
A Sticker Based Model for DNA Computation

Sam Roweis1�, Erik Winfree1,

Richard Burgoyne2, Nickolas V. Chelyapov3,

Myron F. Goodman4, Paul W. K. Rothemund3,

Leonard M. Adleman3y

Laboratory for Molecular Science, University of Southern California

and

1
Computation and Neural Systems Option, California Institute of Technology

2
Department of Biomedical Engineering, University of Southern California

3
Department of Computer Science, University of Southern California

4
Department of Biological Sciences, University of Southern California

May 1996

Abstract

We introduce a new model of molecular computation that we call the sticker model. Like many

previous proposals it makes use of DNA strands as the physical substrate in which information is

represented and of separation by hybridization as a central mechanism. However, unlike previous

models, the stickers model has a random access memory that requires no strand extension, uses

no enzymes, and (at least in theory) its materials are reusable.

The paper describes computation under the stickers model and discusses possible means for

physically implementing each operation. We go on to propose a speci�c machine architecture

for implementing the stickers model as a microprocessor-controlled parallel robotic workstation.

Finally, we discuss several methods for achieving acceptable overall error rates for a computation

using basic operations that are error prone.

In the course of this development a number of previous general concerns about molecular

computation [Smith, Hartmanis, Letters to Science] are addressed. First, it is clear that general-

purpose algorithms can be implemented by DNA-based computers, potentially solving a wide

class of search problems. Second, we �nd that there are challenging problems, for which only

modest volumes of DNA should su�ce. Third, we demonstrate that the formation and breaking

of covalent bonds is not intrinsic to DNA-based computation. This means that costly and short-

lived materials such as enzymes are not necessary, nor are energetically costly processes such as

PCR. Fourth, we show that a single essential biotechnology, sequence-speci�c separation, su�ces

for constructing a general-purpose molecular computer. Fifth, we illustrate that separation errors

can theoretically be reduced to tolerable levels by invoking a trade-o� between time, space, and

error rates at the level of algorithm design; we also outline several speci�c ways in which this

can be done and present numerical calculations of their performance.

Despite these encouraging theoretical advances, we emphasize that substantial engineering

challenges remain at almost all stages and that the ultimate success or failure of DNA computing

will certainly depend on whether these challenges can be met in laboratory investigations.

�

Reprint requests to roweis@cns.caltech.edu. The MATLAB code which was used to generate all of the �gures in

Section 5 of this paper is also available by request from roweis@cns.caltech.edu. Roweis is supported in part by the

Center for Neuromorphic Systems Engineering as a part of the National Science Foundation Engineering Research

Center Program under grant EEC-9402726 and by the Natural Sciences and Engineering Research Council of Canada.

Winfree is supported in part by National Institute for Mental Health (NIMH) Training Grant # 5 T32 MH 19138-

06; also by General Motors' Technology Research Partnerships program. Adleman, Chelyapov, and Rothemund are

supported in part by grants from the National Science Foundation (CCR-9403662) and Sloan Foundation.

y

To whom correspondence should be addressed.

1 Introduction

Much of the recent interest in molecular computation has been fueled by the hope that it might

some day provide the means for constructing a massively parallel computational platform capable of

attacking problems which have been resistant to solution with conventional architectures. Model ar-

chitectures have been proposed which suggest that DNA based computers may be
exible enough to

tackle a wide range of problems [Adleman1, Adleman2, Amos, Lipton, Boneh2, Beaver, Rothemund],

although fundamental issues such as the volumetric scale of materials and �delity of various labo-

ratory procedures remain largely unanswered.

In this paper we introduce a new model of molecular computation that we call the sticker model.

Like many previous proposals it makes use of DNA strands as the physical substrate in which

information is represented and of separation by hybridization as a central mechanism. However,

unlike previous models, the stickers model has a random access memory that requires no strand

extension, uses no enzymes, and (at least in theory) its materials are reusable.

The paper begins by introducing a new way of representing information in DNA, followed by an

abstract description of the basic operations possible under this representation. Possible means for

physically implementing each operation are discussed. We go on to propose a speci�c machine

architecture for implementing the stickers model as a microprocessor-controlled parallel robotic

workstation, employing only technologies which exist today. Finally, we discuss methods for achiev-

ing acceptable error rates from imperfect separation units.

2 The Stickers Model

2.1 Representation of Information

The stickers model employs two basic groups of single stranded DNA molecules in its representation

of a bit string. Consider a memory strand N bases in length subdivided into K non-overlapping

regions each M bases long (thus N �MK). Each region is identi�ed with exactly one bit position

(or equivalently one boolean variable) during the course of the computation. We also design K

di�erent sticker strands or simply stickers. Each sticker is M bases long and is complementary to

one and only one of the K memory regions. If a sticker is annealed to its matching region on a given

memory strand then the bit corresponding that particular region is on for that strand. If no sticker

is annealed to a region then that region's bit is o�. Figure 1 illustrates this representation scheme.

A T C G G T C A T A G C A C T

A T C G G T C A T A G C A C T

T A CCG C T GG A
C G T

G A

GAT CC
GAT CC

A
G T A

T

C G T
G AA

G T A
T

A
G T A

T00 0

0 11

Memory
Strands

3’

5’

5’

3’

bit i bit i+1 bit i+2 bit ... (up to bit K)bit ...

Stickers

M bases

Figure 1: A memory strand and associated stickers (together called a memory complex) represent a

bit string. The top complex on the left has all three bits o�; the bottom complex has two annealed

stickers and thus two bits on.

1

Each memory strand along with its annealed stickers (if any) represents one bit string. Such partial

duplexes are called memory complexes. A large set of bit strings is represented by a large number

of identical memory strands each of which has stickers annealed only at the required bit positions.

We call such a collection of memory complexes a tube. This di�ers from previous representations

of information using DNA in which the presence or absence of a particular subsequence in a strand

corresponded to a particular bit being on or o� (e.g. see [Adleman1, Lipton]). In this new model,

each possible bit string is represented by a unique association of memory strands and stickers

whereas previously each bit string was represented by a unique molecule.

To give a feel for the numbers involved, a reasonable size problem (for example breaking DES as

discussed in [Adleman3]), might use memory strands of roughly 12000 bases (N) which represent

580 binary variables (K) using 20 base regions (M).

The information density in this storage scheme is (1=M) bits/base, directly comparable to the density

of previous schemes [Adleman1, Boneh2, Lipton]. We remark that while information storage in DNA

has a theoretical maximum value of 2 bits/base, exploiting such high values in a separation based

molecular computer would require the ability to reliably separate strands using only single base

mismatches. Instead we choose to sacri�ce information density in order to make the experimental

di�culties less severe.

2.2 Operations on Sets of Strings

We now introduce several possible operations on sets of bit strings which together turn out to be

quite
exible for implementing general algorithms. The four principle operations are combination of

two sets of strings into one new set, separation of one set of strings into two new sets and setting or

clearing the kth bit of every string in a set. Each of these logical set operations has a corresponding

interpretation in terms of the DNA representation introduced above. Figure 2 summarizes these

required DNA interactions.

� The most basic operation is to combine two sets of bit strings into one. This produces a

new set containing the multi-set union of all the strings in the two input sets. In DNA,

this corresponds to producing a new tube containing all the memory complexes (with their

annealed stickers undisturbed) from both input tubes.

� A set of strings may be separated into two new sets, one containing all the original strings

having a particular bit on and the other all those with the bit o�. This corresponds to isolating

from the set's tube exactly those complexes with a sticker annealed to the given bit's region.

The original input set (tube) is destroyed.

� To set (turn on) a particular bit in every string of a set, the sticker for that bit is annealed to

the appropriate region on every complex in the set's tube (or left in place if already annealed).

� Finally, to clear (turn o�) a bit in every string of a set, the sticker for that bit must be removed

(if present) from every memory complex in the set's tube.

Computations in this model consist of a sequence of combination, separation, and bit setting/clearing

operations. This sequence must begin with some initial set of bit strings and must ultimately produce

one (possibly null) set of strings deemed to be \the answers". We call the tube containing the initial

set of bit strings the mother tube for a computation. Thus, to complete our theoretical description of

2

T A CCG

T A CCG

A G T A T

A G T A T

A G T A T

C T GG AC T GG AT A CCG A G T A T

A G T A T
A T C G G T C A T A G C A C T

A T C G G T C A T A G C A C T

T A CCG

A T C G G T C A T A G C A C T

A G T A T

A T C G G T C A T A G C A C T

A T C G G T C A T A G C A C T

A T C G G T C A T A G C A C T

A T C G G T C A T A G C A C T

A T C G G T C A T A G C A C T

Combine

C T GG AT A CCG

T A CCG

A G T A T

A G T A T

A G T A T

A T C G G T C A T A G C A C T

A T C G G T C A T A G C A C T

A T C G G T C A T A G C A C T

A T C G G T C A T A G C A C T

T A CCG

A T C G G T C A T A G C A C T

A G T A T

A T C G G T C A T A G C A C T

A G T A T

A T C G G T C A T A G C A C T

T A CCG A G T A T C T GG A

A T C G G T C A T A G C A C T

C T GG A

C T GG A

Separate on Bit 1

T A CCG

T A CCG

A G T A T

A G T A T C T GG A

C T GG A

C T GG A

C T GG AC T GG AT A CCG

T A CCG

A G T A T

A G T A T

A T C G G T C A T A G C A C T

A T C G G T C A T A G C A C T

A T C G G T C A T A G C A C T

A T C G G T C A T A G C A C T

A T C G G T C A T A G C A C T

A T C G G T C A T A G C A C T

A T C G G T C A T A G C A C T

A T C G G T C A T A G C A C T

Set Bit 3

A G T A T

A G T A T

C T GG AT A CCG

T A CCG

A G T A T

A G T A T

T A CCG

C T GG A

A T C G G T C A T A G C A C T

A T C G G T C A T A G C A C T

A T C G G T C A T A G C A C T

A T C G G T C A T A G C A C T

A T C G G T C A T A G C A C T

A T C G G T C A T A G C A C T

A T C G G T C A T A G C A C T

A T C G G T C A T A G C A C T
C T GG A C T GG A

Clear Bit 1

Figure 2: DNA manipulations required for the four operations of the stickers model.

