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Abstract

We present an algorithm for learning a quadratic Gaussidricy{laha-

lanobis distance) for use in classification tasks. Our nebthbes on the
simple geometric intuition that a good metric is one undeicWipoints
in the same class are simultaneously near each other angfapbints
in the other classes. We construct a convex optimizatiohlpro whose
solution generates such a metric by trying to collapse ahges in the
same class to a single point and push examples in other sladssately

far away. We show that when the metric we learn is used in sirolals-
sifiers, it yields substantial improvements over standétetraatives on
a variety of problems. We also discuss how the learned metaig be
used to obtain a compact low dimensional feature representaf the

original input space, allowing more efficient classificatigith very little

reduction in performance.

1 Supervised Learning of Metrics

The problem of learning a distance measure (metric) ovemuispace is of fundamental
importance in machine learning [10, 9], both supervised amsupervised. When such
measures are learned directly from the available data,¢heybe used to improve learn-
ing algorithms which rely on distance computations such emrest neighbour classifi-
cation [5], supervised kernel machines (such as GPs or S\4vd)even unsupervised
clustering algorithms [10]. Good similarity measures mé&o grovide insight into the
underlying structure of data (e.g. inter-protein dista)cand may aid in building bet-
ter data visualizations via embedding. In fact, there is @sellink between distance
learning and feature extraction since whenever we cortsérdieaturef(x) for an input
spaceX, we can measure distances betweenz, € X using a simple distance func-
tion (e.g. Euclidean)i[f(z1), f(x2)] in feature space. Thus by fixing any feature
extraction algorithm may be considered a metric learninthow Perhaps the simplest
illustration of this approach is when th&z) is a linear projection ok € R" so that
f(x) = Wx. The Euclidean distance betweg(x;) and f(x») is then the Mahalanobis
distance]| f(x1) — f(x2)||? = (x1 — x2)TA(x1 — x2), whereA = WTW is a positive
semidefinite matrix. Much of the recent work on metric leaghhas indeed focused on
learning Mahalanobis distances, i.e. learning the matrixThis is also the goal of the
current work.

A common approach to learning metrics is to assume some ledlgwlin the form of equiv-



alence relations, i.e. which points should be close andiw$hould be far (without speci-
fying their exact distances). In the classification setthmgre is a natural equivalence rela-
tion, namely whether two points are in the same class or not. dthe classical statistical
methods which uses this idea for the Mahalanobis distarfeislieer’s Linear Discriminant
Analysis (see e.g. [6]). Other more recent methods are [18] @hich seek to minimize
various separation criteria between the classes undeethenetric.

In this work, we present a novel approach to learning such aieneDur approach, the
Maximally Collapsing Metric Learning algorithm (MCML), lies on the simple geometric
intuition that if all points in the same class could be mapipéala single location in feature
space and all points in other classes mapped to other losatinis would result in an ideal
approximation of our equivalence relation. Our algorithpp@ximates this scenario via a
stochastic selection rule, as in Neighborhood Componeatysis (NCA) [5]. However,
unlike NCA, the optimization problem is convex and thus owtimod is completely spec-
ified by our objective function. Different initializationnd optimization techniques may
affect the speed of obtaining the solution but the final sotuitself is unique. We also
show that our method approximates the local covariancetsirel of the data, as opposed
to Linear Discriminant Analysis methods which use only gllbtovariance structure.

2 The Approach of Collapsing Classes

Given a set of: labeled examplegx;, y;), wherex; € R™ andy; € {1...k}, we seek a
similarity measure between two pointsihspace. We focus on Mahalanobis form metrics

d(xi,x;|A) = df} = (x; —x;)TA(x; — x;) , 1)
whereA is a positive semidefinite (PSD) matrix.

Intuitively, what we want from a good metric is that it makdsneents ofX in the same
class lookclose whereas those in different classes apfaar Our approach starts with
the ideal case when this is true in the most optimistic sesagte class points are at zero
distance, and different class points are infinitely far. eittively this can be viewed as
mappingx via a linear projectioi¥x (4 = WTW), such that all points in the same
class are mapped into the same point. This intuition is edl&b the analysis of spectral
clustering [8], where the ideal case analysis of the algoritesults in all same cluster
points being mapped to a single point.

