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Abstract— When several uncharacterized sensors measure the In Independent Components Analysis (ICA)[5] we are given
same unknown signal or image, we would like to simultaneougl multiple measurements but we are also trying to determine
combine the measurements into an estimate of true source go\eral underlying signals or sources. Since the objective

(fusion) and learn the properties of the individual sensors . - ; . .
(identification). This paper presents a model in which senss function for ICA is typically some estimate of independence

perform (time-invariant) linear filtering followed by poin twise Prior assumptions are once again required about the margina
nonlinear squashing with additive noise and shows how, give statistics of the sources. Furthermore, the concept ofpiade
several such noisy nonlinear observations, it is possible tecover dence as a driving contrast function does not apply wherether

the true signal and also estimate tht_a Sensor parameters. Theis only a single underlying source to be recovered.
setup assumes that both the linear filtering and the nonlinea

squashing are spatially (temporally) invariant, but does mt

make any prior assumptions (such as smoothness, sparsity II. MATHEMATICAL FORMULATION :

or heawly_talled ma_rglnals) about_ the signal beln_g r_eco_veed REGRESSION WITH SHARED UNKNOWN INPUT

and thus is appropriate for a variety of source distributions,

such as astronomical images, speech signals and hyperspatt To begin, assume that we obsery¢ sensor signals of

satellite data which may violate one or more standard prior |ength 7' samples each. The entire setup is also applicable
assumptions. An efficient estimation algorithm minimizeste sum to two-dimensional signals (images); we can also handle the

of squared errors between the predicted sensor outputs anche - hich the ob d si | diff | .
sensor readings actually observed, using an efficient prodare, CaS€ in which the observed signals are different lengttessi

isomorphic to the backpropagation algorithm. The setup canbe Each observed signal (image)” = [y",...,y/", ..., y7]
thought of as learning the weightsand unknown common input is modeled as a linearly filtered version of some unknown
for several one-layer neural networks given their outputs. true signals = [so_f,...,S1,...,5t...,s7] followed by a

pointwise nonlinearity and additive noise:
I. SIMULTANEOUS IDENTIFICATION AND FUSION

K-1
| OF MULTIPLE SENSORS o | P Z WS,
In this paper | study the problem of combining information k=0
from several noisy sensors, all measuring the same sigoal. F 70" = amf(bm +27) + Om
example, consider several simultaneous recordings ofaime s pI™) = N™gr, o)

audio stream, each one taken by a microphone that has some
unknown (but time invariant) filtering and distortion propes. where N (z|u, 0?) is a Gaussian distribution an with mean
Can we recover a “clean” recording of the original audio and and variancer?.
simultaneously identify the properties of the microphdhes The linear filters are assumed to be time (space) invariant
Similarly, if we have several images each of which haand to have compact suppadii; this is a crucial regulariza-
been blurred, edge detected, or otherwise filtered, can tien in the model. We do not use either periodic boundary
estimate both the original image and the properties of tieenditions or zero padding in the linear filtering so that the
instruments or channels that delivered the altered ves8iorbserved sensor signaj$® are K—1 samples shorter than the
This problem, which is one of simultaneous sensor fusion afrdie signalss. Figure 1 illustrates the generative model.
sensor identification, is quite general. But if we make someWe model the nonlinearity using a fixed squashing function
fairly strong assumptions about the properties of the sensof(-) (such as the tanh or sigmoid) with scaling and offsets
then we can make substantial analytic progress. applied both before and after the squashing. Because these
Sensor fusion and identification is related to, but not dyacitsquashing functions both asymptote at large inputs andvieeha
the same as, several other problems of interest in statistitnearly for small inputs, when combined with input and autp
signal processing and machine learning. In blind decorvolscaling and offset they allow us to capture quite a wide range
tion, super-resolution and adaptive denoising, we arengave of monotonic nonlinearities, including saturation, ciipg,
single sensor measurement and asked to recover the origtha¢sholding around a specific value, as well as simple flinea
signal (and perhaps also to estimate the sensor propertibghaviour.
This is a much more ill posed problem which requires making By assuming temporal (spatial) invariance of the filters and
some a priori assumptions about the statistics of the signpbintwise action of the nonlinearity, we are able to learn in
to be recovered (and possibly the sensor properties as. wealjs multiple sensor model, even in the complete absence of



Gradient equations for multiple nonlinear sensor model
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Fig. 2. On the right we have provided the vector versions efefuations:
axbis used to denote convolution (without zero padding or ¢archoundary
conditions),a®b to denote correlation (i.e. convolution with the time-nesezl
second argument) aritlis a stencil of all ones having lengffi. On the left,
sums ovet run from1 to 7" and sums ovem run from1 to M. For simplicity

