
Convex Learning with Invariances

Choon Hui Teo
Australian National University

choonhui.teo@anu.edu.au

Amir Globerson
CSAIL, MIT

gamir@csail.mit.edu

Sam Roweis
Department of Computer Science

University of Toronto
roweis@cs.toronto.edu

Alexander J. Smola
NICTA

Canberra, Australia
alex.smola@gmail.com

Abstract

Incorporating invariances into a learning algorithm is a common problem in ma-
chine learning. We provide a convex formulation which can deal with arbitrary
loss functions and arbitrary losses. In addition, it is a drop-in replacement for most
optimization algorithms for kernels, including solvers of the SVMStruct family.
The advantage of our setting is that it relies on column generation instead of mod-
ifying the underlying optimization problem directly.

1 Introduction

Invariances are one of the most powerful forms of prior knowledge in machine learning; they have
a long history[9, 1] and their application has been associated with some of the major success stories
in pattern recognition. For instance, the insight that in vision tasks, one should be often be designing
detectors that are invariant with respect to translation, small degrees of rotation & scaling, and
image intensity has led to best-in-class algorithms including tangent-distance[13], virtual support
vectors[5] and others[6].

In recent years a number of authors have attempted to put learning with invariances on a solid math-
ematical footing. For instance [3] discusses how to extract invariant features for estimation and
learningglobally invariant estimators for a known class of invariance transforms (preferably arising
from Lie groups). Another mathematically appealing formulation of the problem of learning with
invariances casts it as a second order cone programming[8]; unfortunately this is neither particularly
efficient to implement (having worse than cubic scaling behavior) nor does it cover a wide range of
invariances in an automatic fashion. A different approach has been to pursue “robust” estimation
methods which, roughly speaking, aim to find estimators whose performance does not suffer signif-
icantly when the observed inputs are degraded in some way. Robust estimation has been applied to
learning problems in the context of missing data[2] and to deal with specific type of data corruption
at test time [7]. The former approach again leads to a second order cone program, limiting its ap-
plicability to very small datasets; the latter is also computationally demanding and is limited to only
specific types of data corruption.

Our goal in this work is to develop a computationally scalable and broadly applicable approach to
supervised learning with invariances which is easily adapted to new types of problems and can take
advantage of existing optimization infrastructures. In this paper we propose a method which has
what we believe are many appealing properties.

1. It formulates invariant learning as a convex problem and thus can be implemented directly
using any existing convex solver, requiring minimal additional memory and inheriting the
convergence properties/guarantees of the underlying implementation.

1



2. It can deal witharbitrary invariances, includinggradual degradations, provided that the
user provides a computational recipe to generate invariant equivalents efficiently from a
given data vector.

3. It provides a unifying framework for a number of previous approaches, such as the method
of Virtual Support Vectors [5] and is broadly applicable not just to binary classification but
in fact to any structured estimation problem in the sense of [16].

2 Maximum Margin Loss with Invariances

We begin by describing a maximum margin formulation of supervised learning which naturally
incorporates invariance transformations on the input objects. We assume that we are given input
patternsx ∈ X from from some spaceX and that we want to estimate outputsy ∈ Y. For instance
Y = {±1} corresponds to binary classification;Y = An corresponds to sequence prediction over the
alphabetA. (For more nontrivial examples see, e.g. [16, 14] and the references therein.) We denote
our prediction byȳ(x), which is obtained by maximizing our learned functionf : X × Y → R,
i.e. ȳ(x) := argmaxy∈Y f(x, y). For instance, if we are training a (generative or discrimina-
tive) probabilistic model,f(x, y) = log p(y|x) then our prediction is the maximum a-posteriori
estimate of the targety given x. In many interesting cases̄y(x) is obtained by solving a non-
trivial discrete optimization problem, e.g. by means of dynamic programming. In kernel methods
f(x, y) = 〈φ(x, y), w〉 for a suitable feature mapφ and weight vectorw. For the purpose of our
analysis the precise form off is immaterial, although our experiments focus on the kernel machines,
due to the availability of scalable optimizers for that class of estimators.

