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MARKOV MODELS

e Use past as state. Next output depends on previous output(s):

yt = flyt-1,¥t-2,- -]
order is number of previous outputs

e Add noise to make the system stochastic:

Pyelyt—1,¥t-2, - ¥Yt—)
o Markov models have two problems:

—need big order to remember past “events”
—output noise is confounded with state noise

PROBABILISTIC GENERATIVE MODELS FOR TIME SERIES

e Stochastic models for time-series: y1,v2,. ..,y
To get interesting variability need noise.
To get correlations across time, need some system state.

T noiseT
sources
internal

e Time, States, Outputs: can be discrete or continuous

e Today: discrete state, discrete time
similar to finite state automata; Moore/Mealy machines

e Main idea of generative models: invent a model for generating
data, and set its parameters so it is as likely as possible to generate
the data you actually observed.

LEARNING MARKOV MODELS

e The ML parameter estimates for a simple Markov model are easy:

T
py1 - yr) =pyi-vk) [ eyt vier)
t=k+1
T
logp({y}) =logp(y1-..yx) + D> logp(yelyi—1,yt-2, -
t=k+1

e Each window of k£ + 1 outputs is a training case for the model
PYelyt—1,¥t-2, - Yi—k).

e Example: for discrete outputs (symbols) and a 2nd-order markov
model we can use the multinomial model:

Pyt = mlys—1 = a,ys—2 =) = apgp
The maximum likelihood values for v are:
N num(t s.t. yg =m,y—1 = a,ys—o = b
mab —

numft s.t. 31 = a,y;_o = b

;Yt—k:)




HIiDDEN MARKOV MODELS (HMMs)

HMM MODEL EQUATIONS

Add a latent (hidden) variable z; to improve the model.
e HMM = * probabilistic function of a Markov chain”:
1. 1st-order Markov chain generates hidden state sequence (path):
p@yr = jleg=1i)=S5;;  plar=j) =,
2. A set of output probability distributions A ;(-) (one per state)
converts state path into sequence of observable symbols/vectors

plyt = yloe = ) = Ajly)

delelelelek

e Even though hidden state seq. is 1st-order Markov, the output
process is not Markov of any order
[ex. 1111121111311121111131...]

(state transition diagram)

° x2 /x:i\ LN ) xt

e Hidden states {x;}, outputs {y;}
Joint probability factorizes:

p({z}, {y}) = H (zt|vr—1)p(ye|me)

S

= 7T:L’1 H S;L-t,{L'tJrl H ALt(Yt)
t=1 t=1

o NB: Data are not i.i.d. Everything is coupled across time.

e Three problems: computing probabilities of observed sequences,
inference of hidden state sequences, learning of parameters.

LINKSs TO OTHER MODELS

e You can think of an HMM as: (graphical models)
A Markov chain with stochastic measurements.

O—O—O—+—0O
OO0 O

A mixture model with states coupled across time.

o The future is independent of the past given the present.
However, conditioning on all the observations couples hidden states.

PROBABILITY OF AN OBSERVED SEQUENCE

e To evaluate the probability p({y}), we want:

p({y}) = > p({z}.{y})
{=}
p(observed sequence) = Y p( observed outputs , state path )
all paths

e Looks hard! ( #paths = #states!).
But joint probability factorizes:

T
p({y}) =D - > II p(@tlze—1)p(yelze)

) T op =1
=2 p(z)p(yilz1) D plaalr1)p(yalas) - -
>_plarlzr—1)p(yr|er)
T
e By moving the summations inside, we can save a lot of work.




IT’S AS EASY AS ABC...

If you understand this:
ab+ ac = a(b+ c)
then you understand the main trick of HMMs.

