n-out-of-n secret sharings. Recall that we

use the notation [x]C to denote such a sharing of a value x between the parties of some committee

C.

40

Remark 3.1 (On the relevance of global preprocessing). We recall that our �uid modelling allows

for the committees to be chosen on the �y, which means that any form of preprocessing has to be

agnostic to concrete committee assignments. This is one of the major complications we deal with in

this section. If this was not the case, that is, if the preprocessing was allowed to depend on the concrete

committee choices, then a much simpler approach can be envisioned: the same authenticated triple is

preprocessed across two alternate committees, the �rst uses it to mask the two secrets to be multiplied,

a king in an intermediate committee is used for linear reconstruction, and the other committee uses

the same triple to compute the �nal sharings of the product. This is not a possibility in our case.

Functionality for commitments. In this section we will make use of the following functional-

ity, also appearing in [Rachuri and Scholl 2022].

Figure 3.2: Functionality Fcommit

The functionality runs between a set of parties P and an adversary A.

Commit: On input (commit, Pi , x, τx) from Pi , where τx is a previously unused identi�er, store

(Pi , x, τx) and sent (Pi , τx) to all parties.

Open: On input (open, Pi , τx) from Pi , retrieve x and send (x, i, τx) to all parties.

3.2.2.1 Dishonest Majority Preprocessing

We begin by describing the preprocessing functionality Fprep that is used for our dishonest majority

construction. Functionality Fprep is in charge of distributing �rst (additive) shares ∆j of the global

MAC key ∆ to each party in the universe U. It also distributes (i) pairwise BeDOZa sharings

〈r 〉i,j between each pair of parties inU, (ii) partially-authenticated multiplication triple sharings

(〈a〉i,j , 〈b〉i,j , [c]i,j) between each pair of parties inU, and (iii) common random values si,j shared

between each pair of parties inU. For (ii), the shared value c is computed as ai · b j + aj · bi , i.e.,

the cross terms in the product (ai + aj) · (bi + b j) = a · b of the values a and b for which the two

parties have pairwise BeDOZa sharings. Note that [c]i,j is not authenticated and in fact can have

41

additive error of the form δa · b
j + δb · a

j , if Pi is corrupted and Pj is honest.

We remark that this is a functionality that we do not aim at instantiating in our work. We

refer the reader to [Rachuri and Scholl 2022] on how this functionality can be instantiated by

having the pool of all parties perform an MPC protocol among themselves. We note that this

instantiation requires per-party communication and storage of O(N · log |C |), if each party may

participate in a constant fraction of committees in the worst-case during the execution phase.

However, in order to have a purely information-theoretic execution phase, the stored preprocessing

states from [Rachuri and Scholl 2022] must be expanded to size Θ(N · |C |), before the execution

phase, consistent with our lower bound from Section 3.3.

Figure 3.3: Functionality Fprep

Parameters: Finite �elds Fp and Fpr , parties P1, . . . , PN , adversary A, set of honest parties Hon,

and set of corrupt parties Corr.

Functionality: Generate pairwise authenticated random values and pairwise partially-authenticated

multiplication triples.

1. Fprep receives from A the global MAC key shares {∆i }i ∈Corr for the corrupt parties. It then

samples randomly ∆j ←$ Fpr for each honest party Pj ∈ Hon.

2. For 2 · tot_trip + tot_rand number of times, for every Pi , Pj :

(a) If both Pi , Pj ∈ Hon, Fprep samples random values r i , r j ←$ Fp and MAC keys

K i , j ,K j ,i ←$ Fpr . It then computesM i , j ← K j ,i+∆j ·r i ∈ Fpr andM j ,i ← K i , j+∆i ·r j ∈

Fpr .

(b) If one of Pi or Pj , say Pi w.l.o.g., is in Corr, Fprep receives from A share r i along with

MAC M i , j and MAC key K i , j . It also samples random share r j ←$ Fp , then computes

M j ,i ← K i , j + ∆i · r j and K j ,i ← M i , j − ∆j · r i .

(c) If both Pi and Pj are in Corr, Fprep receives from A all corresponding values.

42

3. For tot_trip number of times, for every Pi , Pj , Fprep let
〈
amT

〉i , j
,
〈
bmT +1

〉i , j be the outputs

from themT and (mT + 1)-st iterations of Step 2 above. Then:

(a) If both Pi , Pj ∈ Hon, Fprep samples ci , j , c j ,i ∈ Fp randomly such that ci , j + c j ,i =

aimT
· b jmT +1 + a

j
mT · b

i
mT +1.

(b) If one of Pi or Pj , say Pi w.l.o.g., is in Corr, Fprep receives fromA share ci , j and additive

errors δa, δb . It then computes c j ,i ←
(
(aimT

+ δa) · b
j
mT +1 + a

j
mT · (b

i
mT +1 + δb)

)
− ci , j .

(c) If both Pi and Pj are in Corr, Fprep receives from A all corresponding values.

4. For tot_shared_rand number of times, for every Pi , Pj :

(a) If both Pi , Pj ∈ Hon, Fprep samples random si , j ←$ Fp .

(b) If at least one of Pi or Pj , say Pi w.l.o.g., is in Corr, Fprep receives si , j from A.

5. Finally, Fprep outputs all shares of 〈r 〉i , j , (〈a〉i , j , 〈b〉i , j , [c]i , j), and si , j computed above to

parties in Hon.

Functionality Fprep is useful as it can be used to generate partially authenticated multiplication

triples and shares of authenticated uniformly random values within any committee, once the

identity of this committee is known. This is described in detail in Procedure πget-combined-prep.

Figure 3.4: Procedure πget-combined-prep

Usage: Generate BeDOZa random sharings and partially-authenticated BeDOZa random multiplica-

tion triples using the pairwise random sharings and partially-authenticated random multiplication

triples from Fprep.

Init: mT is initialized to 0 andmR is initialized to 2 · tot_trip.

1. On input (rand,P,Q), each party Pi ∈ P outputs (r imR
, {M i , j

mR }j ∈Q) and each Pj ∈ Q outputs

(∆j , {K j ,i
mR }i ∈P), using the freshmR-th rand value from Fprep. ThenmR is incremented: mR ←

mR + 1.

43

2. On input (trip,P,Q), each party Pi ∈ P outputs

((aimT
, {M i , j

mT }j ∈Q), (b
i
mT +1, {M

i , j
mT +1}j ∈Q),a

i
mT
· bimT +1 +

∑
l ∈P\{i } c

i ,l
mT) and each Pj ∈ Q

outputs (∆j , {K j ,i
mT }i ∈P, {K

j ,i
mT +1}i ∈P), using the fresh mT -th partially authenticated triples

from Fprep. ThenmT is incremented: mT ←mT + 2.

3.2.2.2 Efficient Resharing for Dishonest Majority

For e�cient resharing we make use of the techniques in [Rachuri and Scholl 2022], which consist

of the parties sending additive shares of their shares towards the next committee, but using some

preprocessing in the form of pairwise shared randomness in order to precompute most of the

shares.7 Details are given in Procedure πe�-reshare-dm below.

Figure 3.5: Procedure πe�-reshare-dm

Usage: Ci reshares [r]Ci to Ci+1.

1. Each party Pj in Ci will use the next fresh pairwise shared random values from Fprep,

{r j ,l }l ∈Ci+1 .

2. Each Pj will then take their share r j of [r]Ci and locally compute r j ,1 = r j −
∑ni+1
l=2 r j ,l .

3. Next, each Pj will send their r j ,1 to P1 in Ci+1.

4. Finally, parties Pl in Ci+1 will locally compute their share r l of [r]Ci+1 as r l ←
∑

j ∈Ci r
l , j

(where if j , 1, each r l , j = rl , j , obtained from Fprep).

Lemma 3.2. Procedure πe�-reshare-dm’s transcript is simulatable by random values.

Proof. Assume without loss of generality that only party Pni ∈ Ci is honest (the case where other

parties are honest follows easily). Now P1 ∈ Ci+1 is the only party that receives communication in
7The parties can instead use pairwise shared PRG seeds, and expand them each time they need the values r j ,l

used in πe�-reshare-dm.

44

this procedure, so if P1 is not corrupted, it is easy to simulate. If P1 is corrupted, assume without

loss of generality that Pni+1 is honest (again, the case where others are honest follows easily). So,

we must argue that simulating rni ,1, that P1 ∈ Ci+1 receives from Pni ∈ Ci , with a random value is

valid. From Fprep, we know that only Pni and Pni+1 have knowledge of rni ,ni+1 ; for everyone else, it

is distributed uniformly at random. Thus, since rni ,ni+1 is added to rni ,1, rni ,1 appears uniformly

random to A, and we are done. �

As in Le Mans, we also rely on the fact that BeDOZa authenticated sharings can be con-

verted locally into SPDZ sharings. This is carefully discussed in Procedure πconvert. First, recall

that an authenticated SPDZ sharing of value x amongst Committee C has the form JxKC∆C B

([x]C ,
[
∆C · x

]C
,
[
∆C

]C
). Since each committee C has its own shared MAC key ∆C =

∑
j∈Ci ∆j , we

specify under which committee’s MAC key the sharing is authenticated in the subscript.
Figure 3.6: Procedure πconvert

Usage Case 1: For input pairwise-authenticated BeDOZa sharing 〈x〉Ci ,Ci , convert to SPDZ sharing

JxKCi∆i .

1. Note that ∑
j ∈Ci

(
∆j · x j +

∑
l ∈Ci

M j
l − K

j
l

)
=

∑
j ∈Ci

(
∆j · x j +

∑
l ∈Ci

K l
j + ∆l · x j − K j

l

)
= ∆Ci · x .

2. So, each Pj in Ci outputs as their SPDZ share of x : (x j ,∆j · x j +
∑
l ∈Ci M

j
l − K

j
l ,∆

j).

Usage Case 2: For input pairwise-authenticated BeDOZa sharing 〈x〉Ci ,Ci∪Ci+1 , convert to SPDZ

sharings JxKCi∆i and JxKCi+1
∆i+1

.

1. We �rst note that Ci can obtain SPDZ shares of x in the same way as above (by ignoring its

pairwise MAC and MAC keys with those parties Pl ∈ Ci+1, as the sum above is written).

2. Now, each Pj ∈ Ci additionally computes M j ←
∑
l ∈Ci+1 M

j
l to obtain sharing [M]Ci and

45

invokes πe�-reshare-dm on it, along with [x]Ci .

3. Let M l be the share of [M]Ci+1 obtained by Pl . Now note that

∑
l ∈Ci+1

©«M l −
∑
j ∈Ci

K l
j
ª®¬ =

∑
l ∈Ci+1

©«M l −
∑
j ∈Ci

M j
l − ∆l · x j

ª®¬ = 0 + ∆Ci+1 · x .

4. So, each Pl in Ci+1 outputs as their SPDZ share of x : (x l ,M l −
∑

j ∈Ci K
l
j ,∆

l).

Lemma 3.3. Procedure πconvert’s transcript is simulatable by random values.

Proof. Follows from Lemma 3.2, since the only communication is invoking πe�-reshare-dm on [M]Ci ,

for which the honest shares are uniformly random, by the security of Fprep. �

3.2.2.3 Checking and Maintaining MACs

Similar to our honest majority protocol of Section 3.4 (and Le Mans), in our dishonest majority

protocol, we use n-out-of-n sharings. This means that a malicious adversary can easily add errors

to any value throughout the computation. Thus, as before, we use MACs, which authenticate

every intermediate value used throughout the computation, and guarantee those values’ integrity.

To attest to the integrity of every value that is opened throughout the protocol, we again use an

accumulator that is computed similarly as before. As in the honest majority case, to ensure that

the adversary does not cheat, we open a challenge β to the parties of Ci+1, even though the values

are opened to Ci . The parties of Ci+1 then use it to compute a random linear combination on the

openings. So, to maintain linear communication, P1 of Ci forwards the openings to every party in

Ci+1, and we ensure that P1 does not cheat by having all of the other parties of Ci send hashes of

46

the openings to the parties of Ci+1. Since the hashes are short, total communication will still be

O(n |C |) if the width of C is Ω(n). Details are given in Procedure πMAC-check-dm below.
Figure 3.7: Procedure πMAC-check-dm

Usage: Each committee Ci incrementally updates a MAC check state [σ]Ci based on the values

{JAmKCi−2
∆j
}m∈[T] (for some j ≤ i − 2) opened to them, which the �nal committees at the end of the

computation use to check that all openings throughout the protocol were performed correctly.

Init: Each Party Pi in committee C2 (the �rst to have values opened to it) initially de�nes their share

of [σ]C2 as σ i ← 0.

Update State: On input (update, {(Am,
[
Am · ∆j

] Ci
)}m∈[T],

[
∆j

] Ci
) from committee Ci , where

{Am}m∈[T] were the values opened to Ci :

1. Committee Ci invokes πget-combined-prep with (rand, Ci , Ci+1) so that Pj ∈ Ci gets

(β j , {M j ,l }l ∈Ci+1) and Pl ∈ Ci+1 gets (∆l , {K l , j }j ∈Ci).

2. Each Pj ∈ Ci also interprets the next pairwise shared random values from Fprep, {sj ,l }l ∈Ci+1 as

keys to a universal hash family H = {Hs : FTp → Fp } and computes hj ,l ← Hsj ,l ({Am}m∈[T])

for each Pl ∈ Ci+1.

3. In parallel: (i) each party Pj ∈ Ci then sends to each Pl ∈ Ci+1 their share β j and corresponding

MAC for Pl ,M j ,l , along with the computed hash valuehj ,l ; (ii) only P1 ∈ Ci sends {Am}m∈[T] to

each Pl ∈ Ci+1; and (iii) all of Ci invokes πe�-reshare-dm on [σ]Ci ,
[
∆Cj

] Ci , { [∆Cj · Am
] Ci
}m∈[T].

4. Each Pl ∈ Ci+1 then locally checks that M j ,l ← β j · ∆l + K l , j , for each Pj ∈ Ci , and aborts if

any check fails. If not, let β ←
∑

j ∈Ci β
j .

5. Each Pl additionally uses the pairwise shared random values from Fprep, {sj ,l }j ∈Ci , to compute

h′j ,l ← Hsj ,l ({Am}m∈[T]), checks that each h′j ,l = hj ,l , and aborts if any check fails; else

continues.

6. Each Pl ∈ Ci+1 next locally computes A ←
∑T
m=1(β)

m · Am and [γ]Ci+1 ←
∑T
m=1(β)

m ·[
∆Cj · Am

] Ci+1 (here (β)m is them-th power of β).

47

7. It �nally updates [σ]Ci+1 ← [σ]Ci+1 + [γ]Ci+1 −
[
∆Cj

] Ci+1
· A and invokes πe�-reshare-dm on

[σ]Ci+1 .

Check State: On input check from the clients Cclnt:

1. Each client Pi ∈ Cclnt invokes Fcommit on their share σ i of the MAC check state [σ]Cclnt .

2. Then they all open their commitments, and if they are consistent, output Accept if
∑

i ∈Cclnt
σ i =

0; else Reject.

Lemma 3.4. Procedure πMAC-check-dm is correct, i.e., it accepts if all the opened values Am and the

corresponding MACs are computed correctly. Moreover, it is sound, i.e., it rejects except with probability

at most (2 +maxi Ti)/p in case at least one opened value is not correctly computed. Furthermore, the

transcript of Update State is simulatable.

Proof. For soundness, we consider all of the points in which the adversary can inject error, when

a single committee Ci is updating [σ]Ci . First, note that with all-but-negligible probability, an

honest party Pj of Ci will receive the same (potentially incorrect) A′m = Am + δ
i
m for each m as an

honest party Pl of Ci+1. This is because their shared universal hash key sj,l from Fprep is uniformly

random and unknown to the adversary. So, since H is a universal hash family, it holds that if Pj

gets {A′m}m∈[T] and Pl gets a di�erent {A′′m}m∈[T],

Pr[Hsj ,l ({A
′
m}m∈[T]) = hj,l = h

′
j,l = Hsj ,l ({A

′′
m}m∈[T])] ≤ 1/p.

The adversary can thus only inject the following kind of errors:

1. When opening shares of some Am to Pking of Ci−1, or if Pking itself is corrupted, then when

sending opened Am to the honest parties Pj of committee Ci , the adversary can add some

δ im error. From above, these δ im’s must in fact be independent of the opened challenge

randomness for Ci , βi .

48

2. When the MAC key
[
∆Cj

]Ci is reshared, the adversary can add some additive ηi error.

3. When resharing a MAC
[
∆Cj · Am

]Ci , the adversary can add some additive εim.

4. Finally, when [σ]Ci+1 is reshared, the adversary can add some additive ζ i .

So, at the end of the computation (after ` committees), if the check passes we will have:

0 = [σ]Cclnt =
∑̀
i=1

Ti∑
m=1
(βi)m · ((∆Cji · A

i
m + ε

i
m) − (∆Cji + η

i) · (Ai
m + δ

i
m)) + ζ

i

=
∑̀
i=1

Ti∑
m=1
(βi)m · (εim − ∆Cji · δ

i
m + η

i · Ai
m + δ

i
m · η

i) + ζ i

Recall that we want to show that for any i,m, δ im , 0 can only happen with negligible

probability. First, note that the corrupt parties of committee Ci cannot forge their share β j of β to

any of the honest parties of Ci+1 except with probability 1/p, by the security of the information-

theoretic MAC provided by Fprep. Thus, the reconstructed challenge β must indeed be uniformly

random and independent of all other values. Now, assume that indeed there is some δ i∗m , 0. First,

we argue that by the Schwartz-Zippel Lemma, with probability ≤ Ti∗/p,
∑Ti∗

m=1(β
i∗)m · δ i

∗

m = 0. This

holds since βi∗ is chosen uniformly at random and, by assumption, at least one δ i∗m , 0. So now we

rewrite:

0 =
∑̀
i=1

Ti∑
m=1
(βi)m · (εim − ∆Cji · δ

i
m + η

i · Ai
m + δ

i
m · η

i) + ζ i

= −∆Cji∗ ·
Ti∗∑
m=1
(βi
∗

)m · δ i
∗

m +

Ti∗∑
m=1
(βi
∗

)m · (εi
∗

m + η
i∗ · Ai∗

m + δ
i∗

m · η
i∗) + ζ i

∗

+

∑
i∈[`]\{i∗}

Ti∑
m=1
(βi)m · (εim − ∆Cji · δ

i
m + η

i · Ai
m + δ

i
m · η

i) + ζ i .

49

Therefore:

∆Cji∗ =
1∑Ti∗

m=1(β
i∗)m · δ i

∗

m

(
Ti∗∑
m=1
(βi
∗

)m · (εi
∗

m + η
i∗ · Ai∗

m + δ
i∗

m · η
i∗) + ζ i

∗

+

∑
i∈[`]\{i∗}

Ti∑
m=1
(βi)m · (εim − ∆Cji · δ

i
m + η

i · Ai
m + δ

i
m · η

i) + ζ i
ª®¬ .

However, since ∆Cji∗ is sampled uniformly at random and independently, and is unknown to the

adversary, this can only happen with probability 1/p.

In total, the probability that there is some δ im , 0 is bounded by (2 + maxi Ti)/p, which is

negligible.

Correctness clearly holds if all errors are 0. Furthermore, we know from Lemma 3.2 that

πe�-reshare-dm is simulatable by random values. Also, the simulator knows the universal hash keys

that honest parties use to compute the hashes on the opened values (which it also knows), thus it

can simulate these hashes itself. Furthermore, each β j is sampled uniformly at random in Fprep,

so the simulator can also simulate these, and the corresponding MACs by using the MAC keys

obtained from Fprep. Finally, the simulator can easily emulate Fcommit for the commitments. �

In our protocol, each committee Ci has their own MAC key ∆Ci . Thus, when some state JxKCi∆i

of the computation is reshared from one committee to the next, we also need to somehow “switch”

the key of its MAC to that of the new committee. Le Mans also needs to deal with this issue. To

do so, they take advantage of πconvert to obtain random sharings JtKCi∆i
, JtKCi+1

∆i+1
of the same value,

authenticated under both committees’ MAC keys. This is su�cient for them, as they can then mask

JxKCi∆i
with t , reconstruct x + t , and then use their two authenticated sharings of t , JtKCi∆i

, JtKCi+1
∆i+1

(including some relationship between their MACs), to create unmasked shares of x that are indeed

authenticated under ∆i+1. Note, however, that they use reconstruction of x + t from one committee

to the next, which has quadratic communication.

We instead use the “king idea” to reconstruct (x +t) across two committees, i.e., from Ci to Ci+2.

50

However, since πconvert can only obtain authenticated random sharings of the same random value

between consecutive committees, πe�-key-switch below switches JxKCi∆i
, shared and authenticated

among Ci , to JxKCi+2
∆i+1

, shared amongst Ci+2, but authenticated using Ci+1’s key.

Figure 3.8: Procedure πe�-key-switch

Usage: Transform a SPDZ sharing JxKCi∆i held by Ci and MAC’d under Ci ’s key to a SPDZ sharing

JxKCi+2
∆i+1

held by Ci+2 and MAC’d under Ci+1’s key.

1. Let JxKCi∆i be the shares of the input authenticated value x . All parties in Ci agree on a special

party Pking in Ci+1.

2. Ci and Ci+1 invoke πget-combined-prep with (rand, Ci , Ci ∪ Ci+1) to receive 〈t〉Ci ,Ci∪Ci+1 .

3. Ci and Ci+1 then invoke πconvert on 〈t〉Ci ,Ci∪Ci+1 to form JtKCi∆i and JtKCi+1
∆i+1

.

4. Parties in Ci in parallel: (i) invoke πe�-reshare-dm on input [x]Ci ; and (ii) open shares of

J(x + t)KCi∆i to Pking in Ci+1.

5. While Pking of Ci+1 distributes opened value (x + t) to all parties in Ci+2, all parties in Ci+1

invoke πe�-reshare-dm on input [x]Ci+1 ,
[
∆Ci+1

] Ci+1 , and
[
∆Ci+1 · t

] Ci+1 .

6. Finally, each party Pj in Ci+2 locally computes its share of the MAC
[
∆Ci+1 · x

] Ci+2 as[
∆Ci+1

] Ci+2
· (x + t) −

[
∆Ci+1 · t

] Ci+2 . Ci+2 outputs ([x]Ci+2 ,
[
∆Ci+1 · x

] Ci+2 ,
[
∆Ci+1

] Ci+2
).

Lemma 3.5. Procedure πe�-key-switch’s transcript is simulatable by random values.

Proof. First, from Lemmas 3.2 and 3.3, we know that all values communicated toA by πconvert and

πe�-reshare-dm are simulatable by random values. Furthermore, from Fprep, we know that JtKCi∆i
is a

random sharing of a random value. Thus, also the openings (x + t) can be simulated with random

values. �

We leverage πe�-key-switch in the following procedure, πget-x-comm-shrs, to obtain SPDZ sharings

of the same random value amongst both committees Ci and Ci+3. Committee Ci ’s sharing will

51

be authenticated under its own key, while committee Ci+3’s sharing will be authenticated under

Ci+2’s key.

Figure 3.9: Procedure πget-x-comm-shrs

Usage: On input BeDOZa sharing 〈r 〉Ci ,Ci∪Ci+1 , output JrKCi∆i to Ci and JrKCi+3
∆i+2

to Ci+3.

1. Ci and Ci+1 invoke πconvert on 〈r 〉Ci ,Ci∪Ci+1 to obtain JrKCi∆i and JrKCi+1
∆i+1

.

2. Ci outputs JrKCi∆i .

3. Ci+1 then invokes πe�-key-switch on JrKCi+1
∆i+1

with Ci+3 (through Ci+2), who outputs JrKCi+3
∆i+2

.

Lemma 3.6. Procedure πget-x-comm-shrs’s transcript is simulatable by random values.

Proof. Since only πconvert and πe�-key-switch are invoked, we know from Lemmas 3.3 and 3.5 that

the transcript is simulatable by random values. �

3.2.2.4 Secure Multiplication and Verification

Finally, before we present the complete protocol, we present Procedure πmult-dm below which

enables a given committee to make progress on the computation by securely processing mul-

tiplication gates. As in the honest majority protocol of Section 3.4, this procedure makes use

of multiplication triples to reduce the task of securely multiplying two shared values to that of

reconstructing two secrets. Once again, we use the “king idea” to achieve reconstruction with

linear communication.

As in the honest majority case, we have two issues to deal with. First multiplication triples

require di�erent committees to have access to the same triple. This is in part achieved by making

use of the e�cient resharing procedure πe�-reshare-dm. Also, a given committee can once again only

obtain a partially authenticated multiplication triple (JaKCi∆i
, JbKCi∆i

, [c]Ci) from Fprep, where the c

part is not authenticated (and in fact might have some error). Using the same idea from [Rachuri and

52

Scholl 2022] and Section 3.4, we authenticate the c part “on the �y” using a random, authenticated

sharing JvKCi∆i
.

However, since our πe�-key-switch procedure when resharing a value from Ci to Ci+2 only

switches the MAC key to that of Ci+1, we need to take some extra care to ensure that the MAC

does not “fall behind”. In particular, πmult-dm below maintains the invariant that the inputs to

multiplication gates at some circuit level which Ci computes are MAC’d under Ci−2’s key. At a

high-level, this is accomplished by combining the above “on the �y” authentication of triples

obtained from Fprep by Ci−2, so that the triple is MAC’d under the same key as the inputs, with

the use of πget-x-comm-shrs to transfer this triple to Ci+1 (under Ci ’s key). Ci+1 can then reshare this

triple to Ci+2, who can then use the usual multiplication triple technique to compute the output of

the multiplication gate, MAC’d under Ci ’s key, thus maintaining the invariant.

Unfortunately, we are not done yet. Committee Ci can only obtain outputs that are MAC’d

under Ci−1’s key when Ci−2 tries to use πe�-key-switch on its sharings. Thus, in order to maintain

the invariant above, we need to wait until Ci+1 to authenticate the c part of multiplication triples.

However, this would allow the adversary to add errors dependent on x and y to c , since (x + a)

and (y + b) are opened from Ci to the king of Ci+1, leading to a selective failure attack. To solve

this, the value (c +v) needed to authenticate c is �rst opened to the parties of Ci using the e�cient

“king idea”, then only P1 of Ci sends the opened (c + v) to the parties of Ci+1, for e�ciency. To

ensure that P1 does not cheat, the rest of the parties of Ci send hashes of the opened (c +v)’s for

all of the multiplication gates at this level to the parties of Ci+1. Although this introduces Ω(n2)

overhead, as long as if the width of the circuit is Ω(n), overall O(n · |C |) communication is still

achieved. Details are as follows.
Figure 3.10: Procedure πmult-dm

Usage: Multiply JxKCi∆i−2
and JyKCi∆i−2

held by Ci and MAC’d under Ci−2’s key so that Ci+2 outputs

Jx · yKCi+2
∆i MAC’d under Ci ’s key.

53

1. All parties in Ci−2 �rst agree on a special party Pking in Ci−1.

2. Then Ci−2 and Ci−1 invoke πget-combined-prep on input (trip, Ci−2, Ci−2 ∪ Ci−1) to get partially

authenticated BeDOZa triple (〈a〉Ci−2,Ci−2∪Ci−1 , 〈b〉Ci−2,Ci−2∪Ci−1 , [c]Ci−2) and (rand, Ci−2, Ci−2∪

Ci−1) to get 〈v〉Ci−2,Ci−2∪Ci−1 . They also locally compute [c +v]Ci−2 .

3. Then Ci−2 invokes πget-x-comm-shrs on 〈a〉Ci−2,Ci−2∪Ci−1 , 〈b〉Ci−2,Ci−2∪Ci−1 , 〈v〉Ci−2,Ci−2∪Ci−1 (with

Ci+1) to get SPDZ sharings JaKCi−2
∆i−2
, JbKCi−2

∆i−2
(JvKCi−2

∆i−2
is not needed).

4. Next, parties in Ci−2 in parallel invoke πe�-reshare-dm on input JaKCi−2
∆i−2
, JbKCi−2

∆i−2
and open shares

of [c +v]Ci−2 to Pking in Ci−1.

5. While Pking distributes opened (c + v) to the parties of Ci , all parties in Ci−1 then invoke

πe�-reshare-dm on input JaKCi−1
∆i−2
, JbKCi−1

∆i−2
.

6. Now, parties in Ci agree on a special party P ′king in Ci+1 and then compute Jx + aKCi∆i−2
←

JxKCi∆i−2
+ JaKCi∆i−2

, and Jy + bKCi∆i−2
← JyKCi∆i−2

+ JbKCi∆i−2
.

7. Each Pj ∈ Ci also interprets the next pairwise shared random values from Fprep, {sj ,l }l ∈Ci+1

as keys to a universal hash family H = {Hs : FMp → Fp } and computes hj ,l ← Hsj ,l ({(c +

v)m}m∈[Ti]) for each Pl ∈ Ci+1, on input the Ti values (c +v)m used for the Ti multiplications

computed by this committee.

8. In parallel: (i) each Pj in Ci invokes πe�-reshare-dm on input [∆i]
Ci , opens their share of

Jx + aKCi∆i−2
, Jy + bKCi∆i−2

to P ′king in Ci+1, and sends to each Pl ∈ Ci+1 the computed hash

value hj ,l ; while (ii) only P1 ∈ Ci sends (c +v) to each Pl ∈ Ci+1.

9. Each Pl in Ci+1 �rst uses the pairwise shared random values from Fprep, {sj ,l }j ∈Ci to compute

h′j ,l ← Hsj ,l ({(c +v)m}m∈[Ti]), checks that each h′j ,l = hj ,l , and aborts if any check fails; else

continues.

10. Then use JvKCi+1
∆i (obtained from πget-x-comm-shrs) and opened (c +v) to compute authenticated

JcKCi+1
∆i ← ((c +v) − [v]

Ci+1 , [∆i]
Ci+1 · (c +v) − [∆i · v]

Ci+1 , [∆i]
Ci+1).

54

11. Then while P ′king distributes opened d = x + a and e = y + b to the parties of Ci+2, all parties

in Ci+1 invoke πe�-reshare-dm on input JaKCi+1
∆i , JbK

Ci+1
∆i (also obtained from πget-x-comm-shrs), and

JcKCi+1
∆i .

12. Ci+2 �nally locally compute Jx · yKCi+2
∆i ← de − d JbKCi+2

∆i − e JaKCi+2
∆i + JcKCi+2

∆i .

13. Parties in Ci+2 will also invoke πMAC-check-hm on input (update, {((xm +

am, [∆i−2 · (xm + am)]
Ci+2), (ym + bm, [∆i−2 · (ym + bm)]

Ci+2))}m∈[T]) corresponding to

all of the openings of the above form they receive for the multiplication gates at this layer of

the circuit.

Lemma 3.7. Procedure πmult-dm’s transcript is simulatable.

Proof. First, we know that πget-x-comm-shrs and πe�-reshare-dm are simulatable by random values from

Lemmas 3.6 and 3.2. Also, since a,b,v are uniformly random and unknown to the adversary by

security of Fprep, openings (c + v), (x + a), (y + b) are simulatable by random values. Also, the

simulator knows the universal hash keys that honest parties use to compute the hashes on the

opened values (which it also knows), thus it can simulate these hashes itself. �

As with the honest majority protocol of Section 3.4 and Le Mans, we also need to account for

the errors that can be introduced in the originally unauthenticated c parts of multiplication triples,

that πMAC-check-dm will not catch. Indeed, as with Le Mans, Fprep also allows the adversary to add

errors to c of the form {aj · δ j,l
b
+b j · δ j,la }j∈HCi−2 ,l∈TCi−2

, where aj,b j are the honest parties’ shares of

the a and b parts of the triple, and δ j,l
b
, δ j,la are chosen by the adversary. These errors could cause

multiplications to be computed incorrectly. We thus use similar ideas to [Rachuri and Scholl 2022;

Choudhuri et al. 2021], with ideas rooted in [Chida et al. 2018], to compute a randomized version

of the circuit that will be used to verify multiplications. The details are in Procedure πmult-verify-dm

below. Note that in order to “keep up” with the invariant that we used in πmult-dm, we need to

55

use similar techniques to ensure that the accumulators used in πmult-verify-dm are MAC’d under the

same keys as the multiplication gate outputs.
Figure 3.11: Procedure πmult-verify-dm

Usage: Each committee Ci that gets the output wires of the multiplication gates of some layer ` of

the circuit incrementally updates a multiplication veri�cation state (Ju ′KCi∆i−2
, Jw ′KCi∆i−2

), which the

�nal committees at the end of the computation use to check that all multiplications throughout the

protocol were performed correctly.

Init: Each Party Pi in committee C5 (the �rst to get output from πmult-dm) initially de�nes their

shares of Ju ′KC7
∆5
, Jw ′KC7

∆5
as (u ′)i = (w ′)i ← 0 (same for the SPDZ MAC shares).

Update State: On input (update, {(JzmKCi∆i−2
, JrzmKCi∆i−2

}m∈[T]) from committee Ci , where

{(JzmKCi∆i−2
, JrzmKCi∆i−2

}m∈[T] were the output wires of multiplication gates computed by Ci :

1. Ci−4 and Ci−3 invoke πget-combined-prep with (rand, Ci−4, Ci−4 ∪ Ci−3) twice to get

〈s〉Ci−4,Ci−4∪Ci−3 , 〈s ′〉Ci−4,Ci−4∪Ci−3 and then Ci−4 invokes πget-x-comm-shrs on them (with Ci−1) so

that Ci−4 gets JsKCi−4
∆i−4
, Js ′KCi−4

∆i−4
.

2. Then Ci−4 invokes πe�-reshare-dm on JsKCi−4
∆i−4
, Js ′KCi−4

∆i−4
and then Ci−3 does the same.

3. Now, Ci−2 �rst agrees on Pking in Ci−1 then in parallel: (i) invokes πe�-reshare-dm on [∆i−2]
Ci−2 ;

and (ii) opens shares of Ju + sKCi−2
∆i−4
, Jw + s ′KC−2i

∆i−4
to Pking.

4. Committee Ci−1 invokes πget-combined-prep with (rand, Ci−1, Ci) so that Pj ∈ Ci−1 gets

(α j , {M j ,l }l ∈Ci) and Pl ∈ Ci gets (∆l , {K l , j }j ∈Ci−1).

5. While Pking distributes opened (u + s), (w + s ′) to the parties of Ci , all parties in Ci−1 invoke

πe�-reshare-dm on JsKCi−1
∆i−2
, Js ′KCi−1

∆i−2
(obtained from πget-x-comm-shrs) and send to each Pl ∈ Ci their

share α j and corresponding MAC for Pl , M j ,l .

6. Parties Pl in Ci then locally compute JuKCi∆i−2
← (u+s)−JsKCi∆i−2

and JwKCi∆i−2
← (w+s ′)−Js ′KCi∆i−2

.

7. Then each Pl ∈ Ci locally checks that M j ,l = α j · ∆l + K l , j , for each Pj ∈ Ci−1, and aborts if

any fail. If not, let α =
∑

j ∈Ci−1 α
j .

56

8. Finally, each Pl ∈ Ci locally computes JuKCi∆i−2
← JuKCi∆i−2

+
∑T
m=1(α)

m ·JrzmKCi∆i−2
and JwKCi∆i−2

←

JwKCi∆i−2
+

∑T
m=1(α)

m · JzmKCi∆i−2
(here (α)m is them-th power of α).

Check State: On input check from the clients Cclnt:

1. The clients Cclnt �rst open JrKCclnt
∆1

and check its MAC by running both phases of πMAC-check-dm.

2. Then they all open (JuKCclnt
∆`−1
− r · JwKCclnt

∆`−1
) and check its MAC by running both phases of

πMAC-check-dm. If the opened value is 0, output Accept; else Reject.

Lemma 3.8. Procedure πmult-verify-dm is correct, i.e., it accepts if all multiplications are computed

correctly. Moreover, it is sound, i.e., it rejects except with probability at most (2 +maxi Ti)/p in case

at least one multiplication is not correctly computed. Furthermore, the transcript of Update State is

simulatable.

Proof. For soundness, we consider all of the points in which the adversary can inject error, either

when multiplying JrKC3
∆1

with each input JvjKC3
∆1

or when a given committee Ci is updating JuKCi∆i−2

and JwKCi∆i−2
based on multiplication gate outputs it has received. First, note that with all-but-

negligible probability, the additive error for some JcKCi∆i−2
in a multiplication triple is independent

of the opened (x + a), (y + b) for that multiplication. This is because the (potentially incorrect)

(c +v) that is opened to some honest party Pj ∈ Ci−2 before (x + a), (y +b) are opened is the same

as that received by an honest party Pl ∈ Ci−1 with all-but-negligible probability. We know this

because their shared universal hash key sj,l from Fprep is uniformly random and unknown to the

adversary. So, since H is a universal hash family, it holds that if Pj gets {(c +v)m}m∈[Ti] and Pl gets

a di�erent {(c +v)′m}m∈[Ti],

Pr[Hsj ,l ({(c +v)m}m∈[Ti]) = hj,l = h
′
j,l = Hsj ,l ({(c +v)

′
m}m∈[Ti])] ≤ 1/p.

So, since (c +v) is opened before (x + a) and (y + b) and v is uniformly random and independent

57

of them, the additive error for JcKCi∆i−2
must be independent of them (along with the challenge α

which is opened even later).

The adversary can thus only inject the following kind of errors:

1. The JcmKCi∆i−2
part of them-th multiplication triple (JamKCi∆i−2

, JbmKCi∆i−2
, JcmKCi∆i−2

) used to com-

pute JxmymKCi∆i−2
may have errors {ajm · δ

j,l
bm
+ b jm · δ

j,l
am }j∈HCi−4 ,l∈TCi−4

+ δcm . The errors in the

brackets come from adversarial action in Fprep while the δc comes from the fact that c is not

authenticated, so the adversary can insert more error when resharing/authenticating them.

Call this error εi,m. (Note this is the only source of error when computing some JrvjKC5
∆3

.)

2. Additionally, the Jc′mKCi∆i−2
part of the multiplication triple (Ja′mKCi∆i−2

, Jb′mKCi∆i−2
, Jc′mKCi∆i−2

) used

to compute JrxmymKCi∆i−2
may have the same kind of errors:

{(a′m)
j · (δ ′)j,l

bm
+ (b′m)

j · (δ ′)j,lam }j∈HCi−4 ,l∈TCi−4
+ δcm .

Call this error ε′i,m.

3. Also, we must consider the accumulated error ηi,m on the randomized value rxm from

previous gates.

So, at the end of the computation (after d multiplications), if the check passes we will have:

0 = JuKCclnt
∆`−1
− r · JwKCclnt

∆`−1

=

T0∑
j=1

α j
0 · (rvj + ε0,j) +

d∑
i=1

Ti∑
m=1

αmi · ((rxm + ηi,m) · ym + ε
′
i,m)−

r ·

(
d∑
i=1

Ti∑
m=1

αmi · (xm · ym + εi,m) +
M∑
j=1

α j
0 · vj

)

=

d∑
i=1

Ti∑
m=1

αmi (ηi,m · ym + ε
′
i,m − r · εi,m) +

M∑
j=1

α j
0 · ε0,j .

58

Now, note that the corrupt parties of committee Ci−1 cannot forge their share α j of α to any of

the honest parties of Ci except with probability 1/p, by the security of the information-theoretic

MAC provided by Fprep. Thus, the reconstructed challenge α must indeed be uniformly random

and independent of all other values. We analyze the two following cases:

Case 1: There is some j such that ε0,j , 0. In this case, it is clear that the above polynomial is

non-zero. Therefore, since each αi is unknown to the adversary and sampled uniformly at random

and independently of all other values, the Schwartz-Zippel Lemma tells us that the evaluation of

this polynomial on these αi equals 0 with probability at most maxi Ti/p.

Case 2: For all j, ε0,j = 0. Let layer i∗ be the �rst in which the adversary injected error into a

multiplication; i.e., ε′i∗,m , 0 and/or εi∗,m , 0 for somem. Note that since this is the �rst such layer,

it must be that ηi,m = 0 for all i∗,m. So,

0 =
d∑
i=1

Ti∑
m=1

αmi (ηi · ym + ε
′
i − r · εi)

=

Ti∗∑
m=1

αmi∗ (ε
′
i∗,m − r · εi∗,m) +

d∑
i∈[d]\{i∗}

Ti∑
m=1

αmi (ηi · ym + ε
′
i − r · εi).

First, for the givenm where the adversary injected error, (ε′i∗,m − r · εi∗,m) = 0 can only happen

with probability 1/p since r is unknown to the adversary and sampled uniformly and independently

of all other values. Now, if (ε′i∗,m − r · εi∗,m) , 0, then the above polynomial is non-zero. Since each

αi is unknown to the adversary and sampled uniformly at random and independently of all other

values, the Schwartz-Zippel Lemma tells us that the evaluation of this polynomial on these αi

equals 0 with probability at most maxi Ti/p.

Thus, the total probability that the adversary can inject some error is upper bounded by

(2 +maxi Ti)/p.

Correctness clearly holds if all errors are 0. Finally, From Lemma 3.6 we know thatπget-x-comm-shrs

is simulatable, and from Lemma 3.2, we know that πe�-reshare-dm is simulatable. Also, since s, s′ are

59

uniformly random and unknown to the adversary by the security of Fprep, openings (u+s), (w +s′)

are simulatable by random values. Additionally, each α j is sampled uniformly at random in Fprep,

so the simulator can simulate these, and their corresponding MACs by using the MAC keys

obtained from Fprep. Finally, from Lemma 3.4, we know that πMAC-check-dm’s transcript is indeed

simulatable. �

3.2.2.5 Dishonest Majority Main Protocol

With all of the previous tools in place, we can �nally present our full-�edged actively secure,

dishonest majority MPC protocol in the �uid setting, achieving linear communication complexity

and maximal �uidity. The clients �rst use πe�-key-switch to securely transfer authenticated versions

of their inputs to C2. The committees then proceed to compute both the regular and randomized

version of the circuit on the authenticated inputs, using πmult-dm as well as addition and identity

gate procedures that work similarly using the same “mask, open to king, and unmask” paradigm

along with some local computation. Addition and identity gates also need to preserve the invariant

on MACs discussed in Section 3.2.2.4. The committees also make sure to update the accumulators of

πMAC-check-dm and πmult-verify-dm along the way with each opening and multiplication, respectively.

We note that, unlike the honest majority protocol, the outputs of the �nal circuit layer will be

shared by the clients themselves. Once all circuit layers have been computed, the clients invoke

the Check State phases of πMAC-check-dm and πmult-verify-dm, then reconstruct the outputs. We note

that, as is remarked in the protocols of [Rachuri and Scholl 2022; Choudhuri et al. 2021], if the

clients indeed have access to a broadcast channel in the last round of the protocol, or implement a

broadcast over their point-to-point channels, then security with unanimous abort is achieved by

having the clients broadcast “abort”, if their check on their output fails.

