
Written Qualifying ExamTheory of ComputationFall, 1995Friday, September 29, 1995This is nominally a three hour examination, however you will beallowed up to four hours. All questions carry the same weight.Answer all six questions.� Please check to see that your name and address are correct asprinted on your blue-card.� Please print your exam number but not your name on each exambooklet. Write your name and number on the envelope, however.Answer each question in a separate booklet, and number eachbooklet according to the question.Read the questions carefully. Keep your answers brief. Partof your grade will be based upon your ability to communicate con-cisely as well as clearly. Assume standard results, except whereasked to prove them.
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Problem 1 (10 points) (new booklet please)Let f(i; j) be de�ned for integers i and j in f1; 2; 3; : : : ; ng. Suppose f is stored inan n by n array. Further suppose f has the following special property.Let i0 be any integer in f1; : : : ; ng, and suppose that j0 happens to minimize f(i0; � )over all j: f(i0; j0) = minff(i0; 1); f(i0; 2); : : : ; f(i0; n)g. Then for i > i0, a minimizing j(which minimizes f(i; � )) is among fj0; j0+1; j0+2; : : : ; ng, and for i < i0, a minimizingj is among f1; 2; : : : ; j0g.a. (5 points.) Devise an algorithm that �nds the minimum of f(i; j), for i; j 2f1; 2; : : : ; ng, and that runs in much less than quadratic (O(n2)) time.b. (5 points.) Estimate the running time of your algorithm. Note: chances are thatthe running time will not be the solution of a recurrence equation, but rather the resultof analyzing the structure of the recursive calls and the parameter ranges distributedamong these calls.Problem 2 (10 points) (new booklet please)The following is standard for boolean expressions.A literal is either a variable x or its negation �x.A clause is a sum (disjunction, OR) of zero or more literals (where the empty clause hasthe truth value false).A boolean expression is in conjunctive normal form (CNF, \product of sums") if it isa product (conjunction, AND) of zero or more clauses; the empty clause has the truthvalue true.We will de�ne a CNF boolean expression to be of type CNF(k) if every clause containsat most k negated variables. For example,(�x1 + x2 + x3)(x3 + �x4 + �x5)(�x1 + x2)is CNF(2) but not CNF(1). Notice that CNF(0) expressions (with no empty clauses) canbe trivially satis�ed by setting all variables to the value true, since there are no negationsin any clause. The satis�ability question for CNF(1), it turns out, can be answered inpolynomial time, which is the subject of part b.a. (4 points.)Show that the satis�ability problem for CNF(2) is NP-complete.b. (6 points.)Present, at a high level, an e�cient algorithm for solving the satis�ability problem forCNF(1). Hint: consider how to solve parts of the problem for clauses of one variable,and how di�cult the problem is for larger expressions.Go to the next page2



Problem 3 (10 points) (new booklet please)For parts a, b, and c, let G = (V;E) be a directed graph where each edge (i; j) hasa signed real edge cost given by the array entry Cost[i; j]. You may assume thatCost[i; j] = 1, if G has no edge from i to j. Please feel free to make any other as-sumptions you wish about the representation, but be sure to state them clearly. Supposethat G has no cycles where the sum of the edge costs is negative.a. (2 points.) Present an algorithm, such as that due to Floyd and/or Warshall, whichsolves the all-pairs-shortest-paths problem for G. Include path recovery code, andvery briey explain how the path data is used to construct a shortest path.b. (7 points.) We now extend the meaning of path to permit cycles. The algorithmfor part a, it turns out, can be modi�ed to �nd, for each pair of vertices i and j, thesubgraph of G that is the union of all shortest paths from i to j, where a path is de�nedin this extended sense. Mercifully, we will not ask you for the simple algorithm, and whyit might be correct. You also get for free the following useful fact: Let H(i; j) be thesubgraph comprising all shortest extended paths from i to j. Then every cycle in H(i; j)has weight zero.Now suppose that each edge (i; j) in G has some (non-negative) number k[i; j] ofcookies. When you traverse the edge, you get to eat all the cookies on the edge. Sorry,once