
Chapter 8: Automatic Speech Processing by Probabilistic Inference 97

Chapter 8

AUTOMATIC SPEECH PROCESSING BY
INFERENCE IN GENERATIVE MODELS

Sam T. Roweis
Department of Computer Science, University of Toronto

roweis@cs.toronto.edu

Abstract Normally, algorithms which process speech signals to estimate quantities
of interest (e.g. pitch) or perform various complex operations (e.g. de-
noising) are designed directly, by experts, to computing the final output
from the input representation using a series of processing steps. Another
approach is to build a probabilistic generative model of the input (wave-
form or short time spectra) in which the quantities of eventual interest
are represented as hidden or latent variables. Estimation then takes the
form of statistical inference in these models, for which well known al-
gorithms exist. The model parameters themselves can be learned from
example inputs. Often, the results of such inference can be extremely
informative even when the trained model does not capture all of the
complexity in the original input data.

In this chapter, we will give several examples of this paradigm, show-
ing how inference in very simple generative models can be used to per-
form surprisingly complex speech processing tasks including denoising,
source separation, pitch tracking, timescale modification and estimation
of articulatory movements from audio.

Keywords: probabilistic generative models, inference, time scale modification, pitch
tracking, F0 estimation, denoising, source separation, articulatory mod-
eling

Say you want to perform some complex speech processing task. How
should you develop the algorithm that you eventually use? Tradition-
ally, you combine inspiration, carefully examination of previous work,
and arduous trial-and-error to invent a sequence of operations to apply
to the input waveform or short-time spectral representation. But there



98 Speech Segregation

is another approach: dream up a “generative model” –a probabilistic
machine which outputs data in the same form as your data–in which the
key quantities that you would eventually like to compute appear as hid-
den (latent) variables. Now perform inference in this model, estimating
the hidden quantities. In doing so, the rules of probability will derive
for you, automatically, a signal processing algorithm. While inference
is well known to the speech community as a decoding step for HMMs,
exactly the same type of calculation can be performed in many other
models not related to recognition.

This chapter explores the use of inference in three separate models,
and shows how it can be used to perform surprisingly complex speech
processing tasks including denoising, source separation, pitch tracking,
timescale modification and estimation of articulatory movements from
audio.

1. A Factorial-MAX Model of Log Spectrograms

In this section, we review the astonishing max approximation to log
spectrograms of mixtures, show why this motivates a “refiltering” ap-
proach to separation and denoising, and then describe how the process of
inference in factorial probabilistic models performs a computation useful
for deriving the masking signals needed in refiltering. A particularly sim-
ple model, Factorial-Max Vector Quantization (MAXVQ), is introduced
along with a branch-and-bound technique for efficient exact inference
and applied to both additive denoising and monaural separation. Our
approach represents a return to the ideas of Ephraim, Varga and Moore
(Varga and Moore, 1990) but applied to auditory scene analysis rather
than to speech recognition.

Sparsity & Redundancy in Spectrograms

The sparse nature of the speech code across time and frequency is
one of the key features exploited by many successful speech processing
algorithms. Roughly speaking, most low noise narrow frequency bands
carry substantial energy only a small fraction of the time and thus it is
rare that two independent sources inject large amounts of energy into
the same subband at the same time. (Figure 1.1b shows a plot of the
relative energy of two simultaneous talkers in a narrow subband; most
of the time at least one of the two sources shows negligible power.)

The speech code is also redundant across time-frequency. Different
frequency bands carry, to a certain extent, independent information and
so if information in some bands is suppressed or masked, even for sig-
nificant durations, other bands can fill in. (A similar effect occurs over



Chapter 8: Automatic Speech Processing by Probabilistic Inference 99

log e1

lo
g 

e2
max[log(e1),log(e2)]

log e1
lo

g 
e2

log(e1+e2)

E(s1)

E
(s

2)

Figure 1.1. (left) Relationship between log of sum and max of logs; each function’s
value is shown using the color scale indicated in the middle. Significant differences
occur only when e1 ≈ e2 and both are large. (right) Relative energy of two sources
in a single subband; few points appear on the diagonal.

time: if brief sections of the signal are obscured, even across all bands,
the speech is still intelligible; while also useful, we do not exploit this
here.) This is partly why humans perform so well on many monaural
speech separation and denoising tasks. When we solve the cocktail party
problem or recognize degraded speech, we are doing structural analysis,
or a kind of “perceptual grouping” on the incoming sound. There is
substantial evidence that the appropriate subparts of an audio signal for
use in grouping may be narrow frequency bands over short times.

The Log-Max Approximation. When two clean speech sig-
nals are mixed additively in the time domain, what is the relationship
between the individual log spectrograms of the sources and the log spec-
trogram of the mixture? Unless the sources are highly dependent (syn-
chronized), the log spectrogram of the mixture is almost exactly the
maximum of the individual log spectrograms, with the maximum oper-
ating over small time-frequency regions (fig. 1.2). This amazing fact,
first noted by Roger Moore in 1983, comes from the fact that unless e1

and e2 are both large and almost equal, log(e1 +e2) ≈ max(log e1, log e2)
(fig. 1.1a).

The sparsity of the speech code is what makes this approximation
useful in practice, since the approximation only breaks down when two
sources put a large amount of energy into the same narrow frequency
band at the same time, which rarely occurs.

Masking and Refiltering. To exploit the redundancy of the speech
code, we will focus on narrow frequency bands over short times and try
to group these “subparts” of the signal together, based on whether they
belong to the same source or not. If we can collect enough parts that



100 Speech Segregation

time

fr
eq

ue
nc

y

time

fr
eq

ue
nc

y

Figure 1.2. (top) Log spectrogram of a mixture of two sources. (bottom) Elemen-
twise maximum (within each time-frequency bin) of log spectrograms of original
sources. The two spectrograms are almost identical, although the bottom one is
an approximation of what the top one ought to look like based on a very simple
combination model.

we are confident belong together, we can discard the rest of the signal
and recover the original source based only on the grouped parts.

To generate these parts computationally, we can perform multiband
analysis – break the original speech signal y(t) into many subband sig-
nals bi(t) each filtered to contain only energy from a small portion of the
spectrum. The results of such an analysis are often displayed as a spec-
trogram which shows log energy (using color or grayscale) as a function
of time and frequency. (Think of a spectrogram like a musical score in
which the color or grey level of the each note tells you how hard to hit
the piano key.)

The basic idea of refiltering (Roweis, 2001; Green et al., 2001) is to
separate or denoise sources by selectively reweighting the bi(t) obtained
from multiband analysis of the original mixed or corrupted recording.
Crucially, unlike in unmixing algorithms, the reweighting is not constant



Chapter 8: Automatic Speech Processing by Probabilistic Inference 101

over time; it is controlled by a set of masking signals. Given a set of
masking signals, denoted αi(t), a clean source s(t) can be recovered by
modulating the corresponding subband signals from the original input
and summing:

s(t)
︸︷︷︸

estimated source

=

mask 1
︷ ︸︸ ︷

α1(t) b1(t)
︸ ︷︷ ︸

sub-band 1

+ . . . +

mask K
︷ ︸︸ ︷

αK(t) bK(t)
︸ ︷︷ ︸

sub-band K

(1.1)

The αi(t) are gain knobs on each subband that we can twist over time to
bring bands in and out of the source as needed. This performs masking
on the original spectrogram.1 This approach, illustrated in figure 1.3,
forms the basis of many CASA systems(Green et al., 2001; Brown and
Cooke, 1994). The basic intuition is to “gate in” subbands deemed to
have high signal to noise and to be part of the source we are trying to
separate and “gate out” subbands when they are deemed to be noisy or
part of another source.

For any specific choice of masking signals αi(t), refiltering attempts
to isolate a single clean source from the input signal and suppress all
other sources and background noises. Different sources can be isolated
by choosing a different set of masking signals. Although, in general,
masking signals are real-valued, positive quantities that may take on
values greater than unity, in practice the (strong) simplifying assumption
that αi(t) are binary and constant over a timescale τ of roughly 30ms
can be made. This assumption is physically unrealistic, because the
energy in each small region of time-frequency never comes entirely from a
single source. However, for small numbers of sources, this approximation
works quite well(Roweis, 2001), in part because of the effect illustrated
in figure 1.1b. (Think of ignoring collisions by assuming separate piano
players do not often hit the same note at the same time.) (Refiltering can
also be thought of as a highly nonstationary Wiener filter in which both
the signal and noise spectra are re-estimated at a rate 1/τ ; the binary
assumption is equivalent to assuming that over a timescale τ the signal
and noise spectra are nonoverlapping.) It is a fortunate empirical fact
that refiltering, even with piecewise constant binary masking signals,
can cleanly separate sources from a single mixed recording.2

Multiband grouping as a statistical pattern
recognition problem

Since refiltering for separation and denoising is indeed possible if the
masking signals are well chosen, the essential statistical problem is: how
can the αi(t) be computed automatically from a single input record-



102 Speech Segregation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

500

1000

1500

2000

2500

3000

3500

4000

y(t)

bi(t) αi(t)

s(t)

X Σ

Figure 1.3. Refiltering for separation and denoising. Multiband analysis of the orig-
inal signal y(t) gives sub-band signals bi(t) which are modulated by masking signals
αi(t) (binary or real valued between 0 and 1) and recombined to give an estimated
source s(t).

ing? The goal is to group together regions of the spectrogram that
belong to the same auditory object (and have high signal-to-noise). For-
tunately, natural auditory signals—especially speech—exhibit a lot of
regularity in the way energy is distributed across the time-frequency
plane. Grouping cues based on these regularities have been studied by
psychophysicists and are hand built into many CASA systems. Cues are
based on the idea of suspicious coincidences: roughly, “things that move
together likely belong together”. Thus, frequencies which exhibit com-
mon onsets, offsets, or upward/downward sweeps are more likely to be
grouped into the same stream. Also, many real world sounds have har-
monic spectra; so frequencies which lie exactly on a harmonic “stack”
are often perceptually grouped together. (Musically, piano players do
not hit keys randomly, but instead use chords and repeated melodies.)
The approach advocated here to use statistical learning methods to dis-
cover these regularities from a large amount of speech data and then to
use the learned models to compute the masking signals for new signals
in order to perform refiltering.

