
Written Qualifying ExamTheory of ComputationFall, 1997Friday, September 26, 1997This is nominally a three hour examination, however you will beallowed up to four hours. There are six questions; answer all sixquestions. All questions carry the same weight.� Please print your name on the back of your exam envelope nextto your exam identi�cation number. Do NOT write your name onthe exam booklets.� Use a separate booklet for each question. The exam bookletshave been labeled by question number; please be sure to use thecorrect booklet for the question you are answering.Read the questions carefully. Keep your answers brief. Assumestandard results, except where asked to prove them.

1



Problem 1 [10 points]Consider the following farthest vertex problem. The input is a rooted tree where eachedge is undirected and has an integer length, possibly negative.a. Give a linear time algorithm to determine for each vertex v the most distant vertexin its subtree; formally, this means �nd a vertex w in v's subtree such that the distancefrom v to w is at least as large as the distance from v to x for any other vertex x in v'ssubtree. Record the vertex w and the distance to w at vertex v.b. Using the results of the algorithm of part (a), if helpful, give a linear time algorithmto �nd for each vertex v the most distant vertex outside its subtree. More formally, �nda vertex y outside v's subtree, such that the distance from v to y is at least as large asthe distance from v to any other vertex z outside v's subtree.Problem 2 [10 points]Consider the following algorithm A for �nding a best root in a tree. Each edge hasa positive integer length. The best root is a vertex r, such that the distance to thevertex v farthest from r is minimized. Formally, choose r so that maxvfdistance(r; v)gis minimized. Prove the algorithm is correct.A:Step 1. Choose an arbitrary start vertex s. By means of a depth �rst search starting ats, �nd a vertex u most distant from s.Step 2. By means of a second depth �rst search starting at u, �nd a vertex v most distantfrom u.Step 3. Find r, a vertex on the path from u to v which is nearest the midpoint of thispath.Thus you need to prove r is a solution to the problem.Go to the next page
2



Problem 3 [10 points]Consider the following nearby string problem. The input consists of two strings u andv over a �nite alphabet � and a parameter k, an integer. The problem is to determinewhether there is a subsequence w of characters present in both u and v where w isobtained by deleting a total of at most k characters from u and v. Let n = juj+ jvj.e.g. u = bbcabe, v = bbabf , k = 3; then w = bbab is a solution; but if k = 2 there is nosolution.Suppose you are given a function Match(u; v; r; s) which reports the length of thelongest common substring of u and v ending at the rth character in u and the sthcharacter in v.e.g. Match(u; v; 5; 4) = 2 (the substring in question is ab).Further suppose Match runs in O(1) time. (In fact, such a function exists, given O(juj+jvj) preprocessing, but this is outside the scope of this question.)a. Give a recursive function Nearby Match(u; v; i; j; k) which determines if there is anearby match of the strings comprising the �rst i characters of u and the �rst j charactersof v. Remember k is the total number of deletions allowed. Your function should have adepth of recursion of no more than k.b. Suppose dynamic programming is used with the function in part (a). Show thatthis function then runs in O(nk2) time (this may require modi�cation of your answer forpart (a)).
Go to the next page

3



Problem 4 [10 points]Classify the following languages as regular, context free but not regular, context sensitivebut not context free, or none of these. Justify your answers.a. L1 = fv j v 2 fa; bg� and the number of a's and b's in v are equalg.b. L2 = fv j v 2 fa; bg� and for each pre�x w of v, the number of a's and b's in wdi�er by at most 5g.Problem 5 [10 points]The problem of factoring a number m is to report the primes whose product equals m.e.g. factor(24) = 2; 2; 2; 3. All numbers here are assumed to be in the standard binarynotation. Currently, we do not know whether we can factor an integer in polynomialtime.Suppose P = NP . Give a polynomial time algorithm for factoring.Note that NP is a class of languages but the integer factoring problem amounts to thecomputation of a function.Problem 6 [10 points]Let M be a deterministic �nite state machine (fsm) with two read-only tapes, called theinput tape and advice tape. The tape heads on these two tapes can only go from left toright, and their respective tape alphabets are �1 and �2. Suppose the strings x 2 ��1 and� 2 ��2 are placed on these tapes, and M begins computing with the tape heads initiallyscanning the leftmost symbols of x and �. If M eventually halts and enters an \accept"state, we say M accepts x with advice �. Now letA = a1a2a3 � � �be an in�nite string in �2. For any x 2 ��1 of length n, we say M (A) accepts x if Maccepts x with advice � = a1a2 � � � an. So � is just the pre�x of A of length n = jxj. LetL(M;A) � ��1 be the language accepted by M (A). Show that there is an M and A suchthat L(M;A) is non-r.e.Note that you need to choose both A and M .
4



