Written Qualifying Exam
Theory of Computation
Spring, 1999
Friday, May 21, 1999

This is nominally a three hour examination, however you will be
allowed up to four hours. There are six questions; answer all six
questions. All questions carry the same weight.

e Please print your name on the back of your exam envelope next
to your exam identification number. Do NOT write your name on
the exam booklets.

e Use a separate booklet for each question. The exam booklets
have been labelled by question number; pelase be sure to use the
correct booklet for the question you are answering.

Read the questions carefully. Keep your answers brief. Assume
standard results, except where asked to prove them.




Problem 1 [10 points]

An n-permutation is a reordering of the integers 1, - - -, n, which we will store in the array
P[1 : n] as follows: P[i] denotes the number mapped to the ith position, 1 < i < n.
Thus the array P[1 : n] should contain each integer 1,---,n exactly once.

Consider the following algorithm for generating a random permutation.
initialize: P[i] <— i for =4,---,n
for : = n downto 1 do
generate an integer j in the range [1, 4] uniformly at random;
swap (P[i], P[j])
end
Show that this algorithm generates each possible permutation with probability 1/n!.

Problem 2 [10 points]

The knapsack problem is the following. Given a knapsack of size S, and a collection of
n items of sizes sq, So, ..., s,, respectively, determine if there is a subset iy, s, ..., % of
the items such that

k
Z Si, = S
h=1

assuming S and s;, ¢ > 1 are positive integers.

In general, the knapsack problem is NP-complete. However, suppose S is bounded
by n?; give a polynomial time algorithm for the knapsack problem in this case, and in the
event that there is a solution, your algorithm should determine the subset 7y, 7o, ..., 7.
Your answer, in addition to describing an algorithm, should explain why the algorithm
computes the desired result, and should give a brief analysis of its running time.

Problem 3 [10 points]

Let G be a directed graph in which each edge is colored, either red or blue. A red-blue
path is a path in which the edges alternate in color, starting with a red edge and ending
with a blue edge. Vertices u and v are said to be red-blue strongly connected if there are
red-blue paths from u to v and from v to u.

a. Show that red-blue strongly connected is an equivalence relation.

b. Let the equivalence classes of the red-blue strongly connected relation be called
red-blue strong components. By means of a reduction to strong connectivity, or other-
wise, give a linear time algorithm to compute the red-blue strong components. You may
assume a linear time strong components algorithm is given. Hint: For the reduction,
making two copies of each vertex may be helpful.

(GO TO THE NEXT PAGE



Problem 4 [10 points]

Consider the following machine: a 2-way p.d.a. It is similar to a p.d.a.; there are two
differences. First, on each move, it can move its input head either left or right on its
input, the only restriction being that it remain between end markers (# and $) denoting
the start and finish of its input. Second, it accepts by entering an accept state.

a. Describe a deterministic 2-way p.d.a. that accepts the language

Ly ={zx |z € {a,b}"}

Do not give state transitions; simply explain what your machine does (e.g. “copy the
input to the stack...”).

b. Describe a deterministic 2-way p.d.a. that accepts the language
Ly = {a"Wc™Y | z,y > 0}

Problem 5 [10 points]

Let f(n) be a computable function. The xth Turing Machine clocked with respect to f,
MJ™ is defined as follows: on input y, |y| = n, it first computes f(n) and then simulates
M,(y) for f(n) steps. If M,(y) halts, MJ(™(y) accepts and otherwise it rejects (but it
always halts).

a. Show that Ly = {z | 3y M (y) rejects} is r.e.
b. Show that L, = {z | Yy M™ (y) accepts} is not r.e.

Problem 6 [10 points]

a. Let F' be a 3-CNF formula. Function count(F') returns the number of different
satisfying assignments for F'. Suppose that count can be computed in polynomial time.
Then show how to find a satisfying assignment in polynomial time, if there is one, for

3-CNF formula F'.

b. Let Fi, F; be 3-CNF formulas. Function Equal_count(Fy, Fy) returns TRUE if
the number of satisfying assignments for F; and F) are equal and FALSE otherwise.
Suppose that Equal_count runs in polynomial time. Then show how to find a satisfying
assignment in polynomial time, if there is one, for 3-CNF formula F. Hint: Let F! be
F with variable z; set to TRUE and F° be F' with x; set to FALSE (assuming F has
variables 1, To, - - -, x,). If F is not satisfiable, what is the value of Equal_count(F, F'")
and Equal_count(F, F)? What about if F is satisfiable?



Solutions

Solution to Problem 1

Consider a particular permutation 7. It is obtained by first swapping the correct item
into P[n] and then correctly permuting the n — 1 items now in P[1 : n — 1]. Inductively,
the latter event occurs with probability 1/(n —1)! and the former event with probability
1/n, given an overall probability of 1/n!. For completeness, we should note that in the
base case, n = 1, the one permutation occurs with probability 1 = 1/1!.

Solution to Problem 2

Consider the following recursive algorithm for the knapsack problem.

Procedure Knapsack (s, n, solution, Soln_Part)
(*solution is a boolean variable indicating if there is a solution*)
(*Soln_Part is an array used for reconstructing a solution*)
if n =1 then
if S = s, then
solution <— TRUE
Soln_Part(S,1) « 1
else
solution <— FALSE
Soln_Part(S,1) < 0
else
Knapsack (S,n — 1, solution, Soln_Part)
if solution = TRUE then
Soln_Part(S,n) < Soln_Part(S,n — 1)
else if S > s, then
Knapsack (S — s,,n — 1, solution, Soln_Part)
if solution = TRUE then
Soln_Part(S,n) <—n
end
We employ dynamic programming to avoid repeated recursive calls. As S < n?, there
are O(n?) recursive calls, each of which takes O(1) time to evaluate, giving an O(n?)
running time overall. The above recursive algorithm tries the two options of including
and not including the item of size s, in the knapsack, and thus tries every distinct
possibility.
To obtain the items forming a solution if one exists the following recursive procedure
is used.
Procedure Print_Solution (S, n, Soln_Part)
next_item <— Soln_Part(S,n)
if next_item > 0 then
Print (next_item)
Print (S — Spewt_item, next_item — 1)
end



For the array entry Soln_Part(S,n) stores the highest index item in the solution to
the (S,n) knapsack problem computed by our algorithm, if there is one. Clearly this
procedure runs in O(n) time.

