
Mining Student CVS Repositories for Performance
Indicators

Keir Mierle
Dept. Electrical & Computer Engineering

University of Toronto

keir@cs.utoronto.ca

Kevin Laven, Sam Roweis, Greg Wilson
Dept. Computer Science

University of Toronto

{klaven,roweis,gvwilson}@cs.utoronto.ca
ABSTRACT
Over 200 CVS repositories representing the assignments of stu-
dents in a second year undergraduate computer science course have
been assembled. This unique data set represents many individuals
working separately on identical projects, presenting the opportunity
to evaluate the effects of the work habits captured by CVS on per-
formance. This paper outlines our experiences mining and analyz-
ing these repositories. We extracted various quantitativemeasures
of student behaviour and code quality, and attempted to correlate
these features with grades. Despite examining 166 features, we find
that grade performance cannot be accurately predicted; certainly no
predictors stronger than simple lines-of-code were found.

1. INTRODUCTION
Version control repositories contain a wealth of detailed infor-

mation about the evolution of a codebase. In this paper, we out-
line our experiences analyzing data from a large collectionof CVS
repositories created by many students working on a small setof as-
signments in a second year undergraduate computer science course
at the University of Toronto.

We believe our data set is rather unique. It contains hundreds
of completely independent repositories, one for each student. Each
student is implementing the same thing at the same time. Previous
work analyzing logs from version control systems has tendedto
focus on a single large repository involving many coders working
on different parts of the same software project[5, 4].

1.1 Goals
The broad goal of our research programme was to extract in-

formation about student behaviour and code from version control
repositories, in order to find statistical patterns or predictors of per-
formance. It was our hope that these results can be used to identify
and assist undergraduate students having difficulties. This paper
outlines our attempts.

We attempted to identify work habits captured in the CVS repos-
itory that are indicative of strong or poor performance. We investi-
gated such hypotheses asstudents who start assignments early tend
to do well, andstudents who submit assignments close to (or after)
the deadline tend to do poorly. Quantitatively confirming the ef-
fectiveness of good work habits could help encourage students to
follow them.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

In addition, we attempted to identify features of the code itself
that are indicative of performance. As with work habits, confirming
their effects on performance could be used to encourage students to
write good code.

Finally, we were interested in finding early indicators of students
who may be struggling in order to provide timely assitance. We
hope to acheive this by finding a way to predict low grades (final
course grades in the bottom third of the class) based on statistics
extracted from a student’s CVS repository.

1.2 CVS Background
CVS, the Concurrent Versions System[1], is a source code man-

agement system. It provides a facility for storing past and present
versions of a project’s codebase, as well as automating manyas-
pects of writing software as a team.

A CVS repository consists of two parts: administrative filesstored
in a central location (known asCVSROOT), and RCS files associ-
ated with each file stored in the repository. The RCS files store
revision histories for the individual files comprising the project.

This storage scheme is a bit complex to parse. To further com-
plicate matters, in CVS there are two separate and occasionally dis-
joint records of activity in a repository: theCVSROOT/history
file and the individual RCS files (ending in,v). File histories are
implicitly stored in theRCSfiles which record modifications, addi-
tions, and scheduled deletions. Thehistory file tracks (almost)
all interactions between a user and a repository, includingcheck-
outs, updates, and conflict resolutions, as well as those listed above.
Unfortunately, the history file does not record the initial importing
(addition to the repository) of a project.

2. DATA PREPARATION
A combination of Python, ViewCVS[3], and MySQL helped mas-

sage the data into a more usable form. Our original code for ex-
tracting data from CVS repositories is based on ViewCVS, which
includes a fast RCS parser written in C++. This code, including our
modifications to the ViewCVS parser, is freely available atwww.
cs.utoronto.ca/˜keir/slurp-1.0.0.tar.gz . The code
parses every file in a repository and loads the transactions into a
MySQL database for convienient access.

