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Abstract

Version control repositories contain a wealth of detailed information about the
evolution of a codebase. In this paper, we outline our experiences parsing and
analyzing data from a large collection of CVS repositories created by many
students working on a small set of assignments in a second year undergraduate
computer science course. We believe the data to be quite unique because rather
than a single team working on a single large project we have many individuals
working separatly on identical projects. We describe a system for parsing
repositories into a SQL database. From the database and repositories we
extract various statistical measures of the code and version histories. Finally,
we attempt to correlate the code and repository features with grades. Despite
using 166 features derived from the code and repository histories, we find that
grade performance cannot be accurately predicted; certainly no predictors
stronger than simple lines-of-code were found.
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1 Introduction

Version control repositories contain a wealth of detailed information about the evolution of a
codebase. In this paper, we outline our experiences analyzing data from a large collection of
CVS repositories created by many students working on a small set of assignments in a second
year undergraduate computer science course at the University of Toronto.

We believe our data set is rather unique. It contains hundreds of completely independent
repositories, one for each student. Each student is implementing the same thing at the same
time. Previous work analyzing logs from version control systems has tended to focus on a
single large repository involving many coders working on different parts of the same software
project[8, 7].

1.1 Goals

The broad goal of our research programme is to mine the data contained in the combination
of CVS logs and the actual files modified by coders to find statistical patterns or predictors of
performance. In particular, for undergraduates, we are interested in finding early indicators of
students who may be struggling in order to point them to helpful resources before deadlines
have expired. One very simple way to seek such indicators is to predict low grades (e.g. the
bottom third of the class) based on a variety of statistics extracted from a student’s CVS data.

1.2 CVS Background

CVS, the Concurrent Versions System[1], is a source code management system. It provides a
facility for storing all past and present versions of a project’s codebase; and also automates
many aspects of writing software as a team such as merging changes, propagating updates and
flagging conflicts. While CVS is by far the most widely used and heavily tested version control
system, it is by no means comprehensive. It lacks certain desirable capabilities such as atomic
transactions involving several files, tracking of file metadata, clean handling of deletions and
renamings, and more.

A CVS repository consists of two parts: administrative files stored in a central location
(known as CVSROOT), and RCS files associated with each code or data file in the repository. The
RCS files store revision histories for the individual files comprising the project.

This storage scheme is a bit complex to parse; to the best of our knowledge, there are no
publicly available libraries for accessing CVS repositories, only the command line tool cvs.!
To further complicate matters, in CVS there are two separate and occasionally disjoint records
of activity in a repository: the CVSRO0T/history file and the individual RCS files (ending in
,v). File histories are implicitly stored in the RCS files which record modifications, additions,
and scheduled deletions. The history file tracks (almost) all interactions between users and a
repository including those listed above as well as checkouts, updates, and conflict resolutions.

! An alternate system called subversion[5], on the other hand, has a clean API for accessing repository data.



Unfortunately, the history file does not record the initial importing (creation of a local copy)
of a project.

Another problem is that of grouping transactions. Unlike many other source code man-
agement programs, CVS does not log transactions executed with a single client command but
involving multiple files as an atomic event; instead, each file is processed and logged sequentially
and receives an individual version number that has no connection with the versions of other
files taking part in the same simultaneous transaction.

2 Data Extraction and Storage in SQL

Our original code for extracting data from CVS repositories was based? on ViewCVS[6], which
includes a fast RCS parser written in C++.

Once the transaction data have been extracted from the RCS files and parsed into appro-
priate fields, we load it into a SQL database for convenient storage. SQL was chosen over XML
(after some debate) because there are several freely available SQL database engines which al-
low easy and portable data extraction via SQL dumps, and at the same time permit complex
queries. (Our current system uses MySQL[2], although we now believe PostgreSQLI[4] to be
superior since subselects, transactions, and foreign keys are difficult in MySQL.)

2.1 Transaction Clumping

We also used a variant of a simple heuristic[9] to clump groups of transactions into single
events. CVS, because of its RCS heritage, doesn’t group together the log entries for multiple
transactions that are all part of the same single command (e.g. commit); so we have to attempt
to re-group them ourselves based on temporal proximity and other details of the transactions.
(Of course, the information about the individual transaction is still preserved in our database,
the grouping only attempts to reconstruct extra information.)

The sliding window approach outlined in[9] provides the basis for our technique. In this
approach, any set of transactions with the same author and comment string, in which neigh-
bouring transactions occur within 7 seconds of each other are grouped into a single event. (This
is slightly different from a fixed time window approach, in which all transactions in an event
must fall within 7 seconds of the first one in that event.)