2.1 Invariance Transformations and Invariance Sensitive Cost

The crucial ingredient to formulating invariant learning is to capture the domain knowledge that there
exists some classS of invariance transformss which can act on the inputx while leaving the target
y essentially unchanged. We denote by(s(x), y) s ∈ S the set of valid transformations of the pair
(x, y). For instance, we might believe that slight rotation (in pixel coordinates) of an input image in
a pattern recognition problem do not change the image label. For text classification problems such
as spam filtering, we may believe that certain editing operations (such as changes in capitalization
or substitutions likeViagra → V1agra ,V!agra ) should not affect our decision function. Of
course, most invariances only apply “locally”, i.e. in the neighborhood of the original input vector.
For instance, rotating an image of the digit6 too far might change its label to9; applying both a
substitution and an insertion can changeViagra → diagram . Furthermore, certain invariances
may only hold for certainpairs of input and target. For example, we might believe that horizontal
reflection is a valid invariance for images of digits in classes0 and8 but not for digits in class2.
The sets(x) s ∈ S incorporates both the locality and applicability constraints. (We have introduced
a slight abuse of notation sinces may depend ony but this should always be clear in context.)

To complete the setup, we adopt the standard assumption that the world or task imposes a cost
function such that if the true target for an inputx is y and our prediction is̄y(x) we suffer a cost
∆(y, ȳ(x)). (Normally ∆ = 0 if ȳ(x) = y but this is not strictly necessary.) For learning with
invariances, we extend the definition of∆ to include the invariance functions(x), if any, which
was applied to the input object:∆(y, ȳ(s(x)), s). This allows the cost to depend on the transforma-
tion, for instance we might suffer less cost for poor predictions when the input has undergone very
extreme transformations. In a image labeling problem, for example, we might believe that a light-
ing/exposure invariance applies but we might want to charge small cost for extremely over-exposed
or under-exposed images since they are almost impossible to label. Similarly, we might assert that
scale invariance holds but give small cost to severely spatially down-sampled images since they
contain very little information.

2.2 Max Margin Invariant Loss

Our approach to the invariant learning problem is very natural, yet allows us to make a surprising
amount of analytical and algorithmic progress. A key quantity is the cost under theworst case
transformationfor each example, i.e. the transformation under which our predicted target suffers
the maximal cost compared with the true target:

C(x, y, f) = sup
s∈S

∆(y, ȳ(s(x)), s) (1)

2



The objective function (loss) that we advocate minimizing during learning is essentially a convex
upper bound on this worst case cost which incorporates a notion of (scaled) margin:

l(x, y, f) := sup
y′∈Y,s∈S

Γ(y, y′)(f(s(x), y′)− f(s(x), y)) + ∆(y, y′, s) (2)

This loss function finds the combination of invariance transformation and predicted target for which
the sum of (scaled) “margin violation” plus the cost is maximized. The functionΓ(y, y′) is a non-
negative margin scaling which allows different target/prediction pairs to impose different amounts
of loss on the final objective function.1 The numerical scale ofΓ also sets the regularization tradeoff
between margin violations and the prediction cost∆.

This loss function has two mathematically important properties which allow us to develop scalable
and convergent algorithms as proposed above.

Lemma 1 The lossl(x, y, f) is convex inf for any choice ofΓ,∆ andS.

Proof For fixed(y′, s) the expressionΓ(y, y′)(f(s(x), y′) − f(s(x), y)) + ∆(y, y′, s) is linear in
f , hence (weakly) convex. Taking the supremum over a set of convex functions yields a convex
function.

