
NLP Evaluation in the Time of Large Language Models

by

Alex Wang

A dissertation submitted in partial fulfillment

of the reirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

September, 2022

Professor Samuel R. Bowman

Professor Kyunghyun Cho



© Alex Wang

all rights reserved, 2022



Acknowledgements

First and foremost, I must thank my advisors, Samuel R. Bowman and Kyunghyun Cho. I truly

could not imagine a better pair of advisors. Sam and Kyunghyun gave me the freedom, resources,

and patience to explore my own ideas, but also support and direction when I needed it. They

taught me how to manage 100+ experiments, how to clearly communicate my work, and every-

thing in between.1 They connected me to countless research opportunities and collaborations

that helped establish me as a scientist in the eld. Any success I had during my PhD, and any

success I will have in the future, is due in large part to their mentorship.

I also am extremely grateful to have had excellent mentors beyond my advisors. When I was

an aimless undergrad at Harvard with a budding interest in machine learning, Sasha Rush rst

showed me how to implement a neural network and read a research paper. When I was an intern

at Stanford, Will Hamilton and Jure Leskovec helped bridge my initial interest in computational

social science with NLP, converted my intern project into a workshop publication, and made me a

competitive applicant for grad school applications. I have also learned a great deal from fantastic

mentors during my internships, including Ellie Pavlick and Ian Tenney from Google; Mike Lewis

from Meta; and Ronan Le Bras and Yejin Choi from the Allen Institute.

Leaving NYU is bittersweet as my time there has been incredibly enriching and formative. I

am grateful to the CILVR and ML2 labs for being my home for ve years, and I am grateful I could

learn from so many brilliant people there: Ilia Kulikov, Jason Lee, Phu Mon Htut, Cinjon Resnick,
1Among these things: alcohol. Sam gave me my rst set of wine glasses. Cho bought me beers and criticized my

beer choices.

iii



AlexWarstadt, Nikita Nangia, Jason Phang, Ethan Perez, Mark Goldstein, David Brandfonbrener,

Katrina Evtimova, Richard Pang, Angelica Chen, Vishakh Padmakumar, Adina Williams, Elman

Mansimov, Kianté Brantley, Sean Welleck, Will Whitney, Alicia Parrish, Clara Vania, Katharina

Kann, Thibault Fevry, Yada Pruksachatkun, Kelly Zhang, Amanpreet Singh, Iacer Calixto, Tal

Linzen, João Sedoc, and He He. I give extra thanks to the latter two for serving on my dissertation

committee, along with Mike Lewis and my advisors. I am also extremely appreciative of the

admins at NYUwhomademy life much easier, especially Hong Tam, Santiago Pizzini, and Aimée-

Catherine Zambrana, as well as the technical support sta, Shenglong Wang and Shirley Palma,

and my friend Joey the Janitor.

Outside of NYU, I am appreciative of inspiring conversations and collaborations with many

people, including Yoon Kim, Sam Wiseman, Sebastian Gehrmann, and Jerey Ling at Harvard;

Felix Hill at DeepMind; Omer Levy and Julian Michael from the University of Washington; and

Patrick Xia, Chandler May, Tom McCoy, and Najoung Kim from Johns Hopkins; and the many,

many folks I worked with at the very productive JSALT 2018 workshop.

I also want to say thanks to the people that have supported me personally and that have made

my time in grad school so much more enjoyable. I have been fortunate to have had the support of

many friends: Frances Ding, Lily Zhang, Evan Yao, Richard Zou, Gordon Petty, Wentong Zhang,

Wayne Zhao, Andrew Hess, Aaron Suduiko, Henry Johnson, Judson Woods, and Adam Gilx.

I especially want to thank the friends that have been there for me all throughout grad school,

well before, and certainly well beyond: David Chang, Raynor Kuang, and Jimmy Lin. I am also

indebted to the Hu family for essentially taking me in since coming to New York. Shenghua

and Jane Hu have been my home away from home and a welcome getaway from the city. Their

home-cooked meals and visits have greatly enriched the past ve years of my life.

I am deeply grateful to Cherie Hu for being my sounding board, my editor, my life coach,

and my cheerleader. Your love and support these past ve years buoyed me in the low moments

and elevated me during the high. I also appreciate reconnecting with my brothers, Andrew and

iv



Aaron, throughout grad school, as we were not especially close before. Finally, I want to express

my undying gratitude to my parents, who from my very beginning have encouraged me and

have sacriced for me so that I could be the best version of myself possible. I hope that I can pay

forward all the good in my life that you have done for me.

v



Abstract

The eld of natural language processing (NLP) has been dramatically impacted by the creation

and proliferation of large language models that are pretrained on Internet-scale text data. These

models have led to signicant improvements on a myriad of NLP tasks. However, as the capabil-

ities of these models drive up performance on existing task benchmarks, there is a critical need

for evaluation metrics that are up-to-date with current models. In this dissertation, we develop

NLP evaluation methodologies that benchmark and leverage pretrained language models. We

rst present two multi-task benchmarks for evaluating the generalization ability of NLP models

and discuss the role of these benchmarks in the development of large language models. Next,

we demonstrate that we can leverage the capabilities of pretrained language models to develop

new automatic evaluation metrics that better measure the semantics of model-generated text.

Specically, we make use of the question answering abilities of pretrained models to evaluate the

faithfulness of automatically generated summaries. Finally, we explore methods for crowdsourc-

ing high-quality and challenging text generation data to address issues of data quality that have

been surfaced by the ability of language models to replicate noise in benchmark datasets. Overall,

we show that the rise of pretrained language models presents both challenges and opportunities

in how we evaluate NLP systems, and that incorporating these very models into our evaluation

methodologies oers a promising path forward.
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1 | Introduction

In standard supervised machine learning problems, we are provided with a dataset on which we

train a model and another heldout dataset drawn from the same distribution as the training on

which we evaluate the quality of the learned model. However, in natural language processing

(NLP), where the task inputs and/or outputs are text, there has been increased interest in models

that can be applied to arbitrary NLP tasks, not only the ones that match the distribution of the

training data the model was trained on. Because these tasks all involve human language to some

degree, the hope is that a model with some understanding of language can transfer that under-

standing across tasks. This hope has given rise to pretrained language models, colossal machine

learning models that are trained on language modeling objectives with hundreds of billions of

tokens and that generalize extremely well to downstream NLP tasks. The rapid development and

proliferation of pretrained language models has had a profound impact across a variety of long-

standing NLP tasks, such as text classication and question answering [Devlin et al. 2019; Radford

et al. 2018; Lewis et al. 2020; Rael et al. 2020, i.a.], and also quickly led to the development of

surprising new capabilities, such as writing code [Austin et al. 2021] and solving math problems

[Hendrycks et al. 2021].

The progress brought about by pretrained language models opens up a host of opportunities

for the way we evaluate NLP systems. Pretrained language models have driven rapid progress on

longstanding benchmark datasets for a variety of tasks, saturating them and limiting their utility.

To continue to be able to accurately measure the capabilities of these models, we must develop

1



new methods for building more challenging and higher quality evaluation data. Additionally,

because their ability to generalize to downstream tasks is unmatched by previous approaches,

we must create new evaluation paradigms to quantify this generalization ability and to measure

their capacity to perform new skills. In conjunction, we can experiment with incorporating the

emergent capabilities of these models into the evaluation methodologies themselves. In this dis-

sertation, we explore these questions and opportunities.

First, we develop evaluation resources tomeasure how eectively pretrainedmodels can adapt

to dierent tasks. In Chapter 2, we introduce the GLUE benchmark, which measures how well

NLP systems can generalize to diverse task and settings. The GLUE benchmark is a multi-task

benchmark where all tasks share the same task format but some of the task training datasets con-

sist of only a few hundred examples, necessitating knowledge transfer from some outside source

to do well on the task. GLUE has enjoyed rapid adoption in the eld, and the state-of-the-art on

the benchmark has risen rapidly to the point of being saturated with respect to human crowd-

worker performance on the benchmark. In Chapter 3, we introduce the SuperGLUE benchmark,

which refreshes the GLUE benchmark by selecting a set of more diverse set of task formats and

more challenging set of tasks. Like the GLUE benchmark, the SuperGLUE benchmark has become

one of the standard approaches for measuring model generalization in NLP.

Next, as the capabilities of NLPmodels based on large LMs continue to evolve, we can harness

them to evaluate system capabilities in newways andmore robustly than before. In Chapter 4, we

explore the use of pretrained language models in detecting hallucinations in the outputs of neural

text summarization systems. While the outputs of text generation models have become highly

uent, they frequently contain inconsistencies with respect to previous tokens they have gener-

ated or to the input document they are conditioned on. These hallucinations or inconsistencies

are a major barrier to the usability and reliability of text generation systems, but existing evalua-

tion metrics for NLG systems are insensitive to these types of errors. We decompose the problem

of detecting these hallucinations into one of question answering and question generation, two

2



problems on which pretrained language models have made signicant progress in recent years.

We demonstrate that evaluation metrics based on pretrained language models are substantially

better at detecting hallucinations in generated text compared to existing evaluation metrics. The

success of the method is indicative of the promise of leveraging pretrained models to measure a

variety of properties of generated text that was beyond the scope of the previous generation of

evaluation metrics.

Finally, as system capabilities evolve, our evaluation data need to similarly evolve, as older

datasets saturate and more powerful models are better able to exploit unexpected biases and ex-

pose issues in the evaluation data. Sourcing and maintaining high data quality for text generation

tasks is particularly challenging as text generation datasets typically rely on nding naturally oc-

curring data sources or using heuristics to massage data sources into the task format. In the

context of summarization, this approach to dataset creation has led to benchmark datasets that

contain a myriad of problems that are picked up by models trained on the datasets [Kryscinski

et al. 2019]. In Chapter 5, we explore alternatemethods for creating high-quality test sets for natu-

ral language generation tasks. In particular, we focus on crowdsourcing summaries for short sto-

ries in a cost-ecient manner. The resulting dataset SQuALITY is a high-quality, multi-reference

summarization dataset that is beyond the capabilities of existing summarization models.

Altogether, we present a overview of the evaluation landscape of NLP models in the era of

large languagemodels, includingmethods for evaluating suchmodels and for incorporating these

models into evaluation methodologies. We conclude in Chapter 6 with a discussion of open prob-

lems and opportunities for further research in robust evaluation of modern NLP systems.

1.1 List of Contributions

• Wang, Alex, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bow-

man. "GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Un-

3



derstanding." EMNLP 2018.

Citation: Wang et al. [2019b]

I aggregated and prepared the data for the benchmark tasks. I also developed baselines

for the benchmark tasks and ran all the experiments. Finally, I helped Amanpreet test the

benchmark website evaluation and prepared the data for release. Additionally, I worked

with the other authors in writing the paper.

• Wang, Alex, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix

Hill, Omer Levy, and Samuel Bowman. "SuperGLUE: A stickier benchmark for general-

purpose language understanding systems." NeurIPS 2019.

Citation: Wang et al. [2019a]

I helped develop guidelines for new tasks to SuperGLUE with the other authors. Like with

GLUE, I led the experiments for testing candidate tasks, helped test the benchmark website

evaluation, prepared the data for release, and assisted in the writing the paper.

• Wang, Alex, Kyunghyun Cho, andMike Lewis. "Asking and Answering Questions to Eval-

uate the Factual Consistency of Summaries." ACL 2020.

Citation: Wang et al. [2020]

I developed the high-level idea with Kyunghyun and Mike. I led the main experiments and

analysis, as well as the human evaluation. Mike and Kyunghyun provided guidance and

helped with the writing.
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Citation: Wang et al. [2022]
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2 | GLUE: A Multi-Task Benchmark and

Analysis Platform for Natural

Language Understanding

2.1 Introduction

The human ability to understand language is general, exible, and robust. In contrast, most NLU

models above the word level are designed for a specic task and struggle with out-of-domain

data. If we aspire to develop models with understanding beyond the detection of supercial

correspondences between inputs and outputs, then it is critical to develop a more unied model

that can learn to execute a range of dierent linguistic tasks in dierent domains.

To facilitate research in this direction, we present the General Language Understanding Eval-

uation (GLUE, gluebenchmark.com) benchmark: a collection of NLU tasks including question

answering, sentiment analysis, and textual entailment, and an associated online platform for

model evaluation, comparison, and analysis. GLUE does not place any constraints on model ar-

chitecture beyond the ability to process single-sentence and sentence-pair inputs and to make

corresponding predictions. For some GLUE tasks, training data is plentiful, but for others it is

limited or fails to match the genre of the test set. GLUE therefore favors models that can learn

to represent linguistic knowledge in a way that facilitates sample-ecient learning and eective
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knowledge-transfer across tasks. While none of the datasets in GLUE were created from scratch

for the benchmark, four of them feature privately-held test data, which will be used to ensure

that the benchmark is used fairly.

To understand the types of knowledge learned by models and to encourage linguistic or

semantically-meaningful solution strategies, GLUE also includes a set of hand-crafted analysis

examples for probing trained models. This dataset is designed to highlight common phenomena,

such as the use of world knowledge, logical operators, and lexical entailments, that models must

grasp if they are to robustly solve the tasks.

To better understand the challenged posed by GLUE, we conduct experiments with simple

baselines and state-of-the-art sentence representation models. We nd that unied multi-task

trained models slightly outperform comparable models trained on each task separately. Our best

multi-task model makes use of ELMo [Peters et al. 2018], a recently proposed pre-training tech-

nique. However, thismodel still achieves a fairly low absolute score, indicating room for improved

general NLU systems. Analysis with our diagnostic dataset reveals that our baseline models deal

well with strong lexical signals but struggle with deeper logical structure.

In summary, we oer: (i) A suite of nine sentence or sentence-pair NLU tasks, built on es-

tablished annotated datasets and selected to cover a diverse range of text genres, dataset sizes,

and degrees of diculty. (ii) An online evaluation platform and leaderboard, based primarily on

privately-held test data. The platform is model-agnostic, and can evaluate any method capable

of producing results on all nine tasks. (iii) An expert-constructed diagnostic evaluation dataset.

(iv) Baseline results for several major existing approaches to sentence representation learning.

2.2 Related Work

Collobert et al. [2011], one of the earliest works exploring deep learning for NLP, used amulti-task

model with a shared sentence understanding component to jointly learn POS tagging, chunking,
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Corpus Train Dev Test Task Metrics Domain

Single-Sentence Tasks

CoLA 8.5k 1k 1k acceptability Matthews corr. misc.
SST-2 67k 872 1.8k sentiment acc. movie reviews

Similarity and Paraphrase Tasks

MRPC 3.7k 408 1.7k paraphrase acc./F1 news
STS-B 7k 1.5k 1.4k sentence similarity Pearson/Spearman corr. misc.
QQP 364k 40k 391k paraphrase acc./F1 Quora

Inference Tasks

MNLI 393k 20k 20k NLI matched/mismatched acc. misc.
QNLI 108k 5.7k 5.7k QA/NLI acc. Wikipedia
RTE 2.5k 276 3k NLI acc. misc.
WNLI 634 71 146 coreference/NLI acc. books

Table 2.1: Task descriptions and statistics. All tasks are single sentence or sentence pair classification,
except STS-B, which is a regression task. MNLI has three classes; all other classification tasks have two.
Test sets shown in bold use labels that have never been made public in any form.

named entity recognition, and semantic role labeling. More recent work has explored using labels

from core NLP tasks to supervise training of lower levels of deep neural networks [Søgaard and

Goldberg 2016; Hashimoto et al. 2016] and automatically learning cross-task sharing mechanisms

for multi-task learning [Ruder et al. 2017].

Beyondmulti-task learning, muchwork towards developing general NLU systems has focused

on sentence-to-vector encoder functions [Le and Mikolov 2014; Kiros et al. 2015, i.a.], leveraging

unlabeled data [Hill et al. 2016; Peters et al. 2018], labeled data [Conneau and Kiela 2018; McCann

et al. 2017], and combinations of these [Collobert et al. 2011; Subramanian et al. 2018]. In this

line of work, a standard evaluation practice has emerged, recently codied as SentEval [Conneau

et al. 2017; Conneau and Kiela 2018]. Like GLUE, SentEval relies on a set of existing classication

tasks that involve either one or two sentences as inputs. Unlike GLUE, SentEval only evaluates

sentence-to-vector encoders. Specically, SentEval feeds the output of a pre-trained sentence

encoder into lightweight task-specic models (typically linear classiers) that are trained and

tested on task-specic data.
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SentEval is well-suited for evaluating sentence representations in isolation. However, cross-

sentence contextualization and alignment, such as that yielded by methods like soft-attention,

is instrumental in achieving state-of-the-art performance on tasks such as machine translation

[Bahdanau et al. 2014; Vaswani et al. 2017], question answering [Seo et al. 2016; Xiong et al.

2016], and natural language inference [Rocktäschel et al. 2016] . GLUE is designed to facilitate

the development of these methods: it is model-agnostic, allowing for any kind of representation

or contextualization, including models that use no systematic vector or symbolic representations

for sentences whatsoever. Indeed, among the baseline models we evaluate, the use of attention

consistently leads to improved performance on GLUE.

GLUE also diverges from SentEval in the selection of evaluation tasks that are included in the

suite. Many of the SentEval tasks are closely related to sentiment analysis, such as MR [Pang and

Lee 2005], SST [Socher et al. 2013], CR [Hu and Liu 2004], and SUBJ [Pang and Lee 2004]. Other

tasks are so close to being solved that evaluation on them is relatively uninformative, such as

MPQA [Wiebe et al. 2005] and TREC question classication [Voorhees et al. 1999]. In GLUE, we

attempt to construct a benchmark that is both diverse and dicult.

In work which appeared after the initial launch of GLUE, McCann et al. [2018] introduce de-

caNLP, which also scores NLP systems based on their performance on multiple datasets. Their

benchmark recasts the ten evaluation tasks as question answering, converting tasks like sum-

marization and text-to-SQL semantic parsing into question answering using automatic transfor-

mations. That benchmark lacks the leaderboard and error analysis toolkit of GLUE, but more

importantly, we see it as pursuing a more ambitious but less immediately practical goal: While

GLUE rewards methods that yield good performance on a circumscribed set of tasks using meth-

ods like those that are currently used for those tasks, their benchmark rewards systems that make

progress toward their goal of unifying all of NLU under the rubric of question answering.
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2.3 Tasks

GLUE is centered on nine English sentence understanding tasks, which cover a broad range of

domains, data quantities, and diculties. As the goal of GLUE is to spur development of gen-

eralizable NLU systems, we design the benchmark such that good performance should require a

model to share substantial knowledge (e.g., trained parameters) across all tasks, while still main-

taining some task-specic components. Though it is possible to train a single model for each task

and evaluate the resulting set of models on this benchmark, we expect that our inclusion of sev-

eral data-scarce tasks will ultimately render this approach uncompetitive. We describe the tasks

below and in Table 2.1. Appendix A.1.1 includes additional details. Unless otherwise mentioned,

tasks are evaluated on accuracy and are balanced across classes.

2.3.1 Single-Sentence Tasks

CoLA The Corpus of Linguistic Acceptability [Warstadt et al. 2019] consists of English accept-

ability judgments drawn from books and journal articles on linguistic theory. Each example is

a sequence of words annotated with whether it is a grammatical English sentence. Judgments

of this particular kind are the primary form of evidence in syntactic theory [Schütze 1996], so a

machine learning system capable of predicting them reliably would oer potentially substantial

evidence on questions of language learnability and innate bias. Following the authors, we use

the Matthews correlation coecient [Matthews 1975] as the evaluation metric, which evaluates

classiers on unbalanced binary classication and ranges from -1 to 1, with 0 being the per-

formance of uninformed guessing. We use the standard test set, for which we obtained private

labels from the authors. We report a single performance number on the combination of the in-

and out-of-domain sections of the test set.
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SST-2 The Stanford Sentiment Treebank [Socher et al. 2013] consists of sentences extracted

from movie reviews and human annotations of their sentiment. Given a sentence, the task is to

determine the sentiment of the sentence. We use the two-way (positive/negative) class split, and

use only sentence-level labels.

2.3.2 Similarity and Paraphrase Tasks

MRPC The Microsoft Research Paraphrase Corpus [Dolan and Brockett 2005] is a corpus of

sentence pairs automatically extracted from online news sources, with human annotations for

whether the sentences in the pair are semantically equivalent. Because the classes are imbalanced

(68% positive, 32% negative), we follow common practice and report both accuracy and F1 score.

QQP The Quora Question Pairs1 dataset is a collection of question pairs from the community

question-answering website Quora. Given two questions, the task is to determine whether they

are semantically equivalent. As in MRPC, the class distribution in QQP is unbalanced (37% pos-

itive, 63% negative), so we report both accuracy and F1 score. We use the standard test set, for

which we obtained private labels from the authors.

STS-B The Semantic Textual Similarity Benchmark [Cer et al. 2017] is a collection of sentence

pairs drawn from news headlines, video and image captions, and natural language inference data.

Each pair is human-annotatedwith a similarity score from 1 to 5; the task is to predict these scores.

Follow common practice, we evaluate using Pearson and Spearman correlation coecients.

2.3.3 Inference Tasks

MNLI The Multi-Genre Natural Language Inference Corpus [Williams et al. 2018] is a crowd-

sourced collection of sentence pairs with textual entailment annotations. Given a premise sen-
1data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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tence and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis

(entailment), contradicts the hypothesis (contradiction), or neither (neutral). The premise sen-

tences are gathered from ten dierent domains of text, including transcribed speech, ction, and

government reports. We use the standard test set, for which we obtained private labels from the

authors, and evaluate on both thematched (in-domain) andmismatched (cross-domain) sections.

We also use and recommend the SNLI corpus [Bowman et al. 2015] as 550k examples of auxiliary

training data.

QNLI The Stanford Question Answering Dataset (Rajpurkar et al. 2016) is a question-answering

dataset consisting of question-paragraph pairs, where one of the sentences in the paragraph

(drawn from Wikipedia) contains the answer to the corresponding question (written by an an-

notator). We convert the task into sentence pair classication by forming a pair between each

question and each sentence in the corresponding context, and ltering out pairs with low lexical

overlap between the question and the context sentence. The task is to determine whether the

context sentence contains the answer to the question. This modied version of the original task

removes the requirement that the model select the exact answer, but also removes the simplifying

assumptions that the answer is always present in the input and that lexical overlap is a reliable

cue. This process of recasting existing datasets into NLI is similar to methods introduced inWhite

et al. [2017]. We call the converted dataset QNLI (Question-answering NLI).