3

how to compute with the stickers model, we must describe how to create a mother tube of memory

complexes and also how to read out at least one bit string from a (possibly empty) �nal tube of

answers (or recognize that the tube contains no strands). We consider creation of the mother tube

�rst:

� It will su�ce for our purposes to consider creating a mother tube which corresponds to the

(K;L) library set of strings. A (K;L) library set contains strings of length K generated by

taking the set of all possible bit strings of length L followed by K � L zeros. There are thus

2L length K strings in the set1.

Our paradigm of computation will generally be to cast hard problems as large combinatorial searches

over inputs of length L. We search for the few rare \answer" strings by processing all 2L possible

inputs in parallel and eliminating those that fail the search criteria. It is important that the memory

strand we design may have more than L bit regions. The �rst L bits represent the encoding of the

input and are the random portion of the initial library. The remaining K � L bits are used for

intermediate storage and answer encoding and are initially o� on all complexes. All bits can be

written to and read from later in the computation as needed. In this way creating a mother tube

which is a (K;L) library set corresponds to generating all possible inputs (of length L) and zeroing

the workspace (length K � L).

Lastly, we indicate how to obtain a solution at the end of the computation:

� To read a string from the �nal \answer" set, one memory complex must be isolated from the

answer tube and its annealed stickers (if any) determined. Alternately, it must be reported

that the answer tube contains no strands.

2.3 Example Problem

To illustrate the power of the operations de�ned above we work through the solution of the NP-

Complete2 Minimal Set Cover problem [Garey] within the stickers model. Informally, assume we

are given a collection of B bags each containing some objects. The objects come in A types. The

problem is to �nd the smallest subset of the bags which between them contain at least one object

of every type. Formally the problem is as follows: Given a collection C = fC1; : : : ; CBg of subsets

of f1; : : : ; Ag what is the smallest subset I of f1; : : : ; Bg such that
S
i2I Ci = f1; : : : ; Ag ? The

solution of the problem in our model is straightforward. We create memory complexes representing

all possible 2B choices of bags. We mark all those which include bag i as containing every type

appearing in the subset Ci. Then we separate out those complexes which have been marked as

containing all A types and read out the one(s) which uses the fewest bags. Formally, the sticker

algorithm for minimal set cover is:

� Design a memory strand with K = B +A bit regions. Bits 1 : : : B represent which bags are

chosen, bits B + 1 : : : B + A which

object types are present.

� Initialize a (K;B) library set in a tube called T0.

� for i=1 to B

Separate T0 into Ton and Toff based on bit i Mark the �nal A positions of each

complex to record which object

types it contains.
for j=1 to jCij

Set bit N + Ci[j] in Ton
Combine Ton and Toff into T0

1
For example, the (7,3) library set is the set f0000000,0010000,0100000,0110000,1000000,1010000,1100000,1110000g.

2
Technically the NP-Complete version of this problem is the binary decision version in which we ask if there exists

a collection of a particular size that covers the set, not for the collection of the smallest size.

4

� for i=B+1 to B+A Get rid of ones which do not have

all A types.Separate T0 into T0 and Tbad based on bit i

Discard Tbad

� for i=0 to B-1 Count how many bags

were used. At the end

of the outer loop, tube

Ti contains all com-

plexes which used ex-

actly i bags.

for j=i down to 0

Separate Tj into T(j+1)0 and Tj based on bit i+ 1

Combine Tj+1 and T(j+1)0 into Tj+1

� Read T1;

else if it was empty then Read T2;

else if it was empty then Read T3;

: : :

where above jCij is the number of items in subset Ci and Ci[j] is the j
th item in subset Ci. Note

that the above algorithm takes O(AB) steps, and the input is O(AB) bits.

We point out that, as we will envision a robotic system performing the experiments automatically,

we allow arbitrary sequential algorithms for controlling the molecular operations. However, these

operations must be performed \blind"; the only interface to molecular parallelism is via initialize,

combine, separate, set, clear, and read. Thus the electronic algorithms are responsible for \experi-

ment design" i.e. compiling higher-level problem speci�cations into concise sequences of molecular

operations but they cannot get any feedback from the DNA during the course of the experiment.

As a �nal comment we note that the stickers model is capable of simulating (in parallel) indepen-

dent universal machines, one per memory complex, under the usual theoretical assumption of an

unbounded number of sticker regions3. It should be noted that the stickers model is universal, in

the sense discussed, even in the absence of the clear operation, although more compact algorithms

are possible using clear.

3 Physical Implementation of the Model

Each logical operation in our model has a corresponding interpretation (which we gave as we intro-

duced the operations) in terms of what must happen to the DNA memory strands and associated

stickers when that operation is carried out. In what follows we examine various physical procedures

which are candidates for implementing these requirements for all the operations described above.

We speak in terms of tubes instead of sets; recall that a tube consists of the collection of memory

complexes that represents a set of bit strings.

Often there are several possible implementations of a given operation; each has its own assumed

strengths and weaknesses on which we speculate. However, which implementations, if any, turn out

to be viable will ultimately have to be decided by laboratory experiments.

3.1 Combination

Combination of two tubes can be performed by rehydrating the tube contents (if not already in

solution) and then combining the
uids together (by pouring or pumping for example) to form a

3
This can be seen as the consequence of two observations. First, a memory complex in the stickers model can

simulate a feedforward circuit, in the spirit of [Boneh2]. Using the clear operation, a clocked feedback circuit can

also be simulated. Second, allowing the circuit to grow with each clock cycle, we can simulate a universal machine.

The electronic algorithm is responsible for designing the new gates to �t into the circuit; each new gate will require

a new bit and hence a new sticker region in the memory strand. For concreteness, a feedforward circuit Ct can be

automatically designed which computes the instantaneous description of a TM at time step t from the description at

t� 1. Thus, the stickers model can simulate in parallel the execution of a TM on all 2
L
length L inputs.

5

new tube. It should be noted that even this seemingly straightforward operation is plagued by

constraints: if DNA is not handled gently the shear forces from pouring and mixing it will fragment

it into � 15 kilobase sections [Kornberg].

Also of concern for this operation and indeed for all others is the amount of DNA which remains

stuck to the walls of tubes, pumps, pipette tips, etc. and thus is \lost" from the computation. Even

if this \lost" DNA is a minute fraction of the total (which would be unimportant to molecular

biologists) it is problematic for computation because we are working with relatively few copies of

each relevant molecule.

3.2 Separation

The ultimate goal of the separation operation is to physically isolate those complexes in a tube that

have a sticker annealed to some position from those that do not without disturbing any annealed

stickers. The mechanism of DNA hybridization will be central to any proposal. In general, separa-

tion by hybridization is is performed by bringing the solution containing the original set of memory

complexes into contact with many identical single stranded probes. In our case, each bit position

has a particular type of probe (with a unique nucleotide sequence) that is used when separation

on that bit is performed. The probe sequence is designed such that probes hybridize only to the

region of the memory strand corresponding to their bit and nowhere else. During separation, the

original complexes with the key bit o� will be captured on the probes while all those with the bit

on will remain unbound in solution because the region is covered by a sticker. Next, the unbound

(\on") complexes are physically isolated, for example by conjugating the probes to magnetic beads

or a�xing the probes to solid support and then washing. Lastly, the \o�" memory complexes are

recovered from the probes that bound them by elution (say by heating and washing). The result is

two new tubes, one containing the memory complexes for each of the output sets of the operation.

Notice that if heating is used to achieve the �nal step of elution this must be done without also

removing all of the stickers from the memory strands. This necessitates that the probes have a

lower binding a�nity for their corresponding regions than do the stickers. This might be achieved

by making the probe sequences not exactly complementary to their regions on the memory strands

(or merely shorter) to create a di�erential between the temperature of probe-strand and sticker-

strand dissociation. An alternative is to use perfectly complementary sequences for both the probes

and stickers but to make the stickers out of an alternate backbone material (such as PNA or DNG

[Egholm1, Dempcy]) which would exhibit stronger and more speci�c binding to the DNA memory

strand than DNA probes4. PNA and DNG o�er the additional advantage that decreasing salt

concentration causes PNA/DNA and DNG/DNA to bind more strongly while the opposite is true

for DNA/DNA binding. Thus the �nal elution step might be achieved by washing in a zero salt

solution rather than by heating. There are other possibilities for creating di�erential a�nity between

the stickers and probes5.