Fig. 1. Generative model (top) creates each observed sesigoal by We have assumed equal output noise variancs= const.
(spatially homogeneous) linear filtering using a compachéde followed by
pointwise nonlinear squashing, followed by additive nolsearning (bottom)

is like training an ensemble of networks with a common unkmdmput and . . . .
restricted weights. possible to estimate the noise levet§ at the same time as

fitting the other model parameters, although we do not give
the details here.)
priors on the unknown signal (such as sparsity, smoothnessJhere are many possible approaches to minimizing the
or heavy tailed marginals). The objective function is siynplabove objective, but most of them require computing the
the log likelihood of the observed sensor signals given tiggadient ofC' with respect to the unknown signaland the
hypothesized true signal and sensor parameters. Maxim@ansor parametefav™, o, , Bm, by, }. TO compute this vector
likelihood learning in this model is equivalent to mininnigi  of derivatives, it is useful to define an intermediate “sdale
the sum of squared errors between our predicted sensorteutglifference signal'd™:
9 and the sensor reading$® we actually observed:

di" = (3" — yi") f (" + ) )
1 ~m m\2 2
=3 P ARt () which is extended t6 = (2—K)...(T+ K —1) by defining
mt d* = 0fort < 1andt > T. (Here f'(z) denotes the
with respect to the unknown signaJ and the filtering param- derivative of f evaluated at:.) Given this difference signal,
eters{w™, ay, Bm, b} Of €ach sensor. the gradient computations are all linear, as given below.

From this it can be seen that this problem is isomorphic Many of the intermediate quantities used in computifiy
to that of training an ensemble of nonlinear regressors, alin be reused in the computation of the gradients, in just the
of which share the same missing input. (Of course, it is alsame way that backpropagation stores intermediate gigsntit



« Initialize C =0, 9C/0s =0 Nyquist rate (and maybe even not that well); the setup in this
e Loopoverm=1...M paper cannot automatically do super-resolution.
1) Computez™ = w™ x* s Learning output noise variances and filter orders:
2) Overwritez! in place:z™ — f(z™ + by) The output noise leveb?2, of _each sensor can easily
3) Computed™ = a,;,z™ + B — y™ be learned as part of the gradient procedure by comput-
4) IncrementC += (d™)"d™ ing the derivativ_e of the cos_t with respect to its logarithm:
5) OutputdC/dcy, = (d™)Tz™ 80/8logc_rfn. It is alsq possible to estlmate_a nonhgmoge-
6) OutputdC /93, =1"d™ neous noise level at different temporall(spatlali) _Iocanbut
7) Overwrite in placed™ «— d™(1 — (z)?) in that case care must be taken to avoid overfitting. o
8) OutputdC/db, = au,(17d™) Th_e only structural_parameter that needs to be spe(_:med is
9) OutputdC/dw™ = amy, (d™ x s) the fllter_ order K. This parameter <_:ontro|s the capacity or
10) Incremen®C/ds += auyy, (d™ @ w™) complexity of the model we are fitting. Although the above
formulation assumeg{ to be the same for alin, there is

Fig. 3. Pseudo-code for efficient gradient computation & thultiple essentially no difficulty in rederiving the setup with a difént
sensor model. This example is one-dimensional, uses thatles of the order for each _S‘ensor- )
tanh nonlinearity (in step 7) and assumes all output noisenees are If K (or K,,,) is known then the above equations completely
equal. Until step 7d™ holds intermediate quantities different from its ; imizati
definition in eq(2). The computation is very similar to backpagation specify th.e optlmlza_ltlon to be performed. If .nOt’ thenneeds
in several networks all sharing the same unknown input. to be. estimated using, for example .by a Fﬂsgrete search over
K using cross-validation as a selection criterion, althongh
in the naive way. To implement cross-validation one usually
to efficiently compute the learning signal in multilayer perremoves some sensor samptéfrom the summation in the
ceptron regression machines. A reasonably efficient prgeedcost function when computing the gradients and uses the
for computing the value of the cost and its gradient is givegrediction error on those samples as a validation signal to
above, usingf(-) = tanh(-) as an example. Also, since manyestimate the filter order. However, in this case one should
of the derivatives above can be expressed as convolutizes aside a different set, from each sensor, or else the
or correlations, they may be more efficiently computed in anderlying signak will not be determined at all for the sét
transform domain using, for example, the FFT (taking care Furthermore, selecting holdout samples completely ataand
correctly respect or correct for the lack of periodic bouydaselecting samples does not work as well, because overfitting

conditions and zero padding). effects of higher filter orders do not manifest themselves as
severely when validation points are scattered and isolased
lll. EXTENSIONS TO THE BASIC MODEL when they are in a large block that is not part of the training

The equations presented above assume one-dimensiaighal. In preliminary experiments, | have had some success
signals, equal sized observations and known output noiss avith setting aside a continuous block of samples (of ordét 10
filter sizes. It is possible to extend the basic model to astowf the signal length) from each sensor as a validation sét, bu
for a variety of more complex situations as outlined brieflgnsuring that these validation blocks are non-overlapfiomg
below. sensor to sensor.

