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ABSTRACT

This paper describes the research efforts of the “Hidden Speak-
ing Mode” group participating in the 1996 summer workshop on
speech recognition. The goal of this project is to model pronunci-
ation variations that occur in conversational speech in general and,
more specifically, to investigate the use of a hidden speaking mode
to represent systematic variations that are correlated with the word
sequence (e.g. predictable from syntactic structure). This paper de-
scribes the theoretical formulation of hidden mode modeling, as
well as some results in error analysis, language modeling and pro-
nunciation modeling.

1. Introduction

Spontaneous, conversational speech tends to be much more vari-
able than the careful read speech that much of speech recognition
work has focused on in the past, and not surprisingly the recognition
accuracy is much lower on spontaneous speech. Pronunciation dif-
ferences, in particular, represent one important source of variability
that is not well accounted for by current recognition systems. For
example, the word “because” might be pronounced with a full or
a reduced vowel in the initial syllable, or the whole initial syllable
might be dropped. Increasing the allowed pronunciation variability
of words is needed to handle the reduction phenomena that seem to
be a cause of many errors in conversational speech. Unfortunately,
as many researchers have noticed, simply increasing the allowable
set of pronunciations in all contexts often does not help and may
even hurt performance, since the gain of including more pronuncia-
tions may be offset by a loss due to increased confusability.

If it is the case that pronunciation changes are systematic, then mod-
els can be varied dynamically so as to reduce the added confusabil-
ity. Thus, the goal of the “Hidden Speaking Mode Group”, which
participated in the 1996 summer DoD workshop on speech recog-
nition, was to develop a method for allowing pronunciation varia-
tions depending on a hidden speaking mode. The speaking “mode”
would vary within and across utterances and would reflect speaking
“style”, e.g. indicating the likelihood of reduced or sloppy speech
vs. clear vs. exaggerated speech. By changing the allowed pronun-
ciations as a function of the speaking mode, we can account for
systematic variability without the increased confusability associated
with a static model.

We focus on capturing variability associated with speaking style,
rather than on variability due to dialect or background noise, be-

cause of the evidence showing that style has a dramatic impact on
recognition performance. In a 1995 study done by SRI, speech
recorded over a telephone channel under three conditions showed
very different error rates. Spontaneous conversational speech gave
an error rate of 52.6%, while the same word sequences read and
“acted” (simulated spontaneous speech) by the same speakers led
to 28.8% and 37.4% error rates respectively [1]. Since the word
sequence and speakers are fixed, the drop in accuracy from read to
spontaneous speech must be due to style-related differences.

Speaking style appears to be correlated with the word sequence,
and therefore it should be at least somewhat predictable from syn-
tactic and discourse structure. For example, content words (espe-
cially nouns) are much more often clearly articulated than function
words, which can be reduced to the point of having only a few mil-
liseconds of acoustic evidence. The word sequence “going to” can
be reduced to “gonna” when the following word is a verb but not if
a noun phrase follows. Old or shared information in the conversa-
tion is more likely to be reduced than a new word. Similarly, words
at the end of a sub-topic or discourse segment are more likely to
be mumbled, while the initial phrase after a topic change will be
clearly articulated. Syntactic and discourse structure is of course
difficult to extract, but simple text analyses may still be useful for
predicting speaking mode.

Because text analysis will necessarily be simplistic and it may be
based on errorful data from a recognizer, it is important to also rely
on acoustic cues to speaking style. It has been well-established that
higher speaking rates are associated with higher recognition errors
[2, 3], and rate is perhaps the best candidate for predicting pronun-
ciation variations. However, we have anecdotally noticed reduc-
tion phenomena in regions of low energy and pitch range, where a
speaker may be mumbling. Thus, the hidden speaking mode model
will be conditioned on both acoustic cues and language cues.

In the remaining sections of the paper, we describe the mathemat-
ical framework and recognition and training algorithms developed
for hidden mode modeling, followed by a summary of the experi-
mental results obtained at the workshop and a discussion of the open
questions raised by this work.