MAXVQ: Factorial-Max Vector Quantization. It is often ad-
vantageous to model complicated sensory observations using a number
of separate but interacting causes. One general way to pursue this mod-
eling idea is to have a fixed number M of vector quantizers (or mixture
models), each of which proposes an output, and then have some way of
combining the output proposals into a final observation. We can think
of this as a bank of quantizers, which feed their chosen prototypes into
a nonlinear combination box that computes the final output.3

Motivated by the observation above regarding the max approxima-
tion to log spectrograms of mixtures, we propose such a model, called
Factorial-Max Vector Quantization (MAXVQ), which uses the Max op-
eration to combine outputs from the various causes. The model has a
bank of M independent vector quantizers, each of which stochastically



Chapter 8: Automatic Speech Processing by Probabilistic Inference 103

selects a prototype with which to model the observation vector. The fi-
nal output vector is a noisy composite of the set of proposed prototypes,
obtained by taking the elementwise maximum of the set and adding
nonnegative noise. This generative model is illustrated in figure 1.4.

x

max

1,z1v

2,z2v

M,zMv

Figure 1.4. Generative model for the Factorial-MAX model. Each of M quantiz-
ers selects its zth

m codebook vector �
m,zm

and these are combined using elementwise
maximum to produce the final output � .

The MAXVQ model is useful in situations where there are multiple
“objects”, “sources” or “causes” in the world but there is some kind of
occlusion or sparseness governing how the sources interact to produce
observations. For example, as noted above, in clean speech recordings,
the log spectrogram of a mixture of speakers is almost exactly the ele-
mentwise maximum of the log spectrograms of the individual speakers.
For noisy mixtures of speech signals, each clean speaker and each noise
source can be thought of as an independent cause contributing to the
observed signal. We will use the short-time log power in linearly spaced
narrow frequency bands as our vectors when analyzing speech with this
model. (As another example, in range finding using laser or acoustic
sensors, the distance reading in any direction is the minimum of the
distances of all objects from the sensor in that direction.)

Formally, MAXVQ is a latent variable probabilistic model for D-
dimensional data vectors x. The model consists of M vector quantizers,
each with Km codebook vectors v

k
m. Latent variables zm ∈ {1 . . . Km}

control which codebook vector each vector quantizer selects. Given these
selections, the final output x is generated as a noisy version of the el-
ementwise maximum of the selected codewords. If we assume that the
each vector quantizer chooses its codebook entries independently with



104 Speech Segregation

fixed rates πk
m, then the model can be written as:

p(zm = k|π) = πk
m m ∈ {1 . . . M}, k ∈ {1 . . . Km}

p(z) =
∏

m

p(zm), z = (z1, . . . , zM )

ad = arg maxm(vzm

md)

p(xd|ad,v,Σ) = N+(xd|v
za

ad,Σad)

p(x|v,Σ, π) =
∑

z

p(z|π)p(x|z,v,Σ)

were zm are latent variables, v
k
m are the codebook vectors, Σmd are noise

variances (shared across k), and M,Km are structural size parameters
chosen to control complexity. The distribution N + is the positive side
of a Gaussian.

MAXVQ can be thought of as an exponentially large mixture of pos-
itive Gaussians having (

∏

m Km) components, with the mean of each
component constrained to be the elementwise max of some underlying
parameters v. This technique, of representing an exponentially large
codebook using a factorial expansion of a small number of underlying
parameters has been very influential and successful in recent machine
learning algorithms (Jojic and Frey, 2000; Ross and Zemel, 2003).

This model can also be extended through time to generate a Factorial-
Max Hidden Markov Model (Roweis, 2001; Varga and Moore, 1990).
There are some additional complexities, and the details of the heuris-
tics used for inference are slightly different but in our experience the
frame-independent MAXVQ model performs almost as well and so for
simplicity, we will not discuss the full HMM model.

Parameter Estimation from Isolated Sources. Given some
isolated (clean) recordings of individual speech or noise sources, we can
estimate the codebook means vk

d , noise variances Σd and the selection
probabilities πk associated with the source’s model by training a mixture
density or a vector quantizer on the columns of a short-time narrowband
log spectrogram. Some care must be taken in training to properly obey
the nonnegativity assumption on the noise and to avoid too many code-
book entries (mixture components) representing low energy (silent) seg-
ments (which are numerous in the data). Also, it is often advantageous
to represent two or more adjacent (in time) columns of the spectrogram
as a single input vector to allow the model to take some small advantage
of temporal continuity.

Inference for Refiltering. The key idea in this section is that
the process of inference (i.e. deducing the values of the hidden variables



Chapter 8: Automatic Speech Processing by Probabilistic Inference 105

given the parameters and observations) in a MAXVQ model performs a
computation which is extremely useful for computing the masking sig-
nals required to perform refiltering for denoising or separation. Because
the number of possible joint settings of the hidden selection variables
z is exponentially large, we are usually only interested in finding the
single most likely (MAP) setting of z given x or the N-best settings.
(For unsupervised learning and likelihood computations we may also be
interested in efficiently summing over all possible joint settings of z to
compute the marginal likelihood of a given observation x.) Computing
these Viterbi settings (or the sum) is intractable either by direct summa-
tion or by naive dynamic programming because of the factorial nature of
the model. We must resort to branch-and-bound algorithms for efficient
decoding or else approximations (e.g. variational methods) to estimate
likely settings of z.

Once we have computed the MAP (or approximate) setting of z, we
can use this to estimate the refiltering masking signals as follows: for
each (overlapping) frame of the input spectrogram, set the masking sig-
nal to unity for every frequency at which the output proposed by the
model corresponding to the source to be recovered is the maximum pro-
posal over all models. Other frequencies have their masks set to zero.
Actual refiltering is then performed by retaining the phase from the spec-
trogram of the original (noisy/mixed) recording, applying the (binary)
masking signals to the log magnitude of each frequency, and reconstitut-
ing the clean signal using overlap-and-add reconstruction. The window-
ing function used to compute the original spectrogram must be known
(or estimated) in order to remove its effect properly during refiltering.

Branch-and-Bound for Efficient Inference. As discussed above,
naive computation of the MAP joint settings of the hidden selection
variables in MAXVQ is exponentially expensive. Fortunately, there is a
clever branch and bound trick which can be used, based on the following
observation: if zm = k, we can upper bound the log likelihood we can
achieve on a data case x, no matter what values the other zm′ 6=m take
on. The bound log p(x|zm = k) ≤ Bmk is constructed as follows (using
constant Σ for simplicity):

Bmk = −
1

2

∑

d

[xd − vk
md]

2
+ −

D

2
log |Σ| − log πk

m (1.2)

where [r]+ takes the max of zero and r. The intuition is that either
v

k
m is greater than x along a certain dimension d of the output, in which

case the error will be at least (xd − vk
md)

2 or else it is less than x along



106 Speech Segregation

dimension d in which case the error on that dimension could potentially
be zero.

This bound can be used to quickly search for the MAP setting of z

given x as follows. For each m ∈ {1 . . . M} and each k ∈ {1 . . . Km},
compute the bound Bmk. Initially set the guess of the best configuration
to the settings with the best bounds: z∗m = arg mink Bmk and compute
the true likelihood achieved by that guess: `∗ = log p(x|z∗). Now, for
each m ∈ {1 . . . M}, we can eliminate all k for which Bmk < `∗. In
other words, we can definitively say that certain codebook choices are
impossible for certain models, independent of what other models choose
because they would incur a minimum error worse that what has already
been achieved. Now, for each m, and for all possible settings of k that
remain for that m, systematically evaluate log p(x|z) and if it is less than
`∗, eliminate the setting. If the likelihood is greater than `∗, we accept
it as the new best setting and reset z

∗ and `∗; we also re-eliminate all
settings of k that are now invalid because of this improved bound, and
repeat until all settings have been either pruned or checked explicitly.
This method is guaranteed to find the exact MAP setting, but it comes
with no guarantees about its time complexity. In practice, however, we
have found it to prune very aggressively and almost always find the MAP
configuration in reasonable time. This technique is illustrated in figure
1.5.

