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Preface

Joaquin Quiñonero Candela

Masashi Sugiyama

Anton Schwaighofer

Neil D. Lawrence

Overview

Dataset shift is a challenging situation where the joint distribution of inputs and
outputs differs between the training and test stages. Covariate shift is a simpler
particular case of dataset shift where only the input distribution changes (covariate
denotes input), while the conditional distribution of the outputs given the inputs
p(y|x) remains unchanged. Dataset shift is present in most practical applications
for reasons ranging from the bias introduced by experimental design, to the mere
irreproducibility of the testing conditions at training time. For example, in an
image classification task, training data might have been recorded under controlled
laboratory conditions, whereas the test data may show different lighting conditions.
In other applications, the process that generates data is in itself adaptive. Some of
our authors consider the problem of spam email filtering: successful “spammers”
will try to build spam in a form that differs from the spam the automatic filter has
been built on.

Dataset shift seems to have raised relatively little interest in the machine learning
community until very recently. Indeed, many machine learning algorithms are
based on the assumption that the training data is drawn from exactly the same
distribution as the test data on which the model will later be evaluated. Semi-
supervised learning and active learning, two problems that seem very similar to
covariate shift have received much more attention. How do they differ from covariate
shift? Semi-supervised learning is designed to take advantage of unlabeled data
present at training time, but is not conceived to be robust against changes in the
input distribution. In fact, one can easily construct examples of covariate shift for
which common SSL strategies such as the “cluster assumption” will lead to disaster.
In active learning the algorithm is asked to select from the available unlabeled inputs
those for which obtaining the label will be most beneficial for learning. This is very
relevant in contexts where labeling data is very costly, but active learning strategies
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are not specifically design for dealing with covariate shift.
This book attempts to give an overview of the different recent efforts that are be-

ing made in the machine learning community for dealing with dataset and covariate
shift. The contributed chapters establish relations to transfer learning, transduc-
tion, local learning, active learning and to semi-supervised learning. Three recurrent
themes are how the capacity or complexity of the model affects its behaviour in the
face of dataset shift —are “true” conditional models and sufficiently rich models
unaffected?— whether it is possible to find projections of the data that attenuate
the differences in the training and test distributions while preserving predictability,
and whether new forms of importance re-weighted likelihood and cross-validation
can be devised which are robust to covariate shift.

The idea of compiling this book was born during the NIPS*06 Workshop on
Learning when test and training inputs have different distributions we organized.
The majority of the chapter authors either gave a talk or were present at the
workshop; the few that weren’t have made major contributions to dealing with
dataset shift in machine learning. Thank you so much to all of you for making this
volume happen!

Structure of the Book

The book is divided into four major parts:

1. Introduction to Dataset shift

Amos Storkey, When training and test sets are different: characterising
learning transfer

David Corfield, Projection and projectability

Amos Storkey and David Corfield provide a mathematical and a philosophical in-
troduction respectively to the problem of dataset shift. Storkey provides a unifying
framework for different cases of dataset shift. Corfield starts from a philosophi-
cal perspective and ends comparing the frequentist to the Bayesian approach in
machine learning. Which seems more promising to attack covariate shift?

2. Theoretical Views on Dataset and Covariate Shift

Matthias Hein, Binary classification under sample selection bias

Lars Kai Hansen, On Bayesian transduction – Implications for the ‘covariate
shift’ problem

Shai Ben-David, Data representation framework addressing the training/test
distributions gap

Matthias Hein discusses from a decision theoretic point of view the conditions
under which dataset shift does not affect the performance of a Bayes classifier. To
deal with the cases where these conditions are not met, he proposes a graph-based
robust regularization method. Lars Kai Hansen shows that Bayesian transductive
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learning is generalization optimal, and studies the generalizability of the conditional
predictive distribution under covariate shift. Shai Ben-David proposes a taxonomy
of methods for different sub-classes of goals within dataset shift. He proposes a
framework based on appropriate feature representations of the data to alleviate the
differences between distributions, and derives bounds on the performance relative
to the best achievable.

3. Algorithms for Covariate Shift

Takafumi Kanamori and Hidetoshi Shimodaira, Geometry of covariate shift
with applications to active learning

Masashi Sugiyama, Neil Rubens and Klaus-Robert Müller, Model selection,
active learning, and covariate shift

Quoc Le, Alex Smola, Arthur Gretton, Jiayuan Huang, Karsten Borgwardt
and Bernhard Schölkopf, Covariate shift and local learning by distribution
matching

Steffen Bickel, Michael Brückner and Tobias Scheffer Discriminative learning
for differing training and test distributions

Amir Globerson, Choon-Hui Teo, Alex Smola and Sam Roweis, An adver-
sarial view of covariate shift and a minimax approach

Takafumi Kanamori and Hidetoshi Shimodaira analyze covariate shift from an
information geometric point of view, and provide information criteria that can
be used for model selection and active learning. Sugiyama and co-workers also
discuss model selection and active learning in light of covariate shift, but in a data-
dependent framework. They also provide a variant of cross-validation for covariate
shift adaptation and show its usefulness for brain-computer interfaces. Quoc Le
and co-workers provide a method of directly estimating importance weights without
going through explicit density estimation, and discuss the relation to local learning
paradigms. Steffen Bickel and co-workers provide a method for learning under
covariate shift that is purely discriminative. It maximizes an integrated optimization
criterion that is directly linked to the expected loss under the test distribution. They
evaluate the method on spam filtering and other applications. Amir Globerson and
co-workers address the situation where training and test data differ by adversarial
feature corruption (for example deletion) and provide a robust learning method that
can be computed efficiently. They demonstrate its usefulness for spam filtering.

4. Discussion

All editors and authors: we want to organize a discussion among
chapter authors and editors during NIPS2007! We will keep you
posted

In the discussion section the authors and the editors exchange their ideas about
dataset shift: in what situations is it a problem, what theoretical perspectives are
adquate, and what families of algorithms seem promising. The discussion should
take the form of the transcript of a conversation.
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Detailed Contents Overview

Part I of the book aims at providing a general introduction to the problem of
learning when training and test distributions differ in some form.

Amos Storkey provides a general introduction in Chapter ?? from the view
point of learning transfer. He introduces the general learning transfer problem, and
formulates the problem in terms of a change of scenario. Standard regression and
classification models can be characterized as conditional models. Assuming that the
conditional model is true, covariate shift is not an issue. However, if this assumption
does not hold, conditional modelling will fail. Storkey then characterizes a number
of different cases of dataset shift, including simple covariate shift, prior probability
shift, sample selection bias, imbalanced data, domain shift and source component
shift. Each of these situations is cast within the framework of graphical models
and a number of approaches to address each of these problems is reviewed. Storkey
also introduces a framework for multiple dataset learning, that also prompts the
possibility of using hierarchical dataset linkage.