SolutionsSolution to Problem 1a. The answer is readily computed by a postorder DFS. Each child of a vertex vshould have the distance/name of the its most distant descendant computed, and thenthe information can be used to update v.procedure Desc(T );beginT:dist 0;T:vname T ;foreach child w of T doDesc(w);if T:dist < w:dist+ length(T;w) thenT:dist w:dist+ length(T;w);T:vname w:vnameendifendforendDescThis clearly runs in linear time.b. Here each vertex should get the necessary information from its parent. Letw:xname, w:xdist be the solution pair for vertex w. The parent of w needs two kinds ofinformation. First, it should have the distance/name to the most distant vertex outside ofits subtree. Second, it should know, for each child w, the distance/name for the farthestdescendant that is not in w's subtree, since the descendant for v may be the farthestdescendant for w. It follows that each vertex needs the solution to part (a) for both the\�rst-place" subtree, and the \second-place subtree."So the solution is: Modify a with additional initializationT:dist2 0;T:vname2 T ;and additional conditionals to update T:vname2 and T:dist2, which are the name anddistance for a vertex that is as far as possible from T , a descendant of T , and is in asubtree in T that is not in the same subtree as T:vname. (There are trivial modi�cationsto this spec that permit either or both distant vertices to be T itself.)The code is then a preorder computation that assigns the appropriate (i.e. thelargest) distance/vertex pair to (w:xdist and w:xname). Foreach child w of v,(w:xdist; w:xname) is assignedmax8>>><>>>: (0; w)(length(v;w) + v:xdist; v:xname)(length(v;w) + v:dist; v:vname) if v:vname 6= w:vname,(length(v;w) + v:dist2; v:vname2) if v:vname= w:vname.This clearly runs in linear time. 5



Solution to Problem 2 Let s, u, v and r be as de�ned in the problem. Let l =maxfdistance(r; v); distance(r; u)g. Correctness follows from two facts.First, there is no vertex z with maxfdistance(z; u); distance(z; v)g< l, since r is byde�nition as close to the midpoint of the path from u to v as possible, all edge lengthsare positive, and the subgraph connecting any such z to both u and v must include thepath from u to v since T is a tree.Second, it must be shown that distance(r; w) � l for all w 2 T . But suppose thatthere were a w such that distance(r; w) > l. Consider the path pw from r to w, and thepath pu from r to u. If these paths have no edges in common, then the path from u to w(which would have length distance(w; r)+ distance(r; u)) would be longer than the pathfrom u to v, which contradicts the de�nition of v. So they must have edges in common.Now consider the path from s to u. Let it join the path from v to u at x. We claim thatx is between v and r (inclusive), as otherwise the edges from s to x to r to v is a pathwith a length that would be larger than the path from s to x to u (since distance(x; u)would not be any larger than distance(r; v), if x were between r and u.) But if x is asclaimed, the path from s to r to w would then be larger than the path from s to u, whichcontradicts the de�nition of u. Thus there is no such w. This proof can be explainedmore easily with pictures to illustrate each (nonexistent) case.Solution to Problem 3a. The following two claims justify the recursive solution given below.Claim 1: If w is a longest common subsequence for strings x and y, then wa is a longestcommon subsequence for xa and ya, where a is a single character.Claim 2: If w is a longest common subsequence for strings x and y, then wu is a longestcommon subsequence for xu and yu, for any string u.The proofs are immediate.Boolean function Nearby Match(u; v; i; j; k);beginl = Match(u; v; i; j);if (k = 0 or l = i or l = j) then return (k � maxfi� l; j � lg)else return (Nearby Match(u; v; i� l � 1; j � l; k � 1) orNearby Match(u; v; i� l; j � l � 1; k � 1))endSince every recursive call reduces the parameter k to k � 1, and there is a base caseat k = 0, the depth of recursion is at most k. The algorithm simply removes longestmatching substrings from the right ends of u and v (as per Claim 2), and when the rightends do not match, tries the remaining two options: deleting the rightmost charactersfrom either u or v. This parallels the standard algorithm for �nding the string editdistance between u and v.b. We note that if ji � jj > k then deleting k characters from the longer string, v say,leaves a string longer than u. Thus, in this case, there is no matching substring. We addthis as an initial test to the above function.The purpose of dynamic programming is to ensure that each recursive call with agiven set of parameter values occurs at most once. There are juj � n choices for i; for6