Bucgs oN A GRID

o Naive algorithm:

1. start bug in each state at t=1 holding value 0

2. move each bug forward in time by making copies of it and
incrementing the value of each copy by the probability of the
transition and output emission

3. go to 2 until all bugs have reached time 7'

4. sum up values on all bugs

states

time

THE SUM-PRODUCT RECURSION

e We want to compute'
=p({y}) = > p({z} {y})
{=}
o There exists a clever “forward recursion” to compute this huge sum
very efficiently. Define v;(t):

aj(t) = p(yi, ot =j)

ozj(l) =m;A; ‘(yl) now induction to the rescue...

Kt +1) {Z a;(t)Sjr t AR(yt+1)

e Notation: 2% = {yca, ot Y ={ya .yt
e This enables us to easily (cheaply) compute the desired likelihood L
since we know we must end in some possible state:

L=3 apT)
k

Buags oN A GRID - TRICK

o Clever recursion:
adds a step between 2 and 3 above which says: at each node, replace
all the bugs with a single bug carrying the sum of their values

states

a— time

o This trick is called dynamic programming, and can be used whenever
we have a summation, search, or maximization problem that can be
set up as a grid in this way.

The axes of the grid don't have to be “time” and “states”.




INFERENCE OF HIDDEN STATES

e What if we we want to estimate the hidden states given

observations? To start with, let us estimate a single hidden state:

oy P a(r)
plail{y}) = v(z) = D)

_ pilzep(y i lop(an)

plyD)
plyh edplyl )
i)
plat{y}) = v(ze) = o7
where aj(t) = p( y’i , 1t =17)
Bi(t) = p(yisy | ot =j)
Yit) = play=1i|y])

FORWARD-BACKWARD ALGORITHM

e «;(t) gives total inflow of prob. to node (¢,1)
B;(t) gives total outflow of prob.

states
e o

a — time <«—f

e Bugs again: we just let the bugs run forward from time 0 to ¢ and
backward from time 7" to .

e In fact, we can just do one forward pass to compute all the «;(?)
and one backward pass to compute all the (3;(¢) and then compute
any 7;(t) we want. Total cost is O(K*T).

FORWARD-BACKWARD ALGORITHM

e We compute these quantities efficiently using another recursion.
Use total prob. of all paths going through state ¢ at time ¢ to
compute the conditional prob. of being in state ¢ at time t:

Yilt) = plae =i | y])
= a;(t)5;(t)/ L
where we defined:
Bi(t) =plyf |z =3j)
e There is also a simple recursion for 3;(t):

Bi(t) = >_ Sjibi(t + 1) Ail(yr+1)
B(T) =1

e «;(t) gives total inflow of prob. to node (¢,1)
B;(t) gives total outflow of prob.

LIKELIHOOD FROM FORWARD-BACKWARD ALGORITHM

e Since » . (x¢) = 1, we can compute the likelihood at any time
using the results of the o — 3 recursions:

L=p({y}) =) ale)f(x)
T
e In the forward calculation we proposed originally, we did this at the
final timestep t = 1"
L=> afzy)
T

because G = 1.

e This is a good way to check your codel!




VITERBI DECODING: MAX-PRODUCT

e The numbers ’yj(t) above gave the probability distribution over all
states at any time.

e By choosing the state ~.(t) with the largest probability at each
time, we can make an “best” state path. This is the path with the
maximum expected number of correct states.

e But it is not the single path with the highest likelihood of
generating the data. In fact it may be a path of probability zero!

e To find the single best path, we do Viterbi decoding which is just
Bellman’s dynamic programming algorithm applied to this problem.

e The recursions look the same, except with max instead of .

e Bugs once more: same trick except at each step kill all bugs but
the one with the highest value at the node.

PARAMETER ESTIMATION

e Complete log likelihood:
T-1 T

logp({a}, {y}) = log{mas) I Suy i IT Auylye)}

t=1 t=1

B i) Bt o adad ) L [af)

t=1 j t=1 k

. T-1 o T )
=Y [atllogm; + Y Y [wh, af, Jlog Sij + 3 S [af]log Ag(y

i t=1 j t=1 k
where the indicator [x}] = 1 if 2; = i and 0 otherwise

e EM maximizes expected value of log p({x}, {y}) under p({z}|{y})
So the statistics we need from the inference (E-step) are:
plzi{y}) and p(zt, 21 [{y})-

e We saw how to get single time marginals p(z¢|{y}), but what
about two-frame estimates p(z¢, x4 1|{y})?