2.1 Transaction Clumping
One problem with CVS is the grouping of transactions. CVS

does not keep any record of which operations were executed as
part of a single client command. In order to reconstruct the use of
the CVS repository, these must be re-grouped based on temporal
proximity and other details of the transactions.

We used a variant of the sliding window approach[6] to clump
groups of transactions into single events. In this approach, any set

of transactions with the same user and comment string, in which
neighbouring transactions occur withinτ seconds of each other are
grouped into a single event. For our data, we found thatτ = 50
worked well. While this disagrees with the results in [6], this is not
unexpected, as our repositories are very small, with most students
working on the local network, leading to much shorter operation
times.

Two modifications were made to the sliding window approach to
improve results. First, it was noted that some CVS clients allow the
user to enter a different comment for each file involved in a single
event. To account for this, all transactions by the same userthat
occur at the same second were grouped together. Second, it was
noted that a single file cannot have multiple modifications within
one event. After the clumping was complete, any event which con-
tained the same file more than once was split into separate events,
decreasing the amount of over-clumping.

2.2 Feature Extraction
The quantitative and visual analysis techniques we intended to

use require numerical data. Accordingly, we converted the known
data about each student into a set of numerical summary statistics
(called features), to be evaluated as predictors of student perfor-
mance. Our system extracts 166 unique features from the trans-
action histories, log comments, and details of the actual code files
from each student. In order to be able to quantitatively compare the
effects of different features, each feature was normalizedto have
zero mean and unit variance across the entire dataset.

Three classes of features were extracted. The first featureswere
calculated from the database of CVS data. These largely represent
student behaviour and work habits. They include things likethe
average number of revisions per file, number of local CVS oper-
ations, number of update transactions, how close to the deadline
they submit the assignment, and more.

The second group of features came from parsing the Python
and Java code. For these features, each student’s repository was
checked out and examined. Two simple parsers were written (in
Python) to extract features directly from the Python and Java code,
such as the number of while loops, number of comments, and num-
ber of instances of certain formatting habits.

For the final group of features, we used PMD[2] to examine all
Java files. PMD detects many types of higher-level features,partic-
ularly style violations or bad practices. It detects thingslike vari-
able names that don’t follow a naming standard, boolean expres-
sions that can be simplified, empty if statements, asserts without a
message, and a whole slew of others.

In addition to extracting these features, records of student aca-
demic performance were added to the database. Along with grades
for each student, each student was labelled as being in the top, mid-
dle, or bottom third of the class.

3. VISUAL & QUANTITATIVE ANALYSIS
A variety of visual and quantitative analysis techniques were

applied to the data. Visualizations used include views which ag-
gregate statistics across all students and assignments, aswell as
specialized views which allow us to examine the behaviour ofa
single student and/or a single assignment. Quantitative analysis
techniques used include examining the mutual information between
each feature and the student grade, as well as the application of sta-
tistical pattern recognition algorithms for predicting grades from
the features.

The following sections present the results of our analysis in terms
of the three goals of the project: investigating the effectsof work
habit on grades, the effects of code quality on grades, and attempt-

ing to predict performance based on all of the information available.

3.1 Mutual Information for Feature Evalua-
tion

The mutual information between two (discrete) random variables
x andy is defined as the cross-entropy between their joint distribu-
tion and the product of their marginal distributions:

I(x, y) = KL[p(x, y)‖p(x)p(y)] =
X

x,y

p(x, y) log
2

p(x, y)

p(x)p(y)

The mutual information between two random variables is a mea-
sure of their dependence or independence. It is a more stringent
measure than the traditional correlation coefficient, which only mea-
sures average second order statistics but cannot capture complex
higher order dependencies.