Dataset shift has wider implications beyond machine learning, within philoso-
phy of science. David Corfield, Chapter ??, shows how the problem of dataset
shift has been addressed by different philosophical schools under the concept of
‘projectability’. When philosophers tried to formulate scientific reasoning with the
resources of predicate logic and a Bayesian inductive logic, it became evident how
vital background knowledge is to allow us to project confidently into the future,
or to a different place, from previous experience. To transfer expectations from
one domain to another, it is important to locate robust causal mechanisms. An
important debate concerning these attempts to characterise background knowledge
is over whether it can all be captured by probabilistic statements. Having placed
the problem within the wider philosophical perspective, Corfield turns to machine
learning, and addresses a number of questions: Have machine learning theorists been
sufficiently creative in their efforts to encode background knowledge? Have the fre-
quentists been more imaginative than the Bayesians, or vice-versa? Is the necessity
of expressing background knowledge in a probabilistic framework too restrictive?
Must relevant background knowledge be hand-crafted for each application, or can
it be learned?

Part II of the book focuses on theoretical aspects of dataset and covariate shift,
with contributions by Matthias Hein, Lars Kai Hansen, and Shai Ben-David.

In Chapter ??, Matthias Hein studies the problem of binary classification un-
der sample selection bias from a decision theoretic perspective. Starting from a
derivation of the necessary and sufficient conditions for equivalence of the Bayes
classifiers of training and test distributions, Hein provides the conditions under
which –asymptotically– sample selection bias does not affect the performance of a
classifier. From this viewpoint, there are fundamental differences between classifiers
of low and high capacity, in particular the ones which are Bayes consistent. In the
second part of his chapter, Hein provides means to modify existing learning algo-
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rithms such that they are more robust to sample selection bias in the case where one
has access to an unlabeled sample of the test data. This is achieved by constructing
a graph-based regularization functional. The close connection of this approach to
semi-supervised learning is also highlighted.

Lars Kai Hansen provides a Bayesian analysis of the problem of covariate shift
in Chapter ??. He approaches the problem starting with the hypothesis that it is
possible to recover performance by tracking the non-stationary input distribution.
Under the average log-probability loss, Bayesian transductive learning is generaliza-
tion optimal (in terms of the conditional distribution p(label | input)). For realizable
supervised learning –where the ‘true’ model is at hand– all available data should be
used in determining the posterior distribution, including unlabeled data. However,
if the parameters of the input distribution are disjoint of those of the conditional
predictive distribution, learning with unlabeled data has no effect on the super-
vised learning performance. For the case of unrealizable learning –the ‘true’ model
is not contained in the prior– Hansen argues that ‘learning with care’ by discounting
some of the data might improve performance. This is reminiscent of the importance
weighting approaches of Kanamori et al. and Sugiyama et al.

In Chapter ??, the third contribution of the theory part, Shai Ben-David provides
a theoretical analysis based around ‘domain adaptation’: an embedding into a
feature space under which training and test distribution appear similar, and where
enough information is preserved for prediction. This relates back to the general
view-point of Corfield in Chapter ??, who argues that learning transfer is only
possible once a robust (invariant) mechanism has been identified. Ben-David also
introduces a taxonomy of formal models for different cases of dataset shift. For the
analysis, he derives error bounds which are relative to the best possible performance
in each of the different cases. In addition, he established a relation of his framework
to inductive transfer.

Part III of the book focuses on algorithms to learn under the more specific setting
of covariate shift, where the input distribution changes between training and test
phases but the conditional distribution of outputs given inputs remains unchanged.

Chapter ??, contributed by Takafumi Kanamori and Hidetoshi Shimodaira, starts
with showing that the ordinary maximum likelihood estimator is heavily biased
under covariate shift if the model is misspecified. By misspecified it is meant
that the model is too simple to express the target function (see also Chapter ??
and Chapter ?? for the different behavior of misspecified and correct models).
Kanamori and Shimodaira then show that the bias induced by covariate shift can
be asymptotically cancelled by weighting the training samples according to the
importance ratio between training and test input densities. However, the weighting
is suboptimal in practical situations with finite samples since it tends to have larger
variance than the unweighted counterpart. To cope with this problem, Kanamori
and Shimodaira provide an information criterion that allows to optimally control
the bias-variance trade-off. The latter half of their contribution focuses on the
problem of active learning where the covariate distribution is designed by users for
better prediction performances. Within the same information-criterion framework,
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they develop an active learning algorithm that is guaranteed to be consistent.
In Chapter ?? Masashi Sugiyama and co-workers also discuss the problems of

model selection and active learning in the covariate shift scenario, but in a slightly
different framework; the conditional expectation of the generalization error given
training inputs is evaluated here, while Kanamori and Shimodaira’s analysis is in
terms of the full expectation of the generalization error over training inputs and out-
puts. Sugiyama and co-workers argue that the conditional expectation framework
is more data-dependent and thus more accurate than the methods based on the full
expectation, and develop alternative methods of model selection and active learning
for approximately linear regression. An algorithm that can effectively perform ac-
tive learning and model selection at the same time is also provided. Sugiyama et al.
also develop an importance-weighted cross-validation method, which can be applied
to model selection under any loss functions, including classification. The effective-
ness of the weighted cross-validation method is demonstrated in an application for
brain-computer interfaces.

In Chapter ??, third of the algorithms part, Quoc Le and co-workers address the
problem of distribution matching between training and test stages, which is similar
in spirit to the problem discussed in Chapter ??. They propose a method called
kernel mean matching, which allows to directly estimate the importance weight
without going through density estimation. Le et al. then relate the re-weighted
estimation approaches to local learning, where labels on test data are estimated
given a subset of training data in a neighborhood of the test point. Examples are
nearest neighbour estimators and Watson-Nadaraya type estimators. The authors
further provide detailed proofs concerning the statistical properties of the kernel
mean matching estimator and detailed experimental analyses for both covariate
shift and local learning.

In Chapter ?? Steffen Bickel and co-workers derive a solution to covariate
shift adaptation for arbitrarily different distributions that is purely discriminative:
neither training nor test distribution are modeled explicitly. They formulate the
general problem of learning under covariate shift as an integrated optimization
problem and instantiate a kernel logistic regression and an exponential loss classifier
for differing training and test distributions. They show under which condition the
optimization problem is convex, and empirically study their method on problems
of spam filtering, text classification, and landmine detection.

Amir Globerson and co-workers take an innovative view on covariate shift: in
Chapter 1 they address the situation where training and test inputs differ by
adversarial feature corruption. They formulate this problem as a two player game,
where the action of one player (the one who builds the classifier) is to choose robust
features, whereas the other player (the adversary) tries to corrupt the features which
would harm the current classifier most at test time. Globerson et al. address this
problem in a minimax setting, thus avoiding any modelling assumptions about
the deletion mechanism. They use convex duality to show that it corresponds to
a quadratic program and show how recently introduced methods for large scale
online optimization can be used for fast optimization of this quadratic problem.
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Finally, the authors apply their algorithm to handwritten-digit recognition and
spam filtering tasks, and show that it outperforms a standard SVM when features
are deleted from data samples.