Experiments with Factorial-MAX VQ

As an illustration of the methods presented above, we performed sim-
ple denoising and separation experiments using TIMIT prompts read by
a single speaker and noise (babble) from the NOISEX database. Nar-
rowband spectrograms we constructed from isolated, clean training ex-
amples of the speaker and noise. (Signals were downsampled to 12.5kHz,
frames of length 512 were used with Hanning windows and frame shifts
of 64 samples, resulting in one 257-vector of log energies each 5ms rep-
resenting the signal over the last 40ms.) A simple vector-quantization
codebook with 512 codewords was trained on the speech and one with
32 codewords was trained on the noise. Approximately 5 minutes of
speech (with low energy frames eliminated) and 100 seconds of noise
were used for training. A modified k-means algorithm which includes
split-and-merge heuristics for finding good local optima was used. (We
have also experimented with training “scaled” vector quantizers which
cluster onto rays in the input space rather than on points, although
this technique was not used in the results below.) The trained models
were then used to perform MAXVQ inference on previously unseen test



Chapter 8: Automatic Speech Processing by Probabilistic Inference 107

? ?

?

?

?

?

?>

>

>
>
>
>

>

> > > > > > >

X
j s

ta
te

s

i states

Figure 1.5. Branch and bound inference trick for a factorial-max VQ model with
M = 2 quantizers. For each codebook selection that quantizer i could make, it is
possible to compute a bound on the error (likelihood), regardless of the choice made
by quantizer j. Similarly, for each codebook selection that j can make a bound
(independent of i’s choice) can be calculated. The current best joint selection of i

and j is instantiated (shown by an x in the diagram), and its true error (likelihood) is
computed. Any choices for either quantizer which are worse than this already achieved
value are eliminated since they cannot possibly be involved in the MAP configuration.
Remaining valid choices are explored, ordered by their bound values (indicated by ?
in the diagram). Once all choices have either been explored or eliminated, we are
guaranteed to have found the MAP configuration.

data, using the branch-and-bound technique. Based on this inference,
refiltering was performed as described above to recover clean/isolated
sources. In the denoising experiment, a 6 second speech segment was
linearly mixed with 6 seconds of babble noise at 0dB SNR (equal power).
Figure 1.6 shows the results of denoising with MAXVQ and also with
a simple spectral subtraction trained on the same isolated noise sample
as used for the VQ model. For the separation experiment, two different
utterances, spoken by the same speaker, were mixed at equal power and
the speech model was used (symmetrically) to perform MAXVQ infer-
ence. The results of this monaural separation are shown in figure 1.7.
Of course, these results do not represent state of the art performance on
either denoising or separation tasks; they are merely a proof of concept
that the marriage of refiltering and inference in factorial models can be
used for powerful speech processing tasks.



108 Speech Segregation

time

fr
eq

ue
nc

y

time

fr
eq

ue
nc

y

time

fr
eq

ue
nc

y

time

fr
eq

ue
nc

y

time

fr
eq

ue
nc

y

time

fr
eq

ue
nc

y

Figure 1.6. Denoising using MAXVQ. Top row: noisy input, original clean source.
Middle row: spectral subtraction estimate (trained on isolated noise), MAXVQ es-
timate after exact branch-and-bound inference and refiltering (trained on isolated
speech and noise). Bottom row: proposed codebook output sequence from noise
model, proposed codebook output sequence from speech model.

MAXVQ: Discussion, Related & Future Work

We have argued that the refiltering approach to separation and denois-
ing can be successfully achieved by using the inference step in a factorial
model to provide the masking signals. Varga and Moore (Varga and
Moore, 1990) proposed a factorial model for spectrograms (focusing on
the factorial nature and using the log-max approximation) as did Gales
and Young (Gales and Young, 1996) (focusing on the combination oper-
ation) but these models were used for speech recognition in the presence
of noise only, and not for refiltering to do separation and denoising.
In a series of papers, Green et.al. (Green et al., 2001) have studied
masking (refiltering) for denoising, but do not employ factorial model
inference as an engine for finding masking signals. There have also been
several approaches to monaural separation and denoising that operate
mainly in the time domain, without using refiltering or factorial mod-
els. Cauwenberghs (Cauwenberghs, 1999) investigated separation based
on maximizing periodic coherence; Wan and Nelson (Wan and Nelson,
1998) use nonlinear autoregressive networks and extended Kalman fil-
tering.



Chapter 8: Automatic Speech Processing by Probabilistic Inference 109

time

fr
eq

ue
nc

y

time

fr
eq

ue
nc

y

time

fr
eq

ue
nc

y

time

fr
eq

ue
nc

y

time

fr
eq

ue
nc

y

time

fr
eq

ue
nc

y

time

fr
eq

ue
nc

y

Figure 1.7. Monaural separation using MAXVQ. Top row: narrowband spectrogram
of mixed input containing two different utterances spoken simultaneously by the same
speaker. Second row: original isolated utterances. Third row: MAXVQ estimates of
original utterances after exact branch-and-bound inference and refiltering (trained on
isolated speech, not including this test example). Bottom row: proposed codebook
output sequence for each stream.

Our work here and previously(Roweis, 2001) is closest in spirit to
that of Ephraim et.al. (Ephraim et al., 1989) who model speech using a
HMM and noise using an AR model and then attempt to approximately
infer the clean speech by alternating between Wiener filtering to find the
noise and Viterbi decoding in the HMM. Logan and Moreno (Logan and



110 Speech Segregation

Moreno, 1998) also investigated the use of factorial HMMs for modeling
speech and found standard HMMs to be just as good, but they did not
compose their model using the max of two underlying models; rather
they learned separate parameters for each combination of states. Reyes
et.al. (Reyes et al., 2003) investigated factorial HMMs for separation
but using multi-channel inputs.

The main challenge for future work is to develop techniques for learn-
ing from only mixed/noisy data, without requiring clean, isolated exam-
ples of individual sources or noises at training time. In a maximum like-
lihood formulation of this purely unsupervised learning setup, we would
be given many realizations of x from the model, X = [x1,x2, . . . ,xN ],
assumed to be IID, and we attempt to adjust the model parameters so as
to make the observed data more likely. Using the view proposed above,
in which MAXVQ is seen as a very large mixture of Gaussians with pa-
rameter tying on the means, we can learn the parameters of a MAXVQ
model using the standard EM algorithm for maximum likelihood. How-
ever, this requires summing over all KM possible settings of z explicitly.
If KM is small enough for this to be feasible, then this is one possible
way to do learning. Otherwise, approximate inference techniques must
be used to allow tractable computations.

Along this line, we are investigating a technique which gives approx-
imate rather than exact answers but has a fixed and known time com-
plexity. This idea is to introduce a factorized variational distribution
which tries to approximate the true (joint) posterior as well as possible.
In this setup, we approximate the true posterior p(z|x) with a factor-
ized posterior q(z|x) =

∏

m q(zm|x) and proceed to find the functions
q(zm|x) which maximize a lower bound on the data likelihood.

2. A Segmental HMM for Speech Waveforms
4

In the following section, we turn our attention to another simple gen-
erative model, this time one which operates directly on the speech wave-
form. Pursuing inference in this model leads to a purely time domain
approach to pitch processing which identifies waveform samples at the
boundaries between glottal pulse periods (in voiced speech) or at the
boundaries between unvoiced segments. An efficient algorithm for in-
ferring these boundaries is derived from a simple probabilistic genera-
tive model for segments, which gives excellent results on pitch tracking,
voiced/unvoiced detection and timescale modification.



Chapter 8: Automatic Speech Processing by Probabilistic Inference 111

Speech Segments in the Time Domain

Processing of speech signals directly in the time domain is commonly
regarded to be difficult and unstable, due to fact that perceptually very
similar utterances exhibit very large variability in their raw waveforms.
As a result, by far the most common preprocessing step for most speech
systems is to convert the raw waveform into a time-frequency represen-
tation, using a variety of spectral analysis and filterbank techniques. In
this section we explore a purely time domain approach to speech process-
ing in which we identify the samples at the boundaries between glottal
pulse periods (in voiced speech) or at the boundaries between unvoiced
segments of similar spectral shape.

Having identified these segment boundaries, we can perform a vari-
ety of important low level speech analysis and manipulation operations
directly and conveniently. For example, we make a voiced/unvoiced de-
cision on each segment by examining the periodicity of the waveform
in that segment only. In voiced segments we can estimate the pitch as
the reciprocal of the segment length. Timescale modification without
pitch or format distortion can be achieved by stochastically eliminating
or replicating segments in the time domain directly. More sophisticated
operations, such as pitch modification, gender and voice conversion, and
companding (volume equalization) are also naturally performed by op-
erating on waveform segments one by one without the need for a cepstral
or other such representation. In effect, our model chops up the origi-
nal speech wave into natural “atomic” units which can be examined or
manipulated in very flexible ways.

The computational challenge with this approach is in efficiently and
robustly identifying the segment boundaries, across silence, unvoiced
and voiced segments. In this section we describe a segmental Hidden
Markov Model(Achan et al., 2004), defined on variable length sections of
the time domain waveform, and show that performing inference in this
model allows us to identify segment boundaries and achieve excellent
results on the speech processing tasks described above.

A probabilistic generative model of time-domain
speech segments

The goal of our algorithm is to break the time domain speech sig-
nal s1, . . . , sN into a set of segments, each of which corresponds to
a glottal pulse period or a segment of unvoiced colored noise. Let
bk denote the time index of the beginning of the kth segment and
sk = (sbk

, . . . , sbk+1−1) denote the waveform in the kth segment, where
k = 1, . . . ,K indexes segments. Our algorithm searches for the segment



112 Speech Segregation

boundaries, b1, b2, . . . , bK+1, so that each segment can be accurately mod-
eled as a time-warped, amplitude-scaled and amplitude-shifted version of
the previous segment. We denote the transformation used to map seg-
ment sk−1 into segment sk by Tk.