This means that we can plugl into any convex solver, in particular wheneverf belongs to a linear
function class, as is the case with kernel methods. The primal (sub)gradient ofl is easy to write:

∂f l(x, y, f) = Γ(y, y∗)(φ(s∗(x), y∗)− φ(s∗(x), y)) (3)

wheres∗, y∗ are values ofs, y for which the supremum in (2) is attained andφ is the evaluation
functional off , that is〈f, φ(x, y)〉 = f(x, y). In kernel methodsφ is commonly referred to as the
feature mapwith associated kernel

k((x, y), (x′, y′)) = 〈φ(x, y), φ(x′, y′)〉 . (4)

Note that there is no need to defineS formally. All we need is a computational recipe to obtain the
worst cases ∈ S in terms of the scaled margin in Equation 2. Nor is there any requirement for
∆(y, y′, s) or (s(x), y) to have any particularly appealing mathematical form, such as the polyno-
mial trajectory required by [8], or the ellipsoidal shape described by [2].

Lemma 2 The lossl(x, y, f) provides an upper bound onC(x, y, f) = sups∈S ∆(y, ȳ(s(x)), s).

Proof Denote by(s∗, y∗) the values for which the supremum ofC(x, y, f) is attained. By construc-
tion f(s∗(x), y∗) ≥ f(s∗(x), y). Plugging this inequality into (2) yields

l(x, y, f) ≥ Γ(y, y∗)(f(s∗(x), y∗)− f(s∗(x), y)) + ∆(y, y∗, s∗) ≥ ∆(y, y∗, s∗).

Here the first inequality follows by substituting(s∗, y∗) into the supremum. The second inequality
follows from the fact thatΓ ≥ 0 and that(s∗, y∗) are the maximizers of the empirical loss.

This is essentially a direct extension of [16]. The main modifications are the inclusion of a margin
scaleΓ and the use of an invariance transforms(x). In section 4 we clarify how a number of existing
methods for dealing with invariances can be viewed as special cases of (2).

In summary, (2) penalizes estimation errors not only for the observed pair(x, y) but also for patterns
s(x) which are “near”x in terms of the invariance transforms. Recall, however, that the cost
function∆ may assign quite a small cost to a transformations which takesx very far away from the
original. Furthermore, the transformation class is restricted only by the computational consideration
that we can efficiently find the “worst case” transformation;S does not have to have a specific
analytic form. Finally, there is no specific restriction ony, thus making the formalism applicable to
any type of structured estimation.

1Such scaling has been shown to be extremely important and effective in many practical problems especially
in structured prediction tasks. For example, the key difference between the large margin settings of [14] and
[16] is the incorporation of a sequence-length dependent margin scaling.

3



3 Learning Algorithms for Minimizing Invariant Loss

We now turn to the question of learning algorithms for our invariant loss function. We assume
that we are given a training set of input patternsX = {x1, . . . , xm} and associated labelsY =
{y1, . . . , ym}. We follow the common approach of minimizing, at training time, our average training
loss plus a penalty for model complexity. In the context of kernel methods this can be viewed as a
regularized empirical risk functional of the form

R[f ] =
1
m

m∑
i=1

l(xi, yi, f) +
λ

2
‖f‖2H wheref(x, y) = 〈φ(x, y), w〉 . (5)

A direct extension of the derivation of [16] yields that the dual of (5) is given by

minimize
α

m∑
i,j=1

∑
y,y′∈Y

∑
s,s′∈S

αiysαjy′s′Kiys,jy′s′ +
m∑

i=1

∑
y∈Y

∑
s∈S

∆(yi, y, s)αiys (6a)

subject toλm
∑
y∈Y

∑
s∈S

αiys = 1 for all i andαiys ≥ 0. (6b)

Here the entries of the kernel matrixK are given by

Kiys,jy′s′ = Γ(yi, y)Γ(yj , y
′) 〈φ(s(xi), y)− φ(s(xi), yi), φ(s′(xj), y′)− φ(s′(xj), yj)〉 (7)

This can be expanded into four kernel functions by using (4). Moreover, the connection between the
dual coefficientsαiys andf is given by

f(x′, y′) =
m∑

i=1

∑
y∈Y

∑
s∈S

αiys [k((s(xi), y), (x′, y′))− k((s(xi), yi), (x′, y′))] . (8)

There are many strategies for attempting to minimize this regularized loss, either in the primal for-
mulation or the dual, using either batch or online algorithms. In fact, a number of previous heuristics
for dealing with invariances can be viewed as heuristics for approximately minimizing an approx-
imation to an invariant loss similar tol. For this reason we believe a discussion of optimization is
valuablebeforeintroducing specific applications of the invariance loss.