For our data, we did not have enough samples to accurately es-
timate the joint density between all the features we investigated.
However, we did have enough data to estimate the mutual infor-
mation between a single feature and student grades. Specifically,
we created a binary random variabley which was 1 if a student
achieved a grade which placed them in the top third of the class and
zero if it placed them in the bottom third of the class. Students in
the middle third were excluded from the estimation procedure. We
then discretized each featuref into K = 20 bins (with equal sized
rangesfk) and computed the mutual information between this dis-
cretized random variable and the binary grade variable as follows:

I(f) =
X

y=0,1

K
X

k=1

p(y)p(f ∈ fk|y) log
2

p(f ∈ fk|y)

p(f ∈ fk)

wherep(f ∈ fk) is the overall observed frequency with which the
feature falls into bink andp(f ∈ fk|y) is the frequency for either
the high or the low grade students.p(y = 1) = p(y = 0) = 0.5
since we select exactly equal numbers of students with high grades
(the top third of the class) and low grades (the bottom third of the
class).

Using these estimates, we can rank the features by how much
information they contain about the course grade. figure 1 gives a
short list of the top features and their estimated mutual information.
The result was quite surprising to us:

Of the 166 features we examined, only 3 had significant correla-
tion with grade. Of these, the most significant was the total number
of lines of code written.

Given the number of student repositories used, only three fea-
tures had statistically significant mutual information with the grade
of the student at thep = 0.05 level: lines of code written by the
student, number of commas followed by spaces1 and total length of
diff text2 (In this caseI = 0.22 bits was the significance cutoff.)
These features are above the line in figure 1.

3.2 Effects of Work Habits on Grades
The first hypothesis investigated was that students who do well

on the assignments will tend to do well on the final exam. Figure 2
shows a plot of term grade (from the assignments) versus exam
grade, which suggests that such a relationship is present.

We compared student grades with the number of transactions of
various types executed by the student, hoping to see that a certain
1Considerfoo(a,b,c,d) instead offoo(a, b, c, d) .
2Each time a student doescvs commit , only changes to the code
are stored. The “total diff length” feature is the total character count
of all the deltas combined.

M.I. (bits) Feature Description

0.29 newline characters in students files
0.28 times a space followed a comma, e.g. “foo(a, b, c) ”
0.26 characters in diff text between successive revisions (CVS)

———–
0.20 comments (Python)
0.20 literal strings (Python)
0.19 operators (Python)
0.16 characters in all comments
0.16 function definitions (Python)
0.14 while loops (Python)
0.14 Terminal tokens (Python)
0.13 4-space indents
0.13 comment-space-capital sequences e.g. “// Formatted ”
0.12 commits (CVS)
0.12 for loops (Python)
0.11 newlines (Python)
0.11 files in repository
0.11 violations of “Assertions should include message” (PMD)
0.11 self references (Python)
0.10 modifies (CVS)
0.10 violations of “Avoid duplicate literals” (PMD)
0.10 except tokens (Python)
0.10 leading tabs
0.10 total transactions (CVS)
0.09 Average revisions per file (CVS)

Figure 1: Mutual information between various features of a
student’s repository and the binary indicator of whether they
fall into the top third or bottom third of the class (by final
grade). Each feature is acount of how many times it occurred,
for example ‘comments (Python)’ is the number of comments
a student had in their code. Features marked (Python) were
drawn from the students’ Python code. Likewise, the (CVS)
marking means the feature was drawn from the CVS logs, and
(PMD) denotes rule violations PMD found. Only values greater
than 0.22 bits are statistically significant at thep = .05 level,
given the number of students. Significant features are located
above the horizontal line.

0 20 40 60 80 100

Term Mark
0

20

40

60

80

100

E
xa

m
 M

ar
k

Figure 2: The relationship between the two components mak-
ing up a final grade. term mark is the net mark on the coding
assignments. Radius of each circle indicates the total number
of CVS transactions executed by the student.

type of transaction (or mix of types) is particularly indicative of per-
formance. The displays, however, suggest that no particular trans-
action types are indicative of high or low performance (see figure 6
below). This was confirmed by our mutual information analysis
which shows that none of transaction type counts have statistically
significant mutual information with grade.

