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Abstract— When several uncharacterized sensors measure the
same unknown signal or image, we would like to simultaneously
combine the measurements into an estimate of true source
(fusion) and learn the properties of the individual sensors
(identification). This paper presents a model in which sensors
perform (time-invariant) linear filtering followed by poin twise
nonlinear squashing with additive noise and shows how, given
several such noisy nonlinear observations, it is possible to recover
the true signal and also estimate the sensor parameters. The
setup assumes that both the linear filtering and the nonlinear
squashing are spatially (temporally) invariant, but does not
make any prior assumptions (such as smoothness, sparsity
or heavily tailed marginals) about the signal being recovered
and thus is appropriate for a variety of source distributions,
such as astronomical images, speech signals and hyperspectral
satellite data which may violate one or more standard prior
assumptions. An efficient estimation algorithm minimizes the sum
of squared errors between the predicted sensor outputs and the
sensor readings actually observed, using an efficient procedure,
isomorphic to the backpropagation algorithm. The setup canbe
thought of as learning the weightsand unknown common input
for several one-layer neural networks given their outputs.

I. SIMULTANEOUS IDENTIFICATION AND FUSION

OF MULTIPLE SENSORS

In this paper I study the problem of combining information
from several noisy sensors, all measuring the same signal. For
example, consider several simultaneous recordings of the same
audio stream, each one taken by a microphone that has some
unknown (but time invariant) filtering and distortion properties.
Can we recover a “clean” recording of the original audio and
simultaneously identify the properties of the microphones?
Similarly, if we have several images each of which has
been blurred, edge detected, or otherwise filtered, can we
estimate both the original image and the properties of the
instruments or channels that delivered the altered versions?
This problem, which is one of simultaneous sensor fusion and
sensor identification, is quite general. But if we make some
fairly strong assumptions about the properties of the sensors,
then we can make substantial analytic progress.

Sensor fusion and identification is related to, but not exactly
the same as, several other problems of interest in statistical
signal processing and machine learning. In blind deconvolu-
tion, super-resolution and adaptive denoising, we are given a
single sensor measurement and asked to recover the original
signal (and perhaps also to estimate the sensor properties).
This is a much more ill posed problem which requires making
some a priori assumptions about the statistics of the signals
to be recovered (and possibly the sensor properties as well).

In Independent Components Analysis (ICA)[5] we are given
multiple measurements but we are also trying to determine
several underlying signals or sources. Since the objective
function for ICA is typically some estimate of independence,
prior assumptions are once again required about the marginal
statistics of the sources. Furthermore, the concept of indepen-
dence as a driving contrast function does not apply when there
is only a single underlying source to be recovered.

II. M ATHEMATICAL FORMULATION :
REGRESSION WITH SHARED UNKNOWN INPUT

To begin, assume that we observeM sensor signals of
length T samples each. The entire setup is also applicable
to two-dimensional signals (images); we can also handle the
case in which the observed signals are different lengths/sizes.
Each observed signal (image)ym = [ym
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whereN (x|µ, σ2) is a Gaussian distribution onx with mean
µ and varianceσ2.

The linear filters are assumed to be time (space) invariant
and to have compact supportK; this is a crucial regulariza-
tion in the model. We do not use either periodic boundary
conditions or zero padding in the linear filtering so that the
observed sensor signalŝym areK−1 samples shorter than the
true signalss. Figure 1 illustrates the generative model.

We model the nonlinearity using a fixed squashing function
f(·) (such as the tanh or sigmoid) with scaling and offsets
applied both before and after the squashing. Because these
squashing functions both asymptote at large inputs and behave
linearly for small inputs, when combined with input and output
scaling and offset they allow us to capture quite a wide range
of monotonic nonlinearities, including saturation, clipping,
thresholding around a specific value, as well as simple linear
behaviour.

