
On Applying Molecular Computation To The Data
Encryption Standard

Leonard M. Adleman�, Paul W. K. Rothemund�, Sam Roweisy, Erik
Winfreey

Laboratory for Molecular Science
University of Southern California

and
� Department of Computer Science
University of Southern California

y Computation and Neural Systems Option
California Institute of Technology

Recently, Boneh, Dunworth, and Lipton described the potential use

of molecular computation in attacking the United States Data En-

cryption Standard (DES). Here, we provide a description of such an

attack using the sticker model of molecular computation. Our anal-

ysis suggests that such an attack might be mounted on a table-top

machine, using approximately a gram of DNA and might succeed

even in the presence of a large number of errors.

1

1 Introduction

With their work on DES, Boneh, Dunworth, and Lipton [Bo2] provided the
�rst example of a \practical" problem which might be susceptible to molecular
computation. DES is one of the most widely used cryptographic systems. It
produces a 64-bit ciphertext from a 64-bit plaintext under the control of a
56-bit key. While it has been argued that special purpose electronic hardware
[Wi] or massively parallel supercomputers might be used to break DES in a
reasonable amount of time, it appears that today's most powerful sequential
machines would be unable to accomplish the task. We continue the work of
Boneh, et al: by considering the di�culty of breaking DES on the recently
proposed sticker model of molecular computation [Ro]. While our results are
encouraging, it must be stressed that the feasibility of such an attack will
ultimately be decided in the laboratory.

In this paper we consider the so called plaintext-ciphertext attack. Here
the cryptanalyst obtains a plaintext and its corresponding ciphertext and
wishes to determine the key used to perform the encryption. The most naive
approach to this problem is to try all 256 keys, encrypting the plaintext under
each key until a key that produces the ciphertext is found. Remarkably, a
signi�cantly more e�cient attack is not known and consequently this brute
force approach will be the one considered here.

We begin by describing the algorithm to implement a plaintext-ciphertext
attack for breaking DES at a logical level. This allows us to identify the
fundamental operations we need to implement on a stickers machine, and
serves as a roadmap for what follows.

2 The Molecular Algorithm

Start with approximately 256 identical ssDNA memory strands [Ro] each
11580 nucleotides long. We think of each memory strand as containing 579
contiguous blocks (referred to as regions in [Ro]) B0; B1; B2; :::; B578 each 20
nucleotides long. As is appropriate in the sticker model there are 579 stick-
ers S0; S1; :::; S578|one complementary to each block. (We refer to memory

2

strands with annealed stickers as memory complexes.) Hence, we consider
that each strand represents a 579-bit memory, and we sometimes use Bi to
refer to the bit which Bi represents. Block B0 is never set and is used later in
the implementation of the algorithm (Subsection 3.1). Blocks B1 though B56

of the memory strands are used to store a key, the next 64 blocks, B57; :::; B120,
will eventually encode the corresponding ciphertext, and the remainder of
blocks are used for intermediate results during the computation. The stickers
machine which processes the memory strands to compute the ciphertexts does
so under the control of a microprocessor. Because the plaintext is the same
in all cases, the microprocessor may store it; we do not need to represent the
plaintext on the memory strands. Now, given a plaintext-ciphertext pair, the
algorithm is performed in three steps:

1. Input step: Initialize the memory strands to form memory complexes
representing all 256 keys.

2. Encryption step: On each memory complex compute the ciphertext cor-
responding to the encryption of the plaintext under that complex's key.

3. Output step: Select the memory complex whose ciphertext matches the
given ciphertext, and read the corresponding key.

The bulk of the work is performed during the second step, where DES data
encryption occurs, so we outline it below. Our interest is in demonstrating
how DES can be implemented on a molecular computer, and for these pur-
poses the exact details of DES are unnecessary. (For details, see [Na].) We
will instead focus on the essential operations required in DES, and how these
operations are combined to e�ect the full algorithm.

DES is a 16-round cipher. In each round a new 32 bit intermediate result
is produced. These are designated R1; : : : ; R16. We store R15 and R16 in
locations B57 through B120 (adjacent to the key), while R1; : : : ; R14 are stored
in locations B121 through B568. Essentially, R15 and R16, taken together, form
the desired ciphertext. (We encode the ciphertext adjacent to the key for
implementation reasons explained in Subsection 3.4.) The left 32-bits and
right 32-bits of the plaintext are referred to as R�1 and R0, and are known
to the controlling microprocessor.