In our data, a window of 7 = 50 seconds seems to work well. While this differs slightly from
the results in[9], this is not unexpected. Our data set consists of many small events, most of
them performed locally, and thus taking very little time. Most of the literature contains results
from large projects, in which events are larger and less frequent. As a result, “over-clumping”
is more of a concern in our data, and a smaller time window is appropriate.

Two modifications were made to the sliding window approach to improve our results. First,
it was noted that some CVS clients allow the user to enter a different comment for each file
involved in a single event. By adding an additional constraint that all transactions by the same
user that occur at the same second be grouped together, we were able to reduce the number
of events that were incorrectly split because they contained multiple comment strings. Second,
it was noted that a single file cannot have multiple modifications within one event. After the
clumping was complete, any event which contained the same file more than once was split into
separate events, decreasing the amount of over-clumping.

2.2 Database Schema

The database schema we designed is not a general CVS analysis schema; rather it was fairly
specific to our data. However, we also created a cleaner version which is totally general and

2We modified the code so that it compiled under GCC 3.2 and eliminated many memory leaks.



can import any CVS repository.
In our case, we created two sets of tables. The first set of tables stores information about
the coders (in this case students) and projects (in this case course assignments):

Courses A list of courses with information about each one, for example start date, end date,
course title, instructor, location of students CVS repositories, etc.

Students A list of each student by their unix login.

Enrollment Which students are enrolled in which course.

Assignments A list of each assignment, with the post date, due date, weight, description.
Grades A list of login, assignment, grade.

The second set of tables, which are the only tables in the cleaned version of our parser,
store information about CVS operations (transactions) executed by the coders and the details
of some of those operations (the ones which modify files):

Transactions Each CVS operation — for example Modify foo.c or Update bar.h — shows up as
a single record in this table. This table is built from the CVSROOT /history file which
contains information about every CVS transaction. No RCS files are used when building
this table.

Each transaction is tied to a student and a course.

Revisions For all transactions where files are actually modified,? there is a corresponding RCS
revision inside a RCS file. This table tracks revisions, including diff size and log entry
(e.g., Fixed a bug in Parser.java). Each RCS file starts with an Add followed by any
number of modifies.

Revisions are a subset of transactions. Each revision is essentially a transaction with diff
text, log entry, and an assignment ID. We use the information in the RCS file to find the
matching transaction ID from transactions.

Revisions are special because they can be identified as being part of a specific assignment.
In the setup used for this particular 2nd year course, each student had one repository for
the entire term. Each assignment had its own directory in the repository, for example
csc207/exer/e04. While parsing revisions, each revision is given an assignment based
on the path of the RCS file within the CVS repository.

Our Python program — affectionately called slurp — crawls over the repositories and history
files to populate the database. It parses external files containing class enrollment information,
student grades, etc. and also matches transactions from the CVS history files with individual
RCS files documenting specific transactions.

3 Data Analysis and Visualization

Having parsed the raw data files and loaded the resulting data structures into a structured
database, we created various tools to analyze the data both visually and more quantitatively.

Starting out with visualization, we have examined the data using a variety of different
displays. These include views which aggregate statistics across all students and projects as well
as specialized views which allow us to examine the behaviour of a single student and/or a single
assignment (project).

3Specifically, of type Add, Remove, or Modify.



In particular, we have examined the relation between final course grade and number of
lines of code produced by each student. We can also look at the relationship between the
two components contributing to final course grade, namely assignment marks (term mark) and
performance on a final exam (not represented in the CVS repository). Examples of such plots
are shown in figure 1 below. They show informally that students who write very little code
tend to do poorly (but beyond a certain point writing more code does not correlate with higher
grades) and that (with a few exceptions) students who do well on assignments also do well
on the exam. We have also performed a more quantitative mutual information analysis (see
below) showing that the number of lines of code written is a statistically significant (though
weak) predictor of grade at the p=.05 level, and is a stronger predictor than any other complex
feature we were able to find.

This relationship is not surprising considering that students who do not write enough code
to complete an assignment necessarily get low grades. Once a student writes enough code to
finish an assignment, lines of code are no longer a strong indicator of quality.

Rather than just looking at total lines of code produced or other features of the code written,
we can also look at the repository activity of each student. In this vein, we compared student
grades with the number of transactions of various types executed by the student, hoping to see
that a certain type of transaction (or mix of types) is particularly indicative or anti-indicative of
performance. The displays, however, suggest that no particular transaction types are indicative
of high or low performance (see figure 2 below). This is confirmed by our mutual information
analysis which shows that none of transaction type counts have statistically significant mutual
information with grade.

Beyond counting transactions, we can also analyze their temporal statistics since the CVS
logs contain the time at which each one was executed. One simple measure is the average time
between two consecutive transactions of the same type, as shown in the histograms of figure 4
below, using a logarithmic axis for time. Surprisingly we see that there are both very small
gaps and very long gaps even in a course limited to 13 weeks where each assignment lasts for
at most a few weeks.