RTE The Recognizing Textual Entailment (RTE) datasets come from a series of annual chal-

lenges on the task of textual entailment. We combine the data from RTE1 [Dagan et al. 2006],

RTE2 [Bar Haim et al. 2006], RTE3 [Giampiccolo et al. 2007], and RTE5 [Bentivogli et al. 2009].2

Examples are constructed based on news and Wikipedia text. We convert all datasets to a two-

class split, where for three-class datasetswe collapse neutral and contradiction into not_entailment,

for consistency.
2RTE4 is not publicly available, while RTE6 and RTE7 do not t the standard NLI task.
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Tags Sentence 1 Sentence 2 Fwd Bwd

Lexical Entailment (Lexical
Semantics), Downward
Monotone (Logic)

The timing of the meeting
has not been set, according
to a Starbucks spokesper-
son.

The timing of the meet-
ing has not been consid-
ered, according to a Star-
bucks spokesperson.

N E

Universal Quantiers
(Logic)

Our deepest sympathies are
with all those aected by
this accident.

Our deepest sympathies are
with a victim who was af-
fected by this accident.

E N

Quantiers (Lexical Se-
mantics), Double Negation
(Logic)

I have never seen a hum-
mingbird not ying.

I have never seen a hum-
mingbird.

N E

Table 2.2: Examples from the diagnostic set. Fwd denotes the label when sentence 1 is the premise; Bwd
is the label when sentence 2 is the premise. Labels are entailment (E), neutral (N), or contradiction (C).
Examples are tagged with the phenomena they demonstrate, and each phenomenon belongs to one of
four broad categories (in parentheses). See Table A.1 in Appendix A.1.1 for a complete tag taxonomy.

WNLI TheWinograd Schema Challenge [Levesque et al. 2012] is a reading comprehension task

in which a system must read a sentence with a pronoun and select the referent of that pronoun

from a list of choices. The examples are manually constructed to foil simple statistical meth-

ods: Each one is contingent on contextual information provided by a single word or phrase in

the sentence. To convert the problem into sentence pair classication, we construct sentence

pairs by replacing the ambiguous pronoun with each possible referent. The task is to predict if

the sentence with the pronoun substituted is entailed by the original sentence. We use a small

evaluation set consisting of new examples derived from ction books3 that was shared privately

by the authors of the original corpus. While the included training set is balanced between two

classes, the test set is imbalanced between them (35% entailment, 65% not entailment). As with

QNLI, each example is evaluated separately, so there is not a systematic correspondence between

a model’s score on this task and its score on the unconverted original task. We call converted

dataset WNLI (Winograd NLI).
3See similar examples at cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html
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2.3.4 Evaluation

The GLUE benchmark follows the same evaluation model as SemEval and Kaggle. To evaluate a

system on the benchmark, one must run the system on the provided test data for the tasks, then

upload the results to the website for scoring. The benchmark site then shows per-task scores, as

well as a macro-average of those scores to determine a system’s position on the leaderboard. For

tasks with multiple metrics (e.g., accuracy and F1), we use an unweighted average of the metrics

as the score for the task when computing the overall macro-average. The website also provides

ne- and coarse-grained results on the diagnostic dataset. See Appendix A.1.3 for details.

2.3.5 Data and Bias

We do not endorse the use of the task training sets for any specic non-research use. They do

not cover every dialect of English one may wish to handle, nor languages other than English. As

all of them contain text or annotations that were collected in uncontrolled settings, they contain

evidence of stereotypes and biases that one may not wish one’s system to learn [Rudinger et al.

2017].

2.4 Diagnostic Dataset

Drawing inspiration from the FraCaS suite [Cooper et al. 1996] and the recent Build-It-Break-It

competition [Ettinger et al. 2017], we include a small, manually-curated test set (with private

labels) for the analysis of system performance. While the main benchmark mostly reects an

application-driven distribution of examples, our diagnostic dataset highlights a pre-dened set

of modeling-relevant phenomena.

Each example in the diagnostic dataset is an NLI sentence pair with ne-grained tags for

the phenomena it demonstrates. The NLI task is well-suited to this kind of analysis, as it can

14



straightforwardly evaluate the full set of skills involved in (ungrounded) sentence understanding,

from the resolution of syntactic ambiguity to pragmatic reasoning with world knowledge. We

ensure that the data is reasonably diverse by producing examples for a wide variety of linguistic

phenomena, and basing our examples on naturally-occurring sentences from several domains.

This approaches diers from that of FraCaS, which was designed to test linguistic theories with

a minimal and uniform set of examples. A sample from our dataset is shown in Table 2.2, and a

full list of linguistic categories is in Table A.1 in the appendix.

Domains We construct sentence pairs based on text from four domains: News (articles linked

from the front page), Reddit (threads linked from the Front Page), Wikipedia (Featured Articles),

and academic papers from recent ACL conferences. We include 100 sentence pairs constructed

from each source and 150 articially-constructed sentence pairs for 550 total.

Annotation Process We begin with a target set of phenomena, based roughly on those used

in the FraCaS suite [Cooper et al. 1996]. We construct each example by locating a sentence that

can be easily made to demonstrate a target phenomenon, and editing it in two ways to produce

an appropriate sentence pair. We make minimal modications so as to maintain high lexical and

structural overlapwithin each sentence pair and limit supercial cues. We then label the inference

relationships between the sentences, considering each sentence alternatively as the premise, pro-

ducing two labeled examples for each pair (1100 total). Where possible, we produce several pairs

with dierent labels for a single source sentence, to have minimal sets of sentence pairs that are

lexically and structurally very similar but correspond to dierent entailment relationships. The

resulting labels are 42% entailment, 35% neutral, and 23% contradiction.

Evaluation Since the class distribution in the diagnostic set is not balanced, we use 3 [Gorod-

kin 2004], a three-class generalization of the Matthews correlation coecient, for evaluation.

In light of recent work showing that crowdsourced data often contains artifacts which can be
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exploited to perform well without solving the intended task [Schwartz et al. 2017; Gururangan

et al. 2018; Poliak et al. 2018b; Tsuchiya 2018], we audit the data for such artifacts. We reproduce

the methodology of Gururangan et al. [2018], training two fastText classiers [Joulin et al. 2017]

to predict entailment labels on SNLI and MNLI using only the hypothesis as input. Testing the

trained classiers on the diagnostic data, we obtain accuracies close to chance, 32.7% and 36.4%

respectively, showing that the data does not suer from artifacts of this kind.

To establish human baseline performance on the diagnostic set, we have six NLP researchers

annotate 50 sentence pairs (100 entailment examples) randomly sampled from the diagnostic set.

Inter-annotator agreement is high, with a Fleiss’s  of 0.73. The average 3 score among the

annotators is 0.80, much higher than any of the baseline systems described in Section 2.5.

Intended Use Because these analysis examples are hand-picked to address certain phenomena,

we expect that they will not be representative of the distribution of language as a whole, even in

the targeted domains. However, NLI is a task with no natural input distribution. We deliberately

select sentences that we hope will be able to provide insight into what models are doing, what

phenomena they catch on to, and where are they limited. This means that the raw performance

numbers on the analysis set should be taken with a grain of salt. The set is provided not as a

benchmark, but as an analysis tool to paint in broad strokes the kinds of phenomena a model may

or may not capture, and to provide a set of examples that can serve for error analysis, qualitative

model comparison, and development of adversarial examples that expose a model’s weaknesses.

2.5 Baselines

We evaluate a simple multi-task learning model trained on the benchmark tasks, as well as sev-

eral more sophisticated variants based on recent pre-training methods, as baselines. We briey

describe them here. See Appendix A.1.2 for details. We implement our models in the AllenNLP
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Single Sentence Similarity and Paraphrase Natural Language Inference
Model Avg CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE WNLI

Single-Task Training

BiLSTM 62.0 15.7 85.9 69.3/79.4 81.7/61.4 66.0/62.8 70.3/70.8 60.8 52.8 62.3
+ELMo 66.2 35.0 90.2 69.0/80.8 85.7/65.6 64.0/60.2 72.9/73.4 69.4 50.1 65.1
+CoVe 62.4 14.5 88.5 73.4/81.4 83.3/59.4 67.2/64.1 64.5/64.8 64.8 53.5 61.6
+Attn 60.0 15.7 85.9 68.5/80.3 83.5/62.9 59.3/55.8 74.2/73.8 51.9 51.9 55.5
+Attn, ELMo 64.8 35.0 90.2 68.8/80.2 86.5/66.1 55.5/52.5 76.9/76.7 61.1 50.4 65.1
+Attn, CoVe 60.8 14.5 88.5 68.6/79.7 84.1/60.1 57.2/53.6 71.6/71.5 53.8 52.7 64.4

Multi-Task Training

BiLSTM 63.5 24.0 85.8 71.9/82.1 80.2/59.1 68.8/67.0 65.8/66.0 71.1 46.8 63.7
+ELMo 64.8 27.5 89.6 76.2/83.5 78.5/57.8 67.0/65.9 67.1/68.0 66.7 55.7 62.3
+CoVe 62.2 16.2 84.3 71.8/80.0 82.0/59.1 68.0/67.1 65.3/65.9 70.4 44.2 65.1
+Attn 65.7 0.0 85.0 75.1/83.7 84.3/63.6 73.9/71.8 72.2/72.1 82.1 61.7 63.7
+Attn, ELMo 69.0 18.9 91.6 77.3/83.5 85.3/63.3 72.8/71.1 75.6/75.9 81.7 61.2 65.1
+Attn, CoVe 64.3 19.4 83.6 75.2/83.0 84.9/61.1 72.3/71.1 69.9/68.7 78.9 38.3 65.1

Pre-Trained Sentence Representation Models

CBoW 58.9 0.0 80.0 73.4/81.5 79.1/51.4 61.2/58.7 56.0/56.4 75.1 54.1 62.3
Skip-Thought 61.5 0.0 81.8 71.7/80.8 82.2/56.4 71.8/69.7 62.9/62.8 74.7 53.1 65.1
InferSent 64.7 4.5 85.1 74.1/81.2 81.7/59.1 75.9/75.3 66.1/65.7 79.8 58.0 65.1
DisSent 62.1 4.9 83.7 74.1/81.7 82.6/59.5 66.1/64.8 58.7/59.1 75.2 56.4 65.1
GenSen 66.6 7.7 83.1 76.6/83.0 82.9/59.8 79.3/79.2 71.4/71.3 82.3 59.2 65.1

Table 2.3: Baseline performance on the GLUE tasks. For MNLI, we report accuracy on the matched and
mismatched test sets. ForMRPC andora, we report accuracy and F1. For STS-B, we report Pearson and
Spearman correlation. For CoLA, we report Mahews correlation. For all other tasks we report accuracy.
All values are scaled by 100. A similar table is presented on the online platform.

library [Gardner et al. 2017].

Architecture Our simplest baseline architecture is based on sentence-to-vector encoders, and

sets aside GLUE’s ability to evaluate models with more complex structures. Taking inspiration

from Conneau et al. [2017], the model uses a two-layer, 1500D (per direction) BiLSTM with max

pooling and 300DGloVeword embeddings [840BCommonCrawl version; Pennington et al. 2014].

For single-sentence tasks, we encode the sentence and pass the resulting vector to a classier.

For sentence-pair tasks, we encode sentences independently to produce vectors ,  , and pass

[;  ;  −  ; ∗ ] to a classier. The classier is an MLP with a 512D hidden layer.

We also consider a variant of our model which for sentence pair tasks uses an attention mech-

anism inspired by Seo et al. [2016] between all pairs of words, followed by a second BiLSTMwith
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max pooling. By explicitly modeling the interaction between sentences, these models fall outside

the sentence-to-vector paradigm.

Pre-Training We augment our base model with two recent methods for pre-training: ELMo

and CoVe. We use existing trained models for both.

ELMo uses a pair of two-layer neural language models (one forward, one backward) trained

on the Billion Word Benchmark [Chelba et al. 2013]. Each word is represented by a contextual

embedding, produced by taking a linear combination of the corresponding hidden states of each

layer of the two models. We follow the authors’ recommendations4 and use ELMo embeddings

in place of any other embeddings.

CoVe [McCann et al. 2017] uses a sequence-to-sequence model with a two-layer BiLSTM en-

coder trained for English-to-German translation. The CoVe vector of a word is the corresponding

hidden state of the top-layer LSTM. As in the original work, we concatenate the CoVe vectors to

the GloVe word embeddings.

Training We train our models with the BiLSTM sentence encoder and post-attention BiLSTMs

shared across tasks, and classiers trained separately for each task. For each training update, we

sample a task to train with a probability proportional to the number of training examples for each

task. We train our models with Adam [Kingma and Ba 2014] with initial learning rate 10−3 and

batch size 128. We use the macro-average score as the validation metric and stop training when

the learning rate drops below 10−5 or performance does not improve after 5 validation checks.

We also train a set of single-task models, which are congured and trained identically, but

share no parameters. While this is generally an eective model for the tasks under study, to

allow for fair comparisons with the multi-task analogs we do not tune parameter or training

settings for each task, so these single-task models do not generally represent the state of the art

for each task.
4github.com/allenai/allennlp/blob/master/tutorials/how_to/elmo.md

18



Sentence Representation Models Finally, we evaluate the following trained sentence-to-

vector encoder models using our benchmark: average bag-of-words using GloVe embeddings

(CBoW), Skip-Thought [Kiros et al. 2015], InferSent [Conneau et al. 2017], DisSent [Nie et al.

2017], and GenSen [Subramanian et al. 2018]. See Appendix A.1.2 for additional details. For these

models, we only train task-specic classiers on the representations they produce.

2.6 Benchmark Results

We train three runs of each model and evaluate the run with the best macro-average development

set performance. For single-task and sentence representation models, we evaluate the best run

for each individual task. We present performance on the main benchmark tasks in Table 2.3.

In most cases, using multi-task training over single-task training yields better overall scores,

particularly among the parameter-rich attention models. Attention generally hurts performance

in single task training, but helps in multi-task training. We see a consistent improvement in using

ELMo embeddings in place of GloVe or CoVe embeddings, particularly for single-sentence tasks.

Using CoVe slightly improves on GloVe for single task training but not for multi-task training.

Among the pre-trained sentence representation models, we observe fairly consistent gains

by moving from CBoW to Skip-Thought to Infersent and GenSen. Relative to the models trained

directly on the GLUE tasks, InferSent is competitive and GenSen outperforms all but the two best.

Looking at results per task, we nd that the sentence representation models substantially un-

derperform on CoLA compared to the models directly trained on the task. Similarly, with the

exception of InferSent, the sentence representation models are outperformed on SST by our BiL-

STM and its non-CoVe variants. These discrepancies indicate a need for better transfer methods

for generalizing outside of the tasks a model was trained on and for task diversity in evaluation

methods, as we have sought to do with GLUE. On the other hand, for STS-B, there is a signicant

gap between the models trained directly on the task and the best sentence representation model,
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Coarse-Grained Fine-Grained
Model All LS PAS L K UQuant MNeg 2Neg Coref Restr Down

Single-Task Training

BiLSTM 21 25 24 16 16 70 53 4 21 -15 12
+ELMo 20 20 21 14 17 70 20 42 33 -26 -3
+CoVe 21 19 23 20 18 71 47 -1 33 -15 8
+Attn 25 24 30 20 14 50 47 21 38 -8 -3
+Attn, ELMo 28 30 35 23 14 85 20 42 33 -26 -3
+Attn, CoVe 24 29 29 18 12 77 50 1 18 -1 12

Multi-Task Training

BiLSTM 19 16 22 16 17 71 35 -8 26 0 8
+ELMo 19 15 21 17 21 70 60 15 26 0 12
+CoVe 17 15 21 14 16 50 31 -8 25 -15 12
+Attn 25 23 32 19 16 58 26 -5 28 -1 -20
+Attn, ELMo 23 24 30 17 13 78 27 37 30 -15 -20
+Attn, CoVe 20 16 25 15 17 78 37 14 31 -15 8

Pre-Trained Sentence Representation Models

CBoW 9 6 13 5 10 3 0 13 28 -15 -11
Skip-Thought 12 2 23 11 9 61 6 -2 30 -15 0
InferSent 18 20 20 15 14 77 50 -20 15 -15 -9
DisSent 16 16 19 13 15 70 43 -11 20 -36 -09
GenSen 20 28 26 14 12 78 57 2 21 -15 12

Table 2.4: Results on the diagnostic set. We report 3 coeicients between gold and predicted labels,
scaled by 100. The coarse-grained categories (le) are Lexical Semantics (LS), Predicate-Argument Structure
(PAS), Logic (L), and Knowledge and Common Sense (K). Our example fine-grained categories (right) are
Universalantification (UQant),Morphological Negation (MNeg), Double Negation (2Neg), Anaphora/-
Coreference (Coref), Restrictivity (Restr), and Downward Monotone (Down).

which we interpret as indicating the necessity of using transfer learning methods trained on data

outside of the GLUE benchmark in order to solve it. Finally, there are tasks for which no model

does particularly well. On WNLI, no model exceeds most-frequent-class guessing (65.1%). On

RTE and in aggregate, even our best baselines leave room for improvement. These early results

indicate that solving GLUE is beyond the capabilities of current models and methods, and that

training on auxiliary tasks seems a necessary and promising direction.
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2.7 Analysis

We analyze the baselines by evaluating each model’s MNLI classier on the diagnostic set to get

a better sense of their linguistic capabilities. Results are presented in Table 2.4.

Coarse Categories Overall performance is low for all models: The highest total score of 28

still denotes poor absolute performance. Performance tends to be higher on Predicate-Argument

Structure and lower on Knowledge, though numbers are not closely comparable across categories.

Unlike on the main benchmark, the multi-task models are almost always outperformed by their

single-task counterparts. This is perhaps unsurprising, since with our simple multi-task training

regime, there is likely some destructive interference between MNLI and the other tasks. The

models trained on the GLUE tasks largely outperform the pretrained sentence representation

models, with the exception of GenSen. Using attention has a greater inuence on diagnostic

scores than using ELMo or CoVe, which we take to indicate that attention is especially important

for generalization in NLI.

Fine-Grained Subcategories Mostmodels handle universal quantication relativelywell. Look-

ing at relevant examples, it seems that catching on to lexical cues such as “all” often suces for

good performance. Similarly, lexical cues often provide good signal in examples of morphological

negation.

We also observe weaknesses that vary between models. Double negation is especially dicult

for the GLUE-trained models that only use GloVe embeddings. This is ameliorated by ELMo, and

to some degree CoVe, perhaps because the translation and language modeling objectives teach

models that phrases like “not bad” and “okay” have similar distributions. Also, while attention

improves overall results, attention models tend to struggle with downward monotonicity. Exam-

ining their predictions, we found that the models were sensitive to hypernym/hyponym substi-
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tutions as signals of entailment, but predicted it in the wrong direction (as if the substituted word

was in an upward monotone context). Restrictivity examples, which often depend on nuances of

quantier scope, are especially dicult for all models.

Overall, there is evidence that going beyond sentence-to-vector representations, e.g. with an

attention mechanism, might aid performance on out-of-domain data, and that transfer methods

like ELMo and CoVe encode linguistic information specic to their supervision signal. However,

increased representational capacitymay lead to overtting, such as the failure of attentionmodels

in downward monotone contexts. We expect that our platform and diagnostic dataset will be

useful for similar analyses in the future, so that model designers can better understand their

models’ generalization behavior and implicit knowledge.

2.8 Conclusion

We introduce GLUE, a platform and collection of resources for evaluating and analyzing natural

language understanding systems. We nd that, in aggregate, models trained jointly on our tasks

see better performance than the combined performance ofmodels trained for each task separately.

We conrm the utility of attention mechanisms and transfer learning methods such as ELMo

in NLU systems, which combine to outperform the best sentence representation models on the

GLUE benchmark, but still leave room for improvement. When evaluating these models on our

diagnostic dataset, we nd that they fail (often spectacularly) on many linguistic phenomena,

suggesting possible avenues for future work. In sum, the question of how to design general-

purpose NLU models remains unanswered, and we believe that GLUE can provide fertile soil for

addressing this challenge.
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2.9 Retrospective

In Chapter 2, we introduced the GLUE benchmark, a standardized evaluation protocol for multi-

task NLP based on a set of challenging and diverse NLP tasks. The benchmark incentivizes knowl-

edge transfer between tasks or from pretraining by including tasks with small training datasets

and a uniform interface across tasks (sentence or sentence-pair classication (and regression)).

This common task interface also improves the usability of the benchmark by allowing users to

avoid needing to create many task-specic models.

At the time of release, our best performing baseline used the pretrained model ELMo [Peters

et al. 2018]. ELMo uses two unidirectional language models (one left-to-right and one right-to-

left) to compute contextual word embeddings. The language models are pretrained on the Billion

Word Benchmark [Chelba et al. 2013], a large unlabeled text corpus. Shortly after the release of

GLUE, GPT [Radford et al. 2018] substantially improved upon ELMo predominantly by scaling up

the language model pretraining with larger models, more training data, and longer training time.

Since then, scaling up language modeling pretraining has been the most consistently eective

way to progress on the GLUE benchmark and to learnmore generalizable NLUmodels. Pretrained

languagemodels such as BERT [Devlin et al. 2019], GPT2 [Radford et al. 2019], RoBERTa [Liu et al.

2019e], XLNet [Yang et al. 2019], and T5 [Rael et al. 2020] have led to rapid advancement on the

GLUE benchmark, such that within a year of the initial benchmark release, automatic systems

were nearing estimates of human performance on the benchmark [Nangia and Bowman 2019].

The release of GLUE also inspired similar multi-task benchmarks. Many of these benchmarks

expanded the English-centric (only) language understanding focus of the GLUE benchmark to

other languages (such as Mandarin [CLUE, Xu et al. 2020], French [FLUE, Le et al. 2020], Korean

[KLUE, Park et al. 2021], Polish [KLEJ (Polish for "glue"), Rybak et al. 2020], and Indonesian

[IndoNLU, Wilie et al. 2020]) or crosslingual language understanding (such as XTREME [Hu

et al. 2020] or XGLUE [Liang et al. 2020]). Other works extended the multi-task benchmark
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framework to dierent settings, such as multimodal language understanding tasks [VALUE, Li

et al. 2021] or language generation tasks [GLGE, Liu et al. 2021]. The common methodology

of these benchmarks is in assessing the generalizability of NLU models within a particular class

of problems or languages by evaluating models across a variety of tasks within the benchmark

scope.