3

Bits B569 through B578 are used as a workspace and are written and erased
during the course of the computation. Hence, unlike the other bits which are
used in a \write once" fashion, these bits may be cleared; for implementation
reasons, we always clear the entire workspace at once.

Essentially, Ri is obtained from Ri�1 and Ri�2 by the following computation:

Ri = Ri�2 � S(E(Ri�1)�Ki)

where � denotes exclusive or (x-or), Ki denotes a round dependent selection
of 48 bits from the key, E denotes the expand function which takes the 32
bits of Ri�1 and repeats or permutes them to yield 48 bits, and S denotes
the S-function which takes a 48-bit input and maps it to a 32-bit output.
The function E, the function S and the selection Ki are hard-coded, like the
plaintext, into the microprocessor.

In fact, the S-function can be separated into eight independent 6-bit to 4-
bit functions known as S-boxes. Hence, each Ri may be computed in eight
independent operations each of which produces a 4 bit chunk of the result. A
given chunk is a function of 16 input bits: 6 bits of Ri�1, 6 bits of Ki and 4
bits of Ri�2. We describe the computation of a chunk below:

1. 6 bits of Ri�1 and 6 bits of Ki are x-ored to produce a 6-bit result which
is then stored in the workspace locations B569; : : : ; B574.

2. One of the S-box functions is applied to bits B569; : : : ; B574 and the 4-bit
result is stored in the workspace locations B575; : : : ; B578.

3. Bits B575; : : : ; B578 are x-ored with 4 bits of Ri�2 to produce the desired
chunk of Ri which is then stored in the appropriate four blocks of the
intermediate result bits B57; : : : ; B568.

4. If the chunk being computed is not the last chunk of R16, the entire
workspace, bits B569; : : : ; B578, is cleared in preparation for future use.

The positions on each memory complex of the 16 input bits required to com-
pute a given chunk depend only on the chunk number (1,. . . ,8) and the round

4

number (1,. . . ,16), though the 0/1 value of those bits will vary from memory
complex to memory complex. The controlling microprocessor knows which
positions contain these bits (they are hard-coded) and knows the x-or or S-box
which it needs to apply.

We see, then, that encrypting a plaintext with DES comes down to a process
of either (1) selecting 2 bits, producing their x-or, and writing the result in a
new bit, or (2) selecting 6 bits, applying an S-box, and writing the resulting
4 bits.

3 Implementation

We now turn to implementing the algorithm on a stickers machine. Such
a machine, as described in [Ro], may be thought of as a \parallel robotic
workstation". It consists of a rack of tubes (data tubes, sticker tubes, and
operator tubes), some robotics (arms, pumps, heater/coolers, connectors, etc:)
and a microprocessor that controls the robotics. Roweis et al: assume that the
components of the robotics and a set of three data or operator tubes may be
arranged to perform any of the following four operations: separate, combine,
set and clear.

We assume that the robotics are capable of an extended set of operations:

1. Parallel separate. The robotics can separate the DNA from each of 32
data tubes into two more data tubes by using 32 separation operator
tubes at once.

2. Parallel combine. The robotics can combine the DNA from 64 di�erent
data tubes into one data tube at once. We assume that the blank operator
tube used for a combine in [Ro] is really just a connector which is part
of the robotics.

3. Parallel set. The robotics can, using one sticker tube with stickers Sk,
set the bit Bk on the complexes in 64 di�erent data tubes at once. We
assume the sticker operator tube used for set in [Ro] is just a �lter that
can be built into the robotics.

5

4. Clear. The robotics can clear the workspace bits on all complexes in one
data tube. We assume that the stickers on the workspace are removed
simultaneously. Hence the workspace blocks may be implemented using
so called weak regions [Ro]. Again, we assume the sticker operator tube

used for clear in [Ro] is just a �lter that can be built into the robotics.

Hence, we perform the above four operations using just data tubes that may
hold DNA memory complexes, sticker tubes that are (for the purpose of the
computation) an inexhaustible source of a particular sticker Sk, and separation

operator tubes that hold probes for a particular block Bk.

