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Abstract

This note gives a closed form expression for the linear transform computed
by an optimally trained linear heteroencoder network of arbitrary topology
trained to minimize squared error. The transform can be thought of as a
restricted rank version of the basic linear least-squares regression (discrete
Wiener filter) between input and output. The rank restriction is set by the
“bottleneck” size of the network — the minimum number of hidden units in
any layer. A special case of this expression is the well known result that lin-
ear autoencoders with a bottleneck of size r perform a transform equivalent
to projecting into the subspace spanned by the first » principal components
of the data. This result eliminates the need to explicitly train linear heteroen-
coder networks.
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1 Linear autoencoders

Because they are fast to train and require few parameters, linear networks! provide an im-
portant performance comparison with more complex data analysis methods. The equivalent
linear transform computed by a linear autoencoder network with a bottleneck of size r has long
been known to be the projection into the subspace spanned by the first » principal components
of the training data. This is true if the training algorithm minimizes squared error at the out-
put and achieves the global minimum of that error. Furthermore, Bourlard and Kamp (1988)
have shown that if all layers of the network after the bottleneck are linear the optimal transfor-
mation remains unchanged even if nonlinear transfer functions are added to units before the
bottleneck. In other words, the result still holds for networks that are merely output-linear.

These results are important because they eliminate the need to explicitly train linear or
output-linear autoencoders. Algorithms such as the singular-value decomposition can be used
to quickly compute the optimal transform. These algorithms run in a known fixed time, results
are easily reproducible, they are guaranteed to achieve the global minimum of error, and they
produce an ordered set of orthogonal eigenvectors.

In this note, we present the analogous results for linear (and output-linear) heteroencoder
networks with a bottleneck. Enforcing such a bottleneck may be important in cases where high
dimensionality of the input space leads to overtraining and poor generalization. The results
below allow the equivalent transform (and thus performance) of an optimally trained network
to be easily computed without explicit training.

Many previous authors [Baldi and Hornik, 1989, Kung and Diamantaras, 1991]
[Diamantaras and Kung, 1994, Scharf, 1991, Stoica and Viberg, 1996, Ghahramani, 1996] have
proved portions of the results we review below. However, the proofs are often part of a more
detailed or lengthy discussion and as a result are sometimes mathematically more complex.
The goal of this note is to provide a short and simple exposition of these results along with
practical expressions for their implementation.

1 Based on a May 1997 version. During writing, the authors were supported in part by the Center for Neuro-
morphic Systems Engineering as a part of the National Science Foundation Engineering Research Center Program
under grant EEC-9402726 and by the Natural Sciences and Engineering Research Council of Canada under an
NSERC 1967 Award.

'We refer to any network in which the transfer function of every unit is linear as a linear network. Similarly we
use the term linear layer for layers in which every unit’s transfer function is a linear function. A network has a
bottleneck of size r if no layer has fewer than r units. A network has no bottleneck if all layers have at least as many
units as both the input dimension and output dimension. If all layers after the bottleneck layer (or after the last
bottleneck if there are several) are linear, we call the network output-linear.



2 Linear heteroencoders with no bottleneck

The classic linear least-squares regression result (discrete Wiener filter) gives the optimal linear
mapping from a set of n input points X to corresponding output points Y in terms of the input
auto-correlation and the input-output cross-correlation (we assume the data are zero mean):

A" = (YXT)(XXT)™! M

where X and Y are p x n and ¢ x n matrices containing the p-dimensional input data and ¢-
dimensional output data respectively. The ¢ x p matrix A* minimizes the total reconstruction
error:

error = ||[AX — Y|? = Tr[(AX — Y)(AX — Y)7] (2)

over all possible matrices A which estimate Y as AX. (Here ||[M||?> = trace]MMT] is the
Frobenius norm of M.) It represents the linear transform computed by an optimally trained
linear heteroencoder network with no bottleneck.

3 Linear heteroencoders with a bottleneck

What is the result for a linear heteroencoder network with a bottleneck of size r? In other
words, what is the optimal linear mapping of rank no more than r between a set of n input points
X and corresponding output points Y? As we show in section 5 below, the correct transform
involves taking the singular-value decomposition of the matrix YX”(XX”)~1/2 and setting
all but the r largest singular-values to zero. (Here 07!/ denotes the matrix square root of the
non-negative definite matrix 0.) First we do the singular-value decomposition:

YXT'(xx")~1/2 = uxvT’ (3)

Here U and V are unitary matrices and X is a ¢ x p “diagonal” matrix (in other words, only
the X;; entries are nonzero) with positive elements. The optimal restricted rank transform A%
is now:

A =UR, VI(xXT)~1/2 (4)

where ¥, is the diagonal matrix obtained by setting to zero all but the r largest elements of 3.
The ¢ x p matrix A} minimizes the total reconstruction error:

error = ||A, X - Y|? )

over all possible matrices A, of rank no more than r which estimate Y as A, X. It represents
the linear transform computed by an optimally trained linear heteroencoder network with a
bottleneck of size r. Furthermore, if all of the units after the bottleneck are linear, the result
of Bourlard and Kamp applies and the optimal transformation remains unchanged even if
nonlinearities are added to lower layers. This result eliminates the need to explicitly train lin-
ear heteroencoder or output-linear heteroencoder networks. Below we provide the MATLAB
code to compute the optimal transform Ar of rank r assuming the p by n matrix x holds the
input data and the ¢ by n matrix y holds the targets.

croot = sqrtm(inv(x*x));

[u,s,v] = svd(y*x™*croot);

for zz=(r+1):min(size(s)) s(zz,zz)=0; end
Ar = u*s*v*croot;



4 Relationship to Canonical Correlations

Canonical Correlation Analysis? (see for example [Mardia et al., 1979]) tries to find linear com-
binations al x and b!y of multidimensional variables x and y such that the linear combina-
tions are highly correlated. In particular a; and b; are the i*" canonical correlation vectors for
x and y if they maximize the expected value of (al x)(b!y) = al xy”b; subject to the condi-
tions that the expected values of a} x and b!y both equal unity and that canonical correlation
vectors for ¢ # j are uncorrelated.

It turns out that the first r canonical correlation vector pairs span exactly the same space
as the hidden units in a restricted rank linear heteroencoder with a bottleneck of r. (Of course
the canonical vectors are an orthonormal basis for this space while the weight vectors of the
hidden units in a linear heteroencoder are in general not orthogonal or unit length.) Thus,
linear heteroencoders with a bottleneck perform exactly canonical correlation analysis on the

input-output data3

5 Derivation of A}

First we recast the problem into an equivalent one in different spaces by whitening and rotat-
ing the inputs and by rotating the outputs to decorrelate. Let the new inputs be W and the
new outputs be Z:

w = vT(xx")"1/2x Z=UTYy (6)
(WWT) =1 (ZWT) =% )
where U, V and X come from the singular-value decomposition (3) above. If we use a linear

transformation B in the new spaces to estimate Z by BW then the equivalent transform in the
original spaces is:

A = UBVT(XXT)~1/2 (8)

Notice that since we have applied only a rotation to the outputs we have not affected the
squared reconstruction error. The error (2) can thus be written as:

error = | BW — Z||? )
= Tr[(BW — Z)(BW — Z)7]
= Tr[BWWTB” — 2ZWTBT + ZZ"] (10)

which by the relations (7) and the fact that ZZ” does not depend on B, can be rewritten as:

error = Tr[BBT — 2XB” 4 £%7] + constant
= ||B — £||* + constant (11)
where the constant does not depend on B. If B is of unrestricted rank, the optimal solution is

by B* = X, which is exactly equivalent to the Wiener filter A* in the original spaces. If B is of
restricted rank r, the optimal solution is B} = X, giving the result A} as in section 3.

*Thanks to Zoubin Ghahramani for pointing out the link to canonical correlations.

3Canonical correlations is often studied when the error metric on the outputs y is not Euclidean (as we have as-
sumed here) but rather defined by some covariance matrix Cy, . If the sample covariance Y'Y is used to estimate
this metric, this makes the problem completely symmetric in x and y. Linear heteroencoders can also be studied
in this way by including the output metric in the error analysis; for non-Euclidean output metrics this makes them
again equivalent to canonical correlations.



Sketch of proof:

Let B() be the space spanned by the columns of B. For a given B(®), the minimum of | B — X||? will be
achieved when the i-th column of B is the projection of the i-th column of ¥ onto B(), for all columns
of B. If B is of restricted rank r, B(®) is at most r-dimensional, and should then be chosen to span the
r columns of ¥ with the largest magnitudes. In this case the optimal solution is B} = X, giving the
result A’ of section 3.

To see the why the above choice of B(®) is optimal, consider the plane spanned by any two columns of
¥ (call the two columns c; and ¢y, with magnitudes o1 > 02). Let B intersect this plane at an angle o
with respect to c;. The error these two columns will contribute is then

o1 sin a + 052 cos® o = (012 7022)sin2o¢+022, (12)
which is minimized when a = 0. In other words, if B(®) does not span both c; and cy, it should be
parallel to ¢y, the column with the larger magnitude. Since this holds for any pair of columns of X, the
optimal B(®) must span the r columns of X with the largest magnitudes.
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