2. Hidden Mode Modeling

2.1. Mathematical Framework

Mathematically, the standard problem of recognizing the word se-
quencew = (w1; : : : ; wN ) given acoustic observationsx =
(x1; : : : ; xT ) can be expressed using conditional distributions as

ŵ = argmax
w

p(wjx)

= argmax
w

p(xjw)p(w)

� argmax
w;q

p(xjq)p(qjw)p(w);

whereq is a phone sequence associated with the word sequence,
p(xjq) is the acoustic model,p(qjw) gives the pronunciation like-
lihoods, andp(w) is the standard language model. With hidden
mode conditioning, these equations become

ŵ = argmax
w

p(wjx;y)

= argmax
w

X

m

p(xjw;m)p(mjf(w);y)p(w)

� argmax
w;q

X

m

p(xjq;m)p(qjw;m)p(mjf(w);y)p(w);

where the new variables introduced –m, y and f(w) – are se-
quences of mode labels, acoustic cues to the mode, and language
cues to the mode, respectively. With hidden mode conditioning,
p(xjq;m) is the acoustic model andp(qjw;m) is the pronun-
ciation likelihood which is interpolated by the mode likelihood
p(mjf(w);y). The sequence models are simplified using Markov
and conditional independence assumptions as in typical recognition
systems, e.g.

p(xjq;m) =

TY

t=1

p(xtjqi(t);mj(t))

wherei(t) andj(t) indicate the phone and mode state associated
with time t.

Mode conditioning can be implemented either directly in the
acoustic modelp(xtjqi;mj) and/or in a pronunciation probability
p(qjwi;mi). Both approaches were explored at the workshop. Di-
rect acoustic model mode conditioning can be incorporated by in-
cluding the mode as a factor in tree-based distribution clustering,
together with questions about neighboring phonetic context. Pro-
nunciation probabilities can incorporate mode conditioning in sev-
eral ways. The simplest approach is to estimate mode-dependent
pronunciation probabilities for each possible pronunciation of each
word, but these probabilities will only be robust for the most fre-
quent words. As an alternative, we also investigated using decision
trees to predict baseform expansion rule probabilities based on the
mode or mode-dependent cues in combination with other factors
associated with phonetic context. Decision tree pronunciation pre-
diction as proposed in [4] can also be extended to include mode as
a prediction factor.

Another design issue to resolve is what time scale the mode varies
on. For example,m might be allowed to change at each frame, syl-
lable, word or utterance. Error analyses from the 1995 workshop
[5] show that utterance-level factors are not good predictors of er-
ror, which suggests that a mode varying within the utterance would
be more useful. To restrict the scope of the effort and simplify im-
plementation in recognition and training, we chose to work with a
slowly varying mode, assuming that the mode did not change mid-
word.

Assuming a word-level mode, the mode sequence includes one
mode valuemi for each word:m = fm1; : : : ;mNg, whereN
is the number of words (or hypothesized words) in an utterance.
The mode likelihood model assumes conditional independence of
modes at each word given the acoustic and language cues:

p(mjf(w);y) =

NY

i=1

p(mijf(w);y(wi)):

The distributionp(mijf(w);y(wi)) is represented using a decision
tree with questions about the language cuesf(w) and the acoustic
cuesy(wi) within a window of the target wordwi.

2.2. Automatic Training

On a small task, it might be possible to hand-label data with modes
according to a coding system developed to capture pronunciation-
related speaking style variation. However, our experience was that
it was difficult to define such a coding scheme, and impractical to la-
bel a sufficiently large amount of data by hand. As a result, the work
focused on unsupervised learning of initial speaking mode labels
through various clustering techniques using acoustic cuesy. Given
an initial mode labeling, one can estimate mode-dependent pronun-
ciation and/or acoustic models and conditional mode likelihoods,
and then iteratively improve all models jointly using Viterbi-style
estimation. The problem of finding the hidden speaking “modes”
can be thought of as analogous to finding the modes or component
distributions of Gaussian mixtures.

Two clustering methods were explored, both based at least in part
on decision trees [6]. In the first approach, decision trees are de-
signed to predict regions of recognition error (due at least in part
to the acoustic model) vs. regions where the recognizer output was
correct, using Chase's error analysis tool [7]. (Errors due to lan-
guage modeling alone were omitted from clustering.) The leaves of
the resulting tree defined a set of “pre-modes”. While the acoustic
error regions are certainly correlated with different speaking modes,
the resulting clusters will not necessarily reflect systematic pronun-
ciation differences. Therefore, the “pre-mode” clusters were subse-
quently merged using agglomerative clustering with a distance mea-
sure on the pronunciation probability distributions of the 100 most
frequent words, weighted by the relative frequency of each word.