To learn a metric which approximates the ideal geometrigpsdescribed above, we in-
troduce, for each training point, a conditional distrilbutiover other points (as in [5]).
Specifically, for eack; we define a conditional distribution over poiritg j such that
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If all points in the same class were mapped to a single poittiginitely far from points
in different classes, we would have the ideal “bi-level'tdisution:
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Furthermore, under very mild conditions, any set of poirttgcl achieves the above distri-
bution must have the desired geometry. In particular, asghere are at leagt+ 2 points
in each class, where= ranK A] (note that* < r). Thenp”(j|i) = po(j|i) (Vi,5) implies
that under4 all points in the same class will be mapped to a single paifigitely far from
other class points

*Proof sketch: The infinite separation between points okdiifit classes follows simply from



Thus it is natural to seek a matrix such thaip(j|i) is as close as possible g (ji).
Since we are trying to match distributions, we minimize thedivergencé{L[p, p]:

mjnZKL[pO(j|i)|pA(j|i)] s.t. A € PSD (4)

The crucial property of this optimization problem is thasitonvex in the matrix4. To see
this, first note that any convex linear combination of feksgplutionsA = a4y + (1 —
a)A; s.t. 0 < a < 1is still a feasible solution, since the set of PSD matricemisvex.
Next, we can show that(A) alway has a greater cost than either of the endpoints. To do
this, we rewrite the objective functiofi 4) = >°. KL[po(j|¢)|p(j]i)] in the form?:

f(A) =- Z logp(jli) = Z dz +ZlogZ
43 Yi=Yi 46 Y =Yi
where we assumed for S|mpI|C|ty that classes are equi-ptebgielding a multiplicative
constant. To see whf/(A) is convex, first note thatA (xi — x;)T A(x; — x;) is linear
in A, and thus convex. The functidog Z; is alogZexp function of affine functions of
A and is therefore also convex (see [4], page 74).

2.1 Convex Duality

Since our optimization problem is convex, it has an equivad®nvex dual. Specifically,
the convex dual of Eq. (4) is the foIIowing entropy maximiaatproblem:

max Y H[p(jli)] Z o Gili) [Vii V] — Z WGl [Viivi] =0 (5)

p(j%)

wherev;; = x; —x;, H[]is the entropy function and we requi}€; p(jli) = 1Vi.

To prove this duality we start with the proposed dual and iolitze original problem in
Equation 4 as its dual. Write the Lagrangian for the abovblpm (where) is PSD)?

L(p, )\, B) = ZH (1)) =TT _(Epolvjivji] — Eplvjivy; Zﬂl Zp jli) = 1)
The dual function is defined ag, ) = min, L(p, A, ). To derive it, we flrst solve for
the minimizingp by setting the derivative ok (p, A, 8) w.r.t. p(j|¢) equal to zero.

0=1+logp(jli) + TrQAv;iv]) = B = p(jli) = P71 TrOvivi)

Plugging this solution td,(p, A, ) we getg(, 8) = —Tr(A Y, Epy[vjiv}]) + X, Bi —
>_:;p(j|t). The dual problem is to maximizg(A, ). We can do this analytically w.r.t.
Bi, yielding1 — ; =log 3, e~ T7OWsvid),

Now note thaﬂ“r()\vj,-v;‘.r) =viAv; =dj;,

A
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which is minus our original target function. Singé\) should be maximized, andl > 0
we have the desired duality result (identifyingvith A).

SO we can write

po(j|i) = 0 wheny; # y;. For a given pointk;, all the pointsj in its class satisfyp(j|i) o« 1.
Due to the structure gf(j|4) in Equation 2, and because it is obeyed for all point&’in class, this
implies that all the points in that class are equidistantnfeach other. However, it is easy to show
that the maximum number d@iifferent equidistant points (also known as the equilateral dimensio
[1]) in # dimensions i 4 1. Since by assumption we have at least 2 points in the class aof;,
and A maps points intd&", it follows that all points are identical.

“Up to an additive constant 3, H[po(jli)].