The final Part IV of the book is a discussion. It is an open dialogue between
the authors and editors, where personal opinions can be stateed, and research
statements can be discussed. Is dataset shift a relevant problem, in which cases,
which theoretical approaches seem promising, what algorithms seem powerful?
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1 An Adversarial View of Covariate Shift and

A Minimax Approach

Amir Globerson

Choon Hui Teo

Alex Smola

Sam Roweis

When constructing classifiers over high dimensional spaces such as texts or
images, one is inherently faced with the problem of under-sampling of the true data
distribution. Even so-called “discriminative” methods which focus on minimizing
classification error (or a bound on it) are exposed to this difficulty since the training
objective will be calculated over the observed input vectors only, and thus may not
be a good approximation of the average objective on the test data. This is especially
important in settings such as document classification where features may take on
certain observed values (e.g. a zero count for a particular vocabulary item) due to
small sample effects. A more serious difficulty may arise when dataset shift effects
are present, namely when the training and testing distributions are different. For
example, the distribution of words in spam email changes very rapidly and keywords
which are highly predictive of class in the training set may not be indicative or
even present in the test data. As another example, consider a digital camera whose
output is fed to a face recognition system. Due to hardware or transmission failures,
a few pixels may “die” over the course of time. In the image processing literature,
this is referred to as pepper noise [Bovik et al., 2000] (salt noise refers to the case
when pixels values are clipped to some fixed value). Any classifier which attached
too much weight to any single pixel would suffer a substantial performance loss
in this case. As a final example, consider a network of local processing elements
in an artificial sensor network or a biological network such as the cortex. The
hardware/wetware of such systems is known to be extremely unreliable (thousands
of neurons die each day) and yet the overall architecture maintains its function,
indicating a remarkable robustness to such non-stationarities in its input.

All the above examples describe a scenario where features that were present when
constructing the classifier (i.e., in the training data), are potentially deleted at some
future point in time. Such deletion may manifest itself differently depending on the
particular domain: a deleted feature may be known to be unavailable or unmeasured;
it may take on random values; or its value may be set to some constant. In our
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formal treatment, we focus on the case where deletion corresponds to setting the
feature’s value to zero. Indeed, in the examples given above this is an appropriate
description.

Of course, when constructing the classifier, we cannot anticipate in advance which
features may be deleted in the future. One possible strategy is to analyze the
performance under random deletion of features. However, this may not be a correct
model of the deletion statistics. The approach we take here is to construct a classifier
which is optimal in the worst case deletion scenario, thus avoiding any modeling
assumptions about the deletion mechanism. This can be formulated as a two player
game, where the action of one player (the classifier builder) is to choose robust
classifier parameters, whereas the other player (the feature removal mechanism)
tries to delete the features which would be most harmful given the current classifier.
We note that the adversarial setting may not necessarily be an exact model of the
problem (e.g., spam authors may not know the details of the spam filter, and
are thus not as powerful as the adversary we model). However, considering the
worst case scenario yields a classifier that is robust to any adversarial strategy, and
avoids making statistical assumptions about the deletion process. Furthermore,
even if there is no true underlying adversary, robustness to feature deletion yields
robustness of the resulting classifier, in the sense that it will not attach too much
weight to single features, even if those appear informative at training time.

Robust minimax approaches to learning classifiers have recently attracted interest
in the machine learning community [Lanckriet et al., 2004, El Ghaoui et al., 2003,
Kim et al., 2006]. Our approach is related to El Ghaoui et al. [2003] where the
location of sample points is only known up to an ellipsoidal region, and a classifier
that is optimal in the worst case is sought. However, in our case, the structure of
uncertainty is inherently different and is related to the existence vs. non-existence of
a feature. Adversarial models have also recently been studied in the context of spam
filtering by Dalvi et al. [2004]. Their formalism addresses transformations that are
more general than feature deletion, and also incorporates costs for different types of
mistakes. However, finding the optimal strategy in their case is a computationally
hard problem, and approximations are needed.

In the context of dataset shift, our minimax approach assumes that the difference
between training and testing scenarios is defined via a class of possible transforma-
tions (here we consider feature deletions), and that learning should be robust with
respect to this class.

In Section 1.1 we formalize the feature dropping minimax game for classifiers such
as the support vector machine [Schölkopf and Smola, 2002] in which the training
objective is measured using a regularized hinge loss. We denote this optimization
problem by the name FDROP. We next show that this problem can be exactly
solved in polynomial time, and provide several optimization algorithms for solving
it. Finally, we illustrate the method’s performance on handwritten digit recognition
and spam filtering tasks.
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1.1 Minimax Problem Formulation

Given a labeled sample (xi, yi) (i = 1, . . . , n), with input feature vectors xi ∈ Rd

and class labels1 yi ∈ {±1}, we would like to construct classifiers which are robust
to deletion of features. We focus on the case where a feature is assigned the value
of zero if it is deleted, and denote by K the number of features the adversary can
delete for any given sample point x. The number K is assumed to be given and
fixed in what follows, although in practice we set it using cross-validation.

In standard support vector machines (e.g., see Schölkopf and Smola [2002]), the
goal of the learning algorithm is to find a weight vector w ∈ Rd that minimizes a
regularized hinge loss:

1
2
‖w‖2 + C

∑
i

[1− yiw · xi]+ , (1.1)

where we use the notation [x]+ = max{x, 0}. However, in the feature deletion
case, the adversary may change the input xi by deleting features from it. We would
like our classifier to be robust to such deletions. Thus, we seek a classifier which
minimizes the worst case hinge loss when K features may be deleted from each data
vector. In this setting, the worst case hinge loss for example i is given by

hwc(w, yixi) = max [1− yiw · (xi ◦ (1−αi))]+
s.t. αi ∈ {0, 1}d∑

j αij = K

(1.2)

where αij denotes the jth element of αi, and is equal to 1 if the jth feature of xi is
deleted (we use ◦ to denote the element-wise multiplication operation).

The worst case hinge loss over the entire training set is
∑

i hwc(w, yixi). The
overall optimization problem, which we denote by FDROP, is then

FDROP: w∗ = arg min
w

1
2
‖w‖2 + C

∑
i

hwc(w, yixi) . (1.3)

The above can be explicitly written as a minimax optimization problem:

min
w

max
α1,...,αn

1
2‖w‖

2 + C
∑

i [1− yiw · (xi ◦ (1−αi))]+

s.t. αi ∈ {0, 1}d∑
j αij = K

(1.4)

Denote the objective of the above by f(w,α). Then Equation 1.4 may be interpreted
as finding an optimal strategy for a zero-sum game where the learning algorithm is
payed −f(w,α) and the adversary is payed f(w,α) when the joint action w,α is

1. We focus on the binary case here. All results can be easily generalized to the multi
class case.
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taken.
In the next section we present two approaches to solving the optimization problem

in Equation 1.3.