In the second approach, regions of pronunciation similarity were
clustered directly by using the acoustic cues to the mode as fea-
tures in decision tree clustering to predict baseform expansion rule
probabilities. This approach has the advantage of clustering directly
on pronunciation variability, which is the goal of the hidden mode



modeling. However, it is only possible when pronunciation vari-
ability can be expressed with a small dimensional vector, as in the
roughly 20 rules used in the CMU Janus system.

2.3. Recognition

The recognition algorithm relies on a multi-pass search strat-
egy, which reduces the search space by using standard, static-
pronunciation hidden Markov models in a first pass of recognition
that results in a word lattice or N-best list. The lattice or N-best
list must be annotated with at least hypothesized word and silence
times, and ideally also with hypothesized phone labels and times,
for use in computing acoustic featuresy.

In rescoring, the dictionary or at least the relative probability of
each entry in the dictionary must vary dynamically throughout the
utterance, since the mode can change with each hypothesized word.
The combined acoustic/pronunciation model of thei-th hypothe-
sized wordwi is given by either

p(x(wi)jwi; f(w
i);y(wi)) (1)

=
X

m

p(x(wi)jwi;m)p(mjf(wi);y(wi))

using a single pronunciation and mode conditioning directly in the
acoustic model, or by

p(x(wi)jwi; f(w
i);y(wi)) (2)

� max
k

p(x(wi)jqk)
X

m

p(qkjm)p(mjf(wi);y(wi))

using mode conditioning in the pronunciation model, wherex(wi)
andy(wi) are the cepstral and mode acoustic features associated
with wordwi given its time markings. The language featuresf(wi)
are based on the hypothesized word sequence associated withwi,
which will be different forwi in different N-best word strings. In
other words, the mode likelihood provides the probability of the
pronunciation in direct acoustic model mode conditioning and acts
as an interpolation factor in pronunciation likelihood mode condi-
tioning.

In summary, the differences between hidden speaking mode utter-
ance rescoring and a standard rescoring procedure are that (1) ad-
ditional acoustic and text analyses are needed for extractingy(wi)
and f(wi) for each hypothesized wordwi in an utterance, (2) a
mode likelihood must be computed for each hypothesized word, and
(3) each hypothesized word must point to a different pronunciation
weight distribution or weighted collection of dictionary entries.

3. Experimental Results

The focus of the Hidden Speaking Mode Group's effort was on
developing appropriate models for each of the terms introduced
in equations 2 and 3, including the acoustic modelp(xjq;m),
the pronunciation modelp(qjm;w) and the mode likelihood
p(mjf(w);y(w)), as well as on exploring methods for unsuper-
vised learning of the mode. As for all the workshop groups, the
experimental paradigm was conversational speech recognition on
the Switchboard task [8]. Results were obtained starting from two

different baseline systems: an HTK system developed for the work-
shop trained on 60 hours of data (gender-independent), and the
CMU Janus system trained on 140 hours of data (gender-dependent)
[9].

A major thrust of the summer effort was data analysis to determine
appropriate acoustic featuresy(wi) and preliminary mode cluster-
ing. Over 100 features were studied, with some based on forced
alignments given the known word transcription (useful in initial
mode clustering only), some based on recognized word and phone
labels and times, and some that were purely acoustic. The fea-
tures included various measures of speaking rate, SNR and/or en-
ergy, normalized fundamental frequency, presence and duration of
silence, and phone label distance measures between different align-
ment/recognition alternatives. Speaker gender was included as a
control to insure that the normalization techniques were effective
and the unsupervised mode clustering did not simply learn gender,
and in fact gender was never used. The “goodness” criterion for
evaluating features was prediction of acoustic modeling errors, i.e.
regions where an incorrectly recognized word string had a higher
acoustic model likelihood than the correct word sequence. Analyses
of individual features showed that normalization is very important,
and the best normalization methods were conversation-level. In de-
cision tree error prediction experiments, using recognition on the
training data to define a sufficiently large number of error regions,
acoustic cues alone gave almost as good performance as the super-
set of features that included those based on recognizer hypotheses
(cross validation error rates of 25% vs. 24%, respectively, compared
36% chance). The most important features were speaking rate (hav-
ing two measures was better than one) and presence of silence, but
SNR also played a significant role. We anticipate that these features
may also be useful for research in confidence scoring.

