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Abstract

We present a purely time domain approach to speech processing which iden-
tifies waveform samples at the boundaries between glottal pulse periods (in
voiced speech) or at the boundaries between unvoiced segments. An efficient
algorithm for inferring these boundaries is derived from a simple probabilistic
generative model of speech and state of the art results are presented on pitch
tracking, voiced/unvoiced detection and timescale modification.
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1 Speech Segments in the Time Domain

Processing of speech signals directly in the time domain is commonly regarded to be difficult
and unstable, due to fact that perceptually very similar utterances exhibit very large variability
in their raw waveforms. As a result, by far the most common preprocessing step for most speech
systems is to convert the raw waveform into a time-frequency representation, using a variety
of spectral analysis and filterbank techniques. In this paper we pursue a purely time domain
approach to speech processing in which we identify the samples at the boundaries between
glottal pulse periods (in voiced speech) or at the boundaries between unvoiced segments of
similar spectral shape (“colour”).

Having identified these segment boundaries, we can perform a variety of important low level
speech analysis operations directly and conveniently. For example, we make a voiced/unvoiced
decision on each segment by examining the periodicity of the waveform in that segment only. In
voiced segments we can estimate the pitch as the reciprocal of the segment length. Timescale
modification without pitch or format distortion can be achieved by stochastically eliminating
or replicating segments in the time domain directly. More sophisticated operations, such as
pitch modification, gender and voice conversion, and companding (volume equalization) are
also naturally performed by operating on waveform segments one by one without the need for
a cepstral or other such representation.

The computational challenge with this approach is in efficiently and robustly identifying the
segment boundaries, across silence, unvoiced and voiced segments. In this paper we introduce
a segmental Hidden Markov Model, defined on variable length sections of the time domain
waveform, and show that performing inference in this model allows us to identify segment
boundaries and achieve excellent results on the speech processing tasks described above.

2 A probabilistic generative model of time-domain speech seg-
ments

The goal of our algorithm is to break the time domain speech signal s1,..., sy into a set of seg-
ments, each of which corresponds to a glottal pulse period or a segment of unvoiced colored noise.
Let by, denote the time index of the beginning of the kth segment and s, = (sp,,. .. ,sbkﬂ,l)
denote the waveform in the kth segment, where k =1, ..., K indexes segments. Our algorithm
searches for the segment boundaries, b1, ba,...,bx11, so that each segment can be accurately
modeled as a time-warped, amplitude-scaled and amplitude-shifted version of the previous seg-
ment. We denote the transformation used to map segment s;_; into segment s; by Ty. (A
similar idea is used in [1] to cluster patterns in a way that is invariant to a set of transfor-
mations.) Given the segment boundaries by, ...,bx+1 and the transformations T1y,..., Tk we

1 Thanks to John Hopfield.



assume the probability of each segment depends only on the previous segment and the transfor-
mation for that segment: in other words we assume the segments are generated by first order
Markov chain:

P(Sl,SQ,. . .,SK|bl,... ,bK+1,T1,.. . ,TK)

K
= H P(sk[Sk—1,bk—1, bk, be+1, Tk). (1)
k=1

Each segment is modeled as a noisy copy of the transformed version of the previous segment.
These assumptions simplify the inference and estimation algorithm described below. Of course,
the segment boundaries are unknown and must be inferred from the speech wave: this inference
is the main computation performed by our algorithm.

For concreteness, we assume that each successive segment sy is equal to a transformed ver-
sion of the previous segment, plus isotropic, zero-mean normal noise with variance a,%. Denoting
the transformed version of segment £ — 1 by Tys,_1, the conditional probability density of sg
is:

1
(2770']%)(bk+1_bk+1)/2

P(sk|skp—1,bk—1, bk, bpg1, Ti) =

1

- exp ( — Tqi(sk — Tksk_l)T(Sk — Tksk_l)) . (2)

The noise levels o3, .., U%{ are estimated automatically by the inference procedure along with
the segment boundaries

(As the boundary condition of the Markov chain, we assume that the segment before the
first is a vector of all zeros (sgp = 0) and hence the probability density of the initial segment is
given by (2m0?) %2/ exp(—s{s1/207). We also set 07 equal to the variance of all time-domain
samples, since a priori we do not know what the content of the initial segment should be.)