In light of the relatively fast progress on the GLUE benchmark due to the proliferation of

large pretrained language models, we also set out to create a more challenging general-purpose

language understanding benchmark in the style of GLUE, which we describe in Chapter 3.
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3 | SuperGLUE: A Stickier Benchmark

for General-Purpose Language

Understanding Systems

3.1 Introduction

Recently there has been notable progress across many natural language processing (NLP) tasks,

led by methods such as ELMo [Peters et al. 2018], OpenAI GPT [Radford et al. 2018], and BERT

[Devlin et al. 2019]. The unifying theme of these methods is that they couple self-supervised

learning from massive unlabelled text corpora with eective adapting of the resulting model to

target tasks. The tasks that have proven amenable to this general approach include question

answering, textual entailment, and parsing, among many others [Devlin et al. 2019; Kitaev et al.

2019, i.a.].

In this context, the GLUE benchmark [Wang et al. 2019b] has become a prominent evaluation

framework for research towards general-purpose language understanding technologies. GLUE

is a collection of nine language understanding tasks built on existing public datasets, together

with private test data, an evaluation server, a single-number target metric, and an accompanying

expert-constructed diagnostic set. GLUE was designed to provide a general-purpose evaluation

of language understanding that covers a range of training data volumes, task genres, and task
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Figure 3.1: GLUE benchmark performance for submied systems, rescaled to set human performance to
1.0, shown as a single number score, and broken down into the nine constituent task performances. For
tasks with multiple metrics, we use an average of the metrics. More information on the tasks included
in GLUE can be found in Wang et al. [2019b] and in Warstadt et al. [2019, CoLA], Socher et al. [2013,
SST-2], Dolan and Brocke [2005, MRPC], Cer et al. [2017, STS-B], and Williams et al. [2018, MNLI], and
Rajpurkar et al. [2016, the original data source for QNLI].

formulations. We believe it was these aspects that made GLUE particularly appropriate for ex-

hibiting the transfer-learning potential of approaches like OpenAI GPT and BERT.

The progress of the last twelve months has eroded headroom on the GLUE benchmark dra-

matically. While some tasks (Figure 3.1) and some linguistic phenomena (Figure A.2 in Ap-

pendix A.2.2) measured in GLUE remain dicult, the current state of the art GLUE Score as of

early July 2019 [88.4 from Yang et al. 2019] surpasses human performance [87.1 from Nangia and

Bowman 2019] by 1.3 points, and in fact exceeds this human performance estimate on four tasks.

Consequently, while there remains substantial scope for improvement towards GLUE’s high-level

goals, the original version of the benchmark is no longer a suitable metric for quantifying such

progress.

In response, we introduce SuperGLUE, a new benchmark designed to pose a more rigorous

test of language understanding. SuperGLUE has the same high-level motivation as GLUE: to

provide a simple, hard-to-game measure of progress toward general-purpose language under-

standing technologies for English. We anticipate that signicant progress on SuperGLUE should
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require substantive innovations in a number of core areas of machine learning, including sample-

ecient, transfer, multitask, and unsupervised or self-supervised learning.

SuperGLUE follows the basic design of GLUE: It consists of a public leaderboard built around

eight language understanding tasks, drawing on existing data, accompanied by a single-number

performance metric, and an analysis toolkit. However, it improves upon GLUE in several ways:

More challenging tasks: SuperGLUE retains the two hardest tasks in GLUE. The remaining

tasks were identied from those submitted to an open call for task proposals and were selected

based on diculty for current NLP approaches.

More diverse task formats: The task formats in GLUE are limited to sentence- and sentence-

pair classication. We expand the set of task formats in SuperGLUE to include coreference reso-

lution and question answering (QA).

Comprehensive humanbaselines:We include human performance estimates for all bench-

mark tasks, which verify that substantial headroom exists between a strong BERT-based baseline

and human performance.

Improved code support: SuperGLUE is distributed with a new, modular toolkit for work

on pretraining, multi-task learning, and transfer learning in NLP, built around standard tools

including PyTorch [Paszke et al. 2017] and AllenNLP [Gardner et al. 2017].

Rened usage rules: The conditions for inclusion on the SuperGLUE leaderboard have been

revamped to ensure fair competition, an informative leaderboard, and full credit assignment to

data and task creators.

The SuperGLUE leaderboard, data, and software tools are available at super.gluebenchmark.com.

3.2 Related Work

Much work prior to GLUE demonstrated that training neural models with large amounts of avail-

able supervision can produce representations that eectively transfer to a broad range of NLP
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Table 3.1: Development set examples from the tasks in SuperGLUE. Bold text represents part of the
example format for each task. Text in italics is part of the model input. Underlined text is specially marked
in the input. Text in a monospaced font represents the expected model output.

Bo
ol
Q Passage: Barq’s – Barq’s is an American soft drink. Its brand of root beer is notable for having caeine. Barq’s, created by Edward Barq

and bottled since the turn of the 20th century, is owned by the Barq family but bottled by the Coca-Cola Company. It was known as Barq’s
Famous Olde Tyme Root Beer until 2012.
Question: is barq’s root beer a pepsi product Answer: No

C
B Text: B: And yet, uh, I we-, I hope to see employer based, you know, helping out. You know, child, uh, care centers at the place of employment

and things like that, that will help out. A: Uh-huh. B: What do you think, do you think we are, setting a trend?
Hypothesis: they are setting a trend Entailment: Unknown

C
O
PA Premise: My body cast a shadow over the grass. Question: What’s the CAUSE for this?

Alternative 1: The sun was rising. Alternative 2: The grass was cut.
Correct Alternative: 1

M
ul
ti
R
C Paragraph: Susan wanted to have a birthday party. She called all of her friends. She has ve friends. Her mom said that Susan can invite

them all to the party. Her rst friend could not go to the party because she was sick. Her second friend was going out of town. Her third
friend was not so sure if her parents would let her. The fourth friend said maybe. The fth friend could go to the party for sure. Susan was
a little sad. On the day of the party, all ve friends showed up. Each friend had a present for Susan. Susan was happy and sent each friend
a thank you card the next week
Question: Did Susan’s sick friend recover? Candidate answers: Yes, she recovered (T), No (F), Yes (T), No, she didn’t recover (F), Yes, she
was at Susan’s party (T)

R
eC

oR
D Paragraph: (CNN) Puerto Rico on Sunday overwhelmingly voted for statehood. But Congress, the only body that can approve new states,

will ultimately decide whether the status of the US commonwealth changes. Ninety-seven percent of the votes in the nonbinding referendum
favored statehood, an increase over the results of a 2012 referendum, ocial results from the State Electorcal Commission show. It was the
fth such vote on statehood. "Today, we the people of Puerto Rico are sending a strong and clear message to the US Congress ... and to the
world ... claiming our equal rights as American citizens, Puerto Rico Gov. Ricardo Rossello said in a news release. @highlight Puerto Rico
voted Sunday in favor of US statehood
Query For one, they can truthfully say, “Don’t blame me, I didn’t vote for them, ” when discussing the <placeholder> presidency
Correct Entities: US

R
TE

Text: Dana Reeve, the widow of the actor Christopher Reeve, has died of lung cancer at age 44, according to the Christopher Reeve Foundation.
Hypothesis: Christopher Reeve had an accident. Entailment: False

W
iC Context 1: Room and board. Context 2: He nailed boards across the windows.

Sense match: False

W
SC Text: Mark told Pete many lies about himself, which Pete included in his book. He should have been more truthful. Coreference: False

tasks [Collobert and Weston 2008; Dai and Le 2015; Kiros et al. 2015; Hill et al. 2016; Conneau

and Kiela 2018; McCann et al. 2017; Peters et al. 2018]. GLUE was presented as a formal challenge

aording straightforward comparison between such task-agnostic transfer learning techniques.

Other similarly-motivated benchmarks include SentEval [Conneau and Kiela 2018], which specif-

ically evaluates xed-size sentence embeddings, and DecaNLP [McCann et al. 2018], which re-

casts a set of target tasks into a general question-answering format and prohibits task-specic

parameters. In contrast, GLUE provides a lightweight classication API and no restrictions on
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model architecture or parameter sharing, which seems to have been well-suited to recent work

in this area.

Since its release, GLUE has been used as a testbed and showcase by the developers of sev-

eral inuential models, including GPT [Radford et al. 2018] and BERT [Devlin et al. 2019]. As

shown in Figure 3.1, progress on GLUE since its release has been striking. On GLUE, GPT and

BERT achieved scores of 72.8 and 80.2 respectively, relative to 66.5 for an ELMo-based model

[Peters et al. 2018] and 63.7 for the strongest baseline with no multitask learning or pretraining

above the word level. Recent models [Liu et al. 2019d; Yang et al. 2019] have clearly surpassed

estimates of non-expert human performance on GLUE [Nangia and Bowman 2019]. The success

of these models on GLUE has been driven by ever-increasing model capacity, compute power,

and data quantity, as well as innovations in model expressivity (from recurrent to bidirectional

recurrent to multi-headed transformer encoders) and degree of contextualization (from learning

representation of words in isolation to using uni-directional contexts and ultimately to leveraging

bidirectional contexts).

In parallel to work scaling up pretrained models, several studies have focused on comple-

mentary methods for augmenting performance of pretrained models. Phang et al. [2018] show

that BERT can be improved using two-stage pretraining, i.e., ne-tuning the pretrained model on

an intermediate data-rich supervised task before ne-tuning it again on a data-poor target task.

Liu et al. [2019d,c] and Bach et al. [2018] get further improvements respectively via multi-task

netuning and using massive amounts of weak supervision. Clark et al. [2019b] demonstrate

that knowledge distillation [Hinton et al. 2015; Furlanello et al. 2018] can lead to student net-

works that outperform their teachers. Overall, the quantity and quality of research contributions

aimed at the challenges posed by GLUE underline the utility of this style of benchmark for ma-

chine learning researchers looking to evaluate new application-agnostic methods on language

understanding.

Limits to current approaches are also apparent via the GLUE suite. Performance on the GLUE
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Table 3.2: The tasks included in SuperGLUE. WSD stands for word sense disambiguation, NLI is natural
language inference, coref. is coreference resolution, and QA is question answering. For MultiRC, we list
the number of total answers for 456/83/166 train/dev/test questions.

Corpus Train Dev Test Task Metrics Text Sources

BoolQ 9427 3270 3245 QA acc. Google queries, Wikipedia
CB 250 57 250 NLI acc./F1 various
COPA 400 100 500 QA acc. blogs, photography encyclopedia
MultiRC 5100 953 1800 QA F1/EM various
ReCoRD 101k 10k 10k QA F1/EM news (CNN, Daily Mail)
RTE 2500 278 300 NLI acc. news, Wikipedia
WiC 6000 638 1400 WSD acc. WordNet, VerbNet, Wiktionary
WSC 554 104 146 coref. acc. ction books

diagnostic entailment dataset, at 0.423, falls far below the average human performance of 0.803

reported in the original GLUE publication, withmodels performing near, or even below, chance on

some linguistic phenomena (Figure A.2, Appendix A.2.2). While some initially dicult categories

saw gains from advances on GLUE (e.g., double negation), others remain hard (restrictivity) or

even adversarial (disjunction, downward monotonicity). This suggests that even as unsupervised

pretraining produces ever-better statistical summaries of text, it remains dicult to extract many

details crucial to semantics without the right kind of supervision. Much recent work has made

similar observations about the limitations of existing pretrained models [Jia and Liang 2017; Naik

et al. 2018; McCoy and Linzen 2019; McCoy et al. 2019; Liu et al. 2019a,b].

3.3 SuperGLUE Overview

3.3.1 Design Process

The goal of SuperGLUE is to provide a simple, robust evaluation metric of any method capable

of being applied to a broad range of language understanding tasks. To that end, in designing

SuperGLUE, we identify the following desiderata of tasks in the benchmark:

Task substance: Tasks should test a system’s ability to understand and reason about texts
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in English.

Task diculty: Tasks should be beyond the scope of current state-of-the-art systems, but

solvable by most college-educated English speakers. We exclude tasks that require domain-

specic knowledge, e.g. medical notes or scientic papers.

Evaluability: Tasks must have an automatic performance metric that corresponds well to

human judgments of output quality. Some text generation tasks fail to meet this criteria due to

issues with automatic metrics like ROUGE and BLEU [Callison-Burch et al. 2006; Liu et al. 2016,

i.a.].

Public data: We require that tasks have existing public training data in order to minimize

the risks involved in newly-created datasets. We also prefer tasks for which we have access to

(or could create) a test set with private labels.

Task format: We prefer tasks that had relatively simple input and output formats, to avoid

incentivizing the users of the benchmark to create complex task-specic model architectures.

Still, while GLUE is restricted to tasks involving single sentence or sentence pair inputs, for Su-

perGLUE we expand the scope to consider tasks with longer inputs. This yields a set of tasks

that requires understanding individual tokens in context, complete sentences, inter-sentence re-

lations, and entire paragraphs.

License: Task data must be available under licences that allow use and redistribution for

research purposes.

To identify possible tasks for SuperGLUE, we disseminated a public call for task proposals

to the NLP community, and received approximately 30 proposals. We ltered these proposals

according to our criteria. Many proposals were not suitable due to licensing issues, complex

formats, and insucient headroom; we provide examples of such tasks in Appendix A.2.4. For

each of the remaining tasks, we ran a BERT-based baseline and a human baseline, and ltered

out tasks which were either too challenging for humans without extensive training or too easy

for our machine baselines.
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3.3.2 Selected Tasks

Following this process, we arrived at eight tasks to use in SuperGLUE. See Tables 3.2 and 3.1 for

details and specic examples of each task.

BoolQ [Boolean Questions, Clark et al. 2019a] is a QA task where each example consists of a

short passage and a yes/no question about the passage. The questions are provided anonymously

and unsolicited by users of the Google search engine, and afterwards paired with a paragraph

from a Wikipedia article containing the answer. Following the original work, we evaluate with

accuracy.

CB [CommitmentBank, de Marnee et al. 2019] is a corpus of short texts in which at least

one sentence contains an embedded clause. Each of these embedded clauses is annotated with the

degree to which it appears the person who wrote the text is committed to the truth of the clause.

The resulting task framed as three-class textual entailment on examples that are drawn from the

Wall Street Journal, ction from the British National Corpus, and Switchboard. Each example

consists of a premise containing an embedded clause and the corresponding hypothesis is the

extraction of that clause. We use a subset of the data that had inter-annotator agreement above

80%. The data is imbalanced (relatively fewer neutral examples), so we evaluate using accuracy

and F1, where for multi-class F1 we compute the unweighted average of the F1 per class.

COPA [Choice of Plausible Alternatives, Roemmele et al. 2011] is a causal reasoning task

in which a system is given a premise sentence and must determine either the cause or eect of

the premise from two possible choices. All examples are handcrafted and focus on topics from

blogs and a photography-related encyclopedia. Following the original work, we evaluate using

accuracy.

MultiRC [Multi-Sentence Reading Comprehension, Khashabi et al. 2018] is a QA task where

each example consists of a context paragraph, a question about that paragraph, and a list of

possible answers. The system must predict which answers are true and which are false. While
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many QA tasks exist, we use MultiRC because of a number of desirable properties: (i) each ques-

tion can have multiple possible correct answers, so each question-answer pair must be evaluated

independent of other pairs, (ii) the questions are designed such that answering each question re-

quires drawing facts from multiple context sentences, and (iii) the question-answer pair format

more closely matches the API of other tasks in SuperGLUE than the more popular span-extractive

QA format does. The paragraphs are drawn from seven domains including news, ction, and his-

torical text. The evaluation metrics are F1 over all answer-options (F1) and exact match of each

question’s set of answers (EM).

ReCoRD [ReadingComprehensionwith Commonsense ReasoningDataset, Zhang et al. 2018]

is a multiple-choice QA task. Each example consists of a news article and a Cloze-style question

about the article in which one entity is masked out. The system must predict the masked out

entity from a list of possible entities in the provided passage, where the same entity may be ex-

pressed with multiple dierent surface forms, which are all considered correct. Articles are from

CNN and Daily Mail. We evaluate with max (over all mentions) token-level F1 and exact match

(EM).

RTE (Recognizing Textual Entailment) datasets come from a series of annual competitions on

textual entailment. RTE is included in GLUE, and we use the same data and format as GLUE: We

merge data from RTE1 [Dagan et al. 2006], RTE2 [Bar Haim et al. 2006], RTE3 [Giampiccolo et al.

2007], and RTE5 [Bentivogli et al. 2009]. All datasets are combined and converted to two-class

classication: entailment and not_entailment. Of all the GLUE tasks, RTE is among those that

benets from transfer learning the most, with performance jumping from near random-chance

(∼56%) at the time of GLUE’s launch to 86.3% accuracy [Liu et al. 2019d; Yang et al. 2019] at the

time of writing. Given the nearly eight point gap with respect to human performance, however,

the task is not yet solved by machines, and we expect the remaining gap to be dicult to close.

WiC [Word-in-Context, Pilehvar and Camacho-Collados 2019] is a word sense disambigua-

tion task cast as binary classication of sentence pairs. Given two text snippets and a polysemous
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word that appears in both sentences, the task is to determine whether the word is used with the

same sense in both sentences. Sentences are drawn fromWordNet [Miller 1995], VerbNet [Schuler

2005], and Wiktionary. We follow the original work and evaluate using accuracy.

WSC [Winograd Schema Challenge, Levesque et al. 2012] is a coreference resolution task in

which examples consist of a sentence with a pronoun and a list of noun phrases from the sen-

tence. The system must determine the correct referrent of the pronoun from among the provided

choices. Winograd schemas are designed to require everyday knowledge and commonsense rea-

soning to solve.

GLUE includes a version of WSC recast as NLI, known as WNLI. Until very recently, no sub-

stantial progress had beenmade onWNLI, withmany submissions opting to submitmajority class

predictions.1 In the past few months, several works [Kocijan et al. 2019; Liu et al. 2019d] have

made rapid progress via a hueristic data augmentation scheme, raising machine performance to

90.4% accuracy. Given estimated human performance of ∼96%, there is still a gap between ma-

chine and human performance, which we expect will be relatively dicult to close. We therefore

include a version of WSC cast as binary classication, where each example consists of a sentence

with a marked pronoun and noun, and the task is to determine if the pronoun refers to that noun.

The training and validation examples are drawn from the original WSC data [Levesque et al.

2012], as well as those distributed by the aliated organization Commonsense Reasoning.2 The

test examples are derived from ction books and have been shared with us by the authors of the

original dataset. We evaluate using accuracy.
1WNLI is especially dicult due to an adversarial train/dev split: Premise sentences that appear in the training

set often appear in the development set with a dierent hypothesis and a ipped label. If a system memorizes the
training set, which was easy due to the small size of the training set, it could perform far below chance on the
development set. We remove this adversarial design in our version of WSC by ensuring that no sentences are shared
between the training, validation, and test sets.

2http://commonsensereasoning.org/disambiguation.html
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3.3.3 Scoring

As with GLUE, we seek to give a sense of aggregate system performance over all tasks by aver-

aging scores of all tasks. Lacking a fair criterion with which to weight the contributions of each

task to the overall score, we opt for the simple approach of weighing each task equally, and for

tasks with multiple metrics, rst averaging those metrics to get a task score.

3.3.4 Tools for Model Analysis

Analyzing Linguistic andWorldKnowledge inModels GLUE includes an expert-constructed,

diagnostic dataset that automatically tests models for a broad range of linguistic, commonsense,

and world knowledge. Each example in this broad-coverage diagnostic is a sentence pair labeled

with a three-way entailment relation (entailment, neutral, or contradiction) and tagged with la-

bels that indicate the phenomena that characterize the relationship between the two sentences.

Submissions to the GLUE leaderboard are required to include predictions from the submission’s

MultiNLI classier on the diagnostic dataset, and analyses of the results were shown alongside

the main leaderboard. Since this diagnostic task has proved dicult for top models, we retain it

in SuperGLUE. However, since MultiNLI is not part of SuperGLUE, we collapse contradiction and

neutral into a single not_entailment label, and request that submissions include predictions on the

resulting set from the model used for the RTE task. We estimate human performance following

the same procedure we use for the benchmark tasks (Section A.2.3). We estimate an accuracy of

88% and a Matthew’s correlation coecient (MCC, the two-class variant of the 3 metric used in

GLUE) of 0.77.

Analyzing Gender Bias in Models Recent work has identied the presence and amplication

of many social biases in data-driven machine learning models [Lu et al. 2020; Zhao et al. 2018,

i.a.]. To promote the detection of such biases, we include Winogender [Rudinger et al. 2018] as
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an additional diagnostic dataset. Winogender is designed to measure gender bias in coreference

resolution systems. We use the Diverse Natural Language Inference Collection [Poliak et al.

2018a] version that casts Winogender as a textual entailment task. Each example consists of a

premise sentence with a male or female pronoun and a hypothesis giving a possible antecedent of

the pronoun. Examples occur inminimal pairs, where the only dierence between an example and

its pair is the gender of the pronoun in the premise. Performance onWinogender ismeasuredwith

accuracy and the gender parity score: the percentage of minimal pairs for which the predictions

are the same. A system can trivially obtain a perfect gender parity score by guessing the same

class for all examples, so a high gender parity score is meaningless unless accompanied by high

accuracy. We collect non-expert annotations to estimate human performance, and observe an

accuracy of 99.7% and a gender parity score of 0.99.

Like any diagnostic, Winogender has limitations. It oers only positive predictive value: A

poor bias score is clear evidence that a model exhibits gender bias, but a good score does not mean

that the model is unbiased. More specically, in the DNC version of the task, a low gender parity

score means that a model’s prediction of textual entailment can be changed with a change in

pronouns, all else equal. It is plausible that there are forms of bias that are relevant to target tasks

of interest, but that do not surface in this setting [Gonen and Goldberg 2019]. Also, Winogender

does not cover all forms of social bias, or even all forms of gender. For instance, the version of

the data used here oers no coverage of gender-neutral they or non-binary pronouns. Despite

these limitations, we believe that Winogender’s inclusion is worthwhile in providing a coarse

sense of how social biases evolve with model performance and for keeping attention on the social

ramications of NLP models.
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3.4 Using SuperGLUE

SoftwareTools To facilitate using SuperGLUE,we release jiant [Wang et al. 2019c],3 amodu-

lar software toolkit, built with PyTorch [Paszke et al. 2017], components fromAllenNLP [Gardner

et al. 2017], and the transformers package.4 jiant implements our baselines and supports the

evaluation of custom models and training methods on the benchmark tasks. The toolkit includes

support for existing popular pretrained models such as OpenAI GPT and BERT, as well as support

for multistage and multitask learning of the kind seen in the strongest models on GLUE.

