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Abstract

Most computational engineering based loosely on biology uses contin-
uous variables to represent neural activity. Yet most neurons communi-
cate with action potentials. The engineering view is equivalent to using
a rate-code for representing information and for computing. An increas-
ing number of examples are being discovered in which biology may not
be using rate codes. Information can be represented using thetiming of
action potentials, and efficiently computed with in this representation.
The “analog match” problem of odour identification is a simple problem
which can be efficiently solved using action potential timing and an un-
derlying rhythm. By using adapting units to effect a fundamental change
of representation of a problem, we map the recognition of words (hav-
ing uniform time-warp) in connected speech into the same analog match
problem. We describe the architecture and preliminary results of such a
recognition system. Using the fast events of biology in conjunction with
an underlying rhythm is one way to overcome the limits of an event-
driven view of computation. When the intrinsic hardware is much faster
than the time scale of change of inputs, this approach can greatly increase
the effective computation per unit time on a given quantity of hardware.

1 Spike timing
Most neurons communicate using action potentials – stereotyped pulses of activity that are
propagated along axons without change of shape over long distances by active regenerative
processes. They provide a pulse-coded way of sending information. Individual action
potentials last about 2ms. Typical active nerve cells generate 5–100 action potentials/sec.

Most biologically inspired engineering of neural networks represent the activity of a nerve
cell by a continuous variable which can be interpreted as the short-time average rate of
generating action potentials. Most traditional discussions by neurobiologists concerning
how information is represented and processed in the brain have similarly relied on using
“short term mean firing rate” as the carrier of information and the basis for computation.
But this is often an ineffective way to compute and represent information in neurobiology.
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To define “short term mean firing rate” with reasonable accuracy, it is necessary to either
wait for several action potentials to arrive from a single neuron, or to average over many
roughly equivalent cells. One of these necessitates slow processing; the other requires
redundant “wetware”.

Since action potentials are short events with sharp rise times, action potential timing is
another way that information can be represented and computed with ([Hopfield, 1995]).
Action potential timing seems to be the basis for some neural computations, such as the
determination of a sharp response time to an ultrasonic pulse generated by the moustache
bat. In this system, the bat generates a 10ms pulse during which the frequency changes
monotonically with time (a “chirp”). In the cochlea and cochlear nucleus, cells which
are responsive to different frequencies will be sequentially driven, each producing zero
or one action potentials during the time when the frequency is in their responsive band.
These action potentials converge onto a target cell. However, while the times of initiation
of the action potentials from the different frequency bands are different, the length and
propagation speed of the various axons have been coordinated to result in all the action
potentials arriving at the target cell at the same time, thus recognizing the “chirped” pulse
as a whole, while discriminating against random sounds of the same overall duration.

Taking this hint from biology, we next investigate the use of action potential timing to rep-
resent information and compute with in one of the fundamental computational problems
relevant to olfaction, noting why the elementary “neural net” engineering solution is poor,
and showing why computing with action potentials lacks the deficiencies of the conven-
tional elementary solution.

2 Analog match
The simplest computational problem of odors is merely to identify a known odor when a
single odor dominates the olfactory scene. Most natural odors consist of mixtures of sev-
eral molecular species. At some particular strength a complex odorb can be described by
the concentrationsN b

i of its constitutive molecular of speciesi. If the stimulus intensity
changes, each component increases (or decreases) by the same multiplicative factor. It is
convenient to describe the stimulus as a product of two factors, an intensity� and normal-
ized componentsnb

i as:
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i are normalized, or relative concentrations of different molecules, and� describes

the overall odor intensity. Ideally, a given odor quality is described by the pattern ofnb
i ,

which does not change when the odor intensity� changes. When a stimuluss described
by a setfNs

j g is presented, an ideal odor quality detector answers “yes” to the question “is
odorb present?” if and only if for some value of�:
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This general computation has been calledanalog match.1

The elementary “neural net” way to solve analog match and recognize a single odor in-
dependent of intensity would be to use a single “grandmother unit” of the following type.