Solution to Problem 3

a. We write u ~ v if v and v are red-blue strongly connected. To show ~ is an
equivalence relation we note:
(i) u ~ u (by using zero length paths from u to ).
(ii) u ~ v if and only if v ~ u (as the relationship is symmetric by inspection).
(iii) w ~ v and v ~ w implies u ~ w (this follows by concatenating the pair of
red-blue paths from « to v and from v to w and the pair from w to v and from
v to u yielding red-blue paths from u to w and from w to u, respectively).

b. We build a directed graph G' = (V; U V,, E'), where for each vertex v in G there
are vertices v' € Vi and v? € V5. A blue edge (u,v) in £ produces edge (u',v?) in E',
and a red edge (w,z) in E produces edge (w?, z') in E’.

Let C be the vertices in a strong component of G'. Suppose C' N V; comprises
the vertices v} ,v;,,---,v;,. Then v;,v,---,v; form a red-blue component of G' and
conversely. For u! and v! are in the same strong component of G! if only if there are
red-blue paths between u and v in G, i.e. v and v are in the same red-blue strong
component.

G! is readily constructed in linear time; together with a linear strong components
algorithm and the trivial linear time mapping of strong components of G' to red-blue
strong components of GG, this yields a linear time algorithm for finding red-blue strong
components.

Solution to Problem 4

a.

Step 1. Push |z| onto the stack.
Simply read across the input and for every two symbols read push one onto the
stack (if there are an odd number of symbols in the input, reject).

Step 2. Move the read-write head distance || from the left end of the input.
Use the stack contents to count distance |z| from the left end of the input:
move the read-write head to the left end of the input; then repeatedly pop the
stack and move the read-write head one position to the right, until the stack is
empty.

Step 3. Push a copy of the second = onto the stack.
Simply copy the right half of the input onto the stack.

Step 4. Verify the left half of the input is also .
As in Step 1 and 2, move the read-write head to the middle of the stack (instead
of the stack bottom, in Step 2, use a marker such as #). Now, after popping
the marker, repeatedly pop the stack (which holds 2%) and match with the first
2 on the input, being read from the right and to the left.



b. In turn, push x,2xz,---,x -y a’s onto the stack, on top of y — 1,y —2,---,0 b’s,
respectively.

Initially, y 0’s are placed on the stack.
The general iteration proceeds as follows:

Move the read-write head to the rightmost b. Use the z a’s on the stack
to move the read-write head distance z to the right by popping all the a’s (if
the read-write head cannot move that far, then reject).

Pop one b.

Push z a’s onto the stack by moving the read-write head back to the rightmost
b.

Push z a’s onto the stack (copy the string a®).

The iteration in which the string of 0’s on the stack is emptied will end with z -y a’s
on the stack. Now check that this is the length of the string of ¢’s.

Solution to Problem 5

a. Consider the following T.M. M which as we will show accepts the language L,.
M(z) in turn simulates Mgz(y) for y = 0,1,2,--- until a value of y is found for which
M™ (y) rejects, in which case M(z) accepts (otherwise M(z) does not halt). Clearly

T

M (x) halts exactly if x € Ly, and so L, is r.e.

b. We give a reduction of K < L, or equivalently of K < L,. As K is not r.e. this
shows L is not r.e. also.
The reduction is carried out by the computable function f defined as follows.

M@y (y) = simulate M, (x) for y simulation time;

if it does not accept, then accept and otherwise reject

Clearly My, runs in linear time, so M}‘(QI) computes identically. If + € K then
M?(;)(y) accepts on all inputs y, and otherwise it rejects for large enough y (those y’s
that permit M, (x) to be simulated to acceptance). Thus K < L; as claimed.

Solution to Problem 6

Suppose we have a polynomial time computable function Satis(F) that returns TRUE
if F' is satisfiable and FALSE otherwise. Then, if F' is satisfiable, a satisfying assignment
can be found in polynomial time as follows.



Let x1, 23, -+, x, be the variables in F' and let F(x,, = TRUE) and F'(z,, = FALSE)
denote F' with x, set to TRUE and FALSE respectively.
A satisfying assignment is found recursively as follows.
Procedure Sat_Assign(F)
if n = 0 then return
if Satis(F(x, = TRUE))
then return(Sat_Assign(F(x, = TRUE)) U(z, = TRUE))
else return (Sat_Assign(F(x, = FALSE)) U(z, = FALSE))

a. Satis(F') is implemented as follows: Satis(F) = F if F has no variables; otherwise,
Satis(F) = (Count(F) > 0).

b. Note that count(F) = count(F°) + count(F') (if F has at least one vari-
able). If F is not satisfiable then count(F) = count(F°) = count(F') = 0 and
so Equal_count(F,F°) = TRUE = Equal_count(F,F'). Otherwise, as at least one
of count(F°) and count(F') is greater than zero, and they cannot both be equal to
count(F), either Equal_count(F, F°) = FALSE or Fqual_count(F, F') = FALSE (or pos-
sibly both).

Thus Satis(F) is implemented as follows: Satis(F') = F' if F has no variable; other-
wise, Satis(F) = not(Equal_count(F, F°) and Equal_count(F, F*)).