Two dimensional signals & different sized observations:  Another possibility is to perform learning with a large
Everything above goes through trivially for two dimensipnsnaximum filter orderk,,, but to penalize filter energy away
i.e. for images. The relationship between convolution arftbm the centre of the stencil in order to encourage compact
correlation must be carefully defined in two dimensionsupport as much as possible. This requires some way ofgettin
for the equations above to be correct correlation must bee penalty hyperparameters, which in certain analyticall
defined as convolution with the second argument verticalfsactable cases can be performed with empirical Bayes (ML

and horizontally flipped (not with the transpose of the secotlype 1) methods.
argument). As before, the difference imadf is extended by  Registration:
zero padding its perimeter. One serious limitation of the current model is that it regair

The above formulation also goes through essentially uall signals to be exactly temporally/spatially aligned. W&h
changed if some of the sensors do up/downsampling, ithis may be appropriate for, e.g. multiple exposures of the
produce outputs of size shorter (smaller) or longer (Igrgesky in astronomical images, microphones in close proximity
than the true signal. The equations defining the sensor tautpor tripod mounted cameras there are often situations inhwhic
y;* are simply defined by making the linear filtering includesensors introduce registration shifts. Small constaritssban
a resampling operation on the true signal; similarly for thiee dealt with by learning with a relatively large filter siz&
summations used to compute the derivatives. The resulttbé model then has some freedom as to where inside the stencil
this resampling plus filtering is the size of the observedsen it places energy. Extending the model to include learning
output. If all channels do some degree of downsampling, thiEge shifts is mathematically possible but in practicedgrat
at best we can estimate the signal at the horizontal/vérticaethods do not work well for discovering registrations &arg
resolution of the sensor with the highest horizontal/eaiti than the highest frequencies in the signal. One possihidity



to compute the gradient of the sensor offsets using a blurreg,, 3, can be appropriately rescaled and translated to exactly
version of the signal, in which the gradients have effectr ovcancel this. To break such a degeneracy, we always constrain

a much larger extent. the unknown signal to have zero mean and unit variance.
This is easy to enforce during the gradient computations by
IV. EXPERIMENTS WITHIMAGES AND SPEECH removing the mean of the gradient and rescaling the signal

and filters after each update. For large filter sizes, there is

_I'have applied the model described above to fuse and idefsianialy also a similar temporal (spatial) shift degeog.
tify several examples of synthetic (known) and real (unknpw However, there is a potentially more serious non-

sensors. All of the experiments reported used the tanhitmct;jo igianility related to the richness of the sensors arel th

as the non!lnearlty (although the S|gm0|d would hav.e. be%’ibnal. The signal must have significant power at all frequen
exactly equivalent) and conjugate gradients as an opttioiza cies and the sensors must collectively cover frequencyespac

routine. with some spectral overlap between them. (For a purely tinea

First, the model was applied to artificial sensors syntieesiz,,je| these concepts can be formalized in terms of the rank
by applying exactly the generative model process to iNpyf e |agged data matrix and the common zeros in the z-

images. Images were filtered usitig=3x3 kernels followed y5nst0rm of the filters; but for this nonlinear model the igqu

by nonlinear pixel squashing and additive Gaussian noise. Ty any formal characterization of identifiability is unknoy

kernels were chosen to perform common image processing jqaar Noiseless Sensors:
operations such as blurring.a.nd nge detection. F_igureWssho In the special case wherg is linear, the problem studied
three examples, with the original image, the true filters ted in this paper reduces to the problem of blind linear channel

observed sensors on the top of each panel and the recovegedhisication, which has been studied previously in thealg
image, estimated filters and approximate sensor outputseon ;Brocessing literature[3], [2], [4]. This literature hasded

bottom of each panel. to focus on the linear algebraic structure of the problem,

The model was also applied to real signal sets for whiGhenitying various matrix pencils, subspaces and Sybrest
the true sensor characteristics are unknown. As an ilistra v e conditions that must be satisfied for identifiabilityid

of the fact that a special case of this model is exposuffinorant to notice that even in the absence of the nonlityear

correction, we processed several sets of multiple eXpOSl}r@), this problem still represents a bilinear form inand
frames using d&'=1x1 kernel that did not allow any spatial fil'{wm} One possible strategy is to minimize the cast

tering. (Although the experiment has also been performédl Wi sing coordinate descent, by first fixing the unknown signal