1.2 Finding the Minimax Optimal Features

The minimization problem in Equation 1.3 is closely related to the SVM optimiza-
tion problem. However, in our case we have a worst case hinge loss instead of the
standard hinge loss. Since this worst case requires maximization over

(
n
k

)
possibil-

ities per sample, it is not immediately clear how to design an efficient method for
solving the overall optimization. In the following section we describe two methods
for solving FDROP. The first is to use convex duality transformations to turn it
into a quadratic program with O(nd) variables. The second is to solve it directly in
the w variable using the recently introduced BMRM method [Teo et al., 2007b].

1.2.1 An Equivalent Quadratic Program

In this section we show that the problem in Equation 1.3 is equivalent to a
certain convex quadratic program. We begin by analyzing the worst case hinge
loss hwc(w, yixi). For a given w, this loss can be seen to be minimized when αi

is chosen to delete the K features xij with highest values yiwjxij , since these will
have the strongest decreasing effect on the loss. Thus we can rewrite hwc(w, yixi)
as

hwc(w, yixi) = [1− yiw · xi + si]+ ,

where we have defined

si = max
αi∈{0,1}d,

P
j αij=K

yiw · (xi ◦αi) (1.5)

as the maximum contribution of K features to the margin of sample xi.
To simplify the expression for si, we note that the integer constraint on the

variables αi may be relaxed to 0 ≤ αi ≤ 1 without changing the optimum. This is
true since the vertices of the resulting 2d + 1 linear constraints are integral. Since
the maximization (with respect to αi) is over a linear function, the optimum will
be at the vertices, and is therefore integral. We rewrite si using this relaxation, and
also changing the order of multiplication

si = max yi (w ◦ xi) ·αi

s.t. 0 ≤ αi ≤ 1∑
j αij = K .

(1.6)

The above expression is bilinear in αi and w. Since this may potentially contribute
a non-convex factor into the optimization, we use a duality transformation with
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respect to the αi variables to avoid bilinearity. An important outcome of using
a duality transformation is that a minimization problem is obtained so that the
original minimax problem is turned into a minimization problem in the new
variables. Note that the above problem is linear in αi so that the value of the
dual will exactly equal that of si.2

Denoting the dual variables by vi ∈ Rd, zi ∈ R, we obtain the dual of the
maximization in Equation 1.6

si = min Kzi +
∑

j vij

s.t. zi + vi ≥ yixi ◦w

vi ≥ 0 .

(1.7)

To use this in the FDROP minimization problem (Equation 1.3), we introduce an
auxiliary variable ti, which at the optimum will obtain the minimum of (1.7). The
resulting problem is a reformulation of the FDROP problem

min 1
2‖w‖

2 + C
∑

i [1− yiw · xi + ti]+
s.t. ti ≥ Kzi +

∑
j vij

vi ≥ 0

zi + vi ≥ yixi ◦w .

(1.8)

The above problem can be easily converted into a standard quadratic program, by
introducing extra variables ξi ≥ 0 (for i = 1, . . . , n) to represent the hinge function
via linear equalities:

min 1
2‖w‖

2 + C
∑

i ξi

s.t. ξi ≥ 1− yiw · xi + ti

ξi ≥ 0

ti ≥ Kzi +
∑

j vij

vi ≥ 0

zi + vi ≥ yixi ◦w .

(1.9)

We thus have the result that the FDROP problem in (1.3) is equivalent to the convex
quadratic program (QP) in (1.9). The latter has O(nd) variables and constraints,
and can be solved using standard QP solvers. However, such solvers may not scale
well with nd, and thus may not be usable for datasets with hundreds of thousands
of variables and samples. For example, each iteration of an interior point method
will require memory that is quadratic in nd and running time that is cubic in nd

[Fine and Scheinberg, 2002]. In the next section we describe a method which is more
suitable for these cases, and scales linearly with nd for both memory and running

2. Strong duality requires Slater’s condition to hold (see Boyd and Vandenberghe [2004]),
which is the case for the current problem.
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time.

1.2.2 Efficient Optimization Using Bundle Methods

The FDROP optimization problem in Equation 1.3 involves minimization of a
non-differentiable (piecewise linear) function of the variable w. Although such
minimization problems cannot be solved using standard gradient methods (e.g.,
L-BFGS), there is a large class of sub-gradient methods which can be applied in
this case [e.g., see Shalev-Shwartz et al., 2007, Nedic and Bertsekas, 2001]

In this section, we show how the recently introduced Bundle Method for regular-
ized Risk Minimization, or BMRM [Teo et al., 2007b], may be applied to solving
FDROP. BMRM is a generic method for solving convex regularized risk minimiza-
tion problems, and does not have any tunable parameters, making it simple to
implement. Furthermore, the cost of each BMRM iteration in terms of memory
and running time scales linearly with the size of the problem. In what follows,
we briefly review BMRM, and show how it can be applied to solve the FDROP
problem.

Consider the following minimization problem:

min
w

J(w) =
1
2
‖w‖2 + CRemp(w) (1.10)

where Remp(w) =
∑n

i=1 l(xi, yi,w) and l(xi, yi,w) is a convex non-negative loss
function. The FDROP problem in Equation 1.3 has this form with3

l(xi, yi,w) = hwc(w, yixi) . (1.11)

The BMRM method solves the minimization in Equation 1.10 by forming a piece-
wise linear lower bound on Remp(w), which is made tighter at each iteration. The
bound relies on the fact that because of the convexity of Remp(w), the first order
Taylor expansion of Remp(w) at any point wi is a (linear) lower bound on Remp(w):

Remp(w) ≥ f(w;wi) (1.12)

where

f(w;wi) = Remp(wi) + (w −wi)∂wRemp(wi) . (1.13)

and ∂wRemp(wi) is the subgradient of the function Remp(w) at the point wi. Taking
the maximum of a set of such lower bounds for w1, . . . ,wt also yields a lower bound
on Remp(w):

Remp(w) ≥ max
i=1,...,t

f(w;wi) , (1.14)

3. The function hwc(w, yixi) is convex in w since it is a maximum of functions that are
linear in w.
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Figure 1.1 A convex function (solid red line) is bounded from below by Taylor approx-
imations of first order (dashed black line). Adding more terms improves the bound.

and this bound becomes tighter as t grows. See Figure 1.1 for an illustration. Since
Remp(w) is non-negative we may further tighten the lower bound by requiring it to
be non-negative:

Remp(w) ≥ max
[
0, max

i=1,...,t
f(w;wi)

]
, (1.15)

The sequence of points w1, . . . ,wt is chosen as follows: at iteration t we construct
a function Jt(w) that is a lower bound on J(w)

Jt(w) =
1
2
‖w‖2 + C max

[
0, max

i=1,...,t
f(w;wi)

]
. (1.16)

The next point wt+1 is chosen to be the minimizer of Jt(w), i.e.,

wt+1 = arg min
w

Jt(w) . (1.17)

The minimization problem above can be expressed as a QP with t constraints by
introducing an auxiliary variable ξ as follows

min 1
2‖w‖

2 + Cξ

s.t. ξ ≥ f(w;wi) i = 1, . . . , t

ξ ≥ 0 .