3.3 Setting and Clearing

To set a bit in every string of a set the most obvious choice is direct annealing. An excess amount

of the sticker corresponding to the bit is added to the tube containing the set's memory complexes.

4
PNA \clamps" [Egholm2] have been shown to form (PNA)2/DNA triplexes with remarkable a�nity and speci�city.

These clamps could also be used as stickers.

5
For example crosslinking techniques might be used to covalently bond the stickers to the memory strands so that

they could not come o� during elution, although this confounds the clear operation and does not keep with the reusable

spirit of the model.

6

One sticker should anneal to every complex that does not already have one, always in the position

opposite the region corresponding to the bit being set. Subsequently the excess (unused) stickers are

removed, perhaps by �ltration or by separating out all the memory complexes. This latter proposal

could be achieved by having a universal region on every memory strand (say at the very beginning

or end) that is never covered by a sticker and designing a probe for that region as described in

the separation operation above. Such a universal region is a generally useful idea for recovering all

memory complexes from a given solution which may contain other species.

To clear a bit in every string of a set requires removing the stickers for only that bit from every

complex in a tube. Simple heating will obviously not work since all stickers from all bit regions

will come o�. One possibility is to designate certain bit regions as weak regions. These regions

have weak stickers which dissociate more easily from the memory strand than regular stickers. By

heating to some intermediate temperature all the weak stickers can be made to dissociate at once,

keeping all of the regular stickers in place.

In order to implement the clear operation in full generality, it may be possible to use the phe-

nomenon of PNA strand invasion by triple helix formation [Nielsen]. It has been shown that under

appropriate conditions, two single stranded oligos of all-pyrimidine PNA will \invade" an existing

complementary DNA/DNA duplex to form a (PNA)2/DNA triple helix, displacing the pyrimidine

DNA strand. This process is most e�cient with PNA \clamps"[Egholm2] which contain both the

Watson-Crick and Hoogsteen PNA strands in a single molecule. We suggest that if for example

21 nucleotide DNA stickers are used, then a 14 base PNA clamp could be designed which forms

a triple helix with the central 7 nucleotides of the DNA sticker. By mixing PNA clamps speci�c

to a particular bit with a tube of memory complexes, and heating, the PNA clamps should form

triple helices with the targeted sticker, destabilizing and thus \prying" it o� at a temperature lower

than the dissociation temperature for the una�ected stickers. The speci�city and reliability of this

operation are not yet known experimentally; indeed the mechanism of triplex formation[Demidov]

may be incompatible with the requirement that non-targeted stickers remain in place. In terms

of physical implementation prospects, clear seems to be the most problematic of our operations.

Recall, however, that it can be eliminated without signi�cantly sacri�cing the computational power

of the model.

3.4 Initialization and Final Output

To make a combinatorial library containing roughly one copy of every possible bit string of length L

followed by K �L zeros, it is �rst necessary to synthesize roughly 2L identical copies of a properly

designed memory strand with K � L regions. Stickers must then be added \randomly" to these

strands in positions 1 : : : L. One procedure that achieves this is outlined below. Note that the

method requires only a single step.

The strands are split into two equal volumes. To one volume is added an excess of stickers for

all bits 1::L; this results in all bits 1::L being set on all strands. The unused stickers are then

removed, for example by �ltration or by separating on a universal region of the memory strand.

The two volumes are then recombined and heated causing all stickers to dissociate. Finally the

mixture is cooled again, causing the stickers to randomly anneal to the memory strands. Since each

bit position has only one sticker for every two strands, the resulting memory complexes have any

given bit set with probability one half (very nearly independently). Under this model, the odds that

any particular bit string is not present in the �nal library is (1�1=2L)2
L

which for the L of interest

is almost exactly 1=e. In other words each string is created at least once with probability roughly

63%. This percentage can obviously be increased by synthesizing more than 2L strands initially.

7

Notice that this procedure is relatively robust to errors in stoichiometry: For example, if the original

strands are split into volumes whose ratio is not 1 but 1.5 then (for say L = 56) a randomly chosen

string is created with probability 37%, still not vanishingly small6.

To obtain an output string it is necessary to be able to detect the presence or absence of memory

complexes in a solution. If any are present, we also need to be able to isolate at least one memory

complex and then identify which stickers (if any) are annealed to it.

Detection of complexes might be accomplished by
uorescent labeling of each memory strand.

Single molecule detection can then be performed by running the solution through a �ne capillary

tube. Such detection has already been achieved experimentally, see for example [Castro]. This

technique may also be e�ective for isolating a single complex if the time between detection events is

large enough. In addition to the capillary tube method mentioned above, other proposals (e.g. based

on PCR) for complex detection are possible.

The �nal step of identifying annealed stickers may be possible by direct imaging { since we know

the order of bit regions we could imagine just looking and reading o� the answer string (perhaps

using electron microscopy). Alternately once a complex is isolated its stickers may be eluted and

poured over a detection hybridization grid [Meade] to determine which ones were present. While

these possibilities are intriguing, more practical approaches based on PCR are more likely to work

in the near term [Adleman3]. However, we show below that detection alone is su�cient to obtain

an output string. The approach is to use binary tree decoding:

Begin with the solution containing all putative answer complexes (of which there may be none).

Detect complexes in it. If there are none, then no answer has been found. If there are some then

separate them based on the �rst bit of the answer string7. Detect complexes in each of the resulting

solutions and retain the one which is not empty. If neither is empty then there is more than one

answer and either can be retained. Repeat this separation and detection for all the bits of the answer

string.

3.5 Memory Strand and Sticker Design

At several points in the above discussion it was necessary to design the sequence of the memory

strand or stickers to have certain properties. In this section we summarize those requirements and

explore possibilities for achieving them.

The most fundamental requirement of sequence design is to achieve sticker speci�city. It is critical

that the stickers only anneal to the memory strands when opposite their assigned region and not

in any other position. Thus the memory strand sequence must be designed so that any region's

complementary sticker is only complementary to that one region and has much reduced a�nity at all

other alignments along the strand. As a �rst approximation to this we will require a certain minimum

number of base mismatches at all other alignments. Notice that this is a much stronger requirement

than simply requiring each sticker to mismatch all bit regions but its own. It must mismatch every

other M long window (possibly spanning two bit regions) on the strand. Mathematically, we wish

to design a sequence of length N such that there exist K non-overlapping subsequences of lengthM

each (call them \regions") with the following property: For each region, its complement has at least

6
The expression for the probability of a random bit string being created is 1�

P
L

k=0

(
L
k)

2L
[1� rk(1+ r)�L]2

L

where

r is the ratio of the volumes into which we split initially.

7
The answer string which we are interested in reading out may be a substring of the entire string encoded by the

memory strand in which case separation only needs to be done for those bits.

8

D1 mismatches with every other subsequence of length M in the entire sequence. The quantity D1

is the minimum number of mismatches needed for a sticker M bases long not to anneal.

It is also important to eliminate secondary structure in the memory strand itself. We must prevent

the memory strand from annealing to itself and creating a hairpin structure, as this makes regions

inaccessible for proper use in the system. Ful�lling this requirement can be loosely modeled by

the combinatorial problem of designing a N long sequence such that the complement of every

subsequence of length M has at least D2 mismatches with every other subsequence of length M .

The quantity D2 is the minimum number of mismatches to prevent the memory strand from self-

annealing.

Finally, we must design separation probes such that they stick speci�cally to the appropriate region

and they have su�ciently lower a�nity there than the stickers. This ensures that there exists a

wash temperature (and salinity) for which the probes will dissociate while the stickers will remain

in place. Again, as a �rst approximation we require that the probes have at least D3 mismatches

within their region and at least D4 > D3 mismatches everywhere else.

These criteria may seem daunting. However, there are some ways to make this task potentially

easier. Notice that in general we may leave portions the memory strand unused; that is we may

not identify those portions with any regions so that the product of K and M does not always equal

N (but certainly still KM � N). In other words, we leave \gaps" between the bit regions on the

memory strand. In order to avoid the secondary structure problem, it has been suggested that the

memory strand be composed of only pyrimidines (or purines) and the stickers of only purines (or

pyrimidines)[Mir]. The applied mathematics literature on \comma free codes" and on \de Bruijn

sequences" (when D = 1) contains detailed discussions of many of the important issues (see [Neveln]

and [Fredricksen] for reasonable introductions). Also, [Smith, Baum] have discussed sequence design

in the context of DNA computation.

Finally, D1 would be reduced if higher-a�nity PNA or DNG stickers were used; furthermore, D3

would possibly be reduced to zero. Other variables other than or in addition to temperature could

be manipulated, such as salt concentration and chemical solvent, in order to achieve the relative

a�nities required for each operation. It is worth speculating about the possibility of using naturally

occurring sequences (e.g. plasmids) for the memory strands because of the obvious ease of their

mass production. However it remains to be seen if natural sequences can be found which meet the

above restrictions.

We emphasize that the criteria outlined above are for illustration only; a more sophisticated ap-

proach would have to take into consideration the sequence-dependent thermodynamic parameters

for oligonucleotide hybridization. There are several data sets available for calculating �H and �S

for DNA/DNA hybridization [Santalucia, Breslauer, Petruska], and similar data could be obtained

for PNA and/or DNG interactions. Allowances would also have to be made for potential bubble

mismatches at incorrect sticker hybridization sites, and secondary structure due to triple helix for-

mation must be prevented. The clear operation, if used, would introduce additional constraints.