60

Figure 3.12: Protocol Πmain-dm

Preprocessing Phase: All parties Pi ∈ U invoke Fprep to receive their share of the global MAC key

∆i , along with enough pairwise random sharings, multiplication triples, and sharings of 0.

Input Phase: To form a SPDZ sharing of an input xi possessed by Pi ∈ Cclnt:

1. Pi invokes πe�-key-switch on (xi ,∆i · xi ,∆i) with C2 (through C1).

2. C1 invokes πget-combined-prep with (rand, C1, C1) to get 〈r 〉C1,C1 then invokes πconvert on it to get

SPDZ sharing JrKC1
∆1

, and �nally πe�-reshare-dm on this.

3. C2 invokes πe�-reshare-dm on JxKC2
∆1

(from πe�-key-switch above) and JrKC2
∆1

.

4. Finally, C3 invokes πmult-dm on JxKC3
∆1

and JrKC3
∆1

, as well as the identity gate procedure (below)

on JxKC3
∆1

so that C5 gets JxKC5
∆3

and Jx · rKC5
∆3

.

5. Finally, C5 invokes πmult-verify-dm on input (update, {(JxiKC5
∆3
, JrxiKC5

∆3
)}i ∈[|Cclnt |]), corresponding

to each input.

Execution Phase:

1. Each committee Ci of the execution phase �rst invokes πe�-reshare-dm on JrKCi∆1
.

2. In parallel, every other committee (with the help of the others) will compute the gates at each

layer of the circuit as below:

Addition: To perform addition on JxKCi∆i−2
and JyKCi∆i−2

(and identically for JrxKCi∆i−2
and JryKCi∆i−2

):

1. Ci−2 and Ci−1 invoke πget-combined-prep with (rand, Ci−2, Ci−2 ∪Ci−1) to get 〈s〉Ci−2,Ci−2∪Ci−1 and

then invokes πget-x-comm-shrs on it (with Ci+1) to get SDPZ sharing JsKCi−2
∆i−2

.

2. Then Ci−2 invokes πe�-reshare-dm on JsKCi−2
∆i−2

and Ci−1 does the same.

3. Now, Ci �rst agrees on Pking in Ci+1 then locally computes Jx + yKCi∆i−2
.

61

4. Then Ci in parallel: (i) invokes πe�-reshare-dm on [∆i]
Ci ; and (ii) opens shares of Jx + y + sKCi∆i−2

to Pking.

5. While Pking distributes opened (x + y + s) to the parties of Ci+2, all parties of Ci+1 invoke

πe�-reshare-dm on JsKCi+1
∆i (obtained through πget-x-comm-shrs).

6. Parties in Ci+2 �nally locally compute Jx + yKCi+2
∆i ← (x + y + s) − JsKCi+2

∆i .

7. Parties in Ci+2 will also invoke πMAC-check-hm on input (update, {(xm + ym +

sm, [∆i−2 · (xm + ym + sm)]
Ci+2)}m∈[T]) corresponding to all of the openings of the above form

they receive for the addition gates at this layer of the circuit.a

Identity Gates: Ci forwards JxKCi∆i−2
, JrxKCi∆i−2

to Ci+2 (so that they are MAC’d under ∆i) in a similar

fashion as addition above.

Multiplication: To multiply JxKCi∆i−2
and JyKCi∆i−2

, invoke πmult-dm on them (and identically for JrxKCi∆i−2

and JyKCi∆i−2
). Then invoke πmult-verify-hm on input (update, {(JxmymKCi+2

∆i , J(rx)mymKCi+2
∆i)}m∈[Ti]), cor-

responding to each multiplication performed at this layer of the circuit.

Output Phase:

1. Clients in Cclnt �rst invoke πMAC-check-dm on check. If it outputs Reject, then abort; else,

continue. This takes 2 rounds.

2. Clients in Cclnt then invoke πmult-verify-dm on check. If it outputs Reject, then abort; else,

continue. This takes 6 more rounds.

3. Clients �nally open each output wire JzKCclnt
∆`−1

and check their MACs by running both phases of

πMAC-check-dm. If it outputs Reject, then abort; else, output each z. This takes 3 more rounds.

aThis invocation can be combined with that of the multiplication gates for this circuit layer.

Theorem 3.9. Let A be an R-adaptive adversary in Πmain-dm. Then the protocol UC-securely

computes FDABB in the presence of A in the (Fprep, Fcommit)-hybrid model.

62

Proof. We construct a Simulator (S) that runs the adversary (A) as a subroutine, and is given

access to FDABB. It internally emulates the functionalities Fprep and Fcommit and we implicitly

assume that it passes all communication between A and the environmentZ. It keeps track of

the current committee via inputs (Init, C) and (Next-Commi�ee, C) from FDABB (and therefore in

which committees to simulate corresponding communication for circuit gates). The simulator uses

bad, initially set to 0, to detect any bad behavior from A. If so, it sets bad← 1. The simulation

proceeds as follows:

Init: On input (Init, C), keep track of A’s inputs to Fprep, including any additive errors δa , 0

or δb , 0 for any pairwise multiplication triples (this might not be an issue yet, as long as if the

eventual additive error on any c of any triple ends up as 0; see below).

Input: On input (Input, idx) (for both honest and adversarial inputs), simulate πe�-key-switch as

in Lemma 3.5, πconvert as in Lemma 3.3, πe�-reshare-dm as in Lemma 3.2, and πMAC-check-dm as in

Lemma 3.4. If A cheats when sending some universal hash value during πMAC-check-dm, abort. If

A cheats either when resharing or opening a value (i.e., by sending a wrong share), set bad← 1.

Also, simulate the multiplication as below.

Addition (and similarly for identity gates): On input (Add, idz, idx , idy), simulateπget-x-comm-shrs

as in Lemma 3.6, πe�-reshare-dm as in Lemma 3.2, and πMAC-check-dm as in Lemma 3.4. Additionally,

simulate the opening of Jx + y + sKCi∆i−2
with random values. Since s is uniformly random and

unknown to A, this is a perfect simulation. If A cheats when sending some universal hash value

during πMAC-check-dm, abort. IfA cheats either when resharing or opening a value (i.e., by sending

a wrong share), set bad← 1.

Multiplication: On input (Mult, idz, idx , idy), simulate πmult-dm as in Lemma 3.7 and πmult-verify-dm

as in Lemma 3.8. If A cheats when sending some universal hash value during πMAC-check-dm or

πmult-dm, abort. If for any c part of a multiplication triple, the additive error δc +
∑

j∈HCi−2 ,l∈TCi−2
aj ·

δ j,l
b
+ b j · δ j,la , 0, set bad← 1. Additionally, ifA cheats either when resharing or opening a value

63

(i.e., by sending a wrong share), set bad← 1.

Output: If S ever set bad← 1 because A cheated when opening or resharing a value, S sends

random values for σ on behalf of the honest parties, then aborts. Otherwise, S records {σ i}i∈TCclnt

sent to Fcommit by A in the check state phase of πMAC-check-dm, samples random shares for the

honest parties such that
∑

i∈Cclnt
σ i = 0 and sends them to A. If A cheats during the check state

phase of πMAC-check-dm (e.g., by committing to the wrong MAC check value σ i), S aborts. In the

check state phase of πmult-verify-dm, S sends random shares on behalf of the honest parties for the

opening of r . If A cheats by opening the wrong values for r , S aborts after the MAC check (as

above). If S ever set bad← 1 because A added non-zero error to the c part of a multiplication

triple, S sends random values on behalf of the honest parties for (u −r ·w), then aborts. Otherwise,

S records the values sent by A for (u − r ·w), then samples shares such that (u − r ·w) = 0, and

sends them to A. If A cheats when opening (u − r ·w), S aborts after the MAC check (as above).

Finally, S gets the outputs from FDABB and forwards it to A. S then forwards whatever it

receives from A back to FDABB.

From all of the Lemmas, we have that the simulation is perfect up until the output phase. By

Lemmas 3.4 and 3.8, A is only able to cheat in the real world with probability negligible in p.

Thus, the distance between the real-world and the simulation is negligible in p. �

3.3 Dishonest Majority Preprocessing Size is Tight

3.3.1 Technical Overview

Now we provide an overview for the lower bound on the amount of preprocessed data, for the

dishonest majority case. We do this in the context of secure message transmission (SMT). Assume

we have some sender A who wants to send some secret value x to a receiver B through two

committees that are not known ahead of time. This is related to �uid MPC: we can think of an

64

identity function that is to be computed using two committees. That said, assume that between A

and B, there are two (non-overlapping) committees C1 and C2, each of size n, that are chosen at

random from the larger universeU of parties of size N . Furthermore, assume that some adversary

A that is trying to learn x is able to (passively) corrupt all-but-one party in each of C1 and C2,

as well as any other parties inU. In such a setting, we also allow for some global preprocessing

protocol that the parties ofU can run amongst each other before the secret x or committees C1

and C2 are chosen. We show that if the size of each preprocessing state is o(N · |x |), then the total

communication must be Ω(n2 · |x |). The intuition is as follows.

Suppose that A corrupts all but the �rst parties of each committee. Furthermore, suppose,

towards contradiction, that the size of the message c1,1 that the �rst party of C1 sends to the �rst

party of C2 is small (� |x |). First, this means thatA can guess this message with high probability.

Now, suppose that the preprocessing r1,1 of the �rst party of C1 is not anymore correlated with the

preprocessing r2,1 of the second party of C2, than the preprocessing of the rest of the corrupted

parties of C1. This correlation is what the parties of C1 (perhaps, implicitly) use to construct

messages that will eventually result in correct transmission to the receiver B. In particular, any

possible preprocessing r ′2,1 that has non-zero probability weight conditioned on the preprocessing

of the parties of C1, and thus by the above assumption, the corrupted parties of C1, must enable

correct transmission. So, since the �rst party of C2 only uses r2,1 along with the ciphertexts it

receives to produce its message to the receiver B,A must be able to use a guess for r2,1 conditioned

on the preprocessing of corrupt parties of C1 to produce a valid such message. Together with the

other messages to the receiver B from the corrupted parties of C2, A can reconstruct x with high

probability.

So, it must in fact be that r1,1 provides some unique information on the preprocessing of r2,1

that the corrupted parties of C1 do not already provide. However, it is just as likely that some

other party inU could have been chosen to be the �rst party of C1, in some other execution of the

protocol. So, in fact every party outside of C1 and C2 must provide some unique information on

65

the preprocessing of r2,1. Since A can corrupt as many of these parties as it wishes, if r2,1 is small

enough (in particular, o(N · |x |)), thenA will eventually be able to reconstruct r2,1 completely, guess

(short) c1,1 and thus again reconstruct x with high probability, as above. Therefore, a contradiction

is reached, and the size of each (n2 total) ciphertext ci,j must be Ω(|x |).

3.3.2 Formal Bound

In this section, we show that the per-party size of the preprocessing produced in our dishonest

majority protocol Πmain-dm is tight in the following sense. Any protocol that uses more than one

committee to compute some function must have per-party size of preprocessing proportional to

N , i.e. the size of the entire server universe,U.

To show this, we intuitively reduce the problem of MPC in the Fluid Model with more than

two committees to the problem of simply resharing state securely. Indeed, for any such MPC

protocol, after one committee �nishes their step of the computation, they must securely reshare

some sort of state to the next committee, since the next committee has no information about the

current state of the computation (e.g., including the original inputs).

More formally, we show a lower bound on the per-party preprocessing size for Secure Message

Transmission (SMT) with two committees. In such an SMT setting, there is a sender A who wishes

to send some (possibly uniformly random) message x to a receiver B, but �rst must send some

private representation of x through two committees, C1 and C2 that are not known ahead of time.

Informally, this corresponds to the “resharing” argument in the Fluid MPC model above, since the

transmitted x corresponds to the state that is being reshared by the �rst committee to the next.

3.3.2.1 Secure Message Transmission with Two Committees

Now we formally de�ne SMT with two committees. In this de�nition, we will demand that a

uniformly random message x of length λ, i.e., x ←$ {0, 1}λ, will be transmitted from A to B, after

passing through committees C1 and C2. The two committees C1 and C2 can be arbitrarily chosen

66

from a larger universeU = {P1, . . . , PN } of size N . We will allow for a preprocessing phase to be

performed before the input x and committees C1 and C2 are chosen. First we present the syntax:

• Algorithm {ri}Pi∈U ←$ SMT-Prep(U) takes as input the set of parties inU and outputs a

preprocessing state, ri , for each Pi ∈ U.

• The sender will use algorithm {Ai}Pi∈C1 ←$ SMT-A-Send(x, C1) to send messages Ai for

each Pi in C1, based on chosen x ∈ {0, 1}λ.

• Each Pi ∈ C1 will then use {ci,j}Pj∈C2 ←$ SMT-C1-Send(ri,Ai, C2) to send message ci,j to

each Pj in C2.

• Next, each Pj ∈ C2 will use algorithm Bj ←$ SMT-C2-Send(rj, {ci,j}Pi∈C1, C1) to send message

Bj to the receiver.

• Finally, the receiver will use algorithm x ← SMT-B-Rcv({Bj}Pj∈C2) to output the message x .

Since we are in the dishonest majority setting, we will consider any unbounded adversary A

that corrupts all-but-one party in each committee, only during the online phase. That is, using the

same notation as earlier in this section, the sizes of corruption sets TC1 and TC2 satisfy t1 < n1 and

t2 < n2, respectively. Now, we are ready for the de�nition:

De�nition 3.10 (Secure Message Transmission with Two Committees.). A Secure Message Trans-

mission with Two Committees protocol ΠSMT is perfectly-correct if for any choice of committees

C1, C2 ⊆ U,

Pr
[
x ← SMT-B-Rcv({Bj}Pj∈C2) : x ←$ {0, 1}λ, {rl }Pl ∈U ←$ SMT-Prep(U),

{Ai}Pi∈C1 ←$ SMT-A-Send(x, C1),∀Pi ∈ C1, {ci,j}Pj∈C2 ←$ SMT-C1-Send(ri,Ai, C2),

∀Pj ∈ C2,Bj ←$ SMT-C2-Send(rj, {ci,j}Pi∈C1, C1)
]
= 1.

67

Moreover, ΠSMT is statistically-secure if for any choice of committees C1, C2 ⊆ U, and any choice

of corruptions TC1 ⊆ C1,TC2 ⊆ C2 satisfying t1 < n1 and t2 < n2, respectively,

Pr
[
x ← A({(ri,Ai)}Pi∈TC1

, {(rj, {cl,j}Pl ∈C1)}Pj∈TC2
) : x ←$ {0, 1}λ,

{rl }Pl ∈U ←$ SMT-Prep(U), {Ai}Pi∈C1 ←$ SMT-A-Send(x, C1),

∀Pi ∈ C1, {ci,j}Pj∈C2 ←$ SMT-C1-Send(ri,Ai, C2),

∀Pj ∈ C2,Bj ←$ SMT-C2-Send(rj, {ci,j}Pi∈C1, C1)
]
≤ 2−λ .

In the rest of the section, we will assume for simplicity that the two committees, C1 and C2,

will each be of the same size n1 = n2 = n. Without loss of generality, we may refer to the two

committees as C1 = {P1, . . . , Pn} and C2 = {Pn+1, . . . , P2n}.

Communication Complexity. We will in part be concerned by the size of communication

needed for a correct and secure SMT protocol. Towards this end, let Comm =
∑

i∈C1,j∈C2 |ci,j | be

the total communication from some particular execution of an SMT protocol ΠSMT.

3.3.2.2 Lower Bound on Per-Party Preprocessing for Linear SMT

We will now prove the following lower bound which informally states that in order for an SMT

protocol ΠSMT to have, in expectation over the choice of committees C1, C2 and any randomness

of the algorithms, o(n2 · λ) total communication Comm, the expected size of each preprocessing

state must be Ω(N · λ):

Theorem 3.11. For any perfectly-secure SMT protocol ΠSMT for two committees C1, C2 of size n, if

C1, C2 are sampled uniformly at random from the universeU of size N , such that C1 ∩ C2 , ∅, and

EPi∈U[|ri |] ≤ (N − 2n + 1) · λ/8, then EC1,C2[Comm] ≥ n2 · λ/4.

First, we provide the following lemma that will help us in proving the above theorem. Assume

68

w.l.o.g. that the smallest ciphertext in a given execution is c1,n+1. Also, assume that the adversary

corrupts (at least) every party in the two committees except for P1 and Pn+1. In particular, this

gives the adversary preprocessing states R = r2, . . . , rn, rn+2, . . . , r2n, ciphertexts {ci,n+1}i∈[2,n] sent

by the corrupted parties of C1 to Pn+1, and ciphertexts Bn+2, . . . ,B2n sent to the receiver by the

corrupted parties of C2. So, the adversary is just missing the message Bn+1 used by the receiver

B in the protocol to reconstruct x . To produce this message Bn+1, the adversary in addition to

ciphertexts {ci,n+1}i∈[2,n] it has, only needs to learn c1,n+1 and rn+1. What this Lemma intuitively

shows is that if |c1,n+1 | < λ/2 (so that the adversary can guess it with high enough probability),

then the preprocessing r1 must provide some additional, non-trivial correlation with rn+1 that the

corrupted preprocessing states, R, do not provide on their own. If this were not the case, then the

adversary could simply sample rn+1 conditioned on R. This preprocessing would then be “close

enough” to what the correlations in the entire protocol execution indicate it should be so that, by

correctness, it should also work, together with the ciphertexts {ci,n+1}i∈[n], to produce the missing

Bn+1.

In the following, we use notation R J to represent the set of preprocessing states {rj}j∈J , where

J ⊆ [N].

Lemma 3.12. Assume that the two committees C1, C2, each of size n, are chosen uniformly at random

from the universeU of size N , such that C1 ∩ C2 = ∅. Also, let J be some random (�xed-size) subset

of [N] such that |J | ≥ 2n − 2. If PrC1,C2,i,j[|ci,j | < λ/2] > 1/2, then for random i′ , j′ ∈ U \ J , we

have: EJ ,i ′,j ′[I(rj ′ |R J ; ri ′)] ≥ λ/4.

Proof. We start with the following inequality, where the randomness is over the choice of J ∪

{i′, j′} ⊆ [N], as well as the actual generated preprocessing state ri ′:

EJ ,i ′,j ′,ri ′ [SD((rj ′ |R J ∪ {ri ′}), (rj ′ |R J))] ≤

EJ ,i ′,j ′ri ′

[
1 −

1
2

exp(−DKL((rj ′ |R J ∪ {ri ′})| |(rj ′ |R J)))

]
≤

69

1 −
1
2

exp(−EJ ,i ′,j ′,ri ′ [DKL((rj ′ |R J ∪ {ri ′})| |(rj ′ |R J))]) =

1 −
1
2

exp(−EJ ,i ′,j ′[I(rj ′ |R J ; ri ′)]).

The �rst inequality follows from the Bretagnolle-Huber inequality [Bretagnolle and Huber 1978],

and the second inequality from Jensen’s inequality, since f (x) = e−x is convex, while the last

equality is a well-known identity.

Thus, if we assume towards contradiction that EJ ,i ′,j ′[I(rj ′ |R J ; ri ′)] < λ/4, this means that

EJ ,i ′,j ′,ri ′ [SD((rj ′ |R J), (rj ′ |R J ∪ {ri ′}))] < 1 −
1
2

exp(−λ/4).

Now, it could be the case that some 2n − 2 randomly sampled indices in J correspond exactly

to the �rst n − 1 parties of C1 and C2 in a given protocol execution, and further that Pi ′ is the

last party chosen for C1, and Pj ′ is the last party chosen for C2. Also, from correctness, we know

that for any rj ′ that is produced by the preprocessing phase for Pj ′ with non-zero probability, the

SMT protocol must successfully transmit the secret x . Based on this and the above inequality,

we describe the following attack: The adversary A corrupts the set of preprocessing states R J

and then samples guess r ′j ′ for rj ′ conditioned on the states in Rj , and samples (uniformly) guess

c′i ′,j ′ for ci ′,j ′. Using the guessed r ′j ′ and c′i,j ′ along with the learned {ci,j ′}i∈[n]\{i ′} via corruptions,

invoke SMT-C2-Send to produce Bj ′ . Finally, using {Bj}j∈[n+1,2n], invoke SMT-B-Rcv to produce x .

Now, let us analyze the success probability of this attack. First, we have from PrC1,C2,i,j[|ci,j | <

λ/2] > 1/2, that Pr[c′j ′,j = cj ′,j] > 2−λ/2−1. Next, consider the event in which A samples some r ′j ′

conditioned on R J that has weight-0 in the distribution of rj ′ conditioned on R J ∪ {ri ′}. We call

such an r ′j ′ a bad sample. From the above inequality, such an r ′j ′ is sampled with probability less

than 1 − 1
2 exp(−λ/4), in expectation. In particular, this means that in expectation, A samples

a good r ′j ′ with probability at least 1
2 exp(−λ/4). Such an r ′j ′ is good because by correctness, the

protocol must successfully transmit the secret x if in fact r ′j ′ were the actual preprocessing of Pj ′ .

70

Therefore, in expectation over the choice of committee members and the preprocessing ri ′ , the

attack by A succeeds with probability greater than 1/2λ. �

Now we can prove Theorem 3.11 using Lemma 3.12. The intuition stems from the fact that

the protocol does not a priori know which parties will be in the committees. So, we can use

Lemma 3.12 to show that in fact many parties outside of the two committees must in expectation

provide some unique correlation with rn+1 (the receiver of small message c1,n+1), in case they were

actually the �rst party of C1 sending this small ciphertext. As a result, if the state rn+1 is small

enough, we can completely recover it, guess c1,n+1, then recover x with high enough probability.

Proof of Theorem 3.11. Assume towards contradiction that PrC1,C2,i,j[|ci,j | < λ/2] > 1/2. Also

assume that some adversary A in a given execution of some ΠSMT �rst corrupts every party in

C1 and C2 except randomly chosen Pi of C1 and randomly chosen Pj of C2. In particular, this

means that the set of indices J of corrupt parties is some random subset of [N] of size 2n − 2,

and index j is some random other index outside of J . Now, the adversary will one by one sample

M = (N − 2n + 1)/2 indices i1, . . . , iM from U that are not already part of J , and add them to

J . Let J ′ be the �nal such set. From Lemma 3.12, we know that under the above assumption on

message size, for any random, �xed-size subset J ⊆ [N] of size |J | ≥ 2n − 2, and random index

j′ < J , if we pick another random index il < J , EJ ,il ,j ′[I(rj ′ |R J ; ril)] ≥ λ/4. Thus, recalling that

I(rj ′ |R J ; ril) = H(rj ′ |Rj) − H(rj ′ |R, ril), we can write

EJ ′,j[I(rj ;R J ′)] = EJ ′,j[H(rj) − H(rj |R J ′)] =

Ej[H(rj)] + EJ ′,j,iM [−H(rj |R J ′) + H(rj |R J ′ \ {riM })]

+EJ ′,j,iM ,iM−1[−H(rj |R J ′ \ {riM }) + H(rj |R J ′ \ {riM , riM−1})]

. . .

71

+EJ ′,j,iM ,...,i1[−H(rj |R J ′ \ {ril }l∈[2,M]) + H(rj |R J ′ \ {ril }l∈[M])]

−EJ ′,j,iM ,...,i1[H(rj |R J ′ \ {ril }l∈[M]])]

≥ M · λ/4 + EJ ′,j,iM ,...,i1[H(rj) − H(rj |R J ′ \ {ril }l∈[M]) ≥ M · λ/4.

Now, these indices J ′ will correspond to the parties that A will corrupt in the execution.

However, if some randomly chosen index il is indeed the index i corresponding to the only honest

party Pi of C1, the attack will fail, as A cannot corrupt Pi . Yet, the probability that this happens

corresponds to the probability that if we pick M items at random from N −2n+1 total items, i is not

one of them, which is equal to: (
N−2n
M)

(N−2n+1
M)
= 1 − M

N−2n+1 = 1/2, since we choose M = (N − 2n + 1)/2.

So, if E[|rj |] ≤ (N − 2n + 1) · λ/8 as in the Theorem statement, in expectation,A can sample rj

conditioned on R J ′ correctly (i.e., with probability 1) and guess ci,j with probability greater than

2−λ/2−1. Using the guessed rj and ci,j along with the learned {ci ′,j}i ′∈[n]\{i} via corruptions, we can

reconstruct Bj . Finally, using {Bj}j∈[n+1,2n], we can successfully reconstruct x .

Thus, it cannot be true that PrC1,C2,i,j[|ci,j | < λ/2] > 1/2. By the law of total probability, it must

therefore be that:

EC1,C2[Comm] =
∑
i,j

EC1,C2[|ci,j |]

≥
∑
i,j

λ/2 · Pr
C1,C2
[|ci,j | ≥ λ/2] = λ/2 ·

∑
i,j

Pr
C1,C2
[|ci,j | ≥ λ/2] ≥

n2 · λ

4
.

�

3.4 Honest Majority Protocol

3.4.1 Technical Overview

Here we comment brie�y on how we obtain our results in the honest majority setting. We remark

that, for the purpose of this overview, we present our results using as a starting point the previous

72

discussion on dishonest majority in Section 3.2.1. In the work of [Choudhuri et al. 2021], honest

majority �uid MPC is achieved by letting the parties in a given committee Ci hold Shamir sharings

of the intermediate circuit values [x1]
Ci
t , . . . , [x`]

Ci
t in the i-th layer, where t < n/2. To preserve

the invariant observe that, because of the multiplicative properties of Shamir secret-sharing, the

parties in Ci can locally obtain sharings of every intermediate value [y1]
Ci
t ′1
, . . . , [y`′]

Ci
t ′1

in the next

layer, where each degree t ′j is either equal to t (for addition and identity gates), or 2t , which is less

than n (for multiplication gates). At this point, the parties in Ci can reshare these shared values

towards committee Ci+1, who obtains [y1]
Ci+1
t ′1
, . . . , [y`′]

Ci+1
t ′
`′

, hence maintaining the invariant.

While in the dishonest majority setting resharing additively shared values (with no authentica-

tion) can be achieved with linear communication complexity assuming certain form of committee-

agnostic preprocessing, such approach does not work in our current setting. Here, Shamir

secret-sharing is used, and resharing in one round requires a quadratic amount of communication

as it is done by each party in Ci distributing shares of their Shamir share to each party in Ci+1,

which can be aggregated to obtain Shamir shares of the underlying secret. This is indeed the

approach taken in [Choudhuri et al. 2021], and this is one of the fundamental reasons for the

quadratic communication in that work. A second reason is also similar to the one in the dishonest

majority setting, and it is related to the reconstruction of secret-shared values.

We can interpret our protocol in the honest majority setting as addressing the two issues

highlighted above using some techniques from the dishonest majority case as a base, while adding

other new ones, and for the purpose of this section, we describe our protocol in these terms. In a

bit more detail, we overcome the issue of resharing with squared communication by, instead of

using Shamir secret-sharing with degree t < n/2, using a larger degree n − 1, which is in essence

equivalent to additive secret-sharing, as used in the dishonest majority setting. In principle, this

would enable us to perform resharing with linear communication by using preprocessed data as

sketched in Section 3.2.1.1. However, an important challenge in the honest majority setting is that

we should not use any preprocessing whatsoever since, unlike the dishonest majority setting, it is

73

not required.

Due to the above, our approach for resharing degree-(n−1) Shamir sharings without preprocess-

ing with linear communication is di�erent. Assume committee Ci has sharings [x]Cin−1, and the goal

is for committee Ci+1 to obtain [x]Ci+1
n−1 . Let us write Ci = {P1, . . . , Pn} and Ci+1 = {Q1, . . . ,Qn},

and also [x]Cin−1 = (x
1, . . . , xn). Assume the parties in Ci have preprocessed a sharing of zero

[0]Cin−1 = (o
1, . . . ,on).8 Our resharing protocol is summarized as follows: each party Pj sends x j +oj

to Qj , and committee Ci+1 de�nes [x]Ci+1
n−1 to be these received shares. In words, shares are trans-

ferred in a “straight line fashion” (after randomizing with shares of zero), and the new sharings

are exactly the same as the previous ones. This approach does not work in the dishonest majority

setting: the adversary can corrupt, say, P1, . . . , Pn−1 in the �rst committee, and by corrupting Qn

the adversary learns all shares. In contrast, in the honest majority setting, the adversary learns

at most t shares in the �rst committee and t shares in the second, for a total of ≤ 2t < n shares,

which maintain privacy of the underlying secret. This powerful observation turns out to be the

enabling tool for linear communication.

Using degree-(n − 1) Shamir sharings means that the shares of the honest parties in a given

committee do not determine the underlying secret anymore, which enables a corrupt party to

cheat by modifying their share. Importantly, a similar issue was faced in the dishonest majority

setting with additive secret-sharing, and fortunately we are able to take a similar approach here

by using MACs in order to prevent cheating. We remark that these are not needed in [Choudhuri

et al. 2021], since they use Shamir sharings of low degree. We do not elaborate on how MACs are

used in our protocol to prevent cheating, but we mention that the approach is in spirit similar to

the one sketched in the dishonest majority overview.

The �nal details we comment on are related to the “preprocessing” required in our protocol.

As we mentioned initially, it is imperative that our honest majority protocol does not make use
8As we elaborate on below, this type of preprocessing can in fact be generated “on the �y” by the di�erent

committees, so it is not considered preprocessing as such.

74

of any preprocessing material. However, we already mentioned some form of preprocessing

(namely, shares of zero [0]Cin−1), plus, several ideas from the dishonest majority protocol require

preprocessing such as authenticated values ([r]Cin−1 ,
[
∆Ci · r

]Ci
n−1 ,

[
∆Ci

]Ci
n−1), or authenticated mul-

tiplication triples. Fortunately, in our work we are able to leverage once more the fact that we

have an honest majority in order to let committee Ci−1 generate the “preprocessing” for com-

mittee Ci on the �y. For correlations that are “linear” such as sharings of zero, the approach

from [Damgård and Nielsen 2007] can be easily adapted, where the parties in committee Ci−1

distribute sharings to Ci , and the latter perform randomness extraction using a Vandermonde

matrix. On the other hand, for correlations that include a multiplication, like multiplication

triples or authenticated values ([r]Cin−1 ,
[
∆Ci · r

]Ci
n−1 ,

[
∆Ci

]Ci
n−1), the parties in Ci−1 can obtain the

linear part ([r]Ci−1
t ,

[
∆Ci

]Ci−1
t
) from Ci−2 using the ideas we just described for linear correlations

(notice the degree is t < n/2). Then, the parties in Ci−1 locally multiply these sharings, to obtain[
∆Ci · r

]Ci−1
2t . Finally, the parties in Ci−1 perform the “straight-line” resharing from before so that

Ci obtains ([r]Cin−1 ,
[
∆Ci · r

]Ci
n−1 ,

[
∆Ci

]Ci
n−1).

3.4.2 Formal Protocol

We now turn to presenting our protocol for �uid MPC with linear communication complexity and

maximal �uidity in the honest majority setting, where each committee contains at most a minority

of corrupt parties. The outline of this section is the following. First, in Section 3.4.2.2, we present a

major building block, Procedure πe�-reshare-hm, which enables a given committee holding a sharing

of a random value to e�ciently reshare this secret to the next committee. As in the two previous

�uid protocols [Rachuri and Scholl 2022; Choudhuri et al. 2021], we make use of a randomized

version of the circuit that aims at detecting cheating in multiplication gates, and we also draw

inspiration from [Rachuri and Scholl 2022] and make use of a MAC check that accounts for the

correctness of the openings throughout the computation, which is crucial in our case to achieve

linear communication complexity. This is discussed in Section 3.4.2.3. Then, in Section 3.4.2.4

75

we show how the parties make progress through the computation by processing multiplication

gates. Finally, these pieces are put together in Section 3.4.2.5 to obtain our �nal protocol, Πmain-hm,

for honest majority MPC in the �uid model with linear communication complexity and maximal

�uidity.

3.4.2.1 Initial building blocks.

We now present some of the building blocks we will require for our �nal protocol. For our main

honest majority protocol, we will require the following functionalities. These are fairly standard

in the literature and implementing them in the �uid setting represents little challenge, using the

randomness extraction ideas through Vandermonde matrices in [Damgård and Nielsen 2007].

Thus we omit their instantiations for brevity.
Figure 3.13: Functionality Frand-hm

Functionality: Distribute degree-ti sharings of random value r to Ci .

1. Frand-hm receives from the adversary shares {ri }i ∈TC . Frand-hm views these as the shares of the

corrupted parties.

2. Frand-hm randomly samples r , then based on r and the ti shares {ri }i ∈TC of corrupted parties,

Frand-hm reconstructs the whole sharing [r]Citi .

3. Finally, Frand-hm distributes the shares of [r]Citi to the honest parties of Ci .

Figure 3.14: Functionality Fcoin

Functionality: Sample a random coin r ←$ Fp to Ci .

1. Fcoin samples a random �eld element r .

2. Fcoin sends r to the adversary and:

• If the adversary replies continue, Fcoin sends r to the honest parties of Ci .

• If the adversary replies abort, Fcoin sends abort to the honest parties of Ci .

76

Figure 3.15: Functionality Fdouble-rand-hm

Functionality: Distribute degree-ti and degree-2ti sharings of the same random value r to Ci .

1. Fdouble-rand-hm receives from the adversary two sets of shares {ri }i ∈TC and {r ′i }i ∈TC .

Fdouble-rand-hm views the �rst set as the shares of the corrupted parties for the degree ti -

sharing, and the second set as the shares for the degree 2ti -sharing.

2. Fdouble-rand-hm randomly samples r and prepares the double sharings as follows.

• For the degree-ti sharing, based on the secret r and the ti shares {ri }i ∈TC of corrupted

parties, Fdouble-rand-hm reconstructs the whole sharing [r]Citi .

• For the degree-2ti sharing, Fdouble-rand-hm randomly samples ti elements as the shares

of the �rst ti honest parties. Based on the secret r , the ti shares of the �rst ti honest

parties, and the ti shares {r ′i }i ∈TC of the corrupted parties, Fdouble-rand-hm reconstructs

the whole sharing [r]Ci2ti .

3. Finally, Fdouble-rand-hm distributes the shares of ([r]Citi , [r]
Ci
2ti) to the honest parties of Ci .

Figure 3.16: Functionality Fzero

Functionality: Distribute degree 2ti shares of o = 0 to Ci .

1. Fzero receives from the adversary the set of shares {ri }i ∈TC .

2. Fzero randomly samples ti elements as the shares of the �rst ti honest parties. Based on

the secret o = 0, the ti shares of the �rst ti honest parties, and the ti shares {ri }i ∈TC of the

corrupted parties, Fzero reconstructs the whole sharing [o]Ci2ti .

3. Finally, Fzero distributes the shares of [o]Ci2ti to the honest parties of Ci .

As we will later accomplish in Πmain-hm, each committee will have a degree-ti and degree-2ti

double sharing of the global MAC key ∆. Therefore we will assume that all procedures presented

below that are invoked by Ci will implicitly take these sharings as input.

77

We rely on the following procedure that enables the parties in a given committee Ci to obtain

authenticated sharings of a uniformly random value JrKCi , assuming Shamir sharings of the key

([∆]Citi , [∆]
Ci
2ti). This is described below. Observe that in the protocol the MAC sharings produced

[r · ∆]Cti are not uniformly random, but instead, they are a product [r]Citi · [∆]
Ci
ti

. These sharings

will be randomized in the places we use them.

Figure 3.17: Procedure πget-rand-sharing

Usage: Using double sharing ([∆]Citi , [∆]
Ci
2ti) of the global MAC key, Ci outputs a random SPDZ

sharing JrKCi .

1. All parties in Ci invoke Fdouble-rand-hm to get random double sharing ([r]Citi , [r]
Ci
2ti).

2. Parties in Ci then locally obtain and output authenticated sharing JrKCi ← ([r]Ci2ti , [r]
Ci
ti ·

[∆]Citi , [∆]
Ci
2ti).

3.4.2.2 Efficient Resharing for Honest Majority

As we highlighted in Section 3.4.1, a fundamental reason why the protocol from [Choudhuri et al.

2021] does not achieve linear communication complexity stems from the fact that the hand-o�

procedure from one committee to the next one consists of every party resharing their share

towards the next committee, which requires quadratic communication. In our work, we address

this limitation by making use of Procedure πe�-reshare-hm below, which shows how to reshare a

degree-2ti Shamir sharing from committee Ci to the next committee Ci+1, while using only linear

communication. The idea is in fact simple: assuming each committee has the same amount of

parties n (the procedure below is more general), each party with index j in committee Ci will

send (a re-randomized version of) their share to the party with index j in Ci+1 directly. This is

secure since the adversary learns in total at most 2t shares across the two committees, which is

the degree of the polynomial used. As brie�y mentioned above, the parties �rst re-randomize their

shares using Fzero, which is done to prevent a new sharing from leaking the underlying secret

78

when transmittted to the next committee.
Figure 3.18: Procedure πe�-reshare-hm

Usage: Ci reshares re-randomized [r]Ci2ti to Ci+1. Assume that the parties in Ci are indexed from 1 to

ni and those in Ci+1 are indexed from ni + 1 to ni + ni+1.

1. Let [r]Ci2ti be the input shares.

2. Ci invokes Fzero and receives a sharing of o = 0, [o]Ci2ti .

3. All parties locally compute [r ′]Ci2ti ← [r]
i
2ti + [o]

i
2ti , for r ′ = r + 0 = r .

4. Finally:

• If ni < ni+1: Let d = ni+1/ni (assuming ni |ni+1 for simplicity). Each Pj ∈ Ci samples

d − 1 random values rl , sets r j ·d ← (r ′)j −
∑d−1
l=1 rl , where (r ′)j is their share of [r ′]Ci2ti ,

and sends each rl for l ∈ [d] to Pni+(j−1)·d+l ∈ Ci+1, who outputs this as their share of

[r ′]Ci+1
2ti+1

.

• Else: Let d = ni/ni+1 (assuming ni+1 |ni for simplicity). For l such that (l−1) ·d < j ≤ l ·d ,

each Pj ∈ Ci sends their share r ′j to Pni+l ∈ Ci+1, who outputs as their share of [r ′]Ci+1
2ti+1

,∑
j r
′j for each Pj it received from.

Lemma 3.13. Assume that at most 2ti shares of [r]Ci2ti can be computed by A (and the rest are

uniformly random to A). Then procedure πe�-reshare-hm’s transcript is simulatable with random

values and preserves the invariant that at most 2ti+1 shares of [r]
Ci+1
2ti+1

can be computed by A, while

the rest are uniformly random to A.

Proof. For this proof, we assume for simplicity that ti = ti+1. Now, assume w.l.o.g. that the shares

of [r]Ci2ti known by A are r 1, . . . , r 2ti , which must also mean that Pni ∈ Ci is honest. Thus, we can

also assume w.l.o.g. that the corrupted parties in Ci are P1, . . . , Pti . This means that the shares of

[o]Ci2ti held by Pti+1, . . . , Pni , are unknown and uniformly random (subject to them reconstructing

to 0) to A, by the security of Fzero.

79

Now, consider what the adversarial parties in TCi+1 are sent from Pti+1 . . . Pni : r j + oj (where

each Pj < TCi in the worst case). SinceA does not know at least two shares of [o]Ci2ti , the oj ’s in the

communication above that it receives are each individually uniformly random. Therefore, all of

these messages can be simulated with random values.

In particular, this means that even if the adversary sees rni +oni , rni remains uniformly random

and unknown to A. Furthermore, consider some Pl ∈ Ci+1 such that Pl itself is uncorrupted and

Pj ∈ Ci who sent to Pl was not corrupted (there must exist at least one such pair). Since the oj

in Pl ’s share (r ′)l = r j + oj is uniformly random and unknown to A, then (r ′)l itself is uniformly

random and unknown to A, even if r j was known by A. In fact, all of the shares in this case

are uniform and unknown to A. All other shares (corresponding to the case in which at least

one of Pl ∈ Ci+1, or the Pj who sent to Pl is corrupted) are known to A. Thus, the invariant is

preserved. �

Inefficient resharing. We will also need to reshare degree-ti Shamir sharings across commit-

tees using Procedure πine�-reshare-hm, below. This can only be done with Ω(n2) communication,

however, since it is only done once per committee, we can still achieveO(n |C |) total communication

if the width of circuit C is Ω(n).
Figure 3.19: Procedure πine�-reshare-hm

Usage Ci reshares [r]Citi to Ci+1.

1. Let r j be Pj ’s share of [r]Citi . Each Pj ∈ Ci will create a random degree ti+1 Shamir secret

sharing
[
r j

] Ci
ti+1

of their share and distribute the corresponding shares to each Pl ∈ Ci+1.

2. Finally, each Pl ∈ Ci+1 will then compute [r]Citi+1
←

∑
j ∈Ci c j

[
r j

] Ci
ti+1

, where c j is the Lagrange

reconstruction coe�cient for a degree-ti+1 polynomial.

Lemma 3.14. Procedure πine�-reshare-hm’s transcript is simulatable with random values.

Proof. This follows easily from the fact that the shares of the honest parties of Ci are unknown to

80

the adversary. So, by the security of Shamir secret sharing, the ti+1 shares of each honest party’s

share in Ci that the corrupt parties of Ci+1 receive are uniformly random. �

3.4.2.3 Incremental Checks

As in [Choudhuri et al. 2021], we achieve active security by maintaining a few “accumulators”

that somehow aggregate the potential errors that are introduced by each committee. These

accumulators are updated by every other committee, and the current (possibly updated) version

of the accumulator is transferred from one committee to the next. Finally, the �nal committees

will use these accumulators to verify the integrity of the computation.

In our protocol, we make use of the “straightline” resharing procedure πe�-reshare-hm that

achieves linear communication complexity, but requires a larger threshold of 2ti to achieve security.

This means that the underlying secrets are not determined by the honest parties alone, and as a

result a malicious adversary can in fact add errors to any value throughout the computation. A

similar issue happens in the dishonest majority �uid protocol of [Rachuri and Scholl 2022], and we

draw inspiration from such approach to address this attack in our protocol. The solution consists

of using MACs, which are used to authenticate every intermediate value used throughout the

computation and serve as additional redundancy on secret values that guarantees integrity. This

is done by maintaining an accumulator that attests for the integrity of all of the reconstructions,

which is built using the shared MACs and the claimed openings.