Each of the features extracted from the work habits of the student
was examined for a relationship with final course grade. While we
anticipated several of these would have an impact, it turnedout that
none had mutual information with final grade that was statistically
significant at thep = 0.05 level. In particular, we were surprised
to note that how early a student starts assignments, and how close
to the deadlines they submit, had essentially no predictivevalue for
student grade. (Although some students may have started work on
their home machines early but not checked into the CVS repository
until the last moment.)

In fact, the only feature drawn from the CVS repository that had
statistically significant mutual information with final grade was the
total number of characters in the diff text between successive re-
visions. This, however, is actually an estimate of how much total
code the student has written, as opposed to a feature of theirwork
habits.

These results suggest that, contrary to the beliefs of many in-
structors, student work habits have very little effect on their per-
formance, so long as they eventually do the work. Students who
wait until the last minute to do an assignment appear just as likely
to do well (or poorly) as those who both start and complete the
assignment well ahead of time.

3.3 Effects of Code Quality on Grades
Both visual and quantitative analysis techniques were applied in

an attempt to correlate the various features describing code quality
with grade.

The feature with the strongest predictive value turned out to be
lines of code written, as measured by the number of linefeed charc-
ters in the files in each student’s repository. Plots of gradeversus
lines of code are shown in figure 3. They show informally that
students who write very little code tend to do poorly (but beyond
a certain point writing more code does not correlate with higher
grades) and that (with a few exceptions) students who do wellon
assignments also do well on the exam. We have also performed a
more quantitative mutual information analysis (see below)showing
that the number of lines of code written is a statistically significant
(though weak) predictor of grade at thep = 0.05 level, and is a
stronger predictor than any other complex feature we were able to
find. Figure 7 provides an alternate view of this relationship, show-
ing histograms of the lines of code written by students in thetop
third and bottom third of the class, as well as those written by the
entire class.

This relationship is not surprising considering that students who
do not write enough code to complete an assignment necessarily
get low grades. Once a student writes enough code to finish an
assignment, lines of code are no longer a strong indicator ofquality.

One of the other two features that had statistically significant
mutual information with the grade of students at thep = 0.05 level
was also a code quality measure: the number of times a comma was
followed by a space. This indicates care being taken in formatting
code, and may well be an indication of the total time spend on the
assignment by the student. It is true that some programmers prefer
the f oo(a,b) form; thus, if the code feature indicates the no-space
form, no conclusion can be drawn from code formatting habits.

The fact that all three of the statistically significant indicators
of performance were indicators of time spent on the assignments

suggests a simple conclusion:
In order to succeed in a course, students should invest the nec-

essary time to complete assignments with care. It doesn’t matter
when they put this time in, so long as they do so.

3.4 A Machine Learning Approach to Grade
Prediction

With numeric features in hand, we were ready to try a variety
of statistical pattern recognition algorithms for predicting grades
based on the features. Specifically, the algorithms were trained
to distinguish between students in the top and bottom third of the
class, with those in the middle third left out. Of course, thelack of
significant mutual information between grades and most of the fea-
tures we extracted did not bode well for such an enterprise, but we
conducted several experiments nonetheless and report their results
here.

We used three very basic algorithms from the machine learning
and applied statistics fields: nearest neighbour classification, Naive
Bayes, and logistic regression. Before we could classify, we nor-
malized the features to have zero mean and unit variance. (We
applied this normalization to all features, even those whose his-
tograms were obviously not Gaussian.)

As expected, none of the classifiers were able to reliably predict
grades for students based on the features given. While some algo-
rithms managed to overfit the training sets and achieve 0% training
error, the errors on an independently held out test set were always
far inferior. A leave-one-out (LOO) cross validation estimate of
test error was typically around 25%. In particular, for logistic re-
gression, our LOO error was 29.7%, for Naive Bayes it was 23.9%
(using discretized versions of the features), and for nearest neigh-
bour it was also 23.9% (atK = 21 using Euclidean distance in the
normalized feature space). In all these experiments, we used 166
normalized features to classify 69 students from the top third of the
class (by grade) from 69 students from the bottom third.