Although such sophisticated design approaches could suggest potentially useful memory strand,

sticker, and probe sequences, correct operation will have to be tested experimentally.

Our conclusion is that although design of the memory strand and the stickers may be di�cult, the

design space is large; and once a strand with K regions is found, it can be used and reused in

the stickers model for any problem requiring K or fewer bits of memory. Since the stickers model

uses only a single type of memory strand, in contrast to the 2K di�erent molecules required in the

representation of [Boneh2], the design process is simpli�ed and the functionality of the strand can

be tested experimentally once and for all.

9

3.6 Experimental Feasibility

The stickers model as presented above presents challenging requirements for strand design and

experimental implementation. Several objections might be raised to the e�ect that it is unreasonable

to expect that these requirements can be met. We attempt to brie
y address some of these issues

here.

Objection: No matter what methods are proposed, DNA based techniques will su�er from strands

being misprocessed. What error rates would be required in order to still accomplish useful compu-

tation?

Response: For many search problems, including DES and NP-complete problems, probabilistic

algorithms have practical value. Answers suggested by the molecular computer, so long as there

aren't too many, can be veri�ed electronically. To ensure that a complex carrying the solution to

the problem has a 90% chance of ending up in the \answers" tube after a 1000-step computation,

separation error probabilities of less than 0:01% are required. To eliminate false-positive distrac-

tors, it may be necessary to re�ne the \answers" tube by repeating the steps of the computation

[Adleman2, Karp]. This and other related error-handling strategies are discussed in Section 5.

Objection: Purity and yield of 90% for puri�cation of DNA are considered excellent in molecular

biology. The conditions imposed for separation of memory complexes are much more challenging,

since long strands may be used, stickers must not be knocked o�, and both supernate and eluant

are required. Yet DNA computation requires much lower error rates, both for purity and yield.

Response: Isolation of particular target DNA in complicated cDNA libraries is a routine task

in molecular biology. 105-fold enrichment of target DNA, with 80% recovery, has been reported

using, for example, triplex a�nity capture [Ito]. The use of PNA probes also shows some promise:

99% puri�cation with 50% yield using PNA 15-mers has been reported [Orum]. However, current

techniques do not meet our requirements for the separation operator. We do not believe that this

is due to a fundamental limit. So long as yield is extremely high (i.e. memory complexes don't get

\lost"), our calculations (see Section 5) suggest that a poor separation can be improved dramatically

by automated processing. Furthermore, we have the opportunity to design our own sequences that

can be e�ectively separated, for example by ensuring that the memory strand has no secondary

structure. We recognize that attaining high step yield may be a major challenge, however.

Objection: Even without trying to process them at all, stickers will be falling o� their memory

strands at some rate kd. Once a sticker dissociates, it may then hybridize to and thus corrupt some

other complex. During operations such as separate, when memory complexes must be melted from

probes, kd surely increases. By the time the computation is complete, the contents of the memory

complexes may be completely scrambled.

Response: Suppose we would like to ensure that fewer than 0:01% of stickers fall o� during the

course of a 1000 hour computation. This would require a kd of less than 0:3� 10�9=sec. A generic

DNA 20-mer can be estimated to have the required kd at 42�C in 1 M [Na+] [Wetmur]. PNA and

DNG stickers would be expected to have an even lower dissociation rate, especially at low salt. High

wash temperatures may be avoided by using DNA probes and PNA or DNG stickers, and washing

in low salt. Additionally, we must be careful not to encourage other circumstances, such as rough

physical handling, which might induce sticker dissociation.

Objection: If DNA is subjected to high temperatures for a signi�cant portion of a 1000 hour

computation, it may be damaged by deamination, depurination, or strand breakage by hydrolysis,

thus rendering it non-functional. (Such objections are discussed brie
y in for example [Smith].)

10

Response: Under physiological conditions of salinity, pH, and temperature, the depurination half-

life of a base is 1,000,000 hours, and the hydrolysis half-life of a depurinated base is 400 hours

[Friedberg]. Thus, after 1000 hours, approximately 0:1% of bases will be damaged, and 10% of

2500-mer strands will remain unbroken. This last �gure is very dependent on the length of the

strands; only 0:1% of 5000-mers would survive. While not good, this indicates that for \short"

strands, errors due to damage can be compensated for by a mild increase in the volume of DNA

used in a computation. Additionally, improved rates may be possible by carefully adjusting solvent

salinity, pH, and composition { and again minimizing rough physical handling.

In summary, although there are many serious engineering challenges, we do not see any as being

clearly insurmountable.

4 A Stickers Machine Proposal

This section describes the details of one possible machine that implements computation using the

stickers model. The machine is a sort of \parallel robotic workstation for molecular computation"

in which various robotic and
uid
ow apparati are controlled by a central programmable electronic

computer. It contains of a rack of many test tubes, a small amount of robotics, some
uid pumps

and heaters/coolers and some conventional microelectronics. For each of the operations in the model,

we have made a speci�c choice of physical procedures to implement it. Thus the machine represents

one particular realization of many possible variations on the ideas discussed above. The proposal

is meant to provoke thought about the engineering issues involved in eventually constructing a

molecular computer and not as a serious or viable construction plan.

The workstation stores all DNA which represents information during the computation in so called

data tubes. Each data tube is a closed cylinder with a nipple connector in either end that allows

uid to
ow in or out. Near one end on the inside is a permanent membrane which passes solvent

but not stickers or memory strands. This membrane gives a polarity to the data tube: the connector

on the end closest to the membrane is the \clean" side while the opposite connector is \dirty". No

DNA is ever present on the clean side or in the clean connector. When a data tube is not in use it

is held clean side down with all of the DNA in the tube resting on the membrane.

The data tubes (which may be empty) hold either sets of memory complexes or supplies of unbound

stickers. Speci�cally, each set of bit strings has associated with it a data tube which holds the

memory strands and annealed stickers representing those strings. Also each bit has associated with

it a data tube which contains a supply of stickers corresponding to that bit.

Whenever a new set of complexes is created (e.g. from a separation operation) it is placed in a new

data tube. Whenever a set of complexes is destroyed (e.g. from a combination operation) the data

tube that used to contain it is discarded (or perhaps vigorously washed and sterilized for reuse).

In addition to data tubes there also exist operator tubes of similar external construction but with

di�erent internal contents. A \blank" operator tube is merely an empty tube with nipple connectors

on each end. A \sticker" operator tube is identical except for a permanent �lter on its inside which

passes stickers but not memory strands. A \separation" operator tube contains many identical

copies of one bit's oligo probe. (There is a di�erent separation operator tube for each bit.) It is

designed so that the probes cannot escape from the tube but unbound memory complexes can. For

example, the probes might be fastened to solid support (by biotinylating them and using a biotin

binding matrix) or to large beads with �lters that pass memory strands but not beads. For all of the

operator tubes, both ends are considered \dirty". Figure 3 illustrates the data and operator tubes.

11

Filter
(Passes
Stickers
but not
Memory
Strands)

DNA

Strands
(Memory

or
Stickers)

Membrane

Oligo
Probes

Separation Sticker BlankData Tube Tubes:
Operator

Clean
Side

Dirty
Side

Connectors

(Passes only
solvent)

Figure 3: Data and Operator Tubes in the stickers machine.

At any time during the operation of the machine, some tubes are in use and other are not. All

tubes that are not in use are stored on a large rack or carousel. Any single operation takes place

as follows: under control of the electronic computer two data tubes are selected and removed from

the rack by a robot. One operator tube is also selected and removed. The dirty sides of the data

tubes are connected to the operator tube, one data tube at each end of the operator. The clean sides

of the data tubes are joined by a pump. Solution is cycled through all three tubes. The direction

of
ow may be towards the �rst data tube, or vice versa, or both intermingled. The temperature,

salinity, direction, and duration of the
ow is controlled by the electronic computer. Once the
ow

stops, one or more of the tubes is disconnected and replaced on the rack (or discarded). New tubes

then come in from the rack until there are once again two data tubes and one operator tube and the

next operation begins. Notice that in general clean connectors never touch dirty ones and only clean

connectors contact the pumping system. This setup for a generic operation is shown in Figure 4.

Operator Tube
Data
Tube

Data
Tube

#1 #2

Pump & Heater/Cooler

Figure 4: Setup for a generic operation in the stickers machine.

12

We will now review how each of our conceptual operations can be performed as outlined generically

above. The descriptions below are summarized graphically in Figure 5.

� To combine two sets of complexes simply select the two data tubes and a blank operator tube.

Cycle cold solution towards (say) the �rst data tube. This catches all the memory complexes

in the �rst data tube. The second data tube and the blank operator are discarded.

� To separate a set of complexes based on the value of some bit, select the data tube containing

the complexes to be separated and also an empty data tube. Select the separation operator

tube for the bit in question. Cycle cold solution in both directions for some time; this allows

the probes to bind those complexes that have the bit in question o�. Next cycle cold solution

towards the empty data tube, forcing all the unbound memory complexes into it. Detach

this (originally empty) tube and return it to the rack; it holds the complexes with the bit in

question on. Replace it with another empty data tube. Cycle hot solution (or perhaps low

salinity solution) towards this new data tube. This releases the memory complexes bound to

the probes and forces them into the new data tube. Detach this tube and return it to the rack

also; it contains complexes with the bit o�. Discard the original data tube (now empty) and

return the operator tube to the rack.