BAUM-WELCH TRAINING: EM ALGORITHM

1. How to find the parameters? Intuition: if only we knew the true
state path then ML parameter estimation would be trivial.

2. But: can estimate state path using the DP trick.

3. Baum-Welch algorithm (special case of EM): estimate the states,
then compute params, then re-estimate states, and so on ...

4. This works and we can prove that it always improves likelihood.

5. However: finding the ML parameters is NP hard, so initial
conditions matter a lot and convergence is hard to tell.

likelihood

/7

parameter space

TWO-FRAME INFERENCE

e Need the cross-time statistics for adjacent time steps:
§ij = plar =i, 0001 = j{y})
e This can be done by rewriting:
plee, v l{y}) = pla, g, {yH/p({y})

= plet, yDp(@e1, yi o yi)/ L
= plze, Y)P(@1|2)p (Ve [2e)p (ol wea1) /L
= ;(t)S;jA(yi+1)8i(t +1)/L
= &ij

e This is the expected number of transitions from state ¢ to state j

that begin at time ¢, given the observations.

e |t can be computed with the same « and 3 recursions.




NEW PARAMETERS ARE JUST
RATIOS OF FREQUENCY COUNTS

SymMBoL HMM EXAMPLE

e Initial state distribution: expected #times in state ¢ at time 1:
i =i(1)
e Expected #transitions from state ¢ to j which begin at time ¢:
§ij(t) = i(t)SijAj(yi+1)8;(t +1)/L
so the estimated transition probabilities are:
T T—1
Sij= Y &jit) / > vilt)
t=1 t=1

e The output distributions are the expected number of times we
observe a particular symbol in a particular state:

T
Ajlw) = X %) Zl'Yj(t)
t=

tlyr=yo

e Character sequences (discrete outputs)

Using HMMS FOR RECOGNITION

MIXTURE HMM EXAMPLE

e Use many HMMs for recognition by:
1. training one HMM for each class (requires /abeled training data)
2. evaluating probability of an unknown sequence under each HMM
3. classifying unknown sequence: HMM with highest likelihood

| |

L1 L2 Lk

e This requires the solution of two problems:

1. Given model, evaluate prob. of a sequence.
(We can do this exactly & efficiently.)

2. Give some training sequences, estimate model parameters.
(We can find the local maximum of parameter space nearest our
starting point using Baum-Welch (EM).)

e Geyser data (continuous outputs)

State output functions
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REGULARIZING HMMSs

e Two problems:
—for high dimensional outputs, lots of parameters in each Aj(y)
— with many states, transition matrix has many? elements

e First problem: full covariance matrices in high dimensions or
discrete symbol models with many symbols have lots of parameters.
To estimate these accurately requires a lot of training data.
Instead, we often use mixtures of diagonal covariance Gaussians.

e For discrete data, use mixtures of base rates and/or smoothing.

e We can also tie parameters across states (shrinkage).

MORE ADVANCED TOPICS

e Multiple observation sequences: can be dealt with by averaging
numerators and averaging denominators in the ratios given above.

e Generation of new sequences. Just roll the dice!

e Sampling a single state sequence from the posterior p({z}|{y}).
Harder...but possible. (can you think of how?)

e Initialization: mixtures of base rates or mixtures of Gaussians.
Can also use a trick of building a suffix tree to efficiently count all
subsequences up to some length and using these counts to initialize.

e Null outputs: it is possible to have states which (sometimes or
always) output nothing. This often makes the representation
sparser (e.g. profile HMMs).

e There is also a modified Baum-Welch training based on the Viterbi
decode. Like K-means instead of mixtures of Gaussians.