Succinctly maintaining this accumulator involves opening random challenges β to committees,

who then use such β to compute random linear combinations that compress the veri�cation of

many MACs into one �eld element that should be 0. However, these challenges β should not

be opened at the same time that the values whose MACs it checks are opened, for otherwise

the adversary could cheat in the above linear combination. Thus, when the parties of Ci receive

some openings and want to verify their MACs, they each hash together all of these openings

and then send these hashes to each of the parties of Ci+1. The challenge β is then opened to Ci+1,

81

and only P1 of Ci forwards all of the openings to all of the parties of Ci+1, in order to maintain

linear communication. Since the hashes prevent P1 from changing the openings, they cannot be

dependent on β . Since the hashes are short, total communication will still be O(n |C |) if the width

of C is Ω(n).

Also note that it takes two committees to update the accumulator based on values opened to

the �rst committee. However, since values are only opened to every other committee, there is no

entanglement of updates. Details are given in Procedure πMAC-check-hm below.

Figure 3.20: Procedure πMAC-check-hm

Usage: Each committee Ci incrementally updates a MAC check state [σ]Ci2ti based on the values

opened to them, which the �nal committees at the end of the computation use to check that all

openings throughout the protocol were performed correctly.

Init: Each Party Pi in committee C4 (the �rst to have values opened to it, since the �rst invocation

of πmult-hm is by C2 to create randomized versions of the circuit inputs) initially de�nes their share

of [σ]C4
2t4

as σ i ← 0.

Update State: On input (update, {(Am, [∆ · Am]
Ci
2ti)}m∈[T], [∆]

Ci
2ti) from committee Ci , where

{Am}m∈[T] were the values opened to Ci :

1. First each party Pj ∈ Ci samples keys sj ,l to the universal hash family H = {Hs : FTp → Fp }

for each Pl ∈ Ci+1 and computes hj ,l = Hsj ,l ({Am}m∈[T).

2. In parallel: (i) each party Pj ∈ Ci then sends to each Pl ∈ Ci+1 the universal hash key and value

sj ,l ,hj ,l ; (ii) only P1 sends {Am}m∈[T] to each Pl ∈ Ci+1; and (iii) all of Ci invokes πe�-reshare-hm

on [σ]Ci2ti , {[∆ · Am]
Ci
2ti }m∈[T].

3. Each Pl in Committee Ci+1 �rst for each Pj ∈ Ci computes h′j ,l ← Hsj ,l ({Am}m∈[T]) and

checks if h′j ,l = hj ,l . If not, it aborts; else continues.

4. Ci+1 then invokes Fcoin to get a random challenge β .

82

5. Each Pl ∈ Ci+1 next locally computes A ←
∑T
m=1 β

m · Am and [γ]Ci+1
2ti+1

←
∑T
m=1 β

m ·

[∆ · Am]
Ci
2ti+1

.

6. It �nally updates [σ]Ci+1
2ti+1
← [σ]Ci+1

2ti+1
+ [γ]Ci+1

2ti+1
−[∆]Ci+1

2ti+1
·A and invokes πe�-reshare-hm on [σ]Ci+1

2ti+1
.

Check State: On input check from committee Ci :

1. Letσ j be the share of the MAC check state [σ]Ci2ti held by each Pj ∈ Ci . Each Pj creates a random

degree-ti+1 Shamir secret share
[
σ j

] Ci+1
ti+1

of their share σ j and distributes the corresponding

shares to the parties of Ci+1.

2. Then each party Pl ∈ Ci+1 computes [σ]Ci+1
ti+1
←

∑
j ∈Ci c j ·

[
σ j

] Ci+1
ti+1
, where c j is the Lagrange

reconstruction coe�cient for a degree-2ti polynomial.

3. Finally, parties open the shares of [σ]Ci+1
ti+1

to each party of Ci+2, who reconstruct σ , and if

successful, output Accept if σ = 0; else Reject.

Lemma 3.15. Procedure πMAC-check-hm is correct, i.e., it accepts if all the opened values Am and the

corresponding MACs are computed correctly. Moreover, it is sound, i.e., it rejects except with probability

at most (2 +maxi Ti)/p in case at least one opened value is not correctly computed. Furthermore, the

transcript of Update State is simulatable.

Proof. The proof follows along the lines of the proof for Lemma 3.4 in the dishonest majority

case. One di�erence is that the parties in Ci send unique universal hash keys to each party in Ci+1,

rather than getting them from the preprocessing of the dishonest majority protocol. But since

there will be at least one honest party in each committee, at least one key will remain random and

unknown to the adversary, and thus it serves the same purpose. Also, πMAC-check-hm gets β from

Fcoin, but from the security of Fcoin, this is also still random and independent of all other values.

So, the adversary can thus only inject additive error δ im for eachm-th value Ai
m opened to Ci ,

ηi for when the MAC key ∆ is reshared to Ci , εim for when the MAC of them-th opened value is

83

reshared to Ci , and ζ i for when the current accumulator value σ is reshared to Ci . Additionally, in

the Check State phase, since at least one share of [σ]Ci2ti is unknown to A and remains unknown

after the degree reduction step,A can only inject another additive error ε independent of σ . Thus,

ensuring that [σ]C`2t` = 0 follows the analysis of the proof of Lemma 3.4 for the dishonest majority

case.

Finally, we know from Lemma 3.13 that πe�-reshare-hm is simulatable by random values. Also,

the universal hash keys are sampled randomly by the clients, and the opened values are known to

the simulator, so the hash keys and their resulting hash outputs can easily be simulated. �

Unfortunately, this is not the only kind of error we need to account for. As in [Rachuri and

Scholl 2022], the c parts of multiplication triples that are used in πmult-hm are only authenticated

“on the �y”. This means that the adversary can inject additive errors into these c parts that

πMAC-check-hm will not catch (since the corresponding errors will be incorporated into the MACs,

too). As a result, multiplications may not be computed correctly. To address this attack vector,

we use similar ideas to [Rachuri and Scholl 2022; Choudhuri et al. 2021], which have their roots

in the techniques of [Chida et al. 2018], and consists of maintaining a randomized version of the

circuit which can be used to verify multiplications. The associated accumulator is presented in

Procedure πmult-verify-hm below.9

Figure 3.21: Procedure πmult-verify-hm

Usage: Each committee Ci that gets the output wires of the multiplication gates of some layer ` of

the circuit incrementally updates a multiplication veri�cation state (Ju ′KC2ti , Jw ′KC2ti), which the

�nal committees at the end of the computation use to check that all multiplications throughout the

protocol were performed correctly.

Init: Each Party Pi in committee C4 (the �rst to get output from πmult-hm, as a result of C2 creating

randomized versions of the circuit inputs) initially de�nes their shares of Ju ′KC4 , Jw ′KC4 as (u ′)i =

9Note that the invocations of πMAC-check-hm in the Check State phase of πmult-verify-hm can be condensed to 3
rounds, since only one value at a time is opened.

84

(w ′)i ← 0 (same for the MAC shares).

Update State: On input (update, {(JzmKCi , JrzmKCi }m∈[T]) from committee Ci , where

{(JzmKCi , JrzmKCi }m∈[T] were the output wires of multiplication gates computed by Ci :

1. Each Pj in Ci invokes Fcoin to get random challenge α .

2. Parties Pj in Ci locally compute JuKCi ← JuKCi +
∑T
m=1 α

m · JrzmKCi and JwKCi ← JwKCi +∑T
m=1 α

m · JzmKCi .

3. Finally Ci invokes πe�-reshare-hm on JuKCi , JwKCi .

Check State: On input check from the clients Ci :

1. The parties of Ci �rst open JrKCi to the parties of Ci+1, who then check its MAC by running

both phases of πMAC-check-hm on it.

2. Then the parties of Ci+4 (πMAC-check-hm takes 4 rounds) all open (JuKCclnt − r · JwKCclnt) to the

parties of Ci+5, who then check its MAC by running both phases of πMAC-check-hm on it. If

the opened value is 0, the parties of Ci+8 (πMAC-check-hm takes 4 rounds) output Accept; else

Reject.

Lemma 3.16. Procedure πmult-verify-hm is correct, i.e., it accepts if all multiplications are computed

correctly. Moreover, it is sound, i.e., it rejects except with probability at most (1 +maxi Ti)/p in case

at least one multiplication is not correctly computed. Furthermore, the transcript of Update State is

simulatable.

Proof. This proof follows along the lines of Lemma 3.8 for the dishonest majority case. One

di�erence is that in πmult-hm, we do not need to use a universal hash function. This is because we

can authenticate JcKCi−2 before (x + a), (y + b) are opened and thus the error in JcKCi−2 must be

independent of them (and also the later opened challenge α). So, the probability of πmult-verify-hm

failing when the adversary cheats is even lower (i.e., as in the lemma statement). Also, since

85

parties locally compute [c]Ci2ti ← [a]
Ci
ti
· [b]Citi , there is only additive error on c , δc , i.e., independent

of the shares aj,b j of the honest parties (and same for Jc′KCi+2 of the randomized computation).

Finally, πmult-verify-hm gets α from Fcoin, but from the security of Fcoin, α is in this case also random

and independent of all other values.

So (assuming that πMAC-check-hm does not fail), the adversary can only inject additive error

ϵi,m(= δci ,m) for eachm-th multiplication gate that Ci receives output for, along with ϵ′i,m for that of

the randomized version of the multiplication gate, and �nally, any accumulated error ηi,m on the

randomized value from the previous gates in the circuit. Thus, ensuring that JuKCclnts−r ·JwKCclnts = 0

follows the exact same case analysis of that in the proof of Lemma 3.8.

Finally, we know from Lemma 3.13 that πe�-reshare-hm is simulatable by random values. �

3.4.2.4 Secure Multiplication

Finally, before we discuss our ultimate protocol, we present Procedure πmult-hm below which

enables a given committee to make progress on the computation by securely processing multipli-

cation gates. At a high level, this procedure makes use of multiplication triples [Beaver 1992] to

reduce the task of securely multiplying two shared values, to that of reconstructing two secrets.

Reconstruction is done by using the “king idea”, originating from [Damgård and Nielsen 2007],

which achieves linear communication complexity by �rst reconstructing to a single party who

then sends the reconstruction to the other parties.

However, there are a couple of issues we need to deal with. First, using multiplication triples

requires di�erent committees to have access to the same multiplication triple. We indeed achieve

this by making use of our resharing procedure πe�-reshare-hm from Section 3.4.2.2. Second, a given

committee can only obtain a partially authenticated multiplication triple (JaKC , JbKC , [c]C2t), where

the c part is not authenticated. Using an idea from [Rachuri and Scholl 2022], we authenticate

the c part of each triple “on the �y”. Intuitively, this is done by masking [c]C2t with a random,

authenticated sharing JvKC, reconstructing (c +v), then creating unmasked, authenticated shares

86

of c using JvKC (including its MAC). Reconstructing (c +v) here is also done by using the “king

idea”. The details are presented below.

Figure 3.22: Procedure πmult-hm

Usage: Using double sharing ([∆]Citi , [∆]
Ci
2ti) of the global MAC key, multiply JxKCi and JyKCi held

by Ci so that Ci+2 outputs Jx · yKCi+2 .

1. All parties in Ci−2 agree on a special party Pking in Ci−1.

2. All parties in Ci−2 invoke πget-rand-sharing three times to get JaKCi−2 , JbKCi−2 , JvKCi−2 (they also

save the sharings [a]Ci−2
ti−2
, [b]Ci−2

ti−2
generated during this invocation).

3. Ci−2 then locally obtains (unauthenticated) [c]Ci−2
2ti−2
← [a]Ci−2

ti−2
· [b]Ci−2

ti−2
.

4. Finally, parties in Ci−2 in parallel invoke πe�-reshare-hm on input JaKCi−2 , JbKCi−2 , JvKCi−2 and

open [c +v]Ci−2
2ti−2

to Pking in Ci−1.

5. Then, while Pking distributes opened (c +v) to the parties of Ci , the rest of the parties in Ci−1

in parallel invoke πe�-reshare-hm on input JaKCi−1 , JbKCi−1 , JvKCi−1 .

6. Parties in Ci then use opened (c+v) to compute authenticated JcKCi ← ((c+v)−[v]Ci2ti , [∆]
Ci
2ti ·

(c +v) − [∆ · v]Ci+2
2ti , [∆]

Ci
2ti).

7. Parties in Ci agree on a special party P ′king in Ci+1 and then compute Jx + aKCi ← JxKCi +JaKCi ,

and JyKCi ← JyKCi + JbKCi .

8. Parties in Ci then in parallel open Jx + aKCi , Jy + bKCi to P ′king in Ci+1 and invoke πe�-reshare-hm

on JaKCi , JbKCi , JcKCi , [∆ · (x + a)]Ci2ti , [∆ · (y + b)]
Ci
2ti .

9. Then while P ′king distributes opened d = x +a and e = y +b to the parties of Ci+2, all parties in

Ci+1 invoke πe�-reshare-hm on input JaKCi+1 , JbKCi+1 , JcKCi+1 , [∆ · (x + a)]Ci+1
2ti+1

, [∆ · (y + b)]Ci+1
2ti+1

.

10. Ci+2 �nally locally computes Jx · yKCi+2 ← de − d JbKCi+2 − e JaKCi+2 + JcKCi+2 .

87

11. Parties in Ci+2 will also invoke πMAC-check-hm on input (update, {((xm +

am, [∆ · (xm + am)]Ci+2
2ti+2
), (ym + bm, [∆ · (ym + bm)]Ci+2

2ti+2
))}m∈[T]) corresponding to all of

the openings of the above form they receive for the multiplication gates at this layer of the

circuit.

Lemma 3.17. Procedure πmult-hm’s transcript is simulatable.

Proof. First, we know that πe�-reshare-hm is simulatable by random values from Lemma 3.13. Also,

since a,b,v are uniformly random and unknown to the adversary by the security of Fdouble-rand-hm,

openings (c +v), (x + a), (y + b) are simulatable by random values. Finally, from Lemma 3.15, we

know that πMAC-check-hm’s transcript is indeed simulatable. �

3.4.2.5 Honest Majority Main Protocol

With all the previous tools into place, we are �nally ready to present our full-�edged actively secure,

honest majority MPC protocol in the �uid setting, achieving linear communication complexity

and maximal �uidity. The clients �rst distribute double sharings ([xi]C1
t1
, [xi]

C1
2t1) of their inputs to

C1. Then C1 obtains a double sharing ([∆]C1
t1
, [∆]C1

2t1) of the global MAC key using Fdouble-rand-hm,

and forms authenticated SPDZ sharings of the inputs using these sharings. The committees then

proceed to compute both the regular and randomized version of the circuit on the authenticated

inputs, using πmult-hm as well as addition and identity gate procedures that work similarly using

the same “mask, open to king, and unmask” paradigm along with some local computation. The

committees also make sure to update the accumulators of πMAC-check-hm and πmult-verify-hm along the

way with each opening and multiplication, respectively. Finally, once all circuit layers have been

computed, the �nal committees invoke the Check State phases of πMAC-check-hm and πmult-verify-hm,

then reconstruct the outputs to the clients. We note that, as it is remarked in the protocols

of [Rachuri and Scholl 2022; Choudhuri et al. 2021], if the clients indeed have access to a broadcast

channel in the last round of the protocol, or implement a broadcast over their point-to-point

88

channels, then security with unanimous abort can be achieved by having the clients broadcast

“abort”, if their check on their output fails.

Figure 3.23: Protocol Πmain-hm

Input Phase: To form a SPDZ sharing of an input xi possessed by Pi ∈ Cclnt:

1. Pi samples random degree-t1 and degree-2t1 Shamir sharings of xi and distributes the corre-

sponding shares to all parties in C1.

2. C1 then invokes Fdouble-rand-hm to get random double sharings of the global MAC key

([∆]C1
t1
, [∆]C1

2t1
).

3. Next, parties in C1 locally obtain authenticated sharing JxiKC1 ← ([xi]
C1
2t1
, [xi]

C1
t1
· [∆]C1

t1
, [∆]C1

2t1
)

and invoke πine�-reshare-hm on input [∆]C1
t1

and πe�-reshare-hm on input JxiKC1 .a

4. Parties in C2 then invoke πget-rand-sharing to get JrKC2 and invoke πmult-hm on input JxiKC2 and

JrKC2 , as well as the identity gate procedure (below) on JxiKC2 so that C4 gets JxiKC4 , JrxiKC4 .

5. Finally, C4 invokes πmult-verify-hm on input (update, {(JxiKC4 , JrxiKC4)}i ∈[|Cclnt |]), corresponding

to each input.

Execution Phase:

1. Each Committee Ci of the execution phase will �rst of all invoke πine�-reshare-hm on input [∆]Citi

and πe�-reshare-hm on input JrKCi and [∆]Ci2ti .

2. In parallel, every other committee (with the help of the others) will compute the gates at each

layer of the circuit as below:

Addition: To perform addition on JxKCi and JyKCi (and identically for JrxKCi and JryKCi):

1. All parties in Ci agree on a special party Pking in Ci+1 then invoke πget-rand-sharing to get JsKCi .

2. Then, parties in Ci locally obtain Jx + y + sKCi and open it to Pking while invoking πe�-reshare-hm

on input JsKCi .

89

3. While Pking distributes opened x + y + s to the parties of Ci+2, all parties in Ci+1 invoke

πe�-reshare-hm on JsKCi+1 .

4. Parties in Ci+2 �nally locally compute Jx + yKCi+2 ← (x + y + s) − JsKCi+2 .

5. Parties in Ci+2 will also invoke πMAC-check-hm on input (update, {(xm + ym +

sm, [∆ · (xm + ym + sm)]Ci+2
2ti+2
)}m∈[T]) corresponding to all of the openings of the above form

they receive for the addition gates at this layer of the circuit.b

Identity Gates: Ci forwards JxKCi , JrxKCi to Ci+2 in a similar fashion as addition above.

Multiplication: To multiply JxKCi and JyKCi , invoke πmult-hm on them (and identically for JrxKCi

and JyKCi). Then invoke πmult-verify-hm on input (update, {(JxmymKCi+2 , J(rx)mymKCi+2)}m∈[Ti]), cor-

responding to each multiplication performed at this layer of the circuit.

Output Phase:

1. Parties in the last committee C` who compute the shares of the output gates then invoke

πMAC-check-hm on check. If it outputs Reject, then abort; else, continue.

2. Parties in C`+2 (check of πMAC-check-hm takes 3 rounds) then invoke πmult-verify-hm on check. If

it outputs Reject, then abort; else, continue.

3. Next, for Party Pj in C`+9 (check of πmult-verify-hm takes 8 rounds), let z j , (∆ · z)j be their

respective shares of output wire [z]C`+9
2t`+9

and MAC [∆ · z]C`+9
2t`+9

. Each Pj creates random degree-

t`+10 Shamir secret sharings
[
z j

] C`+10
t`+10
,
[
(∆ · z)j

] C`+10
t`+10

and distributes the corresponding shares

to the parties of C`+10.

4. Then each party Pl ∈ C`+10 computes [z]C`+10
t`+10

←
∑

j ∈C`+9 c j ·
[
z j

] C`+10
t`+10

, and similarly for

[∆ · z]C`+10
t`+10

, where c j is the Lagrange reconstruction coe�cient for a degree-2t`+9 polynomial.

5. Finally, the parties of C`+10 open the shares of each [z]C`+10
t`+10

, [∆]C`+10
t`+10

, and [∆ · z]C`+10
t`+10

to the

clients, who attempt to reconstruct them and check that indeed the product of the former

two values equal the last value. If so, they output each z; else, they abort.

90

aNote that the computed MAC for JxiKC1 is re-randomized with a fresh 0-sharing in πe�-reshare-hm.
bThis invocation can be combined with that of the multiplication gates for this circuit layer.

Theorem 3.18. Let A be an R-adaptive adversary in Πmain-hm. Then the protocol UC-securely

computes FDABB in the presence of A in the (Frand-hm, Fcoin, Fdouble-rand-hm, Fzero)-hybrid model.

Proof. The proof of this Theorem follows very similarly to that of Theorem 3.9. We construct a

Simulator (S) that runs the adversary (A) as a subroutine, and is given access to FDABB. It internally

emulates the functionalities Frand-hm, Fcoin, Fdouble-rand-hm, Fzero and we implicitly assume that it

passes all communication between A and the environment Z. It keeps track of the current

committee via inputs (Init, C) and (Next-Commi�ee, C) from FDABB (and therefore in which

committees to simulate corresponding communication for circuit gates). The simulator uses bad,

initially set to 0, to detect any bad behavior fromA. If so, it sets bad← 1. The simulation proceeds

as follows:

Input: On input (Input, idx), if it is from an honest party, simulate the double sharings using

random values. From the security of Shamir secret sharing, this is a perfect simulation. For inputs

from all (even adversarial) parties, simulate πine�-reshare-hm as in Lemma 3.14 and πe�-reshare-hm as

in Lemma 3.13. If A cheats when resharing a value (i.e., by sending a wrong share), set bad← 1.

Also, simulate the multiplication as below.

Addition (and similarly for identity gates): On input (Add, idz, idx , idy), simulate πe�-reshare-hm

as in Lemma 3.13, and πMAC-check-hm as in Lemma 3.15. Additionally, simulate the opening of

Jx + y + sKCi with random values. Since s is uniformly random and unknown toA, this is a perfect

simulation. If A cheats when sending some universal hash value during πMAC-check-hm, abort. If

A cheats either when resharing or opening a value (i.e., by sending a wrong share), set bad← 1.

Multiplication: On input (Mult, idz, idx , idy), simulateπmult-hm as in Lemma 3.17 andπmult-verify-hm

as in Lemma 3.16. IfA cheats when sending some universal hash value during πMAC-check-hm, abort.

91

If for any c part of a multiplication triple, the additive error δc , 0, set bad← 1. Additionally, if

A cheats either when resharing or opening a value (i.e., by sending a wrong share), set bad← 1.

Output: In the Check State phase of πMAC-check-hm, for the distributed degree ti+1 Shamir sharings

we know from Lemma 3.13, that at least one share of [σ]Ci2ti is uniformly random and unknown to

A, while all others can be computed by A. For those that are uniformly random, by the security

of Shamir secret sharings, the distributed degree ti+1 shares can be simulated with random values.

For those that are known, the simulator can simply sample the distributed degree ti+1 shares on

its own. Now, if S ever set bad← 1 because A cheated when opening or resharing a value, S

sends random values for σ on behalf of the honest parties, then aborts. Otherwise, S, samples

random shares for the honest parties such that they reconstruct to 0 and are consistent with the

degree ti+1 sampled by the simulator above, and sends them to A. If A cheats during the check

state phase of πMAC-check-hm (e.g., by distributing incorrect degree-ti shares of some share σ i), S

aborts. In the check state phase of πmult-verify-hm, S sends random shares on behalf of the honest

parties for the opening of r . If A cheats by opening the wrong values for r , S aborts after the

MAC check (as above). If S ever set bad← 1 because A added non-zero error to the c part of a

multiplication triple, S sends random values on behalf of the honest parties for (u − r ·w), then

aborts. Otherwise, S records the values sent by A for (u − r ·w), then samples shares such that

(u − r ·w) = 0, and sends them to A. If A cheats when opening (u − r ·w), S aborts after the

MAC check (as above).

Finally, S gets the outputs from FDABB and forwards it to A. S then forwards whatever it

receives fromA back to FDABB. We can simulate the opening of the output wires (and MACs) in a

similar fashion as the check state phase of πMAC-check-hm.

From all of the Lemmas, we have that the simulation is perfect up until the output phase. By

Lemmas 3.15 (a similar argument holds for checking the MACs of the output wires) and 3.16,A is

only able to cheat in the real world with probability negligible in p. Thus, the distance between

the real-world and the simulation is negligible in p.

92

�

3.5 Two-Thirds Honest Majority Protocol

3.5.1 Technical Overview

Let C1, C2, . . . be the committees involved, each having n parties and t corruptions, with n = 3t + 1.

In this chapter, we will mostly work with degree d = 2t for Shamir secret sharings [x]Ci
d

. As

previous works in Fluid MPC, we assume that the circuit is layered, meaning that the multiplication

gates in a given layer can only depend on the outputs of the layer inmediately before it. The

resulting circuit has addition, multiplication, and identity gates for relaying values from one layer

to the next one. First each client, who provides input x ∈ F to the computation, secret-shares

their input towards the �rst committee C1 as [x]C1
2t . At this point, the parties in C1 have sharings

of the �rst layer of the computation, and the goal now is to let them evaluate the �rst layer of

the circuit so that parties in a future committee get sharings of the outputs of this layer. This is

then continued for each layer, until certain committee obtains shares of the output layer, which

can be reconstructed to the clients. From this general template, the core question becomes the

following: design a protocol so that, starting from a committee Ci holding shares of two values

[x]Ci2t and [y]Ci2t , a future committee Cj with j > i can learn the product [xy]Ci+1
2t . Such protocol

enables processing multiplication gates, and our overview focuses mostly on illustrating how we

do this. Handling identity gates (and in fact also addition gates) boils down to one committee Ci

holding [x]Ci2t , transfering this to Cj so that they obtain [x]Cj2t . This is a strictly easier task than

multiplication and it is approached via a simpli�cation of our multiplication protocol.

93

3.5.1.1 Challenges of our multiplication protocol.

For notational convenience let us relabel the committee who holds the initial sharings from Ci

to Ci+1, that is, committee Ci+1 has two sharings [x]Ci+1
2t and [y]Ci+1

2t , and the goal is to multiply

each x with y. The general structure of our protocol is the following. At a high level, the

idea is to let committee Ci+1 use a multiplication triple ([a]Ci+1
2t , [b]

Ci+1
2t , [c]

Ci+1
2t) where c = ab to

compute the product between x and y, as standard in Beaver-based multiplication. This consists

of �rst computing locally the sharings [d]Ci+1
2t = [x]Ci+1

2t + [a]
Ci+1
2t and [e]Ci+1

2t = [y]Ci+1
2t + [b]

Ci+1
2t ,

reconstructing d and e , and taking the linear combination [xy]∗2t = de − e [a]∗2t − d [b]
∗
2t + [c]

∗
2t .

However, there are two complications with this approach. The �rst is that, because we are in the

maximal �uidity setting, reconstruction cannot be done among the members of Ci+1 themselves,

but rather, towards the next committee. To make matters worse, reconstructing in one round

(i.e. towards the immediate next committee Ci+2) would involve quadratic communication (since

this requires every party in Ci+1 to send a share to every party in Ci+2), which we cannot a�ord.

To obtain linear communication we make use of the “multiple king idea” from [Damgård and

Nielsen 2007] (explained in more detail later in the section), but this results in committee Ci+3

learning the reconstructions of d and e , not Ci+2. The second complication arises from the fact that

the linear combination leading to xy described above must be computed by the committee that

knows d and e , Ci+3, but this committee must also have a triple ([a]Ci+3
2t , [b]

Ci+3
2t , [c]

Ci+3
2t), which is

currently held by committee Ci+1 (this is why we put asterisks ∗ in the sharings when describing

the linear combination). Solving this issue requires designing a method for committee Ci+1 to

transfer sharings to committee Ci+3.

Finally, another aspect we have overlooked is the generation of the multiplication triple: com-

mittee Ci+1 needs to obtain ([a]Ci+1
2t , [b]

Ci+1
2t , [c]

Ci+1
2t) in a �rst place. For this, we will let committee

Ci+1 �rst get [a]Ci+1
t and [b]Ci+1

t (notice the degree t instead of 2t), from which the parties in Ci+1 can

derive locally [ab]Ci+1
2t = [a]

Ci+1
t · [b]Ci+1

t . Since any degree-t sharing is also a degree-2t sharing, the

94

parties in Ci+1 interpret [a]Ci+1
t as [a]Ci+1

2t (and similarly for b). This way, the parties have obtained

the required triple. An avid reader may note that the computed [ab]Ci+1
2t is not a random degree-2t

sharing of c = a · b, since the underlying polynomial is not random but rather the product of two

degree-t polynomials. Also, [a]Ci+1
2t (and same for b) is not a random degree-2t sharing, since the

underlying polynomial has degree t . However, as we will see, this turns out to not be a problem,

and the randomization involved when re-sharing helps us prevent leakage from this underlying

structure.

One �nal question left is how committee Ci+1 gets [a]Ci+1
t (and [b]Ci+1

t) in a �rst place. For

this, we use committee Ci : the parties in Ci execute the random sharing generation protocol

from [Beerliová-Trubíniová and Hirt 2008], except that the receivers are the parties in Ci+1. We

provide more details below.

3.5.1.2 Parties in Ci generate random sharings towards Ci+1.

Our multiplication protocol operates in batches: t + 1 products are handled simultaneously.

Committee Ci+1 has multiple sharings [x1]
Ci+1
2t , . . . , [xt+1]

Ci+1
2t and [y1]

Ci+1
2t , . . . , [yt+1]

Ci+1
2t , and the

goal is to multiply each xα with yα for α ∈ [t + 1].

For the multiplication, committee Ci+1 needs random sharings {[aα]Ci+1
t , [bα]

Ci+1
t }α∈[t+1] which

will be used for producing multiplication triples. We use the standard approach from [Beerliová-

Trubíniová and Hirt 2008] for this, in which each party samples and distributes some random

sharings, which are then combined with an appropriate matrix to obtain truly random sharings.

However, since parties in Ci+1 cannot communicate with each other, they must receive these

sharings from Ci . In more detail, to generate a set of t+1 random sharings [aα]Ci+1
t for α ∈ [t + 1],

each party Pj ∈ Ci samples a random sj ∈ F and distributes
[
sj
]Ci+1
t

towards Ci+1.

The next step is for the parties in Ci+1 to locally apply a hyper-invertible matrix to the vector

([s1]
Ci+1
t , . . . , [sn]

Ci+1
t), obtaining ([a1]

Ci+1
t , . . . , [an]

Ci+1
t). These matrices, de�ned in [Beerliová-

Trubíniová and Hirt 2008], have several important properties that simultaneously help with

95

randomness extraction and cheating veri�cation, which is used to handle the fact that the parties

in Ci may distribute incorrect random sharings (e.g. using incorrect degree); but for this a check

similar to [Beerliová-Trubíniová and Hirt 2008] is performed. The sharings that the parties in Ci+1

will �nally use are the �rst t + 1 sharings ([a1]
Ci+1
t , . . . , [at+1]

Ci+1
t), and ([b1]

Ci+1
t , . . . , [bt+1]

Ci+1
t)

produced in a similar way.

3.5.1.3 Parties in Ci+1 use the random sharings.

These sharings are used to obtain Beaver triples: [aα]Ci+1
t and [bα]Ci+1

t can be locally multiplied

to obtain [cα]Ci+1
2t . From now on [aα]Ci+1

t and [bα]Ci+1
t are interpreted as [aα]Ci+1

2t and [bα]Ci+1
2t , re-

spectively. Then the parties in Ci+1 execute the �rst step of Beaver-based multiplication: they

add locally [dα]Ci+1
2t ← [xα]

Ci+1
2t + [aα]

Ci+1
2t and [eα]Ci+1

2t ← [yα]
Ci+1
2t + [bα]

Ci+1
2t , and then the goal

is to reconstruct these values. Of course, since the members in committee Ci+1 cannot talk to

each other in the maximal �uidity setting, these parties would reconstruct these values towards

committee Ci+2. This is done via the standard e�cient reconstruction procedure from [Damgård

and Nielsen 2007], which consists of the parties �rst expanding the sharings {[dα]Ci+1
2t }α∈[t+1] with

an error correcting code, instantiated by multiplication with a super-invertible matrix, to obtain

{

[
d′
β

]Ci+1

2t
}β∈[n] (and similarly {

[
e′
β

]Ci+1

2t
}β∈[n]); this is followed by all parties in Ci+1 sending their

shares of [dk]Ci+1
2t and [ek]Ci+1

2t to each Pk ∈ Ci+2.

At this point the parties in Ci+2 have “shares” (d′1, . . . ,d
′
n) and (e′1, . . . , e

′
n), which reconstruct

to polynomials encoding (d1, . . . ,dt+1) and (e1, . . . , et+1) respectively. These need to be “recon-

structed”, so these “sharings” are sent to committee Ci+3, who learn (d1, . . . ,dt+1) and (e1, . . . , et+1).

Committee Ci+3 will execute Beaver-based multiplication, which works by taking the local linear

combination

[xαyα]
Ci+3
2t = dαeα − dα [bα]

Ci+3
2t − eα [aα]

Ci+3
2t + [cα]

Ci+3
2t . (3.1)

However, in order to do this the parties in Ci+3 need the sharings of the triple ([aα]Ci+3
2t , [bα]

Ci+3
2t ,

96

[cα]
Ci+3
2t).

3.5.1.4 Committee Ci+3 gets the triple - Resharing protocol based on packed secret

sharing.

Recall that the parties in Ci+1 have ([aα]Ci+1
2t , [bα]

Ci+1
2t , [cα]

Ci+1
2t). These sharings will be transferred

to committee Ci+3 via a resharing protocol. This is done in two steps where parties in Ci+1 send

packed secret sharings of their shares. Next, the parties in Ci+2 can combine these packed sharings

of shares into one packed sharing and then Shamir sharings of their packed shares are sent to

Ci+3 to get non-packed shares of the original secrets. See details below.

Committee Ci+2 gets ([a]Ci+2
2t , [b]

Ci+2
2t , [c]

Ci+2
2t). For committee Ci+1 to send the triples to commit-

tee Ci+3, these sharings have to pass through Ci+2 �rst. Towards this, parties in Ci+1 transfer these

sharings to Ci+2, but they do so with packed secret-sharing, which is crucial for e�ciency. We

focus on how to transfer {[aα]Ci+1
2t } so that committee Ci+3 gets [a]Ci+2

2t , with the other sharings

handled in the same way.

Let us denote the j-th share of each [aα]Ci+1
2t by ajα , which satisfy

∑2t+1
j=1 Lj(0)ajα = aα , where

Lj(X) are the Lagrange polynomials. Party Pj ∈ Ci+1, having aj
[1,t+1] = (a

j
1, . . . ,a

j
t+1), distributes

sharings
[
aj
[1,t+1]

]Ci+2

2t
to committee Ci+2. At this point each party in this committee can compute

locally
2t+1∑
j=1

Lj(0)
[
aj
[1,t+1]

]Ci+2

2t
=

[
2t+1∑
j=1

Lj(0) · aj[1,t+1]

]Ci+2

2t

= [a]Ci+2
2t ,

where a = (a1, . . . ,at+1). Notice that a corrupt party Pj ∈ Ci+1 may distribute
[
aj
[1,t+1]

]Ci+2

2t

incorrectly. For example, the underlying secret may not correspond to aj
[1,t+1]. We discuss how to

address this later in the section but for now, let us hint that this is prevented by leveraging the

fact that each row of the “matrix” [a1
[1,t+1]‖ · · · ‖a

n
[1,t+1]] has to be consistent with a polynomial of

degree ≤ 2t , and this bounds the adversary to use the correct secrets.

97

Committee Ci+3 obtains ([aα]Ci+3
2t , [bα]

Ci+3
2t , [cα]

Ci+3
2t). Here, the sharings ([a]Ci+2

2t , [b]
Ci+2
2t , [c]

Ci+2
2t)

held by committee Ci+2 are “unpacked” towards committee Ci+3. As before, we focus on [a]Ci+2
2t

for the sake of exposition. Let us denote the share of party Pj ∈ Ci+2 of [a]Ci+2
2t by aj ∈ F, which

satisfy aα =
∑2t+1

j=1 Lj(−α) · aj . Each of these parties secret-shares their share as
[
aj

]Ci+3
2t towards

committee Ci+3. Due to the observation above, we have that

2t+1∑
j=1

Lj(−α) ·
[
aj

]Ci+3
2t =

[
2t+1∑
j=1

Lj(−α) · aj
]Ci+3

2t

= [aα]
Ci+3
2t ,

so the parties in Ci+3 can obtain the desired shares. A similar approach is followed to obtain

[bα]
Ci+3
2t and [cα]Ci+3

2t .

3.5.1.5 Achieving active security.

The protocol sketched so far can be attacked by an active adversary at the following places:

1. The generation of the random sharings by committee Ci may be done inconsistently.

2. The parties in Ci+1 may send incorrect shares of
[
d′
k

]Ci+1
2t or

[
e′
k

]Ci+1
2t to some Pk ∈ Ci+2, or

Pk may send an incorrect d′
k

to Ci+3.

3. A corrupt party Pj ∈ Ci+1 may reshare
[
aj
[1,t+1]

]Ci+2

2t
(or

[
bj
[1,t+1]

]Ci+2

2t
, or

[
cj
[1,t+1]

]Ci+2

2t
) incon-

sistently to committee Ci+2.

4. A corrupt party Pj ∈ Ci+2 may reshare
[
aj

]Ci+3
2t (or

[
bj

]Ci+3
2t , or

[
cj
]Ci+3

2t) inconsistently to

committee Ci+3.

The �rst item is addressed by using the hyper-invertible matrix veri�cation from [Beerliová-

Trubíniová and Hirt 2008], where some of the mapped sharings ([a1]
Ci+1
t,2t , . . . , [an]

Ci+1
t,2t), held by the

receiving Ci+1, are opened. In our case, these are opened towards committee Ci+2 who performs

the check in [Beerliová-Trubíniová and Hirt 2008]. Since this follows relatively straightforwardly

98

from [Beerliová-Trubíniová and Hirt 2008], we do not provide details in this overview, and refer

the reader to Section 3.5.2.1 where we present our random sharings protocol. On the other hand,

the second item is easily handled by performing error detection.

Items (3) and (4) require more care, and we provide an overview on these below.

Ensuring consistency of
[
aj
[1,t+1]

]Ci+2

2t
. A party Pj ∈ Ci+1 may cheat by sending

[
aj
[1,t+1] + δ

j
]Ci+2

2t
,

where δ j , 0.10 First, let H be the (n− 2t − 1)×n matrix such that H ·x = 0 if and only if x ∈ Fn are

valid shares of a polynomial of degree ≤ 2t . The intuitive idea behind our check is simple. Let A

be the n × (t + 1) matrix whose j-th row is aj
[1,t+1]. We have that for any index α ∈ [t + 1], the α-th

column is a degree-2t sharings. This means the matrix satis�es H · A = 0 ∈ (n − 2t − 1) × (t + 1).

Let D be the n× (t + 1)matrix whose j-th row is δ j (we de�ne δ j = 0 for an honest party Pj ∈ Ci+1).

Since the parties in Ci+2 allegedly have sharings of each row
[
aj
[1,t+1] + δ

j
]Ci+2

2t
of A+D, the parties

can locally compute shares of each row of H · (A+D) = H ·A+H ·D = H ·D. Then the parties in

Ci+2 reconstruct these sharings towards committee Ci+3, and check that the corresponding secrets

are all 0. It is possible to verify that, given that D only contains at most t non-zero rows, the

only way in which H · D can equal zero is if D = 0, so this check indeed ensures that no cheating

occurred.

A detail we have neglected is that, simply reconstructing all rows of H ·D towards all members

of Ci+3 is too expensive since it requires n2 communication. Instead, the parties in Ci+2 apply a

hyper-invertible matrix that maps these n−2t −1 rows to n rows, and the j-th row is reconstructed

only towards Pj ∈ Ci+3. This ensures that if there is at least one row in H · D that is not zero, then

at least one honest party in Ci+3 receives a non-zero row. This party signals this to the parties in

Ci+4, who learn at that point whether there was an error in the original sharings or not.

The downside of this approach is that some honest parties in Ci+3 may not know yet that an
10The “worst-case degree” for an inconsistent sharing is 2t , since the shares of the n − t = 2t + 1 honest parties

uniquely de�ne a polynomial of degree ≤ 2t . Hence, a corrupt party cannot cheat on the degree, and at worst can
cheat by changing the secret

99

error took place. This is an important and subtle issue, since some honest parties in Ci+3 may not

know yet that some
[
aj
[1,t+1]

]Ci+2

2t
is inconsistent, and yet they would proceed with the protocol

speci�cation. This could be a problem if the steps that follows leak sensitive information when

they are executed on inconsistent shares, as noted for example in [Goyal et al. 2019]. However,

this is not a problem in our case. At a high level, compared to [Goyal et al. 2019], we use degree-2t ,

while they use degree-t (which are important for G.O.D.). This removes all “extra redundancy”

that the honest parties’ shares may carry, which is what causes privacy issues in [Goyal et al.

2019].

Ensuring consistency of
[
aj

]Ci+3
2t . Recall that each aj ∈ F is a share of the degree-2t packed

sharing [a]Ci+2
2t . As it turns out, the consistency of

[
aj

]Ci+3
2t is veri�ed in a similar manner as above.

This is thanks to the observation that (a1, . . . , an) is a consistent degree-2t sharing (it equals

[a]Ci+2
2t), so it should equal 0 when multiplied by the matrix H. Furthermore, since the parties in

Ci+3 have sharings of each
[
aj

]Ci+3
2t , they can compute shares of this matrix product. As before,

instead of sending these shares to all parties in Ci+4, the parties in Ci+3 �rst apply a super-invertible

matrix and reconstruct the j-th entry to the j-th party in Ci+4, who checks the underlying secret

is 0. If one party �nds an error, this is reported to all parties in Ci+5.

3.5.1.6 Final remarks

Communication complexity. Notice that communication of all the steps described above

involves each party from one committee sending a constant amount of �eld elements to the parties

in the next committee. This leads to a communication of O(n2). However, recall that this is to

process a batch of t + 1 = Ω(n) multiplication gates, which means that the amortized cost per gate

is O(n), as desired.

Input and addition gates. Finally, we point out that similar techniques as sketched above are

used to handle input and addition gates: the parties somehow reshare the values, and some checks

100

are performed to ensure consistency. This is done as the resharing of the triples, essentially.

3.5.2 Formal Protocol

3.5.2.1 Basic Functionalities

This section discusses three crucial functionalities for our �nal protocol, whose instantiations

are somewhat direct adaptations of previous non-�uid works. The �rst is a functionality for

generating sharings of uniformly random values, which recall from the overview in Section 3.5.1

is one of the ingredients needed to generate multiplication triples, which are used to process

multiplication gates. The other two functionalities are concerned with how the clients provide

inputs, and how they get outputs once the computation is done.

Random Sharings Generation [Beerliová-Trubíniová and Hirt 2008] We de�ne the func-

tionality for random sharing generation Frand-2/3-hm below. It �rst generates random sharings

[r1]
Ci+1
t , . . . , [rt+1]

Ci+1
t consistent with t shares received from the adversary corresponding to cor-

rupted parties for each. It then distributes to the honest parties of committee Ci+1 their shares of

these sharings, summed with their shares of error-sharings [e1]
Ci+1
t ′ , . . . , [et+1]

Ci+1
t ′ , respectively,

received from the adversary, where t ′ ≤ 2t . Finally, if any such sharing [e1]
Ci+1
t ′ is not equal to the

all-0 sharing, then Frand-2/3-hm sends abort to the honest parties of Ci+3.