Whenever the are an unlimited combination of valid transformations and targets (i.e. the domain
S × Y is infinite), the optimization above is a semi-infinite program, henceexactminimization of
R[f ] or of its dual are essentially impossible. However, even is such cases it is possible to find
approximate solutions efficiently by means of column generation. In the following we describe
two algorithms exploiting this technique, which are valid for both infinite and finite programs. One
based on a batch scenario, inspired by SVMStruct[16], and one based on an online setting, inspired
by BMRM/Pegasos[15, 12].

3.1 A Variant of SVMStruct

The work of [16, 10] on SVMStruct-like optimization methods can be used directly to solve regu-
larized risk minimization problems. The basic idea is to compute gradients ofl(xi, yi, f), either one
observation at a time, or for the entire set of observations simultaneously and to perform updates in
the dual space. While bundle methods work directly with gradients, solvers of the SVMStruct type
are commonly formulated in terms of column generation on individual observations. We give an
instance of SVMStruct for invariances in Algorithm 1. The basic idea is that instead of checking the
constraints arising from the loss functions only fory we check them for(y, s), that is, an invariance
in combination with a corresponding label which violates the margin most.

If we view the tuple(s, y) as a “label” it is straightforward to see that the convergence results of
[16] apply. That is, this algorithm converges toε precision inO(ε−2) time. In fact, one may show,
by solving the difference equation in the convergence proof of [16] that the rate can be improved to
O(ε−1). We omit technical details here.

4



Algorithm 1: SVMStruct for Invariances
Input: dataX, labelsY , sample sizem, toleranceε
Initialize Si = ∅ for all i, andw = 0.
repeat

for i = 1 to m do
f(x′, y′) =

∑
i

∑
(s,y)∈Si

αiz [k((s(xi), y), (x′, y′))− k((s(xi), yi), (x′, y′))]
(s∗, y∗) = argmaxs∈S,y∈Y Γ(yi, y)[f(s(xi), y)− f(s(xi), yi)] + ∆(yi, y, s)
ξi = max(0,max(s,y)∈Si

Γ(yi, y)[f(s(xi), y)− f(s(xi), yi)] + ∆(yi, y, s))
if Γ(yi, y

∗)[f(s∗(xi), y∗)− f(s∗(xi), yi)] + ∆(yi, y
∗, s∗) > ξi + ε then

Increase constraint setSi ← Si ∪ {(s∗, y∗)}
Optimize (6) using onlyαiz wherez ∈ Si.

end if
end for

until S has not changed in this iteration

Algorithm 2: Pegasos for Invariances
Input: dataX, labelsY , sample sizem, iterationsT ,
Initialize f1 = 0
for t = 1 to T do

Pick (x, y) := (xt mod m, yt mod m)
Compute constraint violator

(s∗, y∗) := argmax
s̄∈S,ȳ∈Y

Γ(y, ȳ) [f(s̄(x), ȳ)− f(s̄(x), y)] + ∆(y, ȳ, s̄)

Updateft+1 =
[
1− 1

t

]
ft + Γ(y,y∗)

λt [k((s∗(x), y), (·, ·))− k((s∗(x), y∗), (·, ·))]

if ‖ft+1‖ >
√

2R[0]
λ then

Updateft+t ←
√

2R[0]
λ ft+1/ ‖ft+1‖

end if
end for

3.2 An Application of Pegasos

Recently, Shalev-Shwartz et al. [12] proposed an online algorithm for learning optimization prob-
lems of type (5). Algorithm 2 is an adaptation of their method to learning with our convex invariance
loss. In a nutshell, the algorithm performs stochastic gradient descent on the regularized version of
the instantaneous loss while using a learning rate of1

λt and while projecting the current weight

vector back to a feasible region‖f‖ ≤
√

2R[0]
λ , should it exceed it.

