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ABSTRACT

Over 200 CVS repositories representing the assignmentsuef s
dents in a second year undergraduate computer science t@mws
been assembled. This unique data set represents manydinalivi
working separately on identical projects, presenting fhgootunity
to evaluate the effects of the work habits captured by CVSesn p
formance. This paper outlines our experiences mining aatyan
ing these repositories. We extracted various quantitatigasures
of student behaviour and code quality, and attempted tcelzier
these features with grades. Despite examining 166 featuestnd
that grade performance cannot be accurately predictetdicigrno
predictors stronger than simple lines-of-code were found.

1. INTRODUCTION

Version control repositories contain a wealth of detailefbr-
mation about the evolution of a codebase. In this paper, e ou
line our experiences analyzing data from a large colleaifo@VS
repositories created by many students working on a smatif ses-
signments in a second year undergraduate computer scieuceec
at the University of Toronto.

We believe our data set is rather unique. It contains hursdred
of completely independent repositories, one for each siudach
student is implementing the same thing at the same timeidliev
work analyzing logs from version control systems has tertded
focus on a single large repository involving many coderskivay
on different parts of the same software project[5, 4].

1.1 Goals

The broad goal of our research programme was to extract in-
formation about student behaviour and code from versioitrabn
repositories, in order to find statistical patterns or premts of per-
formance. It was our hope that these results can be usedriifjde
and assist undergraduate students having difficultiess paper
outlines our attempts.

We attempted to identify work habits captured in the CVS sepo
itory that are indicative of strong or poor performance. Weekti-
gated such hypothesesstadents who start assignments early tend
to do well andstudents who submit assignments close to (or after)
the deadline tend to do poorlyQuantitatively confirming the ef-
fectiveness of good work habits could help encourage staden
follow them.
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In addition, we attempted to identify features of the codelft
that are indicative of performance. As with work habits,faoning
their effects on performance could be used to encouragersisitb
write good code.

Finally, we were interested in finding early indicators afdsnts
who may be struggling in order to provide timely assitancee W
hope to acheive this by finding a way to predict low grades [(fina
course grades in the bottom third of the class) based orstatati
extracted from a student’s CVS repository.

1.2 CVS Background

CVS, the Concurrent Versions System[1], is a source code man
agement system. It provides a facility for storing past aresent
versions of a project’s codebase, as well as automating rmaany
pects of writing software as a team.

A CVS repository consists of two parts: administrative fdesed
in a central location (known a8VSROOQJT and RCS files associ-
ated with each file stored in the repository. The RCS filesestor
revision histories for the individual files comprising theject.

This storage scheme is a bit complex to parse. To further com-
plicate matters, in CVS there are two separate and occalyiolis
joint records of activity in a repository: tHeVSROOT/history
file and the individual RCS files (ending jm ). File histories are
implicitly stored in theRCSfiles which record modifications, addi-
tions, and scheduled deletions. Thistory file tracks (almost)
all interactions between a user and a repository, includmerk-
outs, updates, and conflict resolutions, as well as thasellabove.
Unfortunately, the history file does not record the initialiorting
(addition to the repository) of a project.

2. DATA PREPARATION

A combination of Python, ViewCVSJ[3], and MySQL helped mas-
sage the data into a more usable form. Our original code for ex
tracting data from CVS repositories is based on ViewCVS chi
includes a fast RCS parser written in C++. This code, inclgdiur
modifications to the ViewCVS parser, is freely availablenvaiw.
cs.utoronto.ca/ keir/slurp-1.0.0.tar.gz . The code
parses every file in a repository and loads the transactitnsai
MySQL database for convienient access.

2.1 Transaction Clumping

One problem with CVS is the grouping of transactions. CVS
does not keep any record of which operations were executed as
part of a single client command. In order to reconstruct e af
the CVS repository, these must be re-grouped based on tampor
proximity and other details of the transactions.

We used a variant of the sliding window approach[6] to clump
groups of transactions into single events. In this approaci set



of transactions with the same user and comment string, ictlwhi  ing to predict performance based on all of the informaticailable.

neighbouring transactions occur withirseconds of each other are .
grouped into a single event. For our data, we found that 50 3.1 MUtuaI Information for Feature Evalua-

worked well. While this disagrees with the results in [6]stis not tion
unexpected, as our repositories are very small, with maslesits The mutual information between two (discrete) random \deis
working on the local network, leading to much shorter operat x andy is defined as the cross-entropy between their joint distribu
times. tion and the product of their marginal distributions:

Two modifications were made to the sliding window approach to (z,y)
improve results. First, it was noted that some CVS clieritsathe I(z,y) = KL[p(z,y)|p(z)p(y)] = Zp(:m y) log, PEY)
user to enter a different comment for each file involved inrglsi - p(@)p(y)

event. To account for this, all transactions by the same tinsgr
occur at the same second were grouped together. Seconds it wa
noted that a single file cannot have multiple modificationthimi

one event. After the clumping was complete, any event which ¢
tained the same file more than once was split into separatgsgve
decreasing the amount of over-clumping.