Figure 3.24: Functionality Frand-2/3-hm

1. Frand-2/3-hm receives from the adversary the set of shares
(
{rk1 }k ∈TCi+1

, . . . , {rkt+1, }k ∈TCi+1

)
and

sharings ([e1]
Ci+1
t ′ , . . . , [et+1]

Ci+1
t ′), where t ′ ≤ 2t .

2. Frand-2/3-hm then samples r1, r2, . . . , rn−2t randomly, and generates [r1]
Ci+1
t , . . . , [rt+1]

Ci+1
t such

that for every j ∈ [t + 1] and k ∈ TCi+1 , the k-th shares of
[
r j

] Ci+1
t are rkj .

3. Next, for every j ∈ [t + 1], l ∈ HCi+1 , Frand-2/3-hm sends the l-th shares of
[
r j

] Ci+1
t +

[
ej

] Ci+1
t ′ to

Pl .

101

4. Finally, if any
[
ej

] Ci+1
t ′ is not equal to [0]Ci+1

0 , i.e., the all-0 sharing, then Frand-2/3-hm sends

abort to the honest parties of Ci+3. Otherwise, Frand-2/3-hm asks the adversary whether to

continue, and if the adversary replies (abort,A) for A ⊆ HCi+3 , then Frand-2/3-hm sends abort

to the honest parties A of Ci+3.

Functionality Frand-2/3-hm is instantiated by Protocol Πrand-2/3-hm below. As we discussed in

the overview, this is an adaptation of the random sharing generation protocol by [Damgård and

Nielsen 2007], except messages are sent from one committee to the next.

Figure 3.25: Protocol Πrand-2/3-hm

Usage: With help from committee Ci , committee Ci+1 outputs t + 1 random sharings [r]Ci+1
t , and

uses committees Ci+2 and Ci+3 to ensure their t-consistency.

1. All parties Pj in Ci sample random sj and share it to the parties of Ci+1 using degree t .

2. The parties of Ci+1 �rst locally apply (n × n) hyper-invertible matrix M to the sharings from

Ci to obtain

([r1]
Ci+1
t , . . . , [rn]

Ci+1
t)ᵀ ← M · ([s1]

Ci+1
t , . . . , [sn]

Ci+1
t)ᵀ .

3. While the Veri�cation Phase (below) is executed, committee Ci+1 outputs random sharings

([r1]
Ci+1
t , . . . , [rt+1]

Ci+1
t).

Veri�cation Phase:

1. Then, the parties of Ci+1 open the last 2t sharings [rt+2]
Ci+1
t , . . . , [rn]

Ci+1
t to the last 2t parties

of Ci+2, respectively.

2. The last 2t parties Pl of Ci+2 then check that indeed [rl]Ci+1
t is t-consistent.

3. If this check fails for some Pj , they send abort to the parties of Ci+3.

The communication complexity of Πrand-2/3-hm is n · n = O(n2) sharings in step 1, plus 2t · n =

102

O(n2) sharings from the veri�cation, for a total of O(n2/(t + 1)) = O(n) per random sharing.

Lemma 3.19. Protocol Πrand-2/3-hm UC-realizes Frand-2/3-hm.

Proof. Assume w.l.o.g., that the �rst 2t + 1 parties are honest. First we de�ne the simulator S:

1. S for j ∈ [2t + 1] �rst samples random sharings
[
sj
]Ci+1
t

, then sends the committee Ci+1

corrupted parties’ shares, {skj }k∈[2t+2,n] to the adversary.

2. S then receives from the adversary {skj }k∈[2t+1], for j ∈ [2t +2,n], on behalf of the committee

Ci+1 honest parties.

3. For each j ∈ [2t + 2,n], S uses s1
j , . . . , s

t+1
j to reconstruct

[
sj
]Ci+1
t

.

4. Then, for each j ∈ [2t + 2,n], letting skj,t be the k-th share of
[
sj
]Ci+1
t

just reconstructed,

S uses (0, . . . , 0, st+2
j − st+2

j,t , . . . , s
2t+1
j − s2t+1

j,t) to reconstruct
[
dj

]Ci+1
t ′j

, where t ′j ≤ 2t is the

smallest value that de�nes a consistent sharing with the above 2t + 1 shares.

5. S then computes

([r1]
Ci+1
t , . . . , [rn]

Ci+1
t)ᵀ ← M · ([s1]

Ci+1
t , . . . , [sn]

Ci+1
t)ᵀ

and

([e1]
Ci+1
t ′ , . . . , [en]

Ci+1
t ′)

ᵀ ← M ·
(
0, . . . , 0, [d2t+2]

Ci+1
t ′2t+2
, . . . , [dn]

Ci+1
t ′n

)ᵀ
on behalf of all of the honest parties of committee Ci+1, where t ′ = max{t ′j }j∈[2t+2,n].

6. Using the 2t +1 honest parties’ shares of the sharings ([r1]
Ci+1
t , . . . , [rt+1]

Ci+1
t), S reconstructs

the whole sharings, and sends the corrupted parties’ shares to Frand-2/3-hm, along with

([e1]
Ci+1
t ′ , . . . , [et+1]

Ci+1
t ′).

7. Then for j ∈ [2t + 2,n], S sends to the corresponding corrupted party of committee Ci+2,

the honest parties’ shares of
[
rj
]Ci+1
t
+

[
ej
]Ci+1
t ′

.

103

8. S next receives from the adversary, for j ∈ [t + 2, 2t + 1], the corrupted parties’ shares of[
rj
]Ci+1
t
+

[
ej
]Ci+1
t ′

, for the corresponding honest party of committee Ci+2. Together with the

honest parties’ shares of these sharings, S checks that
[
rj
]Ci+1
t
+

[
ej
]Ci+1
t ′

indeed de�nes a

t-consistent sharing. If not, then S sends on behalf of Pj , abort to the corrupted parties of

committee Ci+3.

9. Finally, if S sent any abort in the above step, it sets A = HCi+3 ; otherwise it sets A to be

those honest parties that receive from some corrupt party abort. Then, when Frand-2/3-hm

asks S whether to continue, it replies with (abort,A).

Now we argue that the real world and ideal world are distributed identically to the adversary.

In Step 1 of Πrand-2/3-hm, the adversary receives the t committee Ci+1 corrupted parties’ shares

of the committee Ci honest parties’ sharings
[
sj
]Ci+1
t

. Indeed, Step 1 of S is to sample random

sharings in the same way for each honest party, and send the corrupted committee Ci+1 parties

their shares. Thus, the view of the adversary is identical in the real and ideal worlds for this step.

For these degree-t sharings, there are t + 1 total (random) degrees of freedom in de�ning the

underlying polynomial, and thus the t shares that the adversary sees are uniformly random, while

leaving 1 remaining (random) degree of freedom for each sharing, or 2t + 1 in total.

In Step 3 of Πrand-2/3-hm, the honest parties output their shares of ([r1]
Ci+1
t ′ , . . . , [rt+1]

Ci+1
t ′). Let

us examine what honest parties output for their shares of the degree-t ′ sharings in the ideal world.

In Step 3 of S, for j ∈ [2t + 2,n], it uses the underlying �rst t + 1 shares s1
j , . . . , s

t
j received from

the adversary to reconstruct
[
sj
]Ci+1
t

. Then, in Step 4, S uses the di�erences between all of the

2t + 1 shares s1
j , . . . , s

2t+1
j received from the adversary and those de�ned by

[
sj
]Ci+1
t

reconstructed

above, to reconstruct sharings
[
dj

]Ci+1
t ′j

(of course, for the �rst t + 1, the di�erence will be 0). Next,

in Step 5, S computes

([r1]
Ci+1
t , . . . , [rn]

Ci+1
t)ᵀ ← M · ([s1]

Ci+1
t , . . . , [sn]

Ci+1
t)ᵀ

104

and

([e1]
Ci+1
t ′ , . . . , [en]

Ci+1
t ′)

ᵀ ← M ·
(
0, . . . , 0, [d2t+2]

Ci+1
t ′2t+2
, . . . , [dn]

Ci+1
t ′n

)ᵀ
.

Finally, in Step 6, S sends to Frand-2/3-hm the corrupted parties’ shares of ([r1]
Ci+1
t , . . . , [rt+1]

Ci+1
t),

along with ([e1]
Ci+1
t ′ , . . . , [et+1]

Ci+1
t ′). Frand-2/3-hm then for each j ∈ [t + 1], samples random rj and

degree-t sharing consistent with this value and the t corrupted parties’ shares of
[
rj
]Ci+1
t

received

from S, reconstructs the corresponding sharing, and sends to the honest parties of Ci+1 their

shares of this sharing, plus their share of
[
ej
]Ci+1
t ′

. Now, for each k ∈ [2t + 1], let us look at honest

party Pk ’s computation of (rk1 , . . . , r
k
t+1)
ᵀ ← Mc([t+1])

r([t+1]) · (s
k
1 . . . s

k
t+1)
ᵀ+Mc([t+2,n])

r([t+1]) · (s
k
t+2 . . . s

k
n)
ᵀ. Since

M is hyper-invertible, Mc([t+1])
r([t+1]) is invertible, which means that the t + 1 values rkj have a one-to-

one correspondence with skj , for j ∈ [t + 1]. Since for each sharing
[
sj
]Ci+1
t

, j ∈ [t + 1] there is 1

remaining (random) degree of freedom, we can for the �rst honest party, conclude that r 1
j is random.

Since Frand-2/3-hm only needs to sample 1 random value for each of the t + 1 random sharings

([r1]
Ci+1
t , . . . , [rt+1]

Ci+1
t), the real world and ideal world are distributed identically in determining

these sharings. Note also that [st+2]
Ci+1
t , . . . , [s2t+1]

Ci+1
t still have 1 remaining (random) degrees of

freedom, each, at this point. Furthermore, observe that for k ∈ [2t +1], j ∈ [2t +2,n] the k-th share

of
[
sj
]Ci+1
t

added to that of
[
dj

]Ci+1
t ′j

, will be exactly that skj received from the adversary. Moreover,

by linearity, the k-th shares of M · ([s1]
Ci+1
t , . . . , [sn]

Ci+1
t)ᵀ +M · (0, . . . , 0, [d2t+2]

Ci+1
t ′j
, . . . , [dn]

Ci+1
t ′j
)ᵀ

will thus be exactly M · (sk1 , . . . , s
k
n)
ᵀ. Therefore, the values output by the honest parties in the

ideal world are distributed identically to those output in the real world.

In Step 1 of the Veri�cation Phase of Πrand-2/3-hm, for each j ∈ [2t + 2,n], the adversary

receives on behalf of the corresponding corrupted party ofCi+2: the honest parties’ shares of
[
rj
]Ci+1
t ′

.

For these sharings, for k ∈ [t+1], let us look at honest party Pk ’s computation of (rk2t+2, . . . , r
k
n)
ᵀ ←

Mc([t+2,2t+1])
r([2t+2,n]) · (s

k
t+2 . . . s

k
2t+1)

ᵀ + Mc([t+1])
r([2t+2,n]) · (s

k
1 . . . s

k
t+1)
ᵀ + Mc([2t+2,n])

r([2t+2,n]) · (s
k
2t+2 . . . s

k
n)
ᵀ. Since M is

hyper-invertible, Mc([t+2,2t+1])
r([2t+2,n]) is invertible, which means that the t values rk2t+2, . . . , r

k
n have a one-

to-one correspondence with sk
l

, for l ∈ [t +2, 2t +1]. Since for each sharing [sl]Ci+1
t , l ∈ [t +2, 2t +1]

105

there is 1 remaining (random) degree of freedom, we can for j ∈ [2t + 2,n], conclude that the

share of the �rst honest party r 1
j is random. S in Step 7 computes and sends the simulated shares

of honest parties of
[
rj
]Ci+1
t ′

by separating
[
rj
]Ci+1
t ′

into
[
rj
]Ci+1
t
+

[
ej
]Ci+1
t ′

. For
[
rj
]Ci+1
t

, since the �rst

honest party share is random using the same argument as above, and the last t are consistent with

the �rst, and the adversary’s t shares, the ideal world is identically distributed to the real world at

this point.

When S receives from the adversary, for j ∈ [t + 2, 2t + 1], the corrupted parties’ shares of[
rj
]Ci+1
t ′

, it performs the same consistency check on behalf of the honest parties as they do in the

real world. Thus, the distribution of abort messages from the honest parties of Ci+2 to the corrupt

parties of Ci+3, and whether the honest parties of Ci+3 abort, are identical in the real and ideal

worlds.

Finally, we need to show that if for some j ∈ [t + 1],
[
ej
]Ci+1
t ′
, [0]Ci+1

0 (i.e., the all-0 sharing) in

the real world, then the honest parties of committee Ci+3 abort (as they are forced to in the ideal

world). We do so by proving the contrapositive; i.e., if the honest parties do not abort, then for

every j ∈ [t + 1],
[
ej
]Ci+1
t ′
= [0]Ci+1

0 . For this, we again use the power of hyper-invertible matrix M.

For each k ∈ [n], party Pk of committee Ci+1 computes

(rkt+2, . . . , r
k
2t+1)

ᵀ ← Mc([2t+2,n])
r([t+2,2t+1]) · (s

k
2t+2 . . . s

k
n)
ᵀ +Mc([2t+1])

r([t+2,2t+1]) · (s
k
1 . . . s

k
2t+1)

ᵀ .

Since M is hyper-invertible, Mc([2t+2,n])
r([t+2,2t+1]) is invertible, so we can write

(sk2t+2 . . . s
k
n)
ᵀ =

(
Mc([2t+2,n])

r([t+2,2t+1])

)−1
·(rkt+2, . . . , r

k
2t+1)

ᵀ−(
Mc([2t+2,n])

r([t+2,2t+1])

)−1
·Mc([2t+1])

r([t+2,2t+1]) · (s
k
1 . . . s

k
2t+1)

ᵀ .

Now, since the honest parties did not abort, their checks passed, which means that for j ∈

[t + 2, 2t + 1], the shares r 1
j , . . . , r

n
j are t-consistent. In particular, this means that for each

106

j′ ∈ [2t + 2,n], the vector of the j′-th elements of
(
Mc([2t+2,n])

r([t+2,2t+1])

)−1
· (rkt+2, . . . , r

k
2t+1)

ᵀ across

k ∈ [n] are t-consistent. Similarly, for l ∈ [2t + 1], s1
l
, . . . , sn

l
are generated by honest parties

and thus are t-consistent. Therefore, for each j′ ∈ [2t + 2,n], the vector of the j′-th elements

of
(
Mc([2t+2,n])

r([t+2,2t+1])

)−1
·Mc([2t+1])

r([t+2,2t+1]) · (s
k
1 . . . s

k
2t+1)

ᵀ across k ∈ [n] are t-consistent. Putting together

the observations above, we have that for each j′ ∈ [2t + 2,n], the vector of the j′-th elements of

(sk2t+2 . . . s
k
n)
ᵀ across k ∈ [n] are t-consistent.

Finally, since for k ∈ [n]:

(rk1 , . . . , r
k
t+1)
ᵀ ← Mc([2t+2,n])

r([t+1]) · (s
k
2t+2 . . . s

k
n)
ᵀ +Mc([2t+1])

r([t+1]) · (s
k
1 . . . s

k
2t+1)

ᵀ,

we see that for j ∈ [t + 1], (r 1
j , . . . , r

n
j) are t-consistent. Thus, every

[
ej
]Ci+1
t ′
= [0]Ci+1

0 , as required.

In conclusion, we have proved that the real and ideal worlds are distributed identically and

thus Πrand-2/3-hm UC-realizes Frand-2/3-hm.

�

Input and Output Functionality Finput below models how clients provide inputs to the compu-

tation, and it is instantiated by Protocol Πinput, which is presented right after. The instantiation is

quite standard: clients learn a random value that they can use to mask their input, sending this

masked value to the parties in the committee that initiates the computation, who can unmask

this element using secret-sharing. Here, we assume the client committee Cclnt is the �rst two

committees, or in other words, clients have �uidity 2. This can be easily removed by placing one

committee before Cclnt which send the random sharings to Cclnt, but this would require us to use

our resharing protocol, which we present later in Section 3.5.2.2.

107

Figure 3.26: Functionality Finput

1. Let x be the input associated with the input gate belonging to the client.

2. If the client is corrupted:

(a) Finput �rst receives the sharing [x]Cclnt
2t or (abort,A) for A ⊆ HCclnts from the adversary.

(b) In the former case Finput forwards to the honest parties their shares.

(c) In the latter case, Finput outputs abort to the honest clients A of Cclnt.

3. If the client is honest:

(a) Finput �rst receives x from the client, then it receives from the adversary a set of shares

{x j }j ∈TCclnts
or abort.

(b) In the former case, Finput then samples a sharing [x]Cclnt
2t based on the t shares x j from

the adversary, the value x , and t other randomly sampled shares, then sends to the

honest parties their shares.

(c) In the latter case, Finput outputs abort to the honest clients.

Figure 3.27: Protocol Πinput

Usage: A client in the client set Cclnt distributes a sharing [x]Cclnt
2t of their circuit input x to the other

clients.

1. The clients Pj of Cclnt �rst invoke Frand-2/3-hm to get random sharing [r]Cclnt
t (where Cclnt acts

as all committees used in Frand-2/3-hm).

2. The clients then open [r]Cclnt
t to the input client, who then (if [r]Cclnt

t is a correct degree-t

sharing) computes x + r , samples [x + r]Cclnt
2t and distributes to all other clients in Cclnt their

shares.

3. Each party in Cclnt then computes and outputs their sharing of x as [x]Cclnt
2t = [x + r]Cclnt

2t −

[r]Cclnt
t .

108

Lemma 3.20. Πinput UC-realizes Finput in the Frand-2/3-hm-hybrid model.

Proof. Assume w.l.o.g., that the �rst 2t + 1 parties are honest. First, we de�ne the simulator S:

1. S �rst emulates Frand-hm. That is, it receives from the adversary shares r 2t+2, . . . , rn and

sharing [e]Cclnt
t ′ , then samples r uniformly at random, generates random sharing [r]Cclnt

t such

that each k-th share is rk , aborts if [e]Cclnt
t ′ , [0]

Cclnt
0 and �nally asks the adversary whether

to continue. If the adversary responds with abort, then S sends abort to Finput.

2. Then, if the input client is corrupt:

(a) S sends the honest clients’ shares of [r]Cclnt
t to the adversary.

(b) If the client responds with abort to honest clients A ∈ HCclnts , S forwards it (abort,A)

to Finput.

(c) Otherwise, the client responds with the honest parties’ shares of [x + r]Cclnt
2t (2t + 1 of

them), from which S reconstructs the whole sharing and then forwards the sharing of

[x]Cclnt
2t = [x + r]Cclnt

2t − [r]
Cclnt
t to Finput.

3. Otherwise, if the input client is honest:

(a) S receives from the adversary the corrupt parties’ shares of [r]Cclnt
t .

(b) If any of the shares it receives are not equal to rk received above, S sends abort to

Finput.

(c) Otherwise, S sends random s2t+2, . . . , sn to the adversary and on behalf of the corrupt

parties, computes their shares (s2t+2 − r 2t+2, . . . , sn − rn) and forwards them to Finput.

Now we argue that the real world and ideal world are distributed identically to the adversary.

It is clear that S emulates Frand-hm exactly. If the input client is corrupt, then in both the real

world and ideal world, the adversary �rst receives from the honest clients their shares of [r]Cclnt
t

(in the latter case, via the simulator S). Then, based on the adversary’s sharing [x + r]Cclnt
2t , the

109

honest clients in both worlds output [x + r]Cclnt
2t − [r]

Cclnt
t . Therefore, the two worlds are distributed

identically in this case.

If the client is honest, then in the real world, the client �rst checks if the shares of [r]Cclnt
t

it receives are t-consistent. In the ideal world, since the only corrupt party shares that are t-

consistent with the honest parties’ shares are those that S received from the adversary originally,

S properly aborts if it does not receive these shares from the adversary. Then, in the real world,

the corrupt parties receive from the honest client their shares of fresh sharing [x + r]Cclnt
2t . Since

this is a fresh sharing, by the properties of Shamir secret sharing, the corrupt parties’ shares are

uniformly random, which is what S sends to the adversary in the ideal world. Finally, based on

the sharing [x + r]Cclnt
2t , the honest clients in the real world output [x + r]Cclnt

2t − [r]
Cclnt
t . Note that

the adversary only has t shares of [x + r]Cclnt
2t , and thus, there are at least t random degrees of

freedom left in it. Therefore, since S computes the corrupt parties’ shares of [x + r]Cclnt
2t − [r]

Cclnt
t

exactly as in the real world, as (s2t+2 − r 2t+2, . . . , sn − rn), then Finput computes [x]Cclnt
2t based on

these t shares, the value x , and t other randomly sampled shares; the shares of [x]Cclnt
2t output by

honest clients in the ideal world are distributed identically to those of the real world.

Therefore, the real and ideal worlds are distributed identically. �

Finally, functionality Foutput models how the clients get output, and its instantiation, Protocol

Πoutput, is given right after. The protocol is quite simple: the parties from the committee holding

shares of the output send their shares to the receiving client, who performs error detection to

reconstruct the correct output (or abort).

Figure 3.28: Functionality Foutput

1. Let [z]C`2t be the sharing associated with the output gate which belongs to the client, held by

the �nal committee C` .

2. Foutput �rst receives the shares of [z]C`2t from the honest partiesHC` and uses them to recon-

struct all of [z]C`2t .

110

3. Depending on whether the client is honest or not, there are two cases:

(a) If the client is corrupted, Foutput sends the whole sharing [z]C`2t to the adversary. If the

adversary replies (abort,A) for A ⊆ HCclnts , Foutput sends abort to all honest clients A of

Cclnt.

(b) If the client is honest, Foutput sends just the corrupt parties’ shares of [z]C`2t to the

adversary. Then, Foutput asks the adversary whether it should continue. If the adversary

replies abort, Foutput sends abort to all honest parties. Otherwise, Foutput sends z to the

client.

Figure 3.29: Protocol Πoutput

Usage: The last committee C` reconstructs to a client the sharing [z]C`2t of their output z.

1. The last committee C` simply opens output [z]C`2t to the client, Pj of Cclnt.

2. The client Pj then checks if [z]C`2t is a correct degree-2t sharing. If so, it outputs z; otherwise,

it sends abort to all other clients in Cclnt.

Lemma 3.21. Πoutput UC-realizes Foutput.

Proof. First, we de�ne the simulator S:

1. If the client is corrupted:

(a) S receives from Foutput the whole sharing [z]C`2t and forwards to the adversary the

honest parties’ shares.

(b) Finally, if S receives on behalf of the honest clients A ⊆ HCclnts , abort, from the

adversary, S sends (abort,A) to Foutput.

2. If the client is honest:

111

(a) S �rst receives from Foutput the corrupt parties’ shares {zj}j∈TC` of [z]C`2t .

(b) Then, S receives on behalf of the honest client {z′j}j∈TC` from the adversary.

(c) If any z′j , zj , then S sends abort to the corrupt clients of TCclnts and then also to Foutput.

Now we show that the real and ideal world are identically distributed to the adversary. If the

client is corrupted, it is clear that in both worlds, the adversary receives the honest parties’ shares

of [z]C`2t . Thus, the two worlds are identically distributed in this case.

If the client is honest, in the real world they receive all of the committee C` parties’ shares

of [z]C`2t and if the shares are not 2t-consistent, then the client sends abort to all other clients;

otherwise, they output z. In the ideal world S receives from Foutput the shares of the corrupt

parties of C` that are (the only shares that are) 2t-consistent with the honest parties. Therefore,

since S aborts if and only if any shares it receives from the adversary are di�erent from those

received from Foutput, the simulation is perfect in this case. �

3.5.2.2 Robust Linear-Overhead Resharing

A central building block needed for Fluid MPC protocols consists of transferring secret-shared

values from one committee to the next. This is needed at least to transfer the “state” of the

computation itself, but in our case, as in [Bienstock et al. 2023a], it is also used to transfer other

information such as multiplication triples, in order to get e�cient multiplication. In this section

we present e�cient resharing protocols for the case of perfect security with abort. In more detail,

consider a committee Ci that holds sharings [x]Ci2t . Ideally, we would design a protocol such that

committee Ci+1 receives sharings [x]Ci+1
2t . Unfortunately, one can easily hint why such primitive

is hard to instantiate with linear communication: there have to be at least t honest parties in

Ci+1 who derive their shares from more than t messages from Ci , since otherwise, the adversary

corrupting t partiesin Ci could learn these t receivers’ messages and hence their shares. Instead,

we design a protocol with linear communication that lets committee Ci+2 obtain shares [x]Ci2t ,

112

instead of Ci+1. This is su�cient for our main protocol.

Our protocol operates in batches, resharing a group of t + 1 = Ω(n2) sharings with commu-

nication O(n2), which is linear amortized. The description of our protocol is divided into two

steps. First, the parties in Ci reshare the t + 1 secrets into an intermediate packed version of them

towards committee Ci+1. This is described in Section 3.5.2.2 below. Next, parties in Ci+1 somehow

“unpack” these sharings so that the parties in Ci+2 obtain standard Shamir sharings of the original

batch. This second part appears in Section 3.5.2.2.

Robust Resharing from Standard to Packed Consider t + 1 sharings ([x1]
Ci
2t , . . . , [xt+1]

Ci
2t)

held by a committee Ci . We �rst present a protocol in which the parties in Ci+1 can obtain packed

secret-sharings [x]Ci+1
2t , where x = (x1, . . . , xt+1). The formal functionality is described below

as Frobust-packed-reshare. Notice that there are some technicalities involved in the de�nition of the

functionality. First, corrupt parties in Ci can cheat in this protocol and cause the parties in Ci+1 to

obtain incorrect sharings [x + e]Ci+1
2t , where e is some error vector chosen by the adversary. Our

protocol guarantees that such error will be catched by the parties in Ci+3, so the functionality

models this fact by sending abort to the parties in this committee. In addition, the adversary may

cause some of the parties in Ci+3 to abort (selectively), and the functionality also accounts for this.

Figure 3.30: Functionality Frobust-packed-reshare

1. Let ([x1]
Ci
2t , . . . , [xt+1]

Ci
2t) be sharings held by the parties of Ci , corresponding to the vector of

values x = (x1, . . . , xt+1).

2. Frobust-packed-reshare �rst receives from the honest parties of Ci their shares of

([x1]
Ci
2t , . . . , [xt+1]

Ci
2t) (at least 2t + 1 for each of them).

3. Frobust-packed-reshare then reconstructs all of ([x1]
Ci
2t , . . . , [xt+1]

Ci
2t) and sends the shares of cor-

rupted parties to the adversary.

4. Frobust-packed-reshare then receives from the adversary a set of shares {xk }k ∈TCi+1
, and error

113

vector e.

5. Next, Frobust-packed-reshare computes the sharing [x + e]Ci+1
2t based on the t shares xk from the

adversary and the vector x + e, then sends to the honest parties their shares.

6. Finally, if e , (0, . . . , 0), Frobust-packed-reshare sends abort to the honest parties of Ci+3. Other-

wise, Frobust-packed-reshare asks the adversary whether to continue, and if the adversary replies

(abort,A) for A ⊆ HCi+3 , then Frobust-packed-reshare sends abort to the honest parties A of Ci+3.

Our protocol is conceptually simple: the parties in Ci each collect their shares of the batch of

secrets, and distributes packed sharings of these. The receiving parties in Ci+1 can then take an

appropriate linear combination of these sharings (using Lagrange coe�cients) to derive packed

sharings of the underlying vector of secrets. To prevent a corrupt party from sending shares of

an incorrect vector, we use the parity-check matrix de�ned in Section 3.1.3: we let H denote the

(t+1)×n matrix such that H ·(x1, . . . , xn)ᵀ = (0, . . . , 0)ᵀ if and only if (x1, . . . , xn) are 2t-consistent.

Via H, checking if a group of values is 2t-consistent reduces to applying a linear combination on

these and checking that the result is zero. The parties in Ci+1 can apply such combination to their

received packed sharings, which can be checked by the parties in a future committee. Instead

of reconstructing this linear combination to the parties in Ci+2, which would be too expensive,

the parties perform the linear reconstruction from [Damgård and Nielsen 2007] that reconstructs

these sharings to the parties in committee Ci+3, who check that the results are zero.

Our protocol is presented formally as Protocol Πrobust-packed-reshare below. We note here that

Πrobust-packed-reshare can successfully be used on input sharings ([x1]
Ci
t , . . . , [xt+1]

Ci
t) of degree-t

instead of degree-2t . Indeed, the only property that is required of the original sharings [xα]Cit for

α ∈ [t + 1] is that their shares lie on a polynomial of degree at most 2t, which is of course true. We

will use this fact in our main Fluid MPC protocol.

114

Figure 3.31: Protocol Πrobust-packed-reshare

Usage: Committee Ci holds standard sharings ([x1]
Ci
2t , . . . , [xt+1]

Ci
2t) corresponding to the vector

of values x = (x1, . . . , xt+1) and committee Ci+1 outputs a single packed sharing [x]Ci+1
2t , using

committees Ci+2 and Ci+3 to ensure its correctness.

1. Every party Pj in committee Ci distributes degree-2t packed sharings
[
xj
[1,t+1]

] Ci+1

2t
to com-

mittee Ci+1 of its shares xj
[1,t+1] = (x

j
1, . . . , x

j
t+1) of the sharings ([x1]

Ci
2t , . . . , [xt+1]

Ci
2t) of the

values in x.

2. While the Veri�cation phase (below) executes, the parties of committee Ci+1 compute and

output fresh packed shares [x]Ci+1
2t =

∑2t+1
j=1 Lj (0) ·

[
xj
[1,t+1]

] Ci+1

2t
, where Lj (0) are Lagrange

interpolation coe�cients.

Veri�cation Phase:

1. The parties Pk of committee Ci+1 apply the parity check matrix H to get

([y1]
Ci+1
2t , . . . , [yn−2t−1]

Ci+1
2t)

ᵀ ← H · (
[
x1
[1,t+1]

] Ci+1

2t
, . . . ,

[
xn
[1,t+1]

] Ci+1

2t
)ᵀ .

2. Next, they apply super-invertible matrix M to get ([z1]
Ci+1
2t , . . . , [zn]

Ci+1
2t)

ᵀ ← M ·

([y1]
Ci+1
2t , . . . , [yn−2t−1]

Ci+1
2t)

ᵀ , and open [zl]Ci+1
2t to party Pl of committee Ci+2.

3. Finally, each party Pl of committee Ci+2 checks that the shares of [zl]Ci+1
2t are 2t-consistent

and that they correspond to zl = 0` .

4. If either of the checks fail, they send abort to the parties of committee Ci+3.

The communication complexity of Πrobust-packed-reshare is n · n = O(n2) sharings in step 1, plus

n · n = O(n2) sharings from second step in the veri�cation, for a total of O(n2/(t + 1)) = O(n) per

value being reshared.

Lemma 3.22. Πrobust-packed-reshare UC-realizes Frobust-packed-reshare.

Proof. First, we de�ne the simulator S:

115

1. S �rst receives from Frobust-packed-reshare the shares of ([x1]
Ci
2t , . . . , [xt+1]

Ci
2t) of the corrupted

parties: (x j1, . . . , x
j
t+1)j∈TCi

2. For each j′ ∈ HCi and k′ ∈ TCi+1 , S samples random xj ′k ′ and sends it to the adversary, to

emulate Pk ′’s share of Pj ′’s packed sharing
[
xj ′

[1,t+1]

]Ci+1

2t
in Step 1 of Πrobust-packed-reshare.

3. S then receives from the adversary for each j ∈ TCi and k ∈ HCi+1 , value xjk , corresponding

to Pk ’s share of Pj ’s packed sharing
[
x̂j
[1,t+1]

]Ci+1

2t
. For each j, S uses the 2t + 1 values xjk

to compute the sharing
[
x̂j
[1,t+1]

]Ci+1

2t
= (xj1, . . . , xjn), and the underlying block of secrets

x̂j
[1,t+1] = (x̂

j
1, . . . , x̂

j
t+1).

4. Next, S computes for each j ∈ TCi , their error vector

ej = (ej,1, . . . , ej,t+1) ← (x̂
j
1 − x

j
1, . . . , x̂

j
t+1 − x

j
t+1),

and then the overall error vector

e =
∑

j∈TCi∩[2t+1]
Lj(0) · ej .

5. S then computes for k′ ∈ TCi+1 , xk
′

=
∑2t+1

j=1 Lj(0) · xjk ′ and sends these values, along with e

to Frobust-packed-reshare.

6. Next, S computes for each α ∈ [t + 2], the matrix-vector product

(y1,α , . . . ,yn−2t−1,α)
ᵀ ← H · (e1,α , . . . , en,α)

ᵀ,

where ej,α = 0 for all j ∈ HCi ,α ∈ [t + 1], and de�nes the vector yµ = (yµ,1, . . . ,yµ,t+1) for

µ ∈ [n − 2t − 1].

116

7. S also computes for each k′ ∈ TCi+1 :

(yk
′

1 , . . . ,y
k ′

n−2t−1)
ᵀ ← H · (x1k ′, . . . , xnk ′)

ᵀ .

8. For each µ ∈ [n − 2t − 1], using the blocks yµ and the shares yk ′µ of k′ ∈ TCi+1 (i.e., 2t + 1 total

degrees of freedom), S computes the sharing
[
yµ

]Ci+1
2t .

9. Next, S computes ([z1]
Ci+1
2t , . . . , [zn]

Ci+1
2t) ← M · ([y1]

Ci+1
2t , . . . , [yn−2t−1]

Ci+1
2t), and sends the

honest parties’ shares of [zl]Ci+1
2t to each corrupted party Pl of committee Ci+2.

10. For each honest party Pl of committee Ci+2, S receives from the adversary: committee

Ci+1 corrupted parties’ shares of [zl]Ci+1
2t . If these shares do not match what S had already

computed, or the underlying computed value zl , (0, . . . , 0), S sends abort on behalf of Pl

to all corrupted parties of committee Ci+3.

11. Finally, if S sent any abort in the above step it sets A = HCi+3 ; otherwise, it sets A to

be those honest parties that receive abort from any corrupt party abort. Then, when

Frobust-packed-reshare asks S whether to continue, it replies with abort.

Now we show that the real world and ideal world are identically distributed to the adversary.

In Step 1 of Πrobust-packed-reshare, the adversary receives the t committee Ci+1 corrupted parties’

shares of the committee Ci honest parties’ packed sharings
[
xj
[1,t+1]

]Ci+1

2t
. Since these are degree-2t

packed sharings that share t + 1 underlying values, there are t remaining degrees of freedom in

de�ning the underlying polynomial, and thus the shares that the adversary sees are uniformly

random. Indeed, Step 2 of S is to send uniformly random shares to the adversary, corresponding

to the packed sharings, and thus the view of the adversary is identical in the real and ideal worlds

for this step.

In Step 2 of Πrobust-packed-reshare, the honest parties output their shares [x]Ci+1
2t =

∑2t+1
j=1 Lj(0) ·[

xj
[1,t+1]

]Ci+1

2t
based on their own as well as possibly some corrupted sharings

[
xj
[1,t+1]

]Ci+1

2t
. The

117

honest parties’ shares uniquely de�ne a degree-2t polynomial, where for α ∈ [t+1] the polynomial

evaluated on −α gives

∑
k∈HCi+1

Lk(−α)
2t+1∑
j=1

Lj(0) · xjk =
2t+1∑
j=1

Lj(0)
∑

k∈HCi+1

Lk(−α)xjk =
2t+1∑
j=1

Lj(0)x̂ jα

=
∑

j∈HCi+1∩[2t+1]
Lj(0)x jα +

∑
j∈TCi+1∩[2t+1]

Lj(0) · (x jα + ej,α) = xα +
∑

j∈TCi+1∩[2t+1]
Lj(0) · ej,α ,

where ej,α is some error injected by the adversary for corrupt party Pj . Similarly, for k′ ∈ TCi+1 ,

the polynomial evaluated on k′, i.e., Pk ′’s share, gives

2t+1∑
j=1

Lj(0)
∑

k∈HCi+1

Lk(k
′)xjk =

2t+1∑
j=1

Lj(0)xjk ′,

where xjk ′ is the corrupted party Pk ′’s share of
[
xj
[1,t+1]

]Ci+1

2t
. In the ideal world, S in Step 3

for j ∈ TCi reconstructs the entire packed sharings
[
xj
[1,t+1]

]Ci+1

2t
. This allows S to reconstruct

the corresponding corrupted party Pk ′’s shares of each of these packed sharings, xjk ′, as well

as the underlying (x̂ j1, . . . , x̂
j
t+1), which are supposed to be Pj ’s shares of the original (t + 1)

standard sharings. The former allows it to, along with the corrupted party’s shares of honest

party’s sharings
[
xj
[1,t+1]

]Ci+1

2t
, compute the corrupted parties’ shares of [x]Ci+1

2t , which correspond

to exactly those in the real world, as computed above. The latter allows it to compute the

error ej of these shares, as compared to those received from Frobust-packed-reshare in Step 1, and

from this, the overall error e, which is exactly the error in the real world, as computed above.

Finally, S, gives to Frobust-packed-reshare, the corrupted party’s shares of [x]Ci+1
2t , and the error e, from

which Frobust-packed-reshare further computes the perturbed underlying vector x + e. This gives

Frobust-packed-reshare 2t + 1 points on a degree-2t polynomial, which are exactly the same in the

real world, and based on this Frobust-packed-reshare reconstructs [x]Ci+1
2t and gives honest parties their

shares. Thus, the shares output by the honest parties in the real and ideal world are distributed

118

identically.

In Step 2 of the Veri�cation Phase of Πrobust-packed-reshare, the adversary receives on behalf of

corrupt party Pl of committee Ci+2, the honest parties’ shares of [zl]Ci+1
2t . These shares come from

them computing

M · H ·
([

x̂1
[1,t+1]

]Ci+1

2t
, . . . ,

[
x̂n
[1,t+1]

]Ci+1

2t

)ᵀ
=

M · H ·
(([

x1
[1,t+1]

]Ci+1

2t
, . . . ,

[
xn
[1,t+1]

]Ci+1

2t

)ᵀ
+

(
[e1]

Ci+1
2t , . . . , [en]

Ci+1
2t

)ᵀ)
, 11

where
[
ej

]Ci+1
2t = 0 for j ∈ HCi ,

= ([0]Ci+1
2t , . . . , [0]

Ci+1
2t)

ᵀ +M · H ·
(
[e1]

Ci+1
2t , . . . , [en]

Ci+1
2t

)ᵀ
,

where the identity of the �rst term is due to the fact that the underlying shares x1
α , . . . , x

n
α that are

packed into the α-th slot of the respective packed sharings
[
xj
[1,t+1]

]Ci+1

2t
, for α ∈ [t + 1] indeed

correspond to valid points of a polynomial of degree ≤ 2t , and therefore applying H to them

results in zeroes in the α-th slot of each element of the output vector.

In the ideal world, S computes H · (e1, . . . , en)ᵀ, where ej = 0 for j ∈ HCi , and the corrupted

parties’ shares of ([y1]
Ci+1
2t , . . . , [yn−2t−1]

Ci+1
2t)

ᵀ ← H ·
([

x̂1
[1,t+1]

]Ci+1

2t
, . . . ,

[
x̂n
[1,t+1]

]Ci+1

2t

)ᵀ
. This gives

S: 2t + 1 evaluations of the polynomials underlying ([y1]
Ci+1
2t , . . . , [yn−2t−1]

Ci+1
2t); from which it can

reconstruct the whole sharings. It can then compute

([z1]
Ci+1
2t , . . . , [zn]

Ci+1
2t)

ᵀ ← M · ([y1]
Ci+1
2t , . . . , [yn−2t−1]

Ci+1
2t)

ᵀ,

from which it can send the corrupted parties Pl all of the honest parties’ shares of [zl]Ci+1
2t . Thus,

the real world and ideal world are identically distributed at this step.

11Such decomposition of the maliciously shared
[
x̂j
[1,t+1]

] Ci+1

2t
is always possible since we can de�ne some canonical

packed sharing
[
xj
[1,t+1]

] Ci+1

2t
:= (x j1, . . . , x jn), and

[
ej

] Ci+1
2t as the rest.

119

In step 2 of the Veri�cation Phase of Πrobust-packed-reshare, if the corrupted parties’ shares of

[zl]
Ci+1
2t are not consistent with those of the honest parties, then we know from the error-detection

properties of packed sharings that honest party Pl will send abort to the parties of committee Ci+3,

and similarly if zl , 0t+1. In the ideal world, S in Step 10, �rst checks if the corrupted parties’

shares of [zl]Ci+1
2t , for honest party Pl of Ci+2, match that which it had already computed (i.e., are

consistent with those of honest parties), and then also if zl = (0, . . . , 0). If either of these checks

fail, S sends abort on behalf of Pl to all corrupted parties of committee Ci+3. Thus, the real world

and ideal world are identically distributed at this step.

Finally, we need to show that if e , 0t+1, then the honest parties abort in the real world (as

they are forced to in the ideal world). We do so by showing the contrapositive: i.e., if the honest

parties in the real world do not abort, then e = 0. If the honest parties do not abort, then it must

be that for each of the 2t + 1 honest parties Pl in committee Ci+2, [zl]Ci+1
2t are 2t-consistent and

correspond to zl = 0t+1. By the error-correction properties of super-invertible matrix M, this

must also mean that y1 = · · · = yn−2t−1 = 0t+1 (because any n − 2t − 1 ≤ 2t + 1 of the honest

codeword symbols can be multiplied by the inverse of the corresponding submatrix of M to get

back the original message, which therefore must be all zeroes). As written above, we have that

([y1]
Ci+1
2t , . . . , [yn−2t−1]

Ci+1
2t)

ᵀ =

H ·
(([

x1
[1,t+1]

]Ci+1

2t
, . . . ,

[
xn
[1,t+1]

]Ci+1

2t

)ᵀ
+

(
[e1]

Ci+1
2t , . . . , [en]

Ci+1
2t

)ᵀ)
,

where
[
ej

]Ci+1
2t = 0 for j ∈ HCi ,

= ([0]Ci+1
2t , . . . , [0]

Ci+1
2t)

ᵀ + H ·
(
[e1]

Ci+1
2t , . . . , [en]

Ci+1
2t

)ᵀ
.

Assume w.l.o.g., now that the �rst 2t + 1 parties are honest, so that the above is equal to:

= ([0]Ci+1
2t , . . . , [0]

Ci+1
2t)

ᵀ + H ·
(
0, . . . , 0, [e2t+2]

Ci+1
2t , . . . , [en]

Ci+1
2t

)ᵀ
.