We have also experimented with visualization of the data at a more specific project level,
rather than aggregating over all students. In particular, we have developed a time-series “strip
chart” displaying all the transactions executed by a particular student for a single assignment.
Such a view allows us to see a complete visualization of all the CVS activity for one project
(since projects do not share code and students do not work together on the assignments analyzed
here).

3.1 Quantitative Statistical Summaries of Repository Information

In addition to visualization of the data, we also applied more quantitative algorithms to relate
repository statistics and features of the code files to student grades.

To apply these algorithms, we first had to convert all of the known data about each student
into a set of numerical summary statistics (called “features”) to be used as predictors for student
performance.

Our system analyzes the transaction histories, log comments and details of the actual code
files for each student and collects over 150 features. Some of the features are extracted from
the database. The rest are taken by checking out each students repositories and crawling them
for features. In figure 5 the top ranking features are listed, ranked by their mutual information.

Essentially, there were three classes of features. The first features we calculated from the
database of CVS data. No code features were used for these numbers. They include things like
the average number of revisions per file, number of local CVS operations, number of update
transactions, how long do they wait before the deadline to submit the assignment, and more.

The other part is parsing the Python and Java code directly. For these features, each



students repositories were checked out and crawled. Two simple parsers were written in Python
to look for features directly in Python and Java code; for example, number of while loops,
number of comments, check for formatting habits, etc.

In addition to our custom parser, we used PMDI[3] to examine all Java files. PMD detects
many types of higher-level features, particularly style violations or bad practices. It detects
things like variable names that don’t follow a naming standard, boolean expressions that can
be simplified, empty if statements, asserts without a message, and a whole slew of others. The
PMD website has more information.

3.2 Mutual Information for Feature Evaluation and Induction

The mutual information between two random variables is a measure of their dependence or
independence. It is a more stringent measure than the traditional correlation coefficient, which
only measures average second order statistics but cannot capture complex higher order depen-
dencies. In particular, the mutual information between two (discrete) random variables x and y
is defined as the cross-entropy between their joint distribution and the product of their marginal

distributions:

I(z,y) = KL[p(z,y)llp(x)p(y)] = > p(z,y)log, 1%

For our data, we did not have enough samples to accurately estimate the joint density
between all the features we investigated. However, we do have enough data to estimate the
mutual information between a single feature and student grades. Specifically, we created a
binary random variable y which was 1 if a student achieved a grade which placed them in the
top third of the class and zero if it placed them in the bottom third of the class. Students
in the middle third were excluded from the estimation procedure. We then discretized each
feature f into K'=20 bins (with ranges fx) and computed the mutual information between this
discretized random variable and the binary grade variable as follows:

p(f € frly)
p(f € fr)

where p(f € fi) is the overall observed frequency with which the feature falls into bin k£ and
p(f € frly) is the frequency for either the high or the low grade students. p(y = 1) = p(y =
0) = 0.5 since we select exactly equal numbers of students with high grades (the top third of
the class) and low grades (the bottom third of the class).

Using these estimates, we can rank the features by how much information they contain
about the course grade. Figure 5 gives a short list of the top features and their estimated
mutual information .The result was quite surprising to us:

Of all the 166 features we examined (including the ones listed above) we found that total
lines of code had the highest mutual information with course grade; furthermore it was one of
only 8 features to have significant dependence on grade.

Given the number of student repositories used, only three features had statistically signifi-
cant mutual information with the grade of the student at the p=0.05 level: lines of code written
by the student, number of commas followed by spaces* and total length of diff text® (In this
case I = 0.22 bits was the significance cutoff.) These are indicated with (*) in figure 5.

K
I(f)= > > pWp(f € fily)log,

y=0,1 k=1

4Consider foo(a,b,c,d) instead of foo(a, b, c, d); the latter shows more care taken to format the code.
5Each time a student does cvs commit, only changes to the code are stored. The “total diff length” feature
is the total character count of all the deltas combined.



3.3 A Machine Learning Approach To Grade Prediction

With numeric features in hand, summarizing the repository data for each student, we were in a
position to try a variety of statistical pattern recognition algorithms for predicting grades based
on the features. Of course, the lack of significant mutual information between grades and most
of the features we extracted do not bode well for such an enterprise, but we have conducted
several experiments nonetheless and report their results here.

We used three very basic algorithms from the machine learning and applied statistics fields:
nearest neighbour classification, Naive Bayes and logistic regression. Before we could classify,
we normalized the features to have zero mean and unit variance. (We applied this normalization
to all features even those whose histograms were obviously not Gaussian.)