In the following subsections we describe, where applicable, the implementation
of the molecular algorithm using these operations and, for the purposes of
estimating the time and space required by a stickers machine we keep track
of the following three resource quantities:

1. Total steps. We de�ne the number of steps as the number of parallel
separations, parallel combines, parallel sets or clears that any given
complex experiences after it has been initialized. Hence, we count the
operation of the robotics on a large number of tubes in parallel as a
single step and ignore the (perhaps serial) process of moving data and
operator tubes.

2. Total rack tubes. We de�ne the number of rack tubes to be the total
number of data tubes, sticker tubes, and separation operator tubes used
during the computation. All of the tubes are reusable, so we only need
copies of a tube if a particular kind of tube must be used more than once
in a parallel operation. We note that we never need duplicates of sticker
tubes|our robotics are incapable of using more than one sticker tube
at once. We will however need duplicate separation operator tubes and
many data tubes since we often wish to separate complexes in several
di�erent data tubes on the same bit Bi at once.

3. Maximum number of active tubes per operation. We de�ne the number
of active tubes, for any time during the computation, as the number of
tubes which the robotics have removed from the rack and are currently
processing. Note that the maximum number of active tubes de�nes the
width of the parallelism used by our algorithm and hence it must match
the parallelism built into our robotics.

6

We note that these quantities are applicable for only for the computation of

the ciphertexts (step 2 of the molecular algorithm) and the selection of the
given ciphertext (the �rst part of step 3 of the molecular algorithm). These
parts of the molecular algorithm require only the operations given above and
hence are performed using the stickers machine. The initialization of the
memory complexes and �nal reading of the key, however, use some operations
that are not included above (i:e: dividing the contents of a tube into two
tubes, PCR ampli�cation, ligation, etc.) These special operations are used
at most once during the implementation of the molecular algorithm and we
assume that they could be performed by the human operator of the stickers
machine in a reasonably short amount of time (a few hours) and in a small
space (a few tubes). Hence they are ignored in the �nal discussion of the
resources required by a stickers machine (Subsection 3.5).

3.1 Initialization of the memory strands

First we must create the initial tube encoding keys. Our desire is to have each
of the 256 memory strands store a di�erent key. This might be accomplished,
for example, in the following way:

1. Divide the memory strands into two tubes, A and B.

2. Add an excess of S1 through S56 to tube A and allow them to saturate
the �rst 56 blocks on each strand.

3. Use the complement of B0 as a probe to separate the memory complexes
in tube A from the excess stickers.

4. Add tube B to tube A.

5. Heat and cool tube A to randomly reanneal the stickers.

The memory complexes produced by this process appear to be reasonably
modeled with a Poisson distribution; it is expected that approximately 63% of
keys will be represented and that, on average, there is one of each key. Hence,
if no errors are committed during the computation, we have a reasonable
chance of recovering the key for a ciphertext of interest. Of course, the chance

7

of succeeding can be increased by starting with more memory strands. To
insure that approximately 95% of the keys are represented and that on average
three copies of a key are present, we could simply use three times as much
DNA. These issues are discussed in more detail in the Section 4.

3.2 Implementing the fundamental operations

As discussed in Section 2, the DES encryption algorithm is a composition of
just two simple functions:

� x-ors which are 2-bit input to 1-bit output maps,

� S-boxes which are 6-bit input to 4-bit output maps.

The computation of the 2-bit to 1-bit x-or function is illustrated in Figure 1.
We now describe the computation of the x-or function Bk = Bi�Bj in greater
detail, give the overhead required, and generalize this to an n-bit to m-bit
function:

A. Parallel separate the sample two times to yield four data tubes, one
for each possible value BiBj. This is accomplished by �rst using one
separation operator tube speci�c for Bi and then, in parallel, using two

separation operator tubes speci�c for Bj. (In Figure 1 the bits being
considered are shaded gray.) Roweis et al: model a single separation
as an operation involving three active tubes at once: a source data
tube, a separation operator tube, and one of two destination data tubes
picked up and �lled by the robotics in sequence. Hence, during each
single separation, three tubes are active at once and three data tubes
are used. During the second parallel separation above, then, six data
tubes are used and six tubes are active.

