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Abstract

We present a method for recovering (to within a constant factor) pe-
riodic, octave band-limited signals given the times of the zero-crossings.
Recovery involves taking the singular-value decomposition of a size
N x2M matrix, where N is the number of zero-crossings within one pe-
riod and M is product of the octave bandwidth and the period length.
We also discuss approximate approaches which can be used to recon-
struct aperiodic or very-long-period signals. Our algorithm achieves
an inversion of Logan’s theorem in the case where such is possible.

1 Logan’s Theorem

Sampling theorems provide conditions under which continuous signals may
be represented by countable sets of real numbers. In the usual setting,
we agree on a regular grid of time points and provide samples of the signal
amplitude at those times. The Nyquist-Shannon theorems tell us that a low-
pass signal may be reconstructed exactly, so long as the times of samples are
spaced at least as densely as half the period of the highest frequency. How-
ever, we could also agree upon a regular grid of amplitude levels and provide
the times at which the signal crossed those levels. This has been dubbed
implicit sampling by Bar-David [Bond and Cahn, 1958, Bar-David, 1974];
although there is no clear theory relating the frequency content of the signal
and the number of levels required. Logan’s theorem [Logan, Jr., 1977] ad-
dresses a special case of this general problem of signal reconstruction from
level crossings. It states that if a signal is band-limited to a single octave
then the times of the zero crossings are sufficient to reconstruct the signal —
to within a constant factor of course.! For Nyquist-style sampling (uniform

!There are some additional important technical caveats. The signal must also have



in time), the reconstruction procedure is well known and involves simply
convolving the given samples with a particular kernel (the sinc function)
that performs the required interpolation. However, to our knowledge no
practical inversion scheme exists for Logan’s theorem.

All strictly band-limited signals must be infinite in time. Such signals
are either periodic or aperiodic. If an infinite signal is aperiodic, an infinite
number of zero-crossing times must be measured and the signal itself requires
an infinite amount of information to specify. However, if an infinite signal
is periodic, only a finite number of zero-crossing times (those within one
period) need to be measured and the signal is entirely specified by one period.
Because Logan’s paper also shows that signals with free zeros cannot be
uniquely reconstructed from their zero-crossings, it is practical (and indeed
meaningful) to consider reconstruction only of periodic signals with no free
2€T08.

In what follows, we address exactly this problem. We present a method
for recovering (to within a constant factor) periodic octave band-limited
signals (with no free zeros) given the times of the zero-crossings within the
period. Recovery requires taking the singular-value decomposition of a size
N x 2M matrix, where N is the number of zero-crossings and M is product
of the octave bandwidth and the period length. We also discuss approximate
approaches which can be used to reconstruct aperiodic or very-long-period
signals.

2 Bandlimited Periodic Signals

Any signal s(t) that is periodic with period T' can be written as an infinite
Fourier series in the (co)sinusoids of real frequency fy = 1/7 and harmonics
of frequencies hfy where h = 2,3,.... If the signal is also band limited, it
can be written as a finite series containing only those harmonics which lie in
the band of interest. In particular, a signal of period T that is band limited
to the octave %[fmin,2fmin) in real-frequency space can be written in the
form:

M
s(t) =Y _ [ak cos(2m fit) + by sin(2m fit)] (1)
k=1

no free zeros. Free zeros are those zeros which can be removed without destroying the
bandpass property of the signal. Logan showed that the free zeros of a signal are those
zeros which it shares with its Hilbert transform. It also must have no coincident zeros of
even multiplicity. In other words, under the convention sign(0) = 0 the function sign(s(t))
must be zero only when s(t) changes sign. 777



in other words, as a series of pure tones with frequencies fi, k = 1... M that
are given? by:

fi = [fmin/ fol fo, (2a)
favr = [2fmin/ fol fo and (2b)
Jeri—fe=Jfo- (2c)

This arrangement is shown in figure 1.
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Figure 1: Fourier series for a band-limited periodic signal. The signal has
period T' = 1/ fo, is band-limited to [fmin,2fmin) and the Fourier series has
M terms.