We assume that the boundaries and transformations are independent, and that the prior
distribution over transformations is uniform on some bounded set. In our experiments, we pa-
rameterize the transformation by Ty (g, Ok, Vi), where oy, O and 7y are time-warp, amplitude-
scaling and amplitude-shift. We use a prior that is uniform over a 3-dimensional hypercube
that includes all reasonable values for these parameters.

Generally the joint prior probability mass function on segment boundaries P(by,...,bx+1)
can be quite complex. Since the computational complexity of the inference algorithm will
depend on the number of allowed configurations of segment boundaries, we use a prior that
is non-zero only on an appropriate subset of configurations. In particular, we exploit a very
simple heuristic (first suggested by John Hopfield in 1998) by restricting segments to begin and
end only on zero crossings of the signal (or possibly only on upward or downward going zero
crossings). This restriction also allows arbitrary segments to be relocated beside each other
and still preserve waveform continuity, which will be important in our later applications. To
further restrict the range of inferred segment lengths, we require that Apin < by — bg_1, where
Ampin is the minimum segment length, satisfying Ay > 0. This minimum length is selected
by hand and is determined by the expected range of pitch periods and the sampling frequency,
in a straightforward fashion. We assume the probability P(by,...,bx_1) is otherwise uniform,
subject to the above constraints.

In fact, we also allow the case by = by_1. This enables the inference algorithm to coalesce
neighboring segments, effectively “removing” a segment boundary if it needs to. We assume
that by = 1 (the first segment begins on the first signal sample) and that bxy; = N + 1
(the last segment ends on the last signal sample). We initialize the inference procedure with
enough segment boundaries so that only removals (as described above) but not insertions are
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Figure 1: (A)Input signal; notice the transition from unvoiced to voiced region. (B)Inferred segments
after the first iteration - lack of a reliable template at the beginning of the voiced segment results in bad
estimates. The upward arrows are used to mark the inferred segment boundaries (C) Inferred segments
after 3 iterations - segment boundaries have been inferred correctly.

necessary. The joint distribution over segments, segment boundaries and transformations can
now be written as:

P(Sl,...,SK,bl,...,bK_H,Tl,...,TK)O(P(bl,...,bK_H)

K
[T P(Tr)P(sklsk—1, a1, bk, i1, Th), (3)
k=1

where P(by,...,bxy1) enforces the constraints on the boundaries; constraints on the allow-

able limits of the time domain scale, amplitude-domain scale and amplitude-domain shift are
enforced by (Hszl P(Tk)> although these constraints rarely affect the optimization.

3 Using dynamic programming to efficiently infer segment bound-
aries and transformations

Given a time-domain signal, the computational task now at hand is to determine the segment
boundaries and transformations. Of course, the number of valid configurations of the bound-
ary variables is exponential in the length of the waveform, so exact inference is intractable.
We present a greedy, iterative technique for finding the maximum a-posteriori (MAP) esti-
mates of these variables. At iteration 4, the technique computes the current MAP estimates,
bgl), ceey bg? 1 and Tgl), ceey T&? 41 in a fashion that monotonically improves the model likelihood
of the observed waveform.