1The analog match problem of olfaction is actually viewed through olfactory receptor cells. Stud-
ies of vertebrate sensory cells have shown that each molecular species stimulates many different
sensory cells, and each cell is excited by many different molecular species. The pattern of relative
excitation across the population of sensory cell classes determines the odor quality in the generalist
olfactory system. There are about 1000 broadly responsive cell types; thus, the olfactory systems of
higher animals apparently solve an analog match problem of the type described by (2), except that
the indices refer to cell types, and the actual dimension is no more than 1000.



Call the unknown odor vectorI , and the weight vectorW . The input to the unit will then
beI �W . If W = n=knk andI is pre-normalized by dividing by the Euclidean magnitude
kIk, recognition can be identified byI �W > :95 , or whatever threshold describes the
degree of precision in identification which the task requires.

This solution has four major weaknesses.

1. Euclidean normalization is used; not a trivial calculation for real neural hardware.

2. The size of input componentsIk and their importance is confounded. If a weak
component has particular importance, or a strong one is not reliable, there is no
way to represent this.W describes only the size of the target odor components.

3. There is no natural composition if the problem is to be broken into a hierarchy
by breaking the inputs into several parts, solving independently, and feeding these
results on to a higher level unit for a final recognition. This is best seen by analogy
to vision. If I recognize in a picture grandmother’s nose at one scale, her mouth
at another, and her right eye at a third scale, then it is assuredlynot grandmother.
Separate normalization is a disaster for creating hierarchies.

4. A substantial number of inputs may be missing or giving grossly wrong informa-
tion. The “dot-product-and-threshold” solution cannot contend with this problem.
For example, in olfaction, two of the common sources of noise are the adaptation
of a subset of sensors due to previous strong odors, and receptors stuck “on” due
to the retention of strongly bound molecules from previous odors.

All four problems are removed when the information is encoded and computed with in an
action potential representation, as illustrated below. The three channels of analog input
Ia,Ib, Ic are illustrated on the left. They are converted to a spike timing representation by
the position of action potentials with respect to a fiducial timeT . The interval between
T and the time of an action potential in a channelj is equal tolog Ij . Each channel is
connected to an output unit through a delay line of length�j = log nb

j , wherenb is the
target vector to be identified. When the analog match criterion is satisfied, the pulses on
all three channels will arrive at the target unit at the same time, driving it strongly. If all
inputs are scaled by�, then the times of the action potentials will all be changed bylog�.
The three action potentials will arrive at the recognition unit simultaneously, but a a time
shifted by log�. Thus a pattern can be recognized (or not) on the basis of its relative
components. Scale information is retained in thetime at which the recognition unit is
driven. The system clearly “composes”, and difficulty (3) is surmounted. No normalization
is required, eliminating difficulty (1). Each pathway has two parameters describing it, a
delay (which contains the information about the pattern to be recognized) and a synaptic
strength (which describes the weight of the action potential at the recognition unit). Scale
and importance are separately represented. The central computational motif is very similar
to that used in bat sonar, using relative timing to represent information and time delays to
represent target patterns.
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This system also tolerates errors due to missing or grossly inaccurate information. The
figure below illustrates this fact for the case of three inputs, and contrasts the receptive fields
of a system computing with action potentials with those of a conventional grandmother
cell. (The only relevant variables are the projections of the input vector on the surface of
the unit sphere, as illustrated.) When the thresholds are set high, both schemes recognize a
small, roughly circular region around the target pattern (here chosen as 111). Lowering the
recognition threshold in the action-potential based scheme results in a star-shaped region
being recognized; this region can be characterized as “recognize if any two components
are in the correct ratio, independent of the size of the third component.” Pattern 110 is thus
recognized as being similar to 111 while still rejecting most of the space as not resembling
the target. In contrast, to recognize 110 with the conventional unit requires such threshold
lowering that almost any vector would be recognized.