an edge's cookies are eaten, they are gone, so there is no way to get an in�nitesupply by circling around a cycle forever.Given the subgraph H(i; j) that comprises the union of all shortest extended pathsfrom i to j in G, explain how to �nd the subgraph (of H(i; j)) that comprises the bestshortest super-extended path from i to j. A super-extended path may have cycles andit may even traverse some edges several times, if necessary. A shortest path is just that:the sum of its edge costs is the same as that for the simple paths computed in part b. Ashortest super-extended path is best if it has contains at least as many cookies as any ofthe other shortest super-extended paths from i to j.Note: You may wish to use your free fact in explaining the correctness of the algo-rithm.c. (1 point.) Explain how to construct a graph G with �(n) edges and vertices wherethe best shortest super-extended path from 1 to n is a trip of �(n2) edges.Go to the next page
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Problem 4 (10 points) (new booklet please)a. (3 points.) Show that L1 = fw#w j w 2 fa; bg�g is not a CFL.b. (4 points.) Show that L2 = fuav#wbx j juxj = jvwj and u; v; w; x 2 fa; bg�g is aCFL. (Describe the CFL or p.d.a.; do not give the productions or a transition function.)c. (3 points.) Conclude from part (b) that L3 = fy#z j y 6= z and y; z 2 fa; bg�g is aCFL.Problem 5 (10 points) (new booklet please)a. (2 points.) State Rice's Theorem.b. (4 points.) Consider the set L = fx j �x(0) #g. It follows from Rice's Theoremthat L is not recursive. A di�erent outline proof of this result follows; your task is tocomplete the outline.Let �y =  be the following program: (x) = if x = 0 then  (y + 1)else if x = z + 1 (z � 0) thenif z 2 L then do Action 1else do Action 2Specify Action 1 and Action 2 so as to produce a contradiction in the de�nition offunction  .c. (4 points.) Which of the following assertions are true? (True/False answers su�ce.)For the true assertions, which of them can be shown using Rice's Theorem? Give one sen-tence justi�cations for each answer, positive or negative. (Two questions per (true)part).(i) fx j �x(x) #g is not r.e.(ii) fx j �x(y) " for all yg is not recursive.(iii) fx j �x(2x) "g is not recursive.(iv) fx j �x(x) # in � x stepsg is recursive.(v) fx j �x(y) # for all yg is not r.e.(vi) fx j �x(10) #g is not recursive.Problem 6 (10 points) (new booklet please)a. (2 points.) Let L � f0; 1g�. Let Pad(L; 2jxjc) = fx#0y j 1+y+jxj = 2jxjc and x 2 Lg.If L 2 NTIME(2nc), for some integer c � 1, show that Pad(L; 2jxjc) 2 NTIME(am),for some constant a � 1, where m = 2jxjc.b. (5 points.) Conclude that if P = NP then NEXPTIME = EXPTIME.Hint: Show that NTIME(2nc) � [d�1DTIME(2dnc).c. (3 points.) What is the di�culty in showing that NTIME(2nc) � DTIME(2dnc),for some �xed d � 1? (Continue to assume that P 6= NP.)4



SolutionsSolution to Problem 1a. This is a divide-and-conquer problem. The idea is to take a middle i value, i0, andscan the j's to �nd a j0 where f(i0; �) is minimized. Then the process is repeated forthe two subproblems comprising (a) the subintervals i � i0 and j � j0, and (b) thesubintervals i > i0 and j � j0. The least f value of these two recursive subproblems isreturned. While this gives full credit, a more detailed (and unnecessary) description isgiven below. We even consider the case where the middle value of i1 and i2 is i2.De�ne J(i; j1; j2) to be some value j where j1 � j � j2 and f(i; j) =minj2[j1::j2 ] f(i; j). Clearly J(i; j1; j2) can be computed in O(j2 � j1 + 1) time by asimple sweep. Then we may de�nefunction minf(i1; i2; j1; j2)if ji1 � i2j � 1 then returnfmin(J(i1; j1; j2); J(i2; j1; j2)gelseii b i1+i22 c;jj  J(ii; j1; j2);returnfmin(minf(i1; ii; j1; jj);minf(ii+ 1; i2; jj; j2))gendifend.b. The set of recursive calls issued by minf comprise (essentially) a complete binarytree. Each call does an amount of work that is proportional to the range scanned by thecall to J . Unfortunately, these ranges are not known, at any node of the tree (other thanthe root, where j1 = 1, and j2 = n.) However we know that the sum of the ranges, atany level of the tree is about n. To be more precise (which is unnecessary), we knowthat only the endpoints of each consecutive range can be the same, which means that thenumber of values considered by J , at a level of the tree with k