Eligibility Any system or method that can produce predictions for the SuperGLUE tasks is

eligible for submission to the leaderboard, subject to the data-use and submission frequency poli-

cies stated immediately below. There are no restrictions on the type of methods that may be used,

and there is no requirement that any form of parameter sharing or shared initialization be used

across the tasks in the benchmark. To limit overtting to the private test data, users are limited

to a maximum of two submissions per day and six submissions per month.

Data Data for the tasks are available for download through the SuperGLUE site and through a

download script included with the software toolkit. Each task comes with a standardized training

set, development set, and unlabeled test set. Submitted systemsmay use any public or private data

when developing their systems, with a few exceptions: Systems may only use the SuperGLUE-

distributed versions of the task datasets, as these use dierent train/validation/test splits from

other public versions in some cases. Systems also may not use the unlabeled test data for the tasks

in system development in anyway, may not use the structured source data that was used to collect

the WiC labels (sense-annotated example sentences fromWordNet, VerbNet, and Wiktionary) in

any way, and may not build systems that share information across separate test examples in any
3https://github.com/nyu-mll/jiant
4https://github.com/huggingface/transformers
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way.

To ensure reasonable credit assignment, because we build very directly on prior work, we ask

the authors of submitted systems to directly name and cite the specic datasets that they use,

including the benchmark datasets. We will enforce this as a requirement for papers to be listed on

the leaderboard.

3.5 Experiments

3.5.1 Baselines

Table 3.3: Baseline performance on the SuperGLUE test sets and diagnostics. For CB we report accuracy
andmacro-average F1. ForMultiRCwe report F1 on all answer-options and exactmatch of each question’s
set of correct answers. AX is the broad-coverage diagnostic task, scored using Mahews’ correlation
(MCC). AX is the Winogender diagnostic, scored using accuracy and the gender parity score (GPS). All
values are scaled by 100. The Avg column is the overall benchmark score on non-AX∗ tasks. The bolded
numbers reflect the best machine performance on task. *MultiRC has multiple test sets released on a
staggered schedule, and these results evaluate on an installation of the test set that is a subset of ours.

Model Avg BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC AX AX

Metrics Acc. F1/Acc. Acc. F1/EM F1/EM Acc. Acc. Acc. MCC GPS Acc.

Most Frequent 47.1 62.3 21.7/48.4 50.0 61.1 / 0.3 33.4/32.5 50.3 50.0 65.1 0.0 100.0/ 50.0
CBoW 44.3 62.1 49.0/71.2 51.6 0.0 / 0.4 14.0/13.6 49.7 53.0 65.1 -0.4 100.0/ 50.0
BERT 69.0 77.4 75.7/83.6 70.6 70.0 / 24.0 72.0/71.3 71.6 69.5 64.3 23.0 97.8 / 51.7
BERT++ 71.5 79.0 84.7/90.4 73.8 70.0 / 24.1 72.0/71.3 79.0 69.5 64.3 38.0 99.4 / 51.4
Outside Best - 80.4 - / - 84.4 70.4*/24.5* 74.8/73.0 82.7 - - - - / -

Human (est.) 89.8 89.0 95.8/98.9 100.0 81.8*/51.9* 91.7/91.3 93.6 80.0 100.0 77.0 99.3 / 99.7

BERT Our main baselines are built around BERT, variants of which are among the most suc-

cessful approach on GLUE at the time of writing. Specically, we use the bert-large-cased

variant. Following the practice recommended in Devlin et al. [2019], for each task, we use the

simplest possible architecture on top of BERT. We ne-tune a copy of the pretrained BERT model

separately for each task, and leave the development of multi-task learning models to future work.

For training, we use the procedure specied in Devlin et al. [2019]: We use Adam [Kingma and

Ba 2014] with an initial learning rate of 10−5 and ne-tune for a maximum of 10 epochs.
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For classication tasks with sentence-pair inputs (BoolQ, CB, RTE, WiC), we concatenate

the sentences with a [sep] token, feed the fused input to BERT, and use a logistic regression

classier that sees the representation corresponding to [cls]. For WiC, we also concatenate the

representation of the marked word. For COPA,MultiRC, and ReCoRD, for each answer choice, we

similarly concatenate the context with that answer choice and feed the resulting sequence into

BERT to produce an answer representation. For COPA, we project these representations into a

scalar, and take as the answer the choice with the highest associated scalar. For MultiRC, because

each question can have more than one correct answer, we feed each answer representation into

a logistic regression classier. For ReCoRD, we also evaluate the probability of each candidate

independent of other candidates, and take the most likely candidate as the model’s prediction.

For WSC, which is a span-based task, we use a model inspired by Tenney et al. [2019]. Given

the BERT representation for each word in the original sentence, we get span representations of

the pronoun and noun phrase via a self-attention span-pooling operator [Lee et al. 2017], before

feeding it into a logistic regression classier.

BERT++ We also report results using BERT with additional training on related datasets before

ne-tuning on the benchmark tasks, following the STILTs style of transfer learning [Phang et al.

2018]. Given the productive use of MultiNLI in pretraining and intermediate ne-tuning of pre-

trained language models [Conneau et al. 2017; Phang et al. 2018, i.a.], for CB, RTE, and BoolQ, we

use MultiNLI as a transfer task by rst using the above procedure on MultiNLI. Similarly, given

the similarity of COPA to SWAG [Zellers et al. 2018], we rst ne-tune BERT on SWAG. These

results are reported as BERT++. For all other tasks, we reuse the results of BERT ne-tuned on

just that task.

Other Baselines We include a baseline where for each task we simply predict the majority

class,5 as well as a bag-of-words baseline where each input is represented as an average of its
5For ReCoRD, we predict the entity that has the highest F1 with the other entity options.
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tokens’ GloVe word vectors [the 300D/840B release from Pennington et al. 2014]. Finally, we list

the best known result on each task as of May 2019, except on tasks which we recast (WSC), resplit

(CB), or achieve the best known result (WiC). The outside results for COPA, MultiRC, and RTE

are from Sap et al. [2019], Trivedi et al. [2019], and Liu et al. [2019d] respectively.

Human Performance Pilehvar and Camacho-Collados [2019], Khashabi et al. [2018], Nangia

and Bowman [2019], and Zhang et al. [2018] respectively provide estimates for human perfor-

mance onWiC, MultiRC, RTE, and ReCoRD. For the remaining tasks, including the diagnostic set,

we estimate human performance by hiring crowdworker annotators through Amazon’s Mechan-

ical Turk platform to reannotate a sample of each test set. We follow a two step procedure where

a crowd worker completes a short training phase before proceeding to the annotation phase,

modeled after the method used by Nangia and Bowman [2019] for GLUE. See Appendix A.2.3 for

details.

3.5.2 Results

Table 3.3 shows results for all baselines. The most frequent class and CBOW baselines do not

perform well overall, achieving near chance performance for several of the tasks. Using BERT

increases the average SuperGLUE score by 25 points, attaining signicant gains on all of the

benchmark tasks, particularly MultiRC, ReCoRD, and RTE. On WSC, BERT actually performs

worse than the simple baselines, likely due to the small size of the dataset and the lack of data

augmentation. Using MultiNLI as an additional source of supervision for BoolQ, CB, and RTE

leads to a 2-5 point improvement on all tasks. Using SWAG as a transfer task for COPA sees an 8

point improvement.

Our best baselines still lag substantially behind human performance. On average, there is a

nearly 20 point gap between BERT++ and human performance. The largest gap is onWSC, with a

35 point dierence between the best model and human performance. The smallest margins are on
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BoolQ, CB, RTE, and WiC, with gaps of around 10 points on each of these. We believe these gaps

will be challenging to close: On WSC and COPA, human performance is perfect. On three other

tasks, it is in the mid-to-high 90s. On the diagnostics, all models continue to lag signicantly

behind humans. Though all models obtain near perfect gender parity scores on Winogender, this

is due to the fact that they are obtaining accuracy near that of random guessing.

3.6 Conclusion

We present SuperGLUE, a new benchmark for evaluating general-purpose language understand-

ing systems. SuperGLUE updates the GLUE benchmark by identifying a new set of challenging

NLU tasks, as measured by the dierence between human and machine baselines. The set of eight

tasks in our benchmark emphasizes diverse task formats and low-data training data tasks, with

nearly half the tasks having fewer than 1k examples and all but one of the tasks having fewer

than 10k examples.

We evaluate BERT-based baselines and nd that they still lag behind humans by nearly 20

points. Given the diculty of SuperGLUE for BERT, we expect that further progress inmulti-task,

transfer, and unsupervised/self-supervised learning techniques will be necessary to approach

human-level performance on the benchmark. Overall, we argue that SuperGLUE oers a rich

and challenging testbed for work developing new general-purpose machine learning methods

for language understanding.

3.7 Retrospective

In Chapter 3, we introduced the SuperGLUE benchmark, the successor to the GLUE benchmark

that updates it with more diverse and more challenging tasks. Tasks are selected from a pool of

community-proposed tasks and after verication that the task is easily solved by humans and
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beyond the capability of state-of-the-art models at the time. At release, SuperGLUE was indeed

challenging for NLP models, and it successfully served as one of the primary evaluation methods

for prominent large language models such as RoBERTa [Liu et al. 2019e], T5 [Rael et al. 2020],

and ERNIE [Sun et al. 2021]. However, progress on SuperGLUE improved so quickly that within

six months of its release, the best models had alreadymatched human crowdworker performance.

The steps taken to ensure the diculty of the benchmark were not successful in outpacing the

speed of model improvements, and it seems unlikely that another round of benchmark creation

similar to that of SuperGLUE would produce a benchmark that stands up against the rapid pace

of model progress. However, there have been several recent innovations in benchmark creation

that seem promising in developing sustainable, challenging benchmarks.

The most obvious spiritual successor to the GLUE and SuperGLUE benchmarks is the Beyond

the Imitation Game benchmark [BIG-bench, BIG-bench collaboration 2021].6 Like SuperGLUE,

BIG-bench evaluates NLP models by their ability to perform a diverse set of tasks that have been

crowdsourced from the NLP research community. Unlike SuperGLUE, BIG-bench focuses on the

few-shot setting, where there are typically very few training examples for a task. Additionally,

BIG-bench diers from SuperGLUE in that it sets out to measure whether scaling up language

models can eventually solve any text-based task. To answer this, BIG-bench not only includes

traditional NLP tasks, such as machine reasoning or question answering, but also extremely niche

tasks, such as solving crosswords puzzles, recognizing ASCII art, or answering questions about

cryobiology in Spanish. In order to produce such a diverse range of tasks, BIG-bench uses an

open, light-weight reviewing process for community-proposed tasks. All tasks are dened with

a consistent format in order to facilitate easy task reviewing and model evaluation, ultimately

allowing for a large volume of tasks to be considered. The current version of BIG-bench consists

of 209 tasks across dozens of tasks types.

Another prominent successor to SuperGLUE is the Dynabench platform [Kiela et al. 2021],
6https://github.com/google/BIG-bench
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which benchmarks NLP models by explicitly trying to create examples that are challenging for

existing models. Dynabench oers three key innovations over GLUE and SuperGLUE. First, Dyn-

abench focuses on task examples that existing models get wrong, rather than the average exam-

ple for a task. In order to facilitate the collection of such hard examples, Dynabench relies on a

process called adversarial data collection, wherein crowdworkers try to write task examples that

"break" current models. The examples that workers write are immediately evaluated against the

model, and the worker receives feedback as to whether their example was successful in fooling

the model. However, the ecacy of adversarially generated data in evaluating models fairly has

recently been called into question [Bowman and Dahl 2021; Phang et al. 2021; Li and Michael

2022]. Second, Dynabench uses these adversarial examples to periodically update the test sets

for each task, rather than relying on a single static dataset release. Because the benchmark test

sets are dynamic, it is not as problematic if they become saturated because they will soon be

updated with more challenging examples. Third, users of the benchmark submit models, rather

than model predictions. This allows submitted models to be run not only on current and previous

dataset releases, but also future datasets that have yet to be collected. Additionally, the best mod-

els can then be incorporated into the adversarial data collection process to create even harder test

sets for the next data release. Finally, because users submit models and all models are run in con-

sistent environments, Dynabench includes fair measures of model inference time and memory

consumption. Users can then use these performance measures, as well as other measures such as

accuracy or robustness, to rerank models based on how heavily they weigh these factors.

Dynabench is one example of a broader trend of making more dicult benchmarks by fo-

cusing on more challenging, constrained, and adversarial settings. An orthogonal line of work

focuses on models’ ability to learn to perform new tasks with few training examples (few-shot

learning); FewGLUE [Schick and Schütze 2021], FewNLU [Zheng et al. 2022], FewCLUE [Xu et al.

2021] have been developed to standardize evaluation in this data-constrained setting. In response

to concerns about the energy consumption of large pretrained language models, benchmarks like
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HULK [Zhou et al. 2021] have been developed to incentivize computation- or parameter-ecient

models In a similar vein, a modied version of SuperGLUE was used as the shared task of the Sus-

taiNLP workshop [Wang and Wolf 2020], where models were evaluated not only based on their

predictive performance, but also on the energy consumed to produce a full set of test predictions.

Finally, while SuperGLUE focused on sentence- or paragraph-level tasks, the SCROLLS bench-

mark [Shaham et al. 2022] evaluates models’ ability to perform NLU tasks on long-document

inputs, such as books and meeting transcripts, where the inputs are thousands to hundreds of

thousands of words long.
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4 | QAGS: Asking and Answering

estions to Evaluate the Factual

Consistency of Summaries

4.1 Introduction

Automatic summarization aims to produce summaries that are succinct, coherent, relevant, and—

crucially — factually correct. Recent progress in conditional text generation has led tomodels that

can generate uent, topical summaries [Lewis et al. 2020]. However, model-generated summaries

frequently contain factual inconsistencies, limiting their applicability [Kryscinski et al. 2019].

The problem of factual inconsistency is due in part to the lack of automatic evaluation metrics

that can detect such errors. Standard metrics for evaluating generated text are predominantly

based on counting -grams, which weigh all -grams equally and are insensitive to semantic

errors. This inadequacy leaves human evaluation as the primarymethod for evaluating the factual

consistencies, which has been noted to be challenging even for humans [Daume III and Marcu

2005; Kryscinski et al. 2019], in addition to being slow and costly.

We argue that evaluation metrics that are able to capture subtle semantic errors are required

to build better models. In this work, we introduce a general framework for evaluating conditional

text generation that is designed to detect factual inconsistencies in generated text with respect
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to some input. Our framework consists of three steps: (1) Given a generated text, a question

generation (QG) model generates a set of questions about the text. (2) We then use question

answering (QA) models to answer these questions given both the input and the generated text.

(3) A quality score is computed based on the similarity of corresponding answers.

This approach leverages recent progress in QA and QG to ask and answer human readable,

on-topic questions [Devlin et al. 2019; Song et al. 2019]. It only assumes access to a question

answering dataset to train the QG and QA models, and is applicable to any modality where a QA

model is available, e.g. text, images, or knowledge graphs.

We use this framework to develop QAGS (Question Answering and Generation for Summa-

rization), a metric for evaluating the factual consistency of abstractive document summaries.

Compared to commonly used automatic metrics such as ROUGE [Lin 2004], QAGS shows dramat-

ically higher correlations with human judgements of factuality, for example achieving a Pearson

correlation coecient of 54.52 on the CNN/DailyMail summarization task, compared to 17.72

for ROUGE-2. QAGS also achieves new state-of-the-art results on evaluating the factuality of

summaries, outperforming recently proposed NLI models for this task [Kryscinski et al. 2019].

Finally, we analyse the robustness of QAGS through an ablation study. QAGS shows robust-

ness to the quality of the underlying QG and QA models, the domain of the models, and the

number of questions asked. Even under the worst ablation settings, QAGS still has stronger cor-

relation with human judgments than other automatic metrics.

Overall, we contribute the following: (1)We introduce QAGS, an automatic model-based eval-

uation metric for measuring the factual consistency of model-generated text. (2) We collect a new

set of human judgments of factual consistency of model-generated summaries for two summa-

rization datasets. We demonstrate that QAGS correlates with these judgments signicantly better

than other automatic metrics. (3) We show via ablations that QAGS is robust to a number of fac-

tors including underlying model quality and domain mismatch. (4) We analyze the questions and

answers produced in computing QAGS to illustrate which parts of summaries are inconsistent.
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(5) We will release models and code to compute QAGS.

4.2 Background: Automatically Evaluating Machine

Generated Text

Standard approaches to evaluating generated text are primarily based on counting -gram over-

lap. These methods assume access to one or more reference texts, and score a generated summary

based on the precision and recall of all reference -grams in the generated summary. We briey

describe the most common metrics in this family, and refer readers to Liu et al. [2016] for further

discussion.

ROUGE [Lin 2004] was developed specically for evaluating automatic summarization, and

its variants are the de facto standard for such. The most common variant is ROUGE- (typically

 ∈ 1, 2), which computes the F1 score for all reference -grams in the generated summary.

ROUGE-, another commonly used variant, is the length of the longest common subsequence

(possibly non-consecutive) between a summary and references.

BLEU [Papineni et al. 2002] is closely related to ROUGE but was developed for machine trans-

lation. BLEU computes the precision of the reference -grams in the generated summary. ME-

TEOR [Lavie and Agarwal 2007] extends BLEU by using an alignment between the generated text

and a reference, as well as using stemming and synonym replacement for more exible -gram

matching.

We identify two key deciencies when using these -gram based evaluation metrics to detect

factual inconsistencies in generated text.

First, these metrics require one or more reference texts to compare against. Obtaining ref-

erences can be expensive and challenging, and as such many text generation datasets contain

only a single reference. This problem is exacerbated with high-entropy generation tasks, such as

summarization or dialogue, where there is a very large number of acceptable outputs. In these
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Summarization Kevin Sineld scored his rst try of the
season against Castleford. Leeds Rhino
scored unbeaten run against Tigers to
six matches. Ryan Hall was sent to
Leeds Rhino for rst time in his career .

Leeds showed they are in good shape to
cope with Kevin Sineld’s retirement as
they claimed a 26 - 12 derby victory over
Castleford in front of a sell-out crowd at
the Mend-a-Hose Jungle. [...] Ryan Hall
was sent to the sin-bin for the rst time in
his career […] Joel Moon scored his rst
try of the season […] Leeds extended
their unbeaten run against the Tigers to
six matches

Generated
Questions

Who scored their rst try
of the season?

Joel Moon Kevin Sineld

Who was sent to Leeds
Rhino for the rst time?

<unanswerable> Ryan Hall

How many matches did
they win?

Six matches Six matches

Summary
Answers

Source
Answers

Source

Summary

Figure 4.1: Overview of QAGS. A set of questions is generated based on the summary. The questions
are then answered using both the source article and the summary. Corresponding answers are compared
using a similarity function and averaged across questions to produce the final QAGS score.

settings, comparing against a single reference is woefully inadequate.

Second, given a reference to compare against,-gram based approachweigh all portions of the

text equally, even when only a small fraction of the -grams carry most of the semantic content.

Factual inconsistencies caused by minor changes may be drowned out by otherwise high -gram

overlap, making thesemetrics insensitive to these errors. For example, the sentences “I amwriting

my paper in Vancouver.” and “I am not writing my paper in Vancouver.” share nearly all unigrams

and bigrams despite having the opposite meaning.

4.3 A Framework for Automatically Evaluating Factual

Consistency

We introduce a framework for automatically detecting factual inconsistencies in generated text

while also addressing the deciencies of current approaches. Let  and  be sequences of tokens
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coming from a vocabulary where is a source text and is a summary of . We dene  (  )
as a distribution over all possible questions  given summary  , and  (, ) and  (, )
as distributions over all possible answers  to a particular question  given either the source 

or the summary  . We constrain the questions  and answers  to also be sequences of tokens

from  . Then the factual consistency of the summary  is

∼ (  )
[

(
 (, ),  (, )) ], (4.1)

where  is some function measuring the similarity of the two answer distributions. This

expression is maximized when  contains a subset of the information in  such that it produces

the same answer for any question from  (  ). This happens trivially when  =  , i.e. we take

 as its own summary, but in many cases this solution is unacceptable.

This framework addresses the two issues with -gram based approaches. Instead of requiring

a reference to compare against, our framework asks questions based on the generation itself, and

compares answers with the provided source text. Also, the use of questions focuses the metric on

the semantically relevant parts of the generated text, rather than weighting all parts of the text

equally.

In practice, exactly computing the expectation in Equation 4.1 is intractable due to the large

space of possible questions. One potential workaround is to randomly sample questions from

 (  ), but this suers from high variance and requires many samples to obtain a good estimate.

Instead, we focus on producing highly probable questions, e.g. as produced by beam search,

which may be biased in the limit, but will require fewer questions to estimate because of the

higher quality of the questions.
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4.4 QAGS

Using this framework requires specifying the question distribution  (  ), the answer distribu-
tions  (, ∗), and the answer similarity function . We apply this framework to summarization

to develop QAGS and describe our instantiations of these components.

estion Generation To instantiate  (  ), we draw on recent work on automatic question

generation (QG), which models this distribution using neural seq2seq models [Du et al. 2017;

Krishna and Iyyer 2019]. We over-sample questions, and then lter out low quality questions as

follows.

First, we train and generate from answer-conditional QG models. During training, the model

receives both the answer and the source article, and is trained to maximize the likelihood of the

paired question. At test time, given a summary , we determine candidate answers. We condition

on these answers and the summary to generate questions.

Next, we lter out low-quality questions using a number of heuristics, such as duplicates and

questions less than three tokens long. We also found it especially useful to run the QAmodel (see

next section) on all of the candidate questions, and lter out questions for which the QA model

predicted no answer or a dierent answer than expected.

estionAnswering We instantiate the answer distributions  (, ∗) as extractive QAmod-

els, for simplicity. In using extractive QA models, we assume the facts are represented as text

spans in the article and summary. Future work should explore using abstractive QA models,

which could match paraphrases of the same answer.
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Answer Similarity Weuse token-level F1 to compare answers, which is standard for extractive

QA and equivalent to dening  as

1(argmax (, ), argmax (, ))

The QAGS Score Given these components, we obtain the QAGS score of a generation by (1)

generating  questions conditioned on the summary, (2) answering the questions using both

the source article and the summary to get two sets of answers, (3) comparing corresponding

answers using the answer similarity metric, and (4) averaging the answer similarity metric over

all questions. We depict this process in Figure 4.1.