This method of representation and computation using action potential timing requires a
fiducial time available to all neuronsparticipating in stimulus encoding. Fiducial times
might be externally generated by salient events, as they are in the case of moustache bat
sonar. Or they could be internally generated, sporadically or periodically. In the case of
the olfactory system, the first processing area of all animals has an oscillatory behavior. A
large piece of the biophysics of neurons can be represented by the idea that neurons are
leaky integrators, and that when their internal potential is pushed above a critical value,
they produce an action potential, and their internal potential is reset a fixed distance below
threshold. When a sub-threshold input having a frequencyf is combined with a steady
analog currentI , the system generates action potentials at frequencyf , but whose phase
with respect to the underlying oscillation is a monotone function ofI . Thus the system
encodesI into a phase (or time) of an action potential with respect to the underlying rhythm.
Interestingly, in mammals, the second stage of the olfactory system, the prepiriform cortex,
has slow axons propagating signals across it. The propagation time delays are comparable
to 1=f . The system has the capability of encoding and analyzing information in action
potential timing.

3 Time warp and speech
Recognizing syllables or words independent of a uniform stretch (“uniform time warp”)
can in principle be cast as an analog match problem and transformed into neural vari-
ables [Hopfield, 1996]. We next describe this approach in relationship to a previous “neu-
ral network” way of recognizing words in connected speech [Hopfield and Tank, 1987,
Unnikrishnan et al., 1991, Unnikrishnan et al., 1992] (UHT for short).

A block diagram below shows the UHT neural network for recognizing a small vocabulary
of words in connected speech. The speech signal is passed through a bank of band-pass
filters, and an elementary neural feature detector then examines whether each frequency is
a local maximum of the short-term power spectrum. If so, it propagates a “1” down a delay
line from that feature detector, thus converting the pattern of features in time into a pattern
in space. The recognition unit for a particular word is then connected to these delay lines
by a pattern of weights which are trained on a large data base.
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The conceptual strength of this circuit is that it requires no indication of the boundaries
between words. Indeed, there is no such concept in the circuit. The conceptual weakness
of this “neural network” is that the recognition process for a particular word is equivalent to
sliding a rigid template across the feature pattern. Unfortunately, even a single speaker has
great variation in the duration of a given word under different circumstances, as illustrated
in the two spectrograms below. Clearly no single template will fit these both of these
utterances of “one” very well. This general problem is known astime-warp. A time-warp
invariant recognizer would have considerable advantage.
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The UHT approach represents a sequence by the presence of a signal on feature signal lines
A, B, C, as shown on the left of the figure below. Suppose the end of the word occurs at
some particular time as indicated. Then the feature starts and stops can be described as an
analog vector of times, whose components are shown by the arrows as indicated. In this
representation, a word which is spoken more slowly simply has all its vector components
multiplied by a common factor. The problem of recognizing words within a uniform time
warp is thus isomorphic with the analog match problem, and can be readily solved by
using action potential timing and an underlying rhythm, as described above. In our present
modeling, the rhythm has a frequency of 50 Hz, significantly faster than the rate at which
new features appear in speech. This frequency corresponds to the clock rate at which
speech features are effectively “sampled”. In the UHT circuit this rate was set by the
response timescale of the recognition units. But where each template in the UHT circuit
attempted only a single match with the feature vector per sample, this circuit allows the
attempted match of many possible time-warps with the feature vector per sample. (The
range of time-warps allowed is determined by the oscillation frequency and the temporal
resolution of the spike timing system.)
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The block diagram of the neural circuit necessary to recognize words in connected speech
with uniform time warp is sketched above. It looks superficially similar to the UHT circuit
beside it, except for the insertion of a ramp generator and a phase encoder between the



feature detectors and the delay system. Recognizing a feature activates a ramp generator
whose output decays. This becomes the input to a “neuron” which has an additional oscil-
latory input at frequencyf . If the ramp decay and oscillation shapes are properly matched,
the logarithm of the time since the occurrence of a feature is encoded in action potential
timing as above. Following this encoding system there is a set of tapped delay lines of the
same style which would have been necessary to solve the olfactory decoding problem. The
total the amount of hardware is similar to the UHT approach because the connections and
delay lines dominate the resource requirements.