Our reconstruction method is straightforward: we force the above finite
series (1) for s(t) to vanish at the measured zero-crossing times and solve
for the resulting coefficients a; and bg. Each zero crossing gives an equation
that is linear in the coefficients; the simultaneous solution of these linear
equations yields the admissible set of coefficients. It turns out, not surpris-
ingly, that the coefficients can be determined only to within a single degree
of freedom, which represents the unknown scaling of s(¢). The octave band-
limit restriction ensures that there are enough equations to determine the
set of possible coefficients. (77?7 need to say a bit more here about that, see
comment in Logan’s paper top p.490)

3 Solution by Null Space Identification

Given T, fmin, and N zero-crossing times Z; = {t1,...,t;,... ,tn}, the
algorithm proceeds as follows:

1) Compute fo =1/T and fx, k=1...M as in (2).

2) Compute the matrix X, = 27t; fy, .

2The notation [x] denotes the smallest integer greater than or equal to  (“ceil”) and
|z| is the greatest integer less than z (“floor”). Notice that if z is an integer [z]| = z
while |z] =z — 1.



3) Find the null space of the N x 2M matrix [cos(X)sin(X)]. (In the
absence of noise, this matrix will be rank deficient by exactly one
dimension, in other words it will have rank min(N,2M) — 1 and its
null space will be one-dimensional.) Let the first M components of
this null space vector be & and the last M components be b.

(Note: the null space is the set of all coefficients for which the above
Fourier series (1) exactly vanishes at the times Z;.)

4) The reconstructed signal (up to an unknown constant factor) is

M

a(t) = [ak cos(2m fiit) + by sin(2m fkt)] (3)
k=1

Finding the null space is the only nontrivial computation. Numerically,
it is achieved using the singular-value decomposition® (SVD), taking the
eigenvector corresponding to the smallest singular-value:

3.1) Compute the SVD of the N x 2M matrix [cos(X)sin(X)] to give
U,V,o (where the columns of U are unit vectors which form an or-
thonormal basis for R, the columns of V are unit vectors which form
an orthonormal basis for 2, and o is a vector of the min(N,2M)
singular-values).

3.2) The null space which defines & and b is the column of V with smallest
singular-value. (Ideally the smallest singular-value would be zero, but
due to noise it will be a small but finite value.)

Figure 2 shows the result of applying this algorithm to reconstruct a simple
synthetic signal.*

4 Practical Recovery Strategies

If we are accurately given the zero-crossing times, the period, and the octave
to which its power is limited then the reconstruction of a signal is just a

3Tt is difficult to provide a single reference for the SVD, but a common early citation
is [Eckart and Young, 1939]. The original numerical routines by Golub and Reinsch were
published in Chapter 1.10 of [Wilkinson and Reinsch, 1971]. A good general reference is
[Golub and Loan, 1989] and citations therein especially the intriguing [Beltrami, 1873].

“The signal used in the example is s(t) = cos(2rllz) + (1/2)sin(2xllz) +
(1/33)cos(2mw12z) + (1/4)sin(2w12z) + cos(2w13z) + (1/8)sin(2w13z) + cos(2wldx) +
(1/7)sin(2w14x) + (1/22)cos(2m15z) + (1/3) sin(2715z) + cos(2w16x) +(1/12) sin(2716x) +
cos(2m17z) + (1/40)sin(2717z) + cos(2mw18z) + (1/2)sin(2718z) + (1/3)cos(2719z) +
(1/2)sin(2719z) .



A periodic function and its reconstruction
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Figure 2: Reconstruction of the one-second period of a signal band limited
to [10,20) Hz from its zero crossings. The reconstruction and original signal
are plotted on top of each other; no difference can be seen. The arbitrary
scaling of the reconstruction has been chosen to match the original signal.
The inputs to the reconstruction algorithm are the zero-crossing times, the
period (1 sec) and the octave (10 Hz).

direct application of the SVD technique described above. Furthermore, the
spectrum of the singular-values contains important diagnostic information
about the quality of the reconstruction. In particular, the ratio of the two
smallest singular-values indicates the consistency of the input information.
If this ratio is large (i.e. many orders of magnitude), then the null space is
very nearly one-dimensional and the zero-crossing times, period, and octave
are all consistent with each other.