For an n-bit to m-bit function this generalizes to:

Parallel separate the sample n times to yield 2n data tubes, one for each
value of the n-bit input. This requires 2i�1 separation operator tubes
for the ith parallel separation (a total of 2n � 1). Hence for the nth
parallel separation 3� 2n�1 data tubes are required and 3� 2n�1 tubes
are active.

8

A.

B. C.

110

0 1

000
010

B
1

000 010

110

0 1

000

100
010

110

B
0

100
10

B
1

101100

S S
22

010 011 000
011
101

000

101011

110

110

100

Figure 1: Computation of the 2-bit to 1-bit x-or function: B2 = B0 � B1.

9

B. Parallel set Bk to 1 with an Sk sticker for all tubes for which this is
applicable. For an x-or this is only applicable when BiBj = 01 or 10 but
for a general 2-1 function this may require the addition of a sticker to
any subset of the four data tubes in parallel. This requires one sticker
tube and four data tubes, a total of �ve active tubes.

For an n-bit to m-bit function this generalizes to:

Parallel set a (possibly di�erent) subset of the 2n data tubes m times
using a total of m sticker tubes. This requires 2n + 1 active tubes.
Note that the subset of data tubes to which the parallel set is applied is
determined solely by the algorithm stored in the microprocessor.

C. Parallel combine the contents of all four data tubes into one data tube.
This requires �ve data tubes and hence �ve active tubes.

For an n-bit to m-bit function this generalizes to:

Parallel combine the contents of all 2n data tubes into one data tube.
This requires 2n + 1 data tubes and 2n + 1 active tubes.

At the end of our x-or operation, all of our DNA has been returned to a single
tube.

In general, an n-bit tom-bit function requires n+m+1 steps, 2n�1 separation
operator tubes (speci�c to various bits), m sticker tubes, a maximum of 3�
2n�1 data tubes, and a maximum of 3� 2n�1 active tubes.

At this point we can see that one of the resource quantities of interest, the
maximum number of active tubes has already been speci�ed. An 6-bit to
4-bit S-box is the biggest n-bit to m-bit function we implement in DES so
we never use more than 96 active tubes. (The only other operation used in
the algorithm, clear, uses but one active tube.)

The number of rack tubes is the sum of the data, sticker and separation tubes
used but we may not simply sum up these numbers for an S-box and regard
the result as its contribution to the computation. Data tubes are interchange-
able so we know that the maximum number used in an S-box|96|will be
the data tube contribution to the total rack tube count. However, sticker tubes
and separator tubes have an identity, they are associated with a particular

10

block of the memory complexes. For the calculation of rack tubes (and total
steps as well) we need to consider more details of the molecular algorithm.

Thus, in the next subsection we consider how the x-ors and S-boxes used
to compute DES are composed, count the total number of steps, and dis-
cuss ways to plan our use of separation operator tubes and sticker tubes to
minimize the total number of rack tubes.

3.3 Computing the ciphertexts

We recall that the basic unit of computation in our molecular algorithm is a
4 bit chunk that is computed using a composition of x-ors and S-boxes which
takes 16 bits of input. For any given chunk the positions of these 16 input
bits are the same for every memory complex. Thus the positions of the input
bits are hard-coded into the microprocessor and we ignore their exact values
in what follows.

From our consideration of n-bit to m-bit functions, we know that 4 steps are
required to compute an x-or and 11 steps are required to compute an S-box.
From this it follows that to compute a chunk requires 6� 4+ 11+ 4� 4 = 51
steps. After a chunk is computed, if the workspace is to be used again, it must
be cleared. To complete the computation requires computing 16 � 8 = 128
chunks, and clearing the workspace 127 times; hence the total number of steps
required is 6655.