We can apply the convergence result from [12] directly to Algorithm 2. In this context note that the
gradient with respect tol is bounded by twice the norm ofΓ(y, y∗) [φ(s(x), y∗)− φ(s(x), y)], due
to (3). We assume that the latter is given byR. We can apply [12, Lemma 1] immediately:

Theorem 3 Denote byRt[f ] := l(xt mod m, yt mod m, f) + λ
2 ‖f‖

2 the instantaneous risk at step
t. In this case Algorithm 2 satisfies the following bound:

1
T

T∑
t=1

Rt[
1
T

T∑
t̄

ft̄] ≤
1
T

T∑
t=1

Rt[ft] ≤ min
‖f‖≤

q
2R[0]

λ

1
T

T∑
t=1

Rt[f ] +
R2(1 + log T )

2λT
. (9)

In particular, ifT is a multiple ofm we obtain bounds for the regularized riskR[f ].

5



4 Related work and specific invariances

While the previous sections gave a theoretical description of the loss, we now discuss a number of
special cases which can be viewed as instances of a convex invariance loss function presented here.

Virtual Support Vectors (VSVs): The most straightforward approach to incorporate prior knowl-
edge is by adding “virtual” (data) points generated from existing dataset. An extension of this
approach is to generate virtual points only from the support vectors (SVs) obtained from training on
the original dataset [5]. The advantage of this approach is that it results in far fewer SV than training
on all virtual points. However, it is not clear which objective it optimizes. Our currentloss based
approach does optimize an objective, and generates the required support vectors in the process of
the optimization.

Second Order Cone Programming for Missing and Uncertain Data:In [2], the authors consider
the case where the invariance is in the form of ellipsoids around the original point. This is shown to
correspond to a second order cone program.

Semidefinite Programming for Invariances: Graepel and Herbrich [8] introduce a method for
learning when the invariances are polynomial trajectories. They show that the problem is equiva-
lent to an semidefinite program (SDP). Their formulation is again an instance of our general loss
based approach. Since SDPs are typically hard to solve for large problems, it it is likely that the
optimization scheme we suggest will perform considerably faster than standard SDP solvers.

Robust Estimation: Globerson and Roweis [7] address the case where invariances correspond to
deletion of a subset of the features (i.e., setting their values to zero). This results in a quadratic
program (QP) with a variables for each data point and feature in the training set. Solving such
a large QP (e.g.,107 variables for the MNIST dataset) is not practical, and again the algorithm
presented here can be much more efficient. In fact, in the next section we introduce a generalization
of the invariance in [7] and show how it can be optimized efficiently.

5 Experiments

Knowledge about invariances can be useful in a wide array of applications such as image recognition
and document processing. Here we study two specific cases: handwritten digit recognition on the
MNIST data, and spam filtering on the ECML06 dataset. Both examples are standard multiclass
classification tasks, where∆(y, y′, s) is taken to be the 0/1 loss. Also, we take the margin scale
Γ(y, y′) to be identically one. We used SVMStruct and BMRM as the solvers for the experiments.