3We consider the equivalent problem of minimizing minus epyr



2.1.1 Relation to covariance based and embedding methods

The convex dual derived above reveals an interesting oel&ti covariance based learning
methods. The sufficient statistics used by the algorithmasset ofn “spread” matrices.
Each matrix is of the forn&,, ;) [v]-,-v;‘.’;.]. The algorithm tries to find a maximum entropy
distribution which matches these matrices when averagedtbe sample.

This should be contrasted with the covariance matrices urseaetric learning such as
Fisher's Discriminant Analysis. The latter uses the withind between class covariance
matrices. The within covariance matrix is similar to the @dance matrix used here, but is
calculated with respect to the class means, whereas hemsilculated separately for every
point, and is centered on this point. This highlights the fhat MCML is not based on
Gaussian assumptions where it is indeed sufficient to leal single class covariance.

Our method can also be thought of as a supervised versioredbtibhchastic Neighbour

Embedding algorithm [7] in which the “target” distributiagp, (determined by the class

labels) and the embedding points are not completely freafauinstead constrained to be
of the formWx;.

2.2 Optimizing the Convex Objective

Since the optimization problem in Equation 4 is convex, igimranteed to have only a
single minimum which is the globally optimal solutibnit can be optimized using any
appropriate numerical convex optimization machineryrradthods will yield the same so-
lution although some may be faster than others. One starsggmiach is to use interior
point Newton methods. However, these algorithms requieeHbssian to be calculated,
which would requireO(d?) resources, and could be prohibitive in our case. Instead, we
have experimented with using a first order gradient methoekifically the projected gra-
dient approach as in [10]. At each iteration we take a smap &t the direction of the
negative gradient of the objective functipriollowed by a projection back onto the PSD
cone. This projection is performed simply by taking the aigiecomposition ofA and
removing the components with negative eigenvalues. Tharigthgn is summarized below:

I nput: Set of labeled data points;,y;),i =1...n
Output:  PSD metric which optimallgollapses classes.

Initialization: Initialize Ay to some PSD matrix
(randomly or using some initialization heuristic).
[terate:

e Setd;1 = Ay — ey f(A;) where
VF(A) =34 wo (i) — p(8)) (x5 — %) (x5 — x:)"
e Calculate the eigen-decompositionAf, |
At+1 = Zk /\kuku{, then setAtH = Zk max()\k, O)UkukT

Of course in principle it is possible to optimize over the ldnatead of the primal but in
our case, if the training data consistsigboints inr-dimensional space then the primal has
only O(r? /2) variables while the dual ha&(n?) so it will almost always be more efficient
to operate on the primal directly. One exception to this case may be the kernel versio
(Section 4) where the primal is also of si2¢n?).

“When the data can be exactly collapsed into single classgpdivere will be multiple solutions
at infinity. However, this is very unlikely to happen in reaitd.
®In the experiments, we used an Armijo like step size ruleessibed in [3].



3 Low Dimensional Projectionsfor Feature Extraction

The Mahalanobis distance under a mettican be interpreted as a linear projection of the
original inputs by the square root of, followed by Euclidean distance in the projected
space. Matricesl which have less than full rank correspond to Mahalanobigdees
based on low dimensional projections. Such metrics andrttieced distances can be
advantageous for several reasons [5]. First, low dimeasipojections can substantially
reduce the storage and computational requirements of a\ss@e method since only the
projections of the training points must be stored and theipudations at test time all occur
in the lower dimensional feature space. Second, low dino@asiprojections re-represent
the inputs, allowing for a supervised embedding or visadilim of the original data.

If we consider matricegl with rank at mosy, we can always represent them in the form
A = WTW for some projection matri¥¥ of sizeq x r. This corresponds to projecting
the original data into g@-dimensional space specified by the rowd®f However, rank
constraints on a matrix are not convex [4], and hence the canktrained problem is not
convex and is likely to have local minima which make the ojftation difficult and ill-
defined since it becomes sensitive to initial conditionsemaice of optimization method.