(1.18)

The above QP can be solved efficiently, as long as t is not too large. Teo et al.
[2007b] prove that the BMRM method converges, and show that O( 1

ε ) iterations are
required to achieve a duality gap of ε. In practice, we have found that convergence
is achieved after a few hundred iterations at most.

To apply BMRM to the FDROP problem, we need the subgradient of Remp(w) =∑
i hwc(w, yixi). Denote the αi that achieves the worst case loss for example i by
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Inputs: A training set {xi, yi}n
i=1. Number of features to delete K. Desired precision

ε > 0.

Initialization: Set w1 = 0 and t = 1.

Algorithm:

Repeat:

Define

f(w;wt) =

nX
i=1

hwc(wt, yixi) + (w −wt)

nX
i=1

∂whwc(wt, yixi)

where the subgradient is given in Equation 1.20.

Solve the quadratic program:

min 1
2
‖w‖2 + Cξ

s.t. ξ ≥ f(w;wi) i = 1, . . . , t

ξ ≥ 0

Denote the minimizer by wt+1, and the objective value by lt.

Calculate upper bound ut = 1
2
‖wt‖2 + C

Pn
i=1 hwc(wt, yixi).

Halt if ut − lt < ε.

Set t = t + 1.

Output: Final weight vector wt.

Figure 1.2 The BMRM algorithm applied to the FDROP problem.

αmax
i (w, yixi) so that

αmax
i (w, yixi) = arg max [1− yiw · (xi ◦ (1−αi))]+

s.t. αi ∈ {0, 1}d∑
j αij = K .

(1.19)

In Section 1.2.1 we showed that this αmax
i is obtained by finding the K features

with maximal yiwjxij . The subgradient is then4

∂whwc(w, yixi) =
{ 0 if hwc(w, yixi) = 0

−yixi ◦ (1−αmax
i (w, yixi)) if hwc(w, yixi) > 0 .

(1.20)

The subgradient of Remp is then given by

∂wRemp(w) =
∑

i

∂whwc(w, yixi)) (1.21)

4. Note that the subgradient is very similar to a perceptron update where the original
point xi has been replaced by its “feature deleted” version xi ◦ (1−αmax

i (w, yixi)).
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Finally, it is also possible to define a simple stopping criterion for BMRM. Note
that the minimum value in (1.17) is a lower bound on the minimum of the FDROP
problem. An upper bound may also be obtained by evaluating the FDROP objective
at wt. Thus, the difference between these two bounds yields a measure of the
accuracy of the current solution, and can be used as a stopping criterion. Pseudo-
code for the BMRM procedure is given in Figure 1.2.

1.3 A Convex Dual for the Minimax Problem

The standard support vector machine problem is a convex quadratic problem, and
has a dual convex which reveals some interesting properties and allows the use
of kernel classifiers. Since our robust problem is also quadratic and convex, it is
interesting to consider its dual problem. A standard duality transformation (e.g.,
see Boyd and Vandenberghe [2004]) can be used to show that the dual of our robust
classifier construction problem is

min 1
2‖

∑
i yiαixi ◦ (1− λi)‖2 −

∑
i αi

s.t. 0 ≤ α ≤ C

0 ≤ λi ≤ 1∑
j λij = K

(1.22)

where the variables are: α ∈ Rn where n is the number of samples, and λi ∈ Rd for
i = 1, . . . , n where d is the dimension of the input. Furthermore, the optimal set of
weights w can be expressed as:

w =
∑

i

yiαixi ◦ (1− λi) . (1.23)

The above problem can be written in an alternative form, where it is more clearly
convex

min 1
2‖

∑
i yixi ◦ (αi − λi)‖2 −

∑
i αi

s.t. 0 ≤ α ≤ C

0 ≤ λi ≤ αi∑
j λij = Kαi .

(1.24)

Here the expression in the norm is an affine function of the variables, and thus the
problem is convex.

Recall that the SVM dual is

min 1
2‖

∑
i αiyixi‖2 −

∑
i αi

s.t. 0 ≤ α ≤ C
(1.25)

where w =
∑

i αiyixi.
Thus, in our case the weight vector is not a combination of input vectors, but
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rather a combination of vectors weighted by elements of weight up to αi where the
maximal number of elements that may be set to zero is K. Interestingly, the λi

values can be fractional, so that none of the features has to be completely deleted.
Note that, as opposed to the standard SVM, our dual objective will not involve

dot products between xi, but rather between vectors xi ◦ (1 − λi). Thus it is not
immediately clear if and how kernel methods may be put to use in this case. This
is not surprising, since the algorithm is strongly linked to the structure of the
sample space Rd, where features are dropped. Dropping such features alters the
kernel function. For a given kernel function, one may consider the relevant minimax
problem and try to solve for the w and α variables, in a similar fashion to Weston
et al. [2000]. However, for non-linear kernels this would typically result in a non-
convex optimization problem, and would depend on the specific kernel used. It thus
remains an interesting challenge to obtain globally optimal algorithms for this case.

1.4 An Alternate Setting: Uniform Feature Deletion

In Section 1.1, we assumed that different features may be deleted for different data
points. We can also consider an alternative formulation where once a feature is
chosen to be deleted it is deleted uniformly from all data points simultaneously.
Clearly, this scenario is subsumed by the one described in the previous section, and
is thus less pessimistic.

The worst case hinge loss is defined as in the non-uniform case in Equation 1.2.
However, now there is a single α vector for all examples, whereas in the previous
scenario, each sample had its own vector. The optimization thus becomes

w∗ = min
w

max
α

‖w‖2 + C
∑

i [1− yiw · (xi ◦ (1−α))]+
s.t. α ∈ {0, 1}d∑

j αj = K .

We first note that the above optimization problem is still convex in w. To see why,
denote by f(w) the maximum value over all legal α assignments for a given value
of w. Then f(w) is a pointwise maximum over a set of convex functions and is
thus convex [Boyd and Vandenberghe, 2004] . The problem of minimizing over w
is therefore convex.

However, although it is convex, the current optimization problem appears more
difficult than the one in the previous section, due to the presence of the α in all
the sum elements. As before, the integral constraints on α can be relaxed, since
the maximum of the inner optimization is attained at the vertices (because the
target is convex). However, since the target is non-linear (a hinge function) this
maximization is not itself a convex problem, and does not seem to be efficiently
solvable.