5.1 Handwritten Digits Recognition

Handwritten digits can be altered in various ways, but can still be recognized by humans. To test
our invariant SVM (Invar-SVM) in this context, we used handwritten digits from the MNIST dataset
[11] and modeled twenty invariance transformations: 1-pixel and 2-pixel shift in4 and8 directions,
rotations by±10 degrees, scaling by±0.15, and shearing in vertical or horizontal axis by±0.15.
To test the effect of learning with these invariances we used small training samples of10, 20, . . . , 50
samples per digit. In this setting invariances are particularly important since they can compensate
for the insufficient training data. We compared Invar-SVM to a related method where all possible
transformations are applied in advance to each data point to createvirtual samples. Then the virtual
and original samples were used to train a multiclass SVM (VIR-SVM). Finally, we also trained
a multiclass SVM that does not use any invariance information (STD-SVM). The aforementioned
SVMs were trained using RBF kernel with well-chosen hyperparameters. For evaluation we used
the standard MNIST test set.

Results for the three methods are shown in Figure 1. It can be seen that Invar-SVM and VIR-SVM,
which use invariances, significantly improve the recognition accuracy compared to STD-SVM. This
comes at a certain cost of using more support vectors, but for Invar-SVM the number of support
vectors is roughly half of that in the VIR-SVM.

5.2 SPAM Filtering

The task of detecting spam emails is a challenging machine learning problem. One of the key
difficulties with such data is that it can change over time as a result of attempts of spam authors to

6



Figure 1: Results for the MNIST handwritten digits recognition task, comparing SVM trained on
original samples (STD-SVM), SVM trained on original and virtual samples (VIR-SVM), and our
convex invariance-loss method (Invar-SVM). Left figure shows the classification error as a function
of the number of original samples per digit used in training. Right figure shows the number of
support vectors corresponding to the optimum of each method.

outwit spam filters [4]. In this context, the spam filter should be invariant to the ways in which a
spam authors will change their style. One common mechanism of style alteration is the insertion
of common words, and avoiding using specific key-words consistently over time. If documents are
represented using a bag-of-words, these two strategies correspond to incrementing the counts for
some words, or setting it to zero [7].

Here we consider a somewhat more general invariance class (FSCALE) where word counts may be
scaled by a maximum factor ofu (e.g.,1.5) and a minimum factor ofl (e.g.,0.5), and the maximum
number of words subject to such perturbation is limited atK. Note that, by settingl = 0 andu = 1
we specialize it to the feature deletion case (FDROP) in [7].

The invariances we consider are thus defined by

s(x) = {x ◦ α : α ∈ [l, u]d,#{i : αi 6= 1} ≤ K} (10)

where◦ denotes element-wise product,d is the number of features, and we assume that one is in
the range[l, u]. The setS is large so exhaustive enumeration is intractable. However, the search
for optimal perturbations∗ is a linear program and can be computed efficiently by Algorithm 3 in
O(d log d) time.

We evaluated the performance of our invariance loss FSCALE and its special case FDROP as well
as the standard hinge loss on ECML’06 Discovery Challenge Task A dataset.2 This dataset con-
sists of two subsets, namely evaluation set (ecml06a-eval ) and tuning set (ecml06a-tune ).
ecml06a-eval has 4000/2500×3 training/testing emails with dimensionality206908, and
ecml06a-tune has4000/2500×1 training/testing emails with dimensionality169620. We se-
lected the best parameters for each methods onecml06a-tune and used them for the training on
ecml06a-eval . Results and parameter sets are shown in Table 1. We also performed McNemar’s
Tests and rejected the null hypothesis that there is no difference between hinge and FSCALE/FDROP
with p-value< 10−32.

Loss Average Accuracy % Average AUC % Parameters (λ, K, l, u)
Hinge 74.75 83.63 (0.005,-,-,-)
FDROP 81.73 87.79 (0.1,14,0,1)
FSCALE 83.71 89.14 (0.01,10,0.5,8)

Table 1: SPAM filtering results onecml06a-eval averaged over 3 testing subsets.λ is regular-
ization constant, (K, l, u) are parameters for invariance-loss only. Proposed loss function (FSCALE)
and its special case (FDROP) statistically significantly outperform the standard hinge loss (Hinge).