� To set a bit (add a sticker to a set of complexes), select the data tube containing the complexes

and also the data tube containing the sticker supply for the sticker to be added. Using the

sticker operator tube cycle cold solution in both directions for some time. This washes the

stickers over the memory complexes allowing them to anneal. Now cycle cold solution towards

the sticker data tube. This returns the unused stickers and leaves all the memory complexes

caught on the �lter in the operator tube. Disconnect the sticker data tube and return it to the

rack. Replace it with an empty data tube. Cycle cold solution towards the memory complex

data tube. This expels the memory complexes from the operator tube and returns them to

their data tube. Return the memory complex data tube to the rack and discard the operator

tube and empty data tube.

Additional parallelism can be added in many places. For example, setting or clearing bits might

be applied to many data tubes at once by stacking all of them after the operator tube. Also, many

copies of the robotics might be included to allow several operations to be performed simultaneously

(this would also require multiple copies of, for example, the separator operator and sticker operator

tubes).

As we have described it, the stickers machine requires relatively rudimentary robotics and electronics.

Simple
uid pumps and heaters/coolers are also necessary. It can be stocked with a generic supply

of empty data tubes, blank operator tubes, sticker operator tubes, and salt solutions of various

concentrations. It contains data tubes containing both the original sets of memory strands and the

sticker supplies for each bit. It also needs to be loaded with the separation operator tubes for each

bit. An important feature is that these tubes are reusable from problem to problem, so long as the

number of bits required does not exceed the number of regions on the designed memory strand. For

a problem of reasonable size on the order of a few thousand tubes might be required (for example

DES as described in [Adleman3]). With each data tube being a few m` in size and operator tubes

perhaps a hundred times this size it is not inconceivable that such a machine might �t on a desktop

or lab bench. This example directly addresses the concern that any useful or hard computation

will require an enormous volume of DNA by demonstrating both a speci�c problem and a speci�c

machine proposal for which this seems far from true.

13

Filter
(Passes
Stickers
but not
Memory
Strands)

Filter
(Passes
Stickers
but not
Memory
Strands)

Set Bit

Cold
Wash

Data
Tube

Tube

Cold
Wash

Data
Tube

Tube
Sticker Blank

Cold
Wash

Tube

Tube

Wash

Tube

Tube

Source

Output

(bit ON)

Output

(bit OFF)

Source

Probes Probes

Warm

Separation

Filter
(Passes
Stickers
but not
Memory
Strands)

Filter
(Passes
Stickers
but not
Memory
Strands)

Cold
Wash

Data
Tube

Cold
Wash

Data
Tube

Tube
Blank

Clear Bit

Anti-Sticker
Tube

(PNA strand
 invasion)

Cold
Wash

Data
Tube

#1

Data
Tube

#2

Blank

Combination

Summary
of all

Operations

Figure 5: Graphical synopsis of all operations in the stickers machine.

14

5 Reducing Error Rates: A Re�nery Model

In this section we introduce a second possible implementation of the stickers model. In contrast to

the \stickers machine" discussed above, the \stickers re�nery" addresses the issue of how to perform

reliable computation using a very unreliable separation operator. The re�nery model also illustrates

the principle of pipelining, whereby a large volume of memory complexes can be processed by small

capacity operators with minimal slowdown. These advantages come at the cost of a time-space

trade-o� which we �nd reasonable.

5.1 An Error Framework

There are three fundamental types of errors that might be made by any molecular computer which

attempts to sort a huge library of initial candidate solution complexes into those which encode a

solution to a problem and those which do not. It may give some false positives, namely some of

the complexes that it classi�es as solving the problem actually may not. It may also have false

negatives which occur when complexes that are classi�ed as not solving the problem actually do

solve it. Finally, the machine may incur some strand losses { some of the complexes which were

present in the input may not appear in the output at all: they may simply get lost somewhere inside

the machine. What are the error requirements to do useful computation ? It is clear that we want

low false positive and false negative rates and few strand losses, but how low do they need to be ?

Our model of a molecular computer is a machine that takes as input a tube encoding a large number

of potential solutions to some problem and produces as output two tubes, one labeled Yes and the

other No. In the Yes tube are all those complexes which the machine has decided encode solutions

to the problem, in the No tube are all those complexes which it has decided do not encode solutions.

Call a good complex one which actually does encode a solution and a bad complex one which actually

does not. Because the machine is not perfect, there may be some good complexes in the No output,

some bad complexes in the Yes output, as well as some losses.

Now we are in a position to state our requirements for error rates: We want two things to be true

with high probability (say 1 � �) each time we run the molecular computer: there is at least one

good complex in the Yes tube and the ratio of good to bad complexes in the Yes tube is reasonable

(say � 1). Informally, when we get the answer tube, we will �sh around in it, pull out a random

complex (if there are any), and read the solution that it encodes. We will be disappointed if either

(a) we do not �nd any complexes in the answer tube or (b) the complex we read does not actually

encode a solution. Our goal is to be disappointed with low probability.

We would like to be able to answer the question: \How good do individual operations have to be for

disappointment to be rare ?" Unfortunately, it is very complicated to express the above requirements

in terms of conditions on the �delity of the individual operations such as separate. In fact, even for

reasonably simple error models, the answers are extremely dependent on the particular architecture

of the molecular computer and on the problem being solved8. Instead we will work with a model

8
For example, one could imagine a simple model of errors which is characterized by only three numbers (each

between 0 and 1): a false positive rate Rfp, a false negative rate Rfn and a loss rate Rloss. Any given complex is

\lost" with probability Rloss. If not lost, good complexes go to the Yes tube with probability (1 � Rfn) and bad

complexes go to the No tube with probability (1�Rfp) regardless of the speci�c bit string they encode. Under such a

model, if our input tube contains G good complexes and B bad complexes (typically G << B) then we require a false

negative rate Rfn which is less than some function f1(G;B; �), a false positive rate Rfp which is less than f2(G;B; �),

and a loss rate Rloss which is less than f3(G;B; �), where � is the fraction of runs of the experiment that will result in

15

which allows us to characterize the fraction of complexes not yet correctly processed (denoted simply

�) at some time T after we begin the computation. This quantity can be easily understood as follows:

we turn on our molecular computer at time 0 and feed it its input. It works away, placing some

complexes in the Yes tube and some in the No tube. At time T we stop the machine and collect the

Yes and No tubes. At this point, original input complexes fall into three categories: (1) those which

have been correctly placed9 into either Yes or No, (2) those which have been incorrectly placed into

Yes or No, and (3) those which were either lost or were still being processed by the machine when

we turned it o�. The fraction of complexes not yet correctly processed (�) is the fraction of the

original input complexes which fall into either categories (2) or (3) above at time T . We would like

�to be very near zero. Below we develop a model which allows us to compute � for various machine

architectures and also various time and space tradeo� factors in terms of only the �delity of the

atomic operations which are used by the machine, independent of the problem being solved.

5.2 Computing �

We will consider a very simple mathematical model of a molecular computer as a series of exactly

S identical separation operations. The separation operation is used because it is a fundamental

operation in the stickers model; both the set bit and clear bit operations can be described in terms of

only separations (see Section 5.7). This model assumes that the algorithm used to process complexes

has the e�ect of passing each one though at most S separations (an assumption which is true for

all algorithms that terminate within a known time)10. It further assumes that complexes do not

interfere with one another, nor do di�erent bit positions on a single strand. For the moment, let us

also assume that there are no strand losses; we will return to this crucial issue later.

Assume that (regardless of which bit is being used to separate and of the values of any other

bits) each separation operation takes one unit of time to complete and has a probability p of

correctly processing each complex in its input11. Notice that we expect p to be near unity. In

every separation, we assume that each complex ends up in one or the other of the output tubes; no

strands are physically lost. Now any computation will take S units of time and when it is done,

the fraction of complexes not yet correctly processed will be a depressingly high � = (1 � pS).

(For example if p = 0:9 and S = 100 then � = 0:99997.) The main point of this section is that

without changing p (i.e. without improving the basic biotechnology used to implement operations)

disappointment. However, it turns out that even when f1,f2, and f3 have been determined, the conversion from these

three numbers to a requirement on the �delity of individual operations is highly architecture dependent; compare for

example the simple OR of all bits in a bit string with the simple AND.
9
Note that good complexes can be incorrectly processed at some step(s), yet still end up in the \Yes" tube; similarly

bad complexes can end up in \No" after incorrect processing. We still count these cases as incorrect.

10
Recall that since \answer readout" and \strand detection" are not permitted during the course of the computation,

the algorithm which controls the processing cannot get any feedback and so cannot do any \if then else" type branching.

To see that the model assumption is not as restrictive as it may seem, consider architectures that are of the form of

feedforward layered circuits with S layers. Each layer receives some number of input tubes from the previous layer and

produces some (possibly di�erent) number of output tubes which it passes to the next layer. No tube may go through

more than one separation per layer. In this way, for any individual complex such architectures look like a series of S

identical separation operations, although di�erent complexes may take di�erent paths through the circuit. The �rst

layer receives as its input the single tube which was the input to the entire problem. The �nal layer (S) produces as

its output the �nal output tubes for the problem. Any (terminating) algorithm for doing a stickers computation can

be converted into a feedforward circuit of this kind.