During the computation of an x-or, one separation operator tube is required
to separate on the �rst bit, and two separation operator tubes are required to
separate (in parallel) on the second bit. To economize on separation operator
tubes when performing x-ors we choose to separate �rst on a bit for which
there are many instances of that \kind" of bit on the memory complex, and
second on a bit for which there are only a few instances of that \kind" of
bit. Hence, for each x-or involving a bit of Ri�2 (of which there are 448
possibilities from R1; : : : ; R14) and a bit from the workspace B575; : : : ; B578

(of which there are only 4), we separate on the Ri�2 bit �rst and the workspace
bit second. Likewise, for each x-or involving a bit of Ri�1 (of which there are
480 possibilities fromR1; : : : ; R15) andKi (of which there are 56 possibilities),
we separate on the Ri�1 bit �rst and the key bit second. It follows that for

11

each of the bits from R1; : : : ; R15 one separation operator tube speci�c to that
bit is needed and, for each of the bits of K and each of the bits B575; : : : ; B578

two separation operator tubes speci�c to that bit are needed. Hence these
bits require a total of 480 + 2� 56 + 2� 4 = 600 separation operator tubes.

The implementation of the S-boxes demonstrates another way that we may
economize on separation operator tubes: frequently used subcomputations do
not require that we use up a new bit (and consequently another separation
operator tube) every time they are run. Instead their input and output may be
stored on a rewritable region of the memory complex|hence our placement of
the input to the S-boxes in the �rst six workspace positions and the output in
the last four workspace positions. Because of this, even though there are eight
di�erent S-boxes (one for each chunk) they all may use the same separation
operator tubes and sticker tubes (though, under control of the microprocessor,
the stickers are applied di�erently for each S-box). The S-boxes, then, only
require an additional 63 separation operator tubes to separate the DNA into
all possible 6-bit strings B569; : : : ; B574.

Thus, to complete the ciphertext generation stage of the algorithm, we require
663 separation operator tubes. In all, 512+10 = 522 sticker tubes are required
to hold the stickers used to write the intermediate results and workspace bits.
(Recall that our robotics only use one sticker tube at a time.) The greatest
number of data tubes used during the computation is 96, during the �nal
parallel separation step of an S-box computation. In total 663 + 512 + 96 =
1271 rack tubes are required to compute the ciphertexts.

3.4 Selecting the given ciphertext and reading the cor-

rect key

Once the ciphertexts have been computed, the desired key can be selected by
searching for the complex which has the given ciphertext encoded next to its
key. This requires 64 separation steps. Upon isolating the desired complex, it
is necessary to read its key. Reading could be attempted using single molecule
detection and a binary tree decoding as described in [Ro]. However, it is not
clear that such an approach can be satisfactorily carried out in lab. Below we
describe two additional approaches, each of which entails some modi�cation
of the methods described in the previous sections:

12

� In the �rst approach, the memory strands are 50 biotinylated. Once the
ciphertexts have been computed, as described in the previous sections,
the memory complexes are transformed en masse into single-stranded
form. One way to accomplish this is as follows:

1. For each sticker S0; : : : ; S120 create a new 0-sticker, S 0

i, which
shares the 30 and 50 8-mers with Si but which di�ers from it in
the middle 4-mer.

2. Add an excess of the S 0

i to the �nal solution under conditions which
favor annealing despite the mismatches.

3. Add ligase. Each memory complex now has a heteroduplex region
in its key-ciphertext section where the non-memory strand consists
of a sequence of (regular) stickers and 0-stickers. Note that our
original decision to place the ciphertext next to the key on the
memory strands is no longer a mystery. Our placement minimizes
the number of ligations which must be successful for a strand which
encodes both the ciphertext and key to form.

4. Separate out the biotinylated memory strands using a streptavidin-
coated solid support and retain the new strands as the library of
solutions.

This process essentially converts Sticker memory complexes into Lipton
style memory strands [Li] for which each block has one of two unique
sequences, one for 0 and another for 1. A ciphertext of interest may
be selected (by applying the usual 64 separation steps), PCR ampli�ed
(using S 0

0
and the complement of the last ciphertext bit as primers),

and read (with standard DNA sequencing).

Notice that, once created, the library of solutions can be replicated by
PCR and hence multiple copies can be made. Each such copy is essen-
tially a codebook consisting of (key, ciphertext) pairs. This codebook
has approximately 256 � (56 key bits + 64 ciphertext bits) = 263 bits
of information (the equivalent of approximately one billion 1 gigabyte
CDs) but occupies a dry volume of approximately 1/7 of a teaspoon.
As Boneh and Lipton have noted [Bo1] such a codebook could be widely
distributed and used to speed up subsequent attacks on DES.