2http://www.ecmlpkdd2006.org/challenge.html

7



Algorithm 3: FSCALE(x, y, w, K, l, u)
1: Initialize i := 1, j := d
2: B := y ∗ w ◦ x
3: Idx := IndexSort(B), such thatB(Idx) is in ascending order
4: for k = 1 to K do
5: if B[Idx[i]] ∗ (1− u) > B[Idx[j]] ∗ (1− l) then
6: x[Idx[i]] := x[Idx[i]] ∗ u andi := i + 1
7: else
8: x[Idx[j]] := x[Idx[j]] ∗ l andj := j − 1
9: end if

10: end for

6 Summary

We have presented a general approach for learning using knowledge about invariances. Our cost
function is essentially a worst case margin loss, and thus its optimization only relies on finding
the worst case invariance for a given data point and model. This approach can allow us to solve
invariance problems which previously required solving very large optimization problems (e.g. a
QP in [7]). We thus expect it to extend the scope of learning with invariances both in terms of the
invariances used and efficiency of optimization.

Acknowledgements:We thank Carlos Guestin and Bob Williamson for fruitful discussions. Part
of the work was done when CHT was visiting NEC Labs America. NICTA is funded through the
Australian Government’sBacking Australia’s Abilityinitiative, in part through the ARC. This work
was supported in part by the IST Programme of the European Community, under the PASCAL
Network of Excellence, IST-2002-506778.

References
[1] Y. Abu-Mostafa. A method for learning from hints. In S. J. Hanson, J. D. Cowan, and C. L. Giles, editors,

NIPS 5, 1992.
[2] C. Bhattacharyya, K. S. Pannagadatta, and A. J. Smola. A second order cone programming formulation

for classifying missing data. In L. K. Saul, Y. Weiss, and L. Bottou, editors,NIPS 17, 2005.
[3] C. J. C. Burges. Geometry and invariance in kernel based methods. In B. Schölkopf, C. J. C. Burges, and

A. J. Smola, editors,Advances in Kernel Methods — Support Vector Learning, pages 89–116, Cambridge,
MA, 1999. MIT Press.

[4] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma. Adversarial classification. InKDD, 2004.
[5] D. DeCoste and B. Schölkopf. Training invariant support vector machines.Machine Learning, 46:161–

190, 2002.
[6] M. Ferraro and T. M. Caelli. Lie transformation groups, integral transforms, and invariant pattern recog-

nition. Spatial Vision, 8:33–44, 1994.
[7] A. Globerson and S. Roweis. Nightmare at test time: Robust learning by feature deletion. InICML, 2006.
[8] T. Graepel and R. Herbrich. Invariant pattern recognition by semidefinite programming machines. In

S. Thrun, L. Saul, and B. Schölkopf, editors,NIPS 16, 2004.
[9] G. E. Hinton. Learning translation invariant recognition in massively parallel networks. InProceedings

Conference on Parallel Architectures and Laguages Europe, pages 1–13. Springer, 1987.
[10] T. Joachims. Training linear SVMs in linear time. InKDD, 2006.
[11] Y. LeCun, L. D. Jackel, L. Bottou, A. Brunot, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, U. A.

Müller, E. S̈ackinger, P. Simard, and V. Vapnik. Comparison of learning algorithms for handwritten digit
recognition. In F. Fogelman-Soulié and P. Gallinari, editors,ICANN, 1995.

[12] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for SVM. In
ICML, 2007.

[13] P. Simard, Y. LeCun, and J. Denker. Efficient pattern recognition using a new transformation distance. In
S. J. Hanson, J. D. Cowan, and C. L. Giles, editors,NIPS 5, 1993.

[14] B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In S. Thrun, L. Saul, and
B. Scḧolkopf, editors,NIPS 16, 2004.

[15] C.H. Teo, Q. Le, A.J. Smola, and S.V.N. Vishwanathan. A scalable modular convex solver for regularized
risk minimization. InKDD, 2007.

[16] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and
interdependent output variables.J. Mach. Learn. Res., 6:1453–1484, 2005.

8