4. CONCLUSION
We have described the results of analyzing data from a large col-

lection of CVS repositories created by many coders, in this case
students, working on a small set of identical projects (course as-
signments). We have implemented a complete system for parsing
such repositories into a SQL database and for extracting, from the
database and repositories, various statistical measures of the code
and version histories.

Although version control repositories contain a wealth of de-
tailed information both in the transaction histories and inthe ac-
tual files modified by the users, we were unable to find any mea-
surements in the hundreds we examined which accurately predicted
student performance as measured by final course grades; certainly
no predictor stronger than simple lines-of-code-written was found.

These results directly challenge the conventional wisdom that a
repository contains easily extractable predictive information about
external performance measures. In fact, our results suggest that
aspects such as student work habits, and even code quality, have
little bearing on the student’s performance. We are eager tohave
other researchers suggest novel measures which, contrary to our
efforts, contain substantial information about productivity, grades,
or performance.

Acknowledgments
We thank Karen Reid, Michelle Craig, and Eleni Stroulia for help-
ful discussions about the data and analysis tools. STR is supported
in part by the Canada Research Chairs program and by the IRIS
program of NCE.

30 40 50 60 70 80 90

Final Grade

N
or

m
al

iz
ed

 F
ea

tu
re

Total Lines of Code Written

Figure 3: Final grade versus normalized lines of code the stu-
dent wrote. The correlation visible in this graph between grade
and lines of code is as strong as the correlation between grade
and any other complex feature we were able to find.

30 40 50 60 70 80 90

Final Grade

N
or

m
al

iz
ed

 F
ea

tu
re

Comma and space (,) [py|java]

Figure 4: The only other feature to show significant correlation
with grade; the number of times a space followed a comma.

30 40 50 60 70 80 90

Final Grade

N
or

m
al

iz
ed

 F
ea

tu
re

Comma and no space (,) [py|java]

Figure 5: The compliment of the above feature is number of
times a comma appears without a subsequent space. From the
graph (and the mutual information calculations bear this out)
there is very low correlation with grade.

5. REFERENCES
[1] CVS. http://www.cvs.org/ .
[2] PMD: A style checker.

http://pmd.sourceforge.net/ .
[3] ViewCVS. http://viewcvs.sourceforge.net/ .
[4] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting

fault incidence using software change history. InIEEE
Transactions on Software Engineering, volume 26, July 2000.

[5] Y. Liu, E. Stroulia, K. Wong, and D. German. Using CVS
historical information to understand how students develop
software. InProc. International Workshop on Mining Software
Repositories (MSR04), Edinburgh, 2004.

[6] T. Zimmermann and P. Weibgerber. Preprocessing CVS data
for fine-grained analysis. InProc. International Workshop on
Mining Software Repositories (MSR04), Edinburgh, 2004.

Number of CVS operations vs. Final grade

Checkout Update

0 0.5 1 1.5 2
Number of transactions / average

0

20

40

60

80

100

F
in

al
 G

ra
de

Modify Add

Figure 6: Final grade versus normalized frequency of transac-
tions of various types. (Normalization was done by dividingout
the mean.) Each circle represents a single student. The verti-
cal position of the circle in each panel gives the student’s final
grade in the course while the horizontal position represents a
normalized number of transactions of a particular type. Visu-
ally, there is no strong correlation present between any of these
frequencies and grades; this is confirmed quantitatively bythe
mutual information analysis in figure 1.

-2 2

Total Lines of Code Written

0

5

10

15

20
Top third of class (by final grade)

0

5

10

15

20
Bottom third

Normalized lines of code
0

5

10

15

20

N
um

be
r

of
 s

tu
de

nt
s All students

Figure 7: Histograms of (normalized) lines of code written,for
the top third (by grade), bottom third, and entire class of 207
students. Visually, it can be seen that students who write more
code are more likely to be achieve high grades. This feature was
the top scoring predictor of grade in our mutual information
analysis and is a statistically significant (though weak) predic-
tor of high grade at the p = 0.05 level.