Given the segment boundaries b1, . . . , bK+1 and the transformations
T1, . . . ,Tk we assume the probability of each segment depends only on
the previous segment and the transformation for that segment: in other
words we assume the segments are generated by first order Markov chain:

P (s1, s2, . . . , sK |b1, . . . , bK+1,T1, . . . ,TK)

=
K∏

k=1

P (sk|sk−1, bk−1, bk, bk+1,Tk). (1.3)

Each segment is modeled as a noisy copy of the transformed version
of the previous segment. These assumptions simplify the inference and
estimation algorithm described below. Of course, number of segments
and the segment boundaries are unknown and must be inferred from the
speech wave: this inference is the main computation performed by our
algorithm.

For concreteness, we assume that each successive segment sk is equal
to a transformed version of the previous segment, plus isotropic, zero-
mean normal noise with variance σ2

k. Denoting the transformed version
of segment k− 1 by Tksk−1, the conditional probability density of sk is:

P (sk|sk−1, bk−1, bk, bk+1,Tk) =
1

(2πσ2
k)

(bk+1−bk+1)/2

· exp
(

−
1

2σ2
k

(sk −Tksk−1)
T(sk −Tksk−1)

)

. (1.4)

The noise levels σ2
2 , .., σ

2
K are estimated automatically by the inference

procedure along with the segment boundaries
(As the boundary condition of the Markov chain, we assume that the

segment before the first is a vector of all zeros (s0 = 0) and hence the
probability density of the initial segment is given by (2πσ2

1)
−b2/2 exp(−sT

1 s1/2σ
2
1).

We also set σ2
1 equal to the variance of all time-domain samples, since

a priori we do not know what the content of the initial segment should
be.)

We assume that the boundaries and transformations are independent,
and that the prior distribution over transformations is uniform on some
bounded set. In our experiments, we parameterize the transformation
by Tk(αk, βk, γk), where αk, βk and γk are time-warp, amplitude-scaling
and amplitude-shift. We use a prior that is uniform over a 3-dimensional
hypercube that includes all reasonable values for these parameters.



Chapter 8: Automatic Speech Processing by Probabilistic Inference 113

Generally the joint prior probability mass function on segment bound-
aries P (b1, . . . , bK+1) can be quite complex. Since the computational
complexity of the inference algorithm will depend on the number of al-
lowed configurations of segment boundaries, we use a prior that is non-
zero only on an appropriate subset of configurations. In particular, we
exploit a very simple heuristic (first suggested by John Hopfield in 1998)
by restricting segments to begin and end only on zero crossings of the
signal (or possibly only on upward or downward going zero crossings).
This restriction also allows arbitrary segments to be relocated beside
each other and still preserve waveform continuity, which will be impor-
tant in our later applications. To further restrict the range of inferred
segment lengths, we require that ∆min ≤ bk − bk−1 ≤ ∆max, where ∆min

and ∆max are the minimum and maximum segment lengths, satisfying
∆max > ∆min > 0. These minimum and maximum segment lengths are
chosen to represent the widest possible range of pitch periods we ex-
pect to see in our signals. We assume the probability P (b1, . . . , bK−1)
is otherwise uniform, subject to the above constraints. The number of
segments K is also unknown, and its optimal value is inferred automat-
ically as well. We assume that b1 = 1 (the first segment begins on the
first signal sample) and that bK+1 = N + 1 (the last segment ends on
the last signal sample).

The joint distribution over segments, segment boundaries and trans-
formations can now be written as:

P (s1, . . . , sK , b1, . . . , bK+1,T1, . . . ,TK) ∝ P (b1, . . . , bK+1)
K∏

k=1

P (Tk)P (sk|sk−1, bk−1, bk, bk+1,Tk), (1.5)

where P (b1, . . . , bK+1) enforces the constraints on the boundaries; con-
straints on the allowable limits of the time domain scale, amplitude-

domain scale and amplitude-domain shift are enforced by
(
∏K

k=1 P (Tk)
)

although these constraints rarely affect the optimization.

Using dynamic programming to efficiently infer
segment boundaries and transformations

Given a time-domain signal, the computational task now at hand is to
determine the segment boundaries and transformations. Of course, the
number of valid configurations of the boundary variables is exponential
in the length of the waveform, so exhaustive search would be intractable.
Fortunately, the optimal segmentation (which maximizes likelihood, or
equivalently, minimizes the mismatch penalties) can be found using a
generalized dynamic programming algorithm.



114 Speech Segregation

Figure 1.8. (top)Input signal; notice the transition from unvoiced to voiced region.
(bottom) Inferred maximum likelihood segmentation found using generalized dynamic
programming. The upward arrows are used to mark the inferred segment boundaries.

First, note that according to 1.5, given the boundary variables, the
MAP estimates of the transformations can be computed locally:

arg max
Tk

P (s1, . . . , sK , b1, . . . , bK+1,T1, . . . ,TK)

= arg max
Tk

P (Tk)P (sk|sk−1, bk−1, bk, bk+1,Tk). (1.6)

In particular, the time-warping is unique and is given by αk = (bk+1 −
bk)/(bk − bk−1). The warped version of sk−1 is denoted by ŝk−1 and can
be obtained using standard signal processing techniques for time-domain
interpolation or decimation. Note that whereas sk−1 contains bk − bk−1

samples, ŝk−1 contains bk+1 − bk samples. The amplitude-domain scale
βk and shift γk are obtained by performing a least-squares regression of
ŝk−1 onto sk, i.e. by solving

arg min
βk,γk

bk+1−bk∑

j=1

(βkŝk−1(j) + γk − sk(j))
2, (1.7)

where (j) indexes the elements of sk and ŝk−1. After optimizing βk

and γk, the estimate of the variance σ2
k is set to the argument in the

above minimization, divided by bk+1 − bk. For a given configuration
of bk−1, bk, bk+1, we denote the optimal transformation obtained in the
above fashion by T∗

k.
Thus, the search is one over boundary segment positions, which for

efficiency we constrain to lie only at (just after) zero crossings of the
waveform. Finding the optimal segmentation requires performing dy-
namic programming, using a table indexed with two adjacent boundary
points. In order to make the optimization Markovian, we must actually
consider adjacent pairs of boundary points (bk−1, bk) as the states in the
dynamic programming. In particular, we fill in a table C whose entry



Chapter 8: Automatic Speech Processing by Probabilistic Inference 115

C(m,n) holds the best possible log likelihood of the segmentation end-
ing with the segment defined by the mth zero crossing at its left edge
and the nth zero crossing at its right edge. We can iteratively fill in this
table forwards for all values m < n, by using the following recursion:

C(m,n) = arg max
i

[C(m, i) + log P (sk|sk−1, bk−1 = m, bk = i, bk+1 = n,Tk)]

(1.8)

Segmental HMM Experiments

We have applied our segmental inference procedure to clean, wide-
band recordings of single-talker speech, from both males and females
taken from the the Keele pitch reference dataset (Plante et al., 1995) and
from the Wall Street Journal (WSJ) corpus. Dynamic programming was
applied with segment length thresholds of ∆min=3ms and ∆max=25ms
(corresponding to pitch range of 40Hz-333Hz) to find the optimal seg-
mentation of the raw waveforms directly.

We can apply the results of our segment inference algorithm to a wide
range of speech processing tasks, as discussed below. By replicating
or deleting some or all of the inferred segments, we can easily achieve
high quality timescale modification without changing the perceived pitch
or formant structure of the utterance. By examining the periodicity
of each segment, we can attempt to distinguish voiced from unvoiced
portions of the waveform. In voiced regions, we can directly estimate the
pitch by taking the reciprocal of the segment length. Below, we present
results on timescale modification, voiced/unvoiced discrimination, and
pitch tracking. Other applications such as gender and voice conversion,
companding and concert hall effects are also possible. We emphasize that
all the experiments were performed in time domain using the inferred
pitch periods.

Voicing Detection and Pitch Tracking. For voicing detection
and pitch tracking, we evaluated the estimates obtained using our al-
gorithm using the Keele dataset, since it has ground truth values for
these quantities. (In particular, the Keele data has utterances spoken
by both male and female speakers and includes a reference estimate for
the fundamental frequency at a resolution of 10ms. Each utterance is
approximately 30 seconds long and the sampling frequency is 20kHz.)

Once the waveform segments are inferred by the algorithm, we can
estimate the periodicity of each segment in a simple way by comput-
ing the discrete Fourier transform of the segment waveform and then
reconstructing it using a limited number of Fourier coefficients. (This is
illustrated in figure 1.9.)



116 Speech Segregation

Figure 1.9. Simple voicing detection given waveform segmentation. Each segment
is reconstructed using a small number of Fourier coefficients. Segments whose re-
construction error is below some threshold (and whose energy is above the silence
threshold) are tagged as voiced. Examples above show typical voiced (left) and un-
voiced (right) segments and their reconstructions.