120

Let us denote the matrix of shares of the sharings ([y1]
Ci+1
2t , . . . , [yn−2t−1]

Ci+1
2t) as Y (each column is

the set of shares held by each party). Then,

Y =

©«
y1

1 · · · yn1
...

. . .
...

y1
n−2t−1 · · · ynn−2t−1

ª®®®®®¬
=

©«
01

1 · · · 0n1
...

. . .
...

01
n−2t−1 · · · 0nn−2t−1

ª®®®®®¬
+ H ·

©«

0 · · · 0
...
. . .

...

0 · · · 0

e1
2t+2 · · · en2t+2
...
. . .

...

e1
n · · · enn

ª®®®®®®®®®®®®®®®¬

.

Testing if a vector x ∈ F2t+1 corresponds to a degree-2t packed sharing of 0 ∈ Ft+1 can be done by

interpolating a polynomial f of degree ≤ 2t from the 2t + 1 entries, and checking that f (−α) = 0

for each α ∈ [t + 1]. This can be directly expressed as a matrix product 0 = G · x, where G is a

(n− 2t) × (2t + 1)matrix (since n− 2t = t + 1). Since each yj is equal to 0 ∈ Ft+1, the honest entries

121

of each row of Y , multiplied by Gᵀ, gives zero, or in other words:

0 =

©«
y1

1 · · · yn1
...

. . .
...

y1
n−2t−1 · · · ynn−2t−1

ª®®®®®¬
·
©«
Gᵀ

0

ª®®¬ =
0︷ ︸︸ ︷©«

01
1 · · · 0n1
...

. . .
...

01
n−2t−1 · · · 0nn−2t−1

ª®®®®®¬
·
©«
Gᵀ

0

ª®®¬

+ G ·

©«

0 · · · 0
...
. . .

...

0 · · · 0

e1
2t+2 · · · en2t+2
...
. . .

...

e1
n · · · enn

ª®®®®®®®®®®®®®®®¬

·
©«
Gᵀ

0

ª®®¬

Denoting

E =

©«
e1

2t+2 · · · e2t+1
2t+2

...
. . .

...

e1
n · · · e2t+1

n

ª®®®®®¬
,

which is the t × (2t + 1) matrix whose rows correspond to the honest parties’ shares of the errors,

the equation above can be rewritten as

0 = G ·
©«

0

E · Gᵀ

ª®®¬ ,

but this is not possible unless E ·Gᵀ = 0, otherwise,
©«

0

E · Gᵀ

ª®®¬ would contain one non-zero column

of weight at most t that maps to zero under H, or in other words, this column is consistent with

122

a polynomial of degree at most 2t . This is not possible since this vector has at least 2t + 1 zero

entries. As a result, we see that E ·Gᵀ = 0, so the shares
[
ej

]Ci+1
2t (of the honest parties) indeed are

shares [0]Ci+1
2t , as desired. �

Robust Resharing from Packed to Standard Now we turn our attention to the second part

of our 2-hop resharing protocol in which the parties in Ci+1 can “unpack” the sharings they have

received from Ci . In order to make this section independent of the previous one, however, we

relabel the committees and assume that the committee that starts with the packed sharings is Ci ,

instead of Ci+1. In this case, the context is the following: Ci holds packed sharings [x]Ci2t , and the

goal is for committee Ci+1 to obtain unpacked Shamir sharings ([x1]
Ci+1
2t , . . . , [xt+1]

Ci+1
2t). We model

this with Functionality Frobust-standard-reshare below. As before, the main complication in modeling

this approach is that the adversary can introduce errors in the sharings distributed, which will be

caught by a future committee Ci+3.

Figure 3.32: Functionality Frobust-standard-reshare

1. Let [x]Ci2t be the packing held by the parties of Ci , corresponding to the vector of values

x = (x1, . . . , xt+1).

2. Frobust-standard-reshare �rst receives from the honest parties of Ci their shares of [x]Ci2t (at least

2t + 1 of them).

3. Frobust-standard-reshare then reconstructs all of [x]Ci2t and sends the shares of corrupted parties to

the adversary.

4. Frobust-standard-reshare then receives from the adversary a set of shares {(xk1 , . . . , x
k
t+1)}k ∈TCi+1

,

and errors (e1, . . . , et+1).

5. Next, Frobust-standard-reshare computes the sharings ([x1 + e1]
Ci+1
2t , . . . , [xt+1 + et+1]

Ci+1
2t) based

on the t shares xkα from the adversary, the value xα +eα , and t other randomly sampled shares,

for each α ∈ [t + 1], then sends to the honest parties their shares.

123

6. Finally, if any eα , 0, Frobust-standard-reshare sends abort to the honest parties of Ci+3. Otherwise,

Frobust-standard-reshare asks the adversary whether to continue, and if the adversary replies

(abort,A) for A ⊆ HCi+3 , then Frobust-standard-reshare sends abort to the honest parties A of Ci+3.

Our protocol to instantiate Frobust-standard-reshare, Protocol Πrobust-standard-reshare, proceeds as

follows. First, each party in Ci , the committee holding the packed sharings, secret-shares using

standard Shamir secret-sharing their own share. At this point, the parties in Ci+1 can take multiple

linear combinations using Lagrange coe�cients on these Shamir shares to compute shares of each

one of the secrets in the original vector. As with Πrobust-packed-reshare, corrupt parties may attempt

to change their shares when resharing. This once again is catched by employing the matrix H

from Section 3.5.2.2, and the committee Ci+3 learns whether the distributed values are consistent

or not. The protocol is described in detail below.

Figure 3.33: Protocol Πrobust-standard-reshare

Usage: Committee Ci holds a packed sharing [x]Ci2t and committee Ci+1 outputs standard sharings

([x1]
Ci+1
2t , . . . , [xt+1]

Ci+1
2t) corresponding to the vector of values x = (x1, . . . , xt+1), using committees

Ci+2 and Ci+3 to ensure its correctness.

1. Every party Pj in committee Ci distributes degree-2t standard sharings
[
xj

] Ci+1
2t to committee

Ci+1 of its share xj of the packed sharing [x]Ci2t .

2. While the Veri�cation phase (below) executes, the parties of committee Ci+1 compute and

output fresh shares for every α ∈ [t + 1]: [xα]Ci+1
2t =

∑2t+1
j=1 Lj (−α) ·

[
xj

] Ci+1
2t , where Lj (−α) are

Lagrange interpolation coe�cients.

Veri�cation Phase:

1. The parties Pk of committee Ci+1 apply the parity check matrix H to get

([y1]
Ci+1
2t , . . . , [yn−2t−1]

Ci+1
2t)

ᵀ ← H · (
[
x1] Ci+1

2t , . . . , [x
n]
Ci+1
2t)

ᵀ .

124

2. Next, they apply super-invertible matrix M to get ([z1]
Ci+1
2t , . . . , [zn]

Ci+1
2t)

ᵀ ← M ·

([y1]
Ci+1
2t , . . . , [yn−2t−1]

Ci+1
2t)

ᵀ , and open [zl]Ci+1
2t to party Pl of committee Ci+2.

3. Finally, each party Pl of committee Ci+2 checks that the shares of [zl]Ci+1
2t are 2t-consistent

and that they correspond to zl = 0.

4. If either of the checks fail, they send abort to the parties of committee Ci+3.

As with Πrobust-packed-reshare, the communication complexity of Πrobust-standard-reshare is n · n =

O(n2) sharings in step 1, plus n · n = O(n2) sharings from second step in the veri�cation, for a

total of O(n2/(t + 1)) = O(n) per value being reshared. Security is given in the following lemma.

Lemma 3.23. Πrobust-standard-reshare UC-realizes Frobust-standard-reshare.

Proof. First, we de�ne the simulator S:

1. S �rst receives from Frobust-standard-reshare the shares of the corrupted parties of [x]Ci2t : (xj)j∈TCi

2. For each j′ ∈ HCi and k′ ∈ TCi+1 , S samples random xj ′k ′ and sends it to the adversary.

3. S then receives from the adversary for each j ∈ TCi and k ∈ HCi+1 , value xjk . For each j, S

uses the 2t +1 values xjk to compute the sharing
[
x̂j

]Ci+1

2t
= (xj1, . . . , xjn), and the underlying

secret x̂j (which is a share of a packed sharing).

4. Next, S computes for each j ∈ TCi , their error

ej ← x̂j − xj,

and then for α ∈ [t + 1], the overall errors

eα ←
∑

j∈TCi∩[2t+1]
Lj(−α) · ej .

125

5. S then computes for α ∈ [2t + 1],k′ ∈ TCi+1 , xk
′

α =
∑2t+1

j=1 Lj(−α) · xjk ′ and sends these values

along with e1, . . . , et+1 to Frobust-standard-reshare.

6. Next, S computes the matrix-vector product

(y1, . . . ,yn−2t−1)
ᵀ ← H · (e1, . . . , en)

ᵀ,

where ej = 0 for j ∈ HCi

7. S also computes for each k′ ∈ TCi+1 :

(yk
′

1 , . . . ,y
k ′

n−2t−1)
ᵀ ← H · (x1k ′, . . . , xnk ′)

ᵀ .

8. Additionally, S for the �rst t parties k ∈ HCi+1 samples random (yk1 , . . . ,y
k
n−2t−1).

9. For each µ ∈ [n − 2t − 1], using yµ and the shares yk ′µ of k′ ∈ TCi+1 and ykµ of the �rst t parties

k ∈ HCi+1 (i.e., 2t + 1 total degrees of freedom), S computes the sharing
[
yµ

]Ci+1
2t .

10. Next, S computes ([z1]
Ci+1
2t , . . . , [zn]

Ci+1
2t) ← M · ([y1]

Ci+1
2t , . . . , [yn−2t−1]

Ci+1
2t), and sends the

honest parties’ shares of [zl]Ci+1
2t to each corrupted party Pl of committee Ci+2.

11. For each honest party Pl of committee Ci+2, S receives from the adversary: committee

Ci+1 corrupted parties’ shares of [zl]Ci+1
2t . If these shares do not match what S had already

computed, or the underlying computed value zl , 0, S sends abort on behalf of Pl to all

corrupted parties of committee Ci+3.

12. Finally, if S sent any abort in the above step, it sets A← HCi+3 ; otherwise, it sets A to be

those honest parties that receive from any corrupt party abort. Then, when S is asked by

Frobust-standard-reshare whether to continue, it replies with (abort,A).

126

Now we show that the real world and ideal world are identically distributed to the adversary.

In Step 1 of Πrobust-standard-reshare, the adversary receives the t committee Ci+1 corrupted parties’

shares of the committee Ci honest parties’ sharings
[
xj

]Ci+1
2t . Since these are degree-2t standard

Shamir sharings, there are 2t remaining (random) degrees of freedom in de�ning the underlying

polynomial, and thus the t shares that the adversary sees are uniformly random, while leaving t

remaining (random) degrees of freedom for each sharing, or t · (2t + 1) in total. Indeed, Step 2 of

S is to send uniformly random shares to the adversary, corresponding to the sharings, and thus

the view of the adversary is identical in the real and ideal worlds for this step.

In Step 2 of Πrobust-standard-reshare, the honest parties output for α ∈ [t +1] their shares [xα]Ci+1
2t =∑2t+1

j=1 Lj(−α) ·
[
xj

]Ci+1
2t based on their own as well as possibly some corrupted sharings

[
xj

]Ci+1
2t .

The honest parties’ shares uniquely de�ne a degree-2t polynomial for α ∈ [t + 1], which evaluated

on 0 gives

∑
k∈HCi+1

Lk(0)
2t+1∑
j=1

Lj(−α) · xjk =
2t+1∑
j=1

Lj(−α)
∑

k∈HCi+1

Lk(0)xjk =
2t+1∑
j=1

Lj(−α)x̂j

=
∑

j∈HCi+1∩[2t+1]
Lj(−α) · xj +

∑
j∈TCi+1∩[2t+1]

Lj(−α) · (xj + ej) = xα +
∑

j∈TCi+1∩[2t+1]
Lj(−α) · ej,

where ej is some error injected by the adversary for corrupt party Pj . Similarly, for k′ ∈ TCi+1 , the

polynomial evaluated on k′, i.e., Pk ′’s share, gives

2t+1∑
j=1

Lj(−α)
∑

k∈HCi+1

Lk(k
′)xjk =

2t+1∑
j=1

Lj(−α)xjk ′,

where xjk ′ is the corrupted party Pk ′’s share of
[
xj

]Ci+1
2t . In the ideal world, S in Step 3 for j ∈ TCi

reconstructs the entire sharings
[
xj

]Ci+1
2t . This allows S to reconstruct the corresponding corrupted

party Pk ′’s shares of each of these sharings, xjk ′ , as well as the underlying x̂j , which is supposed

to be Pj ’s share of the original packed sharing. The former allows it to, along with the corrupted

127

party’s shares of honest party’s sharings
[
xj

]Ci+1
2t , compute the corrupted parties’ shares of [xα]Ci+1

2t ,

for α ∈ [t + 1] which correspond to exactly those in the real world, as computed above. The

latter allows it to compute the error ej of these shares, as compared to those received from

Frobust-standard-reshare in Step 1, and from this, the overall errors e1, . . . , et+1, which is exactly the

error in the real world, as computed above. Finally, S, gives to Frobust-standard-reshare, for α ∈ [t + 1],

the corrupted party’s shares of [xα]Ci+1
2t , and the error eα , from which Frobust-standard-reshare further

computes the perturbed underlying values xα + eα . This gives Frobust-standard-reshare t + 1 points on

degree-2t polynomials, which are distributed the same as in the real world, and based on this and

t other randomly sampled points on each polynomial, Frobust-standard-reshare reconstructs [xα]Ci+1
2t

and gives honest parties their shares. Note that we had 2t2 + t total degrees of freedom above

and this uses up only t · (t + 1) of them. Thus, the shares output by the honest parties in the real

and ideal world are distributed identically. Indeed, for the �rst t + 1 honest parties α ∈ HCi , we

can use the t remaining random shares of [xα]Ci+1
2t , xα1, . . . , xαt to randomly perturb the shares

of [xα]Ci+1
2t of the �rst t + 1 honest parties ofHCi+1 , as desired. Moreover, we have t2 remaining

(random) degrees of freedom, corresponding to the t remaining random shares of
[
xj

]Ci+1
2t , for the

last t + 1 honest parties j ∈ HCi .

In Step 2 of the Veri�cation Phase of Πrobust-standard-reshare, the adversary receives on behalf

of corrupt party Pl of committee Ci+2, the honest parties’ shares of [zl]Ci+1
2t . These shares come

from them computing

M · H ·
([

x̂1
]Ci+1

2t
, . . . ,

[
x̂n

]Ci+1

2t

)ᵀ
=

M · H ·
(([

x1]Ci+1
2t , . . . , [x

n]
Ci+1
2t

)ᵀ
+

(
[e1]
Ci+1
2t , . . . , [en]

Ci+1
2t

)ᵀ)
, 12

12Such decomposition of the maliciously shared
[
x̂j

] Ci+1

2t
is always possible since we can de�ne some canonical

packed sharing
[
xj

] Ci+1
2t := (x j1, . . . , x jn), and

[
ej

] Ci+1
2t as the rest.

128

where
[
ej
]Ci+1

2t = 0 for j ∈ HCi

= ([0]Ci+1
2t , . . . , [0]

Ci+1
2t)

ᵀ +M · H ·
(
[e1]
Ci+1
2t , . . . , [en]

Ci+1
2t

)ᵀ
,

where the identity of the �rst term is due to the fact that the underlying shares x1, . . . , xn of the

respective sharings
[
xj

]Ci+1
2t indeed correspond to valid points of a polynomial of degree ≤ 2t , and

therefore applying H to them results in zeroes in each element of the output vector.

In the ideal world,S computes H·(e1, . . . , en)
ᵀ and the corrupted parties’ shares of ([y1]

Ci+1
2t , . . . ,

[yn−2t−1]
Ci+1
2t)

ᵀ ← H ·
([

x̂1
]Ci+1

2t
, . . . ,

[
x̂n

]Ci+1

2t

)ᵀ
. This gives S: t + 1 evaluations of the polynomi-

als underlying ([y1]
Ci+1
2t , . . . , [yn−2t−1]

Ci+1
2t); from which, with t more random evaluations, it can

reconstruct the whole sharings. Recall that we had t2 remaining degrees of freedom, and this is

exactly t2 random values, since n − 2t − 1 = t , so this results in an identical distribution as the real

world. Indeed, for the last t + 1 honest parties j ∈ HCi , we can use the t remaining random shares

of
[
xj

]Ci+1
2t , xj1, . . . , xjt to randomly perturb the �rst t shares of

[
yj

]Ci+1
2t , respectively, as desired. It

can then compute

([z1]
Ci+1
2t , . . . , [zn]

Ci+1
2t)

ᵀ ← M · ([y1]
Ci+1
2t , . . . , [yn−2t−1]

Ci+1
2t)

ᵀ,

from which it can send the corrupted parties Pl all of the honest parties’ shares of [zl]Ci+1
2t . Thus,

the real world and ideal world are identically distributed at this step.

In step 2 of the Veri�cation Phase of Πrobust-standard-reshare, if the corrupted parties’ shares of

[zl]
Ci+1
2t are not consistent with those of the honest parties, then we know from the error-detection

properties of packed sharings that honest party Pl will send abort to the parties of committee

Ci+3, and similarly if zl , 0. In the ideal world, S in Step 11, �rst checks if the corrupted parties’

shares of [zl]Ci+1
2t , for honest party Pl of Ci+2, match that which it had already computed (i.e., are

consistent with those of honest parties), and then also if zl = 0. If either of these checks fail, S

sends abort on behalf of Pl to all corrupted parties of committee Ci+3. Thus, the real world and

129

ideal world are identically distributed at this step.

Finally, we need to show that if any eα , 0, then the honest parties abort in the real world (as

they are forced to in the ideal world). We do so by showing the contrapositive: i.e., if the honest

parties in the real world do not abort, then each eα = 0. If the honest parties do not abort, then it

must be that for each of the 2t + 1 honest parties Pl in committee Ci+2, [zl]Ci+1
2t are 2t-consistent

and correspond to zl = 0. By the error-correction properties of super-invertible matrix M , this

must also mean that y1 = · · · = yn−2t−1 = 0 (because any n − 2t − 1 ≤ 2t + 1 of the honest

codeword symbols can be multiplied by the inverse of the corresponding submatrix of M to get

back the original message, which therefore must be all zeroes). As written above, we have that

([y1]
Ci+1
2t , . . . , [yn−2t−1]

Ci+1
2t)

ᵀ =

H ·
(([

x1]Ci+1
2t , . . . , [x

n]
Ci+1
2t

)ᵀ
+

(
[e1]
Ci+1
2t , . . . , [en]

Ci+1
2t

)ᵀ)
,

where
[
ej
]Ci+1

2t = 0 for j ∈ HCi

= ([0]Ci+1
2t , . . . , [0]

Ci+1
2t)

ᵀ + H ·
(
[e1]
Ci+1
2t , . . . , [en]

Ci+1
2t

)ᵀ
.

Assume w.l.o.g., now that the �rst 2t + 1 parties are honest, so that the above is equal to:

= ([0]Ci+1
2t , . . . , [0]

Ci+1
2t)

ᵀ + H ·
(
0, . . . , 0, [e2t+2]

Ci+1
2t , . . . , [en]

Ci+1
2t

)ᵀ
.

Let us denote the matrix of shares of the sharings ([y1]
Ci+1
2t , . . . , [yn−2t−1]

Ci+1
2t) as Y (each column is

130

the set of shares held by each party). Then,

Y =

©«
y1

1 · · · yn1
...

. . .
...

y1
n−2t−1 · · · ynn−2t−1

ª®®®®®¬
=

©«
01

1 · · · 0n1
...

. . .
...

01
n−2t−1 · · · 0nn−2t−1

ª®®®®®¬
+ H ·

©«

0 · · · 0
...
. . .

...

0 · · · 0

e1
2t+2 · · · en2t+2
...
. . .

...

e1
n · · · enn

ª®®®®®®®®®®®®®®®¬

.

Testing if a vector x ∈ F2t+1 corresponds to a degree-2t sharing of 0 can be done by interpolating

a polynomial f of degree ≤ 2t from the 2t + 1 entries, and checking that f (0) = 0. This can be

directly expressed as an inner product 0 = gᵀ · x, where g is a (2t + 1)-dimensional vector. Since

each yj is equal to 0, the honest entries of each row of Y , multiplied by g, gives zero, or in other

words:

0 =

©«
y1

1 · · · yn1
...

. . .
...

y1
n−2t−1 · · · ynn−2t−1

ª®®®®®¬
·
©«
g

0

ª®®¬ =
0︷ ︸︸ ︷©«

01
1 · · · 0n1
...

. . .
...

01
n−2t−1 · · · 0nn−2t−1

ª®®®®®¬
·
©«
g

0

ª®®¬

+ H ·

©«

0 · · · 0
...
. . .

...

0 · · · 0

e1
2t+2 · · · en2t+2
...
. . .

...

e1
n · · · enn

ª®®®®®®®®®®®®®®®¬

·
©«
g

0

ª®®¬

131

Denoting

E =

©«
e1

2t+2 · · · e2t+1
2t+2

...
. . .

...

e1
n · · · e2t+1

n

ª®®®®®¬
,

which is the t × (2t + 1) matrix whose rows correspond to the honest parties’ shares of the errors,

the equation above can be rewritten as

0 = H ·
©«

0

E · g

ª®®¬ ,

but this is not possible unless E · g = 0, otherwise,
©«

0

E · g

ª®®¬ would contain one non-zero column

of weight at most t that maps to zero under H, or in other words, this column is consistent with

a polynomial of degree at most 2t . This is not possible since this vector has at least 2t + 1 zero

entries. As a result, we see that E · g = 0, so the shares
[
ej
]Ci+1

2t (of the honest parties) indeed are

shares [0]Ci+1
2t , as desired. �

3.5.2.3 Two-Thirds Honest Majority Main Protocol

With our core construction for linear communication resharing at hand, given by protocols

Πrobust-packed-reshare and Πrobust-standard-reshare from Section 3.5.2.2, we are ready to present in detail

our end-to-end Fluid MPC protocol with linear communication, for perfect security with abort.

First, in Section 3.5.2.3 we describe how multiplications are handled. Then, in Section 3.5.2.3 we

present our actual Fluid MPC protocol.

Linear-Overhead Multiplication Procedure In our MPC protocol Πmain-2/3-hm from Sec-

tion 3.5.2.3, the parties in a committeeCi+1 will hold two groups of sharings ([x1]
Ci+1
2t , , . . . , [xt+1]

Ci+1
2t)

and ([y1]
Ci+1
2t , . . . , [yt+1]

Ci+1
2t), and the goal will be for the parties inCi+3 to obtain sharings ([x1y1]

Ci+3
2t ,

132

. . . , [xt+1yt+1]
Ci+3
2t). This speci�c step in the protocol is addressed by Procedure πmult, which we

describe below, and is caled from within Protocol Πmain-2/3-hm.

At a high-level, committees Ci+1 through committees Ci+3 will execute beaver multiplica-

tion [Beaver 1992], using multiple kings in Ci+2, as speci�ed by the standard technique of [Damgård

and Nielsen 2007]. To do this, committee Ci �rst invokes Frand-2/3-hm to output random sharings

[aα]
Ci+1
t , [bα]

Ci+1
t , for α ∈ [t + 1] to committee Ci+1. Committee Ci+1 then locally computes for

each α ∈ [t + 1], [cα]Ci+1
2t ← [aα]

Ci+1
t · [bα]

Ci+1
t . Then, committee Ci+1 invokes Frobust-packed-reshare on

these sharings so that committee Ci+2 receives packing [a]Ci+2
2t for vector a = (a1, . . . ,at+1), and the

same for [b]Ci+2
2t , [c]

Ci+2
2t . Finally, committee Ci+3 invokes Frobust-standard-reshare on these packings,

so that committee Ci+3 receives [aα]Ci+3
2t , [bα]

Ci+3
2t , [cα]

Ci+3
2t for α ∈ [t + 1], where (aα ,bα , cα) are the

same triples that committee Ci+1 had.

Note that the triple used by the parties in Ci+1 is ([aα]Ci+1
t , [bα]

Ci+1
t , [aα]

Ci+1
t · [bα]

Ci+1
t), which is

not a truly random triple of degree-2t since (1) the �rst two entries are random of degree-t , not

2t , and (2) the the underlying polynomial in the last entry is not random as it is the product of

two degree-t polynomials. However, this is acceptable in our context since these sharings will be

reshared with Frobust-packed-reshare and Frobust-standard-reshare, which are agnostic to the distribution

of the input sharings, and guarantee the output sharings are freshly random, as required.

Figure 3.34: Procedure πmult

Usage: Multiply [xα]Ci+1
2t and [yα]Ci+1

2t held by committee Ci+1 so that committee Ci+3 outputs

[xαyα]
Ci+1
2t , for α ∈ [t + 1].

1. Committee Ci �rst invokes Frand-2/3-hm to output random sharings [aα]Ci+1
t , [bα]

Ci+1
t , for

α ∈ [t + 1] to committee Ci+1 (using committees Ci+2 and Ci+3 for veri�cation, which aborts

if needed).

2. The parties Pj in Ci+1 next multiply for each α ∈ [t + 1], [cα]Ci+1
2t ← [aα]

Ci+1
t · [bα]

Ci+1
t .

3. Committee Ci+1 then computes [dα]Ci+1
2t ← [xα]

Ci+1
2t + [aα]

Ci+1
t and [eα]Ci+1

2t ← [yα]
Ci+1
2t +

133

[bα]
Ci+1
t for every α ∈ [t + 1].

4. Committee Ci+1 next applies super-invertible matrix M to ([d1]
Ci+1
2t , . . . , [dt+1]

Ci+1
2t) to get

(
[
d ′1

] Ci+1
2t , . . . ,

[
d ′n

] Ci+1
2t), and ([e1]

Ci+1
2t , . . . , [et+1]

Ci+1
2t to get (

[
e ′1

] Ci+1
2t , . . . ,

[
e ′n

] Ci+1
2t) and opens[

d ′k
] Ci+1

2t ,
[
e ′k

] Ci+1
2t to party Pk of committee Ci+2.

5. Simultaneously, the parties Pj in Ci+1 then invoke Frobust-packed-reshare towards committee Ci+2

on input standard sharings ([a1]
Ci+2
t , . . . , [at+1]

Ci+2
t), so that Ci+2 gets the packing [a]Ci+2

2t for

vector a = (a1, . . . ,at+1) (using committees Ci+3 and Ci+4 for veri�cation, which aborts if

needed).

6. They do the same for ([b1]
Ci+2
t , . . . , [bt+1]

Ci+2
t) and ([c1]

Ci+2
2t , . . . , [ct+1]

Ci+2
2t) to get packings

[b]Ci+2
2t and [c]Ci+2

2t for vectors b = (b1, . . . ,bt+1) and c = (c1, . . . , ct+1), respectively.

7. The parties Pk of Ci+2 then reconstruct d ′k , e
′
k (or abort if unsuccessful) and send them to all

parties of committee Ci+3.

8. Simultaneously, they run Frobust-standard-reshare towards committee Ci+3 on input [a]Ci+2
2t so that

Ci+3 gets the standard sharings ([a1]
Ci+3
2t , . . . , [at+1]

Ci+3
2t) (using committees Ci+4 and Ci+5 for

veri�cation, which aborts if needed). They do the same with [b]Ci+2
2t and [c]Ci+2

2t .

9. The parties of Ci+3 run Berlekamp-Welch on (d ′1, . . . ,d
′
n) and (e ′1, . . . , e

′
n) to get {dα }α ∈[t+1]

and {eα }α ∈[t+1], respectively.

10. Finally, committee Ci+3 outputs [xαyα]Ci+3
2t = dα · eα − dα · [bα]

Ci+3
2t − eα · [aα]

Ci+3
2t + [cα]

Ci+3
2t ,

for each α ∈ [t + 1].

The main properties of Procedure πmult that we will use are summarized in Lemmas 3.24 and

3.25 below, whose proof is given below. We will use this Lemma in the proof of Theorem 3.27,

which proves the security of our MPC protocol Πmain-2/3-hm.

Lemma 3.24. Let it be the case that for every α ∈ [t + 1], either the adversary completely knows

134

the sharing [xα]
Ci+1
2t , or the �rst t honest parties’ shares are distributed randomly to the adversary.

If given in addition to the adversary’s known shares: random a∗α for α ∈ [t + 1], and also for those

α ∈ [t + 1] satisfying the latter case, random x1
α , . . . , x

t
α , then values distributed identically to the

adversary to honest parties’ shares of
[
d′
k

]Ci+1
2t received by Pk of Ci+2, for k ∈ TCi+2 , in πmult can be

determined. Moreover, values distributed identically to the adversary to d′
k
sent from honest party Pk

of Ci+2, for k ∈ HCi+2 , in πmult can be determined. The same holds for the corresponding values and

sharings of e′
k
for k ∈ [n].

Proof. Assume w.l.o.g., that the �rst 2t + 1 parties are honest. From the de�nition of Frand-hm,

we can conclude that the shares (a2t+1
1 , . . . ,a2t+1

t+1) = (a
∗
1, . . . ,a

∗
t+1) of the last honest party P2t+1 of

sharings ([a1]
Ci+1
t , . . . , [at+1]

Ci+1
t), respectively, received in Step 1 of πmult are distributed uniformly

at random to the adversary. Now, let us analyze the �rst case that for some xα , α ∈ [t + 1],

sharing [xα]Ci+1
2t is completely known to the adversary. Then, given random a2t+1

α , the t corrupted

parties’ shares of [aα]Ci+1
t , and the error sharing [eα]Ci+1

t ′ ; the �rst 2t + 1 honest parties’ shares

a1
α + e1

α , . . . ,a
2t+1
α + e2t+1

α can be determined. Therefore, given random a2t+1
α , and the shares

x1
α , . . . , x

2t+1
α that the adversary knows, x1

α +a
1
α +e

1
α , . . . , x

2t+1
α +a2t+1

α +e2t+1
α can all be determined.

The other case is that for xα , the adversary only knows the corrupted parties’ shares of sharing

[xα]
Ci+1
2t . This means that x1

α , . . . , x
t
α are distributed randomly to the adversary, in addition to a2t+1

α .

Therefore, all of x1
α + a

1
α , . . . , x

t
α + a

t
α and x2t+1

α + a2t+1
α are distributed randomly to the adversary.

Given these t + 1 random shares and the t corrupted parties’ shares of [xα + aα]Ci+1
t , the remaining

shares xt+1
α + at+1

α , . . . , x
2t
α + a

2t
α can be determined.

Putting the observations of the above two cases together, for all α ∈ [t + 1], given some values

that are uniformly random to the adversary, the shares of [xα + aα]Ci+1
2t of the honest parties can

be determined. Therefore, so too can the honest parties’ shares of

(
[
d′1

]Ci+1
2t , . . . ,

[
d′n

]Ci+1
2t)

ᵀ ← M · ([x1 + a1]
Ci+1
2t , . . . , [xt+1 + at+1]

Ci+1
2t)

ᵀ .

135

It then also trivially follows that the values d′1, . . . ,d
′
n can be determined.

It is clear that the same argument can be applied for the values and sharings of e′1, . . . , e
′
n. �

Lemma 3.25. If no parties of committee Ci+3 receive abort in πmult, then they always correctly

determine the values (x1 + a1, . . . , xt+1 + at+1) and (y1 + b1, . . . ,yt+1 + bt+1).

Proof. This follows directly from the error-detection of reconstructions and linearity of degree-2t

Shamir secret sharings, as well as the the error-correcting properties of super-invertible matrix M.

In particular, if none of the parties abort, then by the aforementioned properties of Shamir secret

sharings, the honest parties of committee Ci+2 reconstruct the k-th symbol d′
k

of the codeword

(d′1, . . . ,d
′
n), for k ∈ HCi+2 , of message (d1, . . . ,dt+1) = (x1 +a1, . . . , xt+1 +at+1), and forward them

to the parties of committee Ci+3. The parties of committee Ci+3 then receive the whole codeword,

of which up to t symbols (received from the corrupted parties) are erroneous. Therefore, by the

error-correcting properties of super-invertible matrix M, the Berlekamp-Welch algorithm will

recover the correct original message (d1, . . . ,dt+1) for the parties. The same clearly applies for

(e1, . . . , et+1). �

Main Protocol At this point we are �nally ready to present our main Fluid MPC protocol

with linear communication overhead and perfect security with abort, Πmain-2/3-hm. For each input

x ∈ F to the computation, the clients simply invoke Finput on x . Then, for the execution phase, for

every batch of multiplication gates at a given layer, the current committee Ci runs πmult, so that

committee Ci+2 receives sharings of the products. For every batch of identity gates at the layer,

committee Ci invokes Frobust-packed-reshare on the input sharings, and then committee Ci+1 invokes

Frobust-standard-reshare on the packed secret sharing received from Frobust-packed-reshare, so that Ci+2

receives standard sharings of the inputs to the identity gates. For every batch of addition gates,

committee Ci �rst adds the sharings for each gate together, then proceeds exactly as described for

identity gates above. Finally, for each output z, the parties of the last committee C` and the clients

136

Cclnt together invoke Foutput on the sharing [z]C`2t . The protocol is described in detail below, and

its security is proven right after.
Figure 3.35: Protocol Πmain-2/3-hm

Input Phase:

1. The clients invoke Finput on each input x and receive back either abort or shares of [x]Cclnt
2t .

Execution Phase: Every other committee (with the help of the others) will compute the gates at

each layer of the circuit as below:

Identity Gates: To forward ([x1]
Ci
2t , . . . , [xt+1]

Ci
2t):

1. The parties of committee Ci invoke Frobust-packed-reshare towards committee Ci+1 on the above

sharings, so that Ci+1 gets the packing [x]Ci2t for vector x = (x1, . . . , xt+1) (using committees

Ci+2 and Ci+3 for veri�cation, which aborts if needed).

2. Then, the parties of committee Ci+1 invoke Frobust-standard-reshare towards committee Ci+2 on

input [x]Ci2t , so that Ci+2 gets the standard sharings ([x1]
Ci+2
2t , . . . , [xt+1]

Ci+2
2t) (using committees

Ci+3 and Ci+4 for veri�cation, which aborts if needed).

Addition: To component-wise add (and forward) ([x1]
Ci
2t , . . . , [xt+1]

Ci
2t) and ([y1]

Ci
2t , . . . , [yt+1]

Ci
2t), the

parties of committee Ci �rst directly compute

([x1]
Ci
2t + [y1]

Ci
2t , . . . , [xt+1]

Ci
2t + [yt+1]

Ci
2t),

then run the identity gate procedure on these sharings.

Multiplication: To component-wise multiply ([x1]
Ci
2t , . . . , [xt+1]

Ci
2t) and ([y1]

Ci
2t , . . . , [yt+1]

Ci
2t), the

parties of Committee Ci run πmult on them so that the parties of committee Ci+2 receive

([x1y1]
Ci+2
2t , . . . , [xt+1yt+1]

Ci+2
2t).

Output Phase:

1. For each output gate belonging to a client, the parties of committee C` invoke Foutput on the

corresponding sharing [z]C`2t .

137

2. If the client receives abort from Foutput, then it sends abort to all other clients and aborts

itself.

3. The clients then wait until the veri�cation phases of the procedures of the execution phase

have ended to output their values z received from Foutput.

Per group of t + 1 multiplication gates, the communication complexity of Πmain-2/3-hm is that

of πmult, which is the sum of the complexities of Πrand-2/3-hm (step 1), Πrobust-packed-reshare (step 5)

and Πrobust-standard-reshare (step 8). This is all O(n2), which is a total of O(n2/(t + 1)) = O(n) per

multiplication gate.

Before we prove the security of our protocol, we consider the following simple Lemma that

will prove handy.

Lemma 3.26. If Frobust-packed-reshare sends the parties of committee Ci+4 abort, then they abort.

Similarly, if Frobust-standard-reshare sends the parties of committee Ci+5 abort, then they abort.

Proof. This is immediate from the de�nitions of Frobust-packed-reshare and

Frobust-standard-reshare. �

Theorem 3.27. Protocol Πmain-2/3-hm UC-securely computes FDABB in the presence of an R-adaptive

adversary A in the (Finput, Frobust-packed-reshare, Frobust-standard-reshare, Frand-2/3-hm, Foutput)-hybrid

model.

Proof. Assume w.l.o.g., that the �rst 2t + 1 parties are honest. First, we de�ne simulator S:

1. For each input x , S emulates Finput – in case the client is corrupted, S gets from the

adversary the sharing [x]Cclnt
2t , reconstructs x and sends it to FDABB; otherwise, S gets from

the adversary the t corrupted clients’ shares of [x]Cclnt
2t .

2. During the execution phase, for each wire value x , the corresponding sharing [x]Ci2t might

have some additive error εx (for the �rst layer, each εx = 0). S will maintain the invariant of

138

computing the corrupted parties’ shares of [x + εx]Ci2t for every wire value x – as a base case,

it already has these for all circuit inputs.

3. For identity gates:

(a) S �rst emulates Frobust-packed-reshare – S sends to the adversary the corrupted parties’

shares of
[
x1 + εx1

]Ci
2t , . . . ,

[
xt+1 + εxt+1

]Ci
2t that it has already computed, then receives

back a set of shares {xk}k∈[2t+2,n] and error vector ∆.

(b) Then S emulates Frobust-standard-reshare – S sends to the adversary the just received

shares {xk}k∈[2t+2,n] and receives back set of shares {(xk1 , . . . , x
k
t+1)}k∈[2t+2,n] (thus it has

all of the corrupted parties’ shares of the gates’ output wires) and errors (δ1, . . . , δt+1).

(c) S next computes the new error ε′xα ← ∆α + δα on the output wire of the gate, for

α ∈ [t + 1].

(d) Finally, if ∆ , 0 then S aborts for committee Ci+3 and if (δ1, . . . , δt+1) , (0, . . . , 0),

then S aborts for committee Ci+4.

4. Addition gates proceed similarly.

5. For multiplication gates:

(a) S �rst emulates Frand-2/3-hm – it receives from the adversary the set of shares

{(ak1,b
k
1 , . . . ,a

k
t+1,b

k
t+1)}k∈[2t+2,n] and sharings ([η1]

Ci
t ′ , . . . , [ηt+1]

Ci
t ′).

(b) Then, S samples random a∗1, . . . ,a
∗
t+1 and for each α ∈ [t + 1] s.t. xα was not input by a

corrupted party, x1
α , . . . , x

t
α , and similarly random b∗1, . . . ,b

∗
t+1 and for each α ∈ [t + 1]

s.t. yα was not input by a corrupted party, y1
α , . . . ,y

t
α .

(c) Based on these and the corrupted parties’ shares of inputs
[
x1 + εx1

]Ci
2t , . . . ,[

xt+1 + εxt+1

]Ci
2t and

[
y1 + εy1

]Ci
2t , . . . ,

[
yt+1 + εyt+1

]Ci
2t that S has already computed (or

all such shares for those xα ,yα input by corrupted parties), S computes the honest

139

parties’ shares of
[
d′
k

]Ci
2t and

[
e′
k

]Ci
2t for k ∈ [2t + 2,n], as well as values d′

k
, e′

k
for

k ∈ [2t + 1], according to the proof of Lemma 3.24.

(d) S then sends to the adversary the honest parties’ shares of
[
d′
k

]Ci
2t and

[
e′
k

]Ci
2t just

computed.

(e) Then, S emulates Frobust-packed-reshare three independent times – S sends to the ad-

versary the above received corrupted parties’ shares {(ak1, . . . ,a
k
t+1)}k∈[2t+2,n] and

{(bk1 , . . . ,b
k
t+1)}k∈[2t+2,n], as well as {(ak1 · b

k
1 , . . . ,a

k
t+1 · b

k
t+1)}k∈[2t+2,n].

(f) It receives back a set of shares {ak}k∈[2t+2,n], {bk}k∈[2t+2,n], and {ck}k∈[2t+2,n], as well as

error vectors ∆a, ∆b, and ∆c.

(g) S then sends to the adversary the values d′
k
, e′

k
for k ∈ [2t + 1], computed above.

(h) Next, S emulates Frobust-standard-reshare three independent times – S sends to the adver-

sary the just received shares {ak}k∈[2t+2,n], {bk}k∈[2t+2,n], and {ck}k∈[2t+2,n].

(i) It then receives back sets of shares {(ak1, . . . ,a
k
t+1)}k∈[2t+2,n], {(bk1 , . . . ,b

k
t+1)}k∈[2t+2,n],

and {(ck1 , . . . , c
k
t+1)}k∈[2t+2,n] as well as errors (δa1, . . . , δat+1), (δb1, . . . , δbt+1), and (δc1, . . . ,

δct+1).

(j) Then S computes {dα ·eα −dα ·bkα −eα ·akα +ckα }α∈[t+1],k∈[2t+2,n] as the corrupted parties’

shares of the gates’ output wires (d1, e1, . . . ,dt+1, et+1 can be directly computed from

d′1, e
′
1, . . . ,d

′
t+1, e

′
t+1).

(k) S next computes the new error εzα ← dα · (∆bα + δbα) − eα · (∆aα + δaα) + ∆cα + δcα on

the output wire of the gate, for α ∈ [t + 1].

(l) Finally, if any of ∆a,∆v,∆c are not 0 then S aborts for committee Ci+3 and if any

of (δa1, . . . , δat+1), (δb1, . . . , δbt+1), (δc1, . . . , δct+1) are not (0, . . . , 0), then S aborts for

committee Ci+4.

6. Finally, for each output z, S emulates Foutput:

140

(a) If the client is corrupted, S receives z from FDABB, and using the above computed error

εz , the corrupted parties’ shares of [z + εz]C`2t that it has computed, and t more random

values for the �rst t honest parties shares, reconstructs all of [z + εz]C`2t then sends it to

the adversary.

(b) Otherwise, if the client is honest S sends the corrupted parties’ shares of outputs

[z + εz]
C`
2t that it has computed to the adversary.

Now we argue that the real world and ideal world are distributed identically to the adversary.

It is clear that S correctly reconstructs the corrupted parties’ inputs x in the ideal world. Therefore

all outputs received from FDABB by S will be consistent with the adversary’s inputs. Additionally,

it is clear that S has the corrupted parties’ shares of the input sharings corresponding to the real

world. We will show that S maintains the invariant of computing the corrupted parties’ shares

for every wire. Furthermore, it is clear that for all inputs that do not come from corrupted clients,

the �rst t honest parties’ shares are distributed randomly to the real world adversary. We will

furthermore show that this invariant is maintained for all wires that are not corrupted clients’

inputs.