By assuming temporal (spatial) invariance of the filters and
pointwise action of the nonlinearity, we are able to learn in
this multiple sensor model, even in the complete absence of
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Fig. 1. Generative model (top) creates each observed sensorsignal by
(spatially homogeneous) linear filtering using a compact kernel, followed by
pointwise nonlinear squashing, followed by additive noise. Learning (bottom)
is like training an ensemble of networks with a common unknown input and
restricted weights.

priors on the unknown signal (such as sparsity, smoothness,
or heavy tailed marginals). The objective function is simply
the log likelihood of the observed sensor signals given the
hypothesized true signal and sensor parameters. Maximum
likelihood learning in this model is equivalent to minimizing
the sum of squared errors between our predicted sensor outputs
ŷm

t
and the sensor readingsym

t
we actually observed:
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with respect to the unknown signals, and the filtering param-
eters{wm, αm, βm, bm} of each sensor.

From this it can be seen that this problem is isomorphic
to that of training an ensemble of nonlinear regressors, all
of which share the same missing input. (Of course, it is also

Gradient equations for multiple nonlinear sensor model
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Fig. 2. On the right we have provided the vector versions of the equations:
a∗b is used to denote convolution (without zero padding or circular boundary
conditions),a⊗b to denote correlation (i.e. convolution with the time-reversed
second argument) and1 is a stencil of all ones having lengthT . On the left,
sums overt run from1 to T and sums overm run from1 to M . For simplicity
we have assumed equal output noise variancesσ2

m
= const.

possible to estimate the noise levelsσ2
m

at the same time as
fitting the other model parameters, although we do not give
the details here.)

There are many possible approaches to minimizing the
above objective, but most of them require computing the
gradient ofC with respect to the unknown signals and the
sensor parameters{wm, αm, βm, bm}. To compute this vector
of derivatives, it is useful to define an intermediate “scaled
difference signal”dm:
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which is extended tot = (2−K) . . . (T +K− 1) by defining
dm

t = 0 for t < 1 and t > T . (Here f ′(x) denotes the
derivative off evaluated atx.) Given this difference signal,
the gradient computations are all linear, as given below.

Many of the intermediate quantities used in computingŷm
t

can be reused in the computation of the gradients, in just the
same way that backpropagation stores intermediate quantities



• Initialize C = 0, ∂C/∂s = 0

• Loop overm = 1 . . .M

1) Computezm = wm ∗ s

2) Overwritezm
t in place:zm

t ← f(zm
t + bm)

3) Computedm = αmzm + βm − ym

4) IncrementC += (dm)>dm

5) Output∂C/∂αm = (dm)>zm

6) Output∂C/∂βm = 1
>dm

7) Overwrite in place:dm
t ← dm

t (1 − (z̄m
t )2)

8) Output∂C/∂bm = αm(1>dm)
9) Output∂C/∂wm = αm (dm ∗ s)

10) Increment∂C/∂s += αm (dm ⊗wm)

Fig. 3. Pseudo-code for efficient gradient computation in the multiple
sensor model. This example is one-dimensional, uses the derivative of the
tanh nonlinearity (in step 7) and assumes all output noise variances are
equal. Until step 7,dm holds intermediate quantities different from its
definition in eq(2). The computation is very similar to backpropagation
in several networks all sharing the same unknown input.

to efficiently compute the learning signal in multilayer per-
ceptron regression machines. A reasonably efficient procedure
for computing the value of the cost and its gradient is given
above, usingf(·) = tanh(·) as an example. Also, since many
of the derivatives above can be expressed as convolutions
or correlations, they may be more efficiently computed in a
transform domain using, for example, the FFT (taking care to
correctly respect or correct for the lack of periodic boundary
conditions and zero padding).

III. E XTENSIONS TO THE BASIC MODEL

The equations presented above assume one-dimensional
signals, equal sized observations and known output noises and
filter sizes. It is possible to extend the basic model to account
for a variety of more complex situations as outlined briefly
below.