160

200

240

280

320

P
it

ch
 (

H
z)

Time (seconds)

F
re

q
u

en
cy

 (
kH

z)

4
0    

10

Figure 1.10. (top)Pitch estimates using segmental HMM for a female speaker in
the Keele dataset. Notice that the inferred pitch(red circle) consistently agrees with
the reference provided (blue plus mark). Further, our approach clearly discriminates
between voiced/unvoiced regions (samples without reference estimates are unvoiced).
(center) input time domain signal (bottom) spectrogram of input

Since unvoiced regions tend to be much less periodic, they will have
a substantially larger reconstruction error than voiced regions and by
selecting an appropriate threshold, we can discriminate between voiced
and unvoiced segments. Our method was able to correctly identify 87.2
% of the voiced segments averaged over all the 10 utterances of males
and females in the Keele dataset. In Fig.1.10, the true unvoiced regions



Chapter 8: Automatic Speech Processing by Probabilistic Inference 117
F

re
q

u
en

cy
 (

kH
z)

0

10

Time (seconds)

F
re

q
u

en
cy

 (
kH

z)

0 2 4
0

10

Figure 1.11. (Middle and Top)Time domain signal and the corresponding spectro-
gram (Bottom)The spectrogram of the signal is marked with the pitch estimates
obtained using our algorithm (blue marker); for clarity we have marked only the first
10 integer multiples of the fundamental frequency

are the segments without any reference pitch shown, and the unvoiced
regions detected by our algorithm are those without estimated pitches.

Pitch tracking is trivially achieved by taking the reciprocal of the seg-
ment lengths in the voiced regions. Results for a single utterance in the
Keele dataset spoken by a female speaker is shown in Fig.1.10. Pitch
estimates obtained using our approach are very consistent with the ref-
erence estimates; similar performance was obtained on other utterances
in the dataset as well. Averaged over 10 utterances the median absolute
pitch error was 9Hz.

It is well known that excitation for voiced speech manifests as sharp
bursts at integer multiples of fundamental frequency. In Fig.1.11, we



118 Speech Segregation

time(sec)

F
re

q
u

en
cy

(k
H

z)

0 1 2
0    

10

time(sec)
0 1 2 3 4

time(sec)
0 1 2 3 4 5 6 7 8 9

2 x Faster Input source 2 x Slower 

Figure 1.12. The spectrogram of time scale modified faster and slower versions of a
signal are shown. The actual time domain operation is shown on top for a particular
time instant in the spectrogram.

have shown a few integer multiples of the fundamental frequency of
a signal on its spectrogram using pitch estimates obtained from the
application of our algorithm.

Time Scale Modification. For timescale modification experi-
ments, we have used utterances from the WSJ corpus. Once the seg-
ments are identified by our algorithm, we can play the signal twice as
fast by deleting every other segment and concatenating the remaining
ones; similarly by replicating each segment we can achieve the effect of
playing the at half the speed (two times slower); this is further illustrated
in Fig.1.12. This approach is substantially different from methods such
as (S. and Wilgus., 1985) that manipulate spectrograms. By doing all
of our operations directly in the time domain we never need to worry
about inconsistent phase estimates.

Segmental HMM: Discussion & Conclusions

We have presented a simple segmental Hidden Markov Model for gen-
erating a speech waveform and derived an efficient algorithm for approxi-
mate inference in the model. Applied to an observed signal, this inference
algorithm operates entirely in the time domain and is capable of iden-
tifying the boundaries of glottal pulse periods in voiced speech and of
unvoiced segments. Using these inferred boundaries we are able to easily
and accurately detect voicing, track pitch and modify the timescales. We
are investigating other possible applications of the same basic model, in-
cluding voice conversion, volume equalization and reverberant filtering.



Chapter 8: Automatic Speech Processing by Probabilistic Inference 119

3. Constrained Hidden Markov Models for
Articulatory Modeling

Structured time-series are generated by systems whose underlying
state variables change in a continuous way but whose state to output
mappings are highly nonlinear, many to one and not smooth. Proba-
bilistic unsupervised learning for such sequences requires models with
two essential features: latent (hidden) variables and topology in those
variables.

By thinking of each state in a hidden Markov model as correspond-
ing to some spatial region of a fictitious topology space it is possible
to naturally define neighbouring states of any state as those which are
connected in that space. The transition matrix of the HMM can then
be constrained to allow transitions only between neighbours; this means
that all valid state sequences correspond to connected paths in the topol-
ogy space. This strong constraint makes structure discovery in sequences
easier. We show how such constrained HMMs can learn to discover un-
derlying structure in complex sequences of high dimensional data, and
apply them to the problem of recovering mouth movements from acous-
tics in continuous speech. This problem has a long history in speech
science, and exemplifies exactly the sort of structured time series analy-
sis problem discussed above.

?
Articulatory
space

Acoustic 
space

Figure 1.13. Can you hear the shape of the mouth? The problem of recovering
articulator motions from acoustics is a classic inversion problem involving physics,
speech science and statistical signal processing.



120 Speech Segregation

Constrained HMMs as latent variable models

Hidden Markov models (HMMs) can be thought of as dynamic gen-
eralizations of discrete state static data models such as Gaussian mix-
tures, or as discrete state versions of linear dynamical systems (LDSs)
(which are themselves dynamic generalizations of continuous latent vari-
able models such as factor analysis). While both HMMs and LDSs pro-
vide probabilistic latent variable models for time-series, both have im-
portant limitations. Traditional HMMs have a very powerful model of
the relationship between the underlying state and the associated obser-
vations because each state stores a private distribution over the output
variables. This means that any change in the hidden state can cause
arbitrarily complex changes in the output distribution. However, it is
extremely difficult to capture reasonable dynamics on the discrete la-
tent variable because in principle any state is reachable from any other
state at any time step and the next state depends only on the current
state. This allows only “random jump” movement in the hidden state
space. For example, one well known difficulty is that the lifetime of any
single state is distributed according to a decaying exponential, which
is often an inappropriate distribution for state dwell times. LDSs, on
the other hand, have an extremely impoverished representation of the
outputs as a function of the latent variables since this transformation
is restricted to be global and linear: a single matrix captures the state
to output mapping and it is applied uniformly regardless of location in
the state space. But it is somewhat easier to capture state dynamics
since the state is a multidimensional vector of continuous variables on
which a matrix “flow” is acting; this enforces some continuity of the la-
tent variables across time. Constrained hidden Markov models (Roweis,
2000) address the modeling of state dynamics by building some topology
into the hidden state representation. The essential idea is to constrain
the transition parameters of a conventional HMM so that the discrete-
valued hidden state evolves in a structured way.5 In particular, below
we consider parameter restrictions which constrain the state to evolve
as a discretized version of a continuous multivariate variable, i.e. so that
it inscribes only connected paths in some space. This lends a physical
interpretation to the discrete state trajectories in an HMM.

An illustrative game

Consider playing the following game: divide a sheet of paper into
several contiguous, non-overlapping regions which between them cover
it entirely. In each region inscribe a symbol, allowing symbols to be
repeated in different regions. Place a pencil on the sheet and move it



Chapter 8: Automatic Speech Processing by Probabilistic Inference 121

around, reading out (in order) the symbols in the regions through which
it passes. Add some noise to the observation process so that some
fraction of the time incorrect symbols are reported in the list instead
of the correct ones. The game is to reconstruct the configuration of
regions on the sheet from only such an ordered list(s) of noisy symbols.
Of course, the absolute scale, rotation and reflection of the sheet can
never be recovered, but learning the essential topology may be possible.6

Figure 1.14 illustrates this setup.

1 11 24 10 25

17 7 5 9 20

8 6 21 15 22

18 2 16 14 12

19 10 3 23 1

True Generative Map

19 10 3 23 1

18 2 16 14 12

8 6 21 15 22

17 7 5 9 20

1 11 24 10 25 22 9

Iteration:030       logLikelihood:−1.9624

24, 2, 21, 2,...
18, 19, 10, 3,...
2, 2, 16, 16,...
15, 15, 2, 3,...

1, 11, 1, 11,...

-

P
P

PPq

Figure 1.14. (left) True map which generates symbol sequences by random move-
ment between connected cells. (centre) An example noisy output sequence with
noisy symbols circled. (right) Learned map after training on 3 sequences (with 15%
noise probability) each 200 symbols long. Each cell actually contains an entire dis-
tribution over all observed symbols, though in this case only the upper right cell has
significant probability mass on more than one symbol. Only the top three symbols
of each cell’s histogram are show, with font size proportional to the square root of
probability (to make ink roughly proportional).

Without noise or repeated symbols, the game is easy (non-probabilistic
methods can solve it) but in their presence it is not. One way of mit-
igating the noise problem is to do statistical averaging. For example,
one could attempt to use the average separation in time of each pair of
symbols to define a dissimilarity between them. It then would be possi-
ble to use methods like multi-dimensional scaling or a sort of Kohonen
mapping though time7 to explicitly construct a configuration of points
obeying those distance relations. However, such methods still cannot
deal with many-to-one state to output mappings (repeated numbers in
the sheet) because by their nature they assign a unique spatial location
to each symbol.