For identity and addition gates, assuming the invariant, S clearly sends to the adversary the

same corrupted parties’ shares that it would receive in the real world. S additionally aborts when

the parties in the real world would (according to Lemma 3.26). It is also clear that S maintains

the invariant of computing the corrupted parties’ shares for every wire. Furthermore, from the

de�nition of Frobust-standard-reshare it is clear that the invariant that the �rst t honest parties’ shares

are distributed randomly to the real world adversary for every wire is maintained.

For multiplication gates, because of the invariant that the �rst t honest parties’ shares are

distributed randomly to the real world adversary for every wire, we know that the assumption on

which Lemma 3.24 is based is true. Therefore using the lemma, we know that S computes and

sends to the adversary honest parties’ shares of
[
d′
k

]Ci
2t and

[
e′
k

]Ci
2t fork ∈ [2t+2,n], as well as values

141

d′
k
, e′

k
for k ∈ [2t + 1], that are distributed identically to those in the real world. It is also clear that

S sends to the adversary the same corrupted parties’ shares when emulating Frobust-packed-reshare

and Frobust-standard-reshare that it would receive in the real world. S additionally aborts when the

parties in the real world would (according to Lemma 3.26). Finally, S also maintains the invariant

of computing the corrupted parties’ shares for every wire, as it can compute d1, e1, . . . ,dt+1, et+1

directly and receives from the adversary the corrupted parties’ shares of the reshared multiplication

triples. Furthermore, from the de�nition of Frobust-standard-reshare, it is clear that the �rst t honest

parties’ shares of the multiplication triple are distributed randomly to the real world adversary,

and thus the invariant that the �rst t honest parties’ shares are distributed randomly to the real

world adversary for every wire is maintained.

Thus the execution phase is simulated perfectly and all that remains to show is that the output

phase is simulated perfectly. First, we recall that from Lemma 3.25 that during every run of πmult

of the execution phase, the parties of committee Ci+2 always correctly determine the values of

(x1 + εx1 + a1,y1 + εy1 + b1, . . . , xt+1 + εxt+1 + at+1,yt+1 + εyt+1 + bt+1). Now, for any circuit layer

starting with committee Ci , observe that if the adversary injects any error via Frobust-packed-reshare

or Frobust-standard-reshare, then in the real world, at the latest, the honest parties of committee Ci+4

will abort. Since for the next layer, the shares of the output wires of the gates are not computed

until Ci+4, that means that if the parties do not abort at the end of computing a layer, then the

errors on the output wires from Frobust-packed-reshare and Frobust-standard-reshare can only come from

the computation of that layer, and not any previous layers. Similarly, if the adversary injects any

error via Frand-2/3-hm, then in the real world, at the latest, the honest parties of committee Ci+2

will abort, which means that the errors on the output wires for any layer can only come from

Frobust-packed-reshare and Frobust-standard-reshare for that layer. Therefore, S properly computes the

errors on the wires of the output gates. Based on these, and since the invariant that the �rst t

honest parties’ shares are distributed randomly to the real world adversary for every wire holds,

it is clear that S simulates the output phase perfectly. Indeed, when emulating Foutput, S uses the

142

same underlying secret z + εz as in the real world, the corrupted parties’ t shares and t random

values for the �rst t honest parties shares to reconstruct the sharing [z + εz]C`2t to the adversary.

This concludes the proof. �

143

4 | Batch PIR and Labeled PSI with

Oblivious Ciphertext Compression

In this chapter, we study a central component of Private Join and Compute protocols. In Private

Join and Compute, two parties, each holding a di�erent set of items with associated values,

privately compute a function of the associated values of items in the intersection. As described

in the introduction, the most computation- and communication-intensive part of such protocols

is to privately compute the intersection of the sets. We improve the e�ciency, in particular the

communication complexity, of state-of-the art protocols for computing the intersection by de�ning

and constructing oblivious ciphertext compression schemes. This chapter is based (often verbatim)

on [Bienstock et al. 2024].

4.1 Preliminaries

4.1.1 Homomorphic Encryption

Throughout this chapter, we will de�ne ciphertexts using c̃ . A vector of ciphertexts will be de�ned

as c̃ = (c̃1, . . . , c̃n).

In our work, we will mainly consider lattice-based somewhat homomorphic encryption (SHE)

where parameters are chosen to support a limited number of homomorphic operations, as used in

prior state-of-the-art constructions of batch PIR and labeled PSI [Mughees et al. 2021; Menon and

144

Wu 2022; Chen et al. 2018, 2017; Cong et al. 2021]. Our compression protocols only use additive

hommorphism of these schemes, where noise grows additively.

In this section, we outline two classes of SHE schemes: one with small ciphertext expansion but

large noise growth and the other with large ciphertext expansion and small noise growth. The �rst

class (including Regev [Regev 2005] and BFV [Brakerski 2012; Fan and Vercauteren 2012]) are SHE

schemes with small ciphertext expansion (the ratio of ciphertext size to plaintext size), but large

noise growth especially for ciphertext-ciphertext multiplication. In contrast, the second class of

schemes (including GSW [Gentry et al. 2013]) are SHE schemes with large ciphertext expansion, but

very small noise growth for ciphertext-ciphertext expansion. In particular, GSW [Gentry et al. 2013]

ensures only additive noise growth whereas the �rst class of SHE schemes require multiplicative

noise growth when performing homomorphic multiplications. Finally, it is shown that protocols

can perform operations using ciphertexts from di�erent classes. Recent PIR schemes [Mughees

et al. 2021; Menon and Wu 2022] rely on multiplying ciphertexts from each class resulting in small

noise growth.

Regev and BFV Encryption. Many PIR schemes relied upon Regev encryption [Regev 2005]

equipped with homomorphic addition and its extension by Brakerski [Brakerski 2012] as well as

Fan and Vercauteren [Fan and Vercauteren 2012] enabling homomorphic multiplication. These

schemes are de�ned over a ring R = Z/(xn + 1) where n is the dimension of the polynomial along

with a plaintext and ciphertext modulus q and t respectively. A plaintext value is a polynomial in R

mod t and a ciphertext consists of c̃ = (c0, c1) where both polynomials are elements of R mod q.

For more information on the details of these schemes, we defer readers to prior works [Regev

2005; Brakerski 2012; Fan and Vercauteren 2012]. We will only use them in a blackbox manner

with certain properties that we describe next.

First, we describe the noise growth of each homomorphic operation. For ciphertext-ciphertext

addition, we note that noise growth is additive. In particular, if we consider two ciphertexts c̃1 and

145

c̃2 with error Err(c̃1) and Err(c̃2), then the resulting error isO(Err(c̃1)+Err(c̃2)) after homomorphic

addition. For ciphertext-plaintext multiplication (also known as absorption) with a ciphertext c̃

with error Err(c̃) and any plaintext message m, the resulting error is O(|m | · Err(c̃)). Finally, for

ciphertext-ciphertext multiplication, the noise growth becomes O(t · (Err(c̃1) + Err(c̃2))). Note, for

a sequence of ciphertext-ciphertext multiplications, the noise growth would grow exponentially

in the length of the sequence. As a result, recent PIR schemes avoid these operations.

Finally, these schemes have been shown to emit properties that enable packing multiple

plaintext values into a single ciphertext that has been used to reduce PIR request sizes [Angel

et al. 2018].

GSW Encryption. The second class of SHE scheme is the Gentry, Sahai and Waters scheme [Gen-

try et al. 2013] that can be de�ned over the same polynomial ring R = Z/(xn + 1), plaintext space

R mod t and ciphertext space R mod q. The scheme is parameterized by a base B and length

` that provides a trade-o� between noise growth and e�ciency. Once again, we defer details of

the GSW scheme to prior works [Gentry et al. 2013]. Instead, we will only provide details about

certain properties that will be leveraged in our work.

In particular, we will rely on the external product operation introduced by [Chillotti et al.

2020]. The input to the external product is a Regev/BFV ciphertext and a GSW ciphertext and

the output is a Regev/BFV ciphertext containing the multiplication of the two input ciphertexts.

The main advantage of the external product is that noise growth is linear and asymmetric. For a

Regev/BFV ciphertext c̃1 with error Err(c̃1) and a GSW ciphertext c̃2 with error Err(c̃2), the output

of the external product is a Regev/BFV ciphertext with noiseO(B · Err(c̃2)+Err(c̃1)) requiringO(`)

polynomial multiplications. As earlier stated, the choice of B and ` provide trade-o�s between the

noise growth and e�ciency of the external product operation. Secondly, we note that the noise

growth is asymmetric in the sense that noise grows linearly in the Regev/BFV ciphertext and the

B multiplicative factor only a�ects the GSW ciphertext.

146

4.1.2 Oblivious Ciphertext Compression

We de�ne the notion of an oblivious ciphertext compression scheme. For this primitive, we only

assume additive homomorphism (ciphertext-ciphertext addition). The problem consists of two

parties: a compressor and a decompressor. The compressor is given n ciphertexts, c̃ = (c̃1, ..., c̃n),

to be compressed. Both the compressor and the decompressor know the number of non-zero

plaintext entries t . In addition, the decompressor has the private decryption key and the indices

of the t non-zero entries, I ⊂ [n]. If i ∈ I , then c̃i is an encryption of a non-zero entry. The

compressor’s job is to produce a succinct encoding of the input ciphertexts with knowledge of

only t . The encoding is consumed by the decompressor to recover the original t non-zero plaintext

entries. We formally de�ne oblivious ciphertext compression below.

De�nition 4.1 (Oblivious Ciphertext Compression). Let p = (p1, ...,pn) ∈ F
n be a vector of n

plaintexts with at most t non-zero entries. Let E = (Gen, Enc, Eval,Dec) be an additive homo-

morphic encryption scheme, and let c̃ = (c̃1, ..., c̃n) where c̃i = E .Enc(pkE,pi) for each i ∈ [n].

An oblivious ciphertext compression scheme consists of a pair of algorithms ObvCompress and

Decompress satisfying:

• ĉ← ObvCompress(pkE, c̃, t ;R): Oblivious compression takes in a public key pkE , n cipher-

texts c̃ = [c̃1, ..., c̃n], the number of non-zero plaintext entries t , and randomness R. It outputs

compressed ciphertexts ĉ.

• p← Decompress(skE, ĉ, I ;R): Decompression takes in a secret key skE , compressed cipher-

texts ĉ, the non-zero plaintext entry indices I ⊂ [n] (|I | 6 t) of p, and randomness R. It

outputs the non-zero plaintext values {i,pi}i∈I .

Let γ = γ (λ) be the bit length of all n ciphertexts produced by the homomorphic encryption

scheme E. An oblivious ciphertext compression is δ -compressing if the bit length of ĉ is at most

147

δ · γ · |c̃|. The failure probability is at most ϵ if, for each plaintext vector p = (p1, ...,pn) and

associated ciphertexts c̃ = (c̃1, . . . , c̃n) with at most t non-zero values,

Pr[Decompress(skE, ĉ, I) , {i,pi}i∈I] 6 ϵ

where ĉ←$ ObvCompress(pkE, c̃, t).

Comparison with Prior Work. Liu and Tromer [Liu and Tromer 2022] implicitly studied

oblivious ciphertext compression, without explicitly de�ning the primitive. Fleischhacker et

al. [Fleischhacker et al. 2023] considered another variant closer to our compression problem

that was also implicitly studied in [Liu and Tromer 2022]. where the decompressor is not given

the identity of the non-zero plaintext indices, I ⊂ [n]. Therefore, this is a harder setting than

our compression problem. It is not surprising that the resulting compression rates or decoding

e�ciency are signi�cantly worse than our constructions (see Figure 1.1). To our knowledge, our

speci�c variant of compression has not been explicitly studied previously.

4.1.3 Oblivious Ciphertext Decompression

Next, we de�ne oblivious ciphertext decompression that switches the compressor and decompressor

roles. The compressor is given the plaintext vector, p = (p1, . . . ,pn) and a subset of t indices,

I ⊂ [n] with |I | = t to produce a succinct encoding ĉ. The decompressor is given ĉ and must

produce the ciphertext vector c̃ = (c̃1, . . . , c̃n)
T such that each c̃i is an encryption of pi for all i ∈ I .

No correctness is required for i < I . In other words, c̃i needs to be an encryption of pi only when

i ∈ I . However, the decompressor must obliviously decode without any knowledge of the relevant

indices, I . In fact, the compressed ciphertexts ĉ must not reveal any information about neither

the underlying plaintext values p = (p1, . . . ,pn)
T nor the relevant indices I . To our knowledge, no

prior works have studied this setting.

148

De�nition 4.2 (Oblivious Ciphertext Decompression). Let p = (p1, ...,pn)
T ∈ Fn be a vector of n

plaintexts and I ⊂ [n] be a subset of t < n indices. Let E = (Gen, Enc, Eval,Dec) be an additive

homomorphic encryption scheme. A oblivious ciphertext decompression scheme consists of a

pair of algorithms (Compress,ObvDecompress), where:

• ĉ ← Compress(skE,p, I ;R): The compression algorithm takes in a secret homomorphic

encryption key skE , a vector of n plaintexts p = (p1, ...,pn)
T , a subset of t indices I ⊂ [n]

and randomness R. Then, it outputs the compressed ciphertexts ĉ.

• p← ObvDecompress(pkE, ĉ,n;R): The decompression algorithm takes in a public homo-

morphic encryption key pkE , compressed ciphertexts ĉ, the number of total plaintexts n,

and randomness R. Then, it outputs the ciphertext vector c̃ = (c̃1, . . . , c̃n)
T .

Let γ = γ (λ) be the bit length of all n ciphertexts produced by the homomorphic encryption

scheme E. A oblivious ciphertext decompression is δ -compressing if the bit length of ĉ is at most

δ ·γ · |c̃ |. The failure probability is at most ϵ if, for each plaintext vector p = (p1, ...,pn)
T and subset

I ⊂ [n] of size t , the following holds:

Pr[∃i ∈ I | Dec(skE, c̃i) , pi] 6 ϵ

where ĉ ←$ Compress(skE,p, I) and (c̃1, . . . , c̃n)
T ←$ Decompress(pkE, ĉ). We note that there

are no correctness requirements for ciphertexts c̃i such that i < I .

The scheme is computationally oblivious if, for all pairs of plaintext vectors p = (p1, . . . ,pn)
T

and p′ = (p′1, . . . ,p
′
n)
T and pairs of index sets I , I ′ ⊂ [n] of size t , a computationally adversary

cannot distinguish between the following:

• ĉ←$ Compress(skE,p, I)

• ĉ′←$ Compress(skE,p′, I ′).

149

Exptclnt
b,A(λ,D)

1. (prms, ck, sk, E) ←$ BatchKWPIR.init(1λ,D)

2. R ← ∅

3. For i = 1, 2, . . . , poly(λ,D):

(a) (Q0,Q1) ←$ A(prms, sk, E,R)

(b) (·, req) ←$ BatchKWPIR.query(prms, ck,Qb)

(c) R ← ∪{req}

4. Return b′←$ A(prms, sk, E,R)

Figure 4.1: Experiment for batch keyword PIR client query privacy

4.1.4 Batch PIR and Labeled PSI

Batch (Keyword) PIR. In batch keyword PIR, the client holds a batch of ` keys, {q1, . . . ,q`},

and the server holds a public database D ∈ (K × V)n of n key-value pairs with n distinct keys,

{(k1,v1), . . . , (kn,vn)}. The client wishes to retrieve the database entries {D[q1], . . . ,D[q`]} from

the server. For any q ∈ K , D[q] denotes the value associated with key q. If q = ki , then D[q] = vi .

Otherwise, D[q] =⊥. The following two properties must hold:

• Correctness: If the protocol is executed correctly, the client recovers {D[q1], . . . ,D[q`]} as

desired.

• Query Privacy: The server learns no information about the batch query, {q1, . . . ,q`}.

One can obtain the de�nition of single-query PIR if the batch query contains only a single index,

` = 1. Furthermore, one can obtain non-keyword PIR if we restrict the database’s key universe to

be K = [n]. Throughout this chapter, we will consider keyword PIR unless otherwise speci�ed.

We now provide a formal de�nition:

De�nition 4.3 (Batch Keyword PIR). A batch keyword private information retrieval (PIR) scheme

150

over key universe K , value universe V , and batches of ` ≥ 1 quries consists of algorithms

(BatchKWPIR.init,BatchKWPIR.query,BatchKWPIR.answer,BatchKWPIR.decrypt) satisfying:

• (prms, ck, sk, E) ←$ BatchKWPIR.init(1λ,D): The initialization algorithm receives the se-

curity parameter λ and the database D = {(k1,v1), . . . , (kn,vn)}. The output are the public

parameters prms, a client key ck, a server key sk, and an encoding of the database E.

• (st, req) ←$ BatchKWPIR.query(prms, ck,Q): The query algorithm receives the public

parameters prms, client key ck, and a query set Q = {q1, . . . ,q`} ∈ K
` and outputs a state

st and the request req to be sent to the server.

• resp ← BatchKWPIR.answer(prms, sk, E, req): The answer algorithm receives hte public

parameters prms, server key sk, encoding of the database E, and the request req and outputs

a response resp.

• (v1, . . . ,v`) ← BatchKWPIR.decrypt(prms, ck, st, resp): The process algorithm receives the

public parameters prms, client key ck, state st, and response resp and outputs the values

associated to the queried keys Q .

Additionally, the following guarantees must be satis�ed:

• Correctness: For all databases D (with unique keys) and for all batch queries Q ∈ K` , the

probability that the client’s output when querying Q is not {D[q]}q∈Q is at most negl(λ).

• Client Query Privacy: We de�ne client query privacy with respect to the experiment

de�ned in Figure 4.1 parameterized by a bit b ∈ {0, 1} and an adversaryA. For all databases

D and all PPT adversaries A, Prb[Exptclnt
b,A(λ,D) = b] ≤ 1/2 + negl(λ).

(Unbalanced) Labeled PSI. In labeled PSI, the receiver and sender hold setsX andY respectively.

The sender also holds a database of associated labels {Ly | y ∈ Y }. The goal is for the receiver to

151

receive labels that appear in the intersection, {(z, Lz) | z ∈ X ∩ Y }. The following properties must

hold:

• Correctness: If the protocol is executed correctly, the receiver recovers {(z, Lz) | z ∈ X ∩ Y }

as desired.

• Receiver (Query) Privacy: The sender learns no information about the receivers’s set X

beyond its size |X |.

• Sender (Database) Privacy: The receiver learns no information about the sender’s set Y

except for the desired output and its size |Y |.

In the unbalanced setting, the receiver’s set X is typically much smaller than the sender’s set

Y , |X | � |Y |. Note, labeled PSI is similar to batch keyword PIR with the main di�erence being

the additional sender (database) privacy guarantee. We now present the formal functionality of

unbalanced labeled private set intersection (PSI), Ful-psi.

Figure 4.2: Functionality Ful-psi

Parameters: There are two parties, a receiver and a sender. The honest receiver and sender have

respective set sizes nX,nY. If the receiver or sender is maliciously corrupt, then their set size is n′X or

n′Y, respectively.

Functionality:

1. On input (Receive, sid,X) from the receiver where X ⊆ {0, 1}∗, ensure that |X | ≤ nX if the

receiver is honest and |X | ≤ n′X otherwise. Give (Receiver-Input, sid) to the sender.

2. Thereafter, on input (Send, sid, (Y , {Ly ∈ {0, 1}` | y ∈ Y })) from the sender where Y ⊆

{0, 1}∗, ensure that |Y | ≤ nY if the sender is honest and |Y | ≤ n′Y′ otherwise. Give output

(Output, sid, {(x, Lx) | x ∈ X ∩ Y } to the receiver.

152

4.2 Oblivious Ciphertext Compression

In this section, we present our oblivious ciphertext compression scheme, LSObvCompress, based

on linear systems. We start with a simpler scheme before presenting our main construction.

4.2.1 First Attempt: Balls-into-Bins

In this section, we start with a construction which leverages the balls-into-bins random process.

Given m bins and n balls, each of the n balls are thrown into one of the m bins uniformly at

random. In the context of ciphertext compression, bins correspond to compressed ciphertexts

and balls correspond to input non-zero ciphertexts. Throwing a ball into a bin corresponds to

homomorphically adding an input ciphertext to one of the compressed ciphertexts. Decompression

works by re-simuluating the ball throws for non-zero ciphertexts and decrypting the values at

relevant bins. The main observation is that adding a zero-encrypting ciphertext can be thought of

as “skipping” the ball throw, as its addition doesn’t change the value of the underlying plaintext.

Conceptually, the algorithm fails if any of the bins contains more than one ball. We describe the

algorithm below.

We suppose that both parties share a hash function H . Upon receiving the input ciphertexts

c̃ = (c̃1, . . . , c̃n)
T and the number of non-zero plaintext entries t , the compression algorithm �rst

initializes a vector of m ≥ t zero ciphertexts ĉ = (ĉ1, ..., ĉm)
T , where ĉi ←$ E .Enc(pkE, 0). Then,

for each input ciphertext c̃i , the algorithm executes the following two operations. First, compute

index j = H (i) ∈ [m] where H is a random function with range [m]. Next, homomorphically add

c̃i to ĉj , that is, ĉj ← E .Eval(pkE,+, (c̃i, ĉj)). Finally, the algorithm outputs the resulting vector ĉ.

The decompression algorithm receives the compression ĉ = (ĉ1, . . . , ĉm)
T and non-zero plain-

text entry indices I . For every non-zero ciphertext index i ∈ I , the algorithm computes j = H (i)

and sets pi ← E .Dec(skE, ĉj). Finally, the algorithm outputs all non-zero plaintext values, {i,pi}i∈I .

Note this algorithm can recover the original plaintext vector as long as the hash outputs H (i)

153

are all distinct for every i ∈ I . However, the probability of collision is high unlessm = Ω(t2) (due

to the birthday problem) that is a quadratic blowup with respect to t . Ideally, we would likem to

be not much larger than t to obtain an e�cient compression rate.

Reformulating as a Linear System. We generalize the aforementioned scheme as construct-

ing and solving a system of linear equations. More speci�cally, the compression algorithm is

responsible for constructing a linear system that the decompression algorithm attempts to solve to

recover the original plaintext vector. While this viewpoint seems rather unnecessarily complex, it

will serve as an important basis to our main construction. We outline the reformulated algorithm

below.

For each i ∈ [n], the compression algorithm constructs a column vector vi ∈ Fm where only

the H (i)-th element is set to 1 and the rest are set to 0. Let M = (v1, ..., vn) ∈ Fm×n be a matrix.

Note that both parties know matrix M as they share hash function H . The compression algorithm

computes and outputs the matrix-vector multiplication ĉ← M · c̃.

The decompression algorithm takes in the vector ĉ and produces its decryption p̂. Next, we

reconstruct the matrix M using the random function H . Let I = {i1, ..., it } be the set of non-zero

plaintext entry indices, and let Mc(I) = (vi1, ..., vit) ∈ F
m×t be a sub-matrix of M consisting of

all column vectors whose indices appear in I . Similarly, let p̂I = (p̂i1, . . . , p̂it) for entries of p̂ in

I . The algorithm solves the linear system associated with Mc(I) and p̂ to compute pI satisfying

Mc(I) · pI = p̂I to recover the non-zero pi j = (pI)j for each j ∈ [t].

We note that the decompression algorithm can correctly recover the plaintext vector if and

only if the linear system Mc(I) · pI = p̂I has a unique solution (that is, Mc(I) has full column rank).

For our choice of M, this precisely happens when all hash outputs H (i) are distinct for every i ∈ I .

154

4.2.2 Second Attempt: Random Matrices

Recall that in the �rst attempt, the generated matrix M consists of random column vectors with

Hamming weight exactly one corresponding to the balls-into-bins process. This forced us to set

the number of rows and the encoding size tom = Ω(t2) to avoid collisions. Taking a closer look,

we notice that the way we generate the column vectors are unnecessarily restrictive. Indeed, for

our scheme to succeed, we only require the Mc(I) to have a unique solution. There is no need to

restrict rows to Hamming weight one vectors.

This crucial observation leads to the following approach. Instead of sampling random column

vectors with Hamming weight 1, we instead sample column vectors uniformly at random from

{0, 1}m. To do this, we can imagine the shared hash function H : [n] → {0, 1}m outputs random

binary column vectors of length m. Then, the shared matrix is M = (H (1), . . . ,H (n)). This way,

the generated column vectors will be linearly independent with high probability even whenm is

small. The rest of the algorithm stays identical.

Failure Probability and Compression Rate. The algorithm’s failure probability and com-

pression rate will be parameterized by ϵ and t . Let m = (1 + ϵ)t be the number of rows. Even

when ϵ is very small, the generatedm× t matrix Mc(I) has a unique solution except with negligible

probability. For example, setting m = t + λ with very small ϵ = λ/t , the system has full rank with

probability 1 − 2−λ−1 (see [Garimella et al. 2021]). The compression rate is almost optimal as the

encoding contains t + λ ciphertexts that is only λ more than the optimal minimum.

Running Time. Let m = (1 + ϵ)t . We start by analyzing the compression time. Generating a

random column vector ∈ {0, 1}m takesO(m) time, so the entire matrix generation takesO(mn) time

during compression. Computing the matrix-vector product takes m · n homomorphic ciphertext

additions. The compression algorithm performs O(m · t) ciphertext-ciphertext additions. For

decompression, we note that solving the linear system associated to Mc(I) requires O(m · t2) time

155

using Gaussian elimination.

Comparison to the First Attempt. While the new algorithm can give us very high compression

rate, it is computationally very ine�cient. Compression requires O(mt) time and decompression

requires O(mt2) time using Gaussian elimination. In practice, this may not be so problematic

when t << n, but as t grows, the scheme is computationally expensive. Ideally, we would like

compression to be close to linear in the number of ciphertexts, n, and decompression to be close

to linear in t . In contrast, the �rst attempt has horrible compression rate of m = O(t2), but is

computationally more e�cient. The compression algorithm requires only O(n) time. Furthermore,

decompression only used O(t2) time.

This raises the following question: is it possible to get the best of both worlds - an algorithm

that achieves high compression rate but is also practically e�cient? We show that this is possible

in the next subsection.

4.2.3 LSObvCompress: Random Band Matrices

In prior attempts, we generated random matrices uniformly at random from {0, 1}m×n. This

allowed the associated random linear systems to be uniquely solvable with high probability even

when m = (1 + ϵ)t was very small. However, solving this linear system is very ine�cient, which

made the previous scheme impractical for larger t . This is not too surprising, because the generated

matrix is very dense. The expected number of non-zero matrix entries ismn/2. This suggests that

the algorithm for solving the linear system must also have at least O(mn) running time as well.

Looking closely, we again realize that we never needed the generated matrices to be sampled

uniformly at random from {0, 1}m×n. That is, as long as the associated linear system is uniquely

solvable with high probability, the distribution itself is irrelevant to the security of the scheme.

Therefore, we only require a matrix generation algorithm that generates a “small” linear system

that is uniquely and e�ciently solvable. For LSObvCompress, we consider random matrices that

156

Figure 4.3: Example of a random band column matrix construction with band width w = 4. Second
diagram shows the matrix a�er sorting the columns by the band start positions. Third diagram shows the
random band row matrix view of the constructed matrix. In this example, the maximum band row width is
3.

satisfy these two properties.

Random Band Matrices. There has been extensive research on the core algorithmic problem of

generating sparse random matrices that are e�ciently solvable. For LSObvCompress, we utilize

the random band matrices of Dietzfelbinger and Walzer [Dietzfelbinger and Walzer 2019] that is

the most e�cient to our knowledge.

Random band matrices are constructed such that each row consists of a random band with

width w , and all entries outside of the band are zero. Formally, let m be the length of each row

of the matrix. For each row, a band start index s is chosen randomly from [m −w + 1], and each

entry within the band, i.e. in range [s, s +w), is a uniformly random bit from {0, 1}. All other

entries outside the range [s, s +w) remain 0.

Intuitively, random band matrices are solvable in O(nw) time because the generated random

matrix is “almost diagonal" after the rows are sorted by the band start positions. Furthermore,

each row reduction operation maintains an invariant where the number of non-zero entries per

rows is O(w) making Gaussian elimination very e�cient.

Adaptation for LSObvCompress. Unfortunately, we are unable to directly apply random

band matrices for LSObvCompress. Going back to the linear system framework presented in

Section 4.2.1, the client will solve the linear system associated with the matrix Mc(I). Recall that I

157

is the subset of non-zero plaintexts, M is the chosen random matrix and Mc(I) is the sub-matrix

of M consisting of all the column vectors whose indices appear in I . Suppose we chose M to be

a random band matrix. Unfortunately, Mc(I) is not guaranteed to be a random band matrix. In

particular, it is possible that I (and, thus, the columns) are chosen such that each matrix row will

have a band much smaller than length w or be all zero. In this case, it is unclear if the matrix Mc(I)

still has a unique solution.

Instead, we will choose our matrix M using an adaptation of random band matrices to ensure

that Mc(I) is still e�ciently solvable for any choice of non-zero plaintext indices I . To do this,

we will instead choose M to be the tranpose of random band matrices. In other words, we will

generate each column vector of M to consist of a random band of width w . To do this, we imagine

both parties share two hash functions H1 : [n] → [m −w + 1] and H2 : [n] → {0, 1}w . For the i-th

column of the shared matrix M, H1(i) denotes the start of the band and H2(i) chooses the random

w-bit band.

Next, we can consider any subset of non-zero plaintexts I and the associated sub-matrix Mc(I).

As each column vector consists of a randomw-length band, Mc(I) remains a transpose of a random

band matrix. As the column and row rank of any matrix is identical, we can rely on the analysis

of Dietzfelbinger and Walzer [Dietzfelbinger and Walzer 2019] to see that Mc(I) will have a unique

solution with high probability for any choice of I .

The only caveat is that we cannot apply the running time analysis of the random band row

matrix construction, as the bands are constructed column-wise instead of row-wise. Nonetheless,

we show that solving the system remains practically e�cient with this modi�cation in our

experiments (see Section 4.6.1). Intuitively, this is because a transpose of a random band row

matrix remains similar to a random band row matrix after the columns are sorted by the band start

positions. The maximum band width across the entire rows is not much larger than the column

band width w , which allows the linear system to be solved e�ciently just as in the random band

row matrix construction. See Figure 4.3 for an illustration.

158

More formally, we show that each row will consist of exactly one continguous section of

non-zero entries of length O(w). We couple the process of generating random band matrices with

random column vectors as two-dimensional balls-into-bins allocation (see [Asharov et al. 2016]

for more details). In particular, we model each of the t columns as t lists of w items. There exists

m = (1 + ϵ)t entries corresponding to each of the m rows. Each of the t lists are assigned to a

random entry from [m −w + 1]. If the i-th list is assigned to entry j ∈ [m −w + 1], then one of the

w items in the list are placed into each of the entries {j, j + 1, . . . , j +w − 1}. Note, the maximum

load of any of m entries is equivalent to the largest consecutive section of non-zero entries in any

of them rows of the generated random band matrix after sorting by column starting location.

Prior work [Asharov et al. 2016] studied the setting where each of the t lists picked one of

the m entries uniformly at random. We adapt the analysis for the slightly skewed distribution

used for random band matrices in our work where only one of the �rstm −w entries are chosen

uniformly at random. Indeed, we prove the following theorem:

Theorem 4.4. Consider am × t matrix withm = (1 + ϵ)t where each column consists of a single

randomw-bit band. For constant ϵ > 0 and band lengthw = O(λ + log t), the random band matrix

has column rank n and executing Gaussian elimination after sorting the columns by the starting

location of the band runs in time O(tw) except with probability 2−λ.

Proof of Theorem 4.4. We use the coupling described above. Therefore, it su�ces for us to analyze

only two-dimensional balls-into-bins allocations. We denote binary random variables Xi,j to be

whether the random band of the i-th column will overlap with the j-th row. Therefore, Xi,j = 1 if

this event is true andXi,j = 0 otherwise. Note,Xi,j = 1 if and only if the i-th column’s random band

starts in the set of row indices {j−w+1, j−w+2, . . . , j}. In other words, E[Xi,j = 1] 6 w/(m−w+1).

Let Bj be the total number of columns whose random bands overlap with the j-th row. By linearity

of expectation, we get that

Bj =
∑
i∈[t]

E[Xi,j] 6
tw

m −w + 1
.

159

Note that each Xi,j is an independent random variable. Therefore, we can apply Cherno� bounds

to get that

Pr
[
Bj > 3 ·

tw

m −w + 1

]
6 2−tw/(m−w+1).

Next, we apply a Union bound over allm rows to get that Bj for all j ∈ [m] is upper bounded by

the same value with probability at mostm · 2−tw/(m−w+1). Finally, by noting thatm = (1 + ϵ)t for

some constant ϵ > 0 and picking w = O(λ + log t), we get that each row has a band length of at

most O(w) except with probability 2−λ. �

We now formally present LSObvCompress using random band matrices. First we present

πLSObvCompress.ObvCompress and πGenRandVec.

Figure 4.4: Procedure πLSObvCompress.ObvCompress

Usage: On input additively homomorphic encrption public key pkE , vector of n ciphertexts c̃,

number of non-zero plaintext entries t , and randomness R; output a compressed encoding, ĉ, of c̃.

1. m ← (1 + ϵ)t

2. M← 0m×n

3. For i = 1, . . . ,n

(a) vi ← πGenRandVec(i,m;R)

(b) M[:][i] ← vi (Set the ith column to vi)

4. ĉ← M · c̃ (HE add using E .Eval and pkE)

5. Output ĉ

Figure 4.5: Procedure πGenRandVec

Usage: On input column index i , column vector length m, and randomness R; output randomly

generated column vector vi.

160

1. w ← band width

2. s ← H1(R | | i) (Random value from [m −w + 1])

3. u← H1(R | | i) (Random w-bit band.)

4. vi ← 0m

5. For j = 0, . . . ,w − 1

(a) vi[s + j] ← u[j]

6. Output vi

Now we present πLSObvCompress.Decompress and πSolveLinearSystem.

Figure 4.6: Procedure πLSObvCompress.Decompress

Usage: On input additively homomorphic encryption secret key skE , compressed encoding of

ciphertexts ĉ, set of non-zero plaintext indices I , and randomness R; output original non-zero

plaintext vvalues {i,pi }i ∈I .

1. m ← (1 + ϵ)t

2. Mc(I) ← 0m×t (Initialize all zero matrix.)

3. For i j ∈ I = {i1, . . . , it }

(a) vi j ← πGenRandVec(i j ,m;R)

(b) Mc(I)[:][j] ← vi j (Set the jth column to vi j)

4. p̂← decryption of ĉ using E .Dec and skE

5. pI ← πSolveLinearSystem(Mc(I), p̂)

6. If pI = ⊥ then return ⊥

161

7. p← ∅

8. For i j ∈ I = {i1, . . . , it }: p← p ∪ {(i j , (pI)j)}

9. Output p

Figure 4.7: Procedure πSolveLinearSystem

Usage: On input: LHS matrix M and RHS values to solve for p̂; output solution to the linear system

M · p = p̂.

1. (Mπ , π) ← column sorting of the matrix M in ascending band start positions, along with

the corresponding permutation that produces the column sorted matrix (e.g. Mπ [:][i] = M[:

][π (i)])

2. pπ ← execute Gaussian elimination on Mπ and p̂, ⊥ if no unique solution

3. If pπ =⊥ then return ⊥

4. p← 0t

5. For i = 1 . . . t : p[π (i)] ← pπ [i]

6. Output p

Next, we analyze the properties of LSObvCompress showing that it combines the good com-

pression rates and e�cient encoding/decoding times of our prior two attempts.

Failure Probability and Compression Rate. For failure probability, we note LSObvCompress

fails only when Mc(I) does not have a unique solution or that unique solution cannot be found. By

Theorem 4.4, we know this occurs with probability at most 2−λ assuming that w = O(λ/ϵ + logn).

In our experiments, we will use concrete parameters forw and ϵ for various values of t to obtain

2−40 error probability. We point readers to Section 4.6.1 for more details. For the compression

162

rate, our experiments show that ϵ may be as small as 0.05. As a result, LSObvCompress obtains

compression rates that are only 5% larger than optimal.

Running Time. We start by analyzing the compression algorithm that computes the matrix

multiplication of M and the input ciphertext vector c̃ = (c̃1, . . . , c̃n)
T . As M is a binary matrix

with at most nw non-zero entries, this can be performed using at most nw ciphertext-ciphertext

additions. For decompression, we note that the main cost is solving the linear system Mc(I) that

requires O(tw) time by Theorem 4.4 that is corroborated by our experiments (see Section 4.6.1).

Noise Growth for SHE. Recall that for the applications to batch PIR and labeled PSI, we

will initialize LSObvCompress, using lattice-based SHE schemes. Therefore, noise growth is an

important factor to consider. Suppose that the input ciphertexts c̃ = (c̃1, . . . , c̃n)
T each have error

at most Err(c̃i) 6 e . We note that the compression algorithm requires computing the sum of at

mostw ciphertexts. Therefore, each ciphertext in the compressed output has error at mostO(w · e)

as ciphertext-ciphertext additions only incur linear noise growth (see Appendix 4.1.1 for more

details). As decompression is done after decryption, we do not need to worry about noise growth

for decompression.

4.2.4 Comparison with Sparse Random Linear Codes [Kaufman and Sudan

2007; Liu and Tromer 2022]

Liu and Tromer [Liu and Tromer 2022] implicitly study oblivious ciphertext compression. They

observe that Sparse Random Linear Codes (SRLCs) [Kaufman and Sudan 2007], which use matrices

M ∈ Fm×n where each column has a small number of non-zero entries drawn randomly from

F can be used. However, each entry is sampled independently, in an unstructured way, which

results in larger encodings than with LSObvCompress. Indeed, they show that such matrices can

be sampled with full rank with high probability only ifm = O(t log2 t log λ), which is larger than

163

m = 1.05t of LSObvCompress. Moreover, because SRLCs are unstructured, Gaussian elimination

takes O(t3) time, resulting in slower O(t3) decoding time, compared to the O(t · λ) decoding time

of LSObvCompress. Finally, since SRLCs use elements drawn randomly from F, when used with

FHE, large parameters must be used to handle the noise when multiplying ciphertexts by these

large elements. However, LSObvCompress only uses elements from {0, 1}, which means that

ciphertexts are only added together, resulting in minimal noise growth.

4.3 Oblivious Ciphertext Decompression

We show that similar ideas that we used to solve the oblivious ciphertext compression problem

may also be used to solve the oblivious ciphertext decompression problem. As a reminder, in

this problem, the compressor is given a plaintext vector, p = (p1, . . . ,pn)
T , and t relevant indices

I ⊂ [n]. The goal is for the decompressor to decode ciphertexts c̃ = (c̃1, . . . , c̃n)
T such that c̃i is an

encryption of pi for all relevant indices i ∈ I . There are no requirements for any i < I .

Description of LSObvDecompress. Essentially, we will apply the ideas of LSObvCompress,

but in reverse. That is, we will start with a matrix M of dimension n ×m (that both the compressor

and decompressor can generate based on shared randomness), wherem = (1 + ϵ)t is the encoding

length for some constant ϵ > 0. Then, based on relevant row indices I = {i1, . . . , it } ⊂ [n],

the compressor will solve the linear system formed by a (t ×m)-dimensional sub-matrix Mr(I)

of M and vector pI = (pi1,pi2, . . . ,pit), to obtain compressed plaintext vector p̂ of dimension m.

Speci�cally, the compressor will solve the linear system for p̂ satisfying Mr(I) · p̂ = pI using

sub-matrix Mr(I) = (MT
i1
, . . . ,MT

it
).

Afterwards, the vector p̂ is encrypted entry-wise. The encrypted version of p̂ is the �nal

encoding that we denote ĉ. If the linear system according to Mr(I) is not solvable, then the

encoding fails and the compressor outputs anym encryptions. In applications, this is the point

164

where we can utilize packing techniques where multiple plaintext values may be encrypted into a

single ciphertext (as done in [Angel et al. 2018]).

For oblivious decompression, the decompressor computes M · ĉ homomorphically. Intuitively,

this gives the decompressor ciphertext vector c̃ = (c̃1, . . . , c̃n)
T such that for each ij ∈ I , the

underlying plaintext of c̃i j is vi j · p̂, which is exactly pi j , as desired. For every c̃i j where ij < I , the

underlying plaintext will be some arbitrary linear combination of the entries of p̂, but recall that

these values need not be correct.

For the choice of matrix M, we can in fact generate it similarly as in LSObvCompress as a

random band matrix of dimension n ×m, where each row consists of a single random band of

length w . Note, this is the original random band matrix construction [Dietzfelbinger and Walzer

2019] without modi�cation.

We now present the pseudocode for LSObvDecompress with procedures

πLSObvDecompress.Compress and πLSObvDecompress.ObvDecompress.

Figure 4.8: Procedure πLSObvDecompress.Compress

Usage: On input additively homomorphic encryption secret key skE , plaintext values p =

[p1, . . . ,pn]
T , and randomness R; output: compressed ciphertexts ĉ.

1. Compute I = {i | pi , 0} ⊆ [n].

2. If |I | > t , abort.

3. If |I | < t , arbitrarily add indices to I until |I | = t .

4. m ← (1 + ϵ)t

5. Mr(I) ← 0t×m (Initialize all zero matrix.)

6. For i ∈ I : Mi ← πGenRandVec(i,m,R)
T

7. p̂← πSolveLinearSystem(Mr(I), pI)

8. ĉ←$ encryption of p̂ using E .Dec and skE

165

9. Output ĉ

Figure 4.9: Procedure πLSObvDecompress.ObvDecompress

Usage On input compressed ciphertexts ĉ and randomness R; output decompressed ciphertexts c̃.

1. m ← (1 + ϵ)t

2. For i ∈ [n]: c̃i ← πGenRandVec(i,m,R) · ĉ

3. c̃← (c̃1, . . . , c̃n)

4. Output c̃

Failure Probability. From above, we saw that the encoding is correct as long as the compressor

can solve the linear system associated with Mr(I). For the failure probability, we can simply calculate

the probability that Mr(I) does have a unique solution (or it cannot be found). As M is a random

band matrix, we know that Mr(I) is also a random band matrix. Therefore, if we set the band length

w = O(λ/ϵ + log t) and Mr(I) to be a t × (1 + ϵ)t , then Mr(I) has a unique solution.

Compression Rate. We show that ϵ may be as small as 0.05 using experimental evaluation (see

Section 4.6.1). Note, this is only 5% larger than the minimum of t ciphertexts since t plaintext

values must be correctly encoded.

Running Time. The compression algorithm requires solving the linear system associated to

Mr(I) that is a t × (1+ϵ)t random band matrix. This can be done inO(tw) time using only plaintext

operations. Additionally, the resulting vector must be encrypted using O(m) = O(t) time.

Decompression simply requires computing the matrix-vector multiplication M · ĉ. As each

row has at most w one entries, this requires O(nw) homomorphic additions.