The operation of the present circuit is, however, entirely different. What the present circuit
does is to “remember” recent features by using ramp generators, encode the logarithms
of times since features into action potential timing, and recognize the pattern with a time-
delay circuit. The time delays in the present circuit have an entirely different meaning from
those of the UHT circuit, since they are dimensionally not physical time, but instead are
a representation of the logarithm of feature times. The time delays are only on the scale
of 1=f rather than the duration of a word. There are simple biological implementations of
these ideas. For example, when a neuron responds, as many do, to a step in its input by
generating a train of action potentials with gradually falling firing frequency (adaptation),
the temporal spacing between the action potentials is an implicit representation of the time
since the “step” occurred (see [Hopfield, 1996]).

For our initial engineering investigations, we used very simple features. The power within
each frequency band is merely thresholded. An upward crossing of that threshold repre-
sents a “start” feature for that band, and a downward crossing a “end” feature. A pattern of
such features is identified above beside the spectrograms. Although the pattern of feature
vectors for the two examples of “one” do not match well because of time warp, when the
logarithms of the patterns are taken, the difference between the two patterns is chiefly a
shift, i.e. the dominant difference between the patterns is merely uniform time warp.

To recognize the spoken digit “one”, for example, the appropriate delay for each channel
was chosen so as to minimize the variance of the post-delay spike times (thus aligning the
spikes produced by all features), averaged over the different exemplars which contained
that feature. All channels with a feature present were given a unity weight connection at
that delay value; inactive channels were given weight zero. The figure below shows, on the
left, the spike input to the recognition unit (top) and the sum of the EPSPs caused by these
inputs (bottom). The examples of “one” produced maximum outputs in different cycles
of the oscillation, corresponding to the actual “end times” at which the words should be
viewed as recognized. Only the maximum cycle for each utterance is shown here. Within
their maximum cycle, different examples of the utterances produced maximal outputs at
different phases of the cycle, corresponding to the fact that the different utterances were
recognized as having different time warp factors. The panels on the right show the result
of playing spoken “four”s into the same recognition unit.
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There is no difficulty in distinguishing “ones” from other digits. When, however, the pos-
sibility of adjusting the time-warp is turned off, resulting in a “rigid” template it was not
possible to discriminate between “one” and other digits. (Disabling time-warp effectively
forces recognition to take place at the same “time” during each oscillation. Imagine draw-
ing a vertical line in the figure and notice that it cannot pass through all the peaks of output
unit activities.)

We have described the beginning of a research project to use action potentials and timing to
solve a real speech problem in a “neural” fashion. Very unsophisticated features were used,
and no competitive learning was employed in setting the connection weights. Even so, the
system appears to function in a word-spotting mode, and displays a facility of matching
patterns with time warp. Its intrinsic design makes it insensitive to burst noise and to
frequency-band noise.

How is computation being done? After features are detected, rates of change are slow, and
little additional information is accumulated during say a 50ms. interval. If we let “time
be its own representation”, as Carver Mead used to say, we let the information source be
the effective clock, and the effective clock rate is only about 20 Hz. Instead, by adding a
rhythm, we can interleave many calculations (in this particular case about the possibility of
different time warps) while the basic inputs are changing very little. Using an oscillation
frequency of 50 Hz and a resolving time of 1ms in the speech example we describe in-
creases the effective clock rate by more than a factor of 10 compared to the effective clock
rate of the UHT computation.

We believe that “time as its own representation” is a loser for processing information when
the computation desired is complex but the data is slowly changing. No computer scientist
would use a computer with a 24 Hz clock to analyze a movie because the movie is viewed
at 24 frames a second. Biology will surely have found its way out of this “paced by the
environment” dilemma. Finally, because problems are easy or hard according to how algo-
rithms fit on hardware and according to the representation of information, the differences in
operation between the system we have described and conventional ANN suggest the utility
of thinking about other problems in a timing representation.
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