Two dimensional signals & different sized observations:
Everything above goes through trivially for two dimensions,

i.e. for images. The relationship between convolution and
correlation must be carefully defined in two dimensions:
for the equations above to be correct correlation must be
defined as convolution with the second argument vertically
and horizontally flipped (not with the transpose of the second
argument). As before, the difference imagedm is extended by
zero padding its perimeter.

The above formulation also goes through essentially un-
changed if some of the sensors do up/downsampling, i.e.
produce outputs of size shorter (smaller) or longer (larger)
than the true signal. The equations defining the sensor outputs
ym

t
are simply defined by making the linear filtering include

a resampling operation on the true signal; similarly for the
summations used to compute the derivatives. The result of
this resampling plus filtering is the size of the observed sensor
output. If all channels do some degree of downsampling, then
at best we can estimate the signal at the horizontal/vertical
resolution of the sensor with the highest horizontal/vertical

Nyquist rate (and maybe even not that well); the setup in this
paper cannot automatically do super-resolution.

Learning output noise variances and filter orders:
The output noise levelσ2

m of each sensor can easily
be learned as part of the gradient procedure by comput-
ing the derivative of the cost with respect to its logarithm:
∂C/∂ log σ2

m. It is also possible to estimate a nonhomoge-
neous noise level at different temporal (spatial) locations but
in that case care must be taken to avoid overfitting.

The only structural parameter that needs to be specified is
the filter orderK. This parameter controls the capacity or
complexity of the model we are fitting. Although the above
formulation assumesK to be the same for allm, there is
essentially no difficulty in rederiving the setup with a different
order for each sensor.

If K (or Km) is known then the above equations completely
specify the optimization to be performed. If not, thenK needs
to be estimated using, for example by a discrete search over
K using cross-validation as a selection criterion, althoughnot
in the naive way. To implement cross-validation one usually
removes some sensor samplest′ from the summation in the
cost function when computing the gradients and uses the
prediction error on those samples as a validation signal to
estimate the filter order. However, in this case one should
set aside a different sett′

m
from each sensor, or else the

underlying signals will not be determined at all for the sett′.
Furthermore, selecting holdout samples completely at random
selecting samples does not work as well, because overfitting
effects of higher filter orders do not manifest themselves as
severely when validation points are scattered and isolatedas
when they are in a large block that is not part of the training
signal. In preliminary experiments, I have had some success
with setting aside a continuous block of samples (of order 10%
of the signal length) from each sensor as a validation set, but
ensuring that these validation blocks are non-overlappingfrom
sensor to sensor.

Another possibility is to perform learning with a large
maximum filter orderKm but to penalize filter energy away
from the centre of the stencil in order to encourage compact
support as much as possible. This requires some way of setting
the penalty hyperparameters, which in certain analytically
tractable cases can be performed with empirical Bayes (ML
type II) methods.

Registration:
One serious limitation of the current model is that it requires

all signals to be exactly temporally/spatially aligned. While
this may be appropriate for, e.g. multiple exposures of the
sky in astronomical images, microphones in close proximity
or tripod mounted cameras there are often situations in which
sensors introduce registration shifts. Small constant shifts can
be dealt with by learning with a relatively large filter sizeK;
the model then has some freedom as to where inside the stencil
it places energy. Extending the model to include learning
large shifts is mathematically possible but in practice gradient
methods do not work well for discovering registrations larger
than the highest frequencies in the signal. One possibilityis



to compute the gradient of the sensor offsets using a blurred
version of the signal, in which the gradients have effects over
a much larger extent.

IV. EXPERIMENTS WITH IMAGES AND SPEECH

I have applied the model described above to fuse and iden-
tify several examples of synthetic (known) and real (unknown)
sensors. All of the experiments reported used the tanh function
as the nonlinearity (although the sigmoid would have been
exactly equivalent) and conjugate gradients as an optimization
routine.