As expected, none of the classifiers were able to reliably predict grades for students based
on the features given. While some algorithms managed to overfit the training sets and achieve
0% training error, the errors on an independently held out test set were always far inferior.
A leave-one-out (LOO) cross validation estimate of test error was typically around 25%. In
particular, for logistic regression, our LOO error was 29.7%, for Naive Bayes it was 23.9%
(using discretized versions of the features), and for nearest neighbour it was also 23.9% (at
K=21 using Euclidean distance in the normalized feature space). In all these experiments, we
used 166 normalized features to classify 69 students from the top third of the class (by grade)
from 69 students from the bottom third.

4 Conclusion

We have described the results of analyzing data from a large collection of CVS repositories
created by many coders (students) working on a small set of identical projects (course assign-
ments). We have implemented a complete system for parsing such repositories into a SQL
database and for extracting, from the database and repositories, various statistical measures of
the code and version histories.

Although version control repositories contain a wealth of detailed information both in the
transaction histories and in the actual files modified by the users, we were unable to find any
measurements in the hundreds we examined which accurately predicted student performance
as measured by final course grades; certainly no predictor stronger than simple lines-of-code-
written was found.

These results seem to challenge the conventional wisdom that a repository contains easily
extractable predictive information about external performance measures. We are eager to have
other researchers suggest novel measures which, contrary to our efforts, contain substantial
information about productivity, grades, or performance.
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Figure 1: (top) Final grade versus normalized lines of code the student wrote. (Normalization
was done by subtracting the mean and dividing by the standard deviation.) Each diamond
represents a single student. The horizontal position of the diamond represents the number of
lines of code a student wrote over the term. The vertical position represents their final grade in
the course. The correlation visible in this graph between grade and lines of code is as strong as
the correlation between grade and any other complex feature we were able to find.(bottom) The
relationship between the two components making up a final grade. Horizontal position shows
the marks on the coding assignments (“term mark”); vertical position shows performance on a
final exam. Radius of each circle indicates the total number of CVS transactions executed by
the student.



Number of CVS operations vs. Final grade
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Figure 2: Final grade versus normalized frequency of transactions of various types. (Normal-
ization was done by dividing out the mean.) FEach circle represents a single student. The
vertical position of the circle in each panel gives the student’s final grade in the course while
the horizontal position represents a normalized number of transactions of a particular type.
Visually, there is no strong correlation present between any of these frequencies and grades;
this is confirmed quantitatively by the mutual information analysis in figure 5.
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Figure 3: Histograms of (normalized) lines of code written, for the top third (by grade), bottom
third, and entire class of 207 students. Visually, it can be seen that students who write more
code are more likely to be achieve high grades. This feature was the top scoring predictor
of grade in our mutual information analysis and is a statistically significant (though weak)
predictor of high grade at the p=.05 level.
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Figure 4: Histograms of the time between consecutive transactions of the same type. The
(horizontal) temporal axis is spaced logarithmically showing that there are both very small
gaps and very long gaps even in a course limited to 13 weeks where each assignment lasts for
at most a few weeks.
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Mutual Information (bits) Feature Description

0.29 (*)# newline characters in files the student added or modified
0.28 (*)# times a space followed a comma, e.g. “foo(a, b, c)”
0.26 (*)# characters in diff text between successive revisions (CVS)
0.20 # comments (Python)

0.20 # literal strings (Python)

0.19 # operators (Python)

0.16 # characters in all comments

0.16 # function/method definitions (Python)

0.14 # while loops (Python)

0.14 # Terminal tokens (Python)

0.13 # 4-space indents

0.13 # comment-space-capital sequences e.g. “// Nicely formatted”
0.12 # commits (CVS)

0.12 # for loops (Python)

0.11 # newlines (Python)

0.11 # files in repository

0.11 # violations of “Assertions should include a message” (PMD)
0.11 # self references (Python)

0.10 # modifies (CVS)

0.10 # violations of “Avoid duplicate literals” (PMD)

0.10 # except tokens (Python)

0.10 # leading tabs

0.10 # total transactions (CVS)

0.09 Average revisions per file (CVS)

Figure 5: Mutual information between various features of a student’s repository and the binary
indicator of whether they fall into the top third or bottom third of the class (by final grade).
The mutual information is a measure of how related two variables are. Here we calculated
the mutual information between the features and the binary grade for the top third and bot-
tom third of students only. A partial list of features is shown, sorted by mutual information
with grade. In total, 166 features from 207 student repositories were used. Features marked
(Python) were measured by crawling all .py files in the student’s repository. Likewise, the
(CVS) marking means the feature was measured from the CVS logs, and (PMD) denotes how
many rule violations PMD found. Only values greater than 0.22 bits are statistically significant
at the p=.05 level, given the number of students. Significant features are indicated with (*).
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