However, in practical recovery situations some information may be noisy
or missing entirely. For noisy information, the ratio of the two smallest
singular-values may be near unity, indicating that the input information
is inconsistent. Such inconsistency may be caused by uncertainty in the
measurements of zero-crossing times, by imperfect knowledge of the period
or octave, or by violation of the periodic, band-limited, or no free zero
assumptions. Fortunately, however, we can attempt to clean up or fill in such
noisy or missing information by applying the constraint that the solution
must lie in a one-dimensional null space, i.e. that the smallest singular-value
must be much less than the second smallest.

Consider, for example, a scenario in which the period of the signal is
unknown. We know the zero-crossing times, measured during one period;
thus we know that the period is greater than the last zero-crossing time.
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Figure 3: Singular-value spectrum for the reconstruction in figure 2. The
log of the singular-values is plotted against their rank; the smallest is clearly
far below the others indicating that the null space is indeed one-dimensional

We also know the period is not much more than the last zero-crossing plus
a few times the mean inter-zero interval. (7?? theorem about this) Within
this range, we can search for the true period by computing the matrix X
above for each candidate period and examining the ratio of the two smallest
singular-values in the SVD of [cos(X)sin(X)]. We select the period that
maximizes this ratio and use that period to reconstruct the signal. Figure 4
shows this ratio computed in a range around the last zero crossing for the
same synthetic signal as in figure 2.
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Figure 4: Searching for the true period. The natural log of the ratio of the
two smallest singular-values is plotted against the period. The true period
is unity; a peak in the ratio is visible around this value.

A similar one-dimensional search could be performed for an unknown
octave. A good search range for the octave are those which contain the mean
period — equal to twice the mean inter-zero interval. In principal, it might
be possible to extend this approach to deal with noisy measurements of the
zero-crossing times. Given a reliable estimate of the period and octave, a



noisy zero-crossing could be corrected by moving it earlier and later in time
to maximize the ratio of the two smallest singular values.

5 Long Period and Aperiodic Signals

[this section is still under heavy construction]

For band-limited signals which are either aperiodic or are periodic with
extremely long periods, the approach outlined above is not practical. Despite
Logan’s warning that “the overall recovery procedure is obviously hopeless
except in the case of periodic functions” (Logan, p.507), we would nonethe-
less like to devise a strategy to reconstruct such signals from only their
zero-crossings. One possibility is to break long signals into many short sec-
tions and approximate each section by a periodic signal. A potential concern
with this approach is that the original signals have power spectra which are
very dense within the band of interest. The approximating periodic signals,
on the other hand, have power spectra which are sparse combs. The essen-
tial question is whether a single dense spectrum can be approximated by a
sequence of sparse comb spectra.

The problem can be posed as a communication game. Imagine a sender
who has access to the original band-limited signal. He transmits to the
receiver a sequence of real numbers, each one representing the time difference
between successive zero-crossings. The job of the receiver is to reconstruct
the signal using only these numbers and her prior knowledge of the octave
in which the signal’s power is band-limited.

The receiver is faced with two fundamental issues. First, she needs to
decide when to cut the stream of times and attempt to reconstruct a section
of the signal using the zero-crossings she has obtained so far. The longer
she waits, the more computationally demanding her task will be. But the
finer will be the spacing of the harmonics she can use in her reconstruction,
and so the better she will be able to approximate the dense spectrum of
the true signal. Second, once she has decided on a batch of zero-crossings
with which to attempt a reconstruction, she must decide on the fictitious
period of the (periodic) signal that will approximate the true signal section.
Having made these two decisions, she can then apply the algorithm above
and attempt to recover a portion of the original signal.
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