To simplify the algorithm, we note that according to (3), given the boundary variables, the
MAP estimates of the transformations can be computed locally:

argrrr}?axP(sl,.. . ,SK,bl,. . .,bK+1,T1,...,TK)
k

= al“gﬁ,}_,aXP(Tk)P(SMSk—l,bk—l,bk>bk+1,Tk)- (4)
k

In particular, the time-warping is unique and is given by ay = (b1 — bx)/(bp — br—1). The
warped version of s;_1 is denoted by §;_1 and can be obtained using standard signal processing



techniques for time-domain interpolation or decimation. Note that whereas sj_; contains b, —
bi_1 samples, §;_1 contains by, 1 — b samples. The amplitude-domain scale (3 and shift v are
obtained by performing a least-squares regression of S§;_1 onto sy, i.e. by solving

b 1—bg
2

arg min (Bsk—107) + v — sk(4))% (5)
B>V =
where (j) indexes the elements of s and §;_1. After optimizing By and 7, the estimate of the
variance 0']% is set to the argument in the above minimization, divided by bgy1 — bx. For a given
configuration of byx_1, by, br11, we denote the optimal transformation obtained in the above
fashion by T}. This optimization is performed at each step of the search over the boundary
variables, described below.

At each iteration of the algorithm, instead of considering all possible values for each bound-
ary variable, we embed a dynamic programming grid in the space of valid configurations of the
boundary variables and use the Viterbi algorithm to find the best configuration in the space
spanned by this embedded dynamic program. (This is similar to the idea proposed in [2] for
doing inference in nonlinear dynamical systems.) At iteration i, we use the estimate of the

boundary variables from the previous iteration, bgi_l), . ,b%;ll), to generate one set of candi-

date values for each boundary variable. Let B ,(j) be the set of candidate values for boundary

variable b;,. We take B,(:) to be the time indices of the J zero-crossings that are closest to b,(jfl),

along with the value by itself and the value bg__ll). We include the latter two values so that
one path through the embedded dynamic programming grid always corresponds to the existing
path (thus the search can never worsen the likelihood) and another corresponds to coalescing
segment k£ with segment k£ + 1. Using these candidate values, the Viterbi algorithm is used to

find the most probable path:

max  P(b,...,bx41)
beeB,... b B

K
11 P(sklsk—1,br—1,br, brs1, Trlbr—1, br, brr1))- (6)
he1

In order to make the optimization Markovian, we must actually consider adjacent pairs of
boundary points (bx_1,bx) as the states in the dynamic programming. Crucially, we enforce
the constraint that for any state and its successor, the boundary point they share must take on
the same value. We also enforce the constraint that boundary points cannot appear in time-
reversed order in a state. Since any two likelihood functions overlap by at most two boundary
variables, the memory required for this dynamic programming is equal to the square of the
number of configurations that each boundary variable can take on. Since the embedded DP
considers only J such values, the memory requirement is of order is J2. In Fig.1, we have shown
the inferred segments obtained using our algorithm after the first and third iteration.

4 EXPERIMENTS

We have applied our segmental inference procedure to clean, wideband recordings of single-
talker speech, from both males and females taken from the the Keele pitch reference dataset [3]
and from the Wall Street Journal (WSJ) corpus.

During the embedded dynamic programming search, we used a neighbourhood size in the
range 2-4 (giving J=>5-9 candidates per state) and the threshold A, on the minimum pitch
period was set at to be 2ms (corresponding to a maximum pitch of 500Hz). The optimization
was initialized by placing the beginning of the first segment at the beginning of the utterance,
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Figure 2: (top)Pitch estimates using segmental HMM for a female speaker in the Keele dataset.
Notice that the inferred pitch(red circle) consistently agrees with the reference provided (blue
plus mark). Further, our approach clearly discriminates between voiced /unvoiced regions (sam-
ples without reference estimates are unvoiced). (center) input time domain signal (bottom)
spectrogram of input