166

Obliviousness. Note that ĉ is always a length-m ciphertext vector. Reducing to the security of

the underlying encryption scheme E, we can replace each of these ciphertexts with encryptions

of 0 meaning ĉ is independent of input plaintexts.

Noise Growth for SHE. Recall that for the applications to batch PIR and labeled PSI, we will

initialize LSObvCompress, using lattice-based SHE schemes. Therefore, noise growth is an impor-

tant factor to consider. We note that the compression algorithm is performed in plaintext without

any homomorphic operations. Therefore, we only consider noise growth for decompression. The

compressed input consists ofm fresh SHE ciphertexts. Decompression adds at most w ciphertexts.

If the input ciphertexts c̃ = (c̃1, . . . , c̃m)
T have error Err(c̃i) 6 e for all i ∈ [m], then each output

ciphertext has error at most O(w · e). See Appendix 4.1.1 for further details.

4.4 Batch PIR

We will present three single-server PIR schemes using our compression techniques. We refer

readers to Section 4.6.2 for our experimental evaluation to choose the best option for various

settings of database size, entry size and batch size. We also present an improved two-server

scheme.

4.4.1 Single-Server: Compressed Responses

In this section, we present our improved single-server batch PIR with compressed responses that

apply for large entries that cannot leverage vectorization techniques [Mughees and Ren 2023].

Cuckoo Hashing Batch PIR Framework. First, we review the Cuckoo Hashing Batch PIR

Framework by Angel et al. [Angel et al. 2018]. In a naive batch PIR scheme, the server would

process each of the ` queries on the entire n database entries, resulting in a total of O(n`) server

operations. To reduce server computation, Angel et al. [Angel et al. 2018] presented a batch PIR

167

framework that cleverly utilizes cuckoo hashing to encode both the batch query and the database

entries. To date, this is the most practically e�cient approach to constructing a batch PIR scheme.

Our batch PIR will be built directly from this framework.

In this framework, the server setup works by creating B > ` independent single-query PIR

servers and replicating each of the n database entries appropriately to a subset of α > 1 servers.

Consider a sparse database D = {(k1,v1), . . . , (kn,vn)} ∈ (K ×V)
n. Concretely, the choice of the

α-subset is determined by the individual database entry (ki,vi) and α independent hash functions

H1, . . . ,Hα : K → [B]mapping keys to one of the B servers. In particular, (ki,vi)will be replicated

to the servers indexed by H1(ki), . . . ,Hα (ki). The total number of entries across all B servers will

be nα .

The hash functions that will be shared between the client and the server so that the client may

also perform batch queries. Given a batch query {q1, . . . ,q`}, the client performs cuckoo hashing

to map the ` query keys into the B buckets. In particular, each bucket will contain at most one

query key after cuckoo hashing. Then, the client constructs a single-query PIR request for each

of the B PIR servers. For empty buckets, the client will construct dummy “zero" requests such

that the response to a dummy request will be a ciphertext that encrypts zero. Concretely, B − `

dummy requests. Finally, the server will process the B independent single-query PIR requests and

send B responses back to the client.

Concrete Instantiation. Angel et al. [Angel et al. 2018] empirically determined that setting

B = 1.5` and α = 3 results in an appropriate balance between the failure probability of the client

allocation procedure, and e�ciency. We notice that the request and response size in the cuckoo

hashing framework is larger than the naive approach. In the naive approach, the request and

response size are merely ` ciphertexts whereas the framework requires 1.5` ciphertexts. This is

50% larger than the number of responses in the naive approach.

168

Index PIR from SHE Composition. Now we recall the state-of-the-art for single-query index

PIR (index means that the keys are just 1, . . . ,n). Recent PIR schemes compose the two classes

of SHE schemes to obtain fast computation and small communication. These include the more

theoretical work of Gentry and Halevi [Gentry and Halevi 2019] as well as recent practical PIR

schemes of OnionPIR [Mughees et al. 2021] and Spiral [Menon and Wu 2022]. These families of

PIR schemes enable larger levels of recursion than prior works (such as [Angel et al. 2018; Ali et al.

2021]) due to their superior ablility to minimize noise growth by switching between SHE schemes.

At a high level, these PIR schemes operate as follows. The database is represented as a

hypercube with dimension d1 × d2 × . . . × dz . The �rst dimension is typically large such as d1 ∈

{128, 512, 1024} while the other dimensions are the same and much smaller d2 = . . . = dz ∈ {2, 4}.

For convenience, we will denote d = d2 = . . . = dz . For a PIR request, the client will upload an

encrypted vector of length d1 +d2 + . . .+dz = d1 + (z − 1)d specifying a single entry in each of the

z dimensions. The client uploads these as Regev/BFV encryptions using the packing techniques

from Angel et al. [Angel et al. 2018] that can be unpacked by the server. Afterwards, the server

applies the �rst dimension using Regev/BFV encryptions. The remaining Regev/BGV encryptions

in the client’s request are converted to GSW ciphertexts. Using the result of the �rst dimension’s

processing, the remaining z − 1 levels are handled using external products. Note, the �nal result is

a Regev/BGV encryption that can be reduced using modulus switching before being returned the

client.

Client Mapping or Keyword PIR. One subtlety of the cuckoo hashing batch PIR framework

presented above is that each of the B independent single-query PIR servers consists of a sparse

database. We note that this is true regardless of whether the original batch PIR problem consists

of a dense database where K = [n] or a sparse database where K could be much larger. In earlier

works (such as [Angel et al. 2018; Mughees and Ren 2023]), it was suggested to use O(n) client

mappings to convert from database indices to bucket indices. Recent work [Patel et al. 2023]

169

instead directly uses state-of-the-art keyword PIR schemes to avoid linear client storage. At a high

level, the only di�erence between [Patel et al. 2023] and the index PIR schemes presented above is

that the client request may contain di�erent inputs. However, the server-side processing, which is

the only critical part needed when we analyze noise growth below, remains identical. Throughout

the rest of this chapter, we will follow the approach of [Patel et al. 2023] and use single-query

keyword PIR protocols for each of the B buckets.

Our Construction. To reduce communication in batch PIR, we will apply LSObvCompress to

reduce the server response communication in the cuckoo hashing framework.

Namely, recall that for the B − ` buckets which do not have an associated key, the client will

construct dummy “zero” requests such that the corresponding response ciphertext will encrypt

zero. This can be done by setting, e.g., vz to the zero-vector, since in the last step of the response

algorithm, the server computes the inner product of vz with some vector to obtain the �nal

response ciphertext. Therefore, after the server processes the B = 1.5` requests, it obtains B = 1.5`

responses of which ` consist of encrypted entries, and the rest are encrypted zeros. Thus, the

server can apply the compression of LSObvCompress with n = B and t = ` to obtain compressed

ciphertexts. Of course, the client knows the indices of the ` real requests. As a result, the client

can execute the decompression of LSObvCompress to obtain the requested entries.

Our construction therefore results in response size with overhead as small as 1.05× the optimal,

with minimal added computation, instead of the 1.5× overhead in response size of [Angel et al.

2018].

Noise Growth of Prior (Keyword) PIR schemes. For noise growth, we �rst perform the noise

analysis for prior PIR schemes using the keyword PIR framework [Patel et al. 2023] applied using

recent PIR schemes from SHE composition [Mughees et al. 2021; Menon and Wu 2022] here. We

will then see in the next section that our new PIR scheme increases the noise growth by a O(w)

multiplicative factor.

170

To compute the noise growth of this prior family of (keyword) PIR schemes, we will �rst make

some assumptions without loss of generality. Suppose that the server has unpacked the request

and obtained d1 + . . . + dz = d1 + (z − 1)d ciphertexts. We will assume that the d1 Regev/BFV

ciphertexts for the �rst level have error e0. The remaining (z − 1)d GSW ciphertexts will have

error e1 that may be di�erent due to translation to between Regev/BFV to GSW schemes. We will

also assume that each database entry has norm at most `. For large database entries, each entry is

split into smaller parts each of norm at most `.

Next, we can compute the noise growth of the above family of PIR schemes. We start by

analyzing the �rst dimension processing where the result is n/d1 BFV/Regev ciphertexts with

errorO(d1 · ` ·e0) as each of the n/d1 output ciphertexts are the result of summing d1−1 ciphertext-

plaintext multiplications with the original z BFV/Regev encryptions with error e0.

We move onto the remaining z−1 dimensions. Consider the processing of the second dimension.

The output will be n/(d1 · d) ciphertexts where each ciphertext is the sum of d outputs from the

external product operations. After the external product, the noise is O(Be1 + d1`e0). As we do d

additions, the noise of each ciphertext after the second dimension processing is O(dBe1 + d1d`e0).

Repeating the analysis for all z dimensions, we obtain the noise of the �nal ciphertext is

O

(
z−1∑
i=1

diBe1 +

z−1∑
i=1

did1`e0

)
.

Assuming that d > 2, we get that the �nal noise is

O((n/d1)Be1 + n`e0)

since d > 2 and d1 · d
z−1 = Θ(n).

Noise Analysis of Our PIR Scheme with Compression In this section, we analyze the noise

growth of our PIR scheme that utilizes LSObvCompress for response compression. We will build

171

on top of the analysis above. Recall that if we assume that the d1 ciphertexts for the �rst dimension

have error e0 and the (z − 1)d ciphertexts for the other dimensions have error e1, then the �nal

ciphertext has noise O((n/d1)Be1 + n`e0).

Let us consider applying LSObvCompress additionally for response compression. Note, this

would result in another O(w) multiplicative factor in noise growth, since the algorithm adds

together O(w) ciphertexts at a time. Thus, the �nal noise is O((n/d1)Be1w + n`e0w), which is only

a O(w) multiplicative factor larger than the prior schemes.

4.4.2 Single-Server: Compressed Reqests

Next, we apply LSObvDecompress to compress requests for single-server batch PIR schemes.

Our Construction. In our framework using the keyword PIR from [Patel et al. 2023], the client

generates B = 1.5` requests, each containing z vectors. However, we only need correct answers

from ` requests. Thus, the client can combine all B · z request vectors into one long vector, and

for relevant indices I consisting only of entries corresponding to the z vectors for each of the `

important requests, apply LSObvDecompress. This will result in a compressed request with size

overhead only 1.05× compared to the naive batch PIR, which the client can then encrypt and send

to the server. This is in contrast to the 1.5× overhead in request size of [Angel et al. 2018]. We also

utilize in our construction the request packing techniques from [Angel et al. 2018] to �t multiple

requests into a single ciphertext.

The server will �rst apply the request ciphertext packing decoding and, then run decompression

from LSObvDecompress to obtain the B encrypted requests. Note, only the ` important requests

will be correct. This is su�cient as the remaining 0.5` dummy requests are ignored by the client

anyways. The remainder of the server processing and client decrypting remains identical.

172

Noise Growth. We show that applying LSObvDecompress increases noise by an O(w) multi-

plicative factor. We will build on top of the analysis above. Since LSObvDecompress adds O(w)

ciphertexts together at a time, it is clear that the noise indeed increases by an O(w) multiplicative

factor to start. As a result, we can imagine that the ciphertexts now have error O(we0) and O(we1)

respectively. After the server processes the z dimensions, the resulting ciphertext has noise

O((n/d1)Be1w + n`e0w). Therefore, if we only apply LSObvDecompress this increases the noise

growth by a multiplicative O(w) factor over the prior schemes.

4.4.3 Single-Server Batch PIR with Reqest and Response Compression

In this section, we present a single-server batch PIR scheme that uses both LSObvDecompress and

LSObvCompress to compress requests and responses respectively. As we will see, this scheme is

currently only of theoretical interest, as the noise growth is too large for practice.

We leverage one important aspect of the keyword PIR framework from [Patel et al. 2023],

presented above. In this framework, the smallest dimension of the request vectors, say z w.l.o.g., is

typically very small, of size dz = 2 or dz = 4. As described above, if the client wishes to construct

a dummy “zero” request, it can set vz to the all-0 vector of length 2 or 4, and all other vectors

v1, . . . , vz−1 arbitrarily. This is because when vz is applied at the last level to obtain the �nal

ciphertext, it will always produce a ciphertext that encrypts zero.

Our Construction. We use a similar approach as Section 4.4.1 and Section 4.4.2. However,

we must modify request compression to be compatible with response compression. Recall that

LSObvCompress for response compression requires that the dummy responses are zero encryp-

tions.

To achieve this, we will set the last dimension of all 0.5` dummy requests to be the all-zero

vector. In the keyword PIR framework [Patel et al. 2023], the resulting response will be a zero

encryption. The relevant indices become all ` real request vectors and the vector corresponding

173

to the last dimension for each of the 0.5` dummy requests. Afterwards, the client can exe-

cute LSObvDecompress to compress the request. The server decompresses the request using

LSObvDecompress, processes the requests to compute B = 1.5` responses and compresses using

LSObvCompress as there are at most ` zero entries. Finally, the client decompresses to obtain the

` entries.

Efficiency. The client compresses a vector of length 1.5` · (d1 + . . . + dz) with |I | = ` · (d1 +

. . .+dz)+ 0.5`dz . Therefore, the compressed request consist of d1.05|I |/re if r requests can �t into

a single ciphertext using the request packing techniques in [Angel et al. 2018]. The compressed

response has the identical size as the PIR scheme from Section 4.4.1.

Large Noise Growth Let us consider applying LSObvCompress additionally for response

compression, after applying LSObvDecompress for request compression. It is easy to see taht

this would result in another O(w) multiplicative factor in noise growth, since the algorithm

adds together O(w) ciphertexts at a time. The �nal ciphertexts would therefore have noise

O((n/d1)Be1w
2 + n`e0w

2), which is O(w2) larger than before. This is in fact too large – we were

unable to �nd parameters where request and response compression together beat either of the PIR

schemes with just one of the techniques. We leave it as an open problem to �nd better SHE/PIR

schemes enabling both request and response compression.

4.4.4 Single-Server: Vectorized Responses

We present a method to compress responses in conjunction with the recent vectorization techniques

of Mughees and Ren [Mughees and Ren 2023]. The vectorization techniques [Mughees and Ren

2023] utilize Single-Instruction-Multiple-Data (SIMD) techniques. SIMD encodes multiple database

entries into a single ciphertexts (leveraging additional structure of the SHE scheme) and operates

on all of them simultaneously.

174

The core idea of utilizing LSObvCompress to compress responses remains the same, but we

wish to leverage that multiple entries �t into a single ciphertext. To do this, we present a vectorized

version of LSObvCompress that optimally packs multiple entries into a single ciphertext. If d

entries �t into a single ciphertext, our vectorized LSObvCompress sends only d1.05`/de to the

client. In contrast, d1.5`/de ciphertexts are encoded in [Mughees and Ren 2023].

At a high level, vectorized LSObvCompress works nearly identically as the LSObvCompress

variant described in Section 4.2.3. The only di�erence is that we apply techniques from [Mughees

and Ren 2023] to rotate ciphertexts and pack multiple entries into a ciphertext before performing

compression. We start by presenting an overview of the prior vectorized batch PIR [Mughees and

Ren 2023] before presenting our construction.

Vectorized Batch PIR. Mughees and Ren [Mughees and Ren 2023] proposed a batch PIR

scheme that cleverly utilizes ciphertext vectorization to improve computation and reduce response

sizes. In particular, they utilize Single-Instruction-Multiple-Data (SIMD) techniques for e�ciently

performing homomorphic operations [Smart and Vercauteren 2014]. SIMD encodes multiple

database entries into a single ciphertext and operates on all of them simultaneously. In more detail,

each plaintext polynomial consists of multiple SIMD slots in which multiple database entries can

be encoded. Homomorphic operations can be applied to the ciphertexts and the plaintexts in

SIMD fashion, i.e. single ciphertext-plaintext absorption corresponds to SIMD slot-wise ciphertext-

plaintext absorption. Additionally, there are ciphertext rotation operations to manipulate and

rotate the SIMD slots.

The vectorized batch PIR scheme [Mughees and Ren 2023] also builds on top of the cuckoo

hashing based framework by Angel et al. [Angel et al. 2018]. In the cuckoo hashing framework,

consider the point where the server completes processing the B PIR requests and holds the B PIR

responses. Each valid response ciphertext will contain the desired entry in an arbitrary SIMD slot.

The vectorized batch PIR merges multiple response ciphertexts using SIMD operations to reduce

175

the total response size.

We now describe the merging of response ciphertexts in more detail. Let ` be the number of

queries in the batch, B = 1.5` be the number of single-query PIR buckets, and d be the number of

SIMD slots. For simplicity, we will assume d to be a power of two and each database entry can

be encoded in a single SIMD slot. Let c̃1, . . . c̃B be the response ciphertexts after the PIR servers

process the queries, where each c̃i encrypts a length d vector of the form (0, . . . , 0,pi, 0, . . . , 0).

Note that c̃i will contain at most one non-zero SIMD slot. If c̃i is the PIR response of a dummy

request, then every slot of c̃i will be zero. Note that the server knows that at most ` PIR responses

contain a non-zero slot and the remaining B − ` PIR responses will encrypt an entirely zero vector.

The vectorized scheme [Mughees and Ren 2023] converts (0, . . . , 0,pi, 0, . . . , 0) into (pi, . . . ,pi)

using ciphertext rotations. Without loss of generality, suppose that pi is in the �rst slot. The

server �rst rotates the ciphertext by 1 position to obtain a new ciphertext that contains pi in the

second slot. It then homomorphically adds the two ciphertexts to obtain a ciphertext that has

pi in the �rst two slots. Afterwards, it rotates the resulting ciphertext by 2 positions to obtain

a new ciphertext that contains pi in the third and the fourth slots. Again, it homomorphically

adds the two ciphertexts to obtain a ciphertext that has pi in the �rst four slots. Repeating this

dlog2 de times, we will obtain a ciphertext that has pi in each of the d SIMD slots. This process

works regardless of the original position of pi . Afterwards, each c̃i = (pi, . . . ,pi) with the same

value in every slot.

Next, the scheme masks each ciphertext to ensure that only a single, but predictable, slot may

contain a non-zero value. The goal is to transform c̃i = (pi, . . . ,pi) to contain pi only in the slot

with i-th index. For example, we will multiply c̃1 · (1, 0, . . . , 0) to obtain (p1, 0, . . . , 0). When d < n,

we note that the i-th index would rotate from the last slot back to the �rst slot. For example,

the c̃d+1 will also be multiplied by (1, 0, . . . , 0) as the (d + 1)-th slot is equivalent to the �rst slot.

176

Afterwards, we get the following:

c̃1 = (p1, 0, 0, . . . , 0)

c̃2 = (0,p2, 0, . . . , 0)

. . .

c̃d = (0, 0, 0, . . . ,pd)

c̃d+1 = (pd+1, 0, 0, . . . , 0)

c̃d+2 = (0,pd+2, 0, . . . , 0)

. . .

Finally, merge each consecutive group of d ciphertexts into one by homomorphic additions to

obtain the following:

(p1,p2, . . . ,pd), (pd+1,pd+2, . . . ,p2d), . . .

Thus, this results in dB/de response ciphertexts.

The vectorized scheme by Mughees and Ren [Mughees and Ren 2023] can signi�cantly reduce

response size for small entries and large number of SIMD slots d . However, it still shares the

same ine�ciency as in Angel et al.’s framework. Out of the B = 1.5` PIR requests, B − ` = 0.5`

requests will correspond to dummy requests. Thus, 0.5` PIR responses will be zero and at most `

will contain a non-zero slot. The vectorized scheme pessimistically encodes all 1.5` responses

requiring dB/de = d1.5`/de response ciphertexts. This means that these “dummy”, zero responses

must still occupy SIMD slots in the �nal responses. We show that we can apply LSObvCompress

to e�ectively remove these dummy, zero PIR responses.

177

Our Construction. In the context of LSObvCompress, the input ciphertext vector consists

of n = B = 1.5` ciphertexts to compress, where there are at most t = ` ciphertexts that encrypt

non-zero plaintext entries. Our goal is to compress this down to (1+ϵ)` SIMD slots, which implies

we will need a total of h = d(1 + ϵ)`/de ciphertexts.

The main idea behind our usage of LSObvCompress stays unchanged from the large entry

setting in Section 4.4.1. We present a vectorized version of LSObvCompress that e�ciently packs

multiple plaintext values into a single ciphertext. For each of the B response ciphertexts c̃i , suppose

we completed the �rst step of the vectorized PIR scheme [Mughees and Ren 2023]. Thus, all SIMD

slots are populated with the plaintext entry, c̃i = (pi, . . . ,pi).

Next, we will apply our technique to compress using the matrix M that is described in Sec-

tion 4.2.3 where M is the transpose of a random band matrix with dimensions B ×m where

m = (1 + ϵ)`. For convenience, we will denote the plaintext vector as p = (p1, . . . ,pB)
T . Using

ideas from LSObvCompress, our goal is to compute them = (1 + ϵ)` SIMD slot values from the

matrix-vector multiplication, M ·p. However, we would like to do this such that these are encoded

in the slots of h = dm/de = d(1 + ϵ)`/de ciphertexts.

At a high level, our vectorized version of LSObvCompress will encode the m = (1 + ϵ)`

SIMD slots such that the �rst d values of M · p will be in the �rst ciphertext, the next d values

of M · p will be in the second ciphertext and so forth. We compute this vectorized encoding

as follows. For each ciphertext i ∈ [B], let ji1, . . . , jiд(i) be the indices of non-zero entries in the

i-th column of M. At a high level, we may imagine that the SIMD slots of the h ciphertexts

are �attened, i.e. the left-hand-side column vector is of length d · h. With this formulation,

computing and adding M[:][i] · pi corresponds to adding the encryption of pi to �attened slots

with indices ji1, . . . , jiд(i) . More precisely, for each jik ∈ {ji1, . . . , jiд(i)}, we compute a pair of indices

(a,b) = (b(jik − 1)/dc + 1, (jik − 1 mod d)+ 1), and homomorphically add to ĉa a multiplication of

c̃i by a one-hot binary mask that is 1 only at the bth slot.

The decompression works identically, except the algorithm now �attens the decrypted SIMD

178

slots to (1 + ϵ)` individual plaintext entries before solving the linear system.

We formally present our vectorized version of LSObvCompress in πLSObvCompress.VecObvCompress.

All di�erences with the original algorithm are highlighted in blue. We note the changes only

enable vectorization and the core compression ideas remain identical. One can obtain the prior

LSObvCompress algorithm by setting the number of SIMD slots to be d = 1.
Figure 4.10: Procedure πLSObvCompress.ObvCompress

Usage: On input: homomorphic encryption public key pkE , vector of n SIMD ciphertexts with

all slots populated with the same plaintext c̃ , number of non-zero plaintexts t , and randomness R;

output compressed ciphertexts ĉ of c̃ .

1. m ← (1 + ϵ)t

2. M← 0m×n

3. For i = 1, . . . ,n

(a) vi ← πGenRandVec(i,m;R) (Random column band)

(b) M[:][i] ← vi (Set i-th column to vi)

4. d ← number of SIMD slots per ciphertext

5. ĉ← length d(1 + ϵ)t/de ciphertexts encrypting 0 slots

6. For i = 1 . . .n

(a) For j ∈ non-zero indices of M[:][i]

i. a ← b(j − 1)/dc + 1

ii. b ← ((j − 1) mod d) + 1

iii. msk ← one-hot binary mask with b-th slot set to 1

iv. ĉ[a] ← ĉ[a] +msk · c̃[i]

7. Output ĉ

179

We point out that the compression algorithm will incur O(B ·w) homomorphic operations

(wherew is the column band width), which is asymptotically the same running time as the original

LSObvCompress with B = n input ciphertexts. The decompression algorithm requires O(` ·w)

time.

4.4.5 Two-Server: Compressed Responses

Next, we use LSObvCompress to compress responses for two-server batch PIR. In this setting,

the client sends requests to both servers. Each server holds a copy of the database and cannot

communicate with each other. They then send individual responses back to the client, who uses

both to reconstruct the requested entry. The same correctness and privacy conditions are required.

Privacy is considered with respect to each individual server assuming non-collusion.

Two-Server PIR. To date, the most concretely e�cient two-server PIR schemes are built using

distributed point functions (DPF) [Gilboa and Ishai 2014; Boyle et al. 2016; Ha�z and Henry 2019].

A point function fi : K → {0, 1} satis�es fi(x) = 1 if and only if x = i . DPFs enable secret sharing

fi amongst the two servers using two functions, f 0
i and f 1

i , satisfying fi(x) = f 0
i (x) + f 1

i (x) for all

x ∈ K . Both f 0
i and f 1

i must not individually reveal anything about fi .

To perform a two-server keyword PIR query for key k , the client uses DPFs to create secret

shares of fk , f 0
k

and f 1
k

, that are sent to each of the two servers. Suppose the database consists of

n key-value pairs, D = {(k1,v1), . . . , (kn,vn)}. For each server j ∈ {0, 1}, the j-th server computes

zj ← f j
k
(k1) · v1 + . . . + f j

k
(kn) · vn .

Finally, the client receives z0 and z1 and computes the �nal answer z0+z1. Ifk = ki , then z0+z1 = vi .

Otherwise, z0 + z1 = 0 when k < {k1, . . . ,kn}.

There is a small issue that the client cannot distinguish between vi = 0 and k < {k1, . . . ,kn}.

180

To �x this, we can ensure that zero is not a valid entry. For example, one can simply append a

1-bit to the end of each entry, v1, . . . ,vn.

Two-Server Batch PIR. To our knowledge, the most e�cient two-server batch PIR remains the

cuckoo hashing framework of Angel et al [Angel et al. 2018]. In the concrete instantiation, we

use a two-server, single-query, keyword PIR for each of the B = 1.5` buckets when performing a

batch query for ` entries.

Our Construction. Our goal is to utilize LSObvCompress to reduce the number of responses

from B = 1.5` that are sent by both servers. We will use the two-server keyword PIR based on the

DPF of [Boyle et al. 2016]. Note that this PIR does not use encryption and, instead, relies on the

non-collusion of the two servers for security. The encryption scheme E for LSObvCompress in

this setting is additive secret sharing. Homomorphic additions will simply be addition operations

by each server.

First, recall that in order to use LSObvCompress, the 0.5` dummy requests must results in

additive sharings (encryptions) of 0. We will add (k0, 0) is added to each of the B buckets for special

key k0. The client will issue a keyword PIR query for k0 for each of the 0.5` dummy buckets.

The servers upon receipt of these requests for all B buckets will then compute the corresponding

responses. Consider the i-th response z0
i and z1

i for both servers. Let I ′ ⊂ [B] be the indices of the

real, non-dummy requests. For all i ∈ [B], zi = z0
i + z

1
i is the i-th requested entry. If i < I ′, then

zi = z0
i + z

1
i = 0.

We can thus apply LSObvCompress as follows. Both servers will use LSObvCompress to

compress their responses z0 = (z0
1, . . . , z

0
B) and z1 = (z1

1, . . . , z
1
B). Recall that this is done by

computing the matrix-vector multiplications ẑ0 ← M · z0 and ẑ1 ← M · z1 where M is the

transpose of a random band matrix. The client will compute ẑ← ẑ0 + ẑ1 = M · (z0 + z1) that is a

compression of the requested entries, z0 + z1. Finally, the client runs the decompression portion

of LSObvCompress on ẑ to obtain the non-dummy queried entries, zi for all i ∈ I .

181

4.5 Labeled PSI

In this section, we show our techniques may be used to build protocols for labeled PSI in the

unbalanced setting. Recall that the receiver has a set X and the sender has a labeled set {(y, Ly) |

y ∈ Y }. Note, that one may interpret this as batch keyword PIR with the receiver as the client and

the sender as the server. The only di�erence is that PSI requires privacy for both parties’ inputs.

Therefore, we need to also enable privacy for the sender (server) input. We present two improved

constructions using our compression techniques.

4.5.1 Labeled PSI from Batch Keyword PIR and Oblivious PRF

We can use the generic composition from [Freedman et al. 2005] to build labeled PSI from batch

keyword PIR and an oblivious pseudorandom function (OPRF). First, we describe the OPRF

instantiation that we use for the transformation. We now present the formal oblivious PRF

functionality used in our unbalanced labeled PSI protocol, Foprf .

Figure 4.11: Functionality Foprf

Parameters: There are two parties, a sender and a receiver. The receiver has set size n if honest

and n′ otherwise. Let out ∈ Z be the bit length.

Functionality:

1. The functionality �rst samples random function F : {0, 1}∗ → {0, 1}out.

2. Subsequently, on input (Sender, sid,Y) from the sender where Y ⊆ {0, 1}∗, the functionality

returns {F (y) | y ∈ Y } to the sender.

3. Next, on input (Receive, sid,X) from the receiver where X ⊆ {0, 1}∗, ensure that |X | ≤ n if

the receiver is honest and |X | ≤ n′ otherwise. The functionality returns (Receiver-Input, sid)

to the sender.

4. Thereafter, on input (Send, sid) from the sender, the functionality returns {F (x) | x ∈ X } to

182

the receiver.

4.5.1.1 OPRF with Malicious Security

An OPRF allows the receiver to input set X and learn the set of pseudo-random outputs {Fk(x) |

x ∈ X }, where F is a PRF, and k is known to the sender. For security, both the sender and receiver

should learn nothing else (except the sender learns the size of X).

In this work, we will use the Di�e-Hellman based OPRF protocol of [Jarecki and Liu 2010] that

computes the function Fα (x) = H′(H(x)α), where H,H′ are hash functions modeled as random

oracles. We take a description of this OPRF almost verbatim from [Chen et al. 2018]: Let G be a

cyclic group with order q, where the One-More-Gap-Di�e-Hellman (OMGDH) problem is hard. H

is a random oracle hash function with range Z∗q . The sender has a key α ∈ Z∗q and the receiver has

a set of inputs X . In the OPRF request procedure πOPRFRequest, the receiver �rst samples βi ← Z∗q

for each i = 1 . . . |X | and sends {H(xi)βxi | i = 1 . . . |X |} to the sender.
Figure 4.12: Procedure πOPRFRequest

Usage: On input receiver’s (ordered) set of itemsX ; output list of temporary exponents (β1, . . . , β |X |)

and list of requests req.

1. req← ⊥ For i = 1 . . . |X |

(a) βi ←$ Z
∗
q

(b) req.insert(H(X [i])βi)

2. Output ((β1, . . . , β |X |), req)

Next, in the OPRF answer procedure πOPRFAnswer, the sender on input its PRF key α responds

with {(H(xi)βi)α | i = 1 . . . |X |}.

183

Figure 4.13: Procedure πOPRFAnswer

Usage: On input PRF key α and list of requests req; output list of responses resp.

1. resp← ⊥ For i = 1 . . . |req|: resp.insert(req[i]α)

2. Output resp

Finally, in the OPRF process procedure πOPRFProc, the receiver outputs

H′(H(xi)α) = H′((H(xi)βi)α)1/βi)

for each x ∈ X (each output consists of a hash and an encryption key, to be used in the unbalanced

labeled PSI protocol).

Figure 4.14: Procedure πOPRFProc

Usage: On input receiver’s (ordered) input set X , list of temporary exponents (β1, . . . , β |X |) and list

of responses resp; output mapping from items to OPRF outputs, X ′.

1. X ′← ⊥

2. For i = 1 . . . |resp|

(a) (x̂i ,ki) ← H′(resp[i]1/βi)

(b) X ′.mapInsert(X [i], (x̂i ,ki))

3. Output X ′

The outer hash function H′ is used to map the group element to a su�ciently long bit string,

and is modeled as a random oracle to help facilitate extraction in the malicious setting. In particular,

by observing the queries made to H(xi), the simulator can collect a list of pairs {(xi,H(xi)} which

are known to the receiver. From this set the simulator can compute the set A = {(xi,H(xi)α)}. For

some subset of the H(xi), the receiver sends {H(xi)βi } to the simulator, who sends back {H(xi)βiα }.

184

For the receiver to learn the OPRF value for xi , it must send H(xi)α to the random oracle H′. At this

time, the simulator extracts xi if (xi,H(xi)α) ∈ A. Although this OPRF does not facilitate extracting

all xi at the time the �rst message is sent, extraction is performed before the receiver learns the

OPRF value, which will be su�cient for our purposes.

In the context of our unbalanced labeled PSI protocol, this OPRF has the property that the

sender can use the same key with multiple receivers. This allows the sender, who has a large and

often relatively static set, to pre-process its set only once.

4.5.1.2 Unbalanced Labeled PSI Transformation

Using a maliciously secure OPRF and a batch keyword PIR scheme, we now describe the generic

construction of [Freedman et al. 2005] to get unbalanced labeled PSI. At a high-level, the sender and

receiver use an OPRF to compute a (pseudo-random) hashed item and encryption key associated

with each real item in their sets. The sender then builds a pseudo-database of key-value pairs

with its hashed items as the keys and the encryption of the corresponding real labels under the

corresponding encryption keys as the values. Then, the receiver uses the batch keyword PIR

protocol to query for the hashed items in its set, and decrypts the labels using the corresponding

encryption keys from the OPRF.

Procedure πBuildPseudoDB formally describes the algorithm the sender uses to build their pseudo-

database of hashed items and encrypted labels. First, the sender invokes Foprf on each y ∈ Y and

receive the output (ŷ,ky). Then from these outputs and the set of labels {Ly | y ∈ Y } it constructs

a pseudo-database DB = {(ŷ, Enc(ky, Ly)) | y ∈ Y }.

Figure 4.15: Procedure πBuildPseudoDB

Usage: On input sender’s set of items and associated labels {(y, Ly) | y ∈ Y }; output pseudo-database

of hashed items and encrypted labels DB.

1. DB← ⊥

185

2. Invoke Foprf on input Y to receive {(ŷ,ky) | y ∈ Y }

3. For (y, Ly) : y ∈ Y

(a) cty ←$ Enc(ky, Ly)

(b) DB.mapInsert(ŷ, cty)

4. Output DB

Next, the receiver’s query procedure is formally described in πULPSI�ery. The receiver invoke

Foprf on each input item x to receive (x̂,kx) Then, it sends a batch keyword PIR request on input

Q′ = {x̂ | x ∈ X }.

Figure 4.16: Procedure πULPSI�ery

Usage: On input receiver’s input set of items X ; output mapping from items to encryption keys K

and batch keyword PIR request req.

1. K ← ⊥

2. Q ← ⊥

3. Invoke Foprf on input X to receive {(x̂,kx) | x ∈ X }

4. For x ∈ X

(a) K .mapInsert(x,kx)

(b) Q .insert(x̂)

5. req←$ BatchKWPIR.query(Q)

6. Output (K, req)

Then, the server’s answer procedure, formally described in πULPSIAnswer answers the receiver’s

batch keyword PIR request using its pseudo-database DB.

186

Figure 4.17: Procedure πULPSIAnswer

Usage: On input batch keyword PIR request req and pseudo-database DB); output batch keyword

PIR response resp.

1. resp← BatchKWPIR.answer(DB, req)

2. Output resp

Finally, the algorithm the receiver uses to decrypt the server’s response is formally described

in πULPSIDecrypt. The receiver uses the batch keyword PIR to obtain the payload for each x̂ that

was in DB, Enc(kx , Lx), and decrypts it with the corresponding encryption key kx from the OPRF

invocation to output {(x, Lx) | x̂ ∈ X ′ ∩ Y ′} = {(x, Lx) | x ∈ X ∩ Y }.
Figure 4.18: Procedure πULPSIDecrypt

Usage: On input mapping from items to encryption keys K and batch keyword PIR response resp;

output: intersectoin items and associated labels int.

1. int← ⊥

2. {(x, ctx) | x ∈ X ∩ Y } ← BatchKWPIR.decrypt(resp)

3. For (x, ctx) : x ∈ X ∩ Y

(a) Lx ← Dec(K[x], ctx)

(b) int.insert((x, Lx))

4. Output int

Now, we prove the following theorem showing that our labeled PSI is private against a

malicious sender and secure against a malicious receiver, as in prior works [Chen et al. 2018; Cong

et al. 2021]. We note that there are subtleties in the security argument due to the usage of the

keyword PIR construction [Patel et al. 2023]. In particular, the database encoding algorithm from

that keyword PIR construction has non-negligible failure probability. One option is to ensure that

187

the database encoding algorithm fails negligibly by increasing the band length parameter (using

the analysis from [Bienstock et al. 2023c]). However, we show that this is unnecessary – since the

input to the database encoding algorithm is just key-value pairs where each key is a random hash

of the corresponding item in Y output by the OPRF and each value is a pseudo-random encryption

of the label under a random key output by the OPRF, this failure probability is not a function of

the sender’s set Y and thus reveals nothing about it. Therefore, it su�ces to use the keyword PIR

construction unmodi�ed with non-negligible encoding failures.

Theorem 4.5. ULPSI securely realizes Ful-psi with privacy against a malicious sender and security

against a malicious receiver in the Foprf-hybrid model.

Proof. We recall from [Freedman et al. 2005] that privacy against a malicious sender follows

immediately since the adversary learns nothing from the invocation of Foprf , and what the ad-

versary receives from the receiver from the keyword batch PIR invocation reveals nothing about

its query (and thus its set X). Correctness in the real world if the sender is semi-honest easily

follows from the correctness of the underlying keyword batch PIR as well as the correctness and

security of Foprf : If x < Y , then x̂ will not be a key of DB (except with negligible probability), due

to the pseudo-randomness of the OPRF. Otherwise, if x ∈ Y then x̂ will be a key of DB from the

correctness of the OPRF, and so the keyword batch PIR will return the corresponding encrytped

label Enc(kx , Lx), which the receiver can decrypt with kx (also correctly computed from the OPRF)

to get Lx .

We now prove security against a malicious receiver, by describing a simulator S.

• S �rst emulates Foprf and when the malicious receiver invokes it on input X , it returns

random {(x̂,kx) | x ∈ X }.

• Then, it sends X to the unbalanced labeled PSI functionality, Ful-psi, and receives {(x, Lx) |

x ∈ X ∩ Y }.

188

• Finally, it builds a sizenY pseudo-database DB using �rst the key-value pairs {(x̂, Enc(kx , Lx)) |

x ∈ X ∩Y } and then (r , Enc(k, 0)), for random r ,k , for the remaining nY − |X ∩Y |. If it fails,

it outputs ⊥ to the receiver.

• Then, on input the keyword batch PIR request from the malicious receiver, the simulator

returns the honest response using pseudo-database DB to the receiver.

To see why the simulation works, we proceed with a hybrid argument. Hybrid H0 is the

real world. Hybrid H1 is the real world except for all y < X (where this X is the set input by

the receiver to Foprf), the receiver replaces the key-value pairs of y in DB with (r , Enc(k, 0)) for

random r ,k . It is easy to see thatH0 is indistinguishable fromH1 because (i) r ,k are outputs of

Foprf unknown to the receiver, and are thus uniformly random; (ii) by reducing to the security of

the encryption scheme, replacing Enc(k, Ly) with Enc(k, 0) is indistinguishable. Note at this point

that even though the keyword batch PIR database encoding algorithm may fail with non-negligible

probability, we have shown that this failure is simply a function of the pseudorandom ciphertexts

of the database, and not the underlying items {(y, Ly) | y ∈ Y \ X }. Observe thatH1 is in fact the

ideal (simulated) world, and thus the proof is complete.

�

4.5.2 Improving Oblivious Polynomial Evaluation with LSObvDecompress

Now we show that we can use LSObvDecompress to reduce the receiver-to-sender communication

of the unbalanced labeled PSI scheme of [Cong et al. 2021]. We �rst provide an overview of their

scheme.

4.5.2.1 Overview of [Cong et al. 2021]

As in the construction from batch keyword PIR and OPRF of Section 4.5.1, the receiver and

sender �rst both run an OPRF on their items to obtain a hash and an encryption key, the latter

189

of which the sender uses to encrypt the corresponding item label. The receiver thus obtains

X ′ = {(x̂,kx) | x ∈ X } and the sender obtains DB = {(ŷ, Enc(ky, Ly)) | y ∈ Y }. Then, they use

the same cuckoo hashing technique of Angel et al. [Angel et al. 2018] in the batch PIR setting, in

which using three hash functions h1,h2,h3, the sender places each item ŷ of DB in three di�erent

bins out of 1.5 · |X | total bins, and the receiver places each item x̂ of X ′ in a single one of the

1.5 · |X | total bins so that no bin has more than one item. Then, for every bin B in which there is

at most one x̂ , the receiver and sender essentially compute the intersection x̂ ∩ {ŷ | y ∈ Y ∩ B}.

More speci�cally, the sender �rst interpolates the polynomial satisfying the following:

G(x) =

Enc(ky, Ly) if x = ŷ : y ∈ Y ∩ B

random �eld element otherwise

Then, using a FHE scheme E, the receiver encrypts x̂ and sends the ciphertext to the sender

(where the receiver encrypts 0 for empty bins), who returns the homomorphic evaluation of the

polynomial G on x̂ . Next, the receiver �rst decrypts this returned FHE ciphertext, then using kx

from the OPRF output on x , attempts to decrypt the inner ciphertext. If AEAD is used for this

ciphertext, then if x̂ ∈ {ŷ | y ∈ Y ∩ B}, the receiver will obtain Lx ; otherwise, the decryption will

output ⊥.

It is clear that correctness holds. For security, the sender only sees OPRF queries for |X | inputs,

which reveal nothing about X , and then 1.5 · |X | FHE ciphertexts. The receiver only sees AEAD

ciphertexts encrypted with unknown random keys (from the OPRF) for items that are not in its

set.

4.5.2.2 Applying LSObvDecompress

As we observed with the cuckoo hashing framework for batch PIR, for the 0.5 · |X | bins in which

there is no x̂ , it does not matter what encrypted value the receiver gives to the sender. Thus, we

190

can use LSObvDecompress to compress the 1.5 · |X | total ciphertexts with respect to only the |X |

indices in which the corresponding bin has some x̂ , resulting in only (1 + ε) encrypted values sent

by the receiver. Since the sender ends up just getting (1 + ϵ) · |X | ciphertexts, security holds as

before. As we show in our experiments (see Section 4.6.1), ϵ can be as small as 0.05. Therefore, we

may reduce the receiver-sender communication of the [Cong et al. 2021] scheme as much as 30%

as long as the noise budget is su�cient. We point to Section 4.6.2 for our experimental evaluation.

Note that we do not apply LSObvCompress to the sender’s responses. This is because it

crucially relies on the fact that the plaintexts of irrelevant indices are 0. However, unless the

sender interpolates and evaluates the polynomial

G′(x) =

Enc(ky, Ly) if x = ŷ : y ∈ Y ∩ B

0 otherwise

which would be of exponential degree and thus extremely ine�cient to interpolate and evaluate,

then the underlying plaintexts of irrelevant indices are unlikely to be 0.