4.5 Experiments

4.5.1 Human Evaluation

We test whether QAGS accurately measures the factual consistency of a summary with respect

to a source article by computing correlations with human judgments of factual consistency.

Datasets We focus on abstractive summarization, which is particularly interesting because

factual consistency with the original text is crucial to usability, and a lack of such consistency

has plagued abstractive neural summarizationmodels [Cao et al. 2018; Falke et al. 2019; Kryscinski

et al. 2019, i.a.]. To compare with prior work on evaluating summarization, we use two common

abstractive summarization datasets, CNN/Daily Mail [CNNDM, Hermann et al. 2015; Nallapati

et al. 2016] and XSUM [Narayan et al. 2018a].

CNN/DM is a standard dataset for summarization that consists of CNN and DailyMail arti-

cles. Each reference summary consists of the concatenation of three editor-written, bullet point

highlights. For summaries, we use 235 test outputs from Gehrmann et al. [2018].
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Metric CNN/DM XSUM
ROUGE-1 28.74 13.22
ROUGE-2 17.72 8.95
ROUGE-L 24.09 8.86
METEOR 26.65 10.03
BLEU-1 29.68 11.76
BLEU-2 25.65 11.68
BLEU-3 23.96 8.41
BLEU-4 21.45 5.64
BERTScore 27.63 2.51
QAGS 54.53 17.49

Table 4.1: Summary-level Pearson correlation coeicients between various automatic metrics and human
judgments of correctness for summarization datasets. All correlations are significant at  < .01 and
 < .05 for CNN/DM and XSUM, respectively. QAGS obtains substantially higher correlations than all
other automatic metrics.

XSUM was created by taking the rst sentence of a news article as the summary, and using

the rest of the article as the source. Consequently, XSUM summaries are signicantly more ab-

stractive than those of CNN/DM, and extractive summarization models perform poorly on this

dataset.

We found that while the XSUM summaries aremore abstractive, frequently there are facts (e.g.

rst names) in the summary that are not available in the “article”. This quirk made it especially

dicult for humans and QAGS to tell when factual errors were being made by the summarization

model. To remedy this, for human evaluation and QAGS, we prepend the summary back to the

“article”. We use a subset of 239 test outputs from BART ne-tuned on XSUM [Lewis et al. 2020].

Annotation Protocol We collect human judgments on Amazon Mechanical Turk1 via ParlAI

[Miller et al. 2017]. We present summaries one sentence at a time, along with the entire article.

For each summary sentence, the annotator makes a binary decision as to whether the sentence is

factually consistent with the article. Workers are instructed to mark non-grammatical sentences

as not consistent, and copies of article sentences as consistent. Workers are paid $1 per full
1https://www.mturk.com/
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summary annotated. See Appendix A.3.1 for further details.

We collect 3 annotations per summary. To obtain a single consistency score per summary,

we rst take the majority vote for each sentence, then average the binary scores across summary

sentences to produce a nal score.

Inter-annotator agreement as measured by Krippendor’s  is 0.51 and 0.34 for CNN/DM

and XSUM, respectively indicating “moderate” and “fair” agreement [Ageeva et al. 2015]. While

not perfect, these agreement numbers are in-line with similar gures from previous work on

summarization evaluation [Daume III and Marcu 2005].

4.5.2 Experimental Details

estion Generation We train answer-conditional QG models by ne-tuning a pretrained

BART language model [Lewis et al. 2020] on NewsQA [Trischler et al. 2017], a dataset consisting

of CNN articles and crowdsourced questions. During training, the model receives the concatena-

tion of the source article and an answer, and is trained to predict the question. The answer, source

article, and question are concatenated with intervening special tokens to mark the boundaries.

At test time, the model receives the concatentation of a summary and an expected answer, and

outputs question candidates. For each summary, we extract 10 named entities and noun phrases

as answer candidates using the en-web-sm spaCy model.2 For each summary-answer pair, we

generate questions using beam search with width 10, for a total of 100 question candidates. We

experimented with generating via top- [Holtzman et al. 2019] and top- [Fan et al. 2018] sam-

pling, but the generated questions, while diverse, were noisy and frequently nongrammatical.

After ltering, we use the  = 20 most probable questions. If a summary has too few ltered

questions, we randomly sample questions to reach the required number. For additional ltering

and training details, see Appendix A.3.2. We implement these models with fairseq [Ott et al.

2019].
2https://spacy.io/api/entityrecognizer
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estion Answering We train extractive QAmodels by ne-tuning BERT [Devlin et al. 2019]

on SQuAD2.0 [Rajpurkar et al. 2018]. We use the large-uncasedBERT variant via the transformers

library [Wolf et al. 2020].

We found that allowing the model to predict that a question is unanswerable, as is the case in

SQuAD2.0, is particularly useful in ltering out bad questions, as questions based on hallucinated

facts in the summary should be unanswerable using the source article.

Baselines We compare against a number of automatic evaluation metrics: ROUGE [Lin 2004],

METEOR [Lavie and Agarwal 2007], BLEU [Papineni et al. 2002], and BERTScore [Zhang et al.

2019a]. The latter uses BERT representations to compute an alignment between generation and

reference tokens, and which is then used to compute a soft version of unigram F1. We use the

large-uncased BERT variant.

4.5.3 Results

We present Pearson correlations between human-judged consistency scores and various auto-

matic metrics in Table 4.1. For CNN/DM, all results are signicant with  < 0.01; for XSUM,

all results are signicant with  < .05. QAGS strongly outperforms other automatic evaluation

metrics in terms of correlation with the summary-level human judgments of factual consistency.

BLEU and ROUGE perform comparably, and lower order -grammetrics work better. BERTScore

matches the best -gram metrics on CNN/DM, but the worst overall on XSUM.

On CNN/DM, QAGS obtains nearly twice the correlation of the next best automatic metric

(BLEU-1). We speculate that this large increase is due to the sensitivity of the QAmodel to the sen-

tence fusing behavior exhibited in many summarization models trained on CNN/DM [Lebano

et al. 2019]. When two sentences are fused to produce an incorrect summary statement, the QA

model produces dierent answers when using the source article than when using the summary.

On XSUM, all metrics correlate worse with human judgments than on CNN/DM, which re-

54



QA model SQuAD CNN/DM XSUM
(F1) (Pear.) (Pear.)

bert-base 75.95 55.20 20.71
bert-large 81.57 54.53 17.49
bert-large-wwm 84.36 51.36 18.07

Table 4.2: Pearson correlations between human judgments of factual consistency and QAGS using QA
models of dierent qualities, as measured by performance on the SAD2.0 development set (F1). The
correlations are stable across QA model quality.

NewsQA CNN/DM XSUM
(ppl.) (Pear.) (Pear.)
5.48 54.53 17.49
9.50 50.09 19.93
18.56 47.92 16.38

Table 4.3: Pearson correlations between human judgments of factual consistency and QAGS with QG
models of varying quality, as measured by perplexity on the NewsQA development set. We see some
decrease in correlation on CNN/DM as QG perplexity increases, though we do not see a similar trend for
XSUM.

ects the fact that XSUM is more abstractive. QAGS still outperforms the next best automatic

metric.

4.5.4 Ablations

A potential issue with model-based evaluation is that the quality of the evaluation metric may

depend heavily on specic hyperparameter settings. We explore the extent to which this is true

with QAGS by performing ablations on several factors.

Model ality We rst consider the degree to which the quality of the underlying models

impacts their evaluation capabilities.

For QA quality, we answer this question by training QA models of varying quality by ne-

tuning dierent versions of BERT on SQuAD. We present results in Table 4.2. The QA models

perform similarly despite substantially dierent performances on the SQuAD development set.
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# Questions CNN/DM XSUM
5 41.61 15.63
10 41.17 15.49
20 54.53 17.49
50 57.94 17.74

Table 4.4: Pearson correlation coeicients between QAGS scores with varying number of questions and
human judgments of correctness for summarization datasets. The correlation increases with the number
of questions used, but with decreasing marginal benefit.

Surprisingly, using the best QA model (bert-large-wwm) does not lead to the best correlations

with human judgments. On CNN/DM, bert-large-wwm slightly underperforms bert-base and

bert-large. On XSUM, bert-base slightly outperforms the other two BERT variants. These

results indicate that QAGS is fairly robust to the quality of the underlying QA model, though

we note that BERT is a strong QA baseline, and using weaker QA models might lead to larger

performance dropos.

To ablate QG quality, we use models with increasing perplexity on the NewsQA development

set. Results in Table 4.3 show that QAGS is robust to the QG model quality, with some decrease

in correlation with human judgments as perplexity increases on CNN/DM, and no clear trend on

XSUM. Even the weakest QG model still signicantly outperforms all other automatic metrics in

Table 4.1.

Domain Effects Our approach relies on having a labeled dataset to train QG and QA models.

However, for relatively niche domains, such a labeled QA/QG dataset may not exist. Instead, we

may need to resort to using models trained on out-of-domain data, leading to domain shift eects

that negatively impact the quality of the QAGS scores. We simulate this setting by ne-tuning

the QG model on SQuAD, which is of similar size to NewsQA but drawn fromWikipedia articles

rather than CNN articles, which exactly matches the genre of the summarization datasets.

Evaluating with this QG model, we get correlations of 51.53 and 15.28 with human judgments

on CNN/DM and XSUM respectively, versus 54.53 and 17.49 when using the NewsQA-tuned QG
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model. The drop in performance indicates a negative domain shift eect. However using the

SQuAD-tuned QG model still substantially outperforms all other automatic metrics, again point-

ing to the robustness of QAGS.

Number ofestions Next, we investigate the correlation with human judgments when vary-

ing the number of questions used. Results in Table 4.4 show that increasing the number of ques-

tions used improves correlations with human judgments. We observe a large increase when mov-

ing from 10 to 20 questions, and a smaller increase from 20 to 50 questions, indicating decreasing

marginal benet moving beyond 50 questions. However, we observe frequent clusters of gener-

ated questions that only dier by a few tokens. Encouraging greater diversity when generating

questions might lead to better correlations when more questions are used. Still, with just 5 ques-

tions used QAGS substantially outperforms other automatic metrics, indicating its robustness.

Answer Similarity Metric Finally, we consider using exact match as an alternative answer

similarity metric. Exact match is another common evaluation metric for extractive QA, and is

more restrictive than F1. When using EM, we obtain Pearson correlations with human judgments

of 45.97 and 18.10 on CNN/DM and XSUM, as opposed to 54.53 and 17.49 when using F1.

4.6 Re-ranking with QAGS

Several works explore the use of natural language inference (NLI) models to detect factual consis-

tency in generated text [Welleck et al. 2019; Falke et al. 2019]. We compare against these methods

by evaluating on the sentence ranking experiment from Falke et al. [2019]. The experiment uses

373 triplets of source sentences from CNN/DM and two summary sentences generated from the

model from Chen and Bansal [2018]. One summary sentence is factually consistent with the

source sentence, and the other is inconsistent. A metric (or model) is evaluated based on how

often it ranks the consistent sentence higher than the inconsistent sentence.
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Model/Metric % Correct (↑)
Random 50.0%
BERT NLI 64.1%
ESIM 67.6%
FactCC 70.0%
QAGS 72.1%

Table 4.5: Results on the sentence ranking task from Falke et al. [2019]. Results using BERT NLI and
ESIM are from Falke et al. [2019]; FactCC is from Kryściński et al. [2020]. QAGS performs best.

We present the results in Table 4.5. Results using two NLI models ne-tuned on MultiNLI

[Williams et al. 2018], BERT NLI, and ESIM [Chen et al. 2017], are from Falke et al. [2019]. FactCC

[Kryscinski et al. 2019] is an NLI-based fact-checking model that is trained on a dataset tailor

made for detecting factual inconsistencies in generated text. QAGS outperforms these methods,

while requiring no special supervision for this task.

4.7 alitative Analysis

Interpreting QAGS The questions and answers produced in computing QAGS are directly

interpretable, and highlight errors in summaries. We present examples of articles, summaries,

and the QAGS questions and answers in Table 4.6.

On the rst example (Table 4.6, top), QAGS detects several factual inconsistencies in the gen-

erated summary: The summary mistakes the rst name of the attacker, the location of the attack,

and the weapons used. Because the QG model focuses on these details, QAGS is able to correctly

penalize the summary for its hallucinations. Because the answer candidates used are mostly

named entities and noun phrases, QAGS is particularly eective at detecting errors of this kind.

Using more diverse answer candidates may broaden the set of inconsistencies that QAGS is able

to detect.

The second example (Table 4.6, bottom), illustrates failure modes of QAGS. For example, the

QA model incorrectly marks question 2 as unanswerable. On question 4, both answers produced
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Article: On Friday, 28-year-old Usman Khan stabbed reportedly several people at Fishmongers’ Hall in London with a large
knife, then ed up London Bridge. Members of the public confronted him; one man sprayed Khan with a re extinguisher,
others struck him with their sts and took his knife, and another, a Polish chef named Łukasz, harried him with a ve-foot
narwhal tusk. [. . . ]
Summary : On Friday afternoon , a man named Faisal Khan entered a Cambridge University building and started attacking
people with a knife and a re extinguisher .
Question 1: What did the attacker have ?
Article answer: a large knife Summary answer: a knife and a re extinguisher
Question 2: When did the attack take place ?
Article answer: Friday Summary answer: Friday afternoon
Question 3: What is the attacker’s name ?
Article answer: Usman Khan Summary answer: Faisal Khan
Question 4: Where did the attack take place ?
Article answer: Fishmongers’ Hall Summary answer: Cambridge University building

Article: In ndings published on Wednesday in the journal PLOS ONE, an international team of scientists report ancient
Egyptians captured sacred ibises (Threskiornis aethiopicus) from the wild for use in ritual sacrice rather than domesticating
the birds. [. . . ] The team collected DNA samples frommummied birds collected from six separate catacombs including sites at
Abydos, Saqqara, and Tuna el-Gebel with permission from the Egyptian Ministry of State for Antiquity, and several museums
oered to send tissue samples from the mummied ibises in their collections. [. . . ]
Summary : Archaeologists have used DNA samples from ancient ibis birds to determine whether the birds were domesticated
or sacriced in ancient Egypt
Question 1: Archaeologists have used what to determine whether the birds were domesticated ?
Article Answer: hatchery structures Summary Answer: DNA samples
Question 2: Who used DNA samples to determine whether the birds were domesticated ?
Article Answer: [NO ANSWER] Summary Answer: Archaeologists
Question 3: What are archeologists using to determine whether the birds were domesticated ?
Article Answer: DNA samples Summary Answer: DNA samples
Question 4: Where were the birds found?
Article Answer: six separate catacombs Summary Answer: ancient Egypt

Table 4.6: Example questions and answers generated when computing QAGS. The ques-
tions are overwhelmingly fluent and relevant. The answers indicate which tokens in the
summary are factually consistent or inconsistent. The news articles are originally from
https://en.wikinews.org/wiki/Bystanders_foil_knife-weilding_man_on_London_Bridge_
with_fire_extinguisher,_whale_tusk and https://en.wikinews.org/wiki/Ancient_Egyptians_
collected_wild_ibis_birds_for_sacrifice,_says_study.

are correct, but because they have no common tokens, they are marked inconsistent by QAGS.

Error Analysis The interpretability of QAGS allows for error analysis on the metric. We man-

ually annotate 400 triplets of generated questions, article answers, and summary answers that are

produced in computing QAGS on the XSUM summaries, and label them by the quality of the gen-

erated questions, predicted answers, and answer similarity scores.

Among the generated questions, 8.75% are nonsensical, while 3.00% arewell-formed but unan-

swerable using the generated summary they were conditioned upon. These gures indicate that
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the vast majority of questions are understandable and on-topic. We frequently observe multi-

ple questions with slightly dierent wordings, which is likely due to the low number of answer

candidates in XSUM summaries (which are one sentence long) and due to beam search. 8.25% of

questions are well-formed but unanswerable using the source, which is usually due to a halluci-

nated fact in the summary that the QG model turns into a question.

Among predicted answers, 1.75% of questions are potentially answerable using the summary,

but are incorrectly answered. This percentage increases to 32.50% for the article, which indicates

that the transfer ability of the QA model is lacking. In a small number of cases, we found that

while a question had a single answer in the summary, it could havemultiple answers in the article.

Finally, for 8.00% of the examples, the question is answered correctly using both the article

and summary, but the answers have high lexical variation such that F1 score fails to detect their

similarity. While this happens in a relatively small number of cases, exploring similarity metrics

other than -gram based approaches could be useful.

Limitations We emphasize that QAGS and our overall framework are specically designed to

detect factual inconsistencies in generated summaries relative to the source article. QAGS does

not measure other desirable properties of generated text, including uency, readability, or factual

recall. We therefore recommend using QAGS in conjunction with complementary evaluation

metrics.

The choices of QG and QA models in QAGS are particular to abstractive summarization and

may require adaptation to be used for other conditional text generation tasks. For example, we

expect that extractive summarization models may obtain nearly perfect QAGS scores because

facts and statements are directly copied from the source article.
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4.8 Related Work

Automatic summarization and its evaluation are long-standing lines of work in NLP, dating at

least as far back as the Document Understanding Conferences [Chali and Kolla 2004]. The pri-

mary evaluationmetric then and now is ROUGE [Lin 2004], thoughmuchwork has demonstrated

the limited ability of ROUGE and its relatives to evaluate summaries [Dorr et al. 2004; Liu and

Liu 2009; Kedzie et al. 2018, i.a.]. Other metrics have focused on specic aspects of summariza-

tion quality, including content selection [Nenkova and Passonneau 2004], relevance prediction

[Daume III and Marcu 2005], and many more.

The idea of evaluating summaries by their ability to answer a set of questions is also long-

standing [Mani et al. 1999]. Like our work, Eyal et al. [2019] and Scialom et al. [2021] extend

this line of work by incorporating neural network modules. We diverge from these works in two

important ways. First, both works use Cloze-style questions, which are generated by masking

entities in either the source document or the reference summary. We instead generate the ques-

tions with a model, allowing a much greater range of questions. Second, we produce questions

conditioned on the generated summary, rather than the reference summary or source article.

Producing questions from the generated summary is more appropriate for verifying the accuracy

of the text, whereas using the reference or source measures content selection.

There has been a recent resurgence of work leveraging NLU models for evaluating the fac-

tuality of generated text. Goodrich et al. [2019] use information extraction models to measure

factual overlap, but facts are restricted to pre-dened schemas. Falke et al. [2019] investigate the

use of NLI models to evaluate the factual correctness of CNN/DM summaries, and conclude that

current NLI models are too brittle to be reliably used in this manner. Kryscinski et al. [2019] train

a NLI-based fact-checking model by building a dataset of factual inconsistencies based on noise

heuristics. Our QA approach allows a ner-grained analysis, because NLI operates on complete

sentences, whereas QAGS can ask many dierent questions about the same sentence.
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4.9 Conclusion

We introduce a framework for automatically detecting factual inconsistencies in conditionally

generated texts and use this framework to develop QAGS, a metric for measuring inconsisten-

cies in abstractive summarization. QAGS correlates with human judgments of factuality signif-

icantly better than standard automatic evaluation metrics for summarization, and outperforms

related NLI-based approaches to factual consistency checking. QAGS is naturally interpretable:

The questions and answers produced in computing QAGS indicate which tokens in a generated

summary are inconsistent and why.

The framework we present is general, and extending it to other conditional text generation

tasks such as image captioning or machine translation is a promising direction. Inspecting the

generated questions and answers, we identify the transfer ability of QA models and the rigidity

of F1 score as a measure of answer similarity as two key performance bottlenecks. We expect

improvements in either would straightforwardly improve the quality of QAGS evaluation. Addi-

tionally, incorporating a content selection mechanism to focus the generated questions on salient

facts is a promising direction. Overall, we believe QAGS demonstrates the potential of this frame-

work to quantify and incentivize factually consistent text generation.

4.10 Retrospective

There have been many similar works on detecting hallucinations and measuring faithfulness of

generated text that have been published around and after the release of QAGS. FEQA [Durmus

et al. 2020], released concurrently with QAGS, proposes a similar pipeline of automatically gener-

ating questions about spans in the candidate summary, answering question using both the sum-

mary and input document, then comparing corresponding answers. Fabbri et al. [2021] extend

QAGS with improved QA components while Scialom et al. [2021] extend it by jointly measuring
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faithfulness and content selection with QA models.

A competing line of work uses natural language inference models to detect hallucinations in

text [Falke et al. 2019; Kryscinski et al. 2019; Laban et al. 2021; Goyal andDurrett 2020]. Whether it

is better to use QA or NLI models for detecting hallucinations remains an open question. Several

works have tried to compare the various methods, as well as standardize meta-evaluation of

evaluation metrics for faithfulness, though there is positive evidence for both classes of models

[Maynez et al. 2020; Gabriel et al. 2021; Laban et al. 2021; Fabbri et al. 2021; Pagnoni et al. 2021;

Honovich et al. 2022].

The above metrics are part of a broader trend of incorporating pretrained models into auto-

matic evaluation metrics. While the aforementioned metrics focus on evaluating faithfulness and

detecting hallucinations, many recent metrics try to predict a general quality score of the candi-

date text. Like ROUGE and BLEU, BERTScore [Zhang et al. 2019a] computes similarity between

a reference and a candidate generation, except similarity is dened as cosine similarity in the

BERT embedding space. BLEURT [Sellam et al. 2020a] is a regression model that is trained to di-

rectly predict human judgments of translation quality that has achieved good results on machine

translation metrics development shared tasks [Sellam et al. 2020b; Pu et al. 2021]. BARTScore

[Yuan et al. 2021] denes the goodness of a generation as the token-averaged log-probability of

the generation using a BART pretrained model.

In parallel to the rise of metrics for measure generation faithfulness, many works have ex-

plored various methods for mitigating hallucinations in model outputs. Given the rise of evalu-

ation metrics for faithfulness, a natural approach is to train models by optimizing these metrics.