and the end of the first segment at the closest zero crossing to 4.5ms. From this initial segment,
a forward sweep of greedy initialization is performed as follows: we take the current segment
and search a set of candidate future zero crossings (corresponding to a reasonable allowable
range of time-warpings) to find the best endpoint of the next segment. For each candidate,
we perform a least-squares fit to the time-warped version of the current segment, and identify
the best transformation parameters. The candidate with the lowest fit error is chosen, and we
repeat the procedure greedily for the next segment. After initialization, the embedded dynamic
programming procedure is run to further improve the estimates of the segment boundaries. We
can apply the results of our segment inference algorithm to a wide range of speech processing
tasks. By replicating or deleting some or all of the inferred segments, we can easily achieve high
quality timescale modification without changing the perceived pitch or formant structure of the
utterance. By examining the periodicity of each segment, we can attempt to distinguish voiced
from unvoiced portions of the waveform. In voiced regions, we can directly estimate the pitch by
taking the reciprocal of the segment length. Below, we present results on timescale modification,
voiced /unvoiced discrimination, and pitch tracking. Other applications such as gender and
voice conversion, companding and concert hall effects are also possible. We emphasize that all
the experiments were performed in time domain using the inferred pitch periods. For audio
demonstrations and samples, please check http://www.psi.toronto.edu/~kannan/Segmental

For voicing detection and pitch tracking, we evaluated the estimates obtained using our
algorithm using the Keele dataset, since it has ground truth values for these quantities. (In
particular, the Keele data has utterances spoken by both male and female speakers and includes
a reference estimate for the fundamental frequency at a resolution of 10ms. Each utterance is
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Figure 3: (Middle and Top)Time domain signal and the corresponding spectrogram (Bot-
tom)The spectrogram of the signal is marked with the pitch estimates obtained using our
algorithm (blue marker); for clarity we have marked only the first 10 integer multiples of the
fundamental frequency

approximately 30 seconds long and the sampling frequency is 20kHz.)

Once the waveform segments are inferred by the algorithm, we can estimate the periodicity
of each segment in a simple way by computing the discrete Fourier transform of the segment
waveform and then reconstructing it using a limited number of Fourier coefficients.

Since unvoiced regions tend to be much less periodic, they will have a substantially larger
reconstruction error than voiced regions and by selecting an appropriate threshold, we can
discriminate between voiced and unvoiced segments. Our method was able to correctly identify
87.2 % of the voiced segments averaged over all the 10 utterances of males and females in the
Keele dataset. In Fig.2, the true unvoiced regions are the segments without any reference pitch
shown, and the unvoiced regions detected by our algorithm are those without estimated pitches.

Pitch tracking is trivially achieved by taking the reciprocal of the segment lengths in the
voiced regions. Results for a single utterance in the Keele dataset spoken by a female speaker
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Figure 4: The spectrogram of time scale modified faster and slower versions of a signal are
shown. The actual time domain operation is shown on top for a particular time instant in the
spectrogram.

is shown in Fig.2. Pitch estimates obtained using our approach are very consistent with the
reference estimates; similar performance was obtained on other utterances in the dataset as
well. Averaged over 10 utterances the median absolute pitch error was 9Hz.

It is well known that excitation for voiced speech manifests as sharp bursts at integer
multiples of fundamental frequency. In Fig.3, we have shown a few integer multiples of the
fundamental frequency of a signal on its spectrogram using pitch estimates obtained from the
application of our algorithm. For timescale modification experiments, we have used utterances
from the WSJ corpus. Once the segments are identified by our algorithm, we can play the signal
twice as fast by deleting every other segment and concatenating the remaining ones; similarly
by replicating each segment we can achieve the effect of playing the at half the speed (two
times slower); this is further illustrated in Fig.4. This approach is substantially different from
methods such as [4] that manipulate spectrograms. By doing all of our operations directly in
the time domain we never need to worry about inconsistent phase estimates.

5 CONCLUSION

We have presented a simple segmental Hidden Markov Model for generating a speech waveform
and derived an efficient algorithm for approximate inference in the model. Applied to an
observed signal, this inference algorithm operates entirely in the time domain and is capable of
identifying the boundaries of glottal pulse periods in voiced speech and of unvoiced segments.
Using these inferred boundaries we are able to easily and accurately detect voicing, track pitch
and modify the timescales. We are investigating other possible applications of the same basic
model, including voice conversion, volume equalization and reverberant filtering.
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