First, the model was applied to artificial sensors synthesized
by applying exactly the generative model process to input
images. Images were filtered usingK=3x3 kernels followed
by nonlinear pixel squashing and additive Gaussian noise. The
kernels were chosen to perform common image processing
operations such as blurring and edge detection. Figure 4 shows
three examples, with the original image, the true filters andthe
observed sensors on the top of each panel and the recovered
image, estimated filters and approximate sensor outputs on the
bottom of each panel.

The model was also applied to real signal sets for which
the true sensor characteristics are unknown. As an illustration
of the fact that a special case of this model is exposure
correction, we processed several sets of multiple exposure
frames using aK=1x1 kernel that did not allow any spatial fil-
tering. (Although the experiment has also been performed with
K=3x3 and 5x5 kernels which learn mostly delta-function like
peaks, often offset from the centre inducing slight registration
alignments.) Figures 5-6 show the original input images along
with the estimated true scene and recovered exposure curves
learned by the model for each sensor. The estimated true
image contains information not simultaneously visible in any
of the input scenes, and the exposure curves show reasonable
estimates of underexposure and overexposure with saturation
at high and low intensities.

Finally, I have applied the model to speech signals consist-
ing of simultaneous recordings of the same audio scene by sev-
eral microphones. The data contains wide field microphones,
which are used as the inputs (unknown sensors) as well as a
close-talking microphone worn by the speaker which is used
as the “true” or reference signal for comparison. (Relative
delays have been removed so that the signals are temporally
aligned to within a few samples.) Figure 7 shows two wide
field recordings (inputs) as well as the recovered clean audio
signal and the reference microphone as a comparison.

V. D ISCUSSION: IDENTIFIABILITY AND

L INEAR-NOISELESSCASE

Model Identifiability:
There is a trivial way in which the model presented above

is not exactly identifiable: there exists a scale and offset
degeneracy between the output amplitude (intensity) and the
unknown true signal amplitude. In particular, the signal can be
multiplied by a constant and amplitude shifted, and all of the

αm, βm can be appropriately rescaled and translated to exactly
cancel this. To break such a degeneracy, we always constrain
the unknown signal to have zero mean and unit variance.
This is easy to enforce during the gradient computations by
removing the mean of the gradient and rescaling the signal
and filters after each update. For large filter sizes, there is
potentially also a similar temporal (spatial) shift degeneracy.

However, there is a potentially more serious non-
identifiability related to the richness of the sensors and the
signal. The signal must have significant power at all frequen-
cies and the sensors must collectively cover frequency space
with some spectral overlap between them. (For a purely linear
model, these concepts can be formalized in terms of the rank
of the lagged data matrix and the common zeros in the z-
transform of the filters; but for this nonlinear model the equiv-
alent formal characterization of identifiability is unknown.)

Linear Noiseless Sensors:
In the special case wheref is linear, the problem studied

in this paper reduces to the problem of blind linear channel
identification, which has been studied previously in the signal
processing literature[3], [2], [4]. This literature has tended
to focus on the linear algebraic structure of the problem,
identifying various matrix pencils, subspaces and Sylvester
type conditions that must be satisfied for identifiability. It is
important to notice that even in the absence of the nonlinearity
f(·), this problem still represents a bilinear form ins and
{wm}. One possible strategy is to minimize the costC
using coordinate descent, by first fixing the unknown signal
s and solving for all of the filters{wm} using standard
deconvolution and then fixing the filters and solving for the
signal using linear least squares. Even in a purely linear
setting this approach is not computationally attractive, since at
each iteration deconvolution must find the values of the filter
coefficients by solving a large system of linear equations with
the constraint of a Toeplitz structured coefficient matrix.Solv-
ing such systems efficiently is tricky and numerically poorly
conditioned; even if done correctly the resulting iterations are
usually slower than direct optimization of the cost using, for
example, conjugate gradients.