QUALS [Nan et al. 2021a] does this by training summarization models using a soft, dierentiable

version of QAGS so that the model receives signal to produce faithful outputs during training. An

orthogonal line of work trains controllable text generation models where one controllable fea-

tures is whether or not the model should generate a hallucination in the output [Filippova 2020;

Rashkin et al. 2021; Choubey et al. 2021]. At test time, the model is always set to produce gen-
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erations without any hallucinations. This line of work typically uses heuristics to extract signal

for which examples in the training data contain hallucinations. Another line of work modies

the decoding procedure to only generate faithful tokens, e.g. only generating tokens with high

condence [Tian et al. 2019] or that veried to be supported by the input document [Zhao et al.

2020].

Finally, a number of recent studies have identied that the datasets used to train and evaluate

text generation models themselves contain hallucinations or unsupported facts. For example,

many dialogue datasets contain utterances that draw on background information not available in

from the dialogue history [Rashkin et al. 2021; Dziri et al. 2022]. For summarization, a signicant

portion of themost popular benchmark datasets, CNN/DailyMail [Nallapati et al. 2016] andXSUM

[Narayan et al. 2018b], contain information that is not directly supported by the input article

[Kryscinski et al. 2019; Tejaswin et al. 2021; Nan et al. 2021b]. Models that are trained on these

datasets will produce similar noise patterns in their generations, which points to dataset quality

as a partial source of model hallucinations. Given these the necessity of high-quality datasets

for evaluating text generation systems, in Chapter 5, we explore methods for creating a new

summarization dataset that is free of these issues.
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5 | SALITY: A ality Dataset for

estion-Focused Summarization

5.1 Introduction

Research on automatic text summarization generally requires adequate benchmark datasets. Ex-

isting datasets in this area often have issues that seriously limit their usability: For instance,

summaries from the popular scraped benchmark summarization dataset CNN/DailyMail [Nalla-

pati et al. 2016] contain HTML artifacts, links to other news articles, and other types of noise

[Kryscinski et al. 2019; Tejaswin et al. 2021].

A common approach to creating summarization datasets is to develop heuristics to extract

pseudo-summaries from existing texts. While scraped summaries can be cleaned of noise, these

heuristics can lead to more fundamental data artifacts. For example, the XSum dataset [Narayan

et al. 2018b] was created by extracting the rst sentence of a news article to act as the summary

for the rest of the document. However, studies have found that 30–50% of summaries created this

way contain facts that are unsupported by the rest of the article [Tejaswin et al. 2021; Nan et al.

2021b]. Models trained on this dataset learn to repeat this noise pattern by hallucinating facts in

their outputs. It appears that known heuristics do not produce reliable data.

Another approach to creating summarization datasets relies on serendipity in nding natu-

rally occurring summaries. For example, the arXiv and PubMed datasets [Cohan et al. 2018] use
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the abstracts of scientic papers as summaries of the papers. BigPatent [Sharma et al. 2019] and

GovReport [Huang et al. 2021] use expert-written summaries that come with patent lings and

government reports, respectively. While these summaries are likely high-quality, the domain of

the data poses a signicant challenge for system evaluation: Automatic evaluation metrics for

summarization are unreliable [Kryscinski et al. 2019; Gehrmann et al. 2022], but the summaries

are too technical and jargonistic for non-specialist human raters to evaluate reliably. Because we

rely on chance in nding these summaries, we are beholden to whatever domain they come from,

rather than the domain we are interested in.

Relying on nding and scraping summarization data is also problematic in that, often, the

found data is proprietary and not freely distributable. For example, many researchers and or-

ganizations are unwilling to host or distribute the CNN/DailyMail dataset,1 despite it being one

of the most popular summarization datasets to experiment on. Similarly, several recent summa-

rization datasets built on data such as scientic journal papers [Meng et al. 2021] or SparkNotes

book summaries [Ladhak et al. 2020; Kryściński et al. 2021] have never been made available to

researchers. The dataset creators instead ask potential users to re-scrape them, which can be a

serious obstacle to reproducibility.

In this work, we propose a crowdsourcing protocol for collecting original summaries free

of these issues. Crowdsourcing summaries has been under-explored because straightforward

approaches for doing so are quite labor-intensive. While our protocol is still fairly demanding,

we structure it in a way that makes the cost per summary more tractable (∼$6/summary) while

also including incentives and checks to ensure the summaries are high-quality. The protocol does

not rely on nding naturally occurring summaries and is agnostic to the input documents used,

so we are free to choose the input documents we want to summarize. We use short stories from

Project Gutenberg to avoid the aforementioned domain and licensing issues.
1See discussion here.
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We use this protocol to collect SQuALITY2 (Summary-format QUestion Answering with Long

Input Texts, Yes!), a dataset for question-focused abstractive summarization of short stories.

SQuALITY summaries are created by having trained writers read short stories, then ask ques-

tions about dierent aspects of the story. The writers then answer the questions by writing

summaries focusing on that aspect. Each question is answered by four dierent annotators, who

then review each other’s work to ensure the data is high-quality. In total, SQuALITY consists of

100 stories, 500 questions, and 2000 summaries.3

Overall, we make the following contributions:

1. We develop a crowdsourcing protocol for collecting summaries that partially ameliorates

the high cost of crowdsourcing long textual responses while maintaining data quality.

2. We use this protocol to collect SQuALITY, an abstractive summarization dataset. SQuAL-

ITY is question-focused, multi-reference, and distributed with a CC BY license.

3. We conduct preliminary experiments on SQuALITYwith pretrained languagemodels using

human evaluation. We nd that state-of-the-art summarization models produce summaries

that are signicantly worse than human-written summaries.

4. We identify that common automatic evaluation metrics for summarization correlate very

poorlywith human judgments of quality. We also nd that havingmultiple referenceswhen

computing automatic evaluation metrics does not improve the correlation of the metric.

SQuALITY is a challenging benchmark for long-context text generationmodels. Wewill make

the SQuALITY dataset, our baseline models, and our templates for human evaluation of models

publicly available upon publication.
2Named because it uses many of the same stories as the multiple choice QA dataset QuALITY [Pang et al. 2021b].
3This paper releases SQuALITY v1.0. We will soon release SQuALITY v1.1, which consists of 127 stories.
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Title: Pick A Crime (https://www.gutenberg.org/ebooks/51656)

Q: What is the CPA and what does it do?

The Crime Prevention Association is an organiza-
tion that stops crime. Instead of capturing crim-
inals, the goal of the Association is to prevent
the crime from ever happening. They implement
thousands of crime-prevention methods and de-
vices. There are many amateur cops who con-
stantly follow criminals around in hopes of catch-
ing them in the act so that they may be hailed a
hero and...

The CPA is Crime Prevention Organization. It
ghts crime by all means and reduces its rates to
a very small level. They put microphones and de-
tectors everywhere to hear the conspiracies. They
place robots as bartenders to control the level of
alcohol in visitors to prevent them being drunk.
They make all the women learn self-defense. The
organization’s made crime almost impossible...

The CPA, Crime Prevention Association, is a sys-
tem that detects dierent kinds of crimes and pre-
vents them from happening. Thousands of robots
and devices make crimes impossible. The associa-
tion will not punish any crime, instead, the crimi-
nal will be send to a CPA hospital for some treat-
ments that will result in getting the best jobs. The
CPA also hands out ID cards that states one’s...

The CPA is meant to prevent crime and not punish
crime. It stands for Crime Prevention Association.
The CPA organization has made crime nearly im-
possible through various methods of surveillance
and intelligence gathering. The crime was not
punished by the CPA but addressed by sending the
person to a hospital for expensive treatment to cor-
rect and remove the deviance from the person’s...

Table 5.1: An example question and four human-wrien references from SALITY. The full references
are available in Table A.6 in the appendix.

5.2 Related Work

Story Summarization A common focus of summarization research is on stories and narratives.

BookSum [Kryściński et al. 2021] consists of public domain books and summaries of those books,

chapters, and paragraphs. Similarly, Ladhak et al. [2020] propose a dataset for summarizing chap-

ters of public domain books. Both of these datasets use summaries scraped from popular study

guide websites such as SparkNotes, apparently without an overt license, and thus the datasets

cannot be legally distributed. SummScreen Chen et al. [2022] consists of fan-written transcripts

of TV episodes paired with Wikipedia and fan-written summaries of those episodes.

estion-Focused Summarization In question-focused summarization (QFS) the summary

focuses on a specic aspect of the source text as a way answering a specic question. QFS has
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received increasing attention from the summarization literature in recent years, and we expect it

to be a viable proxy benchmark task for narrative-text summarization broadly. The Debatepedia

dataset [Nema et al. 2017] is a found dataset of questions and summary-answers based on articles

about social and philosophical issues. FacetSum [Meng et al. 2021] is a found dataset consisting

of scientic papers paired with author-written summaries focusing on dierent aspects of the

paper. WikiAsp [Hayashi et al. 2021] and AQuaMuSe [Kulkarni et al. 2020] are two heuristically

created, multi-document QFS datasets derived from Wikipedia.

Most similar to our dataset is QMSum [Zhong et al. 2021], a long-document QFS dataset built

around meeting transcripts. Like our work, QMSum questions and summaries are composed by

writers who have read full transcripts and are guided by a list of question templates. Unlike our

work, their primarymechanism for quality control is researcher review of the collected responses,

whereas we use a crowdsourcing protocol wherein writers review each other’s work.

Long-Form QA QFS is a special case of long-form question answering (LFQA). In LFQA, the

inputs are also a question and an input document, and the task is to produce an answer at least

one long sentence in length. LFQA answers can draw from a single portion of the document,

whereas summaries for QFDS should cover multiple parts of the input document, if not the whole

document.

5.3 Dataset Construction

Source Documents Our considerations in selecting a corpus of documents for which to col-

lect summaries are: (1) The documents are long, as document-level tasks are more challenging

than paragraph-level ones; (2) The documents can support several substantive summaries, as we

will collect multiple summaries per document for cost-eciency; (3) The documents have a per-

missive license so they can be easily distributed; (4) The documents are lay-accessible, such that
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the average college-educated English-uent speaker can both understand them and condently

evaluate the correctness of summaries derived from them.

We use short stories from Project Gutenberg as they meet all of these desiderata.4 Specically,

we use a collection of science ction short stories written in the 1930s–1970s and are between

3000 to 6000 words long. Many of the stories used are also included in the QuALITY [Pang et al.

2021b] dataset, and we coordinate with the QuALITY creators such that stories that appear in

both datasets are assigned to the same split. We use the same preprocessing for the stories as

used in QuALITY.

Writing For writers to create accurate and high-quality summaries, they need to read the en-

tire story, which takes 20–40 minutes. Rather than asking writers to create one summary per

story read, we instead collect multiple summaries per story to amortize the cost of reading across

summaries. We solicit multiple summaries by having writers ask questions about dierent as-

pects of the story, leading us to create a QFS dataset.

We start each crowdsourcing round by asking writers to read the story and then create ques-

tions satisfying two criteria: (1) Questions should require the whole or multiple parts of the story

to answer, as opposed to a single sentence or paragraph; (2) To minimize disagreements in eval-

uation, writers should avoid questions that require speculating substantially beyond the literal

text of the story when interpreting themes or symbolism. To assist writers in creating questions

satisfying these properties, we provide a list of question templates we expect will meet these prop-

erties in most cases, shown in Appendix A.4.1.1. Writers can also write story-specic questions

not based on any of these templates so long as they follow the criteria.

For each story, we assign one worker to create four questions. The questions are then an-

swered by four writers, including the original question writer. Each writer also creates a general

story summary, framed as answering the question “What is the plot of the story?”, for a total of
4https://www.gutenberg.org/
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Dataset Domain # Examples Doc. Len Summ. Len Multi-ref? Public?

CNN/DM news 311k 804 60 ✗ ✗

XSum news 226k 438 24 ✗ ✗

BookSum ction, Sparknotes 12k 5102 505 ✗ ✗

QMSum meeting transcripts 1808 9067 70 ✗ ✓

SQuALITY sci- stories 625 5200 237 ✓ ✓

Table 5.2: Summary statistics for various summarization datasets. For BookSum, we consider the
chapter-level version. The number of examples is across all splits. For question-based summarization
datasets (SALITY and QMSum) we count examples as number of unique document-question pairs.
Statistics for datasets are borrowed from original dataset papers; statistics for CNN/DM and XSum were
borrowed from Kryściński et al. [2021]. CNN/DM and XSum are oen available online in practice, but
distributing the dataset is legally questionable.

ve questions per story. Responses are required to be 75–500 words long, to avoid copying the

text of the story verbatim, and to draw on dierent parts of the story as much as possible. Writers

report that this step takes 40–120 minutes, including time reading the story.

Data Validation After a writing step, for each story, we have ve questions with four refer-

ence summaries per question. In the second step of each crowdsourcing round, we ask workers

to review the summaries to ensure they are high-quality.

As with writing, asking crowdworkers to review the responses is expensive because verifying

whether a response is faithful to the story requires having read the entire story. We minimize

costs by asking each writer to review the responses of the other three writers. Because the writer

has already read the story, they do not need to fully re-read the story, and because they have

answered the questions previously, they already have a sense of what constitutes a good response

to each question.

In each validation task, we show the reviewer the original story, the set of ve questions,

and three responses for each question written by other writers. Reviewers rst annotate spans

of the responses that contain typos or factual errors. Next, they rank the three responses from

best to worst. We instruct the reviewers to rank the responses by (1) how well the response

correctly answers the question; (2) how well the summary includes all relevant details; (3) how
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well the response draws from multiple parts of the story, using their judgment to balance the

three factors. Writers are informed during the writing step that their responses will be evaluated

along these dimensions. Finally, reviewers provide written feedback for each response about how

that response could be improved. The feedback is provided to writers between batches of work to

help them improve their responses. Reviewers report that this step typically takes 20–30 minutes.

Afterwards, for each question, we compile the individual reviewer rankings into an aggregate

ranking. We incentivize high-quality writing by awarding bonus payments to writers based on

their response’s placement in the overall ranking. We pay $2.50, $1.25, $0.75, $0.50 for ranking

rst, second, third, and fourth respectively.5 The average bonus is $1.25 per response, so writers

earn an average additional bonus of $6.25 per story. Workers are informed of the bonus structure

before writing.

Similarly, we incentivize high-quality reviewing by awarding bonus payments to reviewers

based on how well their rankings agree with the aggregate ranking. For each pair of responses,

we pay a reviewer a bonus of $0.50 if their ranking of the pair agrees with the aggregate ranking

(i.e., if both the aggregate and reviewer’s ranking say response > response ), so reviewers can

earn up to $1.50 per question and $7.50 per story. On average, individual reviewers agree with the

aggregate ranking on pairwise comparisons 76% of the time, corresponding to an average bonus

of $5.57 per story.

Writer Details Because our tasks are very time-consuming and detail-oriented, we eschew

crowdsourcing platforms like Amazon Mechanical Turk where eliciting high-quality responses

for these types of tasks can be challenging. Instead, we use a small group of skilled writers for

long-term contracts, drawing both from Upwork6 freelancers and undergraduate students from

our institution. We hire 11 Upwork writers and 7 undergraduates.7 Details about the hiring
5For ties, we sum the bonuses for the tied positions and distribute them evenly.
6https://www.upwork.com/
7We use two worker populations due to spending limits on Upwork. The two populations are not mixed: The

groups do not review each other’s responses.

72



process and writer populations are in Appendix A.4.1.

5.4 SALITY

Wepresent examples from SQuALITY in Table 5.1 and summary statistics of SQuALITY and other

summarization datasets in Table 5.2.

Data Size and Splits SQuALITY consists of 100 stories that are split 39/25/36 across the train/-

validation/test splits (or, equivalently, 195/125/180 document-question pairs). We assign stories

to splits to be consistent with the QuALITY dataset [Pang et al. 2021b], so stories that appear in

both datasets are assigned to the same split.

SQuALITY contains a similar number of summaries to QMSum [Zhong et al. 2021], another

crowdsourced summarization dataset, but SQuALITY contains four references per example and

thus fewer input documents. This dierence in allocation arises from the crowdsourcing proto-

col: In creating SQuALITY, we have writers review each other’s work while in creating QMSum,

the authors manually review all responses. Protocols wherein workers review each other work

are more scalable. Having multiple references per input is useful for model evaluation, as auto-

matic metrics such as ROUGEwere originally developed onmulti-reference datasets. While naive

multi-reference ROUGE still correlates poorly with human judgments of quality for SQuALITY

(see Section 5.6), having a diverse set of references opens up opportunities for the development of

new evaluation metrics that take into account the diversity of acceptable summaries for a given

input, even in the question-focused setting.

Length Documents are an average of 5200 tokens long (std. 522) without punctuation, 8 with a

range from 3473 to 6165—similar to the chapters version of BookSum, and shorter than QMSum.

Responses average 237 tokens long (std. 133), corresponding to a compression ratio of 95.4%.
8We use the en_core_web_sm spaCy tokenizer.
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Text N-gram Size
1 2 3 4

Di. story 19.7 2.7 0.1 0.0
Same story 27.4 5.8 1.2 0.4
Same question 33.4 8.7 2.3 0.8

Story 69.4 22.0 5.0 1.7

Table 5.3: (Top) Average percentage of unique n-grams shared between pairs of responses from dierent
sources: two dierent stories, dierent questions but the same story, and the same question. (Boom)
Average percentage of unique summary n-grams that also appear in the corresponding story.

The plot summaries have an average length of 442 tokens and are comparable in length to those

of BookSum. The other responses are shorter with an average length of 186 tokens, but are still

longer than the summaries in QMSum.

Response Diversity We measure summary abstractiveness by computing the percentage of

summary n-grams that also appear in the story, shown in Table 5.3. The high recall of 1-grams is

unsurprising given the length of the stories, but the low recall of 3- and 4-grams shows that the

summaries are highly abstractive.

We next consider the diversity between pairs of responses to the same question. If responses

are similar, then collecting multiple references is potentially wasteful. We show in Table 5.3

the average percentage of unique n-grams shared between responses to the same question. The

overlap is low: Only 33% of unigrams and less than 10% of bigrams are shared between responses

to the same question. This overlap is only slightly higher than the average overlap between

responses to completely dierent stories. The low response overlap highlights the diversity of the

summarization task, a property made evident in SQuALITY but not in single-reference datasets.
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Model R-1 R-2 R-L M BScore

LED 27.7 5.9 17.7 16.5 82.7
PEGASUS 38.2 9.0 20.2 23.4 84.9
BART 40.2 10.4 20.8 24.5 85.3
BART+DPR 41.5 11.4 21.0 26.1 85.5

Human∗ 46.6 12.5 22.7 30.6 86.2

Table 5.4: Automatic evaluation results with ROUGE (1/2/L), METEOR, and BERTScore. LED performs
worst and tends to repeat a single sentence. PEGASUS performs substantially beer, but lags slightly
behind BART. The best performing model is BART+DPR. ∗The human reference is evaluated with three
references while model-generated summaries are evaluated with four references, artificially raising their
scores.

5.5 Baselines

5.5.1 Models

We evaluate supervised sequence-to-sequence models on SQuALITY using dierent pretrained

language models as the base model. We implement our baselines using HuggingFace Trans-

formers [Wolf et al. 2020]. We do not explore prompting approaches for summarization with

closed-access models. Previous work has found that models can be prompted zero-shot to pro-

duce high-quality summaries [Radford et al. 2019; Wu et al. 2021], though public models like

GPT-3 do not have the capacity to process full stories from our dataset.

BART BART [Lewis et al. 2020] is a Transformer-based [Vaswani et al. 2017] encoder-decoder

model pretrained on a token in-lling objective and a sentence permutation objective. We use

BART-large, which has a maximum input sequence length of 1024 tokens, so we truncate stories

dramatically to t this simple baseline.

BART+DPR We experiment with an extract-then-summarize baseline. Instead of truncating

stories when using BART, we rst retrieve story sentences that are most relevant to the ques-

tion and concatenate them to form the input. We use the pretrained Dense Passage Retriever
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[Karpukhin et al. 2020] that encodes the question into a vector representation and retrieves the

story sentences that are most similar to the question.

PEGASUS PEGASUS [Zhang et al. 2020] is a Transformer-based encoder-decoder model that

is pretrained using an objective designed for summarization. The objective is to predict masked

out sentences that are selected to be heuristic pseudo-summaries of the document. PEGASUS

is pretrained on sequences of at most length 512, but we follow previous work in netuning

PEGASUS-large with a max sequence length of 2048 tokens, truncating stories to t.

LED Longformer Encoder-Decoder [Beltagy et al. 2020] is an encoder-decoder model where the

encoder is a Longformer and the decoder is a Transformer. A Longformer modies the Trans-

former architecture with a more ecient self-attention pattern that allows the model to tractably

scale to long documents. The LED maximum input length can t entire stories. We use a context

length of 8192 for memory eciency. The parameters of LED are initialized using BART weights,

copied eight times over. We use LED-base.

5.5.2 Training

We format example inputs by concatenating the question to the beginning and end of the docu-

ment, separated by a special [SEP] token, based on previous work on question-focused summa-

rization [Vig et al. 2021]. Each (story, question, reference) tuple is mapped to a separate training

instance, so each (story, question) input is associated with four training examples, one per refer-

ence. We netune models using the AdamW optimizer [Loshchilov and Hutter 2018]. Additional

training details are available in Appendix A.4.3.
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Model Corr. Coverage Overall

BART 34.8 15.6 18.1
BART+DPR 45.4 24.3 27.9
Human 94.1 88.8 91.3

Table 5.5: Human evaluation results for two models and a human-wrien response. Corr. stands for
correctness. Ratings for each property are averaged across 3 workers, then averaged across questions.

5.5.3 Evaluation

At test time, we generate summaries using beam search with beam width 4. We evaluate the

summaries with ROUGE [Lin 2004] and METEOR [Banerjee and Lavie 2005], standard automatic

metrics for summarization. We also evaluate with a RoBERTa-large based version of BERTScore

[Zhang et al. 2019a], which uses RoBERTa to compute the similarity between references and

model generations. For all metrics, we report F1 and handle multiple references by evaluating a

candidate against each reference individually, and then taking the max score across references.

5.5.4 Automatic Evaluation Results

We present results using various automatic evaluation metrics in Table 5.4. We observe that LED

fails to learn the task and generally produces outputs containing long, repeated sentences. The

pathological behavior is reected in the low ROUGE-1 and ROUGE-2 scores for the model. We

hypothesized that the poor performance is because the small dataset size is not enough to netune

the additional positional embeddings. We explored transfer learning approaches where themodel

was rst netuned on a larger long-context summarization dataset, such as arXiv [Cohan et al.