Luckily, there is an alternative approach to obtaining lamensional projections, which
does specify a unique solution by sequentially solving two glbb#ractable problems.
This is the approach we follow here. First we solve for a (pt&dly) full rank met-
ric A using the convex program outlined above, and then obtainwarémk projec-
tion from it via spectral decomposition. This is done by diaglizing A into the form
A= Z;.":l Xivivl whered; > Xy... ), are eigenvalues ofl andv; are the corre-
sponding eigenvectors. To obtain a low rank projection westain the sum above to
include only they terms corresponding to thelargest eigenvaluesi, = >°7 | Aivive.

The resulting projection is uniquely defined (up to an iveld unitary transformation) as
W = diag(v/A1,. ../ A)IVT5 .. 5 vE]

In general, the projection returned by this approach is natanteed to be the same as the
projection corresponding to minimizing our objective ftinn subject to a rank constraint
on A unless the optimal metrid is of rank less than or equal to However, as we show
in the experimental results, it is often the case that foctical problems the optimal has

an eigen-spectrum which is rapidly decaying, so that mansafigenvalues are indeed
very small, suggesting the low rank solution will be closepdimal.

4 Learning Metricswith Kernels

It is interesting to consider the case wheateare mapped into a high dimensional feature
spaceg(x;) and a Mahalanobis distance is sought in this space. We fatukeocase
where dot products in the feature space may be expressedkeimeal function, such that
d(x:)-d(x;) = k(x;,x;) for some kernet. We now show how our method can be changed
to accommodate this setting, so that optimization depenlysom dot products.

Consider the regularized target function:

Freg(A) = 3 KLipo (j10)p(ili)] + AT (4) , (6)

where the regularizing factor is equivalent to the Frobgmiarm of the projection matrix
W sinceT'r(A) = ||[W||2. Deriving w.r.t. W we obtainlV = U X, whereU is some matrix
which specified¥ as a linear combination of sample points, anditfieow of the matrix
X isx;. ThusA is given byd = XTUTU X . Defining the PSD matrid = UTU, we can
recast our optimization as looking for a PSD matdxwhere the Mahalanobis distance
is (Xi - X]’)TXTAX(XZ' — Xj) = (kz — k])T./i(k, - kj), where we dEflnkz = Xx;.



This is exactly our original distance, with; replaced byk;, which depends only on dot
products inX space. The regularization term also depends solely on therdducts since
Tr(A) = Tr(XTAX) = Tr(XXTA) = Tr(KA), whereK is the kernel matrix given
by K = XXT. Note that the trace is a linear function.df keeping the problem convex.
Thus, as long as dot products can be represented via katheetgptimization can be carried
out without explicitly using the high dimensional space.

To obtain a low dimensional solution, we follow the approati$ection 3: obtain a de-
compositiond = VT DV ©, and take the projection matrix to be the figsows of D5V,

As a first step, we calculate a matdx such thatd = BT B, and thusA = X7BT BX.
SinceA is a correlation matrix for the rows @& X it can be shown (as in Kernel PCA) that
its (left) eigenvectors are linear combinations of the rofuB X . Denoting byl = aBX
the eigenvector matrix, we obtain, after some algebradtiaik BT = Da. We conclude
thata is an eigenvector of the matri®8 K BT. Denote by& the matrix whose rows are
orthonormal eigenvectors @K BT . ThenV can be shown to be orthonormal if we set
V = D~ %5&BX. The final projection will then b@°-?Vx; = &Bk;. Low dimensional
projections will be obtained by keeping only the figstomponents of this projection.

5 Experimental Results

We compared our method to several metric learning algogtbma supervised classifi-

cation task. Training data was first used to learn a metric the2input space. Then this

metric was used in a 1-nearest-neighbor algorithm to dlaagest set. The datasets we in-
vestigated were taken from the UCI repository and have bsed previously in evaluating

supervised methods for metric learning [10, 5]. To these daed the USPS handwritten
digits (downsampled to 8x8 pixels) and thal¥ faces [2] (downsampled to 31x22).

The algorithms used in the comparative evaluation were

e Fisher’s Linear Discriminant Analysis (LDA), which projsmn the eigenvectors
of S;‘}SB whereSy, Sg are the within and between class covariance matrices.

e The method of Xing et al [10] which minimizes the meaithin class distance,
while keeping the mealbetween class distance larger than one.