K=3x3 and 5x5 kernels which learn mostly delta-function likg 4 solving for all of the filters{w™} using standard

peaks, often offset from the centre inducing slight regi8n  yo.onyolution and then fixing the filters and solving for the
alignments.) Figures 5-6 show the original input imagesiglo 55| ysing linear least squares. Even in a purely linear

with the estimated true scene and recovered equsure Curé’@ﬁing this approach is not computationally attractiiee at
learned by the model for each sensor. The estimated ULEeh iteration deconvolution must find the values of therfilte

image .contains information not simultaneously visible Ny a . qfficients by solving a large system of linear equatiorts wi
of the input scenes, and the exposure curves show reasonghle

. : Te-constraint of a Toeplitz structured coefficient mat8glv-
estimates of underexposure and overexposure with samratl, gych systems efficiently is tricky and numerically pgorl
at high and low intensities.

conditioned; even if done correctly the resulting iterati@re

_ Finally, | have applied the model to speech signals consigfs, ajly slower than direct optimization of the cost using, f
ing of simultaneous recordings of the same audio scene by SE&¥ample, conjugate gradients.

eral microphones. The data contains wide field microphonesy¢ i aqdition to assuming linearity we also make the ex-

which are used as the inputs (unknown sensors) as well agdnely strong and unrealistic assumption that there isaisen
close-talking microphone worn by the speaker which is usegl e sensors, it is possible to reformulate the optimazagis

as the "true” or reference signal for comparison. (Relativg gingle system of linear equations (as opposed to a bilinear
delays have been removed so that the signals are temporgll¢; 15 pe minimized). This is achieved by appealing to

aligned to within a few samples.) Figure 7 shows wo widge associative-commutative property of the convolutimg
flgld recordings (inputs) as .WeII as the recovered ‘?Ieanoau‘ilfoticing that in the absence of noisg” * w" = y" * w™
signal and the reference microphone as a comparison. gy actly for all pairsmn, n[3]. Enforcing all of these constraints
results in a very large, but linear system of equationsut
in terms of £y™. In principle, this system could be solved
for the w™ and then subsequently these could be used to find
Model Identifiability: s. However, this setup can be extremely poorly conditioned
There is a trivial way in which the model presented abowmless many pairs of sensors with significant spectral aperl
is not exactly identifiable: there exists a scale and offsexist; furthermore it cannot be extended to nonlinear estim
degeneracy between the output amplitude (intensity) aad tiion. Thus, this “trick” for reducing the bilinear cost fuiian
unknown true signal amplitude. In particular, the signad ba down to a linear problem is mainly of theoretical rather than
multiplied by a constant and amplitude shifted, and all & thpractical interest.

V. DISCUSSION IDENTIFIABILITY AND
LINEAR-NOISELESSCASE



Fig. 4. Synthetic sensors. Images were filtered udifig3x3 kernels followed by nonlinear pixel squashing and @ddiGaussian noise. In each panel,
the top row shows (from left to right) the original image, drfilters and observed sensors; the bottom row shows the eembimage, estimated filters and
approximate sensor outputs. The scale degeneracy hasdraemed for this display by scaling everything so that the@vemed image has the same minimum
and maximum as the true image. For the top example, the RM8sity of the true image is 0.58, and the RMS of the residumaioffation) is<0.02; other
SNR rates are similar.
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Fig. 5. Exposure correction using A=1x1 kernel. The two original input images appear in the top,rand the estimated true scene below
them on the left. The estimated true image contains infdonabot simultaneously visible in any of the inputs. On thettdm right are the learned
exposure curves for each sensor showing camera output asctiofu of true image intensity. Images were downloaded fitvn RASCAL[1] page at
http://wwl. cs. col unbi a. edu/ CAVE/ t onoo/ RRHonePage/ rrslrr. htm
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Fig. 6. Simultaneous exposure correction and blur estimatising a K=3x3 kernel. The six original input images appear in the firsb
rows. The estimated true scene appears in the third row onlefte and contains information not simultaneously visibite any of the inputs.
On the bottom right are the learned exposure curves for eadsos showing camera output as a function of true image siyenspatial kernels
(not shown) which estimate the blurring properties of eaciposure are also learned. Images were downloaded from th8CRA[1l] page at
http://wwil. cs. col unbi a. edu/ CAVE/ t onpo/ RRHonePage/ rrslrr. htni
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Fig. 7. Microphone fusion. Audio data containing simultane recordings of the same audio scene by several microptawaeprocessed by the model. Wide
field microphones are used as inputs from the unknown seif&p) the true signal is estimated (bottom left) and coragao a close-talking microphone
worn by the speaker as a reference (bottom right). Origiigadads were downsampled to 12.5kHz sample rate and filtey ¢dyg<’ = 11 (about 1ms) were
learned. For display purposes the recovered signal has digerflipped and scaled to match the amplitude of the refereignal.