2018] or GovReport [Huang et al. 2021], and then netuned on SQuALITY. However, training on

intermediate datasets did not x the issue of degenerate outputs, indicating that the additional

positional embeddings were not the bottleneck in the model’s performance. Overall, we found

that public pretrained models for medium to long input tasks were not eective o the shelf.

PEGASUS, BART, and BART+DPR do substantially better on the task and produce sensible

77



outputs, despite having partial inputs. PEGASUS slightly underperforms the BART variants ac-

cording to all metrics. BART+DPR outperforms BART with truncated input across all metrics.

Additionally, we evaluate the human references using the automatic metrics by holding one

reference out and comparing it with the various metric against the remaining three references.

We repeat this process for all references and average the metric score across held-out references.

While this use of three references rather than four disadvantages the human references (see Sec-

tion 5.6), we still nd that they score higher than machine outputs.

5.6 Human Evaluation

Automatic metrics for evaluating text summarization have been well-documented as correlating

poorly with human judgments of various quality [Schluter 2017; Kryscinski et al. 2019; Durmus

et al. 2020]. As such, we accompany automatic evaluation of the baseline systems with human

evaluation. We ask workers to rate the quality of outputs from BART and BART+DPR on the test

data.

For each task, we show the worker a story and for each of its ve questions, two model-

generated summaries and a human reference. Workers rate each summary for three proper-

ties: correctness, coverage, and overall quality. Each property is rated on a scale from 1-100,

similar to direct assessment ratings in machine translation [Bojar et al. 2016]. Workers are in-

structed to assign ratings that align with their preference rankings between systems [Sakaguchi

and Van Durme 2018]. We annotate 20 stories (100 questions) with three Upwork workers per

story. Finally, we average property ratings across annotators. The worker details and property

denitions are available in Appendix A.4.5.

We present results of the human evaluation in Table 5.5 and sample model generations in

Appendix A.4.4. The standard deviations of property ratings across questions are shown in Ap-

pendix A.4.5. For all questions and all properties, all human annotators rank the human-written
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Metric Model Only Human Only All

ROUGE-1 -7.4 6.8 63.1∗
ROUGE-2 -7.8 5.2 42.8∗
ROUGE-L -3.2 14.0 47.8∗
METEOR -11.1 -4.3 54.1∗
BERTScore 5.5 0.8 68.7∗

Table 5.6: Pearson correlations (multiplied by 100) between automatic evaluation metrics and human
judgments of overall quality for three subsets of the human evaluation data: only model-generated sum-
maries (’model only’), only human wrien summaries (’human only’), and both (’all’). Correlations are
only significant (∗) when considering all summaries.

response as better than the model responses. The human-written response has an average rat-

ing around or above 90 for all three properties. On the other hand, BART and BART+DPR have

an average rating below 50 for all three properties, substantially below corresponding ratings

for the human response. Across all three properties, BART+DPR is ranked as better than BART

on 70% of examples. The models receive the highest rating on the correctness property among

all properties. Upon inspecting the model generations, we partly attribute these relatively high

ratings to the fact that the model-generated responses are fairly generic and devoid of specic

details. This lack of specicity is reected in the especially low coverage ratings of the model-

generated summaries. Overall, we conclude that fully-public automatic summarization systems

still lag signicantly behind human writers.

Correlation Between Automatic and Human Evaluations We next consider the corre-

lations between automatic and human evaluations for three subsets of the collected data: only

model-written summaries (200 summaries), only human-written summaries (100 summaries), and

all summaries. We present the correlations with the judgments of overall quality for these subsets

in Table 5.6.

When considering all summaries, all metrics have a substantial positive correlation with the

human judgments of overall quality. However, these appear to mostly reect the fact that the au-

tomatic metrics rank human-written summaries as better than model-written ones: When con-
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sidering only model-written summaries or only human-written summaries, the correlations are

dramatically weaker and are in no cases signicant.

The weak correlations in these settings point to the brittleness of using these automatic met-

rics when comparing the outputs of two automatic summarization systems, where metric values

will similarly be in a narrow range. In light of these ndings, we caution against relying on au-

tomatic metrics to measure system quality on SQuALITY and instead rely on human evaluation

of model outputs.

Multi-Reference Automatic Metrics We next consider whether having multiple references

improves the correlation of automatic evaluation metrics. ROUGE was originally developed on

multi-reference datasets, but recent summarization datasets are predominantly single reference.

This mismatch may contribute to the poor correlation of ROUGE with human judgments of qual-

ity for these datasets [Pang et al. 2021a; Pagnoni et al. 2021; Scialom et al. 2021, i.a.]. We use the

multiple references of SQuALITY to measure the eect of varying the number of references used

in automatic metrics on the correlation with human judgments.

We nd that using fewer references when computing the automatic evaluation metrics does

not substantially change the correlations with human judgments. To demonstrate why, we show

the average and maximum metric values for each automatic metric in Table 5.7. We observe that

for all metrics considered, the maximum value of the metric is relatively close to the average

metric value across references. Despite having diverse references, the metric values are similar

across references. Thus, using multiple references does not improve correlations between auto-

matic metrics and human judgments of overall quality. However, we note that simply taking the

maximum metric value over references is relatively simple, and that there may be more sophisti-

cated ways to use the diverse references to compute generation quality.
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Metric Avg. Max. Δ

ROUGE-1 37.9 41.5 3.6
ROUGE-2 8.7 11.4 2.1
ROUGE-L 18.8 21.0 2.2
METEOR 22.7 26.1 3.4
BERTScore 84.8 85.5 0.7

Table 5.7: Average andmaximummetric value across the four references for BART+DPRwhen considering
only a single reference at a time.

5.7 Conclusion

We present SQuALITY, a long-input dataset for abstractive question-focused summarization. Be-

cause the summaries are crowdsourced rather than found, we can use input documents that are

of an accessible domain and under an open license to avoid common issues with existing sum-

marization datasets. Our crowdsourcing protocol gives multiple summaries and references per

input while making the cost of data collection more tractable.

Baseline results with competitive public medium-scale pretrained models suggest that the

dataset remains beyond the capabilities of such systems. Our best performingmodel is an extract-

then-summarize model where we use the questions to retrieve story sentences as input. The

performance of proprietary larger-scale models remains an open question, and may depend sig-

nicantly on whether such models can process the full stories without truncation.

Given the poor correlation of existing automatic metrics with human judgments of model out-

puts, we expect that automatic metrics will provide a very weak signal for progress on SQuALITY.

We recommend that researchers using SQuALITY evaluate their summarization systems by hav-

ing human annotators read a selection of our source stories and compare model outputs on those

stories. To facilitate this, we will make our templates for human evaluation available, though cre-

ating ecient and eective methods for evaluating summaries of long input documents remains

an open issue.
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6 | Conclusion

In this dissertation, we explored the eects that pretrained language models have had on how

we evaluate NLP systems. In Chapter 2, we introduced a standardized benchmark for evaluating

the generalization ability of NLP systems by their ability to perform many diverse downstream

NLP tasks. In Chapter 3, we updated this benchmark with a more challenging set of downstream

tasks in light of rapid progress made by pretrained language models, and discussed steps we took

and future directions for developing more challenging general-purpose language understanding

benchmarks. In Chapter 4, we turn pretrained language models on themselves to develop an

improved evaluation metric for measuring faithfulness of automatically generated summaries

that leverages the improved question answering abilities of pretrained language models. Finally,

in Chapter 5, we developed high-quality evaluation data for automatic text summarization by

crowdsourcing summaries rather than relying on found data on the web.

Our work points to a number of open problems remaining in evaluating NLP models. As

model capabilities continue to improve, they become better at exploit biases and data artifacts in

existing datasets, necessitating the creation of higher quality data and more challenging tasks.

One promising approach for developing such data is incorporating NLP models in the data cre-

ation process, such as to discover noisy examples in datasets [Swayamdipta et al. 2020] or by

assisting crowdworkers with machine learning models during the crowdsourcing process [Liu

et al. 2022; Bartolo et al. 2021; Saunders et al. 2022].

For text generation problems specically, there has been increasing scrutiny paid towards
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human evaluation of model outputs [Howcroft et al. 2020; Iskender et al. 2021; Smith et al. 2022,

i.a.]. Human evaluation has traditionally been regarded as the gold standard in evaluating text

generation models. However, recent studies have identied inconsistent task denitions and

standards between papers. Thus, a critical open problem is the development of consistent and

high-quality human evaluation protocols for eective evaluation of NLG systems. Annotations

collected from such protocols could be used to train the next generation of automatic model-based

evaluation metrics, in the vein of Sellam et al. [2020a] or Stiennon et al. [2020], that are trained

to mimic human judgments of complex properties.

Overall, incorporating the growing capabilities of pretrained language models to evaluate the

growing capabilities of language models is a promising future direction.
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A | Appendix

A.1 Appendices for GLUE

A.1.1 Additional Data Details

A.1.1.1 Dataset Construction

QNLI To construct a balanced dataset, we select all pairs in which the most similar sentence

to the question was not the answer sentence, as well as an equal amount of cases in which the

correct sentence was the most similar to the question, but another distracting sentence was a

close second. Our similarity metric is based on CBoW representations with pre-trained GloVe

embeddings. This approach to converting pre-existing datasets into NLI format is closely related

to recent work by White et al. [2017], as well as to the original motivation for textual entailment

presented by Dagan et al. [2006]. Both argue that many NLP tasks can be productively reduced

to textual entailment.

A.1.1.2 Diagnostic Data

We show the full label set used to tag the diagnostic set in Table A.1.
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Coarse-Grained Categories Fine-Grained Categories

Lexical Semantics Lexical Entailment, Morphological Negation, Factivity, Symmetry/Collectivity,
Redundancy, Named Entities, Quantiers

Predicate-Argument Structure
Core Arguments, Prepositional Phrases, Ellipsis/Implicits, Anaphora/Coreference
Active/Passive, Nominalization, Genitives/Partitives, Datives, Relative Clauses,
Coordination Scope, Intersectivity, Restrictivity

Logic
Negation, Double Negation, Intervals/Numbers, Conjunction,
Disjunction, Conditionals, Universal, Existential,
Temporal, Upward Monotone, Downward Monotone, Non-Monotone

Knowledge Common Sense, World Knowledge

Table A.1: The types of linguistic phenomena annotated in the diagnostic dataset, organized under four
major categories.

A.1.2 Additional Baseline Details

A.1.2.1 Attention Mechanism

We implement our attentionmechanism as follows: Given sequences of hidden states1,2, . . . ,

and 1, 2, . . . ,  , we rst compute matrix  where   =  ·   . For each  , we get attention

weights  by taking a softmax over the ℎ row of  , and get the corresponding context vector

̃ =


    by taking the attention-weighted sum of the   . We pass a second BiLSTM with

max pooling over the sequence [1; ̃1], . . . [ ; ̃ ] to produce ′. We process the   vectors

analogously to obtain ′. Finally, we feed [′; ′; ′ − ′;′ ∗ ′] into a classier.

A.1.2.2 Training

We train our models with the BiLSTM sentence encoder and post-attention BiLSTMs shared

across tasks, and classiers trained separately for each task. For each training update, we sample

a task to train with a probability proportional to the number of training examples for each task.

We scale each task’s loss inversely proportional to the number of examples for that task, which

we found to improve overall performance. We train our models with Adam [Kingma and Ba 2014]

with initial learning rate 10−3, batch size 128, and gradient clipping. We use macro-average score
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over all tasks as our validation metric, and perform a validation check every 10k updates. We

divide the learning rate by 5 whenever validation performance does not improve. We stop train-

ing when the learning rate drops below 10−5 or performance does not improve after 5 validation

checks.

A.1.2.3 Sentence Representation Models

We evaluate the following sentence representation models:

1. CBoW, the average of the GloVe embeddings of the tokens in the sentence.

2. Skip-Thought [Kiros et al. 2015], a sequence-to-sequence(s) model trained to generate the

previous and next sentences given the middle sentence. We use the original pre-trained

model1 trained on sequences of sentences from the Toronto Book Corpus (Zhu et al. 2015,

TBC).

3. InferSent [Conneau et al. 2017], a BiLSTM with max-pooling trained on MNLI and SNLI.

4. DisSent [Nie et al. 2017], a BiLSTM with max-pooling trained to predict the discourse

marker (because, so, etc.) relating two sentences on data derived from TBC. We use the

variant trained for eight-way classication.

5. GenSen [Subramanian et al. 2018], a sequence-to-sequence model trained on a variety of

supervised and unsupervised objectives. We use the variant of the model trained on both

MNLI and SNLI, the Skip-Thought objective on TBC, and a constituency parsing objective

on the Billion Word Benchmark.
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Figure A.1: The benchmark website leaderboard. An expanded view shows additional details about each
submission, including a brief prose description and parameter count.

A.1.3 Benchmark Website Details

GLUE’s online platform is built using React, Redux and TypeScript. We use Google Firebase for

data storage and Google Cloud Functions to host and run our grading script when a submission

is made. Figure A.1 shows the visual presentation of our baselines on the leaderboard.

1github.com/ryankiros/skip-thoughts
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A.2 Appendices for SuperGLUE

A.2.1 Development Set Results

In Table A.2, we present results of the baselines on the SuperGLUE tasks development sets.

Table A.2: Baseline performance on the SuperGLUE development.

Model Avg BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC
Metrics Acc. Acc./F1 Acc. F1/EM F1/EM Acc. Acc. Acc.

Most Frequent Class 47.7 62.2 50.0/22.2 55.0 59.9/ 0.8 32.4/ 31.5 52.7 50.0 63.5
CBOW 47.7 62.4 71.4/49.6 63.0 20.3/ 0.3 14.4/ 13.8 54.2 55.3 61.5
BERT 72.2 77.7 94.6/93.7 69.0 70.5/ 24.7 70.6/ 69.8 75.8 74.9 68.3
BERT++ 74.6 80.1 96.4/95.0 78.0 70.5/ 24.7 70.6/ 69.8 82.3 74.9 68.3

A.2.2 Performance on GLUE Diagnostics

Figure A.2 shows the performance on the GLUE diagnostics dataset for systems submitted to the

public leaderboard.

A.2.3 Human Performance Estimation

For collecting data to establish human performance on the SuperGLUE tasks, we follow a two

step procedure where we rst provide some training to the crowd workers before they proceed

to annotation. For both steps and all tasks, the average pay rate is $23.75/hr.2

In the training phase, workers are provided with instructions on the task, linked to an FAQ

page, and are asked to annotate up to 30 examples from the development set. After answering

each example, workers are also asked to check their work against the provided ground truth

label. After the training phase is complete, we provide the qualication to work on the annotation

phase to all workers who annotated a minimum of ve examples, i.e. completed ve HITs during
2This estimate is taken from https://turkerview.com.
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Figure A.2: Performance of GLUE submissions on selected diagnostic categories, reported using the 3
metric scaled up by 100, as in Wang et al. [2019b, see paper for a description of the categories]. Some
initially diicult categories, like double negation, saw gains from advances on GLUE, but others remain
hard (restrictivity) or even adversarial (disjunction, downward monotone).

training and achieved performance at, or above themedian performance across all workers during

training.

In the annotation phase, workers are provided with the same instructions as the training

phase, and are linked to the same FAQ page. The instructions for all tasks are provided in Ap-

pendix A.2.3. For the annotation phase we randomly sample 100 examples from the task’s test

set, with the exception of WSC where we annotate the full test set. For each example, we collect

annotations from ve workers and take a majority vote to estimate human performance. For

additional details, see Appendix A.2.3.3.

A.2.3.1 Training Phase Instructions

In the training step, we provide workers with brief instructions about the training phase. An

example of these instructions is given Table A.3. These training instructions are the same across
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Table A.3: Task-specific instructions for Choice of Plausible Alternatives (COPA). These instructions were
provided during both training and annotation phases.

Plausible Answer Instructions

The New York University Center for Data Science is collecting your answers for use in research on computer
understanding of English. Thank you for your help!

We will present you with a prompt sentence and a question. The question will either be about what caused
the situation described in the prompt, or what a possible eect of that situation is. We will also give you two
possible answers to this question. Your job is to decide, given the situation described in the prompt, which of
the two options is a more plausible answer to the question:

In the following example, option 1. is a more plausible answer to the question about what caused the situation
described in the prompt,

The girl received a trophy.
What’s the CAUSE for this?

1. She won a spelling bee.

2. She made a new friend.

In the following example, option 2. is a more plausible answer the question about what happened because of
the situation described in the prompt,

The police aimed their weapons at the fugitive.
What happened as a RESULT?

1. The fugitive fell to the ground.

2. The fugitive dropped his gun.

If you have any more questions, please refer to our FAQ page.

tasks, only the task name in the instructions is changed.

A.2.3.2 Task Instructions

During training and annotation for each task, we provide workers with brief instructions tailored

to the task. We also link workers to an FAQ page for the task. Tables A.3, A.4, and A.5 show the

instructions we used for COPA, CommitmentBank, and WSC respectively.

We collected data to produce conservative estimates for human performance on several tasks
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Table A.4: Task-specific instructions for Commitment Bank. These instructions were provided during
both training and annotation phases.

Speaker Commitment Instructions

The New York University Center for Data Science is collecting your answers for use in research on computer
understanding of English. Thank you for your help!

We will present you with a prompt taken from a piece of dialogue, this could be a single sentence, a few
sentences, or a short exchange between people. Your job is to gure out, based on this rst prompt (on top),
how certain the speaker is about the truthfulness of the second prompt (on the bottom). You can choose from
a 7 point scale ranging from (1) completely certain that the second prompt is true to (7) completely certain that
the second prompt is false. Here are examples for a few of the labels:

Choose 1 (certain that it is true) if the speaker from the rst prompt denitely believes or knows that the second
prompt is true. For example,

"What fun to hear Artemis laugh. She’s such a serious child. I didn’t know she had a sense of humor."
"Artemis had a sense of humor"

Choose 4 (not certain if it is true or false) if the speaker from the rst prompt is uncertain if the second prompt
is true or false. For example,

"Tess is committed to track. She’s always trained with all her heart and soul. One can only hope
that she has recovered from the u and will cross the nish line."
"Tess crossed the nish line."

Choose 7 (certain that it is false) if the speaker from the rst prompt denitely believes or knows that the
second prompt is false. For example,

"Did you hear about Olivia’s chemistry test? She studied really hard. But even after putting in all
that time and energy, she didn’t manage to pass the test".
"Olivia passed the test."

If you have any more questions, please refer to our FAQ page.

that we did not ultimately include in our benchmark, including GAP [Webster et al. 2018], PAWS

[Zhang et al. 2019b], Quora Insincere Questions,3 Ultrane Entity Typing [Choi et al. 2018b], and

Empathetic Reactions datasets [Buechel et al. 2018].
3https://www.kaggle.com/c/quora-insincere-questions-classification/data

91



Table A.5: Task-specific instructions for Winograd Schema Challenge (WSC). These instructions were
provided during both training and annotation phases.

Winograd Schema Instructions

The New York University Center for Data Science is collecting your answers for use in research on computer
understanding of English. Thank you for your help!

We will present you with a sentence that someone wrote, with one bolded pronoun. We will then ask if you if
the pronoun refers to a specic word or phrase in the sentence. Your job is to gure out, based on the sentence,
if the bolded pronoun refers to this selected word or phrase:

Choose Yes if the pronoun refers to the selected word or phrase. For example,

"I put the cake away in the refrigerator. It has a lot of butter in it."
Does It in "It has a lot" refer to cake?

Choose No if the pronoun does not refer to the selected word or phrase. For example,

"The large ball crashed right through the table because it was made of styrofoam."
Does it in "it was made" refer to ball?

If you have any more questions, please refer to our FAQ page.

A.2.3.3 Task Specific Details

For WSC and COPA we provide annotators with a two way classication problem. We then use

majority vote across annotations to calculate human performance.

CommitmentBank We follow the authors in providing annotators with a 7-way classication

problem. We then collapse the annotations into 3 classes by using the same ranges for bucketing

used by [de Marnee et al. 2019]. We then use majority vote to get human performance numbers

on the task.

Furthermore, for training on CommitmentBank we randomly sample examples from the low

inter-annotator agreement portion of the CommitmentBank data that is not included in the

benchmark version of the task. These low agreement examples are generally harder to classify

since they are more ambiguous.
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Diagnostic Dataset Since the diagnostic dataset does not come with accompanying training

data, we train our workers on examples from RTE’s development set. RTE is also a textual en-

tailment task and is the most closely related task in the main benchmark. Providing the crowd

workers with training on RTE enables them to learn label denitions which should generalize to

the diagnostic dataset.

Ultrafine Entity Typing We cast the task into a binary classication problem to make it an

easier task for non-expert crowdworkers. Wework in cooperation with the authors of the dataset

[Choi et al. 2018b] to do this reformulation: We give workers one possible tag for a word or phrase

and asked them to classify the tag as being applicable or not.

The authors used WordNet [Miller 1995] to expand the set of labels to include synonyms

and hypernyms from WordNet. They then asked ve annotators to validate these tags. The tags

from this validation had high agreement, and were included in the publicly available Ultrane

Entity Typing dataset,4 This constitutes our set of positive examples. The rest of the tags from

the validation procedure that are not in the public dataset constitute our negative examples.

GAP For the Gendered Ambiguous Pronoun Coreference task [GAP, Webster et al. 2018], we

simplied the task by providing noun phrase spans as part of the input, thus reducing the original

structure prediction task to a classication task. This task was presented to crowd workers as a

three way classication problem: Choose span A, B, or neither.

A.2.4 Excluded Tasks

In this section we provide some examples of tasks that we evaluated for inclusion but ultimately

could not include. We report on these excluded tasks only with the permission of their authors.

We turned downmanymedical text datasets because they are usually only accessible with explicit
4https://homes.cs.washington.edu/~eunsol/open_entity.html
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permission and credentials from the data owners.

Tasks like QuAC [Choi et al. 2018a] and STREUSLE [Schneider and Smith 2015] diered sub-

stantially from the format of other tasks in our benchmark, which we worried would incen-

tivize users to spend signicant eort on task-specic model designs, rather than focusing on

general-purpose techniques. It was challenging to train annotators to do well on Quora Insincere

Questions 5, Empathetic Reactions [Buechel et al. 2018], and a recast version of Ultra-Fine Entity

Typing [Choi et al. 2018b, see Appendix A.2.3.3 for details], leading to low human performance.

BERT achieved very high or superhuman performance on Query Well-Formedness [Faruqui and

Das 2018], PAWS [Zhang et al. 2019b], Discovering Ongoing Conversations [Zanzotto and Fer-

rone 2017], and GAP [Webster et al. 2018].