Playing this game is analogous to doing unsupervised learning on
structured sequences. (The game can also be played with continuous
outputs, although often high-dimensional data can be effectively clus-
tered around a manageable number of prototypes; thus a vector time-
series can be converted into a sequence of symbols.) Constrained HMMs
incorporate latent variables with topology yet retain powerful nonlinear



122 Speech Segregation

output mappings and can deal with the difficulties of noise and many-
to-one mappings mentioned above; so they can “win” our game (see
fig. 1.14). The key insight is that the game generates sequences exactly
according to a hidden Markov process whose transition matrix allows
only transitions between neighbouring cells and whose output distribu-
tions have most of their probability on a single symbol with a small
amount on all other symbols to account for noise.

Model definition: state topologies from cell packings

Defining a constrained HMM involves identifying each state of the un-
derlying (hidden) Markov chain with a spatial cell in a fictitious topology
space. This requires selecting a dimensionality d for the topology space
and choosing a packing (such as hexagonal or cubic) which fills the space.
The number of cells in the packing is equal to the number of states M
in the original Markov model. Cells are taken to be all of equal size and
(since the scale of the topology space is completely arbitrary) of unit
volume. Thus, the packing covers a volume M in topology space with a
side length ` of roughly ` = M 1/d. The dimensionality and packing to-
gether define a vector-valued function x(m), m = 1 . . . M which gives the
location of cell m in the packing. (For example, a cubic packing of d di-

mensional space defines x(m+1) to be
[

m,m/`,m/`2, . . . ,m/`d−1
]

mod`.)

(here a mod b denotes the remainder after dividing a by b). State m in
the Markov model is assigned to to cell m in the packing, thus giving
it a location x(m) in the topology space. Finally, we must choose a
neighbourhood rule in the topology space which defines the neighbours
of cell m; for example, all “connected” cells, all face neighbours, or all
those within a certain radius. (For cubic packings, there are 3d-1 con-
nected neighbours and 2d face neighbours in a d dimensional topology
space.) The neighbourhood rule also defines the boundary conditions
of the space – e.g. periodic boundary conditions would make cells on
opposite extreme faces of the space neighbours with each other.

The transition matrix of the HMM is now preprogrammed to only allow
transitions between neighbours. All other transition probabilities are set
to zero, making the transition matrix very sparse. (We set all permitted
transitions to be equally likely.) Now, all valid state sequences in the un-
derlying Markov model represent connected (“city block”) paths through
the topology space. Figure 1.15 illustrates this for a three-dimensional
model.



Chapter 8: Automatic Speech Processing by Probabilistic Inference 123

1 64

1

64

Figure 1.15. (left) Physical depiction of the topology space for a constrained HMM
with d=3,`=4 and M=64 showing an example state trajectory. (right) Correspond-
ing transition matrix structure for the 64-state HMM computed using face-centred
cubic packing. The gaps in the inner bands are due to edge effects.

State inference and learning

The constrained HMM has exactly the same inference procedures as
a regular HMM: the forward-backward algorithm for computing state
occupation probabilities and the Viterbi decoder for finding the single
best state sequence. Once these discrete state inferences have been per-
formed, they can be transformed using the state position function x(m)
to yield probability distributions over the topology space (in the case
of forward-backward) or paths through the topology space (in the case
of Viterbi decoding). This transformation makes the outputs of state
decodings in constrained HMMs comparable to the outputs of infer-
ence procedures for continuous state dynamical systems such as Kalman
smoothing.

The learning procedure for constrained HMMs is also almost identical
to that for HMMs. In particular, the EM algorithm (Baum-Welch) is
used to update model parameters. The crucial difference is that the tran-
sition probabilities which are precomputed by the topology and packing
are never updated during learning. In fact, having a preprogrammed
and fixed transition matrix makes learning much easier in some cases.
Not only do the transition probabilities not have to be learned, but their
structure constrains the hidden state sequences in such a way as to make
the learning of the output parameters much more efficient when the un-
derlying data really does come from a spatially structured generative
model. Notice that in this case, each part of state space had only a
single output (except for noise) so the final learned output distributions
became essentially minimum entropy. But constrained HMMs can in



124 Speech Segregation

principle model stochastic or multimodal output processes since each
state stores an entire private distribution over outputs.

Recovery of mouth movements from speech audio

We have applied the constrained HMM approach described above to
the problem of recovering mouth movements from the acoustic waveform
in human speech. Data containing simultaneous audio and articulator
movement information was obtained from the University of Wisconsin
X-ray microbeam database (Westbury, 1994). Eight separate points
(four on the tongue, one on each lip and two on the jaw) located in
the midsaggital plane of the speaker’s head were tracked while subjects
read various words, sentences, paragraphs and lists of numbers. The x
and y coordinates (to within about ±1mm) of each point were sampled
at 146Hz by an X-ray system which located gold beads attached to
the feature points on the mouth, producing a 16-dimensional vector
every 6.9ms. The audio was sampled at 22kHz with roughly 14 bits
of amplitude resolution but in the presence of machine noise.

reference
beads

u.lip

l.lip

t.body{1,2}
t.dorsum t.tip

ref

jaw.molar

y-axisReference
Tracking &

Bead Placement

jaw.incisor

x-axis

palate

Figure 1.16. Midsaggital locations of tracking beads in the University of Wisconsin
X-ray microbeam articulatory dataset.

How do these data relate to the general task introduced above? These
data are well suited to the constrained HMM architecture. They come
from a system whose state variables are known, because of physical con-
straints, to move in connected paths in a low degree-of-freedom space.
In other words the (normally hidden) articulators (movable structures
of the mouth), whose positions represent the underlying state of the
speech production system,8 move slowly and smoothly. The observed
speech signal—the system’s output—can be characterized by a sequence



Chapter 8: Automatic Speech Processing by Probabilistic Inference 125

of short-time spectral feature vectors, often known as a spectrogram. In
the experiments reported here, we have characterized the audio signal
using 12 line spectral frequencies (LSFs) measured every 6.9ms (to co-
incide with the articulatory sampling rate) over a 25ms window. These
LSF vectors characterize only the spectral shape of the speech waveform
over a short time but not its energy. Average energy (also over a 25ms
window every 6.9ms) was measured as a separate one dimensional signal.
Unlike the movements of the articulators, the audio spectrum/energy
can exhibit quite abrupt changes, indicating that the mapping between
articulator positions and spectral shape is not smooth. (Compare the
sampling rate of 22kHz for the acoustic signal with 146Hz for the articu-
lators.) Furthermore, the mapping is many to one: different articulator
configurations can produce very similar spectra (see below).

The unsupervised learning task, then, is to explain the complicated
sequences of observed spectral features (LSFs) and energies as the out-
puts of a system with a low-dimensional state vector that changes slowly
and smoothly. In other words, can we learn the parameters9 of a con-
strained HMM such that connected paths through the topology space
(state space) generate the acoustic training data with high likelihood?
Once this unsupervised learning task has been performed, we can (as
shown below) relate the learned trajectories in the topology space to the
true (measured) articulator movements.

While many models of the speech production process predict the
many-to-one and non-smooth properties of the articulatory to acoustic
mapping, it is useful to confirm these features by looking at real data.
Figure 1.17 shows the experimentally observed distribution of articula-
tor configurations used to produce similar sounds. It was computed as
follows. All the acoustic and articulatory data for a single speaker are
collected together. Starting with some sample called the key sample,
we find the 1000 samples “nearest” to this key by two measures: ar-
ticulatory distance, defined using the Mahalanobis norm between two
position vectors under the global covariance of all positions for the ap-
propriate speaker, and spectral shape distance, again defined using the
Mahalanobis norm but now between two line spectral frequency vectors
using the global LSF covariance of the speaker’s audio data. In other
words, I find the 1000 samples that “look most like” the key sample
in mouth shape and that “sound most like” the key sample in spectral
shape. we then plot the tongue bead positions of the key sample (as a
thick cross), and the 1000 nearest samples by mouth shape (as a thick
ellipse) and spectral shape (as dots). The points of primary interest are
the dots; they show the distribution of tongue positions used to gener-
ate very similar sounds. (The thick ellipses are shown only as a control



126 Speech Segregation

to ensure that many nearby points to the key sample do exist in the
dataset.) Spread or multimodality in the dots indicates that many dif-
ferent articulatory configurations are used to generate the same sound.

−40 −30 −20 −10 0
−10

0

10

20

tongue tip x [mm]

y 
[m

m
]

−60 −50 −40 −30 −20
−10

0

10

20

30

tongue body1 x [mm]

y 
[m

m
]

−60 −50 −40 −30
−10

0

10

20

tongue body2 x [mm]

y 
[m

m
]

−70 −60 −50 −40
−20

−10

0

10

20

tongue dorsum x [mm]

y 
[m

m
]

−40 −30 −20 −10 0
−5

0

5

10

15

20

tongue tip x [mm]

y 
[m

m
]

−50 −40 −30 −20
−10

0

10

20

30

tongue body1 x [mm]

y 
[m

m
]

−60 −50 −40 −30
−10

0

10

20

tongue body2 x [mm]

y 
[m

m
]

−65 −60 −55 −50 −45
−20

−10

0

10

tongue dorsum x [mm]

y 
[m

m
]

−40 −30 −20 −10 0
−20

−10

0

10

20

tongue tip x [mm]

y 
[m

m
]

−50 −40 −30 −20
−10

0

10

20

30

tongue body1 x [mm]

y 
[m

m
]

−55 −50 −45 −40 −35
−20

−10

0

10

20

tongue body2 x [mm]

y 
[m

m
]

−65 −60 −55 −50 −45
−20

−10

0

10

20

tongue dorsum x [mm]

y 
[m

m
]

−40 −30 −20 −10 0
−10

0

10

20

tongue tip x [mm]

y 
[m

m
]

−60 −50 −40 −30 −20
−10

0

10

20

30

tongue body1 x [mm]

y 
[m

m
]

−60 −50 −40 −30
−10

0

10

20

tongue body2 x [mm]

y 
[m

m
]

−70 −60 −50 −40
−20

−10

0

10

tongue dorsum x [mm]

y 
[m

m
]

Figure 1.17. Inverse mapping from acoustics to articulation is ill-posed in real speech
production data. Each group of four articulator-space plots shows the 1000 samples
in the entire dataset which are “nearest” to one key sample (thick cross). The dots are
the 1000 nearest samples using an acoustic measure based on line spectral frequen-
cies. Spread or multimodality in the dots indicates that many different articulatory
configurations are used to generate very similar sounds. Only the positions of the
four tongue beads have been plotted. Four examples (with different key samples) are
shown, one each group of four panels. The thick ellipses (shown as a control) are
the two-standard deviation contour of the 1000 nearest samples using an articulatory
position distance metric.