11
In practice, operations like separation have a much higher probability of correctly processing some inputs than

others. For example if hybridization is used, it is much harder for probes to erroneously capture complexes than it

is for them to let through complexes which they should capture. All of the mathematics which follows can easily be

done for the assymetric probability case although it is somewhat more complicated.

16

and without reducing S (i.e. without moving to easier problems) the fraction � can be made much

smaller using intelligent space and time tradeo�s.

Imagine that you have in hand enough hardware (i.e. units that perform separations and test tubes)

to perform a given computation. A space tradeo� of factor H involves obtainingH�1 extra identical

copies of that hardware, which we may use in parallel. A time slowdown of factor M involves taking

M �S units of time instead of merely S to perform the computation. How can these factors be used

to reduce errors ? Given any algorithm A for performing a computation and factors H and M we

would like to investigate algorithm transformations which give us a new algorithm A0 (that runs in

no more than M � S time and requires no more than H copies of the hardware) that has a smaller �

than the original A.

5.3 Repeating the Computation

A basic transformation, repeating was proposed by Adleman in [Adleman2]. It makes use of a

slowdown factor of M by proposing A0 as follows:

� Repeat M times:

Run A on input I, producing tubes Y and N.

Discard tube N and rename tube Y to tube I.

� Return tube I as the ``Yes'' tube and an empty tube as ``No''.

This approach is of value when the original algorithm A was known to very reliably place good

complexes into its Yes output (i.e. low false negatives) but to often also place bad complexes into

Yes (i.e. high false positives). Note that if the original algorithm was known instead to have high

false negatives and low false positives then the following version of repeating can be used:

� Make an empty tube Z.

� Repeat M times:

Run A on input I, producing tubes Y and N.

Combine tube Y into tube Z, destroying Y .

Rename tube N to tube I.

� Return tube Z as the ``Yes'' tube and tube I as ``No''.

By how much does repeating reduce � ? The performance of this transformation is bounded by the

performance of an imaginary transformation called repeating with an oracle which makes use of a

new oracle operation. The oracle takes as input two tubes Y and N and produces as output three

tubes: Y 0,N 0, and X. In Y 0 are all the good complexes that were in the input tube Y , in N 0 are all

the bad complexes that were in the input tube N , and in X are all the bad complexes from Y along

with all the good complexes from N . In other words, the oracle \�xes-up" Y and N by putting

any incorrectly processed complexes into X. Using this magical operation, repeating with an oracle

transforms A into the following A0:

� Make an empty tube Z.

� Repeat M times:

Run A on input I, producing tubes Y and N.

Run the oracle on Y and N, producing Y 0,N 0, and X.

Discard tube N 0 and combine tube Y 0 into tube Z, destroying Y 0.

Rename tube X to tube I.

� Return tube Z as the ``Yes'' tube and tube I as ``No''.

17

This transformation improves � from 1�pS to (1�pS)M . The vanilla repeating transformations can

approach but never exceed this improvement. The reason that plain repeating works well at all is

that for very disparate false positive and negative rates, one can approximate the action of the oracle

easily. While these transformations do yield some reduction in � they require enormous slowdowns

to improve even modest sized problems. For larger problems, the slowdowns these transformations

require are enormous. Figure 6 shows the slowdown factors required to achieve various performance

levels for the case in which p = 0:9 and S = 100 or S = 1000.

1 2 3 4 5 6 7 8 9
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Slowdown vs. Performance (Atomic = 90%, 100 layers)

Slowdown Factor Required (in units of 10^5 !)

Horizontal Scale in units of 10^5 !

F
ra

ct
io

n
N

ot
 Y

et
 C

or
re

ct
ly

 P
ro

ce
ss

ed
 (

de
lta

)

2 4 6 8 10 12 14
10

−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Slowdown vs. Performance (Atomic = 90%, 1000 layers)

Slowdown Factor Required (in units of 10^46 !!)

Horizontal Scale in units of 10^46 !!

F
ra

ct
io

n
N

ot
 Y

et
 C

or
re

ct
ly

 P
ro

ce
ss

ed
 (

de
lta

)

Figure 6: Performance vs. Slowdown for repetition with an oracle

5.4 A New Operation: Compound Separation

It is possible to make much better use of space and time tradeo�s than the above transformations

do. Shortly, we will develop new transformations which do this, but �rst we must introduce a new

operation which they employ known as compound separation.

The central observation is that the following algorithm, analogous to \countercurrent cascade stages"

in chemical engineering [Wankat], will exponentially improve upon the accuracy of the Separation

step:

� Begin with a tube T0 whose contents we wish to separate based on bit k.

� Begin also with 2N extra tubes called T�N ; : : : ; T�1 and T1; : : : ; TN, initially empty.

� for t=1 to Q

for j=-N+1 to N-1 s.t. t+j � 1 (mod 2)

Separate Tj into Ton and Toff based on bit k

Combine Ton and Tj+1 into Tj+1
Combine Toff and Tj�1 into Tj�1

(Notice that for odd t, odd numbered tubes start o� empty and for even t, even numbered tubes

start o� empty.)

Thus each complex will perform a biased random walk in tubes T�N through TN , with absorption

at the boundaries. Most memory complexes which have bit k on will end up in TN , while most

memory complexes which have bit k o� will end up in T�N . A graphical illustration of the process

is shown in Figure 7. The statistics of such processes have been thoroughly worked out (see the

18

identical
units

Original Input

2N - 1

onoffonoff off onoff on on

Final

Output
"Off"

Final

Output
"On"

off

bit i ? bit i ? bit i ? bit i ? bit i ?

Figure 7: A Compound Separator

\Gambler's Ruin" problem [Feller]). Let p be the probability that a separation step correctly moves

a complex into Ton or Toff . At the end of the algorithm, we would like to know the probabilities

that a complex with bit k on (or o�) will either be in tube T�N , TN , or still stuck in some other

tube. Let us �rst consider the case Q = 1, i.e. each complex continues to be processed until it it

absorbed at either T�N or TN . Then a complex has probability p1 of being correctly processed,

where

p1 =
1

1 + (
1�p
p
)N

:

For example, if p = 0:9, we choose N = 5, and then p1 � 1 � 10�5. It is critical to this argument

that no memory complexes are lost in the woodwork. However, it is not crucial that Q be 1. The

expected time tcompound for a complex to arrive in either T�N or TN is

htcompoundi =
N

2p� 1

1� 2

1� rN

1� r2N

!

where r = p
1�p

. In the example, htcompoundi � 6:25. In fact, in this example, Q = 20 ensures that

fewer than 10�4 of the complexes are not correctly processed. Figure 8 shows the performance (�)

of compound separation as a function of number of steps (Q) for various chain lengths (N).

We have shown that, by applying the compound separation algorithm above, we can achieve excellent

error rates even when the fundamental separation operation is not reliable. This comes at the cost

of a small linear slowdown (and a few extra tubes) { in general we need to perform Q �N separations

instead of one.

Notice that this algorithm can be easily parallelized: if N \atomic" separator units are available

instead of just one then the slowdown factor can be reduced to Q by performing all the separations

simultaneously (i.e. do all iterations of the inner for j : : : loop in parallel). We will call this

parallelized algorithm parallel compound separation.

Although the basic mathematics are not new, to our knowledge the �rst application of this idea

to molecular computation appeared in [Karp]. Their \Super Extract" operation is very similar

(although not identical to) the compound separation we have proposed above. We refer the reader

to the excellent discussion and detailed analysis (including some interesting bounds) contained

therein.

19

0 10 20 30 40 50 60 70 80 90 100
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Compound Separator Performance (Atomic = 90%)

Steps Performed

F
ra

ct
io

n
N

ot
 Y

et
 C

or
re

ct
ly

 P
ro

ce
ss

ed
 (

de
lta

)

N=1

N=2

N=3

N=4

N=5

N=6

N=7

N=8

N=9

N=10

Figure 8: Compound Separation Performance. The bars on the left show the mean time � one

standard deviation for complexes to be absorbed at a boundary.

5.5 Better Transformations: The Re�nery Idea

What if we were to replace every separate operation in our original algorithm A with a compound

separation ? This would incur a slowdown factor of M = Q � N but would give an enormous

reduction in � since the �delity of each separation has improved exponentially. This is exactly the

idea behind the serial re�nery transformation which exploits a slowdown factor of M . It proposes

A0 to be:

� Run A on input I, replacing each separation operation with a compound separation operation

of chain size N and duration Q where Q �N �M.

Notice that if a space tradeo� factor of H is also available then we can employ the one layer re�nery

transformation which makes use of the available parallelism H and slowdown M by specifying A0

to be:

� Run A on input I, replacing each separation operation with a parallel compound separation

operation of chain size N and duration Q where Q �N �M �H.

The one layer re�nery is so named because if A originally processed one layer in parallel before

moving on to the next layer, with su�cient parallelism A0 may now process each layer in parallel

for Q steps, and then move on to the next layer.

