
ALGORITHMS EXAMINATION
Department of Computer Science

New York University
December 18, 2006

This examination is a three hour exam. All questions carry the same
weight.
Answer all of the following six questions. Please be aware that to pass this
exam you need to provide good answers to several questions; it is not suffi-
cient to obtain partial credit on each question.

• Please print your name and SID on the front of the envelope only (not on
the exam booklets).
• Please answer each question in a separate booklet, and number each book-
let according to the question.

Read the questions carefully. Keep your answers legible, and brief but pre-
cise. Assume standard results, except where asked to prove them.

Good luck!

1



Question 1

Let G be a directed graph. We say that G is k-cyclic if every (not necessarily
simple) cycle in G contains at most k distinct nodes.

a. Give a linear-time algorithm to determine if a directed graph G is k-cyclic,
where G and k are given as inputs. Justify the correctness and running time
of your algorithm.

b. Give a linear-time algorithm for the following problem. The input is
a directed graph G = (V,E), with non-negative edge weights, along with
nodes s, t ∈ V . Furthermore, assume that G is 10-cyclic. The algorithm
is to determine the weight of the shortest path from s to t. Justify the
correctness and running time of your algorithm.

Question 2

Give a data structure, along with corresponding procedures, implementing
a priority queue supporting the following operations:

(a) Insert x into Q: insert a value x into the queue Q.

(b) DeleteMin Q: remove and return the smallest value in the queue Q.

(c) AddValue δ to Q: add the value δ to all values currently in Q.

(d) Merge Q1, Q2: merge two queues into one (destroying the originals).

All operations are to take time O(log n), where n is the number of items in
Q in (a–c), and the total number of items in Q1 and Q2 in (d). Justify the
correctness and running times of your procedures.

Go To the Next Page

2



Question 3

a. The fat chance satisfiability (FATCHAT) problem is the following.
Instance: A 3-CNF formula with m clauses where each clause contains three
distinct literals (so that a clause such as (x14 ∨ x33 ∨ x14) cannot occur).

Question: Is there an assignment to the Boolean variables such that at least
7m/8 clauses are satisfied?

Show that the answer to FATCHAT is always yes.
Hint. Consider a random assignment.
For expositional simplicity, you can assume that no Boolean variable and its
negation appear as literals in any one clause.

b. The very satisfiable problem (VERSAT) is the following.
Instance: A 3-SAT problem with m clauses.
Question: Is there an assignment to the Boolean variables so that at least
8m/9 of the clauses are satisfied?

Prove that VERSAT is NP-Complete.

Go To the Next Page

3



Question 4

Let A[1..n] and B[1..n] be arrays of n characters each. A variant of the great-
est common subsequence problem is as follows. Let M(α, β) return the nu-
merical “goodness” of the match for the individual characters α and β. The
best matching subsequence problem is to find, for the best k, the k-character
A-subsequence A[i1], A[i2, ], . . . , A[ik] where 1 ≤ i1 < i2 < · · · < ik ≤ n, and
the corresponding B-subsequence B[j1], B[j2, ], . . . , B[jk] where 1 ≤ j1 <
j2 < · · · < jk ≤ n, where the “goodness” M(Ai1 , Bj1) + M(Ai2 , Bj2) + · · ·+
M(Aik , Bjk

) is as large as possible. So when Match(α, β) = 1 if α = β
and 0 otherwise, then this problem is just the standard greatest common
subsequence problem for the strings A and B.

a. Present a high-level recursive specification to find the numerical “good-
ness” of the best match for this variant of the greatest common subsequence
problem. The algorithm should be efficient when properly implemented with
table look-up to avoid the recomputation of already solved subproblems, but
this look-up does NOT have to be included in your specification.

b. Now suppose that the value to be optimized is not M(Ai1 , Bj1) +
M(Ai2 , Bj2) + · · · + M(Aik , Bjk

) for the best k and i and j subsequences,
but is instead M(Ai1 , Bj1) + M(Ai2 , Bj2) + · · · + M(Aik , Bjk

) − k2 for the
best k.

Present a high-level recursive specification to solve this problem. The
target efficiently should be O(n3) when the solution is properly implemented
with table lookup.
Hint: introduce a new dimension to the recursive solution that is indexed
by k.
Please note: for your convenience, the string sequences A and B are required
to have the same length n.

Go To the Next Page

4



Question 5

Let p be a suitably large prime. Let Σ be the alphabet {0, 1, · · · , p − 1}.
Finally, suppose that arithmetic mod p takes constant time.

Give a dynamic data structure D that maintains a “compact represen-
tation” of two dynamically growing strings A and B over the alphabet Σ,
where both strings are initially empty. D needs to support the following
update operations:

• Append(S, a). On input a ∈ Σ and S = A or B, appends a to string
S (i.e., sets S := Sa). It also returns a bit indicating whether or not
A = B now.

• Prepend(S, a). On input a ∈ Σ and S = A or B, prepends a to string
S (i.e., sets S := aS). It also returns a bit indicating whether or not
A = B now.

Your implementation of D should also satisfy the following constraints:

(a) D occupies constant space on the machine, irrespective of the number
of update queries.

(b) D is randomly initialized at the beginning (i.e., when A and B are
empty) in constant time.

(c) After initialization, all the updates are deterministic and take constant
time each.

(d) The n-th update operation is answered incorrectly with probability at
most n/p.

Make sure you explicitly prove that your D satisfies properties (a)-(d) above.

Go To the Next Page

5



Question 6

In this question you will show that NFAs can be exponentially more efficient
than DFAs.

(a) Given a language L, define its Myhill-Nerode relation by: strings x
and y are equivalent (denoted x ≡ y) if for any string z,

xz ∈ L ⇐⇒ yz ∈ L

It can be shown that ≡ is indeed an equivalence relation. Let the
index of L, index(L), be the number of equivalence classes (i.e., pair-
wise distinguishable strings) in ≡, which, in general, could be finite or
infinite.

Show that if L is accepted by a DFA with N states, then index(L) ≤
N .
(Hint: what is a “compact description” of the equivalence class of x
in terms of the DFA?)

(b) Let Ck (k ≥ 1) be the language over Σ = {a, b} consisting of all the
strings whose kth symbol from the end is a: Ck = Σ∗aΣk−1. Assuming
part (a) as given (whether or not you solved it), prove that no DFA
can recognize Ck with fewer than 2k states.1

(c) Describe an NFA with (k+1) states that recognizes Ck, both in terms
of the state diagram and a formal description.

1You also get full credit for a direct proof, without using part (a).

6