4.6 Experimental Evaluation

We perform experimental evaluation for our new compression algorithms, LSObvDecompress

and LSObvCompress, as well as their improvements to batch PIR and labeled PSI. Finally, we also

benchmark our protocols for the real world application of anonymous messaging.

Experimental Setup. We implemented our experimental evaluations with around 3000 lines

of C++ code. All our experiments are performed using Ubuntu PCs with 96 cores, 3.7 GHz Intel

Xeon W-2135 and 128 GB of RAM with only single-threaded execution. The AVX2 and AVX-512

instruction sets with SIMD instructions are enabled. The results are the average of at least 10

experimental trials with standard deviation less than 10% of the averages. Our implementations

191

will target error probability 2−40 and 128 bits of computational security. Server monetary costs are

computed using Amazon EC2 savings plan pricing of t2.2xlarge instances [AWS 2023] of $0.09 per

GB of tra�c and $0.021 per CPU hour at the time. We will utilize SHA256 as the hash function

and AES-GCM-256 as the encryption scheme with 32 byte keys. Unless otherwise speci�ed, we

will use the compression parameter ϵ = 0.05 for our experiments.

Interpreting the Experimental Results. As our compression schemes are general schemes

that can be instantiated on various protocols, they incur additional computational overhead

compared to the ones that don’t use our compression schemes. To assess concrete tradeo�s

between the computational overhead and the communication reduction, we will use the Amazon

EC2 server monetary cost model which measures the communication and computational e�ciency

as a dollar cost. We note that this model has been used in prior works [Patel et al. 2023; Bienstock

et al. 2023c] for this exact purpose.

4.6.1 Oblivious Ciphertext Compression

We �rst evaluate the performance of LSObvCompress and LSObvDecompress in isolation and

report results in Table 4.1. We also evaluate the performance of vectorized LSObvCompress in

isolation and report the results in Table 4.2.

Setup. In our experiments for LSObvCompress and LSObvDecompress, we will use Regev

encryption [Regev 2005] as the underlying scheme using the implementation from Spiral [Spiral

2022]. We �x the plaintext size to 8 KB and the ciphertext size to 20 KB.

We implement vectorized LSObvCompress using Microsoft SEAL [SEAL 2023] library. Fol-

lowing prior works [Mughees and Ren 2023], we use the polynomial degree of 8192, ciphertext

modulus of 200 bits, and plaintext modulus of 20 bits for our experimental setup. We �x the entry

size to 256 bytes.

192

Compression Size Sizes & Schemes Compression Time Decompression Time Total Time

1.05t

t = 512, n = 768
LSObvCompress 2.38 s 0.66 s 3.04 s
LSObvDecompress 0.60 s 1.65 s 2.25 s
t = 1024, n = 1536
LSObvCompress 5.15 s 1.34 s 6.49 s
LSObvDecompress 1.25 s 3.94 s 5.19 s
t = 2048, n = 3072
LSObvCompress 10.54 s 2.67 s 13.21 s
LSObvDecompress 2.48 s 6.88 s 9.38 s
t = 4096, n = 6144
LSObvCompress 21.45 s 5.27 s 26.72 s
LSObvDecompress 5.05 s 14.50 s 19.55 s

1.07t

t = 512, n = 768
LSObvCompress 1.82 s 0.53 s 2.35 s
LSObvDecompress 0.49 s 1.34 s 1.83 s
t = 1024, n = 1536
LSObvCompress 4.12 s 1.07 s 5.19 s
LSObvDecompress 0.96 s 3.19 s 4.15 s
t = 2048, n = 3072
LSObvCompress 8.41 s 2.12 s 10.53 s
LSObvDecompress 1.72 s 5.80 s 7.52 s
t = 4096, n = 6144
LSObvCompress 17.06 s 4.43 s 21.49 s
LSObvDecompress 2.76 s 11.19 s 13.95 s

Table 4.1: Evaluations of LSObvCompress and LSObvDecompress for di�erent values of t (non-
zero/relevant entries) and n (uncompressed input size). We fix the plaintext size to 8 KB and ciphertext size
to 20 KB for all our results.

In the tables, t corresponds to the number of non-zero entries and n corresponds to the total

number of entries including the zero entries. We �x the fraction of zero entries to 0.5t (thus

n = 1.5t). Note that this corresponds to the fraction of dummy requests/responses in the cuckoo

hashing framework from [Angel et al. 2018]. In our evaluations, we will target two compression

sizes of 1.05t and 1.07t . Note that this results in 30% and 29% request/response size reduction

respectively.

Results. We see that computation time increases with better compression rate as well as larger

t and n. However, we claim that our LSObvCompress and LSObvDecompress remain practically

e�cient for many applications; as we will show in the next sections, the additional computational

cost is a relatively small fraction of the entire protocol’s computation time for batch PIR, and the

193

Compression
Size Size Compression Time Decompression Time Total Time

1.05t

t = 512, n = 768 12.8 s 0.1 s 12.9 s
t = 1024, n = 1536 25.1 s 0.2 s 25.3 s
t = 2048, n = 3072 50.5 s 0.5 s 60.0 s
t = 4096, n = 6144 100.1 s 0.9 s 101.0 s

1.07t

t = 512, n = 768 10.3 s 0.1 s 10.4 s
t = 1024, n = 1536 20.9 s 0.2 s 21.1 s
t = 2048, n = 3072 41.6 s 0.4 s 42.0 s
t = 4096, n = 6144 83.8 s 0.9 s 84.7 s

Table 4.2: Performance of vectorized LSObvCompress evaluated on various values of t and n. We use
fixed entry size of 256 B.

signi�cant reduction in the communication cost will justify these small additional computational

overhead.

Note that the results in Table 4.2 correspond to ideal cases where the noise level budget is

su�cient enough to accommodate additional homomorphic operations incurred by our scheme.

In particular, this means that we may not be able to directly plug in our scheme to the vectorized

PIR scheme [Mughees and Ren 2023], as di�erent set of parameters may have to be chosen to

handle the extra noise growth.

4.6.2 Single-Server Batch PIR

We evaluate the single-server batch PIR schemes from Section 4.4 using our compression techniques

to reduce communication. We report our results in Table 4.3.

Setup. We implement our compression algorithms on top of the open-source Spiral implementa-

tion [Spiral 2022]. We use n = 1 million database entries for all of our results. Baseline corresponds

to Angel et al [Angel et al. 2018]’s batch PIR framework implemented on top of Spiral [Menon

and Wu 2022] without our compression techniques. The parameters for the baseline were chosen

using the script provided by their open-source implementation. In our evaluations, we consider

three batch sizes ` ∈ {512, 1024, 2048} (in the context of ciphertext compression/decompression,

194

DB
Entry
Size

Batch Size
& Schemes

Public Param
Size

Request
Size

Response
Size

Total Server
Time

Amortized
Server
Time

Total Client
Time

Server
Monetary

Cost

8 KB

` = 512
Baseline 20.87 MB 1.81 MB 15.59 MB 840 s 1.64 s 6.1 s $0.00646
LSObvCompress 22.62 MB 1.81 MB 10.92 MB 890 s 1.74 s 6.7 s $0.00633
LSObvDecompress 20.87 MB 1.40 MB 15.59 MB 863 s 1.69 s 6.4 s $0.00656
` = 1024
Baseline 20.87 MB 3.35 MB 31.18 MB 1,256 s 1.23 s 6.8 s $0.01043
LSObvCompress 23.11 MB 3.35 MB 21.84 MB 1,369 s 1.34 s 8.2 s $0.01025
LSObvDecompress 20.87 MB 2.55 MB 31.18 MB 1,323 s 1.29 s 8.0 s $0.01075
` = 2048
Baseline 20.87 MB 3.96 MB 62.37 MB 1,750 s 0.85 s 7.0s $0.01617
LSObvCompress 23.43 MB 3.96 MB 43.67 MB 1,871 s 0.91 s 9.7 s $0.01520
LSObvDecompress 20.87 MB 3.15 MB 62.37 MB 1,812 s 0.89 s 9.4 s $0.01646

16 KB

` = 512
Baseline 20.87 MB 1.81 MB 31.18 MB 1,286 s 2.51 s 6.3 s $0.01047
LSObvCompress 22.62 MB 1.81 MB 21.84 MB 1,348 s 2.63 s 8.4 s $0.00999
LSObvDecompress 20.87 MB 1.40 MB 31.18 MB 1,308 s 2.55 s 8.3 s $0.01056
` = 1024
Baseline 20.87 MB 3.35 MB 62.37 MB 1,775 s 1.73 s 7.9 s $0.01626
LSObvCompress 23.11 MB 3.35 MB 43.69 MB 1,929 s 1.88 s 9.6 s $0.01548
LSObvDecompress 20.87 MB 2.55 MB 62.37 MB 1,881 s 1.83 s 9.4 s $0.01681
` = 2048
Baseline 20.87 MB 3.96 MB 124.74 MB 2,634 s 1.29 s 8.5 s $0.02694
LSObvCompress 23.43 MB 3.96 MB 87.34 MB 2,773 s 1.35 s 12.4 s $0.02439
LSObvDecompress 20.87 MB 3.15 MB 124.74 MB 2,746 s 1.34 s 12.4 s $0.02752

Table 4.3: Evaluations of Spiral Batch PIR [Angel et al. 2018; Menon and Wu 2022] with and without our
compression techniques, LSObvCompress and LSObvDecompress with ϵ = 0.05. We fix the number of
entries to n = 1 million for all our results.

the batch size ` corresponds to the number of non-zero entries). We follow the batch PIR setup

from [Angel et al. 2018] and �x the fraction of dummy requests/responses (i.e. zero entries) to

0.5`. We target compression size of 1.05`.

Results. Using our LSObvCompress, we see 30% response size reduction in exchange for a

reasonable additional computational cost compared to state-of-the-art PIR for large entries without

compression. We see that this small additional computation cost is justi�ed by the reduction in

the server monetary cost. In particular, LSObvCompress reduces the server monetary cost by up

to 10% compared to the baseline.

Using our LSObvDecompress algorithm, we see 20-24% reduction in the request size with

slight increase in computation and server monetary cost.

We were unable to integrate our vectorized version of LSObvCompress into the vectorized

batch PIR protocol [Mughees and Ren 2023] as we are unaware of an open-source implementation.

195

Batch Size
& Schemes

Response
Size

Server
Time

Client
Time

Server
Monetary

Cost
` = 512
Baseline 221 KB 9.63 s 0.01 s $0.000076
LSObvCompress 155 KB 9.69 s 0.08 s $0.000070
` = 1024
Baseline 442 KB 9.76 s 0.01 s $0.000096
LSObvCompress 310 KB 9.92 s 0.16 s $0.000085
` = 2048
Baseline 885 KB 9.79 s 0.01 s $0.000136
LSObvCompress 619 KB 10.09 s 0.33 s $0.000114
` = 4096
Baseline 1,769 KB 9.81 s 0.01 s $0.000216
LSObvCompress 1,238 KB 10.53 s 0.78 s $0.000172
` = 8192
Baseline 3,539 KB 9.82 s 0.01 s $0.000375
LSObvCompress 2,477 KB 11.13 s 1.80 s $0.000287

Table 4.4: Comparison of DPF based two server batch PIR protocol [DPF 2021] with and without
LSObvCompress (ϵ = 0.05). We fix the number of database entries to n = 1 million and each entry size to
288 B for all our results.

Choosing the Right Protocol. In general, LSObvCompress provides the best communication

and server monetary cost reduction. Thus, LSObvCompress will typically be the best option for

most settings.

In certain settings, we note that LSObvDecompress may be useful where we wish to minimize

upload communication from the client to the server. There are many natural settings where the

upload costs/speed are more expensive/slower than the download costs/speed. For applications

in these scenarios, it may be critical to save as much upload communication as possible that is

achieved by LSObvDecompress.

4.6.3 Two-Server Batch PIR

We implement our response-compressed two-server batch PIR from Section 4.4.5 on top of the

two-server single-query PIR implementation in [DPF 2021]. We report our results in Table 4.4.

196

Label Size
& Schemes

Total
Online
Comm.

Total
Online
Time

Server
Monetary

Cost
512 B
Cong et al. [Cong et al. 2021] 33.2 MB 169 s $0.00397
LSObvCompress 11.4 MB 304 s $0.00279
1024 B
Cong et al. [Cong et al. 2021] 66.1 MB 331 s $0.00787
LSObvCompress 11.6 MB 355 s $0.00311
1536 B
Cong et al. [Cong et al. 2021] 103.6 MB 535 s $0.01244
LSObvCompress 11.9 MB 446 s $0.00367

Table 4.5: Comparisons of Cong et al. [Cong et al. 2021]’s labeled PSI and our LSObvCompress-based
PSI with ϵ = 0.05. We fix the size of the sender’s set to 1 million and the receiver’s set to 512.

Setup. We �x the number of database entries to n = 1 million where each database entry is 288

bytes large. As in the single-server batch PIR experiment (Section 4.6.2), we �x the fraction of

dummy responses to 0.5` and target compression size of 1.05`. We omit evaluating request sizes

as they are the same for both schemes.

Results. We observe that using LSObvCompress can reduce response size by 30% in exchange

for a small additional computational cost. However, the small additional computational cost is

justi�ed by the savings in the server monetary cost. Compared to the baseline, LSObvCompress

can reduce the server monetary cost by up to 24%.

4.6.4 Labeled PSI

Next, we evaluate our labeled PSI built from our batch PIR in Section 4.4.1 and an OPRF protocol

(see Appendix 4.5.1.1 for details). We report our results in Table 4.5.

Setup. Our implementation uses the single-server batch PIR implementation from Section 4.4.1

with the OPRF implementation from [APSI 2023]. We �x the size of the sender’s set to 1 million

and receiver’s set to 512 (note, in the context of batch PIR these corresponds to the number of

197

database elements and the batch size respectively). We have used one of the default parameter

sets available in their open-source implementations for Cong et al [Cong et al. 2021]’s scheme.

Results. Our scheme has 65-88% reduced communication over prior state-of-the-art works [Cong

et al. 2021]. For smaller label size, our construction with Spiral [Menon and Wu 2022] is slower,

but we start to catch up and eventually outperform Cong et al [Cong et al. 2021] for larger label

sizes. Note that even with these additional computation cost, we reduce the server monetary cost

by 30-70%.

Due to the limitation of their open source implementation [APSI 2023], we could not compare

our construction on larger label sizes, but we expect our scheme to outperform signi�cantly as the

label sizes increase. In any case, our communication cost and server monetary cost is signi�cantly

smaller.

198

5 | Conclusion

In this thesis, we make progress towards increasing the practical impact of e�cient MPC protocols.

First, we develop Fluid MPC protocols in the dishonest majority with preprocessing, honest

majority, and two-thirds honest majority settings that have asymptotic communication complexity

matching their counterparts in the traditional (non-Fluid) setting. Second, we develop batch PIR

protocols with computational and communication complexity close to optimal. As a consequence,

we get improved Private Join and Compute MPC protocols. We also get improved labeled PSI

protocols.

Several open problems remain in both areas:

• For Fluid MPC, the question of e�cient protocols with stronger output guarantees remains.

In particular, e�cient protocols that have security with identi�able abort (wherein at least

one corrupt party is identi�ed if an honest party aborts) are unknown for all three settings

above. Moreover, for the honest and two-thirds honest majority settings, e�cient protocols

that have G.O.D. and even fairness are unknown.

• Also for Fluid MPC, the question of e�cient protocols with sub-optimal corruption thresh-

olds is unresolved. In the traditional setting, many protocols are known to have O(|C |)

communication overhead if the corruption threshold is t < (1 − ε)n/2 for honest major-

ity [Goyal et al. 2021b] and t < (1 − ε)n/3 for two-thirds honest majority [Damgård et al.

2010]. It is currently unknown if such solutions exist for Fluid MPC.

199

• For batch PIR, as we mentioned earlier, using both oblivious ciphertext compression and

oblivious ciphertext decompression is not advantageous in practice, as the increased commu-

nication costs associated with larger ciphertexts due to bigger noise from more homomorphic

operations do not outweigh the decreased communication costs from the compression. De-

veloping better somewhat-homomorphic encryption and/or single-query PIR schemes that

can be used with both compression schemes so that overall communication is further

decreased is an interesting open problem.

200

Bibliography

Abraham, I., Asharov, G., Patil, S., and Patra, A. (2023). Detect, pack and batch: Perfectly-secure
MPC with linear communication and constant expected time. In Hazay, C. and Stam, M., editors,
EUROCRYPT 2023, Part II, volume 14005 of LNCS, pages 251–281. Springer, Heidelberg.

Aguilar Melchor, C., Barrier, J., Fousse, L., and Killijian, M.-O. (2016). XPIR: Private information
retrieval for everyone. PoPETs, 2016(2):155–174.

Ahmad, I., Yang, Y., Agrawal, D., El Abbadi, A., and Gupta, T. (2021). Addra: Metadata-private
voice communication over fully untrusted infrastructure. In OSDI 21.

Ali, A., Lepoint, T., Patel, S., Raykova, M., Schoppmann, P., Seth, K., and Yeo, K. (2021).
Communication-computation trade-o�s in PIR. In Bailey, M. and Greenstadt, R., editors, USENIX
Security 2021, pages 1811–1828. USENIX Association.

Angel, S., Chen, H., Laine, K., and Setty, S. T. V. (2018). PIR with compressed queries and amortized
query processing. In 2018 IEEE Symposium on Security and Privacy, pages 962–979. IEEE
Computer Society Press.

Angel, S. and Setty, S. (2016). Unobservable communication over fully untrusted infrastructure. In
OSDI 16, pages 551–569.

APSI (2023). APSI: C++ library for Asymmetric PSI. https://github.com/microsoft/APSI.

Asharov, G., Naor, M., Segev, G., and Shahaf, I. (2016). Searchable symmetric encryption: optimal
locality in linear space via two-dimensional balanced allocations. In Wichs, D. and Mansour, Y.,
editors, 48th ACM STOC, pages 1101–1114. ACM Press.

AWS (2023). EC2 On-Demand Pricing. https://aws.amazon.com/ec2/pricing/on-demand/.

Badrinarayanan, S., Jain, A., Manohar, N., and Sahai, A. (2020). Secure mpc: laziness leads to god.
In International Conference on the Theory and Application of Cryptology and Information Security,
pages 120–150. Springer.

Beaver, D. (1992). E�cient multiparty protocols using circuit randomization. In Feigenbaum,
J., editor, Advances in Cryptology — CRYPTO ’91, pages 420–432, Berlin, Heidelberg. Springer
Berlin Heidelberg.

201

https://github.com/microsoft/APSI
https://aws.amazon.com/ec2/pricing/on-demand/

Beerliová-Trubíniová, Z. and Hirt, M. (2008). Perfectly-secure mpc with linear communication
complexity. In Canetti, R., editor, Theory of Cryptography, pages 213–230, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Beimel, A., Ishai, Y., and Malkin, T. (2000). Reducing the servers computation in private information
retrieval: PIR with preprocessing. In Bellare, M., editor, CRYPTO 2000, volume 1880 of LNCS,
pages 55–73. Springer, Heidelberg.

Beimel, A., Ishai, Y., and Malkin, T. (2004). Reducing the servers’ computation in private information
retrieval: PIR with preprocessing. Journal of Cryptology, 17(2):125–151.

Ben-Efraim, A., Nielsen, M., and Omri, E. (2019). Turbospeedz: Double your online spdz! im-
proving spdz using function dependent preprocessing. In International Conference on Applied
Cryptography and Network Security, pages 530–549. Springer.

Ben-Or, M., Goldwasser, S., and Wigderson, A. (1988). Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th ACM STOC,
pages 1–10. ACM Press.

Bendlin, R., Damgård, I., Orlandi, C., and Zakarias, S. (2011). Semi-homomorphic encryption and
multiparty computation. In Paterson, K. G., editor, Advances in Cryptology - EUROCRYPT 2011 -
30th Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Tallinn, Estonia, May 15-19, 2011. Proceedings, volume 6632 of Lecture Notes in Computer Science,
pages 169–188. Springer.

Bienstock, A., Escudero, D., and Polychroniadou, A. (2023a). On linear communication complex-
ity for (maximally) �uid mpc. In Handschuh, H. and Lysyanskaya, A., editors, Advances in
Cryptology – CRYPTO 2023, pages 263–294, Cham. Springer Nature Switzerland.

Bienstock, A., Escudero, D., and Polychroniadou, A. (2023b). Perfectly secure �uid mpc with abort
and linear communication complexity.

Bienstock, A., Patel, S., Seo, J. Y., and Yeo, K. (2023c). Near-optimal oblivious key-value stores for
e�cient PSI, PSU and volume-hiding multi-maps. In USENIX Security 2023.

Bienstock, A., Patel, S., Seo, J. Y., and Yeo, K. (2024). Batch pir and labeled psi with oblivious
ciphertext compression. In USENIX Security 2024.

Boyle, E., Gilboa, N., and Ishai, Y. (2016). Function secret sharing: Improvements and extensions.
In Weippl, E. R., Katzenbeisser, S., Kruegel, C., Myers, A. C., and Halevi, S., editors, ACM CCS
2016, pages 1292–1303. ACM Press.

Boyle, E., Gilboa, N., Ishai, Y., and Nof, A. (2020). E�cient fully secure computation via distributed
zero-knowledge proofs. In Advances in Cryptology – ASIACRYPT 2020, pages 244–276, Cham.
Springer International Publishing.

202

Brakerski, Z. (2012). Fully homomorphic encryption without modulus switching from classical
GapSVP. In Safavi-Naini, R. and Canetti, R., editors, CRYPTO 2012, volume 7417 of LNCS, pages
868–886. Springer, Heidelberg.

Bretagnolle, J. and Huber, C. (1978). Estimation des densités : Risque minimax. In Dellacherie,
C., Meyer, P. A., and Weil, M., editors, Séminaire de Probabilités XII, pages 342–363, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Cachin, C., Micali, S., and Stadler, M. (1999). Computationally private information retrieval with
polylogarithmic communication. In Stern, J., editor, EUROCRYPT’99, volume 1592 of LNCS,
pages 402–414. Springer, Heidelberg.

Canetti, R. (2001). Universally composable security: A new paradigm for cryptographic protocols.
In FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 136–145. IEEE Computer
Society.

Chaum, D., Crépeau, C., and Damgård, I. (1987). Multiparty unconditionally secure protocols
(abstract). In Advances in Cryptology - CRYPTO ’87, A Conference on the Theory and Applications
of Cryptographic Techniques, Santa Barbara, California, USA, August 16-20, 1987, Proceedings,
page 462.

Chen, H., Huang, Z., Laine, K., and Rindal, P. (2018). Labeled PSI from fully homomorphic
encryption with malicious security. In Lie, D., Mannan, M., Backes, M., and Wang, X., editors,
ACM CCS 2018, pages 1223–1237. ACM Press.

Chen, H., Laine, K., and Rindal, P. (2017). Fast private set intersection from homomorphic
encryption. In Thuraisingham, B. M., Evans, D., Malkin, T., and Xu, D., editors, ACM CCS 2017,
pages 1243–1255. ACM Press.

Chida, K., Genkin, D., Hamada, K., Ikarashi, D., Kikuchi, R., Lindell, Y., and Nof, A. (2018). Fast
large-scale honest-majority mpc for malicious adversaries. In Annual International Cryptology
Conference, pages 34–64. Springer.

Chillotti, I., Gama, N., Georgieva, M., and Izabachène, M. (2020). Tfhe: fast fully homomorphic
encryption over the torus. Journal of Cryptology, 33(1):34–91.

Choi, S. G., Dachman-Soled, D., Gordon, S. D., Liu, L., and Yerukhimovich, A. (2021). Compressed
oblivious encoding for homomorphically encrypted search. In Vigna, G. and Shi, E., editors,
ACM CCS 2021, pages 2277–2291. ACM Press.

Chor, B., Kushilevitz, E., Goldreich, O., and Sudan, M. (1998). Private information retrieval. Journal
of the ACM (JACM), 45(6):965–981.

Choudhuri, A. R., Goel, A., Green, M., Jain, A., and Kaptchuk, G. (2021). Fluid MPC: Secure
multiparty computation with dynamic participants. In Malkin, T. and Peikert, C., editors,
CRYPTO 2021, Part II, volume 12826 of LNCS, pages 94–123, Virtual Event. Springer, Heidelberg.

203

Cleve, R. (1986). Limits on the security of coin �ips when half the processors are faulty (extended
abstract). In 18th ACM STOC, pages 364–369. ACM Press.

Cong, K., Moreno, R. C., da Gama, M. B., Dai, W., Iliashenko, I., Laine, K., and Rosenberg, M. (2021).
Labeled PSI from homomorphic encryption with reduced computation and communication. In
Vigna, G. and Shi, E., editors, ACM CCS 2021, pages 1135–1150. ACM Press.

Contact Discovery (2017). Technology preview: Private contact discovery for Signal. https:
//signal.org/blog/private-contact-discovery/.

Damgård, I., Escudero, D., and Polychroniadou, A. (2021). Phoenix: Secure computation in an
unstable network with dropouts and comebacks. Cryptology ePrint Archive.

Damgård, I., Ishai, Y., and Krøigaard, M. (2010). Perfectly secure multiparty computation and the
computational overhead of cryptography. In Gilbert, H., editor, EUROCRYPT 2010, volume 6110
of LNCS, pages 445–465. Springer, Heidelberg.

Damgård, I. and Jurik, M. (2001). A generalisation, a simpli�cation and some applications of
Paillier’s probabilistic public-key system. In Kim, K., editor, PKC 2001, volume 1992 of LNCS,
pages 119–136. Springer, Heidelberg.

Damgård, I. and Nielsen, J. B. (2007). Scalable and unconditionally secure multiparty computation.
In Annual International Cryptology Conference, pages 572–590. Springer.

Damgård, I., Pastro, V., Smart, N. P., and Zakarias, S. (2012). Multiparty computation from
somewhat homomorphic encryption. In Safavi-Naini, R. and Canetti, R., editors, Advances
in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer Science, pages 643–662.
Springer.

David, B., Deligios, G., Goel, A., Ishai, Y., Konring, A., Kushilevitz, E., Liu-Zhang, C.-D., and
Narayanan, V. (2023). Perfect MPC over layered graphs. In Handschuh, H. and Lysyanskaya, A.,
editors, CRYPTO 2023, Part I, volume 14081 of LNCS, pages 360–392. Springer, Heidelberg.

Demmler, D., Rindal, P., Rosulek, M., and Trieu, N. (2018). Pir-psi: Scaling private contact discovery.
Proceedings on Privacy Enhancing Technologies, 2018(4):159–178.

Dietzfelbinger, M. and Walzer, S. (2019). E�cient gauss elimination for near-quadratic matrices
with one short random block per row, with applications. In 27th Annual European Symposium
on Algorithms (ESA 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Di�e, W. and Hellman, M. (1976). New directions in cryptography. IEEE Transactions on Information
Theory, 22(6):644–654.

DPF (2021). C++ DPF-PIR library. https://github.com/dkales/dpf-cpp.

204

https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/
https://github.com/dkales/dpf-cpp

Dvir, Z. and Gopi, S. (2015). 2-server PIR with sub-polynomial communication. In Servedio, R. A.
and Rubinfeld, R., editors, 47th ACM STOC, pages 577–584. ACM Press.

Efremenko, K. (2009). 3-query locally decodable codes of subexponential length. In Mitzenmacher,
M., editor, 41st ACM STOC, pages 39–44. ACM Press.

Escudero, D., Goyal, V., Polychroniadou, A., and Song, Y. (2022). Turbopack: Honest majority MPC
with constant online communication. ACM Conference on Computer and Communications
Security (CCS).

Fan, J. and Vercauteren, F. (2012). Somewhat practical fully homomorphic encryption. Cryptology
ePrint Archive, Paper 2012/144. https://eprint.iacr.org/2012/144.

Fitzi, M., Hirt, M., and Maurer, U. (1998). Trading correctness for privacy in unconditional multi-
party computation. In Annual International Cryptology Conference, pages 121–136. Springer.

Fleischhacker, N., Larsen, K. G., and Simkin, M. (2023). How to compress encrypted data. In
EUROCRYPT 2023, Part I, pages 551–577. Springer.

Franklin, M. K. and Yung, M. (1992). Communication complexity of secure computation (extended
abstract). In 24th ACM STOC, pages 699–710. ACM Press.

Freedman, M. J., Ishai, Y., Pinkas, B., and Reingold, O. (2005). Keyword search and oblivious
pseudorandom functions. In Kilian, J., editor, TCC 2005, volume 3378 of LNCS, pages 303–324.
Springer, Heidelberg.

Garimella, G., Pinkas, B., Rosulek, M., Trieu, N., and Yanai, A. (2021). Oblivious key-value stores
and ampli�cation for private set intersection. In Malkin, T. and Peikert, C., editors, CRYPTO 2021,
Part II, volume 12826 of LNCS, pages 395–425, Virtual Event. Springer, Heidelberg.

Genkin, D., Ishai, Y., Prabhakaran, M. M., Sahai, A., and Tromer, E. (2014). Circuits resilient
to additive attacks with applications to secure computation. In Proceedings of the Forty-sixth
Annual ACM Symposium on Theory of Computing, STOC ’14, pages 495–504, New York, NY,
USA. ACM.

Gentry, C. and Halevi, S. (2019). Compressible FHE with applications to PIR. In Hofheinz, D. and
Rosen, A., editors, TCC 2019, Part II, volume 11892 of LNCS, pages 438–464. Springer, Heidelberg.

Gentry, C., Halevi, S., Krawczyk, H., Magri, B., Nielsen, J. B., Rabin, T., and Yakoubov, S. (2021a).
Yoso: you only speak once. In Annual International Cryptology Conference, pages 64–93. Springer.

Gentry, C., Halevi, S., Krawczyk, H., Magri, B., Nielsen, J. B., Rabin, T., and Yakoubov, S. (2021b).
YOSO: you only speak once - secure MPC with stateless ephemeral roles. In CRYPTO 2021.

Gentry, C. and Ramzan, Z. (2005). Single-database private information retrieval with constant
communication rate. In Caires, L., Italiano, G. F., Monteiro, L., Palamidessi, C., and Yung, M.,
editors, ICALP 2005, volume 3580 of LNCS, pages 803–815. Springer, Heidelberg.

205

https://eprint.iacr.org/2012/144

Gentry, C., Sahai, A., and Waters, B. (2013). Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In Canetti, R. and Garay, J. A.,
editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 75–92. Springer, Heidelberg.

Gertner, Y., Ishai, Y., Kushilevitz, E., and Malkin, T. (1998). Protecting data privacy in private
information retrieval schemes. In 30th ACM STOC, pages 151–160. ACM Press.

Gilboa, N. and Ishai, Y. (2014). Distributed point functions and their applications. In Nguyen,
P. Q. and Oswald, E., editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 640–658. Springer,
Heidelberg.

Goldreich, O., Micali, S., and Wigderson, A. (1987). How to play any mental game or A completeness
theorem for protocols with honest majority. In Proceedings of the 19th Annual ACM Symposium
on Theory of Computing, 1987, New York, New York, USA, pages 218–229.

Goyal, V., Li, H., Ostrovsky, R., Polychroniadou, A., and Song, Y. (2021a). Atlas: e�cient and
scalable mpc in the honest majority setting. In Annual International Cryptology Conference,
pages 244–274. Springer.

Goyal, V., Liu, Y., and Song, Y. (2019). Communication-e�cient unconditional mpc with guaranteed
output delivery. In Annual International Cryptology Conference, pages 85–114. Springer.

Goyal, V., Polychroniadou, A., and Song, Y. (2021b). Unconditional communication-e�cient MPC
via hall’s marriage theorem. In Malkin, T. and Peikert, C., editors, CRYPTO 2021, Part II, volume
12826 of LNCS, pages 275–304, Virtual Event. Springer, Heidelberg.

Goyal, V. and Song, Y. (2020). Malicious security comes free in honest-majority mpc. Cryptology
ePrint Archive, Report 2020/134. https://eprint.iacr.org/2020/134.

Groth, J., Kiayias, A., and Lipmaa, H. (2010). Multi-query computationally-private information
retrieval with constant communication rate. In Nguyen, P. Q. and Pointcheval, D., editors,
PKC 2010, volume 6056 of LNCS, pages 107–123. Springer, Heidelberg.

Guo, Y., Pass, R., and Shi, E. (2019). Synchronous, with a chance of partition tolerance. In Boldyreva,
A. and Micciancio, D., editors, Advances in Cryptology - CRYPTO 2019 - 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part I, volume
11692 of Lecture Notes in Computer Science, pages 499–529. Springer.

Ha�z, S. M. and Henry, R. (2019). A bit more than a bit is more than a bit better: Faster (essentially)
optimal-rate many-server PIR. PoPETs, 2019(4):112–131.

Henry, R. (2016). Polynomial batch codes for e�cient IT-PIR. PoPETs, 2016(4):202–218.

Ion, M., Kreuter, B., Nergiz, A. E., Patel, S., Saxena, S., Seth, K., Raykova, M., Shanahan, D., and
Yung, M. (2020). On deploying secure computing: Private intersection-sum-with-cardinality. In
2020 IEEE European Symposium on Security and Privacy (EuroS&P), pages 370–389.

206

Ishai, Y., Kushilevitz, E., Ostrovsky, R., and Sahai, A. (2004). Batch codes and their applications. In
Babai, L., editor, 36th ACM STOC, pages 262–271. ACM Press.

Jarecki, S. and Liu, X. (2010). Fast secure computation of set intersection. In Garay, J. A. and Prisco,
R. D., editors, SCN 10, volume 6280 of LNCS, pages 418–435. Springer, Heidelberg.

Kales, D., Rechberger, C., Schneider, T., Senker, M., and Weinert, C. (2019). Mobile private contact
discovery at scale. In Heninger, N. and Traynor, P., editors, USENIX Security 2019, pages
1447–1464. USENIX Association.

Kaufman, T. and Sudan, M. (2007). Sparse random linear codes are locally decodable and testable.
In 48th FOCS, pages 590–600. IEEE Computer Society Press.

Kushilevitz, E. and Ostrovsky, R. (1997). Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In 38th FOCS, pages 364–373. IEEE Computer
Society Press.

Lamport, L., Shostak, R., and Pease, M. (1982). The byzantine generals problem. ACM Trans.
Program. Lang. Syst., 4(3):382–401.

Lepoint, T., Patel, S., Raykova, M., Seth, K., and Trieu, N. (2021). Private join and compute from
PIR with default. In Tibouchi, M. and Wang, H., editors, ASIACRYPT 2021, Part II, volume 13091
of LNCS, pages 605–634. Springer, Heidelberg.

Lipmaa, H. (2005). An oblivious transfer protocol with log-squared communication. In International
Conference on Information Security, pages 314–328. Springer.

Liu, Z. and Tromer, E. (2022). Oblivious message retrieval. In Dodis, Y. and Shrimpton, T., editors,
CRYPTO 2022, Part I, volume 13507 of LNCS, pages 753–783. Springer, Heidelberg.

Lueks, W. and Goldberg, I. (2015). Sublinear scaling for multi-client private information retrieval.
In Böhme, R. and Okamoto, T., editors, FC 2015, volume 8975 of LNCS, pages 168–186. Springer,
Heidelberg.

Mahdavi, R. A. and Kerschbaum, F. (2022). Constant-weight PIR: Single-round keyword PIR via
constant-weight equality operators. In USENIX Security 22, pages 1723–1740, Boston, MA.

Menon, S. J. and Wu, D. J. (2022). Spiral: Fast, high-rate single-server PIR via FHE composition. In
2022 IEEE Symposium on Security and Privacy.

MPC Deployments (2023). Mpc deployments. https://mpc.cs.berkeley.edu/.

Mughees, M. and Ren, L. (2023). Vectorized batch private information retrieval. In 2023 IEEE
Symposium on Security and Privacy (SP), pages 437–452.

Mughees, M. H., Chen, H., and Ren, L. (2021). OnionPIR: Response e�cient single-server PIR. In
Vigna, G. and Shi, E., editors, ACM CCS 2021, pages 2292–2306. ACM Press.

207

https://mpc.cs.berkeley.edu/

Paillier, P. (1999). Public-key cryptosystems based on composite degree residuosity classes. In
Stern, J., editor, EUROCRYPT’99, volume 1592 of LNCS, pages 223–238. Springer, Heidelberg.

Park, J. and Tibouchi, M. (2020). SHECS-PIR: Somewhat homomorphic encryption-based compact
and scalable private information retrieval. In Chen, L., Li, N., Liang, K., and Schneider, S. A.,
editors, ESORICS 2020, Part II, volume 12309 of LNCS, pages 86–106. Springer, Heidelberg.

Password Checkup (2019). Protect your accounts from data breaches with password checkup.
https://security.googleblog.com/2019/02/protect-your-accounts-from-data.
html.

Password Monitor (2021). Password monitor: Safeguarding passwords
in microsoft edge. https://www.microsoft.com/en-us/research/blog/
password-monitor-safeguarding-passwords-in-microsoft-edge/.

Patel, S., Seo, J. Y., and Yeo, K. (2023). Don’t be dense: E�cient keyword PIR for sparse databases.
In USENIX Security 2023.

Polychroniadou, A., Asharov, G., Diamond, B., Balch, T., Buehler, H., Hua, R., Gu, S., Gimler, G.,
and Veloso, M. (2023). Prime match: A Privacy-Preserving inventory matching system. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 6417–6434, Anaheim, CA. USENIX
Association.

Private Join and Compute (2019). Helping organizations do more with-
out collecting more data. https://security.googleblog.com/2019/06/
helping-organizations-do-more-without-collecting-more-data.html.

Rabin, T. and Ben-Or, M. (1989). Veri�able secret sharing and multiparty protocols with honest
majority (extended abstract). In 21st ACM STOC, pages 73–85. ACM Press.

Rachuri, R. and Scholl, P. (2022). Le mans: Dynamic and �uid MPC for dishonest majority. In
Dodis, Y. and Shrimpton, T., editors, CRYPTO 2022, Part I, volume 13507 of LNCS, pages 719–749.
Springer, Heidelberg.

Regev, O. (2005). On lattices, learning with errors, random linear codes, and cryptography. In
Gabow, H. N. and Fagin, R., editors, 37th ACM STOC, pages 84–93. ACM Press.

SEAL (2023). Microsoft SEAL (release 4.1). https://github.com/Microsoft/SEAL. Microsoft
Research, Redmond, WA.

Smart, N. P. and Vercauteren, F. (2014). Fully homomorphic simd operations. Designs, codes and
cryptography, 71:57–81.

Spiral (2022). Spiral. https://github.com/menonsamir/spiral.

Wallet as a Service (2023). Wallets as a service. https://www.coinbase.com/cloud/products/
waas.

208

https://security.googleblog.com/2019/02/protect-your-accounts-from-data.html
https://security.googleblog.com/2019/02/protect-your-accounts-from-data.html
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://security.googleblog.com/2019/06/helping-organizations-do-more-without-collecting-more-data.html
https://security.googleblog.com/2019/06/helping-organizations-do-more-without-collecting-more-data.html
https://github.com/Microsoft/SEAL
https://github.com/menonsamir/spiral
https://www.coinbase.com/cloud/products/waas
https://www.coinbase.com/cloud/products/waas

Yao, A. C. (1986). How to generate and exchange secrets (extended abstract). In 27th Annual
Symposium on Foundations of Computer Science, Toronto, Canada, 27-29 October 1986, pages
162–167.

Yeo, K. (2023). Cuckoo hashing in cryptography: Optimal parameters, robustness and applications.
In Handschuh, H. and Lysyanskaya, A., editors, CRYPTO 2023, Part IV, volume 14084 of LNCS,
pages 197–230. Springer, Heidelberg.

209

	Dedication
	Acknowledgments
	Abstract
	List of Figures
	List of Tables
	Introduction
	Fluid Secure Multi-Party Computation
	Our Results
	Related Work

	Private Information Retrieval and its Application to Private Join and Compute
	Our Results
	Related Work

	Preliminaries
	Notation
	Universal hashing.
	Probability and Information Theory
	Functionalities, Protocols and Procedures

	Secure Multi-Party Computation in the Fluid Model with Linear Communication
	Security Model and Preliminaries
	Modelling Fluid MPC
	Security Model
	Preliminaries

	Dishonest Majority Protocol
	Technical Overview
	Our Starting Point: Le Mans C:RacSch22
	The ``King Idea'' in the Fluid Setting

	Formal Protocol
	Dishonest Majority Preprocessing
	Efficient Resharing for Dishonest Majority
	Checking and Maintaining MACs
	Secure Multiplication and Verification
	Dishonest Majority Main Protocol

	Dishonest Majority Preprocessing Size is Tight
	Technical Overview
	Formal Bound
	Secure Message Transmission with Two Committees
	Lower Bound on Per-Party Preprocessing for Linear SMT

	Honest Majority Protocol
	Technical Overview
	Formal Protocol
	Initial building blocks.
	Efficient Resharing for Honest Majority
	Incremental Checks
	Secure Multiplication
	Honest Majority Main Protocol

	Two-Thirds Honest Majority Protocol
	Technical Overview
	Challenges of our multiplication protocol.
	Parties in Ci generate random sharings towards Ci+1.
	Parties in Ci+1 use the random sharings.
	Committee Ci+3 gets the triple - Resharing protocol based on packed secret sharing.
	Achieving active security.
	Final remarks

	Formal Protocol
	Basic Functionalities
	Robust Linear-Overhead Resharing
	Two-Thirds Honest Majority Main Protocol

	Batch PIR and Labeled PSI with Oblivious Ciphertext Compression
	Preliminaries
	Homomorphic Encryption
	Oblivious Ciphertext Compression
	Oblivious Ciphertext Decompression
	Batch PIR and Labeled PSI

	Oblivious Ciphertext Compression
	First Attempt: Balls-into-Bins
	Second Attempt: Random Matrices
	LSObvCompress: Random Band Matrices
	Comparison with Sparse Random Linear Codes FOCS:KauSud07,C:LiuTro22

	Oblivious Ciphertext Decompression
	Batch PIR
	Single-Server: Compressed Responses
	Single-Server: Compressed Requests
	Single-Server Batch PIR with Request and Response Compression
	Single-Server: Vectorized Responses
	Two-Server: Compressed Responses

	Labeled PSI
	Labeled PSI from Batch Keyword PIR and Oblivious PRF
	OPRF with Malicious Security
	Unbalanced Labeled PSI Transformation

	Improving Oblivious Polynomial Evaluation with LSObvDecompress
	Overview of CCS:CMGDILR21
	Applying LSObvDecompress

	Experimental Evaluation
	Oblivious Ciphertext Compression
	Single-Server Batch PIR
	Two-Server Batch PIR
	Labeled PSI

	Conclusion
	Bibliography