The mutual information between two random variables is a-mea
sure of their dependence or independence. It is a more efring
measure than the traditional correlation coefficient, Wwigialy mea-
sures average second order statistics but cannot captomeleco
higher order dependencies.

For our data, we did not have enough samples to accurately es-
2.2 Feature Extraction timate the joint density between all the features we ingestid.
However, we did have enough data to estimate the mutual-infor
mation between a single feature and student grades. Spdgific
we created a binary random variahjewvhich was 1 if a student
achieved a grade which placed them in the top third of thesclad
zero if it placed them in the bottom third of the class. Stuslém
the middle third were excluded from the estimation proceduive
then discretized each featufdnto K = 20 bins (with equal sized
rangesfx) and computed the mutual information between this dis-
cretized random variable and the binary grade variable |ee:

The quantitative and visual analysis techniques we intgrde
use require numerical data. Accordingly, we converted tiaua
data about each student into a set of numerical summargtstati
(called feature$, to be evaluated as predictors of student perfor-
mance. Our system extracts 166 unique features from the-tran
action histories, log comments, and details of the actudé dides
from each student. In order to be able to quantitatively caraphe
effects of different features, each feature was normalteciave
zero mean and unit variance across the entire dataset.

Three classes of features were extracted. The first feauers K p(f € fuly)
calculated from the database of CVS data. These largelgsept I(f) = > > pW)p(f € frly)log, PTE )
student behaviour and work habits. They include things file y=0,1k=1 p F

average number of revisions per f|_Ie, number of local C\/_S OPer \wherep(f € fi) is the overall observed frequency with which the

ations, number of update transactions, how close to thelidead  feaure falls into bink andp(f € fu|y) is the frequency for either

they submit the assignment, and more. , the high or the low grade students(y = 1) = p(y = 0) = 0.5
The second group of features came from parsing the Python gince e select exactly equal numbers of students with higtles

and Java code. For these features, each student's repos#sr  (ihe top third of the class) and low grades (the bottom thirthe
checked out and examined. Two simple parsers were written (i class).

Python) to extract features directly from the Python ana Zade, Using these estimates, we can rank the features by how much
such as the number of while loops, number of comments, and NUM jnformation they contain about the course grade. figure &sgiv
ber of instances of certain formatting habits. short list of the top features and their estimated mutuakinftion.

For the final group of features, we used PMD[2] to examine all The result was quite surprising to us:
Java files. PMD detects many types of higher-level featyrasic-

ularly style violations or bad practicgs. It detects thiligs vari- Of the 166 features we examined, only 3 had significant arel
able names that don't follow a naming standard, booleanesxpr o with grade. Of these, the most significant was the taialoer
sions that can be simplified, empty if statements, assettouti a of lines of code written.

message, and a whole slew of others.

In addition to extracting these features, records of stueea- Given the number of student repositories used, only thrae fe
demic performance were added to the database. Along witlegra  res had statistically significant mutual informationtwite grade
for each student, each student was labelled as being inghentd- of the student at the = 0.05 level: lines of code written by the
dle, or bottom third of the class. student, number of commas followed by spaesd total length of

diff text? (In this casel = 0.22 bits was the significance cutoff.)
3. VISUAL & QUANTITATIVE ANALYSIS These features are above the line in figure 1.

A variety of visual and quantitative analysis techniquegewve :
applied to the data. Visualizations used include views tisg- 3.2 Effects of Work Habits on Grades

gregate statistics across all students and assignmenteelaas The first hypothesis investigated was that students who do we
specialized views which allow us to examine the behavioua of ~ On the assignments will tend to do well on the final exam. Fagur
single student and/or a single assignment. Quantitatiedysis shows a plot of term grade (from the assignments) versus exam
techniques used include examining the mutual informatewben grade, which suggests that such a relationship is present.
each feature and the student grade, as well as the appticitata- We compared student grades with the number of transactions o
tistical pattern recognition algorithms for predictincades from various types executed by the student, hoping to see thatairce
the features. . . 'Considerfoo(a,b,c,d) instead ofoo(a, b, c, d)

The following sections present the results of our analysistims 2Each time a student doess commit , only changes to the code
of the three goals of the project: investigating the effedtaork are stored. The “total diff length” feature is the total cizter count

habit on grades, the effects of code quality on grades, dachpt- of all the deltas combined.