Why not do direct supervised learning from short-time spectral fea-
tures (LSFs) to the articulator positions? The ill-posed nature of the
inverse problem as shown in figure 1.17 makes this impossible. To il-
lustrate this difficulty, we have attempted to recover the articulator po-
sitions from the acoustic feature vectors using Kalman smoothing on a
LDS. In this case, since we have access to both the hidden states (ar-



Chapter 8: Automatic Speech Processing by Probabilistic Inference 127

ticulator positions) and the system outputs (LSFs) we can compute the
optimal parameters of the model directly. (In particular, the state tran-
sition matrix is obtained by regression from articulator positions and
velocities at time t onto positions at time t+1; the output matrix by
regression from articulator positions and velocities onto LSF vectors;
and the noise covariances from the residuals of these regressions.) Fig-
ure 1.18b shows the results of such smoothing; the recovery is quite
poor, even when the test utterance is included in the training set used
to estimate model parameters.

0 1 2 3 4 5 6 7 8
−20

−10

0

10

20

30

time [sec]

be
ad

 p
os

iti
on

 [m
m

]

Kalman smoothing on optimal linear dynamical system

0 1 2 3 4 5 6 7 8
−20

−10

0

10

20

30

time [sec]

be
ad

 p
os

iti
on

 [m
m

]

Recovery of tongue tip vertical motion from acoustics

u.
lip

horizontal movements vertical movements

l.l
ip

t.t
ip

t.b
1

t.b
2

t.d
or

ja
w

.i
ja

w
.mB

A

C

Figure 1.18. (A) Recovered articulator movements using state inference on a con-
strained HMM. A four-dimensional model with 4096 states (d=3,`=6,M=216) was
trained on data (all beads) from a single speaker but not including the test utter-
ance shown. Dots show the actual measured articulator movements for a single bead
coordinate versus time; the thin lines are estimated movements from the correspond-
ing acoustics. (B) Unsuccessful recovery of articulator movements using Kalman
smoothing on a global LDS model. All the (speaker-dependent) parameters of the
underlying linear dynamical system are known; they have been set to their optimal
values using the true movement information from the training data. Furthermore,
for this example, the test utterance shown was included in the training data used to
estimate model parameters. (C) All 16 bead coordinates; all vertical axes are the
same scale. Bead names are shown on the left. Horizontal movements are plotted in
the left-hand column and vertical movements in the right-hand column. The separa-
tion between the two horizontal lines near the centre of the right panel indicates the
machine measurement error.



128 Speech Segregation

Constrained HMMs can be applied to this recovery problem, as previ-
ously reported (Roweis and Alwan, 1997). (Earlier results used a small
subset of the same database that was not continuous speech and did not
provide the hard experimental verification (fig. 1.17) of the many-to-one
problem.)

The basic idea is to train (unsupervised) on sequences of acoustic-
spectral features and then map the topology space state trajectories
onto the measured articulatory movements. Figure 1.18 shows move-
ment recovery using state inference in a four-dimensional model with
4096 states (d=4,`=8,M=4096) trained on data (all beads) from a sin-
gle speaker. (Naive unsupervised learning runs into severe local minima
problems. To avoid these, in the simulations shown above, models were
trained by slowly annealing two learning parameters10: a term εβ was

used in place of the zeros in the sparse transition matrix, and γβ
t was

used in place of γt = p(mt|observations) during inference of state oc-
cupation probabilities. Inverse temperature β was raised from 0 to 1.)
To infer a continuous state trajectory from an utterance after learning,
we first do Viterbi decoding on the acoustics to generate a discrete state
sequence mt and then interpolate smoothly between the positions x(mt)
of each state.

After unsupervised learning, a single linear fit is performed between
these continuous state trajectories and actual articulator movements on
the training data. (The model cannot discover the units system or
axes used to represent the articulatory data.) To recover articulator
movements from a previously unseen test utterance, we infer a continu-
ous state trajectory as above and then apply the single linear mapping
(learned only once from the training data).

Constrained HMMs for Articulatory Data:
Conclusions, extensions and related work

By enforcing a simple constraint on the transition parameters of a
standard HMM, a link can be forged between discrete state dynamics
and the motion of a real-valued state vector in a continuous space. For
complex time-series generated by systems whose underlying latent vari-
ables do in fact change slowly and smoothly, such constrained HMMs
provide a powerful unsupervised learning paradigm. They can model
state to output mappings that are highly nonlinear, many to one and
not smooth. Furthermore, they rely only on well understood learning
and inference procedures that come with convergence guarantees.

Results on synthetic and real data show that these models can success-
fully capture the low-dimensional structure present in complex vector



Chapter 8: Automatic Speech Processing by Probabilistic Inference 129

time-series. In particular, we have shown that a speaker dependent con-
strained HMM can accurately recover articulator movements from con-
tinuous speech to within the measurement error of the data. This acous-
tic to articulatory inversion problem has a long history in speech process-
ing (see e.g. (Schroeter and Sondhi, 1994) and references therein). Many
previous approaches have attempted to exploit the smoothness of artic-
ulatory movements for inversion or modeling: Hogden et.al (e.g. (Nix
and Hogden, 1999)) provided early inspiration for these ideas, but do
not address the many-to-one problem; Simon Blackburn (Blackburn and
Young, 1996) has investigated a forward mapping from articulation to
acoustics but does not explicitly attempt inversion; early work at Water-
loo (Ramsay and Deng, 1994) suggested similar constraints for improv-
ing speech recognition systems but did look at real articulatory data,
more recent work at Rutgers (Chennoukh et al., 1997) developed a very
similar system much further with good success. Perpiñán (Carreira-
Perpinan, 2000), considers a related problem in sequence learning using
EPG speech data as an example.

While in this section we have described only “diffusion” type dynam-
ics (transitions to all neighbours are equally likely) it is also possible
to consider directed flows which give certain neighbours of a state lower
(or zero) probability. The left-to-right HMMs mentioned earlier are an
example of this for one-dimensional topologies. For higher dimensions,
flows can be derived from discretization of matrix (linear) dynamics or
from other physical/structural constraints. It is also possible to have
many connected local flow regimes (either diffusive or directed) rather
than one global regime as discussed above; this gives rise to mixtures
of constrained HMMs which have block-structured rather than banded
transition matrices. Smyth (Smyth, 1997) has considered such models
in the case of one-dimensional topologies and directed flows; we have
applied these to learning character sequences from English text. An-
other application I have investigated is map learning from multiple sen-
sor readings. An explorer (robot) navigates in an unknown environment
and records at each time many local measurements such as altitude,
pressure, temperature, humidity, etc. We wish to reconstruct from only
these sequences of readings the topographic maps (in each sensor vari-
able) of the area as well as the trajectory of the explorer. A final ap-
plication is tracking (inferring movements) of articulated bodies using
video measurements of feature positions.

GLOSSARY

HMM Hidden Markov Model.



130 Speech Segregation

spectrogram Log periodogram showing the absolute value of short-
time Fourier transforms of the original signal.

inference The process of estimating the conditional distribution of
hidden (latent) variables in a model given the observed values and
the model parameters.

generative model A stochastic machine which outputs data in the
form of the data we are trying to analyze, whose behaviour is con-
trolled by a set of tuneable parameters.

hidden (latent) variables Quantities such as hidden factors, states
in a Markov chain or cluster assignments which are used in statistical
models to explain complex variability in observed data but are not
measured directly.

4. Summary

In this chapter, we have explored the use of inference in probabilistic
generative models as a powerful signal processing tool for speech and
audio. The basic paradigm explored was to design a simple model for
the data we observe in which the key quantities that we would eventu-
ally like to compute appear as hidden (latent) variables. By executing
probabilistic inference in such models, we automatically estimating the
hidden quantities and thus perform our desired computation. In a sense,
the rules of probability derive for us, automatically, the optimal signal
processing algorithm for our desired outputs given our inputs under the
model assumptions. Crucially, even though the generative model may
be quite simple and may not capture all of the variability present in the
data, the results of inference can still be extremely informative.

We gave several examples showing how inference in very simple gener-
ative models can be used to perform surprisingly complex speech process-
ing tasks including denoising, source separation, pitch tracking, timescale
modification and estimation of articulatory movements from audio.