13

� In the second approach to reading, instead of converting to Lipton style
memory strands after the computation of ciphertexts, a Lipton-Sticker
hybrid model for encoding the initial memory complexes is used.

1. Make single-stranded DNAs representing all 256 keys using the
encoding of Lipton. Additionally, guarantee that each key strand
begins and ends with the same short PCR primer.

2. Ligate, to each of the Lipton key strands, identical 522 bit Sticker
memory strands.

3. Proceed to compute DES as usual.

4. Perform 64 separations on the result to obtain the complex carry-
ing the desired ciphertext.

5. Perform PCR using the primers which bound the Lipton style key
sequence. The key sequence will be ampli�ed exponentially and
may be sequenced.

We note that all of the techniques for selecting a desired ciphertext discussed
here and in [Ro] would require 64 separation operations so we approximate
that this process requires an additional 64 steps. Further, we note that to
e�ect all 64 separations an additional 32 separation operator tubes speci�c
to the bits of R16 (in addition to the 32 separation operator tubes already
counted for R15) are required.

3.5 Discussion

In summary, to �nd the key for a DES-encoded plaintext-ciphertext pair, we
�rst create memory complexes representing all keys, then we compute the
ciphertext corresponding to each key (6655 steps), and �nally we select and
read the key of interest (64 steps). This requires a total of 6719 steps, each
of which is one of the operations described above.

The actual running time for the algorithm depends on how fast the operations
can be performed. If we assume, as we might if a graduate student had to
perform each operation, that each operation requires 1 day, then the com-
putation will require 18 years. If each operation requires 1 hour (Boneh et

14

al: assume 2.4 hours, [Bo2]) then the computation will require approximately
9 months. If each operation can be completed in 1 minute, perhaps using a
robotic stickers machine, then the computation will take 5 days. Finally, if the
e�ective duration of a step can be reduced to 1 second, perhaps by running
the algorithm in a continuous
ow parallel re�nery [Ro], then the e�ort will
require 2 hours.

The size of the rack is dictated by the amount of DNA used. When the 256

memory complexes have half of their sticker positions occupied, as we expect
will be the case at the end of the computation, they weigh approximately .7 g
and, in solution at 5 g/liter, would occupy approximately 140 ml. Hence, the
volume of the 1303 rack tubes (1271 for ciphertext computation, an additional
32 for ciphertext selection) need be no more than 140 ml each. It follows that
the rack tubes occupy, at most, 182 L and can, for example, be arrayed in a
rack 1 m (approximately 39 inches) long and wide and 18 cm (approximately
7 inches) deep. Since the robotics must be able to operate on 96 active

tubes in parallel we approximate the volume required by the robotics, give or
take some arms and pumps, as 13 L|1/14th the volume of the rack. The
microprocessor is likely to be quite small. Thus, it is reasonable to assume
the entire machine would �t on a desktop.

It is worth pointing out that, for much of the computation, the robotics are
not processing at full capacity (96 tubes) and many of the tubes are sitting
idle. Hence it may be possible to increase the parallelism signi�cantly by
pipelining the computation.

4 Analysis of Errors

We say that an error has occurred whenever a memory complex is trans-
formed in an unintended way or ends up in an unintended place. Hence,
there are many kinds of errors that can occur during the operation of our
DNA computer: strands can break, stickers can fall o� one memory complex
and reanneal to another, complexes can be \lost" on the walls of a tube,
complexes can end up in the wrong tube following a separation, etc.

For each operation, we de�ne its error rate to be the fraction of molecules
that commit an error during that operation. Some operations are more prone

15

to errors than others. To simplify our analysis, we de�ne E to be the error
rate of the worst operation and assume that all of the operations have error
rate E. Note that 1� E corresponds to what chemists call yield. Hence an
error rate of 10�4 corresponds to a step yield of 99.99%.