REGULARIZING TRANSITION MATRICES

e One way to regularize large transition matrices is to constrain them
to be relatively sparse: instead of being allowed to transition to any
other state, each state has only a few possible successor states.

e For example if each state has at most p possible next states then
the cost of inference is O(pKT') and the number of parameters is
O(pK + K M) which are both linear in the number of states.

An extremely effective way to constrain the
transitions is to order the states in the HMM
and allow transitions only to states that come = IANAN

e later in the ordering. Such models are known
as “linear HMMs", “chain HMMs" or “left-
to-right HMMs” . Transition matrix is upper- S(t+1) ;

diagonal (usually only has a few bands).

BE CAREFUL: LOGSUM

e Often you can easily compute by, = logp(y|z = k, Ap),
but it will be very negative, say -10% or smaller.
e Now, to compute ¢ = log p(y|A) you need to compute log ) ;. elk.

e Careful! Do not compute this by doing log(sum(exp(b))).
You will get underflow and an incorrect answer.
e Instead do this:

—Add a constant exponent B to all the values b;. such that the
largest value comes close to the maximum exponent allowed by
machine precision: B = MAXEXPONENT-1log(K)-max (b).

— Compute log(sum(exp(b+B)))-B.

e Example: if logp(y|z = 1) = —120 and log p(y|z = 2) = —120,

what is log p(y) = log [p(y|z = 1) + p(y|z = 2)]?
Answer: log[2e™12] = —120 + log 2.




HMM PRACTICALITIES

e If you just implement things as | have described them, they will not
work at all. Why? Remember logsum...

e Numerical scaling: the probability values that the bugs carry get
tiny for big times and so can easily underflow. Good rescaling trick:

t
pr=plydyl™)  alt)=a) ] py
=1

(note: some errors in early editions of Rabiner & Juang)

APPLICATIONS OF HMMSs

e Speech recognition.

e Language modeling.

e Information retrieval.

e Motion video analysis/tracking.

e Protein sequence and genetic sequence alignment and analysis.
e Financial time series prediction.

e Modeling growth/diffusion of cells in biological systems.

COMPUTATIONAL CoOSTS IN HMMSs

e The number of parameters in the model was O(K? + K M) for M
output symbols or dimensions.

o Recall the forward-backward algorithm for inference of state
probabilities p(z¢|{y}).

e The storage cost of this procedure was O(KT + K?) for K states
and a sequence of length 7.

e The time complexity was O(K>T).

states
e o

a —— time <«—p

LINEAR DYNAMICAL SYSTEMS (STATE SPACE MODELS)

e LDS is a Gauss-Markov continuous state process:
Tl = Az + wy
observed through the “lens” of a noisy linear embedding:
yi = Cxp + vy
o Noises we and v, are temporally white and uncorrelated

e Exactly the continuous state analogue of Hidden Markov Models.

e forward algorithm <> Discrete Kalman Filter
forward-backward < Kalman Smoothing
Viterbi decoding < no equivalent




DISCRETE SEQUENCES IN COMPUTATIONAL BIOLOGY

e There has recently been a great interest in applying probabilistic
models to analyzing discrete sequence data in molecular and
computational biology.

e There are two major sources of such data:
—amino acid sequences for protein analysis
— base-pair sequences for genetic analysis

e The sequences are sometimes annotated by other labels, e.g.
species, mutation/disease type, gender, race, etc.

e Lots of interesting applications:
—whole genome shotgun sequence fragment assembly
— multiple alignment of conserved sequences
— splice site detection
—inferring phylogenetic trees

PROFILE (STRING-EDIT) HMMS

(d8)—— @
] s

i = insert d = delete m = match (state transition diagram)

e A “profile HMM" or “string-edit” HMM is used for probabilistically
matching an observed input string to a stored template pattern
with possible insertions and deletions.