M.I. (bits)

Feature Description

type of transaction (or mix of types) is particularly indiva of per-
formance. The displays, however, suggest that no partitnaas-
action types are indicative of high or low performance (sgeré 6

0.29 newline characters in students files below). This was confirmed by our mutual information analysi
0.28 times a space followed a comma, efgofa, b, ¢) which shows that none of transaction type counts have titally
0.26 characters in diff text between successive revisiGWS)) L . . .

significant mutual information with grade.
0.20 comments (Python) Each of _the features ex_tracte_d fr(_)m t_he work habits of thdaes_m
0.20 literal strings (Python) was examined for a relationship with final course grade. @i
0.19 operators (Python) anticipated several of these would have an impact, it tuonwedhat
0.16 characters in all comments none had mutual information with final grade that was siatifly
0.16 function definitions (Python) significant at thep = 0.05 level. In particular, we were surprised
0.14 while _loops (Python) to note that how early a student starts assignments, and loge c
0.14 Terminal tokens (Python) . y . : 9 e
0.13 4-space indents to the deadlines they submit, had essentially no predigtilige for
0.13 comment-space-capital sequences #.gFbrmatted student grade. (Although some students may have startddamor
0.12 commits (CVS) their home machines early but not checked into the CVS repgsi
0.12  for loops (Python) until the last moment.)
011 newlines (Python) In fact, the only feature drawn from the CVS repository thed h
0.11 files in repository tatisticallv signifi t tual inf fi ith final th
0.11 violations of “Assertions should include message” (9M statistically significant mu ug in orma ion with final grawas _e
0.11 self references (Python) t(_)tf_al numbe_r of characte_rs in the diff text between sucvess-
0.10 modifies (CVS) visions. This, however, is actually an estimate of how muthlt
0.10 violations of “Avoid duplicate literals” (PMD) code the student has written, as opposed to a feature ofwbeir
0.10 except tokens (Python) habits.
0.10 leading tabs ; ;
0.10 total transactions (CVS) tTh}:ese retsu(;ts tsuggistt_] tgit, t(1:ontrary tol_ tttklle bfzfelletfs o‘It many i
0.09 Average revisions per file (CVS) structors, student work habits have very little effect oairtiper-

Figure 1: Mutual information between various features of a
student’s repository and the binary indicator of whether they
fall into the top third or bottom third of the class (by final

grade). Each feature is acount of how many times it occurred,

formance, so long as they eventually do the work. Students wh
wait until the last minute to do an assignment appear juskely!|

to do well (or poorly) as those who both start and complete the
assignment well ahead of time.

3.3 Effects of Code Quality on Grades

Both visual and quantitative analysis techniques wereiegjh
an attempt to correlate the various features describing qodlity
with grade.

The feature with the strongest predictive value turned outet
lines of code written, as measured by the number of linefeadce
ters in the files in each student’s repository. Plots of gnaefsus
lines of code are shown in figure 3. They show informally that
students who write very little code tend to do poorly (but dray
a certain point writing more code does not correlate withhaig
grades) and that (with a few exceptions) students who do avell
assignments also do well on the exam. We have also performed a
more quantitative mutual information analysis (see bekivgwing
100 that the number of lines of code written is a statisticalgn#ficant
(though weak) predictor of grade at the= 0.05 level, and is a
stronger predictor than any other complex feature we weletab
find. Figure 7 provides an alternate view of this relatiopsbhow-
ing histograms of the lines of code written by students intte
third and bottom third of the class, as well as those writtethie
entire class.

This relationship is not surprising considering that studavho
do not write enough code to complete an assignment nedgssari
get low grades. Once a student writes enough code to finish an
assignment, lines of code are no longer a strong indicatguality.

One of the other two features that had statistically sigaific
mutual information with the grade of students athe 0.05 level
was also a code quality measure: the number of times a comma wa
followed by a space. This indicates care being taken in ftinga
code, and may well be an indication of the total time spenchen t
assignment by the student. It is true that some programmnefsrp
thef oo(a,b) form; thus, if the code feature indicates the na@spa
form, no conclusion can be drawn from code formatting habits

The fact that all three of the statistically significant icatiors
of performance were indicators of time spent on the assigtene

for example ‘comments (Python)’ is the number of comments
a student had in their code. Features marked (Python) were
drawn from the students’ Python code. Likewise, the (CVS)
marking means the feature was drawn from the CVS logs, and
(PMD) denotes rule violations PMD found. Only values greate
than 0.22 bits are statistically significant at thep = .05 level,
given the number of students. Significant features are locad
above the horizontal line.
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Figure 2: The relationship between the two components mak-
ing up a final grade. term mark is the net mark on the coding
assignments. Radius of each circle indicates the total nunaip
of CVS transactions executed by the student.



suggests a simple conclusion:

In order to succeed in a course, students should invest tbe ne
essary time to complete assignments with care. It doesrttema
when they put this time in, so long as they do so.