The problem can be solved efficiently as long as
(

d
K

)
is sufficiently small so that

all the feasible values of α can be enumerated over. However, our experiments show
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that in many cases K needs to be at least 10, so that the uniform method is often
not applicable.

1.5 Related Frameworks

The FDROP problem was motivated from a minimax perspective where the goal is
to minimize the loss incurred by an adversary. In this section we discuss alternative
interpretations of our framework, in the context of feature selection and learning
with invariances.

1.5.1 Feature Selection

The adversary in the FDROP minimax problem identifies those input features
whose contribution to the margin is maximal. In this sense, the adversary can be
thought of as being related to feature selection algorithms which try to find the
set of features which, when taken alone, would yield optimal generalization (e.g.,
see Yang and Pedersen [1997]). A clear illustration of this effect can be seen in
Figure 1.4 (section 1.6.2).

However, the current minimax setup differs from the standard feature selection
approach in two important aspects. The first is that here we focus on feature elimi-
nation, i.e., finding the set of features whose elimination would maximally decrease
performance. Intuitively, these features should also convey high information when
taken on their own, but this is not guaranteed to be the case.

The other aspect which distinguishes the current approach from feature selection
is that here features are selected (or eliminated to be precise), for every sample
individually. The uniform feature deletion approach described in Section 1.4 is more
in line with the standard feature selection framework.

We can provide a somewhat more formal treatment of feature selection opti-
mization algorithms which highlights their relation to the current approach. The
standard feature selection goal is to find a set of K features which minimize gen-
eralization error. A reasonable approximation is the empirical error, or the hinge
loss in our case. Thus the feature selection problem can be posed as (we omit the
regularization term here)

min
∑

i [1− yiw · (xi ◦α))]+
s.t. α ∈ {0, 1}d∑

j αj = K

(1.26)

such that minimization is over both α and w. Denote by f(w) the minimum over
α assignments for a given value of w. Then f(w) is a pointwise minimum of convex
functions and is thus generally non-convex. Thus the optimization problem in (1.26)
is not convex, and is generally hard to solve. Furthermore for a large number of
features, calculating f(w) requires enumeration over possible α assignments. The



20 An Adversarial View of Covariate Shift and A Minimax Approach

problem may be approximated via different relaxations as in Gilad-Bachrach et al.
[2004] or Weston et al. [2000].

The above problem may be slightly altered to resemble our current formulation
by allowing the best K features to be chosen on a per sample basis (a single set of
features might then be selected, for example, by taking the features chosen most
often across samples). The resulting optimization problem is

min
∑

i [1− yiw · (xi ◦αi))]+
s.t. αi ∈ {0, 1}d∑

j αij = K .

(1.27)

This problem is easier than that in Equation 1.26 in that the minimization over αi is
always tractable: the minimizing αi is the one which has the minimum contribution
to the margin. However, the function f(w) is again non-convex, and thus it seems
that the problem remains hard.

It is interesting that these two feature selection variants, while similar in spirit
to our minimax problems, seem to have considerably higher complexity, in terms of
optimization efficiency. This suggests the FDROP approach may also prove useful
for feature selection by finding the set of features it tends to delete.

1.5.2 Learning With Invariances

In some learning scenarios, it is reasonable to assume that an input point may
be perturbed in certain ways without changing its class. For example, digits
may undergo translations or rotations by small angles. Several recent works have
addressed learning in this setting [Teo et al., 2007a, Graepel and Herbrich, 2004,
Decoste and Schölkopf, 2002]. They share the common approach of assuming that
the set of possible perturbations of a data point x generate a cloud of virtual data
points, and that the margin of the point x should be measured with respect to this
cloud.

Our adversarial view of feature deletion may also be interpreted in the above
framework. The cloud of points in this case would be the point x and all points
that correspond to K feature deletions on x. Our worst case margin in Equation 1.2
may then be interpreted as the worst case margin of any point within this cloud
of virtual points. Note, however, that the FDROP problem can be solved without
explicitly generating the virtual points, using the methods in Section 1.2. In Teo
et al. [2007a] we provide a general formalism of such invariance learning, and show
how algorithms such as BMRM [Teo et al., 2007b] may be applied to solving it.
Under this formalism, any invariance may be used, as long as an efficient algorithm
exists for finding the point with worst case margin. One extension of FDROP which
we present in Teo et al. [2007a] is to the case where features are not necessarily
deleted, but scaled by some minimum and maximum factor. This new invariance
is shown to improve generalization performance on a spam filtering task, when
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compared to both FDROP and standard SVM.5

1.6 Experiments

In this section we apply FDROP to synthetic and real data. We shall especially be
interested in evaluating performance when features are deleted from the test set.
Thus, for example we test handwritten digit recognition when pixels are removed
from the image. We first focus on relatively small training sets, such that the
inherent sparseness of the problem is high, and most classification algorithms are
likely to overfit. In Section 1.6.3 we report results on a large scale spam filtering
experiment, with hundreds of thousands of features. In all experiments, we compare
our method with a linear support vector machine algorithm.6

For the small scale experiments (Sections 1.6.1-1.6.2) we used the QP approach
in Section 1.2.1 (the ILOG-CPLEX package was used to solve the QPs). For the
large scale experiment the BMRM method was used (see Section 1.2.2).

1.6.1 A Synthetic Example

To illustrate the advantages of the current method, we apply it to a setting where
the test data indeed differs from the training data by deleting features. We consider
a feature vector in x ∈ R20 where training examples are drawn uniformly in that
space. The label is assigned according to a logistic regression rule

p(y = 1|x) ∝ ew·x+b . (1.28)

In our experiments, w1 = 5 and all the other wi = −2. The bias b was set to the
mean of w. Thus the feature x1 is likely to be assigned a high weight by learning
algorithms which do not expect feature deletion. In the test data, we delete the
feature x1, i.e. set it to zero, with a given probability p(delete). We compare the
performance of our FDROP minimax algorithm (with K = 1) to that of a standard
SVM. For both methods, we choose the weight of the regularization parameter C

via cross validation.
Figure 1.3 shows the resulting error rates. It can be seen that as the probability

of deletion increases, the performance of SVM decreases, while that of the minimax
algorithm stays roughly constant. This constant behavior is due to the fact that the
FDROP classifier is optimized for the worst case when this feature is deleted. To

5. We present results for the same spam dataset in Section 1.6.3, but since different pre-
processing is used, the results differ from those in Teo et al. [2007a].
6. In Sections 1.6.1 and 1.6.2, both FDROP and SVM use a bias term, by adding a
constant feature xd+1 = 1. The FDROP algorithm was not allowed to delete the bias
feature xd+1 = 1. In Section 1.6.3 we did not use a bias term, since this degraded the
results for both algorithms.
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Figure 1.3 Evaluation of FDROP and SVM on a toy logistic regression example, where
a highly informative feature is randomly dropped from the test sample. The value of K
was set to 1. The figure shows classification error as a function of the deletion probability
p(delete).

understand this behavior further, we checked which feature was deleted by FDROP
for every one of the samples. Indeed, on all the cases where x1 = 1 and y = 1, it
was x1 that was deleted in the optimization.

