
Written Qualifying ExamTheory of ComputationSpring, 1999Friday, May 21, 1999
This is nominally a three hour examination, however you will beallowed up to four hours. There are six questions; answer all sixquestions. All questions 
arry the same weight.� Please print your name on the ba
k of your exam envelope nextto your exam identi�
ation number. Do NOT write your name onthe exam booklets.� Use a separate booklet for ea
h question. The exam bookletshave been labelled by question number; pelase be sure to use the
orre
t booklet for the question you are answering.Read the questions 
arefully. Keep your answers brief. Assumestandard results, ex
ept where asked to prove them.
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Problem 1 [10 points℄An n-permutation is a reordering of the integers 1; � � � ; n, whi
h we will store in the arrayP [1 : n℄ as follows: P [i℄ denotes the number mapped to the ith position, 1 � i � n.Thus the array P [1 : n℄ should 
ontain ea
h integer 1; � � � ; n exa
tly on
e.Consider the following algorithm for generating a random permutation.initialize: P [i℄ i for = i; � � � ; nfor i = n downto 1 dogenerate an integer j in the range [1; i℄ uniformly at random;swap (P [i℄; P [j℄)endShow that this algorithm generates ea
h possible permutation with probability 1=n!.Problem 2 [10 points℄The knapsa
k problem is the following. Given a knapsa
k of size S, and a 
olle
tion ofn items of sizes s1; s2; : : : ; sn, respe
tively, determine if there is a subset i1; i2; : : : ; ik ofthe items su
h that kXh=1 sik = Sassuming S and si, i � 1 are positive integers.In general, the knapsa
k problem is NP-
omplete. However, suppose S is boundedby n2; give a polynomial time algorithm for the knapsa
k problem in this 
ase, and in theevent that there is a solution, your algorithm should determine the subset i1; i2; : : : ; ik.Your answer, in addition to des
ribing an algorithm, should explain why the algorithm
omputes the desired result, and should give a brief analysis of its running time.Problem 3 [10 points℄Let G be a dire
ted graph in whi
h ea
h edge is 
olored, either red or blue. A red-bluepath is a path in whi
h the edges alternate in 
olor, starting with a red edge and endingwith a blue edge. Verti
es u and v are said to be red-blue strongly 
onne
ted if there arered-blue paths from u to v and from v to u.a. Show that red-blue strongly 
onne
ted is an equivalen
e relation.b. Let the equivalen
e 
lasses of the red-blue strongly 
onne
ted relation be 
alledred-blue strong 
omponents. By means of a redu
tion to strong 
onne
tivity, or other-wise, give a linear time algorithm to 
ompute the red-blue strong 
omponents. You mayassume a linear time strong 
omponents algorithm is given. Hint: For the redu
tion,making two 
opies of ea
h vertex may be helpful.Go to the next page
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Problem 4 [10 points℄Consider the following ma
hine: a 2-way p.d.a. It is similar to a p.d.a.; there are twodi�eren
es. First, on ea
h move, it 
an move its input head either left or right on itsinput, the only restri
tion being that it remain between end markers (# and $) denotingthe start and �nish of its input. Se
ond, it a

epts by entering an a

ept state.a. Des
ribe a deterministi
 2-way p.d.a. that a

epts the languageL1 = fxx j x 2 fa; bg�gDo not give state transitions; simply explain what your ma
hine does (e.g. \
opy theinput to the sta
k...").b. Des
ribe a deterministi
 2-way p.d.a. that a

epts the languageL2 = faxby
x�y j x; y > 0gProblem 5 [10 points℄Let f(n) be a 
omputable fun
tion. The xth Turing Ma
hine 
lo
ked with respe
t to f ,Mf(n)x is de�ned as follows: on input y, jyj = n, it �rst 
omputes f(n) and then simulatesMx(y) for f(n) steps. If Mx(y) halts, Mf(n)x (y) a

epts and otherwise it reje
ts (but italways halts).a. Show that L2 = fx j 9y Mn2x (y) reje
tsg is r.e.b. Show that L1 = fx j 8y Mn2x (y) a