¢ Principal Component Analysis (PCA). There are severalipiisies for scaling
the PCA projections. We tested several, and report resihe@mpirically supe-
rior one (PCAW), which scales the projection componentdiabthe covariance
matrix after projection is the identity. PCAW often perfapoorly on high di-
mensions, but globally outperforms all other variants.

We also evaluated the kernel version of MCML with an RBF ké(denoted by KM-
CML)”. Since all methods allow projections to lower dimensionsasenpared perfor-
mance for different projection dimensiofis

The out-of sample performance results (based on 40 randlitsi&fthe data taking 70%

for training and 30% for testir®y are shown in Figure 1. It can be seen that when used in a
simple nearest-neighbour classifier, the metric learneBlGML almost always performs

as well as, or significantly better than those learned by thitlomethods, across most
dimensions. Furthermore, the kernel version of MCML ouliprens the linear one on most
datasets.

®WhereV is orthonormal, and the eigenvalueslinare sorted in decreasing order.

"The regularization parametarand the width of the RBF kernel were chosen using 5 fold cross-
validation. KMCML was only evaluated for datasets with l&ssn 1000 training points.

8To obtain low dimensional mappings we used the approacinedtin Section 3.

°Except for the larger datasets where 1000 random samplesused for training.
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Figure 1: Classification error rate on several UCI data&t®S digits and XLE faces, for
different projection dimensions. Algorithms are our Maxiiy Collapsing Metric Learn-
ing (MCML), Xing et.al.[10], PCA with whitening transfornian (PCAW) and Fisher’s
Discriminant Analysis (LDA). Standard errors of the meahsven on curves. No results
given for XING on YALE and KMCML on Digits and Spam due to the data size.

5.1 Comparison to non convex procedures

The methods in the previous comparison are all well defimethe sense that they are not
susceptible to local minima in the optimization. They alsgéithe added advantage of ob-
taining projections to all dimensions using one optim@atiun. Below, we also compare
the MCML results to the results of two non-convex procedufée first is the Non Convex
variant of MCML (NMCML): The objective function of MCML candoptimized w.r.t the
projection matrixiV’, whereA = WX W. Although this is no longer a convex problem, it
is not constrained and is thus easier to optimize. The secon@¢onvex method is Neigh-
bourhood Components Analysis (NCA) [5], which attemptsiteatly minimize the error
incurred by a nearest neighbor classifier.

For both methods we optimized the matiiX by restarting the optimization separately
for each size of#/. Minimization was performed using a conjugate gradienbatgm,
initialized by LDA or randomly. Figure 2 shows results on d#set of the UCI datasets.
It can be seen that the performance of NMCML is similar to tfaifCML, although it

is less stable, possibly due to local minima, and both methmdially outperform NCA.
The inset in each figure shows the spectrum of the MCML matrirevealing that it often
drops quickly after a few dimensions. This illustrates tifeativeness of our two stage
optimization procedure, and suggests its low dimensiariations are close to optimal.

6 Discussion and Extensions

We have presented an algorithm for learning maximally gasilag metrics (MCML), based
on the intuition of collapsing classes into single pointsCML assumes that each class
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Figure 2: Classification error for non convex procedured,tae MCML method.
Eigen-spectra for the MCML solution are shown in the inset.

may be collapsed to a single point, at least approximatety/tlaus is only suitable for uni-
modal class distributions (or for simply connected set®ihklization is used). However,
if points belonging to a single class appear in several diseoted clusters in input (or
feature) space, it is unlikely that MCML could collapse th@ss into a single point. It is
possible that using a mixture of distributions, an EM-likgagithm can be constructed to
accommodate this scenario.

The method can also be used to learn low dimensional projectf the input space. We
showed that it performs well, even across a range of prajedimensions, and consistently
outperforms existing methods. Finally, we have shown hawrtiethod can be extended
to projections in high dimensional feature spaces usingk#érael trick. The resulting
nonlinear method was shown to improve classification reswléer the linear version.
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