e Three kinds of states:
m; — use position j in the template to match an observed symbol
i;j — insert extra symbol(s) observations after template position j
dj — delete (skip) template position j

MAIN TooL: HIDDEN MARKOV MODELS

ProriLE HMMs HAVE LINEAR COSTS

e HMMs and related models (e.g. profile HMMs) have been the
major tool used in biological sequence analysis and alignment.

e The basic dynamic programming algorithms can be improved in
special cases to make them more efficient in time or memory.

practical details on applications and
implementations.

o0

Biological g¢

sequence @¢

analysis R 4

Probabilistic models .“

ke e

[ ]

See the excellent book by Durbin, S Eday :

. . A. Krogh

Eddy, Krogh, Mitchison for lots of G. Mitchison :
[

[ ]

i = insert d=delete m = match (state transition diagram)

e number of states = 3(length template)

e Only insert and match states can generate output symbols.

e Once you visit or skip a match state you can never return to it.
e At most 3 destination states from any state, so 5;; very sparse.
e Storage/Time cost linear in #states, not quadratic.

e State variables and observations no longer in sync.
(e.g. yliml ; d2; y2:i2 ; y3:i2 ; yAm3; ...)




ProriLE HMM EXAMPLE: HEMOGLOBIN

mat | ab/ HWM dnat st Tout . t xt Tue Mar 11 22:36: 18 2003 2

- XXXAREKK- KARXXXEAXAE- BEX- XXAKXETEKKHEK - XEXGCAXKEGA ax g
c: glagtcgaTgaaggacgt ggtaag- ct gegat aageet Agggga- ot - £ gghacayct gaaccat coA-
: 6CagtegaTgaagacg! ggcCaag- ct gegat aaget! cggggar ol Kgq&a‘}tclgaaccu&gk
g gegat aaget CAL ggA- a- gt
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-gecaagt t - t aagggeGoac- gt - ggat ge- ct t ggea- ccag- : gecgaTgaaggacgt ggg- : agleA cgat a: geeecgggga- ge- L ge- a- a: ca: aget t
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- gt : aagt ge- t aagggeGeat - ggt - ggat ge- ct t ggca- t cag- agecgaTgaaggacgt ggg- : ag- ot gegat at gect cgggga- go- t : gc- a- a: ccgaget s 1 : -~
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HMM PSEUDOCODE

e Forward-backward including scaling tricks

q;(t) = A;(yr)

a(l) = xq(1) p(1) = a(l) ol) =a(l)/p(1)

alt) = (S xalt—1)).xqt)  p(t)=Y_alt) alt)=alt)/pt) [t=2:T]

HT) =1
Bt)=S*(Bt+1).xq(t+1)/p(t+1) t=(T-1):1]

£=0
E=E4+ S x(at)* (BE+1). xqt+1)))/p(t +1)
~

= (. % )
logp(y!) = Y _ log(p(t))

SoME HMM HISTORY

e Markov ('13) and later Shannon ('48,'51) studied Markov chains.
e Baum et. al (BP'66, BE'67, BS'68, BPSW'70, B'72) developed
much of the theory of “probabilistic functions of Markov chains”.
e Viterbi ('67) (now Qualcomm) came up with an efficient optimal
decoder for state inference.
e Applications to speech were pioneered independently by:
— Baker ('75) at CMU (now Dragon)
— Jelinek’s group ('75) at IBM (now Hopkins)
— communications research division of IDA (Ferguson '74
unpublished)
e Dempster, Laird & Rubin ('77) recognized a general form of the
Baum-Welch algorithm and called it the EM algorithm.

e A landmark open symposium in Princeton ('80) hosted by IDA
reviewed work till then.

HMM PSEUDOCODE

e Baum-Welch parameter updates

=0  S;=0 @a=0 A=0

for each sequence, run forward backward to get v and £, then

S=8+¢ d=r+q(1) =05+ At
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