eptsg is not r.e.Problem 6 [10 points℄a. Let F be a 3-CNF formula. Fun
tion 
ount(F ) returns the number of di�erentsatisfying assignments for F . Suppose that 
ount 
an be 
omputed in polynomial time.Then show how to �nd a satisfying assignment in polynomial time, if there is one, for3-CNF formula F .b. Let F1; F2 be 3-CNF formulas. Fun
tion Equal 
ount(F1; F2) returns True ifthe number of satisfying assignments for F1 and F2 are equal and False otherwise.Suppose that Equal 
ount runs in polynomial time. Then show how to �nd a satisfyingassignment in polynomial time, if there is one, for 3-CNF formula F . Hint: Let F 1 beF with variable x1 set to True and F 0 be F with x1 set to False (assuming F hasvariables x1; x2; � � � ; xn). If F is not satis�able, what is the value of Equal 
ount(F; F 1)and Equal 
ount(F; F 0)? What about if F is satis�able?
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SolutionsSolution to Problem 1Consider a parti
ular permutation �. It is obtained by �rst swapping the 
orre
t iteminto P [n℄ and then 
orre
tly permuting the n� 1 items now in P [1 : n� 1℄. Indu
tively,the latter event o

urs with probability 1=(n�1)! and the former event with probability1=n, given an overall probability of 1=n!. For 
ompleteness, we should note that in thebase 
ase, n = 1, the one permutation o

urs with probability 1 = 1=1!.Solution to Problem 2Consider the following re
ursive algorithm for the knapsa
k problem.Pro
edure Knapsa
k (s; n; solution; Soln Part)(*solution is a boolean variable indi
ating if there is a solution*)(*Soln Part is an array used for re
onstru
ting a solution*)if n = 1 thenif S = s1 thensolution TrueSoln Part(S; 1) 1elsesolution FalseSoln Part(S; 1) 0elseKnapsa
k (S; n� 1; solution; Soln Part)if solution = True thenSoln Part(S; n) Soln Part(S; n� 1)else if S � sn thenKnapsa
k (S � sn; n� 1; solution; Soln Part)if solution = True thenSoln Part(S; n) nendWe employ dynami
 programming to avoid repeated re
ursive 
alls. As S � n2, thereare O(n3) re
ursive 
alls, ea
h of whi
h takes O(1) time to evaluate, giving an O(n3)running time overall. The above re
ursive algorithm tries the two options of in
ludingand not in
luding the item of size sn in the knapsa
k, and thus tries every distin
tpossibility.To obtain the items forming a solution if one exists the following re
ursive pro
edureis used.Pro
edure Print Solution (S; n; Soln Part)next item Soln Part(S; n)if next item > 0 thenPrint (next item)Print (S � snext item; next item � 1)end 4



For the array entry Soln Part(S; n) stores the highest index item in the solution tothe (S; n) knapsa
k problem 
omputed by our algorithm, if there is one. Clearly thispro
edure runs in O(n) time.Solution to Problem 3a. We write u � v if u and v are red-blue strongly 
onne
ted. To show � is anequivalen
e relation we note:(i) u � u (by using zero length paths from u to u).(ii) u � v if and only if v � u (as the relationship is symmetri
 by inspe
tion).(iii) u � v and v � w implies u � w (this follows by 
on
atenating the pair ofred-blue paths from u to v and from v to w and the pair from w to v and fromv to u yielding red-blue paths from u to w and from w to u, respe
tively).b. We build a dire
ted graph G0 = (V1 [ V2; E 0), where for ea
h vertex v in G thereare verti
es v1 2 V1 and v2 2 V2. A blue edge (u; v) in E produ
es edge (u1; v2) in E 0,and a red edge (w; x) in E produ
es edge (w2; x1) in E 0.Let C be the verti
es in a strong 
omponent of G1. Suppose C \ V1 
omprisesthe verti
es v1i1 ; v1i2; � � � ; v1ik . Then vi1 ; vi2 ; � � � ; vik form a red-blue 
omponent of G and
onversely. For u1 and v1 are in the same strong 
omponent of G1 if only if there arered-blue paths between u and v in G, i.e. u and v are in the same red-blue strong
omponent.G1 is readily 
onstru
ted in linear time; together with a linear strong 
omponentsalgorithm and the trivial linear time mapping of strong 
omponents of G1 to red-bluestrong 
omponents of G, this yields a linear time algorithm for �nding red-blue strong
omponents.Solution to Problem 4a. Step 1. Push jxj onto the sta
k.Simply read a
ross the input and for every two symbols read push one onto thesta
k (if there are an odd number of symbols in the input, reje
t).Step 2. Move the read-write head distan
e jxj from the left end of the input.Use the sta
k 
ontents to 
ount distan
e jxj from the left end of the input:move the read-write head to the left end of the input; then repeatedly pop thesta
k and move the read-write head one position to the right, until the sta
k isempty.Step 3. Push a 
opy of the se
ond x onto the sta
k.Simply 
opy the right half of the input onto the sta
k.Step 4. Verify the left half of the input is also x.As in Step 1 and 2, move the read-write head to the middle of the sta
k (insteadof the sta
k bottom, in Step 2, use a marker su
h as #). Now, after poppingthe marker, repeatedly pop the sta
k (whi
h holds xR) and mat
h with the �rstx on the input, being read from the right and to the left.5