If in addition to assuming linearity we also make the ex-
tremely strong and unrealistic assumption that there is no noise
at the sensors, it is possible to reformulate the optimization as
a single system of linear equations (as opposed to a bilinear
cost to be minimized). This is achieved by appealing to
the associative-commutative property of the convolution,and
noticing that in the absence of noise,ym ∗ wn = yn ∗ wm

exactly for all pairsm, n[3]. Enforcing all of these constraints
results in a very large, but linear system of equations forwm

in terms of±ym. In principle, this system could be solved
for thewm and then subsequently these could be used to find
s. However, this setup can be extremely poorly conditioned
unless many pairs of sensors with significant spectral overlap
exist; furthermore it cannot be extended to nonlinear estima-
tion. Thus, this “trick” for reducing the bilinear cost function
down to a linear problem is mainly of theoretical rather than
practical interest.



Fig. 4. Synthetic sensors. Images were filtered usingK=3x3 kernels followed by nonlinear pixel squashing and additive Gaussian noise. In each panel,
the top row shows (from left to right) the original image, true filters and observed sensors; the bottom row shows the recovered image, estimated filters and
approximate sensor outputs. The scale degeneracy has been removed for this display by scaling everything so that the recovered image has the same minimum
and maximum as the true image. For the top example, the RMS intensity of the true image is 0.58, and the RMS of the residual (innovation) is<0.02; other
SNR rates are similar.

VI. CONCLUSIONS

I have presented a simple model for explaining multiple
observations of a single signal, taken by sensors with unknown
properties. By assuming that the sensors perform spatially
invariant linear filtering (using compact support kernels)fol-
lowed by pointwise nonlinearity and additive Gaussian noise
it is possible to formulate the simultaneous estimation of
the true unknown signal — sensor fusion – and learning of
the sensor properties — identification — as a minimization
problem analogous to training an ensemble of one-layer neural
networks with a shared but unknown common input.

By modeling the nonlinear squashing using a flexible mono-
tonic transformation we can include linear models as a special
case, as well as capture saturation and clipping effects when
they are present. By restricting the linear filtering to havea
kernel size of 1, we can also estimate scalar response (expo-
sure) curves independent of filtering effects. Once the sensor
properties have been learned they can be used to calibrate
single readings or to simulate plausible sensor readings given
a novel input.

Results on real and synthetic data show that the model is
capable of learning both a high quality estimate of the true
signal as well as identifying the unknown sensor properties.
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Fig. 5. Exposure correction using aK=1x1 kernel. The two original input images appear in the top row, and the estimated true scene below
them on the left. The estimated true image contains information not simultaneously visible in any of the inputs. On the bottom right are the learned
exposure curves for each sensor showing camera output as a function of true image intensity. Images were downloaded fromthe RASCAL[1] page at
http://www1.cs.columbia.edu/CAVE/tomoo/RRHomePage/rrslrr.html
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Fig. 6. Simultaneous exposure correction and blur estimation using a K=3x3 kernel. The six original input images appear in the firsttwo
rows. The estimated true scene appears in the third row on theleft, and contains information not simultaneously visiblein any of the inputs.
On the bottom right are the learned exposure curves for each sensor showing camera output as a function of true image intensity; spatial kernels
(not shown) which estimate the blurring properties of each exposure are also learned. Images were downloaded from the RASCAL[1] page at
http://www1.cs.columbia.edu/CAVE/tomoo/RRHomePage/rrslrr.html
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Fig. 7. Microphone fusion. Audio data containing simultaneous recordings of the same audio scene by several microphones are processed by the model. Wide
field microphones are used as inputs from the unknown sensors(top); the true signal is estimated (bottom left) and compared to a close-talking microphone
worn by the speaker as a reference (bottom right). Original signals were downsampled to 12.5kHz sample rate and filter taps of K = 11 (about 1ms) were
learned. For display purposes the recovered signal has beensign flipped and scaled to match the amplitude of the reference signal.