3.4 A Machine Learning Approach to Grade

Total Lines of Code Written
A

[ v L ]
Prediction g p—

With numeric features in hand, we were ready to try a variety Lé L . A ‘“;AA
of statistical pattern recognition algorithms for preitigt grades é vy = . u.‘:‘“A
based on the features. Specifically, the algorithms weineta 57 v P 3{,»‘ A‘ N
to distinguish between students in the top and bottom tHirthe L ‘v ;’ AR Wl'.;rfﬁﬂ‘
class, with those in the middle third left out. Of course, ek of v " "vv,',éw"'b.'..l af
significant mutual information between grades and mostefeh- r y,': AR Ak
tures we extracted did not bode well for such an enterprisieyb v ‘ ‘ ‘ ‘ ‘
conducted several experiments nonetheless and repartéiseits * ° * HinalGrade * *
here.

We used three very basic algorithms from the machine legrnin
and applied statistics fields: nearest neighbour classifitaNaive Figure 3: Final grade versus normalized lines of code the stu
Bayes, and logistic regression. Before we could classigy,nor- dent wrote. The correlation visible in this graph between gade
malized the features to have zero mean and unit variance. (Weand lines of code is as strong as the correlation between grad
applied this normalization to all features, even those \whiis- and any other complex feature we were able to find.

tograms were obviously not Gaussian.)

As expected, none of the classifiers were able to reliablgipre
grades for students based on the features given. While slgoe a
rithms managed to overfit the training sets and achieve O¢finma
error, the errors on an independently held out test set weseya o
far inferior. A leave-one-out (LOOQ) cross validation esite of

Comma and space (, ) [pyljava]

test error was typically around 25%. In particular, for kigi re- o " ;‘A
gression, our LOO error was 29.7%, for Naive Bayes it was%3.9 ;% " waas
(using discretized versions of the features), and for retareigh- ;; | Yv . 'L'-'-“‘ “p )
bour it was also 23.9% (dt” = 21 using Euclidean distance in the = S M " AXA‘{ a

. . L] A
normalized feature space). In all these experiments, we 166 § . V¥ noaah o, 4
normalized features to classify 69 students from the tapl thfi the I S 'vw Sl - VO
class (by grade) from 69 students from the bottom third. vy ':y,:%ﬁh"."té

| w ll~.l o,
4. CONCLUSION AR R B
We have described the results of analyzing data from a laige ¢ Final Grade

lection of CVS repositories created by many coders, in thisec
students, working on a small set of identical projects (seuwas-
signments). We have implemented a complete system formgarsi
such repositories into a SQL database and for extractiog) the
database and repositories, various statistical measfitbe code
and version histories.

Although version control repositories contain a wealth ef d
tailed information both in the transaction histories andhe ac- v =
tual files modified by the users, we were unable to find any mea- r
surements in the hundreds we examined which accurateljcpedd N
student performance as measured by final course gradesintert :
no predictor stronger than simple lines-of-code-writteasviound.

These results directly challenge the conventional wisdaeh &
repository contains easily extractable predictive infation about
external performance measures. In fact, our results stidigas v
aspects such as student work habits, and even code quality, h M (. v',, S A A
little bearing on the student’'s performance. We are eagbate . v y v ‘;‘-'-'ﬂ-ﬁi‘& L
other researchers suggest novel measures which, contramyrt vow Vw .M«
efforts, contain substantial information about produttj\grades, L - - a L - -
or performance. Final Grade
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Figure 4: The only other feature to show significant correlaton
with grade; the number of times a space followed a comma.

Comma and no space (,) [pyljava]

Normalized Feature
T
|

Figure 5: The compliment of the above feature is number of
times a comma appears without a subsequent space. From the
graph (and the mutual information calculations bear this out)
there is very low correlation with grade.
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Figure 6: Final grade versus normalized frequency of transa-

tions of various types. (Normalization was done by dividingut

the mean.) Each circle represents a single student. The vért
cal position of the circle in each panel gives the student’srfal

grade in the course while the horizontal position represert a
normalized number of transactions of a particular type. Visu-

ally, there is no strong correlation present between any ofttese
frequencies and grades; this is confirmed quantitatively bythe

mutual information analysis in figure 1.
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Figure 7: Histograms of (normalized) lines of code written for
the top third (by grade), bottom third, and entire class of 207
students. Visually, it can be seen that students who write nte
code are more likely to be achieve high grades. This featureas
the top scoring predictor of grade in our mutual information
analysis and is a statistically significant (though weak) pedic-
tor of high grade at the p = 0.05 level.