b. In turn, push x; 2x; � � � ; x � y a's onto the sta
k, on top of y � 1; y � 2; � � � ; 0 b's,respe
tively.Initially, y b's are pla
ed on the sta
k.The general iteration pro
eeds as follows:Move the read-write head to the rightmost b. Use the z a's on the sta
kto move the read-write head distan
e z to the right by popping all the a's (ifthe read-write head 
annot move that far, then reje
t).Pop one b.Push z a's onto the sta
k by moving the read-write head ba
k to the rightmostb.Push x a's onto the sta
k (
opy the string ax).The iteration in whi
h the string of b's on the sta
k is emptied will end with x � y a'son the sta
k. Now 
he
k that this is the length of the string of 
's.Solution to Problem 5a. Consider the following T.M. M whi
h as we will show a

epts the language L2.M(x) in turn simulates Mn2x (y) for y = 0; 1; 2; � � � until a value of y is found for whi
hMn2x (y) reje
ts, in whi
h 
ase M(x) a

epts (otherwise M(x) does not halt). ClearlyM(x) halts exa
tly if x 2 L2, and so L2 is r.e.b. We give a redu
tion of �K � L1 or equivalently of K � L2. As �K is not r.e. thisshows L1 is not r.e. also.The redu
tion is 
arried out by the 
omputable fun
tion f de�ned as follows.Mf(x)(y) = simulate Mx(x) for y simulation time;if it does not a

ept, then a

ept and otherwise reje
tClearly Mf(x) runs in linear time, so Mn2f(x) 
omputes identi
ally. If x 2 �K thenMn2f(x)(y) a

epts on all inputs y, and otherwise it reje
ts for large enough y (those y'sthat permit Mx(x) to be simulated to a

eptan
e). Thus �K � L1 as 
laimed.Solution to Problem 6Suppose we have a polynomial time 
omputable fun
tion Satis(F ) that returnsTrueif F is satis�able and False otherwise. Then, if F is satis�able, a satisfying assignment
an be found in polynomial time as follows.6



Let x1; x2; � � � ; xn be the variables in F and let F (xn = True) and F (xn = False)denote F with xn set to True and False respe
tively.A satisfying assignment is found re
ursively as follows.Pro
edure Sat Assign(F )if n = 0 then returnif Satis(F (xn = True))then return(Sat Assign(F (xn = True)) [(xn = True))else return (Sat Assign(F (xn = False)) [(xn = False))a. Satis(F ) is implemented as follows: Satis(F ) = F if F has no variables; otherwise,Satis(F ) = (Count(F ) > 0).b. Note that 
ount(F ) = 
ount(F 0) + 
ount(F 1) (if F has at least one vari-able). If F is not satis�able then 
ount(F ) = 
ount(F 0) = 
ount(F 1) = 0 andso Equal 
ount(F; F 0) = True = Equal 
ount(F; F 1). Otherwise, as at least oneof 
ount(F 0) and 
ount(F 1) is greater than zero, and they 
annot both be equal to
ount(F ), either Equal 
ount(F; F 0) = False or Equal 
ount(F; F 1) = False (or pos-sibly both).Thus Satis(F ) is implemented as follows: Satis(F ) = F if F has no variable; other-wise, Satis(F ) = not(Equal 
ount(F; F 0) and Equal 
ount(F; F 1)).
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