Given an input ciphertext-plaintext pair, it is possible that several di�erent
keys map the ciphertext into the plaintext (though for DES, it seems unlikely
that the number of such keys would be large). All such keys will be called
winning keys. Under ideal conditions, after the codebook is created and the
separation on the input ciphertext performed, we are left with a �nal tube

with the following properties:

1. For each winning key there is at least one complex encoding it.

2. All complexes that are there encode winning keys.

In reality this can fail for either of two reasons. First, complexes encoding
winning keys may be missing, either because they were not created during
initialization or because they encountered an error during the computation.
Second, there may be distractors: complexes which do not encode winning
keys, but due to errors end up in the �nal tube anyway. In subsection 4.1 we
analyze the probability that a winning key has a complex encoding it in the
�nal tube. In subsection 4.2 we calculate the expected number of distractors
in the �nal tube.

We make the following assumptions:

1. After the initialization step, each complex encodes a 56-bit key chosen
at random (i:e: chosen from the space of all 56-bit keys with equal
probability).

2. DES with the input plaintext maps each of the keys to a random ci-
phertext.

3. A complex which encounters an error during the computation produces
a random ciphertext (i:e: unrelated to the ciphertext normally associ-
ated with that complex's key).

16

4.1 Probability that a winning key has a complex en-

coding it in the �nal tube

In the computation above, we began with 256 memory strands. It will be
convenient to carry out the analysis in greater generality. We now assume
that we begin with 256X memory strands, where X is a positive rational.
Informally, X is the factor by which we multiply our original amount of
DNA.

Let Kw be a winning key. Following initialization, the number of memory
complexes which encode Kw is given by a binomially distributed random
variable (n; p) = (256X; 1

256
).

The probability that a memory complex makes it correctly through all 6655
steps of the computation and 64 steps of the selection process (in total 6719
steps) is given by:

S = (1� E)6719

Hence, after the computation, the number of memory complexes in the �nal
tube which encode Kw is given by a binomially distributed random variable
(n; p) = (256X;S 1

256
). Because 256X is very large and S 1

256
is very small, this

distribution may be approximated by a Poisson distribution with Poisson
parameter � = np = SX. From this it follows that the expected number of
complexes encoding Kw in the �nal tube is SX and that the probability that
a complex encoding Kw is in the �nal tube is:

(1� e�SX)

In particular when X = 1=S, the expected number of complexes encoding
Kw in the �nal tube is one and the probability that a complex encoding Kw

is in the �nal tube is 63%. We will refer to 63% as a reasonable chance.

17

4.2 Number of distractors in the �nal tube

For a memory complex M , let H(M) denote the Hamming distance of the
ciphertext encoded on M from the input ciphertext. For M to enter the �nal
tube, H(M) errors must occur during the �nal 64 separation steps. By our
assumptions, after the computation of the codebook, each memory complex
(whether it has encountered an error or not) encodes a ciphertext which is
a random 64 bit string. It follows that the Hamming distances associated
with memory complexes will be a binomially distributed random variable
(n; p) = (64; 0:5). Hence, the probability that H(M) = L is:

64
L

!�
1

2

�64�L �1
2

�L
=

64
L

!
1

264

The probability of complexM with Hamming distance H(M) = L making it
through the 64 step selection process is given by the probability that it cor-
rectly negotiates 64�L separations for which it matches the input ciphertext
times the probability that it commits an error at the L separations for which
it mismatches the correct ciphertext:

(1� E)64�LEL

There are 256X complexes in the codebook so the expected number of dis-
tractors is given by:

64X
L=0

256X

264

64
L

!
(1� E)64�LEL =

X

256

Perhaps surprisingly, the expected number of distractor molecules is indepen-
dent of the error rate. Note, in particular, that for X=1 the expected number
of distractors is less than one.

18

4.3 Feasibility

Combining the results from 3.2 and 3.3 gives the following table which shows
for various error rates, the amount of DNA that must be pushed through the
DES computation to insure that there is a reasonable chance (63%) of getting
a winning key in the �nal tube. The table also records the expected number
of distractors which will be present in the �nal tube.

achievable error rate E 0 10�4 10�3 10�2

X 1 2 830 2:1� 1029

grams of DNA required .7 1.4 580 1:5� 1029

distractors .004 .008 3.2 8:3� 1026

This indicates that for an error rate of 10�4, a little more that 1 gram of DNA
is needed and the �nal tube will usually have no distractors. If an error rate
of 10�3 is achievable, then less than a kilogram of DNA is needed and only
a small number of distractors need be dealt with before �nding the correct
answer. However, if an error rate of 10�2 is the best that is attainable, then
huge amounts of DNA are needed (approximately 23 Earth masses) to have
a reasonable chance that a winning key ends in the �nal tube, but even then
it will have to be distinguished from a colossal number of distractors - clearly
an unacceptable situation. In such cases, where only very high error rates
are possible, techniques like those described in [Ro] (for example, a re�nery

algorithm) may be used to reduce the amount of DNA required. In section
5.8 of [Ro] Roweis etal: give a brief analysis of the application of a re�nery
algorithm to DES.