For the moment we defer the issue of how to decide on the optimal factorization of M or M �H into

Q �N although we return to it shortly. (The obvious choice is to choose N = H and Q =M .) First

let us �nd out how much improvement in � this transformation buys us. The exact expression for �

is complicated12 but easily computable. The plots in Figure 9 show the performance (�) of the one

12
For the a�cionado, � = 1� [p̂(N;Q)]S where p̂ is the probability of getting absorbed at the correct boundary in

Q steps or less in a biased random walk (bias probability = p) with absorption at boundaries N and �N . In turn,

p̂(N;Q) =
P

Q

i=0

h
2i

2N
(1� p)(i�N)=2p(i+N)=2

P2N�1

v=1
cos

i�1 �v

2N
sin

�v

2N
sin

�v

2

i
where the expression in square brackets

is the probability of absorption in exactly i steps. All of the mathematics can be extended to the case when the random

walk bias is di�erent in each direction; see [Feller].

20

layer re�nery transformation as a function of slowdown factor (M) for various compound separator

chain lengths (N) and for S = 100 and S = 1000. The plots assume that we have chosen Q = M

and N = H.

0 10 20 30 40 50 60
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

One Layer Performance (Atomic = 90%, 100 steps)

Slowdown Factor

F
ra

ct
io

n
N

ot
 Y

et
 C

or
re

ct
ly

 P
ro

ce
ss

ed
 (

de
lta

)

N=3

N=4

N=5

N=6

N=7

N=8

N=9

N=10

0 10 20 30 40 50 60
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

One Layer Performance (Atomic = 90%, 1000 steps)

Slowdown Factor

F
ra

ct
io

n
N

ot
 Y

et
 C

or
re

ct
ly

 P
ro

ce
ss

ed
 (

de
lta

)

N=4

N=5

N=6

N=7

N=8

N=9

N=10

Figure 9: One Layer Re�nery performance for S=100 and S=1000. Plots assume that we have

chosen Q =M and N = H (see text).

5.6 A Fully Parallel Re�nery Architecture

In the remainder of this section we show how, by exploiting the ideas above, a new machine ar-

chitecture called the \stickers re�nery" which achieves the same low error rates as the one layer

re�nery and greater speed-up by continuously processing all steps in the computation { at the cost,

of course, of additional space. The re�nery architecture may have other advantages as well, which

we will comment on below.

As shown in Figure 8, the mean time for a complex to get through a single compound separation

chain is considerably less than the Q required to obtain maximal performance, typically by a factor

of about 4. Most of the time during a computation is spent waiting for a few straggling complexes to

come out of a separator chain. We can avoid this wasted time by proceeding to process complexes

as soon as they are absorbed in T�N or TN . The parallel re�nery transformation creates A0 by

replacing each separation operation in A by a parallel compound separation of chain length N , and

then iteratively processing the entire computation in parallel for T iterations.

Speci�cally, suppose A has S �W separations (S feedforward layers, at most W per layer) and uses

tubes T 0 : : : T J , where separation i separates T jin;i into T jon;i and T joff;i based on bit ki. Then the

parallel re�nery transformation given as A0 which is de�ned as:

21

� Begin with 3 � S �W � (2N � 1) tubes T j

n, and T j

on;n and T
j

off;n
for �N + 1 � n � N � 1.

� Initially, T 1
0 contains the mother tube complexes.

� for t=1 to T

for j=1 to S �W (do all j in parallel)

for n=-N+1 to N-1 (do all n in parallel)

Separate T j

n into T j

on;n and T
j

off;n
based on bit kj

for j=1 to S �W (do all j in parallel)

for n=-N+2 to N-2 (do all n in parallel)

Combine T
j

on;n�1 and T
j

off;n+1 into T j

n

Combine T
j

off;�N+1 into T
joff;j

0

Combine T
j

on;N�1 into T
jon;j

0

Compared to the original A, the fully parallel re�nery requires a space tradeo� factor of H =

(2N � 1) �S (since every separation is expanded) and a slowdown factor (not necessarily integer) of

M = T
S
. The question is, what parallelism H and slowdown M = are required to obtain a desired

performance �? We answer this question by calculating � given N and T , as before. First we note

that the probability that a given complex is correctly processed after T steps can be decomposed into

the probability pdone(N;T) that it is in either the \Yes" tube or the \No" tube after T steps (i.e. not

still in the machine when we stop) and the probability pcorrect(N) that a complex arriving in a �nal

tube has been correctly processed13. Recall that a complex has probability p1 = 1=

�
1 +

�
1�p
p

�N�
of having been correctly separated every time it leaves a compound separator, so pcorrect(N) =

(p1)S . The distribution of emergence times can be obtained by convolving the distribution for a

single compound separation, thus numerically calculating pdone(N;T). Then � = 1 � pdonepcorrect.

The result of doing such a computation for p = 0:9, N = 1 : : : 10 and S = 100 and S = 1000 are

shown in Figure 10 below.

0 5 10 15
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Refinery Performance (Atomic = 90%, 100 layers)

Slowdown Factor

F
ra

ct
io

n
N

ot
 Y

et
 C

or
re

ct
ly

 P
ro

ce
ss

ed
 (

de
lta

)

N=3

N=4

N=5

N=6

N=7

N=8

N=9

N=10

0 5 10 15
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Refinery Performance (Atomic = 90%, 1000 layers)

Slowdown Factor

F
ra

ct
io

n
N

ot
 Y

et
 C

or
re

ct
ly

 P
ro

ce
ss

ed
 (

de
lta

)

N=4

N=5

N=6

N=7

N=8

N=9

N=10

Figure 10: Fully Parallel Re�nery performance for S=100 and S=1000. The bars on the left show

the mean time � one standard deviation for complexes to emerge from the entire re�nery.

13
This second probability is independent of when the complex emerges.

22

5.7 Advantages of the Full Re�nery

With the fully parallel re�nery, we can obtain the same target error performance and a roughly

4-fold smaller slowdown factor then the one layer re�nery at the cost of S-fold more space and

parallelism. This may not seem like a bene�cial trade-o� since S can be potentially large and 4 is

small. In fact, it turns out that the 4-fold speedup can be achieved with an extra space tradeo�

of much less than S times14. However, the fully parallel re�nery a�ords a number of interesting

possibilities. For example, suppose our fundamental separation units can handle limited volume,

but we need to process a 10000-fold larger volume of DNA. We can \pipeline" the computation by

inputting small aliquots of the mother tube at each step, and waiting until the last aliquot gets out.

Now most of the machine is being utilized most of the time instead of idly pumping solution around.

If the non-pipelined parallel re�nery would have taken 10000 steps, then after about 20000 steps the

entire computation will be �nished, performing a 10000-fold larger search than the non-pipelined

version while taking only twice the time. In other words, we are now exploiting for computation

all of the additional parallelism and time employed beyond that used by the naive algorithm, while

gaining vastly improved error rates for free.

The parallel re�nery model does not require re-use of any separation unit to serve at multiple points

in the algorithm, and thus a general purpose robotic workstation (such as the stickers machine) is

unnecessary. We envision a special-purpose re�nery system being assembled, from standard units,

for each problem to be solved. A separation unit consists of a reservoir into which complexes are

received, an a�nity column with DNA probes on solid support, pumps and heaters for the wash

and elution, and two exit channels (labeled \on" and \o�") which lead permanently (through piping

or tubing) to the reservoirs of other separation units. We refer to such a machine as embodying

the \stickers re�nery architecture". It is our hope that a re�nery architecture will alleviate the

problem of \lost strands", because the physical permanence of all connections allows temporarily

stuck strands to eventually become unstuck and still complete the computation.

onoffonoff off onoff on on

Final

Output
"Bit Set"

off

bit i ? bit i ? bit i ? bit i ? bit i ?

universal ?universal ?universal ? universal ? universal ?

yesno no no no noyes yes yes yes

Stickers
Reservoir

Original Input

StickersRecycle

StrandsRe-process

Figure 11: A Reliable set Operation

14
If we consider where the complexes are at some time t, we see that the vast majority of them are near layer

t=htcompoundi, leaving the rest of the machine empty { a waste. This observation leads to an intermediate class of

re�nery algorithms in which a moving window of L < S layers of the circuit are being continually processed as in the

full parallel re�nery algorithm. Since the distribution of complexes is fairly thin, L can be small, thus requiring less

space while achieving nearly identical performance.

23

Note that the performance of the operations set and clear can also be improved using these ideas. A

set operation can be implemented by two compound separations, the �rst separating based on the

universal tag, and the second separating based on the bit being set, as diagrammed in Figure 11.

The starting tube is seeded at the beginning of the computation with an excess of stickers, which

the universal separation recycles. Complexes which failed to acquire the sticker are returned to the

starting tube, where they have another chance to hybridize with a sticker. A similar technique could

be used for clear, adding a step to purify stickers from PNA clamps.

5.8 Using re�neries

It is illustrative to consider using the re�nery to solve a particular problem. We will consider

breaking DES, for which the naive algorithm A has S = 6500 and W = 32. Let's suppose p = 0:9.