The fact that the presence (but not duration) of silence is impor-
tant for predicting acoustic modeling errors raises the question of
whether silence should be an acoustic cue or a language cue. In
other words, silence could be treated as a word in the language
model, just as utterance boundaries now are. The silence “word”
has been used successfully in the CMU Janus system [9]. Exper-
iments with the HTK system were conducted using one or two si-
lence “words” plus a segmentation boundary “word,” where only
silences of duration longer than 80 ms were treated as words and
250ms was used as a cut-off for the case when two silence “words”
were used. When combined with a language model based on lin-
guistic segmentations and testing with known linguistic segmen-
tations, the silence “words” degraded performance slightly, from
45.1% to 45.8% word error. Using acoustic segmentations, the re-
sults were mixed, with the two silence “words” giving a slight im-
provement, from 46.6% to 46.4% word error. Because the use of a
silence “word” blocks actual word context, it is likely that better re-
sults could be obtained by including silence “words” but using them
in an extended n-gram framework.

Three strategies were pursued for pronunciation modeling, in part
because of the differences in the HTK and Janus systems. Results
were obtained for modeling pronunciation variations without mode
dependence to provide a baseline. In the Janus system, pronuncia-
tion variations were generated using a small set of rules for phenom-



ena such as flapping and vowel reduction. Adding pronunciations
reduced the error rate from 39.0% to 38.4%, and using pronuncia-
tion probabilities derived from the relative likelihood of rule appli-
cation further reduced error rate to 37.6%. (The Janus results were
reported only on male subset of the standard test set.) Analogous
experiments were conducted using the HTK system, but adding pro-
nunciations only for the 100 most frequent words. The new pronun-
ciations and their relative likelihoods were based on the results of
the Janus system. Perhaps because the Janus pronunciations are
tuned to a different acoustic model, there was no gain in perfor-
mance when using these in the HTK system: 47.0% error baseline
performance compared to 47.5% with unweighted additional pro-
nunciations and 47.1% error with pronunciations weighted by their
relative frequency. The third approach to pronunciation modeling
used distribution clustering, and the baseline (no mode) experiment
involved adding stress and syllable structure information to the in-
ventory of clustering questions. Though no recognition experiments
have been completed as yet, the training results showed that these
features are important in that they are used early in the clustering
process. One might expect syllable position and stress to be asso-
ciated with the relative strength of articulation of a phone (e.g. the
strength of a burst for consonants or the distance from a neutral po-
sition for a vowel), but it was interesting to see that these were im-
portant factors even before many phonetic contextual effects were
accounted for.

Finally, although the mode-dependent pronunciation probability
distributions are yet to be evaluated in a recognition system, the
initial mode clustering experiments did provide evidence to suggest
that pronunciation dynamics are at least somewhat predictable from
acoustic cues to speaking mode (specifically, speaking rate and nor-
malized energy measures). Pronunciation differences (e.g. differ-
ences in the relative likelihood of the pronunciations /ae n d/ and
/ax n/ for “and”) were found both by clustering probability distri-
butions of phonological rules based on acoustic features, as well
as by clustering pronunciation probability distributions associated
with the acoustically-derived pre-mode regions.

4. Conclusions

In summary, we have introduced a new approach for handling
speaking style variability in speech recognition based on a hid-
den speaking mode that controls allowable pronunciation variabil-
ity. Under the assumption that pronunciation variations are system-
atically related to the speaking mode, a mode likelihood is predicted
from acoustic observations such as speaking rate and relative energy
as well as from language cues related to the information status (e.g.
new vs. old, content vs. function) of words in the local context. We
describe different ways of mode conditioning: in the word pronun-
ciation likelihoods (directly or via baseform expansion rules) and
in the acoustic models using distribution clustering. Standard train-
ing and recognition algorithms are extended to incorporate mode-
dependent modeling.

Data analyses were conducted to identify acoustic cues to the mode,
and initial pronunciation clustering experiments demonstrate that
modes do influence pronunciation likelihood. However, it remains
to be shown that mode-dependent acoustic modeling will improve

recognition performance. In addition, it is an open question as to
where mode-conditioning will be most effective: in the acoustic
model or in the pronunciation likelihood. Because of time limi-
tations, many issues related to mode modeling were not explored in
depth, such as the use of textual cues to the mode and assumptions
about the form of the mode likelihood model. These are just a few
of the questions that the idea of hidden mode modeling will raise,
making this a fruitful area for future study.
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