
CSCI-GA 3520: Honors Analysis of Algorithms

Final Exam: Thu, Dec 20 2018, Room WWH-101, 10:00-2:00pm.

• This is a four hour exam. There are six questions, worth 10 points each. Answer all questions
and all their subparts.

• This is a closed book exam. No books, notes, reference material, either hard-copy, soft-copy
or online, is allowed.

• In the past years, to pass this exam, one needed to answer 3 or 4 problems well, instead of
answering all the problems poorly.

• Please print your name and SID on the front of the envelope only (not on the exam booklets).
Please answer each question in a separate booklet, and number each booklet according to the
question.

• Read the questions carefully. Keep your answers legible, and brief but precise. Assume
standard results and algorithms (i.e., those taught in class or referred to in the homeworks).

• You must prove correctness of your algorithm and prove its time bound unless
stated otherwise. The algorithm can be written in plain English (preferred) or
as a pseudo-code.

Best of luck!

1

Problem 1 (Graphs are undirected)

In this problem, we will study an algorithm to find the minimum spanning tree in a graph that
is different from the one presented in class. Let G(V,E) be a connected undirected graph and
wt(e) > 0 denote the weight of an edge e ∈ E. The algorithm proceeds as below. Here S ⊆ V is
a set that grows larger as the algorithm proceeds and TS is a graph on the vertex set S. All the
edges of TS are from E.

1. Initialization: Let S = {v} where v ∈ V is an arbitrary vertex and let TS have no edges.

2. Let e be the edge with minimum weight among the edges in E whose one endpoint is in S and
the other endpoint is in V \S. Call the endpoints of e in S and V \S as u and w respectively.

3. Add w to S and add the edge e = (u,w) to TS .

4. Stop if S = V . Otherwise repeat Steps (2) and (3).

You need to show the correctness of this algorithm. Do not worry about the running time.

(a) Show that TS is a tree on the set of vertices S throughout the execution of the algorithm.

(b) Show that when the algorithm stops, TS is a minimum spanning tree of G.

Hint: Induction? Replacement argument?.

Problem 2 (Graphs are directed)

Let G(V,E) be a directed graph whose vertices are colored red or blue. A t-alternating walk is a
walk (i.e., a path where vertices could repeat) v0, v1, . . . , vk that has at least t color transitions,
from red to blue or vice versa. Assume 1 6 t 6 |V |2.

(a) If G is acyclic, design a O(|V |+ |E|) algorithm to decide whether G has a t-alternating walk.

(b) Now let G be a general directed graph (not necessarily acyclic). Design a O(|V | + |E|)
algorithm to decide whether G has a t-alternating walk.

Assume adjacency list representation of graphs.

2

Problem 3

Let x denote a string of length n over the 4-symbol alphabet {A,C,G,U}. For example,

x = AGCUUCGAU, n = 9.

For an index 1 6 i 6 n, let xi denote the ith symbol of x. A folding of the string x is a set E of
unordered pairs of indices from {1, . . . , n} satisfying the following.

1. E is a matching, i.e., no index i appears in more than one pair in E .

2. For all (i, j) ∈ E , (xi, xj) is either (A,U), (U,A), (C,G) or (G,C). I.e., pairs can only connect
A with U and C with G.

3. For all (i, j) ∈ E with i < j, it holds that for all (k, `) ∈ E , either both k, ` are in the
interval {i + 1, . . . , j − 1} or both are outside the interval {i, . . . , j}. I.e., the matching is
non-intersecting.

For example, if x = AGCUUCGAU , a possible folding is given by E = {(1, 9), (2, 3), (5, 8), (6, 7)}.
Design a polynomial time algorithm that given a string x finds a folding of maximum cardinality.

Problem 4 (Graphs are undirected)

Let G(V,E) be an undirected graph. For a subset S ⊆ V of vertices, its neighborhood Nbd(S) is
defined as

Nbd(S) = {v | v ∈ S or (u, v) ∈ E for some u ∈ S}.

An n-vertex graph is called an expander graph if for every subset of vertices S ⊆ V , 1 6 |S| 6 n
2 ,

we have |Nbd(S)| > 11
10 · |S|. The goal is to show that the diameter of an expander graph, i.e.,

the maximum distance between any pair of vertices, is O(log n). Assume therefore that G is an
expander graph. For a vertex s and an integer j > 0, let Dj(s) denote the set of all vertices whose
distance from s is at most j.

(a) Show that for every vertex s, and any j > 0, we have |Dj(s)| > min
(
(1110)j , n+1

2

)
.

(b) Show that for every two distinct vertices s and t, the distance between s and t is at most
C log2 n, where C is a constant that does not depend on s or t or n.

3

Problem 5 (Graphs are undirected)

Construct an undirected graph G(V,E) at random as follows. Let V be a set of n vertices. For
each pair of distinct vertices u, v ∈ V , let (u, v) ∈ E with probability 1

2 , independently for all vertex
pairs. That is, for each vertex pair (u, v), the pair is included as an edge with probability 1

2 and
left out with probability 1

2 , independently for all vertex pairs.

We intend to analyze the size of the largest independent set in this random graph. Recall that an
independent set is a subset of vertices with no edge amongst them. For a subset S ⊆ V, 1 6 |S| 6 n,
let ES be the event that S is an independent set.

(a) What is Pr[ES]?

(b) For 1 6 k 6 n, let Dk be the event that G has an independent set of size k. Can you express
Dk in terms of the events ES?

(c) Can you provide an upper bound on Pr[Dk] as a function k?

(d) What is the smallest value of k for which you can show that Pr[Dk] 6 1
100?

The desired value of k should be in terms of number of vertices n. Give the smallest value
you can. It is enough to be correct up to a constant factor. n can be thought of as sufficiently
large.

Problem 6 (Graphs are undirected)

Recall that a vertex cover in an undirected graph is a subset of vertices that touches every edge.
Consider the following language:

L =
{
G | G is an undirected graph with n vertices and has a vertex cover of size at most

n

4

}
.

Show that L is NP-complete. You can assume NP-completeness of any of the problems discussed
in class.

4