Using the one layer re�nery algorithm and N = 10, we incur a space factor of 19 and a slowdown of

� 60 (no further slowdown helps); this achieves � � 1:9 � 10�6. We started with 256 keys, exactly

one of which is good. We can be sure (except for 1.9 in a million) that the good key will end up in

the \Yes" tube, but 256� � 1:4 � 1011 bad keys will be incorrectly processed. Will the incorrectly

processed complexes also end up in the \Yes" tube as distractors? In the case of the DES algorithm,

we argue that they won't end up in the \Yes" tube [Adleman3]. However, we cannot make the same

argument for generic algorithms, and so we consider the worst case scenario in which all of the

incorrectly processed complexes are distractors. In this case, we need to achieve � � 10�17 to get

the number of distractors below 1. With the one layer re�nery, this could either be realized by

increasing the space factor to 43 (N = 22) and the slowdown to � 125, or by simply re-running

the N = 10 version mentioned above three times in a row15 (giving a space factor of 19 and a

slowdown of � 180). This last approach is an interesting example of what can be further achieved

by composing the various algorithm transformations we discussed above.

6 Conclusions

In this paper we have tried to visualize a practical molecular computer. A number of previous

concerns [Smith, Hartmanis, Letters to Science] have been addressed. First, it is now clear, from

our own work and that of others, that general-purpose algorithms can be implemented by DNA-

based computers, potentially solving a wide class of search problems. Second, we now understand

that there are challenging problems, such as breaking DES, for which only modest volumes of

DNA (e.g. 2 grams) should su�ce. Third, we demonstrated that the formation and breaking of

covalent bonds is not intrinsic to DNA-based computation. This means that costly and short-lived

materials such as enzymes are not necessary, nor are energetically costly processes such as PCR.

All the materials in the stickers model are potentially reusable from one computation to the next.

Fourth, we have shown that a single essential biotechnology, sequence-speci�c separation, su�ces

for constructing a general-purpose molecular computer. Fifth, we now know that separation errors

can theoretically be reduced to tolerable levels by invoking a trade-o� between time, space, and

error rates at the level of algorithm design; we have also illustrated several speci�c ways in which

this can be done and presented encouraging numerical calculations of their performance.

That several major roadblocks have been overcome at a theoretical level suggests that real appli-

cations of molecular computation may be feasible in the future. Nonetheless, we emphasize that

15
Thus the expected number of distractors will be 1:4� 10

11
(�rst run), 2:7� 10

5
(second run), 0:5 (third run).

24

substantial engineering challenges remain at almost all stages and that the ultimate success or fail-

ure of DNA computing will certainly depend on whether these challenges can be met in laboratory

investigations.

7 Acknowledgments

The authors would like to express their appreciation to Professor John Baldeschwieler for his contri-

butions to this paper through early discussions of this work. Sam Roweis and Erik Winfree are also

grateful to their advisor, Professor John Hop�eld for his perpetual wisdom and long term advice.

References

[Adleman1] Leonard Adleman. Molecular Computation of Solutions to Combinatorial Problems. Science

266: 1021{1024 (Nov. 11) 1994.

[Adleman2] Leonard Adleman. On Constructing a Molecular Computer. Draft Jan. 11, 1995.

[Adleman3] Leonard Adleman, Paul W. K Rothemund, Sam Roweis, Erik Winfree. On Applying Molecular

Computation to the Data Encryption Standard. These proceedings.

[Amos] Martyn Amos, Alan Gibbons, and David Hodgson. Error-resistant Implementation of DNA

Computations. Draft, Jan 1996.

[Baum] Eric B. Baum. DNA Sequences Useful for Computation. Draft 1995.

[Beaver] Don Beaver. Molecular Computing. Penn State University Tech Report CSE-95-001

[Boneh1] Dan Boneh, Christopher Dunworth, and Richard J. Lipton. Breaking DES Using a Molecular

Computer. Technical Report CS-TR-489-95, Princeton University, 1995.

[Boneh2] Dan Boneh, C. Dunworth, R. Lipton, and J. Sgall. On the Computational Power of DNA. Draft

1995.

[Boneh3] Dan Boneh and Richard Lipton. Making DNA Computers Error Resistant. Draft 1995.

[Breslauer] Kenneth J. Breslauer, Ronald Frank, Helmut Bl�ocker, Luis A. Marky. Predicting DNA duplex

stability from the base sequence. Proc. Natl. Acad. Sci. USA, 83: 3746{3750, June 1986.

[Castro] Alonso Castro and E. Brooks Shera. Single-molecule Detection: Applications to Ultrasensitive

Biochemical Analysis. Applied Optics, 34 (18): 3218{3222, June 20, 1995.

[Demidov] Vadim V. Demidov, Michael V. Yavnilovich, Boris P. Belotserkovskii, Maxim D. Frank-

Kamenetskii, and Peter E. Nielsen. Kinetics and Mechanism of Polyamide (\peptide") nucleic

acid binding to duplex DNA. Proc Natl. Acad. Sci. USA 92: 2637{2641, 1995.

[Dempcy] Robert O. Dempcy, Kenneth A. Browne, and Thomas C. Bruice. Synthesis of a thymidyl

pentamer of deoxyribonucleic guanidine and binding studies with DNA homopolynucleotides.

Proc. Natl. Acad. Sci. USA, 92: 6097{6101, June 1995.

[Egholm1] Michael Egholm, Ole Buchardt, Leif Christensen, Carsten Behrens, Susan M. Freier, David A.

Driver, Rolf H. Berg, Soeg K. Kim, Begt Norden, and Peter E. Nielsen. PNA hybridizes to

complememntary oligonucleotides obeying the Watson-Crick hydrogen bonding rules. Nature,

365: 566{568 (7 Oct.), 1993.

[Egholm2] Michael Egholm, Leif Christensen, Kim L. Dueholm, Ole Buchardt, James Coull, and Pe-

ter E. Nielsen. E�cient pH-independent sequence-speci�c DNA binding by pseudoisocytosine-

containing bis-PNA. Nucleic Acids Research, 23(2): 217{222, 1995.

25

[Feller] William Feller. An Introduction to Probability Theory and Its Applications, Volume I, 3rd

edition. John Wiley & Sons. 1968.

[Fredricksen] Harold Fredricksen. A Survey of Full Length Nonlinear Shift Register Cycle Algorithms. SIAM

Review, 24(2):195-221, 1982.

[Friedberg] Errol C. Friedberg. DNA Repair. W. H. Freeman and Co., 1985.

[Garey] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman and Co., 1979.

[Hartmanis] Juris Hartmanis. On the Weight of Computations. Bulletin of the European Association for

Theoretical Computer Science, 55: 136{138, 1995.

[Ito] Takashi Ito, Cassandra L. Smith, Charles R. Cantor. Sequence-speci�c DNA puri�cation by

triplex a�nity capture. Proc. Natl. Acad. Sci. USA, 89: 495{498, January 1992.

[Karp] Richard Karp, Claire Kenyon and Orli Waarts. Error Resilient DNA Computation. Labora-

toire de l'Informatique du Parallelisme, Ecole Normale Superieure de Lyon, Research Report

Number 95-20 Sept. 1995.

[Kornberg] Arthur Kornberg. DNA Replication, 2nd edition. W.H. Freman and Company, New York, New

York, 1992.

[Letters to Science] Letters to Science, 268: 481{484, 1995.

[Lipton] Richard Lipton. DNA Solution of Hard Computational Problems. Science 268: 542{545 (Apr.

28) 1995.

[Meade] Scienti�c American pp. 33{34, May 1995

[Mir] Kalim Mir, personal communication.

[Neveln] Bob Neveln. Comma-free and Synchronizable Codes. J. theor. Biol., 144:209{212, 1990.

[Nielsen] Peter E. Nielsen, Michael Egholm, Rolf H. Berg, and Ole Buchardt. Sequence-Selective Recog-

nition of DNA by Strand Displacement with a Thymine-Substituted Polyamide. Science, 254:

1497{1500, 1991.

[Orum] H. Orum, P. E. Nielsen, M. Jorgensen, C. Larsson, C. Stanley, and T. Koch. Sequence-speci�c

Puri�cation of Nucleic Acids by PNA-Controlled Hybrid Selection. BioTechniques 19: 472{480,

1995.

[Petruska] John Pestruska and Myron F. Goodman. Enthalpy-Entropy Compensation in DNA Melting

Thermodynamics. Journal of Biological Chemistry 270(2): 746{750, January 1995.

[Reif] Parallel Molecular Computation: Models and Simulations. Seventh Annual ACM Symposium

on Parallel Algorithms and Architectures (SPAA95), Santa Barbara, June, 1995.

[Roos] On the Power of Bio-Computers. Draft Feb. 28, 1995

[Rothemund] Paul W. K. Rothemund. A DNA and Restriction Enzyme Implementation of Turing Machines.

To appear.

[Santalucia] J. Santalucia, H. T. Allawi, A. Seneviratne. Improved nearest-neighbor parameters for predict-

ing DNA duplex stability. Biochemistry 35(11): 3555-3562, 1996.

[Smith] Warren D. Smith and Allan Schweitzer. DNA Computers in Vitro and Vivo. NECI Technical

Report, March 20, 1995.

[Stemmer] Willem P. C. Stemmer. The Evolution of Molecular Computation. Science, 270: 1510{1510,

1995.

[Wankat] Phillip C. Wankat. Separations in Chemical Engineering: Equilibrium Staged Separations. El-

sevier Science Publishing Co., Inc., New York, New York, 1988.

[Wetmur] James G. Wetmur. DNA Probes: Applications of the Principles of Nucleic Acid Hybridization.

Critical Reviews in Biochemistry and Molecular Biology 36 (3/4) : 227{259, 1991.

26