5 Conclusions

We wish to emphasize that our description of an attack on DES is, at this
point, entirely theoretical and whether it can be carried out in the lab remains
to be seen. Huge challenges remain. For example, as yet, we have been unable
to perform separations (or any of the sticker operations) in the lab with error

19

rates approaching 10�4. Nonetheless, the analysis presented in this paper
demonstrates (at least in principle) two things:

� \Real problems" can be solved with small machines which do not re-
quire huge amounts of DNA and use little or no enzymes.

� Error rates similar to those normally demanded of electronic computers
are not required.

If the attack on DES described here can be carried out in the lab, then some
other cryptosystems might also be vulnerable to this approach. Indeed, the
small size of the machine we describe suggests that systems like the 64-bit key
FEAL cryptographic system of Shimizu-Miyaguchi [Sh] might be susceptible
to such an attack.

Finally, there are several messages for cryptography in these �ndings. First,
it seems appropriate to reconsider one of the \axioms" of cryptography: Im-
provements in computational power always favor the cryptographer over the
cryptanalyst. This is almost certainly untrue. The analysis presented here
suggests the possibility of computers with super-parallelism that can help the
cryptanalyst immensely, yet provide no help for the cryptographer. Even if
DNA computers prove infeasible, it is possible that new machines machines
capable of super-parallelism may make cryptosystems like DES insecure.

The DNA computer is an example of a super-parallel machine with very slow
processors (complexes of DNA). The potential vulnerability of DES arises
for two reasons. First, the key space is insu�ciently large. Second, the DES
algorithm is \too short." The fact that only 6655 steps are needed to do
an encryption allows the slow DNA processors to �nish their encryptions in
(at least in theory) a reasonable amount of time. Hence the much valued
throughput speed of DES and similar systems, may carry with it a potential
vulnerability to super-parallel machines with slow processors.

Acknowledgments

Leonard M. Adleman and Paul W.K. Rothemund are supported in part by the
National Science Foundation under grant CCR-9403662 and the Sloan Foun-
dation. Sam Roweis is supported in part by the Center for Neuromorphic

20

Systems Engineering as a part of the National Science Foundation Engineer-
ing Research Center Program under grant EEC-9402726 and by the Natu-
ral Sciences and Engineering Research Council of Canada. Erik Winfree is
supported in part by National Institute for Mental Health (NIMH) Training
Grant # 5 T32 MH 19138-06; also by General Motors' Technology Research
Partnerships program.

References

[Bo1] Boneh, D., Lipton, R.: \Batching DNA Computations",
Princeton CS Tech-Report CS-TR-489-95.

[Bo2] Boneh, D., Dunworth, C., Lipton, R.: \Breaking DES Using a
Molecular Computer", Princeton CS Tech-Report CS-TR-489-
95.

[Li] Lipton, R.: \Using DNA to solve NP-Complete Problems",
Science 268:542{545, April 1995. January 1977.

[Na] National Bureau of Standards: \Data Encryption Standard",
U.S. Department of Commerce, FIPS, pub. 46, January 1977.

[Ro] Roweis, S., Winfree, E., Burgoyne, R., Chelyapov, N.V., Good-
man, M.F., Rothemund, P.W.K., Adleman, L.M.: \A Sticker
Based Model for DNA Computation", this volume.

[Sh] Shimizu, A., Miyaguchi, S.: \Fast Data Encipherment Algo-
rithm Feal", Lecture Notes in Computer Science 304:267{278,
1988.

[Wi] Wiener, M.: \E�cient DES Key Search", TR-244, School of
Computer Science, Carleton University, May 1994.

21

