CSCI-GA 3520: Honors Analysis of Algorithms

Final Exam: Thu, Dec 20 2018, Room WWH-101, 10:00-2:00pm.

- This is a four hour exam. There are six questions, worth 10 points each. Answer all questions and all their subparts.
- This is a closed book exam. No books, notes, reference material, either hard-copy, soft-copy or online, is allowed.
- In the past years, to pass this exam, one needed to answer 3 or 4 problems well, instead of answering all the problems poorly.
- Please print your name and SID on the front of the envelope only (not on the exam booklets). Please answer each question in a separate booklet, and number each booklet according to the question.
- Read the questions carefully. Keep your answers legible, and brief but precise. Assume standard results and algorithms (i.e., those taught in class or referred to in the homeworks).
- You must prove correctness of your algorithm and prove its time bound unless stated otherwise. The algorithm can be written in plain English (preferred) or as a pseudo-code.

Best of luck!

Problem 1 (Graphs are undirected)

In this problem, we will study an algorithm to find the minimum spanning tree in a graph that is different from the one presented in class. Let G(V, E) be a connected undirected graph and $wt(e) \ge 0$ denote the weight of an edge $e \in E$. The algorithm proceeds as below. Here $S \subseteq V$ is a set that grows larger as the algorithm proceeds and T_S is a graph on the vertex set S. All the edges of T_S are from E.

- 1. Initialization: Let $S = \{v\}$ where $v \in V$ is an arbitrary vertex and let T_S have no edges.
- 2. Let e be the edge with minimum weight among the edges in E whose one endpoint is in S and the other endpoint is in $V \setminus S$. Call the endpoints of e in S and $V \setminus S$ as u and w respectively.
- 3. Add w to S and add the edge e = (u, w) to T_S .
- 4. Stop if S = V. Otherwise repeat Steps (2) and (3).

You need to show the correctness of this algorithm. Do not worry about the running time.

- (a) Show that T_S is a tree on the set of vertices S throughout the execution of the algorithm.
- (b) Show that when the algorithm stops, T_S is a minimum spanning tree of G. Hint: Induction? Replacement argument?.

Problem 2 (Graphs are directed)

Let G(V, E) be a directed graph whose vertices are colored red or blue. A *t*-alternating walk is a walk (i.e., a path where vertices could repeat) v_0, v_1, \ldots, v_k that has at least *t* color transitions, from red to blue or vice versa. Assume $1 \leq t \leq |V|^2$.

- (a) If G is acyclic, design a O(|V| + |E|) algorithm to decide whether G has a t-alternating walk.
- (b) Now let G be a general directed graph (not necessarily acyclic). Design a O(|V| + |E|) algorithm to decide whether G has a t-alternating walk.

Assume adjacency list representation of graphs.

Problem 3

Let x denote a string of length n over the 4-symbol alphabet $\{A, C, G, U\}$. For example,

$$x = AGCUUCGAU, \quad n = 9.$$

For an index $1 \leq i \leq n$, let x_i denote the i^{th} symbol of x. A folding of the string x is a set \mathcal{E} of unordered pairs of indices from $\{1, \ldots, n\}$ satisfying the following.

- 1. \mathcal{E} is a matching, i.e., no index *i* appears in more than one pair in \mathcal{E} .
- 2. For all $(i, j) \in \mathcal{E}$, (x_i, x_j) is either (A, U), (U, A), (C, G) or (G, C). I.e., pairs can only connect A with U and C with G.
- 3. For all $(i, j) \in \mathcal{E}$ with i < j, it holds that for all $(k, \ell) \in \mathcal{E}$, either both k, ℓ are in the interval $\{i + 1, \ldots, j 1\}$ or both are outside the interval $\{i, \ldots, j\}$. I.e., the matching is *non-intersecting*.

For example, if x = AGCUUCGAU, a possible folding is given by $\mathcal{E} = \{(1, 9), (2, 3), (5, 8), (6, 7)\}$. Design a polynomial time algorithm that given a string x finds a folding of maximum cardinality.

Problem 4 (Graphs are undirected)

Let G(V, E) be an undirected graph. For a subset $S \subseteq V$ of vertices, its neighborhood Nbd(S) is defined as

$$Nbd(S) = \{v \mid v \in S \text{ or } (u, v) \in E \text{ for some } u \in S\}.$$

An *n*-vertex graph is called an *expander graph* if for every subset of vertices $S \subseteq V$, $1 \leq |S| \leq \frac{n}{2}$, we have $|\mathsf{Nbd}(S)| \geq \frac{11}{10} \cdot |S|$. The goal is to show that the diameter of an expander graph, i.e., the maximum distance between any pair of vertices, is $O(\log n)$. Assume therefore that G is an expander graph. For a vertex s and an integer $j \geq 0$, let $D_j(s)$ denote the set of all vertices whose distance from s is at most j.

- (a) Show that for every vertex s, and any $j \ge 0$, we have $|D_j(s)| \ge \min\left((\frac{11}{10})^j, \frac{n+1}{2}\right)$.
- (b) Show that for every two distinct vertices s and t, the distance between s and t is at most $C \log_2 n$, where C is a constant that does not depend on s or t or n.

Problem 5 (Graphs are undirected)

Construct an undirected graph G(V, E) at random as follows. Let V be a set of n vertices. For each pair of distinct vertices $u, v \in V$, let $(u, v) \in E$ with probability $\frac{1}{2}$, independently for all vertex pairs. That is, for each vertex pair (u, v), the pair is included as an edge with probability $\frac{1}{2}$ and left out with probability $\frac{1}{2}$, independently for all vertex pairs.

We intend to analyze the size of the largest independent set in this random graph. Recall that an independent set is a subset of vertices with no edge amongst them. For a subset $S \subseteq V$, $1 \leq |S| \leq n$, let \mathcal{E}_S be the event that S is an independent set.

- (a) What is $\Pr[\mathcal{E}_S]$?
- (b) For $1 \leq k \leq n$, let \mathcal{D}_k be the event that G has an independent set of size k. Can you express \mathcal{D}_k in terms of the events \mathcal{E}_S ?
- (c) Can you provide an upper bound on $\Pr[\mathcal{D}_k]$ as a function k?
- (d) What is the smallest value of k for which you can show that $\Pr[\mathcal{D}_k] \leq \frac{1}{100}$?

The desired value of k should be in terms of number of vertices n. Give the smallest value you can. It is enough to be correct up to a constant factor. n can be thought of as sufficiently large.

Problem 6 (Graphs are undirected)

Recall that a vertex cover in an undirected graph is a subset of vertices that touches every edge. Consider the following language:

$$L = \left\{ G \mid G \text{ is an undirected graph with } n \text{ vertices and has a vertex cover of size at most } \frac{n}{4} \right\}.$$

Show that L is NP-complete. You can assume NP-completeness of any of the problems discussed in class.