1.6.2 Handwritten Digit Classification

Image classification into categories should in principle be robust to pixel deletion,
or in other words deletion of parts of the image. Our game theoretic framework
captures this intuition by modeling the worst case pixel deletion scenario.

We investigated the application of FDROP to classifying handwritten dig-
its, and focused on robustness to pixel deletion in these images. We applied
FDROP to the MNIST dataset [LeCun et al., 1995] of handwritten digits, and
focused on binary problems with small training sets of 50 samples per digit.
Furthermore, we only considered binary problems created by label pairs which
had more than 5% error when learned using an SVM (the chosen pairs were
(4, 9),(3, 5),(7, 9),(5, 8),(3, 8),(2, 8),(2, 3),(8, 9),(5, 6),(2, 7),(4, 7) and (2, 6)). The size
in pixels of each digit was (28× 28). A holdout sample of size 200 was used to opti-
mize the algorithm parameters, and a set of 300 samples was used for testing. The
holdout set underwent the same pixel deletion as the test set, in order to achieve
a fair comparison between SVM and FDROP. Experiments were repeated with 20
random subsets of the above sizes.

To evaluate the robustness of the algorithm to feature deletion, we trained it on
the raw data (i.e., without deleted features), and then tested it on data from which
K features were deleted. The values of K were (0, 25, 50, 75, 100, 125, 150).

Figure 1.4 gives a visual representation of the feature deletion process. The



1.6 Experiments 23

FDROP Adversary

confuse with "seven"

FDROP Adversary

confuse with "five"

FDROP Adversary

confuse with "three"

Figure 1.4 Illustration of adversarial feature (pixel) deletion for handwritten digits.
Three binary classification problems were created from the MNIST digit database by
discriminating the classes “five” vs. “three” (top), “eight” vs. “five” (middle) and “seven”
vs. “nine”. The training data consisted of 50 samples per class. The number of deleted
features was K = 50. The images show three corresponding examples of features deleted
by the FDROP adversary. The left column shows the original digit, and the right column
shows the digit with the 50 pixels dropped by the FDROP algorithm. It can be seen
that the worst case against which our algorithm attempts to be robust corresponds to the
deletion of extremely discriminative features for each example: the top right digit has been
made to look as much as possible like a “three”, the middle right digit very much like a
“five” and the bottom right digit has been distorted to look very much like a “seven”.

FDROP minimax optimization deletes K features from every sample point. We
can find which features were deleted from each sample by finding the K features
with maximum margin contribution at the optimal w. Figure 1.4 illustrates these
features for three sample points. Each row displays the original raw input image and
the same input image with the K most destructive features deleted (here K = 50).
It can be seen that FDROP chooses to delete the features which maximize the
resemblance between the given digit and digits in the other class. These results
suggest that FDROP may indeed be useful as a feature selection mechanism.

Classification error rate should intuitively decrease as more features are deleted.
The goal of FDROP is to minimize the damage incurred by such deletion. Figure
1.5 shows the dependence of classification error on the number of deleted features
for both FDROP and SVM. The parameter K is taken as an unknown and is
chosen to minimize error on the holdout sample for each digit pair and deletion
level separately. It can be seen that FDROP suffers less degradation in error when
compared to SVM. Furthermore, the optimal K grows monotonically with the
number of deleted features, as is intuitively expected. The dependence on K for
a specific digit pair (4 and 7) and deletion level (50 deletions) is shown in Figure
1.6. It can be seen that performance is improved up to a value of K = 25 which
supposedly matches the deletion level in the data set (recall that FDROP considers a
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Figure 1.5 Classification error rate for the MNIST dataset, as a function of the number
of features deleted from the test set. Standard errors over 20 repetitions are shown on the
curve. The optimal K parameter for the FDROP algorithm was chosen per classification
problem and per number of deleted features. The inset shows the optimal K for each
deletion scheme.

worst case scenario, whereas here features are dropped randomly, so that K and the
actual number of deleted features should not be expected to be close numerically).

1.6.3 Spam Filtering

One of the difficulties in filtering spam email from legitimate email is that the
problem is dynamic in nature, in the sense that spam authors react to spam filters
by changing content. In this sense, it is indeed a game where the two players are
the spam filter and spam authors. Our formalism captures this competition, and it
is therefore interesting to apply it to this case. Clearly spam authors may change
their email in ways other than removing words. For example they may add good
words, or change the spelling of words [Lowd and Meek, 2005, Wittel and Wu, 2004,
Dalvi et al., 2004]. Here we limit the adversarial strategy to word deletion, but our
method may be extended to handling other strategies, using its extension in Teo
et al. [2007a].

In the experiments described in previous sections, we used relatively small
sample-sizes and data dimensionality. In these cases, the FDROP problem could be
solved using the QP in Equation 1.8. The current section focuses on a much larger
problem, where the QP in Equation 1.8 becomes too big to solve using standard
solvers. However, the problem can still be solved using the BMRM method described
in Section 1.2.2.

We used the ECML’06 Discovery Challenge (Task A) evaluation dataset [Bickel,
2006]. The training set consists of 4000 emails from a single inbox whereas the
testing set consists of 7500 emails from 3 different inboxes. The vocabulary size was



1.7 Discussion & Conclusions 25

0 10 20 30 40
0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

K

E
rr

or
 R

at
e

Figure 1.6 Classification error as a function of the parameter K for the digit pair (4, 7)
with 50 deleted features.

Method Accuracy % AUC % Parameters (K, C)

SVM 77.20 90.02 (0, 1.25)

FDROP 86.63 94.03 (14, 1.25)

Figure 1.7 Results on the ECML’06 spam detection task for the SVM and FDROP
algorithms. The table reports classification accuracy and area under the ROC curve
(AUC). The values of C and K were obtained by optimizing over a separate tuning dataset.

d = 206, 908. We followed the approach of Drucker et al. [1999] by pre-processing
the bag-of-word feature vectors into binary vectors and then normalizing them to
unit norm. The values of C and K were chosen to optimize performance on a
separate tuning data set.

Performance was compared to a linear SVM, and measured in terms of classifi-
cation accuracy and the area under the ROC curve (AUC). Results are reported
in Table 1.7. It can be seen that FDROP significantly outperforms SVM on this
task, for both performance measures. We emphasize that the test data was not
changed, and no features were artificially deleted, so that FDROP indeed results in
robustness and improved generalization performance.