each choice of i, there are at most 2k + 1 choices for j, and there are k choices for the�nal parameter. This yields a bound of O(nk2) on the number of recursive calls. Eachrecursive call takes O(1) time, giving an overall running time of O(nk2).Solution to Problem 4a. L1 is context free but not regular. L1 is accepted by the following pda. On its stackit keeps track of the di�erence in the number of b's and a's scanned so far (this is simplya unary counter). The pda accepts only if the counter is at zero when the input is fullyscanned.To see L1 is not regular, we note that the intersection of two regular languages isregular. Thus if L1 were regular, then L1 \ fa�b�g = faibi j i � 0g would be regularalso. But it is a standard application of the pumping lemma for regular languages toshow faibi j i � 0g is not regular.b. L2 is regular. It is accepted by the following 12 state dfa. 11 states are used to keeptrack of the di�erence in the number of a's and b's scanned so far, for di�erences � 5;the 12th state is entered if the di�erence exceeds 5 and once entered this state is not left.The �rst 11 states are the accept states.Solution to Problem 5Consider a simpler factoring problem: given a number n, we output 1 if n is prime, andotherwise, we output some number m such that 1 < m < n and mjn (i.e., m divides n).Call this problem \SFAC" (Simple Factoring). It is enough to solve SFAC in polynomialtime because integer factoring can be reduced to calling SFAC at most a linear numberof times on numbers that are at most the original size. [Why?]To solve SFAC, consider the following language:L0 = f(n; p; q) : (9m)p � m � q and mjng:This language is clearly in NP : we guess a number m between p and q and verify thatm divides n. Since P = NP , there is a polynomial time algorithm to recognize L0.To solve SFAC, on input n, we perform a binary search for a factor of n: initially setp = 2; q = n � 1 and check if (n; p; q) 2 L0. If not, we can output 1 since n is prime.Otherwise, we split [p; q] into roughly two equal halves [p; r] and [r+1; q] and proceed to�nd one half that contains a factor. We can continue on any half that contains a factor.After about 2 log n queries to L0, we will narrow the interval [p; q] to size 1, and therefore�nd a factor.Solution to Problem 6 Let K � N be any non-r.e. set of numbers. Let A =a1a2a3 � � � be a 0=1 string such that ai = 1 i� i 2 K. Let M on input x and advicea1a2 � � � an (where n = jxj) accept i� an = 1. Clearly such an M can be constructed.We claim that L(M;A) is not r.e. Note that L(M;A) = fx : jxj 2 Kg. If L(M;A) werer.e., then we claim that K would be r.e. For any binary string b 2 f0; 1g�, let #(b) 2 Ndenote the number represented by b in binary notation. To see this, suppose there is apartial computable procedure P that on input x, halts i� x 2 L(M;A).It su�ces to construct a computable procedure Q that on input b 2 f0; 1g�, would halti� #(b) is in K. This would prove that K is r.e., by the standard equivalence between7



computability on natural numbers and computability on their binary representations.The procedure on input b will generate a string w of length #(b) and invoke the procedureP on w. Then Q halts i� P halts on w. Clearly, Q halts i� #(b) 2 K, as claimed.

8