Acknowledgments

STR is funded in part by NSERC Canada, by the Premier’s Research
Excellence Award of Ontario and by the Canada Research Chairs Pro-
gram. Thanks to Lawrence Saul and Chris Harvey for helpful discus-
sions about the MAXVQ model. A shortened version of the first section
of this chapter was presented at a special session of Eurospeech 2003
(Geneva) organized by Mazin Rahim and Rob Shapire and. Work on
the Segmental HMM was done in collaboration with Kannan Achan at
the University of Toronto. John Hopfield first proposed the idea of a
segmental model constrained to have boundaries at zero crossings.



Chapter 8: Automatic Speech Processing by Probabilistic Inference 131

Notes
1. An equivalent operation can be performed in the frequency domain by making a
conventional spectrogram of the original signal y(t) and modulating the magnitude of each
short time DFT while preserving its phase: sw(τ) = F−1 {αw‖F{yw(τ)}‖ 6 F{yw(τ)}}
where sw(τ) and yw(τ) are the wth windows (blocks) of the recovered and original signals,
αw

i
is the masking signal for subband i in window w, and F [·] is the DFT.

2. This can be demonstrated artificially by taking several isolated sources or noises and
mixing them in a controlled way. Since the original components are known, an “optimal” set
of masking signals can be computed. For example, we might set αi(t) equal to the ratio of
energy from one source in band i around times t ± τ to the sum of energies from all sources
in the same band at that time (as recommended by the Wiener filter) or to a binary version
which thresholds this ratio. Constructing masks in this way is, of course, not possible when
we are confronted with an unknown mixture or corrupted signal, but it can be useful for
generating labeled training data for use by a statistical learning system, as discussed below.

3. Many variations on this basic theme are possible: if the final observation is obtained by
stochastically selecting one of the proposed output vectors, then this becomes a “mixture of
mixtures” which reduces to a large flat mixture model or quantizer with a number of
codebook entries equal to the product of the codebook sizes of the constituent quantizers.
In Zemel’s Cooperative Vector Quantization (CVQ) model (Hinton and Zemel, 1994), the
proposals are combined linearly (either with the same coefficients across all dimensions or
with different coefficients on each dimension) to produce the final output for each case.
Zemel has also proposed a different model, called Multiple-Cause Vector Quantization
(MCVQ) (Ross and Zemel, 2003); in MCVQ each component (dimension) of the observation
vector also stochastically selects which vector quantizer is to provide its value. Each
observation is then a noisy composite of the proposed values from each vector quantizer.
This is like a mixture of mixtures but where each dimension makes a separate choice about
which mixture to select. MAXVQ has similarities to each of MCVQ and CVQ. Unlike
MCVQ, in MAXVQ the composite is not made by having each output dimension select a
quantizer. Similar to CVQ there is a single fixed function which is applied to the proposed
vectors from each quantizer to generate the final output. However, in CVQ this function
implements a weighted sum, while in MAXVQ it implements an elementwise maximum.)

4. Much of the work described in this section was performed in collaboration with Kannan
Achan at the University of Toronto.

5. A standard trick in traditional speech applications of HMMs is to use “left-to-right”
transition matrices which are a special case of the type of constraints investigated in this
section. However, left-to-right (Bakis) HMMs force state trajectories that are inherently
one-dimensional and uni-directional whereas here we also consider higher dimensional
topology and free omni-directional motion.

6. The observed symbol sequence must be “informative enough” to reveal the map
structure (this can be quantified using the idea of persistent excitation from control theory).

7. Consider a network of units which compete to explain input data points. Each unit has
a position in the output space as well as a position in a lower dimensional topology space.
The winning unit has its position in output space updated towards the data point; but also
the recent (in time) winners have their positions in topology space updated towards the
topology space location of the current winner. Such a rule works well, and yields
topological maps in which nearby units code for data that typically occur close together in

time. However it cannot learn many-to-one maps in which more than one unit at different
topology locations have the same (or very similar) outputs.

8. Articulator positions do not provide complete state information. For example, the
excitation signal (voiced or unvoiced) is not captured by the bead locations. They do,
however, provide much important information; other state information is easily accessible
directly from acoustics.

9. Model structure (dimensionality and number of states) is set using cross validation.

10.An easier way (which we have used previously) to find good minima is to initialize the
models using the articulatory data themselves. This does not provide as impressive



132 Speech Segregation

“structure discovery” as annealing but still yields a system capable of inverting acoustics
into articulatory movements on previously unseen test data. First, a constrained HMM is
trained on just the articulatory movements; this works easily because of the natural
geometric (physical) constraints. Next, we take the distribution of acoustic features (LSFs)
over all times (in the training data) when Viterbi decoding places the model in a particular
state and use those LSF distributions to initialize an equivalent acoustic constrained HMM.
This new model is then retrained until convergence using Baum-Welch.



REFERENCES 133References

Achan, Kannan, Roweis, Sam, and Frey, Brendan (2004). A segmental
hmm for speech waveforms. Technical Report UTML-TR-2004-001,
University of Toronto.

Blackburn, S. and Young, S. (1996). Pseudo-articulatory speech
synthesis for recognition using automatic feature extraction from
x-ray data. In ICSLP 1996 v.2, volume 2, pages 969–972.

Brown, Guy J. and Cooke, Martin P. (1994). Computational auditory
scene analysis. Computer Speech and Language, 8.

Carreira-Perpinan, Miguel (2000). Reconstruction of sequential data
with probabilistic models and continuity constraints. In Advances in
Neural Information Processing Systems (NIPS), volume 12.

Cauwenberghs, Gert (1999). Monaural separation of independent
acoustical components. In IEEE Symposium on Circuit and Systems
(ISCAS’99). IEEE.

Chennoukh, S., Sinder, D., Richard, G., and Flanagan, J. (1997). Voice
mimic system using an articulatory codebook for estimation of vocal
tract shape. In Eurospeech 1997, Rhodes, Greece.

Ephraim, Y., Malah, D., and Juang, B.H. (1989). On the application of
hidden markov models for enhancing noisy speech. IEEE
Transactions on Acoustics, Speech and Signal Processing, 37.

Gales, M. and Young, S. (1996). Robust continuous speech recognition
using parallel model combination. IEEE Transactions on Speech and
Audio Processing, 4(5):352–359.

Green, P., Barker, J., Cooke, M.P., and Josifovski, L. (2001). Handling
missing and unreliable information in speech recognition. In
AISTATS.

Hinton, Geoffrey and Zemel, Richard (1994). Autoencoders, minimum
description length, and helmholtz free energy. In Advances in Neural
Information Processing Systems (NIPS), volume 6. MIT Press.

Jojic, Nebojsa and Frey, Brendan (2000). Topographic transformation
as a discrete latent variable. In Advances in Neural Information
Processing Systems (NIPS), volume 12. MIT Press.



134 Speech Segregation

Logan, Beth and Moreno, Pedro (1998). Factorial hmms for acoustic
modeling. In ICASSP 1998. IEEE.

Nix, D. and Hogden, J. (1999). Maximum likelihood continuity
mapping: An alternative to HMMs. In Advances in Neural
Information Processing Systems (NIPS), volume 11. MIT Press.

Plante, F, Ainsworth, W.A., and Meyer, G.F (1995). A pitch
extraction reference database. In Eurospeech 1995.

Ramsay, G. and Deng, L. (1994). A stochastic framework for
articulatory speech recognition. Journal of the Acoustical Society of
America, 95(5):2873.

Reyes, Manuel, Raj, B., and Ellis, Dan (2003). Multi-channel source
separation by factorial hmms. In ICASSP 2003. IEEE.

Ross, David and Zemel, Richard (2003). Multiple cause vector
quantization. In Advances in Neural Information Processing Systems
(NIPS), volume 15. MIT Press.

Roweis, Sam (2000). Constrained hidden markov models. In Advances
in Neural Information Processing Systems (NIPS), volume 12. MIT
Press.

Roweis, Sam (2001). One microphone source separation. In Advances
in Neural Information Processing Systems (NIPS), volume 13. MIT
Press.

Roweis, Sam and Alwan, Abeer (1997). Towards articulatory speech
recognition. In Eurospeech 1997, volume 3, pages 1227–1230,
Rhodes, Greece.

S., Roucos. and Wilgus., A. M. (1985). High quality time-scale
modification for speech. In ICASSP 1985. IEEE.

Schroeter, J. and Sondhi, M. (1994). Techniques for estimating vocal
tract shapes from the speech signal. IEEE Transactions on Speech
and Audio Processing, 2(1 p2):133–150.

Smyth, P. (1997). Clustering sequences with hidden Markov models. In
Tesauro, G., Touretzky, D., and Leen, T., editors, Advances in
Neural Information Processing Systems, volume 9, pages 648–654.
MIT Press.

Varga, A.P. and Moore, R.K. (1990). Hidden markov model
decomposition of speech and noise. In ICASSP 1990, pages 845–848.
IEEE.

Wan, Eric.A. and Nelson, Alex.T. (1998). Removal of noise from
speech using the dual ekf algorithm. In ICASSP 1998. IEEE.

Westbury, J.R. (1994). X-ray microbeam speech production database
user’s handbook. Technical report, University of Wisconsin,
Madison.