1.7 Discussion & Conclusions

We have introduced a novel method for learning classifiers which are minimax
optimal under a worst case scenario of feature deletion at test time. This is
an important step towards extending statistical learning paradigms beyond the
restrictive assumption that the training and testing data must come from the same
distribution. An alternative view of our algorithm is as a feature selection method
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which seeks the features which are most crucial for performance. A key assumption
of our approach is that small sets of features should not be relied upon at test
time to faithfully represent the class structure. Thus, in some sense, the features
available to the algorithm at training time are viewed as being subject to random,
or even deliberate removal at test time. Interestingly, a recent paper by Krupka and
Tishby [2006] presents a related view of features, where one considers a learning
scheme where features are selected randomly from a large set, and generalization is
studied with respect to unseen features.

Clearly, in some cases the adversarial model may be too strong, and thus result
in decreased performance when compared to a standard SVM. For example, the
data may not undergo any feature deletion, or we may have a large enough training
set so that there is no need to introduce robustness via feature deletion. In these
cases it may be preferable to use our model with K = 0. One way of addressing
this issue is to use cross-validation in choosing the parameter K, so that if K = 0
yields lower errors on a validation set, it will be used in the final classifier. This is
the approach we used in our experiments, and we indeed found that it results in
lower K values in problems where less features are deleted.

A different game theoretic approach to feature selection was previously suggested
in Cohen et al. [2005]. Their approach is related to Shapley values in cooperative
games. The Shapley value is a measure of the performance drop incurred by
dropping a feature from a given set of features, where this performance is averaged
over all subsets in which this feature participates. It is thus close in spirit to our
feature elimination approach. However, our approach searches for multiple features
simultaneously and is furthermore tractable, as opposed to exact calculation of
Shapley values.

The notion of robustness to feature deletion is not limited to the classification
setting. One may consider a similar setting in the context of regression or dimen-
sionality reduction. It would be interesting to extend the method described here to
these settings.

Finally, while here we focus on an adversary that deletes features, the formalism
can be easily extended to other perturbations of the feature vector. In Teo et al.
[2007a] we outline such a general approach, and provide algorithms for solving the
resulting optimization problem.
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Notation and Symbols

Sets of Numbers

N the set of natural numbers, N = {1, 2, . . . }
R the set of reals

[n] compact notation for {1, . . . , n}
x ∈ [a, b] interval a ≤ x ≤ b

x ∈ (a, b] interval a < x ≤ b

x ∈ (a, b) interval a < x < b

|C| cardinality of a set C (for finite sets, the number of elements)

Data

X the input domain

d (used if X is a vector space) dimension of X

M number of classes (for classification)

n a number of data examples.

ntr number of training examples.

nte number of test examples.

i, j indices, often running over [nte] or [ntr].

xi input patterns xi ∈ X

xtr
i input training patterns xtr

i ∈ X

xte
i input test patterns xte

i ∈ X

yi classes yi ∈ [M ] (for regression: target values yi ∈ R)

ytr
i training data classes ytr

i ∈ [M ] (for regression: target values ytr
i ∈ R)

yte
i test data classes ytr

i ∈ [M ] (for regression: target values yte
i ∈ R)

X a sample of input patterns, X = (x1, . . . , xn)

Xtr a sample of training input patterns, Xtr = (xtr
1 , . . . , xtr

n )

Xte a sample of test input patterns, Xte = (xte
1 , . . . , xte

n )

Y a sample of output targets, Y = (y1, . . . , yn)

Y tr a sample of training output targets, Y tr = (ytr
1 , . . . , ytr

n )

Y te a sample of training output targets, Y te = (yte
1 , . . . , yte

n )



Kernels

H feature space induced by a kernel

Φ feature map, Φ : X → H

k (positive definite) kernel

K kernel matrix or Gram matrix, Kij = k(xi, xj)

Vectors, Matrices and Norms

1 vector with all entries equal to one

I identity matrix

A> transposed matrix (or vector)

A−1 inverse matrix (in some cases, pseudo-inverse)

tr (A) trace of a matrix

det (A) determinant of a matrix

〈x,x′〉 dot product between x and x′

x ◦ x′ Elementwise multiplication of vectors x and x′

‖·‖ 2-norm, ‖x‖ :=
√
〈x,x〉

‖·‖p p-norm , ‖x‖p :=
(∑N

i=1 |xi|p
)1/p

, N ∈ N ∪ {∞}

‖·‖∞ ∞-norm , ‖x‖∞ := supN
i=1 |xi|, N ∈ N ∪ {∞}



Functions

ln logarithm to base e

log2 logarithm to base 2

f a function, often from X or [n] to R, RM or [M ]

F a family of functions

Lp(X) function spaces, 1 ≤ p ≤ ∞

Probability

P{·} probability of a logical formula

Ptr{·} probability of a logical formula associated with training data distri-
bution.

Pte{·} probability of a logical formula associated with test data distribution.

P(C) probability of a set (event) C

p(x) density evaluated at x ∈ X

ptr(x) density associated with training data distribution evaluated at x ∈ X

pte(x) density associated with test data distribution evaluated at x ∈ X

E [·] expectation of a random variable

Var [·] variance of a random variable

N(µ, σ2) normal distribution with mean µ and variance σ2

Graphs

g graph g = (V,E) with nodes V and edges E

G set of graphs

W weighted adjacency matrix of a graph (Wij 6= 0 ⇔ (i, j) ∈ E)

D (diagonal) degree matrix of a graph, Dii =
∑

j Wij

L normalized graph Laplacian, L = D−1/2WD−1/2

L un-normalized graph Laplacian, L = D −W

SVM-related

ρf (x, y) margin of function f on the example (x, y), i.e., y · f(x)

ρf margin of f on the training set, i.e., minm
i=1 ρf (xi, yi)

h VC dimension

C regularization parameter in front of the empirical risk term

λ regularization parameter in front of the regularizer

w weight vector

b constant offset (or threshold)

αi Lagrange multiplier or expansion coefficient

βi Lagrange multiplier

α,β vectors of Lagrange multipliers

ξi slack variables

ξ vector of all slack variables

Q Hessian of a quadratic program



Miscellaneous

IA characteristic (or indicator) function on a set A

i.e., IA(x) = 1 if x ∈ A and 0 otherwise

δij Kronecker δ (δij = 1 if i = j, 0 otherwise)

δx Dirac δ, satisfying
∫

δx(y)f(y)dy = f(x)

O(g(n)) a function f(n) is said to be O(g(n)) if there exist constants C > 0
and n0 ∈ N such that |f(n)| ≤ Cg(n) for all n ≥ n0

o(g(n)) a function f(n) is said to be o(g(n)) if there exist constants c > 0
and n0 ∈ N such that |f(n)| ≥ cg(n) for all n ≥ n0

rhs/lhs shorthand for “right/left hand side”

the end of a proof