During the process of selecting tasks for our benchmark, we collected human performance

baselines and run BERT-basedmachine baselines for some tasks that we ultimately excluded from

our task list. We chose to exclude these tasks because our BERT baseline performs better than our

human performance baseline or if the gap between human and machine performance is small.

On Quora Insincere Questions our BERT baseline outperforms our human baseline by a small

margin: an F1 score of 67.2 versus 66.7 for BERT and human baselines respectively. Similarly, on

the Empathetic Reactions dataset, BERT outperforms our human baseline, where BERT’s predic-

tions have a Pearson correlation of 0.45 on empathy and 0.55 on distress, compared to 0.45 and

0.35 for our human baseline. For PAWS-Wiki, we report that BERT achieves an accuracy of 91.9%,

while our human baseline achieved 84% accuracy. These three tasks are excluded from the bench-

mark since our, admittedly conservative, human baselines are worse than machine performance.

Our human performance baselines are subject to the clarity of our instructions (all instructions

can be found in Appendix A.2.3), and crowd workers engagement and ability.

For the QueryWell-Formedness task, the authors set an estimate human performance at 88.4%

accuracy. Our BERT baseline model reaches an accuracy of 82.3%. While there is a positive gap
5https://www.kaggle.com/c/quora-insincere-questions-classification/data
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on this task, the gap was smaller than we were were willing to tolerate. Similarly, on our recast

version of the Ultrane Entity Typing, we observe too small a gap between human (60.2 F1) and

machine performance (55.0 F1). Our recasting for this task is described in Appendix A.2.3.2. On

GAP, when taken as a classication problem without the related task of span selection (details in

A.2.3.2), BERT performs (91.0 F1) comparably to our human baseline (94.9 F1). Given this small

margin, we also exclude GAP.

OnDiscoveringOngoing Conversations, our BERT baseline achieves an F1 of 51.9 on a version

of the task cast as sentence pair classication (given two snippets of texts from plays, determine

if the second snippet is a continuation of the rst). This dataset is very class imbalanced (90%

negative), so we also experimented with a class-balanced version on which our BERT baselines

achieves 88.4 F1. Qualitatively, we also found the task challenging for humans as there was little

context for the text snippets and the examples were drawn from plays using early English. Given

this fairly high machine performance and challenging nature for humans, we exclude this task

from our benchmark.
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A.3 Appendices for QAGS

A.3.1 Human Evaluation Task Design

Figure A.3: Annotation interface and instructions for CNN/DM factual consistency task.

Figure A.4: Annotation interface and instructions for XSUM factual consistency task.

We restrict our pool of workers to US-based workers. Workers are required to have at least

1000 approved HITs with an acceptance rate of at least 98%.
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The base reward for our task is $0.15. For each summary, we include automatic quality checks

including

• Time checks: workers who complete the task under 30s fail the check

• Attention checks: we include exact copies of article sentences and corrupted mixtures of

two article sentences as positive and negative control task. If a worker fails to answer both

of these examples correctly, they fail the check

• Explanation checks: For each sentence in the summary, the worker is required to provide

a short explanation of their decision

If a worker passes all checks, they are awarded a $0.85 bonus, totalling $1.00 per correct anno-

tation. According to turkerview.com, workers of our HIT are paid well in excess of $15.00 on

average.

We show our annotation interfaces for the annotation task for CNN/DM and XSUM respec-

tively in Figures A.3 and A.4. We use slightly dierent instructions to accommodate for the quirks

of each dataset. For XSUM, we prepend the reference “summary” back onto the source article, as

without it, workers were struggling to identify factual inconsistencies.

A.3.2 Model and Generation Details

estion Generation We ne-tune BART for question generation using the same tuning hy-

perparameters as the original work. We optimize label smoothed cross entropy with smoothing

parameter 0.1 [Pereyra et al. 2017] and a peak learning rate of 2e-5. We optimize for 100k steps

with 5k warmup steps, and use the model with the best perplexity on the development set.

To turn NewsQA into an answer conditional QG dataset, we concatenate the answer to the

source article with a special marker token in between. We then concatenate another special

marker token and the question. At test time, we get 10 named entities and noun phrases as
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answer candidates using the en-web-sm spaCy model. We randomly sample 10 if there are more

than 10, and randomly duplicate some answers if there are fewer than 10. The model predicts the

question after seeing an answer and the article.

During decoding, we use beam search with beam size 10, length penalty 1.0, and trigram

repetition blocking. Generations have minimum length 8 and max length 60.

To lter the questions, we rst use simple heuristics, including removing

• everything after the rst question mark in a question

• exact duplicates

• questions shorter than three tokens long

For the remaining questions, we use our QA model to answer each question and we remove

questions for which the QA model deems unanswerable. We then take the top 20 most probable

questions, random sampling some of the ltered questions if there were too few.

estion Answering We ne-tune BERT for question answering following the original work.

Similar to the QG setting, we append the question and answer to the source article with interven-

ing special marker tokens. We optimize using AdamW [Loshchilov and Hutter 2018] with initial

learning rate 5e-5. We train for 3 epochs, with a warmup ratio of 0.1. We use the model with the

best development set performance.
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A.4 Appendices for SALITY

A.4.1 Crowdsourcing Details

We hire Upworker workers and local undergraduates as writers for our data collection pipeline.

Most writers create 20–40 responses for the dataset, although ve authors submitted 10 or fewer

responses. All writers are informed that their writing will be released publicly for use in AI

development.

Our Upworkwriters are typically US-based native English speakers. Many of them are college-

educated, frequently with degrees in the humanities and prior experience in professional copy-

writing and editing. We found workers for our task by posting an open call on Upwork to par-

ticipate in a paid interview. In the interview, applicants review an example writing task with

sample questions and responses, and then complete a practice writing task. We hired the top

33% of writers based on their performance on the interview task after manually reviewing their

responses. We pay Upwork workers $13 and $8 for each writing and reviewing task respectively,

with additional opportunities for bonuses described above.

The undergraduates we hire are all English-uent and come from diverse nationalities and

areas of study—the smaller and more junior pool of applicants prevents us from focusing as much

on relevant experience as we do with Upwork. Students are paid a constant $20/hr.6 Students are

hired based on relevant experience and writing samples. After they are hired, we show them

the same example task and have them do the practice writing task that we showed the Upwork

workers.

A.4.1.1 estion Templates

We provide the following question templates to the writers:
6Due to the structure of student employment contracts, we are unable to pay students using the bonus payment

structure and we instead periodically manually review their responses to ensure they are high-quality.
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• What is the plot of the story?

• What happens to [character X] throughout the story?

• What is the relationship between [character X] and [character Y]?

• What is the setting of the story?

• What is the signicance of [object X] on the rest of the story?

• How is [theme X] explored throughout the story?

• Story-specic questions

Writers always answer the question “What is the plot of the story?”. For more subjective

templates such as “What is the signicance of [object X]?” or “How is [theme X] explored?”, we

ask the writers to use these templates only in cases where they believe the answer will be clear

and unambiguous to someone who has read the story carefully.

A.4.1.2 Crowdsourcing Interfaces

We show screenshots of our UIs and abbreviated task instructions for writing and reviewing

summaries in Figures A.5 and A.6, respectively.

A.4.1.3 Comparing Upwork and Undergraduates

Generally, we found that both Upwork and undergraduate workers took the task seriously and

produced quality summaries. Writers fromUpwork qualitatively produced slightly higher quality

responses, perhaps because wewere able to lter more aggressively for relevant backgrounds and

skills when hiring on Upwork. Hiringwriters on Upworkwasmore expensive than hiring student

writers.
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Figure A.5: Screenshot of the writing UI. Workers are shown the story on the le and five questions on
the right, and they are tasked with writing responses to each of the questions. If the worker is the first
person to work on a story, they write four questions about the story to answer (The question “What is
the plot?” is always asked), and we provide the worker with a list of question templates in the UI to help
them write good questions.

Anecdotally, the workers we hired from both populations enjoyed the tasks, and we see this

as a signicant advantage to using popular ction in benchmark tasks. However, we did nd that

some Upwork contractors quit our task during the course of data collection, and some mentioned

that our task paid less than other tasks on Upwork. Because students were hired for long-term

contracts (on the order of months), they did not drop out of the data collection process, but

working with them did require careful work scheduling around exams and breaks.

A.4.2 Dataset Examples

Table A.6 shows the full references for the example in Table 5.1. Table A.7 shows additional

examples from SQuALITY.
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Figure A.6: Screenshot of the reviewing UI. Workers are shown the story on the le and five questions
on the right. Each of the questions has three responses that the worker is tasked with ranking from best
to worst. Additionally, for each response, the worker is instructed to highlight typos and factual errors, as
well as provide wrien feedback to the writer. This feedback is later provided to the writer to help them
improve their responses in subsequent rounds of writing.

A.4.3 Training Details

We train models for 5 epochs with the AdamW optimizer and a linear decay with warmup learn-

ing rate schedule. Because of the relatively small size of the training data, we focus on tuning

regularization parameters when training the models. We tune the initial learning rate, warmup

ratio, weight decay, and label smoothing with grid search over a range of values for each hy-

perparameter. Models were selected based on the loss on the validation dataset and the ability

to generate uent summaries on the validation dataset. We present the search space for each

parameter and the optimal model congurations for each model in Table A.8. Our experiments

with PEGASUS predominantly led to models that produced degenerate summaries consisting of

a single sentence repeated. The nal model we use is from the ocial Google-internal implemen-

tation courtesy of the original authors. LED models were trained on a single Nvidia Quadro RTX

8000. Other models were trained on a single Nvidia V100.
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A.4.4 Model Outputs

We present sample model outputs in Table A.9.

A.4.5 Human Evaluation

As the task is labor-intensive, we use four of the same Upwork writers for the human evalua-

tion as for the data collection. Workers may have previously read the story and thus answered

the questions, and we are careful to not show workers their own responses. If they have not

previously read the stories, workers are paid to read the story. Workers are informed that the

responses are a mixture of human- and machine-written, but not informed which responses are

which. We pay workers $8/task and an additional $8 if they have not previously read the story.

All workers complete the same number of tasks.

We ask human raters to (re-)read the story, and then evaluate the quality of summaries along

three axes:

• Correctness: Presence of factual errors in responses, where a factual error is a statement

that contradicts the story, or is not directly stated, heavily implied, or logically entailed by

the story.

• Coverage: The degree to which the response contains all information and details from the

story that are relevant to answering the question.

• Overall: Overall quality of the response, the primary considerations of which are the read-

ability/intelligibility of the response, the correctness, and the coverage. We ask raters to

use their best judgment in balancing these factors, as well as to incorporate other factors

such as conciseness, repetitiveness, and copying.

We show the standard deviation of property ratings across questions in Table A.10.
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Figure A.7: Screenshot of the human evaluation UI. Workers are shown the story on the le and five
questions on the right. Each of the questions has three responses. For each response, the worker is in-
structed to rate the responses along the properties of correctness, coverage, and overall quality each along
a scale of 1–100. Because the worker is shown three responses at a time, their ratings of each response
induce a ranking over the responses. Additionally, workers are asked to highlight errors in responses in
order to help them decide on the correctness property.
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Title: Pick A Crime (https://www.gutenberg.org/ebooks/51656)

Q: What is the CPA and what does it do?

The Crime Prevention Association is an organization
that stops crime. Instead of capturing criminals, the
goal of the Association is to prevent the crime from
ever happening. They implement thousands of crime-
prevention methods and devices. There are many am-
ateur cops who constantly follow criminals around in
hopes of catching them in the act so that they may be
hailed a hero and given a promotion. Hendricks even
explains that the kids have junior CPA clubs, where
they record the criminals in little cardboard boxes.
They will also follow the criminals around until they
die. There are millions of microphones hidden by the
CPA everywhere, and any threatening messages are
sent to the CPA Brain. The CPA Brain is a monster elec-
tronic calculator that can alert police helicopters of any
threatening messages, and there are also many hidden
TVs andmetal detectors. For Arson, heat detectors exist
too, and chemical poisoning has made it impossible for
people to get poisoned. There are shock treatments, en-
cephalographic devices, a form of prefrontal lobotomy,
and a dozen other treatments to reform criminals.

The CPA, Crime Prevention Association, is a system
that detects dierent kinds of crimes and prevents them
from happening. Thousands of robots and devices
make crimes impossible. The association will not pun-
ish any crime, instead, the criminal will be send to a
CPA hospital for some treatments that will result in get-
ting the best jobs. The CPA also hands out ID cards
that states one’s tendency to commit crimes. The CPA
has robot bartenders that can detect the drunkenness
of a person and prevent anyone from actually getting
drunk. There is WSDA teaching judo and jujitsu to
women. There are spy cameras and speakers in each
alley and street watching every person all the time to
prevent all kinds of crimes. The CPA Brain will catch
sentences that indicate crimes and watch them more
carefully. There are heat-detectors, gun and knife de-
tector, chemical detectors, etc. The CPA brainwashes
people, making them believe that crimes are lthy. The
treatment will make the criminal’s brain catch every
attempt that he or she tries to commit a crime and pre-
vents it from happening.

The CPA is Crime Prevention Organization. It ghts
crime by all means and reduces its rates to a very small
level. They put microphones and detectors everywhere
to hear the conspiracies. They place robots as bar-
tenders to control the level of alcohol in visitors to pre-
vent them being drunk. Theymake all the women learn
self-defense. The organization’s made crime almost im-
possible and they do not punish for it, but prevent. All
who tried to commit a crime are given free treatment.
The CPA hospitals treat those few criminals for free and
make them unable to commit any further crime. CPA
seems to be everywhere, those who tell about the crime
are highly rewarded. Neon signs, TV, radio and other
means constantly remind people that crime is lth.

The CPA is meant to prevent crime and not punish
crime. It stands for Crime Prevention Association. The
CPA organization has made crime nearly impossible
through various methods of surveillance and intelli-
gence gathering. The crime was not punished by the
CPA but addressed by sending the person to a hospi-
tal for expensive treatment to correct and remove the
deviance from the person’s mind. A CPA ID card is
required to be carried by everyone and when asked, a
person has to present the ID card. Being drunk is illegal
according to the rules of the CPA.

Table A.6: The four full human-wrien references from Table 5.1.

105



Title: Tolliver’s Orbit (https://www.gutenberg.org/ebooks/61053)

Q: Describe the equipment used throughout the story.

Tolliver is a pilot, but while at the Ganymede branch he drives a trac-
tor. One of the equipment used during the story is the automatic
ight. An automatic ight allows loaded ships to take a slow and eco-
nomical orbit using automatic signaling equipment towards Earth.
As the loaded ship gets closer to Earth, it is boarded by pilots that
land the ship. Another piece of equipment mentioned are spacesuits.
The spacesuits involve valves and seals and microphones for people
to communicate with each other in the spacesuits. The communi-
cation is activated by a switch under the chin on the helmet of the
spacesuit. They also come with a heavy knife.

Various types of transportation are used throughout the story - trac-
tors to travel on Ganymede between the city and the spaceport,
spaceships requiring a lot of fuel and economy orbits which require
less fuel but take much longer to get to the place. In a storeroom
there are plenty spacesuits, some of which need replacement. Knives
are standard suit equipment. Spaceships are equipped with airlocks,
ladders and switch-cover. In the control room there is an acceleration
seat, a button to set o, a radio and TV, with a screen to see the other
side of the call.

Tolliver is rst assigned to use an airtight tractor to transport to and
from the spaceport. This tractor is like a regular one, but built specif-
ically to trek across Ganymede with its gravity. When Tolliver and
Betty are locked into Jeers’ oce, he uses a lighter and paper to
bend the plastic of the door. Then, he uses a knife to cut through the
plastic of the dome. Finally, Tolliver and Betty board a ship, where
the orbit is automatically preset in order to preserve fuel. The ship,
which Tolliver knows how to operate, is airlocked. Betty uses a trans-
mitter to contact Space Patrol.

Firstly, Tolliver takes Betty towards Jeers’ oce on a tractor since
it can go through the frozen surface of Ganymede. Then later, when
Betty and Tolliver were put in the empty oce, Tolliver uses a lighter
to light up the mess of discarded records so that the plastic can be
bent. Later, inside the storage room, Tolliver nds some spacesuits
for the two to wear. Then nally, when they gets to the control room,
they gets onto the acceleration seat. Using the ship, the two y into
the economy orbit for Earth in order to escape. In the end, Betty uses
the scanner and microphone to make a call to the Space Patrol so that
they will arrest Jeers.

Title: Gourmet (https://www.gutenberg.org/ebooks/51597)

Q: What are some of the dishes that Bailey cooks for the crew?

The dishes Bailey cooks for the crew varies greatly, ranging from
articial vegetables to mock-meats. One dish that he makes is a
mock-meat hamburger, with the pressed Chlorella tinted pink and
seasoned by oregano and thyme. The dish is accompanied by dessert
- a fudge made from dextrose-paste. More mock-meat dishes include
a hamburger steak covered in a rich, meaty gravy lavishly seasoned
with garlic. Another dish includes a mock individual head of lettuce
dressed with vinegar and oil. The lettuce was made by Bailey con-
structing each synthetic lettuce leaf, with the narrator guessing the
process to be out of pressing, rolling and shaping a green Chlorella
paste. In contrast to some of the delicious dishes that Bailey makes,
the Cook also delivers some less tasty meals in response to the Cap-
tain’s critiques. These included boiled Chlorella vulgaris in some
soup and subpar algaeburgers. Bailey’s nal dish in the story - and
the best one yet - is an articial steak that greets the crew with a bar-
becue smell. It is drenched with gravy and seasoned with a peppery
and garlicy taste, and as the crew eats it, they nd that the usually
pond-scum taste that accompanies each repurposed chlorella meal is
gone and instead, the taste and texture reects actual steak.

One of the rst-mentioned dishes that Bailey cooks is hamburger. He
tries to create this out of the algae, seasoning the food to hide the
avors. He also serves a fudge for dessert that is compounded from
the dextrose-paste of the carbohydrate recycler. After speaking with
Paul initially, Bailey serves a dish of hamburger steak again. There
is an individual head of lettuce served, along with a steak drenched
in gravy. Later, he serves them a hot turkey supreme. The cheese-
sauce is very believable, whereas the turkey is white and tender even
though it is made fromChlorella. When CaptainWinkelmann pushes
Bailey too far, he begins to create disgusting foods. One of the rst
dishes he serves is boiled Chlorella vulgaris that resembles vomit.
The coee at noon also tastes of salt. However, at the very end of the
story, Bailey succeeds in making his Chlorella steak actually taste like
food.

Throughout their trip, Bailey does the best he can in order to replicate
traditional food using theAlgae. To impress the Captain, Bailey cooks
a wide variety of foods including algae burgers, fudge, Steak with
gravy and a head of lettuce, Hot turkey with cornbread and butter
sauce, and medium rare steak. None of these foods impressed the
Captain, so Bailey went back to cooking unappealing food such as a
porridge-like broth and bad coee. At the end, Bailey serves a new
type of steak, which is hinted to be human steak from the Captain.

Bailey made a lot of dierent dishes while working on the Sale ship.
He cooked a hamburger and a fudge. He made a steak with rich meat
gravy and lettuce, vinegar, and oil. An ersatz hot turkey supreme
with a cheese sauce, cornbread, and a pottage was also served at some
point. All of these were criticized by Captain Winkelmann. Mostly
Bailey was working on the taste of steak, which at the end of the
story, he managed to perfect to a certain extent, partly thanks to the
captain’s constant remarks.

Table A.7: Additional example questions and reference summaries from SALITY.
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Hyperparameter LR WR WD LS
Search space {1e-5, 3e-5, 5e-5, 1e-4} {0.0, 0.1, 0.2} {0.0, 0.01, 0.1} {0.0, 0.1, 0.2}

LED 1e-4 0.1 0.01 0.1
PEGASUS - - - -
BART 5e-5 0.1 0.01 0.1

BART+DPR 5e-5 0.1 0.01 0.1

Table A.8: (Top) Search space for the initial learning rate (LR), warmup ratio (WR), weight decay (WD),
label smoothing (LS). (Boom) Optimal hyperparameter configurations for models. The final PEGASUS
model we use is from the oicial Google-internal implementation courtesy of the original authors.

Title: Retief of the Red-Tape Mountain (https://www.gutenberg.org/ebooks/61146)

Q: What is the relationship between the Jaqs and the Terrestrials throughout the story?

Reference: The Jaqs and the Terrestrials ght each
other throughout the story. It started when a human
saw a Jaq and thought it was some type of native game
and shot it. From that incident, the Jaqs concluded that
the humans were sportsmen like themselves and re-
sponded by going to one of the farms and killing two
cows. Since then, the two sides have been attacking
back and forth, and the humans think the Jaqs are ght-
ing against them...

LED: Retief is a vice-consul at the Embassy of the Mo-
saic of the Two Dawns. He is in charge of the aairs of
the Embassy and is responsible for keeping the diplo-
matic relations between the two planets in check. He is
also responsible for keeping the diplomatic relations in
check by sending Retief on his expeditious trip to the
planet Adobe. When Retief arrives at the planet, he is
greeted by a large Flap-jack, a creature with talons that
look like lobsters...

BART: The Terrestrials and the Jaqs have a tense re-
lationship throughout the story. The Terrans have at-
tempted to establish contact with the native life form,
the Jaq, in order to try to gain their trust and gain infor-
mation about their native life forms. The Jaqs are hos-
tile to the Terrans because they consider them to be an
invasive species that are trying to take over their home
planet, which they consider to be uninhabited. The Jaqs
have a history of war with the Terran settlers...

BART+DPR: The Terrestrials and the Flap-jacks are an
alien race that live on the planet Adoban. They are hos-
tile to humans and have attempted to stir up trouble
with an intelligent alien life form, the Jaq, three months
ago. The humans are attempting to establish trade with
the aliens in order to gain access to the planet’s re-
sources, but the aliens are having none of it. They have
no intention of trading with the humans and are only
interested in trading with them for food and...

Table A.9: Example model generations on SALITY.

Model Correctness Coverage Overall

BART 34.816.9 15.613.3 18.113.1
BART+DPR 45.415.8 24.315.7 27.916.5
Human 94.15.5 88.810.9 91.37.7

Table A.10: Human evaluation results for two models and a human-wrien response. Ratings for each
property are averaged across 3 workers, then averaged across questions. Standard deviation of property
ratings across questions are shown in underscore.
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