nodes is n+ k � 1. Well,this value is bounded by 2n. There are at most 1 + log n levels to this tree, since thelength of the i intervals halve at each level. We conclude that the total work is �(n log n).Solution to Problem 2a. We show that CNF(2) is in NPC.First, it is in NP. This can be established by observing that a satisfying assignmentto CNF(2) can be trivially veri�ed in linear time (or by observing that CNF(2) is withinCNF).Second we give a polynomial time reduction of 3-SAT to CNF(2), thereby showingthat 3-SAT�P CNF(2). Since 3-SAT is in NPC, it follows that CNF(2) is as well. Thereduction is easy. For 3-SAT clauses that do not have 3 negations, we use them as-is,since they are already in CNF(2). For each clause of the form (�xi+�xj+�xk), we introducea new variable yijk, and include the new pair of clauses (�xi + �xj + yijk),(�yijk; �x3). It isstraightforward to see that (�xi + �xj + yijk) � (�yijk; �x3) � (�xi + �xj + �xk). The resultingexpression is in CNF(2), and we are done.b. The hint is helpful. It points out that a clause with one literal must have the variableset so that the literal evaluates to true, and a single CNF(1) clause with more than one5



literal can be satis�ed by setting the named variables to true, since it must contain anunnegated variable. We apply these two ideas (in the order listed) in a dynamic setting.We dump clauses of one variable into a ready queue, and put the longer clauses intoa wait queue. Those interested in implementation will, for each variable, form a set ofpointers to the clauses containing that variable (negated or otherwise). The procedureis:while the ready queue is not empty and unsatis�ability has not been established doPick a clause from the ready queue and assign the satisfying value to the variable xcontained in it.Update all clauses c still containing x as follows:If the assignment to x satis�es c then throw c away;else remove the literal in x from c, and move c to the ready queue if c now contains justone literal.If now c contains zero literals, it is not satis�ed, and the system is found to be unsatis�-able.endwhileIf the system is not yet unsatis�able, then set all unassigned variables to true, since theremaining clauses contain more than one literal.It is easy to see that the system is satis�able i� the procedure succeeds. The runningtime is linear in the size of the CNF(1) expression, provided we have a unit time look-upprocedure for variable names, which will be the case if they are named 1,2,3,� � �, andarray access is used.Solution to Problem 3a)procedure FW(var A[1..n,1..n], FirstIn[i,j]);initialize all FirstIn[i,j] to j;assume A[i; j] =1 if there is no edge from i to j, and is the edge cost otherwise;forall k in (1..n) dofor all pairs i,j in [1..n] doif A[i; j] > A[i; k] +A[k; j] thenA[i; j] A[i; k] +A[k; j];FirstIn[i; j] FirstIn[i; k]endifendforendfor.FirstIn[i,j] gives the �rst vertex after i on some shortest path from i to j.b) From the problem description, we see that any zero cost cycle that touches a shortestpath should be taken so that its cookies can be found. Further, any cycle in H[i; j] haszero cost.The algorithm at a very high level is: �nd all the strong components in H(i; j), and�nd the cookie count for each component. The best path is the shortest path with the6



largest cookie count for its bridge edges (outside of the strong components) plus thestrong components touched by the path.In greater detail, we might solve the problem by using the FW algorithm to computeall shortest path distances, and use, say Tarjan's algorithm (or Sharir's or somebodyelse's) Strong Components algorithm to identify all strong components. If vertex i hasan edge into strong component X, and X has an edge exiting the SC to vertex j, thenwe may create an edge from i to j with cost computed by the FW algorithm, and cookiecount equal to the count from the strong component plus the cookie count on the edgefrom i and the edge to j. We are using the fact that each edge is on some shortest path,and that when two shortest paths cross, any branching will give a shortest path. Thenwe may solve the problem on the new graph, which is cycle free. Here we want the pathwith the largest number of cookies (it must be as short as possible). There are manysolutions. The Floyd-Warshall algorithm will work with inequalities reversed, since thegraph is cycle free. Alternatively, a postorder topological processing can be used.c) Let all edge costs be zero. Use 2n nodes. Let there be a directed chain from 1 to 2 to 3to � � � to n. Now include the following 2n edges: (n; n+1); (n; n+2); (n; n+3); : : : ; (n; 2n)and (n+ 1; 1); (n + 2; 1); (n + 3; 1); � � � ; (2n; 1). There are 3n � 1 edges, and n di�erentbasic cycles, which all go through the directed chain. The cycles each di�er in one vertex.The total number of edges needed by a trip that traverses every edge must be n(n+ 1).Solution to Problem 4a. We use the Pumping Lemma. If L1 is a CFL, there is a parameter n, such that forstrings w#w with jw#wj > n, we can �nd strings u; v; x; y; z such that w#w = uvxyz,uvixyiz 2 L for all i, 0 < jvyj and jvxyj � n. Now consider the string w = 0n1n. Thenuvxyz = 0n1n#0n1n. uxz 2 L1 by the Pumping Lemma, thus uxz = 0m1p#0m1p, forsome m; p � n. But then v = y = 0n�m1n�p and jvxyj > n, a contradiction.b. The p.d.a. to accept L2 proceeds as follows. The idea is to verify that juxj = jvwj. Todo this, as it reads u it pushes one copy of the symbol $ onto the stack for each symbolread. As it reads v it pops the stack once for each symbol of v until either the stack isempty or all of v is read. In the event the stack is emptied, it continues by pushing asecond symbol # for each subsequent symbol of v read. On reading w, the symbols #are popped, one for each symbol of w read; then for each remaining character of w, a $ ispushed. Finally, as x is read, for each character of x the stack is popped. The stack willbe empty exactly when x is fully read if juxj = jvwj. The p.d.a. non-deterministicallyrecognizes the a and b (separating u and v, and w and x, respectively).c. Suppose y 6= z. If jyj = jzj, we can write y = ucv and z = wdx, where juj = jwj,jvj = jxj, c 6= d, and c; d 2 fa; bg. Thus a p.d.a. can nondeterministically decide to checkeither that jyj 6= jzj or that the string is in L2, or a similar language fL2 with the roles ofa and b reversed. For if jyj = jzj and y#z 2 L2 then juxj = jwvj implies that juvj = juxjand hence jvj = jxj; similarly, juj = jwj.Solution to Problem 5a. Let C be a class of programs (i.e. if �i = �j then i 2 C i� j 2 C). If C is recursivethen either C or its complement is the empty set.7



b. Action 1 = "; Action 2 = #.Then if  (y + 1) #, it must be because y =2 L, i.e. �y(0) ", i.e.  (0) =  (y + 1) ".While if  (y + 1) ", it must be because y 2 L; i.e. �y(0) #, i.e.  (0) =  (y + 1) #.This a contradiction.c. (i) is false, the others are true.Rice's Theorem shows that sets are not recursive; thus it cannot be used to show (iv) or(v). Clearly (ii) and (vi) are class properties and thus can be shown by Rice's Theorem.(iii), however, is not a class property, and so cannot be shown using Rice's Theorem (i.e.there may be i and j with �i = �j, and yet �i(2i) " while �j(2j) #; indeed such i and jcan be constructed, although this is outside the scope of this question).Solution to Problem 6a. LetM be a TM accepting L in nondeterministic time 2nc . TMM 0 accepts Pad(L; 2jxjc)as follows. First it checks that the input has the form x#0jxjc�jxj�1; it is straightforwardto do this in time O(n). Second, it simulates M , ignoring all input to the right ofx. This takes nondeterministic time n. Thus there is an a � 1 such that M 0 runs innondeterministic time bounded by an.b. It su�ces to show how to simulate an arbitrary nondeterministic TM M running intime bounded by 2nc . M 0 performs the simulation as follows.Step 1. Pad the input x to form x#02jxjc�jxj�1. This takes time bounded by e � 2nc , forsome constant e, where jxj = n.Step 2. Let M 00 be the Ntime(am) TM accepting Pad(L(M); 2jxjc), where m = 2jxjc.By assumption, there is a deterministic TM M 000 running in time bounded by (am)f forsome constant f , with L(M 00) = L(M 000). Run M 000 on the input calculated in Step 1.M 000 takes time bounded by (a � 2jxjc)f = af � 2f jxjc.The total time taken by M 0 on input x is bounded by e2nc + af � 2fnc � 2dnc , for someconstant d.c. The obstacle to obtaining a �xed d is that there may be a distinct constant f foreach M 00. Unfortunately, each M results in a distinct M 00 and potentially in a distinctf . Further it may be that these constants f are unbounded and thus the correspondingconstants d must also be unbounded.
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